WO2022209928A1 - Lithium-ion capacitor - Google Patents

Lithium-ion capacitor Download PDF

Info

Publication number
WO2022209928A1
WO2022209928A1 PCT/JP2022/012120 JP2022012120W WO2022209928A1 WO 2022209928 A1 WO2022209928 A1 WO 2022209928A1 JP 2022012120 W JP2022012120 W JP 2022012120W WO 2022209928 A1 WO2022209928 A1 WO 2022209928A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
lithium salt
lithium
negative electrode
current collector
Prior art date
Application number
PCT/JP2022/012120
Other languages
French (fr)
Japanese (ja)
Inventor
祥平 増田
健一 永光
菜穂 松村
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202280023623.3A priority Critical patent/CN117063259A/en
Priority to US18/549,151 priority patent/US20240128030A1/en
Priority to JP2023510926A priority patent/JPWO2022209928A1/ja
Publication of WO2022209928A1 publication Critical patent/WO2022209928A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/42Powders or particles, e.g. composition thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein

Definitions

  • the present invention relates to lithium ion capacitors.
  • Lithium-ion capacitors which combine the storage principle of lithium-ion secondary batteries and electric double-layer capacitors, are attracting attention.
  • a lithium ion capacitor uses a polarizable electrode for the positive electrode and a non-polarizable electrode for the negative electrode.
  • Lithium ion capacitors are expected to combine the high energy density of lithium ion secondary batteries with the high output characteristics of electric double layer capacitors.
  • Patent Document 1 discloses a non-aqueous lithium-type storage element comprising a laminate film, and a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte hermetically housed in the laminate film, wherein the positive electrode is placed on a positive electrode current collector. has a positive electrode active material layer made of a material containing activated carbon, the negative electrode has a negative electrode active material layer capable of intercalating and deintercalating lithium ions on a negative electrode current collector, and the non-aqueous lithium storage element 1.80 ⁇ K/M ⁇ 4.00, where K (N/mm) is the spring constant in the thickness direction and M (g) is the mass of the non-aqueous lithium-type storage element.
  • Non-aqueous electrolytic solutions include lithium salts such as (LiN(SO 2 F) 2 ), LiN(SO 2 CF 3 ) 2 , LiN(SO 2 C 2 F 5 ) 2 , LiN(SO 2 CF 3 ) ( SO2C2F5 ), LiN( SO2CF3 ) ( SO2C2F4H ) , LiC ( SO2F ) 3 , LiC ( SO2CF3 ) 3 , LiC ( SO2C2F5 ) 3 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiPF 6 , LiBF 4 and the like can be used alone, and two or more of them can be mixed and used, and since high conductivity can be expressed, LiPF 6 and/or LiN( SO2F)2 .
  • lithium salts such as (LiN(SO 2 F) 2 ), LiN(SO 2 CF 3 ) 2 , LiN(SO 2 C 2 F 5 ) 2 , LiN(SO 2 CF 3
  • metal porous bodies such as perforated foils and etched foils as positive electrode current collectors for lithium ion capacitors.
  • the positive electrode active material layer is easily peeled off, resulting in remarkable deterioration of the positive electrode.
  • gas generation may become significant.
  • the initial resistance may increase, and sufficient high output characteristics may not be obtained.
  • One aspect of the present invention includes a positive electrode, a negative electrode, and a lithium ion conductive electrolyte, wherein the positive electrode includes a positive electrode current collector and a positive electrode mixture layer supported on the positive electrode current collector,
  • the positive electrode mixture layer includes a positive electrode active material reversibly doped with anions,
  • the positive electrode current collector has a capacitance of 20 ⁇ F/cm 2 or less, and the negative electrode comprises a negative electrode current collector and the negative electrode.
  • the electrolyte comprising a first lithium salt and a second a lithium salt
  • the first lithium salt is a lithium salt of a fluorine-containing inorganic acid
  • the second lithium salt is a lithium salt of a fluorine-containing acid imide
  • the first lithium salt in the electrolyte and the second lithium salt the ratio of the molar concentration of the first lithium salt to the total molar concentration is more than 0% and 35% or less.
  • FIG. 1 is a partially cutaway perspective view of a lithium ion capacitor according to an embodiment of the present disclosure.
  • FIG. 2 is a graph showing the relationship between the DCR at low temperature and the amount of gas generated during float charging at high temperature of a lithium ion capacitor, and the total molar concentration of lithium salts.
  • a lithium ion capacitor according to the present disclosure includes a positive electrode, a negative electrode and a lithium ion conductive electrolyte.
  • a positive electrode and a negative electrode constitute a capacitor element together with a separator interposed therebetween.
  • the capacitor element is configured, for example, as a columnar wound body by winding a strip-shaped positive electrode and a strip-shaped negative electrode with a separator interposed therebetween.
  • the capacitor element may be configured as a laminate by laminating a plate-like positive electrode and a plate-like negative electrode with a separator interposed therebetween.
  • the positive electrode includes a positive electrode current collector and a positive electrode mixture layer carried on the positive electrode current collector.
  • the positive electrode may be a polarizable electrode, or may be an electrode that has the properties of a polarizable electrode and in which the Faraday reaction also contributes to the capacity.
  • the positive electrode mixture layer contains a positive electrode active material reversibly doped with anions.
  • a positive electrode active material reversibly doped with anions.
  • the doping of the positive electrode active material with the anion includes at least the phenomenon of adsorption of the anion to the positive electrode active material, and is a concept that can also include absorption of the anion by the positive electrode active material, chemical interaction between the positive electrode active material and the anion, and the like. be.
  • the positive electrode mixture layer contains a positive electrode active material as an essential component, and a conductive material, a binder, and the like as optional components.
  • conductive materials include carbon black and carbon fiber.
  • binders include fluorine resins, acrylic resins, rubber materials, and cellulose derivatives.
  • the content of the binder contained in the positive electrode mixture layer may be, for example, 2% by mass or more and 10% by mass or less, or 2% by mass or more and 8% by mass or less.
  • a carbon material is used as the positive electrode active material.
  • the carbon material is preferably porous, and activated carbon is particularly preferred.
  • Raw materials for activated carbon include, for example, wood, coconut shells, coal, pitch, and phenolic resin.
  • Activated carbon may be activated carbon.
  • the average particle size of the activated carbon is not particularly limited, but is, for example, 20 ⁇ m or less, and may be 3 ⁇ m or more and 15 ⁇ m or less.
  • the average particle diameter is the median diameter in the volume-based particle size distribution, and can be measured, for example, by a laser diffraction particle size distribution analyzer.
  • the active carbon accounts for 50% by mass or more, further 80% by mass or more, furthermore 95% by mass or more of the positive electrode active material. In addition, it is desirable that the active carbon accounts for 40 mass % or more, further 70 mass % or more, furthermore 90 mass % or more of the positive electrode mixture layer.
  • the positive electrode mixture layer is formed, for example, by mixing a positive electrode active material, a conductive material, a binder, and the like with a dispersion medium to prepare a positive electrode mixture slurry, and applying the positive electrode mixture slurry to a positive electrode current collector. , formed by drying.
  • a sheet-like metal material is used for the positive electrode current collector.
  • the thickness of the positive electrode mixture layer is, for example, 10 ⁇ m or more and 300 ⁇ m or less, may be 30 ⁇ m or more and 70 ⁇ m or less, or may be 40 ⁇ m or more and 60 ⁇ m or less per one side of the positive electrode current collector. As the positive electrode mixture layer is thicker, the positive electrode mixture layer is more likely to peel off, but by suppressing deterioration of the positive electrode current collector, a relatively thick positive electrode mixture layer can be formed.
  • the positive electrode current collector may be a metal foil.
  • a metal porous body such as a perforated foil or an etched foil is used for the positive electrode current collector of a lithium ion capacitor, but the capacitance of the positive electrode current collector of the lithium ion capacitor according to the present disclosure is 20 ⁇ F/cm. It can be 2 or less. That is, the positive electrode current collector does not have to be a perforated foil or an etched foil.
  • the positive electrode current collector may be plain foil.
  • a plain foil is a metal foil that does not have a plurality of holes and whose surface is not roughened by etching or the like.
  • the positive electrode current collector may have a capacitance of 4 ⁇ F/cm 2 or less.
  • the thickness of the positive electrode current collector is, for example, 5 ⁇ m or more and 50 ⁇ m or less, may be 30 ⁇ m or less, or may be 20 ⁇ m or less or 15 ⁇ m or less.
  • Plain foils have high mechanical strength and may be thinner than typical perforated or etched foils. By using a thin plain foil, it becomes possible to form a thicker positive electrode material mixture layer, which makes it easier to improve the capacity of the lithium ion capacitor.
  • the electrostatic capacity of X ⁇ F/cm 2 means that the positive electrode current collector is orthographically projected with the main surface of the positive electrode current collector parallel to the plane of projection, and the capacitance per unit area (1 cm 2 ) of the projection view is is the capacitance, and the capacitance X is the total capacitance of the front and back (that is, X/2 per side).
  • the capacitance of the metal foil is measured by the following method.
  • a test piece of metal foil that is, positive electrode current collector
  • the portion to be measured is the portion that is immersed in the measurement solution.
  • the shape and size of the portion to be measured are not particularly limited, a rectangular shape is desirable, and has dimensions of, for example, 10 mm ⁇ 50 mm.
  • the withdrawn portion is the portion that is not immersed in the measurement solution.
  • the drawn-out portion may be a portion that is cut out integrally with the portion to be measured.
  • the shape and size of the drawer part are arbitrary.
  • the measurement solution an aqueous solution of 80 g of ammonium pentaborate dissolved in 1 L of water is used.
  • the capacitance measuring device complies with JIS C 5101-1. The accuracy is ⁇ 2% of the measured value, the measurement frequency is 120 Hz ⁇ 5%, and the measurement voltage is 0.5 Vrms or less.
  • the measurement tank containing the measurement solution is a glass tall beaker with a capacity of 200 mL or 300 mL conforming to JIS R 3503. Set the temperature of the measurement solution to 30°C ⁇ 1°C, immerse the parts to be measured of a pair of test pieces of the same shape and size in the measurement solution, and apply electrostatic Connect to a capacitance meter to measure the capacitance.
  • the direction of the test piece (portion to be measured) in the measurement solution is arbitrary, but a separation distance of 5 mm ⁇ 2 mm is provided between the two.
  • Aluminum or an aluminum alloy is used as the metal material that constitutes the metal foil that is the positive electrode current collector.
  • Aluminum alloys are alloys of aluminum and other metals. Other metals include, but are not limited to, copper, manganese, silicon, magnesium, zinc, and nickel.
  • the content of other elements contained in the aluminum alloy is preferably 10% by mass or less, more preferably 2% by mass or less.
  • the electrolyte has lithium ion conductivity.
  • the electrolyte includes, for example, a lithium salt and a solvent that dissolves the lithium salt.
  • the anion of the lithium salt reversibly repeats doping and dedoping of the positive electrode.
  • Lithium ions derived from the lithium salt reversibly repeat doping and dedoping of the negative electrode.
  • the lithium salt includes a first lithium salt and a second lithium salt.
  • the first lithium salt is a lithium salt of a fluorine-containing inorganic acid
  • the second lithium salt is a lithium salt of a fluorine-containing acid imide.
  • the first lithium salt may be, for example, at least one selected from the group consisting of LiPF 6 , LiBF 4 , LiSbF 6 and LiAsF 6 .
  • at least one selected from the group consisting of LiPF 6 and LiBF 4 is preferable from the viewpoint of DCR reduction.
  • At least one selected from the group consisting of LiPF 6 and LiBF 4 may account for 80% by mass or more of the first lithium salt, or 90% by mass or more.
  • the second lithium salt is, for example, LiN ( FSO2 ) 2 , LiN ( CF3SO2 ) 2 , LiN ( CF3SO2 ) ( C4F9SO2 ) and LiN ( C2F5SO2 ) 2 It may be at least one selected from the group consisting of Among them, at least one selected from the group consisting of LiN(FSO 2 ) 2 and LiN(CF 3 SO 2 ) 2 is preferable, and LiN(FSO 2 ) 2 is particularly preferable, from the viewpoint of reducing the amount of gas generated.
  • LiN(FSO 2 ) 2 is also referred to as LiFSI.
  • LiFSI By using LiFSI, the rate of increase in low-temperature DCR tends to be significantly reduced. LiFSI is less likely to produce by-products and is thought to contribute to smooth charging and discharging without damaging the surface of the positive electrode active material. LiFSI may account for 80 mass % or more of the second lithium salt, or may account for 90 mass % or more.
  • the ratio of the molar concentration of the first lithium salt to the total molar concentration of the first lithium salt and the second lithium salt in the electrolyte (hereinafter also referred to as the “proportion of the first lithium salt”.
  • the ratio is the “X” value described later.) is important in providing a lithium ion capacitor that is stable even at high temperatures, the deterioration of the positive electrode does not progress easily, and the resistance does not easily increase even at low temperatures.
  • the ratio of the molar concentration of the first lithium salt to the total molar concentration of the first lithium salt and the second lithium salt is controlled to be greater than 0% and 35% or less.
  • the molar concentration ratio of the first lithium salt may be 10% or more and 30% or less.
  • the direct current resistance (DCR) at a low temperature of, for example, ⁇ 30° C. can be maintained low, while gas generation during float charging at 80° C. or higher can be significantly suppressed.
  • Float charging is a charging method that maintains a constant voltage for a long period of time using an external DC power supply. Gas generation is highly dependent on the degree of side reaction between the positive electrode current collector and the lithium salt, and is an indicator of the degree of deterioration of the positive electrode. The greater the gas generation, the greater the deterioration of the positive electrode, and the more likely the positive electrode material mixture layer will peel off.
  • the DCR at low temperatures is kept low, and deterioration of the positive electrode is suppressed at high temperatures of 80 ° C. or higher. This is possible because the ratio of the first lithium salt and the second lithium salt is properly controlled.
  • the positive electrode active material is doped with a large amount of anions during charging, interaction between the positive electrode current collector and the anions is likely to occur unless the proportion of the first lithium salt is properly controlled.
  • the first lithium salt which is a lithium salt of a fluorine-containing inorganic acid, undergoes a severe side reaction with aluminum, causing gas generation and deterioration of the positive electrode current collector.
  • a positive electrode current collector having a capacitance of more than 20 ⁇ F/cm 2 has a large surface area, so that the side reaction becomes remarkable.
  • the use of a lithium ion capacitor that continues float charging at a high temperature of 80° C. or higher further, 85° C. or higher
  • the ratio of the first lithium salt is not properly controlled, it is difficult to use a positive electrode current collector with a capacitance of 20 ⁇ F/cm 2 or less in such a usage environment.
  • the DCR at low temperatures becomes too large.
  • a positive electrode current collector having a capacitance of 20 ⁇ F/cm 2 or less has a limited contact area with the positive electrode current collector, so that the DCR increases significantly.
  • the ratio of the first lithium salt is not properly controlled, it is difficult to use a positive electrode current collector with a capacitance of 20 ⁇ F/cm 2 or less also from the viewpoint of DCR.
