WO2022210361A1 - Analyzing device and analyzing method - Google Patents

Analyzing device and analyzing method Download PDF

Info

Publication number
WO2022210361A1
WO2022210361A1 PCT/JP2022/014421 JP2022014421W WO2022210361A1 WO 2022210361 A1 WO2022210361 A1 WO 2022210361A1 JP 2022014421 W JP2022014421 W JP 2022014421W WO 2022210361 A1 WO2022210361 A1 WO 2022210361A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
multidimensional
vector data
new
reference vector
Prior art date
Application number
PCT/JP2022/014421
Other languages
French (fr)
Japanese (ja)
Inventor
哲也 金田
Original Assignee
株式会社D’isum
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社D’isum filed Critical 株式会社D’isum
Publication of WO2022210361A1 publication Critical patent/WO2022210361A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • A61B7/02Stethoscopes
    • A61B7/04Electric stethoscopes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present disclosure relates to an analysis apparatus and an analysis method for converting the movement of an object into numerical data, which is its frequency component, and analyzing it.
  • Patent Literature 1 A method has been proposed for determining abnormalities in an object that moves with time, such as a mobile object (see Patent Document 1, for example).
  • frequency component data is categorized into normal and abnormal by clustering processing.
  • category classification it is necessary to learn in advance the relationship between frequency components and categories.
  • the purpose of the present disclosure is to make it possible to determine the possibility of an abnormality from numerical data having frequency components of movements of machines and people.
  • the analysis device and analysis method of the present disclosure are Holds a set of reference vector data obtained by converting target data with temporal movement into multidimensional vector data including frequency as a dimension, calculating a reference vector in a multidimensional space defined by the set of reference vector data;
  • the new data of the target is obtained, the new data is converted into new multidimensional vector data including frequency as a dimension;
  • the reference vector it is determined whether the position of the new multidimensional vector data in multidimensional space is within the region of the multidimensional space defined by the set of reference vector data.
  • the program of the present disclosure is a program for realizing a computer as each functional unit provided in the apparatus according to the present disclosure, and is a program for causing the computer to execute each step included in the method executed by the apparatus according to the present disclosure. .
  • FIG. 1 shows a system configuration example of the present disclosure; An example of the operation of the analysis device is shown. It is an example of a cluster in a multidimensional space and vector data that has begun to deviate from the cluster. An example of an algorithm for determining deviation from a cluster is shown. An example of reference vector data set ⁇ R i ⁇ , reference vector G and new multidimensional vector data X is shown.
  • FIG. 2 is an example of a two-dimensional representation of the distribution of multidimensional vector data of bearing vibration, that is, a reference map.
  • FIG. 4 is a flow chart showing an example of a data visualization method; A plot example of new multidimensional vector data X on the reference map is shown. 3 shows an example of distribution of multidimensional vector data of SAS. An example of multidimensional vector data of a plurality of motors provided in one machine is shown. An example of a state map is shown.
  • FIG. 1 shows an example of the system configuration of the present disclosure.
  • the analysis device 10 of the present disclosure includes a storage unit 11 that stores data and a signal processing unit 12 .
  • the analysis device 10 may include a communication section 13 and a display section 14 .
  • the analysis device 10 of the present disclosure can also be realized by a computer and a program, and the program can be recorded on a recording medium or provided through a network.
  • the present disclosure deals with data of temporally moving objects.
  • machine vibration and sound data detected by the sensor 20 can be exemplified. Since motion can be represented by frequency, data of an object with temporal motion can be converted into multi-dimensional vector data whose dimension is frequency.
  • the data targeted in the present disclosure is not limited to vibrations and sounds generated by machines, and can be applied to arbitrary data that can move, such as people and automobiles.
  • the analysis device 10 acquires data of an object that moves temporally and stores it in the storage unit 11 .
  • the target data may be acquired from the communication network 100 via the communication unit 13, but the present disclosure is not limited to this.
  • FIG. 2 shows an example of the operation of the analysis device 10.
  • the analysis device 10 generates a set ⁇ R i ⁇ of reference vector data from target data (S01), Calculate the reference vector G of ⁇ R i ⁇ on the multidimensional space, When new target data is acquired (S03), generating new multidimensional vector data X from new target data (S04); Using the reference vector G, the relationship between the reference vector data set ⁇ R i ⁇ and the new multidimensional vector data X is determined (S05).
  • the storage unit 11 stores data of an object that temporally moves.
  • the signal processing unit 12 divides the data into multiple segments. The division is by time relative to the data. As a result, a plurality of segments are generated by temporally dividing the motion.
  • the signal processing unit 12 generates multidimensional vector data having frequency components as dimensions for each segment (S01). As a result, a reference vector data set ⁇ R i ⁇ is generated and stored in the storage unit 11 . where i is the identifier of each segment.
  • the reference vector data forms one or more clusters in the multidimensional space, as shown in the distribution of normal data in FIG.
  • the data contained in the cluster generally exhibits a recursive movement on each dimension during normal operation, and therefore has a mountain-shaped distribution such as Gaussian distribution or binomial distribution.
  • the signal processing unit 12 calculates a reference vector G in a multidimensional space defined by the reference vector data set ⁇ R i ⁇ (S02).
  • the reference vector G is, for example, a centroid vector of a multidimensional vector composed of a set ⁇ R i ⁇ of reference vector data.
  • the new multidimensional vector data X is positioned within the cluster formed by the reference vector data set ⁇ R i ⁇ .
  • the new multidimensional vector data X begins to deviate from the normal data distribution area, like the abnormal data indicated by ⁇ in FIG.
  • the multidimensional data is represented on two dimensions using the dimensionality reduction technique. Therefore, the signal processing unit 12 determines the relationship between the reference vector data set ⁇ R i ⁇ and the new multidimensional vector data X.
  • the signal processing unit 12 determines whether the position of the new multidimensional vector data X in the multidimensional space is within the region of the multidimensional space defined by the reference vector data set ⁇ R i ⁇ .
  • the signal processing unit 12 determines the target corresponding to the new multidimensional vector data X. Determine that the state is different from the state of interest defined by the reference vector data set ⁇ R i ⁇ .
  • FIG. 4 shows an example of an algorithm executed by the signal processing section 12 in step S05.
  • the signal processing unit 12 calculates the reference vector G of the reference vector data set ⁇ R i ⁇ (S11).
  • the signal processing unit 12 uses the reference vector G to determine whether the position of the new multidimensional vector data X in the multidimensional space is within the multidimensional space region of the reference vector data set ⁇ R i ⁇ . It is determined whether or not (S12).
  • FIG. 5 shows an example of the reference vector data set ⁇ R i ⁇ , the reference vector G and the new multidimensional vector data X.
  • X is within the region of ⁇ R i ⁇
  • the component in the same direction as the vector (XG) connecting the dimension vector and the reference vector G can be compared with the length
  • the signal processing unit 12 determines that the new multidimensional vector data X is within the cluster if (XG, R i -G) ⁇
  • the signal processing unit 12 can determine that it is outside the cluster if ⁇ >0, and it can determine that it is inside the cluster if ⁇ 0.
  • a determination threshold ⁇ th is set in order to allow for a certain amount of error. It would be common to assume that
  • the simplest method is a method of "regarding a plurality of clusters as one cluster".
  • new data generally begin to deviate from any cluster. Therefore, even if a plurality of clusters are regarded as one cluster, at least part of the data can be judged to be abnormal by the above judgment method.
