WO2022209782A1 - Antenna - Google Patents

Antenna Download PDF

Info

Publication number
WO2022209782A1
WO2022209782A1 PCT/JP2022/011039 JP2022011039W WO2022209782A1 WO 2022209782 A1 WO2022209782 A1 WO 2022209782A1 JP 2022011039 W JP2022011039 W JP 2022011039W WO 2022209782 A1 WO2022209782 A1 WO 2022209782A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
measurement system
circuit
output
coil
Prior art date
Application number
PCT/JP2022/011039
Other languages
French (fr)
Japanese (ja)
Inventor
真一 谷本
浩 国本
新九郎 藤野
亮 松原
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2022209782A1 publication Critical patent/WO2022209782A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop

Definitions

  • the present disclosure relates to antennas.
  • Patent Document 1 discloses an antenna for radiating or receiving radio waves, which is composed of an electric field antenna that responds to electric field components, a magnetic field antenna that responds to magnetic field components, and a splitter/combiner for splitting or combining the two. Disclosed is a standing wave tolerant antenna.
  • An object of the present disclosure is to provide an antenna with improved electric field acquisition capability.
  • the present disclosure provides an antenna comprising a spirally wound coil along a predetermined longitudinal direction and a dielectric covering at least the surface of the spirally wound portion of the coil.
  • FIG. 1 is a block diagram of a measurement system according to Embodiment 1 of the present disclosure.
  • FIG. 2 is a block diagram of a measurement system according to Embodiment 2 of the present disclosure.
  • 3 is a perspective view of an antenna used in the measurement system of the present disclosure;
  • FIG. 4 is a cross-sectional view of an antenna used in the measurement system of the present disclosure;
  • FIG. 5 is a graph showing the electric field strength of a conventional antenna without a dielectric and the antenna of the present disclosure with a dielectric.
  • One of the methods for realizing non-contact detection is to measure electromagnetic waves, which are emitted from energized transmission lines. That is, the user can confirm the presence or absence of energization by knowing the direction of the source of the leakage electric field leaking from the transmission line connected to the device and the direction of arrival of the leakage electric field.
  • the frequency of the voltage used is 50 Hz, 60 Hz, and its wavelength is several thousand kilometers, making it difficult to capture it as a wave. Therefore, even if a user inspects a transmission line at a height of about 10 m from the ground, for example, it is difficult to detect the phase change (phase difference) of the electric field wave that is generated due to the voltage start-up.
  • the voltage is transformed to, for example, about 6600V. Since this level of voltage is applied to the transmission line, it is possible to detect the magnitude of the electric field, but the directivity is poor, and it is difficult to detect whether or not a specific transmission line is energized. However, since the magnetic field generated from an energized transmission line has strong directivity, it is possible to detect whether or not a specific transmission line is energized. Therefore, by detecting both the electric field and the magnetic field, it becomes easy to detect the presence or absence of energization of a specific transmission line and the magnitude of the current.
  • a conventional device that detects both an electric field and a magnetic field includes antennas that detect the electric field and the magnetic field, respectively, as described in Patent Document 1. Therefore, the number of antennas provided in the device inevitably increases in units of even numbers, such as 2, 4, 6, .
  • FIG. 1 is a block diagram of a measurement system according to Embodiment 1 of the present disclosure.
  • the measurement system 100 can measure both an electric field and a magnetic field, and is a device for inspecting whether or not a transmission line, which is an object to be measured, is energized, for example.
  • the measurement system 100 includes an antenna 10a shown in the upper half of FIG. 1 as a basic configuration, a connection terminal 30 for inputting a selection signal for measuring either the electric field measurement or the magnetic field measurement, and the antenna 10a. and a switch 14a for opening and closing a part of the first circuit 1a.
  • the measurement system 100 is connected to a PC (personal computer) 23 .
  • the PC 23 can receive a user's operation to operate the PC 23 and output the selection signal described above to the measurement system 100 .
  • the operation device for operating the measurement system 100 is not limited to the PC 23, and may be a smartphone, a tablet, a dedicated device for the measurement system 100, or the like, and is not particularly limited. Other components shown in the lower half of FIG. 1 will be described later.
  • Antenna 10a detects an electric field and a magnetic field.
  • the antenna 10a is formed by winding a coil around a core, for example.
  • the core is made of ferrite, it is made of a ferrite antenna.
  • a ferrite antenna is formed by winding an electric wire coil whose surface is coated with insulation around a rod-shaped core made of ferrite or the like with high magnetic permeability.
  • With a ferrite antenna when both ends of the coil are closed, magnetic lines of force pass through the inside of the antenna in response to changes in the surrounding magnetic field, and electromagnetic induction generates an electromotive force in the coil, making it possible to measure the magnetic field. (Loop antenna behavior).
  • a ferrite antenna when one end of the coil is open, a voltage is induced in the coil according to the surrounding electric field, so that the electric field can be measured (monopole antenna operation).
  • connection terminal 30 receives a selection signal input from the outside.
  • the user operates the PC 23 to select which of the electric field and the magnetic field is to be measured.
  • the PC 23 generates a selection signal corresponding to this selection operation by the user and inputs it to the measurement system 100 via the connection terminal 30 .
  • the connection terminal 30 not only receives the selection signal, but also has a function of outputting a predetermined signal to the PC 23 as will be described later, and functions as a signal input/output unit.
  • the selection signal output from the PC 23 is input to the first circuit 1 a and the second circuit 1 b of the measurement system 100 via the Lch chip 31 and Rch ring 32 of the measurement system 100 .
  • the measurement result by the antenna 10a is input to the PC 23 via the sleep 34.
  • the connection terminal 30 can be composed of, for example, a connection terminal having at least an audio output terminal and a microphone input terminal (audio input terminal).
  • the connection terminal 30 is configured by a 4-pole CTIA (Cellular Telephone Industry Association) terminal including four poles, and includes an Lch chip 31 and an Rch ring 32, which are audio output terminals for outputting an audio signal as a selection signal. , an insulating ring (GND) 33 and a sleep (MIC) 34 which is a microphone input terminal.
  • a selection signal for selecting electric field measurement or magnetic field measurement is output from the Lch chip 31 and the Rch ring 32 .
  • a measurement result by the antenna 10 a is input to the sleep 34 .
  • the first circuit 1a can connect both ends of the coil of the antenna 10a and the connection terminal 30.
  • the first circuit 1a includes a capacitor 12a, a diode 13a, and an amplifier 20a.
  • the diode 13a and the capacitor 12a are connected to the Lch chip 31 of the connection terminal 30, and convert the audio signal from the Lch chip 31 to direct current (DC).
  • the switch 14a is a part of the first circuit 1a and has a function of opening and closing the first circuit 1a.
  • the switch 14a is composed of, for example, an NPN transistor, and the output sides of the diode 13a and the capacitor 12a are connected to the base of the transistor.
  • the input side of the transistor forming the switch 14a in this example the collector of the transistor, is connected to the coil of the antenna 10a.
  • the output side of the transistor (the emitter of the transistor in this example) is connected to the amplifier 20a.
  • the measurement system 100 can switch between magnetic field measurement and electric field measurement by the antenna 10a.
  • the specific configuration of the switch 14a is not limited to an NPN transistor, and can be replaced by a semiconductor element or device having a switching function such as a PNP transistor or MOSFET.
  • the amplifier 20a is connected to the emitter of the transistor forming the switch 14a and amplifies the output of the switch 14a.
  • the output of the amplifier 20 a is the magnetic field measurement result or the electric field measurement result of the antenna 10 a and is input to the sleep 34 that is the microphone input terminal of the connection terminal 30 .
  • the magnetic field measurement result or the electric field measurement result by the antenna 10 a is input to the PC 23 via the sleep 34 .
  • the user operates the keyboard, mouse, etc. of the PC 23 to open the operation screen of the measurement system 100 and selects a magnetic field measurement operation.
  • the PC 23 outputs an audio signal (for example, 10 kHz, 1 V), which is a selection signal for selecting magnetic field measurement, to the Lch chip 31 of the measurement system 100. do.
  • the audio signal input to the Lch chip 31 is input to the first circuit 1a, the diode 13a and the capacitor 12a of the first circuit 1a convert the audio signal into a DC signal, and the switch 14a is turned on.
  • the collector and emitter of the switch 14a are electrically connected at this time, one side of the antenna 10a is connected to the minus terminal of the amplifier 20a, and both ends of the coil of the antenna 10a are closed.
  • the measurement system 100 can measure the magnetic field because the lines of magnetic force pass through the inside of the antenna 10a according to changes in the surrounding magnetic field, and electromagnetic induction generates an electromotive force in the coil.
  • the user operates the keyboard, mouse, etc. of the PC 23 to open the operation screen of the measurement system 100, and selects the electric field measurement operation.
  • the processor in the PC 23 does not output the audio signal, which is the selection signal for selecting magnetic field measurement.
  • the processor in the PC 23 outputs a selection signal with zero output to the Lch chip 31 of the measurement system 100 .
  • the switch 14a is turned off and one side of the antenna 10a is opened. Accordingly, when one end of the coil of the antenna 10a is open, the measurement system 100 can measure the electric field because a voltage is induced in the coil according to the surrounding electric field.
  • the output of the amplifier 20a that amplifies the signal obtained by the antenna 10a is input to the sleep 34, which is the microphone input terminal (audio input terminal) of the connection terminal 30.
  • FIG. the output of the amplifier 20 a is input to the PC 23 via the sleep 34 .
  • the input data input here is the data of the measurement result.
  • the PC 23 handles this input data in a data format such as WAV (Waveform Audio File Format). Based on the data, the PC 23 generates and displays a screen (not shown) including the measurement result, or performs processing such as saving the data of the measurement result.
  • the PC 23 switches between the operations (1) and (2) manually by the user, or automatically switches between the operations (1) and (2) at predetermined time intervals, so that both the electric field and the magnetic field are generated. can be detected and recorded. Thereby, the user can inspect whether or not the power transmission line, which is the object to be measured, is energized.
  • Conventional devices require at least two antennas to detect both the electric field and the magnetic field, but according to this embodiment, one antenna can detect both the electric field and the magnetic field.
  • one antenna can detect both the electric field and the magnetic field.
  • it is possible to reduce the number of antennas, specifically to halve the number of antennas, to suppress an increase in the number of antennas, to reduce the size and weight of the device, and to simplify the configuration. and can help reduce costs.
  • an antenna for detecting an electric field and an antenna for detecting a magnetic field are separately provided, interference between the two may become a problem, but such a problem can also be solved.
  • the measurement system 100 including the antenna 10a, the connection terminal 30, the first circuit 1a, and the switch 14a shown in the upper half of FIG.
  • the measurement system 100 may also comprise an antenna 10b, a second circuit 1b and a switch 14b shown in the lower half of FIG.
  • the antenna 10b has a configuration equivalent to that of the antenna 10a.
  • Antenna 10a can be regarded as a first antenna.
  • the antenna 10b can be regarded as a second antenna.
  • the antenna 10b is arranged so as to face the direction in which the antenna 10a is rotated by 90 degrees, for example. That is, the axial directions of the cores of the antennas 10a and 10b are in a relationship of intersecting each other at 90 degrees.
  • the second circuit 1b has a configuration equivalent to that of the first circuit 1a, and includes a capacitor 12b, a diode 13b, and an amplifier 20b.
  • the switch 14b has the same configuration as the switch 14a.
  • the measurement system 100 can capture electromagnetic waves arriving from different directions with each of the two antennas, and can further improve measurement accuracy.
  • the Lch chip 31 of the connection terminal 30 receives not only the input corresponding to the output of the amplifier 20a but also the input corresponding to the output of the amplifier 20b.
  • the measurement system 100 needs to distinguish between these two inputs (measurement results) in order to more accurately capture the measurement results obtained by the antennas 10a and 10b respectively.
  • both the output of the amplifier 20 a and the output of the amplifier 20 b are input to the PC 23 via the Lch chip 31 of the connection terminal 30 . Therefore, the PC 23 needs to distinguish whether the input measurement result is the measurement result of the antenna 10a or the antenna 10b.
  • the measurement system 100 in this embodiment includes a frequency conversion circuit 24 to separate the output of the first circuit 1a and the output of the second circuit 1b.
  • the frequency conversion circuit 24 is a separation circuit capable of outputting the output of the amplifier 20b, which is the output of the second circuit 1b, to the Lch chip 31 of the connection terminal 30.
  • FIG. The frequency conversion circuit 24 is connected between the amplifier 20 b and the Lch chip 31 of the connection terminal 30 .
  • the frequency conversion circuit 24 converts the frequency of the output of the amplifier 20b, which is the output of the second circuit 1b, so that it can be distinguished from the output of the amplifier 20a, which is the output of the first circuit 1a.
  • the frequency conversion circuit 24 separates both outputs and outputs them to the Lch chip 31 of the connection terminal 30 .
  • the frequency conversion circuit 24 may be connected between the amplifier 20a and the Lch chip 31 of the connection terminal 30, and may convert the frequency of the output of the amplifier 20a, which is the output of the first circuit 1a.
  • the operation of the measurement system 100 includes the following (4) to (6) in addition to the above (1) to (3).
  • the processor in the PC 23 sends an audio signal (for example, 10 kHz, 1 V), which is a selection signal for selecting magnetic field measurement, to the Rch ring 32 of the measurement system 100.
  • the audio signal input to the Rch ring 32 is input to the second circuit 1b and converted to a DC signal by the diode 13b and the capacitor 12b of the second circuit 1b.
  • the DC signal turns on switch 14b.
  • the measurement system 100 can measure the magnetic field because the lines of magnetic force pass through the inside of the antenna 10b according to changes in the surrounding magnetic field, and electromagnetic induction generates an electromotive force in the coil.
  • the processor in the PC 23 does not output the audio signal, which is the selection signal for selecting the measurement of the magnetic field. In other words, the processor in the PC 23 outputs a selection signal with an output of zero to the second circuit 1b.
  • the switch 14b is turned off, and one side of the antenna 10b is open. When one end of the coil of the antenna 10b is open, the measurement system 100 can measure the electric field because a voltage is induced in the coil according to the surrounding electric field.
  • the output of the amplifier 20b that amplifies the signal obtained by the antenna 10b is input to the frequency conversion circuit 24 and frequency conversion is performed.
  • the frequency-converted output is superimposed on the output of the amplifier 20 a and input to the sleep 34 that is the microphone input terminal (audio input terminal) of the connection terminal 30 .
  • a signal obtained by synthesizing the output obtained by frequency-converting the output of the amplifier 20 b by the frequency conversion circuit 24 and the output of the amplifier 20 a is input to the PC 23 via the sleep 34 .
  • This input is the data of the measurement results.
  • the PC 23 handles this input data in a data format such as WAV (Waveform Audio File Format).
  • the PC 23 displays the measurement result to the user based on the data, or performs processing such as saving the data.
  • the measurement system 100 switches between operations (1) and (4) and (2) and (5) by manual operation by the user, and switches operations (1) and (4), (2) and (2) at predetermined time intervals. By automatically switching the operation of (5), both the electric field and the magnetic field can be detected and recorded. This allows the user to check whether or not the power transmission line, which is the object of measurement, is energized.
  • the measurement system 100 can detect both electric and magnetic fields with two antennas. As a result, the measurement system 100 can reduce the number of antennas, specifically, halve the number of antennas to suppress an increase in the number of antennas. In addition, the measurement system 100 can contribute to reducing the size and weight of the device, simplifying the configuration, and reducing the cost. Moreover, if the measurement system 100 is provided with separate antennas for electric field detection and magnetic field detection, interference between the two may become a problem, but such a problem can also be resolved.
  • the measurement system 100 has a mechanism for physically rotating the antenna 10a by 90 degrees, and by switching the outputs of the Lch chip 31 and the Rch ring 32 according to the rotation angle, only one antenna 10a is used. It is possible to perform the processes (1) to (6).
