WO2022210393A1 - Lithium secondary battery and method for producing lithium secondary battery - Google Patents

Lithium secondary battery and method for producing lithium secondary battery Download PDF

Info

Publication number
WO2022210393A1
WO2022210393A1 PCT/JP2022/014547 JP2022014547W WO2022210393A1 WO 2022210393 A1 WO2022210393 A1 WO 2022210393A1 JP 2022014547 W JP2022014547 W JP 2022014547W WO 2022210393 A1 WO2022210393 A1 WO 2022210393A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
negative electrode
secondary battery
lithium secondary
battery
Prior art date
Application number
PCT/JP2022/014547
Other languages
French (fr)
Japanese (ja)
Inventor
滝太郎 山口
慎吾 松本
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2022210393A1 publication Critical patent/WO2022210393A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys

Definitions

  • the present invention relates to a lithium secondary battery and a method for manufacturing a lithium secondary battery.
  • This application claims priority based on Japanese Patent Application No. 2021-059729 filed in Japan on March 31, 2021, the content of which is incorporated herein.
  • Patent Document 1 describes a negative electrode composed of a negative electrode active material for a secondary battery, which is a porous aluminum alloy and contains at least one of silicon and tin. ing.
  • Patent Document 1 generally has a problem that the cycle retention rate tends to decrease.
  • SUMMARY OF THE INVENTION It is an object of the present invention to provide a lithium secondary battery in which the cycle retention rate is less likely to decrease, and a method for manufacturing the lithium secondary battery.
  • the present invention includes the following [1] to [4].
  • Lithium comprising an aluminum negative electrode capable of intercalating and deintercalating lithium ions, a positive electrode capable of intercalating and deintercalating lithium ions, and an electrolyte, wherein the aluminum negative electrode is made of an aluminum-containing metal and satisfies the following (1): secondary battery. 20 ⁇ /cm 2 ⁇ Rs ⁇ 100 ⁇ /cm 2 (1) (The lithium secondary battery is discharged, and the voltage after discharge is V0. After that, it is charged at 1.0 mA/cm 2 and the voltage after 2 seconds is V1.
  • V1 and V0 (V1-V0 ) is the DC resistance value per unit area of the positive electrode calculated from Rs.)
  • a method for producing a lithium secondary battery comprising an aluminum negative electrode capable of intercalating and deintercalating lithium ions, a positive electrode capable of intercalating and deintercalating lithium ions, and an electrolyte, wherein the aluminum negative electrode is made of an aluminum-containing metal.
  • the present invention it is possible to provide a lithium secondary battery in which the cycle retention rate is less likely to decrease, and a method for manufacturing the lithium secondary battery.
  • FIG. 1 is a schematic diagram showing an example of a lithium secondary battery
  • This embodiment is a lithium secondary battery including an aluminum negative electrode capable of intercalating and deintercalating lithium ions, a positive electrode capable of intercalating and deintercalating lithium ions, and an electrolyte.
  • An aluminum negative electrode consists of an aluminum containing metal.
  • the lithium secondary battery of the present embodiment is manufactured by carrying out initial charging and discharging after assembling a pre-battery and going through a predetermined aging process.
  • FIG. 1(a) is a schematic cross-sectional view of an aluminum negative electrode 40 placed in a pre-battery.
  • Li—Al alloy layer 41 is formed.
  • the Li—Al alloy layer is an alloy layer of lithium and aluminum. This state is shown in FIG. Since the Li—Al alloy layer 41 contains lithium ions, it can be charged and discharged.
  • the Li--Al alloy layer 41 becomes a state in which a plurality of columnar structures 41a are arranged. This state is shown in FIG.
  • the surface of the columnar structure 41a has an unstable crystal structure and is in a fragile state.
  • the Li—Al layer 42 having a columnar structure with a stabilized surface is formed.
  • the present invention relates to the technical concept of judging the formation of a Li—Al alloy layer having a columnar structure with a stabilized surface using the value of Rs as an index.
  • the aluminum negative electrode satisfies the following (1). 20 ⁇ /cm 2 ⁇ Rs ⁇ 100 ⁇ /cm 2 (1) (The lithium secondary battery is discharged, and the voltage after discharge is V0. After that, it is charged at 1.0 mA/cm 2 and the voltage after 2 seconds is V1. The difference between V1 and V0 (V1-V0 ) is the DC resistance value per unit area of the positive electrode calculated from Rs.)
  • V0 is the voltage of the lithium secondary battery in the discharged state
  • V1 is the voltage of the lithium secondary battery after the aging process.
  • V1 becomes a higher value than V0 because the aging process increases the resistance value.
  • V1 and V0 are calculated respectively.
  • the resistance value increases when the pre-battery is aged in a discharged state. It is considered that the increase in the resistance value is due to the change in the crystal state of the Li—Al alloy. Specifically, it is thought that as crystallization progressed, it became difficult for lithium ions to detach, and the resistance increased.
  • (1) is preferably any one of the following (1)-1 to (1)-3. 20 ⁇ /cm 2 ⁇ Rs ⁇ 100 ⁇ /cm 2 (1)-1 20 ⁇ /cm 2 ⁇ Rs ⁇ 50 ⁇ /cm 2 (1)-2 20 ⁇ /cm 2 ⁇ Rs ⁇ 30 ⁇ /cm 2 (1)-3
  • the lithium secondary battery preferably satisfies the following (2). 10 ⁇ /cm 2 ⁇ Ra ⁇ 100 ⁇ /cm 2 (2) (Ra is the AC resistance value of the aluminum negative electrode obtained by discharging the lithium secondary battery, measuring the AC impedance, and analyzing the Cole-Cole plot of the obtained impedance.)
  • AC impedance measurement is performed using a potentio/galvanostat (SI1287, manufactured by Solartron) and a frequency response analyzer (1255B, manufactured by Solartron) as impedance measuring devices.
  • the pre-battery is placed in a constant temperature bath at 25° C., and the impedance spectrum of the test battery is measured by the AC impedance method at a frequency of 10 6 to 10 ⁇ 1 Hz and a voltage amplitude of 10 mV.
  • (2) is preferably any one of the following (2)-1 to (2)-3. 10 ⁇ /cm 2 ⁇ Ra ⁇ 50 ⁇ /cm 2 (2)-1 10 ⁇ /cm 2 ⁇ Ra ⁇ 40 ⁇ /cm 2 (2)-2 10 ⁇ /cm 2 ⁇ Ra ⁇ 30 ⁇ /cm 2 (2)-3
  • the aluminum negative electrode is made of an aluminum-containing metal.
  • Examples of the aluminum negative electrode include aluminum negative electrodes 1 to 3 described below.
  • the aluminum negative electrode 1 is made of an aluminum-containing metal.
  • the aluminum-containing metal acts as a negative electrode active material.
  • the aluminum-containing metal of the aluminum negative electrode 1 has a non-aluminum metal phase dispersed in an aluminum metal phase.
  • a non-aluminum metallic phase means a metallic phase that does not contain aluminum.
  • the non-aluminum metal phase preferably comprises a non-aluminum metal compound containing one or more selected from the group consisting of Si, Ge, Sn, Ag, Sb, Bi, In and Mg.
  • the non-aluminum metal phase is more preferably composed of a non-aluminum metal compound containing one or more selected from the group consisting of Si, Ge, Sn, Ag, Sb, Bi and In.
  • the aluminum negative electrode 1 is preferably manufactured by a manufacturing method including an alloy casting process and a rolling process.
  • Alloy Casting Step When casting is performed, first, a predetermined amount of a metal that constitutes a non-aluminum metal phase is added to aluminum or high-purity aluminum to obtain a mixture 1 .
  • High-purity aluminum can be obtained by the method described below.
  • the mixture 1 is melted at 680° C. or higher and 800° C. or lower to obtain a molten alloy 1 of aluminum and metal.
  • Aluminum with a purity of 99.9% by mass or more, high-purity aluminum with a purity of 99.99% by mass or more, or the like can be used as aluminum constituting the aluminum phase.
  • the metal constituting the non-aluminum metal phase is one or more selected from the group consisting of Si, Ge, Sn, Ag, Sb, Bi, In and Mg. High-purity silicon having a purity of 99.999% by mass or more is used as the metal constituting the non-aluminum metal phase, for example.
  • the molten alloy 1 cleaned by vacuum treatment or the like is cast using a mold to form an ingot.
  • a mold an iron mold heated to 50° C. or more and 200° C. or less or a graphite mold is used.
  • the aluminum negative electrode 1 can be cast by a method of pouring the molten alloy 1 at 680° C. or higher and 800° C. or lower into a mold. Alternatively, an ingot may be obtained by semi-continuous casting.
  • the ingot of the obtained alloy can be used for the aluminum negative electrode 1 by cutting as it is.
  • the ingot is preferably rolled, extruded, or forged into a plate shape. Moreover, it is more preferable to make it into a plate shape by rolling.
  • the ingot rolling step is, for example, a step of performing hot rolling and cold rolling to process the ingot into a plate shape.
  • hot rolling is performed repeatedly until the aluminum ingot reaches the desired thickness under the conditions of a temperature of 350 ° C. or higher and 550 ° C. or lower and a processing rate per rolling of 2% or higher and 30% or lower.
  • the "rolling rate” means the rate of change in thickness when rolled. For example, when a plate with a thickness of 1 mm is reduced to a thickness of 0.7 mm, the processing rate is 30%.
  • the intermediate annealing treatment is performed, for example, by heating the hot-rolled sheet material to raise the temperature, and then allowing it to cool.
  • the temperature may be raised to, for example, 350°C or higher and 550°C or lower. Further, in the temperature raising step, for example, a temperature of 350° C. or more and 550° C. or less may be maintained for about 1 hour or more and 5 hours or less.
  • cooling may be performed immediately after raising the temperature. In the cooling step, it is preferable to cool down to about 20°C.
  • Cold rolling is preferably performed at a temperature below the recrystallization temperature of aluminum. Moreover, it is preferable to repeatedly roll the aluminum ingot until it reaches the target thickness under the condition that the rolling rate per rolling is 1% or more and 20% or less.
  • the temperature of cold rolling the temperature of the metal to be rolled may be adjusted from 10° C. to 80° C. or less.
  • heat treatment may be further performed.
  • the heat treatment after cold rolling is usually performed in the atmosphere, but may be performed in a nitrogen atmosphere or a vacuum atmosphere.
  • various physical properties, specifically hardness, electrical conductivity and tensile strength may be adjusted by controlling the crystal structure.
  • the heat treatment conditions include, for example, conditions for heat treatment at a temperature of 300° C. or higher and 400° C. or lower for 5 hours or longer and 10 hours or shorter.
  • the thickness of the aluminum negative electrode 1 is preferably 5 ⁇ m or more, more preferably 6 ⁇ m or more, and even more preferably 7 ⁇ m or more. Moreover, it is preferably 200 ⁇ m or less, more preferably 190 ⁇ m or less, and even more preferably 180 ⁇ m or less. The above upper limit and lower limit of the thickness of the aluminum negative electrode 1 can be combined arbitrarily. In this embodiment, the thickness of the aluminum negative electrode 1 is preferably 5 ⁇ m or more and 200 ⁇ m or less. The thickness of the aluminum negative electrode 1 may be measured using a thickness gauge or vernier caliper.
  • Examples of refining methods for purifying aluminum include a segregation method and a three-layer electrolysis method.
  • the segregation method is a purification method that utilizes the segregation phenomenon during the solidification of molten aluminum, and multiple methods have been put into practical use.
  • the segregation method there is a method of pouring molten aluminum into a container, heating the upper molten aluminum while rotating the container, and solidifying refined aluminum from the bottom while stirring. High-purity aluminum with a purity of 99.99% by mass or more can be obtained by the segregation method.
  • the three-layer electrolysis method is an electrolysis method for highly purifying aluminum.
  • relatively low-purity aluminum or the like for example, JIS-H2102 with a purity of 99.9% by mass or less, grade 1 or so
  • the molten state is used as an anode, and an electrolytic bath containing, for example, aluminum fluoride and barium fluoride is placed thereon to deposit high-purity aluminum on the cathode.
  • High-purity aluminum with a purity of 99.999% by mass or more can be obtained by the three-layer electrolysis method.
  • the method of purifying aluminum is not limited to the segregation method and the three-layer electrolysis method, and other known methods such as the zone melting refining method and the ultra-high vacuum dissolution method may be used.
  • High-purity aluminum-magnesium alloy 1 It is an alloy of aluminum with a purity of 99.999% and magnesium.
  • the content of magnesium in the total amount of aluminum-containing metal is 0.1% by mass or more and 4.0% by mass or less.
  • the average corrosion rate is 0.04 mm/year to 0.06 mm/year.
  • High-purity aluminum-magnesium alloy 2 It is an alloy of 99.9% pure aluminum and magnesium.
  • the content of magnesium in the total amount of aluminum-containing metal is 0.1% by mass or more and 1.0% by mass or less.
  • the average corrosion rate is 0.1 mm/year to 0.14 mm/year.
  • High Purity Aluminum-Nickel Alloy An alloy of aluminum with a purity of 99.999% and nickel.
  • the content of nickel in the total amount of aluminum-containing metal is 0.1% by mass or more and 1.0% by mass or less.
  • the average corrosion rate is 0.1 mm/year to 0.14 mm/year.
  • High-purity aluminum-manganese-magnesium alloy It is an alloy of 99.99% pure aluminum, manganese and magnesium.
  • the total content of manganese and magnesium in the total amount of aluminum-containing metals is 1.0% by mass or more and 2.0% by mass or less.
  • the average corrosion rate is 0.03 mm/year to 0.05 mm/year.
  • High Purity Aluminum Aluminum with a purity of 99.999%. The average corrosion rate is 0.05 mm/year.
  • aluminum is first highly purified.
  • Examples of the method for highly purifying aluminum include the method for highly purifying aluminum described in the above (Method for producing aluminum negative electrode 1).
  • the method 1 for producing the aluminum negative electrode 2 preferably includes a step of casting high-purity aluminum and a step of rolling.
  • ..Casting step By casting highly purified aluminum by the above-described method, an aluminum ingot having a shape suitable for rolling can be obtained.
  • high-purity aluminum is melted at about 680° C. or higher and 800° C. or lower to obtain molten aluminum.
  • the molten aluminum is preferably cleaned by removing gas and non-metallic inclusions.
  • the cleaned molten aluminum is cast using a mold to form an ingot.
  • a mold an iron mold heated to 50° C. or more and 200° C. or less or a graphite mold is used.
  • the aluminum negative electrode 2 can be cast by a method of pouring molten aluminum at 680° C. or higher and 800° C. or lower into a mold. Alternatively, an ingot may be obtained by semi-continuous casting.
  • the aluminum ingot thus obtained can be used for the aluminum negative electrode 2 by cutting as it is.
  • the aluminum ingot is preferably rolled, extruded, or forged into a plate material.
  • rolling is more preferable.
  • the rolling step can be performed by the same method as the rolling step described in the method for producing the aluminum negative electrode 1 .
  • the method 2 for manufacturing the aluminum negative electrode 2 preferably includes a step of casting a high-purity aluminum alloy and a step of rolling.
  • ..Casting step When casting is performed, first, a predetermined amount of a metal element is added to high-purity aluminum to obtain a mixture 2 . Next, the mixture 2 is melted at 680° C. or higher and 800° C. or lower to obtain a molten alloy 2 of aluminum and metal.
  • the metal element to be added is preferably one or more selected from the group consisting of Mg, Ni, Mn, Zn, Cd and Pb.
  • the metal containing these elements to be added preferably has a purity of 99% by mass or more.
  • a high-purity aluminum alloy ingot is obtained by the same method as the casting process in the manufacturing method of the aluminum negative electrode 1, except that the molten alloy 2 is used.
  • Rolling step A rolling step is performed by the same method as the manufacturing method 1 of the aluminum negative electrode 2 described above.
  • the thickness of the aluminum negative electrode 2 is preferably 5 ⁇ m or more, more preferably 6 ⁇ m or more, and even more preferably 7 ⁇ m or more. Moreover, it is preferably 200 ⁇ m or less, more preferably 190 ⁇ m or less, and even more preferably 180 ⁇ m or less. The above upper limit and lower limit of the thickness of the aluminum negative electrode 2 can be combined arbitrarily. In this embodiment, the thickness of the aluminum negative electrode 2 is preferably 5 ⁇ m or more and 200 ⁇ m or less.
  • the aluminum negative electrode 3 is an aluminum-containing metal.
  • the Vickers hardness of the aluminum negative electrode 3 is preferably 10 HV or more and 70 HV or less, more preferably 20 HV or more and 70 HV or less, even more preferably 30 HV or more and 70 HV or less, and particularly preferably 35 HV or more and 55 HV or less.
  • the crystal structure of the metal forming the aluminum negative electrode may be distorted. If the Vickers hardness is equal to or less than the above upper limit, it is presumed that the distortion of the crystal structure can be relaxed and the crystal structure can be maintained when the aluminum negative electrode 3 absorbs lithium. Therefore, the lithium secondary battery using the aluminum negative electrode 3 is less likely to decrease its cycle retention rate even when charging and discharging are repeated.
  • Vickers hardness uses the value measured by the following method.
  • the material of the negative electrode current collector can be a strip-shaped member made of a metal material such as Cu, Ni, or stainless steel. Among them, it is preferable to use Cu as a forming material and process it into a thin film because it is difficult to form an alloy with lithium and is easy to process.
  • Examples of the method of supporting the negative electrode mixture on such a negative electrode current collector include a method of pressure molding, and a method of making a paste using a solvent or the like, coating it on the negative electrode current collector, drying it, and then pressing and crimping it.
  • the aluminum negative electrode also serves as a current collector, a separate current collector may not be necessary.
  • the positive electrode has a positive electrode active material.
  • a lithium-containing compound or other metal compound can be used for the positive electrode active material.
  • lithium-containing compounds include lithium-cobalt composite oxides having a layered structure, lithium-nickel composite oxides having a layered structure, lithium-manganese composite oxides having a spinel structure, and lithium iron phosphate having an olivine structure. .
  • metal compounds include, for example, oxides such as titanium oxide, vanadium oxide or manganese dioxide, or sulfides such as titanium sulfide or molybdenum sulfide.
  • a carbon material can be used as the conductive material.
  • Examples of carbon materials include graphite powder, carbon black (eg, acetylene black), and fibrous carbon materials. Since carbon black is fine particles and has a large surface area, by adding a small amount of carbon black to the positive electrode mixture, the conductivity inside the positive electrode can be increased, and the charge/discharge efficiency and output characteristics can be improved.
  • the ratio of the conductive material in the positive electrode mixture is preferably 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the positive electrode active material. If a fibrous carbon material such as graphitized carbon fiber or carbon nanotube is used as the conductive material, this ratio can be lowered.
  • thermoplastic resin can be used as the binder.
  • thermoplastic resins include polyvinylidene fluoride (hereinafter sometimes referred to as PVdF), polytetrafluoroethylene (hereinafter sometimes referred to as PTFE), ethylene tetrafluoride/propylene hexafluoride/vinylidene fluoride. fluororesins such as copolymers, propylene hexafluoride/vinylidene fluoride copolymers and tetrafluoroethylene/perfluorovinyl ether copolymers; and polyolefin resins such as polyethylene and polypropylene.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • fluororesins such as copolymers, propylene hexafluoride/vinylidene fluoride copolymers and tetrafluoroethylene/perfluorovinyl ether copoly
  • thermoplastic resins may be used in combination of two or more.
  • a fluororesin and a polyolefin resin are used as a binder, and the ratio of the fluororesin to the entire positive electrode mixture is 1% by mass or more and 10% by mass or less, and the ratio of the polyolefin resin is 0.1% by mass or more and 2% by mass or less. It is possible to obtain a positive electrode mixture having both high adhesion to the current collector and high bonding strength inside the positive electrode mixture.
  • the positive electrode current collector As the positive electrode current collector, a belt-like member made of a metal material such as Al, Ni, or stainless steel can be used. Among them, it is preferable to use Al as a forming material and process it into a thin film because it is easy to process and inexpensive.
  • the positive electrode current collector may be made of the same material as the negative electrode current collector.
  • the positive electrode mixture As a method of supporting the positive electrode mixture on the positive electrode current collector, there is a method of pressure-molding the positive electrode mixture on the positive electrode current collector.
  • the positive electrode mixture is made into a paste using an organic solvent, and the obtained positive electrode mixture paste is applied to at least one side of a positive electrode current collector, dried, and pressed to adhere, thereby forming a positive electrode on the positive electrode current collector.
  • a mixture may be supported.
  • organic solvents that can be used include amine-based solvents such as N,N-dimethylaminopropylamine and diethylenetriamine; ether-based solvents such as tetrahydrofuran; ketone-based solvents such as methyl ethyl ketone; ester solvents such as dimethylacetamide, amide solvents such as N-methyl-2-pyrrolidone;
  • Examples of methods for applying the positive electrode mixture paste to the positive electrode current collector include slit die coating, screen coating, curtain coating, knife coating, gravure coating, and electrostatic spraying.
  • a positive electrode can be manufactured by the method described above.
  • the electrolyte that the lithium secondary battery has may be a liquid electrolyte or a solid electrolyte.
  • the liquid electrolyte includes an electrolytic solution containing an electrolyte and an organic solvent.
  • Electrolytes contained in the electrolyte solution include LiClO4, LiPF6 , LiAsF6 , LiSbF6 , LiBF4 , LiCF3SO3 , LiN (SO2CF3)2 , and LiN ( SO2C2F5 ).
  • the electrolyte at least one selected from the group consisting of LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN(SO 2 CF 3 ) 2 and LiC(SO 2 CF 3 ) 3 containing fluorine It is preferred to use one containing one.
  • organic solvents contained in the electrolytic solution include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, 4-trifluoromethyl-1,3-dioxolan-2-one, 1,2-di( Carbonates such as methoxycarbonyloxy)ethane; 1,2-dimethoxyethane, 1,3-dimethoxypropane, pentafluoropropylmethyl ether, 2,2,3,3-tetrafluoropropyldifluoromethyl ether, tetrahydrofuran, 2-methyl ethers such as tetrahydrofuran; esters such as methyl formate, methyl acetate, propyl propionate and ⁇ -butyrolactone; nitriles such as acetonitrile and butyronitrile; amides such as N,N-dimethylformamide and N,N-dimethylacetamide; carbamates such as 3-methyl-2-ox
  • the organic solvent it is preferable to use a mixture of two or more of these.
  • a mixed solvent containing carbonates is preferable, and a mixed solvent of a cyclic carbonate and a non-cyclic carbonate and a mixed solvent of a cyclic carbonate and an ether are more preferable.
  • a mixed solvent containing ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate is preferable as the mixed solvent of the cyclic carbonate and the non-cyclic carbonate.
  • the electrolyte solution using such a mixed solvent has a wide operating temperature range, does not easily deteriorate even when charged and discharged at a high current rate, does not easily deteriorate even after long-term use, and uses natural graphite as an active material for the negative electrode. , and has many features of being resistant to decomposition even when graphite materials such as artificial graphite are used.
  • an electrolytic solution containing a fluorine-containing lithium salt such as LiPF 6 and an organic solvent having a fluorine substituent since the safety of the obtained lithium secondary battery is increased.
  • Mixed solvents containing fluorine-substituted ethers such as pentafluoropropylmethyl ether and 2,2,3,3-tetrafluoropropyldifluoromethyl ether and dimethyl carbonate do not retain their capacity even when charged and discharged at a high current rate. It is more preferable because of its high retention rate.
  • the electrolyte may contain additives such as tris (trimethylsilyl) phosphate and tris (trimethylsilyl) borate.
  • an organic polymer electrolyte such as a polymer compound containing at least one of a polyethylene oxide polymer compound, a polyorganosiloxane chain, and a polyoxyalkylene chain can be used.
  • a so-called gel type in which a non-aqueous electrolyte is held in a polymer compound can also be used.
  • the solid electrolyte may play the role of a separator, in which case the separator may not be required.
  • the separator When the lithium secondary battery has a separator, the separator may be in the form of a porous film, nonwoven fabric, or woven fabric made of a material such as a polyolefin resin such as polyethylene or polypropylene, a fluororesin, or a nitrogen-containing aromatic polymer. can be used. Moreover, the separator may be formed using two or more of these materials, or the separator may be formed by laminating these materials.
  • the air permeability resistance according to the Gurley method defined in JIS P 8117 must be 50 seconds/100 cc or more and 300 seconds/100 cc or less. It is preferably 50 seconds/100 cc or more and more preferably 200 seconds/100 cc or less.
  • the porosity of the separator is preferably 30% by volume or more and 80% by volume or less, more preferably 40% by volume or more and 70% by volume or less.
  • the separator may be a laminate of separators with different porosities.
  • a lithium secondary battery manufactured according to the present embodiment includes an aluminum negative electrode capable of intercalating and deintercalating lithium ions, a positive electrode capable of intercalating and deintercalating lithium ions, and an electrolyte.
  • Lithium secondary batteries include non-aqueous electrolyte secondary batteries using an electrolytic solution as an electrolyte.
  • Lithium secondary batteries include all-solid-state batteries using a solid electrolyte as the electrolyte.
  • the manufacturing method of the lithium secondary battery of the present embodiment includes a step of assembling a pre-battery, a step of charging and discharging the pre-battery for the first time, and an aging step. Each step will be explained.
  • FIG. 2 is a schematic diagram showing an example of a lithium secondary battery.
  • Cylindrical lithium secondary battery 10 is manufactured as follows.
  • a pair of strip-shaped separators 1, a strip-shaped positive electrode 2 having a positive electrode lead 21 at one end, and a strip-shaped negative electrode 3 having a negative electrode lead 31 at one end are arranged as follows: 1 and the negative electrode 3 are stacked in this order and wound to form an electrode group 4 .
  • the can bottom is sealed, the electrode group 4 is impregnated with the electrolytic solution 6, and the electrolyte is arranged between the positive electrode 2 and the negative electrode 3. . Further, by sealing the upper portion of the battery can 5 with the top insulator 7 and the sealing member 8, the lithium secondary battery 10 can be manufactured.
  • the shape of the electrode group 4 is, for example, a columnar shape such that the cross-sectional shape of the electrode group 4 cut in the direction perpendicular to the winding axis is a circle, an ellipse, a rectangle, or a rectangle with rounded corners. can be mentioned.
  • a shape defined by IEC60086 which is a standard for batteries defined by the International Electrotechnical Commission (IEC), or JIS C 8500 can be adopted.
  • IEC60086 which is a standard for batteries defined by the International Electrotechnical Commission (IEC), or JIS C 8500
  • a shape such as a cylindrical shape or a rectangular shape can be mentioned.
  • the lithium secondary battery is not limited to the wound type configuration described above, and may have a layered configuration in which a layered structure of a positive electrode, a separator, a negative electrode, and a separator is repeatedly stacked.
  • laminated lithium secondary batteries include so-called coin-type batteries, button-type batteries, and paper-type (or sheet-type) batteries.
  • the pre-battery in the discharged state is stored at an ambient temperature of 50°C or higher for 4 hours or longer.
  • the lower limit of the storage time is 4.5 hours or more, 5 hours or more, or 6 hours or more.
  • the upper limit of the storage time is 20 hours or less, 15 hours or less, or 10 hours or less.
  • the upper limit and lower limit of storage time can be combined arbitrarily. Examples of combinations include storage times of 4 hours to 20 hours, 5 hours to 15 hours, and 6 hours to 10 hours.
  • the storage temperature is preferably 52° C. or higher, more preferably 55° C. or higher.
  • the upper limit of the storage temperature is, for example, 100° C. or lower and 80° C. or lower.
  • Storage temperature is, for example, 50° C. or higher and 100° C. or lower, or 55° C. or higher and 80° C. or lower.
  • Combinations of storage time and storage temperature include the following combinations. ⁇ 4 hours or more and 20 hours or less at 50°C or more and 100°C or less. - 5 hours to 15 hours at 55°C to 80°C.
  • the rate of increase in Ra of the battery after the aging process with respect to Ra of the pre-battery before the aging process is preferably 0% or more and 20% or less, preferably 8% or more and 15% or less.
  • the increase rate of Ra is obtained by the following formula. (Ra of battery after aging process ⁇ Ra of pre-battery before aging process)/Ra of pre-battery before aging process ⁇ 100
  • the above aging process stabilizes the Li-Al alloy layer.
  • the Li--Al alloy layer is stabilized means that the crystal structure of the aluminum-lithium alloy is stabilized and the formation of a new alloy layer is suppressed.
  • the discharge capacity tends to be stabilized. Therefore, by including the aging step, it is possible to obtain a lithium secondary battery in which the cycle retention rate is less likely to decrease.
  • aging is performed after the lithium secondary battery is assembled.
  • the purpose of conventional aging is to stably generate an SEI (Solid Electrolyte Interface) film on the electrode surface.
  • SEI Solid Electrolyte Interface
  • Conventional aging is, for example, room temperature aging or high temperature aging.
  • the surface of the aluminum negative electrode becomes brittle after the first charge and discharge, and therefore aging is necessary to improve crystallinity and form SEI on the surface.
  • the cycle retention rate is less likely to decrease means that the value of the cycle retention rate measured by the method below is in the range of 90% or more and 99% or less.
  • a pre-battery of a coin-type lithium secondary battery is allowed to stand at room temperature for 10 hours, so that the separator and the positive electrode mixture layer are sufficiently impregnated with the electrolytic solution.
  • the battery is charged at a constant current of 1 mA to 4.2 V, then charged at a constant voltage of 4.2 V for 5 hours, and then discharged at a constant current of 1 mA to 3.4 V.
  • Initial charge/discharge of the pre-battery is performed in this manner. The discharge capacity is measured, and the obtained value is defined as "initial discharge capacity" (mAh).
  • Cycle retention rate (%) 100th cycle discharge capacity (mAh) / 2nd discharge capacity (mAh) x 100
  • Ra was calculated by the method described in [Method for calculating Ra] above.
  • Example 1 [Preparation of negative electrode]
  • the silicon-aluminum alloy used in Example 1 was produced by the following method. By heating and holding high-purity aluminum (purity: 99.99% by mass or more) and high-purity chemical silicon (purity: 99.999% by mass or more) at 760 ° C., the silicon content is 1.0% by mass.
  • a molten aluminum-silicon alloy was obtained. Next, the molten alloy was held at a temperature of 740° C. and a degree of vacuum of 50 Pa for 2 hours for cleaning. The molten alloy was cast in a cast iron mold (22 mm ⁇ 150 mm ⁇ 200 mm) dried at 150° C. to obtain an ingot.
  • Rolling was performed under the following conditions. After both surfaces of the ingot were chamfered by 2 mm, cold rolling was performed from a thickness of 18 mm at a reduction ratio of 99.6%. The thickness of the obtained rolled material was 100 ⁇ m.
  • lithium cobalt oxide product name: Cellseed, manufactured by Nippon Kagaku Kogyo Co., Ltd., average particle size (D50): 10 ⁇ m
  • 5 parts by mass of polyvinylidene fluoride manufactured by Kureha Co., Ltd.
  • a conductive material 5 parts by mass of acet
  • the obtained electrode mixture was applied onto an aluminum foil having a thickness of 15 ⁇ m as a current collector by a doctor blade method.
  • the coated electrode mixture was dried at 60° C. for 2 hours and then vacuum dried at 150° C. for 10 hours to volatilize N-methyl-2-pyrrolidone.
  • the coating amount of the positive electrode active material after drying was 21.5 mg/cm 2 .
  • the Rs of the lithium secondary battery 1 was 50 ⁇ , the Ra was 35 ⁇ /cm 2 , and the increase in Ra before and after aging was 10%.
  • the cycle retention rate measured by the method described in [Method for measuring cycle retention rate] above was 90%.
  • the Rs of the lithium secondary battery 2 was 10 ⁇ /cm 2 , the Ra was 34 ⁇ /cm 2 , and the increase in Ra before and after aging was 5%.
  • the cycle retention rate measured by the method described in [Method for measuring cycle retention rate] above was 70%.
  • the Rs of the lithium secondary battery 3 was 10 ⁇ , the Ra was 30 ⁇ /cm 2 , and the increase in Ra before and after aging was 7%.
  • the cycle retention rate measured by the method described in [Method for measuring cycle retention rate] above was 80%.
  • the Rs of the lithium secondary battery 4 was 10 ⁇ , the Ra was 32 ⁇ /cm 2 , and the increase in Ra before and after aging was 7%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

A lithium secondary battery which is provided with an aluminum negative electrode that is capable of absorbing and desorbing lithium ions, a positive electrode that is capable of absorbing and desorbing lithium ions, and an electrolyte, wherein: the aluminum negative electrode is configured from an aluminum-containing metal; and formula (1) is satisfied. (1): 20 Ω/cm2 ≤ Rs ≤ 100 Ω/cm2 (The lithium secondary battery is discharged, and the voltage after discharge is represented by V0. Subsequently, the lithium secondary battery is charged at 1.0 mA/cm2, and the voltage after 2 seconds is represented by V1. The direct-current resistance value per unit area of the positive electrode as calculated from the difference between V1 and V0 (V1 - V0) is represented by Rs.)