  • the above method can be applied to each cluster by calculating the reference vector G for each cluster in step S11.
  • This method is effective when a plurality of clusters are clearly separated, but cannot be said to be effective when the clusters overlap.
  • the target is an actual machine or the like, it is considered realistic to apply the simple method described above.
  • the present disclosure determines the relationship between the set of reference vector data ⁇ R i ⁇ and the new multidimensional vector data X using a geometric algorithm using the coordinates of the data in the multidimensional space. do.
  • the degree of freedom in designing the customer's operation system is greatly improved, and the cost can be greatly reduced.
  • the reference vector G is the centroid of the multidimensional vector data set ⁇ R i ⁇ .
  • the reference vector G is set in the outer region of the multidimensional vector data set ⁇ R i ⁇ .
  • the origin O of the multidimensional vector data forming the reference vector data is used as the reference vector.
  • the deterioration is almost always caused by an increase in the amplitude of the motion.
  • the change in amplitude is slight at the beginning of deterioration, the amplitude increases as deterioration progresses.
  • the shape of the spectrum also changes. In order to detect such movements, it is effective to use the origin, ie, the point where all frequency components are zero, as the reference vector.
  • FIG. 6 An example of the distribution of bearing vibration data is shown in FIG.
  • the amplitude of vibration is constant under normal conditions, so data is distributed on the surface of a multidimensional sphere in multidimensional space.
  • the spread of the distribution represents the variation of the frequency spectrum.
  • FIG. 6 shows the distribution of this data two-dimensionally.
  • ⁇ R i ⁇ be a set of normal reference vector data
  • R max be the R i with the maximum inner product (X, R i ).
  • a display to the effect that there is a possibility of abnormality may be displayed on the display unit 14 .
  • the stage at which the warning is issued is arbitrary, and the threshold for issuing the warning may be settable.
  • the divergence index ⁇ quantifies the degree of actual deterioration. Therefore, an alarm may be issued according to the divergence index ⁇ .
  • the signal processing unit 12 plots the reference vector data set ⁇ R i ⁇ on a two-dimensional plane to create a reference map. Furthermore, when new multidimensional vector data X is obtained, it is plotted on the reference map.
  • the overall algorithm is explained in FIG. Steps S01 to S05 shown in FIG. 7 are as described in the first embodiment.
  • the signal processing unit 12 When the signal processing unit 12 generates the reference vector data set ⁇ R i ⁇ (S01), the number of dimensions of the multidimensional reference vector data is reduced to two, and the reference vector data set ⁇ R i ⁇ is reduced to two dimensions. A reference map plotted on a plane is created (S21). Then, when the new multidimensional vector data X is generated (S04), the signal processing unit 12 calculates the plot position of the new multidimensional vector data X on the reference map (S22), and generates new multidimensional vector data X on the reference map. A two-dimensional map on which the dimensional vector data X is plotted is displayed on the display unit 14 (S23).
  • toorPIA or t-SNE T-distRibated Stochastic Neighbor Embedding
  • machine learning or any other dimensionality reduction algorithm
  • the method of plotting the two-dimensional vector data ⁇ corresponding to the new multidimensional vector data X on the reference map is arbitrary, and various methods can be adopted.
  • One method is to maintain the geometric relationship between the reference vectors G, R max and X in the multidimensional space on the two-dimensional map, and to point g and R max on the reference map corresponding to G This is a method of determining the point of the two-dimensional vector data ⁇ on the X reference map from the position of the corresponding point r max on the reference map.
  • R near that is angularly closest to the new multidimensional vector data X in the multidimensional space is extracted from the reference vector data set ⁇ R i ⁇ . Specifically, if the point on the reference map corresponding to R near is r near , the position of the two-dimensional vector data ⁇ on the reference map corresponding to X as shown in FIG. 8 is expressed below.
  • r near is a point corresponding to R near on the reference map.
  • SAS Sleep Apnea Syndrome
  • This technology can also be applied to detecting abnormalities in biological information and grasping conditions.
  • Sleep apnea syndrome SAS: Sleep Apnea Syndrome
  • SAS Sleep Apnea Syndrome
  • a major obstacle to the treatment of SAS is that simple examinations, which are the first step in determining the suitability of treatment, are troublesome and time consuming. This technology is effective in realizing a simple method that replaces this simple inspection.
  • the analysis apparatus 10 of the present embodiment acquires breath sounds recorded by a smartphone or the like during sleep, and divides the breath sounds into segments of about one minute, which are predetermined time widths. , segment by segment into frequency components and compute spectral data. Spectral data is multidimensional vector data, and segment data is distributed in multidimensional space.
  • the distribution range of the segment data of the healthy person is assumed to be the distribution range of the normal respiratory data.
  • a new subject's breath sound data is obtained, it is arranged at one point in this multidimensional space by converting it into vector data for each segment.
  • the center of gravity of the normal respiration data as a reference vector, it is possible to determine whether the subject data is within the distribution range of the normal respiration data (normal segment) or outside the distribution range (abnormal segment).
  • An indication of the subject's degree of SAS is obtained based on what percentage of the subject's total segment data in a given period of time is normal segments.
  • an area that is wider (or narrower) than the normal area to some extent may be used to determine the abnormal segment in order to determine that the subject's segment is abnormal.
  • Fig. 9 shows an example distribution of segment data for patients with various types of SAS and those without symptoms of SAS.
  • the center of gravity of the normal respiration data is used as a reference vector, and the multidimensional space data is displayed two-dimensionally by dimensionality reduction.
  • Segment abnormal breathing patterns include "obstructive type", "central type”, “hypopnea type”, and "mixed type", and in general, each type of segment is distributed in a different area in multidimensional space. can be done.
  • a subject's SAS type can also be determined based on which region the subject's segments are distributed.
  • a machine for example, a robot
  • the analysis device 10 of the present embodiment acquires load information such as current, voltage and torque of each motor provided in the machine, vibration and sound information, and the like, and converts them into multidimensional vector data.
  • load information such as current, voltage and torque of each motor provided in the machine, vibration and sound information, and the like
  • Fig. 10 shows an example of multidimensional vector data of each motor provided in one machine.
  • the figure shows an example of plotting on a two-dimensional plane according to the degree of similarity of each piece of multidimensional vector data.
  • the multidimensional vector data of each motor is distributed in defined areas M11, M21, M31, M41, M51, M61 in the multidimensional space.
  • a set of multi-dimensional vector data of each motor thus obtained becomes reference vector data of each motor.
  • Step 1) Create reference vector data for a plurality of motors for each machine (Fig. 10).
  • Step 2) When new target data is acquired, the "degree of divergence" of the new data from the reference vector data is calculated for each machine and each motor.
  • Step 3) Six-dimensional vector data whose dimension is the "degree of divergence" for each motor is created for each machine. In this embodiment, this 6-dimensional vector data is referred to as state vector data of the machine.
  • Step 4) If there are multiple machines, use each machine's set of state vector data to create a plane map. In this embodiment, this plane map is called a state map.
  • a value of each dimension of the state vector data represents an abnormality of each motor.
  • Step 5 Using the state vector data, it is visualized which of the 6 motors is worse than the others.
  • This disclosure can be applied to the information and communications industry.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Acoustics & Sound (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Pulmonology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Physiology (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

