WO2022209849A1 - Membrane reactor, chemical plant, and method for manufacturing fluid - Google Patents
Membrane reactor, chemical plant, and method for manufacturing fluid Download PDFInfo
- Publication number
- WO2022209849A1 WO2022209849A1 PCT/JP2022/011582 JP2022011582W WO2022209849A1 WO 2022209849 A1 WO2022209849 A1 WO 2022209849A1 JP 2022011582 W JP2022011582 W JP 2022011582W WO 2022209849 A1 WO2022209849 A1 WO 2022209849A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- membrane
- fibrous material
- fluid separation
- membrane reactor
- fluid
- Prior art date
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 341
- 239000012530 fluid Substances 0.000 title claims abstract description 250
- 238000004519 manufacturing process Methods 0.000 title claims description 55
- 239000000126 substance Substances 0.000 title claims description 12
- 238000000034 method Methods 0.000 title description 29
- 239000002657 fibrous material Substances 0.000 claims abstract description 144
- 239000003054 catalyst Substances 0.000 claims abstract description 69
- 238000000926 separation method Methods 0.000 claims description 183
- 239000000835 fiber Substances 0.000 claims description 39
- 238000006243 chemical reaction Methods 0.000 claims description 33
- 238000005452 bending Methods 0.000 claims description 21
- 239000012510 hollow fiber Substances 0.000 claims description 17
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 12
- 238000001816 cooling Methods 0.000 claims description 12
- 229910052799 carbon Inorganic materials 0.000 claims description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 8
- 239000000376 reactant Substances 0.000 claims description 7
- 239000004744 fabric Substances 0.000 claims description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 239000011651 chromium Substances 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 239000011733 molybdenum Substances 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- 229910052715 tantalum Inorganic materials 0.000 claims description 4
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 239000010937 tungsten Substances 0.000 claims description 4
- 239000004745 nonwoven fabric Substances 0.000 claims description 3
- 239000002759 woven fabric Substances 0.000 claims description 3
- 239000000047 product Substances 0.000 description 29
- 238000004382 potting Methods 0.000 description 25
- 239000000463 material Substances 0.000 description 16
- 239000001257 hydrogen Substances 0.000 description 15
- 229910052739 hydrogen Inorganic materials 0.000 description 15
- -1 polytetrafluoroethylene Polymers 0.000 description 13
- 238000011156 evaluation Methods 0.000 description 12
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 12
- 229920005989 resin Polymers 0.000 description 12
- 239000011347 resin Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 11
- 239000012466 permeate Substances 0.000 description 11
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 10
- 239000006227 byproduct Substances 0.000 description 10
- 239000003822 epoxy resin Substances 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 10
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 10
- 229920000647 polyepoxide Polymers 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 230000035699 permeability Effects 0.000 description 9
- 229920000728 polyester Polymers 0.000 description 9
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 8
- 241000196324 Embryophyta Species 0.000 description 8
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 8
- 239000000853 adhesive Substances 0.000 description 8
- 230000001070 adhesive effect Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 125000006850 spacer group Chemical group 0.000 description 7
- 239000010457 zeolite Substances 0.000 description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 229910021536 Zeolite Inorganic materials 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000001311 chemical methods and process Methods 0.000 description 6
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 6
- 238000011084 recovery Methods 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 239000004734 Polyphenylene sulfide Substances 0.000 description 5
- 239000004020 conductor Substances 0.000 description 5
- 239000010408 film Substances 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 5
- 229910052763 palladium Inorganic materials 0.000 description 5
- 229920002239 polyacrylonitrile Polymers 0.000 description 5
- 229920000069 polyphenylene sulfide Polymers 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 4
- 239000004721 Polyphenylene oxide Substances 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229920001971 elastomer Polymers 0.000 description 4
- 239000011151 fibre-reinforced plastic Substances 0.000 description 4
- 238000011049 filling Methods 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 4
- 238000011068 loading method Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000012621 metal-organic framework Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000007747 plating Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000005060 rubber Substances 0.000 description 4
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 4
- 229920000877 Melamine resin Polymers 0.000 description 3
- 239000004695 Polyether sulfone Substances 0.000 description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 229920001807 Urea-formaldehyde Polymers 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000012784 inorganic fiber Substances 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 239000005011 phenolic resin Substances 0.000 description 3
- 229920002492 poly(sulfone) Polymers 0.000 description 3
- 229920006393 polyether sulfone Polymers 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 229920006380 polyphenylene oxide Polymers 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 238000009987 spinning Methods 0.000 description 3
- 238000000629 steam reforming Methods 0.000 description 3
- 229920006337 unsaturated polyester resin Polymers 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 239000004641 Diallyl-phthalate Substances 0.000 description 2
- 239000013206 MIL-53 Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 239000004640 Melamine resin Substances 0.000 description 2
- 241000209094 Oryza Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 239000004696 Poly ether ether ketone Substances 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000006087 Silane Coupling Agent Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 229920000180 alkyd Polymers 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 2
- 239000002041 carbon nanotube Substances 0.000 description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 229920005610 lignin Polymers 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920002530 polyetherether ketone Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000009719 polyimide resin Substances 0.000 description 2
- 229920005597 polymer membrane Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- 239000012209 synthetic fiber Substances 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 239000004953 Aliphatic polyamide Substances 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000013148 Cu-BTC MOF Substances 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 239000012923 MOF film Substances 0.000 description 1
- 239000013132 MOF-5 Substances 0.000 description 1
- YAGCJGCCZIARMJ-UHFFFAOYSA-N N1C(=NC=C1)C=O.[Zn] Chemical compound N1C(=NC=C1)C=O.[Zn] YAGCJGCCZIARMJ-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229920003231 aliphatic polyamide Polymers 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 229920003174 cellulose-based polymer Polymers 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000009295 crossflow filtration Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229920002863 poly(1,4-phenylene oxide) polymer Polymers 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920001483 poly(ethyl methacrylate) polymer Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 229920012287 polyphenylene sulfone Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229920002725 thermoplastic elastomer Polymers 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- NOSIKKRVQUQXEJ-UHFFFAOYSA-H tricopper;benzene-1,3,5-tricarboxylate Chemical compound [Cu+2].[Cu+2].[Cu+2].[O-]C(=O)C1=CC(C([O-])=O)=CC(C([O-])=O)=C1.[O-]C(=O)C1=CC(C([O-])=O)=CC(C([O-])=O)=C1 NOSIKKRVQUQXEJ-UHFFFAOYSA-H 0.000 description 1
- DCGLONGLPGISNX-UHFFFAOYSA-N trimethyl(prop-1-ynyl)silane Chemical compound CC#C[Si](C)(C)C DCGLONGLPGISNX-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000013153 zeolitic imidazolate framework Substances 0.000 description 1
- 239000013172 zeolitic imidazolate framework-7 Substances 0.000 description 1
- 239000013154 zeolitic imidazolate framework-8 Substances 0.000 description 1
- MFLKDEMTKSVIBK-UHFFFAOYSA-N zinc;2-methylimidazol-3-ide Chemical compound [Zn+2].CC1=NC=C[N-]1.CC1=NC=C[N-]1 MFLKDEMTKSVIBK-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/02—Hollow fibre modules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/02—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/08—Hollow fibre membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/24—Stationary reactors without moving elements inside
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/06—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
Definitions
- the present invention relates to membrane reactors.
- a chemical process generally consists of a reaction process and a purification process.
- a reaction process is a process of obtaining a product from a reactant, optionally using a catalyst.
- the reaction rate has an upper limit governed by chemical equilibrium, and the reaction rate cannot be increased to suppress side reactions.
- the purification process is a process of separating the product from unreacted substances and by-products after the reaction. Distillation, which is a typical refining process, requires temperature and pressure to fluctuate, resulting in a large energy loss.
- a membrane reactor that integrates the reaction process and the purification process has been proposed.
- a catalyst is placed on the surface of the separation membrane and between the separation membranes, and the reaction process proceeds in the space where the separation membrane exists.
- products or by-products generated in the reaction process are removed from the reaction system via the separation membrane, thereby shifting the equilibrium to the product side and improving the reaction rate.
- energy-saving refinement can be achieved.
- a membrane reactor as a method of efficiently supplying the removed components to the separation membrane, a method of arranging a spacer or a rectifying plate in the reaction chamber is known (see, for example, Patent Documents 1 and 2).
- WO 2005/010303 has at least at least one bundle of ceramic capillaries (9) and a housing surrounding the bundle, said capillaries being joined at their (both) ends by a perforated plate, and
- the housing has an inlet tube and/or an outlet tube connected to the interior of the capillaries for the first material stream and connected to the gap between the capillaries for the second material stream.
- a separation module is disclosed, having inlet and/or outlet tubes, characterized in that the distance between the capillaries is kept constant by spacers (6).
- the spacers for generating forced flow become dead spaces in the separation module and partially cover the surfaces of the ceramic capillaries.
- there was a problem of filling the storage space for the catalyst Due to the dead space, there is concern about a decrease in productivity and an increase in equipment size.
- Patent Document 2 discloses a selectively permeable membrane reactor in which a raw material gas flowing from the inlet of the reactor reacts in a reaction chamber filled with a catalyst in the reactor, and the product gas produced is discharged into the reactor.
- a selectively permeable membrane reactor in which the by-product gas is discharged from an outlet and is allowed to permeate the selectively permeable membrane and flow out of the reaction chamber, the reactor is provided with a porous tube having a selectively permeable membrane formed on its surface. a catalyst layer is provided in the gap between the inner wall of the reactor and the porous tube to form a reaction chamber;
- a selectively permeable membrane reactor is disclosed, which is characterized in that it is provided in a reaction chamber.
- the present invention has the following configuration. That is, the present invention is a membrane reactor comprising, in a vessel, fluid separation membranes for separating a fluid to be separated, and fibrous materials existing between the fluid separation membranes, wherein the fibrous materials contain a catalyst. It is a supported membrane reactor.
- the fibrous material supports at least part of the catalyst, it is possible to supply the removed components to the fluid separation membrane while minimizing the dead space, thereby improving the productivity of the target product. It is possible to
- FIG. 2 is a schematic diagram showing a cross section including a fluid inlet and outlet of one embodiment of the membrane reactor of the present invention.
- Figure 2 is a schematic diagram showing two compartments of the membrane reactor of Figure 1; 1 is a schematic diagram showing one mode of arrangement of a fluid separation membrane and a fibrous material of the present invention.
- FIG. FIG. 4 is a schematic diagram showing another aspect of the arrangement of the fluid separation membrane and fibrous material of the present invention.
- the membrane reactor of the present invention is a membrane reactor comprising, in a vessel, a fluid separation membrane for separating a fluid to be separated and a fibrous material existing between the fluid separation membranes, wherein the fibrous material is characterized by carrying a catalyst.
- FIG. 1 shows a schematic cross-sectional view of one embodiment of the membrane reactor of the present invention.
- FIG. 1 is a schematic cross-sectional view of a membrane reactor in which fluid separation membranes, which are hollow fiber membranes, are housed, including fluid inlets and outlets.
- the term "fluid” as used herein refers to a feed fluid, a fluid to be separated, a permeating fluid, or a non-permeating fluid.
- a feed fluid is a fluid containing a reactant.
- a fluid to be separated is a mixture of reactants, products, by-products, impurities, sweep gases, and the like.
- a permeate fluid is a fluid that has permeated a fluid separation membrane.
- Non-permeate fluid is fluid that exits the membrane reactor without permeating the fluid separation membrane.
- FIG. 2 is a schematic diagram of FIG. 1 with the fibrous material removed.
- the interior of the membrane reactor is divided into a compartment 1 (reference numeral 13) that is an outer compartment of the fluid separation membrane 1 and a compartment 2 (reference numeral 14) that is an inner compartment of the fluid separation membrane 1.
- FIG. Compartment 1 has an inlet 8 for the feed fluid and an outlet 9 for the non-permeate fluid
- compartment 2 has an outlet 10 for the permeate fluid that has permeated the fluid separation membrane 1 and an outlet 10 for the permeate fluid and a sweep gas for sweeping the permeate fluid. It has an inlet 11 .
- the non-permeating fluid outlet 9 and the permeating fluid outlet 10 are connected to an external channel (not shown), and the non-permeating fluid and the permeating fluid are recovered.
- a fibrous material 3 exists between the fluid separation membranes 1 in the compartment 1, and the fibrous material 3 carries a catalyst 4 (not shown).
- the fibrous material 3 may be present in places other than between the fluid separation membranes 1 (for example, between the fluid separation membrane and the vessel), and the catalyst 4 may be present on the surfaces of the fluid separation membranes 1 and in the gaps 5 between the fluid separation membranes. may also exist.
- the fibrous material 3 spirally covers the periphery of one fluid separation membrane 1, and the fluid separation membranes 1 bundled in parallel have both ends at potting sites 7. Fixed (potted) to each other and fixed to the vessel 12 , the fluid separation membrane 1 passes through the potting site 7 .
- Chemical processes to which the membrane reactor of the present invention can be applied are not particularly limited. Examples include hydrogen production by steam reforming of methane, hydrogen production from methylcyclohexane, methane synthesis from carbon dioxide and hydrogen, and methanol synthesis and the like.
- the cross-sectional shape of the vessel is preferably oval or circular, more preferably circular, from the viewpoint of improving the pressure resistance of the vessel.
- the cross section of the vessel refers to the cross section of the vessel perpendicular to the length direction of the fluid separation membrane.
- Materials for the vessel include, for example, metal, resin, fiber reinforced plastic (FRP), and the like, and can be appropriately selected according to the environment of the installation site and the usage situation. In applications where pressure resistance and heat resistance are required, metals having both strength and moldability are preferred, and stainless steel and the like are more preferred.
- the supply fluid inlet of the vessel has the function of guiding the supply fluid into the membrane reactor.
- the reactants contained in the feed fluid chemically react in the membrane reactor to form products, and the feed fluid becomes the fluid to be separated.
- the compartment 1 may have an inlet for the feed fluid, and when used in a cross-flow filtration system, the compartment 1 serves as an inlet for the feed fluid.
- each has an outlet for the non-permeating fluid.
- a plurality of inlets for the feed fluid and outlets for the non-permeating fluid (hereinafter referred to as "outflow inlets”) may be provided within the range of maintaining the mechanical strength of the vessel.
- the compartment 2 may have an outlet for the permeating fluid, but may also have an inlet for the sweep gas for actively entraining the permeating fluid.
- the method of fixing the fluid separation membrane to the vessel includes a method of fixing the fluid separation membrane directly to the inner surface of the vessel with a potting material, and a separation membrane in which a plurality of fluid separation membranes are fixed with a potting material.
- a method of fixing the element in the vessel via an adapter or the like capable of ensuring liquid tightness or airtightness can be used. Since only the separation membrane element can be replaced when the performance of the separation membrane element deteriorates over time, it is preferable to fix it in the vessel via an adapter or the like.
- the potting portion of the membrane reactor or the separation membrane element may be at one or a plurality of locations, but from the viewpoint of sufficiently fixing the position of the fluid separation membrane and maintaining the effective surface area of the fluid separation membrane
- two ends of a plurality of fluid separation membranes bundled in a substantially straight line are fixed with a potting material.
- both ends of the fluid separation membranes may be fixed at one place with a potting material, or only one end of the fluid separation membranes may be fixed with a potting material, The other end may be sealed by means other than potting material.
- the separation membrane element may have a casing (hereinafter referred to as "element casing") separate from the vessel.
- the element casing preferably has an inlet and outlet for fluid.
- the shape of the element casing is not particularly limited as long as it does not interfere with housing in the vessel.
- Materials for the element casing include, for example, metals, resins, fiber reinforced plastics (FRP), and the like, and can be appropriately selected according to the conditions of use. For applications requiring high temperature operation, metals are preferred due to their high heat resistance.
- Resin is preferable from the viewpoint of high followability to curing shrinkage of potting material, and since it has both moldability and chemical resistance, polyphenylene sulfide, polytetrafluoroethylene, polyethylene, polypropylene, polyether ether ketone, polyphenylene ether, polyether More preferred are imides, polyamideimides and polysulfones.
- Potting materials include organic adhesives and inorganic adhesives. In applications requiring high-temperature operation, inorganic adhesives are preferred due to their high heat resistance.
- organic adhesives examples include thermoplastic resins and thermosetting resins. Furthermore, the organic adhesive may contain other additives.
- Thermoplastic resins suitable as organic adhesives include, for example, polyethylene, polyethersulfone, polystyrene, polyphenylene sulfide, polyarylate, polyester, liquid crystal polyester, polyamide, and polymethyl methacrylate.
- thermosetting resins include epoxy resins, unsaturated polyester resins, urethane resins, urea resins, phenol resins, melamine resins, and silicone resins. You may use 2 or more types of these.
- epoxy resins and urethane resins are preferable from the viewpoint of balance of moldability, curing time, adhesiveness, hardness, and the like.
- Additives contained in organic adhesives include, for example, fillers, surfactants, silane coupling agents, and rubber components.
- fillers include silica, talc, zeolite, calcium hydroxide, calcium carbonate, and the like, and have effects such as suppression of curing heat generation, strength improvement, and thickening.
- the surfactant and the silane coupling agent provide effects such as improvement of handleability when mixing the potting material and improvement of infiltration between the fluid separation carbon films when the potting material is injected.
- the rubber component has the effect of improving the toughness of the hardened and molded potting material.
- the rubber component may be contained in the form of rubber particles.
- Inorganic adhesives include, for example, ceramics and cement. You may use 2 or more types of these. Furthermore, other additives may be contained.
- the membrane reactor of the present invention is characterized in that there are fibrous substances present between the fluid separation membranes, and the fibrous substances carry a catalyst.
- the state in which the fibrous material supports the catalyst does not mean that the surface of the fibrous material and the catalyst particles, etc. are simply in contact with each other and can be easily removed with a brush or the like. represents the state in which the catalyst is chemically or physically fixed.
- the membrane reactor in which the spacer for efficiently supplying the fluid to be separated to the separation membrane is arranged inside the membrane reactor, the spacer itself becomes a dead space in the membrane reactor, and the fluid separation membrane There was a problem of partially covering the surface of the catalyst and filling the storage space of the catalyst.
- the fibrous material placed between the fluid separation membranes supports the catalyst, thereby minimizing the dead space while supplying the removed components to the fluid separation membranes.
- Productivity can be improved.
- the equipment can be made compact.
- a fluid separation membrane is a membrane that has a higher permeability for specific components (permeable components) contained in the fluid to be separated than for other components (non-permeable components).
- the shape of the fluid separation membrane is not particularly limited, and may be a flat membrane or a hollow fiber membrane.
- the membrane is a hollow fiber membrane.
- the inner diameter of the hollow fiber membrane is preferably 10 ⁇ m or more and 2,000 ⁇ m or less. Fluid permeability can be improved by setting the inner diameter of the hollow fiber membrane to 10 ⁇ m or more.
- the inner diameter of the hollow fiber membrane is more preferably 20 ⁇ m or more, more preferably 50 ⁇ m or more.
- the outer diameter of the hollow fiber membrane can be reduced, so that the membrane area of the fluid separation membrane per unit volume when used as a membrane reactor can be increased. can.
- the inner diameter of the fluid separation membrane is more preferably 1,000 ⁇ m or less, and even more preferably 500 ⁇ m or less.
- the inner diameter of the hollow fiber membrane which is the fluid separation membrane
- the inner diameter of the hollow fiber membrane is 10 ⁇ m or more and 2,000 ⁇ m or less
- a portion where the distance between the membranes is small occurs, and the flow of the fluid to be separated becomes uneven, and the surface utilization efficiency of the fluid separation membrane tends to decrease.
- the fibrous material secures the inter-membrane distance, the fluid separation membrane can be highly filled while maintaining the membrane utilization efficiency.
- the inner diameter of the hollow fiber membrane represents the diameter of the hollow portion of the hollow fiber membrane.
- the shape of the hollow portion is not circular, the diameter of the maximum inscribed circle that fits in the hollow portion is regarded as the inner diameter of the hollow fiber membrane.
- fluid separation membranes examples include zeolite membranes, metal organic framework (MOF) membranes, inorganic membranes such as carbon membranes, and polymer membranes.
- MOF metal organic framework
- inorganic membranes such as carbon membranes
- polymer membranes polymer membranes.
- the membrane reactor is operated under severe reaction conditions such as high temperature and acidity and basicity, an inorganic membrane with excellent heat resistance and chemical resistance is preferable, and the inorganic membrane is more preferably a zeolite membrane or a carbon membrane. preferable.
- Zeolite membranes include membranes made of aluminosilicates such as NaX type (FAU), ZSM-5, MOR, silicalite, and A type. You may use 2 or more types of these.
- the zeolite seeds preferably have a Si/Al ratio comparable to that of those secondary grown by hydrothermal synthesis reaction.
- MOF films include, for example, Cu-BTC, MOF-5, IRMOF-3, MIL-47, MIL-53, MIL-96, MMOF, SIM-1, ZIF-7, ZIF-8, ZIF-22, ZIF -69, ZIF-90 and the like. You may use 2 or more types of these.
- Examples of carbon films include polyphenylene oxide, polyvinyl alcohol, polyacrylonitrile, phenol resin, wholly aromatic polyester, unsaturated polyester resin, alkyd resin, melamine resin, urea resin, polyimide resin, diallyl phthalate resin, lignin resin, and urethane resin. etc. is carbonized. You may use 2 or more types of these.
- Polymer membranes include, for example, aromatic polyimide, cellulose acetate, polysulfone, aromatic polyamide, polyetherimide, polyethersulfone, polyacrylonitrile, polyphenylene sulfide, polyetheretherketone, polytetrafluoroethylene, polyvinylidene fluoride, poly (1-trimethylsilylpropyne), polydimethylsiloxane, polyvinyltrimethylsilane, poly(4-methylpentene), ethylcellulose, natural rubber, poly(2,6-dimethylphenylene oxide), low-density polyethylene, high-density polyethylene, styrene, Examples include films made of polyethyl methacrylate, polycarbonate, polyester, aliphatic polyamide, polymethyl methacrylate, polyvinyl alcohol, silicone, and the like. You may use 2 or more types of these.
- Nanoparticles and the like can be added to the fluid separation membrane to improve the permeability of permeable components.
- examples of nanoparticles include silica, titania, zeolites, metal oxides, metal organic frameworks (MOF), carbon nanotubes (CNT), and the like.
- the fluid separation membrane may contain a support. More preferably, when the fluid separation membrane of the present invention comprises a support, the support is located on only one surface of the fluid separation membrane.
- the support examples include porous inorganic materials such as alumina, silica, cordierite, zirconia, titania, Vycor glass, zeolite, magnesia, sintered metals, polysulfone, polyethersulfone, polyamide, polyester, cellulose-based polymers, Porous organic materials containing at least one polymer selected from the group consisting of homopolymers and copolymers such as vinyl polymers, polyphenylene sulfides, polyphenylene sulfide sulfones, polyphenylene sulfones, and polyphenylene oxides; Examples include porous carbon materials obtained by carbonizing materials.
- porous inorganic materials such as alumina, silica, cordierite, zirconia, titania, Vycor glass, zeolite, magnesia, sintered metals, polysulfone, polyethersulfone, polyamide, polyester, cellulose-based polymers, Porous organic materials containing at least one poly
- Carbonizable resins include, for example, polyphenylene oxide, polyvinyl alcohol, polyacrylonitrile, phenol resin, wholly aromatic polyester, unsaturated polyester resin, alkyd resin, melamine resin, urea resin, polyimide resin, diallyl phthalate resin, lignin resin, urethane resin, Resin etc. are mentioned. You may use 2 or more types of these.
- the bending radius of the fluid separation membrane is preferably 0.1 cm or more and 100 cm or less. By setting the bending radius to 100 cm or less, breakage of the fluid separation membrane during fabrication or operation of the membrane reactor can be suppressed.
- the bending radius is more preferably 10 cm or less, and even more preferably 1 cm or less.
- the lower limit of the bending radius of the fluid separation membrane is not particularly limited, it is preferably 0.1 cm or more because self-sustainability can be imparted to the fluid separation membrane when the bending radius is 0.1 cm or more.
- a fluid separation membrane having a bending radius of 100 cm or less can be wound around a rigid fibrous material or conform to a complex shape of a vessel or fibrous material. This is preferable because the degree of freedom in reactor design can be improved.
- the bending radius of the fluid separation membrane is such that when a fluid separation membrane of 10 cm or more is sampled from the membrane reactor and the sampled fluid separation membrane is wound 360° or more along the normal direction of the cylinder, the fluid separation membrane does not break. It can be obtained from the radius.
- the bending radius of the fluid separation membrane is 1.5 cm or more, the angle at which the sampled fluid separation membrane is wound along the normal direction of the cylinder is appropriately reduced for evaluation, and the radius of the cylinder at which the fluid separation membrane does not break is determined. , can be regarded as the bending radius of the fluid separation membrane.
- the bending radius of the fluid separation membrane supporting the catalyst is regarded as the bending radius of the fluid separation membrane.
- the water permeability of the fluid separation membrane is preferably 100 ⁇ L/(hr ⁇ m 2 ⁇ Pa) or less.
- a fluid separation membrane having a water permeability of 100 ⁇ L/(hr ⁇ m 2 ⁇ Pa) or less can be suitably used as a membrane reactor that requires gas separation because the pore size of the separation functional layer is small.
- the water permeability of the fluid separation membrane is more preferably 10 ⁇ L/(hr ⁇ m 2 ⁇ Pa) or less, and even more preferably 1 ⁇ L/(hr ⁇ m 2 ⁇ Pa) or less.
- the water permeability of the fluid separation membrane is determined by the amount of permeated water recovered from the permeate fluid outlet of the membrane reactor when pure water is supplied from the feed fluid inlet of the membrane reactor, and the following (Equation 1) can be calculated by
- the fibrous substances are present between the fluid molecular membranes in the compartment 1 to secure the distance between the fluid separation membranes and guide the fluid to be separated to the fluid separation membranes. Examples of fibrous materials include fibers, nonwoven fabrics, woven fabrics, and knitted fabrics. You may combine 2 or more types of these.
- Fiber refers to a form whose length is 100 times or more its diameter, and examples include organic fibers and inorganic fibers.
- organic fibers include synthetic fibers, semi-synthetic fibers, and regenerated fibers
- inorganic fibers include metal fibers, carbon fibers, glass fibers, and rock fibers.
- Inorganic fibers are preferably used because of their high heat resistance.
- non-woven fabric, woven fabric, and knitted fabric represent forms in which fibers are processed on a plane.
- the fibrous material is preferably a fiber because it can be easily arranged between the fluid separation membranes.
- a woven or knitted fabric is preferred.
- the fibrous material may spirally cover one or more fluid separation membranes, or may be arranged in parallel with the fluid separation membranes. From the viewpoint of enabling the spacers to be arranged uniformly around the fluid separation membranes, it is preferable that the spacers spirally cover the circumference of one or more fluid separation membranes. A parallel arrangement is preferred.
- the fiber length is preferably 0.1 to 2.0 times the length of the fluid separation membrane. When the fiber length is 0.1 times or more the length of the fluid separation membranes, it becomes easier to secure the distance between the fluid separation membranes.
- the fiber length is preferably at least 0.5 times the length of the fluid separation membrane, more preferably at least 0.75 times. On the other hand, when the fiber length is 2.0 times or less the length of the fluid separation membrane, the volume occupied by the fiber in the membrane reactor can be suppressed and the membrane packing rate can be improved.
- the length of the fibers is more preferably 1.5 times or less, and even more preferably 1.1 times or less, the length of the fluid separation membrane.
- FIGS. 3 and 4 show schematic diagrams of one embodiment in which the fluid separation membrane is spirally coated with a fibrous material.
- FIG. 3 is a schematic diagram of one embodiment in which one fluid separation membrane 1 is spirally coated with one fibrous material 3 at a pitch of 12
- FIG. 2 is a schematic diagram of an embodiment in which two fibrous materials 3 are spirally coated on a separation membrane 1 with a pitch of 12 between them.
- fibrous material 3 carries catalyst 4 (not shown).
- the fibrous covering may be a single covering in which the fibrous material is wrapped around the fluid separation membrane, or a double covering in which the fibrous material is wrapped twice. Further, a multi-stage covering may be used in which a fibrous material is further spirally wound around a plurality of fluid separation membranes wrapped with a fibrous material.
- fibrous substances include polyesters, nylons, polyolefins, fluororesins, polyacetals, thermoplastic elastomers, metal oxides, and metals. You may use 2 or more types of these.
- the fibrous material when the fibrous material is a fiber, the fibrous material may be a monofilament or a multifilament. preferable. Further, it is more preferable to use a false-twisted textured yarn because it has high bulkiness and can easily secure the distance between the fluid separation membranes.
- a catalyst increases the reaction rate of a chemical process in a membrane reactor by lowering the activation energy of the reaction.
- the membrane reactor of the present invention is characterized in that the catalyst is supported on a fibrous material.
- the catalyst may be coated on the surface of the fibrous material or attached to the surface of the fibrous material. It is more preferable to be supported. Any outer surface of the fibrous material includes the inner surface of pores when the fibrous material is porous and the outer surface of all single fibers when the fibrous material is multifilament.
- the catalyst loading amount of the fibrous material of the present invention is preferably 0.01% by mass or more and 10% by mass or less with respect to 100% by mass of the fibrous material containing the catalyst.
- the catalyst loading amount of the fibrous material is more preferably 0.1% by mass or more, further preferably 1% by mass or more.
- the upper limit of the amount of catalyst supported on the fibrous material is not particularly limited, it is preferably 10% by mass or less because the surface area of the fibrous material can be effectively used.
- the amount of catalyst supported on the fibrous material is expressed by the ratio of the weight of the catalyst supported on the fibrous material to the weight of the fibrous material containing the catalyst, and can be calculated from the weight of the fibrous material before and after supporting the catalyst. Also, the weight of the catalyst supported on the fibrous material can be estimated by completely eluting the catalyst from the fibrous material and measuring the obtained eluate by inductively coupled plasma mass spectrometry (ICP-MS). be.
- ICP-MS inductively coupled plasma mass spectrometry
- wet plating and dry plating are examples of methods for supporting catalysts on fibrous materials.
- Examples of wet plating include electrolytic plating and electroless plating, and examples of dry plating include vapor deposition and sputtering.
- the catalyst not supported on the fibrous material may be arranged on the surface of the fluid separation membranes or between the fluid separation membranes. It is preferably arranged on the surfaces of the fluid separation membranes from the viewpoint of not inhibiting passage of the fluid, and preferably arranged between the fluid separation membranes from the viewpoint of increasing the contact surface area of the catalyst.
- the catalyst may be placed both on the surface of the fluid separation membranes and between the fluid separation membranes.
- the type of catalyst is not particularly limited, and is appropriately selected according to the reaction that occurs within the membrane reactor.
- the membrane reactor of the present invention has an electric circuit, and the electric circuit is arranged so that an electric current can flow through the fibrous material, but this aspect will be explained.
- the fibrous material may be provided with individual electric circuits, or a plurality of fibrous materials may be incorporated into one electric circuit. From the viewpoint of simplifying the wiring, it is preferable to incorporate a plurality of fibrous materials into one electrical circuit. be done.
- the fibrous material and the current collector, and the current collector and the power source may be directly connected, or may be connected via a conductor such as a lead wire.
- the electrical resistivity of the fibrous material is preferably 0.1 ⁇ m or more and 1000 ⁇ m or less.
- the electrical resistivity of the fibrous material is 0.1 ⁇ m or more
- resistance heating occurs when an electric current is applied to the fibrous material, and the fibrous material can be used as a heating element, and the fibrous material can be used as a heating element.
- the inside of the membrane reactor can be directly heated. In resistance heating, all the power consumed by the resistance is converted into heat, so the inside of the membrane reactor can be efficiently heated.
- the electrical resistivity of the fibrous material is more preferably 0.5 ⁇ m or more, and still more preferably 1 ⁇ m or more.
- the electrical resistivity of the fibrous material is 1000 ⁇ m or less, resistance heating can be generated even if the fibrous material is thinned, so that the volume of the fibrous material in the membrane reactor can be suppressed. can.
- the electrical resistivity of the fibrous material is more preferably 100 ⁇ m or less, and even more preferably 10 ⁇ m or less.
- fibrous materials having an electrical resistivity of 0.1 ⁇ m or more and 1000 ⁇ m or less include iron, chromium, aluminum, nickel, platinum, molybdenum, tantalum, tungsten, alloys thereof, and carbon.
- the fibrous material preferably has an insulating layer on its surface. Since the insulating layer on the surface of the fibrous material suppresses corrosion of the fibrous material when the fibrous material is used as a heating element, it can be used as a heating element for a long time.
- the membrane reactor of the present invention preferably has a heat source or a cooling source and is arranged so that the fibrous material and the heat source or the cooling source are in contact with each other, but this aspect will be explained.
- the method of heating or cooling the fibrous material that is, the heating method or the cooling method of the heat source or the cooling source arranged so as to be in contact with the fibrous material is not particularly limited, and the fibrous material is directly connected to the heat source or the cooling source. may be connected via a heat conductor. From the viewpoint of simplifying wiring, it is preferable to connect a plurality of fibrous materials to a heat conductor before connecting them to a heat source or a cooling source. In this case, the fibrous materials are arranged so as to contact the heat conductor. and the heat conductor is connected with a heat source or a cooling source.
- the thermal conductivity of the fibrous material is preferably 1 W/(m ⁇ K) or more and 1000 W/(m ⁇ K) or less.
- the inside of the membrane reactor can be heated or cooled by heating or cooling the fibrous material. Whether the reaction is endothermic or exothermic, the temperature in the membrane reactor can be easily controlled.
- the thermal conductivity of the fibrous material is more preferably 10 W/(m ⁇ K) or more, more preferably 100 W/(m ⁇ K) or more.
- the fibrous material having a thermal conductivity of 1 W/(m ⁇ K) or more and 1000 W/(m ⁇ K) or less includes silver, copper, iron, chromium, aluminum, nickel, platinum, molybdenum, tantalum, tungsten, and These alloys etc. are mentioned.
- the fibrous material preferably contains at least one selected from the group consisting of iron, chromium, aluminum, nickel, platinum, molybdenum, tantalum, tungsten, alloys thereof, and carbon.
- the manufacturing method of the membrane reactor of the present invention is not particularly limited.
- a manufacturing method (hereinafter referred to as manufacturing method 2) in which, after manufacturing a membrane reactor containing a fibrous material, the catalyst is charged into the membrane reactor to fill the space between the fluid separation membranes with the catalyst, and at the same time, the fibrous material supports the catalyst. It's okay.
- Manufacturing method 1 is more preferable because the catalyst can be reliably supported on the fibrous material.
- Chemical processes to which the membrane reactor of the present invention can be applied are not particularly limited. Examples include hydrogen production by steam reforming of methane, hydrogen production from methylcyclohexane, methane synthesis from carbon dioxide and hydrogen, and methanol synthesis and the like.
- the chemical plant of the present invention (hereinafter sometimes simply referred to as "plant") is a plant including the membrane reactor of the present invention.
- the plant preferably includes pretreatment equipment, purified fluid recovery equipment, by-product fluid recovery equipment, and the like.
- the pretreatment equipment is equipment for adjusting the composition of the reaction fluid supplied to the membrane reactor.
- Purified fluid recovery equipment is equipment for recovering a purified fluid that has permeated through a fluid separation membrane, further purifying the fluid if necessary, and supplying it to a pipeline or the like.
- the by-product fluid recovery facility is a facility for recovering unreacted reaction fluids and by-product fluids, reusing the unreacted reaction fluids, and discharging the by-product fluids after rendering them harmless.
- the membrane reactor, the pretreatment equipment, the purified fluid recovery equipment, and the by-product fluid recovery equipment are preferably connected by piping or the like so that the purified fluid is continuously produced from the reaction fluid.
- the plant preferably includes multiple membrane reactors according to the throughput of the fluid to be separated.
- a plurality of membrane reactors may be connected in series or in parallel with respect to the reaction fluid. From the viewpoint of production efficiency of the membrane reactor, the membrane reactors are preferably connected in series, and from the viewpoint of partial replacement of the membrane reactors, the membrane reactors are preferably connected in parallel.
- a preferred embodiment of the plant of the present invention includes a mode in which the membrane reactors are connected in series, and the membrane reactors connected in series are further connected in parallel. By doing so, it is possible to achieve both the advantages of connecting the membrane reactors in series and the advantages of connecting them in parallel.
- Chemical processes to which the plant of the present invention can be applied are not particularly limited, but examples include hydrogen production by steam reforming of methane, hydrogen production from methylcyclohexane, methane synthesis and methanol synthesis from carbon dioxide and hydrogen, and the like. is mentioned.
- the fluid production method of the present invention is a fluid production method using the membrane reactor of the present invention and includes at least the following steps.
- Step 1 where a catalyst present in the membrane reactor produces products from the reactants in the feed stream, and a fluid separation membrane present in the membrane reactor concentrates the products from the resulting fluid to be separated from step 1 above. Step 2 to do.
- the product produced from the reactants may contain by-products in addition to the desired product, but the product produced in step 1 and the product concentrated in step 2 are both It refers to the desired product.
- another purification step or an additional step may be included.
- Alternative purification steps include, for example, distillation, adsorption, absorption, and the like.
- component adjustment etc. which mix with another fluid are mentioned, for example.
- the membrane reactor enables continuous production from a small scale.
- Inner diameter of fluid separation membrane Five fluid separation membranes with a length of 10 cm or more were cut out from the produced membrane reactor and split in a direction orthogonal to the fiber axis direction. The fractured surface was observed with a digital microscope (VHX-D500 manufactured by Keyence Corporation), and the diameter of the maximum inscribed circle that fits in the hollow portion was measured. The average value of the diameters of the obtained inscribed circles was expressed with one significant digit as the inner diameter of the fluid separation membrane.
- the electrical resistivity of fibrous materials was measured by a four-probe method.
- the electrical resistivity was measured by measuring the potential difference between two points on the surface of the fibrous material while applying electricity to the fibrous material, and calculating the resistivity ⁇ by the following formula 1.
- a DC power supply (PAD55-20L manufactured by Kikusui Electronics), a voltmeter (3878A multimeter manufactured by Hewlett-Packard) and an ammeter (DT4252 manufactured by Hioki Denki) were used for the measurement of electrical resistivity. The measurement was carried out three times, and the average value represented by two significant figures was taken as the electrical resistivity ( ⁇ m) of the fibrous material.
- ⁇ U the measured potential difference
- I the current flowing through the fibrous material
- S the cross-sectional area of the fibrous material
- d the distance between the two electrodes for measuring the potential.
- Thermal conductivity of fibrous materials was measured by the laser flash method. The thermal conductivity was measured by molding the bundled fibrous material into a block and measuring the thermal conductivity with a thermal conductivity measuring device (TC-7000H manufactured by Avantek Riko Co., Ltd.). The measurement was carried out three times, and the average value represented by two significant figures was defined as the thermal conductivity (W/(m ⁇ K)) of the fibrous material.
- Methylcyclohexane was supplied from the feed fluid inlet of the fabricated membrane reactor. Methylcyclohexane is decomposed into toluene and hydrogen using palladium in the membrane reactor as a catalyst, and hydrogen selectively permeates the fluid separation membrane. Hydrogen was recovered from the inlet and outlet of the permeated fluid of the membrane reactor, and the production amount of hydrogen as a product was evaluated from the flow rate measured with a soap film flow meter and the hydrogen composition ratio obtained by gas chromatography analysis. Regarding the membrane reactors of Examples 2 and 3, the amount of hydrogen produced was also evaluated in a state in which an electric current was passed through the fibrous material and a state in which the fibrous material was heated. The measurement was performed 3 times, and the average value was rounded off to the first decimal place to obtain the production amount of the product.
- the obtained precursor of the porous carbon film was passed through an electric furnace at 250°C and heated in an air atmosphere for 1 hour to perform an infusibilization treatment to obtain an infusibilization thread.
- the infusible yarn was carbonized at a carbonization temperature of 650° C. to obtain a fluid separation membrane of Production Example 1, which is an inorganic membrane (carbon membrane) having an outer diameter of 300 ⁇ m, an inner diameter of 100 ⁇ m, and a bending radius of 5 mm.
- Example 1 One fluid separation membrane of Production Example 2 was used as a core thread, and the catalyst-supported fibrous material of Production Example 3 was wound in the Z direction at a pitch of 10 mm.
- 10 fluid separation membranes of Production Example 2 around which the catalyst-supporting fibrous material was wound were bundled, housed in an acrylic pipe (inner diameter 3 mm) having a fluid inlet and outlet, and epoxy resin was applied to both ends of the acrylic pipe. were statically potted one by one. After curing the epoxy resin, the potting portion at one end was cut with a rotating saw to open the fluid separation membrane, and the membrane reactor of Example 1 was obtained.
- the bending radius of the fluid separation membrane was 5 mm
- the inner diameter of the fluid separation membrane was 100 ⁇ m
- the ratio of the length of the fiber to the length of the fluid separation membrane was 1.0
- the amount of product produced. was 33 mL/min.
- Example 2 One fluid separation membrane of Production Example 2 was used as a core thread, and the catalyst-supported fibrous material of Production Example 4 was wound in the Z direction at a pitch of 10 mm.
- 10 fluid separation membranes of Production Example 2 around which the catalyst-supporting fibrous material was wound were bundled, housed in an acrylic pipe (inner diameter 3 mm) having a fluid inlet and outlet, and epoxy resin was applied to both ends of the acrylic pipe. were statically potted one by one. After curing the epoxy resin, the potting portion at one end was cut with a rotating saw to open the fluid separation membrane.
- Metal perforated plates were installed on the fluid separation membrane opening faces at both ends of the element, and a lead wire and a DC power source were arranged between the two perforated plates to obtain a membrane reactor of Example 2.
- the membrane reactor of Example 2 has an electric circuit.
- the bending radius of the fluid separation membrane was 5 mm
- the inner diameter of the fluid separation membrane was 100 ⁇ m
- the ratio of the length of the fiber to the length of the fluid separation membrane was 1.0
- the amount of product produced. was 17 mL/min.
- the production amount of the product was 41 mL/min in the state where the electric current was applied to the fibrous material.
- Example 3 One fluid separation membrane of Production Example 2 was used as a core thread, and the catalyst-supported fibrous material of Production Example 4 was wound in the Z direction at a pitch of 10 mm.
- 10 fluid separation membranes of Production Example 2 around which the catalyst-supporting fibrous material was wound were bundled, housed in an acrylic pipe (inner diameter 3 mm) having a fluid inlet and outlet, and epoxy resin was applied to both ends of the acrylic pipe. were statically potted one by one. After curing the epoxy resin, the potting portion at one end was cut with a rotating saw to open the fluid separation membrane. Metal perforated plates were placed on the fluid separation membrane opening faces at both ends of the element, and the two perforated plates were connected to respective heat sources to obtain the membrane reactor of Example 3.
- the membrane reactor of Example 3 has a heat source.
- the bending radius of the fluid separation membrane was 5 mm
- the inner diameter of the fluid separation membrane was 100 ⁇ m
- the ratio of the length of the fiber to the length of the fluid separation membrane was 1.0
- the amount of product produced. was 17 mL/min.
- the fibrous material was heated, the amount of product produced was 36 mL/min.
- Example 4 A membrane reactor of Example 4 was obtained in the same manner as in Example 2 except that the catalyst-supported fibrous material of Production Example 5 was used instead of the catalyst-supported fibrous material of Production Example 4. rice field.
- the membrane reactor of Example 4 has an electrical circuit.
- the bending radius of the fluid separation membrane was 5 mm
- the inner diameter of the fluid separation membrane was 100 ⁇ m
- the ratio of the length of the fiber to the length of the fluid separation membrane was 1.0
- the amount of product produced. was 16 mL/min.
- the production amount of the product was 23 mL/min when the electric current was applied to the fibrous material.
- Example 5 A membrane reactor of Example 5 was obtained in the same manner as in Example 3, except that the catalyst-supported fibrous material of Production Example 5 was used instead of the catalyst-supported fibrous material of Production Example 4. rice field.
- the membrane reactor of Example 5 has a heat source.
- the bending radius of the fluid separation membrane was 5 mm
- the inner diameter of the fluid separation membrane was 100 ⁇ m
- the ratio of the length of the fiber to the length of the fluid separation membrane was 1.0
- the amount of product produced. was 16 mL/min.
- the fibrous material was heated, the amount of product produced was 34 mL/min.
- Example 6 The 10 fluid separation membranes of Production Example 2 and the 10 catalyst-supported fibrous materials of Production Example 5 are aligned and bundled so that the fluid separation membranes are not adjacent to each other as much as possible, and an acrylic pipe (inner diameter 3 mm), and each end of the acrylic pipe was statically potted using epoxy resin. After curing the epoxy resin, the potting portion at one end was cut with a rotary saw to open the fluid separation membrane, and the membrane reactor of Example 6 was obtained.
- the bending radius of the fluid separation membrane was 5 mm
- the inner diameter of the fluid separation membrane was 100 ⁇ m
- the ratio of the length of the fiber to the length of the fluid separation membrane was 1.0
- the amount of product produced. was 15 mL/min.
- Comparative example 1 A membrane reactor of Comparative Example 1 was obtained in the same manner as in Example 1, except that a 170 dtex polyester textured yarn was used instead of the catalyst-supported fibrous material of Production Example 3. As a result of evaluation by the method described above, the production amount of the product was 11 mL/min.
- Fluid separation membrane 2 Hollow part 3: Fiber material 4: Catalyst 5: Gap between fluid separation membranes 7: Potting part 8: Feed fluid inlet 9: Non-permeate fluid outlet 10: Permeate fluid flow Outlet 11: Sweep Gas Inlet 12: Vessel 13: Compartment 1 14: Compartment 2
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
The present invention addresses the problem of providing a membrane reactor with which a processing amount and a processing speed are achieved simultaneously, the gist of the present invention lying in a membrane reactor including, in a vessel, fluid separating membranes, and a fibrous material present between the fluid separating membranes, wherein the fibrous material supports a catalyst.
Description
本発明は、膜反応器に関する。
The present invention relates to membrane reactors.
一般的に、化学プロセスは、反応プロセスと精製プロセスからなる。反応プロセスは、反応物から生成物を得るプロセスであり、必要に応じて触媒を用いる。反応プロセスの収率を高めるためには反応率を向上させる必要があるが、反応率には化学平衡に支配される上限が存在し、また、副反応を抑制するために反応率を上げられない場合もある。一方、精製プロセスは、反応後に生成物と未反応物や副生成物を分離するプロセスである。代表的な精製プロセスである蒸留は、温度や圧力を上下させる必要があるため、エネルギーロスが大きい課題がある。
A chemical process generally consists of a reaction process and a purification process. A reaction process is a process of obtaining a product from a reactant, optionally using a catalyst. In order to increase the yield of the reaction process, it is necessary to improve the reaction rate, but the reaction rate has an upper limit governed by chemical equilibrium, and the reaction rate cannot be increased to suppress side reactions. In some cases. On the other hand, the purification process is a process of separating the product from unreacted substances and by-products after the reaction. Distillation, which is a typical refining process, requires temperature and pressure to fluctuate, resulting in a large energy loss.
そこで、膜分離による精製が可能な化学プロセスでは、反応プロセスと精製プロセスを一体化した膜反応器(メンブレンリアクター)が提案されている。膜反応器では、分離膜の表面や分離膜間に触媒が配置され、分離膜が存在する空間で反応プロセスが進行する。並行して、反応プロセスで生じた生成物あるいは副生成物が分離膜を介して反応系から除去されることで、平衡が生成物側へシフトして反応率を向上することができる。また、反応時のエネルギー(圧力や熱)を用いることで、省エネルギーに精製することができる。膜反応器において、除去成分を効率よく分離膜へ供給する方法としては、反応室内へスペーサーや整流板を配置する方法が知られている(例えば、特許文献1や特許文献2参照)。
Therefore, in a chemical process that can be purified by membrane separation, a membrane reactor that integrates the reaction process and the purification process has been proposed. In the membrane reactor, a catalyst is placed on the surface of the separation membrane and between the separation membranes, and the reaction process proceeds in the space where the separation membrane exists. In parallel, products or by-products generated in the reaction process are removed from the reaction system via the separation membrane, thereby shifting the equilibrium to the product side and improving the reaction rate. In addition, by using energy (pressure and heat) at the time of reaction, energy-saving refinement can be achieved. In a membrane reactor, as a method of efficiently supplying the removed components to the separation membrane, a method of arranging a spacer or a rectifying plate in the reaction chamber is known (see, for example, Patent Documents 1 and 2).
特許文献1には、セラミックキャピラリー(9)の少なくとも1つの束及び束を囲んでいるハウジングを少なくとも有しており、前記キャピラリーが、その(両)末端部で多孔板により結合されており、かつ前記ハウジングが、第一の物質流のためのキャピラリーの内部に接続された入口管及び/又は出口管を有しており、かつ第二の物質流のためのキャピラリー間の隙間に接続されている入口管及び/又は出口管を有している、分離モジュールにおいて、キャピラリー間の距離が、スペーサー(6)により一定に保持されていることを特徴とする、分離モジュールが開示されている。しかしながら、特許文献1の方法では、ハウジング内に収納するセラミックキャピラリーの本数を増やす場合、強制流れを生じさせるためのスペーサーが、分離モジュール内でデッドスペースとなり、セラミックキャピラリーの表面を部分的に被覆したり、触媒の収納スペースを埋めたりする課題があった。デッドスペースが生じることで、生産性の低下や設備の巨大化が懸念される。
WO 2005/010303 has at least at least one bundle of ceramic capillaries (9) and a housing surrounding the bundle, said capillaries being joined at their (both) ends by a perforated plate, and The housing has an inlet tube and/or an outlet tube connected to the interior of the capillaries for the first material stream and connected to the gap between the capillaries for the second material stream. A separation module is disclosed, having inlet and/or outlet tubes, characterized in that the distance between the capillaries is kept constant by spacers (6). However, in the method of Patent Document 1, when the number of ceramic capillaries housed in the housing is increased, the spacers for generating forced flow become dead spaces in the separation module and partially cover the surfaces of the ceramic capillaries. Also, there was a problem of filling the storage space for the catalyst. Due to the dead space, there is concern about a decrease in productivity and an increase in equipment size.
特許文献2には、選択透過膜反応器であって、該反応器の入口より流入した原料ガスが該反応器内の触媒を充填した反応室内で反応し、生成した製品ガスを該反応器の出口より流出させ、副生成ガスを選択透過膜を透過させて該反応室外へと流出させる選択透過膜反応器において、該反応器が選択透過膜を表面に成膜した多孔質管を内設し、該反応器の内壁と該多孔質管との空隙に触媒層を設けて反応室とし、該反応器の内壁近傍で生成した副生成ガスを該多孔質管表面へと誘導する整流板を該反応室内に設けたことを特徴とする選択透過膜反応器が開示されている。しかしながら、特許文献2の方法では、反応室内に複数本の多孔質管を収納する場合、多孔質管間距離を整流板の幅よりも大きくする必要があるため、多孔質管の充填率を高めることができず、反応室の単位体積に対する選択透過膜の表面積を大きくすることが難しかった。また、多孔質管の本数が多くなると、整流板の配置が複雑となって製造が困難となる。
Patent Document 2 discloses a selectively permeable membrane reactor in which a raw material gas flowing from the inlet of the reactor reacts in a reaction chamber filled with a catalyst in the reactor, and the product gas produced is discharged into the reactor. In a selectively permeable membrane reactor in which the by-product gas is discharged from an outlet and is allowed to permeate the selectively permeable membrane and flow out of the reaction chamber, the reactor is provided with a porous tube having a selectively permeable membrane formed on its surface. a catalyst layer is provided in the gap between the inner wall of the reactor and the porous tube to form a reaction chamber; A selectively permeable membrane reactor is disclosed, which is characterized in that it is provided in a reaction chamber. However, in the method of Patent Document 2, when a plurality of porous tubes are housed in the reaction chamber, the distance between the porous tubes must be larger than the width of the rectifying plate, so the filling rate of the porous tubes is increased. Therefore, it was difficult to increase the surface area of the permselective membrane per unit volume of the reaction chamber. In addition, when the number of porous tubes increases, the arrangement of the rectifying plates becomes complicated, making manufacturing difficult.
上記課題を解決するため、本発明は以下の構成を有する。すなわち本発明は、ベッセル内に、分離対象流体を分離するため流体分離膜と、前記流体分離膜の間に存在する繊維状物とを含む膜反応器であって、前記繊維状物は触媒を担持している、膜反応器である。
In order to solve the above problems, the present invention has the following configuration. That is, the present invention is a membrane reactor comprising, in a vessel, fluid separation membranes for separating a fluid to be separated, and fibrous materials existing between the fluid separation membranes, wherein the fibrous materials contain a catalyst. It is a supported membrane reactor.
本発明の膜反応器は、繊維状物が触媒の少なくとも一部を担持しているため、デッドスペースを最小限に抑えつつ除去成分を流体分離膜へ供給でき、目的生成物の生産性を向上させることが可能である。
In the membrane reactor of the present invention, since the fibrous material supports at least part of the catalyst, it is possible to supply the removed components to the fluid separation membrane while minimizing the dead space, thereby improving the productivity of the target product. It is possible to
本発明の膜反応器は、ベッセル内に、分離対象流体を分離するため流体分離膜と、前記流体分離膜の間に存在する繊維状物とを含む膜反応器であって、前記繊維状物は触媒を担持していることを特徴とする。
The membrane reactor of the present invention is a membrane reactor comprising, in a vessel, a fluid separation membrane for separating a fluid to be separated and a fibrous material existing between the fluid separation membranes, wherein the fibrous material is characterized by carrying a catalyst.
以下図面を参照して本発明について例をあげて説明する。しかし本発明は、図面に記載の例に限定して解釈されるものではない。
The present invention will be described below with reference to the drawings. However, the present invention should not be construed as being limited to the examples shown in the drawings.
図1に、本発明の膜反応器の一態様の断面模式図を示す。図1は、中空糸膜である流体分離膜が収納された膜反応器の、流体の流出入口を含む断面の模式図である。ここでいう流体とは、供給流体、分離対象流体、透過流体、又は非透過流体を表す。供給流体とは、反応物を含む流体である。分離対象流体とは、反応物、生成物、副生成物、不純物、及びスイープガス等の混合物である。透過流体とは、流体分離膜を透過した流体である。非透過流体とは、流体分離膜を透過せずに膜反応器から排出される流体である。
FIG. 1 shows a schematic cross-sectional view of one embodiment of the membrane reactor of the present invention. FIG. 1 is a schematic cross-sectional view of a membrane reactor in which fluid separation membranes, which are hollow fiber membranes, are housed, including fluid inlets and outlets. The term "fluid" as used herein refers to a feed fluid, a fluid to be separated, a permeating fluid, or a non-permeating fluid. A feed fluid is a fluid containing a reactant. A fluid to be separated is a mixture of reactants, products, by-products, impurities, sweep gases, and the like. A permeate fluid is a fluid that has permeated a fluid separation membrane. Non-permeate fluid is fluid that exits the membrane reactor without permeating the fluid separation membrane.
図1の膜反応器は、ベッセル12内が中空部2を有する中空糸膜である流体分離膜1によって2つに区画され、流体分離膜1の外側の区画である区画1と流体分離膜1の内側の区画である区画2を有する。2つの区画について、図2を用いて説明する。図2は、図1から繊維状物を除いた模式図である。膜反応器の内部は、流体分離膜1の外側の区画である区画1(符号13)と流体分離膜1の内側の区画である区画2(符号14)に区画されている。区画1は、供給流体の流入口8及び非透過流体の流出口9を有し、区画2は、流体分離膜1を透過した透過流体の流出口10及び透過流体をスイープするためのスイープガスの流入口11を有する。非透過流体の流出口9及び透過流体の流出口10は、図示しない外部流路に接続され、非透過流体や透過流体が回収される。
The membrane reactor of FIG. has a compartment 2 which is the inner compartment of the . The two partitions will be explained using FIG. FIG. 2 is a schematic diagram of FIG. 1 with the fibrous material removed. The interior of the membrane reactor is divided into a compartment 1 (reference numeral 13) that is an outer compartment of the fluid separation membrane 1 and a compartment 2 (reference numeral 14) that is an inner compartment of the fluid separation membrane 1. FIG. Compartment 1 has an inlet 8 for the feed fluid and an outlet 9 for the non-permeate fluid, and compartment 2 has an outlet 10 for the permeate fluid that has permeated the fluid separation membrane 1 and an outlet 10 for the permeate fluid and a sweep gas for sweeping the permeate fluid. It has an inlet 11 . The non-permeating fluid outlet 9 and the permeating fluid outlet 10 are connected to an external channel (not shown), and the non-permeating fluid and the permeating fluid are recovered.
区画1の流体分離膜1間には、繊維状物3が存在し、繊維状物3は図示されない触媒4を担持している。繊維状物3は、流体分離膜1間以外(例えば、流体分離膜とベッセルの間)にも存在して良く、触媒4は、流体分離膜1の表面や流体分離膜同士の間隙5等にも存在して良い。図1の膜反応器は、繊維状物3が、1本の流体分離膜1の周囲をらせん状に被覆しており、並列に束ねられた流体分離膜1は、その両端がポッティング部位7において相互に固定(ポッティング)されるとともに、ベッセル12に固定され、流体分離膜1は、ポッティング部位7を貫通している。
A fibrous material 3 exists between the fluid separation membranes 1 in the compartment 1, and the fibrous material 3 carries a catalyst 4 (not shown). The fibrous material 3 may be present in places other than between the fluid separation membranes 1 (for example, between the fluid separation membrane and the vessel), and the catalyst 4 may be present on the surfaces of the fluid separation membranes 1 and in the gaps 5 between the fluid separation membranes. may also exist. In the membrane reactor of FIG. 1, the fibrous material 3 spirally covers the periphery of one fluid separation membrane 1, and the fluid separation membranes 1 bundled in parallel have both ends at potting sites 7. Fixed (potted) to each other and fixed to the vessel 12 , the fluid separation membrane 1 passes through the potting site 7 .
本発明の膜反応器が適用可能な化学プロセスは特に限定されるものではないが、例えば、メタンの水蒸気改質による水素製造、メチルシクロヘキサンからの水素製造、二酸化炭素や水素からのメタン合成やメタノール合成等が挙げられる。
Chemical processes to which the membrane reactor of the present invention can be applied are not particularly limited. Examples include hydrogen production by steam reforming of methane, hydrogen production from methylcyclohexane, methane synthesis from carbon dioxide and hydrogen, and methanol synthesis and the like.
本発明の膜反応器において、ベッセルの断面形状は、ベッセルの耐圧性を向上させる観点から、楕円形や円形などが好ましく、円形がより好ましい。ここで、ベッセルの断面とは、ベッセルの、流体分離膜の長さ方向に垂直な断面を言う。ベッセルの材質としては、例えば、金属、樹脂、繊維強化プラスチック(FRP)等が挙げられ、設置場所の環境や使用される状況に応じて、適宜選択することができる。耐圧性や耐熱性が要求される用途においては、強度と成形加工性を兼ね備えた金属が好ましく、ステンレス等がより好ましい。
In the membrane reactor of the present invention, the cross-sectional shape of the vessel is preferably oval or circular, more preferably circular, from the viewpoint of improving the pressure resistance of the vessel. Here, the cross section of the vessel refers to the cross section of the vessel perpendicular to the length direction of the fluid separation membrane. Materials for the vessel include, for example, metal, resin, fiber reinforced plastic (FRP), and the like, and can be appropriately selected according to the environment of the installation site and the usage situation. In applications where pressure resistance and heat resistance are required, metals having both strength and moldability are preferred, and stainless steel and the like are more preferred.
ベッセルが有する供給流体の流入口は、膜反応器内へ供給流体を導く機能を有する。供給流体に含まれる反応物は、膜反応器内で化学反応して生成物となり、供給流体は分離対象流体となる。流体分離膜が全量ろ過方式で用いられる場合には、区画1が供給流体の流入口を有していればよく、クロスフローろ過方式で用いられる場合には、区画1が供給流体の流入口と非透過流体の流出口をそれぞれ有することが好ましい。ベッセルの機械的強度を保つ範囲において、供給流体の流入口及び非透過流体の流出口(以下、「流出入口」という)を複数有してもよい。この場合、流出入口と流体分離膜との間に、流体の通過を妨げない範囲でメッシュやフェルト等の布帛を配置することが好ましく、流体の拡散や流体分離膜の保護の効果を奏する。一方で、区画2は透過流体の流出口を有していればよいが、透過流体を積極的に随伴させるためのスイープガスの流入口を有してもよい。
The supply fluid inlet of the vessel has the function of guiding the supply fluid into the membrane reactor. The reactants contained in the feed fluid chemically react in the membrane reactor to form products, and the feed fluid becomes the fluid to be separated. When the fluid separation membrane is used in a dead end filtration system, the compartment 1 may have an inlet for the feed fluid, and when used in a cross-flow filtration system, the compartment 1 serves as an inlet for the feed fluid. Preferably, each has an outlet for the non-permeating fluid. A plurality of inlets for the feed fluid and outlets for the non-permeating fluid (hereinafter referred to as "outflow inlets") may be provided within the range of maintaining the mechanical strength of the vessel. In this case, it is preferable to place a cloth such as a mesh or felt between the inlet and the fluid separation membrane within a range that does not hinder the passage of the fluid, which has the effect of diffusing the fluid and protecting the fluid separation membrane. On the other hand, the compartment 2 may have an outlet for the permeating fluid, but may also have an inlet for the sweep gas for actively entraining the permeating fluid.
本発明の膜反応器において、流体分離膜をベッセルに固定する方法として、流体分離膜をポッティング材で直接ベッセルの内面に固定する方法や、複数の流体分離膜がポッティング材で固定された分離膜エレメントを液密性あるいは気密性を確保できるアダプター等(一例として、Oリング等)を介してベッセル内に固定する方法などが挙げられる。分離膜エレメントの性能が経時劣化した際に、分離膜エレメントのみを交換することができることから、アダプター等を介してベッセル内に固定することが好ましい。
In the membrane reactor of the present invention, the method of fixing the fluid separation membrane to the vessel includes a method of fixing the fluid separation membrane directly to the inner surface of the vessel with a potting material, and a separation membrane in which a plurality of fluid separation membranes are fixed with a potting material. A method of fixing the element in the vessel via an adapter or the like (for example, an O-ring or the like) capable of ensuring liquid tightness or airtightness can be used. Since only the separation membrane element can be replaced when the performance of the separation membrane element deteriorates over time, it is preferable to fix it in the vessel via an adapter or the like.
膜反応器または分離膜エレメントのポッティング部分は、1箇所であっても複数箇所であっても構わないが、流体分離膜の位置を十分に固定し、流体分離膜の有効表面積を維持する観点から、略直線状に束ねた複数本の流体分離膜の両端2箇所をポッティング材により固定することが好ましい。また、束ねた複数本の流体分離膜をU字型に折り曲げた状態で流体分離膜の両端を1箇所でポッティング材により固定してもよいし流体分離膜の一端のみをポッティング材で固定し、他端をポッティング材以外の手段で封止してもよい。
The potting portion of the membrane reactor or the separation membrane element may be at one or a plurality of locations, but from the viewpoint of sufficiently fixing the position of the fluid separation membrane and maintaining the effective surface area of the fluid separation membrane Preferably, two ends of a plurality of fluid separation membranes bundled in a substantially straight line are fixed with a potting material. Moreover, in a state in which a plurality of bundled fluid separation membranes are bent in a U shape, both ends of the fluid separation membranes may be fixed at one place with a potting material, or only one end of the fluid separation membranes may be fixed with a potting material, The other end may be sealed by means other than potting material.
また、本発明の一つの態様として、分離膜エレメントは、ベッセルとは別のケーシング(以下、「エレメントケーシング」と記載)を有してもよい。エレメントケーシングは、流体の流出入口を有することが好ましい。エレメントケーシングの形状は、ベッセル内への収納を妨げない限り、特に限定されない。エレメントケーシングの素材としては、例えば、金属、樹脂、繊維強化プラスチック(FRP)等が挙げられ、使用される状況に応じて適宜選択することができる。高温運転が必要な用途では、耐熱性が高いことから、金属が好ましい。ポッティング材の硬化収縮に対する追従性が高い観点では、樹脂が好ましく、成型性と耐薬品性を兼ね備えることから、ポリフェニレンサルファイド、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリエーテルエーテルケトン、ポリフェニレンエーテル、ポリエーテルイミド、ポリアミドイミド、ポリスルホンがより好ましい。
Further, as one aspect of the present invention, the separation membrane element may have a casing (hereinafter referred to as "element casing") separate from the vessel. The element casing preferably has an inlet and outlet for fluid. The shape of the element casing is not particularly limited as long as it does not interfere with housing in the vessel. Materials for the element casing include, for example, metals, resins, fiber reinforced plastics (FRP), and the like, and can be appropriately selected according to the conditions of use. For applications requiring high temperature operation, metals are preferred due to their high heat resistance. Resin is preferable from the viewpoint of high followability to curing shrinkage of potting material, and since it has both moldability and chemical resistance, polyphenylene sulfide, polytetrafluoroethylene, polyethylene, polypropylene, polyether ether ketone, polyphenylene ether, polyether More preferred are imides, polyamideimides and polysulfones.
ポッティング材としては、有機接着剤や無機接着剤が上げられる。高温運転が必要な用途では、耐熱性が高いことから、無機接着剤が好ましい。
Potting materials include organic adhesives and inorganic adhesives. In applications requiring high-temperature operation, inorganic adhesives are preferred due to their high heat resistance.
有機接着剤としては、例えば、熱可塑性樹脂や熱硬化性樹脂などが挙げられる。さらに有機接着剤中には、他の添加剤を含有してもよい。
Examples of organic adhesives include thermoplastic resins and thermosetting resins. Furthermore, the organic adhesive may contain other additives.
有機接着剤として好適な熱可塑性樹脂としては、例えば、ポリエチレン、ポリエーテルスルホン、ポリスチレン、ポリフェニレンサルファイド、ポリアリレート、ポリエステル、液晶ポリエステル、ポリアミド、ポリメチルメタクリレート等が挙げられる。熱硬化性樹脂としては、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、ウレタン樹脂、尿素樹脂、フェノール樹脂、メラミン樹脂、シリコーン樹脂等が挙げられる。これらを2種以上用いてもよい。これらの中でも、成形性、硬化時間や接着性、硬度等のバランスの観点から、エポキシ樹脂、ウレタン樹脂が好ましい。
Thermoplastic resins suitable as organic adhesives include, for example, polyethylene, polyethersulfone, polystyrene, polyphenylene sulfide, polyarylate, polyester, liquid crystal polyester, polyamide, and polymethyl methacrylate. Examples of thermosetting resins include epoxy resins, unsaturated polyester resins, urethane resins, urea resins, phenol resins, melamine resins, and silicone resins. You may use 2 or more types of these. Among these resins, epoxy resins and urethane resins are preferable from the viewpoint of balance of moldability, curing time, adhesiveness, hardness, and the like.
有機接着剤中に含有される添加剤としては、例えば、フィラー、界面活性剤、シランカップリング剤、ゴム成分などが挙げられる。フィラーとしては、例えば、シリカ、タルク、ゼオライト、水酸化カルシウム、炭酸カルシウム等が挙げられ、硬化発熱の抑制、強度向上、増粘等の効果を奏する。また、界面活性剤やシランカップリング剤により、ポッティング材混合時の取扱い性向上やポッティング材注入時の流体分離用炭素膜間への浸潤性向上等の効果を奏する。また、ゴム成分により、硬化成形したポッティング材の靭性向上等の効果を奏する。ゴム成分は、ゴム粒子の形態で含有してもよい。
Additives contained in organic adhesives include, for example, fillers, surfactants, silane coupling agents, and rubber components. Examples of fillers include silica, talc, zeolite, calcium hydroxide, calcium carbonate, and the like, and have effects such as suppression of curing heat generation, strength improvement, and thickening. Further, the surfactant and the silane coupling agent provide effects such as improvement of handleability when mixing the potting material and improvement of infiltration between the fluid separation carbon films when the potting material is injected. In addition, the rubber component has the effect of improving the toughness of the hardened and molded potting material. The rubber component may be contained in the form of rubber particles.
無機接着剤としては、例えば、セラミック、セメント等が挙げられる。これらを2種以上用いてもよい。さらに、他の添加剤を含有してもよい。
Inorganic adhesives include, for example, ceramics and cement. You may use 2 or more types of these. Furthermore, other additives may be contained.
本発明の膜反応器は、流体分離膜の間に存在する繊維状物が存在し、該繊維状物が触媒を担持していることを特徴とする。ここで、「繊維状物が触媒を担持している状態」とは、繊維状物の表面と触媒粒子等が単に接触していて刷毛等で容易に除去できる状態では無く、繊維状物の表面に触媒が化学的あるいは物理的に固定された状態を表す。前述のとおり、従来の技術においては、分離対象流体を効率よく分離膜に供給するためのスペーサーを内部へ配置した膜反応器は、スペーサー自体が、膜反応器内でデッドスペースとなり、流体分離膜の表面を部分的に被覆したり、触媒の収納スペースを埋めたりする課題があった。本発明の膜反応器は、流体分離膜の間に配置された繊維状物が触媒を担持することによって、デッドスペースを最小限に抑えつつ除去成分を流体分離膜へ供給でき、目的生成物の生産性を向上させることが可能である。また、膜反応器内における、流体の通過性と流体分離膜の高充填を両立できるため、設備のコンパクト化も可能になる。
The membrane reactor of the present invention is characterized in that there are fibrous substances present between the fluid separation membranes, and the fibrous substances carry a catalyst. Here, "the state in which the fibrous material supports the catalyst" does not mean that the surface of the fibrous material and the catalyst particles, etc. are simply in contact with each other and can be easily removed with a brush or the like. represents the state in which the catalyst is chemically or physically fixed. As described above, in the conventional technology, the membrane reactor in which the spacer for efficiently supplying the fluid to be separated to the separation membrane is arranged inside the membrane reactor, the spacer itself becomes a dead space in the membrane reactor, and the fluid separation membrane There was a problem of partially covering the surface of the catalyst and filling the storage space of the catalyst. In the membrane reactor of the present invention, the fibrous material placed between the fluid separation membranes supports the catalyst, thereby minimizing the dead space while supplying the removed components to the fluid separation membranes. Productivity can be improved. In addition, since both the permeability of the fluid and the high filling of the fluid separation membrane can be achieved in the membrane reactor, the equipment can be made compact.
流体分離膜は、分離対象流体に含まれる特定の成分(透過成分)の透過性が他の成分(非透過成分)に対して高い膜である。流体分離膜の形状は特に限定されず、平膜であっても中空糸膜であってもよいが、膜反応器とした際に、単位体積当たりの膜面積を大きくしやすいことから、流体分離膜は中空糸膜であることが好ましい。
A fluid separation membrane is a membrane that has a higher permeability for specific components (permeable components) contained in the fluid to be separated than for other components (non-permeable components). The shape of the fluid separation membrane is not particularly limited, and may be a flat membrane or a hollow fiber membrane. Preferably, the membrane is a hollow fiber membrane.
流体分離膜が中空糸膜である場合、中空糸膜の内径は、10μm以上2,000μm以下が好ましい。中空糸膜の内径を10μm以上とすることにより、流体の通過性を向上させることができる。中空糸膜の内径は、20μm以上がより好ましく、50μm以上がさらに好ましい。一方、中空糸膜の内径を2,000μm以下とすることにより、中空糸膜の外径を小さくできるため、膜反応器とした場合の単位体積あたりの流体分離膜の膜面積を増加させることができる。流体分離膜の内径は1,000μm以下がより好ましく、500μm以下がさらに好ましい。
When the fluid separation membrane is a hollow fiber membrane, the inner diameter of the hollow fiber membrane is preferably 10 µm or more and 2,000 µm or less. Fluid permeability can be improved by setting the inner diameter of the hollow fiber membrane to 10 μm or more. The inner diameter of the hollow fiber membrane is more preferably 20 µm or more, more preferably 50 µm or more. On the other hand, by setting the inner diameter of the hollow fiber membrane to 2,000 μm or less, the outer diameter of the hollow fiber membrane can be reduced, so that the membrane area of the fluid separation membrane per unit volume when used as a membrane reactor can be increased. can. The inner diameter of the fluid separation membrane is more preferably 1,000 μm or less, and even more preferably 500 μm or less.
流体分離膜である中空糸膜の内径が10μm以上2,000μm以下となると、膜間距離が小さい部分が生じて分離対象流体の流れが不均一となり流体分離膜の表面利用効率が低下しやすいが、本発明の一つの態様では、繊維状物が膜間距離を確保するため、膜利用効率を維持したまま流体分離膜を高充填することができる。
If the inner diameter of the hollow fiber membrane, which is the fluid separation membrane, is 10 μm or more and 2,000 μm or less, a portion where the distance between the membranes is small occurs, and the flow of the fluid to be separated becomes uneven, and the surface utilization efficiency of the fluid separation membrane tends to decrease. In one aspect of the present invention, since the fibrous material secures the inter-membrane distance, the fluid separation membrane can be highly filled while maintaining the membrane utilization efficiency.
なお、中空糸膜が後述の支持体を含む場合、中空糸膜の内径は、中空糸膜の中空部の直径を表す。また、中空部の形状が円では無い場合、中空部に収まる最大内接円の直径を中空糸膜の内径とみなす。
When the hollow fiber membrane includes a support, which will be described later, the inner diameter of the hollow fiber membrane represents the diameter of the hollow portion of the hollow fiber membrane. When the shape of the hollow portion is not circular, the diameter of the maximum inscribed circle that fits in the hollow portion is regarded as the inner diameter of the hollow fiber membrane.
流体分離膜としては、例えば、ゼオライト膜、金属有機構造体(MOF)膜、炭素膜等の無機膜や高分子膜等が挙げられる。膜反応器が高温や酸性塩基性等の過酷な反応条件で運転される場合、耐熱性や耐薬品性に優れる無機膜が好ましく、無機膜としてはゼオライト膜、または、炭素膜であることがより好ましい。
Examples of fluid separation membranes include zeolite membranes, metal organic framework (MOF) membranes, inorganic membranes such as carbon membranes, and polymer membranes. When the membrane reactor is operated under severe reaction conditions such as high temperature and acidity and basicity, an inorganic membrane with excellent heat resistance and chemical resistance is preferable, and the inorganic membrane is more preferably a zeolite membrane or a carbon membrane. preferable.
ゼオライト膜としては、アルミノケイ酸塩、例えば、NaX型(FAU)、ZSM-5、MOR、シリカライト、及びA型等からなる膜が挙げられる。これらを2種以上用いてもよい。ゼオライト種は、水熱合成反応によって2次成長させるものと同程度のSi/Al比を有するものが好ましい。
Zeolite membranes include membranes made of aluminosilicates such as NaX type (FAU), ZSM-5, MOR, silicalite, and A type. You may use 2 or more types of these. The zeolite seeds preferably have a Si/Al ratio comparable to that of those secondary grown by hydrothermal synthesis reaction.
MOF膜としては、例えば、Cu-BTC、MOF-5、IRMOF-3、MIL-47、MIL-53、MIL-96、MMOF、SIM-1、ZIF-7、ZIF-8、ZIF-22、ZIF-69、ZIF-90等からなる膜が挙げられる。これらを2種以上用いてもよい。
MOF films include, for example, Cu-BTC, MOF-5, IRMOF-3, MIL-47, MIL-53, MIL-96, MMOF, SIM-1, ZIF-7, ZIF-8, ZIF-22, ZIF -69, ZIF-90 and the like. You may use 2 or more types of these.
炭素膜としては、例えば、ポリフェニレンオキシド、ポリビニルアルコール、ポリアクリロニトリル、フェノール樹脂、全芳香族ポリエステル、不飽和ポリエステル樹脂、アルキド樹脂、メラミン樹脂、ユリア樹脂、ポリイミド樹脂、ジアリルフタレート樹脂、リグニン樹脂、ウレタン樹脂等を炭化した膜が挙げられる。これらを2種以上用いてもよい。
Examples of carbon films include polyphenylene oxide, polyvinyl alcohol, polyacrylonitrile, phenol resin, wholly aromatic polyester, unsaturated polyester resin, alkyd resin, melamine resin, urea resin, polyimide resin, diallyl phthalate resin, lignin resin, and urethane resin. etc. is carbonized. You may use 2 or more types of these.
高分子膜としては、例えば、芳香族ポリイミド、酢酸セルロース、ポリスルホン、芳香族ポリアミド、ポリエーテルイミド、ポリエーテルスルホン、ポリアクリロニトリル、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリ(1-トリメチルシリルプロピン)、ポリジメチルシロキサン、ポリビニルトリメチルシラン、ポリ(4-メチルペンテン)、エチルセルロース、天然ゴム、ポリ(2,6-ジメチル酸化フェニレン)、低密度ポリエチレン、高密度ポリエチレン、スチレン、ポリエチルメタクリレート、ポリカーボネート、ポリエステル、脂肪族ポリアミド、ポリメタクリル酸メチル、ポリビニルアルコール、シリコーン等からなる膜が挙げられる。これらを2種以上用いてもよい。
Polymer membranes include, for example, aromatic polyimide, cellulose acetate, polysulfone, aromatic polyamide, polyetherimide, polyethersulfone, polyacrylonitrile, polyphenylene sulfide, polyetheretherketone, polytetrafluoroethylene, polyvinylidene fluoride, poly (1-trimethylsilylpropyne), polydimethylsiloxane, polyvinyltrimethylsilane, poly(4-methylpentene), ethylcellulose, natural rubber, poly(2,6-dimethylphenylene oxide), low-density polyethylene, high-density polyethylene, styrene, Examples include films made of polyethyl methacrylate, polycarbonate, polyester, aliphatic polyamide, polymethyl methacrylate, polyvinyl alcohol, silicone, and the like. You may use 2 or more types of these.
流体分離膜は、透過成分の透過性を向上させるため、ナノ粒子等を添加することができる。ナノ粒子としては、例えば、シリカ、チタニア、ゼオライト、金属酸化物、金属有機構造体(MOF)、カーボンナノチューブ(CNT)等が挙げられる。
Nanoparticles and the like can be added to the fluid separation membrane to improve the permeability of permeable components. Examples of nanoparticles include silica, titania, zeolites, metal oxides, metal organic frameworks (MOF), carbon nanotubes (CNT), and the like.
本発明の一つの態様として、流体分離膜は、支持体を含んでいてもよい。本発明の流体分離膜が支持体を含む場合、支持体は流体分離膜の一方の表面のみに配置されることがより好ましい。
As one aspect of the present invention, the fluid separation membrane may contain a support. More preferably, when the fluid separation membrane of the present invention comprises a support, the support is located on only one surface of the fluid separation membrane.
支持体としては、例えば、アルミナ、シリカ、コージェライト、ジルコニア、チタニア、バイコールガラス、ゼオライト、マグネシア、焼結金属等の多孔質無機材料や、ポリスルホン、ポリエーテルスルホン、ポリアミド、ポリエステル、セルロース系ポリマー、ビニルポリマー、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン、ポリフェニレンスルホン、及びポリフェニレンオキシドなどのホモポリマー並びにコポリマーからなる群から選択される少なくとも1種のポリマーを含有する多孔質有機材料、炭化可能樹脂からなる多孔質有機材料を炭化した多孔質炭素材料等が挙げられる。炭化可能樹脂としては、例えば、ポリフェニレンオキシド、ポリビニルアルコール、ポリアクリロニトリル、フェノール樹脂、全芳香族ポリエステル、不飽和ポリエステル樹脂、アルキド樹脂、メラミン樹脂、ユリア樹脂、ポリイミド樹脂、ジアリルフタレート樹脂、リグニン樹脂、ウレタン樹脂等が挙げられる。これらを2種以上用いてもよい。
Examples of the support include porous inorganic materials such as alumina, silica, cordierite, zirconia, titania, Vycor glass, zeolite, magnesia, sintered metals, polysulfone, polyethersulfone, polyamide, polyester, cellulose-based polymers, Porous organic materials containing at least one polymer selected from the group consisting of homopolymers and copolymers such as vinyl polymers, polyphenylene sulfides, polyphenylene sulfide sulfones, polyphenylene sulfones, and polyphenylene oxides; Examples include porous carbon materials obtained by carbonizing materials. Carbonizable resins include, for example, polyphenylene oxide, polyvinyl alcohol, polyacrylonitrile, phenol resin, wholly aromatic polyester, unsaturated polyester resin, alkyd resin, melamine resin, urea resin, polyimide resin, diallyl phthalate resin, lignin resin, urethane resin, Resin etc. are mentioned. You may use 2 or more types of these.
本発明の膜反応器において、流体分離膜の曲げ半径は0.1cm以上100cm以下であることが好ましい。曲げ半径が100cm以下であることで、膜反応器の作製中や運転中の流体分離膜の破断を抑制することができる。曲げ半径は、10cm以下であることがより好ましく、1cm以下であることがさらに好ましい。流体分離膜の曲げ半径の下限は特に限定されないが、0.1cm以上であることで流体分離膜に自立性を付与できるため、0.1cm以上であることが好ましい。
In the membrane reactor of the present invention, the bending radius of the fluid separation membrane is preferably 0.1 cm or more and 100 cm or less. By setting the bending radius to 100 cm or less, breakage of the fluid separation membrane during fabrication or operation of the membrane reactor can be suppressed. The bending radius is more preferably 10 cm or less, and even more preferably 1 cm or less. Although the lower limit of the bending radius of the fluid separation membrane is not particularly limited, it is preferably 0.1 cm or more because self-sustainability can be imparted to the fluid separation membrane when the bending radius is 0.1 cm or more.
本発明の一つの態様において、曲げ半径が100cm以下の流体分離膜は、剛直な繊維状物の周囲に巻き付けたり、ベッセルや繊維状物の複雑な形状に追従させたりすることができるため、膜反応器設計の自由度を向上させることができるために好ましい。
In one aspect of the present invention, a fluid separation membrane having a bending radius of 100 cm or less can be wound around a rigid fibrous material or conform to a complex shape of a vessel or fibrous material. This is preferable because the degree of freedom in reactor design can be improved.
流体分離膜の曲げ半径は、膜反応器から10cm以上の流体分離膜をサンプリングし、サンプリングした流体分離膜を円柱の法線方向に沿って360°以上巻き付けた時に流体分離膜が破断しない円柱の半径より求めることができる。流体分離膜の曲げ半径が1.5cm以上である場合、サンプリングした流体分離膜を円柱の法線方向に沿って巻き付ける角度を適宜小さくして評価を行い、流体分離膜が破断しない円柱の半径を、流体分離膜の曲げ半径とみなすことができる。
The bending radius of the fluid separation membrane is such that when a fluid separation membrane of 10 cm or more is sampled from the membrane reactor and the sampled fluid separation membrane is wound 360° or more along the normal direction of the cylinder, the fluid separation membrane does not break. It can be obtained from the radius. When the bending radius of the fluid separation membrane is 1.5 cm or more, the angle at which the sampled fluid separation membrane is wound along the normal direction of the cylinder is appropriately reduced for evaluation, and the radius of the cylinder at which the fluid separation membrane does not break is determined. , can be regarded as the bending radius of the fluid separation membrane.
なお、流体分離膜が触媒を担持する場合、触媒を担持した流体分離膜の曲げ半径を、流体分離膜の曲げ半径とみなす。
When the fluid separation membrane supports a catalyst, the bending radius of the fluid separation membrane supporting the catalyst is regarded as the bending radius of the fluid separation membrane.
本発明の一態様において、流体分離膜の透水性は、100μL/(hr・m2・Pa)以下であることが好ましい。透水性が100μL/(hr・m2・Pa)以下である流体分離膜は、分離機能層の細孔径が小さいため、ガス分離が必要な膜反応器として好適に用いることができる。流体分離膜の透水性は10μL/(hr・m2・Pa)以下がより好ましく、1μL/(hr・m2・Pa)以下がさらに好ましい。
In one aspect of the present invention, the water permeability of the fluid separation membrane is preferably 100 μL/(hr·m 2 ·Pa) or less. A fluid separation membrane having a water permeability of 100 μL/(hr·m 2 ·Pa) or less can be suitably used as a membrane reactor that requires gas separation because the pore size of the separation functional layer is small. The water permeability of the fluid separation membrane is more preferably 10 μL/(hr·m 2 ·Pa) or less, and even more preferably 1 μL/(hr·m 2 ·Pa) or less.
流体分離膜の透水性は、膜反応器の供給流体の流入口より純水を供給した際に、膜反応器の透過流体の流出口より回収された透過水の量より下記の(式1)で算出することができる。
The water permeability of the fluid separation membrane is determined by the amount of permeated water recovered from the permeate fluid outlet of the membrane reactor when pure water is supplied from the feed fluid inlet of the membrane reactor, and the following (Equation 1) can be calculated by
透水性(μL/(hr・m2・Pa))=Qw/(P×T×A)(式1)
[式1において、Qwは透過水の量(μL)を表し、Pは供給水の圧力(Pa)を表し、Tは透水時間(hr)を表し、Aは流体分離膜の膜面積(m2)を表す。]
繊維状物は、区画1の流体分子膜間に存在し、流体分離膜の間の距離を確保したり、分離対象流体を流体分離膜へ導いたりする。繊維状物としては、例えば、繊維、不織布、織物、及び編物等が挙げられる。これらを2種以上組み合わせてもよい。 Water permeability (μL / (hr m 2 Pa)) = Q w / (P × T × A) (Equation 1)
[InEquation 1, Qw represents the amount of permeated water (μL), P represents the pressure of the feed water (Pa), T represents the water permeation time (hr), and A represents the membrane area of the fluid separation membrane (m 2 ). ]
The fibrous substances are present between the fluid molecular membranes in thecompartment 1 to secure the distance between the fluid separation membranes and guide the fluid to be separated to the fluid separation membranes. Examples of fibrous materials include fibers, nonwoven fabrics, woven fabrics, and knitted fabrics. You may combine 2 or more types of these.
[式1において、Qwは透過水の量(μL)を表し、Pは供給水の圧力(Pa)を表し、Tは透水時間(hr)を表し、Aは流体分離膜の膜面積(m2)を表す。]
繊維状物は、区画1の流体分子膜間に存在し、流体分離膜の間の距離を確保したり、分離対象流体を流体分離膜へ導いたりする。繊維状物としては、例えば、繊維、不織布、織物、及び編物等が挙げられる。これらを2種以上組み合わせてもよい。 Water permeability (μL / (hr m 2 Pa)) = Q w / (P × T × A) (Equation 1)
[In
The fibrous substances are present between the fluid molecular membranes in the
繊維は、長さが直径の100倍以上ある形態を表し、例えば、有機質繊維や無機質繊維が挙げられる。有機質繊維としては、例えば、合成繊維、半合成繊維、再生繊維が挙げられ、無機質繊維としては、例えば、金属繊維、炭素繊維、ガラス繊維、岩石繊維が挙げられる。耐熱性が高いことから無機質繊維を用いることが好ましい。また、不織布、織物、及び編物は、繊維を平面上に加工した形態を表す。
Fiber refers to a form whose length is 100 times or more its diameter, and examples include organic fibers and inorganic fibers. Examples of organic fibers include synthetic fibers, semi-synthetic fibers, and regenerated fibers, and examples of inorganic fibers include metal fibers, carbon fibers, glass fibers, and rock fibers. Inorganic fibers are preferably used because of their high heat resistance. In addition, non-woven fabric, woven fabric, and knitted fabric represent forms in which fibers are processed on a plane.
流体分離膜間に配置しやすいため、流体分離膜が中空糸膜である場合の繊維状物は、繊維であることが好ましく、流体分離膜が平膜である場合の繊維状物は、不織布、織物、又は編物であることが好ましい。また、流体分離膜が中空糸である場合、繊維状物は、1本以上の流体分離膜の周囲をらせん状に被覆していてもよく、流体分離膜と平行に配置されていてもよい。流体分離膜の周囲へ均一にスペーサーを配置できる観点からは、1本以上の流体分離膜の周囲をスペーサーがらせん状に被覆している態様が好ましく、作業性の観点からは、流体分離膜と平行に配置されている態様が好ましい。
When the fluid separation membrane is a hollow fiber membrane, the fibrous material is preferably a fiber because it can be easily arranged between the fluid separation membranes. A woven or knitted fabric is preferred. Moreover, when the fluid separation membranes are hollow fibers, the fibrous material may spirally cover one or more fluid separation membranes, or may be arranged in parallel with the fluid separation membranes. From the viewpoint of enabling the spacers to be arranged uniformly around the fluid separation membranes, it is preferable that the spacers spirally cover the circumference of one or more fluid separation membranes. A parallel arrangement is preferred.
繊維の長さは、流体分離膜の長さの0.1倍以上2.0倍以下であることが好ましい。繊維の長さが流体分離膜の長さの0.1倍以上あることで、流体分離膜間の距離を確保しやすくなる。繊維の長さは、流体分離膜の長さの0.5倍以上が好ましく、0.75倍以上がさらに好ましい。一方で、繊維の長さが流体分離膜の長さの2.0倍以下であることで、膜反応器内で繊維が占める体積を抑制し、膜充填率を向上させることができる。繊維の長さは、流体分離膜の長さの1.5倍以下であることがより好ましく、1.1倍以下であることがさらに好ましい。なお、本発明において繊維や流体分離膜の長さを議論する場合、区画1に存在する繊維や流体分離膜を対象とし、ポッティング部位やポッティング部位を貫通して区画2に存在する繊維や流体分離膜は含めない。
The fiber length is preferably 0.1 to 2.0 times the length of the fluid separation membrane. When the fiber length is 0.1 times or more the length of the fluid separation membranes, it becomes easier to secure the distance between the fluid separation membranes. The fiber length is preferably at least 0.5 times the length of the fluid separation membrane, more preferably at least 0.75 times. On the other hand, when the fiber length is 2.0 times or less the length of the fluid separation membrane, the volume occupied by the fiber in the membrane reactor can be suppressed and the membrane packing rate can be improved. The length of the fibers is more preferably 1.5 times or less, and even more preferably 1.1 times or less, the length of the fluid separation membrane. When discussing the length of fibers and fluid separation membranes in the present invention, the fibers and fluid separation membranes present in compartment 1 are targeted, and the fibers and fluid separation membranes present in compartment 2 penetrating the potting site and potting site Does not include membrane.
図3および図4に、流体分離膜の周囲を繊維状物がらせん状に被覆している一態様の模式図を示す。図3は、1本の流体分離膜1に対して1本の繊維状物3がピッチ12の間隔をもってらせん状に被覆されてなる一態様の模式図であり、図4は、2本の流体分離膜1に対して2本の繊維状物3がそれぞれピッチ12の間隔をもってらせん状に被覆されてなる一態様の模式図である。図3および図4において、繊維状物3は、図示されていない触媒4を担持している。
3 and 4 show schematic diagrams of one embodiment in which the fluid separation membrane is spirally coated with a fibrous material. FIG. 3 is a schematic diagram of one embodiment in which one fluid separation membrane 1 is spirally coated with one fibrous material 3 at a pitch of 12, and FIG. FIG. 2 is a schematic diagram of an embodiment in which two fibrous materials 3 are spirally coated on a separation membrane 1 with a pitch of 12 between them. In FIGS. 3 and 4, fibrous material 3 carries catalyst 4 (not shown).
繊維状物による被覆は、流体分離膜に対して、繊維状物を一重に巻き付けたシングルカバリングでもよいし、繊維状物を二重に巻き付けたダブルカバリングでもよい。また、繊維状物を巻き付けた流体分離膜の複数本に対して繊維状物がさらに螺旋状に巻き付けられた多段カバリングでもよい。繊維状物は、例えば、ポリエステル、ナイロン、ポリオレフィン、フッ素樹脂、ポリアセタール、熱可塑性エラストマー、金属酸化物、金属等が挙げられる。これらを2種以上用いてもよい。
The fibrous covering may be a single covering in which the fibrous material is wrapped around the fluid separation membrane, or a double covering in which the fibrous material is wrapped twice. Further, a multi-stage covering may be used in which a fibrous material is further spirally wound around a plurality of fluid separation membranes wrapped with a fibrous material. Examples of fibrous substances include polyesters, nylons, polyolefins, fluororesins, polyacetals, thermoplastic elastomers, metal oxides, and metals. You may use 2 or more types of these.
また、繊維状物が繊維である場合、繊維状物は、モノフィラメントであってもマルチフィラメントであってもよいが、柔軟で取り扱い性に優れ、触媒を担持できる表面積が大きいことから、マルチフィラメントが好ましい。また、嵩高性が高く流体分離膜間の距離を確保しやすいことから、仮撚加工糸を用いることがより好ましい。
In addition, when the fibrous material is a fiber, the fibrous material may be a monofilament or a multifilament. preferable. Further, it is more preferable to use a false-twisted textured yarn because it has high bulkiness and can easily secure the distance between the fluid separation membranes.
触媒は、反応の活性化エネルギーを低下させることで膜反応器内の化学プロセスの反応速度を増加させる。
A catalyst increases the reaction rate of a chemical process in a membrane reactor by lowering the activation energy of the reaction.
本発明の膜反応器は、触媒が繊維状物に担持されていることを特徴とする。触媒は、繊維状物の表面にコーティングされていても、繊維状物の表面に付着されていてもよいが、反応物との接触表面積が大きくなるため、繊維状物のあらゆる外表面に触媒が担持されていることがより好ましい。繊維状物のあらゆる外表面とは、繊維状物が多孔体である場合の細孔内表面や、繊維状物がマルチフィラメントである場合の全ての単繊維の外表面を含む。
The membrane reactor of the present invention is characterized in that the catalyst is supported on a fibrous material. The catalyst may be coated on the surface of the fibrous material or attached to the surface of the fibrous material. It is more preferable to be supported. Any outer surface of the fibrous material includes the inner surface of pores when the fibrous material is porous and the outer surface of all single fibers when the fibrous material is multifilament.
本発明の繊維状物の触媒担持量は、触媒を含む繊維状物の100質量%に対して0.01質量%以上10質量%以下であることが好ましい。繊維状物の触媒担持量が0.01質量%以上であることで、繊維状物が長期間触媒機能を発揮しやすくなる。繊維状物の触媒担持量は、0.1質量%以上であることがより好ましく、1質量%以上であることがさらに好ましい。繊維状物の触媒担持量の上限は特に限定されないが、繊維状物の表面積を有効に利用できることから10質量%以下であることが好ましい。
The catalyst loading amount of the fibrous material of the present invention is preferably 0.01% by mass or more and 10% by mass or less with respect to 100% by mass of the fibrous material containing the catalyst. When the fibrous material supports a catalyst in an amount of 0.01% by mass or more, the fibrous material tends to exhibit its catalytic function for a long period of time. The catalyst loading amount of the fibrous material is more preferably 0.1% by mass or more, further preferably 1% by mass or more. Although the upper limit of the amount of catalyst supported on the fibrous material is not particularly limited, it is preferably 10% by mass or less because the surface area of the fibrous material can be effectively used.
なお、繊維状物の触媒担持量は、触媒を含む繊維状物の重量に対する繊維状物に担持された触媒の重量の比率で表され、触媒担持前後の繊維状物の重量から算出できる。また、繊維状物に担持された触媒の重量は、繊維状物から触媒を完全に溶出させ、得られた溶出液を誘導結合プラズマ質量分析(ICP-MS)測定することで見積もることも可能である。
The amount of catalyst supported on the fibrous material is expressed by the ratio of the weight of the catalyst supported on the fibrous material to the weight of the fibrous material containing the catalyst, and can be calculated from the weight of the fibrous material before and after supporting the catalyst. Also, the weight of the catalyst supported on the fibrous material can be estimated by completely eluting the catalyst from the fibrous material and measuring the obtained eluate by inductively coupled plasma mass spectrometry (ICP-MS). be.
繊維状物へ触媒を担持する方法としては、湿式メッキや乾式メッキが挙げられる。湿式メッキとしては、例えば、電解メッキや無電解メッキが挙げられ、乾式メッキとしては、例えば、蒸着やスパッタリングが挙げられる。
Wet plating and dry plating are examples of methods for supporting catalysts on fibrous materials. Examples of wet plating include electrolytic plating and electroless plating, and examples of dry plating include vapor deposition and sputtering.
本発明の膜反応器において、繊維状物に担持されない触媒は、流体分離膜の表面に配置されていても、流体分離膜間に配置されていてもよい。流体の通過を阻害しない観点からは流体分離膜の表面に配置されていることが好ましく、触媒の接触表面積を増やす観点からは流体分離膜間に配置されていることが好ましい。触媒は、流体分離膜の表面と流体分離膜間の両方に配置されていてもよい。
In the membrane reactor of the present invention, the catalyst not supported on the fibrous material may be arranged on the surface of the fluid separation membranes or between the fluid separation membranes. It is preferably arranged on the surfaces of the fluid separation membranes from the viewpoint of not inhibiting passage of the fluid, and preferably arranged between the fluid separation membranes from the viewpoint of increasing the contact surface area of the catalyst. The catalyst may be placed both on the surface of the fluid separation membranes and between the fluid separation membranes.
なお、触媒の種類は特に限定されず、膜反応器内で生じる反応に応じて、適宜選択される。
The type of catalyst is not particularly limited, and is appropriately selected according to the reaction that occurs within the membrane reactor.
本発明の膜反応器は電気回路を有し、繊維状物に電流が流せるように電気回路が配置されていることが好ましいが、この態様について説明する。繊維状物に電流を流す方法は特に限定されず、繊維状物に個別の電気回路を設けてもよく、複数の繊維状物を一つの電気回路に組み込んでもよい。配線をシンプルにできる観点からは、複数の繊維状物を一つの電気回路に組み込むことが好ましく、この場合、繊維状物は集電体と接触するように配置され、集電体が電源に接続される。繊維状物と集電体、及び集電体と電源は直接接続されていてもよいが、導線等の導電体を介して接続されてもよい。
It is preferable that the membrane reactor of the present invention has an electric circuit, and the electric circuit is arranged so that an electric current can flow through the fibrous material, but this aspect will be explained. There is no particular limitation on the method of applying an electric current to the fibrous material, and the fibrous material may be provided with individual electric circuits, or a plurality of fibrous materials may be incorporated into one electric circuit. From the viewpoint of simplifying the wiring, it is preferable to incorporate a plurality of fibrous materials into one electrical circuit. be done. The fibrous material and the current collector, and the current collector and the power source may be directly connected, or may be connected via a conductor such as a lead wire.
本発明の一つの態様において、繊維状物の電気抵抗率は、0.1μΩ・m以上1000μΩ・m以下であることが好ましい。繊維状物の電気抵抗率が0.1μΩ・m以上であることで、繊維状物に電流を流した際に抵抗加熱が生じて繊維状物を発熱体として用いることができ、膜反応器内の反応が吸熱反応であっても、膜反応器内を直接加熱することができる。抵抗加熱では、抵抗で消費された電力がすべて熱に変換されるため、効率よく膜反応器内を加熱できる。繊維状物の電気抵抗率は、0.5μΩ・m以上がより好ましく、1μΩ・m以上がさらに好ましい。繊維状物の電気抵抗率が1000μΩ・m以下であることで、繊維状物を細くしても抵抗加熱を発生させることができるため、膜反応器内の繊維状物の体積を抑制することができる。繊維状物の電気抵抗率は、100μΩ・m以下がより好ましく、10μΩ・m以下がさらに好ましい。
In one aspect of the present invention, the electrical resistivity of the fibrous material is preferably 0.1 µΩ·m or more and 1000 µΩ·m or less. When the electrical resistivity of the fibrous material is 0.1 μΩ·m or more, resistance heating occurs when an electric current is applied to the fibrous material, and the fibrous material can be used as a heating element, and the fibrous material can be used as a heating element. Even if the reaction of is endothermic, the inside of the membrane reactor can be directly heated. In resistance heating, all the power consumed by the resistance is converted into heat, so the inside of the membrane reactor can be efficiently heated. The electrical resistivity of the fibrous material is more preferably 0.5 μΩ·m or more, and still more preferably 1 μΩ·m or more. When the electrical resistivity of the fibrous material is 1000 μΩ·m or less, resistance heating can be generated even if the fibrous material is thinned, so that the volume of the fibrous material in the membrane reactor can be suppressed. can. The electrical resistivity of the fibrous material is more preferably 100 μΩ·m or less, and even more preferably 10 μΩ·m or less.
電気抵抗率が0.1μΩ・m以上、1000μΩ・m以下の繊維状物としては、鉄、クロム、アルミニウム、ニッケル、白金、モリブデン、タンタル、タングステン、これらの合金、及び炭素等が挙げられる。
Examples of fibrous materials having an electrical resistivity of 0.1 μΩ·m or more and 1000 μΩ·m or less include iron, chromium, aluminum, nickel, platinum, molybdenum, tantalum, tungsten, alloys thereof, and carbon.
本発明の一つの態様において、繊維状物は、表面に絶縁層を有することが好ましい。繊維状物の表面に絶縁層があることで、繊維状物を発熱体として用いる際に繊維状物の腐食が抑制されるため、長時間発熱体として用いることができる。
In one aspect of the present invention, the fibrous material preferably has an insulating layer on its surface. Since the insulating layer on the surface of the fibrous material suppresses corrosion of the fibrous material when the fibrous material is used as a heating element, it can be used as a heating element for a long time.
本発明の膜反応器は熱源または冷却源を有し、繊維状物と熱源または冷却源が接触するように配置されていることが好ましいが、この態様について説明する。繊維状物を加熱または冷却する方法、つまり繊維状物と接触するように配置する熱源または冷却源の加熱方式や冷却方式は特に限定されず、繊維状物を熱源または冷却源に直接接続してもよく、熱伝導体を介して接続してもよい。配線をシンプルにできる観点からは、複数の繊維状物を熱伝導体に接続してから熱源または冷却源に接続することが好ましく、この場合、繊維状物は熱伝導体と接触するように配置され、熱伝導体が熱源または冷却源と接続される。
The membrane reactor of the present invention preferably has a heat source or a cooling source and is arranged so that the fibrous material and the heat source or the cooling source are in contact with each other, but this aspect will be explained. The method of heating or cooling the fibrous material, that is, the heating method or the cooling method of the heat source or the cooling source arranged so as to be in contact with the fibrous material is not particularly limited, and the fibrous material is directly connected to the heat source or the cooling source. may be connected via a heat conductor. From the viewpoint of simplifying wiring, it is preferable to connect a plurality of fibrous materials to a heat conductor before connecting them to a heat source or a cooling source. In this case, the fibrous materials are arranged so as to contact the heat conductor. and the heat conductor is connected with a heat source or a cooling source.
本発明の一つの態様において、繊維状物の熱伝導率は、1W/(m・K)以上1000W/(m・K)以下であることが好ましい。繊維状物の熱伝導率が1W/(m・K)以上であることで、繊維状物の加熱や冷却によって、膜反応器内の加熱や冷却が可能となるため、膜反応器内の反応が吸熱反応や発熱反応であっても、膜反応器内の温度を制御しやすくなる。繊維状物の熱伝導率は、10W/(m・K)以上がより好ましく、100W/(m・K)以上がさらに好ましい。
In one aspect of the present invention, the thermal conductivity of the fibrous material is preferably 1 W/(m·K) or more and 1000 W/(m·K) or less. When the fibrous material has a thermal conductivity of 1 W/(m·K) or more, the inside of the membrane reactor can be heated or cooled by heating or cooling the fibrous material. Whether the reaction is endothermic or exothermic, the temperature in the membrane reactor can be easily controlled. The thermal conductivity of the fibrous material is more preferably 10 W/(m·K) or more, more preferably 100 W/(m·K) or more.
熱伝導率が1W/(m・K)以上、1000W/(m・K)以下の繊維状物としては、銀、銅、鉄、クロム、アルミニウム、ニッケル、白金、モリブデン、タンタル、タングステン、及び、これらの合金等が挙げられる。
The fibrous material having a thermal conductivity of 1 W/(m·K) or more and 1000 W/(m·K) or less includes silver, copper, iron, chromium, aluminum, nickel, platinum, molybdenum, tantalum, tungsten, and These alloys etc. are mentioned.
つまり電気抵抗率を0.1μΩ・m以上、1000μΩ・m以下に制御したり、熱伝導率を1W/(m・K)以上1000W/(m・K)以下に制御する際の調整のしやすさという観点から、繊維状物は、鉄、クロム、アルミニウム、ニッケル、白金、モリブデン、タンタル、タングステン、これらの合金、及び、炭素からなる群より選択される少なくとも1つを含むことが好ましい。
In other words, it is easy to adjust when controlling the electrical resistivity to 0.1 μΩ · m or more and 1000 μΩ · m or less, or the thermal conductivity to 1 W / (m · K) or more and 1000 W / (m · K) or less. From the viewpoint of durability, the fibrous material preferably contains at least one selected from the group consisting of iron, chromium, aluminum, nickel, platinum, molybdenum, tantalum, tungsten, alloys thereof, and carbon.
本発明の膜反応器は、その製造方法は特に限定されず、あらかじめ触媒を担持させた繊維状物と流体分離膜を収納する製造方法(以下、製造方法1という)でもよく、流体分離膜と繊維状物を収納した膜反応器を作製後に膜反応器内へ触媒を投入して流体分離膜間に触媒を充填すると同時に繊維状物に触媒を担持する製造方法(以下、製造方法2という)でもよい。繊維状物に確実に触媒を担持させることができるため、製造方法1がより好ましい。
The manufacturing method of the membrane reactor of the present invention is not particularly limited. A manufacturing method (hereinafter referred to as manufacturing method 2) in which, after manufacturing a membrane reactor containing a fibrous material, the catalyst is charged into the membrane reactor to fill the space between the fluid separation membranes with the catalyst, and at the same time, the fibrous material supports the catalyst. It's okay. Manufacturing method 1 is more preferable because the catalyst can be reliably supported on the fibrous material.
本発明の膜反応器が適用可能な化学プロセスは特に限定されるものではないが、例えば、メタンの水蒸気改質による水素製造、メチルシクロヘキサンからの水素製造、二酸化炭素や水素からのメタン合成やメタノール合成等が挙げられる。
Chemical processes to which the membrane reactor of the present invention can be applied are not particularly limited. Examples include hydrogen production by steam reforming of methane, hydrogen production from methylcyclohexane, methane synthesis from carbon dioxide and hydrogen, and methanol synthesis and the like.
本発明の化学プラント(以下、単に「プラント」と記載する場合がある)は、本発明の膜反応器を含む、プラントである。プラントは、膜反応器に加え、前処理設備、精製流体回収設備、副生流体回収設備等を含むことが好ましい。前処理設備は、膜反応器に供給する反応流体の組成を調整したりするための設備である。精製流体回収設備は、流体分離膜を透過した精製流体を回収し、必要に応じてさらに精製したりパイプライン等に供給したりするための設備である。副生流体回収設備は、未反応の反応流体や副生流体を回収し、未反応の反応流体を再利用したり、副生流体を無害化後に排出したりする設備である。本発明のプラントにおいて、膜反応器と前処理設備、精製流体回収設備、副生流体回収設備は配管等で接続され、反応流体から連続的に精製流体が生成されることが好ましい。
The chemical plant of the present invention (hereinafter sometimes simply referred to as "plant") is a plant including the membrane reactor of the present invention. In addition to the membrane reactor, the plant preferably includes pretreatment equipment, purified fluid recovery equipment, by-product fluid recovery equipment, and the like. The pretreatment equipment is equipment for adjusting the composition of the reaction fluid supplied to the membrane reactor. Purified fluid recovery equipment is equipment for recovering a purified fluid that has permeated through a fluid separation membrane, further purifying the fluid if necessary, and supplying it to a pipeline or the like. The by-product fluid recovery facility is a facility for recovering unreacted reaction fluids and by-product fluids, reusing the unreacted reaction fluids, and discharging the by-product fluids after rendering them harmless. In the plant of the present invention, the membrane reactor, the pretreatment equipment, the purified fluid recovery equipment, and the by-product fluid recovery equipment are preferably connected by piping or the like so that the purified fluid is continuously produced from the reaction fluid.
プラントは、分離対象流体の処理量に応じて、膜反応器を複数含むことが好ましい。複数の膜反応器は、反応流体に対して直列に接続されていてもよく、並列に接続されていてもよい。膜反応器の作製効率の観点からは、膜反応器は直列に接続されることが好ましく、膜反応器を部分的に交換できる観点からは、膜反応器は並列に接続されることが好ましい。本発明のプラントの好ましい一態様として、膜反応器が直列に接続され、直列に接続された膜反応器がさらに並列に接続された態様が挙げられる。このようにすることで、膜反応器を直列に接続するメリットと並列に接続するメリットを両立させることができる。
The plant preferably includes multiple membrane reactors according to the throughput of the fluid to be separated. A plurality of membrane reactors may be connected in series or in parallel with respect to the reaction fluid. From the viewpoint of production efficiency of the membrane reactor, the membrane reactors are preferably connected in series, and from the viewpoint of partial replacement of the membrane reactors, the membrane reactors are preferably connected in parallel. A preferred embodiment of the plant of the present invention includes a mode in which the membrane reactors are connected in series, and the membrane reactors connected in series are further connected in parallel. By doing so, it is possible to achieve both the advantages of connecting the membrane reactors in series and the advantages of connecting them in parallel.
本発明のプラントが適用可能な化学プロセスは特に限定されるものではないが、例えば、メタンの水蒸気改質による水素製造、メチルシクロヘキサンからの水素製造、二酸化炭素や水素からのメタン合成やメタノール合成等が挙げられる。
Chemical processes to which the plant of the present invention can be applied are not particularly limited, but examples include hydrogen production by steam reforming of methane, hydrogen production from methylcyclohexane, methane synthesis and methanol synthesis from carbon dioxide and hydrogen, and the like. is mentioned.
本発明の流体の製造方法は、本発明の膜反応器を用いた流体の製造方法であって、少なくとも以下の工程を含む。
The fluid production method of the present invention is a fluid production method using the membrane reactor of the present invention and includes at least the following steps.
膜反応器内に存在する触媒により供給流体中の反応物から生成物を生成する工程1、および膜反応器内に存在する流体分離膜により上記工程1の結果生じる分離対象流体から生成物を濃縮する工程2。
Step 1 where a catalyst present in the membrane reactor produces products from the reactants in the feed stream, and a fluid separation membrane present in the membrane reactor concentrates the products from the resulting fluid to be separated from step 1 above. Step 2 to do.
なお反応物から生成される生成物には、目的とする生成物以外に副生成物も含まれる場合があるが、工程1で生成される生成物および工程2で濃縮される生成物はいずれも目的とする生成物をさす。
The product produced from the reactants may contain by-products in addition to the desired product, but the product produced in step 1 and the product concentrated in step 2 are both It refers to the desired product.
さらに、上記工程1および工程2の前後に別の精製工程や追加工程を含むものであってもよい。別の精製工程としては、例えば、蒸留、吸着、吸収等が挙げられる。また、追加工程としては、例えば、別の流体と混合する成分調整等が挙げられる。
Furthermore, before and after the steps 1 and 2, another purification step or an additional step may be included. Alternative purification steps include, for example, distillation, adsorption, absorption, and the like. Moreover, as an additional process, component adjustment etc. which mix with another fluid are mentioned, for example.
本発明の流体の製造方法によれば、膜反応器によって小スケールからの連続生産が可能となる。
According to the fluid production method of the present invention, the membrane reactor enables continuous production from a small scale.
以下、実施例および比較例を挙げて本発明を詳細に説明するが、本発明はこれらに限定されるものではない。各実施例および比較例における評価は、以下の方法により行った。
The present invention will be described in detail below with examples and comparative examples, but the present invention is not limited to these. Evaluation in each example and comparative example was performed by the following methods.
(流体分離膜の曲げ半径)
作製した膜反応器から10cm以上の流体分離膜を5本切り出し、切り出した流体分離膜を円柱の法線方向に沿って360°以上巻き付けた時に流体分離膜が破断しない円柱の半径を求めた。得られた円柱の半径の平均値を有効数字1桁で表した値を流体分離膜の曲げ半径とした。 (Bending radius of fluid separation membrane)
Five fluid separation membranes with a length of 10 cm or more were cut out from the fabricated membrane reactor, and the radius of the cylinder where the fluid separation membrane did not break when the cut fluid separation membrane was wound 360° or more along the normal direction of the cylinder was determined. The bending radius of the fluid separation membrane was obtained by expressing the average value of the radii of the obtained cylinders with one significant figure.
作製した膜反応器から10cm以上の流体分離膜を5本切り出し、切り出した流体分離膜を円柱の法線方向に沿って360°以上巻き付けた時に流体分離膜が破断しない円柱の半径を求めた。得られた円柱の半径の平均値を有効数字1桁で表した値を流体分離膜の曲げ半径とした。 (Bending radius of fluid separation membrane)
Five fluid separation membranes with a length of 10 cm or more were cut out from the fabricated membrane reactor, and the radius of the cylinder where the fluid separation membrane did not break when the cut fluid separation membrane was wound 360° or more along the normal direction of the cylinder was determined. The bending radius of the fluid separation membrane was obtained by expressing the average value of the radii of the obtained cylinders with one significant figure.
(流体分離膜の内径)
作製した膜反応器から10cm以上の流体分離膜を5本切り出し、繊維軸方向と直交する方向に割断した。割断面をデジタルマイクロスコープ(キーエンス社製VHX-D500)で観察し、中空部に収まる最大内接円の直径を測定した。得られた内接円の直径の平均値を有効数字1桁で表した値を流体分離膜の内径とした。 (inner diameter of fluid separation membrane)
Five fluid separation membranes with a length of 10 cm or more were cut out from the produced membrane reactor and split in a direction orthogonal to the fiber axis direction. The fractured surface was observed with a digital microscope (VHX-D500 manufactured by Keyence Corporation), and the diameter of the maximum inscribed circle that fits in the hollow portion was measured. The average value of the diameters of the obtained inscribed circles was expressed with one significant digit as the inner diameter of the fluid separation membrane.
作製した膜反応器から10cm以上の流体分離膜を5本切り出し、繊維軸方向と直交する方向に割断した。割断面をデジタルマイクロスコープ(キーエンス社製VHX-D500)で観察し、中空部に収まる最大内接円の直径を測定した。得られた内接円の直径の平均値を有効数字1桁で表した値を流体分離膜の内径とした。 (inner diameter of fluid separation membrane)
Five fluid separation membranes with a length of 10 cm or more were cut out from the produced membrane reactor and split in a direction orthogonal to the fiber axis direction. The fractured surface was observed with a digital microscope (VHX-D500 manufactured by Keyence Corporation), and the diameter of the maximum inscribed circle that fits in the hollow portion was measured. The average value of the diameters of the obtained inscribed circles was expressed with one significant digit as the inner diameter of the fluid separation membrane.
(繊維の長さと流体分離膜の長さの比)
実施例の膜反応器の区画1から繊維を5本サンプリングし、伸長しない力で直線にした状態で長さを測定し、平均値を求めて繊維の長さとした。ここで、繊維の一端又は両端がポッティング部位中に存在する場合は、区画1におけるポッティング部位の表面で繊維を切断してサンプリングを行った。流体分離膜の長さは、膜反応器の一端のポッティング部位の区画1側の表面と膜反応器のもう一端のポッティング部位の区画1側の表面の間の長さとした。繊維の長さと流体分離膜の長さの比は、「繊維の長さ/流体分離膜の長さ」を有効数字2桁で表した。 (Ratio of fiber length to fluid separation membrane length)
Five fibers were sampled fromsection 1 of the membrane reactor of the example, the length was measured in a straight state with a non-stretching force, and the average value was obtained to obtain the length of the fiber. Here, when one end or both ends of the fiber existed in the potting site, the fiber was cut at the surface of the potting site in Section 1 and sampled. The length of the fluid separation membrane was the length between the compartment 1 side surface of the potting site at one end of the membrane reactor and the compartment 1 side surface of the potting site at the other end of the membrane reactor. The ratio of the length of the fiber to the length of the fluid separation membrane was expressed as "length of the fiber/length of the fluid separation membrane" with two significant figures.
実施例の膜反応器の区画1から繊維を5本サンプリングし、伸長しない力で直線にした状態で長さを測定し、平均値を求めて繊維の長さとした。ここで、繊維の一端又は両端がポッティング部位中に存在する場合は、区画1におけるポッティング部位の表面で繊維を切断してサンプリングを行った。流体分離膜の長さは、膜反応器の一端のポッティング部位の区画1側の表面と膜反応器のもう一端のポッティング部位の区画1側の表面の間の長さとした。繊維の長さと流体分離膜の長さの比は、「繊維の長さ/流体分離膜の長さ」を有効数字2桁で表した。 (Ratio of fiber length to fluid separation membrane length)
Five fibers were sampled from
(繊維状物の電気抵抗率)
繊維状物の電気抵抗率は、4端子法により測定した。電気抵抗率の測定は、繊維状物に電気を流しながら表面の2点間の電位差を測定し、以下に示す式1によって抵抗率βを算出した。電気抵抗率の測定には、直流電源(菊水電子製PAD55-20L)、電圧計(ヒューレットパッカード製3878Aマルチメータ)及び電流計(日置電機製DT4252)を使用した。測定は3回実施し、平均値を有効数字2桁で表した値を繊維状物の電気抵抗率(μΩ・m)とした。 (Electrical resistivity of fibrous material)
The electrical resistivity of fibrous materials was measured by a four-probe method. The electrical resistivity was measured by measuring the potential difference between two points on the surface of the fibrous material while applying electricity to the fibrous material, and calculating the resistivity β by the followingformula 1. A DC power supply (PAD55-20L manufactured by Kikusui Electronics), a voltmeter (3878A multimeter manufactured by Hewlett-Packard) and an ammeter (DT4252 manufactured by Hioki Denki) were used for the measurement of electrical resistivity. The measurement was carried out three times, and the average value represented by two significant figures was taken as the electrical resistivity (μΩ·m) of the fibrous material.
繊維状物の電気抵抗率は、4端子法により測定した。電気抵抗率の測定は、繊維状物に電気を流しながら表面の2点間の電位差を測定し、以下に示す式1によって抵抗率βを算出した。電気抵抗率の測定には、直流電源(菊水電子製PAD55-20L)、電圧計(ヒューレットパッカード製3878Aマルチメータ)及び電流計(日置電機製DT4252)を使用した。測定は3回実施し、平均値を有効数字2桁で表した値を繊維状物の電気抵抗率(μΩ・m)とした。 (Electrical resistivity of fibrous material)
The electrical resistivity of fibrous materials was measured by a four-probe method. The electrical resistivity was measured by measuring the potential difference between two points on the surface of the fibrous material while applying electricity to the fibrous material, and calculating the resistivity β by the following
β=ΔU・S/(I・d) ・・・式1
[式中、ΔUは測定電位差、Iは繊維状物を流れる電流、Sは繊維状物の断面積、dは電位を測定する2電極の電極間距離を表す。]
(繊維状物の熱伝導率)
繊維状物の熱伝導率は、レーザーフラッシュ法により測定した。熱伝導率の測定は、束にした繊維状物をブロック状に成型し、熱伝導率測定装置(アバンテック理工社製TC-7000H)で熱伝導率を測定した。測定は3回実施し、平均値を有効数字2桁で表した値を繊維状物の熱伝導率(W/(m・K))とした。 β=ΔU・S/(I・d)Equation 1
[In the formula, ΔU is the measured potential difference, I is the current flowing through the fibrous material, S is the cross-sectional area of the fibrous material, and d is the distance between the two electrodes for measuring the potential. ]
(Thermal conductivity of fibrous material)
The thermal conductivity of fibrous materials was measured by the laser flash method. The thermal conductivity was measured by molding the bundled fibrous material into a block and measuring the thermal conductivity with a thermal conductivity measuring device (TC-7000H manufactured by Avantek Riko Co., Ltd.). The measurement was carried out three times, and the average value represented by two significant figures was defined as the thermal conductivity (W/(m·K)) of the fibrous material.
[式中、ΔUは測定電位差、Iは繊維状物を流れる電流、Sは繊維状物の断面積、dは電位を測定する2電極の電極間距離を表す。]
(繊維状物の熱伝導率)
繊維状物の熱伝導率は、レーザーフラッシュ法により測定した。熱伝導率の測定は、束にした繊維状物をブロック状に成型し、熱伝導率測定装置(アバンテック理工社製TC-7000H)で熱伝導率を測定した。測定は3回実施し、平均値を有効数字2桁で表した値を繊維状物の熱伝導率(W/(m・K))とした。 β=ΔU・S/(I・d)
[In the formula, ΔU is the measured potential difference, I is the current flowing through the fibrous material, S is the cross-sectional area of the fibrous material, and d is the distance between the two electrodes for measuring the potential. ]
(Thermal conductivity of fibrous material)
The thermal conductivity of fibrous materials was measured by the laser flash method. The thermal conductivity was measured by molding the bundled fibrous material into a block and measuring the thermal conductivity with a thermal conductivity measuring device (TC-7000H manufactured by Avantek Riko Co., Ltd.). The measurement was carried out three times, and the average value represented by two significant figures was defined as the thermal conductivity (W/(m·K)) of the fibrous material.
(繊維状物の触媒担持量)
製造例3~5の繊維状物について、触媒担持前後の繊維状物の質量から触媒担持後の繊維状物の質量に占める触媒の質量の比率((触媒担持後の繊維状物の質量―触媒担持前の繊維状物の質量)/触媒担持後の繊維状物の質量)を算出した。得られた値を有効数字1桁で%表示し、繊維状物の触媒担持量とした。 (Amount of fibrous catalyst supported)
Regarding the fibrous materials of Production Examples 3 to 5, the ratio of the mass of the catalyst to the mass of the fibrous material after supporting the catalyst from the mass of the fibrous material before and after supporting the catalyst ((mass of the fibrous material after supporting the catalyst - catalyst The mass of the fibrous material before loading)/mass of the fibrous material after loading the catalyst) was calculated. The obtained value was expressed as a percentage with one significant figure and used as the amount of catalyst supported on the fibrous material.
製造例3~5の繊維状物について、触媒担持前後の繊維状物の質量から触媒担持後の繊維状物の質量に占める触媒の質量の比率((触媒担持後の繊維状物の質量―触媒担持前の繊維状物の質量)/触媒担持後の繊維状物の質量)を算出した。得られた値を有効数字1桁で%表示し、繊維状物の触媒担持量とした。 (Amount of fibrous catalyst supported)
Regarding the fibrous materials of Production Examples 3 to 5, the ratio of the mass of the catalyst to the mass of the fibrous material after supporting the catalyst from the mass of the fibrous material before and after supporting the catalyst ((mass of the fibrous material after supporting the catalyst - catalyst The mass of the fibrous material before loading)/mass of the fibrous material after loading the catalyst) was calculated. The obtained value was expressed as a percentage with one significant figure and used as the amount of catalyst supported on the fibrous material.
(生成物の生成量)
作製した膜反応器の供給流体の流入口よりメチルシクロヘキサンを供給した。メチルシクロヘキサンは膜反応器内のパラジウムを触媒に、トルエンと水素に分解され、水素が選択的に流体分離膜を透過する。膜反応器の透過流体の流出入口より水素を回収し、石けん膜流量計で測定した流量とガスクロ分析で得られた水素組成比率より、生成物である水素の生成量を評価した。実施例2及び実施例3の膜反応器については、繊維状物に電流を流した状態や、繊維状物を加熱した状態でも水素の生成量を評価した。測定は3回行い、平均値の小数第一位を四捨五入して生成物の生成量とした。 (Amount of product produced)
Methylcyclohexane was supplied from the feed fluid inlet of the fabricated membrane reactor. Methylcyclohexane is decomposed into toluene and hydrogen using palladium in the membrane reactor as a catalyst, and hydrogen selectively permeates the fluid separation membrane. Hydrogen was recovered from the inlet and outlet of the permeated fluid of the membrane reactor, and the production amount of hydrogen as a product was evaluated from the flow rate measured with a soap film flow meter and the hydrogen composition ratio obtained by gas chromatography analysis. Regarding the membrane reactors of Examples 2 and 3, the amount of hydrogen produced was also evaluated in a state in which an electric current was passed through the fibrous material and a state in which the fibrous material was heated. The measurement was performed 3 times, and the average value was rounded off to the first decimal place to obtain the production amount of the product.
作製した膜反応器の供給流体の流入口よりメチルシクロヘキサンを供給した。メチルシクロヘキサンは膜反応器内のパラジウムを触媒に、トルエンと水素に分解され、水素が選択的に流体分離膜を透過する。膜反応器の透過流体の流出入口より水素を回収し、石けん膜流量計で測定した流量とガスクロ分析で得られた水素組成比率より、生成物である水素の生成量を評価した。実施例2及び実施例3の膜反応器については、繊維状物に電流を流した状態や、繊維状物を加熱した状態でも水素の生成量を評価した。測定は3回行い、平均値の小数第一位を四捨五入して生成物の生成量とした。 (Amount of product produced)
Methylcyclohexane was supplied from the feed fluid inlet of the fabricated membrane reactor. Methylcyclohexane is decomposed into toluene and hydrogen using palladium in the membrane reactor as a catalyst, and hydrogen selectively permeates the fluid separation membrane. Hydrogen was recovered from the inlet and outlet of the permeated fluid of the membrane reactor, and the production amount of hydrogen as a product was evaluated from the flow rate measured with a soap film flow meter and the hydrogen composition ratio obtained by gas chromatography analysis. Regarding the membrane reactors of Examples 2 and 3, the amount of hydrogen produced was also evaluated in a state in which an electric current was passed through the fibrous material and a state in which the fibrous material was heated. The measurement was performed 3 times, and the average value was rounded off to the first decimal place to obtain the production amount of the product.
(製造例1)
ポリサイエンス社製ポリアクリロニトリル(PAN)(MW15万)10重量部、シグマ・アルドリッチ社製ポリビニルピロリドン(PVP)(MW4万)10重量部および富士フイルム和光純薬製ジメチルスルホキシド(DMSO)80重量部を混合し、100℃で撹拌して紡糸原液を調製した。 (Production example 1)
10 parts by weight of polyacrylonitrile (PAN) (MW 150,000) manufactured by Polyscience, 10 parts by weight of polyvinylpyrrolidone (PVP) (MW 40,000) manufactured by Sigma-Aldrich, and 80 parts by weight of dimethyl sulfoxide (DMSO) manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. They were mixed and stirred at 100° C. to prepare a spinning dope.
ポリサイエンス社製ポリアクリロニトリル(PAN)(MW15万)10重量部、シグマ・アルドリッチ社製ポリビニルピロリドン(PVP)(MW4万)10重量部および富士フイルム和光純薬製ジメチルスルホキシド(DMSO)80重量部を混合し、100℃で撹拌して紡糸原液を調製した。 (Production example 1)
10 parts by weight of polyacrylonitrile (PAN) (MW 150,000) manufactured by Polyscience, 10 parts by weight of polyvinylpyrrolidone (PVP) (MW 40,000) manufactured by Sigma-Aldrich, and 80 parts by weight of dimethyl sulfoxide (DMSO) manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. They were mixed and stirred at 100° C. to prepare a spinning dope.
得られた紡糸原液を25℃まで冷却した後、同心円状の三重口金の口金を用いて、内管からDMSO80重量%水溶液を、中管から前記紡糸原液を、外管からDMSO90重量%水溶液をそれぞれ同時に吐出した後、25℃の純水からなる凝固浴へ導き、ローラーに巻き取ることにより原糸を得た。得られた原糸を水洗した後、循環式乾燥機を用いて25℃で24時間乾燥し、中空糸状の多孔質炭素膜の前駆体を作製した。
After cooling the obtained spinning stock solution to 25° C., using concentric triple nozzles, an 80% by weight DMSO aqueous solution was introduced from the inner tube, the above spinning stock solution from the middle tube, and a 90% by weight DMSO aqueous solution from the outer tube. After being discharged at the same time, the fibers were introduced into a coagulation bath of pure water at 25° C. and wound around a roller to obtain a raw yarn. After the obtained filament was washed with water, it was dried at 25° C. for 24 hours using a circulating dryer to prepare a hollow fiber-like porous carbon membrane precursor.
得られた多孔質炭素膜の前駆体を250℃の電気炉中に通し、空気雰囲気下において1時間加熱して不融化処理を行い、不融化糸を得た。続いて、不融化糸を炭化温度650℃で炭化処理し、外径300μm、内径100μm、曲げ半径5mmの無機膜(炭素膜)である、製造例1の流体分離膜を得た。
The obtained precursor of the porous carbon film was passed through an electric furnace at 250°C and heated in an air atmosphere for 1 hour to perform an infusibilization treatment to obtain an infusibilization thread. Subsequently, the infusible yarn was carbonized at a carbonization temperature of 650° C. to obtain a fluid separation membrane of Production Example 1, which is an inorganic membrane (carbon membrane) having an outer diameter of 300 μm, an inner diameter of 100 μm, and a bending radius of 5 mm.
(製造例2)
製造例1の流体分離膜を10cmごとに切断後に、触媒であるパラジウムをスパッタ処理し、製造例2のパラジウム担持流体分離膜を得た。 (Production example 2)
After cutting the fluid separation membrane of Production Example 1 every 10 cm, palladium as a catalyst was sputtered to obtain a palladium-carrying fluid separation membrane of Production Example 2.
製造例1の流体分離膜を10cmごとに切断後に、触媒であるパラジウムをスパッタ処理し、製造例2のパラジウム担持流体分離膜を得た。 (Production example 2)
After cutting the fluid separation membrane of Production Example 1 every 10 cm, palladium as a catalyst was sputtered to obtain a palladium-carrying fluid separation membrane of Production Example 2.
(製造例3)
電気抵抗率が1.0MΩ・m以上、熱伝導率が0.25W/(m・K)の繊維状物である170dtexのポリエステル加工糸に触媒であるパラジウムをスパッタ処理し、触媒が担持された製造例3の繊維状物を得た。前述の方法により評価した結果、製造例3の繊維状物の触媒担持量は、3質量%であった。 (Production example 3)
The 170 dtex polyester textured yarn, which is a fibrous material with an electrical resistivity of 1.0 MΩ·m or more and a thermal conductivity of 0.25 W/(m·K), was sputtered with palladium as a catalyst, and the catalyst was supported. A fibrous material of Production Example 3 was obtained. As a result of evaluation by the method described above, the amount of catalyst supported on the fibrous material of Production Example 3 was 3% by mass.
電気抵抗率が1.0MΩ・m以上、熱伝導率が0.25W/(m・K)の繊維状物である170dtexのポリエステル加工糸に触媒であるパラジウムをスパッタ処理し、触媒が担持された製造例3の繊維状物を得た。前述の方法により評価した結果、製造例3の繊維状物の触媒担持量は、3質量%であった。 (Production example 3)
The 170 dtex polyester textured yarn, which is a fibrous material with an electrical resistivity of 1.0 MΩ·m or more and a thermal conductivity of 0.25 W/(m·K), was sputtered with palladium as a catalyst, and the catalyst was supported. A fibrous material of Production Example 3 was obtained. As a result of evaluation by the method described above, the amount of catalyst supported on the fibrous material of Production Example 3 was 3% by mass.
(製造例4)
電気抵抗率が1.0μΩ・m、熱伝導率が17W/(m・K)の繊維状物であるφ0.2mmのニクロム線に触媒であるパラジウムをスパッタ処理し、触媒が担持された製造例4の繊維状物を得た。前述の方法により評価した結果、製造例4の繊維状物の触媒担持量は、0.02質量%であった。 (Production example 4)
A manufacturing example in which a nichrome wire of φ0.2 mm, which is a fibrous material with an electrical resistivity of 1.0 μΩ·m and a thermal conductivity of 17 W/(m·K), is sputtered with palladium as a catalyst, and the catalyst is supported. 4 filaments were obtained. As a result of evaluation by the method described above, the amount of catalyst carried in the fibrous material of Production Example 4 was 0.02% by mass.
電気抵抗率が1.0μΩ・m、熱伝導率が17W/(m・K)の繊維状物であるφ0.2mmのニクロム線に触媒であるパラジウムをスパッタ処理し、触媒が担持された製造例4の繊維状物を得た。前述の方法により評価した結果、製造例4の繊維状物の触媒担持量は、0.02質量%であった。 (Production example 4)
A manufacturing example in which a nichrome wire of φ0.2 mm, which is a fibrous material with an electrical resistivity of 1.0 μΩ·m and a thermal conductivity of 17 W/(m·K), is sputtered with palladium as a catalyst, and the catalyst is supported. 4 filaments were obtained. As a result of evaluation by the method described above, the amount of catalyst carried in the fibrous material of Production Example 4 was 0.02% by mass.
(製造例5)
電気抵抗率が0.74μΩ・m、熱伝導率が16W/(m・K)の繊維状物であるφ0.2mmのSUSワイヤーに触媒であるパラジウムをスパッタ処理し、触媒が担持された製造例5の繊維状物を得た。前述の方法により評価した結果、製造例5の繊維状物の触媒担持量は、0.02質量%であった。 (Production example 5)
A manufacturing example in which a fibrous SUS wire with an electrical resistivity of 0.74 μΩ·m and a thermal conductivity of 16 W/(m·K) is sputtered with palladium as a catalyst to support the catalyst. 5 filaments were obtained. As a result of evaluation by the method described above, the amount of catalyst carried in the fibrous material of Production Example 5 was 0.02% by mass.
電気抵抗率が0.74μΩ・m、熱伝導率が16W/(m・K)の繊維状物であるφ0.2mmのSUSワイヤーに触媒であるパラジウムをスパッタ処理し、触媒が担持された製造例5の繊維状物を得た。前述の方法により評価した結果、製造例5の繊維状物の触媒担持量は、0.02質量%であった。 (Production example 5)
A manufacturing example in which a fibrous SUS wire with an electrical resistivity of 0.74 μΩ·m and a thermal conductivity of 16 W/(m·K) is sputtered with palladium as a catalyst to support the catalyst. 5 filaments were obtained. As a result of evaluation by the method described above, the amount of catalyst carried in the fibrous material of Production Example 5 was 0.02% by mass.
(実施例1)
製造例2の流体分離膜1本を芯糸に、製造例3の触媒が担持された繊維状物を10mmのピッチでZ方向に巻き付けた。触媒が担持された繊維状物が巻き付けられた製造例2の流体分離膜を10本束ね、流体の流出入口を有するアクリルパイプ(内径3mm)内に収納し、エポキシ樹脂を用いてアクリルパイプの両端を一方ずつ静置ポッティングした。エポキシ樹脂硬化後に一端のポッティング部位を回転鋸で切断して流体分離膜を開口させ、実施例1の膜反応器を得た。前述の方法により評価した結果、流体分離膜の曲げ半径は、5mm、流体分離膜の内径は、100μm、繊維の長さと流体分離膜の長さの比は、1.0、生成物の生成量は、33mL/分であった。 (Example 1)
One fluid separation membrane of Production Example 2 was used as a core thread, and the catalyst-supported fibrous material of Production Example 3 was wound in the Z direction at a pitch of 10 mm. 10 fluid separation membranes of Production Example 2 around which the catalyst-supporting fibrous material was wound were bundled, housed in an acrylic pipe (inner diameter 3 mm) having a fluid inlet and outlet, and epoxy resin was applied to both ends of the acrylic pipe. were statically potted one by one. After curing the epoxy resin, the potting portion at one end was cut with a rotating saw to open the fluid separation membrane, and the membrane reactor of Example 1 was obtained. As a result of evaluation by the above-described method, the bending radius of the fluid separation membrane was 5 mm, the inner diameter of the fluid separation membrane was 100 μm, the ratio of the length of the fiber to the length of the fluid separation membrane was 1.0, and the amount of product produced. was 33 mL/min.
製造例2の流体分離膜1本を芯糸に、製造例3の触媒が担持された繊維状物を10mmのピッチでZ方向に巻き付けた。触媒が担持された繊維状物が巻き付けられた製造例2の流体分離膜を10本束ね、流体の流出入口を有するアクリルパイプ(内径3mm)内に収納し、エポキシ樹脂を用いてアクリルパイプの両端を一方ずつ静置ポッティングした。エポキシ樹脂硬化後に一端のポッティング部位を回転鋸で切断して流体分離膜を開口させ、実施例1の膜反応器を得た。前述の方法により評価した結果、流体分離膜の曲げ半径は、5mm、流体分離膜の内径は、100μm、繊維の長さと流体分離膜の長さの比は、1.0、生成物の生成量は、33mL/分であった。 (Example 1)
One fluid separation membrane of Production Example 2 was used as a core thread, and the catalyst-supported fibrous material of Production Example 3 was wound in the Z direction at a pitch of 10 mm. 10 fluid separation membranes of Production Example 2 around which the catalyst-supporting fibrous material was wound were bundled, housed in an acrylic pipe (
(実施例2)
製造例2の流体分離膜1本を芯糸に、製造例4の触媒が担持された繊維状物を10mmのピッチでZ方向に巻き付けた。触媒が担持された繊維状物が巻き付けられた製造例2の流体分離膜を10本束ね、流体の流出入口を有するアクリルパイプ(内径3mm)内に収納し、エポキシ樹脂を用いてアクリルパイプの両端を一方ずつ静置ポッティングした。エポキシ樹脂硬化後に一端のポッティング部位を回転鋸で切断して流体分離膜を開口させた。エレメントの両端の流体分離膜開口面に金属多孔板を設置し、2つの多孔板間に導線と直流電源を配置し、実施例2の膜反応器を得た。 (Example 2)
One fluid separation membrane of Production Example 2 was used as a core thread, and the catalyst-supported fibrous material of Production Example 4 was wound in the Z direction at a pitch of 10 mm. 10 fluid separation membranes of Production Example 2 around which the catalyst-supporting fibrous material was wound were bundled, housed in an acrylic pipe (inner diameter 3 mm) having a fluid inlet and outlet, and epoxy resin was applied to both ends of the acrylic pipe. were statically potted one by one. After curing the epoxy resin, the potting portion at one end was cut with a rotating saw to open the fluid separation membrane. Metal perforated plates were installed on the fluid separation membrane opening faces at both ends of the element, and a lead wire and a DC power source were arranged between the two perforated plates to obtain a membrane reactor of Example 2.
製造例2の流体分離膜1本を芯糸に、製造例4の触媒が担持された繊維状物を10mmのピッチでZ方向に巻き付けた。触媒が担持された繊維状物が巻き付けられた製造例2の流体分離膜を10本束ね、流体の流出入口を有するアクリルパイプ(内径3mm)内に収納し、エポキシ樹脂を用いてアクリルパイプの両端を一方ずつ静置ポッティングした。エポキシ樹脂硬化後に一端のポッティング部位を回転鋸で切断して流体分離膜を開口させた。エレメントの両端の流体分離膜開口面に金属多孔板を設置し、2つの多孔板間に導線と直流電源を配置し、実施例2の膜反応器を得た。 (Example 2)
One fluid separation membrane of Production Example 2 was used as a core thread, and the catalyst-supported fibrous material of Production Example 4 was wound in the Z direction at a pitch of 10 mm. 10 fluid separation membranes of Production Example 2 around which the catalyst-supporting fibrous material was wound were bundled, housed in an acrylic pipe (
実施例2の膜反応器は、電気回路を有する。前述の方法により評価した結果、流体分離膜の曲げ半径は、5mm、流体分離膜の内径は、100μm、繊維の長さと流体分離膜の長さの比は、1.0、生成物の生成量は、17mL/分であった。また、繊維状物に電流を流した状態では、生成物の生成量は、41mL/分であった。
The membrane reactor of Example 2 has an electric circuit. As a result of evaluation by the above-described method, the bending radius of the fluid separation membrane was 5 mm, the inner diameter of the fluid separation membrane was 100 μm, the ratio of the length of the fiber to the length of the fluid separation membrane was 1.0, and the amount of product produced. was 17 mL/min. In addition, the production amount of the product was 41 mL/min in the state where the electric current was applied to the fibrous material.
(実施例3)
製造例2の流体分離膜1本を芯糸に、製造例4の触媒が担持された繊維状物を10mmのピッチでZ方向に巻き付けた。触媒が担持された繊維状物が巻き付けられた製造例2の流体分離膜を10本束ね、流体の流出入口を有するアクリルパイプ(内径3mm)内に収納し、エポキシ樹脂を用いてアクリルパイプの両端を一方ずつ静置ポッティングした。エポキシ樹脂硬化後に一端のポッティング部位を回転鋸で切断して流体分離膜を開口させた。エレメントの両端の流体分離膜開口面に金属多孔板を設置し、2つの多孔板をそれぞれ熱源と接続し、実施例3の膜反応器を得た。 (Example 3)
One fluid separation membrane of Production Example 2 was used as a core thread, and the catalyst-supported fibrous material of Production Example 4 was wound in the Z direction at a pitch of 10 mm. 10 fluid separation membranes of Production Example 2 around which the catalyst-supporting fibrous material was wound were bundled, housed in an acrylic pipe (inner diameter 3 mm) having a fluid inlet and outlet, and epoxy resin was applied to both ends of the acrylic pipe. were statically potted one by one. After curing the epoxy resin, the potting portion at one end was cut with a rotating saw to open the fluid separation membrane. Metal perforated plates were placed on the fluid separation membrane opening faces at both ends of the element, and the two perforated plates were connected to respective heat sources to obtain the membrane reactor of Example 3.
製造例2の流体分離膜1本を芯糸に、製造例4の触媒が担持された繊維状物を10mmのピッチでZ方向に巻き付けた。触媒が担持された繊維状物が巻き付けられた製造例2の流体分離膜を10本束ね、流体の流出入口を有するアクリルパイプ(内径3mm)内に収納し、エポキシ樹脂を用いてアクリルパイプの両端を一方ずつ静置ポッティングした。エポキシ樹脂硬化後に一端のポッティング部位を回転鋸で切断して流体分離膜を開口させた。エレメントの両端の流体分離膜開口面に金属多孔板を設置し、2つの多孔板をそれぞれ熱源と接続し、実施例3の膜反応器を得た。 (Example 3)
One fluid separation membrane of Production Example 2 was used as a core thread, and the catalyst-supported fibrous material of Production Example 4 was wound in the Z direction at a pitch of 10 mm. 10 fluid separation membranes of Production Example 2 around which the catalyst-supporting fibrous material was wound were bundled, housed in an acrylic pipe (
実施例3の膜反応器は、熱源を有する。前述の方法により評価した結果、流体分離膜の曲げ半径は、5mm、流体分離膜の内径は、100μm、繊維の長さと流体分離膜の長さの比は、1.0、生成物の生成量は、17mL/分であった。また、繊維状物を加熱した状態では、生成物の生成量は、36mL/分であった。
The membrane reactor of Example 3 has a heat source. As a result of evaluation by the above-described method, the bending radius of the fluid separation membrane was 5 mm, the inner diameter of the fluid separation membrane was 100 μm, the ratio of the length of the fiber to the length of the fluid separation membrane was 1.0, and the amount of product produced. was 17 mL/min. In addition, when the fibrous material was heated, the amount of product produced was 36 mL/min.
(実施例4)
製造例4の触媒が担持された繊維状物に代えて、製造例5の触媒が担持された繊維状物を用いた以外は実施例2と同様にして、実施例4の膜反応器を得た。実施例4の膜反応器は、電気回路を有する。前述の方法により評価した結果、流体分離膜の曲げ半径は、5mm、流体分離膜の内径は、100μm、繊維の長さと流体分離膜の長さの比は、1.0、生成物の生成量は、16mL/分であった。また、繊維状物に電流を流した状態では、生成物の生成量は、23mL/分であった。 (Example 4)
A membrane reactor of Example 4 was obtained in the same manner as in Example 2 except that the catalyst-supported fibrous material of Production Example 5 was used instead of the catalyst-supported fibrous material of Production Example 4. rice field. The membrane reactor of Example 4 has an electrical circuit. As a result of evaluation by the above-described method, the bending radius of the fluid separation membrane was 5 mm, the inner diameter of the fluid separation membrane was 100 μm, the ratio of the length of the fiber to the length of the fluid separation membrane was 1.0, and the amount of product produced. was 16 mL/min. In addition, the production amount of the product was 23 mL/min when the electric current was applied to the fibrous material.
製造例4の触媒が担持された繊維状物に代えて、製造例5の触媒が担持された繊維状物を用いた以外は実施例2と同様にして、実施例4の膜反応器を得た。実施例4の膜反応器は、電気回路を有する。前述の方法により評価した結果、流体分離膜の曲げ半径は、5mm、流体分離膜の内径は、100μm、繊維の長さと流体分離膜の長さの比は、1.0、生成物の生成量は、16mL/分であった。また、繊維状物に電流を流した状態では、生成物の生成量は、23mL/分であった。 (Example 4)
A membrane reactor of Example 4 was obtained in the same manner as in Example 2 except that the catalyst-supported fibrous material of Production Example 5 was used instead of the catalyst-supported fibrous material of Production Example 4. rice field. The membrane reactor of Example 4 has an electrical circuit. As a result of evaluation by the above-described method, the bending radius of the fluid separation membrane was 5 mm, the inner diameter of the fluid separation membrane was 100 μm, the ratio of the length of the fiber to the length of the fluid separation membrane was 1.0, and the amount of product produced. was 16 mL/min. In addition, the production amount of the product was 23 mL/min when the electric current was applied to the fibrous material.
(実施例5)
製造例4の触媒が担持された繊維状物に代えて、製造例5の触媒が担持された繊維状物を用いた以外は実施例3と同様にして、実施例5の膜反応器を得た。実施例5の膜反応器は、熱源を有する。前述の方法により評価した結果、流体分離膜の曲げ半径は、5mm、流体分離膜の内径は、100μm、繊維の長さと流体分離膜の長さの比は、1.0、生成物の生成量は、16mL/分であった。また、繊維状物を加熱した状態では、生成物の生成量は、34mL/分であった。 (Example 5)
A membrane reactor of Example 5 was obtained in the same manner as in Example 3, except that the catalyst-supported fibrous material of Production Example 5 was used instead of the catalyst-supported fibrous material of Production Example 4. rice field. The membrane reactor of Example 5 has a heat source. As a result of evaluation by the above-described method, the bending radius of the fluid separation membrane was 5 mm, the inner diameter of the fluid separation membrane was 100 μm, the ratio of the length of the fiber to the length of the fluid separation membrane was 1.0, and the amount of product produced. was 16 mL/min. In addition, when the fibrous material was heated, the amount of product produced was 34 mL/min.
製造例4の触媒が担持された繊維状物に代えて、製造例5の触媒が担持された繊維状物を用いた以外は実施例3と同様にして、実施例5の膜反応器を得た。実施例5の膜反応器は、熱源を有する。前述の方法により評価した結果、流体分離膜の曲げ半径は、5mm、流体分離膜の内径は、100μm、繊維の長さと流体分離膜の長さの比は、1.0、生成物の生成量は、16mL/分であった。また、繊維状物を加熱した状態では、生成物の生成量は、34mL/分であった。 (Example 5)
A membrane reactor of Example 5 was obtained in the same manner as in Example 3, except that the catalyst-supported fibrous material of Production Example 5 was used instead of the catalyst-supported fibrous material of Production Example 4. rice field. The membrane reactor of Example 5 has a heat source. As a result of evaluation by the above-described method, the bending radius of the fluid separation membrane was 5 mm, the inner diameter of the fluid separation membrane was 100 μm, the ratio of the length of the fiber to the length of the fluid separation membrane was 1.0, and the amount of product produced. was 16 mL/min. In addition, when the fibrous material was heated, the amount of product produced was 34 mL/min.
(実施例6)
製造例2の流体分離膜10本と製造例5の触媒が担持された繊維状物10本を流体分離膜同士がなるべく隣接しないように引き揃えて束ね、流体の流出入口を有するアクリルパイプ(内径3mm)内に収納し、エポキシ樹脂を用いてアクリルパイプの両端を一方ずつ静置ポッティングした。エポキシ樹脂硬化後に一端のポッティング部位を回転鋸で切断して流体分離膜を開口させ、実施例6の膜反応器を得た。 (Example 6)
The 10 fluid separation membranes of Production Example 2 and the 10 catalyst-supported fibrous materials of Production Example 5 are aligned and bundled so that the fluid separation membranes are not adjacent to each other as much as possible, and an acrylic pipe (inner diameter 3 mm), and each end of the acrylic pipe was statically potted using epoxy resin. After curing the epoxy resin, the potting portion at one end was cut with a rotary saw to open the fluid separation membrane, and the membrane reactor of Example 6 was obtained.
製造例2の流体分離膜10本と製造例5の触媒が担持された繊維状物10本を流体分離膜同士がなるべく隣接しないように引き揃えて束ね、流体の流出入口を有するアクリルパイプ(内径3mm)内に収納し、エポキシ樹脂を用いてアクリルパイプの両端を一方ずつ静置ポッティングした。エポキシ樹脂硬化後に一端のポッティング部位を回転鋸で切断して流体分離膜を開口させ、実施例6の膜反応器を得た。 (Example 6)
The 10 fluid separation membranes of Production Example 2 and the 10 catalyst-supported fibrous materials of Production Example 5 are aligned and bundled so that the fluid separation membranes are not adjacent to each other as much as possible, and an acrylic pipe (
前述の方法により評価した結果、流体分離膜の曲げ半径は、5mm、流体分離膜の内径は、100μm、繊維の長さと流体分離膜の長さの比は、1.0、生成物の生成量は、15mL/分であった。
As a result of evaluation by the above-described method, the bending radius of the fluid separation membrane was 5 mm, the inner diameter of the fluid separation membrane was 100 μm, the ratio of the length of the fiber to the length of the fluid separation membrane was 1.0, and the amount of product produced. was 15 mL/min.
(比較例1)
製造例3の触媒が担持された繊維状物に代えて、170dtexのポリエステル加工糸を用いた以外は実施例1と同様にして、比較例1の膜反応器を得た。前述の方法により評価した結果、生成物の生成量は、11mL/分であった。 (Comparative example 1)
A membrane reactor of Comparative Example 1 was obtained in the same manner as in Example 1, except that a 170 dtex polyester textured yarn was used instead of the catalyst-supported fibrous material of Production Example 3. As a result of evaluation by the method described above, the production amount of the product was 11 mL/min.
製造例3の触媒が担持された繊維状物に代えて、170dtexのポリエステル加工糸を用いた以外は実施例1と同様にして、比較例1の膜反応器を得た。前述の方法により評価した結果、生成物の生成量は、11mL/分であった。 (Comparative example 1)
A membrane reactor of Comparative Example 1 was obtained in the same manner as in Example 1, except that a 170 dtex polyester textured yarn was used instead of the catalyst-supported fibrous material of Production Example 3. As a result of evaluation by the method described above, the production amount of the product was 11 mL/min.
1:流体分離膜
2:中空部
3:繊維状物
4:触媒
5:流体分離膜同士の間隙
7:ポッティング部位
8:供給流体の流入口
9:非透過流体の流出口
10:透過流体の流出口
11:スイープガスの流入口
12:ベッセル
13:区画1
14:区画2 1: Fluid separation membrane 2: Hollow part 3: Fiber material 4: Catalyst 5: Gap between fluid separation membranes 7: Potting part 8: Feed fluid inlet 9: Non-permeate fluid outlet 10: Permeate fluid flow Outlet 11: Sweep Gas Inlet 12: Vessel 13:Compartment 1
14:Compartment 2
2:中空部
3:繊維状物
4:触媒
5:流体分離膜同士の間隙
7:ポッティング部位
8:供給流体の流入口
9:非透過流体の流出口
10:透過流体の流出口
11:スイープガスの流入口
12:ベッセル
13:区画1
14:区画2 1: Fluid separation membrane 2: Hollow part 3: Fiber material 4: Catalyst 5: Gap between fluid separation membranes 7: Potting part 8: Feed fluid inlet 9: Non-permeate fluid outlet 10: Permeate fluid flow Outlet 11: Sweep Gas Inlet 12: Vessel 13:
14:
Claims (16)
- ベッセル内に流体分離膜と、前記流体分離膜の間に存在する繊維状物とを含む膜反応器であって、
前記繊維状物は触媒を担持している、膜反応器。 A membrane reactor comprising a fluid separation membrane within a vessel and fibrous material interposed between the fluid separation membranes,
A membrane reactor, wherein the fibrous material carries a catalyst. - 前記流体分離膜が中空糸膜であり、前記繊維状物が繊維である、請求項1に記載の膜反応器。 The membrane reactor according to claim 1, wherein the fluid separation membrane is a hollow fiber membrane and the fibrous material is a fiber.
- 前記繊維は、1本以上の前記流体分離膜の周囲をらせん状に被覆している、請求項2に記載の膜反応器。 The membrane reactor according to claim 2, wherein the fibers spirally wrap around one or more of the fluid separation membranes.
- 前記繊維は、前記流体分離膜と平行に配置されている、請求項2に記載の膜反応器。 The membrane reactor according to claim 2, wherein the fibers are arranged parallel to the fluid separation membrane.
- 前記繊維の長さは、前記流体分離膜の長さの0.1倍以上2.0倍以下である、請求項2~4のいずれかに記載の膜反応器。 The membrane reactor according to any one of claims 2 to 4, wherein the fiber length is 0.1 to 2.0 times the length of the fluid separation membrane.
- 前記流体分離膜の内径は、10μm以上2,000μm以下である、請求項2~5のいずれかに記載の膜反応器。 The membrane reactor according to any one of claims 2 to 5, wherein the inner diameter of the fluid separation membrane is 10 µm or more and 2,000 µm or less.
- 前記流体分離膜の曲げ半径は、0.1cm以上100cm以下である、請求項2~6のいずれかに記載の膜反応器。 The membrane reactor according to any one of claims 2 to 6, wherein the fluid separation membrane has a bending radius of 0.1 cm or more and 100 cm or less.
- 前記流体分離膜が平膜であり、前記繊維状物が不織布、織物、又は編物である、請求項1に記載の膜反応器。 The membrane reactor according to claim 1, wherein the fluid separation membrane is a flat membrane, and the fibrous material is a nonwoven fabric, a woven fabric, or a knitted fabric.
- 前記繊維状物が、触媒を含む繊維状物の100質量%に対して0.01質量%以上10質量%以下の触媒を担持している、請求項1~8のいずれかに記載の膜反応器。 The membrane reaction according to any one of claims 1 to 8, wherein the fibrous material supports 0.01% by mass or more and 10% by mass or less of the catalyst with respect to 100% by mass of the fibrous material containing the catalyst. vessel.
- 前記膜反応器は、さらに電気回路を有し、
前記繊維状物に電流が流せるように前記電気回路が配置されている、請求項1~9のいずれかに記載の膜反応器。 The membrane reactor further has an electrical circuit,
A membrane reactor according to any one of claims 1 to 9, wherein said electrical circuit is arranged to allow an electric current to flow through said fibrous material. - 前記繊維状物の電気抵抗率は、0.1μΩ・m以上1000μΩ・m以下である、請求項10に記載の膜反応器。 The membrane reactor according to claim 10, wherein the electrical resistivity of the fibrous material is 0.1 µΩ·m or more and 1000 µΩ·m or less.
- 前記膜反応器は、さらに熱源または冷却源を有し、
前記繊維状物と前記熱源または冷却源が接触するように配置されている、請求項1~9のいずれかに記載の膜反応器。 The membrane reactor further has a heat source or a cooling source,
The membrane reactor according to any one of claims 1 to 9, wherein said fibrous material and said heat source or cooling source are arranged so as to be in contact with each other. - 前記繊維状物の熱伝導率は、1W/(m・K)以上1000W/(m・K)以下である、請求項12に記載の膜反応器。 The membrane reactor according to claim 12, wherein the fibrous material has a thermal conductivity of 1 W/(m·K) or more and 1000 W/(m·K) or less.
- 前記繊維状物は、鉄、クロム、アルミニウム、ニッケル、白金、モリブデン、タンタル、タングステン、これらの合金、及び、炭素からなる群より選択される少なくとも1つを含む、請求項1~13のいずれかに記載の膜反応器。 Any one of claims 1 to 13, wherein the fibrous material contains at least one selected from the group consisting of iron, chromium, aluminum, nickel, platinum, molybdenum, tantalum, tungsten, alloys thereof, and carbon. A membrane reactor as described in .
- 請求項1~14のいずれかに記載の膜反応器を含む、化学プラント。 A chemical plant comprising the membrane reactor according to any one of claims 1 to 14.
- 前記請求項1~14のいずれかに記載の膜反応器を用いた流体の製造方法であって、少なくとも以下の工程を含む。
膜反応器内に存在する触媒により供給流体中の反応物から生成物を生成する工程1、
および膜反応器内に存在する流体分離膜により、前記生成物を濃縮する工程2。 A fluid production method using the membrane reactor according to any one of claims 1 to 14, comprising at least the following steps.
step 1 of producing a product from the reactants in the feed stream with a catalyst present in the membrane reactor;
and step 2 of concentrating said product by means of a fluid separation membrane present in the membrane reactor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022517764A JPWO2022209849A1 (en) | 2021-03-30 | 2022-03-15 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021056864 | 2021-03-30 | ||
JP2021-056864 | 2021-03-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022209849A1 true WO2022209849A1 (en) | 2022-10-06 |
Family
ID=83458904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/011582 WO2022209849A1 (en) | 2021-03-30 | 2022-03-15 | Membrane reactor, chemical plant, and method for manufacturing fluid |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2022209849A1 (en) |
WO (1) | WO2022209849A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06327905A (en) * | 1993-05-21 | 1994-11-29 | Toray Ind Inc | Degassing membrane module and its operation |
JP2001205097A (en) * | 2000-01-24 | 2001-07-31 | Nitto Denko Corp | Metal catalyst-stuck carrier, method for preparing it and method for treating active oxygen source-containing liquid by using it |
JP2004505417A (en) * | 2000-07-24 | 2004-02-19 | マイクロセル・コーポレイション | Microcell electrochemical devices and assemblies and methods of making and using the same |
JP2005104831A (en) * | 2003-09-15 | 2005-04-21 | Celgard Inc | Reactor and method for producing hydrogen from metal hydride |
JP2009286637A (en) * | 2008-05-27 | 2009-12-10 | Nissan Motor Co Ltd | Hydrogen generator |
JP2009292706A (en) * | 2008-06-09 | 2009-12-17 | Tdk Corp | Fuel reforming module and its operation method |
JP2011195349A (en) * | 2010-03-17 | 2011-10-06 | Tokyo Gas Co Ltd | Apparatus for producing hydrogen |
-
2022
- 2022-03-15 WO PCT/JP2022/011582 patent/WO2022209849A1/en active Application Filing
- 2022-03-15 JP JP2022517764A patent/JPWO2022209849A1/ja active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06327905A (en) * | 1993-05-21 | 1994-11-29 | Toray Ind Inc | Degassing membrane module and its operation |
JP2001205097A (en) * | 2000-01-24 | 2001-07-31 | Nitto Denko Corp | Metal catalyst-stuck carrier, method for preparing it and method for treating active oxygen source-containing liquid by using it |
JP2004505417A (en) * | 2000-07-24 | 2004-02-19 | マイクロセル・コーポレイション | Microcell electrochemical devices and assemblies and methods of making and using the same |
JP2005104831A (en) * | 2003-09-15 | 2005-04-21 | Celgard Inc | Reactor and method for producing hydrogen from metal hydride |
JP2009286637A (en) * | 2008-05-27 | 2009-12-10 | Nissan Motor Co Ltd | Hydrogen generator |
JP2009292706A (en) * | 2008-06-09 | 2009-12-17 | Tdk Corp | Fuel reforming module and its operation method |
JP2011195349A (en) * | 2010-03-17 | 2011-10-06 | Tokyo Gas Co Ltd | Apparatus for producing hydrogen |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022209849A1 (en) | 2022-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101376082B1 (en) | Oxidation reactor and oxidation process | |
CN102365251B (en) | Method for reacting natural gas to aromatics while electrochemically removing hydrogen and while generating electric power and producing hydrogen | |
CN102459066B (en) | Method for electrochemically removing hydrogen from a reaction mixture | |
Wang et al. | Catalytic mixed conducting ceramic membrane reactors for methane conversion | |
CN102365252B (en) | Method for reacting natural gas to aromatics while electrochemically removing hydrogen and electrochemically reacting the hydrogen to water | |
JPH04505280A (en) | Gas separation by semipermeable membrane | |
CN111017875B (en) | Catalytic permeability integrated membrane reactor for preparing H2 and CNTs through natural gas direct cracking and application | |
CN102459067A (en) | Method for reacting natural gas to aromatics while electrochemically removing hydrogen | |
KR20000005650A (en) | Ceramic Membrane Reformer | |
EP1789171A1 (en) | Membrane steam reformer | |
WO2005070519A1 (en) | Selectively permeable membrane type reactor | |
WO2022209849A1 (en) | Membrane reactor, chemical plant, and method for manufacturing fluid | |
Guo et al. | Deposition of TS-1 zeolite film on palladium membrane for enhancement of membrane stability | |
WO2018004723A1 (en) | Reactor-separator elements | |
Ji et al. | Vacuum-assisted continuous flow electroless plating approach for high performance Pd membrane deposition on ceramic hollow fiber lumen | |
US8357228B2 (en) | Gas purification method | |
Yu et al. | SiC mesoporous membranes for sulfuric acid decomposition at high temperatures in the iodine–sulfur process | |
US20090108239A1 (en) | Composite membrane | |
KR101336764B1 (en) | Module for hydrogen production by simultaneous reaction and separation, and reactor using thereof | |
RU2638350C1 (en) | Integrated membrane-catalytic reactor and coproduction method of synthesis gas and ultrapure hydrogen | |
Li et al. | Enhancing the oxygen permeation rate of Ba0. 5Sr0. 5Co0. 8Fe0. 2O3− δ membranes by surface loading Co3O4 nanorod catalysts | |
JP2007270256A (en) | Apparatus for producing hydrogen, method for producing hydrogen and fuel cell power generator | |
Smart et al. | Perovskite membrane reactors: fundamentals and applications for oxygen production, syngas production and hydrogen processing | |
JP2023080453A (en) | Reactor for vapor phase reaction, and method for producing methane or methanol | |
CN101757859B (en) | Carbon membrane reactor and method for using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2022517764 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22780070 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22780070 Country of ref document: EP Kind code of ref document: A1 |