  • the DCR at low temperatures can be reduced, so a positive electrode current collector with a capacitance of 20 ⁇ F/cm 2 or less can be used. Along with this, the amount of gas generated at high temperatures is further reduced. Since such a positive electrode current collector has a smooth (that is, plain) surface, it has high strength and can be formed thin, which is advantageous in terms of increasing the energy density of the lithium ion capacitor. Even if the positive electrode mixture layer is formed thick, the positive electrode is less likely to deteriorate, and the separation of the positive electrode mixture layer is less likely to occur.
  • a desirable correspondence relationship between the ratio of the first lithium salt and the capacitance of the positive electrode current collector can be expressed as follows.
  • X and Y are expressed by formula (1): Y ⁇ X+10 and formula (2): Y ⁇ It is desirable to satisfy -0.8X+28.
  • 0 ⁇ X ⁇ 35 That is, when the ratio of the first lithium salt is in the range of 0 ⁇ X ⁇ 10, the capacitance Y of the positive electrode current collector satisfies the formula (1), and the ratio of the first lithium salt is in the range of 10 ⁇ X ⁇ 35.
  • the capacitance Y of the positive electrode current collector satisfies the formula (2). That is, in the range where the ratio of the first lithium salt is small, it is desirable that the electrostatic capacity Y of the positive electrode current collector increases with X, and in the range where the ratio of the first lithium salt is large, the electrostatic capacity of the positive electrode current collector It is desirable that Y be smaller as X is larger.
  • the content of the binder contained in the positive electrode mixture layer may be 2% by mass or more and 8% by mass or less, or may be 2% by mass or more and 6% by mass or less.
  • the total molar concentration of the first lithium salt and the second lithium salt in the electrolyte may be 0.7 mol/L or more and 1.3 mol/L or less.
  • the lithium salt concentration in the electrolyte is measured using the electrolyte in a discharged state (state of charge (SOC) 0 to 10%).
  • SOC state of charge
  • the viscosity of the electrolyte can be kept relatively low while being rich in anions and cations. Therefore, it is advantageous for reducing DCR at low temperatures.
  • gas is less likely to be generated during float charging at high temperatures, although the electrolyte is rich in anions. This is thought to be because the ions are coordinated with the solvent, making it difficult for the solvent to decompose.
  • the electrolyte may contain a third salt other than the first lithium salt and the second lithium salt, but 80% by mass or more, further 90% by mass or more in the electrolyte is the first lithium salt and the second lithium salt is preferably occupied by
  • Examples of the third salt include LiClO4, LiAlCl4 , LiSCN , LiB10Cl10 , LiCl, LiBr, LiI , LiBCl4 , LiCF3SO3 , LiCF3CO2 and the like. These may be used individually by 1 type, or may combine 2 or more types.
  • the solvent examples include cyclic carbonates such as ethylene carbonate, propylene carbonate and butylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate; and aliphatic carboxylic acids such as methyl formate, methyl acetate, methyl propionate and ethyl propionate.
  • cyclic carbonates such as ethylene carbonate, propylene carbonate and butylene carbonate
  • chain carbonates such as dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate
  • aliphatic carboxylic acids such as methyl formate, methyl acetate, methyl propionate and ethyl propionate.
  • acid esters lactones such as ⁇ -butyrolactone and ⁇ -valerolactone, chain ethers such as 1,2-dimethoxyethane (DME), 1,2-diethoxyethane (DEE) and ethoxymethoxyethane (EME), tetrahydrofuran , cyclic ethers such as 2-methyltetrahydrofuran, dimethylsulfoxide, 1,3-dioxolane, formamide, acetamide, dimethylformamide, dioxolane, acetonitrile, propionitrile, nitromethane, ethylmonoglyme, trimethoxymethane, sulfolane, methylsulfolane, 1 , 3-propanesultone and the like can be used. These may be used alone or in combination of two or more.
  • the electrolyte may contain various additives as necessary.
  • an unsaturated carbonate such as vinylene carbonate, vinylethylene carbonate, or divinylethylene carbonate may be added as an additive that forms a lithium ion conductive film on the surface of the negative electrode.
  • the negative electrode includes a negative electrode current collector and a negative electrode mixture layer carried on the negative electrode current collector.
  • a sheet-like metal material is used for the negative electrode current collector.
  • the thickness of the negative electrode current collector is, for example, 10 ⁇ m or more and 300 ⁇ m or less.
  • the thickness of the negative electrode mixture layer is, for example, 10 ⁇ m or more and 300 ⁇ m or less per one side of the negative electrode current collector.
  • the negative electrode current collector may be a metal foil, a metal porous body, an etched metal, or the like.
  • metal materials copper, copper alloys, nickel, stainless steel, and the like can be used.
  • the negative electrode mixture layer contains a negative electrode active material that reversibly dopes lithium ions.
  • the doping of lithium ions into the negative electrode active material includes at least the absorption phenomenon of lithium ions into the negative electrode active material, such as the adsorption of lithium ions to the negative electrode active material and the chemical interaction between the negative electrode active material and lithium ions. It is a concept that can also include
  • the negative electrode mixture layer contains a negative electrode active material as an essential component, and a conductive material, a binder, and the like as optional components.
  • conductive materials include carbon black and carbon fibers.
  • binders include fluorine resins, acrylic resins, rubber materials, and cellulose derivatives.
  • the negative electrode active material is, for example, a carbon material, and includes, for example, non-graphitizable carbon (that is, hard carbon).
  • non-graphitizable carbon that is, hard carbon.
  • the Faraday reaction in which lithium ions are reversibly absorbed and released, proceeds to develop capacity.
  • the non-graphitizable carbon may have an interplanar spacing of (002) planes (that is, an interplanar spacing between carbon layers) d002 of 3.8 ⁇ or more as measured by an X-ray diffraction method.
  • the theoretical capacity of non-graphitizable carbon is desirably 150 mAh/g or more, for example.
  • the non-graphitizable carbon preferably accounts for 50 mass % or more, further 80 mass % or more, furthermore 95 mass % or more of the negative electrode active material.
  • Non-graphitizable carbon and materials other than non-graphitizable carbon may be used together as the negative electrode active material.
  • Materials other than non-graphitizable carbon that can be used as the negative electrode active material include graphitizable carbon (soft carbon), graphite (natural graphite, artificial graphite, etc.), lithium titanium oxide (spinel-type lithium titanium oxide, etc.), silicon Examples include oxides, silicon alloys, tin oxides, and tin alloys.
  • the average particle size of the negative electrode active material (especially non-graphitizable carbon) is preferably 1 ⁇ m or more and 20 ⁇ m or less, from the viewpoint of high filling properties of the negative electrode active material in the negative electrode and easy suppression of side reactions with the electrolyte. More preferably, the thickness is 15 ⁇ m or more.
  • the average particle diameter is the median diameter in the volume-based particle size distribution, and can be measured, for example, by a laser diffraction particle size distribution analyzer.
  • the negative electrode mixture layer is formed, for example, by mixing a negative electrode active material, a conductive material, a binder, and the like with a dispersion medium to prepare a negative electrode mixture slurry, and applying the negative electrode mixture slurry to a negative electrode current collector. , formed by drying.
  • the negative electrode mixture layer is pre-doped with lithium ions in advance. This lowers the potential of the negative electrode, increasing the potential difference (that is, voltage) between the positive electrode and the negative electrode, thereby improving the energy density of the lithium ion capacitor.
  • the amount of lithium to be pre-doped may be, for example, about 50% to 95% of the maximum amount that can be occluded in the negative electrode mixture layer.
  • the pre-doped lithium can be adhered to the surface of the negative electrode mixture layer by, for example, a vapor phase method, transfer, or the like.
  • Vapor phase methods include methods such as chemical vapor deposition, physical vapor deposition, and sputtering.
  • pre-doping of lithium ions into the negative electrode mixture layer proceeds further by bringing the negative electrode mixture layer and the electrolyte into contact with each other after that, and is completed by leaving for a predetermined period of time.
  • pre-doping of lithium ions to the negative electrode is completed by applying a predetermined charging voltage (eg, 3.4 to 4.0 V) between the terminals of the positive electrode and the negative electrode for a predetermined time (eg, 1 to 75 hours).
  • a predetermined charging voltage eg, 3.4 to 4.0 V
  • separator As the separator, a cellulose fiber nonwoven fabric, a glass fiber nonwoven fabric, a polyolefin microporous film, a woven fabric or a nonwoven fabric, or the like can be used.
  • the thickness of the separator is, for example, 8 ⁇ m or more and 300 ⁇ m or less.
  • FIG. 1 schematically shows the configuration of a lithium ion capacitor according to one embodiment of the present invention.
  • the illustrated lithium ion capacitor 10 includes a wound capacitor element 1 .
  • the capacitor element 1 is constructed by winding a sheet-like positive electrode 2 and a sheet-like negative electrode 3 with a separator 4 interposed therebetween.
  • the positive electrode 2 and the negative electrode 3 each have a positive electrode current collector and a negative electrode current collector made of metal, and a positive electrode mixture layer and a negative electrode mixture layer supported on the surfaces thereof, respectively, and are doped and undoped with anions or lithium ions. By doing so, the capacity is expressed.
  • the separator 4 for example, a nonwoven fabric containing cellulose as a main component is used.
  • a positive electrode lead wire 5a and a negative electrode lead wire 5b are connected to the positive electrode 2 and the negative electrode 3, respectively, as lead members.
  • Capacitor element 1 is housed in a cylindrical exterior case 6 together with an electrolytic solution (not shown).
  • the material of the exterior case 6 may be any metal such as aluminum, stainless steel, copper, iron, brass, or the like.
  • the opening of the exterior case 6 is sealed with a sealing member 7 .
  • the lead wires 5 a and 5 b are led out to the outside so as to pass through the sealing member 7 .
  • a rubber material such as butyl rubber, for example, is used for the sealing member 7 .
  • the maximum allowable temperature of the lithium ion capacitor according to the present disclosure is, for example, 80°C or higher, and may be 85°C or higher.
  • the maximum permissible temperature is the maximum ambient temperature at which the capacitor can be used continuously.
  • the maximum allowable temperature is, for example, the maximum ambient temperature at which the lithium ion capacitor can be used guaranteed by the manufacturer of the lithium ion capacitor to the purchaser, and is described in catalogs, pamphlets, product specifications, and the like.
  • the maximum permissible temperature may be a numerical value calculated from a relational expression between the nominal temperature coefficient, the capacitance at 25° C., and the capacitance at the maximum permissible temperature.
  • a plurality of kinds of aluminum foils with different capacitances were prepared.
  • the capacitance of the aluminum foil was controlled by changing the surface roughness of the aluminum foil.
  • the thickness of the aluminum foil with the smallest capacitance was 20 ⁇ m, and the surface roughness of the aluminum foil was changed by etching this aluminum foil.
  • Electrolyte LiPF6 was used as the first lithium salt, and LiFSI was used as the second lithium salt.
  • a mixture of propylene carbonate and dimethyl carbonate at a volume ratio of 1:1 was used as a solvent. 0.2% by mass of vinylene carbonate was included in the solvent.
  • An electrolyte was prepared by dissolving a predetermined lithium salt in a solvent at a predetermined concentration. The total molar concentration of the first lithium salt (LiPF 6 ) and the second lithium salt (LiFSI) in the electrolyte was fixed at 1.2 mol/L. A plurality of types of electrolytes having different ratios of the molar concentration of the first lithium salt (LiPF 6 ) to the total molar concentration were prepared.
  • the resulting positive electrode mixture slurry was applied to both surfaces of a predetermined aluminum foil, the coating film was dried and rolled to form a positive electrode mixture layer, and a positive electrode was obtained.
  • a positive electrode lead wire was connected to the aluminum foil as a lead member.
  • Negative Electrode 97 parts by mass of non-graphitizable carbon (average particle size 5 ⁇ m), 2 parts by mass of styrene-butadiene rubber as a binder, 1 part by mass of carboxycellulose as a thickener, and a conductive material. 6 parts by mass of Ketjenblack was dispersed in water to prepare a negative electrode mixture slurry. The resulting negative electrode mixture slurry was applied to both sides of a copper foil having a thickness of 10 ⁇ m, and the coating film was dried and rolled to form a negative electrode mixture layer, thereby obtaining a negative electrode. A negative electrode lead wire was connected to the copper foil as a lead member.
  • a thin film of metallic lithium for pre-doping was formed on the entire surface of the negative electrode mixture layer by vacuum deposition.
  • the amount of lithium to be pre-doped was set so that the negative electrode potential in the electrolyte after pre-doping was completed was 0.2 V or less with respect to metallic lithium.
  • Capacitor Element A capacitor element was formed by winding a negative electrode and a predetermined positive electrode in a columnar shape with a cellulose nonwoven fabric separator (thickness: 25 ⁇ m) interposed therebetween. At this time, each lead wire was made to protrude from one end surface of the wound body.
  • aging was performed at 60°C while applying a charging voltage of 3.8 V between the terminals of the positive electrode and the negative electrode to complete the pre-doping of lithium ions to the negative electrode.
  • the positive electrode current collector has a capacitance of 4 ⁇ F/cm 2 , and the first lithium salt (LiPF 6 ) accounts for the total molar concentration of the first lithium salt (LiPF 6 ) and the second lithium salt (LiFSI). Relative values are shown in Table 1, assuming that R1 is 100 when the molar concentration ratio is 0% (that is, when all the lithium salts are LiFSI). The smaller the number, the lower the DCR.
  • the positive electrode current collector has a capacitance of 4 ⁇ F/cm 2
  • the first lithium salt (LiPF 6 ) accounts for the total molar concentration of the first lithium salt (LiPF 6 ) and the second lithium salt (LiFSI). Relative values are shown in Table 2, assuming that the amount of gas generated is 100 when the molar concentration ratio is 0% (that is, when the lithium salt is all LiFSI). It can be said that the smaller the value, the smaller the amount of gas generated, the less the side reaction between the positive electrode current collector and the electrolyte, and the less likely the positive electrode will deteriorate.
  • the capacitance of the positive electrode current collector is 20 ⁇ F/cm 2 or less, and the ratio of the molar concentration of the first lithium salt to the total molar concentration of the lithium salts in the electrolyte is greater than 0%, It can be understood that when the ratio is 35% or less, well-balanced results can be obtained in which deterioration of the positive electrode can be suppressed while suppressing DCR at low temperatures.
  • LiPF 6 first lithium salt
  • LiPF 6 total molar concentration of the first lithium salt
  • LiFSI second lithium salt
  • Fig. 2 shows the relationship between the amount of gas generated during DCR at -30°C and float charge at 85°C of a lithium ion capacitor and the total molar concentration of lithium salts (salt concentration M). From FIG. 2, it can be understood that the total molar concentration of lithium salts in the electrolyte is preferably 0.7 mol/L or more and 1.3 mol/L or less, or 0.7 mol/L or more and 1.0 mol/L or less.
  • the lithium ion capacitor according to the present invention is suitable for applications with a maximum allowable temperature of 80°C or higher, or 85°C or higher, and is suitable for in-vehicle use, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