The purpose of the present invention is to make it possible to check whether or not there is a possibility of abnormality from numerical data including frequency components of machine or human motion. The present invention provides an analyzing device. The analyzing device stores a set of reference vector data obtained by converting data concerning a subject involving temporal motion into multidimensional vector data including frequency as a dimension, calculates a reference vector for a multidimensional space defined by the set of reference vector data, converts, upon acquiring new data concerning the subject, the new data into new multidimensional vector data including frequency as a dimension, and determines, by using the reference vector, whether or not the position of the new multidimensional vector data in the multidimensional space falls within the region of the multidimensional space defined by the set of reference vector data.

Description

解析装置及び解析方法Analysis device and analysis method
 本開示は、対象の動きをその周波数成分である数値データに変換して解析する解析装置及び解析方法に関する。 The present disclosure relates to an analysis apparatus and an analysis method for converting the movement of an object into numerical data, which is its frequency component, and analyzing it.
 移動体などの時間的に動きのある対象の異常を判定する方法が提案されている(例えば、特許文献1参照。)。特許文献1では、周波数成分のデータをクラスタリング処理によって正常と異常にカテゴリ分類する。カテゴリ分類のためには、周波数成分とカテゴリの関係を予め学習する必要がある。 A method has been proposed for determining abnormalities in an object that moves with time, such as a mobile object (see Patent Document 1, for example). In Patent Literature 1, frequency component data is categorized into normal and abnormal by clustering processing. For category classification, it is necessary to learn in advance the relationship between frequency components and categories.
 周波数成分を有する数値データの場合、共通の特徴的な周波数成分を抽出することが難しい。例えば同じ型の機械でも個性があり、特徴的な周波数成分の組み合わせは機械ごとに異なる。このため、周波数成分とカテゴリの関係を予め学習することは非常に困難である。 In the case of numerical data with frequency components, it is difficult to extract common characteristic frequency components. For example, even machines of the same type have individuality, and the combination of characteristic frequency components differs from machine to machine. Therefore, it is very difficult to learn in advance the relationship between frequency components and categories.
特開2012-58171号公報JP 2012-58171 A
 本開示は、機械や人の動きの周波数成分を有する数値データから、異常の可能性の有無を判定可能にすることを目的とする。 The purpose of the present disclosure is to make it possible to determine the possibility of an abnormality from numerical data having frequency components of movements of machines and people.
 本開示の解析装置及び解析方法は、
 時間的に動きのある対象のデータを、周波数を次元に含む多次元ベクトルデータに変換した、参照ベクトルデータの集合を保持し、
 前記参照ベクトルデータの集合で定められる多次元空間の基準ベクトルを算出し、
 前記対象の新たなデータを取得すると、当該新たなデータを、周波数を次元に含む新たな多次元ベクトルデータに変換し、
 前記基準ベクトルを用いて、多次元空間における前記新たな多次元ベクトルデータの位置が、前記参照ベクトルデータの集合で定められる多次元空間の領域内であるか否かを判定する。
The analysis device and analysis method of the present disclosure are
Holds a set of reference vector data obtained by converting target data with temporal movement into multidimensional vector data including frequency as a dimension,
calculating a reference vector in a multidimensional space defined by the set of reference vector data;
When the new data of the target is obtained, the new data is converted into new multidimensional vector data including frequency as a dimension;
Using the reference vector, it is determined whether the position of the new multidimensional vector data in multidimensional space is within the region of the multidimensional space defined by the set of reference vector data.
 本開示のプログラムは、本開示に係る装置に備わる各機能部としてコンピュータを実現させるためのプログラムであり、本開示に係る装置が実行する方法に備わる各ステップをコンピュータに実行させるためのプログラムである。 The program of the present disclosure is a program for realizing a computer as each functional unit provided in the apparatus according to the present disclosure, and is a program for causing the computer to execute each step included in the method executed by the apparatus according to the present disclosure. .
本開示によれば、周波数成分を有する数値データであっても、異常の可能性の有無を判定可能にすることができる。 According to the present disclosure, it is possible to determine whether or not there is a possibility of abnormality even in numerical data having frequency components.
本開示のシステム構成例を示す。1 shows a system configuration example of the present disclosure; 解析装置の動作の一例を示す。An example of the operation of the analysis device is shown. 多次元空間におけるクラスタと、クラスタから乖離し始めたベクトルデータの一例である。It is an example of a cluster in a multidimensional space and vector data that has begun to deviate from the cluster. クラスタからの乖離を判定するアルゴリズムの一例を示す。An example of an algorithm for determining deviation from a cluster is shown. 参照ベクトルデータの集合{R}、基準ベクトルG及び新たな多次元ベクトルデータXの一例を示す。An example of reference vector data set {R i }, reference vector G and new multidimensional vector data X is shown. ベアリングの振動の多次元ベクトルデータの分布を2次元上に表した図、すなわち参照マップの一例である。FIG. 2 is an example of a two-dimensional representation of the distribution of multidimensional vector data of bearing vibration, that is, a reference map. データの可視化方法の一例を示すフロー図である。FIG. 4 is a flow chart showing an example of a data visualization method; 参照マップ上での新たな多次元ベクトルデータXのプロット例を示す。A plot example of new multidimensional vector data X on the reference map is shown. SASの多次元ベクトルデータの分布の分布例を示す。3 shows an example of distribution of multidimensional vector data of SAS. 1つの機械に備わる複数のモーターの多次元ベクトルデータの一例を示す。An example of multidimensional vector data of a plurality of motors provided in one machine is shown. 状態マップの一例を示す。An example of a state map is shown.
 以下、本開示の実施形態について、図面を参照しながら詳細に説明する。なお、本開示は、以下に示す実施形態に限定されるものではない。これらの実施の例は例示に過ぎず、本開示は当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. Note that the present disclosure is not limited to the embodiments shown below. These implementation examples are merely illustrative, and the present disclosure can be implemented in various modified and improved forms based on the knowledge of those skilled in the art. In addition, in this specification and the drawings, constituent elements having the same reference numerals are the same as each other.
(第1の実施形態)
 図1に、本開示のシステム構成の一例を示す。本開示の解析装置10は、データを記憶する記憶部11、信号処理部12を備える。解析装置10は、通信部13及び表示部14を備えていてもよい。本開示の解析装置10はコンピュータとプログラムによっても実現でき、プログラムを記録媒体に記録することも、ネットワークを通して提供することも可能である。
(First embodiment)
FIG. 1 shows an example of the system configuration of the present disclosure. The analysis device 10 of the present disclosure includes a storage unit 11 that stores data and a signal processing unit 12 . The analysis device 10 may include a communication section 13 and a display section 14 . The analysis device 10 of the present disclosure can also be realized by a computer and a program, and the program can be recorded on a recording medium or provided through a network.
(対象とするデータ)
 本開示では、時間的に動きのある対象のデータの処理を行う。例えば、センサ20で検出された機械の振動や音のデータが例示できる。動きは周波数で表すことができるため、時間的に動きのある対象のデータは周波数を次元とした多次元ベクトルデータに変換することができる。本開示において対象とするデータは、機械の発する振動や音に限らず、人や自動車などの動くことの可能な任意のデータに適用することができる。
(target data)
The present disclosure deals with data of temporally moving objects. For example, machine vibration and sound data detected by the sensor 20 can be exemplified. Since motion can be represented by frequency, data of an object with temporal motion can be converted into multi-dimensional vector data whose dimension is frequency. The data targeted in the present disclosure is not limited to vibrations and sounds generated by machines, and can be applied to arbitrary data that can move, such as people and automobiles.
 解析装置10は、時間的に動きのある対象のデータを取得し、記憶部11に保持する。対象のデータの取得は、通信部13を介して通信ネットワーク100から取得してもよいが、本開示はこれに限定されない。 The analysis device 10 acquires data of an object that moves temporally and stores it in the storage unit 11 . The target data may be acquired from the communication network 100 via the communication unit 13, but the present disclosure is not limited to this.
 図2に、解析装置10の動作の一例を示す。
 解析装置10は、対象のデータから参照ベクトルデータの集合{R}を生成し(S01)、
 多次元空間上における{R}の基準ベクトルGを算出し、
 新たな対象のデータを取得すると(S03)、
 新たな対象のデータから新たな多次元ベクトルデータXを生成し(S04)、
 基準ベクトルGを用いて、参照ベクトルデータの集合{R}と新たな多次元ベクトルデータXとの関係性を判定する(S05)。
FIG. 2 shows an example of the operation of the analysis device 10. As shown in FIG.
The analysis device 10 generates a set {R i } of reference vector data from target data (S01),
Calculate the reference vector G of {R i } on the multidimensional space,
When new target data is acquired (S03),
generating new multidimensional vector data X from new target data (S04);
Using the reference vector G, the relationship between the reference vector data set {R i } and the new multidimensional vector data X is determined (S05).
(参照ベクトルデータの生成S01)