Description

リチウム二次電池及びリチウム二次電池の製造方法Lithium secondary battery and method for manufacturing lithium secondary battery
 本発明は、リチウム二次電池及びリチウム二次電池の製造方法に関する。
 本願は、2021年3月31日に、日本に出願された特願2021-059729号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a lithium secondary battery and a method for manufacturing a lithium secondary battery.
This application claims priority based on Japanese Patent Application No. 2021-059729 filed in Japan on March 31, 2021, the content of which is incorporated herein.
 リチウム二次電池を構成する負極について、従来の負極材料である黒鉛よりも理論容量が大きい材料を用い、電池性能を向上させる検討が行われている。このような材料として、黒鉛と同様に、例えばリチウムイオンを吸蔵可能及び放出可能な金属材料が注目されている。  Concerning the negative electrode that constitutes the lithium secondary battery, studies are being conducted to improve battery performance by using a material that has a larger theoretical capacity than graphite, which is the conventional negative electrode material. As such materials, similar to graphite, metallic materials capable of intercalating and deintercalating lithium ions, for example, have attracted attention.
 金属材料から形成された負極の例として、例えば特許文献1には、多孔質のアルミニウム合金であり、シリコン又はスズの少なくとも1種を含む二次電池用負極活物質から構成される負極が記載されている。 As an example of a negative electrode made of a metal material, for example, Patent Document 1 describes a negative electrode composed of a negative electrode active material for a secondary battery, which is a porous aluminum alloy and contains at least one of silicon and tin. ing.
特開2011-228058号公報JP 2011-228058 A
 特許文献1に記載されている金属負極は、一般的にサイクル維持率が低下しやすいという課題がある。
 本発明は上記事情に鑑みてなされたものであって、サイクル維持率が低下しにくいリチウム二次電池及びリチウム二次電池の製造方法を提供することを目的とする。
The metal negative electrode described in Patent Document 1 generally has a problem that the cycle retention rate tends to decrease.
SUMMARY OF THE INVENTION It is an object of the present invention to provide a lithium secondary battery in which the cycle retention rate is less likely to decrease, and a method for manufacturing the lithium secondary battery.
 本発明は以下の[1]~[4]を包含する。
[1]リチウムイオンを吸蔵及び放出可能なアルミニウム負極と、リチウムイオンを吸蔵及び放出可能な正極と、電解質と、を備え、前記アルミニウム負極はアルミニウム含有金属からなり、下記(1)を満たす、リチウム二次電池。
 20Ω/cm≦Rs≦100Ω/cm  (1)
(リチウム二次電池を放電させ、放電後の電圧をV0とする。その後1.0mA/cmで充電し、2秒後の電圧をV1とする。前記V1とV0との差(V1-V0)から算出した正極の単位面積当たりの直流抵抗値をRsとする。)
[2]下記(2)を満たす、[1]に記載のリチウム二次電池。
 10Ω/cm≦Ra≦100Ω/cm  (2)
(Raは、リチウム二次電池を放電させ、交流インピーダンス測定を実施し、得られたインピーダンスのコール・コールプロットを解析して求まる前記アルミニウム負極の交流抵抗値である。)
[3]リチウムイオンを吸蔵及び放出可能なアルミニウム負極と、リチウムイオンを吸蔵及び放出可能な正極と、電解質と、を備え、前記アルミニウム負極はアルミニウム含有金属からなるリチウム二次電池の製造方法であって、プレ電池を組み上げる工程と、プレ電池を初回充放電させる工程と、放電状態のプレ電池を、周囲温度50℃以上で4時間以上保存するエージング工程と、を備えるリチウム二次電池の製造方法。
[4]前記エージング工程の前のプレ電池のRaに対する、前記エージング工程後の電池のRaの増加率が0%以上20%以下を満たす、[3]に記載のリチウム二次電池の製造方法。
The present invention includes the following [1] to [4].
[1] Lithium, comprising an aluminum negative electrode capable of intercalating and deintercalating lithium ions, a positive electrode capable of intercalating and deintercalating lithium ions, and an electrolyte, wherein the aluminum negative electrode is made of an aluminum-containing metal and satisfies the following (1): secondary battery.
20 Ω/cm 2 ≤ Rs ≤ 100 Ω/cm 2 (1)
(The lithium secondary battery is discharged, and the voltage after discharge is V0. After that, it is charged at 1.0 mA/cm 2 and the voltage after 2 seconds is V1. The difference between V1 and V0 (V1-V0 ) is the DC resistance value per unit area of the positive electrode calculated from Rs.)
[2] The lithium secondary battery according to [1], which satisfies the following (2).
10 Ω/cm 2 ≤ Ra ≤ 100 Ω/cm 2 (2)
(Ra is the AC resistance value of the aluminum negative electrode obtained by discharging the lithium secondary battery, measuring the AC impedance, and analyzing the Cole-Cole plot of the obtained impedance.)
[3] A method for producing a lithium secondary battery comprising an aluminum negative electrode capable of intercalating and deintercalating lithium ions, a positive electrode capable of intercalating and deintercalating lithium ions, and an electrolyte, wherein the aluminum negative electrode is made of an aluminum-containing metal. a step of assembling a pre-battery, a step of charging and discharging the pre-battery for the first time, and an aging step of storing the discharged pre-battery at an ambient temperature of 50° C. or higher for 4 hours or more. .
[4] The method for producing a lithium secondary battery according to [3], wherein an increase rate of Ra of the battery after the aging process to Ra of the pre-battery before the aging process satisfies 0% or more and 20% or less.
 本発明によれば、サイクル維持率が低下しにくいリチウム二次電池及びリチウム二次電池の製造方法を提供することができる。 According to the present invention, it is possible to provide a lithium secondary battery in which the cycle retention rate is less likely to decrease, and a method for manufacturing the lithium secondary battery.
本発明の作用機構を説明するための模式図である。It is a schematic diagram for demonstrating the action mechanism of this invention. リチウム二次電池の一例を示す模式図である。1 is a schematic diagram showing an example of a lithium secondary battery; FIG.
<リチウム二次電池>
 本実施形態は、リチウムイオンを吸蔵及び放出可能なアルミニウム負極と、リチウムイオンを吸蔵及び放出可能な正極と、電解質と、を備えるリチウム二次電池である。
 アルミニウム負極は、アルミニウム含有金属からなる。
<Lithium secondary battery>
This embodiment is a lithium secondary battery including an aluminum negative electrode capable of intercalating and deintercalating lithium ions, a positive electrode capable of intercalating and deintercalating lithium ions, and an electrolyte.
An aluminum negative electrode consists of an aluminum containing metal.
 本実施形態のリチウム二次電池は、プレ電池を組み立てた後に初回充放電を実施し、所定のエージング工程を経て製造される。 The lithium secondary battery of the present embodiment is manufactured by carrying out initial charging and discharging after assembling a pre-battery and going through a predetermined aging process.
 本明細書において、初回充放電前のリチウム二次電池をプレ電池と記載する。
 本明細書において、「初回充放電」とは、プレ電池を組み上げた後に最初に実施する充電及び放電を意味する。図1(a)は、プレ電池に配置されたアルミニウム負極40の断面の模式図である。プレ電池を初回充電すると、アルミニウム負極40の表面にリチウムイオンが吸蔵され、Li-Al合金層41が形成される。Li-Al合金層は、リチウムとアルミニウムとの合金層である。この様子を図1(b)に示す。Li-Al合金層41はリチウムイオンを含むため、充電と放電が可能になる。
In this specification, a lithium secondary battery before being charged and discharged for the first time is referred to as a pre-battery.
As used herein, "initial charging and discharging" means charging and discharging that are performed first after assembling a pre-battery. FIG. 1(a) is a schematic cross-sectional view of an aluminum negative electrode 40 placed in a pre-battery. When the pre-battery is charged for the first time, lithium ions are occluded on the surface of the aluminum negative electrode 40 and a Li—Al alloy layer 41 is formed. The Li—Al alloy layer is an alloy layer of lithium and aluminum. This state is shown in FIG. Since the Li—Al alloy layer 41 contains lithium ions, it can be charged and discharged.
 次に初回放電を実施すると、リチウムイオンが脱離し、Li-Al合金層41は、柱状構造41aが複数並んだ状態となる。この様子を図1(c)に示す。柱状構造41aの表面は結晶構造が安定せず、脆い状態である。 Next, when the first discharge is performed, lithium ions are desorbed, and the Li--Al alloy layer 41 becomes a state in which a plurality of columnar structures 41a are arranged. This state is shown in FIG. The surface of the columnar structure 41a has an unstable crystal structure and is in a fragile state.
 放電状態、つまり、図1(c)の状態でエージング工程を実施すると、表面が安定化した柱状構造のLi-Al層42が形成される。本発明は表面が安定化した柱状構造のLi-Al合金層が形成されたことを、Rsの値を指標として判断するという技術思想に係る。 When the aging process is carried out in the discharged state, that is, in the state shown in FIG. 1(c), the Li—Al layer 42 having a columnar structure with a stabilized surface is formed. The present invention relates to the technical concept of judging the formation of a Li—Al alloy layer having a columnar structure with a stabilized surface using the value of Rs as an index.
 アルミニウム負極は、下記(1)を満たす。
 20Ω/cm≦Rs≦100Ω/cm  (1)
(リチウム二次電池を放電させ、放電後の電圧をV0とする。その後1.0mA/cmで充電し、2秒後の電圧をV1とする。前記V1とV0との差(V1-V0)から算出した正極の単位面積当たりの直流抵抗値をRsとする。)
The aluminum negative electrode satisfies the following (1).
20 Ω/cm 2 ≤ Rs ≤ 100 Ω/cm 2 (1)
(The lithium secondary battery is discharged, and the voltage after discharge is V0. After that, it is charged at 1.0 mA/cm 2 and the voltage after 2 seconds is V1. The difference between V1 and V0 (V1-V0 ) is the DC resistance value per unit area of the positive electrode calculated from Rs.)
[Rsの算出方法]
 V0は放電状態でのリチウム二次電池の電圧、V1はエージング工程を実施した後のリチウム二次電池の電圧である。エージング工程により抵抗値が増加するため、V1はV0よりも高い値となる。後述の方法により組み上げたプレ電池を用いて、V1及びV0をそれぞれ算出する。
[Calculation method of Rs]
V0 is the voltage of the lithium secondary battery in the discharged state, and V1 is the voltage of the lithium secondary battery after the aging process. V1 becomes a higher value than V0 because the aging process increases the resistance value. Using a pre-battery assembled by the method described later, V1 and V0 are calculated respectively.
 V1とV0との差(V1-V0)を算出し、下記式により直流抵抗値Rsを算出する。
 Rs=V/I
(Rsは直流抵抗値であり、VはV1-V0であり、Iは電流(mA/cm)である。)
The difference (V1-V0) between V1 and V0 is calculated, and the DC resistance value Rs is calculated by the following formula.
Rs=V/I
(Rs is the DC resistance value, V is V1-V0, and I is the current (mA/cm 2 ).)
 本発明者らの検討により、プレ電池を放電状態でエージングすると、抵抗値が増加することが見いだされた。抵抗値の増加は、Li-Al合金の結晶状態が変化したためと考えられる。具体的には結晶化が進むと、リチウムイオンが脱離しにくくなり、抵抗が増加したと考えられる。 According to the study of the present inventors, it was found that the resistance value increases when the pre-battery is aged in a discharged state. It is considered that the increase in the resistance value is due to the change in the crystal state of the Li—Al alloy. Specifically, it is thought that as crystallization progressed, it became difficult for lithium ions to detach, and the resistance increased.
 結晶化が進むとLi-Al合金の結晶構造は安定すると考えられる。このため、Rsが(1)を満たす場合、サイクル維持率が低下しにくいリチウム二次電池を製造できると考えられる。 It is believed that the crystal structure of the Li-Al alloy stabilizes as crystallization progresses. Therefore, when Rs satisfies (1), it is considered possible to manufacture a lithium secondary battery in which the cycle retention rate is less likely to decrease.
 放電状態でエージング工程を実施しない場合、抵抗値は増加しないものの表面が安定化しないと考えられる。このため、表面の結晶構造が脆い状態のままになると考えられる。この様子を図1(e)に示す。 It is believed that if the aging process is not performed in the discharged state, the surface will not stabilize, although the resistance value will not increase. For this reason, it is thought that the crystal structure of the surface remains in a fragile state. This state is shown in FIG.
 (1)は、下記(1)-1~(1)-3のいずれか1つであることが好ましい。
     20Ω/cm≦Rs≦100Ω/cm  (1)-1
     20Ω/cm≦Rs≦50Ω/cm  (1)-2
     20Ω/cm≦Rs≦30Ω/cm  (1)-3
(1) is preferably any one of the following (1)-1 to (1)-3.
20 Ω/cm 2 ≤ Rs ≤ 100 Ω/cm 2 (1)-1
20 Ω/cm 2 ≤ Rs ≤ 50 Ω/cm 2 (1)-2
20 Ω/cm 2 ≤ Rs ≤ 30 Ω/cm 2 (1)-3
 リチウム二次電池は下記(2)を満たすことが好ましい。
 10Ω/cm≦Ra≦100Ω/cm  (2)
(Raは、リチウム二次電池を放電させ、交流インピーダンス測定を実施し、得られたインピーダンスのコール・コールプロットを解析して求まる前記アルミニウム負極の交流抵抗値である。)
The lithium secondary battery preferably satisfies the following (2).
10 Ω/cm 2 ≤ Ra ≤ 100 Ω/cm 2 (2)
(Ra is the AC resistance value of the aluminum negative electrode obtained by discharging the lithium secondary battery, measuring the AC impedance, and analyzing the Cole-Cole plot of the obtained impedance.)
[Raの算出方法]
 室温で、10HZから10-1Hzの周波帯で、複素インピーダンス測定を行い、300Hzから10000Hzの周波数帯から、アルミニウム負極成分の円弧を半円で近似して表面抵抗を求める。
[How to calculate Ra]
Complex impedance measurement is performed at room temperature in the frequency band from 10 6 Hz to 10 −1 Hz, and surface resistance is obtained by approximating the arc of the aluminum negative electrode component with a semicircle from the frequency band from 300 Hz to 10000 Hz.
 後述の方法により組み上げたプレ電池を用いて、インピーダンス測定装置として、ポテンショ/ガルバノスタット(ソーラトロン社製、SI1287)及び周波数応答アナライザ(ソーラトロン社製、1255B)を用いて交流インピーダンス測定を実施する。プレ電池を25℃の恒温槽に置き、周波数10から10-1Hz、電圧振幅10mVにて交流インピーダンス法により、試験電池のインピーダンススペクトルを測定する。 Using a pre-battery assembled by the method described later, AC impedance measurement is performed using a potentio/galvanostat (SI1287, manufactured by Solartron) and a frequency response analyzer (1255B, manufactured by Solartron) as impedance measuring devices. The pre-battery is placed in a constant temperature bath at 25° C., and the impedance spectrum of the test battery is measured by the AC impedance method at a frequency of 10 6 to 10 −1 Hz and a voltage amplitude of 10 mV.
 本発明者らの検討により、プレ電池を放電状態でエージングすると、アルミニウム負極を用いた電池では、抵抗値が増加することが見いだされた。抵抗値の増加は、Li-Al合金の結晶状態が変化したためと考えられる。エージング工程によりLi-Al合金の結晶構造は安定すると考えられるため、Raが(2)を満たすアルミニウム負極を用いると、サイクル維持率が低下しにくいリチウム二次電池を製造できると考えられる。 According to the studies of the present inventors, it was found that aging a pre-battery in a discharged state increases the resistance value of a battery using an aluminum negative electrode. It is considered that the increase in the resistance value is due to the change in the crystal state of the Li—Al alloy. Since the crystal structure of the Li—Al alloy is believed to be stabilized by the aging process, it is believed that the use of an aluminum negative electrode whose Ra satisfies (2) makes it possible to manufacture a lithium secondary battery in which the cycle retention rate is less likely to decrease.
 (2)は、下記(2)-1~(2)-3のいずれか1つであることが好ましい。
  10Ω/cm≦Ra≦50Ω/cm  (2)-1
  10Ω/cm≦Ra≦40Ω/cm  (2)-2
  10Ω/cm≦Ra≦30Ω/cm  (2)-3
(2) is preferably any one of the following (2)-1 to (2)-3.
10 Ω/cm 2 ≤ Ra ≤ 50 Ω/cm 2 (2)-1
10 Ω/cm 2 ≤ Ra ≤ 40 Ω/cm 2 (2)-2
10 Ω/cm 2 ≤ Ra ≤ 30 Ω/cm 2 (2)-3
 以下、本実施形態のリチウム二次電池を構成する材料について説明する。 Materials constituting the lithium secondary battery of the present embodiment will be described below.
≪アルミニウム負極≫
 本実施形態において、アルミニウム負極はアルミニウム含有金属からなる。
 アルミニウム負極は、下記に説明するアルミニウム負極1~3が挙げられる。
<<Aluminum negative electrode>>
In this embodiment, the aluminum negative electrode is made of an aluminum-containing metal.
