WO2022210366A1 - Motor, blower device, compressor device, and refrigeration device - Google Patents

Motor, blower device, compressor device, and refrigeration device Download PDF

Info

Publication number
WO2022210366A1
WO2022210366A1 PCT/JP2022/014444 JP2022014444W WO2022210366A1 WO 2022210366 A1 WO2022210366 A1 WO 2022210366A1 JP 2022014444 W JP2022014444 W JP 2022014444W WO 2022210366 A1 WO2022210366 A1 WO 2022210366A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
motor
radiation fins
rotor
heat radiation
Prior art date
Application number
PCT/JP2022/014444
Other languages
French (fr)
Japanese (ja)
Inventor
茜 上田
尚宏 木戸
能成 浅野
寛 日比野
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2022210366A1 publication Critical patent/WO2022210366A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges

Definitions

  • the present disclosure relates to motors, blowers, compressors, and refrigerators.
  • Patent Document 1 For example, a claw pole type motor having fins on the outer peripheral surface of the stator is known (see Patent Document 1).
  • An object of the present disclosure is to provide a technology capable of improving the heat dissipation effect of a stator unit in a claw pole motor.
  • a rotor configured to be rotatable around a rotation axis; a stator having a claw pole type stator unit including a winding wound annularly around the rotation axis and an iron core provided to surround the winding, A motor is provided which has heat radiating fins at the outermost end of the stator unit in the axial direction of the rotation axis.
  • the heat dissipation effect of the stator unit can be improved without increasing the outer diameter of the motor.
  • a fixing member that supports the stator, The heat radiation fins are It may be provided at the end of the stator unit farthest from the fixing member.
  • the radiation fins may restrict movement of the stator in the axial direction of the rotating shaft by contacting the stator unit.
  • the stator may have two or more stator units stacked in the axial direction of the rotating shaft.
  • the space in which the stator is arranged may have a flow path through which a fluid can be introduced from the outside of the space.
  • the rotor is It may be configured to rotate outside the stator.
  • a fan may be provided attached to the outer surface of the rotor.
  • a second heat radiation fin may be provided on the inner surface of the rotor facing the heat radiation fin.
  • the heat radiation fins are It may be formed in the iron core of the stator unit.
  • the heat radiation fins are It may be a part separate from the iron core of the stator unit.
  • a second fan may be provided in the space where the stator is arranged and rotate together with the rotor.
  • the heat radiation fins are It may have a plurality of plate-like members or a plurality of pin-like members arranged concentrically.
  • the heat radiation fins are It may have a plurality of plate-shaped members or a plurality of pin-shaped members arranged radially.
  • FIG. 1 is a perspective view of a motor according to a first embodiment
  • FIG. 1 is a top view of a motor according to a first embodiment
  • FIG. 1 is a vertical cross-sectional view showing an example of a configuration of a motor according to a first embodiment
  • FIG. 7 is a longitudinal sectional view showing an example of the configuration of a motor according to a second embodiment
  • FIG. 11 is a vertical cross-sectional view showing an example of the configuration of a motor according to a third embodiment;
  • FIG. 11 is a vertical cross-sectional view showing a modified example of the configuration of the motor 1 according to the third embodiment;
  • FIG. 11 is a vertical cross-sectional view showing an example of the configuration of a motor according to a fourth embodiment;
  • FIG. 11 is a vertical cross-sectional view showing an example of the configuration of a motor according to a fifth embodiment; It is a figure which shows the example of application to the air blower of the motor which concerns on this embodiment. It is a figure which shows an example of the shape and arrangement
  • FIG. 10 is a vertical cross-sectional view showing an example of the configuration of a motor according to another embodiment;
  • FIG. 1 is a perspective view showing an overview of the motor 1 according to this embodiment.
  • illustration of the connecting member 14 provided in the rotor 10 is omitted.
  • FIG. 2 is a perspective view showing an example of the configuration of the stator 20 according to this embodiment.
  • illustration of the rotor 10 (rotor core 11, permanent magnet 12, rotating shaft member 13, and connecting member 14) is omitted.
  • FIG. 3 is an exploded view showing an example of the configuration of the stator unit 21 according to this embodiment.
  • FIG. 4 is a longitudinal sectional view showing an example of the configuration of the motor 1 according to this embodiment.
  • the motor 1 shown in FIGS. 1 to 4 is a so-called outer rotor type claw pole motor.
  • the motor 1 is driven by a multi-phase (three-phase in this example) armature current.
  • a motor 1 is used for a blower, a refrigerator, and the like.
  • the motor 1 includes a rotor 10, a stator 20 and a fixed member 30.
  • the rotor 10 is arranged outside the stator 20 in the radial direction of the motor 1 (hereinafter simply referred to as "radial direction"), and is rotatable around the rotation axis AX. configured to
  • the rotor 10 has a rotor core 11 , a plurality of (20 in this example) permanent magnets 12 , and a rotating shaft member 13 .
  • the rotor 10 may also be called a "rotor".
  • the rotor core 11 has, for example, a substantially cylindrical shape, and is arranged so that the rotation axis AX of the motor 1 and the axis of the cylindrical shape substantially coincide. Further, the rotor core 11 has substantially the same length as the stator 20 in the axial direction of the motor 1 (hereinafter simply referred to as "axial direction").
  • the rotor core 11 is made of, for example, steel plate, cast iron, dust core, or the like. In the example shown in FIG. 1, the rotor core 11 is composed of a plurality (three in this example) of rotor cores 11A to 11C laminated in the axial direction. However, the rotor core 11 may be configured by one member in the axial direction. Note that the rotor core 11 is sometimes called a "rotor core".
  • a plurality of permanent magnets 12 (20 magnets in this example) are arranged at equal intervals in the circumferential direction on the inner peripheral surface of the rotor core 11 . Moreover, the plurality of permanent magnets 12 are formed so as to exist between substantially one end and substantially the other end in the axial direction of the rotor core 11 .
  • Permanent magnets 12 are, for example, neodymium sintered magnets or ferrite magnets.
  • Each of the plurality of permanent magnets 12 is magnetized with different magnetic poles at both ends in the radial direction.
  • Two permanent magnets 12 adjacent in the circumferential direction among the plurality of permanent magnets 12 are magnetized with different magnetic poles on the inner side in the radial direction facing the stator 20 . Therefore, on the radially outer side of the stator 20, in the circumferential direction, the permanent magnets 12 magnetized with N poles radially inward and the permanent magnets 12 magnetized with S poles radially inwardly are arranged. are arranged alternately.
  • Each of the plurality of permanent magnets 12 may be composed of one magnet member in the axial direction, or a plurality of magnet members divided in the axial direction (for example, the number corresponding to the number of laminated rotor core 11 members). 3) magnet members.
  • the plurality of magnet members constituting the axially divided permanent magnets 12 are all magnetized with the same magnetic poles on the inner side in the radial direction facing the stator 20 .
  • the plurality of permanent magnets 12 arranged in the circumferential direction are composed of a single member in the circumferential direction, such as an annular ring magnet or a plastic magnet in which magnetic poles different in the circumferential direction are alternately magnetized. Permanent magnets may be substituted.
  • the permanent magnet which is composed of one member in the circumferential direction, may also be composed of one member in the axial direction, and may be composed of one member as a whole.
  • the permanent magnet formed of one member in the circumferential direction may be divided into a plurality of members in the axial direction, as in the case of the plurality of permanent magnets 12 .
  • the rotor core 11 may be omitted.
  • the rotating shaft member 13 has, for example, a substantially cylindrical shape, and is arranged so that the rotating shaft center AX of the motor 1 and the shaft center of the cylindrical shape substantially coincide.
  • the rotary shaft member 13 is rotatably supported by, for example, bearings 25 and 26 (see FIG. 4) provided at both ends of the insertion member 24 in the axial direction.
  • the insertion member 24 is fixed to the fixing member 30 .
  • the rotating shaft member 13 can rotate about the rotation axis AX with respect to the fixed member 30 .
  • the rotating shaft member 13 has a connecting member 14 (Fig. 4 ) is connected to the rotor core 11 .
  • the connecting member 14 has, for example, a substantially disc shape that closes the substantially cylindrical open end of the rotor core 11 .
  • the stator 20 is arranged radially inside the rotor core 11 and the permanent magnets 12 of the rotor 10 .
  • the stator 20 has a plurality (three in this example) of claw pole type stator units 21 , a plurality (two in this example) of interphase members 22 , end members 23 and insertion members 24 . Note that the stator 20 is sometimes called a "stator".
  • the stator unit 21 has a pair of stator cores 211 and windings 212 .
  • a pair of stator cores 211 are provided so as to surround the windings 212 .
  • the stator core 211 is made of, for example, a dust core.
  • Stator core 211 has yoke portion 211A, a plurality of claw poles 211B, yoke portion 211C, and insertion hole 211D. Note that the pair of stator cores 211 may also be called a "stator core".
  • the yoke portion 211A has an annular shape when viewed in the axial direction and has a predetermined thickness in the axial direction.
  • the plurality of claw magnetic poles 211B are arranged at equal intervals in the circumferential direction on the outer peripheral surface of the yoke portion 211A, and each project radially outward from the outer peripheral surface of the yoke portion 211A.
  • the claw magnetic pole 211B has a claw magnetic pole portion 211B1 and a claw magnetic pole portion 211B2.
  • the claw magnetic pole portion 211B1 has a predetermined width and protrudes from the outer peripheral surface of the yoke portion 211A by a predetermined length.
  • the claw magnetic pole portion 211B2 protrudes from the tip of the claw magnetic pole portion 211B1 toward the other of the pair of stator cores 211 in the axial direction by a predetermined length.
  • the claw magnetic pole portion 211B2 may have a constant width regardless of the distance from the claw magnetic pole portion 211B1.
  • the claw magnetic pole portion 211B2 may have a tapered shape in which the width becomes narrower as the distance from the claw magnetic pole portion 211B1 increases in the axial direction.
  • the motor 1 Since the motor 1 has the claw magnetic pole portion 211B2, it is possible to secure a relatively large facing area between the magnetic pole surface of the claw magnetic pole 211B magnetized by the armature current of the winding 212 and the rotor . Therefore, since the motor 1 can relatively increase the torque of the motor 1, the output of the motor 1 can be improved. Note that the claw magnetic pole portion 211B2 may be omitted.
  • the yoke portion 211C is configured such that a portion near the inner peripheral surface of the yoke portion 211A protrudes toward the other of the pair of stator cores 211 by a predetermined amount. It has a small toric shape. As a result, the pair of stator cores 211 are in contact with each other at the yoke portions 211C, and a space for accommodating the winding 212 is created between the pair of yoke portions 211A corresponding to the pair of stator cores 211 .
  • the insertion member 24 is inserted through the insertion hole 211D.
  • the insertion hole 211D is implemented by the inner peripheral surfaces of the yoke portion 211A and the yoke portion 211C.
  • the winding 212 is wound in an annular shape when viewed in the axial direction.
  • the winding 212 has one end electrically connected to an external terminal and the other end electrically connected to a neutral point.
  • the windings 212 are arranged between the pair of stator cores 211 (yoke portions 211A) in the axial direction.
  • the winding 212 is wound so that the inner peripheral portion is radially outside the yoke portions 211C of the pair of stator cores 211 .
  • the winding 212 is sometimes called a "coil".
  • An insulating portion (not shown) is arranged to electrically insulate between the windings 212 and the stator core 211 .
  • the insulating part is, for example, an insulating paper, a resin-molded insulator, silicone rubber, or a resin mold for the stator core 211 or the windings 212 , which is arranged between the stator core 211 and the windings 212 .
  • the insulating portion may be, for example, a resin insulating film provided on the surface of the conductor wire of the winding 212 .
  • the pair of stator cores 211 are combined so that the claw poles 211B of one stator core 211 and the claw poles 211B of the other stator core 211 are alternately arranged in the circumferential direction. . Further, when an armature current flows through the annular winding 212, the claw magnetic poles 211B formed on one of the pair of stator cores 211 and the claw magnetic poles 211B formed on the other are magnetized to different magnetic poles. be done. As a result, in the pair of stator cores 211, one claw pole 211B projecting from one stator core 211 is adjacent in the circumferential direction and has a different magnetic pole from the other claw pole 211B projecting from the other stator core 211.
  • the N pole claw magnetic poles 211 B and the S pole claw magnetic poles 211 B are alternately arranged in the circumferential direction of the pair of stator cores 211 .
  • the plurality of stator units 21 are stacked in the axial direction.
  • the plurality of stator units 21 includes stator units 21 for a plurality of phases (three phases in this example).
  • the plurality of stator units 21 includes a stator unit 21A corresponding to the U phase, a stator unit 21B corresponding to the V phase, and a stator unit 21C corresponding to the W phase.
  • the plurality of stator units 21 are stacked in the order of the U-phase stator unit 21A, the V-phase stator unit 21B, and the W-phase stator unit 21C from the tip of the motor 1. be.
  • the stator units 21A to 21C are arranged such that their circumferential positions differ from each other by an electrical angle of 120°.
  • the motor 1 may be driven by a two-phase armature current, or may be driven by a four-phase or more armature current.
  • the interphase member 22 is provided between the stator units 21 of different phases adjacent in the axial direction.
  • Interphase member 22 is, for example, a non-magnetic material. As a result, a predetermined distance can be secured between the two stator units 21 of different phases, and magnetic flux leakage between the two stator units 21 of different phases can be suppressed.
  • Interphase member 22 includes UV interphase member 22A and VW interphase member 22B.
  • the UV interphase member 22A is provided between the U-phase stator unit 21A and the V-phase stator unit 21B, which are axially adjacent to each other.
  • the UV interphase member 22A has, for example, a substantially cylindrical shape (substantially disk shape) with a predetermined thickness, and an insertion hole through which the insertion member 24 is inserted is formed in the central portion.
  • a substantially cylindrical shape substantially disk shape
  • an insertion hole through which the insertion member 24 is inserted is formed in the central portion.
  • the same may be applied to the VW interphase member 22B.
  • the VW interphase member 22B is provided between the V-phase stator unit 21B and the W-phase stator unit 21C, which are axially adjacent to each other.
  • the end member 23 is provided at the end of the plurality of stacked stator units 21 on the tip side of the motor 1 . Specifically, the end member 23 is provided so as to come into contact with the end surface of the stator unit 21A opposite to the side facing the stator unit 21B in the axial direction.
  • the end member 23 has, for example, a substantially cylindrical shape (substantially disk shape) having a predetermined thickness, and an insertion hole through which the insertion member 24 is inserted is formed in the central portion.
  • the end member 23 can suppress magnetic flux leakage from the stator unit 21A (specifically, the stator core 211 on the tip end side of the motor 1) by forming the end member 23 from, for example, a non-magnetic material.
  • the end member 23 and the fixed member 30 sandwich the plurality of stacked stator units 21 , so that the movement of the plurality of stator units 21 in the axial direction of the rotation axis AX can be restricted. Further, the end member 23 may contact the entire end face of the stator core 211, or may contact a part of the end face of the stator core 211 as shown in FIG.
  • the end portion of the insertion member 24 is fixed to the fixing member 30 while the end member 23, the stator unit 21A, the UV interphase member 22A, the stator unit 21B, the VW interphase member 22B, and the stator unit 21C are inserted.
  • the inserting member 24 has, for example, a male threaded portion at its distal end, and is fixed to the fixing member 30 by being screwed into a corresponding female threaded portion of the fixing member 30 .
  • the insertion member 24 has, for example, a substantially cylindrical shape, and the rotating shaft member 13 is rotatably arranged in a hole realized by the inner peripheral surface.
  • Bearings 25 and 26 that rotatably support the rotary shaft member 13 are provided at both ends of the insertion member 24 in the axial direction.
  • the insertion member 24 has, for example, a head portion having an outer diameter relatively larger than the inner diameter of the insertion hole 211D of the stator unit 21 on the tip side of the motor 1 .
  • a force in the axial direction toward the fixing member 30 can be applied from the head portion to the end member 23 . Therefore, a plurality of stator units 21 (stator units 21A to 21C) and interphase members 22 (UV interphase members 22A and VW interphase members 22B) are fixed to the fixing member 30 in such a manner that they are sandwiched between the end member 23 and the fixing member 30. be able to.
  • the dust core has relatively low strength against tensile stress, but relatively high strength against compressive stress. Therefore, the stator core 211 formed of the dust core can be fixed to the stator units 21A to 21C in such a manner that compressive stress acts on it.
  • the fixed member 30 has, for example, a substantially disc shape with an outer diameter larger than that of the rotor 10 (rotor core 11) when viewed in the axial direction, and has a predetermined thickness in the axial direction. As shown in FIG. 4, the fixing member 30 rotatably supports the rotor 10 via the insertion member 24, and the stator 20 is fixed.
  • FIG. 5 is a perspective view of the motor 1 according to the first embodiment.
  • FIG. 6 is a top view of the motor 1 according to the first embodiment. 5 and 6, illustration of the rotor 10 included in the motor 1 is omitted.
  • FIG. 7 is a longitudinal sectional view showing an example of the configuration of the motor 1 according to the first embodiment. 7 to 12 show only the stator units 21 at the ends in the axial direction, and the illustration of the intermediate stator units 21 in the axial direction is omitted.
  • the motor 1 according to the first embodiment includes an end portion (specifically, a stator A plurality of radiating fins 40 are provided on a surface of the yoke portion 211A of the iron core 211 facing the connecting member 14 .
  • the motor 1 according to the first embodiment includes three heat radiation fins 40 concentrically arranged.
  • the motor 1 according to the first embodiment includes seven heat radiation fins 40 concentrically arranged.
  • Each of the plurality of radiation fins 40 has an annular shape centered on the rotation axis AX when viewed in the axial direction, but has different radii.
  • FIG. 5 the motor 1 according to the first embodiment includes an end portion (specifically, a stator A plurality of radiating fins 40 are provided on a surface of the yoke portion 211A of the iron core 211 facing the connecting member 14 .
  • the motor 1 according to the first embodiment includes three heat radiation fins 40 concentrically arranged.
  • the motor 1 according to the first embodiment includes seven heat radiation fins 40 concentrically
  • the end member 23 is in contact with a portion of the end surface of the stator core 211 (a portion of the inner peripheral surface side in the radial direction). Moreover, in the example shown in FIG. 7 , the plurality of heat radiation fins 40 are provided radially outside the outer peripheral surface of the end member 23 so as not to come into contact with the end member 23 .
  • the motor 1 includes the plurality of heat radiation fins 40 in the stator unit 21, thereby increasing the surface area of the stator unit 21 and generating the windings 212 in the stator unit 21.
  • the heat dissipation effect of the heat energy generated can be enhanced.
  • the motor 1 according to the first embodiment since the stator unit 21A farthest from the fixing member 30 is provided with a plurality of heat radiation fins 40, the temperature of the stator unit 21A tends to be higher than that of the other stator units 21. can enhance the heat dissipation effect of Therefore, the motor 1 according to the first embodiment can suppress unevenness in temperature among the plurality of stator units 21 .