 記憶部11は、時間的に動きのある対象のデータを記憶する。信号処理部12は、データを複数のセグメントに分割する。分割は、データに関連する時間によって行う。これにより、動きを時間的に分割した複数のセグメントが生成される。信号処理部12は、セグメント毎に、周波数成分を次元に有する多次元ベクトルデータを生成する(S01)。これにより、参照ベクトルデータの集合{R}が生成され、記憶部11に保持される。ここで、iは各セグメントの識別子である。
(Generation of reference vector data S01)
The storage unit 11 stores data of an object that temporally moves. The signal processing unit 12 divides the data into multiple segments. The division is by time relative to the data. As a result, a plurality of segments are generated by temporally dividing the motion. The signal processing unit 12 generates multidimensional vector data having frequency components as dimensions for each segment (S01). As a result, a reference vector data set {R i } is generated and stored in the storage unit 11 . where i is the identifier of each segment.
 時間的に動きのある対象が正常である場合、参照ベクトルデータは、多次元空間上において、図3の正常データの分布に示すように、一つ又は複数のクラスタを構成する。それぞれのクラスタ内において、そのクラスタに含まれるデータは、正常時には一般的には各次元上で回帰的な動きをするため、ガウス分布や2項分布などの山型の分布をしている。 When an object that moves temporally is normal, the reference vector data forms one or more clusters in the multidimensional space, as shown in the distribution of normal data in FIG. In each cluster, the data contained in the cluster generally exhibits a recursive movement on each dimension during normal operation, and therefore has a mountain-shaped distribution such as Gaussian distribution or binomial distribution.
(基準ベクトルGの算出S02)
 信号処理部12は、参照ベクトルデータの集合{R}で定められる多次元空間の基準ベクトルGを算出する(S02)。基準ベクトルGは、例えば、参照ベクトルデータの集合{R}で構成される多次元ベクトルの重心ベクトルである。
(Calculation S02 of reference vector G)
The signal processing unit 12 calculates a reference vector G in a multidimensional space defined by the reference vector data set {R i } (S02). The reference vector G is, for example, a centroid vector of a multidimensional vector composed of a set {R i } of reference vector data.
(新たなデータの取得と多次元ベクトルデータ化S03,S04)
 新たな対象のデータを取得すると(S03)、周波数成分を抽出し、周波数成分を次元に有する多次元ベクトルデータに変換する。これにより、新たな多次元ベクトルデータXが生成される(S04)。
(Acquisition of new data and conversion to multidimensional vector data S03, S04)
When new target data is acquired (S03), frequency components are extracted and converted into multidimensional vector data having the frequency components as dimensions. As a result, new multidimensional vector data X is generated (S04).
(関係性の判定S05)
 判定対象が正常の時、新たな多次元ベクトルデータXは参照ベクトルデータの集合{R}で形成されるクラスタ内に位置する。判定対象になんらかの異常が生じると、新たな多次元ベクトルデータXは、図3の▲で示される異常データのように、正常データの分布領域から乖離し始める。ただし図3では、次元低減手法を用いて多次元データを2次元上に表している。そこで、信号処理部12は、参照ベクトルデータの集合{R}と新たな多次元ベクトルデータXとの関係性を判定する。例えば、信号処理部12は、多次元空間における新たな多次元ベクトルデータXの位置が、参照ベクトルデータの集合{R}で定められる多次元空間の領域内であるか否かを判定する。
(Relationship determination S05)
When the determination target is normal, the new multidimensional vector data X is positioned within the cluster formed by the reference vector data set {R i }. When some kind of abnormality occurs in the determination target, the new multidimensional vector data X begins to deviate from the normal data distribution area, like the abnormal data indicated by ▴ in FIG. However, in FIG. 3, the multidimensional data is represented on two dimensions using the dimensionality reduction technique. Therefore, the signal processing unit 12 determines the relationship between the reference vector data set {R i } and the new multidimensional vector data X. FIG. For example, the signal processing unit 12 determines whether the position of the new multidimensional vector data X in the multidimensional space is within the region of the multidimensional space defined by the reference vector data set {R i }.
 多次元空間における新たな多次元ベクトルデータXの位置が参照ベクトルデータの集合{R}で定められる領域外である場合、信号処理部12は、新たな多次元ベクトルデータXに対応した対象の状態が、参照ベクトルデータの集合{R}で定められる対象の状態と異なると判定する。 If the position of the new multidimensional vector data X in the multidimensional space is outside the region defined by the reference vector data set {R i }, the signal processing unit 12 determines the target corresponding to the new multidimensional vector data X. Determine that the state is different from the state of interest defined by the reference vector data set {R i }.
 図4に、ステップS05において信号処理部12が実行するアルゴリズムの一例を示す。
 最初に、参照ベクトルデータの集合{R}中のクラスタが一つの場合を扱う。
 信号処理部12は、参照ベクトルデータの集合{R}の基準ベクトルGを算出する(S11)。
 次に、信号処理部12は、基準ベクトルGを用いて、多次元空間における新たな多次元ベクトルデータXの位置が、参照ベクトルデータの集合{R}の多次元空間の領域内であるかどうかの判定を行う(S12)。
FIG. 4 shows an example of an algorithm executed by the signal processing section 12 in step S05.
First, we deal with the case where there is one cluster in the reference vector data set {R i }.
The signal processing unit 12 calculates the reference vector G of the reference vector data set {R i } (S11).
Next, the signal processing unit 12 uses the reference vector G to determine whether the position of the new multidimensional vector data X in the multidimensional space is within the multidimensional space region of the reference vector data set {R i }. It is determined whether or not (S12).
 図5に、参照ベクトルデータの集合{R}、基準ベクトルG及び新たな多次元ベクトルデータXの一例を示す。Xが{R}の領域内であるかどうかは、参照ベクトルデータに含まれる多次元ベクトルRと基準ベクトルGを結ぶベクトル(R-G)の、新たな多次元ベクトルデータXの多次元ベクトルと基準ベクトルGを結ぶベクトル(X-G)と同方向の成分を、ベクトル(X-G)の長さ|X-G|とを比較し、その大小関係で判定を行うことができる。 FIG. 5 shows an example of the reference vector data set {R i }, the reference vector G and the new multidimensional vector data X. In FIG. Whether or not X is within the region of {R i } is determined by multiplying the new multidimensional vector data X by the vector (R i −G) connecting the multidimensional vector R i included in the reference vector data and the reference vector G. The component in the same direction as the vector (XG) connecting the dimension vector and the reference vector G can be compared with the length |XG| of the vector (XG), and the magnitude relation can be used for determination. .
 例えば、信号処理部12は、クラスタに含まれる全てのiについて、(X-G,R-G)≧|X-G|であれば、新たな多次元ベクトルデータXはクラスタ内と判定することができる。ここで、(x,y)はx,yの内積である。一方、信号処理部12は、クラスタに含まれるすべてのiについて、(X-G,R-G)≦|X-G|であれば、新たな多次元ベクトルデータXはクラスタ外と判定する(S16)。ここで、(x,y)はx,yの内積である。 For example, the signal processing unit 12 determines that the new multidimensional vector data X is within the cluster if (XG, R i -G)≧|XG| 2 for all i included in the cluster. can do. where (x, y) is the inner product of x, y. On the other hand, the signal processing unit 12 determines that the new multidimensional vector data X is outside the cluster if (XG, R i -G)≦|XG| 2 for all i included in the cluster. (S16). where (x, y) is the inner product of x, y.
 信号処理部12は、参照ベクトルデータの集合{R}に対応し、新たな多次元ベクトルデータXがどの程度乖離しているかを示す乖離度指標ρを算出してもよい。(X-G,R-G)が最大となるRをRmaxとすると、乖離度指標ρは、例えば、次式を用いて算出することができる。
(数1)
 ρ=|X-G|/(X-G,Rmax-G)-1   (1)
The signal processing unit 12 may calculate a divergence index ρ indicating how much the new multidimensional vector data X diverges from the reference vector data set {R i }. Assuming that R i at which (XG, R i -G) is maximum is R max , the divergence index ρ can be calculated using, for example, the following equation.
(Number 1)
ρ=|X−G| 2 /(X−G, R max −G)−1 (1)
 この式を用いた場合、信号処理部12は、ρ>0であればクラスタ外であると判定し、ρ<0であればクラスタ内であると判定することができる。ρが大きいほど、クラスタから乖離している。このため、本開示は乖離度指標ρを定量化することができる。なお、実際の運用の際には、一定の誤差を見込むため、判定閾値ρthを設定し、ρ≧ρthであればクラスタ外であると判定し、ρ<ρthであればクラスタ内であると判定するのが一般的であろう。 When using this formula, the signal processing unit 12 can determine that it is outside the cluster if ρ>0, and it can determine that it is inside the cluster if ρ<0. The larger ρ is, the more it deviates from the cluster. Therefore, the present disclosure can quantify the divergence index ρ. In actual operation, a determination threshold ρ th is set in order to allow for a certain amount of error. It would be common to assume that
 次に、参照ベクトルデータの集合{R}中のクラスタが複数の場合を考える。
 その場合、最も簡便な方法は、「複数のクラスタを一つのクラスタと見做す」方法である。異常が発生すると、一般的には新たなデータはいずれのクラスタからも乖離を始める。したがって、複数のクラスタを一つのクラスタと見做しても、上記の判定方法により少なくとも一部のデータについては異常と判定できる。
Next, consider a case where there are a plurality of clusters in the reference vector data set {R i }.
In that case, the simplest method is a method of "regarding a plurality of clusters as one cluster". When an anomaly occurs, new data generally begin to deviate from any cluster. Therefore, even if a plurality of clusters are regarded as one cluster, at least part of the data can be judged to be abnormal by the above judgment method.
 一方、それぞれのクラスタ単位で新たなデータの異常性を判定することで、判定精度を向上させることが可能である。その場合、ステップS11において、それぞれのクラスタ単位で基準ベクトルGを算出することで、上記の方法をクラスタ単位に適用することができる。複数のクラスタが明確に分離している場合は、本方法が有効であるが、クラスタがオーバーラップしているような場合は、有効と言えない。参考までに、本方法は前クラスタ全てに適用しなくとも、一つのクラスタに着目して適用するのが現実的であろう。
 実際の機械などを対象とした場合、先に説明した簡便な方法を適用するのが現実的と考えられる。