The disclosed lithium-ion capacitor is configured in a manner such that: the positive electrode thereof is equipped with a positive electrode current collector and a positive electrode mixture layer held by the positive electrode current collector; the positive electrode mixture layer contains a positive electrode active material for reversibly doping an anion; the electrostatic capacity of the positive electrode current collector is no higher than 20μF/cm2; the negative electrode is equipped with a negative electrode current collector and a negative electrode mixture layer held by the negative electrode current collector; the negative electrode mixture layer contains a negative electrode active material for reversibly doping a lithium ion; the electrolyte thereof contains a first lithium salt and a second lithium salt; the first lithium salt is a lithium salt of a fluorine-containing inorganic acid; the second lithium salt is a lithium salt of a fluorine-containing acid imide; and the proportion which the molar concentration of the first lithium salt constitutes in the total molar concentration of the first and second lithium salts in the electrolyte is greater than 0% and no greater than 35%.

Description

リチウムイオンキャパシタlithium ion capacitor
 本発明は、リチウムイオンキャパシタに関する。 The present invention relates to lithium ion capacitors.
 リチウムイオン二次電池と電気二重層キャパシタの蓄電原理を組み合わせたリチウムイオンキャパシタが注目されている。リチウムイオンキャパシタは、正極に分極性電極を使用し、負極に非分極性電極を使用する。リチウムイオンキャパシタは、リチウムイオン二次電池の高エネルギー密度と電気二重層キャパシタの高出力特性とを兼ね備えるものと期待されている。  Lithium-ion capacitors, which combine the storage principle of lithium-ion secondary batteries and electric double-layer capacitors, are attracting attention. A lithium ion capacitor uses a polarizable electrode for the positive electrode and a non-polarizable electrode for the negative electrode. Lithium ion capacitors are expected to combine the high energy density of lithium ion secondary batteries with the high output characteristics of electric double layer capacitors.
 特許文献1は、ラミネートフィルムと、前記ラミネートフィルムに密閉収納された正極、負極、セパレータ及び非水電解液と、を備える非水系リチウム型蓄電素子であって、前記正極は、正極集電体上に、活性炭を含む材料から成る正極活物質層を有し、前記負極は、負極集電体上に、リチウムイオンを吸蔵及び放出可能な負極活物質層を有し、前記非水系リチウム型蓄電素子の厚み方向のばね定数をK(N/mm)、かつ前記非水系リチウム型蓄電素子の質量をM(g)とするとき、1.80≦K/M<4.00であることを特徴とする非水系リチウム型蓄電素子を提案している。前記正極集電体と前記負極集電体はともにプレーン箔であることが記載されている。非水系電解液は、リチウム塩として、例えば、(LiN(SOF))、LiN(SOCF、LiN(SO、LiN(SOCF)(SO)、LiN(SOCF)(SOH)、LiC(SOF)、LiC(SOCF、LiC(SO、LiCFSO、LiCSO、LiPF、LiBF等を単独で用いることができ、2種以上を混合して用いてもよく、高い伝導度を発現できることから、LiPF及び/又はLiN(SOF)を含むことが好ましいと記載されている。 Patent Document 1 discloses a non-aqueous lithium-type storage element comprising a laminate film, and a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte hermetically housed in the laminate film, wherein the positive electrode is placed on a positive electrode current collector. has a positive electrode active material layer made of a material containing activated carbon, the negative electrode has a negative electrode active material layer capable of intercalating and deintercalating lithium ions on a negative electrode current collector, and the non-aqueous lithium storage element 1.80≦K/M<4.00, where K (N/mm) is the spring constant in the thickness direction and M (g) is the mass of the non-aqueous lithium-type storage element. We have proposed a non-aqueous lithium-type storage device that It is described that both the positive electrode current collector and the negative electrode current collector are plain foils. Non-aqueous electrolytic solutions include lithium salts such as (LiN(SO 2 F) 2 ), LiN(SO 2 CF 3 ) 2 , LiN(SO 2 C 2 F 5 ) 2 , LiN(SO 2 CF 3 ) ( SO2C2F5 ), LiN( SO2CF3 ) ( SO2C2F4H ) , LiC ( SO2F ) 3 , LiC ( SO2CF3 ) 3 , LiC ( SO2C2F5 ) 3 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiPF 6 , LiBF 4 and the like can be used alone, and two or more of them can be mixed and used, and since high conductivity can be expressed, LiPF 6 and/or LiN( SO2F)2 .
特開2019-24040号公報Japanese Patent Application Laid-Open No. 2019-24040
 しかし、リチウムイオンキャパシタの正極集電体としては、穿孔箔やエッチング箔などの金属多孔体を用いることが一般的である。特許文献1のようにプレーン箔を用いると、正極活物質層が剥離しやすく、正極の劣化が顕著である。また、蓄電素子が80℃以上の高温で使用されると、ガス発生が顕著になることがある。一方、0℃以下の低温では、初期抵抗が高くなることがあり、十分な高出力特性が得られないことがある。 However, it is common to use metal porous bodies such as perforated foils and etched foils as positive electrode current collectors for lithium ion capacitors. When a plain foil is used as in Patent Document 1, the positive electrode active material layer is easily peeled off, resulting in remarkable deterioration of the positive electrode. In addition, when the electric storage device is used at a high temperature of 80° C. or higher, gas generation may become significant. On the other hand, at a low temperature of 0° C. or less, the initial resistance may increase, and sufficient high output characteristics may not be obtained.
 本発明の一側面は、正極、負極およびリチウムイオン伝導性の電解質を含み、前記正極は、正極集電体と、前記正極集電体に担持された正極合剤層と、を具備し、前記正極合剤層は、アニオンを可逆的にドープする正極活物質を含み、前記正極集電体の静電容量は、20μF/cm2以下であり、前記負極は、負極集電体と、前記負極集電体に担持された負極合剤層と、を具備し、前記負極合剤層は、リチウムイオンを可逆的にドープする負極活物質を含み、前記電解質が、第1リチウム塩と、第2リチウム塩と、を含み、前記第1リチウム塩は、フッ素含有無機酸のリチウム塩であり、前記第2リチウム塩は、フッ素含有酸イミドのリチウム塩であり、前記電解質中の前記第1リチウム塩と前記第2リチウム塩との合計モル濃度に占める第1リチウム塩のモル濃度の割合が、0%より大きく、35%以下である、リチウムイオンキャパシタに関する。 One aspect of the present invention includes a positive electrode, a negative electrode, and a lithium ion conductive electrolyte, wherein the positive electrode includes a positive electrode current collector and a positive electrode mixture layer supported on the positive electrode current collector, The positive electrode mixture layer includes a positive electrode active material reversibly doped with anions, the positive electrode current collector has a capacitance of 20 μF/cm 2 or less, and the negative electrode comprises a negative electrode current collector and the negative electrode. a negative electrode mixture layer supported on a current collector, the negative electrode mixture layer including a negative electrode active material that reversibly dopes lithium ions, the electrolyte comprising a first lithium salt and a second a lithium salt, wherein the first lithium salt is a lithium salt of a fluorine-containing inorganic acid, the second lithium salt is a lithium salt of a fluorine-containing acid imide, and the first lithium salt in the electrolyte and the second lithium salt, the ratio of the molar concentration of the first lithium salt to the total molar concentration is more than 0% and 35% or less.
 高温でも安定で、正極の劣化が進行しにくく、かつ低温でも抵抗が上昇しにくいリチウムイオンキャパシタを提供する。 To provide a lithium-ion capacitor that is stable even at high temperatures, whose positive electrode does not easily deteriorate, and whose resistance does not easily increase even at low temperatures.
図1は、本開示の一実施形態に係るリチウムイオンキャパシタの一部を切り欠いた斜視図である。FIG. 1 is a partially cutaway perspective view of a lithium ion capacitor according to an embodiment of the present disclosure. 図2は、リチウムイオンキャパシタの低温でのDCRおよび高温でのフロート充電時のガス発生量と、リチウム塩の合計モル濃度との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the DCR at low temperature and the amount of gas generated during float charging at high temperature of a lithium ion capacitor, and the total molar concentration of lithium salts.
 本開示に係るリチウムイオンキャパシタは、正極、負極およびリチウムイオン伝導性の電解質を含む。一般に、正極および負極は、これらの間に介在するセパレータとともにキャパシタ素子を構成している。キャパシタ素子は、例えば、それぞれ帯状の正極と負極とをセパレータを介して捲回して柱状の捲回体として構成される。また、キャパシタ素子は、それぞれ板状の正極と負極とをセパレータを介して積層して積層体として構成されてもよい。 A lithium ion capacitor according to the present disclosure includes a positive electrode, a negative electrode and a lithium ion conductive electrolyte. In general, a positive electrode and a negative electrode constitute a capacitor element together with a separator interposed therebetween. The capacitor element is configured, for example, as a columnar wound body by winding a strip-shaped positive electrode and a strip-shaped negative electrode with a separator interposed therebetween. Also, the capacitor element may be configured as a laminate by laminating a plate-like positive electrode and a plate-like negative electrode with a separator interposed therebetween.
 以下、本発明の実施形態に係るリチウムイオンキャパシタの各構成要素について詳細に説明する。 Each component of the lithium ion capacitor according to the embodiment of the present invention will be described in detail below.
[正極]
 正極は、正極集電体と、正極集電体に担持された正極合剤層とを具備する。正極は、分極性電極であってもよく、分極性電極の性質を有しつつファラデー反応も容量に寄与する電極であってもよい。
[Positive electrode]
The positive electrode includes a positive electrode current collector and a positive electrode mixture layer carried on the positive electrode current collector. The positive electrode may be a polarizable electrode, or may be an electrode that has the properties of a polarizable electrode and in which the Faraday reaction also contributes to the capacity.
 正極合剤層は、アニオンを可逆的にドープする正極活物質を含む。正極活物質にアニオンが吸着すると電気二重層が形成され、容量を発現する。アニオンの正極活物質へのドープとは、少なくとも正極活物質へのアニオンの吸着現象を含み、正極活物質によるアニオンの吸蔵や、正極活物質とアニオンとの化学的相互作用なども含み得る概念である。 The positive electrode mixture layer contains a positive electrode active material reversibly doped with anions. When the anion is adsorbed on the positive electrode active material, an electric double layer is formed and the capacity is developed. The doping of the positive electrode active material with the anion includes at least the phenomenon of adsorption of the anion to the positive electrode active material, and is a concept that can also include absorption of the anion by the positive electrode active material, chemical interaction between the positive electrode active material and the anion, and the like. be.
 正極合剤層は、正極活物質を必須成分として含み、任意成分として、導電材、結着材などを含む。導電材としては、カーボンブラック、炭素繊維などが挙げられる。結着剤としては、フッ素樹脂、アクリル樹脂、ゴム材料、セルロース誘導体などが挙げられる。正極合剤層に含まれる結着剤の含有率は、例えば2質量%以上10質量%以下でもよく、2質量%以上8質量%以下でもよい。 The positive electrode mixture layer contains a positive electrode active material as an essential component, and a conductive material, a binder, and the like as optional components. Examples of conductive materials include carbon black and carbon fiber. Examples of binders include fluorine resins, acrylic resins, rubber materials, and cellulose derivatives. The content of the binder contained in the positive electrode mixture layer may be, for example, 2% by mass or more and 10% by mass or less, or 2% by mass or more and 8% by mass or less.
 正極活物質としては、炭素材料が用いられる。炭素材料は、多孔質であることが好ましく、中でも活性炭が好ましい。活性炭の原料としては、例えば、木材、ヤシ殻、石炭、ピッチ、フェノール樹脂などが挙げられる。活性炭は、賦活処理された活性炭でもよい。活性炭の平均粒径は、特に限定されないが、例えば、20μm以下であり、3μm以上15μm以下でもよい。平均粒径とは、体積基準の粒度分布におけるメディアン径をいい、例えばレーザー回折式の粒度分布測定装置により測定できる。 A carbon material is used as the positive electrode active material. The carbon material is preferably porous, and activated carbon is particularly preferred. Raw materials for activated carbon include, for example, wood, coconut shells, coal, pitch, and phenolic resin. Activated carbon may be activated carbon. The average particle size of the activated carbon is not particularly limited, but is, for example, 20 μm or less, and may be 3 μm or more and 15 μm or less. The average particle diameter is the median diameter in the volume-based particle size distribution, and can be measured, for example, by a laser diffraction particle size distribution analyzer.
 活性炭は、正極活物質の50質量%以上、更には80質量%以上、更には95質量%以上を占めることが望ましい。また、活性炭は、正極合剤層の40質量%以上、更には70質量%以上、更には90質量%以上を占めることが望ましい。 It is desirable that the active carbon accounts for 50% by mass or more, further 80% by mass or more, furthermore 95% by mass or more of the positive electrode active material. In addition, it is desirable that the active carbon accounts for 40 mass % or more, further 70 mass % or more, furthermore 90 mass % or more of the positive electrode mixture layer.
 正極合剤層は、例えば、正極活物質と、導電材および結着剤などとを、分散媒とともに混合して正極合剤スラリーを調製し、正極合剤スラリーを正極集電体に塗布した後、乾燥することにより形成される。正極集電体には、シート状の金属材料が用いられる。 The positive electrode mixture layer is formed, for example, by mixing a positive electrode active material, a conductive material, a binder, and the like with a dispersion medium to prepare a positive electrode mixture slurry, and applying the positive electrode mixture slurry to a positive electrode current collector. , formed by drying. A sheet-like metal material is used for the positive electrode current collector.
 正極合剤層の厚さは、正極集電体の片面あたり、例えば10μm以上300μm以下であり、30μm以上70μm以下でもよく、40μm以上60μm以下でもよい。正極合剤層が厚いほど、正極合剤層が剥がれやすくなるが、正極集電体の劣化を抑制することで、比較的厚い正極合剤層を形成し得る。 The thickness of the positive electrode mixture layer is, for example, 10 μm or more and 300 μm or less, may be 30 μm or more and 70 μm or less, or may be 40 μm or more and 60 μm or less per one side of the positive electrode current collector. As the positive electrode mixture layer is thicker, the positive electrode mixture layer is more likely to peel off, but by suppressing deterioration of the positive electrode current collector, a relatively thick positive electrode mixture layer can be formed.