  • the motor 1 according to the first embodiment includes a plurality of heat radiation fins 40 at the ends of the stator unit 21A in the axial direction, the plurality of stator units 21 and the plurality of permanent magnets 12 in the magnetic circuit The heat dissipation effect of the stator unit 21A can be enhanced without enlarging the air gap between them.
  • the heat radiation path of the winding is mainly a path for heat radiation from the winding to the outside air via the fixing member.
  • the windings are covered with the stator core, and there are few surfaces exposed to the air, so the windings tend to retain heat.
  • the claw pole motor has a structure in which stator units are laminated, a plurality of members (for example, an insulating member, a stator core, and an interphase member) are interposed in the heat dissipation path from the windings to the fixed member. The thermal resistance of the path increases and the heat transfer is poor. For these reasons, it is difficult for the heat from the windings to escape from the claw pole type motor.
  • stator unit 21A since the stator unit 21A is the farthest from the fixed member 30, it is difficult to transfer the thermal energy generated by the windings 212 to the fixed member 30. Therefore, the temperature of the stator unit 21A tends to be higher than that of the other stator units 21 .
  • the heat radiation fins 40 may be formed integrally with the stator core 211 .
  • the heat radiation fins 40 may be a separate member from the stator core 211, and may be fixed to the stator core 211 by any fixing method (for example, bolting, welding, etc.). If the heat radiation fins 40 are separate members from the stator core 211, they may be formed integrally with the end members 23, and fixed to the end members 23 by any method (for example, bolting, welding, etc.). May be fixed.
  • the radiation fins 40 are made of a material with high thermal conductivity (eg, aluminum, iron, copper, etc.). Thereby, the motor 1 according to the first embodiment can further enhance the heat dissipation effect of the heat dissipation fins 40 .
  • the radiation fins 40 be made of a non-magnetic material (eg, aluminum, stainless steel, brass, etc.).
  • a non-magnetic material eg, aluminum, stainless steel, brass, etc.
  • FIG. 8 is a longitudinal sectional view showing an example of the configuration of the motor 1 according to the second embodiment.
  • the end of the stator unit 21 (stator unit 21A) farthest from the fixing member 30 in the axial direction is A plurality of radiating fins 40 arranged concentrically are provided in the portion.
  • the motor 1 according to the second embodiment can enhance the heat dissipation effect of the stator unit 21A, like the motor 1 according to the first embodiment.
  • the end member 23 is in contact with a portion of the end surface of the stator core 211 (a portion of the inner peripheral surface in the radial direction).
  • the plurality of radiation fins 40 are provided radially outside the outer peripheral surface of the end member 23 so as not to come into contact with the end member 23 .
  • the motor 1 according to the second embodiment has a through hole 42 in the connecting member 14 .
  • the through hole 42 axially penetrates the connecting member 14 .
  • the motor 1 according to the second embodiment is provided with the through hole 42, so that the space surrounded by the rotor core 11 and the connecting member 14 has the through hole 42 from the gap A.
  • a flow path B for fluid is formed.
  • Flow path B is connected to the outside of rotor 10 through gap A and through hole 42 .
  • FIG. 9 is a longitudinal sectional view showing an example of the configuration of the motor 1 according to the third embodiment.
  • the motor 1 according to the third embodiment has a plurality of heat radiation fins 40 on the end member 23 of the stator 20 .
  • the motors 1 according to the third embodiment are arranged concentrically on each of the surface of the end member 23 on the fixing member 30 side and the surface of the end member 23 on the connecting member 14 side.
  • a plurality of radiation fins 40 are provided.
  • Each of the plurality of radiation fins 40 has an annular shape centered on the rotation axis AX when viewed in the axial direction, but has a different radius.
  • the motor 1 according to the third embodiment can enhance the heat radiation effect of the stator unit 21A, like the motor 1 according to the first embodiment.
  • each of the plurality of heat radiating fins 40 provided on the surface of the end member 23 on the side of the fixing member 30 has a leading end that extends from the stator core 211 ( It is in contact with the surface of the yoke portion 211A) facing the connecting member 14 .
  • the heat generated by the windings 212 of the stator unit 21A is dissipated by each of the plurality of radiation fins 40 provided on the surface of the end member 23 on the side of the fixing member 30. Energy is transferred and the thermal energy can be dissipated.
  • the motor 1 according to the third embodiment can restrict the axial movement of the plurality of stacked stator units 21 .
  • the motor 1 according to the third embodiment is provided with a plurality of heat radiation fins 40 on both sides of the end member 23, so that the surface area of the end member 23 is further expanded, and the heat is transmitted from the stator unit 21A.
  • the heat dissipation effect of thermal energy can be further enhanced.
  • FIG. 10 is a longitudinal sectional view showing a modification of the configuration of the motor 1 according to the third embodiment.
  • the radiation fins 40 are provided only on the surface of the end member 23 facing the connecting member 14 .
  • the surface of the end member 23 facing the stator core 211 is in contact with the end surface of the stator core 211 . That is, in this modified example, the contact surface of the end member 23 with the stator unit 21A is made plate-shaped instead of fin-shaped to increase the contact area.
  • the heat transfer from the stator unit 21A to the end member 23 can be further improved, and the fixation of the plurality of stator units 21 in the axial direction can be made stronger. Therefore, the contact surface of the end member 23 with the stator unit 21A may be plate-shaped instead of fin-shaped to increase the contact area.
  • FIG. 11 is a longitudinal sectional view showing an example of the configuration of the motor 1 according to the fourth embodiment.
  • the end of the stator unit 21 (stator unit 21A) farthest from the fixing member 30 in the axial direction is A plurality of radiating fins 40 arranged concentrically are provided in the portion.
  • the motor 1 according to the fourth embodiment can enhance the heat dissipation effect of the stator unit 21A, like the motor 1 according to the first embodiment.
  • the motor 1 has a plurality of second heat radiating fins 44 concentrically arranged on the inner surface of the connecting member 14 (the surface facing the plurality of heat radiating fins 40).
  • each of the plurality of second heat radiation fins 44 has an annular shape centered on the rotation axis AX when viewed in the axial direction, but has a different radius.
  • FIG. 11 shows that as shown in FIG. 11
  • the plurality of heat radiation fins 40 and the plurality of second heat radiation fins 44 are arranged so as to overlap alternately without interfering with each other.
  • the end member 23 is in contact with a portion of the end surface of the stator core 211 (a portion of the inner peripheral surface in the radial direction).
  • the plurality of heat radiation fins 40 and the plurality of second heat radiation fins 44 are provided radially outside the outer peripheral surface of the end member 23 so as not to come into contact with the end member 23. It is
  • the motor 1 according to the fourth embodiment includes a plurality of second heat radiation fins 44 on the inner surface of the connecting member 14 to increase the surface area of the inner surface of the connecting member 14 so that the windings 212 of the stator unit 21A The generated thermal energy can be easily transmitted to the connecting member 14 and can be easily dissipated by the connecting member 14 .
  • FIG. 12 is a longitudinal sectional view showing an example of the configuration of the motor 1 according to the fifth embodiment.
  • the end of the stator unit 21 (stator unit 21A) farthest from the fixing member 30 in the axial direction is A plurality of radiating fins 40 arranged concentrically are provided in the portion.
  • the motor 1 according to the fifth embodiment can enhance the heat dissipation effect of the stator unit 21A, like the motor 1 according to the first embodiment.
  • the end member 23 is in contact with a portion of the end surface of the stator core 211 (a portion of the inner peripheral surface side in the radial direction).
  • the plurality of radiation fins 40 are provided radially outside the outer peripheral surface of the end member 23 so as not to contact the end member 23 .
  • the motor 1 according to the fifth embodiment is provided with a fan 46 (an example of a "second fan") on the surface of the connecting member 14 facing the plurality of heat radiating fins 40.
  • the fan 46 rotates about the rotation axis AX together with the connecting member 14, thereby generating an airflow rotating about the rotation axis AX in the space between the radiation fins 40 and the stator unit 21A.
  • the motor 1 according to the fifth embodiment can increase the flow velocity of the air around the heat radiating fins 40 , thereby increasing the heat transfer rate from the heat radiating fins 40 to the air and increasing the cooling effect of the heat radiating fins 40 . can increase
  • FIG. 13 is a diagram showing an application example of the motor 1 according to this embodiment to the blower device 100. As shown in FIG. 13
  • the blower shown in FIG. 13 can be used, for example, in air conditioners, refrigerators, and the like.
  • the blower device 100 includes a motor 1 according to this embodiment and a fan 48 (impeller). Note that any one of the motors 1 described in the first to fifth embodiments can be used for the blower device 100.
  • FIG. 13 shows that any one of the motors 1 described in the first to fifth embodiments can be used for the blower device 100.
  • the motor 1 has the fan 48 attached to the rotor 10 in the blower device 100, so that the fan 48 is rotated integrally with the rotor 10, and the fan 48 blows air. It can be performed.
  • the fan 48 has the rotor 10 attached to one end side in the axial direction, and an intake port 48A is provided to the other end side in the axial direction. Further, the fan 48 is provided with a plurality of exhaust ports 48B along the circumferential direction of the outer peripheral surface.
  • the fan 48 is driven by the motor 1 to rotate, so that the gas sucked from the intake port 48A can be blown outward in the radial direction of the fan 48 from the exhaust port 48B, as indicated by the arrow in FIG. can.
  • the motor 1 according to the present embodiment can be used as the motor 1 for rotationally driving the fan 48 in the blower device 100 to enhance the heat dissipation effect of the motor 1 .
  • the tip of the motor 1 is covered with the fan 48, so the wind (the wind indicated by the arrow in the figure) generated by the rotation of the fan 48 flows on the rotor surface.
  • the heat transfer coefficient from the stator 20 to the outside air is improved, and the heat radiation effect can be further enhanced.
  • the fluid that exchanges heat with the heat radiating fins 40 may be air or a refrigerant.
  • FIG. 14 is a diagram showing an example of the shape and arrangement of the heat radiation fins 40 included in the motor 1 according to this embodiment.
  • the radiation fins 40 may have a plurality of plate-like members or a plurality of pin-like members concentrically arranged.
  • the motor 1 according to the present embodiment has a plurality of plate-like members or a plurality of pin-like members in which the heat radiating fins 40 are arranged concentrically. It is possible to suppress ventilation resistance.
  • the heat radiation fins 40 may have a plurality of plate-like members or a plurality of pin-like members arranged radially.
  • the motor 1 according to the present embodiment has a plurality of plate-like members or a plurality of pin-like members in which the heat dissipating fins 40 are arranged radially. can increase
  • the shape, arrangement, and number of the radiation fins 40 are not limited to those illustrated in this embodiment and FIG.
  • FIG. 15 is a vertical cross-sectional view showing an example of the configuration of a motor 300 according to another embodiment.
  • a motor 300 shown in FIG. 15 is a so-called inner rotor type claw pole motor.
  • Motor 300 has housing 301 , rotor 310 and stator 320 .
  • the motor 300 has a rotor 310 (a rotor core 311, a permanent magnet 312, and a rotating shaft member 313) inside a housing 301, and a stator 320 (a plurality of stacked stator units 321) having a cylindrical shape. It differs from the motor 1, which is an outer rotor type claw pole motor, in that it rotates inside.
  • the housing 301 has a cylindrical shape with both ends in the axial direction closed.
  • a rotor 310 and a stator 320 are arranged inside the housing 301 .
  • a rotating shaft member 313 of the rotor 310 is provided through the center of the housing 301 . Both ends of the rotating shaft member 313 are rotatably supported by a pair of bearings 303 and 304 provided at both ends of the housing 301 in the axial direction.
  • the rotor 310 is arranged inside the stator 320 in the radial direction inside the housing 301 .
  • Rotor 310 has rotor core 311 , permanent magnets 312 , and rotating shaft member 313 .
  • Rotor core 311 has a cylindrical shape.
  • a rotary shaft member 313 is arranged in the cylinder of the rotor core 311 .
  • Rotor core 311 rotates together with rotary shaft member 313 .
  • the plurality of permanent magnets 312 are arranged side by side at equal intervals in the circumferential direction on the outer peripheral surface of the rotor core 311 .
  • the permanent magnet 312 faces the inner peripheral surface (claw magnetic pole 322A) of the stator 320 (the plurality of stator units 321).
  • the stator 320 is arranged outside the rotor 310 in the radial direction inside the housing 301 .
  • Stator 320 has a generally cylindrical shape overall.
  • the stator 320 has a plurality of claw pole type stator units 321 stacked in the axial direction.
  • the stator 320 has three claw pole type stator units 321A, 321B, 321C that are axially stacked.
  • Each stator unit 321 has a pair of stator cores 322 and windings 323 like the stator unit 21 included in the motor 1 .
  • the plurality of claw poles 322A are arranged in the circumferential direction on the inner peripheral surface of the stator core 322 so as to face the permanent magnets 312 provided in the rotor 310. placed at intervals.
  • a motor 300 according to another embodiment includes a plurality of heat radiation fins 340 on one axial end face (specifically, the end face of the stator unit 321A). Also, the motor 300 according to another embodiment includes a plurality of radiation fins 340 on the other axial end surface (specifically, the end surface of the stator unit 321C). In the example shown in FIG. 15, a motor 300 according to another embodiment includes seven heat radiation fins 340 concentrically arranged on each of one end surface and the other end surface in the axial direction.
  • the motor 300 is an inner rotor type claw pole motor, it is located in a space enclosed by the housing 301, so the heat energy generated by the windings 323 of each stator unit 321 is It becomes difficult to dissipate heat.
  • each of the stator units 321A and 321C is provided with a plurality of radiation fins 340, thereby increasing the surface area of each of the stator units 321A and 321C. Therefore, the heat dissipation effect of each of the stator units 321A and 321C can be enhanced.
  • the motor 300 is an inner rotor type claw pole motor, it is not necessary to provide a fixing member on one end side in the axial direction.
  • a plurality of radiating fins 340 can be installed on both end faces in the axial direction of 321 .
  • the motor 300 since the motor 300 according to another embodiment is an inner rotor type claw pole motor, it can be used not only in a blower device but also in a compressor provided in a refrigeration device or the like.
  • only one end face in the axial direction may be provided with a plurality of heat radiating fins 340.
  • only the other end face in the axial direction (specifically, the end face of the stator unit 321C) may be provided with a plurality of radiation fins 340 .
  • the motor 1 includes a rotor 10 configured to be rotatable around the rotation axis AX, a winding 212 annularly wound around the rotation axis AX, and A stator 20 having a claw pole type stator unit 21 including a stator core 211 (iron core) provided to Radiating fins 40 are provided in the part.
  • the motor 1 according to the present embodiment does not have fins on the outer peripheral surface of the stator unit 21, and does not expand the air gap.
  • the heat generated in the stator unit 21 can be dissipated from the radiating fins 40 . Therefore, according to the motor 1 of this embodiment, the heat radiation effect of the stator unit 21 can be improved without enlarging the air gap in the magnetic circuit.
  • the motor 1 may include the fixed member 30 that supports the stator 20 , and the heat radiation fins 40 may be provided at the farthest end of the stator unit 21 from the fixed member 30 .
  • the heat radiation fins 40 are configured such that the temperature of the stator unit 21 farthest from the fixing member 30 tends to be the highest, and the heat dissipation effect of the stator unit 21 farthest from the fixing member 30 is reduced. By increasing the temperature deviation among the plurality of stator units 21 can be suppressed.
  • the radiation fins 40 may restrict the movement of the stator 20 in the axial direction of the rotation axis AX by coming into contact with the stator unit 21 .
  • the motor 1 according to the present embodiment has both the effect of improving the heat radiation performance of the stator unit 21 and the effect of restricting the movement of the stator 20 in the axial direction of the rotation axis AX by the heat radiation fins 40. can be played.
  • the stator 20 may have two or more stator units 21 stacked in the axial direction of the rotation axis AX.
  • the heat radiation fins 40 are arranged in the outermost stator unit 21 in the axial direction of the rotation axis AX in a configuration in which uneven temperature is likely to occur among the plurality of stator units 21 .
  • unevenness in temperature among the plurality of stator units 21 can be suppressed.
  • the motor 1 may have a flow path B through which fluid can be introduced from the outside of the space in which the stator 20 is arranged.
  • the motor 1 according to the present embodiment can easily dissipate heat energy generated by the stator unit 21 to the outside through the flow path B.
  • the rotor 10 may be configured to rotate outside the stator 20 .
  • the heat radiation fins 40 provided on the stator unit 21 allow the stator unit The heat dissipation effect of 21 can be enhanced.
  • the motor 1 may include a fan 48 attached to the outer surface of the rotor 10 .
  • the motor 1 has a configuration in which the temperature of the stator unit 21 provided inside the rotor 10 is likely to rise because the rotor 10 is covered with the fan 48.
  • the heat dissipation fins 40 provided on the stator unit 21 can enhance the heat dissipation effect of the stator unit 21 .
  • the motor 1 according to the present embodiment may include second heat radiation fins 44 provided on the inner surface of the rotor 10 facing the heat radiation fins 40 .
  • the motor 1 according to the present embodiment is provided with the second heat radiation fins 44 so that the surface area of the inner surface of the rotor 10 is increased, and the heat energy generated by the stator unit 21 is transferred to the rotor 10.
  • the heat can be easily transmitted and the heat can be easily dissipated by the rotor 10 .
  • the heat radiation fins 40 may be formed on the stator core 211 of the stator unit 21.
  • the motor 1 according to the present embodiment does not require the work of attaching the heat radiation fins 40 to the stator core 211, for example. Further, the motor 1 according to the present embodiment can improve heat transfer from the stator core 211 to the heat radiation fins 40, for example.
  • the heat radiation fins 40 may be separate parts from the stator core 211 of the stator unit 21 .
  • the material of the radiation fins 40 can be made different from the material of the stator core 211 . Further, in the motor 1 according to the present embodiment, for example, the heat radiation fins 40 can be replaced.
  • the blower device 100 includes a fan 48 (impeller) that blows air by rotating, and the motor 1 according to this embodiment that drives the fan 48 to rotate.
  • the blower device 100 can improve the heat radiation effect of the motor 1 while suppressing deterioration in the performance of the motor 1 that drives the fan 48 .
  • the motor 1 according to the present embodiment may be used to rotationally drive the compression mechanism in a compression device having a compression mechanism that compresses fluid by rotating.
  • the motor 1 according to the present embodiment can improve the heat dissipation effect of the motor 1 while suppressing deterioration in the performance of the motor 1 that drives the compression mechanism to rotate in the compression device.
  • the motor 1 is a refrigerating apparatus including a blower having an impeller that blows air by rotating and a compressor having a compression mechanism that compresses fluid by rotating. Alternatively, it may be used to rotationally drive the compression mechanism.
  • the motor 1 according to the present embodiment can enhance the heat radiation effect of the motor 1 while suppressing performance deterioration of the motor 1 that drives the impeller or the compression mechanism to rotate in the refrigeration system.