On the other hand, it is possible to improve the judgment accuracy by judging the abnormality of new data for each cluster. In that case, the above method can be applied to each cluster by calculating the reference vector G for each cluster in step S11. This method is effective when a plurality of clusters are clearly separated, but cannot be said to be effective when the clusters overlap. For reference, it would be realistic to focus on one cluster and apply this method, even if it does not apply to all previous clusters.
When the target is an actual machine or the like, it is considered realistic to apply the simple method described above.
 このように、本開示は、多次元空間上のデータの座標を使った幾何学的アルゴリズムを用いて、参照ベクトルデータの集合{R}と新たな多次元ベクトルデータXとの関係性を判定する。これにより、顧客の運用システムの設計自由度が格段に向上し、コストも大きく低減できる。 Thus, the present disclosure determines the relationship between the set of reference vector data {R i } and the new multidimensional vector data X using a geometric algorithm using the coordinates of the data in the multidimensional space. do. As a result, the degree of freedom in designing the customer's operation system is greatly improved, and the cost can be greatly reduced.
(第2の実施形態)
 第1の実施形態では、基準ベクトルGを、多次元ベクトルデータの集合{R}の重心とした。ここでは、多次元ベクトルデータの集合{R}の外側領域に基準ベクトルGを設定したケースを示す。具体的には、参照ベクトルデータを構成する多次元ベクトルデータの原点Oを基準ベクトルとする。
(Second embodiment)
In the first embodiment, the reference vector G is the centroid of the multidimensional vector data set {R i }. Here, a case is shown in which the reference vector G is set in the outer region of the multidimensional vector data set {R i }. Specifically, the origin O of the multidimensional vector data forming the reference vector data is used as the reference vector.
 ベアリングのように、動きが単調な対象の場合、劣化は動きの振幅が増大する場合がほとんどである。劣化初期は振幅の変化はわずかであるが、劣化が進むに従い振幅が大きくなる。同時にスペクトルの形状も変化する。このような動きを検出するには、原点すなわち全ての周波数成分がゼロの点を基準ベクトルに取る方法が有効である。 In the case of objects with monotonous motion, such as bearings, the deterioration is almost always caused by an increase in the amplitude of the motion. Although the change in amplitude is slight at the beginning of deterioration, the amplitude increases as deterioration progresses. At the same time, the shape of the spectrum also changes. In order to detect such movements, it is effective to use the origin, ie, the point where all frequency components are zero, as the reference vector.
 ベアリングの振動データの分布の一例を図6に示す。ベアリングの場合、正常時は振動幅も一定であるため、多次元空間では多次元の球の表面にデータが分布している。分布の広がりは周波数スペクトルの変動を表す。このデータの分布を2次元上に表したのが図6である。 An example of the distribution of bearing vibration data is shown in FIG. In the case of bearings, the amplitude of vibration is constant under normal conditions, so data is distributed on the surface of a multidimensional sphere in multidimensional space. The spread of the distribution represents the variation of the frequency spectrum. FIG. 6 shows the distribution of this data two-dimensionally.
 参照ベクトルデータに正常データを用いることで、新たな多次元ベクトルデータXの異常を判定し、さらに正常データからの乖離を評価することができる。具体的には数式(1)と同様に乖離度指標は以下のように定義できる。
(数2)
 ρ=|X|/(X,Rmax)-1   (2)
ここで、本実施形態では、正常な参照ベクトルデータの集合を{R}とし、そのうち内積(X,R)が最大となるRをRmaxとする。
By using normal data as the reference vector data, it is possible to determine whether the new multidimensional vector data X is abnormal and to evaluate the deviation from the normal data. Specifically, the divergence index can be defined as follows in the same manner as in Equation (1).
(Number 2)
ρ=|X| 2 /(X, R max )−1 (2)
Here, in the present embodiment, let {R i } be a set of normal reference vector data, and let R max be the R i with the maximum inner product (X, R i ).
 新たな多次元ベクトルデータXに異常の兆しがある場合は、異常の可能性がある旨の表示を表示部14に表示してもよい。なお、どの段階で警報を発出するかは任意であり、警報を発出する閾値は設定可能であってもよい。乖離度指標ρは、実際の劣化の程度を定量化している。このため、乖離度指標ρに応じた警報を発出してもよい。 If there is a sign of abnormality in the new multidimensional vector data X, a display to the effect that there is a possibility of abnormality may be displayed on the display unit 14 . It should be noted that the stage at which the warning is issued is arbitrary, and the threshold for issuing the warning may be settable. The divergence index ρ quantifies the degree of actual deterioration. Therefore, an alarm may be issued according to the divergence index ρ.
 本実施形態では、新たなデータを用いた正常/異常の判定を、簡単なアルゴリズムでかつ短時間で行うことができる。追加データのマッピングも乖離度指標ρの計算も、通常のコンピュータで簡単に計算可能である。また、既存の機械のオペレーションシステムに簡単に組み込める。 In this embodiment, it is possible to determine normality/abnormality using new data with a simple algorithm and in a short time. Both the mapping of the additional data and the calculation of the divergence index ρ can be easily calculated with a normal computer. It can also be easily integrated into existing machine operating systems.
(第3の実施形態)
 実際の機械設備などの保守の現場では、設備の劣化状況の可視化効果が大きい。しかしながら、多次元空間のデータはそのままでは可視化できないため、2次元上に表示する必要があり、ここではその方法の一例を説明する。
(Third embodiment)
In the field of maintenance of actual machinery and equipment, the effect of visualizing the deterioration of equipment is great. However, since the data in the multidimensional space cannot be visualized as it is, it must be displayed in two dimensions, and an example of this method will be described here.
 信号処理部12は、参照ベクトルデータの集合{R}を2次元上にプロットし参照マップを作成する。さらに、新たな多次元ベクトルデータXを取得すると参照マップ上にプロットする。図7で全体のアルゴリズムを説明する。図7に示すステップS01~S05については第1の実施形態で述べたとおりである。 The signal processing unit 12 plots the reference vector data set {R i } on a two-dimensional plane to create a reference map. Furthermore, when new multidimensional vector data X is obtained, it is plotted on the reference map. The overall algorithm is explained in FIG. Steps S01 to S05 shown in FIG. 7 are as described in the first embodiment.
 信号処理部12は、参照ベクトルデータの集合{R}を生成すると(S01)、多次元の参照ベクトルデータの次元数を2次元に低減し、参照ベクトルデータの集合{R}の2次元平面上にプロットした参照マップを作成する(S21)。
 そして、信号処理部12は、新たな多次元ベクトルデータXを生成すると(S04)、参照マップ上における新たな多次元ベクトルデータXのプロット位置を算出し(S22)、参照マップ上に新たな多次元ベクトルデータXがプロットされた2次元マップを表示部14に表示する(S23)。
When the signal processing unit 12 generates the reference vector data set {R i } (S01), the number of dimensions of the multidimensional reference vector data is reduced to two, and the reference vector data set {R i } is reduced to two dimensions. A reference map plotted on a plane is created (S21).
Then, when the new multidimensional vector data X is generated (S04), the signal processing unit 12 calculates the plot position of the new multidimensional vector data X on the reference map (S22), and generates new multidimensional vector data X on the reference map. A two-dimensional map on which the dimensional vector data X is plotted is displayed on the display unit 14 (S23).
 参照ベクトルデータの集合{R}の2次元平面上へのプロット方法は、toorPIA又はt-SNE(T-distRibuted Stochastic NeighboR Embedding)、機械学習、その他任意の次元削減アルゴリズムを用いることができる。 As a method of plotting the reference vector data set {R i } on a two-dimensional plane, toorPIA or t-SNE (T-distRibated Stochastic Neighbor Embedding), machine learning, or any other dimensionality reduction algorithm can be used.
 参照マップ上に新たな多次元ベクトルデータXに相当する2次元ベクトルデータχをプロットする方法は任意であり、種々の方法を採用することができる。 The method of plotting the two-dimensional vector data χ corresponding to the new multidimensional vector data X on the reference map is arbitrary, and various methods can be adopted.
 一つの方法は、多次元空間の基準ベクトルG、Rmax、Xの3点の幾何学的関係を2次元マップ上でも維持するとして、Gに相当する参照マップ上の点g、及びRmaxに相当する参照マップ上の点rmaxの位置からXの参照マップ上の2次元ベクトルデータχの点を決定する方法である。 One method is to maintain the geometric relationship between the reference vectors G, R max and X in the multidimensional space on the two-dimensional map, and to point g and R max on the reference map corresponding to G This is a method of determining the point of the two-dimensional vector data χ on the X reference map from the position of the corresponding point r max on the reference map.
 別の方法としては、参照ベクトルデータの集合{R}のうち、多次元空間中で新たな多次元ベクトルデータXに角度的に最も近いRnearを抽出する。具体的には、Rnearに相当する参照マップ上の点をrnearとすると、図8に示すようにXに相当する参照マップ上での2次元ベクトルデータχの位置を以下で表す。
Figure JPOXMLDOC01-appb-M000001
ここで、rnearは参照マップ上のRnearに相当する点である。
As another method, R near that is angularly closest to the new multidimensional vector data X in the multidimensional space is extracted from the reference vector data set {R i }. Specifically, if the point on the reference map corresponding to R near is r near , the position of the two-dimensional vector data χ on the reference map corresponding to X as shown in FIG. 8 is expressed below.
Figure JPOXMLDOC01-appb-M000001
Here, r near is a point corresponding to R near on the reference map.
 参照マップ上の2次元ベクトルデータχのプロット方法としては、他にも多くの方法が考えられる。いずれにしても、もともと多次元空間上でのベクトルの位置を、2次元の参照マップ上に正確に再現することは不可能であるため、いずれの方法も近似的な手法となる。 There are many other possible methods for plotting the two-dimensional vector data χ on the reference map. In any case, since it is originally impossible to accurately reproduce the position of the vector on the multidimensional space on the two-dimensional reference map, any method is an approximation method.