Examples of the aluminum negative electrode include aluminum negative electrodes 1 to 3 described below.
[アルミニウム負極1]
 アルミニウム負極1はアルミニウム含有金属からなる。アルミニウム含有金属は負極活物質として作用する。
 アルミニウム負極1のアルミニウム含有金属は、アルミニウム金属相に非アルミニウム金属相が分散して存在する。
 非アルミニウム金属相は、アルミニウムを含まない金属相を意味する。
 非アルミニウム金属相は、Si、Ge、Sn、Ag、Sb、Bi、In及びMgからなる群より選択される1種以上を含む非アルミニウム金属化合物から構成されるものが好ましい。
[Aluminum negative electrode 1]
The aluminum negative electrode 1 is made of an aluminum-containing metal. The aluminum-containing metal acts as a negative electrode active material.
The aluminum-containing metal of the aluminum negative electrode 1 has a non-aluminum metal phase dispersed in an aluminum metal phase.
A non-aluminum metallic phase means a metallic phase that does not contain aluminum.
The non-aluminum metal phase preferably comprises a non-aluminum metal compound containing one or more selected from the group consisting of Si, Ge, Sn, Ag, Sb, Bi, In and Mg.
 非アルミニウム金属相は、Si、Ge、Sn、Ag、Sb、Bi及びInからなる群より選択される1種以上を含む非アルミニウム金属化合物からなるものがさらに好ましい。 The non-aluminum metal phase is more preferably composed of a non-aluminum metal compound containing one or more selected from the group consisting of Si, Ge, Sn, Ag, Sb, Bi and In.
(アルミニウム負極1の製造方法)
 アルミニウム負極1は、合金の鋳造工程と、圧延工程とを備える製造方法により製造することが好ましい。
(Manufacturing method of aluminum negative electrode 1)
The aluminum negative electrode 1 is preferably manufactured by a manufacturing method including an alloy casting process and a rolling process.
・合金の鋳造工程
 鋳造を行う場合には、まず、アルミニウム又は高純度アルミニウムに、非アルミニウム金属相を構成する金属を所定量添加し、混合物1を得る。高純度アルミニウムは後述する方法により得られる。次に680℃以上800℃以下で混合物1を溶融し、アルミニウムと金属の合金溶湯1を得る。
Alloy Casting Step When casting is performed, first, a predetermined amount of a metal that constitutes a non-aluminum metal phase is added to aluminum or high-purity aluminum to obtain a mixture 1 . High-purity aluminum can be obtained by the method described below. Next, the mixture 1 is melted at 680° C. or higher and 800° C. or lower to obtain a molten alloy 1 of aluminum and metal.
 アルミニウム相を構成するアルミニウムには、純度が99.9質量%以上のアルミニウム、純度が99.99質量%以上の高純度アルミニウム等が使用できる。 Aluminum with a purity of 99.9% by mass or more, high-purity aluminum with a purity of 99.99% by mass or more, or the like can be used as aluminum constituting the aluminum phase.
 非アルミニウム金属相を構成する金属とは、Si、Ge、Sn、Ag、Sb、Bi、In及びMgからなる群より選択される1種以上である。非アルミニウム金属相を構成する金属には、例えば、純度99.999質量%以上の高純度シリコンが用いられる。 The metal constituting the non-aluminum metal phase is one or more selected from the group consisting of Si, Ge, Sn, Ag, Sb, Bi, In and Mg. High-purity silicon having a purity of 99.999% by mass or more is used as the metal constituting the non-aluminum metal phase, for example.
 真空処理などで清浄にされた合金溶湯1は鋳型を用いて鋳造することで、鋳塊となる。
 鋳型としては、50℃以上200℃以下に加熱した鉄製の鋳型や黒鉛製の鋳型を用いる。アルミニウム負極1は、鋳型に680℃以上800℃以下の合金溶湯1を流し込む方法で鋳造できる。また、半連続鋳造により鋳塊を得てもよい。
The molten alloy 1 cleaned by vacuum treatment or the like is cast using a mold to form an ingot.
As the mold, an iron mold heated to 50° C. or more and 200° C. or less or a graphite mold is used. The aluminum negative electrode 1 can be cast by a method of pouring the molten alloy 1 at 680° C. or higher and 800° C. or lower into a mold. Alternatively, an ingot may be obtained by semi-continuous casting.
・圧延工程
 得られた合金の鋳塊は、そのまま切削加工してアルミニウム負極1に利用できる。鋳塊に圧延加工、押出加工又は鍛造加工等を施して、板状にすることが好ましい。また、圧延加工により板状にすることがより好ましい。
- Rolling process The ingot of the obtained alloy can be used for the aluminum negative electrode 1 by cutting as it is. The ingot is preferably rolled, extruded, or forged into a plate shape. Moreover, it is more preferable to make it into a plate shape by rolling.
 鋳塊の圧延工程は、例えば、熱間圧延と冷間圧延とを行い、鋳塊を板状に加工する工程である。
 熱間圧延は、例えば、鋳塊を温度350℃以上550℃以下、1回の圧延当たりの加工率を2%以上30%以下の条件で、アルミニウム鋳塊を目的の厚さとなるまで繰り返し行われる。ここで「加工率」とは、圧延をしたときの厚さの変化の割合を意味する。例えば厚さ1mmの板を厚さ0.7mmにした場合には、加工率は30%である。
The ingot rolling step is, for example, a step of performing hot rolling and cold rolling to process the ingot into a plate shape.
For example, hot rolling is performed repeatedly until the aluminum ingot reaches the desired thickness under the conditions of a temperature of 350 ° C. or higher and 550 ° C. or lower and a processing rate per rolling of 2% or higher and 30% or lower. . Here, the "rolling rate" means the rate of change in thickness when rolled. For example, when a plate with a thickness of 1 mm is reduced to a thickness of 0.7 mm, the processing rate is 30%.
 熱間圧延の後、必要に応じ、冷間圧延の前に中間焼鈍処理を行うことが好ましい。中間焼鈍処理は、例えば、熱間圧延した板材を加熱して昇温し、その後、放冷することにより行う。 After hot rolling, if necessary, it is preferable to perform an intermediate annealing treatment before cold rolling. The intermediate annealing treatment is performed, for example, by heating the hot-rolled sheet material to raise the temperature, and then allowing it to cool.
 中間焼鈍処理における昇温工程は、例えば350℃以上550℃以下の温度に昇温すればよい。また、昇温工程は、例えば350℃以上550℃以下の温度を1時間以上5時間以下程度保持してもよい。 In the temperature raising step in the intermediate annealing treatment, the temperature may be raised to, for example, 350°C or higher and 550°C or lower. Further, in the temperature raising step, for example, a temperature of 350° C. or more and 550° C. or less may be maintained for about 1 hour or more and 5 hours or less.
 中間焼鈍処理における放冷工程は、昇温後、直ちに放冷してもよい。放冷工程は、20℃程度にまで放冷することが好ましい。 In the cooling step in the intermediate annealing treatment, cooling may be performed immediately after raising the temperature. In the cooling step, it is preferable to cool down to about 20°C.
 冷間圧延は、アルミニウムの再結晶温度未満の温度で実施することが好ましい。また、1回の圧延当たりの圧延率を1%以上20%以下の条件で、アルミニウム鋳塊を目的の厚さとなるまで繰り返し圧延することが好ましい。冷間圧延の温度は、圧延加工される金属の温度を、10℃から80℃以下に調整すればよい。 Cold rolling is preferably performed at a temperature below the recrystallization temperature of aluminum. Moreover, it is preferable to repeatedly roll the aluminum ingot until it reaches the target thickness under the condition that the rolling rate per rolling is 1% or more and 20% or less. As for the temperature of cold rolling, the temperature of the metal to be rolled may be adjusted from 10° C. to 80° C. or less.
 冷間圧延後には、さらに熱処理を行ってもよい。冷間圧延後の熱処理は、通常大気中で行うが、窒素雰囲気あるいは真空雰囲気などで行ってもよい。熱処理により加工硬化した板材を軟質化することができるほか、結晶組織を制御することで各種物性、具体的には硬度、導電率及び引張強度を調整する場合もある。
 熱処理条件としては、例えば300℃以上400℃以下の温度で、5時間以上10時間以下熱処理する条件が挙げられる。
After cold rolling, heat treatment may be further performed. The heat treatment after cold rolling is usually performed in the atmosphere, but may be performed in a nitrogen atmosphere or a vacuum atmosphere. In addition to softening the work-hardened plate material by heat treatment, various physical properties, specifically hardness, electrical conductivity and tensile strength, may be adjusted by controlling the crystal structure.
The heat treatment conditions include, for example, conditions for heat treatment at a temperature of 300° C. or higher and 400° C. or lower for 5 hours or longer and 10 hours or shorter.
 アルミニウム負極1の厚みは、5μm以上が好ましく、6μm以上がより好ましく、7μm以上がさらに好ましい。また、200μm以下が好ましく、190μm以下がより好ましく、180μm以下がさらに好ましい。
 アルミニウム負極1の厚みの上記上限値及び下限値は任意に組み合わせることができる。本実施形態においては、アルミニウム負極1の厚みは5μm以上200μm以下が好ましい。
 アルミニウム負極1の厚みは、シックネスゲージ又はノギスを用いて測定すればよい。
The thickness of the aluminum negative electrode 1 is preferably 5 μm or more, more preferably 6 μm or more, and even more preferably 7 μm or more. Moreover, it is preferably 200 μm or less, more preferably 190 μm or less, and even more preferably 180 μm or less.
The above upper limit and lower limit of the thickness of the aluminum negative electrode 1 can be combined arbitrarily. In this embodiment, the thickness of the aluminum negative electrode 1 is preferably 5 μm or more and 200 μm or less.
The thickness of the aluminum negative electrode 1 may be measured using a thickness gauge or vernier caliper.
・アルミニウムの高純度化方法
 アルミニウム負極の材料又は合金の材料として高純度アルミニウムを用いる場合、アルミニウムを高純度化する精製方法として、例えば偏析法および三層電解法を例示できる。
Method for Purifying Aluminum When high-purity aluminum is used as the material for the aluminum negative electrode or the material for the alloy, examples of refining methods for purifying aluminum include a segregation method and a three-layer electrolysis method.
 偏析法は、アルミニウム溶湯の凝固の際の偏析現象を利用した純化法であり、複数の手法が実用化されている。偏析法の一つの形態としては、容器の中に溶湯アルミニウムを注ぎ、容器を回転させながら上部の溶湯アルミニウムを加熱、撹拌しつつ底部より精製アルミニウムを凝固させる方法がある。偏析法により、純度99.99質量%以上の高純度アルミニウムを得ることができる。 The segregation method is a purification method that utilizes the segregation phenomenon during the solidification of molten aluminum, and multiple methods have been put into practical use. As one form of the segregation method, there is a method of pouring molten aluminum into a container, heating the upper molten aluminum while rotating the container, and solidifying refined aluminum from the bottom while stirring. High-purity aluminum with a purity of 99.99% by mass or more can be obtained by the segregation method.
 三層電解法は、アルミニウムを高純度化する電解法である。三層電解法の一つの形態としては、まず、Al-Cu合金層に、比較的純度の低いアルミニウム等(例えば純度99.9質量%以下のJIS-H2102の時1種程度のグレード)を投入する。その後、溶融状態で陽極とし、その上に例えばフッ化アルミニウムおよびフッ化バリウム等を含む電解浴を配置し、陰極に高純度のアルミニウムを析出させる方法である。
 三層電解法では純度99.999質量%以上の高純度アルミニウムを得ることができる。
The three-layer electrolysis method is an electrolysis method for highly purifying aluminum. As one form of the three-layer electrolysis method, first, relatively low-purity aluminum or the like (for example, JIS-H2102 with a purity of 99.9% by mass or less, grade 1 or so) is added to the Al-Cu alloy layer. do. Thereafter, the molten state is used as an anode, and an electrolytic bath containing, for example, aluminum fluoride and barium fluoride is placed thereon to deposit high-purity aluminum on the cathode.
High-purity aluminum with a purity of 99.999% by mass or more can be obtained by the three-layer electrolysis method.
 アルミニウムを高純度化する方法は、偏析法、三層電解法に限定されるものではなく、帯溶融精製法、超高真空溶解性製法等、既に知られている他の方法でもよい。  The method of purifying aluminum is not limited to the segregation method and the three-layer electrolysis method, and other known methods such as the zone melting refining method and the ultra-high vacuum dissolution method may be used.
[アルミニウム負極2]
 アルミニウム負極2としては、下記(1)~(5)の高純度アルミニウム又は高純度アルミニウム合金が好ましい。
(1)高純度アルミニウム-マグネシウム合金1
 純度99.999%のアルミニウムと、マグネシウムとの合金である。アルミニウム含有金属全量中のマグネシウムの含有率は、0.1質量%以上4.0質量%以下である。平均腐食速度は0.04mm/年~0.06mm/年である。
(2)高純度アルミニウム-マグネシウム合金2
 純度99.9%のアルミニウムと、マグネシウムとの合金である。アルミニウム含有金属全量中のマグネシウムの含有率は、0.1質量%以上1.0質量%以下である。平均腐食速度は0.1mm/年~0.14mm/年である。
(3)高純度アルミニウム-ニッケル合金
 純度99.999%のアルミニウムと、ニッケルとの合金である。アルミニウム含有金属全量中のニッケルの含有率は、0.1質量%以上1.0質量%以下である。平均腐食速度は0.1mm/年~0.14mm/年である。
(4)高純度アルミニウム-マンガン-マグネシウム合金 
 純度99.99%のアルミニウムと、マンガンと、マグネシウムとの合金である。アルミニウム含有金属全量中のマンガンとマグネシウムの合計含有率は、1.0質量%以上2.0質量%以下である。平均腐食速度は0.03mm/年~0.05mm/年である。
(5)高純度アルミニウム
 純度99.999%のアルミニウムである。平均腐食速度は0.05mm/年である。
[Aluminum negative electrode 2]
As the aluminum negative electrode 2, the following high-purity aluminum or high-purity aluminum alloys (1) to (5) are preferable.
(1) High-purity aluminum-magnesium alloy 1
It is an alloy of aluminum with a purity of 99.999% and magnesium. The content of magnesium in the total amount of aluminum-containing metal is 0.1% by mass or more and 4.0% by mass or less. The average corrosion rate is 0.04 mm/year to 0.06 mm/year.
(2) High-purity aluminum-magnesium alloy 2
It is an alloy of 99.9% pure aluminum and magnesium. The content of magnesium in the total amount of aluminum-containing metal is 0.1% by mass or more and 1.0% by mass or less. The average corrosion rate is 0.1 mm/year to 0.14 mm/year.
(3) High Purity Aluminum-Nickel Alloy An alloy of aluminum with a purity of 99.999% and nickel. The content of nickel in the total amount of aluminum-containing metal is 0.1% by mass or more and 1.0% by mass or less. The average corrosion rate is 0.1 mm/year to 0.14 mm/year.
(4) High-purity aluminum-manganese-magnesium alloy
It is an alloy of 99.99% pure aluminum, manganese and magnesium. The total content of manganese and magnesium in the total amount of aluminum-containing metals is 1.0% by mass or more and 2.0% by mass or less. The average corrosion rate is 0.03 mm/year to 0.05 mm/year.
(5) High Purity Aluminum Aluminum with a purity of 99.999%. The average corrosion rate is 0.05 mm/year.
(アルミニウム負極2の製造方法)
 アルミニウム負極2の製造方法は、アルミニウム負極2が高純度アルミニウムであるアルミニウム負極2の製造方法1と、高純度アルミニウム合金であるアルミニウム負極2の製造方法2とに分けて説明する。
(Manufacturing method of aluminum negative electrode 2)
The method for manufacturing the aluminum negative electrode 2 will be described separately for the method 1 for manufacturing the aluminum negative electrode 2 in which the aluminum negative electrode 2 is high-purity aluminum and the manufacturing method 2 for the aluminum negative electrode 2 in which the aluminum negative electrode 2 is a high-purity aluminum alloy.
 アルミニウム負極2の製造方法1及びアルミニウム負極2の製造方法2は、まず、アルミニウムを高純度化する。アルミニウムを高純度化する方法としては、上述の(アルミニウム負極1の製造方法)において説明したアルミニウムの高純度化方法が挙げられる。 In the manufacturing method 1 of the aluminum negative electrode 2 and the manufacturing method 2 of the aluminum negative electrode 2, aluminum is first highly purified. Examples of the method for highly purifying aluminum include the method for highly purifying aluminum described in the above (Method for producing aluminum negative electrode 1).
・アルミニウム負極2の製造方法1
 アルミニウム負極2の製造方法1は、高純度アルミニウムの鋳造工程と、圧延工程とを備えることが好ましい。
- Manufacturing method 1 of aluminum negative electrode 2
The method 1 for producing the aluminum negative electrode 2 preferably includes a step of casting high-purity aluminum and a step of rolling.
・・鋳造工程
 上述の方法により高純度化したアルミニウムを鋳造し、圧延に好適な形状のアルミニウム鋳塊を得ることができる。
 鋳造を行う場合には、例えば高純度アルミニウムを約680℃以上800℃以下で溶融し、アルミニウム溶湯を得る。
 アルミニウム溶湯は、ガスや非金属介在物を除去して清浄にする処理を行うことが好ましい。
..Casting step By casting highly purified aluminum by the above-described method, an aluminum ingot having a shape suitable for rolling can be obtained.