Abstract

A motor 1 according to an embodiment of the present disclosure comprises: a rotor 10 configured to rotate freely about the axis of rotation; and a stator 20 including a claw-pole stator unit 21 that includes a winding 212 that is circumferentially wound around the axis of rotation and a stator core 211 provided so as to surround the winding 212, wherein heatsink fins 40 are provided on an outermost end of the stator unit 21 in the axial direction of the axis of rotation.

Description

モータ、送風装置、圧縮装置、および冷凍装置Motors, Blowers, Compressors, and Refrigerators
 本開示は、モータ、送風装置、圧縮装置、および冷凍装置に関する。 The present disclosure relates to motors, blowers, compressors, and refrigerators.
 例えば、ステータの外周面にフィンを備えたクローポール型モータが知られている(特許文献1参照)。 For example, a claw pole type motor having fins on the outer peripheral surface of the stator is known (see Patent Document 1).
特許第4041443号公報Japanese Patent No. 4041443
 しかしながら、アウターロータ型のクローポール型モータにおいて、固定子ユニットの外周面に放熱のためのフィンを設けた場合、固定子ユニットの外周面と永久磁石との間のギャップが拡大し、モータ性能が低下する上、モータ外径が増加してしまう。 However, in an outer rotor type claw pole motor, if heat radiation fins are provided on the outer peripheral surface of the stator unit, the gap between the outer peripheral surface of the stator unit and the permanent magnets will increase, and the motor performance will deteriorate. In addition to this, the outer diameter of the motor increases.
 また、インナーロータ型のクローポール型モータにおいて、固定子ユニットの外周面に放熱のためのフィンを設けた場合、モータケースと固定子ユニットとの間にフィンを有するものとなるため、モータケースと固定子ユニットとの締結が困難になる。また、モータ外径も増加してしまう。 In the case of an inner rotor type claw pole type motor, if heat radiation fins are provided on the outer peripheral surface of the stator unit, the fins are provided between the motor case and the stator unit. Fastening with the stator unit becomes difficult. In addition, the outer diameter of the motor also increases.
 本開示は、クローポール型モータにおいて、固定子ユニットの放熱効果を向上させることが可能な技術を提供することを目的とする。 An object of the present disclosure is to provide a technology capable of improving the heat dissipation effect of a stator unit in a claw pole motor.
 本開示に係る一実施形態では、
 回転軸心回りに回転自在に構成された回転子と、
 前記回転軸心回りに環状に巻回される巻線と、前記巻線の周囲を包囲するように設けられる鉄心とを含む、クローポール型の固定子ユニットを有する固定子と
 を備え、
 前記回転軸心の軸方向における最も外側の前記固定子ユニットの端部に、放熱フィンを有する
 モータが提供される。
In one embodiment of the present disclosure,
a rotor configured to be rotatable around a rotation axis;
a stator having a claw pole type stator unit including a winding wound annularly around the rotation axis and an iron core provided to surround the winding,
A motor is provided which has heat radiating fins at the outermost end of the stator unit in the axial direction of the rotation axis.
 本実施形態によれば、モータ外径を増加させず、固定子ユニットの放熱効果を向上させることができる。 According to this embodiment, the heat dissipation effect of the stator unit can be improved without increasing the outer diameter of the motor.
 また、上述の実施形態において、
 前記固定子を支持する固定部材を備え、
 前記放熱フィンは、
 前記固定部材から最も遠い前記固定子ユニットの端部に設けられていてもよい。
Also, in the above-described embodiment,
A fixing member that supports the stator,
The heat radiation fins are
It may be provided at the end of the stator unit farthest from the fixing member.
 また、上述の実施形態において、
 前記放熱フィンは、前記固定子ユニットに当接することにより、前記回転軸の軸方向への前記固定子の移動を規制してもよい。
Also, in the above-described embodiment,
The radiation fins may restrict movement of the stator in the axial direction of the rotating shaft by contacting the stator unit.
 また、上述の実施形態において、
 前記固定子は、前記回転軸の軸方向に積層された2以上の前記固定子ユニットを有してもよい。
Also, in the above-described embodiment,
The stator may have two or more stator units stacked in the axial direction of the rotating shaft.
 また、上述の実施形態において、
 前記固定子が配置される空間に当該空間の外部から流体を導入可能な流路を有してもよい。
Also, in the above-described embodiment,
The space in which the stator is arranged may have a flow path through which a fluid can be introduced from the outside of the space.
 また、上述の実施形態において、
 前記回転子は、
 前記固定子の外側で回転するよう構成されてもよい。
Also, in the above-described embodiment,
The rotor is
It may be configured to rotate outside the stator.
 また、上述の実施形態において、
 前記回転子の外面に取り付けられたファンを備えてもよい。
Also, in the above-described embodiment,
A fan may be provided attached to the outer surface of the rotor.
 また、上述の実施形態において、
 前記放熱フィンと対向する前記回転子の内面に設けられた第2の放熱フィンを備えてもよい。
Also, in the above-described embodiment,
A second heat radiation fin may be provided on the inner surface of the rotor facing the heat radiation fin.
 また、上述の実施形態において、
 前記放熱フィンは、
 前記固定子ユニットの鉄心に形成されていてもよい。
Also, in the above-described embodiment,
The heat radiation fins are
It may be formed in the iron core of the stator unit.
 また、上述の実施形態において、
 前記放熱フィンは、
 前記固定子ユニットの鉄心とは別部品であってもよい。
Also, in the above-described embodiment,
The heat radiation fins are
It may be a part separate from the iron core of the stator unit.
 また、上述の実施形態において、
 前記固定子が配置される空間内に設けられ、前記回転子と一体に回転する第2のファンを備えてもよい。
Also, in the above-described embodiment,
A second fan may be provided in the space where the stator is arranged and rotate together with the rotor.
 また、上述の実施形態において、
 前記放熱フィンは、
 同心円状に配列された、複数の板状部材または複数のピン状部材を有してもよい。
Also, in the above-described embodiment,
The heat radiation fins are
It may have a plurality of plate-like members or a plurality of pin-like members arranged concentrically.
 また、上述の実施形態において、
 前記放熱フィンは、
 放射状に配列された、複数の板状部材または複数のピン状部材を有してもよい。
Also, in the above-described embodiment,
The heat radiation fins are
It may have a plurality of plate-shaped members or a plurality of pin-shaped members arranged radially.
本実施形態に係るモータの概要を示す斜視図である。It is a perspective view showing an outline of a motor concerning this embodiment. 本実施形態に係る固定子の構成の一例を示す斜視図である。It is a perspective view showing an example of composition of a stator concerning this embodiment. 本実施形態に係る固定子ユニットの構成の一例を示す分解図である。It is an exploded view showing an example of composition of a stator unit concerning this embodiment. 本実施形態に係るモータの構成の一例を示す縦断面図である。It is a longitudinal section showing an example of composition of a motor concerning this embodiment. 第1実施形態に係るモータの斜視図である。1 is a perspective view of a motor according to a first embodiment; FIG. 第1実施形態に係るモータの上面図である。1 is a top view of a motor according to a first embodiment; FIG. 第1実施形態に係るモータの構成の一例を示す縦断面図である。1 is a vertical cross-sectional view showing an example of a configuration of a motor according to a first embodiment; FIG. 第2実施形態に係るモータの構成の一例を示す縦断面図である。FIG. 7 is a longitudinal sectional view showing an example of the configuration of a motor according to a second embodiment; 第3実施形態に係るモータの構成の一例を示す縦断面図である。FIG. 11 is a vertical cross-sectional view showing an example of the configuration of a motor according to a third embodiment; 第3実施形態に係るモータ1の構成の一変形例を示す縦断面図である。FIG. 11 is a vertical cross-sectional view showing a modified example of the configuration of the motor 1 according to the third embodiment; 第4実施形態に係るモータの構成の一例を示す縦断面図である。FIG. 11 is a vertical cross-sectional view showing an example of the configuration of a motor according to a fourth embodiment; 第5実施形態に係るモータの構成の一例を示す縦断面図である。FIG. 11 is a vertical cross-sectional view showing an example of the configuration of a motor according to a fifth embodiment; 本実施形態に係るモータの送風装置への適用例を示す図である。It is a figure which shows the example of application to the air blower of the motor which concerns on this embodiment. 本実施形態に係るモータが備える放熱フィンの形状および配置の一例を示す図である。It is a figure which shows an example of the shape and arrangement|positioning of the heat radiating fin with which the motor which concerns on this embodiment is provided. 他の実施形態に係るモータの構成の一例を示す縦断面図である。FIG. 10 is a vertical cross-sectional view showing an example of the configuration of a motor according to another embodiment;
 以下、図面を参照して実施形態について説明する。 Embodiments will be described below with reference to the drawings.
 〔モータ1の基本構成〕
 まず、図1~図4を参照して、本実施形態に係るモータ1の基本構成について説明する。
[Basic Configuration of Motor 1]
First, the basic configuration of a motor 1 according to this embodiment will be described with reference to FIGS. 1 to 4. FIG.
 図1は、本実施形態に係るモータ1の概要を示す斜視図である。図1では、回転子10が備える連結部材14の図示が省略されている。図2は、本実施形態に係る固定子20の構成の一例を示す斜視図である。図2では、回転子10(回転子鉄心11、永久磁石12、回転軸部材13、および連結部材14)の図示が省略されている。図3は、本実施形態に係る固定子ユニット21の構成の一例を示す分解図である。図4は、本実施形態に係るモータ1の構成の一例を示す縦断面図である。 FIG. 1 is a perspective view showing an overview of the motor 1 according to this embodiment. In FIG. 1, illustration of the connecting member 14 provided in the rotor 10 is omitted. FIG. 2 is a perspective view showing an example of the configuration of the stator 20 according to this embodiment. In FIG. 2, illustration of the rotor 10 (rotor core 11, permanent magnet 12, rotating shaft member 13, and connecting member 14) is omitted. FIG. 3 is an exploded view showing an example of the configuration of the stator unit 21 according to this embodiment. FIG. 4 is a longitudinal sectional view showing an example of the configuration of the motor 1 according to this embodiment.
 図1~図4に示すモータ1は、いわゆるアウターロータ型のクローポールモータである。モータ1は、複数相(本例では、3相)の電機子電流で駆動される。モータ1は、送風装置、冷凍装置等に用いられる。 The motor 1 shown in FIGS. 1 to 4 is a so-called outer rotor type claw pole motor. The motor 1 is driven by a multi-phase (three-phase in this example) armature current. A motor 1 is used for a blower, a refrigerator, and the like.
 図1~図4に示すように、モータ1は、回転子10、固定子20、および固定部材30を備える。 As shown in FIGS. 1 to 4, the motor 1 includes a rotor 10, a stator 20 and a fixed member 30.
 図1~図4に示すように、回転子10は、固定子20に対して、モータ1の径方向(以下、単に「径方向」)の外側に配置され、回転軸心AXまわりに回転可能に構成される。回転子10は、回転子鉄心11、複数(本例では、20個)の永久磁石12、および回転軸部材13を有する。なお、回転子10は、「ロータ」と呼ばれることもある。 As shown in FIGS. 1 to 4, the rotor 10 is arranged outside the stator 20 in the radial direction of the motor 1 (hereinafter simply referred to as "radial direction"), and is rotatable around the rotation axis AX. configured to The rotor 10 has a rotor core 11 , a plurality of (20 in this example) permanent magnets 12 , and a rotating shaft member 13 . Note that the rotor 10 may also be called a "rotor".
 回転子鉄心11は、例えば、略円筒形状を有し、モータ1の回転軸心AXと円筒形状の軸心とが略一致するように配置される。また、回転子鉄心11は、モータ1の軸方向(以下、単に「軸方向」)において、固定子20と略同等の長さを有する。回転子鉄心11は、例えば、鋼板、鋳鉄、圧粉磁心等により形成される。図1に示す例では、回転子鉄心11は、軸方向に積層される複数(本例では、3つ)の回転子鉄心11A~11Cで構成されている。但し、回転子鉄心11は、軸方向において、一の部材で構成されてもよい。なお、回転子鉄心11は、「ロータコア」と呼ばれることもある。 The rotor core 11 has, for example, a substantially cylindrical shape, and is arranged so that the rotation axis AX of the motor 1 and the axis of the cylindrical shape substantially coincide. Further, the rotor core 11 has substantially the same length as the stator 20 in the axial direction of the motor 1 (hereinafter simply referred to as "axial direction"). The rotor core 11 is made of, for example, steel plate, cast iron, dust core, or the like. In the example shown in FIG. 1, the rotor core 11 is composed of a plurality (three in this example) of rotor cores 11A to 11C laminated in the axial direction. However, the rotor core 11 may be configured by one member in the axial direction. Note that the rotor core 11 is sometimes called a "rotor core".
 複数の永久磁石12は、回転子鉄心11の内周面において、周方向に等間隔で複数(本例では、20個)並べられる。また、複数の永久磁石12は、それぞれ、回転子鉄心11の軸方向の略一端から略他端までの間に存在するように形成されている。永久磁石12は、例えば、ネオジム焼結磁石またはフェライト磁石である。 A plurality of permanent magnets 12 (20 magnets in this example) are arranged at equal intervals in the circumferential direction on the inner peripheral surface of the rotor core 11 . Moreover, the plurality of permanent magnets 12 are formed so as to exist between substantially one end and substantially the other end in the axial direction of the rotor core 11 . Permanent magnets 12 are, for example, neodymium sintered magnets or ferrite magnets.
 複数の永久磁石12は、それぞれ、径方向の両端に異なる磁極が着磁されている。また、複数の永久磁石12のうちの周方向で隣接する二つの永久磁石12は、固定子20に面する径方向の内側に互いに異なる磁極が着磁されている。そのため、固定子20の径方向の外側には、周方向で、径方向の内側にN極が着磁された永久磁石12と、径方向の内側にS極が着磁された永久磁石12とが交互に配置される。 Each of the plurality of permanent magnets 12 is magnetized with different magnetic poles at both ends in the radial direction. Two permanent magnets 12 adjacent in the circumferential direction among the plurality of permanent magnets 12 are magnetized with different magnetic poles on the inner side in the radial direction facing the stator 20 . Therefore, on the radially outer side of the stator 20, in the circumferential direction, the permanent magnets 12 magnetized with N poles radially inward and the permanent magnets 12 magnetized with S poles radially inwardly are arranged. are arranged alternately.
 複数の永久磁石12は、それぞれ、軸方向において、一の磁石部材で構成されていてもよいし、軸方向に分割される複数(例えば、積層される回転子鉄心11の部材の数に対応する3つ)の磁石部材で構成されていてもよい。この場合、軸方向に分割される永久磁石12を構成する複数の磁石部材は、固定子20に面する径方向の内側に全て同じ磁極が着磁される。 Each of the plurality of permanent magnets 12 may be composed of one magnet member in the axial direction, or a plurality of magnet members divided in the axial direction (for example, the number corresponding to the number of laminated rotor core 11 members). 3) magnet members. In this case, the plurality of magnet members constituting the axially divided permanent magnets 12 are all magnetized with the same magnetic poles on the inner side in the radial direction facing the stator 20 .
 尚、周方向に配置される複数の永久磁石12は、例えば、周方向で異なる磁極が交互に着磁される円環状のリング磁石やプラスチック磁石等、周方向において、一の部材で構成される永久磁石に置換されてもよい。この場合、周方向において、一の部材で構成される永久磁石は、軸方向においても、一の部材で構成され、全体として、一の部材で構成されてもよい。また、周方向において、一の部材で構成される永久磁石は、複数の永久磁石12の場合と同様、軸方向において、複数の部材に分割されていてもよい。また、周方向において、一の部材で構成されるプラスチック磁石が採用される場合、回転子鉄心11は、省略されてもよい。 The plurality of permanent magnets 12 arranged in the circumferential direction are composed of a single member in the circumferential direction, such as an annular ring magnet or a plastic magnet in which magnetic poles different in the circumferential direction are alternately magnetized. Permanent magnets may be substituted. In this case, the permanent magnet, which is composed of one member in the circumferential direction, may also be composed of one member in the axial direction, and may be composed of one member as a whole. Also, the permanent magnet formed of one member in the circumferential direction may be divided into a plurality of members in the axial direction, as in the case of the plurality of permanent magnets 12 . Moreover, in the circumferential direction, when a plastic magnet composed of one member is employed, the rotor core 11 may be omitted.
 回転軸部材13は、例えば、略円柱形状を有し、モータ1の回転軸心AXと円柱形状の軸心とが略一致するように配置される。回転軸部材13は、例えば、挿通部材24の軸方向の両端部に設けられるベアリング25,26(図4参照)によって回転可能に支持される。挿通部材24は、固定部材30に固定される。これにより、回転軸部材13は、固定部材30に対して回転軸心AX回りで回転することができる。回転軸部材13は、例えば、軸方向におけるモータ1の固定部材30側の端部とは反対側の端部(以下、便宜的に「モータ1の先端部」)において、連結部材14(図4参照)によって、回転子鉄心11と連結される。 The rotating shaft member 13 has, for example, a substantially cylindrical shape, and is arranged so that the rotating shaft center AX of the motor 1 and the shaft center of the cylindrical shape substantially coincide. The rotary shaft member 13 is rotatably supported by, for example, bearings 25 and 26 (see FIG. 4) provided at both ends of the insertion member 24 in the axial direction. The insertion member 24 is fixed to the fixing member 30 . Thereby, the rotating shaft member 13 can rotate about the rotation axis AX with respect to the fixed member 30 . For example, the rotating shaft member 13 has a connecting member 14 (Fig. 4 ) is connected to the rotor core 11 .
 連結部材14は、例えば、回転子鉄心11の略円筒形状の開放端を閉塞する形の略円板形状を有する。これにより、回転子鉄心11及び回転子鉄心11の内周面に固定される複数の永久磁石12は、回転軸部材13の回転に合わせて、固定部材30に対してモータ1の回転軸心AXまわりに回転することができる。 The connecting member 14 has, for example, a substantially disc shape that closes the substantially cylindrical open end of the rotor core 11 . As a result, the rotor core 11 and the plurality of permanent magnets 12 fixed to the inner peripheral surface of the rotor core 11 move along the rotation axis AX of the motor 1 with respect to the fixed member 30 in accordance with the rotation of the rotary shaft member 13 . can rotate around.
 図1~図4に示すように、固定子20は、回転子10が備える回転子鉄心11及び永久磁石12の径方向の内側に配置される。固定子20は、複数(本例では、3つ)のクローポール型の固定子ユニット21、複数(本例では、2つ)の相間部材22、端部部材23、および挿通部材24を有する。なお、固定子20は、「ステータ」と呼ばれることもある。 As shown in FIGS. 1 to 4, the stator 20 is arranged radially inside the rotor core 11 and the permanent magnets 12 of the rotor 10 . The stator 20 has a plurality (three in this example) of claw pole type stator units 21 , a plurality (two in this example) of interphase members 22 , end members 23 and insertion members 24 . Note that the stator 20 is sometimes called a "stator".
 図3に示すように、固定子ユニット21は、一対の固定子鉄心211および巻線212を有する。 As shown in FIG. 3 , the stator unit 21 has a pair of stator cores 211 and windings 212 .
 一対の固定子鉄心211は、巻線212の周囲を取り囲むように設けられる。固定子鉄心211は、例えば、圧粉磁心で形成される。固定子鉄心211は、ヨーク部211A、複数の爪磁極211B、ヨーク部211C、および挿通孔211Dを有する。なお、一対の固定子鉄心211は、「ステータコア」と呼ばれることもある。 A pair of stator cores 211 are provided so as to surround the windings 212 . The stator core 211 is made of, for example, a dust core. Stator core 211 has yoke portion 211A, a plurality of claw poles 211B, yoke portion 211C, and insertion hole 211D. Note that the pair of stator cores 211 may also be called a "stator core".
 ヨーク部211Aは、軸方向視で円環形状を有すると共に、軸方向に所定の厚みを有する。 The yoke portion 211A has an annular shape when viewed in the axial direction and has a predetermined thickness in the axial direction.
 複数の爪磁極211Bは、ヨーク部211Aの外周面において、周方向に等間隔で配置され、それぞれは、ヨーク部211Aの外周面から径方向の外側に向かって突出する。爪磁極211Bは、爪磁極部211B1および爪磁極部211B2を有する。 The plurality of claw magnetic poles 211B are arranged at equal intervals in the circumferential direction on the outer peripheral surface of the yoke portion 211A, and each project radially outward from the outer peripheral surface of the yoke portion 211A. The claw magnetic pole 211B has a claw magnetic pole portion 211B1 and a claw magnetic pole portion 211B2.
 爪磁極部211B1は、所定の幅を有し、ヨーク部211Aの外周面から所定の長さだけ延び出す形で突出する。 The claw magnetic pole portion 211B1 has a predetermined width and protrudes from the outer peripheral surface of the yoke portion 211A by a predetermined length.