 2次元の参照マップを使った新たな多次元ベクトルデータXを表示することで、判定対象の状態の変化をリアルタイムで把握可能になり、判定対象の劣化の様子を視覚的にリアルタイムで把握できるようにすることができる。 By displaying new multi-dimensional vector data X using a two-dimensional reference map, it becomes possible to grasp changes in the state of the object to be judged in real time, and to visually grasp the state of deterioration of the object to be judged in real time. can be
(第4の実施形態)
 本技術は、生体情報の異常検知や状態把握にも適用できる。睡眠時無呼吸症候群(SAS: Sleep Apnea Syndrome)は、世界中に数億人の患者がいて、交通事故などの事故リスクや基礎疾患を持つ患者の死亡リスクを5~7倍に引き上げると言われている。現在、SASの治療の大きな障害となっているのが、治療の適否の判断の第一段階である簡易検査が面倒で時間がかかることである。この簡易検査に代わる簡単な方式の実現に本技術が有効である。
(Fourth embodiment)
This technology can also be applied to detecting abnormalities in biological information and grasping conditions. Sleep apnea syndrome (SAS: Sleep Apnea Syndrome) affects hundreds of millions of people around the world, and is said to increase the risk of accidents such as traffic accidents and the risk of death in patients with underlying diseases by 5 to 7 times. ing. At present, a major obstacle to the treatment of SAS is that simple examinations, which are the first step in determining the suitability of treatment, are troublesome and time consuming. This technology is effective in realizing a simple method that replaces this simple inspection.
 具体的には、本実施形態の解析装置10は、睡眠中の呼吸音をスマートフォンなどで録音したものを取得し、その呼吸音を予め定められた時間幅である1分程度のセグメントに分割し、セグメントごとに周波数成分に変換し、スペクトルデータを計算する。スペクトルデータは多次元のベクトルデータであり、セグメントデータは多次元空間に分布する。 Specifically, the analysis apparatus 10 of the present embodiment acquires breath sounds recorded by a smartphone or the like during sleep, and divides the breath sounds into segments of about one minute, which are predetermined time widths. , segment by segment into frequency components and compute spectral data. Spectral data is multidimensional vector data, and segment data is distributed in multidimensional space.
 患者や健康な人の睡眠中の呼吸音データから、標準的な呼吸音セグメントの多次元空間分布を得ることができる。ここで、健康な人のセグメントデータの分布範囲を正常呼吸データの分布範囲とする。新たな被験者の呼吸音データが得られると、セグメントごとにベクトルデータに変換することで、この多次元空間内の1点に配置される。 From respiratory sound data during sleep of patients and healthy people, it is possible to obtain a multidimensional spatial distribution of standard respiratory sound segments. Here, the distribution range of the segment data of the healthy person is assumed to be the distribution range of the normal respiratory data. When a new subject's breath sound data is obtained, it is arranged at one point in this multidimensional space by converting it into vector data for each segment.
 例えば、正常呼吸データの重心を基準ベクトルとすることで、被験者データが正常呼吸データの分布範囲の内にあるのか(正常セグメント)、外にあるのか(異常セグメント)を判別できる。一定時間内の被験者のセグメントデータ全体のうち、何%が正常セグメントであるかに基づいて、被験者のSASの程度の指標が得られる。ここで、実際の運用では、被験者のセグメントを異常と判定するのに、正常領域より一定程度広い(あるいは狭い)領域を異常セグメントの判定に用いることがある。 For example, by using the center of gravity of the normal respiration data as a reference vector, it is possible to determine whether the subject data is within the distribution range of the normal respiration data (normal segment) or outside the distribution range (abnormal segment). An indication of the subject's degree of SAS is obtained based on what percentage of the subject's total segment data in a given period of time is normal segments. Here, in actual operation, an area that is wider (or narrower) than the normal area to some extent may be used to determine the abnormal segment in order to determine that the subject's segment is abnormal.
 図9に、SASの色々な型の患者とSASの症状のない人のセグメントデータの分布例を示す。ここでは、正常呼吸データの重心を基準ベクトルとし、多次元空間データを次元削減により2次元上に表示している。セグメントの異常呼吸のパターンには「閉塞型」「中枢型」「低呼吸型」「混合型」などがあり、一般的にはそれぞれの型のセグメントは多次元空間上の別領域に分布することができる。被験者のセグメントがどの領域に分布するかに基づいて、被験者のSASの型を判別することもできる。 Fig. 9 shows an example distribution of segment data for patients with various types of SAS and those without symptoms of SAS. Here, the center of gravity of the normal respiration data is used as a reference vector, and the multidimensional space data is displayed two-dimensionally by dimensionality reduction. Segment abnormal breathing patterns include "obstructive type", "central type", "hypopnea type", and "mixed type", and in general, each type of segment is distributed in a different area in multidimensional space. can be done. A subject's SAS type can also be determined based on which region the subject's segments are distributed.
(第5の実施形)
 モーターを複数個組込んだ機械(例えばロボットなど)では、各モーターの負荷をモニターすることで、機械の異常の兆候を検知することができる。具体的には、本実施形態の解析装置10は、機械に備わる各モーターの電流や電圧、トルクなどの負荷情報や振動や音情報などを取得し、多次元ベクトルデータに変換する。これにより、本実施形態では、機械設備の状態を把握し、状態の変化が一定の条件を満たした段階で、「異常」と判定する。
(Fifth embodiment)
In a machine (for example, a robot) that incorporates a plurality of motors, it is possible to detect signs of an abnormality in the machine by monitoring the load on each motor. Specifically, the analysis device 10 of the present embodiment acquires load information such as current, voltage and torque of each motor provided in the machine, vibration and sound information, and the like, and converts them into multidimensional vector data. As a result, in this embodiment, the state of the mechanical equipment is grasped, and when the change in the state satisfies a certain condition, it is determined to be "abnormal".
 図10に、1つの機械に備わる各モーターの多次元ベクトルデータの一例を示す。図では、各多次元ベクトルデータの類似度に応じて2次元平面上にプロットした例を示す。機械に6個のモーターが備わる場合、各モーターの多次元ベクトルデータは、多次元空間における定められた領域M11、M21、M31、M41、M51、M61に分布する。このようにして得られた各モーターの多次元ベクトルデータの集合が各モーターの参照ベクトルデータとなる。 Fig. 10 shows an example of multidimensional vector data of each motor provided in one machine. The figure shows an example of plotting on a two-dimensional plane according to the degree of similarity of each piece of multidimensional vector data. When the machine is equipped with six motors, the multidimensional vector data of each motor is distributed in defined areas M11, M21, M31, M41, M51, M61 in the multidimensional space. A set of multi-dimensional vector data of each motor thus obtained becomes reference vector data of each motor.
 本実施形態の解析装置10の動作の一例を示す。
 ステップ1)機械ごとに、複数のモーターの参照ベクトルデータを作成する(図10)。
 ステップ2)新たな対象のデータを取得すると、その機械ごとに、さらにモーターごとに、参照ベクトルデータに対する新たなデータの「乖離度」を算出する。
 ステップ3)モーターごとの「乖離度」を次元とした6次元のベクトルデータを、機械ごとに作成する。本実施形態では、この6次元のベクトルデータをその機械の状態ベクトルデータと称する。
 ステップ4)複数の機械がある場合、それぞれの機械の状態ベクトルデータの集合を用いて、平面マップを作成する。本実施形態では、この平面マップを状態マップと称する。状態ベクトルデータの各次元の値は、各モーターの異常を表す。このため、いずれかのモーターに異常が発生すると、そのモーターを含む機械の状態ベクトルデータは、中心から遠ざかるが、その際劣化が進んだモーターに応じて中心から見て異なる方向にプロットされる。(図11参照)
 ステップ5)状態ベクトルデータを用いて、6個のモーターのいずれのモーターが他より劣化しているかが可視化される。
An example of the operation of the analysis device 10 of this embodiment is shown.
Step 1) Create reference vector data for a plurality of motors for each machine (Fig. 10).
Step 2) When new target data is acquired, the "degree of divergence" of the new data from the reference vector data is calculated for each machine and each motor.
Step 3) Six-dimensional vector data whose dimension is the "degree of divergence" for each motor is created for each machine. In this embodiment, this 6-dimensional vector data is referred to as state vector data of the machine.
Step 4) If there are multiple machines, use each machine's set of state vector data to create a plane map. In this embodiment, this plane map is called a state map. A value of each dimension of the state vector data represents an abnormality of each motor. For this reason, when an abnormality occurs in one of the motors, the state vector data of the machine including that motor moves away from the center, but is plotted in different directions when viewed from the center depending on which motor has deteriorated further. (See Fig. 11)
Step 5) Using the state vector data, it is visualized which of the 6 motors is worse than the others.
 さらに、図11に示すように、この状態マップ上で、正常領域R1、準正常領域R2、注意領域R3、異常領域R4などを定義することで、機械設備全体の状態を視覚的に把握することができる。もちろん、状態マップ上の一つの機械設備をクリックすることで、その機械設備単体の各モーターの状態マップをさらに表示することができる。 Furthermore, as shown in FIG. 11, by defining a normal region R1, a quasi-normal region R2, a caution region R3, an abnormal region R4, etc. on this state map, the state of the entire mechanical equipment can be visually grasped. can be done. Of course, by clicking one piece of machinery on the state map, it is possible to further display the state map of each motor of that piece of machinery.
 本開示は情報通信産業に適用することができる。 This disclosure can be applied to the information and communications industry.
10:解析装置
11:記憶部
12:信号処理部
13:通信部
14:表示部
20:センサ
100:通信ネットワーク
10: Analysis device 11: Storage unit 12: Signal processing unit 13: Communication unit 14: Display unit 20: Sensor 100: Communication network