When casting, for example, high-purity aluminum is melted at about 680° C. or higher and 800° C. or lower to obtain molten aluminum.
The molten aluminum is preferably cleaned by removing gas and non-metallic inclusions.
 清浄にされたアルミニウム溶湯は鋳型を用いて鋳造することで、鋳塊となる。
 鋳型としては、50℃以上200℃以下に加熱した鉄製の鋳型や黒鉛製の鋳型を用いる。アルミニウム負極2は、鋳型に680℃以上800℃以下のアルミニウム溶湯を流し込む方法で鋳造できる。また、半連続鋳造により鋳塊を得てもよい。
The cleaned molten aluminum is cast using a mold to form an ingot.
As the mold, an iron mold heated to 50° C. or more and 200° C. or less or a graphite mold is used. The aluminum negative electrode 2 can be cast by a method of pouring molten aluminum at 680° C. or higher and 800° C. or lower into a mold. Alternatively, an ingot may be obtained by semi-continuous casting.
・・圧延工程
 得られたアルミニウムの鋳塊は、そのまま切削加工してアルミニウム負極2に利用できる。本実施形態においては、アルミニウムの鋳塊に圧延加工、押出加工又は鍛造加工等を施して、板材にすることが好ましい。本実施形態においては、圧延加工することがより好ましい。
 圧延工程は、アルミニウム負極1の製造方法において説明した圧延工程と同様の方法により実施できる。
..Rolling step The aluminum ingot thus obtained can be used for the aluminum negative electrode 2 by cutting as it is. In this embodiment, the aluminum ingot is preferably rolled, extruded, or forged into a plate material. In this embodiment, rolling is more preferable.
The rolling step can be performed by the same method as the rolling step described in the method for producing the aluminum negative electrode 1 .
・アルミニウム負極2の製造方法2
 アルミニウム負極2の製造方法2は、高純度アルミニウム合金の鋳造工程と、圧延工程とを備えることが好ましい。
- Manufacturing method 2 of aluminum negative electrode 2
The method 2 for manufacturing the aluminum negative electrode 2 preferably includes a step of casting a high-purity aluminum alloy and a step of rolling.
・・鋳造工程
 鋳造を行う場合には、まず、高純度アルミニウムに、金属元素を所定量添加し、混合物2を得る。次に680℃以上800℃以下で混合物2を溶融し、アルミニウムと金属の合金溶湯2を得る。
 添加する金属元素は、Mg、Ni、Mn、Zn、Cd、Pbからなる群より選択される1種以上が好ましい。添加するこれらの元素を含む金属は、純度が99質量%以上であることが好ましい。
..Casting step When casting is performed, first, a predetermined amount of a metal element is added to high-purity aluminum to obtain a mixture 2 . Next, the mixture 2 is melted at 680° C. or higher and 800° C. or lower to obtain a molten alloy 2 of aluminum and metal.
The metal element to be added is preferably one or more selected from the group consisting of Mg, Ni, Mn, Zn, Cd and Pb. The metal containing these elements to be added preferably has a purity of 99% by mass or more.
 合金溶湯2を用いる以外は、アルミニウム負極1の製造方法における鋳造工程と同様の方法により、高純度アルミニウム合金鋳塊を得る。 A high-purity aluminum alloy ingot is obtained by the same method as the casting process in the manufacturing method of the aluminum negative electrode 1, except that the molten alloy 2 is used.
・・圧延工程
 上述のアルミニウム負極2の製造方法1と同様の方法により、圧延工程を行う。
Rolling step A rolling step is performed by the same method as the manufacturing method 1 of the aluminum negative electrode 2 described above.
 アルミニウム負極2の厚みは、5μm以上が好ましく、6μm以上がより好ましく、7μm以上がさらに好ましい。また、200μm以下が好ましく、190μm以下がより好ましく、180μm以下がさらに好ましい。
 アルミニウム負極2の厚みの上記上限値及び下限値は任意に組み合わせることができる。本実施形態においては、アルミニウム負極2の厚みは、5μm以上200μm以下が好ましい。
The thickness of the aluminum negative electrode 2 is preferably 5 μm or more, more preferably 6 μm or more, and even more preferably 7 μm or more. Moreover, it is preferably 200 μm or less, more preferably 190 μm or less, and even more preferably 180 μm or less.
The above upper limit and lower limit of the thickness of the aluminum negative electrode 2 can be combined arbitrarily. In this embodiment, the thickness of the aluminum negative electrode 2 is preferably 5 μm or more and 200 μm or less.
[アルミニウム負極3]
 アルミニウム負極3はアルミニウム含有金属である。
 アルミニウム負極3のビッカース硬度は10HV以上70HV以下であることが好ましく、20HV以上70HV以下がより好ましく、30HV以上70HV以下がさらに好ましく、35HV以上55HV以下が特に好ましい。
[Aluminum negative electrode 3]
The aluminum negative electrode 3 is an aluminum-containing metal.
The Vickers hardness of the aluminum negative electrode 3 is preferably 10 HV or more and 70 HV or less, more preferably 20 HV or more and 70 HV or less, even more preferably 30 HV or more and 70 HV or less, and particularly preferably 35 HV or more and 55 HV or less.
 アルミニウム負極3がリチウムを吸蔵すると、アルミニウム負極を構成する金属の結晶構造にひずみが生じる場合がある。
 ビッカース硬度が上記上限値以下であると、アルミニウム負極3がリチウムを吸蔵した際に結晶構造のひずみを緩和でき、結晶構造を維持できると推察される。このため、アルミニウム負極3を用いたリチウム二次電池は、充電および放電を繰り返した場合にも、サイクル維持率が低下しにくくなる。
When the aluminum negative electrode 3 absorbs lithium, the crystal structure of the metal forming the aluminum negative electrode may be distorted.
If the Vickers hardness is equal to or less than the above upper limit, it is presumed that the distortion of the crystal structure can be relaxed and the crystal structure can be maintained when the aluminum negative electrode 3 absorbs lithium. Therefore, the lithium secondary battery using the aluminum negative electrode 3 is less likely to decrease its cycle retention rate even when charging and discharging are repeated.
 ビッカース硬度は下記の方法により測定した値を用いる。 Vickers hardness uses the value measured by the following method.
[測定方法]
 アルミニウム負極3の硬度の指標として、マイクロビッカース硬度計を用いてビッカース硬度(HV0.05)を測定する。
 ビッカース硬度は、JIS Z2244:2009「ビッカース硬さ試験-試験方法」に従って測定される値である。ビッカース硬度の測定には、アルミニウム負極3に正四角錐のダイヤモンド圧子を試験片の表面に押し込み、その試験力を解除した後、表面に残ったくぼみの対角線長さから算出する。
 上記の規格では、試験力によって硬さ記号を変えることが定められている。本実施形態においては、例えば、試験力0.05kgf(=0.4903N)のときのマイクロビッカース硬さHV0.05である。
[Measuring method]
As an index of hardness of the aluminum negative electrode 3, Vickers hardness (HV0.05) is measured using a micro Vickers hardness tester.
Vickers hardness is a value measured in accordance with JIS Z2244:2009 "Vickers hardness test - test method". Vickers hardness is calculated from the diagonal length of the indentation left on the surface after pressing a square pyramidal diamond indenter into the surface of the aluminum negative electrode 3 and releasing the test force.
The above standard stipulates that the hardness symbol should be changed according to the test force. In this embodiment, for example, the micro Vickers hardness HV is 0.05 at a test force of 0.05 kgf (=0.4903 N).
(負極集電体)
 アルミニウム負極に負極集電体を使用する場合には、負極集電体の材料はCu、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を挙げることができる。なかでも、リチウムと合金を作り難く、加工しやすいという点で、Cuを形成材料とし、薄膜状に加工したものが好ましい。
(Negative electrode current collector)
When a negative electrode current collector is used for an aluminum negative electrode, the material of the negative electrode current collector can be a strip-shaped member made of a metal material such as Cu, Ni, or stainless steel. Among them, it is preferable to use Cu as a forming material and process it into a thin film because it is difficult to form an alloy with lithium and is easy to process.
 このような負極集電体に負極合剤を担持させる方法としては、加圧成型による方法、溶媒などを用いてペースト化し負極集電体上に塗布、乾燥後プレスし圧着する方法が挙げられる。 Examples of the method of supporting the negative electrode mixture on such a negative electrode current collector include a method of pressure molding, and a method of making a paste using a solvent or the like, coating it on the negative electrode current collector, drying it, and then pressing and crimping it.
 アルミニウム負極が集電体を兼ねる場合には、別途の集電体は不要の場合もある。 When the aluminum negative electrode also serves as a current collector, a separate current collector may not be necessary.
≪正極≫
 正極は正極活物質を有する。
 正極活物質には、リチウム含有化合物又は他の金属化合物を用いることができる。リチウム含有化合物としては、例えば、層状構造を有するリチウムコバルト複合酸化物、層状構造を有するリチウムニッケル複合酸化物、スピネル構造を有するリチウムマンガン複合酸化物及びオリビン型構造を有するリン酸鉄リチウムが挙げられる。
≪Positive electrode≫
The positive electrode has a positive electrode active material.
A lithium-containing compound or other metal compound can be used for the positive electrode active material. Examples of lithium-containing compounds include lithium-cobalt composite oxides having a layered structure, lithium-nickel composite oxides having a layered structure, lithium-manganese composite oxides having a spinel structure, and lithium iron phosphate having an olivine structure. .
 また他の金属化合物としては、例えば、酸化チタン、酸化バナジウム若しくは二酸化マンガンなどの酸化物、又は硫化チタン若しくは硫化モリブデンなどの硫化物が挙げられる。 Other metal compounds include, for example, oxides such as titanium oxide, vanadium oxide or manganese dioxide, or sulfides such as titanium sulfide or molybdenum sulfide.
(導電材)
 導電材としては、炭素材料を用いることができる。炭素材料として黒鉛粉末、カーボンブラック(例えばアセチレンブラック)、繊維状炭素材料などを挙げることができる。カーボンブラックは、微粒で表面積が大きいため、少量を正極合剤中に添加することで、正極内部の導電性を高め、充放電効率および出力特性を向上させることができる。
(Conductive material)
A carbon material can be used as the conductive material. Examples of carbon materials include graphite powder, carbon black (eg, acetylene black), and fibrous carbon materials. Since carbon black is fine particles and has a large surface area, by adding a small amount of carbon black to the positive electrode mixture, the conductivity inside the positive electrode can be increased, and the charge/discharge efficiency and output characteristics can be improved.
 正極合剤中の導電材の割合は、正極活物質100質量部に対して5質量部以上20質量部以下であると好ましい。導電材として黒鉛化炭素繊維、カーボンナノチューブなどの繊維状炭素材料を用いる場合には、この割合を下げることも可能である。 The ratio of the conductive material in the positive electrode mixture is preferably 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the positive electrode active material. If a fibrous carbon material such as graphitized carbon fiber or carbon nanotube is used as the conductive material, this ratio can be lowered.
(バインダー)
 バインダーとしては、熱可塑性樹脂を用いることができる。この熱可塑性樹脂としては、ポリフッ化ビニリデン(以下、PVdFということがある。)、ポリテトラフルオロエチレン(以下、PTFEということがある。)、四フッ化エチレン・六フッ化プロピレン・フッ化ビニリデン系共重合体、六フッ化プロピレン・フッ化ビニリデン系共重合体、四フッ化エチレン・パーフルオロビニルエーテル系共重合体などのフッ素樹脂;ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂;を挙げることができる。
(binder)
A thermoplastic resin can be used as the binder. Examples of thermoplastic resins include polyvinylidene fluoride (hereinafter sometimes referred to as PVdF), polytetrafluoroethylene (hereinafter sometimes referred to as PTFE), ethylene tetrafluoride/propylene hexafluoride/vinylidene fluoride. fluororesins such as copolymers, propylene hexafluoride/vinylidene fluoride copolymers and tetrafluoroethylene/perfluorovinyl ether copolymers; and polyolefin resins such as polyethylene and polypropylene.
 これらの熱可塑性樹脂は、2種以上を混合して用いてもよい。バインダーとしてフッ素樹脂およびポリオレフィン樹脂を用い、正極合剤全体に対するフッ素樹脂の割合を1質量%以上10質量%以下、ポリオレフィン樹脂の割合を0.1質量%以上2質量%以下とすることによって、正極集電体との密着力および正極合剤内部の結合力がいずれも高い正極合剤を得ることができる。 These thermoplastic resins may be used in combination of two or more. A fluororesin and a polyolefin resin are used as a binder, and the ratio of the fluororesin to the entire positive electrode mixture is 1% by mass or more and 10% by mass or less, and the ratio of the polyolefin resin is 0.1% by mass or more and 2% by mass or less. It is possible to obtain a positive electrode mixture having both high adhesion to the current collector and high bonding strength inside the positive electrode mixture.
(正極集電体)
 正極集電体としては、Al、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を用いることができる。なかでも、加工しやすく、安価であるという点でAlを形成材料とし、薄膜状に加工したものが好ましい。正極集電体は、負極集電体と同じ材質であってもよい。
(Positive electrode current collector)
As the positive electrode current collector, a belt-like member made of a metal material such as Al, Ni, or stainless steel can be used. Among them, it is preferable to use Al as a forming material and process it into a thin film because it is easy to process and inexpensive. The positive electrode current collector may be made of the same material as the negative electrode current collector.
 正極集電体に正極合剤を担持させる方法としては、正極合剤を正極集電体上で加圧成型する方法が挙げられる。また、有機溶媒を用いて正極合剤をペースト化し、得られる正極合剤のペーストを正極集電体の少なくとも一面側に塗布して乾燥させ、プレスし固着することで、正極集電体に正極合剤を担持させてもよい。 As a method of supporting the positive electrode mixture on the positive electrode current collector, there is a method of pressure-molding the positive electrode mixture on the positive electrode current collector. In addition, the positive electrode mixture is made into a paste using an organic solvent, and the obtained positive electrode mixture paste is applied to at least one side of a positive electrode current collector, dried, and pressed to adhere, thereby forming a positive electrode on the positive electrode current collector. A mixture may be supported.
 正極合剤をペースト化する場合、用いることができる有機溶媒としては、N,N-ジメチルアミノプロピルアミン、ジエチレントリアミンなどのアミン系溶媒;テトラヒドロフランなどのエーテル系溶媒;メチルエチルケトンなどのケトン系溶媒;酢酸メチルなどのエステル系溶媒;ジメチルアセトアミド、N-メチル-2-ピロリドンなどのアミド系溶媒;が挙げられる。 When the positive electrode mixture is made into a paste, organic solvents that can be used include amine-based solvents such as N,N-dimethylaminopropylamine and diethylenetriamine; ether-based solvents such as tetrahydrofuran; ketone-based solvents such as methyl ethyl ketone; ester solvents such as dimethylacetamide, amide solvents such as N-methyl-2-pyrrolidone;
 正極合剤のペーストを正極集電体へ塗布する方法としては、例えば、スリットダイ塗工法、スクリーン塗工法、カーテン塗工法、ナイフ塗工法、グラビア塗工法および静電スプレー法が挙げられる。 Examples of methods for applying the positive electrode mixture paste to the positive electrode current collector include slit die coating, screen coating, curtain coating, knife coating, gravure coating, and electrostatic spraying.
 以上に挙げられた方法により、正極を製造することができる。 A positive electrode can be manufactured by the method described above.
(電解質)
 リチウム二次電池が有する電解質は、液系電解質であってもよく、固体電解質であってもよい。液系電解質としては、電解質および有機溶媒を含有する電解液が挙げられる。
(Electrolytes)
The electrolyte that the lithium secondary battery has may be a liquid electrolyte or a solid electrolyte. The liquid electrolyte includes an electrolytic solution containing an electrolyte and an organic solvent.
・電解液
 電解液に含まれる電解質としては、LiClO、LiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(SOCF、LiN(SO、LiN(SOCF)(COCF)、Li(CSO)、LiC(SOCF、Li10Cl10、LiBOB(ここで、BOBは、bis(oxalato)borateのことである。)、LiFSI(ここで、FSIはbis(fluorosulfonyl)imideのことである)、低級脂肪族カルボン酸リチウム塩、LiAlClなどのリチウム塩が挙げられ、これらの2種以上の混合物を使用してもよい。なかでも電解質としては、フッ素を含むLiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(SOCFおよびLiC(SOCFからなる群から選ばれる少なくとも1種を含むものを用いることが好ましい。