  • the PC 23 switches the selection signal according to the rotation angle of the antenna 10a of the measurement system 100, and the selection signal output by the PC 23 is transmitted to the measurement system 100 via the Lch chip 31 and the Rch ring 32 of the measurement system 100. are input to the first circuit 1a and the second circuit 1b.
  • FIG. 2 is a block diagram of a measurement system according to Embodiment 2 of the present disclosure.
  • the measurement system 100 of the second embodiment includes a time division circuit 25 instead of the frequency conversion circuit 24 of the first embodiment.
  • the time division circuit 25 is a separation circuit capable of separating the output of the first circuit 1 a and the output of the second circuit 1 b and outputting them to the Lch chip 31 of the connection terminal 30 in the same way as the frequency conversion circuit 24 .
  • the time-division circuit 25 is connected between the amplifiers 20a and 20b and the Lch chip 31 of the connection terminal 30, and outputs the output of the amplifier 20a, which is the output of the first circuit 1a, and the output of the amplifier 20b, which is the output of the second circuit 1b. and the output of , are time-divided and distributed to distinguish between the two.
  • the capacitor 12a and the diode 13a of the first circuit 1a are connected not only to the switch 14a but also to the base of the switch 14b, and the capacitor 12b and the diode 13b of the second circuit 1b are connected to the time division circuit 25 instead of the switch 14b. It is connected to the.
  • the user operates the keyboard, mouse, etc. of the PC 23 to open the operation screen of the measurement system 100, and selects a magnetic field measurement operation.
  • the processor in the PC 23 outputs an audio signal (for example, 10 kHz, 1 V), which is a selection signal for selecting magnetic field measurement, to the Lch chip 31 of the measurement system 100 .
  • the audio signal input to the Lch chip 31 is input to the first circuit 1a, the diode 13a and the capacitor 12a of the first circuit 1a convert the audio signal into a DC signal, and the switches 14a and 14b are turned on.
  • the collectors and emitters of the switches 14a and 14b are electrically connected, one of the antennas 10a and 10b is connected to the negative terminals of the amplifiers 20a and 20b, and both ends of the coils of the antennas 10a and 10b are connected.
  • the measuring system 100 can measure the magnetic field because the lines of magnetic force pass through the antennas 10a and 10b in response to changes in the surrounding magnetic field, and electromotive force is generated in the coils by electromagnetic induction.
  • the user operates the keyboard, mouse, etc. of the PC 23 to open the operation screen of the measurement system 100, and selects the electric field measurement operation.
  • the processor in the PC 23 does not output the audio signal, which is the selection signal for selecting magnetic field measurement.
  • the processor in the PC 23 outputs a selection signal with zero output to the Lch chip 31 of the measurement system 100 .
  • the switches 14a and 14b are turned off, and one of the antennas 10a and 10b is open.
  • the measurement system 100 can measure the electric field because a voltage is induced in the coils according to the surrounding electric field.
  • the processor in the PC 23 has a switching function of switching the output of either the amplifier 20a or the amplifier 20b and inputting it to the sleep 34 of the connection terminal 30 in the processes of (7) and (8).
  • the processor in the PC 23 can output an audio signal (for example, 10 kHz, 1 V) to the time division circuit 25 via the Rch ring 32 of the connection terminal 30, the capacitor 12b of the second circuit 1b, and the diode 13b.
  • an audio signal is output (so-called Hi output)
  • the time division circuit 25 sets the time during which the output of the amplifier 20a of the first circuit 1a is valid, and only the amplifier 20a outputs the amplified measurement result in the sleep 34.
  • the time division circuit 25 sets the time during which the output of the amplifier 20b of the second circuit 1b is valid, and only the amplifier 20b is put into sleep 34. Output the amplified measurement result.
  • the outputs of the amplifiers 20a and 20b for amplifying the signals obtained by the antennas 10a and 10b are input to the sleep 34 which is the microphone input terminal of the connection terminal 30 .
  • the sleep 34 is when the audio signal of the Lch chip 31 is on (Hi) or off (Low), and when the audio signal of the Rch ring 32 is on (Hi) or off (Low), a total of 4 patterns of data. is input to the PC 23.
  • the PC 23 handles this input data in a data format such as WAV (Waveform Audio File Format).
  • the PC 23 displays the measurement result to the user based on the data, or performs processing such as saving the data.
  • the measurement system 100 switches between the operations (7) and (8) manually by the user, and the PC 23 automatically switches between the operations (7) and (8) at predetermined time intervals. Both magnetic fields can be detected and recorded. This allows the user to check whether or not the power transmission line, which is the object of measurement, is energized.
  • the measurement system 100 reduces the number of antennas, specifically by halving the number of antennas to suppress an increase in the number of antennas, thereby reducing the size and weight of the device,
  • the configuration can be simplified, which can contribute to cost reduction.
  • the measurement system 100 is provided with separate antennas for electric field detection and magnetic field detection, interference between the two may become a problem, but such a problem can also be resolved.
  • connection terminal 30 is configured by a connection terminal having an audio output terminal and a microphone input terminal such as a 4-pole CTIA terminal.
  • connection terminal 30 can also be configured by an audio interface capable of so-called analog/digital conversion.
  • An example of an audio interface is a device that can be connected to the PC 23 via a USB (Universal Serial Bus) interface.
  • the audio interface is arranged at the position of the connection terminal 30 in FIG. 1, for example.
  • the PC 23 outputs audio output 1 to the first circuit 1a and audio output 2 to the second circuit 1b via the audio interface.
  • the output of the amplifier 20a is input to the audio interface as an audio input 1, and the output of the amplifier 20b is input as an audio input 2 to the audio interface. Operations (11) to (15) of the measurement system 100 having such a configuration will be described.
  • the user operates the keyboard, mouse, etc. of the PC 23 to open the operation screen of the measurement system 100 and selects a magnetic field measurement operation.
  • the processor in the PC 23 outputs audio output 1, which is an audio signal (for example, 10 kHz, 1 V), to the audio interface of the measurement system 100 .
  • the audio output 1 input to the audio interface is input to the first circuit 1a, the diode 13a and the capacitor 12a of the first circuit 1a convert the audio output 1 into a DC signal, and the switch 14a is turned on.
  • the measurement system 100 the collector and emitter of the switch 14a are electrically connected, one side of the antenna 10a is connected to the negative terminal of the amplifier 20a, and both ends of the coil of the antenna 10a are closed.
  • the measurement system 100 can measure the magnetic field because the lines of magnetic force pass through the inside of the antenna 10a according to changes in the surrounding magnetic field, and electromagnetic induction causes the coil to generate an electromotive force.
  • the processor in the PC 23 outputs audio output 2, which is a voice signal, to the audio interface of the measurement system 100.
  • the audio output 2 input to the audio interface is input to the second circuit 1b, the diode 13b and the capacitor 12b of the second circuit 1b convert the audio output 2 into a DC signal, and the switch 14b is turned on.
  • the collector and emitter of the switch 14b are electrically connected, one side of the antenna 10b is connected to the minus terminal of the amplifier 20b, and both ends of the coil of the antenna 10b are closed.
  • the measurement system 100 can measure the magnetic field because the lines of magnetic force pass through the inside of the antenna 10b according to changes in the surrounding magnetic field, and electromagnetic induction generates an electromotive force in the coil.
  • the user operates the keyboard, mouse, etc. of the PC 23 to open the operation screen of the measurement system 100, and selects the electric field measurement operation.
  • the processor in the PC 23 does not output the audio signal, which is the selection signal.
  • the processor in the PC 23 outputs a selection signal with an output of zero to the audio interface, the first circuit 1a.
  • the switch 14a is turned off, and one side of the antenna 10a is open.
  • the measurement system 100 can measure the electric field because a voltage is induced in the coil according to the surrounding electric field.
  • the processor in the PC 23 outputs a selection signal with no output to the audio interface and the second circuit 1b.
  • the switch 14b is turned off, and one side of the antenna 10b is open.
  • the measurement system 100 can measure the electric field because a voltage is induced in the coil according to the surrounding electric field.
  • the signal obtained by the antenna 10a is amplified by the amplifier 20a and input as the audio input 1 to the audio interface.
  • the signal obtained by the antenna 10b is amplified by the amplifier 20b and input as the audio input 2 to the audio interface.
  • the PC 23 processes this input data and records the measurement results.
  • the measurement system 100 switches the operations (11) to (14) by manual operation by the user, or the PC 23 automatically switches the operations (11) to (14) at predetermined time intervals. Both magnetic fields can be detected and recorded. This allows the user to check whether or not the power transmission line, which is the object of measurement, is energized.
  • the measurement system 100 can reduce the number of antennas, specifically, halve the number of antennas to suppress an increase in the number of antennas.
  • the measurement system 100 can be made smaller and lighter, and the configuration can be simplified and the cost can be reduced.
  • the measurement system 100 is provided with separate antennas for electric field detection and magnetic field detection, interference between the two may become a problem, but such a problem can also be resolved.
  • the measurement system 100 is composed of, for example, one housing, and this housing and an operation device such as the PC 23 are connected by a connection cable.
  • the measurement system 100 may be equipped with a circuit, module, or the like having a wireless communication function instead of the connection terminal 30, and may be connected to an operation device having a wireless communication function by wireless communication. That is, the measurement system 100 receives the selection signal transmitted by wireless communication from the operation device. Also, the operation device receives the measurement result transmitted from the measurement system 100 by wireless communication.
  • a wireless LAN, Wi-Fi (registered trademark), Bluetooth (registered trademark), or the like can be used for wireless communication.
  • the measuring system 100 and the operating device may be configured as an integrated device.
  • FIG. 3 and 4 show an example of an embodiment of an antenna 10a or 10b (hereinafter referred to as "antenna 10") applicable to the measurement system 100.
  • FIG. FIG. 3 is a perspective view of antenna 10 used in measurement system 100 of the present disclosure.
  • FIG. 4 is a cross-sectional view of antenna 10 used in measurement system 100 of the present disclosure.
  • the antenna 10 of the embodiment includes the core 2, the coil 3 wound along the longitudinal direction L of the core 2, the entire surface of the core 2 and the entire surface of at least the portion of the coil 3 wound around the core 2. and a dielectric 4 covering the .
  • the dielectric 4 is formed to cover the entire surface of the core 2 and at least the entire surface of the portion of the coil 3 wound around the core 2, but the antenna is not limited to such an antenna.
  • the dielectric 4 may be formed so as to cover part of the surface of the core 2 and/or part of the surface of at least the part of the coil 3 wound around the core 2 .
  • the dielectric 4 is formed so as to cover the entire surface of the core 2 and at least the entire surface of the portion of the coil 3 wound around the core 2, thereby obtaining an electric field. You can improve your abilities.
  • the core 2 is a member forming the core of the antenna 10, and is a member for supporting the spirally wound coil 3 portion.
  • the material of the core 2 is not particularly limited, it can be composed of a magnetic material such as ferrite, for example.
  • the antenna 10 can improve the magnetic flux density interlinking the inside of the antenna 10 by configuring the core 2 with a magnetic material. As a result, the antenna 10 may have an enhanced ability to collect magnetic fields from the surroundings of the antenna 10 .
  • the core 2 is not an essential member from the viewpoint of improving the electric field acquisition capability.
  • the coil 3 is spirally wound on the surface of the core 2 along the longitudinal direction L of the core 2 .
  • one end of the coil 3 is connected to the switch 14a or the switch 14b, so that the switch 14a or the switch 14b is switched on and off, and the first circuit is switched. It can be determined whether 1a or the second circuit 1b forms an open loop or a closed loop.
  • the antenna 10 functions as an electric field antenna when the first circuit 1a or the second circuit 1b forms an open loop.
  • the antenna 10 functions as a magnetic field antenna for measuring the surrounding magnetic field when the first circuit 1a or the second circuit 1b forms a closed loop.
  • the dielectric 4 is formed around the core 2 while covering the entire surface of the core 2 in this embodiment. Moreover, the dielectric 4 covers the entire surface of at least the portion of the coil 3 wound around the core 2 .
  • the dielectric 4 is made of a predetermined dielectric material. Due to its dielectric properties, the dielectric 4 can increase the electric flux density inside the antenna 10 including the coil 3 and increase the induced voltage induced in the coil 3 . In other words, since the dielectric 4 can amplify the electric flux density inside the antenna 10, the electric field acquisition capability of the antenna 10 can be improved.
  • the dielectric 4 has a thickness T in a cross section orthogonal to the longitudinal direction L of the core 2.
  • the thickness T is the distance between the surface of the core 2 and the surface of the dielectric 4, but in this embodiment the thickness T is constant on the cross section.
  • Dielectric 4 has a doughnut-shaped cross section. If the thickness T is constant, the dielectric 4 can suppress the detectable bias of the electric field, making it possible to manufacture the antenna 10 more easily.
  • the core 2 has a circular cross-sectional shape in a cross section perpendicular to the longitudinal direction L, for example, as in this embodiment. If the cross-sectional shape of the antenna 10 is circular, the directivity of the antenna 10 in a specific direction can be suppressed, and the isotropy in the cross section can be improved.
  • the cross-sectional shape of the core 2 and the cross-sectional shape along the surface of the dielectric 4 are similar to each other, for example, as in this embodiment.
  • the cross-sectional shape of the core 2 and the cross-sectional shape along the surface of the dielectric 4 are circular, but both can be rectangular cross-sections.
  • the dielectric 4 is preferably made of a material having a dielectric constant ( ⁇ r ) higher than 1.
  • Barium titanate is an example of a material having a dielectric constant ( ⁇ r ) higher than 1.
  • Barium titanate has a dielectric constant ( ⁇ r ) of about 4000 relative to the vacuum dielectric constant ( ⁇ 0 ).
  • materials other than barium titanate include ceramic materials such as alumina, zirconia, silicon nitride, lead zirconate titanate, and plastics.
  • the value of the dielectric loss tangent is 0.02 or less in the 50 Hz to 60 Hz band.
  • FIG. 5 shows a comparison of the field strength obtained with a conventional antenna without the dielectric 4 and the antenna of the present disclosure with the dielectric 4 . Both are the same except for the presence or absence of the dielectric 4 .
  • the electric field strength of the conventional antenna without the dielectric 4 is -39.8 dB
  • the electric field strength of the antenna of the present disclosure with the dielectric 4 is -32.9 dB.
  • This graph shows that the strength of the acquired electric field can be improved by providing the dielectric 4 to the antenna, which means that the electric field acquisition capability of the antenna is improved.
  • the antenna 10 of this embodiment has a core 2 .
  • the core 2 serves to support the helically wound portion around which the coil 3 is wound.
  • the antenna 10 can improve the magnetic flux density interlinking inside the antenna 10 .
  • the dielectric 4 plays a role of improving the electric field acquisition ability, and the core 2 is not an essential member when emphasizing the electric field acquisition ability.
  • the antenna 10 is formed by spirally winding the coil 3 along a predetermined longitudinal direction, and then spirally winding the dielectric 4 so as to cover the surface of the spirally wound portion. The portion wound into a shape may be embedded in the dielectric 4 . Even without the core 2, the antenna 10 can acquire the surrounding magnetic field by forming a closed loop with the coil 3 together with the first circuit 1a or the second circuit 1b.
  • the antenna includes a spirally wound coil along a predetermined longitudinal direction, and a dielectric covering at least the surface of the spirally wound portion of the coil.
  • the antenna of the present disclosure further comprises a core around which the coil is wound to support the helically wound portion, the dielectric covering a surface of the core and at least a surface of the coil wound on the core. cover.
  • the antenna of the present disclosure has a constant dielectric thickness in a cross section orthogonal to the longitudinal direction. As a result, it is possible to suppress the detectable bias of the electric field and to easily manufacture the antenna.
  • the cross-sectional shape of the core is circular in a cross section perpendicular to the longitudinal direction.
  • the cross-sectional shape of the core and the cross-sectional shape along the surface of the dielectric are similar to each other in the cross section orthogonal to the longitudinal direction. Therefore, the directivity of the antenna in a specific direction can be suppressed, and the isotropy can be improved.
  • the dielectric contains a material with a relative dielectric constant ( ⁇ r ) greater than one. Thereby, the electric field acquisition capability of the antenna can be improved.
  • the present disclosure is useful as an antenna with improved electric field acquisition capability.

Abstract

An antenna 10 comprises: a coil 3 spirally wound along a predetermined longitudinal direction, and a dielectric 4 coating the surface of at least a spirally wound portion of the coil 3.

Description

アンテナantenna
 本開示は、アンテナに関する。 The present disclosure relates to antennas.
 特許文献1は、無線電波の放射あるいは受信のためのアンテナにおいて、電界成分に感応する電界アンテナと、磁界成分に感応する磁界アンテナと、両者を分岐あるいは結合するための分岐・合成器から構成される耐定在波アンテナを開示している。 Patent Document 1 discloses an antenna for radiating or receiving radio waves, which is composed of an electric field antenna that responds to electric field components, a magnetic field antenna that responds to magnetic field components, and a splitter/combiner for splitting or combining the two. Disclosed is a standing wave tolerant antenna.
日本国特開平06-291705号公報Japanese Patent Application Laid-Open No. 06-291705
 本開示は、電界取得能力を向上させたアンテナを提供することを目的とする。 An object of the present disclosure is to provide an antenna with improved electric field acquisition capability.
 本開示は、所定の長手方向に沿って、らせん状に巻回されたコイルと、前記コイルの少なくともらせん状に巻回された部分の表面を覆う誘電体と、を備えるアンテナを提供する。 The present disclosure provides an antenna comprising a spirally wound coil along a predetermined longitudinal direction and a dielectric covering at least the surface of the spirally wound portion of the coil.
 本開示によれば、アンテナの電界取得能力を向上させることができる。 According to the present disclosure, it is possible to improve the electric field acquisition capability of the antenna.
図1は、本開示の実施の形態1に係る測定システムのブロック図である。FIG. 1 is a block diagram of a measurement system according to Embodiment 1 of the present disclosure. 図2は、本開示の実施の形態2に係る測定システムのブロック図である。FIG. 2 is a block diagram of a measurement system according to Embodiment 2 of the present disclosure. 図3は、本開示の測定システムに用いられるアンテナの斜視図である。3 is a perspective view of an antenna used in the measurement system of the present disclosure; FIG. 図4は、本開示の測定システムに用いられるアンテナの断面図である。FIG. 4 is a cross-sectional view of an antenna used in the measurement system of the present disclosure; 図5は、誘電体のない従来のアンテナと、誘電体がある本開示のアンテナの電界強度を示すグラフである。FIG. 5 is a graph showing the electric field strength of a conventional antenna without a dielectric and the antenna of the present disclosure with a dielectric.
(本開示に至る経緯)
 変電所等においては、巡視や保守に伴う作業や工事が行われる場合がある。このような作業を行う場合、作業員は、該当する機器の近傍にて作業を行うことになる。しかし、機器の保守点検あるいは工事を行う作業員(以下、ユーザと表記)は、作業中における周囲の機器の充電状態あるいは運転状態を認識することが難しかった。
(Background leading up to this disclosure)
At substations and the like, work and construction accompanying patrol and maintenance may be carried out. When performing such work, the worker will work in the vicinity of the relevant equipment. However, it is difficult for a worker (hereinafter referred to as a user) who performs maintenance and inspection of equipment or performs construction work to recognize the charging state or operating state of surrounding equipment during work.
 また、ユーザは、作業中であるか否かにかかわらず、安全性の観点から、送電線における高電圧の有無を確認することが好ましい。ユーザが送電線に直接接触することは危険であるため、非接触による検知が望まれる。 In addition, regardless of whether or not the user is working, it is preferable for the user to check the presence or absence of high voltage in the power transmission line from the viewpoint of safety. Since it is dangerous for a user to directly touch power lines, non-contact detection is desired.
 非接触による検知を実現する手法の1つは、通電している送電線には電磁波が出ているため、この電磁波を測定するものである。すなわち、ユーザは、機器に接続した送電線から漏洩する漏洩電界の発生源の方向、漏洩電界の到来方向を知ることにより、通電の有無を確認することができる。  One of the methods for realizing non-contact detection is to measure electromagnetic waves, which are emitted from energized transmission lines. That is, the user can confirm the presence or absence of energization by knowing the direction of the source of the leakage electric field leaking from the transmission line connected to the device and the direction of arrival of the leakage electric field.
 ところで、使用される電圧の周波数は50Hz、60Hzといった周波数であり、その波長は数千kmにおよび、波として捉えるのは困難である。したがって、例えばユーザが地上から10m程度の高さにある送電線を検査しても、電圧起動に伴う発生する電界の波の位相の変化(位相差)を捉えることは困難である。 By the way, the frequency of the voltage used is 50 Hz, 60 Hz, and its wavelength is several thousand kilometers, making it difficult to capture it as a wave. Therefore, even if a user inspects a transmission line at a height of about 10 m from the ground, for example, it is difficult to detect the phase change (phase difference) of the electric field wave that is generated due to the voltage start-up.
 一方、配電変電所から大規模建物に送電する際の電圧は、例えば6600V程度に変電された状態となっている。このレベルの電圧が送電線に印加されているため、電界の大きさを検出することが可能であるが指向性に乏しく、特定の送電線の通電の有無を検知することは難しい。しかしながら、通電した送電線から生ずる磁界は指向性が強いため、特定の送電線の通電の有無を検知することは可能である。よって、電界と磁界との双方を検知することにより、特定の送電線の通電の有無、電流の大きさを検知することが容易となる。 On the other hand, when power is transmitted from a distribution substation to a large-scale building, the voltage is transformed to, for example, about 6600V. Since this level of voltage is applied to the transmission line, it is possible to detect the magnitude of the electric field, but the directivity is poor, and it is difficult to detect whether or not a specific transmission line is energized. However, since the magnetic field generated from an energized transmission line has strong directivity, it is possible to detect whether or not a specific transmission line is energized. Therefore, by detecting both the electric field and the magnetic field, it becomes easy to detect the presence or absence of energization of a specific transmission line and the magnitude of the current.
 従来の電界と磁界との双方を検知する装置は、特許文献1に記載されているように、電界及び磁界をそれぞれ検知するアンテナを備える。よって、装置が備えるアンテナの数は、必然的に2、4、6・・・と偶数単位で増えてしまい、装置のサイズ及び重量の増大、構成が複雑化することがある。 A conventional device that detects both an electric field and a magnetic field includes antennas that detect the electric field and the magnetic field, respectively, as described in Patent Document 1. Therefore, the number of antennas provided in the device inevitably increases in units of even numbers, such as 2, 4, 6, .
 そこで、以下に示す各実施の形態においては、少ない数のアンテナにより電界と磁界を検視可能とする測定システム及び測定方法の例を説明する。 Therefore, in each embodiment shown below, an example of a measurement system and a measurement method that makes it possible to observe electric and magnetic fields with a small number of antennas will be described.
 以下、適宜図面を参照しながら、本開示に係るアンテナの構成および動作を具体的に開示した実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になることを避け、当業者の理解を容易にするためである。なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるものであり、これらにより特許請求の範囲に記載の主題を限定することは意図されていない。 Hereinafter, embodiments specifically disclosing the configuration and operation of the antenna according to the present disclosure will be described in detail with reference to the drawings as appropriate. However, more detailed description than necessary may be omitted. For example, detailed descriptions of well-known matters and redundant descriptions of substantially the same configurations may be omitted. This is to avoid unnecessary verbosity in the following description and to facilitate understanding by those skilled in the art. It should be noted that the accompanying drawings and the following description are provided to allow those skilled in the art to fully understand the present disclosure and are not intended to limit the claimed subject matter.
(実施の形態1)
 以下、図面を用いて、本開示に係る測定システム及び測定方法を説明する。図1は、本開示の実施の形態1に係る測定システムのブロック図である。測定システム100は、電界及び磁界の双方を測定可能であり、例えば測定の対象物である送電線の通電の有無を検査するための装置である。
(Embodiment 1)
The measurement system and measurement method according to the present disclosure will be described below with reference to the drawings. FIG. 1 is a block diagram of a measurement system according to Embodiment 1 of the present disclosure. The measurement system 100 can measure both an electric field and a magnetic field, and is a device for inspecting whether or not a transmission line, which is an object to be measured, is energized, for example.
 測定システム100は、基本構成として図1の上半分に示された、アンテナ10aと、電界の測定および磁界の測定のいずれかの測定を行うための選択信号を入力する接続端子30と、アンテナ10aのコイルの両端と接続端子30とを接続可能な第1回路1aと、第1回路1aの一部を開閉させるスイッチ14aと、を備えている。測定システム100は、PC(パーソナルコンピュータ)23に接続される。PC23は、PC23を操作するユーザ操作を受け付けて、上述した選択信号を測定システム100に出力可能である。測定システム100を操作する操作機器はPC23に限らず、スマートフォン、タブレット、測定システム100の専用機器等であってよく、特に限定されない。尚、図1の下半分に示したその他の構成要素については後述する。 The measurement system 100 includes an antenna 10a shown in the upper half of FIG. 1 as a basic configuration, a connection terminal 30 for inputting a selection signal for measuring either the electric field measurement or the magnetic field measurement, and the antenna 10a. and a switch 14a for opening and closing a part of the first circuit 1a. The measurement system 100 is connected to a PC (personal computer) 23 . The PC 23 can receive a user's operation to operate the PC 23 and output the selection signal described above to the measurement system 100 . The operation device for operating the measurement system 100 is not limited to the PC 23, and may be a smartphone, a tablet, a dedicated device for the measurement system 100, or the like, and is not particularly limited. Other components shown in the lower half of FIG. 1 will be described later.
 アンテナ10aは、電界および磁界を検出する。アンテナ10aは、例えばコイルを芯に巻きつけて形成される。芯がフェライトにより構成される場合は、フェライトアンテナにより構成される。フェライトアンテナは、フェライト等の透磁率の高い棒状の芯に、表面を絶縁被覆した電線コイルを巻き付けることにより形成される。フェライトアンテナは、コイルの両端が閉じている場合は、周囲の磁界変化に応じてアンテナの内部を磁力線が通過し、電磁誘導によりコイルに起電力を発生させることで、磁界を測定することができる(ループアンテナの動作)。一方、フェライトアンテナは、コイルの一端が開放されている場合、周囲の電界に応じてコイルに電圧が誘導されることで、電界を測定することができる(モノポールアンテナの動作)。 Antenna 10a detects an electric field and a magnetic field. The antenna 10a is formed by winding a coil around a core, for example. When the core is made of ferrite, it is made of a ferrite antenna. A ferrite antenna is formed by winding an electric wire coil whose surface is coated with insulation around a rod-shaped core made of ferrite or the like with high magnetic permeability. With a ferrite antenna, when both ends of the coil are closed, magnetic lines of force pass through the inside of the antenna in response to changes in the surrounding magnetic field, and electromagnetic induction generates an electromotive force in the coil, making it possible to measure the magnetic field. (Loop antenna behavior). On the other hand, in a ferrite antenna, when one end of the coil is open, a voltage is induced in the coil according to the surrounding electric field, so that the electric field can be measured (monopole antenna operation).
 接続端子30には、例えばアンテナ10aにより電界の測定および磁界の測定のいずれかを行うための選択信号が入力される。すなわち接続端子30は、外部から入力された選択信号を受け付ける。ユーザは、PC23を操作して、電界および磁界のうちどちらの測定を行うかを選択する。PC23は、このユーザによる選択操作に対応する選択信号を生成し、接続端子30を介して測定システム100に入力する。なお、接続端子30は、選択信号を受け付けるのみならず、後述するように所定の信号をPC23に出力する機能を有し、信号入出力部として機能する。 A selection signal for measuring either the electric field or the magnetic field is input to the connection terminal 30, for example, by the antenna 10a. That is, connection terminal 30 receives a selection signal input from the outside. The user operates the PC 23 to select which of the electric field and the magnetic field is to be measured. The PC 23 generates a selection signal corresponding to this selection operation by the user and inputs it to the measurement system 100 via the connection terminal 30 . The connection terminal 30 not only receives the selection signal, but also has a function of outputting a predetermined signal to the PC 23 as will be described later, and functions as a signal input/output unit.
 言い換えると、PC23から出力された選択信号は、測定システム100のLchチップ31及びRchリング32を経由して、測定システム100の第1回路1a、第2回路1bに入力される。また、アンテナ10aによる測定結果はスリープ34を経由して、PC23に入力される。 In other words, the selection signal output from the PC 23 is input to the first circuit 1 a and the second circuit 1 b of the measurement system 100 via the Lch chip 31 and Rch ring 32 of the measurement system 100 . Moreover, the measurement result by the antenna 10a is input to the PC 23 via the sleep 34. FIG.
 接続端子30は、例えば、少なくとも音声出力端子とマイク入力端子(音声入力端子)を有する接続端子により構成することができる。本実施形態においては、接続端子30は4つの極を含む4極CTIA(Cellular Telephone Industry Association)端子により構成され、選択信号として音声信号を出力する音声出力端子であるLchチップ31及びRchリング32と、絶縁リング(GND)33と、マイク入力端子であるスリープ(MIC)34を含む。電界の測定および磁界の測定を選択する選択信号は、Lchチップ31及びRchリング32から出力される。ただし後述の通り、Lchチップ31及びRchリング32から何も音声信号を出力しない場合も、出力がゼロである選択信号の出力に含まれる。アンテナ10aによる測定結果は、スリープ34に入力される。 The connection terminal 30 can be composed of, for example, a connection terminal having at least an audio output terminal and a microphone input terminal (audio input terminal). In this embodiment, the connection terminal 30 is configured by a 4-pole CTIA (Cellular Telephone Industry Association) terminal including four poles, and includes an Lch chip 31 and an Rch ring 32, which are audio output terminals for outputting an audio signal as a selection signal. , an insulating ring (GND) 33 and a sleep (MIC) 34 which is a microphone input terminal. A selection signal for selecting electric field measurement or magnetic field measurement is output from the Lch chip 31 and the Rch ring 32 . However, as will be described later, even when no audio signal is output from the Lch chip 31 and the Rch ring 32, it is included in the output of the selection signal whose output is zero. A measurement result by the antenna 10 a is input to the sleep 34 .
 第1回路1aは、アンテナ10aのコイルの両端と接続端子30とを接続可能である。第1回路1aは、コンデンサ12aと、ダイオード13aと、アンプ20aとを含む。ダイオード13aとコンデンサ12aは、接続端子30のLchチップ31に接続され、Lchチップ31からの音声信号を直流(DC)変換する。 The first circuit 1a can connect both ends of the coil of the antenna 10a and the connection terminal 30. The first circuit 1a includes a capacitor 12a, a diode 13a, and an amplifier 20a. The diode 13a and the capacitor 12a are connected to the Lch chip 31 of the connection terminal 30, and convert the audio signal from the Lch chip 31 to direct current (DC).
 スイッチ14aは、第1回路1aの一部であるとともに、第1回路1aを開閉させる機能を有する。スイッチ14aは、例えばNPN型トランジスタにより構成され、ダイオード13aとコンデンサ12aとの出力側がトランジスタのベースに接続される。スイッチ14aを構成するトランジスタの入力側、本例ではトランジスタのコレクタは、アンテナ10aのコイルに接続される。トランジスタの出力側(本例ではトランジスタのエミッタ)は、アンプ20aに接続されている。この構成により後述する通り、測定システム100は、接続端子30に入力された選択信号に応じて、スイッチ14aがオンまたはオフに切り替わり、第1回路1aを閉じたり開いたりする。この結果、測定システム100は、アンテナ10aによる磁界の測定又は電界の測定の切り替えが可能となる。ただし、スイッチ14aの具体的な構成は、NPN型トランジスタに限定されず、PNP型トランジスタやMOSFETなどのスイッチング機能を有する半導体素子、装置等により代替可能である。 The switch 14a is a part of the first circuit 1a and has a function of opening and closing the first circuit 1a. The switch 14a is composed of, for example, an NPN transistor, and the output sides of the diode 13a and the capacitor 12a are connected to the base of the transistor. The input side of the transistor forming the switch 14a, in this example the collector of the transistor, is connected to the coil of the antenna 10a. The output side of the transistor (the emitter of the transistor in this example) is connected to the amplifier 20a. With this configuration, as will be described later, the measurement system 100 switches the switch 14a on or off according to the selection signal input to the connection terminal 30 to close or open the first circuit 1a. As a result, the measurement system 100 can switch between magnetic field measurement and electric field measurement by the antenna 10a. However, the specific configuration of the switch 14a is not limited to an NPN transistor, and can be replaced by a semiconductor element or device having a switching function such as a PNP transistor or MOSFET.
 アンプ20aは、スイッチ14aを構成するトランジスタのエミッタに接続され、スイッチ14aの出力を増幅する。アンプ20aの出力は、アンテナ10aによる磁界の測定結果又は電界の測定結果であり、接続端子30のマイク入力端子であるスリープ34に入力される。 The amplifier 20a is connected to the emitter of the transistor forming the switch 14a and amplifies the output of the switch 14a. The output of the amplifier 20 a is the magnetic field measurement result or the electric field measurement result of the antenna 10 a and is input to the sleep 34 that is the microphone input terminal of the connection terminal 30 .
 言い換えると、アンテナ10aによる磁界の測定結果又は電界の測定結果はスリープ34を経由して、PC23に入力される。 In other words, the magnetic field measurement result or the electric field measurement result by the antenna 10 a is input to the PC 23 via the sleep 34 .
 次に上述した基本構成を有する測定システム100の動作(1)~(3)を説明する。(1)ユーザは、PC23のキーボード、マウス等を操作して測定システム100の操作画面を開き、磁界の測定操作を選択する。PC23は、ユーザによる選択操作に対応して、PC23内の処理装置であるプロセッサが、磁界の測定を選択する選択信号である音声信号(例えば10kHz、1V)を測定システム100のLchチップ31に出力する。Lchチップ31に入力された音声信号は、第1回路1aに入力され、第1回路1aのダイオード13aとコンデンサ12aがこの音声信号を直流信号に変換し、スイッチ14aがオンになる。第1回路1aは、このときスイッチ14aのコレクタとエミッタとが導通して、アンプ20aのマイナス端子にアンテナ10aの片方が接続され、アンテナ10aのコイルの両端が閉じることになる。これにより、測定システム100は、周囲の磁界変化に応じてアンテナ10aの内部を磁力線が通過し、電磁誘導によりコイルに起電力を発生させるため、磁界を測定することができる。 Next, operations (1) to (3) of the measurement system 100 having the basic configuration described above will be described. (1) The user operates the keyboard, mouse, etc. of the PC 23 to open the operation screen of the measurement system 100 and selects a magnetic field measurement operation. In response to the selection operation by the user, the PC 23 outputs an audio signal (for example, 10 kHz, 1 V), which is a selection signal for selecting magnetic field measurement, to the Lch chip 31 of the measurement system 100. do. The audio signal input to the Lch chip 31 is input to the first circuit 1a, the diode 13a and the capacitor 12a of the first circuit 1a convert the audio signal into a DC signal, and the switch 14a is turned on. In the first circuit 1a, the collector and emitter of the switch 14a are electrically connected at this time, one side of the antenna 10a is connected to the minus terminal of the amplifier 20a, and both ends of the coil of the antenna 10a are closed. As a result, the measurement system 100 can measure the magnetic field because the lines of magnetic force pass through the inside of the antenna 10a according to changes in the surrounding magnetic field, and electromagnetic induction generates an electromotive force in the coil.
(2)次に、ユーザは、PC23のキーボード、マウス等を操作して測定システム100の操作画面を開き、電界の測定操作を選択する。ユーザによる選択操作に対応して、PC23内のプロセッサは、磁界の測定を選択する選択信号である音声信号を出力しない。言い換えると、PC23内のプロセッサは、測定システム100のLchチップ31に出力ゼロの選択信号を出力する。このときスイッチ14aはオフとなり、アンテナ10aの片方は開放状態になる。これにより、測定システム100は、アンテナ10aのコイルの一端が開放されている場合、周囲の電界に応じてコイルに電圧が誘導されるため、電界を測定することができる。 (2) Next, the user operates the keyboard, mouse, etc. of the PC 23 to open the operation screen of the measurement system 100, and selects the electric field measurement operation. In response to the selection operation by the user, the processor in the PC 23 does not output the audio signal, which is the selection signal for selecting magnetic field measurement. In other words, the processor in the PC 23 outputs a selection signal with zero output to the Lch chip 31 of the measurement system 100 . At this time, the switch 14a is turned off and one side of the antenna 10a is opened. Accordingly, when one end of the coil of the antenna 10a is open, the measurement system 100 can measure the electric field because a voltage is induced in the coil according to the surrounding electric field.
(3)アンテナ10aで得られた信号を増幅するアンプ20aの出力は、接続端子30のマイク入力端子(音声入力端子)であるスリープ34に入力される。言い換えると、アンプ20aの出力はスリープ34を経由して、PC23に入力される。ここで入力される入力データは、測定結果のデータである。PC23は、この入力データを、例えばWAV(Waveform Audio File Format)等のデータ形式で取り扱う。PC23は、当該データに基づいて、測定結果を含む画面(不図示)を生成して表示し、又は、当該測定結果のデータを保存する等の処理を行う。PC23は、ユーザによる手動操作により(1)、(2)の操作を切り替えるか、あるいは所定の時間間隔で(1)、(2)の操作を自動で切り替えることにより、電界と磁界との双方を検出し、記録することができる。これにより、ユーザは、例えば測定の対象物である送電線の通電の有無を検査することができる。 (3) The output of the amplifier 20a that amplifies the signal obtained by the antenna 10a is input to the sleep 34, which is the microphone input terminal (audio input terminal) of the connection terminal 30. FIG. In other words, the output of the amplifier 20 a is input to the PC 23 via the sleep 34 . The input data input here is the data of the measurement result. The PC 23 handles this input data in a data format such as WAV (Waveform Audio File Format). Based on the data, the PC 23 generates and displays a screen (not shown) including the measurement result, or performs processing such as saving the data of the measurement result. The PC 23 switches between the operations (1) and (2) manually by the user, or automatically switches between the operations (1) and (2) at predetermined time intervals, so that both the electric field and the magnetic field are generated. can be detected and recorded. Thereby, the user can inspect whether or not the power transmission line, which is the object to be measured, is energized.
 従来の装置においては、電界と磁界の双方を検出するのに少なくとも2つのアンテナが必要であったが、本実施形態によれば、1つのアンテナにより電界と磁界の双方を検出することができる。これにより、アンテナの数を減らして、具体的にはアンテナの数を半分にしてアンテナの数が増大することを抑制し、装置の小型化及び軽量化を図るとともに、構成を簡易にすることができ、コストを下げることに貢献することができる。また、電界検出用のアンテナと磁界検出用のアンテナを個別に設けた場合、両者の干渉が問題となり得るが、この様な問題も解消することができる。 Conventional devices require at least two antennas to detect both the electric field and the magnetic field, but according to this embodiment, one antenna can detect both the electric field and the magnetic field. As a result, it is possible to reduce the number of antennas, specifically to halve the number of antennas, to suppress an increase in the number of antennas, to reduce the size and weight of the device, and to simplify the configuration. and can help reduce costs. Also, when an antenna for detecting an electric field and an antenna for detecting a magnetic field are separately provided, interference between the two may become a problem, but such a problem can also be solved.
 上述の説明は、図1の上半分に示したアンテナ10aと、接続端子30と、第1回路1aと、スイッチ14aを備えた測定システム100の構成及び動作に関する。更に測定システム100は、図1の下半分に示したアンテナ10bと、第2回路1bと、スイッチ14bをも備えることができる。 The above description relates to the configuration and operation of the measurement system 100 including the antenna 10a, the connection terminal 30, the first circuit 1a, and the switch 14a shown in the upper half of FIG. Furthermore, the measurement system 100 may also comprise an antenna 10b, a second circuit 1b and a switch 14b shown in the lower half of FIG.
 アンテナ10bは、アンテナ10aと同等の構成を備える。アンテナ10aは、第1アンテナとみなすことができる。また、アンテナ10bを第2アンテナとみなすことができる。ただし、アンテナ10bは、アンテナ10aを例えば90度回転させた方向を向くように配置されている。すなわち、アンテナ10aとアンテナ10bとの芯の軸方向は互いに90度交差する関係となっている。第2回路1bは、第1回路1aと同等の構成を備えており、コンデンサ12bと、ダイオード13bと、アンプ20bとを含む。スイッチ14bは、スイッチ14aと同等の構成を有する。 The antenna 10b has a configuration equivalent to that of the antenna 10a. Antenna 10a can be regarded as a first antenna. Also, the antenna 10b can be regarded as a second antenna. However, the antenna 10b is arranged so as to face the direction in which the antenna 10a is rotated by 90 degrees, for example. That is, the axial directions of the cores of the antennas 10a and 10b are in a relationship of intersecting each other at 90 degrees. The second circuit 1b has a configuration equivalent to that of the first circuit 1a, and includes a capacitor 12b, a diode 13b, and an amplifier 20b. The switch 14b has the same configuration as the switch 14a.
 本構成においては構成要素が増えるが、物理的に2つの異なる方向を向いた第1アンテナ(アンテナ10a)、第2アンテナ(アンテナ10b)を用いることができる。すなわち2つのアンテナが、電磁波が到来する方向に対して異なる姿勢(方向)で電磁波を受信することができる。よって、測定システム100は、2つのアンテナそれぞれで異なる方向から到来する電磁波を捉えることができ、測定の精度をより向上させることができる。 Although the number of components increases in this configuration, it is possible to use a first antenna (antenna 10a) and a second antenna (antenna 10b) facing two different physical directions. That is, the two antennas can receive electromagnetic waves in different postures (directions) with respect to the direction from which the electromagnetic waves arrive. Therefore, the measurement system 100 can capture electromagnetic waves arriving from different directions with each of the two antennas, and can further improve measurement accuracy.
 一方、この構成において接続端子30のLchチップ31は、アンプ20aの出力に対応する入力のみならず、アンプ20bの出力に対応する入力も入力される。測定システム100は、アンテナ10a、アンテナ10bそれぞれにより得られた測定結果をより正確にとらえるために、これら2つの入力(測定結果)のそれぞれを区別する必要がある。 On the other hand, in this configuration, the Lch chip 31 of the connection terminal 30 receives not only the input corresponding to the output of the amplifier 20a but also the input corresponding to the output of the amplifier 20b. The measurement system 100 needs to distinguish between these two inputs (measurement results) in order to more accurately capture the measurement results obtained by the antennas 10a and 10b respectively.
 言い換えると、アンプ20aの出力とアンプ20bの出力との両方の出力は、接続端子30のLchチップ31を経由して、PC23に入力される。そのため、PC23は入力された測定結果が、アンテナ10aとアンテナ10bのどちらの測定結果かを区別する必要がある。 In other words, both the output of the amplifier 20 a and the output of the amplifier 20 b are input to the PC 23 via the Lch chip 31 of the connection terminal 30 . Therefore, the PC 23 needs to distinguish whether the input measurement result is the measurement result of the antenna 10a or the antenna 10b.
 そこで本実施形態における測定システム100は、第1回路1aの出力及び第2回路1bの出力をそれぞれ分離するために、周波数変換回路24を備える。周波数変換回路24は、接続端子30のLchチップ31に第2回路1bの出力であるアンプ20bの出力出力可能な分離回路である。周波数変換回路24は、アンプ20bと接続端子30のLchチップ31との間に接続される。周波数変換回路24は、第2回路1bの出力であるアンプ20bの出力を周波数変換することにより、第1回路1aの出力であるアンプ20aの出力と区別可能にする。すなわち、周波数変換回路24は、両出力を分離して接続端子30のLchチップ31に出力する。なお、周波数変換回路24は、アンプ20aと接続端子30のLchチップ31との間に接続され、第1回路1aの出力であるアンプ20aの出力を周波数変換してもよい。 Therefore, the measurement system 100 in this embodiment includes a frequency conversion circuit 24 to separate the output of the first circuit 1a and the output of the second circuit 1b. The frequency conversion circuit 24 is a separation circuit capable of outputting the output of the amplifier 20b, which is the output of the second circuit 1b, to the Lch chip 31 of the connection terminal 30. FIG. The frequency conversion circuit 24 is connected between the amplifier 20 b and the Lch chip 31 of the connection terminal 30 . The frequency conversion circuit 24 converts the frequency of the output of the amplifier 20b, which is the output of the second circuit 1b, so that it can be distinguished from the output of the amplifier 20a, which is the output of the first circuit 1a. That is, the frequency conversion circuit 24 separates both outputs and outputs them to the Lch chip 31 of the connection terminal 30 . The frequency conversion circuit 24 may be connected between the amplifier 20a and the Lch chip 31 of the connection terminal 30, and may convert the frequency of the output of the amplifier 20a, which is the output of the first circuit 1a.
 次に、上述した図1全体の構成を有する測定システム100の動作を説明する。測定システム100の動作は、上述した(1)~(3)に加えて次の(4)~(6)を含む。(4)基本構成の(1)の処理が行われると同時に、PC23内のプロセッサは、磁界の測定を選択する選択信号である音声信号(例えば10kHz、1V)を測定システム100のRchリング32に出力する。Rchリング32に入力された音声信号は、第2回路1bに入力され、第2回路1bのダイオード13bとコンデンサ12bとによって直流信号に変換される。直流信号は、スイッチ14bをオンにする。このとき、第2回路1bは、スイッチ14bのコレクタとエミッタとが導通し、アンプ20bのマイナス端子にアンテナ10bの片方が接続され、アンテナ10bのコイルの両端が閉じることになる。これにより、測定システム100は、周囲の磁界変化に応じてアンテナ10bの内部を磁力線が通過し、電磁誘導によりコイルに起電力を発生させるため、磁界を測定することができる。 Next, the operation of the measurement system 100 having the overall configuration of FIG. 1 described above will be described. The operation of the measurement system 100 includes the following (4) to (6) in addition to the above (1) to (3). (4) At the same time as the processing of (1) of the basic configuration is performed, the processor in the PC 23 sends an audio signal (for example, 10 kHz, 1 V), which is a selection signal for selecting magnetic field measurement, to the Rch ring 32 of the measurement system 100. Output. The audio signal input to the Rch ring 32 is input to the second circuit 1b and converted to a DC signal by the diode 13b and the capacitor 12b of the second circuit 1b. The DC signal turns on switch 14b. At this time, in the second circuit 1b, the collector and emitter of the switch 14b are electrically connected, one side of the antenna 10b is connected to the minus terminal of the amplifier 20b, and both ends of the coil of the antenna 10b are closed. As a result, the measurement system 100 can measure the magnetic field because the lines of magnetic force pass through the inside of the antenna 10b according to changes in the surrounding magnetic field, and electromagnetic induction generates an electromotive force in the coil.
(5)基本構成の(2)の処理が行われると同時に、PC23内のプロセッサは、磁界の測定を選択する選択信号である音声信号を出力しない。言い換えると、PC23内のプロセッサは、第2回路1bに出力ゼロの選択信号を出力する。このときスイッチ14bは、オフとなり、アンテナ10bの片方は開放状態をとる。測定システム100は、アンテナ10bのコイルの一端が開放されている場合、周囲の電界に応じてコイルに電圧が誘導されるため、電界を測定することができる。 (5) At the same time as the processing of (2) of the basic configuration is performed, the processor in the PC 23 does not output the audio signal, which is the selection signal for selecting the measurement of the magnetic field. In other words, the processor in the PC 23 outputs a selection signal with an output of zero to the second circuit 1b. At this time, the switch 14b is turned off, and one side of the antenna 10b is open. When one end of the coil of the antenna 10b is open, the measurement system 100 can measure the electric field because a voltage is induced in the coil according to the surrounding electric field.
(6)基本構成の(3)の処理が行われると同時に、アンテナ10bで得られた信号を増幅するアンプ20bの出力は、周波数変換回路24に入力され、周波数変換が行われる。周波数変換された出力は、アンプ20aの出力に重畳され、接続端子30のマイク入力端子(音声入力端子)であるスリープ34に入力される。言い換えると、アンプ20bの出力を周波数変換回路24により周波数変換した出力と、アンプ20aの出力と、を合成した信号は、スリープ34を経由して、PC23に入力される。この入力は、測定結果のデータである。PC23は、この入力の入力データを、例えばWAV(Waveform Audio File Format)等のデータの型式で取り扱う。PC23は、当該データに基づいてユーザに対する測定結果として表示し、又は、当該データを保存する等の処理を行う。測定システム100は、ユーザによる手動操作により(1)及び(4)と、(2)及び(5)の操作を切り替えたり、所定の時間間隔で(1)及び(4)と、(2)及び(5)の操作を自動で切り替えたりすることにより、電界と磁界の双方を検出し、記録することができる。これによりユーザは、例えば測定の対象物である送電線の通電の有無を検査することができる。 (6) At the same time as the processing of (3) of the basic configuration is performed, the output of the amplifier 20b that amplifies the signal obtained by the antenna 10b is input to the frequency conversion circuit 24 and frequency conversion is performed. The frequency-converted output is superimposed on the output of the amplifier 20 a and input to the sleep 34 that is the microphone input terminal (audio input terminal) of the connection terminal 30 . In other words, a signal obtained by synthesizing the output obtained by frequency-converting the output of the amplifier 20 b by the frequency conversion circuit 24 and the output of the amplifier 20 a is input to the PC 23 via the sleep 34 . This input is the data of the measurement results. The PC 23 handles this input data in a data format such as WAV (Waveform Audio File Format). The PC 23 displays the measurement result to the user based on the data, or performs processing such as saving the data. The measurement system 100 switches between operations (1) and (4) and (2) and (5) by manual operation by the user, and switches operations (1) and (4), (2) and (2) at predetermined time intervals. By automatically switching the operation of (5), both the electric field and the magnetic field can be detected and recorded. This allows the user to check whether or not the power transmission line, which is the object of measurement, is energized.
 以上により、従来の装置においては、電界と磁界の双方を2つの異なる方向から検出するためには少なくとも2×2=4つのアンテナが必要であった。本実施形態によれば、測定システム100は、2つのアンテナにより電界と磁界との双方を検出することができる。これにより、測定システム100は、アンテナの数を減らして、具体的にはアンテナの数を半分にしてアンテナの数が増大することを抑制できる。また、測定システム100は、装置の小型化及び軽量化を図るとともに、構成を簡易にすることができ、コストを下げることに貢献することができる。また、測定システム100は、電界検出用のアンテナと磁界検出用のアンテナを個別に設けた場合、両者の干渉が問題となり得るが、この様な問題も解消することができる。 As described above, in the conventional device, at least 2×2=4 antennas were required to detect both the electric field and the magnetic field from two different directions. According to this embodiment, the measurement system 100 can detect both electric and magnetic fields with two antennas. As a result, the measurement system 100 can reduce the number of antennas, specifically, halve the number of antennas to suppress an increase in the number of antennas. In addition, the measurement system 100 can contribute to reducing the size and weight of the device, simplifying the configuration, and reducing the cost. Moreover, if the measurement system 100 is provided with separate antennas for electric field detection and magnetic field detection, interference between the two may become a problem, but such a problem can also be resolved.
 尚、測定システム100は、アンテナ10aを90度物理的に回転させる機構を設け、回転角度に応じてLchチップ31とRchリング32との出力を切替えることにより、1つのアンテナ10aのみで、上述した(1)~(6)の処理を行うことが可能となる。 In addition, the measurement system 100 has a mechanism for physically rotating the antenna 10a by 90 degrees, and by switching the outputs of the Lch chip 31 and the Rch ring 32 according to the rotation angle, only one antenna 10a is used. It is possible to perform the processes (1) to (6).
 言い換えると、PC23は、測定システム100のアンテナ10aの回転角度に応じて、選択信号を切り替え、PC23が出力した選択信号は、測定システム100のLchチップ31とRchリング32を経由して測定システム100の第1回路1a、第2回路1bに入力される。 In other words, the PC 23 switches the selection signal according to the rotation angle of the antenna 10a of the measurement system 100, and the selection signal output by the PC 23 is transmitted to the measurement system 100 via the Lch chip 31 and the Rch ring 32 of the measurement system 100. are input to the first circuit 1a and the second circuit 1b.
(実施の形態2)
 図2は、本開示の実施の形態2に係る測定システムのブロック図である。実施の形態2の測定システム100は、実施の形態1の周波数変換回路24の代わりに時分割回路25を備える。時分割回路25は、周波数変換回路24と同様に第1回路1aの出力及び第2回路1bの出力を分離し、接続端子30のLchチップ31に出力可能な分離回路である。時分割回路25は、アンプ20a及びアンプ20bと接続端子30のLchチップ31との間に接続され、第1回路1aの出力であるアンプ20aの出力と、第2回路1bの出力であるアンプ20bの出力とを時分割して振り分けて両者を区別、すなわち両出力を分離して接続端子30のLchチップ31に出力する。
(Embodiment 2)
FIG. 2 is a block diagram of a measurement system according to Embodiment 2 of the present disclosure. The measurement system 100 of the second embodiment includes a time division circuit 25 instead of the frequency conversion circuit 24 of the first embodiment. The time division circuit 25 is a separation circuit capable of separating the output of the first circuit 1 a and the output of the second circuit 1 b and outputting them to the Lch chip 31 of the connection terminal 30 in the same way as the frequency conversion circuit 24 . The time-division circuit 25 is connected between the amplifiers 20a and 20b and the Lch chip 31 of the connection terminal 30, and outputs the output of the amplifier 20a, which is the output of the first circuit 1a, and the output of the amplifier 20b, which is the output of the second circuit 1b. and the output of , are time-divided and distributed to distinguish between the two.
 また、第1回路1aのコンデンサ12a、ダイオード13aは、スイッチ14aのみならず、スイッチ14bのベースにも接続され、第2回路1bのコンデンサ12b、ダイオード13bは、スイッチ14bではなく、時分割回路25に接続されている。 The capacitor 12a and the diode 13a of the first circuit 1a are connected not only to the switch 14a but also to the base of the switch 14b, and the capacitor 12b and the diode 13b of the second circuit 1b are connected to the time division circuit 25 instead of the switch 14b. It is connected to the.
 次に本実施形態の測定システム100の動作(7)~(10)を説明する。
(7)ユーザは、PC23のキーボード、マウス等を操作して測定システム100の操作画面を開き、磁界の測定操作を選択する。ユーザによる選択操作に対応して、PC23内のプロセッサは、磁界の測定を選択する選択信号である音声信号(例えば10kHz、1V)を測定システム100のLchチップ31に出力する。Lchチップ31に入力された音声信号は、第1回路1aに入力され、第1回路1aのダイオード13aとコンデンサ12aがこの音声信号を直流信号に変換し、スイッチ14a及びスイッチ14bがオンになる。このとき測定システム100は、スイッチ14a、スイッチ14bのコレクタとエミッタとが導通してアンプ20a、アンプ20bのマイナス端子にアンテナ10a、アンテナ10bの片方が接続され、アンテナ10a、アンテナ10bのコイルの両端が閉じることになる。これにより、測定システム100は、周囲の磁界変化に応じてアンテナ10a、アンテナ10bの内部を磁力線が通過し、電磁誘導によりコイルに起電力を発生させるため、磁界を測定することができる。
Next, operations (7) to (10) of the measurement system 100 of this embodiment will be described.
(7) The user operates the keyboard, mouse, etc. of the PC 23 to open the operation screen of the measurement system 100, and selects a magnetic field measurement operation. In response to the user's selection operation, the processor in the PC 23 outputs an audio signal (for example, 10 kHz, 1 V), which is a selection signal for selecting magnetic field measurement, to the Lch chip 31 of the measurement system 100 . The audio signal input to the Lch chip 31 is input to the first circuit 1a, the diode 13a and the capacitor 12a of the first circuit 1a convert the audio signal into a DC signal, and the switches 14a and 14b are turned on. At this time, in the measurement system 100, the collectors and emitters of the switches 14a and 14b are electrically connected, one of the antennas 10a and 10b is connected to the negative terminals of the amplifiers 20a and 20b, and both ends of the coils of the antennas 10a and 10b are connected. will close. As a result, the measuring system 100 can measure the magnetic field because the lines of magnetic force pass through the antennas 10a and 10b in response to changes in the surrounding magnetic field, and electromotive force is generated in the coils by electromagnetic induction.
(8)次に、ユーザは、PC23のキーボード、マウス等を操作して測定システム100の操作画面を開き、電界の測定操作を選択する。ユーザによる選択操作に対応して、PC23内のプロセッサは、磁界の測定を選択する選択信号である音声信号を出力しない。言い換えると、PC23内のプロセッサは、測定システム100のLchチップ31に出力ゼロの選択信号を出力する。このとき測定システム100は、スイッチ14a、スイッチ14bはオフとなり、アンテナ10a、アンテナ10bの片方は開放状態をとる。測定システム100は、アンテナ10a、アンテナ10bのコイルの一端が開放されている場合、周囲の電界に応じてコイルに電圧が誘導されるため、電界を測定することができる。 (8) Next, the user operates the keyboard, mouse, etc. of the PC 23 to open the operation screen of the measurement system 100, and selects the electric field measurement operation. In response to the selection operation by the user, the processor in the PC 23 does not output the audio signal, which is the selection signal for selecting magnetic field measurement. In other words, the processor in the PC 23 outputs a selection signal with zero output to the Lch chip 31 of the measurement system 100 . At this time, in the measurement system 100, the switches 14a and 14b are turned off, and one of the antennas 10a and 10b is open. When one end of the coils of the antennas 10a and 10b is open, the measurement system 100 can measure the electric field because a voltage is induced in the coils according to the surrounding electric field.
(9)一方、PC23内のプロセッサは、(7)、(8)の処理の過程において、アンプ20aおよびアンプ20bのいずれかの出力を切替えて、接続端子30のスリープ34に入力する切替の機能を有する。すなわち、PC23内のプロセッサは、音声信号(例えば10kHz、1V)を、接続端子30のRchリング32、第2回路1bのコンデンサ12b、ダイオード13bを介して、時分割回路25に出力可能である。音声信号の出力時(いわゆるHi出力)、時分割回路25は、第1回路1aのアンプ20aの出力が有効な時間を設定し、アンプ20aのみがスリープ34に増幅した測定結果を出力する。一方、PC23内のプロセッサは、音声信号を出力しない時(いわゆるLow出力)、時分割回路25は第2回路1bのアンプ20bの出力が有効な時間を設定し、アンプ20bのみが、スリープ34に増幅した測定結果を出力する。 (9) On the other hand, the processor in the PC 23 has a switching function of switching the output of either the amplifier 20a or the amplifier 20b and inputting it to the sleep 34 of the connection terminal 30 in the processes of (7) and (8). have That is, the processor in the PC 23 can output an audio signal (for example, 10 kHz, 1 V) to the time division circuit 25 via the Rch ring 32 of the connection terminal 30, the capacitor 12b of the second circuit 1b, and the diode 13b. When an audio signal is output (so-called Hi output), the time division circuit 25 sets the time during which the output of the amplifier 20a of the first circuit 1a is valid, and only the amplifier 20a outputs the amplified measurement result in the sleep 34. On the other hand, when the processor in the PC 23 does not output an audio signal (so-called Low output), the time division circuit 25 sets the time during which the output of the amplifier 20b of the second circuit 1b is valid, and only the amplifier 20b is put into sleep 34. Output the amplified measurement result.
(10)アンテナ10a、アンテナ10bで得られた信号を増幅するアンプ20a、アンプ20bの出力は、接続端子30のマイク入力端子であるスリープ34に入力される。スリープ34は、Lchチップ31の音声信号のオン(Hi)またはオフ(Low)時であり、かつ、Rchリング32の音声信号のオン(Hi)またはオフ(Low)時の、合計4パターンのデータをPC23に入力する。PC23は、この入力データを、例えばWAV(Waveform Audio File Format)等のデータの型式で取り扱う。PC23は、当該データに基づいてユーザに対する測定結果として表示し、又は、当該データを保存する等の処理を行う。測定システム100は、ユーザによる手動操作により(7)、(8)の操作を切り替えたり、PC23が所定の時間間隔で(7)、(8)の操作を自動で切り替えたりすることにより、電界と磁界との双方を検出し、記録することができる。これによりユーザは、例えば測定の対象物である送電線の通電の有無を検査することができる。 (10) The outputs of the amplifiers 20a and 20b for amplifying the signals obtained by the antennas 10a and 10b are input to the sleep 34 which is the microphone input terminal of the connection terminal 30 . The sleep 34 is when the audio signal of the Lch chip 31 is on (Hi) or off (Low), and when the audio signal of the Rch ring 32 is on (Hi) or off (Low), a total of 4 patterns of data. is input to the PC 23. The PC 23 handles this input data in a data format such as WAV (Waveform Audio File Format). The PC 23 displays the measurement result to the user based on the data, or performs processing such as saving the data. The measurement system 100 switches between the operations (7) and (8) manually by the user, and the PC 23 automatically switches between the operations (7) and (8) at predetermined time intervals. Both magnetic fields can be detected and recorded. This allows the user to check whether or not the power transmission line, which is the object of measurement, is energized.
 本実施形態でも、測定システム100は、アンテナの数を減らして、具体的にはアンテナの数を半分にしてアンテナの数が増大することを抑制し、装置の小型化及び軽量化を図るとともに、構成を簡易にすることができ、コストを下げることに貢献することができる。また、測定システム100は、電界検出用のアンテナと磁界検出用のアンテナを個別に設けた場合、両者の干渉が問題となり得るが、この様な問題も解消することができる。 Also in this embodiment, the measurement system 100 reduces the number of antennas, specifically by halving the number of antennas to suppress an increase in the number of antennas, thereby reducing the size and weight of the device, The configuration can be simplified, which can contribute to cost reduction. Moreover, if the measurement system 100 is provided with separate antennas for electric field detection and magnetic field detection, interference between the two may become a problem, but such a problem can also be resolved.
 また、実施の形態1、2に係る測定システム100は、接続端子30が4極CTIA端子の如き音声出力端子とマイク入力端子を有する接続端子により構成されている。しかしながら、接続端子30は、いわゆるアナログ/デジタル変換が可能なオーディオインターフェースにより構成することも可能である。オーディオインターフェースの一例としてはPC23とUSB(Universal Serial Bus)インターフェースとを介して接続可能な機器などが挙げられる。オーディオインターフェースは、例えば図1において、接続端子30の位置に配置される。PC23は、オーディオインターフェースを介して、オーディオ出力1を第1回路1aに、オーディオ出力2を第2回路1bにそれぞれ出力する。また、アンプ20aの出力は、オーディオ入力1、アンプ20bの出力がオーディオ入力2として、それぞれオーディオインターフェースに入力される。このような構成の測定システム100の動作(11)~(15)を説明する。 Also, in the measurement system 100 according to Embodiments 1 and 2, the connection terminal 30 is configured by a connection terminal having an audio output terminal and a microphone input terminal such as a 4-pole CTIA terminal. However, the connection terminal 30 can also be configured by an audio interface capable of so-called analog/digital conversion. An example of an audio interface is a device that can be connected to the PC 23 via a USB (Universal Serial Bus) interface. The audio interface is arranged at the position of the connection terminal 30 in FIG. 1, for example. The PC 23 outputs audio output 1 to the first circuit 1a and audio output 2 to the second circuit 1b via the audio interface. The output of the amplifier 20a is input to the audio interface as an audio input 1, and the output of the amplifier 20b is input as an audio input 2 to the audio interface. Operations (11) to (15) of the measurement system 100 having such a configuration will be described.
(11)ユーザは、PC23のキーボード、マウス等を操作して測定システム100の操作画面を開き、磁界の測定操作を選択する。ユーザによる選択操作に対応して、PC23内のプロセッサは、音声信号(例えば10kHz、1V)であるオーディオ出力1を測定システム100のオーディオインターフェースに出力する。オーディオインターフェースに入力されたオーディオ出力1は、第1回路1aに入力され、第1回路1aのダイオード13aとコンデンサ12aがこのオーディオ出力1を直流信号に変換し、スイッチ14aがオンになる。このとき、測定システム100は、スイッチ14aのコレクタとエミッタとが導通してアンプ20aのマイナス端子にアンテナ10aの片方が接続され、アンテナ10aのコイルの両端が閉じることになる。これにより、測定システム100は、周囲の磁界変化に応じてアンテナ10aの内部を磁力線が通過し、電磁誘導によりコイルに起電力を発生させるため、磁界を測定することができる。 (11) The user operates the keyboard, mouse, etc. of the PC 23 to open the operation screen of the measurement system 100 and selects a magnetic field measurement operation. In response to the user's selection operation, the processor in the PC 23 outputs audio output 1, which is an audio signal (for example, 10 kHz, 1 V), to the audio interface of the measurement system 100 . The audio output 1 input to the audio interface is input to the first circuit 1a, the diode 13a and the capacitor 12a of the first circuit 1a convert the audio output 1 into a DC signal, and the switch 14a is turned on. At this time, in the measurement system 100, the collector and emitter of the switch 14a are electrically connected, one side of the antenna 10a is connected to the negative terminal of the amplifier 20a, and both ends of the coil of the antenna 10a are closed. As a result, the measurement system 100 can measure the magnetic field because the lines of magnetic force pass through the inside of the antenna 10a according to changes in the surrounding magnetic field, and electromagnetic induction causes the coil to generate an electromotive force.
(12)(11)の処理が行われると同時に、PC23内のプロセッサは、音声信号であるオーディオ出力2を測定システム100のオーディオインターフェースに出力する。オーディオインターフェースに入力されたオーディオ出力2は、第2回路1bに入力され、第2回路1bのダイオード13bとコンデンサ12bがこのオーディオ出力2を直流信号に変換し、スイッチ14bがオンになる。このとき、測定システム100は、スイッチ14bのコレクタとエミッタとが導通してアンプ20bのマイナス端子にアンテナ10bの片方が接続され、アンテナ10bのコイルの両端が閉じることになる。これにより、測定システム100は、周囲の磁界変化に応じてアンテナ10bの内部を磁力線が通過し、電磁誘導によりコイルに起電力を発生させるため、磁界を測定することができる。 (12) Simultaneously with the processing of (11), the processor in the PC 23 outputs audio output 2, which is a voice signal, to the audio interface of the measurement system 100. FIG. The audio output 2 input to the audio interface is input to the second circuit 1b, the diode 13b and the capacitor 12b of the second circuit 1b convert the audio output 2 into a DC signal, and the switch 14b is turned on. At this time, in the measurement system 100, the collector and emitter of the switch 14b are electrically connected, one side of the antenna 10b is connected to the minus terminal of the amplifier 20b, and both ends of the coil of the antenna 10b are closed. As a result, the measurement system 100 can measure the magnetic field because the lines of magnetic force pass through the inside of the antenna 10b according to changes in the surrounding magnetic field, and electromagnetic induction generates an electromotive force in the coil.
(13)次にユーザは、PC23のキーボード、マウス等を操作して測定システム100の操作画面を開き、電界の測定操作を選択する。ユーザによる選択操作に対応して、PC23内のプロセッサは、選択信号である音声信号を出力しない。言い換えると、PC23内のプロセッサは、オーディオインターフェース、第1回路1aに出力ゼロの選択信号を出力する。このときスイッチ14aはオフとなり、アンテナ10aの片方は開放状態をとる。測定システム100はアンテナ10aのコイルの一端が開放されている場合、周囲の電界に応じてコイルに電圧が誘導されるため、電界を測定することができる。 (13) Next, the user operates the keyboard, mouse, etc. of the PC 23 to open the operation screen of the measurement system 100, and selects the electric field measurement operation. In response to the selection operation by the user, the processor in the PC 23 does not output the audio signal, which is the selection signal. In other words, the processor in the PC 23 outputs a selection signal with an output of zero to the audio interface, the first circuit 1a. At this time, the switch 14a is turned off, and one side of the antenna 10a is open. When one end of the coil of the antenna 10a is open, the measurement system 100 can measure the electric field because a voltage is induced in the coil according to the surrounding electric field.
(14)(13)の処理が行われると同時に、PC23内のプロセッサは、オーディオインターフェース、第2回路1bに出力ゼロの選択信号を出力する。このときスイッチ14bはオフとなり、アンテナ10bの片方は開放状態をとる。測定システム100は、アンテナ10bのコイルの一端が開放されている場合、周囲の電界に応じてコイルに電圧が誘導されるため、電界を測定することができる。 (14) Simultaneously with the processing of (13), the processor in the PC 23 outputs a selection signal with no output to the audio interface and the second circuit 1b. At this time, the switch 14b is turned off, and one side of the antenna 10b is open. When one end of the coil of the antenna 10b is open, the measurement system 100 can measure the electric field because a voltage is induced in the coil according to the surrounding electric field.
(15)第1回路1aは、アンテナ10aで得られた信号をアンプ20aが増幅し、オーディオ入力1としてオーディオインターフェースに入力する。また、第2回路1bは、アンテナ10bで得られた信号をアンプ20bが増幅し、オーディオ入力2としてオーディオインターフェースに入力する。PC23は、この入力データを処理し、測定結果を記録する。測定システム100は、ユーザによる手動操作により(11)~(14)の操作を切り替えたり、PC23が所定の時間間隔で(11)~(14)の操作を自動で切り替えたりすることにより、電界と磁界との双方を検出し、記録することができる。これによりユーザは、例えば測定の対象物である送電線の通電の有無を検査することができる。 (15) In the first circuit 1a, the signal obtained by the antenna 10a is amplified by the amplifier 20a and input as the audio input 1 to the audio interface. In the second circuit 1b, the signal obtained by the antenna 10b is amplified by the amplifier 20b and input as the audio input 2 to the audio interface. The PC 23 processes this input data and records the measurement results. The measurement system 100 switches the operations (11) to (14) by manual operation by the user, or the PC 23 automatically switches the operations (11) to (14) at predetermined time intervals. Both magnetic fields can be detected and recorded. This allows the user to check whether or not the power transmission line, which is the object of measurement, is energized.
 この形態によっても、測定システム100は、アンテナの数を減らして、具体的にはアンテナの数を半分にしてアンテナの数が増大することを抑制できる。また、測定システム100は、装置の小型化及び軽量化を図るとともに、構成を簡易にすることができ、コストを下げることもできる。また、測定システム100は、電界検出用のアンテナと磁界検出用のアンテナを個別に設けた場合、両者の干渉が問題となり得るが、この様な問題も解消することができる。 Also in this form, the measurement system 100 can reduce the number of antennas, specifically, halve the number of antennas to suppress an increase in the number of antennas. In addition, the measurement system 100 can be made smaller and lighter, and the configuration can be simplified and the cost can be reduced. Moreover, if the measurement system 100 is provided with separate antennas for electric field detection and magnetic field detection, interference between the two may become a problem, but such a problem can also be resolved.
 測定システム100は、例えば1つの筐体により構成され、この筐体とPC23の様な操作機器とが接続ケーブルによって接続される。また、測定システム100は、接続端子30の代わりに無線通信機能を有する回路、モジュール等を搭載して、無線通信機能を有する操作機器と無線通信とによって接続してもよい。すなわち、測定システム100は、操作機器から無線通信で送信された選択信号を受信する。また、操作機器は、測定システム100から無線通信で送信された測定結果を受信する。ここで、無線通信は、無線LAN、Wi-Fi(登録商標)、Bluetooth(登録商標)等を用いることができる。また、測定システム100と操作機器とは、一体の装置により構成されてもよい。 The measurement system 100 is composed of, for example, one housing, and this housing and an operation device such as the PC 23 are connected by a connection cable. Alternatively, the measurement system 100 may be equipped with a circuit, module, or the like having a wireless communication function instead of the connection terminal 30, and may be connected to an operation device having a wireless communication function by wireless communication. That is, the measurement system 100 receives the selection signal transmitted by wireless communication from the operation device. Also, the operation device receives the measurement result transmitted from the measurement system 100 by wireless communication. Here, for wireless communication, a wireless LAN, Wi-Fi (registered trademark), Bluetooth (registered trademark), or the like can be used. Moreover, the measuring system 100 and the operating device may be configured as an integrated device.
 図3および図4は、測定システム100に適用可能なアンテナ10aまたはアンテナ10b(以下、「アンテナ10」という)の実施形態の一例を示す。図3は、本開示の測定システム100に用いられるアンテナ10の斜視図である。図4は、本開示の測定システム100に用いられるアンテナ10の断面図である。実施形態のアンテナ10は、芯2と、芯2の長手方向Lに沿って巻回されたコイル3と、芯2の全表面およびコイル3との少なくとも芯2に巻回された部分の全表面を覆う誘電体4と、を備える。なお、本実施の形態において、誘電体4は、芯2の全表面およびコイル3の少なくとも芯2に巻回された部分の全表面を覆うように形成したが、このようなアンテナに限定されない。つまり誘電体4は、芯2の表面の一部分および/またはコイル3の少なくとも芯2に巻回された部分の表面の一部分を覆うように形成されてもよい。ただし、本実施の形態で説明するように、誘電体4は、芯2の全表面およびコイル3の少なくとも芯2に巻回された部分の全表面を覆うように形成されることで、電界取得能力をより向上させることができる。 3 and 4 show an example of an embodiment of an antenna 10a or 10b (hereinafter referred to as "antenna 10") applicable to the measurement system 100. FIG. FIG. 3 is a perspective view of antenna 10 used in measurement system 100 of the present disclosure. FIG. 4 is a cross-sectional view of antenna 10 used in measurement system 100 of the present disclosure. The antenna 10 of the embodiment includes the core 2, the coil 3 wound along the longitudinal direction L of the core 2, the entire surface of the core 2 and the entire surface of at least the portion of the coil 3 wound around the core 2. and a dielectric 4 covering the . In this embodiment, the dielectric 4 is formed to cover the entire surface of the core 2 and at least the entire surface of the portion of the coil 3 wound around the core 2, but the antenna is not limited to such an antenna. That is, the dielectric 4 may be formed so as to cover part of the surface of the core 2 and/or part of the surface of at least the part of the coil 3 wound around the core 2 . However, as described in the present embodiment, the dielectric 4 is formed so as to cover the entire surface of the core 2 and at least the entire surface of the portion of the coil 3 wound around the core 2, thereby obtaining an electric field. You can improve your abilities.
 芯2は、アンテナ10の芯を形成する部材であり、らせん状に巻回されたコイル3部分を支持するための部材である。芯2の材料は、特に限定されないが、例えば、フェライトなどの磁性体で構成することができる。アンテナ10は、芯2を磁性体で構成することにより、アンテナ10の内部を鎖交する磁束密度を向上させることができる。結果としてアンテナ10は、アンテナ10の周囲から磁界を集める能力を向上させることができる。ただし、後述する様に、芯2は、電界取得能力の向上の観点からは必須の部材ではない。 The core 2 is a member forming the core of the antenna 10, and is a member for supporting the spirally wound coil 3 portion. Although the material of the core 2 is not particularly limited, it can be composed of a magnetic material such as ferrite, for example. The antenna 10 can improve the magnetic flux density interlinking the inside of the antenna 10 by configuring the core 2 with a magnetic material. As a result, the antenna 10 may have an enhanced ability to collect magnetic fields from the surroundings of the antenna 10 . However, as will be described later, the core 2 is not an essential member from the viewpoint of improving the electric field acquisition capability.
 コイル3は、芯2の長手方向Lに沿って、芯2の表面にらせん状に巻回されている。上述した通り、図1、図2の測定システム100は、コイル3の一端がスイッチ14aまたはスイッチ14bに接続されることで、スイッチ14aまたはスイッチ14bのオン・オフの切り替え動作を行い、第1回路1aまたは第2回路1bが開ループを形成するか、あるいは閉ループを形成するかを決定できる。アンテナ10は、第1回路1aまたは第2回路1bが開ループを形成する場合には、電界アンテナとして機能する。アンテナ10は、第1回路1aまたは第2回路1bが閉ループを形成する場合には、周囲の磁界を測定する磁界アンテナとして機能する。 The coil 3 is spirally wound on the surface of the core 2 along the longitudinal direction L of the core 2 . As described above, in the measurement system 100 of FIGS. 1 and 2, one end of the coil 3 is connected to the switch 14a or the switch 14b, so that the switch 14a or the switch 14b is switched on and off, and the first circuit is switched. It can be determined whether 1a or the second circuit 1b forms an open loop or a closed loop. The antenna 10 functions as an electric field antenna when the first circuit 1a or the second circuit 1b forms an open loop. The antenna 10 functions as a magnetic field antenna for measuring the surrounding magnetic field when the first circuit 1a or the second circuit 1b forms a closed loop.
 誘電体4は、本実施の形態においては、芯2の全表面を覆うとともに芯2の周囲に形成される。また、誘電体4は、コイル3の少なくとも芯2に巻回された部分の全表面を覆う。 The dielectric 4 is formed around the core 2 while covering the entire surface of the core 2 in this embodiment. Moreover, the dielectric 4 covers the entire surface of at least the portion of the coil 3 wound around the core 2 .
 誘電体4は、所定の誘電体材料により構成される。誘電体4は、その誘電性により、コイル3を含むアンテナ10の内部における電束密度を増加させ、コイル3に誘起される誘起電圧を増加させることができる。換言すれば、誘電体4は、アンテナ10の内部の電束密度を増幅させることができるため、アンテナ10の電界取得能力を向上させることができる。 The dielectric 4 is made of a predetermined dielectric material. Due to its dielectric properties, the dielectric 4 can increase the electric flux density inside the antenna 10 including the coil 3 and increase the induced voltage induced in the coil 3 . In other words, since the dielectric 4 can amplify the electric flux density inside the antenna 10, the electric field acquisition capability of the antenna 10 can be improved.
 図4に示すように、誘電体4は、芯2の長手方向Lに直交する断面において、厚みTを有する。厚みTは、芯2の表面と誘電体4の表面との間の距離であるが、本実施形態において厚みTは、断面上において一定である。誘電体4は、ドーナツ形状の断面を有する。厚みTが一定である場合、誘電体4は、検知可能な電界の偏りを抑えることができ、アンテナ10をより容易に製造することが可能となる。 As shown in FIG. 4, the dielectric 4 has a thickness T in a cross section orthogonal to the longitudinal direction L of the core 2. The thickness T is the distance between the surface of the core 2 and the surface of the dielectric 4, but in this embodiment the thickness T is constant on the cross section. Dielectric 4 has a doughnut-shaped cross section. If the thickness T is constant, the dielectric 4 can suppress the detectable bias of the electric field, making it possible to manufacture the antenna 10 more easily.
 芯2は、長手方向Lに直交する断面において、例えば本実施形態のように、断面形状が円形である。アンテナ10は、断面形状が円形であれば、アンテナ10の特定方向への指向性を抑制し、断面における等方性を向上させることができる。 The core 2 has a circular cross-sectional shape in a cross section perpendicular to the longitudinal direction L, for example, as in this embodiment. If the cross-sectional shape of the antenna 10 is circular, the directivity of the antenna 10 in a specific direction can be suppressed, and the isotropy in the cross section can be improved.
 なお、アンテナ10は、長手方向Lに直交する断面において、例えば本実施形態のように、芯2の断面形状と、誘電体4の表面に沿った断面形状とが、互いに相似である。本実施形態では、芯2の断面形状および誘電体4の表面に沿った断面形状は円形であるが、両者を矩形状断面にすることもできる。これにより、アンテナ10は、アンテナ10の特定方向への指向性を抑え、断面における等方性を向上させることができる。 In the antenna 10, in a cross section orthogonal to the longitudinal direction L, the cross-sectional shape of the core 2 and the cross-sectional shape along the surface of the dielectric 4 are similar to each other, for example, as in this embodiment. In this embodiment, the cross-sectional shape of the core 2 and the cross-sectional shape along the surface of the dielectric 4 are circular, but both can be rectangular cross-sections. Thereby, the antenna 10 can suppress the directivity of the antenna 10 in a specific direction and improve the isotropy in the cross section.
 誘電体4は、比誘電率(ε)が1より高い物質で形成することが好ましい。比誘電率(ε)が1より高い物質の例としては、チタン酸バリウムが挙げられる。チタン酸バリウムは、真空の誘電率(ε)に対し、4000程度の比誘電率(ε)を有する。誘電体4の材料の全て、又は一部にチタン酸バリウムを用いることで、アンテナ10の電界取得能力を向上させることができる。また、チタン酸バリウム以外の材料の一例としては、アルミナ、ジルコア、窒化ケイ素、チタン酸ジルコン酸鉛などのセラミックス材料、プラスチックなどが挙げられる。また、比誘電率(ε)が1より高い物質の中でも、誘電正接の値が50Hz―60Hz帯において0.02以下であることが好ましい。 The dielectric 4 is preferably made of a material having a dielectric constant (ε r ) higher than 1. Barium titanate is an example of a material having a dielectric constant (ε r ) higher than 1. Barium titanate has a dielectric constant (ε r ) of about 4000 relative to the vacuum dielectric constant (ε 0 ). By using barium titanate for all or part of the material of the dielectric 4, the electric field acquisition capability of the antenna 10 can be improved. Examples of materials other than barium titanate include ceramic materials such as alumina, zirconia, silicon nitride, lead zirconate titanate, and plastics. Among substances having a dielectric constant (ε r ) higher than 1, it is preferable that the value of the dielectric loss tangent is 0.02 or less in the 50 Hz to 60 Hz band.
 図5は、誘電体4がない従来のアンテナと、誘電体4を有する本開示のアンテナで取得した電界強度を比較して示している。両者は、誘電体4の有無以外の条件は同一である。グラフから明らかなように、誘電体4がない従来のアンテナの電界強度は-39.8dB、誘電体4を有する本開示のアンテナの電界強度は-32.9dBである。本グラフは、アンテナに誘電体4を設けることにより、取得した電界強度を向上させることができることを示しており、このことはアンテナの電界取得能力を向上させることを意味する。 FIG. 5 shows a comparison of the field strength obtained with a conventional antenna without the dielectric 4 and the antenna of the present disclosure with the dielectric 4 . Both are the same except for the presence or absence of the dielectric 4 . As can be seen from the graph, the electric field strength of the conventional antenna without the dielectric 4 is -39.8 dB, and the electric field strength of the antenna of the present disclosure with the dielectric 4 is -32.9 dB. This graph shows that the strength of the acquired electric field can be improved by providing the dielectric 4 to the antenna, which means that the electric field acquisition capability of the antenna is improved.
 なお、本実施形態のアンテナ10は、芯2を備えている。芯2は、コイル3が巻回されて、らせん状に巻回された部分を支持する役割を果たしている。上述した通り、芯2がフェライト、鉄芯などの磁性体で構成されている場合、アンテナ10は、アンテナ10の内部を鎖交する磁束密度を向上させることができる。ただし、本実施形態においては、誘電体4は、電界取得能力を向上させる役割を担っており、電界取得能力を重視する場合、芯2は必須の部材ではない。芯2が存在しない場合、アンテナ10は、コイル3を所定の長手方向に沿って、らせん状に巻回した後、誘電体4がらせん状に巻回された部分の表面を覆うように、らせん状に巻回された部分を誘電体4に埋め込めばよい。アンテナ10は、芯2がない場合であっても、コイル3が第1回路1aまたは第2回路1bと共に閉ループを形成することにより、周囲の磁界を取得することは可能である。 It should be noted that the antenna 10 of this embodiment has a core 2 . The core 2 serves to support the helically wound portion around which the coil 3 is wound. As described above, when the core 2 is made of a magnetic material such as ferrite or an iron core, the antenna 10 can improve the magnetic flux density interlinking inside the antenna 10 . However, in this embodiment, the dielectric 4 plays a role of improving the electric field acquisition ability, and the core 2 is not an essential member when emphasizing the electric field acquisition ability. If the core 2 does not exist, the antenna 10 is formed by spirally winding the coil 3 along a predetermined longitudinal direction, and then spirally winding the dielectric 4 so as to cover the surface of the spirally wound portion. The portion wound into a shape may be embedded in the dielectric 4 . Even without the core 2, the antenna 10 can acquire the surrounding magnetic field by forming a closed loop with the coil 3 together with the first circuit 1a or the second circuit 1b.
 以上のように、アンテナは、所定の長手方向に沿って、らせん状に巻回されたコイルと、コイルの少なくともらせん状に巻回された部分の表面を覆う誘電体と、を備える。これにより、アンテナの電界取得能力を向上させることができる。 As described above, the antenna includes a spirally wound coil along a predetermined longitudinal direction, and a dielectric covering at least the surface of the spirally wound portion of the coil. Thereby, the electric field acquisition capability of the antenna can be improved.
 本開示のアンテナは、コイルが巻回されて、らせん状に巻回された部分を支持する芯を更に備え、誘電体は、芯の表面およびコイルの少なくとも芯に巻回された部分の表面を覆う。これにより、アンテナの磁界取得能力を向上させることができる。 The antenna of the present disclosure further comprises a core around which the coil is wound to support the helically wound portion, the dielectric covering a surface of the core and at least a surface of the coil wound on the core. cover. Thereby, the magnetic field acquisition capability of the antenna can be improved.
 本開示のアンテナは、長手方向に直交する断面において、誘電体の厚みが一定である。これにより、検知可能な電界の偏りを抑えることができ、アンテナを容易に製造することも可能となる。 The antenna of the present disclosure has a constant dielectric thickness in a cross section orthogonal to the longitudinal direction. As a result, it is possible to suppress the detectable bias of the electric field and to easily manufacture the antenna.
 本開示のアンテナは、長手方向に直交する断面において、芯の断面形状が円形である。これにより、アンテナの特定方向への指向性を抑え、等方性を向上させることができる。 In the antenna of the present disclosure, the cross-sectional shape of the core is circular in a cross section perpendicular to the longitudinal direction. Thereby, the directivity of the antenna in a specific direction can be suppressed, and the isotropy can be improved.
 本開示のアンテナは、長手方向に直交する断面において、芯の断面形状と、誘電体の表面に沿った断面形状が、互いに相似である。これにより、アンテナの特定方向への指向性を抑え、等方性を向上させることができる。 In the antenna of the present disclosure, the cross-sectional shape of the core and the cross-sectional shape along the surface of the dielectric are similar to each other in the cross section orthogonal to the longitudinal direction. Thereby, the directivity of the antenna in a specific direction can be suppressed, and the isotropy can be improved.
 本開示のアンテナは、誘電体が、比誘電率(ε)が1より高い物質を含有する。これにより、アンテナの電界取得能力を向上させることができる。 In the antenna of the present disclosure, the dielectric contains a material with a relative dielectric constant (ε r ) greater than one. Thereby, the electric field acquisition capability of the antenna can be improved.
 以上、添付図面を参照しながら各種の実施の形態について説明したが、本開示はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例、修正例、置換例、付加例、削除例、均等例に想到し得ることは明らかであり、それらについても本開示の技術的範囲に属すると了解される。また、発明の趣旨を逸脱しない範囲において、上述した各種の実施の形態における各構成要素を任意に組み合わせてもよい。 Although various embodiments have been described above with reference to the accompanying drawings, the present disclosure is not limited to such examples. It is obvious that a person skilled in the art can conceive of various modifications, modifications, substitutions, additions, deletions, and equivalents within the scope of the claims. It is understood that it belongs to the technical scope of the present disclosure. In addition, the constituent elements of the various embodiments described above may be combined arbitrarily without departing from the gist of the invention.
 なお、本出願は、2021年3月31日出願の日本特許出願(特願2021-061317)に基づくものであり、その内容は本出願の中に参照として援用される。 This application is based on a Japanese patent application (Japanese Patent Application No. 2021-061317) filed on March 31, 2021, the contents of which are incorporated herein by reference.
 本開示は、電界取得能力を向上させたアンテナとして有用である。 The present disclosure is useful as an antenna with improved electric field acquisition capability.
1a 第1回路
1b 第2回路
2  芯
3  コイル
4  誘電体
10、10a、10b アンテナ
12a、12b コンデンサ
13a、13b ダイオード
14a、14b スイッチ
20a、20b アンプ
23 PC
24 周波数変換回路
25 時分割回路
30 接続端子
31 Lchチップ
32 Rchリング
33 絶縁リング(GND)
34 スリープ(MIC)
100 測定システム
1a First circuit 1b Second circuit 2 Core 3 Coil 4 Dielectric 10, 10a, 10b Antenna 12a, 12b Capacitor 13a, 13b Diode 14a, 14b Switch 20a, 20b Amplifier 23 PC
24 frequency conversion circuit 25 time division circuit 30 connection terminal 31 Lch chip 32 Rch ring 33 insulation ring (GND)
34 Sleep (MIC)
100 measurement system

Claims (6)

  1.  所定の長手方向に沿って、らせん状に巻回されたコイルと、
     前記コイルの少なくともらせん状に巻回された部分の表面を覆う誘電体と、
     を備えるアンテナ。
    a spirally wound coil along a predetermined longitudinal direction;
    a dielectric covering the surface of at least the helically wound portion of the coil;
    Antenna with
  2.  前記コイルが巻回されて、らせん状に巻回された部分を支持する芯を更に備え、
     前記誘電体は、前記芯の表面および前記コイルの少なくとも前記芯に巻回された部分の表面を覆う、
     請求項1に記載のアンテナ。
    further comprising a core supporting the helically wound portion around which the coil is wound;
    The dielectric covers the surface of the core and the surface of at least a portion of the coil wound around the core.
    Antenna according to claim 1.
  3.  前記長手方向に直交する断面において、前記誘電体の厚みが一定である、
     請求項2に記載のアンテナ。
    The thickness of the dielectric is constant in a cross section perpendicular to the longitudinal direction,
    Antenna according to claim 2.
  4.  前記長手方向に直交する断面において、前記芯の断面形状が円形である、
     請求項2に記載のアンテナ。
    In a cross section orthogonal to the longitudinal direction, the core has a circular cross-sectional shape,
    Antenna according to claim 2.
  5.  前記長手方向に直交する断面において、前記芯の断面形状と、前記誘電体の表面に沿った断面形状が、互いに相似である、
     請求項2に記載のアンテナ。
    In a cross section orthogonal to the longitudinal direction, the cross-sectional shape of the core and the cross-sectional shape along the surface of the dielectric are similar to each other.
    Antenna according to claim 2.
  6.  前記誘電体が、比誘電率(ε)が1より高い物質を含有する、
     請求項1に記載のアンテナ。
    the dielectric contains a material with a relative permittivity (ε r ) greater than 1;
    Antenna according to claim 1.
PCT/JP2022/011039 2021-03-31 2022-03-11 Antenna WO2022209782A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-061317 2021-03-31
JP2021061317 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022209782A1 true WO2022209782A1 (en) 2022-10-06

Family

ID=83456229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011039 WO2022209782A1 (en) 2021-03-31 2022-03-11 Antenna

Country Status (1)

Country Link
WO (1) WO2022209782A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049831A (en) * 2009-08-27 2011-03-10 Mitsubishi Electric Corp Coil for antenna and method for manufacturing the same
JP2011228767A (en) * 2010-04-15 2011-11-10 Harada Ind Co Ltd On-vehicle helical antenna for am/fm reception

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049831A (en) * 2009-08-27 2011-03-10 Mitsubishi Electric Corp Coil for antenna and method for manufacturing the same
JP2011228767A (en) * 2010-04-15 2011-11-10 Harada Ind Co Ltd On-vehicle helical antenna for am/fm reception

Similar Documents

Publication Publication Date Title
KR100353209B1 (en) Non-invasive powerline communication system
JP6370075B2 (en) Hearing devices with coils that can be switched between operating modes
KR101640465B1 (en) Method and apparatus for recognizing an accessory of a portable terminal
TW201145753A (en) Integrated wireless power system
US5991420A (en) Battery pack with audio coil
JPH0658967A (en) Capacitive proximity sensor
US20060133633A1 (en) Mobile telephone with metal sensor
WO2006019164A1 (en) Device and method for detecting partial discharge of rotary electric machine
JP2010511150A (en) Radio wave detection method and radio wave detection module for illegal radio device, and mobile device having radio wave detection function using the same
WO2009145264A1 (en) Communication device
KR102252814B1 (en) Industrial site smart wireless broadcasting device
EP3663778B1 (en) Low cost high frequency sensor for arc-fault detection
US8938082B2 (en) Apparatus having hearing aid
WO2022209782A1 (en) Antenna
US20130260839A1 (en) Apparatus, and associated method, for controlling volumetric output level of a handset receiver
WO2022196573A1 (en) Measurement device and measurement method
CN113253071A (en) Current sensor and cable state monitoring device based on magnetic resistance effect
KR20130026064A (en) Apparatus and method for determining dielectric access in portable terminal
CN106998524A (en) Loudspeaker test device and loudspeaker test equipment
TWI364545B (en) Switched type measurement system for measuring resistance value and voltage resisting value of tested duty
CN105190333A (en) DC high potential insulation breakdown test system and method
JP5661948B2 (en) Portable audio playback device
WO2023181706A1 (en) Partial discharge detector
KR101703271B1 (en) Wireless electric power transmission device of clip type comprising battery
KR102132628B1 (en) Bluetooth hands-free equipped with wireless charging and speaker function with portable terminal and method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780003

Country of ref document: EP

Kind code of ref document: A1