Claims (9)

  1.  時間的に動きのある対象のデータを、周波数を次元に含む多次元ベクトルデータに変換した、参照ベクトルデータの集合を保持し、
     前記参照ベクトルデータの集合で定められる多次元空間の基準ベクトルを算出し、
     前記対象の新たなデータを取得すると、当該新たなデータを、周波数を次元に含む新たな多次元ベクトルデータに変換し、
     前記基準ベクトルを用いて、多次元空間における前記新たな多次元ベクトルデータの位置が、前記参照ベクトルデータの集合で定められる多次元空間の領域内であるか否かを判定する、
     解析装置。
    Holds a set of reference vector data obtained by converting target data with temporal movement into multidimensional vector data including frequency as a dimension,
    calculating a reference vector in a multidimensional space defined by the set of reference vector data;
    When the new data of the target is obtained, the new data is converted into new multidimensional vector data including frequency as a dimension;
    Using the reference vector, determining whether the position of the new multidimensional vector data in the multidimensional space is within a region of the multidimensional space defined by the set of the reference vector data;
    analysis equipment.
  2.  多次元空間における前記新たな多次元ベクトルデータの位置が前記領域の外であると判定された場合、前記新たな多次元ベクトルデータに対応した前記対象の状態が、前記参照ベクトルデータの集合に対応した前記対象の状態と異なると判定する、
     請求項1に記載の解析装置。
    When the position of the new multidimensional vector data in the multidimensional space is determined to be outside the region, the state of the object corresponding to the new multidimensional vector data corresponds to the set of reference vector data. Determine that it is different from the state of the target that
    The analysis device according to claim 1.
  3.  前記基準ベクトル、前記参照ベクトルデータの集合、及び前記新たな多次元ベクトルデータを用いて、前記参照ベクトルデータの集合と前記新たな多次元ベクトルデータとの乖離度指標を算出する、
     請求項1に記載の解析装置。
    calculating a divergence index between the set of reference vector data and the new multidimensional vector data using the reference vector, the set of reference vector data, and the new multidimensional vector data;
    The analysis device according to claim 1.
  4.  前記参照ベクトルデータの多次元ベクトルと前記基準ベクトルを結ぶベクトルの、前記新たな多次元ベクトルデータの多次元ベクトルと前記基準ベクトルを結ぶベクトルと同方向の成分の大きさを、前記新たな多次元ベクトルデータと前記基準ベクトルを結ぶベクトルの大きさと比較することで、前記乖離度指標を算出する、
     請求項3に記載の解析装置。
    The magnitude of the vector connecting the multidimensional vector of the reference vector data and the reference vector in the same direction as the vector connecting the multidimensional vector of the new multidimensional vector data and the reference vector is determined by the new multidimensional vector. calculating the divergence index by comparing the magnitude of the vector connecting the vector data and the reference vector;
    The analysis device according to claim 3.
  5.  前記基準ベクトルが、多次元空間における前記参照ベクトルデータの集合の重心である、
     請求項1に記載の解析装置。
    wherein the reference vector is the centroid of the set of reference vector data in multidimensional space;
    The analysis device according to claim 1.
  6.  前記対象のデータは、呼吸音のデータであり、
     前記対象の状態は、睡眠時無呼吸症候群の症状なし、を含み、
     前記基準ベクトルを、睡眠時無呼吸症候群の症状なしについて算出し、
     新たな呼吸音のデータを取得すると、新たな多次元ベクトルデータに変換し、
     前記基準ベクトルを用いて、多次元空間における前記新たな多次元ベクトルデータが、睡眠時無呼吸症候群の症状のありあるいはなし、のいずれかであるかを判定する、
     請求項1に記載の解析装置。
    The target data is breath sound data,
    the condition of the subject includes no symptoms of sleep apnea;
    calculating the reference vector for no symptoms of sleep apnea;
    When new breath sound data is acquired, it is converted into new multidimensional vector data,
    using the reference vector to determine whether the new multidimensional vector data in multidimensional space is either with or without symptoms of sleep apnea;
    The analysis device according to claim 1.
  7.  前記対象のデータは、呼吸音のデータを、予め定められた時間幅のセグメントに分割した後、セグメントごとに周波数変換されたデータであり、
     前記対象のセグメントの状態は、閉塞型、中枢型又は低呼吸型の睡眠時無呼吸症候群、及び睡眠時無呼吸症候群の症状なし、を含み、
     前記基準ベクトルを、閉塞型、中枢型又は低呼吸型の睡眠時無呼吸症候群、及び睡眠時無呼吸症候群の症状なし、のそれぞれのセグメントの集合について算出し、
     新たな呼吸音のデータを取得すると、予め定められた時間幅のセグメントに分割した後、セグメントごとに周波数変換し、多次元のセグメントベクトルデータを生成し、
     前記基準ベクトルのそれぞれを用いて、多次元空間における前記新たな多次元セグメントベクトルデータが、閉塞型、中枢型又は低呼吸型の睡眠時無呼吸症候群、及び睡眠時無呼吸症候群の症状なし、のいずれかであるか否かを判定する、
     請求項1に記載の解析装置。
    The target data is data obtained by dividing respiratory sound data into segments of a predetermined time width and then frequency-converting each segment,
    The subject segment status includes obstructive, central or hypopnea sleep apnea, and no symptoms of sleep apnea;
    calculating the reference vector for each set of segments of obstructive, central or hypopnea sleep apnea, and no symptoms of sleep apnea;
    When new breath sound data is acquired, it is divided into segments of a predetermined time width, and then frequency-transformed for each segment to generate multidimensional segment vector data,
    Using each of the reference vectors, the new multidimensional segment vector data in multidimensional space are obstructive, central, or hypopnea sleep apnea, and no symptoms of sleep apnea. determine whether either
    The analysis device according to claim 1.
  8.  前記対象は、動きのある対象が複数含まれる複合的な対象であり、
     前記乖離度指標を前記対象ごとに算出し、
     前記乖離度指標を次元とした状態ベクトルデータを前記複合的な対象ごとに生成し、
     複数の前記複合的な対象の集合を、前記複合的な対象の前記状態ベクトルデータの相互の類似度に応じて2次元平面上にプロットすることで状態マップに表示する
     請求項3に記載の解析装置。         
    The target is a composite target including multiple moving targets,
    calculating the divergence index for each of the targets;
    generating state vector data whose dimension is the divergence index for each of the composite targets;
    4. The analysis according to claim 3, wherein the set of multiple complex objects is displayed on a state map by plotting on a two-dimensional plane according to the mutual similarity of the state vector data of the complex objects. Device.
  9.  時間的に動きのある対象のデータを、周波数を次元に含む多次元ベクトルデータに変換した、参照ベクトルデータの集合を保持し、
     前記参照ベクトルデータの集合で定められる多次元空間の基準ベクトルを算出し、
     前記対象の新たなデータを取得すると、当該新たなデータを、周波数を次元に含む新たな多次元ベクトルデータに変換し、
     前記基準ベクトルを用いて、多次元空間における前記新たな多次元ベクトルデータの位置が、前記参照ベクトルデータの集合で定められる多次元空間の領域内であるか否かを判定する、
     解析方法。
    Holds a set of reference vector data obtained by converting target data with temporal movement into multidimensional vector data including frequency as a dimension,
    calculating a reference vector in a multidimensional space defined by the set of reference vector data;
    When the new data of the target is obtained, the new data is converted into new multidimensional vector data including frequency as a dimension;
    Using the reference vector, determining whether the position of the new multidimensional vector data in the multidimensional space is within a region of the multidimensional space defined by the set of the reference vector data;
    analysis method.
PCT/JP2022/014421 2021-04-02 2022-03-25 Analyzing device and analyzing method WO2022210361A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-063235 2021-04-02
JP2021063235 2021-04-02