 爪磁極部211B2は、爪磁極部211B1の先端から一対の固定子鉄心211の他方に向かって軸方向に所定の長さだけ延び出す形で突出する。例えば、爪磁極部211B2は、図3に示すように、爪磁極部211B1からの距離に依らず幅が一定であってよい。また、例えば、爪磁極部211B2は、爪磁極部211B1から軸方向で離れるにつれて幅が狭くなるテーパ形状を有してもよい。モータ1は、爪磁極部211B2を有することにより、巻線212の電機子電流により磁化される爪磁極211Bの磁極面と回転子10との対向面積を相対的に広く確保することができる。そのため、モータ1は、当該モータ1のトルクを相対的に増加させることができるため、当該モータ1の出力を向上させることができる。なお、爪磁極部211B2は、省略されてもよい。 The claw magnetic pole portion 211B2 protrudes from the tip of the claw magnetic pole portion 211B1 toward the other of the pair of stator cores 211 in the axial direction by a predetermined length. For example, as shown in FIG. 3, the claw magnetic pole portion 211B2 may have a constant width regardless of the distance from the claw magnetic pole portion 211B1. Further, for example, the claw magnetic pole portion 211B2 may have a tapered shape in which the width becomes narrower as the distance from the claw magnetic pole portion 211B1 increases in the axial direction. Since the motor 1 has the claw magnetic pole portion 211B2, it is possible to secure a relatively large facing area between the magnetic pole surface of the claw magnetic pole 211B magnetized by the armature current of the winding 212 and the rotor . Therefore, since the motor 1 can relatively increase the torque of the motor 1, the output of the motor 1 can be improved. Note that the claw magnetic pole portion 211B2 may be omitted.
 ヨーク部211Cは、ヨーク部211Aの内周面付近の部分が一対の固定子鉄心211の他方に向かって所定量だけ突出する形で構成され、例えば、軸方向視でヨーク部211Aより外径が小さい円環形状を有する。これにより、一対の固定子鉄心211は、互いのヨーク部211Cで当接し、一対の固定子鉄心211に対応する一対のヨーク部211Aの間に巻線212を収容する空間が生成される。 The yoke portion 211C is configured such that a portion near the inner peripheral surface of the yoke portion 211A protrudes toward the other of the pair of stator cores 211 by a predetermined amount. It has a small toric shape. As a result, the pair of stator cores 211 are in contact with each other at the yoke portions 211C, and a space for accommodating the winding 212 is created between the pair of yoke portions 211A corresponding to the pair of stator cores 211 .
 挿通孔211Dには、挿通部材24が挿通される。挿通孔211Dは、ヨーク部211A及びヨーク部211Cの内周面によって実現される。 The insertion member 24 is inserted through the insertion hole 211D. The insertion hole 211D is implemented by the inner peripheral surfaces of the yoke portion 211A and the yoke portion 211C.
 巻線212は、軸方向視で円環状に巻き回される。巻線212は、その一端が外部端子に電気的に繋がっており、その他端が中性点に電気的に繋がっている。巻線212は、軸方向において、一対の固定子鉄心211(ヨーク部211A)の間に配置される。また、巻線212は、内周部が一対の固定子鉄心211のヨーク部211Cよりも径方向で外側になるように巻き回されている。なお、巻線212は、「コイル」と呼ばれることもある。 The winding 212 is wound in an annular shape when viewed in the axial direction. The winding 212 has one end electrically connected to an external terminal and the other end electrically connected to a neutral point. The windings 212 are arranged between the pair of stator cores 211 (yoke portions 211A) in the axial direction. In addition, the winding 212 is wound so that the inner peripheral portion is radially outside the yoke portions 211C of the pair of stator cores 211 . Note that the winding 212 is sometimes called a "coil".
 巻線212と固定子鉄心211との間を電気的に絶縁するために、絶縁部(図示省略)が配置される。絶縁部は、例えば、固定子鉄心211と巻線212との間に配置される、絶縁紙、樹脂成形されたインシュレータ、シリコンゴム、固定子鉄心211或いは巻線212に対する樹脂モールド等である。また、絶縁部は、例えば、巻線212の導線の表面に設けられる樹脂の絶縁皮膜であってもよい。 An insulating portion (not shown) is arranged to electrically insulate between the windings 212 and the stator core 211 . The insulating part is, for example, an insulating paper, a resin-molded insulator, silicone rubber, or a resin mold for the stator core 211 or the windings 212 , which is arranged between the stator core 211 and the windings 212 . Also, the insulating portion may be, for example, a resin insulating film provided on the surface of the conductor wire of the winding 212 .
 図2に示すように、一対の固定子鉄心211は、一方の固定子鉄心211の爪磁極211Bと他方の固定子鉄心211の爪磁極211Bとが周方向で交互に配置されるように組み合わせられる。また、円環状の巻線212に電機子電流が流れると、一対の固定子鉄心211のうちの一方に形成される爪磁極211Bと他方に形成される爪磁極211Bとは、互いに異なる磁極に磁化される。これにより、一対の固定子鉄心211において、一方の固定子鉄心211から突出する一の爪磁極211Bは、周方向で隣接し、他方の固定子鉄心211から突出する他の爪磁極211Bと異なる磁極を有する。そのため、巻線212に流れる電機子電流により、一対の固定子鉄心211の周方向には、N極の爪磁極211B及びS極の爪磁極211Bが交互に配置される。 As shown in FIG. 2, the pair of stator cores 211 are combined so that the claw poles 211B of one stator core 211 and the claw poles 211B of the other stator core 211 are alternately arranged in the circumferential direction. . Further, when an armature current flows through the annular winding 212, the claw magnetic poles 211B formed on one of the pair of stator cores 211 and the claw magnetic poles 211B formed on the other are magnetized to different magnetic poles. be done. As a result, in the pair of stator cores 211, one claw pole 211B projecting from one stator core 211 is adjacent in the circumferential direction and has a different magnetic pole from the other claw pole 211B projecting from the other stator core 211. have Therefore, due to the armature current flowing through the windings 212 , the N pole claw magnetic poles 211 B and the S pole claw magnetic poles 211 B are alternately arranged in the circumferential direction of the pair of stator cores 211 .
 図2および図4に示すように、複数の固定子ユニット21は、軸方向に積層される。複数の固定子ユニット21には、複数相(本例では、3相)分の固定子ユニット21が含まれる。具体的には、複数の固定子ユニット21は、U相に対応する固定子ユニット21Aと、V相に対応する固定子ユニット21Bと、W相に対応する固定子ユニット21Cとを含む。複数の固定子ユニット21は、モータ1の先端部から、U相に対応する固定子ユニット21A、V相に対応する固定子ユニット21B、及びW相に対応する固定子ユニット21Cの順で積層される。固定子ユニット21A~21Cは、互いに、周方向の位置が電気角で120°異なるように配置される。 As shown in FIGS. 2 and 4, the plurality of stator units 21 are stacked in the axial direction. The plurality of stator units 21 includes stator units 21 for a plurality of phases (three phases in this example). Specifically, the plurality of stator units 21 includes a stator unit 21A corresponding to the U phase, a stator unit 21B corresponding to the V phase, and a stator unit 21C corresponding to the W phase. The plurality of stator units 21 are stacked in the order of the U-phase stator unit 21A, the V-phase stator unit 21B, and the W-phase stator unit 21C from the tip of the motor 1. be. The stator units 21A to 21C are arranged such that their circumferential positions differ from each other by an electrical angle of 120°.
 尚、モータ1は、2相の電機子電流で駆動されてもよいし、4相以上の電機子電流で駆動されてもよい。 The motor 1 may be driven by a two-phase armature current, or may be driven by a four-phase or more armature current.
 相間部材22は、軸方向で隣接する異なる相の固定子ユニット21の間に設けられる。相間部材22は、例えば、非磁性体である。これにより、異なる相の二つの固定子ユニット21の間に所定の距離を確保し、異なる相の二つの固定子ユニット21の間での磁束漏れを抑制することができる。相間部材22は、UV相間部材22Aと、VW相間部材22Bとを含む。 The interphase member 22 is provided between the stator units 21 of different phases adjacent in the axial direction. Interphase member 22 is, for example, a non-magnetic material. As a result, a predetermined distance can be secured between the two stator units 21 of different phases, and magnetic flux leakage between the two stator units 21 of different phases can be suppressed. Interphase member 22 includes UV interphase member 22A and VW interphase member 22B.
 UV相間部材22Aは、軸方向で隣接する、U相の固定子ユニット21AとV相の固定子ユニット21Bとの間に設けられる。UV相間部材22Aは、例えば、所定の厚みを有する略円柱形状(略円板形状)を有し、中心部分に挿通部材24が挿通される挿通孔が形成される。以下、VW相間部材22Bについても同様であってよい。 The UV interphase member 22A is provided between the U-phase stator unit 21A and the V-phase stator unit 21B, which are axially adjacent to each other. The UV interphase member 22A has, for example, a substantially cylindrical shape (substantially disk shape) with a predetermined thickness, and an insertion hole through which the insertion member 24 is inserted is formed in the central portion. Hereinafter, the same may be applied to the VW interphase member 22B.
 VW相間部材22Bは、軸方向で隣接する、V相の固定子ユニット21BとW相の固定子ユニット21Cとの間に設けられる。 The VW interphase member 22B is provided between the V-phase stator unit 21B and the W-phase stator unit 21C, which are axially adjacent to each other.
 端部部材23は、積層される複数の固定子ユニット21のモータ1の先端部側の端部に設けられる。具体的には、端部部材23は、軸方向において、固定子ユニット21Aの固定子ユニット21Bに面する側と反対側の端面に接するように設けられる。端部部材23は、例えば、所定の厚みを有する略円柱形状(略円板形状)を有し、中心部分に挿通部材24が挿通される挿通孔が形成される。端部部材23は、例えば、非磁性体で構成することにより、固定子ユニット21A(具体的には、モータ1の先端部側の固定子鉄心211)からの磁束漏れを抑制することができる。また、端部部材23は、固定部材30との間で積層された複数の固定子ユニット21を挟み込む構造により、複数の固定子ユニット21の回転軸AXの軸方向への移動を規制できる。また、端部部材23は、固定子鉄心211の端面の全面に当接してもよく、図4に示すように固定子鉄心211の端面の一部に当接してもよい。 The end member 23 is provided at the end of the plurality of stacked stator units 21 on the tip side of the motor 1 . Specifically, the end member 23 is provided so as to come into contact with the end surface of the stator unit 21A opposite to the side facing the stator unit 21B in the axial direction. The end member 23 has, for example, a substantially cylindrical shape (substantially disk shape) having a predetermined thickness, and an insertion hole through which the insertion member 24 is inserted is formed in the central portion. The end member 23 can suppress magnetic flux leakage from the stator unit 21A (specifically, the stator core 211 on the tip end side of the motor 1) by forming the end member 23 from, for example, a non-magnetic material. In addition, the end member 23 and the fixed member 30 sandwich the plurality of stacked stator units 21 , so that the movement of the plurality of stator units 21 in the axial direction of the rotation axis AX can be restricted. Further, the end member 23 may contact the entire end face of the stator core 211, or may contact a part of the end face of the stator core 211 as shown in FIG.
 挿通部材24は、端部部材23、固定子ユニット21A、UV相間部材22A、固定子ユニット21B、VW相間部材22B、固定子ユニット21Cを挿通した状態で、先端部が固定部材30に固定される。挿通部材24は、例えば、先端部に雄ねじ部を有し、固定部材30の対応する雌ネジ部に締め込まれることにより固定部材30に固定される。 The end portion of the insertion member 24 is fixed to the fixing member 30 while the end member 23, the stator unit 21A, the UV interphase member 22A, the stator unit 21B, the VW interphase member 22B, and the stator unit 21C are inserted. . The inserting member 24 has, for example, a male threaded portion at its distal end, and is fixed to the fixing member 30 by being screwed into a corresponding female threaded portion of the fixing member 30 .
 また、挿通部材24は、例えば、略円筒形状を有し、内周面により実現される孔部に回転軸部材13が回転可能に配置される。軸方向における挿通部材24の両端部には、回転軸部材13を回転可能に支持するベアリング25,26が設けられる。 Also, the insertion member 24 has, for example, a substantially cylindrical shape, and the rotating shaft member 13 is rotatably arranged in a hole realized by the inner peripheral surface. Bearings 25 and 26 that rotatably support the rotary shaft member 13 are provided at both ends of the insertion member 24 in the axial direction.
 また、挿通部材24は、例えば、モータ1の先端部側において、固定子ユニット21の挿通孔211Dの内径よりも相対的に大きい外径を有する頭部を有する。これにより、例えば、挿通部材24が固定部材30にある程度締め込まれることで、頭部から端部部材23に軸方向で固定部材30に向かう方向の力を作用させることができる。そのため、複数の固定子ユニット21(固定子ユニット21A~21C)及び相間部材22(UV相間部材22A、VW相間部材22B)を端部部材23及び固定部材30で挟み込む形で固定部材30に固定することができる。圧粉磁心は、引張応力に対する強度が相対的に低い一方、圧縮応力に対する強度が相対的に高い。よって、圧粉磁心で形成される固定子鉄心211に圧縮応力が作用する形で、固定子ユニット21A~21Cに固定することができる。 Also, the insertion member 24 has, for example, a head portion having an outer diameter relatively larger than the inner diameter of the insertion hole 211D of the stator unit 21 on the tip side of the motor 1 . As a result, for example, by tightening the insertion member 24 to the fixing member 30 to some extent, a force in the axial direction toward the fixing member 30 can be applied from the head portion to the end member 23 . Therefore, a plurality of stator units 21 (stator units 21A to 21C) and interphase members 22 (UV interphase members 22A and VW interphase members 22B) are fixed to the fixing member 30 in such a manner that they are sandwiched between the end member 23 and the fixing member 30. be able to. The dust core has relatively low strength against tensile stress, but relatively high strength against compressive stress. Therefore, the stator core 211 formed of the dust core can be fixed to the stator units 21A to 21C in such a manner that compressive stress acts on it.
 固定部材30は、例えば、軸方向視で回転子10(回転子鉄心11)よりも大きい外径の略円板形状を有し、軸方向に所定の厚みを有する。図4に示すように、固定部材30には、挿通部材24を介して、回転子10が回転可能に支持され、固定子20が固定される。 The fixed member 30 has, for example, a substantially disc shape with an outer diameter larger than that of the rotor 10 (rotor core 11) when viewed in the axial direction, and has a predetermined thickness in the axial direction. As shown in FIG. 4, the fixing member 30 rotatably supports the rotor 10 via the insertion member 24, and the stator 20 is fixed.
 〔第1実施形態〕
 次に、図5~図7を参照して、第1実施形態に係るモータ1に特有の構造について説明する。図5は、第1実施形態に係るモータ1の斜視図である。図6は、第1実施形態に係るモータ1の上面図である。図5および図6では、モータ1が備える回転子10の図示が省略されている。図7は、第1実施形態に係るモータ1の構成の一例を示す縦断面図である。なお、図7~図12では、軸方向における端部の固定子ユニット21のみ図示しており、軸方向における中間の固定子ユニット21の図示は省略している。
[First embodiment]
Next, a structure unique to the motor 1 according to the first embodiment will be described with reference to FIGS. 5 to 7. FIG. FIG. 5 is a perspective view of the motor 1 according to the first embodiment. FIG. 6 is a top view of the motor 1 according to the first embodiment. 5 and 6, illustration of the rotor 10 included in the motor 1 is omitted. FIG. 7 is a longitudinal sectional view showing an example of the configuration of the motor 1 according to the first embodiment. 7 to 12 show only the stator units 21 at the ends in the axial direction, and the illustration of the intermediate stator units 21 in the axial direction is omitted.
 図5~図7に示すように、第1実施形態に係るモータ1は、軸方向における固定部材30から最も遠い固定子ユニット21(固定子ユニット21A)の端部(具体的には、固定子鉄心211のヨーク部211Aにおける連結部材14と対向する面)に、複数の放熱フィン40を備える。図5および図6に示す例では、第1実施形態に係るモータ1は、同心円状に配列された3つの放熱フィン40を備える。図7に示す例では、第1実施形態に係るモータ1は、同心円状に配列された7つの放熱フィン40を備える。複数の放熱フィン40は、いずれも軸方向視において回転軸心AXを中心とする円環状を有するが、互いに半径が異なる。なお、図7に示す例では、端部部材23は、固定子鉄心211の端面の一部(半径方向における内周面側の一部)に当接している。また、図7に示す例では、複数の放熱フィン40は、端部部材23と接触しないように、端部部材23の外周面よりも半径方向における外側に設けられている。 As shown in FIGS. 5 to 7, the motor 1 according to the first embodiment includes an end portion (specifically, a stator A plurality of radiating fins 40 are provided on a surface of the yoke portion 211A of the iron core 211 facing the connecting member 14 . In the examples shown in FIGS. 5 and 6, the motor 1 according to the first embodiment includes three heat radiation fins 40 concentrically arranged. In the example shown in FIG. 7, the motor 1 according to the first embodiment includes seven heat radiation fins 40 concentrically arranged. Each of the plurality of radiation fins 40 has an annular shape centered on the rotation axis AX when viewed in the axial direction, but has different radii. In the example shown in FIG. 7, the end member 23 is in contact with a portion of the end surface of the stator core 211 (a portion of the inner peripheral surface side in the radial direction). Moreover, in the example shown in FIG. 7 , the plurality of heat radiation fins 40 are provided radially outside the outer peripheral surface of the end member 23 so as not to come into contact with the end member 23 .
 このように、第1実施形態に係るモータ1は、固定子ユニット21に複数の放熱フィン40を備えることにより、固定子ユニット21の表面積を拡大して、固定子ユニット21において巻線212が発生する熱エネルギの放熱効果を高めることができる。 As described above, the motor 1 according to the first embodiment includes the plurality of heat radiation fins 40 in the stator unit 21, thereby increasing the surface area of the stator unit 21 and generating the windings 212 in the stator unit 21. The heat dissipation effect of the heat energy generated can be enhanced.
 特に、第1実施形態に係るモータ1は、固定部材30から最も遠い固定子ユニット21Aに複数の放熱フィン40を備えることにより、他の固定子ユニット21よりも温度が高くなり易い固定子ユニット21Aの放熱効果を高めることができる。よって、第1実施形態に係るモータ1は、複数の固定子ユニット21間での温度の偏りを抑制することができる。 In particular, in the motor 1 according to the first embodiment, since the stator unit 21A farthest from the fixing member 30 is provided with a plurality of heat radiation fins 40, the temperature of the stator unit 21A tends to be higher than that of the other stator units 21. can enhance the heat dissipation effect of Therefore, the motor 1 according to the first embodiment can suppress unevenness in temperature among the plurality of stator units 21 .
 また、第1実施形態に係るモータ1は、軸方向における固定子ユニット21Aの端部に、複数の放熱フィン40を備えるため、磁気回路における複数の固定子ユニット21と複数の永久磁石12との間のエアギャップを拡大することなく、固定子ユニット21Aの放熱効果を高めることができる。 Further, since the motor 1 according to the first embodiment includes a plurality of heat radiation fins 40 at the ends of the stator unit 21A in the axial direction, the plurality of stator units 21 and the plurality of permanent magnets 12 in the magnetic circuit The heat dissipation effect of the stator unit 21A can be enhanced without enlarging the air gap between them.
 なお、クローポール型のモータにおいて、巻線の放熱経路は、巻線から固定部材を経由して、外気に放熱する経路が主となる。しかしながら、クローポール型のモータは、巻線が固定子鉄心に覆われており、空気に露出している面が少ないため、巻線の熱がこもりやすい。また、クローポール型のモータは、固定子ユニットを積層した構造のため、巻線から固定部材までの放熱経路において、複数の部材(例えば、絶縁部材、固定子鉄心、相間部材)を介するため、経路の熱抵抗が大きくなり、熱の伝わりが悪い。これらの理由から、クローポール型のモータは、巻線の熱が逃げにくくなっている。 In addition, in the claw pole type motor, the heat radiation path of the winding is mainly a path for heat radiation from the winding to the outside air via the fixing member. However, in the claw pole type motor, the windings are covered with the stator core, and there are few surfaces exposed to the air, so the windings tend to retain heat. In addition, since the claw pole motor has a structure in which stator units are laminated, a plurality of members (for example, an insulating member, a stator core, and an interphase member) are interposed in the heat dissipation path from the windings to the fixed member. The thermal resistance of the path increases and the heat transfer is poor. For these reasons, it is difficult for the heat from the windings to escape from the claw pole type motor.
 特に、固定子ユニット21Aは、固定部材30から最も離れているために、巻線212が発生する熱エネルギを固定部材30に伝熱し難い。このため、固定子ユニット21Aは、他の固定子ユニット21よりも温度が高くなり易い。 In particular, since the stator unit 21A is the farthest from the fixed member 30, it is difficult to transfer the thermal energy generated by the windings 212 to the fixed member 30. Therefore, the temperature of the stator unit 21A tends to be higher than that of the other stator units 21 .
 なお、放熱フィン40は、固定子鉄心211に一体的に形成されてもよい。また、放熱フィン40は、固定子鉄心211と別部材であってもよく、固定子鉄心211に対して任意の固定方法(例えば、ボルト締結、溶着等)によって固定されてもよい。放熱フィン40は、固定子鉄心211と別部材の場合、端部部材23と一体的に形成されてもよく、端部部材23に対して任意の固定方法(例えば、ボルト締結、溶着等)によって固定されてもよい。 Note that the heat radiation fins 40 may be formed integrally with the stator core 211 . Moreover, the heat radiation fins 40 may be a separate member from the stator core 211, and may be fixed to the stator core 211 by any fixing method (for example, bolting, welding, etc.). If the heat radiation fins 40 are separate members from the stator core 211, they may be formed integrally with the end members 23, and fixed to the end members 23 by any method (for example, bolting, welding, etc.). May be fixed.