 正極集電体は、金属箔であってもよい。一般的にはリチウムイオンキャパシタの正極集電体には、穿孔箔やエッチング箔などの金属多孔体が用いられるが、本開示に係るリチウムイオンキャパシタの正極集電体の静電容量は20μF/cm2以下であってよい。つまり、正極集電体は、穿孔箔やエッチング箔でなくてよい。正極集電体は、プレーン箔であってよい。プレーン箔とは、複数の孔を有さず、かつ表面がエッチングなどで粗面化されていない金属箔をいう。正極集電体の静電容量は、4μF/cm2以下であってもよい。正極集電体の厚さは、例えば5μm以上50μm以下であり、30μm以下でもよく、20μm以下もしくは15μm以下でもよい。プレーン箔は、機械的強度が高く、一般的な穿孔箔やエッチング箔よりも薄くてよい。薄いプレーン箔を用いることで、正極合剤層をより厚く形成できるようになるため、リチウムイオンキャパシタの容量を向上させやすくなる。 The positive electrode current collector may be a metal foil. Generally, a metal porous body such as a perforated foil or an etched foil is used for the positive electrode current collector of a lithium ion capacitor, but the capacitance of the positive electrode current collector of the lithium ion capacitor according to the present disclosure is 20 μF/cm. It can be 2 or less. That is, the positive electrode current collector does not have to be a perforated foil or an etched foil. The positive electrode current collector may be plain foil. A plain foil is a metal foil that does not have a plurality of holes and whose surface is not roughened by etching or the like. The positive electrode current collector may have a capacitance of 4 μF/cm 2 or less. The thickness of the positive electrode current collector is, for example, 5 μm or more and 50 μm or less, may be 30 μm or less, or may be 20 μm or less or 15 μm or less. Plain foils have high mechanical strength and may be thinner than typical perforated or etched foils. By using a thin plain foil, it becomes possible to form a thicker positive electrode material mixture layer, which makes it easier to improve the capacity of the lithium ion capacitor.
 なお、静電容量がXμF/cm2であるとは、正極集電体の主面を投影面と平行にして正極集電体を正投影したときの投影図の単位面積(1cm2)あたりの静電容量であり、静電容量Xは裏表の合計の静電容量(つまり、片面あたりX/2)である。 The electrostatic capacity of X μF/cm 2 means that the positive electrode current collector is orthographically projected with the main surface of the positive electrode current collector parallel to the plane of projection, and the capacitance per unit area (1 cm 2 ) of the projection view is is the capacitance, and the capacitance X is the total capacitance of the front and back (that is, X/2 per side).
 金属箔の静電容量は、以下の方法で測定される。まず、金属箔(すなわち正極集電体)の試験片を準備する。試験片の形状とサイズは特に限定されないが、静電容量を測定するための被測定部分と引き出し部分とを有する。被測定部分は、測定溶液に浸漬される部分である。被測定部分の形状とサイズは特に限定されないが、長方形状が望ましく、例えば、10mm×50mmの寸法を有する。引き出し部分は、測定溶液に浸漬されない部分である。引き出し部分は、被測定部分と一体に切り出された部分であってよい。引き出し部分の形状とサイズは任意である。測定溶液には、水1Lに80gの五ホウ酸アンモニウムを溶解した水溶液を使用する。静電容量の測定装置は、JIS C 5101-1に準拠している。確度は測定値の±2%、測定周波数は120Hz±5%、測定電圧は0.5Vrms以下である。測定溶液を収容する測定槽は、JIS R 3503に準拠する容量200mLまたは300mLのガラス製トールビーカーである。測定溶液の温度を30℃±1℃に設定し、一対の同形状かつ同サイズの試験片の被測定部分を測定溶液に浸漬し、それぞれの引き出し部分をJIS C 5101-1に準拠する静電容量計に接続して静電容量を測定する。試験片(被測定部分)の測定溶液中での方向は任意であるが、両者の間には5mm±2mmの離間距離を設ける。  The capacitance of the metal foil is measured by the following method. First, a test piece of metal foil (that is, positive electrode current collector) is prepared. Although the shape and size of the test piece are not particularly limited, it has a portion to be measured and a lead portion for measuring capacitance. The portion to be measured is the portion that is immersed in the measurement solution. Although the shape and size of the portion to be measured are not particularly limited, a rectangular shape is desirable, and has dimensions of, for example, 10 mm×50 mm. The withdrawn portion is the portion that is not immersed in the measurement solution. The drawn-out portion may be a portion that is cut out integrally with the portion to be measured. The shape and size of the drawer part are arbitrary. As the measurement solution, an aqueous solution of 80 g of ammonium pentaborate dissolved in 1 L of water is used. The capacitance measuring device complies with JIS C 5101-1. The accuracy is ±2% of the measured value, the measurement frequency is 120 Hz ±5%, and the measurement voltage is 0.5 Vrms or less. The measurement tank containing the measurement solution is a glass tall beaker with a capacity of 200 mL or 300 mL conforming to JIS R 3503. Set the temperature of the measurement solution to 30°C ± 1°C, immerse the parts to be measured of a pair of test pieces of the same shape and size in the measurement solution, and apply electrostatic Connect to a capacitance meter to measure the capacitance. The direction of the test piece (portion to be measured) in the measurement solution is arbitrary, but a separation distance of 5 mm±2 mm is provided between the two.
 正極集電体である金属箔を構成する金属材料としては、アルミニウムまたはアルミニウム合金を用いる。アルミニウム合金は、アルミニウムと、他の金属との合金である。他の金属としては、特に限定されないが、銅、マンガン、ケイ素、マグネシウム、亜鉛、ニッケルなどが用いられる。アルミニウム合金に含まれる他の元素の含有率は、10質量%以下が好ましく、2質量%以下が更に好ましい。 Aluminum or an aluminum alloy is used as the metal material that constitutes the metal foil that is the positive electrode current collector. Aluminum alloys are alloys of aluminum and other metals. Other metals include, but are not limited to, copper, manganese, silicon, magnesium, zinc, and nickel. The content of other elements contained in the aluminum alloy is preferably 10% by mass or less, more preferably 2% by mass or less.
[電解質]
 電解質は、リチウムイオン伝導性を有する。電解質は、例えば、リチウム塩と、リチウム塩を溶解させる溶媒とを含む。リチウム塩のアニオンは、正極へのドープと脱ドープとを可逆的に繰り返す。リチウム塩に由来するリチウムイオンは、負極へのドープと脱ドープを可逆的に繰り返す。
[Electrolytes]
The electrolyte has lithium ion conductivity. The electrolyte includes, for example, a lithium salt and a solvent that dissolves the lithium salt. The anion of the lithium salt reversibly repeats doping and dedoping of the positive electrode. Lithium ions derived from the lithium salt reversibly repeat doping and dedoping of the negative electrode.
 リチウム塩は、第1リチウム塩と第2リチウム塩とを含む。第1リチウム塩は、フッ素含有無機酸のリチウム塩であり、第2リチウム塩は、フッ素含有酸イミドのリチウム塩である。 The lithium salt includes a first lithium salt and a second lithium salt. The first lithium salt is a lithium salt of a fluorine-containing inorganic acid, and the second lithium salt is a lithium salt of a fluorine-containing acid imide.
 第1リチウム塩は、例えば、LiPF6、LiBF4、LiSbF6およびLiAsF6からなる群より選択される少なくとも1種であってもよい。中でも、DCR低減の観点から、LiPF6およびLiBF4からなる群より選択される少なくとも1種が好ましい。第1リチウム塩の80質量%以上をLiPF6およびLiBF4からなる群より選択される少なくとも1種が占めてもよく、90質量%以上を占めてもよい。 The first lithium salt may be, for example, at least one selected from the group consisting of LiPF 6 , LiBF 4 , LiSbF 6 and LiAsF 6 . Among them, at least one selected from the group consisting of LiPF 6 and LiBF 4 is preferable from the viewpoint of DCR reduction. At least one selected from the group consisting of LiPF 6 and LiBF 4 may account for 80% by mass or more of the first lithium salt, or 90% by mass or more.
 第2リチウム塩は、例えば、LiN(FSO22、LiN(CF3SO22、LiN(CF3SO2)(C49SO2)およびLiN(C25SO22からなる群より選択される少なくとも1種であってもよい。中でも、ガス発生量の低減の観点から、LiN(FSO22およびLiN(CF3SO22からなる群より選択される少なくとも1種が好ましく、特にLiN(FSO22が好ましい。以下、LiN(FSO22をLiFSIとも称する。 The second lithium salt is, for example, LiN ( FSO2 ) 2 , LiN ( CF3SO2 ) 2 , LiN ( CF3SO2 ) ( C4F9SO2 ) and LiN ( C2F5SO2 ) 2 It may be at least one selected from the group consisting of Among them, at least one selected from the group consisting of LiN(FSO 2 ) 2 and LiN(CF 3 SO 2 ) 2 is preferable, and LiN(FSO 2 ) 2 is particularly preferable, from the viewpoint of reducing the amount of gas generated. Hereinafter, LiN(FSO 2 ) 2 is also referred to as LiFSI.
 LiFSIを用いることで、低温DCRの増加率が顕著に小さくなる傾向がある。LiFSIは、副生物を生じにくく、正極活物質の表面を損傷することなくスムーズに充放電に寄与するものと考えられる。第2リチウム塩の80質量%以上をLiFSIが占めてもよく、90質量%以上を占めてもよい。 By using LiFSI, the rate of increase in low-temperature DCR tends to be significantly reduced. LiFSI is less likely to produce by-products and is thought to contribute to smooth charging and discharging without damaging the surface of the positive electrode active material. LiFSI may account for 80 mass % or more of the second lithium salt, or may account for 90 mass % or more.
 ここで、電解質中の第1リチウム塩と第2リチウム塩との合計モル濃度に占める第1リチウム塩のモル濃度の割合(以下、「第1リチウム塩の割合」とも称する。第1リチウム塩の割合は後述の「X」値である。)は、高温でも安定で正極の劣化が進行しにくく、かつ低温でも抵抗が上昇しにくいリチウムイオンキャパシタを提供する上で重要である。第1リチウム塩と第2リチウム塩との合計モル濃度に占める第1リチウム塩のモル濃度の割合は、0%より大きく、35%以下に制御される。第1リチウム塩のモル濃度の割合は、10%以上30%以下でもよい。この場合、例えば-30℃の低温における直流抵抗(DCR)を低く維持しつつ、80℃以上でのフロート充電時におけるガス発生を顕著に抑制できる。フロート充電とは、外部直流電源を用いて一定電圧を長期間維持する充電方法である。ガス発生は、正極集電体とリチウム塩との副反応の程度に大きく依存し、正極の劣化の大きさの指標になる。ガス発生が顕著であるほど、正極の劣化が大きく、正極合剤層の剥離なども生じやすい。 Here, the ratio of the molar concentration of the first lithium salt to the total molar concentration of the first lithium salt and the second lithium salt in the electrolyte (hereinafter also referred to as the “proportion of the first lithium salt”. The ratio is the “X” value described later.) is important in providing a lithium ion capacitor that is stable even at high temperatures, the deterioration of the positive electrode does not progress easily, and the resistance does not easily increase even at low temperatures. The ratio of the molar concentration of the first lithium salt to the total molar concentration of the first lithium salt and the second lithium salt is controlled to be greater than 0% and 35% or less. The molar concentration ratio of the first lithium salt may be 10% or more and 30% or less. In this case, the direct current resistance (DCR) at a low temperature of, for example, −30° C. can be maintained low, while gas generation during float charging at 80° C. or higher can be significantly suppressed. Float charging is a charging method that maintains a constant voltage for a long period of time using an external DC power supply. Gas generation is highly dependent on the degree of side reaction between the positive electrode current collector and the lithium salt, and is an indicator of the degree of deterioration of the positive electrode. The greater the gas generation, the greater the deterioration of the positive electrode, and the more likely the positive electrode material mixture layer will peel off.
 本開示に係るリチウムイオンキャパシタにおいて、静電容量が非常に小さい正極集電体を用いているにも関わらず、低温でのDCRを低く維持しつつ、80℃以上の高温で正極の劣化を抑制できるのは、第1リチウム塩と第2リチウム塩の割合が適正に制御されているためである。 In the lithium ion capacitor according to the present disclosure, despite using a positive electrode current collector with a very small capacitance, the DCR at low temperatures is kept low, and deterioration of the positive electrode is suppressed at high temperatures of 80 ° C. or higher. This is possible because the ratio of the first lithium salt and the second lithium salt is properly controlled.
 充電時には、正極活物質にアニオンが多量にドープされるため、第1リチウム塩の割合が適正に制御されない場合、正極集電体とアニオンとの相互作用が生じやすくなる。フッ素含有無機酸のリチウム塩である第1リチウム塩は、80℃以上の高温では、アルミニウムとの副反応が激しくなり、ガス発生を伴いながら正極集電体が劣化する。特に、静電容量が20μF/cm2を超える正極集電体は表面積が大きいため、副反応が顕著になる。特にフロート充電を80℃以上(更には85℃以上)の高温で継続するリチウムイオンキャパシタの使用は、相当に過酷な環境での使用となる。第1リチウム塩の割合が適正に制御されない場合、このような使用環境では、静電容量が20μF/cm2以下の正極集電体の使用は困難である。 Since the positive electrode active material is doped with a large amount of anions during charging, interaction between the positive electrode current collector and the anions is likely to occur unless the proportion of the first lithium salt is properly controlled. At a high temperature of 80° C. or higher, the first lithium salt, which is a lithium salt of a fluorine-containing inorganic acid, undergoes a severe side reaction with aluminum, causing gas generation and deterioration of the positive electrode current collector. In particular, a positive electrode current collector having a capacitance of more than 20 μF/cm 2 has a large surface area, so that the side reaction becomes remarkable. In particular, the use of a lithium ion capacitor that continues float charging at a high temperature of 80° C. or higher (further, 85° C. or higher) is used in a considerably harsh environment. If the ratio of the first lithium salt is not properly controlled, it is difficult to use a positive electrode current collector with a capacitance of 20 μF/cm 2 or less in such a usage environment.
 さらに、第1リチウム塩の割合が適正に制御されず、第2リチウム塩の割合が過度に多い場合、低温でのDCRが非常に大きくなる。特に静電容量が20μF/cm2以下の正極集電体は、正極集電体との接触面積が小さく制限されるため、DCRの上昇が顕著である。つまり、第1リチウム塩の割合が適正に制御されない場合、DCRの観点からも、静電容量が20μF/cm2以下の正極集電体の使用は困難である。 Furthermore, if the proportion of the first lithium salt is not properly controlled and the proportion of the second lithium salt is too high, the DCR at low temperatures becomes too large. In particular, a positive electrode current collector having a capacitance of 20 μF/cm 2 or less has a limited contact area with the positive electrode current collector, so that the DCR increases significantly. In other words, if the ratio of the first lithium salt is not properly controlled, it is difficult to use a positive electrode current collector with a capacitance of 20 μF/cm 2 or less also from the viewpoint of DCR.
 一方、第1リチウム塩の割合が適正に制御されたリチウムイオンキャパシタの場合、低温でのDCRを低減できるため、静電容量が20μF/cm2以下の正極集電体を利用することができ、これに伴い、高温でのガス発生量も更に低減される。このような正極集電体は、表面が平滑(つまりプレーン)な形態を有するため、強度が高く、薄く成形でき、リチウムイオンキャパシタのエネルギー密度を高める上でも有利である。そして、正極合剤層を厚く形成したとしても、正極が劣化しにくく、正極合剤層の剥離は生じにくい。 On the other hand, in the case of a lithium ion capacitor in which the ratio of the first lithium salt is properly controlled, the DCR at low temperatures can be reduced, so a positive electrode current collector with a capacitance of 20 μF/cm 2 or less can be used. Along with this, the amount of gas generated at high temperatures is further reduced. Since such a positive electrode current collector has a smooth (that is, plain) surface, it has high strength and can be formed thin, which is advantageous in terms of increasing the energy density of the lithium ion capacitor. Even if the positive electrode mixture layer is formed thick, the positive electrode is less likely to deteriorate, and the separation of the positive electrode mixture layer is less likely to occur.
 第1リチウム塩の割合と正極集電体の静電容量との望ましい対応関係は、以下のように表すことができる。第1リチウム塩の割合をX%、正極集電体の静電容量をYμF/cm2とするとき、XおよびYは、式(1):Y≦X+10、および、式(2):Y≦-0.8X+28を満たすことが望ましい。ただし、0<X≦35である。すなわち、第1リチウム塩の割合が0<X≦10の範囲では、正極集電体の静電容量Yは、式(1)を満たし、第1リチウム塩の割合が10≦X≦35の範囲では、正極集電体の静電容量Yは、式(2)を満たすことが望ましい。つまり、第1リチウム塩の割合が小さい範囲では、正極集電体の静電容量YがXと共に大きくなることが望ましく、第1リチウム塩の割合が大きい範囲では、正極集電体の静電容量YはXが大きいほど小さいことが望ましい。なお、正極集電体の静電容量と第1リチウム塩の割合が適正に制御される場合、比較的少量の結着剤を用いることでも正極が十分な耐久性を維持することができる。正極合剤層に含まれる結着剤の含有率は、2質量%以上8質量%以下でもよく、2質量%以上6質量%以下でもよい。 A desirable correspondence relationship between the ratio of the first lithium salt and the capacitance of the positive electrode current collector can be expressed as follows. When the ratio of the first lithium salt is X% and the capacitance of the positive electrode current collector is Y μF/cm 2 , X and Y are expressed by formula (1): Y ≤ X+10 and formula (2): Y ≤ It is desirable to satisfy -0.8X+28. However, 0<X≦35. That is, when the ratio of the first lithium salt is in the range of 0<X≦10, the capacitance Y of the positive electrode current collector satisfies the formula (1), and the ratio of the first lithium salt is in the range of 10≦X≦35. Then, it is desirable that the capacitance Y of the positive electrode current collector satisfies the formula (2). That is, in the range where the ratio of the first lithium salt is small, it is desirable that the electrostatic capacity Y of the positive electrode current collector increases with X, and in the range where the ratio of the first lithium salt is large, the electrostatic capacity of the positive electrode current collector It is desirable that Y be smaller as X is larger. When the capacitance of the positive electrode current collector and the ratio of the first lithium salt are appropriately controlled, the positive electrode can maintain sufficient durability even with a relatively small amount of binder. The content of the binder contained in the positive electrode mixture layer may be 2% by mass or more and 8% by mass or less, or may be 2% by mass or more and 6% by mass or less.
 電解質中の第1リチウム塩と第2リチウム塩との合計モル濃度は、0.7mol/L以上、1.3mol/L以下であってもよい。ただし、電解質中のリチウム塩の濃度は、放電状態(充電率(SOC)0~10%)における電解質を用いて測定する。リチウム塩の合計モル濃度がこの範囲内では、アニオンとカチオンが豊富であるとともに電解質の粘度を相当に低く維持できる。そのため、低温でのDCRの低減に有利である。また、上記範囲では、電解質中にアニオンが豊富であるにもかかわらず、高温でのフロート充電時にガスが発生しにくい。これはイオンが溶媒に配位することで溶媒が分解されにくくなるためと考えられる。 The total molar concentration of the first lithium salt and the second lithium salt in the electrolyte may be 0.7 mol/L or more and 1.3 mol/L or less. However, the lithium salt concentration in the electrolyte is measured using the electrolyte in a discharged state (state of charge (SOC) 0 to 10%). Within this range of total lithium salt molarity, the viscosity of the electrolyte can be kept relatively low while being rich in anions and cations. Therefore, it is advantageous for reducing DCR at low temperatures. Moreover, within the above range, gas is less likely to be generated during float charging at high temperatures, although the electrolyte is rich in anions. This is thought to be because the ions are coordinated with the solvent, making it difficult for the solvent to decompose.
 なお、電解質は、第1リチウム塩と第2リチウム塩以外の第3の塩を含み得るが、電解質中の80質量%以上、更には90質量%以上が、第1リチウム塩と第2リチウム塩で占められていることが望ましい。 The electrolyte may contain a third salt other than the first lithium salt and the second lithium salt, but 80% by mass or more, further 90% by mass or more in the electrolyte is the first lithium salt and the second lithium salt is preferably occupied by
 第3の塩としては、例えば、LiClO4、LiAlCl4、LiSCN、LiB10Cl10、LiCl、LiBr、LiI、LiBCl4、LiCF3SO3、LiCF3CO2などが挙げられる。これらは1種を単独で用いても、2種以上を組み合わせてもよい。 Examples of the third salt include LiClO4, LiAlCl4 , LiSCN , LiB10Cl10 , LiCl, LiBr, LiI , LiBCl4 , LiCF3SO3 , LiCF3CO2 and the like. These may be used individually by 1 type, or may combine 2 or more types.
 溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートなどの環状カーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどの鎖状カーボネート、ギ酸メチル、酢酸メチル、プロピオン酸メチル、プロピオン酸エチルなどの脂肪族カルボン酸エステル、γ-ブチロラクトン、γ-バレロラクトンなどのラクトン類、1,2-ジメトキシエタン(DME)、1,2-ジエトキシエタン(DEE)、エトキシメトキシエタン(EME)などの鎖状エーテル、テトラヒドロフラン、2-メチルテトラヒドロフランなどの環状エーテル、ジメチルスルホキシド、1,3-ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピオニトリル、ニトロメタン、エチルモノグライム、トリメトキシメタン、スルホラン、メチルスルホラン、1,3-プロパンサルトンなどを用いることができる。これらは単独で用いてもよく、2種以上を組み合わせてもよい。 Examples of the solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate and butylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate; and aliphatic carboxylic acids such as methyl formate, methyl acetate, methyl propionate and ethyl propionate. acid esters, lactones such as γ-butyrolactone and γ-valerolactone, chain ethers such as 1,2-dimethoxyethane (DME), 1,2-diethoxyethane (DEE) and ethoxymethoxyethane (EME), tetrahydrofuran , cyclic ethers such as 2-methyltetrahydrofuran, dimethylsulfoxide, 1,3-dioxolane, formamide, acetamide, dimethylformamide, dioxolane, acetonitrile, propionitrile, nitromethane, ethylmonoglyme, trimethoxymethane, sulfolane, methylsulfolane, 1 , 3-propanesultone and the like can be used. These may be used alone or in combination of two or more.
 電解質に、必要に応じて、種々の添加剤を含ませてもよい。例えば、負極表面にリチウムイオン伝導性の被膜を形成する添加剤として、ビニレンカーボネート、ビニルエチレンカーボネート、ジビニルエチレンカーボネートなどの不飽和カーボネートを添加してもよい。 The electrolyte may contain various additives as necessary. For example, an unsaturated carbonate such as vinylene carbonate, vinylethylene carbonate, or divinylethylene carbonate may be added as an additive that forms a lithium ion conductive film on the surface of the negative electrode.
[負極]
 負極は、負極集電体と、負極集電体に担持された負極合剤層とを具備する。負極集電体には、シート状の金属材料が用いられる。負極集電体の厚さは、例えば10μm以上、300μm以下である。負極合剤層の厚さは、負極集電体の片面あたり、例えば10μm以上、300μm以下である。
[Negative electrode]
The negative electrode includes a negative electrode current collector and a negative electrode mixture layer carried on the negative electrode current collector. A sheet-like metal material is used for the negative electrode current collector. The thickness of the negative electrode current collector is, for example, 10 μm or more and 300 μm or less. The thickness of the negative electrode mixture layer is, for example, 10 μm or more and 300 μm or less per one side of the negative electrode current collector.
 負極集電体は、金属箔、金属多孔体、エッチングメタルなどであればよい。金属材料としては、銅、銅合金、ニッケル、ステンレス鋼などを用い得る。 The negative electrode current collector may be a metal foil, a metal porous body, an etched metal, or the like. As metal materials, copper, copper alloys, nickel, stainless steel, and the like can be used.
 負極合剤層は、リチウムイオンを可逆的にドープする負極活物質を含む。リチウムイオンの負極活物質へのドープとは、少なくとも負極活物質へのリチウムイオンの吸蔵現象を含み、リチウムイオンの負極活物質への吸着や、負極活物質とリチウムイオンとの化学的相互作用なども含み得る概念である。 The negative electrode mixture layer contains a negative electrode active material that reversibly dopes lithium ions. The doping of lithium ions into the negative electrode active material includes at least the absorption phenomenon of lithium ions into the negative electrode active material, such as the adsorption of lithium ions to the negative electrode active material and the chemical interaction between the negative electrode active material and lithium ions. It is a concept that can also include
 負極合剤層は、負極活物質を必須成分として含み、任意成分として、導電材、結着材などを含む。導電材としては、カーボンブラック、炭素繊維などが挙げられる。結着剤としては、フッ素樹脂、アクリル樹脂、ゴム材料、セルロース誘導体などが挙げられる。 The negative electrode mixture layer contains a negative electrode active material as an essential component, and a conductive material, a binder, and the like as optional components. Examples of conductive materials include carbon black and carbon fibers. Examples of binders include fluorine resins, acrylic resins, rubber materials, and cellulose derivatives.
 負極活物質は、例えば、炭素材料であり、例えば難黒鉛化炭素(すなわちハードカーボン)を含む。難黒鉛化炭素には、リチウムイオンが可逆的に吸蔵および放出されるファラデー反応が進行して容量を発現する。 The negative electrode active material is, for example, a carbon material, and includes, for example, non-graphitizable carbon (that is, hard carbon). In non-graphitizable carbon, the Faraday reaction, in which lithium ions are reversibly absorbed and released, proceeds to develop capacity.
 難黒鉛化炭素は、X線回折法にて測定される(002)面の面間隔(すなわち、炭素層と炭素層の面間隔)d002が3.8Å以上であってもよい。難黒鉛化炭素の理論容量は、例えば150mAh/g以上であることが望ましい。難黒鉛化炭素を用いることで、低温DCRが小さく、かつ充放電に伴う膨張と収縮の小さい負極を得やすくなる。難黒鉛化炭素は、負極活物質の50質量%以上、更には80質量%以上、更には95質量%以上を占めることが望ましい。また、難黒鉛化炭素は、負極合剤層の40質量%以上、更には70質量%以上、更には90質量%以上を占めることが望ましい。 The non-graphitizable carbon may have an interplanar spacing of (002) planes (that is, an interplanar spacing between carbon layers) d002 of 3.8 Å or more as measured by an X-ray diffraction method. The theoretical capacity of non-graphitizable carbon is desirably 150 mAh/g or more, for example. By using non-graphitizable carbon, it becomes easier to obtain a negative electrode with a small low-temperature DCR and small expansion and contraction due to charging and discharging. The non-graphitizable carbon preferably accounts for 50 mass % or more, further 80 mass % or more, furthermore 95 mass % or more of the negative electrode active material. In addition, it is desirable that the non-graphitizable carbon accounts for 40 mass % or more, further 70 mass % or more, furthermore 90 mass % or more of the negative electrode mixture layer.
 負極活物質として、難黒鉛化炭素と、難黒鉛化炭素以外の材料とを併用してもよい。負極活物質として用い得る難黒鉛化炭素以外の材料としては、易黒鉛化炭素(ソフトカーボン)、黒鉛(天然黒鉛、人造黒鉛など)、リチウムチタン酸化物(スピネル型リチウムチタン酸化物など)、ケイ素酸化物、ケイ素合金、錫酸化物、錫合金などが例示できる。 Non-graphitizable carbon and materials other than non-graphitizable carbon may be used together as the negative electrode active material. Materials other than non-graphitizable carbon that can be used as the negative electrode active material include graphitizable carbon (soft carbon), graphite (natural graphite, artificial graphite, etc.), lithium titanium oxide (spinel-type lithium titanium oxide, etc.), silicon Examples include oxides, silicon alloys, tin oxides, and tin alloys.
 負極における負極活物質の充填性が高く、電解質との副反応を抑制し易い観点から、負極活物質(特に難黒鉛化炭素)の平均粒径は、1μm以上20μm以下であることが好ましく、2μm以上15μm以下であることがさらに好ましい。平均粒径とは、体積基準の粒度分布におけるメディアン径をいい、例えばレーザー回折式の粒度分布測定装置により測定できる。 The average particle size of the negative electrode active material (especially non-graphitizable carbon) is preferably 1 μm or more and 20 μm or less, from the viewpoint of high filling properties of the negative electrode active material in the negative electrode and easy suppression of side reactions with the electrolyte. More preferably, the thickness is 15 μm or more. The average particle diameter is the median diameter in the volume-based particle size distribution, and can be measured, for example, by a laser diffraction particle size distribution analyzer.
 負極合剤層は、例えば、負極活物質と、導電材および結着剤などとを、分散媒とともに混合して負極合剤スラリーを調製し、負極合剤スラリーを負極集電体に塗布した後、乾燥することにより形成される。 The negative electrode mixture layer is formed, for example, by mixing a negative electrode active material, a conductive material, a binder, and the like with a dispersion medium to prepare a negative electrode mixture slurry, and applying the negative electrode mixture slurry to a negative electrode current collector. , formed by drying.
 負極合剤層には、予めリチウムイオンがプレドープされる。これにより、負極の電位が低下するため、正極と負極の電位差(すなわち電圧)が大きくなり、リチウムイオンキャパシタのエネルギー密度が向上する。プレドープされるリチウム量は、例えば、負極合剤層に吸蔵可能な最大量の50%~95%程度とすればよい。 The negative electrode mixture layer is pre-doped with lithium ions in advance. This lowers the potential of the negative electrode, increasing the potential difference (that is, voltage) between the positive electrode and the negative electrode, thereby improving the energy density of the lithium ion capacitor. The amount of lithium to be pre-doped may be, for example, about 50% to 95% of the maximum amount that can be occluded in the negative electrode mixture layer.
 プレドープされるリチウムは、例えば、気相法、転写等により負極合剤層の表面に付着させ得る。気相法としては、化学蒸着、物理蒸着、スパッタリング等の方法が挙げられる。 The pre-doped lithium can be adhered to the surface of the negative electrode mixture layer by, for example, a vapor phase method, transfer, or the like. Vapor phase methods include methods such as chemical vapor deposition, physical vapor deposition, and sputtering.
 なお、負極合剤層へのリチウムイオンのプレドープは、例えば、その後、負極合剤層と電解質とを接触させることで更に進行し、所定時間放置することで完了する。また、正極と負極との端子間に所定の充電電圧(例えば3.4~4.0V)を所定時間(例えば1~75時間)印加することで、リチウムイオンの負極へのプレドープを完了させることもできる。 Note that the pre-doping of lithium ions into the negative electrode mixture layer, for example, proceeds further by bringing the negative electrode mixture layer and the electrolyte into contact with each other after that, and is completed by leaving for a predetermined period of time. In addition, pre-doping of lithium ions to the negative electrode is completed by applying a predetermined charging voltage (eg, 3.4 to 4.0 V) between the terminals of the positive electrode and the negative electrode for a predetermined time (eg, 1 to 75 hours). can also
(セパレータ)
 セパレータとしては、セルロース繊維製の不織布、ガラス繊維製の不織布、ポリオレフィン製の微多孔膜、織布もしくは不織布などを用い得る。セパレータの厚さは、例えば8μm以上、300μm以下である。
(separator)
As the separator, a cellulose fiber nonwoven fabric, a glass fiber nonwoven fabric, a polyolefin microporous film, a woven fabric or a nonwoven fabric, or the like can be used. The thickness of the separator is, for example, 8 μm or more and 300 μm or less.
 図1は、本発明の一実施形態に係るリチウムイオンキャパシタの構成を概略的に示している。図示例のリチウムイオンキャパシタ10は、捲回型のキャパシタ素子1を具備する。キャパシタ素子1は、それぞれシート状の正極2と負極3とをセパレータ4を介して捲回して構成されている。正極2および負極3は、それぞれ金属製の正極集電体、負極集電体と、その表面に担持された正極合剤層、負極合剤層を有し、アニオンまたはリチウムイオンをドープおよび脱ドープすることで容量を発現する。セパレータ4には、例えば、セルロースを主成分とする不織布が用いられる。正極2および負極3には、それぞれ引出部材として正極リード線5a、負極リード線5bが接続されている。キャパシタ素子1は、電解液(図示なし)とともに円筒型の外装ケース6に収容されている。外装ケース6の材質は、例えば、アルミニウム、ステンレス鋼、銅、鉄、真鍮などの金属であればよい。外装ケース6の開口は、封口部材7によって封止されている。リード線5a、5bは、封口部材7を貫通するように外部に導出されている。封口部材7には、例えば、ブチルゴムなどのゴム材が用いられる。 FIG. 1 schematically shows the configuration of a lithium ion capacitor according to one embodiment of the present invention. The illustrated lithium ion capacitor 10 includes a wound capacitor element 1 . The capacitor element 1 is constructed by winding a sheet-like positive electrode 2 and a sheet-like negative electrode 3 with a separator 4 interposed therebetween. The positive electrode 2 and the negative electrode 3 each have a positive electrode current collector and a negative electrode current collector made of metal, and a positive electrode mixture layer and a negative electrode mixture layer supported on the surfaces thereof, respectively, and are doped and undoped with anions or lithium ions. By doing so, the capacity is expressed. For the separator 4, for example, a nonwoven fabric containing cellulose as a main component is used. A positive electrode lead wire 5a and a negative electrode lead wire 5b are connected to the positive electrode 2 and the negative electrode 3, respectively, as lead members. Capacitor element 1 is housed in a cylindrical exterior case 6 together with an electrolytic solution (not shown). The material of the exterior case 6 may be any metal such as aluminum, stainless steel, copper, iron, brass, or the like. The opening of the exterior case 6 is sealed with a sealing member 7 . The lead wires 5 a and 5 b are led out to the outside so as to pass through the sealing member 7 . A rubber material such as butyl rubber, for example, is used for the sealing member 7 .
 本開示に係るリチウムイオンキャパシタの最高許容温度は、例えば、80℃以上であり、85℃以上であってもよい。最高許容温度とは、キャパシタを連続的に使用できる最高周囲温度をいう。最高許容温度は、例えば、リチウムイオンキャパシタの製造者が購入者に対して保証するリチウムイオンキャパシタを使用可能な最高周囲温度であり、カタログ、パンフレット、製品仕様書などに記載されている。最高許容温度は、公称温度係数と、25℃における静電容量と、最高許容温度における静電容量との関係式から算出される数値であってもよい。 The maximum allowable temperature of the lithium ion capacitor according to the present disclosure is, for example, 80°C or higher, and may be 85°C or higher. The maximum permissible temperature is the maximum ambient temperature at which the capacitor can be used continuously. The maximum allowable temperature is, for example, the maximum ambient temperature at which the lithium ion capacitor can be used guaranteed by the manufacturer of the lithium ion capacitor to the purchaser, and is described in catalogs, pamphlets, product specifications, and the like. The maximum permissible temperature may be a numerical value calculated from a relational expression between the nominal temperature coefficient, the capacitance at 25° C., and the capacitance at the maximum permissible temperature.
 以下、実施例および比較例に基づいて、本発明をより具体的に説明するが、本発明は実施例に限定されるものではない。 The present invention will be described in more detail below based on examples and comparative examples, but the present invention is not limited to the examples.
(1)正極集電体
 静電容量が異なる複数種のアルミニウム箔を準備した。アルミニウム箔の静電容量はアルミニウム箔の表面粗さを変更することにより制御した。静電容量が最も小さいアルミニウム箔の厚さは20μmであり、このアルミニウム箔をエッチングすることでアルミニウム箔の表面粗さを変更した。
(1) Positive Electrode Current Collector A plurality of kinds of aluminum foils with different capacitances were prepared. The capacitance of the aluminum foil was controlled by changing the surface roughness of the aluminum foil. The thickness of the aluminum foil with the smallest capacitance was 20 μm, and the surface roughness of the aluminum foil was changed by etching this aluminum foil.
(2)電解質
 第1リチウム塩としてLiPFを、第2リチウム塩としてLiFSIを用いた。溶媒として、プロピレンカーボネートとジメチルカーボネートとの体積比1:1の混合物を用いた。溶媒中にはビニレンカーボネートを0.2質量%含ませた。溶媒に所定のリチウム塩を所定濃度で溶解させて電解質を調製した。電解質中の第1リチウム塩(LiPF)と第2リチウム塩(LiFSI)との合計モル濃度を1.2mol/Lに固定した。合計モル濃度に占める第1リチウム塩(LiPF)のモル濃度の割合が異なる複数種の電解質を準備した。
(2) Electrolyte LiPF6 was used as the first lithium salt, and LiFSI was used as the second lithium salt. A mixture of propylene carbonate and dimethyl carbonate at a volume ratio of 1:1 was used as a solvent. 0.2% by mass of vinylene carbonate was included in the solvent. An electrolyte was prepared by dissolving a predetermined lithium salt in a solvent at a predetermined concentration. The total molar concentration of the first lithium salt (LiPF 6 ) and the second lithium salt (LiFSI) in the electrolyte was fixed at 1.2 mol/L. A plurality of types of electrolytes having different ratios of the molar concentration of the first lithium salt (LiPF 6 ) to the total molar concentration were prepared.
(3)正極の作製
 正極活物質である活性炭(平均粒径5.5μm)88質量部と、結着材であるポリテトラフルオロエチレン2質量部と、増粘剤であるカルボキシセルロース4質量部と、導電材であるアセチレンブラック6質量部とを、水に分散させ、正極合剤スラリーを調製した。得られた正極合剤スラリーを、所定のアルミニウム箔の両面に塗布し、塗膜を乾燥し、圧延して、正極合剤層を形成し、正極を得た。アルミニウム箔には、引出部材として正極リード線を接続した。
(3) Preparation of positive electrode 88 parts by mass of activated carbon (average particle size 5.5 μm) as a positive electrode active material, 2 parts by mass of polytetrafluoroethylene as a binder, and 4 parts by mass of carboxycellulose as a thickener , and 6 parts by mass of acetylene black, which is a conductive material, were dispersed in water to prepare a positive electrode mixture slurry. The resulting positive electrode mixture slurry was applied to both surfaces of a predetermined aluminum foil, the coating film was dried and rolled to form a positive electrode mixture layer, and a positive electrode was obtained. A positive electrode lead wire was connected to the aluminum foil as a lead member.
(4)負極の作製
 難黒鉛化炭素(平均粒径5μm)97質量部と、結着材であるスチレンブタジエンゴム2質量部と、増粘剤であるカルボキシセルロース1質量部と、導電材であるケッチェンブラック6質量部とを、水に分散させ、負極合剤スラリーを調製した。得られた負極合剤スラリーを厚さ10μmの銅箔の両面に塗布し、塗膜を乾燥し、圧延して、負極合剤層を形成し、負極を得た。銅箔には、引出部材として負極リード線を接続した。
(4) Preparation of Negative Electrode 97 parts by mass of non-graphitizable carbon (average particle size 5 μm), 2 parts by mass of styrene-butadiene rubber as a binder, 1 part by mass of carboxycellulose as a thickener, and a conductive material. 6 parts by mass of Ketjenblack was dispersed in water to prepare a negative electrode mixture slurry. The resulting negative electrode mixture slurry was applied to both sides of a copper foil having a thickness of 10 μm, and the coating film was dried and rolled to form a negative electrode mixture layer, thereby obtaining a negative electrode. A negative electrode lead wire was connected to the copper foil as a lead member.
 その後、負極合剤層の全面に、真空蒸着によりプレドープのための金属リチウムの薄膜を形成した。プレドープするリチウム量は、プレドープ完了後の電解質中での負極電位が金属リチウムに対して0.2V以下となるように設定した。 After that, a thin film of metallic lithium for pre-doping was formed on the entire surface of the negative electrode mixture layer by vacuum deposition. The amount of lithium to be pre-doped was set so that the negative electrode potential in the electrolyte after pre-doping was completed was 0.2 V or less with respect to metallic lithium.
(5)キャパシタ素子の作製
 負極と所定の正極とをセルロース製不織布のセパレータ(厚さ25μm)を介して柱状に捲回してキャパシタ素子を形成した。このとき、各リード線を捲回体の一方の端面から突出させた。
(5) Fabrication of Capacitor Element A capacitor element was formed by winding a negative electrode and a predetermined positive electrode in a columnar shape with a cellulose nonwoven fabric separator (thickness: 25 μm) interposed therebetween. At this time, each lead wire was made to protrude from one end surface of the wound body.
(6)リチウムイオンキャパシタの組み立て
 開口を有する有底のセルケースにキャパシタ素子を収容し、セルケース内に所定の電解質を注液した後、各リード線が封口部材を貫通して外部に導出するように、封口部材でセルケースの開口を塞ぎ、図1に示すようなリチウムイオンキャパシタを組み立てた。
(6) Assembly of Lithium Ion Capacitor A capacitor element is housed in a bottomed cell case having an opening, and after a predetermined electrolyte is injected into the cell case, each lead wire passes through the sealing member and leads to the outside. Thus, the opening of the cell case was closed with the sealing member, and the lithium ion capacitor as shown in FIG. 1 was assembled.
 その後、正極と負極との端子間に3.8Vの充電電圧を印加しながら60℃でエージングしてリチウムイオンの負極へのプレドープを完了させた。 After that, aging was performed at 60°C while applying a charging voltage of 3.8 V between the terminals of the positive electrode and the negative electrode to complete the pre-doping of lithium ions to the negative electrode.
(7)評価
(DCRの測定)
 エージング直後のリチウムイオンキャパシタに対し、-30℃の環境下で、電圧が3.8Vになるまで、正極面積当たり2mA/cmの電流密度で定電流充電を行った後、3.8Vの電圧を印加した状態を10分間保持した。その後、-30℃の環境下で、電圧が2.2Vになるまで正極面積当たり2mA/cmの電流密度で定電流放電を行った。
(7) Evaluation (measurement of DCR)
The lithium ion capacitor immediately after aging was subjected to constant current charging at a current density of 2 mA/cm 2 per positive electrode area until the voltage reached 3.8 V in an environment of −30° C., and then to a voltage of 3.8 V. was maintained for 10 minutes. After that, in an environment of −30° C., constant current discharge was performed at a current density of 2 mA/cm 2 per positive electrode area until the voltage reached 2.2V.
 次に、上記放電で得られた放電曲線(縦軸:放電電圧、横軸:放電時間)を用い、当該放電曲線の放電開始から0.05秒~0.2秒経過時の範囲における一次の近似直線を求め、当該近似直線の切片の電圧VSを求めた。放電開始時(放電開始から0秒経過時)の電圧V0から電圧VSを差し引いた値(V0-VS)をΔVとして求めた。ΔV(V)と、放電時の電流値(正極面積当たりの電流密度2mA/cm×正極面積)とを用いて、下記式より内部抵抗(DCR)(Ω)を求めた。式中のIdは、放電時の電流値(正極面積当たりの電流密度2mA/cm×正極面積)である。 Next, using the discharge curve (vertical axis: discharge voltage, horizontal axis: discharge time) obtained in the above discharge, the first-order An approximate straight line was obtained, and the voltage VS of the intercept of the approximate straight line was obtained. A value (V0−VS) obtained by subtracting the voltage VS from the voltage V0 at the start of discharge (0 seconds after the start of discharge) was obtained as ΔV. Using ΔV (V) and the current value during discharge (current density per positive electrode area 2 mA/cm 2 ×positive electrode area), the internal resistance (DCR) (Ω) was obtained from the following formula. Id in the formula is the current value during discharge (current density per positive electrode area: 2 mA/cm 2 ×positive electrode area).
 正極集電体の静電容量が4μF/cm2であり、かつ、第1リチウム塩(LiPF)と第2リチウム塩(LiFSI)との合計モル濃度に占める第1リチウム塩(LiPF)のモル濃度の割合が0%の場合(つまり、リチウム塩が全てLiFSIである場合)のR1を100として、相対値を表1に示す。数値が小さいほどDCRが低い。 The positive electrode current collector has a capacitance of 4 μF/cm 2 , and the first lithium salt (LiPF 6 ) accounts for the total molar concentration of the first lithium salt (LiPF 6 ) and the second lithium salt (LiFSI). Relative values are shown in Table 1, assuming that R1 is 100 when the molar concentration ratio is 0% (that is, when all the lithium salts are LiFSI). The smaller the number, the lower the DCR.
 DCR=ΔV/Id  DCR = ΔV/Id
(フロート試験)
 85℃の環境下でリチウムイオンキャパシタに定電圧3.8Vを印加した状態で1000時間保持するフロート充電を行い、フロート充電中に発生するガス量を求めた。フロート充電中に発生するガス量は、ゴム製の封口部材の膨れ量から算出した。正極集電体の静電容量が4μF/cm2であり、かつ、第1リチウム塩(LiPF)と第2リチウム塩(LiFSI)との合計モル濃度に占める第1リチウム塩(LiPF)のモル濃度の割合が0%の場合(つまり、リチウム塩が全てLiFSIである場合)のガス発生量を100として、相対値を表2に示す。数値が小さいほどガス発生量が少なく、正極集電体と電解質との副反応が少なく、正極が劣化しにくいといえる。
(Float test)
A constant voltage of 3.8 V was applied to the lithium ion capacitor under an environment of 85° C., and float charging was performed for 1000 hours, and the amount of gas generated during the float charging was determined. The amount of gas generated during float charging was calculated from the swelling amount of the rubber sealing member. The positive electrode current collector has a capacitance of 4 μF/cm 2 , and the first lithium salt (LiPF 6 ) accounts for the total molar concentration of the first lithium salt (LiPF 6 ) and the second lithium salt (LiFSI). Relative values are shown in Table 2, assuming that the amount of gas generated is 100 when the molar concentration ratio is 0% (that is, when the lithium salt is all LiFSI). It can be said that the smaller the value, the smaller the amount of gas generated, the less the side reaction between the positive electrode current collector and the electrolyte, and the less likely the positive electrode will deteriorate.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1、2より、正極集電体の静電容量が20μF/cm2以下であり、かつ電解質中のリチウム塩の合計モル濃度に占める第1リチウム塩のモル濃度の割合が0%より大きく、35%以下である場合に、低温でのDCRを抑制しつつ、正極の劣化も抑制できるバランスのよい結果が得られること理解できる。 From Tables 1 and 2, the capacitance of the positive electrode current collector is 20 μF/cm 2 or less, and the ratio of the molar concentration of the first lithium salt to the total molar concentration of the lithium salts in the electrolyte is greater than 0%, It can be understood that when the ratio is 35% or less, well-balanced results can be obtained in which deterioration of the positive electrode can be suppressed while suppressing DCR at low temperatures.
 次に、電解質中の第1リチウム塩(LiPF)と第2リチウム塩(LiFSI)との合計モル濃度に占める第1リチウム塩(LiPF)のモル濃度の割合を10%に固定し、合計モル濃度が異なる複数種の電解質を準備した。所定の電解質を用いること以外、上記と同様に、リチウムイオンキャパシタを組み立て、エージングしてリチウムイオンの負極へのプレドープを完了させた。 Next, the ratio of the molar concentration of the first lithium salt (LiPF 6 ) to the total molar concentration of the first lithium salt (LiPF 6 ) and the second lithium salt (LiFSI) in the electrolyte is fixed at 10%, and the total A plurality of types of electrolytes with different molar concentrations were prepared. Lithium ion capacitors were assembled and aged in the same manner as described above, except that the prescribed electrolyte was used, to complete the pre-doping of lithium ions into the negative electrode.
 図2に、リチウムイオンキャパシタの-30℃でのDCRおよび85℃でのフロート充電時のガス発生量と、リチウム塩の合計モル濃度(塩濃度M)との関係を示す。図2より、電解質中のリチウム塩の合計モル濃度は0.7mol/L以上、1.3mol/L以下、もしくは0.7mol/L以上、1.0mol/L以下が望ましいことが理解できる。 Fig. 2 shows the relationship between the amount of gas generated during DCR at -30°C and float charge at 85°C of a lithium ion capacitor and the total molar concentration of lithium salts (salt concentration M). From FIG. 2, it can be understood that the total molar concentration of lithium salts in the electrolyte is preferably 0.7 mol/L or more and 1.3 mol/L or less, or 0.7 mol/L or more and 1.0 mol/L or less.
 本発明に係るリチウムイオンキャパシタは、最高許容温度が80℃以上、もしくは85℃以上の用途に適し、例えば車載用途として好適である。 The lithium ion capacitor according to the present invention is suitable for applications with a maximum allowable temperature of 80°C or higher, or 85°C or higher, and is suitable for in-vehicle use, for example.
 1:キャパシタ素子、2:正極、3:負極、4:セパレータ、5a:正極リード線、5b:負極リード線、6:外装ケース、7:封口部材、10:リチウムイオンキャパシタ 1: capacitor element, 2: positive electrode, 3: negative electrode, 4: separator, 5a: positive electrode lead wire, 5b: negative electrode lead wire, 6: exterior case, 7: sealing member, 10: lithium ion capacitor

Claims (8)

  1.  正極、負極およびリチウムイオン伝導性の電解質を含み、
     前記正極は、正極集電体と、前記正極集電体に担持された正極合剤層と、を具備し、
     前記正極合剤層は、アニオンを可逆的にドープする正極活物質を含み、
     前記正極集電体の静電容量は、20μF/cm2以下であり、
     前記負極は、負極集電体と、前記負極集電体に担持された負極合剤層と、を具備し、
     前記負極合剤層は、リチウムイオンを可逆的にドープする負極活物質を含み、
     前記電解質が、第1リチウム塩と、第2リチウム塩と、を含み、
     前記第1リチウム塩は、フッ素含有無機酸のリチウム塩であり、
     前記第2リチウム塩は、フッ素含有酸イミドのリチウム塩であり、
     前記電解質中の前記第1リチウム塩と前記第2リチウム塩との合計モル濃度に占める第1リチウム塩のモル濃度の割合が、0%より大きく、35%以下である、リチウムイオンキャパシタ。
    comprising a positive electrode, a negative electrode and a lithium ion conductive electrolyte;
    The positive electrode includes a positive electrode current collector and a positive electrode mixture layer supported on the positive electrode current collector,
    The positive electrode mixture layer includes a positive electrode active material that reversibly dopes anions,
    The positive electrode current collector has a capacitance of 20 μF/cm 2 or less,
    The negative electrode includes a negative electrode current collector and a negative electrode mixture layer supported on the negative electrode current collector,
    The negative electrode mixture layer includes a negative electrode active material reversibly doped with lithium ions,
    the electrolyte comprises a first lithium salt and a second lithium salt;
    The first lithium salt is a lithium salt of a fluorine-containing inorganic acid,
    The second lithium salt is a lithium salt of a fluorine-containing acid imide,
    A lithium ion capacitor, wherein the ratio of the molar concentration of the first lithium salt to the total molar concentration of the first lithium salt and the second lithium salt in the electrolyte is more than 0% and 35% or less.
  2.  前記第1リチウム塩のモル濃度の割合をX%、前記正極集電体の静電容量をYμF/cm2とするとき、XおよびYが、
     式(1):Y≦X+10
     式(2):Y≦-0.8X+28
    を満たす、請求項1に記載のリチウムイオンキャパシタ。
    When the molar concentration ratio of the first lithium salt is X% and the capacitance of the positive electrode current collector is Y μF/cm 2 , X and Y are
    Formula (1): Y≤X+10
    Formula (2): Y≤-0.8X+28
    The lithium ion capacitor according to claim 1, which satisfies:
  3.  前記正極集電体の静電容量は、4μF/cm2以下である、請求項1または2に記載のリチウムイオンキャパシタ。 3. The lithium ion capacitor according to claim 1, wherein the positive electrode current collector has a capacitance of 4 μF/cm 2 or less.
  4.  前記電解質中の前記第1リチウム塩と前記第2リチウム塩との合計モル濃度が、0.7mol/L以上、1.3mol/L以下である、請求項1~3のいずれか1項に記載のリチウムイオンキャパシタ。 The total molar concentration of the first lithium salt and the second lithium salt in the electrolyte is 0.7 mol/L or more and 1.3 mol/L or less, according to any one of claims 1 to 3. of lithium-ion capacitors.
  5.  前記正極活物質が、活性炭を含む、請求項1~4のいずれか1項に記載のリチウムイオンキャパシタ。 The lithium ion capacitor according to any one of claims 1 to 4, wherein the positive electrode active material contains activated carbon.
  6.  前記第1リチウム塩が、LiPF6、LiBF4、LiSbF6およびLiAsF6からなる群より選択される少なくとも1種であり、
     前記第2リチウム塩が、LiN(FSO22、LiN(CF3SO22、LiN(CF3SO2)(C49SO2)およびLiN(C25SO22からなる群より選択される少なくとも1種である、請求項1~5のいずれか1項に記載のリチウムイオンキャパシタ。
    The first lithium salt is at least one selected from the group consisting of LiPF 6 , LiBF 4 , LiSbF 6 and LiAsF 6 ,
    The second lithium salt is LiN ( FSO2 ) 2 , LiN ( CF3SO2 ) 2 , LiN ( CF3SO2 ) ( C4F9SO2 ) and LiN ( C2F5SO2 ) 2 The lithium ion capacitor according to any one of claims 1 to 5, which is at least one selected from the group consisting of:
  7.  最高許容温度が80℃以上である、請求項1~6のいずれか1項に記載のリチウムイオンキャパシタ。 The lithium ion capacitor according to any one of claims 1 to 6, wherein the maximum allowable temperature is 80°C or higher.
  8.  最高許容温度が85℃以上である、請求項1~7のいずれか1項に記載のリチウムイオンキャパシタ。 The lithium ion capacitor according to any one of claims 1 to 7, wherein the maximum allowable temperature is 85°C or higher.
PCT/JP2022/012120 2021-03-29 2022-03-17 Lithium-ion capacitor WO2022209928A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280023623.3A CN117063259A (en) 2021-03-29 2022-03-17 Lithium ion capacitor
US18/549,151 US20240128030A1 (en) 2021-03-29 2022-03-17 Lithium-ion capacitor
JP2023510926A JPWO2022209928A1 (en) 2021-03-29 2022-03-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021056090 2021-03-29
JP2021-056090 2021-03-29

Publications (1)

Publication Number Publication Date
WO2022209928A1 true WO2022209928A1 (en) 2022-10-06

Family

ID=83459096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012120 WO2022209928A1 (en) 2021-03-29 2022-03-17 Lithium-ion capacitor

Country Status (4)

Country Link
US (1) US20240128030A1 (en)
JP (1) JPWO2022209928A1 (en)
CN (1) CN117063259A (en)
WO (1) WO2022209928A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018061039A (en) * 2016-01-22 2018-04-12 旭化成株式会社 Nonaqueous lithium type power storage element
JP2019024040A (en) * 2017-07-24 2019-02-14 旭化成株式会社 Nonaqueous lithium type power-storage device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018061039A (en) * 2016-01-22 2018-04-12 旭化成株式会社 Nonaqueous lithium type power storage element
JP2019024040A (en) * 2017-07-24 2019-02-14 旭化成株式会社 Nonaqueous lithium type power-storage device

Also Published As

Publication number Publication date
CN117063259A (en) 2023-11-14
JPWO2022209928A1 (en) 2022-10-06
US20240128030A1 (en) 2024-04-18

Similar Documents

Publication Publication Date Title
US6911281B2 (en) Non-aqueous electrolyte and electrochemical device comprising the same
US8455142B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
JP2008294314A (en) Capacitor
CN108292568B (en) Electrochemical device and method for manufacturing the same
JP5105765B2 (en) Lithium ion secondary battery
US20150303513A1 (en) Nonaqueous electrolytic storage element
WO2016021596A1 (en) Lithium secondary battery and production method for same
CN112106160A (en) Electrochemical device and method for manufacturing the same
JPH1131637A (en) Electric double-layer capacitor, carbon material for it and electrode
JP7276957B2 (en) lithium ion secondary battery
JP2000306609A (en) Secondary power supply
WO2022209928A1 (en) Lithium-ion capacitor
WO2022092050A1 (en) Electrochemical device
JP2018041636A (en) Power storage element
JP2002100403A (en) Nonaqueous electrolyte and nonaqueous electrochemical device containing the same
JP6127817B2 (en) Non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery using the same
JP2011204828A (en) Non-aqueous electrolyte for lithium ion capacitor and lithium ion capacitor using with the same
JP2009130066A (en) Lithium ion capacitor
JP2020077576A (en) Lithium ion secondary battery
JP2012114201A (en) Power storage device
JP2020077575A (en) Lithium ion secondary battery
WO2022202580A1 (en) Electrochemical device
JP7276956B2 (en) lithium ion secondary battery
WO2024024956A1 (en) Electrochemical device
WO2024062876A1 (en) Electrochemical device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780148

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023510926

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18549151

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280023623.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780148

Country of ref document: EP

Kind code of ref document: A1