-Electrolyte solution Electrolytes contained in the electrolyte solution include LiClO4, LiPF6 , LiAsF6 , LiSbF6 , LiBF4 , LiCF3SO3 , LiN (SO2CF3)2 , and LiN ( SO2C2F5 ). 2 , LiN( SO2CF3 )( COCF3 ) , Li ( C4F9SO3 ), LiC(SO2CF3)3 , Li2B10Cl10 , LiBOB ( where BOB is bis( oxalato) borate), LiFSI (here, FSI is bis(fluorosulfonyl)imide), lower aliphatic carboxylic acid lithium salt, LiAlCl4 and other lithium salts, these two Mixtures of the above may also be used. Among them, as the electrolyte, at least one selected from the group consisting of LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN(SO 2 CF 3 ) 2 and LiC(SO 2 CF 3 ) 3 containing fluorine It is preferred to use one containing one.
 また電解液に含まれる有機溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、4-トリフルオロメチル-1,3-ジオキソラン-2-オン、1,2-ジ(メトキシカルボニルオキシ)エタンなどのカーボネート類;1,2-ジメトキシエタン、1,3-ジメトキシプロパン、ペンタフルオロプロピルメチルエーテル、2,2,3,3-テトラフルオロプロピルジフルオロメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフランなどのエーテル類;ギ酸メチル、酢酸メチル、プロピオン酸プロピル、γ-ブチロラクトンなどのエステル類;アセトニトリル、ブチロニトリルなどのニトリル類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどのアミド類;3-メチル-2-オキサゾリドンなどのカーバメート類;スルホラン、ジメチルスルホキシド、1,3-プロパンサルトンなどの含硫黄化合物、又はこれらの有機溶媒にさらにフルオロ基を導入したもの(有機溶媒が有する水素原子のうち1以上をフッ素原子で置換したもの)を用いることができる。 Examples of organic solvents contained in the electrolytic solution include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, 4-trifluoromethyl-1,3-dioxolan-2-one, 1,2-di( Carbonates such as methoxycarbonyloxy)ethane; 1,2-dimethoxyethane, 1,3-dimethoxypropane, pentafluoropropylmethyl ether, 2,2,3,3-tetrafluoropropyldifluoromethyl ether, tetrahydrofuran, 2-methyl ethers such as tetrahydrofuran; esters such as methyl formate, methyl acetate, propyl propionate and γ-butyrolactone; nitriles such as acetonitrile and butyronitrile; amides such as N,N-dimethylformamide and N,N-dimethylacetamide; carbamates such as 3-methyl-2-oxazolidone; sulfur-containing compounds such as sulfolane, dimethyl sulfoxide, 1,3-propanesultone, or those obtained by further introducing a fluoro group into these organic solvents (hydrogen atoms possessed by organic solvents of which at least one is substituted with a fluorine atom) can be used.
 有機溶媒としては、これらのうちの2種以上を混合して用いることが好ましい。中でもカーボネート類を含む混合溶媒が好ましく、環状カーボネートと非環状カーボネートとの混合溶媒および環状カーボネートとエーテル類との混合溶媒がさらに好ましい。環状カーボネートと非環状カーボネートとの混合溶媒としては、エチレンカーボネート、ジメチルカーボネートおよびエチルメチルカーボネートを含む混合溶媒が好ましい。このような混合溶媒を用いた電解液は、動作温度範囲が広く、高い電流レートにおける充放電を行っても劣化し難く、長時間使用しても劣化し難く、かつ負極の活物質として天然黒鉛、人造黒鉛などの黒鉛材料を用いた場合でも難分解性であるという多くの特長を有する。 As the organic solvent, it is preferable to use a mixture of two or more of these. Among them, a mixed solvent containing carbonates is preferable, and a mixed solvent of a cyclic carbonate and a non-cyclic carbonate and a mixed solvent of a cyclic carbonate and an ether are more preferable. A mixed solvent containing ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate is preferable as the mixed solvent of the cyclic carbonate and the non-cyclic carbonate. The electrolyte solution using such a mixed solvent has a wide operating temperature range, does not easily deteriorate even when charged and discharged at a high current rate, does not easily deteriorate even after long-term use, and uses natural graphite as an active material for the negative electrode. , and has many features of being resistant to decomposition even when graphite materials such as artificial graphite are used.
 また、電解液としては、得られるリチウム二次電池の安全性が高まるため、LiPFなどのフッ素を含むリチウム塩およびフッ素置換基を有する有機溶媒を含む電解液を用いることが好ましい。ペンタフルオロプロピルメチルエーテル、2,2,3,3-テトラフルオロプロピルジフルオロメチルエーテルなどのフッ素置換基を有するエーテル類とジメチルカーボネートとを含む混合溶媒は、高い電流レートにおける充放電を行っても容量維持率が高いため、さらに好ましい。 Further, as the electrolytic solution, it is preferable to use an electrolytic solution containing a fluorine-containing lithium salt such as LiPF 6 and an organic solvent having a fluorine substituent, since the safety of the obtained lithium secondary battery is increased. Mixed solvents containing fluorine-substituted ethers such as pentafluoropropylmethyl ether and 2,2,3,3-tetrafluoropropyldifluoromethyl ether and dimethyl carbonate do not retain their capacity even when charged and discharged at a high current rate. It is more preferable because of its high retention rate.
 電解液は、リン酸トリス(トリメチルシリル)及びホウ酸トリス(トリメチルシリル)等の添加物を含んでいてもよい。 The electrolyte may contain additives such as tris (trimethylsilyl) phosphate and tris (trimethylsilyl) borate.
・固体電解質
 固体電解質としては、例えばポリエチレンオキサイド系の高分子化合物、ポリオルガノシロキサン鎖又はポリオキシアルキレン鎖の少なくとも一種以上を含む高分子化合物などの有機系高分子電解質を用いることができる。また、高分子化合物に非水電解液を保持させた、いわゆるゲルタイプのものを用いることもできる。またLiS-SiS、LiS-GeS、LiS-P、LiS-B、LiS-SiS-LiPO、LiS-SiS-LiSO、LiS-GeS-Pなどの硫化物を含む無機系固体電解質が挙げられ、これらの2種以上の混合物を用いてもよい。これら固体電解質を用いることで、リチウム二次電池の安全性をより高めることができることがある。
- Solid Electrolyte As the solid electrolyte, for example, an organic polymer electrolyte such as a polymer compound containing at least one of a polyethylene oxide polymer compound, a polyorganosiloxane chain, and a polyoxyalkylene chain can be used. In addition, a so-called gel type in which a non-aqueous electrolyte is held in a polymer compound can also be used. Li 2 S—SiS 2 , Li 2 S—GeS 2 , Li 2 SP 2 S 5 , Li 2 S—B 2 S 3 , Li 2 S—SiS 2 —Li 3 PO 4 , Li 2 S—SiS Inorganic solid electrolytes containing sulfides such as 2 -Li 2 SO 4 and Li 2 S--GeS 2 --P 2 S 5 may be mentioned, and mixtures of two or more of these may be used. By using these solid electrolytes, the safety of the lithium secondary battery can sometimes be improved.
 また、固体電解質を用いる場合には、固体電解質がセパレータの役割を果たす場合もあり、その場合には、セパレータを必要としないこともある。 Also, when a solid electrolyte is used, the solid electrolyte may play the role of a separator, in which case the separator may not be required.
(セパレータ)
 リチウム二次電池がセパレータを有する場合、セパレータとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、フッ素樹脂、含窒素芳香族重合体などの材質からなる、多孔質膜、不織布、織布などの形態を有する材料を用いることができる。また、これらの材質を2種以上用いてセパレータを形成してもよいし、これらの材料を積層してセパレータを形成してもよい。
(separator)
When the lithium secondary battery has a separator, the separator may be in the form of a porous film, nonwoven fabric, or woven fabric made of a material such as a polyolefin resin such as polyethylene or polypropylene, a fluororesin, or a nitrogen-containing aromatic polymer. can be used. Moreover, the separator may be formed using two or more of these materials, or the separator may be formed by laminating these materials.
 セパレータは、電池使用時(充放電時)に電解質を良好に透過させるため、JIS P 8117で定められるガーレー法による透気抵抗度が、50秒/100cc以上、300秒/100cc以下であることが好ましく、50秒/100cc以上、200秒/100cc以下であることがより好ましい。 In order for the separator to allow the electrolyte to pass satisfactorily when the battery is in use (during charging and discharging), the air permeability resistance according to the Gurley method defined in JIS P 8117 must be 50 seconds/100 cc or more and 300 seconds/100 cc or less. It is preferably 50 seconds/100 cc or more and more preferably 200 seconds/100 cc or less.
 また、セパレータの空孔率は、好ましくは30体積%以上80体積%以下、より好ましくは40体積%以上70体積%以下である。セパレータは空孔率の異なるセパレータを積層したものであってもよい。 In addition, the porosity of the separator is preferably 30% by volume or more and 80% by volume or less, more preferably 40% by volume or more and 70% by volume or less. The separator may be a laminate of separators with different porosities.
<リチウム二次電池の製造方法>
 本実施形態のリチウム二次電池の製造方法について説明する。
 以下、図面を参照しながら、本実施形態に係るリチウム二次電池の製造方法について説明する。なお、以下の全ての図面においては、図面を見やすくするため、各構成要素の寸法や比率などは適宜異ならせてある。
<Method for manufacturing lithium secondary battery>
A method for manufacturing the lithium secondary battery of this embodiment will be described.
Hereinafter, a method for manufacturing a lithium secondary battery according to this embodiment will be described with reference to the drawings. In addition, in all the drawings below, the dimensions and ratios of the constituent elements are appropriately changed in order to make the drawings easier to see.
 本実施形態により製造されるリチウム二次電池は、リチウムイオンを吸蔵及び放出可能であるアルミニウム負極と、リチウムイオンを吸蔵及び放出可能である正極と、電解質と、を備える。
 リチウム二次電池としては、電解質として電解液を用いた非水電解液型二次電池が挙げられる。また、リチウム二次電池としては、電解質として固体電解質を用いた全固体電池が挙げられる。
A lithium secondary battery manufactured according to the present embodiment includes an aluminum negative electrode capable of intercalating and deintercalating lithium ions, a positive electrode capable of intercalating and deintercalating lithium ions, and an electrolyte.
Lithium secondary batteries include non-aqueous electrolyte secondary batteries using an electrolytic solution as an electrolyte. Lithium secondary batteries include all-solid-state batteries using a solid electrolyte as the electrolyte.
 本実施形態のリチウム二次電池の製造方法は、プレ電池を組み上げる工程と、プレ電池を初回充放電させる工程と、エージング工程と、を有する。各工程について説明する。 The manufacturing method of the lithium secondary battery of the present embodiment includes a step of assembling a pre-battery, a step of charging and discharging the pre-battery for the first time, and an aging step. Each step will be explained.
[プレ電池を組み上げる工程] [Process of assembling a pre-battery]
 図2は、リチウム二次電池の一例を示す模式図である。円筒型のリチウム二次電池10は、次のようにして製造する。 FIG. 2 is a schematic diagram showing an example of a lithium secondary battery. Cylindrical lithium secondary battery 10 is manufactured as follows.
 まず、図2に示すように、帯状を呈する一対のセパレータ1、一端に正極リード21を有する帯状の正極2、及び一端に負極リード31を有する帯状の負極3を、セパレータ1、正極2、セパレータ1、負極3の順に積層し、巻回することにより電極群4とする。 First, as shown in FIG. 2, a pair of strip-shaped separators 1, a strip-shaped positive electrode 2 having a positive electrode lead 21 at one end, and a strip-shaped negative electrode 3 having a negative electrode lead 31 at one end are arranged as follows: 1 and the negative electrode 3 are stacked in this order and wound to form an electrode group 4 .
 次いで、電池缶5に電極群4及び不図示のインシュレーターを収容した後、缶底を封止し、電極群4に電解液6を含浸させ、正極2と負極3との間に電解質を配置する。さらに、電池缶5の上部をトップインシュレーター7及び封口体8で封止することで、リチウム二次電池10を製造することができる。 Next, after housing the electrode group 4 and an insulator (not shown) in the battery can 5, the can bottom is sealed, the electrode group 4 is impregnated with the electrolytic solution 6, and the electrolyte is arranged between the positive electrode 2 and the negative electrode 3. . Further, by sealing the upper portion of the battery can 5 with the top insulator 7 and the sealing member 8, the lithium secondary battery 10 can be manufactured.
 電極群4の形状としては、例えば、電極群4を巻回の軸に対して垂直方向に切断したときの断面形状が、円、楕円、長方形又は角を丸めた長方形となるような柱状の形状を挙げることができる。 The shape of the electrode group 4 is, for example, a columnar shape such that the cross-sectional shape of the electrode group 4 cut in the direction perpendicular to the winding axis is a circle, an ellipse, a rectangle, or a rectangle with rounded corners. can be mentioned.
 また、このような電極群4を有するリチウム二次電池の形状としては、国際電気標準会議(IEC)が定めた電池に対する規格であるIEC60086、又はJIS C 8500で定められる形状を採用することができる。例えば、円筒型又は角型などの形状を挙げることができる。 In addition, as the shape of the lithium secondary battery having such an electrode group 4, a shape defined by IEC60086, which is a standard for batteries defined by the International Electrotechnical Commission (IEC), or JIS C 8500 can be adopted. . For example, a shape such as a cylindrical shape or a rectangular shape can be mentioned.
 さらに、リチウム二次電池は、上記巻回型の構成に限らず、正極、セパレータ、負極、セパレータの積層構造を繰り返し重ねた積層型の構成であってもよい。積層型のリチウム二次電池としては、いわゆるコイン型電池、ボタン型電池、又はペーパー型(又はシート型)電池を例示することができる。 Further, the lithium secondary battery is not limited to the wound type configuration described above, and may have a layered configuration in which a layered structure of a positive electrode, a separator, a negative electrode, and a separator is repeatedly stacked. Examples of laminated lithium secondary batteries include so-called coin-type batteries, button-type batteries, and paper-type (or sheet-type) batteries.
[初回充放電工程]
 上記の方法によりプレ電池を組み上げた後、プレ電池のアルミニウム負極にリチウムイオンを吸蔵させ、初回充電する。その後、放電する。
[Initial charging/discharging step]
After the pre-battery is assembled by the above method, the aluminum negative electrode of the pre-battery is allowed to occlude lithium ions and is charged for the first time. Then discharge.
[エージング工程]
 初回充放電後、放電状態のプレ電池を周囲温度50℃以上で4時間以上保存する。
 保存時間の下限値は、4.5時間以上、5時間以上、6時間以上、が挙げられる。
 保存時間の上限値は、20時間以下、15時間以下、10時間以下、が挙げられる。
 保存時間の上限値及び下限値は任意に組み合わせることができる。組み合わせの例としては、保存時間は、4時間以上20時間以下、5時間以上15時間以下、6時間以上10時間以下が挙げられる。
[Aging process]
After the initial charging and discharging, the pre-battery in the discharged state is stored at an ambient temperature of 50°C or higher for 4 hours or longer.
The lower limit of the storage time is 4.5 hours or more, 5 hours or more, or 6 hours or more.
The upper limit of the storage time is 20 hours or less, 15 hours or less, or 10 hours or less.
The upper limit and lower limit of storage time can be combined arbitrarily. Examples of combinations include storage times of 4 hours to 20 hours, 5 hours to 15 hours, and 6 hours to 10 hours.
 保存温度は、Li-Al合金の結晶構造を安定化させる観点から、52℃以上が好ましく、55℃以上がより好ましい。保存温度の上限値は、例えば100℃以下、80℃以下が挙げられる。
 保存温度は、例えば50℃以上100℃以下、55℃以上80℃以下が挙げられる。
From the viewpoint of stabilizing the crystal structure of the Li—Al alloy, the storage temperature is preferably 52° C. or higher, more preferably 55° C. or higher. The upper limit of the storage temperature is, for example, 100° C. or lower and 80° C. or lower.
Storage temperature is, for example, 50° C. or higher and 100° C. or lower, or 55° C. or higher and 80° C. or lower.
 保存時間と保存温度の組み合わせとしては、以下の組み合わせが挙げられる。
 ・50℃以上100℃以下で、4時間以上20時間以下。
 ・55℃以上80℃以下で、5時間以上15時間以下。
Combinations of storage time and storage temperature include the following combinations.
・4 hours or more and 20 hours or less at 50°C or more and 100°C or less.
- 5 hours to 15 hours at 55°C to 80°C.
 エージング工程を実施する前のプレ電池のRaに対する、エージング工程後の電池のRaの増加率が0%以上20%以下を満たすことが好ましく、8%以上15%以下を満たすことが好ましい。 The rate of increase in Ra of the battery after the aging process with respect to Ra of the pre-battery before the aging process is preferably 0% or more and 20% or less, preferably 8% or more and 15% or less.