 また、放熱フィン40は、熱伝導率の高い素材(例えば、アルミニウム、鉄、銅等)が用いられることが好ましい。これにより、第1実施形態に係るモータ1は、放熱フィン40による放熱効果をより高めることができる。 Further, it is preferable that the radiation fins 40 are made of a material with high thermal conductivity (eg, aluminum, iron, copper, etc.). Thereby, the motor 1 according to the first embodiment can further enhance the heat dissipation effect of the heat dissipation fins 40 .
 また、放熱フィン40は、非磁性の素材(例えば、アルミニウム、ステンレス、真鍮等)が用いられることが好ましい。これにより、第1実施形態に係るモータ1は、固定子ユニット21A(固定子鉄心211)から連結部材14への磁束漏れを抑制することができる。 Also, it is preferable that the radiation fins 40 be made of a non-magnetic material (eg, aluminum, stainless steel, brass, etc.). As a result, the motor 1 according to the first embodiment can suppress magnetic flux leakage from the stator unit 21A (stator core 211) to the connecting member 14. FIG.
 〔第2実施形態〕
 次に、図8を参照して、第2実施形態に係るモータ1に特有の構造について説明する。図8は、第2実施形態に係るモータ1の構成の一例を示す縦断面図である。
[Second embodiment]
Next, a structure unique to the motor 1 according to the second embodiment will be described with reference to FIG. FIG. 8 is a longitudinal sectional view showing an example of the configuration of the motor 1 according to the second embodiment.
 図8に示すように、第2実施形態に係るモータ1は、第1実施形態に係るモータ1と同様に、軸方向における固定部材30から最も遠い固定子ユニット21(固定子ユニット21A)の端部に、同心円状に配列された複数の放熱フィン40を備える。これにより、第2実施形態に係るモータ1は、第1実施形態に係るモータ1と同様に、固定子ユニット21Aの放熱効果を高めることができる。なお、図8に示す例では、端部部材23は、固定子鉄心211の端面の一部(半径方向における内周面側の一部)に当接している。また、図8に示す例では、複数の放熱フィン40は、端部部材23と接触しないように、端部部材23の外周面よりも半径方向における外側に設けられている。 As shown in FIG. 8, in the motor 1 according to the second embodiment, similarly to the motor 1 according to the first embodiment, the end of the stator unit 21 (stator unit 21A) farthest from the fixing member 30 in the axial direction is A plurality of radiating fins 40 arranged concentrically are provided in the portion. As a result, the motor 1 according to the second embodiment can enhance the heat dissipation effect of the stator unit 21A, like the motor 1 according to the first embodiment. In the example shown in FIG. 8, the end member 23 is in contact with a portion of the end surface of the stator core 211 (a portion of the inner peripheral surface in the radial direction). Moreover, in the example shown in FIG. 8 , the plurality of radiation fins 40 are provided radially outside the outer peripheral surface of the end member 23 so as not to come into contact with the end member 23 .
 また、図8に示すように、第2実施形態に係るモータ1は、連結部材14に貫通孔42を有する。貫通孔42は、連結部材14を軸方向に貫通する。これにより、第2実施形態に係るモータ1は、固定子ユニット21Aの巻線212が発生する熱エネルギを隙間Aから外部へ放熱し易くなっている。 Also, as shown in FIG. 8, the motor 1 according to the second embodiment has a through hole 42 in the connecting member 14 . The through hole 42 axially penetrates the connecting member 14 . Thus, in the motor 1 according to the second embodiment, heat energy generated by the windings 212 of the stator unit 21A is easily radiated to the outside through the gaps A.
 また、図8に示すように、第2実施形態に係るモータ1は、貫通孔42を設けたことにより、回転子鉄心11および連結部材14に囲まれた空間内に、隙間Aから貫通孔42に至る流体の流路Bが形成されている。流路Bは、隙間Aおよび貫通孔42を通じて、回転子10の外部へ繋がっている。これにより、第2実施形態に係るモータ1は、複数の固定子ユニット21(巻線212)が発生する熱エネルギを、隙間Aおよび貫通孔42を通じて、外部へ放熱し易くなっている。 Further, as shown in FIG. 8, the motor 1 according to the second embodiment is provided with the through hole 42, so that the space surrounded by the rotor core 11 and the connecting member 14 has the through hole 42 from the gap A. A flow path B for fluid is formed. Flow path B is connected to the outside of rotor 10 through gap A and through hole 42 . As a result, the motor 1 according to the second embodiment can easily dissipate heat energy generated by the plurality of stator units 21 (windings 212 ) to the outside through the gaps A and the through holes 42 .
 〔第3実施形態〕
 次に、図9を参照して、第3実施形態に係るモータ1に特有の構造について説明する。図9は、第3実施形態に係るモータ1の構成の一例を示す縦断面図である。
[Third embodiment]
Next, a structure unique to the motor 1 according to the third embodiment will be described with reference to FIG. FIG. 9 is a longitudinal sectional view showing an example of the configuration of the motor 1 according to the third embodiment.
 図9に示すように、第3実施形態に係るモータ1は、固定子20が備える端部部材23に、複数の放熱フィン40を備える。具体的には、第3実施形態に係るモータ1は、端部部材23における固定部材30側の面と、端部部材23における連結部材14側の面との各々に、同心円状に配列された複数の放熱フィン40が設けられている。複数の放熱フィン40の各々は、いずれも軸方向視において回転軸心AXを中心とする円環状を有するが、互いに半径が異なる。これにより、第3実施形態に係るモータ1は、第1実施形態に係るモータ1と同様に、固定子ユニット21Aの放熱効果を高めることができる。 As shown in FIG. 9 , the motor 1 according to the third embodiment has a plurality of heat radiation fins 40 on the end member 23 of the stator 20 . Specifically, the motors 1 according to the third embodiment are arranged concentrically on each of the surface of the end member 23 on the fixing member 30 side and the surface of the end member 23 on the connecting member 14 side. A plurality of radiation fins 40 are provided. Each of the plurality of radiation fins 40 has an annular shape centered on the rotation axis AX when viewed in the axial direction, but has a different radius. As a result, the motor 1 according to the third embodiment can enhance the heat radiation effect of the stator unit 21A, like the motor 1 according to the first embodiment.
 特に、図9に示すように、端部部材23における固定部材30側の面に設けられている複数の放熱フィン40の各々は、その先端部が、固定子ユニット21Aが備える固定子鉄心211(ヨーク部211A)における連結部材14と対向する面に当接している。これにより、第3実施形態に係るモータ1は、端部部材23における固定部材30側の面に設けられている複数の放熱フィン40の各々により、固定子ユニット21Aの巻線212が発生する熱エネルギが伝達されて、当該熱エネルギを放熱することができる。また、第3実施形態に係るモータ1は、積層される複数の固定子ユニット21の軸方向への移動を規制することができる。 In particular, as shown in FIG. 9, each of the plurality of heat radiating fins 40 provided on the surface of the end member 23 on the side of the fixing member 30 has a leading end that extends from the stator core 211 ( It is in contact with the surface of the yoke portion 211A) facing the connecting member 14 . Accordingly, in the motor 1 according to the third embodiment, the heat generated by the windings 212 of the stator unit 21A is dissipated by each of the plurality of radiation fins 40 provided on the surface of the end member 23 on the side of the fixing member 30. Energy is transferred and the thermal energy can be dissipated. Further, the motor 1 according to the third embodiment can restrict the axial movement of the plurality of stacked stator units 21 .
 さらに、第3実施形態に係るモータ1は、端部部材23の両面に複数の放熱フィン40を備えることにより、端部部材23の表面積をより一層拡大して、固定子ユニット21Aから伝達される熱エネルギの放熱効果をより一層高めることができる。 Furthermore, the motor 1 according to the third embodiment is provided with a plurality of heat radiation fins 40 on both sides of the end member 23, so that the surface area of the end member 23 is further expanded, and the heat is transmitted from the stator unit 21A. The heat dissipation effect of thermal energy can be further enhanced.
 図10は、第3実施形態に係るモータ1の構成の一変形例を示す縦断面図である。図10に示す例では、放熱フィン40は、端部部材23における連結部材14と対向する面にのみ設けられている。図10に示す例では、端部部材23における固定子鉄心211と対向する面は、固定子鉄心211の端面に当接している。すなわち、この一変形例では、端部部材23の固定子ユニット21Aとの当接面をフィン形状ではなく板形状にして接触面積を増加している。この一変形例によれば、固定子ユニット21Aから端部部材23への伝熱をさらに向上させることができ、且つ、複数の固定子ユニット21の軸方向への固定をより強固にできる。ため、端部部材23の固定子ユニット21Aとの当接面をフィン形状ではなく板形状にして接触面積を増加してもよい。 FIG. 10 is a longitudinal sectional view showing a modification of the configuration of the motor 1 according to the third embodiment. In the example shown in FIG. 10 , the radiation fins 40 are provided only on the surface of the end member 23 facing the connecting member 14 . In the example shown in FIG. 10 , the surface of the end member 23 facing the stator core 211 is in contact with the end surface of the stator core 211 . That is, in this modified example, the contact surface of the end member 23 with the stator unit 21A is made plate-shaped instead of fin-shaped to increase the contact area. According to this modified example, the heat transfer from the stator unit 21A to the end member 23 can be further improved, and the fixation of the plurality of stator units 21 in the axial direction can be made stronger. Therefore, the contact surface of the end member 23 with the stator unit 21A may be plate-shaped instead of fin-shaped to increase the contact area.
 〔第4実施形態〕
 次に、図11を参照して、第4実施形態に係るモータ1に特有の構造について説明する。図11は、第4実施形態に係るモータ1の構成の一例を示す縦断面図である。
[Fourth embodiment]
Next, a structure specific to the motor 1 according to the fourth embodiment will be described with reference to FIG. 11 . FIG. 11 is a longitudinal sectional view showing an example of the configuration of the motor 1 according to the fourth embodiment.
 図11に示すように、第4実施形態に係るモータ1は、第1実施形態に係るモータ1と同様に、軸方向における固定部材30から最も遠い固定子ユニット21(固定子ユニット21A)の端部に、同心円状に配列された複数の放熱フィン40を備える。これにより、第4実施形態に係るモータ1は、第1実施形態に係るモータ1と同様に、固定子ユニット21Aの放熱効果を高めることができる。 As shown in FIG. 11, in the motor 1 according to the fourth embodiment, similarly to the motor 1 according to the first embodiment, the end of the stator unit 21 (stator unit 21A) farthest from the fixing member 30 in the axial direction is A plurality of radiating fins 40 arranged concentrically are provided in the portion. As a result, the motor 1 according to the fourth embodiment can enhance the heat dissipation effect of the stator unit 21A, like the motor 1 according to the first embodiment.
 図11に示すように、第4実施形態に係るモータ1は、連結部材14における内面(複数の放熱フィン40と対向する面)に、同心円状に配列された複数の第2の放熱フィン44を備える。複数の第2の放熱フィン44は、複数の放熱フィン40と同様に、いずれも軸方向視において回転軸心AXを中心とする円環状を有するが、互いに半径が異なる。但し、図11に示すように、第4実施形態に係るモータ1は、複数の第2の放熱フィン44の各々の半径を、複数の放熱フィン40の各々の半径と異ならせることにより、径方向において、複数の放熱フィン40と複数の第2の放熱フィン44とが互いに干渉せず交互に重なるように配置されている。なお、図11に示す例では、端部部材23は、固定子鉄心211の端面の一部(半径方向における内周面側の一部)に当接している。また、図11に示す例では、複数の放熱フィン40および複数の第2の放熱フィン44は、端部部材23と接触しないように、端部部材23の外周面よりも半径方向における外側に設けられている。 As shown in FIG. 11, the motor 1 according to the fourth embodiment has a plurality of second heat radiating fins 44 concentrically arranged on the inner surface of the connecting member 14 (the surface facing the plurality of heat radiating fins 40). Prepare. Like the plurality of heat radiation fins 40, each of the plurality of second heat radiation fins 44 has an annular shape centered on the rotation axis AX when viewed in the axial direction, but has a different radius. However, as shown in FIG. 11, in the motor 1 according to the fourth embodiment, by making the radius of each of the plurality of second heat radiation fins 44 different from the radius of each of the plurality of heat radiation fins 40, , the plurality of heat radiation fins 40 and the plurality of second heat radiation fins 44 are arranged so as to overlap alternately without interfering with each other. In the example shown in FIG. 11, the end member 23 is in contact with a portion of the end surface of the stator core 211 (a portion of the inner peripheral surface in the radial direction). Further, in the example shown in FIG. 11, the plurality of heat radiation fins 40 and the plurality of second heat radiation fins 44 are provided radially outside the outer peripheral surface of the end member 23 so as not to come into contact with the end member 23. It is
 第4実施形態に係るモータ1は、連結部材14における内面に複数の第2の放熱フィン44を備えることにより、連結部材14の内面の表面積を拡大して、固定子ユニット21Aの巻線212が発生する熱エネルギを、連結部材14に伝達され易くし、連結部材14によって放熱し易くすることができる。 The motor 1 according to the fourth embodiment includes a plurality of second heat radiation fins 44 on the inner surface of the connecting member 14 to increase the surface area of the inner surface of the connecting member 14 so that the windings 212 of the stator unit 21A The generated thermal energy can be easily transmitted to the connecting member 14 and can be easily dissipated by the connecting member 14 .
 〔第5実施形態〕
 次に、図12を参照して、第5実施形態に係るモータ1に特有の構造について説明する。図12は、第5実施形態に係るモータ1の構成の一例を示す縦断面図である。
[Fifth embodiment]
Next, a structure specific to the motor 1 according to the fifth embodiment will be described with reference to FIG. 12 . FIG. 12 is a longitudinal sectional view showing an example of the configuration of the motor 1 according to the fifth embodiment.
 図12に示すように、第5実施形態に係るモータ1は、第1実施形態に係るモータ1と同様に、軸方向における固定部材30から最も遠い固定子ユニット21(固定子ユニット21A)の端部に、同心円状に配列された複数の放熱フィン40を備える。これにより、第5実施形態に係るモータ1は、第1実施形態に係るモータ1と同様に、固定子ユニット21Aの放熱効果を高めることができる。なお、図12に示す例では、端部部材23は、固定子鉄心211の端面の一部(半径方向における内周面側の一部)に当接している。また、図12に示す例では、複数の放熱フィン40は、端部部材23と接触しないように、端部部材23の外周面よりも半径方向における外側に設けられている。 As shown in FIG. 12, in the motor 1 according to the fifth embodiment, similarly to the motor 1 according to the first embodiment, the end of the stator unit 21 (stator unit 21A) farthest from the fixing member 30 in the axial direction is A plurality of radiating fins 40 arranged concentrically are provided in the portion. As a result, the motor 1 according to the fifth embodiment can enhance the heat dissipation effect of the stator unit 21A, like the motor 1 according to the first embodiment. In the example shown in FIG. 12, the end member 23 is in contact with a portion of the end surface of the stator core 211 (a portion of the inner peripheral surface side in the radial direction). Moreover, in the example shown in FIG. 12 , the plurality of radiation fins 40 are provided radially outside the outer peripheral surface of the end member 23 so as not to contact the end member 23 .
 また、図12に示すように、第5実施形態に係るモータ1は、連結部材14における複数の放熱フィン40と対向する面に、ファン46(「第2のファン」の一例)が設けられている。ファン46は、連結部材14とともに回転軸心AXを中心として回転することにより、放熱フィン40と固定子ユニット21Aとの間の空間に、回転軸心AXを中心として回転する気流を生じさせる。これにより、第5実施形態に係るモータ1は、放熱フィン40の周辺の空気の流速を高めることができるため、放熱フィン40から空気への熱伝達率を増加させて、放熱フィン40による冷却効果を高めることができる。 Further, as shown in FIG. 12, the motor 1 according to the fifth embodiment is provided with a fan 46 (an example of a "second fan") on the surface of the connecting member 14 facing the plurality of heat radiating fins 40. there is The fan 46 rotates about the rotation axis AX together with the connecting member 14, thereby generating an airflow rotating about the rotation axis AX in the space between the radiation fins 40 and the stator unit 21A. As a result, the motor 1 according to the fifth embodiment can increase the flow velocity of the air around the heat radiating fins 40 , thereby increasing the heat transfer rate from the heat radiating fins 40 to the air and increasing the cooling effect of the heat radiating fins 40 . can increase
 〔送風装置への適用例〕
 次に、図13を参照して、本実施形態に係るモータ1の送風装置100への適用例について説明する。図13は、本実施形態に係るモータ1の送風装置100への適用例を示す図である。
[Example of application to air blower]
Next, an application example of the motor 1 according to the present embodiment to the blower device 100 will be described with reference to FIG. 13 . FIG. 13 is a diagram showing an application example of the motor 1 according to this embodiment to the blower device 100. As shown in FIG.
 図13に示す送風装置は、例えば、空調装置、冷凍装置等に用いることができる。図13に示すように、送風装置100は、本実施形態に係るモータ1と、ファン48(羽根車)とを備える。なお、送風装置100には、第1実施形態~第5実施形態で説明したいずれかのモータ1を用いることができる。 The blower shown in FIG. 13 can be used, for example, in air conditioners, refrigerators, and the like. As shown in FIG. 13, the blower device 100 includes a motor 1 according to this embodiment and a fan 48 (impeller). Note that any one of the motors 1 described in the first to fifth embodiments can be used for the blower device 100. FIG.
 図13に示すように、本実施形態に係るモータ1は、送風装置100において、回転子10にファン48が取り付けられることにより、回転子10と一体にファン48を回転させて、ファン48による送風を行うことができる。 As shown in FIG. 13 , the motor 1 according to the present embodiment has the fan 48 attached to the rotor 10 in the blower device 100, so that the fan 48 is rotated integrally with the rotor 10, and the fan 48 blows air. It can be performed.
 図13に示す例では、ファン48は、軸方向における一端側に回転子10が取り付けられ、軸方向における他端側に吸気口48Aが設けられている。また、ファン48は、外周面の円周方向に沿って、複数の排気口48Bが設けられている。 In the example shown in FIG. 13, the fan 48 has the rotor 10 attached to one end side in the axial direction, and an intake port 48A is provided to the other end side in the axial direction. Further, the fan 48 is provided with a plurality of exhaust ports 48B along the circumferential direction of the outer peripheral surface.
 ファン48は、モータ1の駆動によって回転することで、図13において矢印が示すように、吸気口48Aから吸入された気体を、排気口48Bから、ファン48の半径方向における外側へ送風することができる。 The fan 48 is driven by the motor 1 to rotate, so that the gas sucked from the intake port 48A can be blown outward in the radial direction of the fan 48 from the exhaust port 48B, as indicated by the arrow in FIG. can.
 このように、本実施形態に係るモータ1は、送風装置100において、ファン48の回転駆動用のモータ1として用いることで、当該モータ1の放熱効果を高めることができる。 As described above, the motor 1 according to the present embodiment can be used as the motor 1 for rotationally driving the fan 48 in the blower device 100 to enhance the heat dissipation effect of the motor 1 .
 図13に示す例では、モータ1の先端部分がファン48によって覆われているため、ファン48の回転によって作られる風(図の矢印の風)が回転子表面を流れる。それにより、固定子20から外気への熱伝達率が向上し、放熱効果をより高めることができる。 In the example shown in FIG. 13, the tip of the motor 1 is covered with the fan 48, so the wind (the wind indicated by the arrow in the figure) generated by the rotation of the fan 48 flows on the rotor surface. Thereby, the heat transfer coefficient from the stator 20 to the outside air is improved, and the heat radiation effect can be further enhanced.
 なお、本実施形態に係るモータ1において、放熱フィン40と熱交換する流体は、空気でも冷媒でも良い。 In addition, in the motor 1 according to the present embodiment, the fluid that exchanges heat with the heat radiating fins 40 may be air or a refrigerant.
 〔放熱フィン40の形状および配置の一例〕
 図14は、本実施形態に係るモータ1が備える放熱フィン40の形状および配置の一例を示す図である。
[Example of Shape and Arrangement of Radiation Fins 40]
FIG. 14 is a diagram showing an example of the shape and arrangement of the heat radiation fins 40 included in the motor 1 according to this embodiment.
 図14に示すように、本実施形態に係るモータ1において、放熱フィン40は、同心円状に配列された、複数の板状部材または複数のピン状部材を有してもよい。本実施形態に係るモータ1は、放熱フィン40が同心円状に配列された複数の板状部材または複数のピン状部材を有することにより、例えば、回転子10が回転するときの、放熱フィン40による通風抵抗を抑制することができる。 As shown in FIG. 14, in the motor 1 according to this embodiment, the radiation fins 40 may have a plurality of plate-like members or a plurality of pin-like members concentrically arranged. The motor 1 according to the present embodiment has a plurality of plate-like members or a plurality of pin-like members in which the heat radiating fins 40 are arranged concentrically. It is possible to suppress ventilation resistance.
 また、図14に示すように、本実施形態に係るモータ1において、放熱フィン40は、放射状に配列された、複数の板状部材または複数のピン状部材を有してもよい。本実施形態に係るモータ1は、放熱フィン40が放射状に配列された複数の板状部材または複数のピン状部材を有することにより、例えば、放熱フィン40が流体を積極的に受けることで放熱効果を高めることができる。 Further, as shown in FIG. 14, in the motor 1 according to this embodiment, the heat radiation fins 40 may have a plurality of plate-like members or a plurality of pin-like members arranged radially. The motor 1 according to the present embodiment has a plurality of plate-like members or a plurality of pin-like members in which the heat dissipating fins 40 are arranged radially. can increase