Publications (1)

Publication Number Publication Date
WO2022210361A1 true WO2022210361A1 (en) 2022-10-06

Family

ID=83459032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014421 WO2022210361A1 (en) 2021-04-02 2022-03-25 Analyzing device and analyzing method

Country Status (1)

Country Link
WO (1) WO2022210361A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030176788A1 (en) * 2002-01-28 2003-09-18 New Health Sciences, Inc. Detecting, assessing, and diagnosing sleep apnea
JP2014166572A (en) * 2004-12-23 2014-09-11 Resmed Ltd Method for detecting and discriminating breathing pattern from respiratory signal
JP2020160852A (en) * 2019-03-27 2020-10-01 株式会社toor State determining apparatus and state determining method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030176788A1 (en) * 2002-01-28 2003-09-18 New Health Sciences, Inc. Detecting, assessing, and diagnosing sleep apnea
US20050171432A1 (en) * 2002-01-28 2005-08-04 Crutchfield Kevin E. Detecting, assessing, and diagnosing sleep apnea
JP2014166572A (en) * 2004-12-23 2014-09-11 Resmed Ltd Method for detecting and discriminating breathing pattern from respiratory signal
JP2020160852A (en) * 2019-03-27 2020-10-01 株式会社toor State determining apparatus and state determining method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Health'ism. Health risk assessment service", D-ISUM. EXPERTISE FOR EVERYONE, D'ISUM, TOKYO, JP, 24 January 2021 (2021-01-24), Tokyo, JP, XP009540135, Retrieved from the Internet <URL:https://web.archive.org/web/20210124101652/https://d-isum.net/services/healthism/> [retrieved on 20221026] *
SUZUKI, YUSUKE; EMOTO, TAKAHIRO, AKUTAGAWA, MASATAKE: "Clustering the snoring sound using Self-Organizing Map", IEICE TECHNICAL REPORT, DENSHI JOUHOU TSUUSHIN GAKKAI, JP, vol. 109, no. 460 (MBE2009-101), 1 March 2010 (2010-03-01), JP , pages 7 - 11, XP009540069, ISSN: 0913-5685 *

Similar Documents

Publication Publication Date Title
US20110191076A1 (en) Error detection method and system
JP7040851B2 (en) Anomaly detection device, anomaly detection method and anomaly detection program
US20130148817A1 (en) Abnormality detection apparatus for periodic driving system, processing apparatus including periodic driving system, abnormality detection method for periodic driving system, and computer program
Chen et al. Grey target theory based equipment condition monitoring and wear mode recognition
JP6563749B2 (en) Data analysis apparatus and data analysis method
RU2557477C2 (en) Method of computer-aided processing and analysis of telemetry data on multiparameter object and system to this end
JP7239354B2 (en) data classifier
US20210383160A1 (en) Wear detection in mechanical equipment
Shayesteh et al. Workers’ trust in collaborative construction robots: EEG-based trust recognition in an immersive environment
CN110245650A (en) Vibrate intelligent detecting method and Related product
WO2022210361A1 (en) Analyzing device and analyzing method
Lai et al. A frequency-spatial hybrid attention mechanism improved tool wear state recognition method guided by structure and process parameters
JP7052604B2 (en) Business estimation method, information processing device, and business estimation program
JP2011238148A (en) Analysis result display device and analysis result display method
Radhamani et al. Diagnosis and Evaluation of ADHD using MLP and SVM Classifiers
Matin et al. A novel machine learning-based model for predicting of transition fatigue lifetime in piston aluminum alloys
Le Minh et al. AirGen: GAN-based synthetic data generator for air monitoring in Smart City
JP2020203032A (en) Encephalopathy determination program, encephalopathy determination method, and information processing device
Maculotti et al. A methodology for task-specific metrological characterization of low-cost 3D camera for face analysis
US20160109355A1 (en) Data analysis apparatus and data analysis method
JP7233258B2 (en) Abnormal diagnosis device
Guo et al. Structural health monitoring using DOG multi-scale space: an approach for analyzing damage characteristics
CN105683852A (en) Apparatus and method for model adaptation
Assila et al. Defining an Indicator for Navigation Performance Measurement in VE based on ISO/IEC15939
US20190156530A1 (en) Visualization method, visualization device, and recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780574

Country of ref document: EP

Kind code of ref document: A1