 Raの増加率は、以下の式により求める。
 (エージング工程後の電池のRa-エージング工程前のプレ電池のRa)/エージング工程前のプレ電池のRa  ×100
The increase rate of Ra is obtained by the following formula.
(Ra of battery after aging process−Ra of pre-battery before aging process)/Ra of pre-battery before aging process×100
 上記のエージング工程によりLi-Al合金層が安定すると考えられる。ここで「Li-Al合金層が安定する」とは、アルミニウムとリチウムとの合金の結晶構造が安定化し、新たな合金層の形成が抑制されることを意味する。Li-Al合金層が安定すると、放電容量が安定しやすい。このためエージング工程を有することで、サイクル維持率が低下しにくいリチウム二次電池が得られる。 It is believed that the above aging process stabilizes the Li-Al alloy layer. Here, "the Li--Al alloy layer is stabilized" means that the crystal structure of the aluminum-lithium alloy is stabilized and the formation of a new alloy layer is suppressed. When the Li—Al alloy layer is stabilized, the discharge capacity tends to be stabilized. Therefore, by including the aging step, it is possible to obtain a lithium secondary battery in which the cycle retention rate is less likely to decrease.
 従来、負極材料として黒鉛を用いたリチウム二次電池を製造した場合、リチウム二次電池を組み立てた後にエージングがされる。
 従来のエージングは、電極表面にSEI(Solid Electrolyte Interface)被膜を安定的に生成させることを目的としている。従来のエージングは、例えば室温放置エージング、又は高温放置エージングである。
Conventionally, when manufacturing a lithium secondary battery using graphite as a negative electrode material, aging is performed after the lithium secondary battery is assembled.
The purpose of conventional aging is to stably generate an SEI (Solid Electrolyte Interface) film on the electrode surface. Conventional aging is, for example, room temperature aging or high temperature aging.
 一方、負極材料としてアルミニウムを用いる場合には、充放電試験の結果において、初回の充電曲線の形状と、2サイクル目以降の充電曲線の形状とに顕著な差が認められない。
この結果から、従来の知見では、負極材料としてアルミニウムを用いる場合には、電極表面のSEI被膜の安定的な生成のための処理は不要であると考えられた。このため、負極材料としてアルミニウムを用いる場合には、従来は、通常電極表面にSEI被膜の安定的な生成のためのエージングを要しないと考えられていた。
 しかし、初回放電を行った後、電極表面の構造に変化が生じ、脆くなること、さらに、新面が発生してしまうことが本発明者らにより確認され、改良が必要であることが明らかになった。
On the other hand, when aluminum is used as the negative electrode material, there is no noticeable difference between the shape of the initial charge curve and the shape of the charge curve after the second cycle in the results of the charge/discharge test.
Based on this result, it was considered, according to conventional knowledge, that when aluminum is used as the negative electrode material, treatment for stably forming an SEI coating on the electrode surface is unnecessary. For this reason, when aluminum is used as the negative electrode material, it has been conventionally believed that aging for stable formation of an SEI coating on the electrode surface is usually unnecessary.
However, the present inventors confirmed that after the first discharge, the structure of the electrode surface changes, becomes brittle, and furthermore, a new surface is generated, and it is clear that improvement is necessary. became.
 本発明者らの検討により、アルミニウム負極の表面は初回充放電後に脆くなるため、結晶性を向上させるため、さらに表面のSEI形成するために、エージングを要することが見いだされた。 According to the studies of the present inventors, it was found that the surface of the aluminum negative electrode becomes brittle after the first charge and discharge, and therefore aging is necessary to improve crystallinity and form SEI on the surface.
 本明細書において「サイクル維持率が低下しにくい」とは、下記の方法により測定するサイクル維持率の値が90%以上99%以下の範囲内にあることを意味する。 In the present specification, "the cycle retention rate is less likely to decrease" means that the value of the cycle retention rate measured by the method below is in the range of 90% or more and 99% or less.
[サイクル維持率の測定方法]
 まず、コイン型のリチウム二次電池のプレ電池を室温で10時間静置することでセパレータ及び正極合剤層に充分電解液を含浸させる。
 次に、室温において4.2Vまで1mAで定電流充電してから4.2Vで定電圧充電する定電流定電圧充電を5時間行った後、3.4Vまで1mAで放電する定電流放電を行うことでプレ電池の初期充放電を行う。放電容量を測定し、得られた値を「初期放電容量」(mAh)とする。
 プレ電池の初期充放電後、放電状態のプレ電池を所定の条件でエージング処理した後、初期充放電の条件と同様に1mAで充電、1mAで放電を繰り返す。
 その後、100サイクル目の放電容量(mAh)を測定する。
 エージング後の2回目の放電容量(初期から3サイクル目)と100サイクル目の放電容量から、下記の式でサイクル維持率を算出する。
 サイクル維持率(%)=100サイクル目の放電容量(mAh)/2回目放電容量(mAh)×100
[Method for measuring cycle maintenance rate]
First, a pre-battery of a coin-type lithium secondary battery is allowed to stand at room temperature for 10 hours, so that the separator and the positive electrode mixture layer are sufficiently impregnated with the electrolytic solution.
Next, at room temperature, the battery is charged at a constant current of 1 mA to 4.2 V, then charged at a constant voltage of 4.2 V for 5 hours, and then discharged at a constant current of 1 mA to 3.4 V. Initial charge/discharge of the pre-battery is performed in this manner. The discharge capacity is measured, and the obtained value is defined as "initial discharge capacity" (mAh).
After the initial charging and discharging of the pre-battery, the pre-battery in the discharged state is aged under predetermined conditions, and then charged at 1 mA and discharged at 1 mA in the same manner as the initial charging and discharging conditions.
After that, the discharge capacity (mAh) at the 100th cycle is measured.
From the second discharge capacity after aging (the third cycle from the initial stage) and the discharge capacity at the 100th cycle, the cycle retention rate is calculated by the following formula.
Cycle retention rate (%) = 100th cycle discharge capacity (mAh) / 2nd discharge capacity (mAh) x 100
 次に、本発明を実施例によりさらに詳細に説明する。 Next, the present invention will be described in more detail by way of examples.
<Rsの算出方法>
 上記[Rsの算出方法]に記載の方法により、Rsを算出した。
<Rs calculation method>
Rs was calculated by the method described in [Method for calculating Rs] above.
<Raの算出方法>
 上記[Raの算出方法]に記載の方法により、Raを算出した。
<How to calculate Ra>
Ra was calculated by the method described in [Method for calculating Ra] above.
<実施例1>
[負極の作製]
 実施例1に用いたシリコン-アルミニウム合金は下記の方法により製造した。
 高純度アルミニウム(純度:99.99質量%以上)および高純度化学製シリコン(純度:99.999質量%以上)を、760℃に加熱・保持することで、シリコン含有量が1.0質量%であるアルミニウム-シリコン合金溶湯を得た。
 次に、合金溶湯を温度740℃で、2時間、真空度50Paの条件で保持して清浄化した。
 合金溶湯を150℃にて乾燥した鋳鉄鋳型(22mm×150mm×200mm)にて鋳造し、鋳塊を得た。
<Example 1>
[Preparation of negative electrode]
The silicon-aluminum alloy used in Example 1 was produced by the following method.
By heating and holding high-purity aluminum (purity: 99.99% by mass or more) and high-purity chemical silicon (purity: 99.999% by mass or more) at 760 ° C., the silicon content is 1.0% by mass. A molten aluminum-silicon alloy was obtained.
Next, the molten alloy was held at a temperature of 740° C. and a degree of vacuum of 50 Pa for 2 hours for cleaning.
The molten alloy was cast in a cast iron mold (22 mm×150 mm×200 mm) dried at 150° C. to obtain an ingot.
 圧延は以下の条件で行った。鋳塊の両面を2mm面削加工した後、厚さ18mmから加工率99.6%で冷間圧延を行った。得られた圧延材の厚みは100μmであった。
 アルミニウム純度99.999%、シリコン含有量1.0質量%の高純度アルミニウム-シリコン合金箔(厚さ100μm)を、φ16mmの円盤状に切り出し、アルミニウム負極11を製造した。
Rolling was performed under the following conditions. After both surfaces of the ingot were chamfered by 2 mm, cold rolling was performed from a thickness of 18 mm at a reduction ratio of 99.6%. The thickness of the obtained rolled material was 100 μm.
A high-purity aluminum-silicon alloy foil (thickness: 100 μm) having an aluminum purity of 99.999% and a silicon content of 1.0% by mass was cut into a disk shape of φ16 mm to manufacture an aluminum negative electrode 11 .
[正極の作製]
 正極活物質としてコバルト酸リチウム(製品名セルシード。日本化学工業株式会社製。平均粒径(D50)10μm)90質量部と、バインダーとしてポリフッ化ビニリデン(株式会社クレハ製)5質量部と、導電材としてアセチレンブラック(製品名デンカブラック。デンカ株式会社製)5質量部とを混合し、更にN-メチル-2-ピロリドン70質量部を混合して正極の電極合剤とした。
[Preparation of positive electrode]
90 parts by mass of lithium cobalt oxide (product name: Cellseed, manufactured by Nippon Kagaku Kogyo Co., Ltd., average particle size (D50): 10 μm) as a positive electrode active material, 5 parts by mass of polyvinylidene fluoride (manufactured by Kureha Co., Ltd.) as a binder, and a conductive material 5 parts by mass of acetylene black (product name: Denka Black, manufactured by Denka Co., Ltd.) was mixed as a material, and 70 parts by mass of N-methyl-2-pyrrolidone was further mixed to prepare a positive electrode mixture.
 得られた電極合剤を、ドクターブレード法により、集電体である厚み15μmのアルミニウム箔上に塗工した。塗工した電極合剤を、60℃で2時間乾燥させた後、更に150℃で10時間真空乾燥させて、N-メチル-2-ピロリドンを揮発させた。乾燥後の正極活物質の塗工量は21.5mg/cmであった。 The obtained electrode mixture was applied onto an aluminum foil having a thickness of 15 μm as a current collector by a doctor blade method. The coated electrode mixture was dried at 60° C. for 2 hours and then vacuum dried at 150° C. for 10 hours to volatilize N-methyl-2-pyrrolidone. The coating amount of the positive electrode active material after drying was 21.5 mg/cm 2 .
 得られた電極合剤層と集電体との積層体を圧延した後、φ14mmの円盤状に切り出し、コバルト酸リチウムを形成材料とする正極合剤層と、集電体との積層体である正極を製造した。 After rolling the obtained laminate of the electrode mixture layer and the current collector, it is cut into a disk shape of φ14 mm to obtain a laminate of the positive electrode mixture layer using lithium cobaltate as a forming material and the current collector. A positive electrode was produced.
[電解液の作製]
 エチレンカーボネート(EC)とジエチルカーボネート(DEC)とをEC:DEC=30:70(体積比)で混合させてなる混合溶媒に、LiPFを1モル/リットルとなる割合で溶解した電解液を作製した。
[Preparation of electrolytic solution]
An electrolytic solution was prepared by dissolving LiPF 6 at a ratio of 1 mol/liter in a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at EC:DEC=30:70 (volume ratio). did.
≪リチウム二次電池の製造≫
[プレ電池を組み上げる工程]
 上記の負極と正極との間にポリエチレン製多孔質セパレータを配置して、電池ケース(規格2032)に収納し、上記の電解液を注液し、電池ケースを密閉することにより、直径20mm、厚み3.2mmのコイン型のプレ電池を作製した。
≪Manufacturing of lithium secondary batteries≫
[Process of assembling a pre-battery]
A polyethylene porous separator is placed between the negative electrode and the positive electrode, housed in a battery case (standard 2032), the above electrolytic solution is injected, and the battery case is sealed to obtain a diameter of 20 mm and a thickness of 20 mm. A 3.2 mm coin-shaped pre-battery was fabricated.
[初回充放電工程]
 コイン型のプレ電池を室温において1mAで4.2Vまで定電流充電した。
 その後、3.4Vまで1mAで放電する定電流放電した。
[Initial charging/discharging step]
A coin-shaped pre-battery was galvanostatically charged to 4.2 V at 1 mA at room temperature.
After that, constant current discharge was performed at 1 mA to 3.4V.
[エージング工程]
 その後、放電状態で、60℃で8時間保存した。これにより、リチウム二次電池1を製造した。
[Aging process]
After that, it was stored at 60° C. for 8 hours in a discharged state. Thus, a lithium secondary battery 1 was manufactured.
 リチウム二次電池1のRsは50Ωであり、Raは35Ω/cm、またRaのエージング前後での増加分は10%であった。 The Rs of the lithium secondary battery 1 was 50Ω, the Ra was 35Ω/cm 2 , and the increase in Ra before and after aging was 10%.
 リチウム二次電池1について、上記[サイクル維持率の測定方法]に記載の方法により測定したサイクル維持率は、90%であった。 Regarding the lithium secondary battery 1, the cycle retention rate measured by the method described in [Method for measuring cycle retention rate] above was 90%.
<比較例1>
 上記[エージング工程]を、25℃で8時間の条件に変更した以外は実施例1と同様の方法で、リチウム二次電池2を製造した。
<Comparative Example 1>
A lithium secondary battery 2 was manufactured in the same manner as in Example 1, except that the [aging step] was changed to 8 hours at 25°C.
 リチウム二次電池2のRsは10Ω/cmであり、Raは34Ω/cm、またRaのエージング前後の増加は5%であった。 The Rs of the lithium secondary battery 2 was 10 Ω/cm 2 , the Ra was 34 Ω/cm 2 , and the increase in Ra before and after aging was 5%.
 リチウム二次電池2について、上記[サイクル維持率の測定方法]に記載の方法により測定したサイクル維持率は、70%であった。 Regarding the lithium secondary battery 2, the cycle retention rate measured by the method described in [Method for measuring cycle retention rate] above was 70%.
<比較例2>
 上記[エージング工程]を、45℃で4時間の条件に変更した以外は実施例1と同様の方法で、リチウム二次電池3を製造した。
<Comparative Example 2>
A lithium secondary battery 3 was manufactured in the same manner as in Example 1, except that the [aging step] was changed to 45° C. for 4 hours.
 リチウム二次電池3のRsは10Ωであり、Raは30Ω/cm、またRaのエージング前後での増加は7%であった。 The Rs of the lithium secondary battery 3 was 10Ω, the Ra was 30Ω/cm 2 , and the increase in Ra before and after aging was 7%.
 リチウム二次電池3について、上記[サイクル維持率の測定方法]に記載の方法により測定したサイクル維持率は、80%であった。 Regarding the lithium secondary battery 3, the cycle retention rate measured by the method described in [Method for measuring cycle retention rate] above was 80%.
<比較例3>
 上記[エージング工程]を、45℃で8時間の条件に変更した以外は実施例1と同様の方法で、リチウム二次電池4を製造した。
<Comparative Example 3>
A lithium secondary battery 4 was manufactured in the same manner as in Example 1, except that the [aging step] was changed to 45° C. for 8 hours.
 リチウム二次電池4のRsは10Ωであり、Raは32Ω/cm、またRaのエージング前後の増加は7%であった。 The Rs of the lithium secondary battery 4 was 10Ω, the Ra was 32Ω/cm 2 , and the increase in Ra before and after aging was 7%.
 リチウム二次電池4について、上記[サイクル維持率の測定方法]に記載の方法により測定したサイクル維持率は、60%であった。 Regarding the lithium secondary battery 4, the cycle retention rate measured by the method described in [Method for measuring cycle retention rate] above was 60%.
 上記の結果から、初回充放電後に所定のエージング工程を実施し、Rsが(1)を満たすリチウム二次電池は、サイクル維持率が低下しにくいことが確認できた。 From the above results, it was confirmed that a lithium secondary battery that has undergone a predetermined aging process after the first charge and discharge and whose Rs satisfies (1) is less likely to decrease in cycle retention rate.
 また、初回充放電後に所定のエージング工程を実施しない場合にはエージング前後でのRaの増加率が実施例よりも低い、換言すれば実施例よりも抵抗値の変化が小さいことが確認できた。 In addition, it was confirmed that when the predetermined aging process was not performed after the first charge and discharge, the rate of increase in Ra before and after aging was lower than in the example, in other words, the change in resistance value was smaller than in the example.
1…セパレータ、2…正極、3…アルミニウム負極、4…電極群、5…電池缶、6…電解液、7…トップインシュレーター、8…封口体、10…リチウム二次電池、21…正極リード、31…負極リード DESCRIPTION OF SYMBOLS 1... Separator, 2... Positive electrode, 3... Aluminum negative electrode, 4... Electrode group, 5... Battery can, 6... Electrolyte solution, 7... Top insulator, 8... Sealing body, 10... Lithium secondary battery, 21... Positive electrode lead, 31 Negative electrode lead

Claims (4)

  1.  リチウムイオンを吸蔵及び放出可能なアルミニウム負極と、
     リチウムイオンを吸蔵及び放出可能な正極と、
     電解質と、を備え、
     前記アルミニウム負極はアルミニウム含有金属からなり、
     下記(1)を満たす、リチウム二次電池。
     20Ω/cm≦Rs≦100Ω/cm  (1)
    (リチウム二次電池を放電させ、放電後の電圧をV0とする。その後1.0mA/cmで充電し、2秒後の電圧をV1とする。前記V1とV0との差(V1-V0)から算出した正極の単位面積当たり直流抵抗値をRsとする。)
    an aluminum negative electrode capable of intercalating and deintercalating lithium ions;
    a positive electrode capable of intercalating and deintercalating lithium ions;
    comprising an electrolyte and
    The aluminum negative electrode is made of an aluminum-containing metal,
    A lithium secondary battery that satisfies the following (1).
    20 Ω/cm 2 ≤ Rs ≤ 100 Ω/cm 2 (1)
    (The lithium secondary battery is discharged, and the voltage after discharge is V0. After that, it is charged at 1.0 mA/cm 2 and the voltage after 2 seconds is V1. The difference between V1 and V0 (V1-V0 ) The DC resistance value per unit area of the positive electrode calculated from ) is defined as Rs.)
  2.  下記(2)を満たす、請求項1に記載のリチウム二次電池。
     10Ω/cm≦Ra≦100Ω/cm (2)
    (Raは、リチウム二次電池を放電させ、交流インピーダンス測定を実施し、得られたインピーダンスのコール・コールプロットを解析して求まる前記アルミニウム負極の交流抵抗値である。)
    2. The lithium secondary battery according to claim 1, which satisfies the following (2).
    10 Ω/cm 2 ≤ Ra ≤ 100 Ω/cm 2 (2)
    (Ra is the AC resistance value of the aluminum negative electrode obtained by discharging the lithium secondary battery, measuring the AC impedance, and analyzing the Cole-Cole plot of the obtained impedance.)
  3.  リチウムイオンを吸蔵及び放出可能なアルミニウム負極と、
     リチウムイオンを吸蔵及び放出可能な正極と、
     電解質と、を備え、
     前記アルミニウム負極はアルミニウム含有金属からなるリチウム二次電池の製造方法であって、
     プレ電池を組み上げる工程と、
     プレ電池を初回充放電させる工程と、
     放電状態のプレ電池を、周囲温度50℃以上で4時間以上保存するエージング工程と、を備えるリチウム二次電池の製造方法。
    an aluminum negative electrode capable of intercalating and deintercalating lithium ions;
    a positive electrode capable of intercalating and deintercalating lithium ions;
    comprising an electrolyte and
    A method for producing a lithium secondary battery in which the aluminum negative electrode is made of an aluminum-containing metal,
    a step of assembling a pre-battery;
    a step of charging and discharging the pre-battery for the first time;
    A method for producing a lithium secondary battery, comprising: an aging step of storing the pre-battery in a discharged state at an ambient temperature of 50° C. or higher for 4 hours or longer.
  4.  前記エージング工程の前のプレ電池のRaに対する、前記エージング工程後のプレ電池のRaの増加率が0%以上20%以内である、請求項3に記載のリチウム二次電池の製造方法。 The method for manufacturing a lithium secondary battery according to claim 3, wherein the increase rate of Ra of the pre-battery after the aging process with respect to Ra of the pre-battery before the aging process is 0% or more and 20% or less.
PCT/JP2022/014547 2021-03-31 2022-03-25 Lithium secondary battery and method for producing lithium secondary battery WO2022210393A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-059729 2021-03-31
JP2021059729A JP2022156172A (en) 2021-03-31 2021-03-31 Lithium secondary battery and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2022210393A1 true WO2022210393A1 (en) 2022-10-06