 但し、放熱フィン40の形状、配置、数は、本実施形態および図14に例示したものに限らない。 However, the shape, arrangement, and number of the radiation fins 40 are not limited to those illustrated in this embodiment and FIG.
 〔他の実施形態〕
 図15は、他の実施形態に係るモータ300の構成の一例を示す縦断面図である。図15に示すモータ300は、いわゆるインナーロータ型のクローポールモータである。モータ300は、筐体301、回転子310、および固定子320を有する。モータ300は、筐体301の内部において、回転子310(回転子鉄心311、永久磁石312、および回転軸部材313)が、円筒形状を有する固定子320(積層された複数の固定子ユニット321)の内側で回転する点で、アウターロータ型のクローポールモータであるモータ1と異なる。
[Other embodiments]
FIG. 15 is a vertical cross-sectional view showing an example of the configuration of a motor 300 according to another embodiment. A motor 300 shown in FIG. 15 is a so-called inner rotor type claw pole motor. Motor 300 has housing 301 , rotor 310 and stator 320 . The motor 300 has a rotor 310 (a rotor core 311, a permanent magnet 312, and a rotating shaft member 313) inside a housing 301, and a stator 320 (a plurality of stacked stator units 321) having a cylindrical shape. It differs from the motor 1, which is an outer rotor type claw pole motor, in that it rotates inside.
 筐体301は、軸方向における両端部が閉じた円筒状を有する。筐体301の内部には、回転子310および固定子320が配置される。筐体301の中心には、回転子310の回転軸部材313が貫通して設けられている。回転軸部材313の両端部は、筐体301の軸方向における両端部に設けられた一対のベアリング303,304によって回転可能に支持されている。 The housing 301 has a cylindrical shape with both ends in the axial direction closed. A rotor 310 and a stator 320 are arranged inside the housing 301 . A rotating shaft member 313 of the rotor 310 is provided through the center of the housing 301 . Both ends of the rotating shaft member 313 are rotatably supported by a pair of bearings 303 and 304 provided at both ends of the housing 301 in the axial direction.
 回転子310は、筐体301の内部において、径方向における固定子320の内側に配置される。回転子310は、回転子鉄心311、永久磁石312、および回転軸部材313を有する。回転子鉄心311は、円筒形状を有する。回転子鉄心311の筒内には、回転軸部材313が配置される。回転子鉄心311は、回転軸部材313とともに回転する。複数の永久磁石312は、回転子鉄心311の外周面において、周方向に等間隔で並べて配置されている。永久磁石312は、固定子320(複数の固定子ユニット321)の内周面(爪磁極322A)と対向する。 The rotor 310 is arranged inside the stator 320 in the radial direction inside the housing 301 . Rotor 310 has rotor core 311 , permanent magnets 312 , and rotating shaft member 313 . Rotor core 311 has a cylindrical shape. A rotary shaft member 313 is arranged in the cylinder of the rotor core 311 . Rotor core 311 rotates together with rotary shaft member 313 . The plurality of permanent magnets 312 are arranged side by side at equal intervals in the circumferential direction on the outer peripheral surface of the rotor core 311 . The permanent magnet 312 faces the inner peripheral surface (claw magnetic pole 322A) of the stator 320 (the plurality of stator units 321).
 固定子320は、筐体301の内部において、径方向における回転子310の外側に配置される。固定子320は、全体的に略円筒形状を有する。固定子320は、軸方向に積層された複数のクローポール型の固定子ユニット321を有する。図3に示す例では、固定子320は、軸方向に積層された3つクローポール型の固定子ユニット321A,321B,321Cを有する。各固定子ユニット321は、モータ1が備える固定子ユニット21と同様に、一対の固定子鉄心322および巻線323を有する。但し、図15に示すように、固定子鉄心322において、複数の爪磁極322Aは、回転子310が備える永久磁石312と対向するように、固定子鉄心322の内周面において、周方向に等間隔で配置される。 The stator 320 is arranged outside the rotor 310 in the radial direction inside the housing 301 . Stator 320 has a generally cylindrical shape overall. The stator 320 has a plurality of claw pole type stator units 321 stacked in the axial direction. In the example shown in FIG. 3, the stator 320 has three claw pole type stator units 321A, 321B, 321C that are axially stacked. Each stator unit 321 has a pair of stator cores 322 and windings 323 like the stator unit 21 included in the motor 1 . However, as shown in FIG. 15, in the stator core 322, the plurality of claw poles 322A are arranged in the circumferential direction on the inner peripheral surface of the stator core 322 so as to face the permanent magnets 312 provided in the rotor 310. placed at intervals.
 図15に示すように、他の実施形態に係るモータ300は、軸方向における一端面(具体的には、固定子ユニット321Aの端面)に、複数の放熱フィン340を備える。また、他の実施形態に係るモータ300は、軸方向における他端面(具体的には、固定子ユニット321Cの端面)に、複数の放熱フィン340を備える。図15に示す例では、他の実施形態に係るモータ300は、軸方向における一端面および他端面の各々に、同心円状に配列された7つの放熱フィン340を備える。 As shown in FIG. 15, a motor 300 according to another embodiment includes a plurality of heat radiation fins 340 on one axial end face (specifically, the end face of the stator unit 321A). Also, the motor 300 according to another embodiment includes a plurality of radiation fins 340 on the other axial end surface (specifically, the end surface of the stator unit 321C). In the example shown in FIG. 15, a motor 300 according to another embodiment includes seven heat radiation fins 340 concentrically arranged on each of one end surface and the other end surface in the axial direction.
 他の実施形態に係るモータ300は、インナーロータ型のクローポールモータであるため、筐体301によって閉じられた空間内にあるため、各固定子ユニット321の巻線323が発生する熱エネルギを、放熱し難くなっている。 Since the motor 300 according to another embodiment is an inner rotor type claw pole motor, it is located in a space enclosed by the housing 301, so the heat energy generated by the windings 323 of each stator unit 321 is It becomes difficult to dissipate heat.
 そこで、他の実施形態に係るモータ300は、固定子ユニット321A,321Cの各々に、複数の放熱フィン340を設けたことにより、固定子ユニット321A,321Cの各々の表面積を拡大することができ、よって、固定子ユニット321A,321Cの各々の放熱効果を高めることができる。 Therefore, in the motor 300 according to another embodiment, each of the stator units 321A and 321C is provided with a plurality of radiation fins 340, thereby increasing the surface area of each of the stator units 321A and 321C. Therefore, the heat dissipation effect of each of the stator units 321A and 321C can be enhanced.
 なお、他の実施形態に係るモータ300は、インナーロータ型のクローポールモータであるため、軸方向における一端側に固定部材を設ける必要がなく、よって、軸方向に積層された複数の固定子ユニット321の軸方向における両端面に複数の放熱フィン340を設置することができる。 Since the motor 300 according to another embodiment is an inner rotor type claw pole motor, it is not necessary to provide a fixing member on one end side in the axial direction. A plurality of radiating fins 340 can be installed on both end faces in the axial direction of 321 .
 また、他の実施形態に係るモータ300は、インナーロータ型のクローポールモータであるため、送風装置のみならず、冷凍装置等が備える圧縮機等にも利用可能である。 In addition, since the motor 300 according to another embodiment is an inner rotor type claw pole motor, it can be used not only in a blower device but also in a compressor provided in a refrigeration device or the like.
 なお、他の実施形態に係るモータ300において、軸方向における一端面(具体的には、固定子ユニット321Aの端面)のみに、複数の放熱フィン340を備えてもよい。また、他の実施形態に係るモータ300において、軸方向における他端面(具体的には、固定子ユニット321Cの端面)のみに、複数の放熱フィン340を備えてもよい。 In addition, in the motor 300 according to another embodiment, only one end face in the axial direction (specifically, the end face of the stator unit 321A) may be provided with a plurality of heat radiating fins 340. Also, in the motor 300 according to another embodiment, only the other end face in the axial direction (specifically, the end face of the stator unit 321C) may be provided with a plurality of radiation fins 340 .
 [作用]
 次に、本実施形態に係るモータ1の作用について説明する。
[Action]
Next, operation of the motor 1 according to this embodiment will be described.
 本実施形態に係るモータ1は、回転軸心AX回りに回転自在に構成された回転子10と、回転軸心AX回りに環状に巻回される巻線212と、巻線212の周囲を包囲するように設けられる固定子鉄心211(鉄心)とを含む、クローポール型の固定子ユニット21を有する固定子20とを備え、回転軸心AXの軸方向における最も外側の固定子ユニット21の端部に、放熱フィン40を有する。 The motor 1 according to the present embodiment includes a rotor 10 configured to be rotatable around the rotation axis AX, a winding 212 annularly wound around the rotation axis AX, and A stator 20 having a claw pole type stator unit 21 including a stator core 211 (iron core) provided to Radiating fins 40 are provided in the part.
 これにより、本実施形態に係るモータ1は、固定子ユニット21の外周面にフィンを設けることなく、エアギャップに拡大を生じさせない固定子ユニット21の端部に放熱フィン40を設けたことにより、固定子ユニット21の表面積を拡大し、固定子ユニット21において生じた熱を放熱フィン40から放熱できる。このため、本実施形態に係るモータ1によれば、磁気回路におけるエアギャップを拡大することなく、固定子ユニット21の放熱効果を向上させることができる。 As a result, the motor 1 according to the present embodiment does not have fins on the outer peripheral surface of the stator unit 21, and does not expand the air gap. By increasing the surface area of the stator unit 21 , the heat generated in the stator unit 21 can be dissipated from the radiating fins 40 . Therefore, according to the motor 1 of this embodiment, the heat radiation effect of the stator unit 21 can be improved without enlarging the air gap in the magnetic circuit.
 また、本実施形態に係るモータ1は、固定子20を支持する固定部材30を備え、放熱フィン40は、固定部材30から最も遠い固定子ユニット21の端部に設けられてもよい。 Also, the motor 1 according to this embodiment may include the fixed member 30 that supports the stator 20 , and the heat radiation fins 40 may be provided at the farthest end of the stator unit 21 from the fixed member 30 .
 これにより、本実施形態に係るモータ1は、放熱フィン40は、固定部材30から最も遠い固定子ユニット21の温度が最も高くなり易い構成において、固定部材30から最も遠い固定子ユニット21の放熱効果を高めることで、複数の固定子ユニット21間での温度の偏りを抑制することができる。 As a result, in the motor 1 according to the present embodiment, the heat radiation fins 40 are configured such that the temperature of the stator unit 21 farthest from the fixing member 30 tends to be the highest, and the heat dissipation effect of the stator unit 21 farthest from the fixing member 30 is reduced. By increasing the temperature deviation among the plurality of stator units 21 can be suppressed.
 また、本実施形態に係るモータ1において、放熱フィン40は、固定子ユニット21に当接することにより、回転軸心AXの軸方向への固定子20の移動を規制してもよい。 Further, in the motor 1 according to the present embodiment, the radiation fins 40 may restrict the movement of the stator 20 in the axial direction of the rotation axis AX by coming into contact with the stator unit 21 .
 これにより、本実施形態に係るモータ1は、放熱フィン40により、固定子ユニット21の放熱性能を高める効果と、回転軸心AXの軸方向への固定子20の移動を規制する効果との双方を奏することができる。 As a result, the motor 1 according to the present embodiment has both the effect of improving the heat radiation performance of the stator unit 21 and the effect of restricting the movement of the stator 20 in the axial direction of the rotation axis AX by the heat radiation fins 40. can be played.
 また、本実施形態に係るモータ1において、固定子20は、回転軸心AXの軸方向に積層された2以上の固定子ユニット21を有してもよい。 Further, in the motor 1 according to this embodiment, the stator 20 may have two or more stator units 21 stacked in the axial direction of the rotation axis AX.
 これにより、本実施形態に係るモータ1は、放熱フィン40は、複数の固定子ユニット21間での温度の偏りが生じやすい構成において、回転軸心AXの軸方向における最も外側の固定子ユニット21の放熱効果を高めることで、複数の固定子ユニット21間での温度の偏りを抑制することができる。 As a result, in the motor 1 according to the present embodiment, the heat radiation fins 40 are arranged in the outermost stator unit 21 in the axial direction of the rotation axis AX in a configuration in which uneven temperature is likely to occur among the plurality of stator units 21 . By enhancing the heat dissipation effect of the stator units 21, unevenness in temperature among the plurality of stator units 21 can be suppressed.
 また、本実施形態に係るモータ1は、固定子20が配置される空間に当該空間の外部から流体を導入可能な流路Bを有してもよい。 Further, the motor 1 according to the present embodiment may have a flow path B through which fluid can be introduced from the outside of the space in which the stator 20 is arranged.
 これにより、本実施形態に係るモータ1は、固定子ユニット21が発生する熱エネルギを、流路Bを通じて、外部へ放熱し易くすることができる。 As a result, the motor 1 according to the present embodiment can easily dissipate heat energy generated by the stator unit 21 to the outside through the flow path B.
 また、本実施形態に係るモータ1において、回転子10は、固定子20の外側で回転するよう構成されてもよい。 Also, in the motor 1 according to this embodiment, the rotor 10 may be configured to rotate outside the stator 20 .
 これにより、本実施形態に係るモータ1は、回転子10に囲まれているために固定子ユニット21の温度が高まりやすい構成において、固定子ユニット21に設けられた放熱フィン40により、固定子ユニット21の放熱効果を高めることができる。 As a result, in the motor 1 according to the present embodiment, in a configuration where the temperature of the stator unit 21 tends to increase because it is surrounded by the rotor 10, the heat radiation fins 40 provided on the stator unit 21 allow the stator unit The heat dissipation effect of 21 can be enhanced.
 また、本実施形態に係るモータ1は、回転子10の外面に取り付けられたファン48を備えてもよい。 Also, the motor 1 according to this embodiment may include a fan 48 attached to the outer surface of the rotor 10 .
 これにより、本実施形態に係るモータ1は、回転子10がファン48によって覆われているために、回転子10の内側に設けられた固定子ユニット21の温度が高まりやすい構成において、固定子ユニット21に設けられた放熱フィン40により、固定子ユニット21の放熱効果を高めることができる。 As a result, the motor 1 according to the present embodiment has a configuration in which the temperature of the stator unit 21 provided inside the rotor 10 is likely to rise because the rotor 10 is covered with the fan 48. The heat dissipation fins 40 provided on the stator unit 21 can enhance the heat dissipation effect of the stator unit 21 .
 また、本実施形態に係るモータ1は、放熱フィン40と対向する回転子10の内面に設けられた第2の放熱フィン44を備えてもよい。 Also, the motor 1 according to the present embodiment may include second heat radiation fins 44 provided on the inner surface of the rotor 10 facing the heat radiation fins 40 .
 これにより、本実施形態に係るモータ1は、第2の放熱フィン44を設けたことによって回転子10の内面の表面積を拡大して、固定子ユニット21が発生する熱エネルギを、回転子10に伝達され易くし、回転子10によって放熱し易くすることができる。 As a result, the motor 1 according to the present embodiment is provided with the second heat radiation fins 44 so that the surface area of the inner surface of the rotor 10 is increased, and the heat energy generated by the stator unit 21 is transferred to the rotor 10. The heat can be easily transmitted and the heat can be easily dissipated by the rotor 10 .
 また、本実施形態に係るモータ1において、放熱フィン40は、固定子ユニット21の固定子鉄心211に形成されてもよい。 Further, in the motor 1 according to this embodiment, the heat radiation fins 40 may be formed on the stator core 211 of the stator unit 21.
 これにより、本実施形態に係るモータ1は、例えば、放熱フィン40を固定子鉄心211に取り付ける作業が不要となる。また、本実施形態に係るモータ1は、例えば、固定子鉄心211から放熱フィン40への伝熱性を高めることができる。 As a result, the motor 1 according to the present embodiment does not require the work of attaching the heat radiation fins 40 to the stator core 211, for example. Further, the motor 1 according to the present embodiment can improve heat transfer from the stator core 211 to the heat radiation fins 40, for example.
 また、本実施形態に係るモータ1において、放熱フィン40は、固定子ユニット21の固定子鉄心211とは別部品であってもよい。 Further, in the motor 1 according to this embodiment, the heat radiation fins 40 may be separate parts from the stator core 211 of the stator unit 21 .
 これにより、本実施形態に係るモータ1は、例えば、放熱フィン40の素材を、固定子鉄心211の素材と異ならせることができる。また、本実施形態に係るモータ1は、例えば、放熱フィン40の交換等を行うことが可能となる。 Thereby, in the motor 1 according to this embodiment, for example, the material of the radiation fins 40 can be made different from the material of the stator core 211 . Further, in the motor 1 according to the present embodiment, for example, the heat radiation fins 40 can be replaced.
 また、本実施形態に係る送風装置100は、回転することにより送風するファン48(羽根車)と、ファン48を回転駆動する本実施形態に係るモータ1とを備える。 Further, the blower device 100 according to this embodiment includes a fan 48 (impeller) that blows air by rotating, and the motor 1 according to this embodiment that drives the fan 48 to rotate.
 これにより、本実施形態に係る送風装置100は、ファン48を回転駆動するモータ1の性能劣化を抑制しつつ、当該モータ1の放熱効果を高めることができる。 As a result, the blower device 100 according to the present embodiment can improve the heat radiation effect of the motor 1 while suppressing deterioration in the performance of the motor 1 that drives the fan 48 .
 また、本実施形態に係るモータ1は、回転することにより流体を圧縮する圧縮機構を備えた圧縮装置において、圧縮機構を回転駆動するために用いられてもよい。 Also, the motor 1 according to the present embodiment may be used to rotationally drive the compression mechanism in a compression device having a compression mechanism that compresses fluid by rotating.
 これにより、本実施形態に係るモータ1は、圧縮装置において、圧縮機構を回転駆動する当該モータ1の性能劣化を抑制しつつ、当該モータ1の放熱効果を高めることができる。 As a result, the motor 1 according to the present embodiment can improve the heat dissipation effect of the motor 1 while suppressing deterioration in the performance of the motor 1 that drives the compression mechanism to rotate in the compression device.
 また、本実施形態に係るモータ1は、回転することにより送風する羽根車を有する送風装置と、回転することにより流体を圧縮する圧縮機構を有する圧縮装置と、を備えた冷凍装置において、羽根車または圧縮機構を回転駆動するために用いられてもよい。 Further, the motor 1 according to the present embodiment is a refrigerating apparatus including a blower having an impeller that blows air by rotating and a compressor having a compression mechanism that compresses fluid by rotating. Alternatively, it may be used to rotationally drive the compression mechanism.
 これにより、本実施形態に係るモータ1は、冷凍装置において、羽根車または圧縮機構を回転駆動する当該モータ1の性能劣化を抑制しつつ、当該モータ1の放熱効果を高めることができる。 As a result, the motor 1 according to the present embodiment can enhance the heat radiation effect of the motor 1 while suppressing performance deterioration of the motor 1 that drives the impeller or the compression mechanism to rotate in the refrigeration system.
 [変形・変更]
 以上、実施形態を説明したが、特許請求の範囲の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
[Transformation/change]
Although the embodiments have been described above, it will be appreciated that various changes in form and detail may be made without departing from the spirit and scope of the claims.
 本国際出願は、2021年3月30日に出願した日本国特許出願第2021-057103号に基づく優先権を主張するものであり、当該出願の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2021-057103 filed on March 30, 2021, and the entire contents of this application are incorporated into this international application.
 1 モータ
 10 回転子
 11,11A~11C 回転子鉄心
 12 永久磁石
 13 回転軸部材
 14 連結部材
 20 固定子
 21,21A~21C 固定子ユニット
 211 固定子鉄心
 211A ヨーク部
 211B 爪磁極
 211C ヨーク部
 211D 挿通孔
 212 巻線
 22 相間部材
 22A UV相間部材
 22B VW相間部材
 23 端部部材
 24 挿通部材
 25,26 ベアリング
 30 固定部材
 40 放熱フィン
 42 貫通孔
 44 第2の放熱フィン
 46 ファン
 48 ファン
 48A 吸気口
 48B 排気口
 50 油
 100 送風装置
 300 モータ
 301 筐体
 303,304 ベアリング
 310 回転子
 311 回転子鉄心
 312 永久磁石
 313 回転軸部材
 320 固定子
 321,321A,321B,321C 固定子ユニット
 322 固定子鉄心
 322A 爪磁極
 323 巻線
 340 放熱フィン
Reference Signs List 1 motor 10 rotor 11, 11A to 11C rotor core 12 permanent magnet 13 rotating shaft member 14 connecting member 20 stator 21, 21A to 21C stator unit 211 stator core 211A yoke portion 211B claw magnetic pole 211C yoke portion 211D insertion hole 212 Winding 22 Interphase member 22A UV Interphase member 22B VW Interphase member 23 End member 24 Penetration member 25, 26 Bearing 30 Fixed member 40 Radiation fin 42 Through hole 44 Second radiation fin 46 Fan 48 Fan 48A Intake port 48B Exhaust port 50 oil 100 air blower 300 motor 301 housing 303, 304 bearing 310 rotor 311 rotor core 312 permanent magnet 313 rotating shaft member 320 stator 321, 321A, 321B, 321C stator unit 322 stator core 322A claw magnetic pole 323 winding Wire 340 Radiation fin

Claims (16)

  1.  回転軸心回りに回転自在に構成された回転子と、
     前記回転軸心回りに環状に巻回される巻線と、前記巻線の周囲を包囲するように設けられる鉄心とを含む、クローポール型の固定子ユニットを有する固定子と
     を備え、
     前記回転軸心の軸方向における最も外側の前記固定子ユニットの端部に、放熱フィンを有する
     モータ。
    a rotor configured to be rotatable around a rotation axis;
    a stator having a claw pole type stator unit including a winding wound annularly around the rotation axis and an iron core provided to surround the winding,
    A motor having radiation fins at the outermost end of the stator unit in the axial direction of the rotation axis.
  2.  前記固定子を支持する固定部材を備え、
     前記放熱フィンは、
     前記固定部材から最も遠い前記固定子ユニットの端部に設けられている
     請求項1に記載のモータ。
    A fixing member that supports the stator,
    The heat radiation fins are
    The motor according to claim 1, provided at the end of the stator unit farthest from the fixed member.
  3.  前記放熱フィンは、前記固定子ユニットに当接することにより、前記回転軸心の軸方向への前記固定子の移動を規制する
     請求項2に記載のモータ。
    3. The motor according to claim 2, wherein the heat radiation fins restrict movement of the stator in the axial direction of the rotation axis by contacting the stator unit.
  4.  前記固定子は、前記回転軸心の軸方向に積層された2以上の前記固定子ユニットを有する
     請求項1から3のいずれか一項に記載のモータ。
    4. The motor according to any one of claims 1 to 3, wherein the stator includes two or more stator units stacked in the axial direction of the rotation axis.
  5.  前記固定子が配置される空間に当該空間の外部から流体を導入可能な流路を有する
     請求項1から4のいずれか一項に記載のモータ。
    5. The motor according to any one of claims 1 to 4, wherein the space in which the stator is arranged has a flow path through which a fluid can be introduced from the outside of the space.
  6.  前記回転子は、
     前記固定子の外側で回転するよう構成される
     請求項1から5のいずれか一項に記載のモータ。
    The rotor is
    6. A motor according to any one of the preceding claims, arranged to rotate outside the stator.
  7.  前記回転子の外面に取り付けられたファンを備える
     請求項6に記載のモータ。
    7. The motor of claim 6, comprising a fan attached to the outer surface of the rotor.
  8.  前記放熱フィンと対向する前記回転子の内面に設けられた第2の放熱フィンを備える
     請求項6または7に記載のモータ。
    The motor according to claim 6 or 7, further comprising second heat radiation fins provided on an inner surface of the rotor facing the heat radiation fins.
  9.  前記放熱フィンは、
     前記固定子ユニットの鉄心に形成されている
     請求項1から8のいずれか一項に記載のモータ。
    The heat radiation fins are
    9. The motor according to any one of claims 1 to 8, which is formed in an iron core of the stator unit.
  10.  前記放熱フィンは、
     前記固定子ユニットの鉄心とは別部品である
     請求項1から8のいずれか一項に記載のモータ。
    The heat radiation fins are
    The motor according to any one of claims 1 to 8, which is a separate part from the iron core of the stator unit.
  11.  前記固定子が配置される空間内に設けられ、前記回転子と一体に回転する第2のファンを備える
     請求項1から10のいずれか一項に記載のモータ。
    The motor according to any one of claims 1 to 10, further comprising a second fan provided in a space in which the stator is arranged and rotating together with the rotor.
  12.  前記放熱フィンは、
     同心円状に配列された、複数の板状部材または複数のピン状部材を有する
     請求項1から11のいずれか一項に記載のモータ。
    The heat radiation fins are
    12. The motor according to any one of claims 1 to 11, comprising a plurality of plate-like members or a plurality of pin-like members arranged concentrically.
  13.  前記放熱フィンは、
     放射状に配列された、複数の板状部材または複数のピン状部材を有する
     請求項1から11のいずれか一項に記載のモータ。
    The heat radiation fins are
    12. The motor according to any one of claims 1 to 11, comprising a plurality of plate-like members or a plurality of pin-like members arranged radially.
  14.  回転することにより送風する羽根車と、
     前記羽根車を回転駆動する請求項1から13のいずれか一項に記載のモータと
     を備える送風装置。
    an impeller that blows air by rotating;
    The motor according to any one of claims 1 to 13, which rotationally drives the impeller.
  15.  回転することにより流体を圧縮する圧縮機構と、
     前記圧縮機構を回転駆動する請求項1から6および請求項8から13のいずれか一項に記載のモータと
     を備える圧縮装置。
    a compression mechanism that compresses the fluid by rotating;
    and the motor according to any one of claims 1 to 6 and 8 to 13, which rotationally drives the compression mechanism.
  16.  請求項14に記載の送風装置、または請求項15に記載の圧縮装置を備える冷凍装置。 A refrigeration system comprising the blower device according to claim 14 or the compression device according to claim 15.
PCT/JP2022/014444 2021-03-30 2022-03-25 Motor, blower device, compressor device, and refrigeration device WO2022210366A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021057103A JP2022154194A (en) 2021-03-30 2021-03-30 Motor, blower, compressor, and refrigerator
JP2021-057103 2021-03-30