Family

ID=83459211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014547 WO2022210393A1 (en) 2021-03-31 2022-03-25 Lithium secondary battery and method for producing lithium secondary battery

Country Status (2)

Country Link
JP (1) JP2022156172A (en)
WO (1) WO2022210393A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04355066A (en) * 1991-05-30 1992-12-09 Sanyo Electric Co Ltd Manufacture of nonaqueous secondary battery
JPH05151955A (en) * 1991-11-29 1993-06-18 Sanyo Electric Co Ltd Nonaqueous electrolytic solution battery and manufacture thereof
JPH09147919A (en) * 1995-11-24 1997-06-06 Sanyo Electric Co Ltd Manufacture of nonaqueous electrolyte secondary cell
WO2020075616A1 (en) * 2018-10-10 2020-04-16 住友化学株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode, battery, and aluminum clad metal laminate
WO2021206121A1 (en) * 2020-04-09 2021-10-14 住友化学株式会社 Method for manufacturing lithium secondary battery and method for charging lithium secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04355066A (en) * 1991-05-30 1992-12-09 Sanyo Electric Co Ltd Manufacture of nonaqueous secondary battery
JPH05151955A (en) * 1991-11-29 1993-06-18 Sanyo Electric Co Ltd Nonaqueous electrolytic solution battery and manufacture thereof
JPH09147919A (en) * 1995-11-24 1997-06-06 Sanyo Electric Co Ltd Manufacture of nonaqueous electrolyte secondary cell
WO2020075616A1 (en) * 2018-10-10 2020-04-16 住友化学株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode, battery, and aluminum clad metal laminate
WO2021206121A1 (en) * 2020-04-09 2021-10-14 住友化学株式会社 Method for manufacturing lithium secondary battery and method for charging lithium secondary battery

Also Published As

Publication number Publication date
JP2022156172A (en) 2022-10-14

Similar Documents

Publication Publication Date Title
JP6442630B1 (en) Negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode and battery
JP6792741B2 (en) Non-aqueous electrolyte Negative electrode for secondary batteries Active material, negative electrode, battery and aluminum clad metal laminate
JP6731130B1 (en) Negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode, battery and laminate
WO2021206120A1 (en) Lithium secondary battery and electrolytic solution for lithium secondary battery
WO2021125225A1 (en) Negative electrode for collector-integrated secondary cell, and lithium secondary cell
JP2004087209A (en) Lithium secondary battery
WO2022209507A1 (en) Negative electrode for lithium secondary battery, and lithium secondary battery
WO2021206121A1 (en) Method for manufacturing lithium secondary battery and method for charging lithium secondary battery
WO2022210393A1 (en) Lithium secondary battery and method for producing lithium secondary battery
WO2022210443A1 (en) Lithium secondary battery
JP7289713B2 (en) Non-aqueous electrolyte secondary battery
WO2022209506A1 (en) Negative electrode active material for lithium secondary battery, metal negative electrode, and lithium secondary battery
CN112805854B (en) Negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode, battery, and aluminum-coated metal laminate
WO2023106227A1 (en) Negative electrode for lithium secondary battery, and lithium secondary battery
KR20220116168A (en) Lithium secondary battery and battery system
JP2019129144A (en) Negative-electrode active material for non-aqueous electrolyte secondary battery, negative electrode, and battery
JP2024060936A (en) Anode for lithium secondary battery, precursor for anode for lithium secondary battery, lithium secondary battery, and method for producing anode for lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780606

Country of ref document: EP

Kind code of ref document: A1