Publications (1)

Publication Number Publication Date
WO2022210366A1 true WO2022210366A1 (en) 2022-10-06

Family

ID=83459039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014444 WO2022210366A1 (en) 2021-03-30 2022-03-25 Motor, blower device, compressor device, and refrigeration device

Country Status (3)

Country Link
JP (1) JP2022154194A (en)
TW (1) TW202245386A (en)
WO (1) WO2022210366A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4837304U (en) * 1971-09-06 1973-05-07
JPS55153869U (en) * 1979-04-20 1980-11-06
JP2005045890A (en) * 2003-07-25 2005-02-17 Tokushu Denso Kk Rotating machine
JP2018042435A (en) * 2016-09-09 2018-03-15 アスモ株式会社 Stator and motor
JP2019083649A (en) * 2017-10-31 2019-05-30 ボッシュ株式会社 Motor device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3944140B2 (en) * 2003-06-04 2007-07-11 本田技研工業株式会社 Claw pole motor stator
JP4469592B2 (en) * 2003-10-31 2010-05-26 山洋電気株式会社 Linear motor
JP2007134472A (en) * 2005-11-10 2007-05-31 Shinko Electric Ind Co Ltd Heat radiating plate and semiconductor device
JP4339900B2 (en) * 2007-03-12 2009-10-07 パナソニック株式会社 motor
US8482169B2 (en) * 2010-06-14 2013-07-09 Remy Technologies, Llc Electric machine cooling system and method
ES2624540B8 (en) * 2016-01-14 2018-08-21 Bultaco Motors Sl BUSHING MOTOR AND PERSONAL TRANSPORT VEHICLE UNDERSTANDING SUCH ENGINE

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4837304U (en) * 1971-09-06 1973-05-07
JPS55153869U (en) * 1979-04-20 1980-11-06
JP2005045890A (en) * 2003-07-25 2005-02-17 Tokushu Denso Kk Rotating machine
JP2018042435A (en) * 2016-09-09 2018-03-15 アスモ株式会社 Stator and motor
JP2019083649A (en) * 2017-10-31 2019-05-30 ボッシュ株式会社 Motor device

Also Published As

Publication number Publication date
TW202245386A (en) 2022-11-16
JP2022154194A (en) 2022-10-13

Similar Documents

Publication Publication Date Title
JP5220765B2 (en) AFPM coreless multi-generator and motor
CN108604850B (en) Rotating electrical machine
US20080074009A1 (en) Fan system, electric motor, and claw-pole motor
JP7395592B2 (en) Electric motor and air conditioner using it
WO2021065586A1 (en) Motor
JP2024008993A (en) Rotary apparatus
WO2022210366A1 (en) Motor, blower device, compressor device, and refrigeration device
TWI790636B (en) electric motor
JP7288220B2 (en) Motors, blowers, and refrigerators
KR20220149978A (en) Axial flux motor with airflow cooling structure
JP7197812B2 (en) Motors, Compressors, Blowers, and Refrigerators
WO2019198138A1 (en) Electric motor, compressor, and air conditioning device
JP2022152164A (en) Motor, blower, and refrigerator
KR20150068224A (en) Cooling structure of drive motor
JP7204018B2 (en) Rotors, electric motors, blowers and air conditioners
JP2022055169A (en) Electromagnetic device
JP2022175909A (en) Rotary electric machine and salient-pole rotor
CN111543893A (en) Motor, electric fan using the same, and electric vacuum cleaner using the same
JP2023144927A (en) Motor, blower, compression device, and freezing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780579

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE