WO2022209527A1 - Aerosol generation apparatus - Google Patents

Aerosol generation apparatus Download PDF

Info

Publication number
WO2022209527A1
WO2022209527A1 PCT/JP2022/008581 JP2022008581W WO2022209527A1 WO 2022209527 A1 WO2022209527 A1 WO 2022209527A1 JP 2022008581 W JP2022008581 W JP 2022008581W WO 2022209527 A1 WO2022209527 A1 WO 2022209527A1
Authority
WO
WIPO (PCT)
Prior art keywords
aerosol
cartridge
heater
menthol
source
Prior art date
Application number
PCT/JP2022/008581
Other languages
French (fr)
Japanese (ja)
Inventor
啓司 丸橋
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to EP22779752.9A priority Critical patent/EP4316288A1/en
Priority to JP2023510695A priority patent/JPWO2022209527A1/ja
Publication of WO2022209527A1 publication Critical patent/WO2022209527A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/51Arrangement of sensors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/20Devices using solid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/42Cartridges or containers for inhalable precursors

Definitions

  • the present invention relates to an aerosol generator.
  • Patent Document 1 discloses an aerosol delivery system (aerosol generator) that generates an aerosol by vaporizing and/or atomizing an aerosol source by heating.
  • the generated aerosol flows through the second aerosol generation device (accommodation chamber) in which the aerosol-generating element (flavor source) is accommodated, whereby the flavor component contained in the flavor source becomes an aerosol.
  • the user can inhale the aerosol containing the flavor component.
  • Patent Document 1 also discloses that both the aerosol precursor composition of the reservoir substrate and the aerosol-generating element of the second aerosol-generating device may contain menthol.
  • users of aerosol generators have different tastes and flavors, just like smokers of cigarettes.
  • users of aerosol generators include those who prefer menthol flavor and those who prefer regular flavor without menthol flavor.
  • the aerosol generator can select multiple types of aerosol sources and/or flavor sources, and can generate aerosols to which multiple types of flavors are added. is desirable.
  • separate modes for controlling the discharge to the load that heats the aerosol source and/or flavor source may be provided. preferably set.
  • Patent Document 2 a detector is provided that can identify a specific smoking article from identification information printed on the smoking article, and an electric heating protocol is established based on the specific smoking article identified by the detector.
  • a heated smoking system is disclosed.
  • a cigarette sensor that can detect the type of cigarette based on the number of protrusions protruding from the joint of the cigarette, and a temperature profile corresponding to the type of cigarette detected by the cigarette sensor. and controlling the battery power supplied to the heater according to the selected temperature profile.
  • the electrically heated smoking system of Patent Document 2 requires a step of printing identification information on the smoking article, and the aerosol generating device of Patent Document 3 uses different numbers of projections for different types of cigarettes at the joints of the cigarettes.
  • a process of forming a As described above, the electrically heated smoking system of Patent Document 2 and the aerosol generator of Patent Document 3 require a step of attaching identification information to smoking articles and cigarettes, which increases the number of man-hours during manufacturing. There was a problem of getting lost.
  • the present invention provides an aerosol generator that can acquire information about the aerosol source, does not require a step of attaching identification information to the aerosol source storage unit, and can reduce man-hours during manufacturing.
  • the present invention a detachable aerosol source storage unit storing an aerosol source; a heater that heats the aerosol source to vaporize and/or atomize; a power supply unit having a power supply electrically connected to the heater and a controller capable of controlling discharge from the power supply to the heater;
  • An aerosol generator comprising A colored portion is formed in the aerosol source storage unit,
  • the aerosol generating device further comprises a color identification sensor capable of identifying the color of the colored portion,
  • the controller is It is possible to execute an aerosol source information acquisition process of acquiring information on the aerosol source stored in the aerosol source storage unit based on information on the color of the colored portion identified by the color identification sensor.
  • the present invention it is possible to acquire information on the aerosol source stored in the aerosol source storage unit, and the step of attaching identification information to the aerosol source storage unit is unnecessary, thereby reducing man-hours during manufacturing.
  • FIG. 1 is a perspective view schematically showing the schematic configuration of an aerosol inhaler
  • FIG. Figure 2 is another perspective view of the aerosol inhaler of Figure 1
  • Figure 2 is a cross-sectional view of the aerosol inhaler of Figure 1
  • 2 is a perspective view of a power supply unit in the aerosol inhaler of FIG. 1
  • FIG. 4 is an enlarged view of a main part of area A in FIG. 3, showing the vicinity of a color identification sensor in the aerosol inhaler of FIG. 1.
  • FIG. FIG. 2 is a schematic diagram showing the hardware configuration of the aerosol inhaler of FIG. 1
  • 7 is a diagram showing a specific example of the power supply unit shown in FIG. 6;
  • FIG. 2 is a flowchart (part 1: power-on control) showing the operation of the aerosol inhaler of FIG. 1;
  • FIG. FIG. 2 is a flowchart (part 2: cartridge identification processing) showing the operation of the aerosol inhaler of FIG. 1;
  • FIG. 2 is a flowchart (No. 3: standby control) showing the operation of the aerosol inhaler of FIG. 1;
  • FIG. 4 is a flowchart (part 4: discharge control and aerosol generation control) showing the operation of the aerosol inhaler of FIG. 1;
  • FIG. FIG. 5 is a flowchart (No. 5: remaining amount update processing and power off control) showing the operation of the aerosol inhaler of FIG. 1;
  • FIG. 4 is an explanatory diagram showing a specific example of control in the menthol mode (No. 1: when both the aerosol source and the flavor source contain menthol);
  • FIG. 10 is an explanatory diagram (part 2: when only the aerosol source contains menthol) showing a specific control example in the menthol mode;
  • the aerosol inhaler 1 which is one embodiment of the aerosol generating device of the present invention, will be described below with reference to FIGS. 1 to 14.
  • FIG. It should be noted that the drawings are viewed in the direction of the reference numerals.
  • the aerosol inhaler 1 generates an aerosol without combustion, adds a flavoring component to the generated aerosol, and enables a user to inhale the aerosol containing the flavoring component. It is a tool for As an example, the aerosol inhaler 1 has a bar shape.
  • the aerosol inhaler 1 includes a power supply unit 10, a cartridge cover 20 housing a cartridge 40 storing an aerosol source 71, and a capsule holder 30 housing a capsule 50 having a storage chamber 53 housing a flavor source 52. , provided.
  • the power supply unit 10, the cartridge cover 20, and the capsule holder 30 are provided in this order from one longitudinal end of the aerosol inhaler 1 to the other longitudinal end.
  • the power supply unit 10 has a substantially cylindrical shape centered on the center line L extending in the longitudinal direction of the aerosol inhaler 1 .
  • the cartridge cover 20 and the capsule holder 30 have a substantially annular shape centered on the center line L extending in the longitudinal direction of the aerosol inhaler 1 .
  • the outer peripheral surface of the power supply unit 10 and the outer peripheral surface of the cartridge cover 20 have a substantially circular ring shape with substantially the same diameter, and the capsule holder 30 has a substantially circular ring shape with a slightly smaller diameter than the power supply unit 10 and the cartridge cover 20. ing.
  • the longitudinal direction of the rod-shaped aerosol inhaler 1 is defined as the first direction X in order to simplify and clarify the description.
  • the side on which the power supply unit 10 of the aerosol inhaler 1 is arranged is defined as the bottom side
  • the side on which the capsule holder 30 of the aerosol inhaler 1 is arranged is defined as the top side for convenience.
  • the bottom side of the aerosol inhaler 1 in the first direction X is indicated by D and the top side of the aerosol inhaler 1 in the first direction by U.
  • the cartridge cover 20 has a hollow, substantially annular shape with both end faces on the bottom side and the top side opened. The bottom end of the cartridge cover 20 is connected to the top end of the power supply unit 10 . The cartridge cover 20 is detachable from the power supply unit 10 .
  • the capsule holder 30 has a hollow, substantially annular shape with both end faces on the bottom side and the top side opened.
  • the capsule holder 30 is connected at its bottom end to the top end of the cartridge cover 20 .
  • the capsule holder 30 is made of metal such as aluminum, for example.
  • the capsule holder 30 is detachable from the cartridge cover 20 .
  • the cartridge 40 has a substantially cylindrical shape and is housed inside the cartridge cover 20 .
  • the cartridge 40 can be accommodated inside the cartridge cover 20 with the capsule holder 30 removed from the cartridge cover 20 and can be taken out from the inside of the cartridge cover 20 . Therefore, the aerosol inhaler 1 can be used by replacing the cartridge 40 .
  • the capsule 50 has a substantially cylindrical shape, and has a hollow, substantially annular shape such that the top-side end in the first direction X is exposed in the first direction X from the top-side end of the capsule holder 30 . It is housed in the hollow portion of the capsule holder 30 . The capsule 50 is detachable from the capsule holder 30 . Therefore, the aerosol inhaler 1 can be used by replacing the capsule 50 .
  • the power supply unit 10 includes a power supply unit case 11 having a hollow, substantially annular shape centered on a center line L extending in the first direction X.
  • the power supply unit case 11 is made of, for example, metal such as stainless steel.
  • the power supply unit case 11 has a top surface 11a that is an end surface on the top side of the power supply unit case 11 in the first direction X, a bottom surface 11b that is an end surface on the bottom side of the power supply unit case 11 in the first direction X, and a top surface 11a. and a side surface 11c extending in the first direction X in a substantially annular shape centered on the center line L from the bottom surface 11b.
  • a discharge terminal 12 is provided on the top surface 11 a of the power supply unit case 11 .
  • the discharge terminal 12 is provided so as to protrude from the top surface 11 a of the power supply unit case 11 toward the top side in the first direction X. As shown in FIG.
  • a charging terminal 14 that can be electrically connected to an external power supply (not shown) is provided on the side surface 11c of the power supply unit case 11 .
  • the charging terminal 14 is provided on the side surface 11c near the bottom surface 11b, and is a receptacle to which a USB (Universal Serial Bus) terminal, a microUSB terminal, or the like can be connected, for example.
  • USB Universal Serial Bus
  • the charging terminal 14 may be a power receiving unit capable of contactlessly receiving power transmitted from an external power source.
  • charging terminal 14 power receiving unit
  • the wireless power transfer (WPT) method may be an electromagnetic induction type, a magnetic resonance type, or a combination of the electromagnetic induction type and the magnetic resonance type.
  • the charging terminal 14 may be a power receiving unit capable of contactlessly receiving power transmitted from an external power supply.
  • the charging terminal 14 may have both a receptacle to which a USB terminal, a microUSB terminal, or the like can be connected, and the power receiving section described above.
  • an operation section 15 that can be operated by the user is provided on the side surface 11c of the power supply unit case 11.
  • the operating portion 15 is provided on the side surface 11c near the top surface 11a.
  • the operating portion 15 is provided at a position about 180 degrees away from the charging terminal 14 with the center line L as the center when viewed from the first direction X.
  • the operation unit 15 is a circular push-button switch when the side surface 11c of the power supply unit case 11 is viewed from the outside.
  • the operation unit 15 may have a shape other than a circular shape, and may be composed of a switch other than a push button type, a touch panel, or the like.
  • the power supply unit case 11 is provided with a notification section 16 that notifies various information.
  • the notification unit 16 is composed of a light emitting element 161 and a vibration element 162 (see FIG. 6).
  • the light emitting element 161 is provided inside the power supply unit case 11 of the operation section 15 .
  • the periphery of the circular operating portion 15 is translucent when viewed from the outside of the side surface 11 c of the power supply unit case 11 and is configured to be illuminated by the light emitting element 161 .
  • the light emitting element 161 can emit red, green, blue, white, and purple light.
  • the power supply unit case 11 is provided with an air intake port (not shown) that takes in outside air.
  • the air intake port may be provided around the charging terminal 14 or may be provided around the operation unit 15, and may be provided in the power supply unit case 11 at a position away from the charging terminal 14 and the operation unit 15. may have been
  • the air intake port may be provided in the cartridge cover 20 .
  • the air intake port may be provided at two or more of the locations described above.
  • a power supply 61, an intake sensor 62, an MCU 63 (MCU: Micro Controller Unit), and a charging IC 64 (IC: Integrated Circuit) are accommodated in the hollow portion of the hollow, substantially annular power supply unit case 11.
  • an LDO regulator 65 LDO: Low Drop Out
  • a DC/DC converter 66 DC/DC converter 66
  • a first temperature detection element 67 including a voltage sensor 671 and a current sensor 672 a voltage sensor 681 and a second temperature sensing element 68 including a current sensor 682 (see FIGS. 6 and 7).
  • the power supply 61 is a chargeable/dischargeable power storage device such as a secondary battery or an electric double layer capacitor, preferably a lithium ion secondary battery.
  • the electrolyte of the power source 61 may be composed of one or a combination of a gel electrolyte, an electrolytic solution, a solid electrolyte, and an ionic liquid.
  • the intake sensor 62 is provided in the vicinity of the operation section 15.
  • the intake sensor 62 is a pressure sensor that detects a puff (suction) action.
  • the intake sensor 62 is configured to output a change in the internal pressure (internal pressure) of the power supply unit 10 caused by the user's suction through the mouthpiece 58 of the capsule 50, which will be described later.
  • the intake sensor 62 outputs an output value (e.g., a voltage value or current value).
  • the intake sensor 62 may output an analog value, or may output a digital value converted from an analog value.
  • the intake sensor 62 may incorporate a temperature sensor that detects the temperature of the environment in which the power supply unit 10 is placed (outside air temperature) in order to compensate for the detected pressure.
  • the intake sensor 62 may be composed of a condenser microphone, a flow rate sensor, or the like instead of a pressure sensor.
  • the MCU 63 is an electronic component that performs various controls for the aerosol inhaler 1.
  • the MCU 63 is specifically composed mainly of a processor, and a memory 63a composed of a storage medium such as a RAM (Random Access Memory) necessary for the operation of the processor and a ROM (Read Only Memory) for storing various information. (See FIG. 6).
  • a processor in this specification is, specifically, an electric circuit in which circuit elements such as semiconductor elements are combined.
  • the MCU 63 determines that an aerosol generation request has been made when a puff operation is performed and the output value of the intake sensor 62 exceeds the threshold. Determine that it is finished. Thus, the output value of the intake sensor 62 is used as a signal indicating the aerosol generation request. Therefore, the intake sensor 62 constitutes a sensor that outputs an aerosol generation request.
  • the intake sensor 62 may make the above determination, and the MCU 63 may receive a digital value corresponding to the determination result from the intake sensor 62 .
  • the intake sensor 62 outputs a high level signal when it is determined that the aerosol generation request has been made, and the intake sensor 62 outputs a low level signal when it is determined that the aerosol generation request has ended. may be output.
  • the threshold at which the MCU 63 or the intake sensor 62 determines that the aerosol generation request has been made may differ from the threshold at which the MCU 63 or the intake sensor 62 determines that the aerosol generation request has ended.
  • the MCU 63 may detect the aerosol generation request based on the operation of the operation unit 15 instead of the intake sensor 62 .
  • the operation unit 15 may output a signal indicating an aerosol generation request to the MCU 63 .
  • the operation unit 15 constitutes a sensor that outputs an aerosol generation request.
  • the charging IC 64 is provided near the charging terminal 14 .
  • the charging IC 64 controls charging of the power source 61 by controlling the power input from the charging terminal 14 and charged to the power source 61 .
  • charge IC64 may be arrange
  • the cartridge 40 includes a substantially cylindrical cartridge case 41 whose longitudinal direction is the axial direction.
  • the cartridge case 41 is made of colorless and transparent resin such as polycarbonate.
  • a storage chamber 42 for storing the aerosol source 71 and a heating chamber 43 for heating the aerosol source 71 are formed inside the cartridge case 41 .
  • the heating chamber 43 includes a wick 44 that transports the aerosol source 71 stored in the storage chamber 42 to the heating chamber 43 and holds it in the heating chamber 43, and heats the aerosol source 71 held in the wick 44 to vaporize and/or Or the first heater 45 for atomization is accommodated.
  • the cartridge 40 further includes a first aerosol flow path 46 that aerosolizes and transports the aerosol source 71 heated by the first heater 45 to be vaporized and/or atomized from the heating chamber 43 toward the capsule 50 .
  • the storage chamber 42 and the heating chamber 43 are formed adjacent to each other in the longitudinal direction of the cartridge 40 .
  • the heating chamber 43 is formed at one longitudinal end of the cartridge 40
  • the storage chamber 42 is adjacent to the heating chamber 43 in the longitudinal direction of the cartridge 40 and extends to the other longitudinal end of the cartridge 40 . is formed in
  • the storage chamber 42 has a hollow, substantially annular shape whose axial direction is the longitudinal direction of the cartridge 40, and stores the aerosol source 71 in the annular portion.
  • the storage chamber 42 may contain a porous body such as a resin web or cotton, and the porous body may be impregnated with the aerosol source 71 .
  • the storage chamber 42 may store only the aerosol source 71 without storing the resin web or the cotton-like porous body.
  • Aerosol source 71 includes liquids such as glycerin and/or propylene glycol.
  • the aerosol source 71 may contain menthol 80.
  • a regular type cartridge 40 in which an aerosol source 71 not containing menthol 80 is stored in a storage chamber 42 and a menthol type cartridge 40 in which an aerosol source 71 containing menthol 80 is stored in a storage chamber 42 are divided into aerosol It is provided to the user by the manufacturer of the suction device 1 or the like.
  • FIG. 3 shows an example in which a menthol-type cartridge 40 in which an aerosol source 71 containing menthol 80 is stored in a storage chamber 42 is attached.
  • FIG. 3 shows an example in which a menthol-type cartridge 40 in which an aerosol source 71 containing menthol 80 is stored in a storage chamber 42 is attached.
  • the menthol 80 is shown in the form of particles for the sake of clarity of explanation, but in this embodiment, the menthol 80 is dissolved in a liquid such as glycerin and/or propylene glycol. Moreover, the menthol 80 shown in FIG. Note that does not necessarily match the real thing.
  • the wick 44 is a liquid retaining member that draws the aerosol source 71 stored in the storage chamber 42 from the storage chamber 42 into the heating chamber 43 using capillary action and retains the aerosol source 71 in the heating chamber 43 .
  • the wick 44 is made of glass fiber, porous ceramic, or the like, for example. Note that the wick 44 may extend inside the storage chamber 42 .
  • the first heater 45 is electrically connected to the connection terminal 47 .
  • the first heater 45 is composed of a heating wire (coil) wound around the wick 44 at a predetermined pitch.
  • the first heater 45 may be any element that can heat the aerosol source 71 held by the wick 44 to vaporize and/or atomize it.
  • the first heater 45 may be, for example, a heating element such as a heating resistor, a ceramic heater, or an induction heater.
  • a heater having a correlation between temperature and electrical resistance is used.
  • a heater having a PTC (Positive Temperature Coefficient) characteristic in which the electric resistance value increases as the temperature increases is used.
  • the first heater 45 may have NTC (Negative Temperature Coefficient) characteristics in which the electrical resistance value decreases as the temperature increases.
  • part of the first heater 45 may be provided outside the heating chamber 43 .
  • the first aerosol flow path 46 is formed in the hollow portion of the storage chamber 42 having a hollow, substantially annular shape, and extends in the longitudinal direction of the cartridge 40 .
  • the first aerosol flow path 46 is formed by a wall portion 46 a extending in a substantially annular shape in the longitudinal direction of the cartridge 40 .
  • a wall portion 46a of the first aerosol flow path 46 also serves as an inner peripheral side wall portion of the storage chamber 42 having a substantially annular shape.
  • the first aerosol channel 46 is connected to the heating chamber 43 at a first end 461 in the longitudinal direction of the cartridge 40 , and is connected to the heating chamber 43 at a second end 462 in the longitudinal direction of the cartridge 40 at the other end of the cartridge case 41 . is open to
  • An electrode portion 48 provided with a connection terminal 47 is provided at one end of the cartridge case 41 in the longitudinal direction, that is, at the end of the cartridge case 41 on the side where the heating chamber 43 is arranged in the longitudinal direction of the cartridge 40 . mated.
  • the electrode portion 48 has a bottomed cylindrical shape that is approximately the same center and approximately the same diameter as the cartridge case 41 . 40 end faces.
  • the connection terminal 47 is provided on the surface of the bottom surface 48 a of the electrode portion 48 facing the outside of the cartridge 40 and is exposed on the outer surface of the cartridge 40 .
  • a colored portion 49 is formed in the cartridge 40 .
  • the colored portion 49 is formed on the electrode portion 48 of the cartridge 40 .
  • the colored portion 49 is formed by forming at least part of the electrode portion 48 with colored resin.
  • the colored portion 49 is formed on the entire bottomed cylindrical electrode portion 48 , and the outer surface of the cylindrical surface of the electrode portion 48 is the colored portion 49 .
  • the colored portion 49 forms part of the outer surface of the cartridge 40 and is visible from the outside of the cartridge 40 .
  • the colored portion 49 is located inside the cartridge case 41 made of colorless and transparent resin, and is visible from the outside of the cartridge 40 through the cartridge case 41 made of colorless and transparent resin. may be Note that the colored portion 49 may be formed on the cartridge 40 and may be formed on a portion other than the electrode portion 48 . At this time, the colored portion 49 forms part of the outer surface of the cartridge 40 and is preferably visible from the outside of the cartridge 40 .
  • the colored portion 49 is colored differently for each flavor type of the aerosol source 71 stored in the storage chamber 42 of the cartridge 40 .
  • the colored portion 49 may be colored in an arbitrary color that differs for each flavor type of the aerosol source 71 stored in the storage chamber 42 of the cartridge 40 .
  • the colored portion 49 is preferably colored red, green, or blue for each flavor type of the aerosol source 71 stored in the storage chamber 42 of the cartridge 40 .
  • the colored portion 49 of the regular type cartridge 40 in which the aerosol source 71 not containing the menthol 80 is stored in the storage chamber 42 is colored red, and the aerosol source 71 containing the menthol 80 is stored in the storage chamber 42.
  • the colored portion 49 of the stored menthol type cartridge 40 is colored green.
  • the colored portion 49 is formed so as not to transmit light.
  • the cartridge 40 is housed in the hollow portion of the hollow, substantially annular cartridge cover 20 so that the longitudinal direction of the cartridge 40 is aligned with the first direction X, which is the longitudinal direction of the aerosol inhaler 1 . Further, in the first direction X, the cartridge 40 has the heating chamber 43 on the bottom side of the aerosol inhaler 1 (that is, the power supply unit 10 side), and the storage chamber 42 on the top side of the aerosol inhaler 1 (that is, the capsule 50 side). , is accommodated in the hollow portion of the cartridge cover 20. As shown in FIG.
  • the first aerosol flow path 46 of the cartridge 40 is formed to extend in the first direction X along the center line L of the aerosol inhaler 1 when the cartridge 40 is housed inside the cartridge cover 20 .
  • the cartridge 40 is inserted into the hollow portion of the cartridge cover 20 so that the connection terminal 47 is kept in contact with the discharge terminal 12 provided on the top surface 11a of the power supply unit case 11 when the aerosol inhaler 1 is used. be accommodated.
  • the power supply 61 of the power supply unit 10 is electrically connected to the first heater 45 of the cartridge 40 via the discharge terminal 12 and the connection terminal 47 . connected to
  • the cartridge 40 allows the air flowing in from an air intake port (not shown) provided in the power supply unit case 11 to flow into the power supply unit case as indicated by an arrow B in FIG.
  • the air is housed in the hollow portion of the cartridge cover 20 so as to be taken into the heating chamber 43 from the air supply portion 13 provided on the top surface 11 a of the cartridge cover 20 .
  • the arrow B is inclined with respect to the center line L in FIG. 3, it may be in the same direction as the center line L. In other words, the arrow B may be parallel to the centerline L.
  • the first heater 45 is supplied with electric power from the power supply 61 through the discharge terminal 12 provided on the power supply unit case 11 and the connection terminal 47 provided on the cartridge 40. heats the aerosol source 71 held in the wick 44 without combustion. Then, in the heating chamber 43, the aerosol source 71 heated by the first heater 45 is vaporized and/or atomized.
  • the vaporized and/or atomized aerosol source 71 includes vaporized and/or atomized glycerin and/or or vaporized and/or atomized menthol 80 together with propylene glycol or the like.
  • the aerosol source 71 vaporized and/or atomized in the heating chamber 43 aerosolizes the air taken into the heating chamber 43 from the air supply section 13 of the power supply unit case 11 as a dispersion medium. Further, the aerosol source 71 vaporized and/or atomized in the heating chamber 43 and the air taken into the heating chamber 43 from the air supply section 13 of the power supply unit case 11 are connected to the heating chamber 43 through a first aerosol flow path. It flows through the first aerosol channel 46 from the first end 461 of 46 to the second end 462 of the first aerosol channel 46 while being further aerosolized.
  • the temperature of the aerosol source 71 vaporized and/or atomized in the heating chamber 43 decreases while flowing through the first aerosol flow path 46, promoting aerosolization.
  • the heating chamber 43 and the first aerosol are generated by the aerosol source 71 vaporized and/or atomized in the heating chamber 43 and the air taken into the heating chamber 43 from the air supply section 13 of the power supply unit case 11.
  • Aerosol 72 is generated in channel 46 .
  • the aerosol 72 in the heating chamber 43 and the first aerosol flow path 46 contains the aerosolized menthol 80 derived from the aerosol source 71. is also included.
  • the capsule 50 has a substantially cylindrical shape and includes a side wall 51 extending substantially annularly with both end faces open.
  • the side walls 51 are made of, for example, resin such as plastic.
  • Capsule 50 comprises a containment chamber 53 in which flavor source 52 is contained.
  • the flavor source 52 includes tobacco granules 521 formed by granulating tobacco raw materials. Flavor source 52 may contain menthol 80 in addition to tobacco granules 521 .
  • the regular type capsule 50 containing the flavor source 52 not containing the menthol 80 and the menthol type capsule 50 containing the flavor source 52 containing the menthol 80 are produced by the manufacturer of the aerosol inhaler 1 or the like. provided to the user.
  • FIG. 3 shows an example in which a menthol-type capsule 50 containing a flavor source 52 containing menthol 80 is attached.
  • the flavor source 52 of the menthol-type capsule 50 has menthol 80 adsorbed to tobacco granules 521 .
  • the flavor source 52 may contain shredded tobacco instead of the tobacco granules 521. Also, the flavor source 52 may contain plants other than tobacco (for example, mint, Chinese medicine, herbs, etc.) instead of the tobacco granules 521 . Also, the flavor source 52 may be added with other flavoring agents in addition to the menthol 80 .
  • the accommodation chamber 53 is formed in the internal space of the capsule 50 surrounded by the side walls 51 .
  • the storage chamber 53 includes an inlet portion 54 provided at one end side of the capsule 50 extending in a substantially cylindrical shape in the cylindrical axial direction, and an outlet portion 55 provided at the other end side of the capsule 50 in the cylindrical axial direction.
  • the inlet portion 54 is formed in the bottom portion of the capsule 50 and constitutes the bottom surface of the capsule 50 .
  • the inlet portion 54 is a mesh-shaped partition through which the flavor source 52 cannot pass but the aerosol 72 can pass.
  • the outlet part 55 is a filter member filled in the inner space of the capsule 50 surrounded by the side wall 51 at the top side end of the side wall 51 in the cylindrical axis direction of the capsule 50 .
  • Outlet portion 55 is a filter member through which flavor source 52 is impermeable and aerosol 72 is permeable. Although the outlet 55 is provided near the top of the capsule 50 in this embodiment, the outlet 55 may be provided at a position spaced apart from the top of the capsule 50 .
  • the containing chamber 53 is surrounded by side walls 51 , an inlet portion 54 and an outlet portion 55 .
  • a suction port 58 for the user to perform a suction operation is formed on the other end side of the outlet portion 55 in the axial direction of the cylinder, that is, on the top side of the outlet portion 55 in the axial direction of the cylinder.
  • the capsule holder 30 has a substantially annular side wall 31 extending in the first direction X, and has a hollow substantially annular shape with both end faces on the bottom side and the top side opened.
  • the side wall 31 has a substantially annular shape with a slightly larger diameter than the side wall 51 of the capsule 50 .
  • the side walls 31 are made of metal such as aluminum, for example.
  • the bottom side end of the capsule holder 30 is connected to the top side end of the cartridge cover 20 by screwing, engagement, or the like, so that the capsule holder 30 can be attached to and detached from the cartridge cover 20 .
  • the inner peripheral surface 31a of the substantially annular side wall 31 has an annular shape centered on the center line L of the aerosol inhaler 1, has a larger diameter than the first aerosol flow path 46 of the cartridge 40, and has a cartridge cover. It has a smaller diameter than 20.
  • the capsule holder 30 has a bottom wall 32 provided at the end of the side wall 31 on the bottom side.
  • the bottom wall 32 is made of resin, for example.
  • the bottom wall 32 is fixed to the bottom side end of the side wall 31 and closes the hollow portion surrounded by the inner peripheral surface of the side wall 31 at the bottom side end of the side wall 31 except for a communication hole 33 which will be described later.
  • a communication hole 33 penetrating in the first direction X is provided in the bottom wall 32 .
  • the communication hole 33 is formed at a position overlapping the center line L when viewed from the first direction.
  • the communication hole 33 is the first
  • An aerosol flow path 46 is formed so as to be positioned inside the communication hole 33 .
  • a second heater 34 is provided on the side wall 31 of the capsule holder 30 .
  • the second heater 34 has an annular shape along the substantially annular side wall 31 and extends in the first direction X. As shown in FIG.
  • the second heater 34 heats the storage chamber 53 of the capsule 50 to heat the flavor source 52 stored in the storage chamber 53 .
  • the second heater 34 may be any element that can heat the flavor source 52 by heating the housing chamber 53 of the capsule 50 .
  • the second heater 34 may be, for example, a heating element such as a heating resistor, a ceramic heater, or an induction heater.
  • the second heater 34 has a correlation between temperature and electrical resistance.
  • the second heater 34 for example, a heater having a PTC (Positive Temperature Coefficient) characteristic is used in which the electrical resistance value increases as the temperature increases.
  • the second heater 34 may have, for example, NTC (Negative Temperature Coefficient) characteristics in which the electrical resistance value decreases as the temperature increases.
  • the second heater 34 is electrically connected to the power supply 61 of the power supply unit 10 (FIGS. 6 and 6). See Figure 7).
  • the discharge terminal 17 see FIG. 6
  • the second heater 34 of the capsule holder 30 is electrically connected to the power supply 61 of the power supply unit 10 via the discharge terminal 17 and the connection terminals of the capsule holder 30.
  • the aerosol inhaler 1 configured as described above is used with the cartridge cover 20, the capsule holder 30, the cartridge 40, and the capsule 50 attached to the power supply unit 10.
  • FIG. In this state, the aerosol inhaler 1 has an aerosol channel 90 formed by at least the first aerosol channel 46 provided in the cartridge 40 and the communication hole 33 provided in the bottom wall 32 of the capsule holder 30. It is formed.
  • the aerosol channel 90 connects the heating chamber 43 of the cartridge 40 and the storage chamber 53 of the capsule 50 and transports the aerosol 72 generated in the heating chamber 43 from the heating chamber 43 to the storage chamber 53 .
  • the aerosol inhaler 1 when the user performs a suction operation from the suction port 58, the air that has flowed in from the air intake port (not shown) provided in the power supply unit case 11 will flow into the direction indicated by the arrow B in FIG. , the air is taken into the heating chamber 43 of the cartridge 40 from the air supply portion 13 provided on the top surface 11a of the power supply unit case 11. As shown in FIG. Further, the first heater 45 generates heat, the aerosol source 71 held by the wick 44 is heated, and the aerosol source 71 heated by the first heater 45 is vaporized and/or atomized in the heating chamber 43 .
  • the aerosol source 71 vaporized and/or atomized by the first heater 45 aerosolizes the air taken into the heating chamber 43 from the air supply section 13 of the power supply unit case 11 as a dispersion medium.
  • the aerosol source 71 vaporized and/or atomized in the heating chamber 43 and the air taken into the heating chamber 43 from the air supply section 13 of the power supply unit case 11 pass through the first aerosol flow path 46 communicating with the heating chamber 43 . It flows through the first aerosol channel 46 from the first end 461 to the second end 462 of the first aerosol channel 46 while being further aerosolized.
  • the aerosol 72 generated in this manner passes from the second end 462 of the first aerosol channel 46 through the communication hole 33 provided in the bottom wall 32 of the capsule holder 30 and is received from the inlet 54 of the capsule 50 . introduced into chamber 53;
  • the aerosol 72 introduced into the storage chamber 53 from the entrance portion 54 mixes with the flavor stored in the storage chamber 53 when flowing through the storage chamber 53 from the entrance portion 54 to the outlet portion 55 in the first direction X of the aerosol inhaler 1 .
  • Flavor components are added from the flavor source 52 by passing through the source 52 .
  • the aerosol 72 flows in the first direction X of the aerosol inhaler 1 from the inlet portion 54 to the outlet portion 55 in the storage chamber 53 . Therefore, in the present embodiment, the flow direction of the aerosol 72 flowing from the inlet portion 54 to the outlet portion 55 in the storage chamber 53 is the cylindrical axis direction of the capsule 50 and the first direction X of the aerosol inhaler 1. It has become.
  • the second heater 34 provided in the capsule holder 30 generates heat to heat the storage chamber 53 .
  • the flavor source 52 accommodated in the accommodation chamber 53 and the aerosol 72 flowing through the accommodation chamber 53 are heated.
  • the cartridge cover 20 has a substantially annular outer peripheral wall 21 extending in the first direction X, and the outer peripheral wall 21 and the outer peripheral wall 21 are substantially concentric within the annular ring of the outer peripheral wall 21 . and a substantially annular inner peripheral wall 22 extending in the first direction X facing the .
  • the outer peripheral wall 21 is made of, for example, metal such as stainless steel, and does not transmit light.
  • the inner peripheral wall 22 is made of, for example, a resin such as polycarbonate, and is colorless and transparent to transmit light.
  • a space 23 is formed between the outer peripheral wall 21 and the inner peripheral wall 22 .
  • a color identification sensor 24 capable of identifying the color of the colored portion 49 of the cartridge 40 is provided in the space 23 . Therefore, the cartridge 40 is accommodated in the space inside the inner peripheral wall 22 surrounded by the inner peripheral wall 22 of the cartridge cover 20, and the color identification sensor 24 is separated from the space in which the cartridge 40 is accommodated by the inner peripheral wall 22. , are provided in a space 23 formed outside the inner peripheral wall 22 .
  • the color identification sensor 24 cannot be fixed when the user performs the suction operation when using the aerosol inhaler 1 . It is possible to prevent the user from sucking components such as solder and adhesive used in the assembly.
  • the color identification sensor 24 is provided at a position facing the colored portion 49 of the cartridge 40 when the cartridge cover 20 is attached to the power supply unit 10 and the cartridge 40 is attached inside the cartridge cover 20 .
  • the color identification sensor 24 detects the external surface of the cylindrical surface of the electrode portion 48 of the cartridge 40 . are arranged at positions facing each other on the outside in the radial direction.
  • the color identification sensor 24 receives light reflected from a light projecting portion 241 capable of projecting light into the interior of the cartridge cover 20 toward the colored portion 49 of the cartridge 40, and the light reflected from the colored portion 49 of the cartridge 40. and a color sensor unit 242 that quantifies the color components of light.
  • a light blocking member 25 that does not transmit light is provided between the color identification sensor 24 and the inner peripheral wall 22 of the cartridge cover 20 in the space 23 .
  • the light shielding member 25 may be, for example, a light shielding film adhered to the surface of the inner peripheral wall 22 facing the outer peripheral wall 21 , or a surface of the inner peripheral wall 22 facing the outer peripheral wall 21 .
  • a light-shielding film made of a material that does not transmit light and is formed as a film may also be used.
  • the light shielding member 25 is formed with a light transmitting portion 25a that transmits light.
  • the light transmitting portion 25a is, for example, a through hole formed in the light shielding member 25. As shown in FIG. When the cartridge cover 20 is attached to the power supply unit 10 and the cartridge 40 is attached inside the cartridge cover 20, the light transmitting portion 25a is configured to transmit light to the light emitting portion 241 of the color identification sensor 24 and the coloring portion 49 of the cartridge 40. and between the color sensor portion 242 of the color identification sensor 24 and the coloring portion 49 of the cartridge 40, respectively.
  • the light transmitting portion 25a is a light transmitting portion 241 and a color sensor portion 242 of the color identification sensor 24 when the cartridge cover 20 is attached to the power supply unit 10 and the cartridge 40 is attached inside the cartridge cover 20. It may be formed at a position and size between both and the colored portion 49 of the cartridge 40 .
  • the light projecting section 241 of the color identification sensor 24 projects white light inside the cartridge cover 20 toward the coloring section 49 of the cartridge 40 .
  • the light projecting unit 241 has, for example, a blue LED element and a yellow phosphor, and the yellow phosphor is excited by the blue light emitted from the blue LED element and the blue light emitted from the blue LED element to emit light.
  • White light may be produced by mixing with yellow light.
  • the light projecting unit 241 includes, for example, a near-ultraviolet LED element, a red phosphor, a green phosphor, and a blue phosphor, and the red phosphor is excited by the near-ultraviolet light emitted from the near-ultraviolet LED element.
  • White light is generated by mixing the emitted red light, the green light emitted when excited by the green phosphor, and the blue light emitted when excited by the blue phosphor.
  • the light projecting unit 241 has, for example, a red LED element, a green LED element, and a blue LED element, and emits red light emitted from the red LED element, green light emitted from the green LED element, and light emitted from the blue LED element.
  • White light may be generated by mixing the blue light that is applied.
  • the white light projected from the light projecting portion 241 passes through the light transmitting portion 25 a of the light shielding member 25 and irradiates the colored portion 49 of the cartridge 40 .
  • the white light irradiated to the colored portion 49 of the cartridge 40 reflects light of a specific wavelength according to the color of the colored portion 49 .
  • the color sensor portion 242 of the color identification sensor 24 receives the light reflected by the colored portion 49 in accordance with the color and passes through the light transmitting portion 25a of the light shielding member 25, and the light receiving portion receives the light. and an analog-to-digital converter for digitizing the color components of the light.
  • the light receiving unit has a photodiode that receives the red component, a photodiode that receives the green component, and a photodiode that receives the blue component, and the analog-to-digital converter is , the amount of light received by each of the photodiode that receives the red component, the photodiode that receives the green component, and the photodiode that receives the blue component, the red component, the green component, and the blue component of the light received by the light receiving unit are set to 0, respectively. It quantifies to a value of ⁇ 255.
  • the light receiving unit has a plurality of photodiodes that are wavelength-divided within the visible region, and the analog-to-digital converter converts the amount of light received by each photodiode into The red component, the green component, and the blue component of the light received by the light receiving section may each be quantified into values from 0 to 255.
  • the colored portion 49 of the cartridge 40 is formed so as not to transmit light, it is possible to increase the amount of reflected light reflected according to the color of the colored portion 49 .
  • the light receiving portion can receive more light reflected according to the color of the colored portion 49, so that the color components of the light received by the light receiving portion can be quantified with high accuracy, and the color of the colored portion 49 can be identified with high accuracy.
  • the colored portion 49 of the cartridge 40 is colored red, green, or blue (in this embodiment, the colored portion 49 of the regular type cartridge 40 in which the aerosol source 71 not containing the menthol 80 is stored in the storage chamber 42). 49 is colored red, and the colored portion 49 of the menthol type cartridge 40 in which the aerosol source 71 containing menthol 80 is stored in the storage chamber 42 is colored green).
  • the color of the coloring unit 49 of the cartridge 40 is identified from the values of the red, green, and blue components of the light received by the light receiving unit, which are digitized by the analog-to-digital converter. becomes easier.
  • the color identification sensor 24 is provided on the cartridge cover 20, the color identification sensor 24 can be arranged in the vicinity of the colored portion 49 of the cartridge 40 without increasing the size of the aerosol inhaler 1. The color applied to the colored portion 49 can be identified.
  • a light blocking member 25 that does not transmit light is provided between the color identification sensor 24 and the inner peripheral wall 22 of the cartridge cover 20 . Since the colored portion 49 of the cartridge 40 is irradiated through the light transmitting portion 25a, it is possible to prevent the colored portion 49 of the cartridge 40 from being irradiated with light other than the white light projected from the light projecting portion 241 . Further, a light blocking member 25 that does not transmit light is provided between the color identification sensor 24 and the inner peripheral wall 22 of the cartridge cover 20, and the color sensor portion 242 of the color identification sensor 24 is colored in the colored portion 49.
  • the color sensor portion 242 of the color identification sensor 24 reflects the light according to the color of the colored portion 49. Reception of light other than light can be suppressed. Accordingly, the color of the colored portion 49 of the cartridge 40 can be accurately identified in the color sensor portion 242 of the color identification sensor 24 .
  • the color sensor unit 242 of the color identification sensor 24 determines the hue and saturation from the values of the red, green and blue components of the light received by the light receiving unit which are digitized by the analog-to-digital converter. ) and Lightness.
  • the hue (Hue) is a value of 0 to 360 degrees and the saturation (Saturation) is set to A value from 0 to 100 is converted to a value from 0 to 100 for the brightness.
  • the color components of the light received by the light receiving section can be quantified with high accuracy with respect to the variation in the light receiving luminance in the light receiving section.
  • the color sensor unit 242 of the color identification sensor 24 uses the values of the red, green, and blue components of the light received by the light-receiving unit, which are digitized by the analog-to-digital converter, to determine the color of a known color sample book. You may convert into identification information.
  • the color identification sensor 24 has values of 0 to 255 for each of the red, green, and blue components of the light received by the light-receiving unit digitized by the analog-to-digital converter of the color sensor unit 242, and HSL-converted hue (Hue ) of 0 to 360 degrees, Saturation of 0 to 100, and Brightness of 0 to 100, and color identification information of the color sample book, at least one of It is output to the MCU 63 as information about the color of the coloring portion 49 of the cartridge 40 .
  • a DC/DC converter 66 which is an example of a voltage converter capable of converting the output voltage of the power supply 61 and applying it to the first heater 45, is installed in the power supply unit 10. It is connected between the first heater 45 and the power source 61 in the attached state.
  • MCU 63 is connected between DC/DC converter 66 and power supply 61 .
  • the second heater 34 is connected to a connection node provided between the MCU 63 and the DC/DC converter 66 when the cartridge 40 is attached to the power supply unit 10 .
  • the series circuit of the DC/DC converter 66 and the first heater 45 and the second heater 34 are connected in parallel to the power supply 61 when the cartridge 40 is attached.
  • the DC/DC converter 66 is a booster circuit controlled by the MCU 63 and capable of boosting an input voltage (for example, the output voltage of the power supply 61), and is configured to apply the input voltage or a voltage obtained by boosting the input voltage to the first heater 45. It is Since the power supplied to the first heater 45 can be adjusted by changing the voltage applied to the first heater 45 by the DC/DC converter 66, the amount of the aerosol source 71 vaporized or atomized by the first heater 45 can be controlled.
  • a switching regulator can be used that converts an input voltage into a desired output voltage by controlling the on/off time of a switching element while monitoring the output voltage.
  • the DC/DC converter 66 When a switching regulator is used as the DC/DC converter 66, by controlling the switching element, the input voltage can be directly output without being boosted.
  • the DC/DC converter 66 may be used, for example, to set the voltage applied to the first heater 45 to V1 to V5 [V], which will be described later.
  • the MCU 63 is configured to acquire the temperature of the second heater 34, the temperature of the flavor source 52, or the temperature of the storage chamber 53 (that is, a second temperature T2 described later) in order to control discharge to the second heater 34. be. Also, the MCU 63 is preferably configured to acquire the temperature of the first heater 45 .
  • the temperature of the first heater 45 can be used to suppress overheating of the first heater 45 and/or the aerosol source 71 and to highly control the amount of the aerosol source 71 vaporized or atomized by the first heater 45 .
  • the voltage sensor 671 measures and outputs the voltage value applied to the first heater 45 .
  • the current sensor 672 measures and outputs the current value flowing through the first heater 45 .
  • the output of the voltage sensor 671 and the output of the current sensor 672 are input to the MCU 63 respectively.
  • the MCU 63 acquires the resistance value of the first heater 45 based on the output of the voltage sensor 671 and the output of the current sensor 672, and acquires the temperature of the first heater 45 based on the acquired resistance value of the first heater 45. .
  • the current sensor 672 in the first temperature detection element 67 is unnecessary. Similarly, if a constant voltage is applied to the first heater 45 when obtaining the resistance value of the first heater 45 , the voltage sensor 671 is not required in the first temperature detection element 67 .
  • the voltage sensor 681 measures and outputs the voltage value applied to the second heater 34 .
  • the current sensor 682 measures and outputs the current value flowing through the second heater 34 .
  • the output of the voltage sensor 681 and the output of the current sensor 682 are input to the MCU 63 respectively.
  • the MCU 63 acquires the resistance value of the second heater 34 based on the output of the voltage sensor 681 and the output of the current sensor 682, and acquires the temperature of the second heater 34 based on the acquired resistance value of the second heater 34. .
  • the temperature of the second heater 34 does not strictly match the temperature of the flavor source 52 heated by the second heater 34, it can be regarded as substantially the same as the temperature of the flavor source 52. Also, although the temperature of the second heater 34 does not strictly match the temperature of the storage chamber 53 of the capsule 50 heated by the second heater 34, it can be regarded as substantially the same as the temperature of the storage chamber 53 of the capsule 50. can be done. Therefore, the second temperature detection element 68 can also be used as a temperature detection element for detecting the temperature of the flavor source 52 or the temperature of the storage chamber 53 of the capsule 50 .
  • the current sensor 682 in the second temperature detection element 68 is unnecessary. Similarly, if a constant voltage is applied to the second heater 34 when obtaining the resistance value of the second heater 34 , the voltage sensor 681 is not required in the second temperature detection element 68 .
  • the second temperature detection element 68 is provided in the capsule holder 30 or the cartridge 40, the temperature of the second heater 34, the temperature of the flavor source 52, or the storage chamber 53 of the capsule 50 is determined based on the output of the second temperature detection element 68.
  • the second temperature detection element 68 be provided in the power supply unit 10 that is replaced most frequently in the aerosol inhaler 1 . By doing so, it is possible to reduce the manufacturing cost of the capsule holder 30 and the cartridge 40 and provide the user with the capsule holder 30 and the cartridge 40, which are replaced more frequently than the power supply unit 10, at a low cost.
  • FIG. 7 is a diagram showing a specific example of the power supply unit 10 shown in FIG. FIG. 7 shows a specific example of a configuration that does not have the current sensor 682 as the second temperature detection element 68 and does not have the current sensor 672 as the first temperature detection element 67 .
  • the power supply unit 10 includes a power supply 61, an MCU 63, an LDO regulator 65, a switch SW1, and a series circuit of a resistance element R1 connected in parallel to the switch SW1 and a switch SW2.
  • a parallel circuit C2 consisting of a parallel circuit C1, a switch SW3, a resistor element R2 connected in parallel to the switch SW3, and a series circuit of the switch SW4, an operational amplifier OP1 and an analog-to-digital converter ADC1 that constitute the voltage sensor 671.
  • an operational amplifier OP2 and an analog-to-digital converter ADC2 that constitute the voltage sensor 681 .
  • the resistive element described in this specification may be any element that has a fixed electrical resistance value, such as a resistor, diode, or transistor.
  • the resistive element R1 and the resistive element R2 are resistors.
  • the switch described in this specification is a switching element such as a transistor that switches between disconnection and conduction of a wiring path. It may be a field effect transistor such as a film semiconductor field effect transistor (MOSFET: Metal-Oxide-Semiconductor Field-Effect Transistor). Also, the switches described in this specification may be configured by relays. In the example of FIG. 7, each of the switches SW1 to SW4 is a transistor.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the LDO regulator 65 is connected to the main positive bus LU connected to the positive terminal of the power supply 61 .
  • the MCU 63 is connected to the LDO regulator 65 and the main negative bus LD connected to the negative pole of the power supply 61 .
  • the MCU 63 is also connected to each of the switches SW1 to SW4 and performs opening/closing control thereof.
  • the LDO regulator 65 steps down the voltage from the power supply 61 and outputs it.
  • the output voltage V0 of the LDO regulator 65 is also used as the operating voltage of each of the MCU 63, the DC/DC converter 66, the operational amplifier OP1, the operational amplifier OP2, and the notification unit 16.
  • the DC/DC converter 66 is connected to the main positive bus LU.
  • the first heater 45 is connected to the main negative bus LD.
  • a parallel circuit C1 is connected to the DC/DC converter 66 and the first heater 45 .
  • the parallel circuit C2 is connected to the main positive bus LU.
  • the second heater 34 is connected to the parallel circuit C2 and the main negative bus LD.
  • the non-inverting input terminal of the operational amplifier OP1 is connected to the connection node between the parallel circuit C1 and the first heater 45.
  • the inverting input terminal of the operational amplifier OP1 is connected to the output terminal of the operational amplifier OP1 and the main negative bus LD through a resistance element.
  • a non-inverting input terminal of the operational amplifier OP2 is connected to a connection node between the parallel circuit C2 and the second heater 34.
  • the inverting input terminal of the operational amplifier OP2 is connected to the output terminal of the operational amplifier OP2 and the main negative bus LD through a resistance element.
  • the analog-to-digital converter ADC1 is connected to the output terminal of the operational amplifier OP1.
  • the analog-to-digital converter ADC2 is connected to the output terminal of the operational amplifier OP2.
  • the analog-to-digital converter ADC1 and the analog-to-digital converter ADC2 may be provided outside the MCU 63 .
  • the MCU 63 includes a temperature detection section, a power control section, and a notification control section as functional blocks implemented by the processor executing a program stored in the memory 63a.
  • the temperature detection unit acquires the first temperature T1, which is the temperature of the first heater 45, based on the output of the first temperature detection element 67.
  • the temperature detection section obtains a second temperature T2, which is the temperature of the second heater 34, the temperature of the flavor source 52, or the temperature of the storage chamber 53, based on the output of the second temperature detection element 68.
  • the temperature detection unit controls the switch SW1, the switch SW3, and the switch SW4 to be in an interrupted state, and controls the switch SW2 to be in a conducting state. (the voltage value applied to the first heater 45) is acquired, and the first temperature T1 is acquired based on this output value.
  • the non-inverting input terminal of the operational amplifier OP1 may be connected to the terminal of the resistance element R1 on the DC/DC converter 66 side, and the inverting input terminal of the operational amplifier OP1 may be connected to the terminal of the resistance element R1 on the switch SW2 side.
  • the temperature detection unit controls the switch SW1, the switch SW3, and the switch SW4 to be in a disconnected state, and controls the switch SW2 to be in a conductive state.
  • voltage value applied to the resistance element R1) can be obtained, and the first temperature T1 can be obtained based on this output value.
  • the temperature detection unit controls the switch SW1, the switch SW2, and the switch SW3 to be in a disconnected state, and controls the switch SW4 to be in a conducting state.
  • the output value of the device ADC2 (the voltage value applied to the second heater 34) is obtained, and the second temperature T2 is obtained based on this output value.
  • the non-inverting input terminal of the operational amplifier OP2 may be connected to the terminal of the resistive element R2 on the main positive bus LU side, and the inverting input terminal of the operational amplifier OP2 may be connected to the terminal of the resistive element R2 on the switch SW4 side.
  • the temperature detection unit controls the switch SW1, the switch SW2, and the switch SW3 to be in a disconnected state, and controls the switch SW4 to be in a conductive state.
  • voltage value applied to the resistance element R2) can be obtained, and the second temperature T2 can be obtained based on this output value.
  • the notification control unit controls the notification unit 16 to notify the user of various types of information. For example, when the notification control unit detects that it is time to replace the capsule 50 , the notification control unit controls the notification unit 16 to issue a capsule replacement notification that prompts replacement of the capsule 50 . When the notification control unit detects that it is time to replace the cartridge 40 , the notification control unit controls the notification unit 16 to issue a cartridge replacement notification that prompts replacement of the cartridge 40 . Further, when the notification control unit detects that the power supply 61 has become low, the notification control unit controls the notification unit 16 so as to issue a notification prompting replacement or charging of the power supply 61, or changes the control state by the MCU 63 at a predetermined timing. (For example, menthol mode or regular mode, which will be described later) may be controlled to notify the notification unit 16 .
  • menthol mode or regular mode which will be described later
  • the power control unit controls discharge from the power supply 61 to the first heater 45 (hereinafter also simply referred to as discharge to the first heater 45) and discharge from the power supply 61 to the second heater 34 (hereinafter simply referred to as the second heater 34).
  • the power control section puts the switch SW2, the switch SW3, and the switch SW4 in the cutoff state (that is, off), and the switch SW1 in the conductive state ( That is, by turning it on, discharge to the first heater 45 can be realized.
  • the power control section puts the switches SW1, SW2, and SW4 in the cut-off state, and puts the switch SW3 in the conductive state. Discharge to the second heater 34 can be realized.
  • the power control unit When the power control unit detects an aerosol generation request from the user based on the output of the intake sensor 62 (that is, when the user performs an inhalation operation), it causes the first heater 45 and the second heater 34 to discharge. . As a result, the heating of the aerosol source 71 by the first heater 45 (that is, the generation of the aerosol) and the heating of the flavor source 52 by the second heater 34 are performed according to the aerosol generation request. At this time, the power control unit controls the amount of flavor component added from the flavor source 52 (hereinafter simply referred to as flavor For example, the discharge to the first heater 45 and the second heater 34 is controlled so that the flavor component amount W flavor described later converges to a predetermined target amount. This target amount is a value determined as appropriate.
  • a target range for the amount of flavor component may be determined as appropriate, and the median value within this target range may be determined as the target amount.
  • Weight for example, [mg]
  • the target amount may be used as the unit of the amount of flavor component and the target amount.
  • the power control unit can be set when neither the aerosol source 71 nor the flavor source 52 contains menthol, or when only the aerosol source 71 of the aerosol source 71 and the flavor source 52 contains menthol. and the case where both the aerosol source 71 and the flavor source 52 of the aerosol source 71 and the flavor source 52 contain menthol. be different.
  • the discharge to the first heater 45 and the second heater 34 can be controlled appropriately.
  • the discharge mode to the first heater 45 and the discharge mode to the second heater 34 in each of these cases will be described later with reference to FIGS. 13 and 14 and the like.
  • the MCU 63 is configured to be able to determine (identify) whether or not each of the aerosol source 71 stored in the cartridge 40 and the flavor source 52 accommodated in the capsule 50 contains menthol.
  • the power control unit controls discharge to the first heater 45 and discharge to the second heater 34 based on this determination result (identification result). It should be noted that any method may be used to determine whether or not each of the aerosol source 71 and the flavor source 52 contains menthol.
  • the MCU 63 may determine whether the aerosol source 71 and the flavor source 52 each contain menthol based on the operation performed on the operation unit 15 . Further, for example, as will be described later, the MCU 63 may determine whether or not each of the aerosol source 71 and the flavor source 52 contains menthol, regardless of the operation of the operation unit 15 by the user.
  • the MCU 63 has a plurality of modes for operating the aerosol inhaler 1 by controlling discharge from the power supply 61 to the first heater 45 and discharge from the power supply 61 to the second heater 34 .
  • the MCU 63 has at least a regular mode described later, a menthol mode described later, and a sleep mode as modes for operating the aerosol inhaler 1 . In the sleep mode, the power consumption of the aerosol inhaler 1 is less than in the regular mode and the menthol mode, and the transition to the regular mode and the menthol mode can be made directly or indirectly. Additionally, the MCU 63 may further have a power mode as a mode for operating the aerosol inhaler 1 .
  • the MCU 63 can reduce the power consumption of the aerosol inhaler 1 while maintaining a state in which it is possible to return to another mode as necessary.
  • the aerosol generation control is not executed even if the user performs an inhalation operation.
  • the error mode is a mode that suppresses discharge from the power supply 61 to the second heater 34 , for example, a mode that controls discharge from the power supply 61 to the second heater 34 .
  • the above menthol mode may be subdivided into a first menthol mode and a second menthol mode.
  • the first menthol mode is when the flavor types of both the aerosol source 71 of the cartridge 40 and the flavor source 52 of the capsule 50 attached to the aerosol inhaler 1 are menthol types (that is, the aerosol source 71 and the flavor source 52 Both contain menthol).
  • the second menthol mode of the aerosol source 71 of the cartridge 40 attached to the aerosol inhaler 1 and the flavor source 52 of the capsule 50, only the aerosol source 71 of the cartridge 40 has a menthol flavor type (that is, the aerosol source 71 and the flavor source 52, only the aerosol source 71 contains menthol).
  • the MCU 63 determines the target temperature of the second heater 34 ( hereinafter also referred to as target temperature Tcap_target ) is set.
  • target temperature Tcap_target the target temperature of the second heater 34
  • the flavor component remaining amount W capsule may simply be described as the remaining amount of the flavor source 52 .
  • the power control unit controls the temperature of the second heater 34 based on the output of the second temperature detection element 68 (hereinafter also referred to as temperature T cap_sense ) to converge to the set target temperature T cap_target from the power supply 61 . It controls discharge to the first heater 45 and discharge from the power source 61 to the second heater 34 .
  • the discharge to the first heater 45 and the second heater 34 is appropriately controlled, To stably supply an aerosol containing a sufficient amount of flavor components and menthol to a user.
  • the weight [mg] of the aerosol generated by heating by the first heater 45 and passing through the flavor source 52 (that is, inside the capsule 50) for one inhalation by the user is described as the aerosol weight W aerosol .
  • the power required to be supplied to the first heater 45 to generate the aerosol for the weight of the aerosol W aerosol is referred to as atomization power P liquid .
  • the supply time of the atomization power P liquid to the first heater 45 is described as supply time t sense .
  • the supply time t sense is provided with a predetermined upper limit value t upper (for example, 2.4 [s]), and the MCU 63 sets the supply time t sense to When the upper limit value t_upper is reached, power supply to the first heater 45 is stopped regardless of the output value of the intake sensor 62 (see steps S38 and S39 described later).
  • t upper for example, 2.4 [s]
  • the weight of the flavor component contained in the flavor source 52 when the user performs the inhalation operation n puff times (where n puff is a natural number equal to or greater than 0) after the capsule 50 is attached to the aerosol inhaler 1 [mg] is described as the remaining flavor component W capsule (n puff ).
  • the weight [mg] of the flavor component added to the aerosol passing through the flavor source 52 (that is, inside the capsule 50) for one inhalation action by the user is described as the flavor component amount W flavor .
  • a parameter related to the temperature of the flavor source 52 is described as a temperature parameter T capsule .
  • the temperature parameter T capsule is a parameter that indicates the second temperature T2 described above, and is a parameter that indicates the temperature of the second heater 34, for example.
  • the flavor component amount W flavor depends on the residual flavor component W capsule , the temperature parameter T capsule and the aerosol weight W aerosol . Therefore, the flavor component amount W flavor can be modeled by the following equation (1).
  • ⁇ in the above formula (1) is a coefficient that indicates the ratio of how much flavor component is added to the aerosol when the aerosol generated for one inhalation action by the user passes through the flavor source 52. , which is determined experimentally. Also, ⁇ in the above equation (1) is a coefficient obtained experimentally. Although the temperature parameter T capsule and the remaining flavor component W capsule may fluctuate during the period during which one suction operation is performed, ⁇ is introduced here in order to treat them as constant values.
  • the flavor component remaining amount W capsule decreases each time the user performs an inhalation operation. For this reason, the flavor component remaining amount W capsule is inversely proportional to the number of times the suction operation has been performed (hereinafter, also referred to as the number of times of suction). Further, in the aerosol inhaler 1, discharge to the first heater 45 is performed each time an inhalation operation is performed. It can also be said that it is inversely proportional to the number of times the first heater 45 is discharged or the cumulative value of the period during which the discharge to the first heater 45 is performed.
  • the MCU 63 power control unit
  • the aerosol source 71 does not contain menthol, it operates in regular mode to control discharge to the first heater 45 and the second heater 34 .
  • the MCU 63 controls discharge to the second heater 34 in order to increase the temperature of the flavor source 52 as the flavor component remaining amount W capsule decreases (that is, the number of suctions increases). (See FIGS. 13 and 14).
  • the MCU 63 determines that the flavor type of the aerosol source 71 of the cartridge 40 among the aerosol source 71 of the cartridge 40 and the flavor source 52 of the capsule 50 attached to the aerosol inhaler 1 is menthol type. (ie, the aerosol source 71 contains menthol), it operates in a menthol mode different from the regular mode.
  • the MCU 63 operates in the menthol mode, from the viewpoint of supplying an appropriate amount of menthol to the user, the MCU 63 lowers the temperature of the flavor source 52 as the remaining amount of flavor component W capsule decreases (that is, the number of inhalations increases). , discharge to the second heater 34 (see FIGS. 13 and 14). This makes it possible to supply the user with an appropriate amount of menthol, as will be described later.
  • the MCU 63 increases the voltage applied to the first heater 45 to increase the power supplied to the first heater 45.
  • the aerosol weight W aerosol may be increased by increasing the weight of the aerosol (see Figure 13).
  • the decrease in the amount of flavor component W flavor caused by lowering the temperature of the flavor source 52 in order to supply an appropriate amount of menthol to the user is reduced by the weight of the aerosol W aerosol generated by heating by the first heater 45. Since it is possible to compensate for the increase, it is possible to suppress the decrease in the amount W flavor of the flavor component supplied to the user's mouth and to stably supply the menthol and the flavor component to the user.
  • FIG. 8 An example of the operation of the aerosol inhaler 1 will be described with reference to FIGS. 8 to 12.
  • FIG. The operation of the aerosol inhaler 1 described below is realized, for example, by the processor of the MCU 63 executing a program pre-stored in the memory 63a.
  • step S1 YES
  • step S2 the MCU 63 executes power-on control to switch the mode of operating the aerosol inhaler 1 from the sleep mode to the power mode. mode
  • step S2 the MCU 63 waits while the mode for operating the aerosol inhaler 1 remains in the sleep mode until the operation unit 15 is turned on by the user (step S1: NO loop). That is, when YES is determined in step S1, the MCU 63 switches the mode for operating the aerosol inhaler 1 from the sleep mode to the power mode.
  • the power-on operation is, for example, an operation in which the operation unit 15 is pressed three times consecutively within a predetermined time (for example, 2 [seconds]).
  • the MCU 63 controls the second heater 34 from the power supply 61 so that the temperature of the second heater 34 reaches a preset preheating temperature (hereinafter also referred to as preheating temperature T cap_pre ).
  • preheating temperature T cap_pre a preset preheating temperature
  • Preheating control for discharging to 34 may be performed.
  • the temperature of the second heater 34 can be increased immediately after switching to the power mode.
  • the target temperature T cap_target is initially set to a high 80[°C].
  • the MCU 63 starts cartridge identification processing for identifying the flavor types of the aerosol source 71 of the cartridge 40 and the flavor source 52 of the capsule 50 (step S3). .
  • step S101 the MCU 63 first determines whether or not the power-on control has just been executed. For example, if the cartridge identification process has not been executed even once after the execution of the power-on control, the MCU 63 determines that the power-on control has just been executed (step S101: YES), and proceeds to step S111, which will be described later. Execute aerosol source information acquisition processing. On the other hand, if the cartridge identification process has been executed one or more times after executing the power-on control, the MCU 63 determines that it is not immediately after the execution of the power-on control (step S101: NO), and determines whether the cartridge 40 has been replaced. It is determined whether or not (step S102).
  • the MCU 63 may detect replacement of the cartridge 40 by any method in step S102.
  • the MCU 63 may detect replacement of the cartridge 40 based on the electrical resistance value between the pair of discharge terminals 12 obtained using the voltage sensor 671 and current sensor 672 .
  • the first heater 45 is connected between the pair of discharge terminals 12 and the pair of discharge terminals 12 are electrically connected. It is clear that the electric resistance value between the discharge terminals 12 that the MCU 63 can acquire differs between the state of being insulated by . Therefore, the MCU 63 can detect replacement of the cartridge 40 based on the electrical resistance value between the discharge terminals 12 .
  • the state where the connection terminal 47 of the cartridge 40 is not electrically connected to the discharge terminal 12 of the power supply unit 10 is changed to the discharge terminal 12 of the power supply unit 10.
  • step S102 If the cartridge 40 has been replaced (step S102: YES), there is a possibility that the cartridge 40 has been changed and the flavor type of the aerosol source 71 has been changed. Execute aerosol source information acquisition processing.
  • step S102 determines whether or not a cartridge replacement notification (step S47) has been issued in the remaining amount update process (step S103).
  • step S102 may be omitted. That is, when negative determination is made in step S101 (step S101: NO), the MCU 63 may advance the process to step S103. By omitting step S102, the function of detecting replacement of the cartridge 40 described above becomes unnecessary, so the cost and volume of the power supply unit 10 can be reduced.
  • step S47 if the cartridge replacement notification (step S47) has been executed (step S103: YES), the cartridge 40 attached to the aerosol inhaler 1 has reached the end of its life. Therefore, even though the cartridge 40 has been replaced by the user after the cartridge replacement notification (step S47) is executed, there is a possibility that the detection of replacement of the cartridge 40 in step S102 is an erroneous detection. Therefore, the MCU 63 proceeds to the above-described step S111 and executes the aerosol source information acquisition process, which will be described later.
  • step S103 NO
  • the cartridge 40 has not been replaced since the previous cartridge identification process was executed, and the cartridge 40 has been replaced.
  • the MCU 63 reads the flavor type identification result of the aerosol source 71 in the previous cartridge identification process from the memory 63a.
  • the MCU 63 sets the flavor type identification result of the aerosol source 71 to be the same as the flavor type identification result of the aerosol source 71 in the previous cartridge identification process (step S104). Then, the identification result of the flavor type of the aerosol source 71 in the cartridge identification process is saved in the memory 63a (step S105), and the cartridge identification process ends.
  • the aerosol stored in the storage chamber 42 of the cartridge 40 is determined based on the information about the color of the colored portion 49 of the cartridge 40 identified by the color identification sensor 24 provided on the cartridge cover 20. Obtain information about the source 71 .
  • the flavor type information of the aerosol source 71 stored in the storage chamber 42 of the cartridge 40 is acquired by the aerosol source information acquisition process.
  • the MCU 63 first controls the color identification sensor 24 to project white light from the light projecting section 241 toward the coloring section 49 of the cartridge 40 into the inside of the cartridge cover 20 (step S111).
  • the white light projected from the light projecting portion 241 passes through the light transmitting portion 25 a of the light shielding member 25 and irradiates the colored portion 49 of the cartridge 40 .
  • the white light irradiated to the colored portion 49 of the cartridge 40 reflects light of a specific wavelength according to the color of the colored portion 49 .
  • the light receiving portion of the color sensor portion 242 receives the light reflected from the colored portion 49 according to the color of the colored portion 49 and passed through the light transmitting portion 25 a of the light shielding member 25 .
  • the analog-to-digital converter of the color sensor section 242 digitizes the color components of the light received by the light receiving section.
  • the color identification sensor 24 has values of 0 to 255 for each of the red, green, and blue components of the light received by the light-receiving unit digitized by the analog-to-digital converter of the color sensor unit 242, and the HSL-converted hue ( Hue) value of 0 to 360 degrees, Saturation value of 0 to 100, Brightness value of 0 to 100, and at least one of the color identification information of the color sample book , to the MCU 63 as information about the color of the coloring portion 49 of the cartridge 40 .
  • Hue hue
  • the memory 63a of the MCU 63 information about the color of the colored portion 49 of the cartridge 40 obtained from the color identification sensor 24 and the flavor type of the aerosol source 71 stored in the storage chamber 42 of the cartridge 40 are linked.
  • a coloring portion-aerosol source correspondence table is stored.
  • the MCU 63 refers to the colored portion-aerosol source correspondence table stored in the memory 63a, and based on the information about the color of the colored portion 49 of the cartridge 40 acquired from the color identification sensor 24, the storage chamber of the cartridge 40 Information on the flavor type of the aerosol source 71 stored in 42 is obtained (step S112).
  • the colored portion 49 of the regular type cartridge 40 in which the aerosol source 71 not containing the menthol 80 is stored in the storage chamber 42 is colored red, and the aerosol source 71 containing the menthol 80 is stored in the storage chamber 42.
  • the colored portion 49 of the stored menthol type cartridge 40 is colored green.
  • the colored portion-aerosol source correspondence table stored in the memory 63a indicates that the colored portion 49 of the cartridge 40 is red, and that the aerosol source 71 stored in the storage chamber 42 of the cartridge 40 does not contain menthol 80.
  • the MCU 63 refers to the colored portion-aerosol source correspondence table stored in the memory 63a, and obtains information from the color identification sensor 24 indicating that the colored portion 49 of the cartridge 40 is red.
  • the aerosol source 71 stored in the storage chamber 42 of the cartridge 40 is identified as the regular type that does not contain the menthol 80 .
  • the MCU 63 also refers to the colored portion-aerosol source correspondence table stored in the memory 63a, and obtains information from the color identification sensor 24 indicating that the colored portion 49 of the cartridge 40 is green. At some point, the aerosol source 71 stored in the storage chamber 42 of the cartridge 40 is identified as being of the menthol type containing the menthol 80 . In this way, the MCU 63 acquires flavor type information of the aerosol source 71 stored in the storage chamber 42 of the cartridge 40 based on the information about the color of the colored portion 49 of the cartridge 40 acquired from the color identification sensor 24. get.
  • the MCU 63 detects the aerosol stored in the storage chamber 42 of the cartridge 40 based on the information about the color of the colored portion 49 of the cartridge 40 identified by the color identification sensor 24 provided on the cartridge cover 20 .
  • An aerosol source information acquisition process can be performed to acquire information about the source 71 . Since the colored portion 49 of the cartridge 40 can be molded with colored resin, the aerosol inhaler 1 adds a step of attaching identification information such as a bar code, a two-dimensional code, or a projection to the cartridge 40 when manufacturing the cartridge 40. Information about the aerosol source 71 stored in the storage chamber 42 of the cartridge 40 can be obtained without the need to do so. As a result, the aerosol inhaler 1 can acquire information about the aerosol source 71 stored in the storage chamber 42 of the cartridge 40, and the step of attaching identification information to the cartridge 40 is unnecessary, thereby reducing man-hours during manufacturing.
  • the MCU 63 determines whether information on the flavor type of the aerosol source 71 stored in the storage chamber 42 of the cartridge 40 has been acquired in step S112 executed immediately before (step S113).
  • step S112 If information on the flavor type of the aerosol source 71 stored in the storage chamber 42 of the cartridge 40 has been acquired in step S112 executed immediately before (step S113: YES), the aerosol source 71 stored in the storage chamber 42 of the cartridge 40 is The flavor type is set to the acquired flavor type information (step S114). Then, in step S105, the identification result of the flavor type of the aerosol source 71 in the cartridge identification process is stored in the memory 63a, and the cartridge identification process ends.
  • step S113 If the flavor type information of the aerosol source 71 stored in the storage chamber 42 of the cartridge 40 could not be obtained in step S112 executed immediately before (step S113: NO), the flavor type identification result of the aerosol source 71 is The type is set (step S115). Then, in step S105, the identification result of the flavor type of the aerosol source 71 in the cartridge identification process is stored in the memory 63a, and the cartridge identification process ends.
  • the MCU 63 executes the cartridge identification process after the operation unit 15 is turned on by the user, and the connection terminal 47 of the cartridge 40 is not electrically connected to the discharge terminal 12 of the power supply unit 10 . Then, when the connection terminal 47 of the cartridge 40 is electrically connected to the discharge terminal 12 of the power supply unit 10, the aerosol source information acquisition process is executed.
  • the state in which the connection terminal 47 of the cartridge 40 is not electrically connected to the discharge terminal 12 of the power supply unit 10 changes to the state in which the connection terminal 47 of the cartridge 40 is electrically connected to the discharge terminal 12 of the power supply unit 10.
  • the aerosol source information acquisition process can be executed.
  • the number of times the aerosol source information acquisition process is executed can be reduced, and the power consumption of the power supply 61 consumed by the aerosol source information acquisition process can be saved.
  • the cartridge identification including the aerosol source information acquisition process is performed. Execute the process. Therefore, since the aerosol source information acquisition process is not executed in the sleep mode, power consumption of the power supply 61 in the sleep mode can be further reduced. Thereby, the power consumption of the power supply 61 can be further saved.
  • the aerosol inhaler 1 receives the identification result of the flavor type of the aerosol source 71 stored in the memory 63a by the cartridge identification processing, that is, information on whether or not the aerosol source 71 stored in the storage chamber 42 of the cartridge 40 contains menthol. can be sent to the outside.
  • the charging terminal 14 is a receptacle of a terminal capable of transmitting and receiving data such as a USB terminal and a microUSB terminal.
  • Information on whether or not menthol is contained in the aerosol source 71 stored in the storage chamber 42 of the cartridge 40 is transmitted to an external information terminal such as a smartphone or a computer via a cable having a terminal such as a terminal and a microUSB terminal.
  • a wireless communication chip capable of wireless communication with the outside is accommodated in the hollow portion of the power supply unit case 11, and the aerosol source 71 stored in the storage chamber 42 of the cartridge 40 contains menthol.
  • the wireless communication chip may transmit information about whether or not the wireless communication is available to an external information terminal such as a smart phone or a computer by wireless communication.
  • the memory 63a of the aerosol inhaler 1 can accumulate and store the identification results of the aerosol source identification processing executed in the past. Information regarding whether or not menthol is contained in may be transmitted to the outside.
  • the history of the cartridge 40 attached to the aerosol inhaler 1 in the past can be transmitted to the outside, so that the information such as the flavor and taste preferred by the user of the aerosol inhaler 1 can be transmitted to the external information such as a smartphone or a computer. can be collected on your device.
  • the user brings the aerosol inhaler 1 to a store for repair or the like it is possible to collect the history of the cartridges 40 attached to the aerosol inhaler 1 in the past in the customer service center server or the like. Therefore, the customer service of the aerosol inhaler 1 can be improved by utilizing the history information of the cartridges 40 attached to the aerosol inhaler 1 in the past.
  • step S4 determines whether the flavor type of the aerosol source 71 stored in the storage chamber 42 of the cartridge 40 is menthol type based on the identification result of the cartridge identification process. is determined (step S4).
  • the MCU 63 determines affirmatively in step S4 (step S4: YES), The process proceeds to step S5. Subsequently, the MCU 63 switches the mode for operating the aerosol inhaler 1 from the power mode to the menthol mode (step S5), and executes menthol mode processing.
  • step S4 determines whether the flavor type of the aerosol source 71 stored in the storage chamber 42 of the cartridge 40 is set to the menthol type in the cartridge identification process. If the identification result of the flavor type of the aerosol source 71 stored in 42 is set to the regular type, a negative determination is made in step S4 (step S4: NO), and the process proceeds to step S6. Subsequently, the MCU 63 switches the mode for operating the aerosol inhaler 1 from the power mode to the regular mode (step S6), and executes regular mode processing.
  • the MCU 63 first notifies the user of the menthol mode through the notification unit 16 (step S7). At this time, the MCU 63 notifies the menthol mode by causing the light emitting element 161 to emit green light and vibrating the vibrating element 162, for example.
  • the MCU 63 determines the target temperature T cap_target of the second heater 34 and the atomization power supplied to the first heater 45 ( hereinafter also referred to as atomization power P liquid ) is set (step S8), and the process proceeds to step S21.
  • the flavor component remaining amount W capsule (n puff -1) is W initial if the suction operation has not been performed even once after the new capsule 50 has been attached, and is W initial if the suction operation has been performed one or more times.
  • the flavor component remaining amount W capsule (n puff ) calculated by the immediately preceding remaining amount updating process (described later) is obtained.
  • a specific setting example of the target temperature T cap_target and the like in the menthol mode will be described later with reference to FIGS. 13 and 14 and the like.
  • the MCU 63 first notifies the user of the regular mode through the notification unit 16 (step S9). At this time, the MCU 63 notifies the regular mode by, for example, causing the light emitting element 161 to emit white light and vibrating the vibrating element 162 .
  • the MCU 63 achieves the target temperature T cap_target of the second heater 34 and the target flavor component amount W flavor based on the flavor component remaining amount W capsule (n puff ⁇ 1) contained in the flavor source 52 .
  • Determine the aerosol weight W_aerosol required for step S10).
  • the MCU 63 calculates the aerosol weight W aerosol from, for example, the following formula (2) obtained by modifying the above formula (1), and determines the calculated aerosol weight W aerosol .
  • ⁇ and ⁇ in the above formula (2) are the same as ⁇ and ⁇ in the above formula (1) and are determined experimentally.
  • the target flavor component amount W flavor is set in advance by the manufacturer of the aerosol inhaler 1 .
  • the remaining amount of flavor component W capsule (n puff -1) in the above equation (2) becomes W initial if no suction operation has been performed after the new capsule 50 has been attached, and the suction operation has been performed once. If the above processes have been performed, the flavor component remaining amount W capsule (n puff ) calculated by the last remaining amount updating process is obtained.
  • the MCU 63 sets the atomization power P liquid to be supplied to the first heater 45 based on the aerosol weight W aerosol determined in step S10 (step S11).
  • the MCU 63 calculates the atomization power P liquid from, for example, the following equation (3), and sets the calculated atomization power P liquid .
  • ⁇ in the above equation (3) is a coefficient obtained experimentally, like ⁇ and ⁇ .
  • the aerosol weight W aerosol in the above formula (3) is the aerosol weight W aerosol determined in step S10.
  • t in the above equation (3) is the supply time t sense for which the atomization power P liquid is expected to be supplied, and can be the upper limit value t upper , for example.
  • the MCU 63 determines whether or not the atomization power P liquid determined in step S11 is equal to or less than a predetermined upper limit power that can be discharged from the power supply 61 to the first heater 45 at that time (step S12). If the atomization power P liquid is equal to or less than the upper limit power (step S12: YES), the MCU 63 proceeds to step S21 described above. On the other hand, if the atomization power P liquid exceeds the upper limit power (step S12: NO), the MCU 63 increases the target temperature T cap_target by a predetermined amount (step S13), and returns to step S10.
  • step S11 the aerosol weight W aerosol required to achieve the target flavor component amount W flavor is correspondingly reduced.
  • the atomization power P liquid determined in step S11 can be reduced.
  • the MCU 63 can make the determination of step S12, which was initially determined as NO, eventually become YES, and can shift to step S21 shown in FIG.
  • the MCU 63 acquires the current temperature of the second heater 34 (hereinafter also referred to as temperature T cap_sense ) based on the output of the second temperature detection element 68 (step S21).
  • the temperature T cap_sense which is the temperature of the second heater 34, is an example of the aforementioned temperature parameter T capsule .
  • the temperature of the second heater 34 is used as the temperature parameter T capsule will be described. good.
  • the MCU 63 controls the temperature T cap_sense from the power supply 61 so that the temperature T cap_sense converges to the target temperature T cap_target .
  • the discharge to the 2 heater 34 is controlled (step S22).
  • the MCU 63 performs PID (Proportional-Integral-Differential) control, for example, so that the temperature T cap_sense converges to the target temperature T cap_target .
  • control for converging the temperature T cap_sense to the target temperature T cap_target instead of PID control, ON/OFF control for turning on/off the power supply to the second heater 34, P (proportional) control, or PI (proportional control) -Integral) control or the like may be used.
  • the target temperature T cap_target may have hysteresis.
  • step S23 determines whether or not there is an aerosol generation request. If there is no aerosol generation request (step S23: NO), the MCU 63 determines whether or not a predetermined period has passed without an aerosol generation request (step S24). If the predetermined period has not elapsed without an aerosol generation request (step S24: NO), the MCU 63 returns to step S21.
  • step S24 When a predetermined period of time elapses without an aerosol generation request (step S24: YES), the MCU 63 stops discharging to the second heater 34 (step S25), and switches the operating mode of the aerosol inhaler 1 to the sleep mode. (Step S26), and proceeds to step S51, which will be described later.
  • step S23 YES
  • the MCU 63 executes aerosol generation control.
  • the MCU 63 temporarily stops heating the flavor source 52 by the second heater 34 (that is, discharging to the second heater 34), and acquires the temperature T cap_sense based on the output of the second temperature detection element 68 (step S30). Note that the MCU 63 does not have to stop heating the flavor source 52 by the second heater 34 (that is, discharge to the second heater 34) when executing step S11.
  • the MCU 63 determines whether or not the acquired temperature T cap_sense is higher than the set target temperature T cap_target ⁇ (where ⁇ 0) (step S31). This ⁇ can be arbitrarily determined by the manufacturer of the aerosol inhaler 1 . If the temperature T cap_sense is higher than the target temperature T cap_target ⁇ (step S31: YES), the MCU 63 sets the current atomization power P liquid ⁇ (where ⁇ >0) as the new atomization power P liquid . (Step S32), and proceeds to step S35.
  • step S31 determines whether the temperature T cap_sense is lower than the target temperature T cap_target ⁇ (step S33). . If the temperature T cap_sense is lower than the target temperature T cap_target ⁇ (step S33: YES), the MCU 63 sets the current atomization power P liquid + ⁇ as a new atomization power P liquid (step S34), and step S35. proceed to
  • step S33 NO
  • the temperature T cap_sense (for example, 80 [° C.]), which is the temperature of the second heater 34 at that time, is changed to the target temperature T cap_target (that is, 60 [° C.]) after the change. ) may have been exceeded.
  • the MCU 63 makes a NO determination in step S32 and performs the process of step S34 to reduce the atomization power P liquid .
  • the actual temperature of the flavor source 52, the second heater 34, etc. is higher than 60 [° C.] immediately after the target temperature T cap_target is changed from 80 [° C.] to 60 [° C.].
  • the atomization power P liquid can be reduced to reduce the amount of the aerosol source 71 generated by heating by the first heater 45 and supplied to the flavor source 52 . Therefore, excessive supply of menthol into the user's mouth can be suppressed, and an appropriate amount of menthol can be stably supplied to the user.
  • the MCU 63 notifies the user of the current mode (step S35). For example, in the case of the menthol mode (that is, when the menthol mode process is executed), the MCU 63 notifies the user of the menthol mode by, for example, causing the light emitting element 161 to emit green light in step S35. On the other hand, in the case of the regular mode (that is, when the regular mode process is executed), the MCU 63 notifies the user of the regular mode by, for example, causing the light emitting element 161 to emit white light in step S35.
  • the MCU 63 controls the DC/DC converter 66 so that the atomization power P liquid set in step S33 or step S34 is supplied to the first heater 45 (step S36). Specifically, the MCU 63 controls the voltage applied to the first heater 45 by the DC/DC converter 66 so that the atomization power P liquid is supplied to the first heater 45 . Thereby, the atomization power P liquid is supplied to the first heater 45, the aerosol source 71 is heated by the first heater 45, and the aerosol source 71 that is vaporized and/or atomized is generated.
  • the MCU 63 determines whether or not the aerosol generation request has ended (step S37). If the aerosol generation request has not ended (step S37: NO), the MCU 63 determines whether the elapsed time from the start of the supply of the atomization power P liquid , that is, the supply time t sense has reached the upper limit value t upper . is determined (step S38). If the supply time t sense has not reached the upper limit value t upper (step S38: NO), the MCU 63 returns to step S36. In this case, the supply of atomization power P liquid to the first heater 45, that is, the generation of the vaporized and/or atomized aerosol source 71 continues.
  • step S37 when the aerosol generation request has ended (step S37: YES) and when the supply time t sense reaches the upper limit value t upper (step S38: YES), the MCU 63 supplies the atomization power to the first heater 45.
  • the supply of P liquid that is, the discharge to the first heater 45 is stopped (step S39), and the aerosol generation control ends.
  • the MCU 63 controls the discharge from the power supply 61 to the first heater 45 and the discharge from the power supply 61 to the second heater 34 in menthol mode or regular mode when executing aerosol generation control.
  • the MCU 63 first acquires the supply time t sense during which the atomization power P liquid is supplied (step S41). Next, the MCU 63 adds "1" to n puff , which is the count value of the puff number counter (step S42).
  • the MCU 63 stores the acquired supply time t sense , the atomization power P liquid supplied to the first heater 45 in response to the aerosol generation request, and the target temperature T cap_target set when the aerosol generation request was detected. , the remaining amount of flavor component W capsule (n puff ) contained in the flavor source 52 is updated (step S43). For example, the MCU 63 calculates the residual flavor component W capsule (n puff ) from the following equation (4), and stores the calculated residual flavor component W capsule (n puff ) in the memory 63a. Update the quantity W capsule (n puff ).
  • ⁇ in the above formula (4) is the same as ⁇ in the above formula (3) and is obtained experimentally.
  • ⁇ and ⁇ in the above formula (4) are the same as ⁇ and ⁇ in the above formula (1) and are determined experimentally.
  • ⁇ in the above equation (4) is the same as ⁇ used in step S32 and is set in advance by the manufacturer of the aerosol inhaler 1 .
  • the MCU 63 determines whether or not the updated flavor component remaining amount W capsule (n puff ) is less than a predetermined remaining amount threshold, which is a condition for notifying capsule replacement (step S44). If the remaining amount of flavor ingredient W capsule (n puff ) after updating is equal to or greater than the remaining amount threshold (step S44: NO), the flavor ingredient contained in the flavor source 52 (that is, in the capsule 50) still remains sufficiently. Therefore, the MCU 63 directly proceeds to step S51.
  • a predetermined remaining amount threshold which is a condition for notifying capsule replacement
  • step S45 determines whether or not the number of exchanges of the capsule 50 after the exchange of 40 is a predetermined number. For example, in this embodiment, one cartridge 40 is provided to the user in a form in which five capsules 50 are combined. In this case, in step S25, the MCU 63 determines whether or not the capsule 50 has been replaced five times after the cartridge 40 has been replaced.
  • step S45 If the number of exchanges of the capsules 50 after the cartridge 40 is exchanged is not the predetermined number (five times in this embodiment) (step S45: NO), the remaining amount of the aerosol source 71 in the cartridge 40 is equal to the remaining amount of the unused flavor source 52.
  • the MCU 63 presumes that the amount is equal to or greater than the amount required to reduce the amount to the threshold value or less, and the cartridge 40 is still usable, and notifies the capsule replacement (step S46). In this embodiment, the MCU 63 blinks the light-emitting element 161 in green when the aerosol inhaler 1 is operating in the menthol mode, and in white when the aerosol inhaler 1 is operating in the regular mode. , to notify capsule exchange.
  • the remaining amount of the aerosol source 71 in the cartridge 40 is equal to the unused flavor source 52
  • the MCU 63 assumes that the remaining amount of the cartridge 40 is less than the amount required to reduce the remaining amount to the threshold value or less, and determines that the cartridge 40 has reached the end of its life, and notifies the cartridge replacement (step S47). In this embodiment, the MCU 63 notifies the replacement of the cartridge by blinking the light emitting element 161 in blue.
  • the MCU 63 executes counter reset control to reset the count value of the puff number counter to 1, and initializes the setting of the target temperature T cap_target (step S48).
  • the MCU 63 sets the target temperature T cap_target to ⁇ 273 [° C.], which is absolute zero, for example. Thereby, substantially, regardless of the temperature of the second heater 34 at that time, the discharge to the second heater 34 is stopped, and the heating of the flavor source 52 by the second heater 34 can be stopped.
  • the MCU 63 determines whether or not the operation unit 15 has been turned off by the user (step S51).
  • the power off operation is an operation of keeping the operation unit 15 pressed for a predetermined time (for example, 3 [seconds]) or more.
  • the MCU 63 returns to step S3.
  • the MCU 63 executes power off control to switch the mode of operating the aerosol inhaler 1 to the sleep mode (step S52). ), ending the series of processes.
  • the MCU 63 controls discharge from the power supply 61 to the first heater 45 and the second heater 34 based on the result of the cartridge identification process including the aerosol source information acquisition process.
  • the discharge to the first heater 45 and the second heater 34 is appropriately controlled, and an appropriate amount of flavor component and aerosol is produced. It can be stably supplied to users.
  • the MCU 63 can control discharge from the power source 61 to the first heater 45 and the second heater 34 in a plurality of modes, and based on the result of the cartridge identification process including the aerosol source information acquisition process, a plurality of , and discharge from the power source 61 to the first heater 45 and the second heater 34 is controlled in the selected mode.
  • the discharge to the first heater 45 and the second heater 34 can be appropriately controlled according to the type of the aerosol source 71 of the cartridge 40 attached to the aerosol inhaler 1, and an appropriate amount of discharge can be achieved. Flavor components and aerosols can be stably supplied to users.
  • the discharge from the power source 61 to the first heater 45 and the second heater 34 can be controlled in a plurality of modes including at least the regular mode and the menthol mode. If information indicating that menthol is contained in is acquired, the discharge from the power supply 61 to the first heater 45 and the second heater 34 is controlled in the menthol mode, and in the aerosol source information acquisition process, the aerosol source 71 contains menthol. When the information indicating that it is not included is acquired, the discharge from the power source 61 to the first heater 45 and the second heater 34 is controlled in the regular mode.
  • the discharge to the first heater 45 and the second heater 34 is appropriately controlled depending on whether the aerosol source 71 of the cartridge 40 attached to the aerosol inhaler 1 contains menthol or does not contain menthol. , an aerosol containing an appropriate amount of flavor component and menthol can be stably supplied to the user.
  • the power source 61 is switched to the first mode in the regular mode. It controls discharge to the first heater 45 and the second heater 34 . Therefore, when the aerosol source 71 stored in the storage chamber 42 of the cartridge 40 does not contain menthol, it is possible to reliably prevent the MCU 63 from controlling discharge to the first heater 45 and the second heater 34 in the menthol mode. .
  • the aerosol inhaler 1 is capable of calibrating the color identification sensor 24 after shipment from the factory.
  • the calibration of the color identification sensor 24, which will be described below, is realized, for example, by the processor of the MCU 63 executing a calibration processing program pre-stored in the memory 63a.
  • the MCU 63 first causes the color sensor section 242 of the color identification sensor 24 to receive inspection light having a predetermined color component numerical value.
  • a light emitting device capable of emitting inspection light and housed in the cartridge cover 20 is housed in the cartridge cover 20 instead of the cartridge 40, and the light emitting device housed in the cartridge cover 20 emits inspection light.
  • Light having predetermined numerical values of color components such as red, green, and blue may also be used.
  • the inspection light may emit a plurality of lights having different numerical values of color components such as red, green, and blue, and cause the color sensor section 242 of the color identification sensor 24 to receive each light.
  • an inspection device that can be accommodated in the cartridge cover 20 is accommodated in the cartridge cover 20 in place of the cartridge 40, and the inspection device, in the state accommodated in the cartridge cover 20, is at least the light projection part 241 of the color identification sensor 24. and the area facing the color sensor unit 242 is colored with a color having a predetermined numerical value of the color component, and the white light projected from the light projecting unit 241 is used as a color having a predetermined numerical value of the color component in the inspection apparatus.
  • the light may be reflected by a colored area, and the color sensor section 242 of the color identification sensor 24 may receive the light reflected from the area.
  • the inspection light may be white light projected from the light projecting unit 241 and reflected by a region colored with a predetermined color component numerical value in the inspection apparatus.
  • at least the area facing the light projection unit 241 and the color sensor unit 242 of the color identification sensor 24 has a plurality of inspection devices colored with colors having different numerical values of color components such as red, green, and blue,
  • the color sensor section 242 of the color identification sensor 24 may receive the light reflected from each of the inspection devices colored with different color component numerical values.
  • the color sensor unit 242 of the color identification sensor 24 Upon receiving the inspection light, the color sensor unit 242 of the color identification sensor 24 quantifies the color components of the received inspection light. For example, the color sensor unit 242 converts the red, green, and blue components of the inspection light received by the light receiving unit into numerical values of 0 to 255, respectively. Then, the color identification sensor 24 outputs to the MCU 63 values of 0 to 255 for each of the red, green, and blue components of the inspection light received by the light receiving section.
  • the memory 63a of the MCU 63 stores information on numerical values of predetermined color components of the inspection light. For example, the memory 63a of the MCU 63 stores values of 0 to 255 for each of the red, green, and blue components of the inspection light.
  • the MCU 63 uses the color sensor unit 242 based on the numerical values of the predetermined color components of the inspection light stored in the memory 63a and the numerical values of the color components of the inspection light digitized by the color sensor unit 242. Calibrate the numerical values of the color components of the digitized light. For example, the MCU 63 is digitized by the color sensor unit 242 of the color identification sensor 24 so as to match the values of 0 to 255 for each of the red, green, and blue components of the inspection light stored in the memory 63a. The red component, green component, and blue component of the inspection light received by the light receiving unit are each calibrated to a value of 0 to 255.
  • the MCU 63 causes the color sensor unit 242 to receive the inspection light having the numerical value of the predetermined color component, and the color sensor unit 242 detects the numerical value of the predetermined color component of the inspection light stored in the memory 63a.
  • a calibration process for calibrating the numerical values of the color components of the inspection light digitized by the color sensor unit 242 can be executed based on the converted numerical values of the color components of the inspection light.
  • the color identification sensor 24 can be calibrated. Therefore, even if the aerosol inhaler 1 is used for a long period of time, the color identification sensor 24 will reduce the accuracy.
  • the color applied to the colored portion 49 of the cartridge 40 can be identified without having to do so.
  • the MCU 63 may cause the color sensor unit 242 to digitize the calibrated light color component values, or the color sensor unit 242 may digitize the light color components. may be corrected by the MCU 63 so as to become the calibrated numerical values of the color components of the light.
  • the aerosol inhaler 1 is capable of calibrating the color identification sensor 24 after shipment from the factory.
  • the calibration of the color identification sensor 24, which will be described below, is realized, for example, by the processor of the MCU 63 executing a calibration processing program pre-stored in the memory 63a.
  • the cartridge cover 20 may be provided with an openable and closable shutter capable of preventing light from entering the cartridge cover 20 from outside. For example, when the shutter is closed, light outside the cartridge cover 20 can be prevented from entering the cartridge cover 20 .
  • the cartridge cover 20 may be provided with a shutter open/close sensor capable of detecting that the aforementioned shutter is closed.
  • the shutter open/close sensor has a Hall element or the like, and outputs a signal indicating that the shutter is closed to the MCU 63 when the shutter is closed.
  • the MCU 63 can detect whether or not the cartridge 40 is housed in the cartridge cover 20 by any method. Note that the MCU 63 may detect whether or not the cartridge 40 is accommodated in the cartridge cover 20 by any method.
  • the MCU 63 may detect whether the cartridge 40 is accommodated in the cartridge cover 20 based on the electrical resistance value between the pair of discharge terminals 12 obtained using the voltage sensor 671 and current sensor 672. .
  • a state in which the cartridge 40 is housed in the cartridge cover 20 and the first heater 45 is connected between the pair of discharge terminals 12 so that the pair of discharge terminals 12 are conductive, and a state in which the cartridge 40 is not housed in the cartridge cover 20. , and the state in which the first heater 45 is not connected between the pair of discharge terminals 12 and the pair of discharge terminals 12 are insulated by air. is. Therefore, the MCU 63 can detect whether or not the cartridge 40 is accommodated in the cartridge cover 20 based on the electrical resistance value between the discharge terminals 12 by any method.
  • the MCU 63 determines that the obtained electric resistance value between the discharge terminals 12 is the electric resistance value when the pair of discharge terminals 12 are insulated by the air, and the shutter opening/closing sensor indicates that the shutter is closed.
  • the signal indicating that the cartridge is present is input, it is determined that the cartridge 40 is not housed in the cartridge cover 20 and that light from the outside of the cartridge cover 20 does not enter the inside of the cartridge cover 20 .
  • the light projecting portion 241 of the color identification sensor 24 projects inspection light.
  • the inspection light is white light projected from the light projecting section 241 .
  • the inspection light may be light having a color component different from the white light, which is projected from the light projecting section 241 .
  • the inner peripheral surface of the outer peripheral wall 21 of the cartridge cover 20 facing the inside of the ring is colored black or white. Therefore, in the inspection light projected from the light projecting portion 241, the light of a specific wavelength is not absorbed by the outer peripheral wall 21 of the cartridge cover 20, and the color sensor portion 242 of the color identification sensor 24 does not 241 receives the inspection light having the color components as it was projected.
  • the color sensor unit 242 of the color identification sensor 24 receives the inspection light having the color components as projected from the light projecting unit 241, it quantifies the color components of the received inspection light. For example, the color sensor unit 242 converts the red, green, and blue components of the inspection light received by the light receiving unit into numerical values of 0 to 255, respectively. Then, the color identification sensor 24 outputs to the MCU 63 values of 0 to 255 for each of the red, green, and blue components of the inspection light received by the light receiving section.
  • the memory 63a of the MCU 63 stores information about the numerical values of the predetermined color components of the inspection light projected from the light projecting section 241. For example, the memory 63a of the MCU 63 stores values of 0 to 255 for each of the red, green, and blue components of the inspection light.
  • the MCU 63 uses the color sensor unit 242 based on the numerical values of the predetermined color components of the inspection light stored in the memory 63a and the numerical values of the color components of the inspection light digitized by the color sensor unit 242. Calibrate the numerical values of the color components of the digitized light. For example, the MCU 63 is digitized by the color sensor unit 242 of the color identification sensor 24 so as to match the values of 0 to 255 for each of the red, green, and blue components of the inspection light stored in the memory 63a. The red component, green component, and blue component of the inspection light received by the light receiving unit are each calibrated to a value of 0 to 255.
  • the MCU 63 detects the light projecting portion of the color identification sensor 24 in a state where the cartridge 40 is not housed in the cartridge cover 20 and no light from the outside of the cartridge cover 20 enters the inside of the cartridge cover 20 .
  • Inspection light having a predetermined color component numerical value is emitted from 241, and the predetermined color component numerical value of the inspection light stored in the memory 63a and the color component numerical value of the inspection light digitized by the color sensor unit 242 are obtained.
  • a calibration process for calibrating the numerical values of the color components of the inspection light digitized by the color sensor unit 242 can be executed.
  • the color identification sensor 24 can be calibrated. Therefore, even if the aerosol inhaler 1 is used for a long period of time, the color identification sensor 24 will reduce the accuracy.
  • the color applied to the colored portion 49 of the cartridge 40 can be identified without having to do so.
  • the MCU 63 may cause the color sensor unit 242 to digitize the calibrated light color component values, or the color sensor unit 242 may digitize the light color components. may be corrected by the MCU 63 so as to become the calibrated numerical values of the color components of the light.
  • the aerosol inhaler 1 if at least one of the aerosol source 71 stored in the storage chamber 42 of the cartridge 40 and the flavor source 52 stored in the capsule 50 contains menthol 80, the user inhales menthol. An aerosol 72 containing 80 can be delivered to the user. At this time, the aerosol inhaler 1 is connected to the first heater 45, which is the heater for heating the aerosol source 71 stored in the cartridge 40, and the second heater 34, which is the heater for heating the capsule 50 (that is, the flavor source 52). It is preferable to appropriately control the discharge of the battery to stably supply an appropriate amount of menthol to the user.
  • control of the discharge to the first heater 45 and the second heater 34 was optimized when both the aerosol source 71 and the flavor source 52 contained menthol 80 and when only the aerosol source 71 contained menthol.
  • a specific example of control in the menthol mode will be described.
  • the suction operation is performed a predetermined number of times (until it is exhausted). It is also assumed that a sufficient amount of the aerosol source 71 is stored in the storage chamber 42 of the cartridge 40 while the predetermined number of suction operations are being performed.
  • the horizontal axis indicates the remaining amount of flavoring ingredient [mg] (that is, the remaining amount of flavoring ingredient W capsule ) contained in the flavor source 52 in the capsule 50.
  • the vertical axis in (a) of FIG. 13 indicates the target temperature (that is, the target temperature T cap_target ) [°C] of the second heater 34 that heats the capsule 50 (that is, the flavor source 52).
  • the vertical axis in (b) of FIG. 13 indicates the voltage [V] applied to the first heater 45 that heats the aerosol source 71 stored in the cartridge 40 .
  • the vertical axis on the left side in (c) of FIG. 13 indicates the amount of menthol [mg/puff] supplied into the user's mouth by one suction operation.
  • the vertical axis on the right side of FIG. 13(c) indicates the amount of flavor component [mg/puff] supplied into the user's mouth by one suction operation.
  • the amount of menthol supplied into the user's mouth by one suction operation is hereinafter also referred to as a unit supply amount of menthol.
  • the amount of flavor component supplied into the user's mouth by one sucking operation is hereinafter also referred to as a unit supply amount of flavor component.
  • the first period Tm1 is a fixed period immediately after the capsule 50 is replaced. Specifically, the first period Tm1 is the period from when the remaining amount of flavoring component in the capsule 50 is W initial to when it reaches W th1 preset by the manufacturer of the aerosol inhaler 1 .
  • W th1 is set to a value smaller than W initial and larger than W th2 , which is the above-described residual capacity threshold, which is a condition for notifying capsule replacement.
  • W th1 can be the remaining amount of the flavor component when about 10 suction operations have been performed since the new capsule 50 was attached.
  • the second period Tm2 is the period after the first period Tm1 . be.
  • the MCU 63 controls discharge to the first heater 45 and the second heater 34 in menthol mode, as described above. Specifically, in the menthol mode in this case, as indicated by the thick solid line in FIG. .
  • the target temperature (80[°C]) of the second heater 34 in the first period Tm1 in this case is an example of the first target temperature in the present invention.
  • the target temperature of the second heater 34 (that is, the first target temperature) in the first period Tm1 in this case is higher than the melting point of menthol (eg, 42 to 45 [° C.]) and the boiling point of menthol (eg, 212 to 45° C.). 216[°C]).
  • the target temperature (that is, the first target temperature) of the second heater 34 in the first period Tm1 may be 90[° C.] or less.
  • the temperature of the second heater 34 (that is, the flavor source 52) is controlled to converge to 80[° C.], which is an example of the first target temperature, during the first period Tm1. Therefore, during the first period Tm1, the menthol 80 adsorbed to the flavor source 52 is heated to an appropriate temperature by the second heater 34, thereby suppressing rapid detachment of the menthol 80 from the flavor source 52. It is possible to stably supply an appropriate amount of menthol to users.
  • the MCU 63 sets the target temperature of the second heater 34 to 60 [° C.], which is lower than the target temperature in
  • the target temperature (60[° C.]) of the second heater 34 in the second period Tm2 in this case is an example of the second target temperature in the present invention.
  • the target temperature (that is, the second target temperature) of the second heater 34 in the second period Tm2 in this case is also higher than the melting point of menthol and lower than the boiling point of menthol.
  • the target temperature of the second heater 34 (that is, the second target temperature) in the second period Tm2 in this case may also be 90[° C.] or less.
  • the temperature of the second heater 34 (that is, the flavor source 52) is controlled to converge to 60[° C.], which is an example of the second target temperature, during the second period Tm2. Therefore, even in the second period Tm2, the menthol 80 adsorbed to the flavor source 52 is heated to an appropriate temperature by the second heater 34, so that desorption of the menthol 80 from the flavor source 52 progresses rapidly. It is possible to suppress and stably supply an appropriate amount of menthol to the user.
  • the temperature of the second heater 34 (that is, the flavor source 52) is reduced to the immediately preceding first temperature.
  • the temperature is controlled to converge to a temperature lower than the period Tm1.
  • the temperature of the second heater 34 (that is, the flavor source 52) is 60 [° C.] during the second period Tm2, which is lower than 80 [° C.] during the immediately preceding first period Tm1. controlled to converge.
  • V1 [V] is an example of the first voltage in the present invention, and is a voltage preset by the manufacturer of the aerosol inhaler 1 .
  • power corresponding to the applied voltage V1 [V] is supplied from the power supply 61 to the first heater 45, and the amount of vaporized and/or atomized aerosol source corresponding to the power is supplied.
  • 71 is produced by the first heater 45 .
  • the MCU 63 changes the voltage applied to the first heater 45 to V2 [V] during the subsequent second period Tm2. do.
  • This V2 [V] is an example of the second voltage in the present invention, and is a voltage higher than V1 [V] as shown in FIG. 13(b).
  • V2 [V] is preset by the manufacturer of the aerosol inhaler 1 .
  • the MCU 63 can apply voltages such as V1 [V] and V2 [V] to the first heater 45 by controlling the DC/DC converter 66, for example.
  • the applied voltage (here, V2 [V]) to the first heater 45 during the second period Tm2 is the first The voltage is higher than the voltage applied to the first heater 45 (here, V1 [V]) during the period Tm1.
  • the power supplied to the first heater 45 increases more than the previous first period Tm1. do.
  • the amount of the vaporized and/or atomized aerosol source 71 generated by the first heater 45 also increases from the previous first period Tm1.
  • FIG. 13(c) An example of a unit supply amount of menthol when both the aerosol source 71 and the flavor source 52 contain menthol 80 and the MCU 63 controls the target temperature of the second heater 34 and the voltage applied to the first heater 45 in the menthol mode described above. is shown in the unit supplied menthol amount 131a in FIG. 13(c).
  • both the aerosol source 71 and the flavor source 52 contain menthol 80, and the MCU 63 controls the target temperature of the second heater 34 and the voltage applied to the first heater 45 in the above menthol mode.
  • An example of the amount is shown in the unit supplied flavor component amount 131b in FIG. 13(c).
  • the MCU 63 sets the target temperature of the second heater 34 in the first period Tm1 and the second period Tm2 to, for example, 30[° C.], The temperature is increased in stages such as 60[°C], 70[°C], and 85[°C].
  • the target temperature and the timing of changing the target temperature are set in advance by the manufacturer of the aerosol inhaler 1 .
  • the timing of changing the target temperature of the second heater 34 in the regular mode is determined from the remaining flavor component [mg] contained in the flavor source 52 in the capsule 50 (that is, the remaining flavor component W capsule ). may be determined.
  • the maximum value of the target temperature of the second heater 34 in the first period Tm1 of the regular mode (here, 70 [° C.]) is the target temperature of the second heater 34 in the first period Tm1 of the menthol mode (here, 80 [° C.]). [°C]).
  • the minimum value of the target temperature of the second heater 34 in the second period Tm2 of the regular mode (here, 70 [° C.]) is the target temperature of the second heater 34 in the second period Tm2 of the menthol mode (here, 60 [° C.]). °C]).
  • the MCU 63 sets the voltage applied to the first heater 45 during the first period Tm1 and the second period Tm2 to a constant V3 [V], as indicated by the thick dashed line in FIG. ].
  • This V3 [V] is higher than V1 [V] and lower than V2 [V], and is preset by the manufacturer of the aerosol inhaler 1 .
  • the MCU 63 can apply a voltage such as V3 [V] to the first heater 45 by controlling the DC/DC converter 66, for example.
  • FIG. 13(c) An example of a unit supply amount of menthol when both the aerosol source 71 and the flavor source 52 contain menthol 80 and the MCU 63 controls the target temperature of the second heater 34 and the voltage applied to the first heater 45 in the regular mode. is shown in the unit supplied menthol amount 132a in FIG. 13(c).
  • the unit supplied flavor component An example of the amount is shown in unit supply flavor component amount 132b in FIG. 13(c).
  • the discharge to the first heater 45 and the second heater 34 that is, the target temperature of the second heater 34 and the When the applied voltage
  • the target temperature of the second heater 34 during the first period Tm1 is lower than when these are controlled by the menthol mode. temperature decreases.
  • both the aerosol source 71 and the flavor source 52 contain menthol 80
  • the flavor source 52 Specifically, it takes longer for the tobacco granules 521 and the menthol 80 to reach an adsorption equilibrium state.
  • most of the menthol 80 derived from the aerosol source 71 is adsorbed on the flavor source 52, and less menthol 80 can pass through the flavor source 52.
  • the unit supply amount of menthol 131a is greater than when controlled in the menthol mode.
  • the unit supply menthol amount 132a the unit supply menthol amount that can be supplied to the user during the first period Tm1 decreases. Therefore, if this is done, there is a possibility that a sufficient amount of menthol cannot be supplied to the user during the first period Tm1.
  • the MCU 63 causes the flavor source 52 (more specifically, the tobacco granules 521) and the menthol 80 to reach an adsorption equilibrium state.
  • the temperature of the second heater 34 that is, the flavor source 52
  • the MCU 63 can prompt the flavor source 52 (specifically, the tobacco granules 521) and the menthol 80 in the capsule 50 to quickly reach an adsorption equilibrium state in the first period Tm1.
  • the MCU 63 detaches from the flavor source 52 (specifically, the tobacco granules 521) and is supplied into the user's mouth by heating the second heater 34 (that is, the flavor source 52) to a high temperature. Menthol 80 from flavor source 52 may also be increased. Therefore, as shown in the unit supply amount of menthol 131a, a sufficient amount of menthol can be supplied to the user from the time when the flavor component contained in the flavor source 52 is sufficient (when the product is new).
  • the unit supply amount of menthol 133a is set so that the second heater 34 does not heat the flavor source 52 when both the aerosol source 71 and the flavor source 52 contain menthol 80.
  • An example of the amount of menthol supplied per unit is shown.
  • the temperature of the second heater 34 (that is, the flavor source 52) during the first period Tm1 becomes room temperature (see RT in (c) of FIG. 13). Therefore, even in this case, as shown in the unit supplied menthol amount 133a, the temperature of the flavor source 52 during the first period Tm1 is higher than in the case where the discharge to the first heater 45 or the like is controlled in the menthol mode. Due to the low level, a sufficient amount of menthol cannot be supplied to the user during the first period Tm1.
  • the target temperature of the second heater 34 during the first period Tm1 is set high in the menthol mode.
  • the flavor source 52 which has reached a high temperature after the first period Tm1 continues to be heated at a higher temperature even during the second period Tm2, a large amount of menthol is supplied to the user, which may lead to deterioration of the flavor and taste.
  • the target temperature of the second heater 34 in the second period Tm2 is set lower than the target temperature of the second heater 34 in the first period Tm1. This prevents the flavor source 52, which has reached a high temperature after Tm1, from continuing to be heated at a high temperature even in the second period Tm2.
  • the flavor is By lowering the temperature of the source 52, the amount of menthol 80 that can be adsorbed by the flavor source 52 (more specifically, the tobacco granules 521) can be increased, and an increase in the amount of menthol supplied per unit can be suppressed. Therefore, it is possible to supply an appropriate amount of menthol to the user during the second period Tm2.
  • the target temperature of the second heater 34 during the second period Tm2 is set low in order to prevent a large amount of menthol from being supplied to the user during the second period Tm2.
  • the target temperature of the second heater 34 is set low in this way, although an increase in the unit amount of menthol supplied during the second period Tm2 can be suppressed, the unit amount of flavor component supplied during the second period Tm2 also decreases, which is sufficient for the user. It is conceivable that it will not be possible to provide a good sucking response.
  • the MCU 63 sets the voltage applied to the first heater 45 during the first period Tm1 to V1 [V], Assume that the voltage applied to the first heater 45 in the second period Tm2 is V2 [V] higher than V1 [V]. As a result, the voltage applied to the first heater 45 can be changed to a higher V2 [V] in accordance with the second period Tm2, in which the target temperature of the second heater 34 is changed to a lower 60 [° C.]. Therefore, in the second period Tm2, the amount of the aerosol source 71 generated by heating by the first heater 45 and supplied to the flavor source 52 can be increased. It is possible to suppress the decrease in the unit amount of flavor component supplied in the second period Tm2.
  • the MCU 63 reduces the voltage applied to the first heater 45 during the first period Tm1 to V4, as indicated by the thick solid line in FIG. Let it be [V].
  • This V4 [V] is a voltage higher than V3 [V] as shown in FIG. 14(b) and is a voltage preset by the manufacturer of the aerosol inhaler 1.
  • power corresponding to the applied voltage V3 [V] is supplied from the power source 61 to the first heater 45, and the amount of vaporized and/or atomized aerosol source corresponding to the power is supplied.
  • 71 is produced by the first heater 45 .
  • the MCU 63 sets the voltage applied to the first heater 45 to V5 [V] during the subsequent second period Tm2.
  • This V5 [V] is a voltage higher than V3 [V] and lower than V4 [V], as shown in FIG. 14(b).
  • V5 [V] is preset by the manufacturer of the aerosol inhaler 1 .
  • the MCU 63 can apply a voltage such as V4 [V] or V5 [V] to the first heater 45 by controlling the DC/DC converter 66, for example.
  • FIG. (c) An example of the unit supply amount of menthol when only the aerosol source 71 contains menthol 80 and the MCU 63 controls the target temperature of the second heater 34 and the voltage applied to the first heater 45 in the above menthol mode is shown in FIG. (c) in the unit supply amount of menthol 141a.
  • FIG. 1 An example of the unit amount of flavor component supplied when only the aerosol source 71 contains menthol 80 and the MCU 63 controls the target temperature of the second heater 34 and the voltage applied to the first heater 45 in the above menthol mode is shown in FIG. It is shown in the unit supply flavor component amount 141b in (c) of 14.
  • FIG. 1 An example of the unit supply amount of flavor component when only the aerosol source 71 contains menthol 80 and the MCU 63 controls the target temperature of the second heater 34 and the voltage applied to the first heater 45 in the regular mode is shown in FIG.
  • the amount of flavor component to be supplied per unit 142b in (c) of 14 is shown.
  • the MCU 63 reduces the voltage applied to the first heater 45 during the first period Tm1 to V4 [V], and the voltage applied to the first heater 45 in the subsequent second period Tm2 is V5 [V], which is lower than V4 [V].
  • the first heater 45 is set to a high V4 [ V] (ie, more power to first heater 45) can be applied to increase the amount of aerosol source 71 generated by heating by first heater 45 and delivered to flavor source 52.
  • the amount of the menthol 80 supplied to the user's mouth without being adsorbed to the flavor source 52 is increased.
  • the flavor source 52 and the menthol 80 in the capsule 50 can be promoted to quickly reach an adsorption equilibrium state. Therefore, an appropriate and sufficient amount of menthol can be stably supplied to the user from the time when the flavor component contained in the flavor source 52 is sufficient (for example, the start of smoking).
  • the power supply unit 10 is provided with a first heater 45 that heats and vaporizes and/or atomizes the aerosol source, and the aerosol source is stored instead of the cartridge 40 and the capsule 50.
  • a removable aerosol source storage unit may be provided.
  • the aerosol source storage unit may be, for example, a detachable refill in which the aerosol source is stored and the flavor source such as tobacco leaves is stored.
  • the colored portion 49 is formed in an aerosol source storage unit such as a refill.
  • the colored portion 49 may be colored in any color, not limited to red, green, and blue.
  • the overall shape of the aerosol inhaler 1 is not limited to the shape in which the power supply unit 10, the cartridge 40, and the capsule 50 are arranged in a line as shown in FIG.
  • the aerosol inhaler 1 only needs to be configured such that the cartridge 40 and the capsule 50 can be replaced with respect to the power supply unit 10, and any shape such as a substantially box-like shape can be adopted.
  • the capsule holder 30 is provided with the second heater 34, but the second heater 34 may not be provided.
  • the light shielding member 25 that does not transmit light is provided between the color identification sensor 24 and the inner peripheral wall 22 of the cartridge cover 20.
  • the light shielding member 25 is not provided. It doesn't have to be.
  • the capsule 50 may be configured to be replaceable with respect to the power supply unit 10, and may be detachable from the power supply unit 10.
  • a detachable aerosol source storage unit (cartridge 40) storing an aerosol source (aerosol source 71); a heater (first heater 45) that heats the aerosol source to vaporize and/or atomize; a power supply unit (power supply unit 10) having a power supply (power supply 61) electrically connected to the heater and a controller (MCU 63) capable of controlling discharge from the power supply to the heater;
  • An aerosol generator (aerosol inhaler 1) comprising A colored portion (colored portion 49) is formed in the aerosol source storage unit,
  • the aerosol generating device further comprises a color identification sensor (color identification sensor 24) capable of identifying the color of the colored portion
  • the controller is an aerosol source information acquisition process for acquiring information on the aerosol source stored in the aerosol source storage unit based on information on the color of the colored portion identified by the color identification sensor; Aerosol generator.
  • the controller can execute the aerosol source information acquisition process based on the information about the color of the colored portion identified by the color identification sensor.
  • Information on the aerosol source stored in the aerosol source storage unit can be obtained without the need to add identification information such as barcodes, two-dimensional codes, or projections to the aerosol source storage unit during manufacturing.
  • the aerosol generator can acquire information about the aerosol source stored in the aerosol source storage unit, and the step of attaching identification information to the aerosol source storage unit is unnecessary, thereby reducing man-hours during manufacturing.
  • the aerosol generator according to (1), The aerosol source storage unit, a storage chamber (storage chamber 42) for storing the aerosol source; a heating chamber (heating chamber 43) provided with the heater; a detachable cartridge (cartridge 40) having an electrode portion (electrode portion 48) provided with a connection terminal (connection terminal 47) electrically connected to the heater, The power supply of the power supply unit is electrically connected to the heater via the connection terminal, The aerosol generating device, wherein the coloring section is formed in the cartridge.
  • the aerosol generating device does not need to add identification information such as a bar code, a two-dimensional code, or a protrusion to the cartridge when manufacturing the cartridge, and the aerosol stored in the storage chamber of the cartridge Information about the source can be obtained.
  • the aerosol generator can acquire information about the aerosol source stored in the storage chamber of the cartridge, and the process of attaching identification information to the cartridge is unnecessary, thereby reducing man-hours during manufacturing.
  • the colored portion is formed in the electrode portion of the cartridge, it is possible to acquire information about the aerosol source stored in the storage chamber of the cartridge by manufacturing the electrode portion of the cartridge in a predetermined color. Become. As a result, the man-hours for manufacturing the aerosol generating device can be further reduced.
  • the aerosol generator according to (2) or (3) The controller is An aerosol generating device that controls discharge from the power supply to the heater based on the result of the aerosol source information acquisition process.
  • the controller controls discharge from the power supply to the heater based on the result of the aerosol source information acquisition process.
  • the controller controls discharge from the power supply to the heater based on the result of the aerosol source information acquisition process.
  • the aerosol generator according to (4) is discharge from the power supply to the heater can be controlled in a plurality of modes;
  • the aerosol generating device which selects one mode from the plurality of modes based on the result of the aerosol source information acquisition process, and controls discharge from the power supply to the heater in the selected mode.
  • the controller selects one mode from a plurality of modes based on the result of the aerosol source information acquisition process, and controls the discharge from the power supply to the heater in the selected mode. Therefore, discharge to the heater can be appropriately controlled according to the type of aerosol source of the cartridge attached to the aerosol generator, and an appropriate amount of flavor component and aerosol can be stably supplied to the user.
  • the aerosol generator according to (4) The controller is Discharge from the power supply to the heater can be controlled in multiple modes including at least a regular mode and a menthol mode, In the aerosol source information acquisition process, if information indicating that the aerosol source contains menthol is acquired, controlling discharge from the power supply to the heater in the menthol mode, The aerosol generating device, wherein in the aerosol source information acquisition process, when information indicating that the aerosol source does not contain menthol is acquired, the discharge from the power supply to the heater is controlled in the regular mode.
  • the controller controls discharge from the power source to the heater in the menthol mode, and the aerosol source information
  • the controller controls discharge from the power source to the heater in the menthol mode, and the aerosol source information
  • the controller controls discharge from the power source to the heater in regular mode, so that the aerosol source of the cartridge attached to the aerosol generation device is menthol.
  • the discharge to the heater can be appropriately controlled to stably supply the user with an aerosol containing an appropriate amount of flavor component and menthol.
  • the aerosol generator according to (6) The controller is In the aerosol source information acquisition process, if the information regarding whether or not the aerosol source stored in the storage chamber of the cartridge contains menthol cannot be acquired, discharge from the power source to the heater is performed in the regular mode. Controlled aerosol generator.
  • the controller in the aerosol source information acquisition process, if the controller fails to acquire information on whether or not the aerosol source stored in the storage chamber of the cartridge contains menthol, the controller switches from the power source to the heater in the regular mode. Therefore, if the aerosol source stored in the storage chamber of the cartridge does not contain menthol, it is possible to reliably prevent the discharge to the heater from being controlled in the menthol mode. As a result, it is possible to prevent the occurrence of unintended flavor and taste due to the menthol-free aerosol source being heated in the menthol mode, and at least the flavor and taste derived from the flavor source can be stably supplied to the user.
  • the aerosol generator according to any one of (2) to (7),
  • the power supply unit further comprises a connector (discharge terminal 12) electrically connected to the power supply, the connection terminal of the cartridge is detachably electrically connected to the connector;
  • the controller is Transitioning from a state in which the connection terminal of the cartridge is not electrically connected to the connector of the power supply unit to a state in which the connection terminal of the cartridge is electrically connected to the connector of the power supply unit.
  • the controller transitions from a state in which the connection terminals of the cartridge are not electrically connected to the connector of the power supply unit to a state in which the connection terminals of the cartridge are electrically connected to the connector of the power supply unit. That is, the aerosol source information acquisition process can be executed when there is a high probability that the cartridge attached to the aerosol generating device has been replaced. As a result, the number of times the aerosol source information acquisition process is executed can be reduced, and the power consumed by the aerosol source information acquisition process can be saved.
  • the aerosol generator according to (8), The aerosol generating device further comprises a user-operable operation unit (operation unit 15), The controller is After the operation unit is operated by the user, the connection terminal of the cartridge is connected to the connector of the power supply unit from a state in which the connection terminal of the cartridge is not electrically connected to the connector of the power supply unit.
  • An aerosol generating device that executes the aerosol source information acquisition process with transition to an electrically connected state as a trigger.
  • the controller executes the aerosol source information acquisition process after the user operates the operation unit, so the power consumption of the power supply can be further saved.
  • the colored portion is formed so as not to transmit light, it is possible to increase the amount of reflected light reflected according to the color of the colored portion. Thereby, in the color identification sensor, it is possible to accurately identify the color of the colored portion.
  • the colored portion is colored red, green, or blue, so that the color identification sensor can easily identify the color of the colored portion.
  • a storage medium capable of storing information on whether or not the aerosol source stored in the storage chamber of the cartridge contains menthol, which is acquired by the aerosol source information acquisition process;
  • An aerosol generating device capable of externally transmitting information regarding whether or not menthol is contained in the aerosol source stored in the storage chamber of the cartridge stored in the storage medium.
  • information on whether or not the aerosol source stored in the storage chamber of the cartridge contains menthol can be checked on an external information terminal such as a smartphone or computer, so that the aerosol generation device can be used with a smartphone. It is possible to operate in cooperation with an external information terminal such as a computer. In addition, since it is possible to collect the history of cartridges installed in the aerosol generation device in the past in an external information terminal such as a server, the history information of the cartridges installed in the aerosol generation device in the past can be used to Improve customer service for aerosol generators.
  • the aerosol generator according to any one of (2) to (12), The aerosol generator further comprises a cartridge cover (cartridge cover 20) in which the cartridge is accommodated, The aerosol generating device, wherein the color identification sensor is provided on the cartridge cover.
  • the color identification sensor since the color identification sensor is provided on the cartridge cover, the color identification sensor can be arranged in the vicinity of the colored portion of the cartridge without increasing the size of the aerosol generating device. You can identify the colors colored in.
  • the aerosol generator according to any one of (2) to (13),
  • the color identification sensor is A light projecting section (light projecting section 241) capable of projecting light toward the colored section, and a color sensor section (color sensor) that receives the light reflected from the colored section and quantifies the color components of the received light. section 242) and
  • the controller is causing the color sensor unit to receive inspection light having a numerical value of a predetermined color component; The color component of the light quantified by the color sensor unit based on the numerical value of the predetermined color component of the inspection light and the numerical value of the color component of the inspection light quantified by the color sensor unit.
  • An aerosol generating device capable of performing a calibration process for calibrating a numerical value.
  • the controller causes the color sensor unit to receive inspection light having a predetermined numerical value of a color component, Since the calibration process can be executed based on the numerical values of the color components of the aerosol generator, the color identification sensor can be calibrated even after the aerosol generator is shipped from the factory, and the aerosol generator can be used for a long period of time. Even if it is used, it is possible to identify the color applied to the colored portion without lowering accuracy by the color identification sensor.
  • the aerosol generator according to any one of (2) to (12), The aerosol generator further comprises a cartridge cover (cartridge cover 20) in which the cartridge is accommodated,
  • the color identification sensor is provided inside the cartridge cover,
  • a light projecting section (light projecting section 241) capable of projecting light toward the colored section, and a color sensor section (color sensor) that receives the light reflected from the colored section and quantifies the color components of the received light.
  • section 242 and The controller is In a state in which the cartridge is not housed in the cartridge cover and light outside the cartridge cover does not enter the interior of the cartridge cover, inspection light having a numerical value of a predetermined color component is emitted from the light projecting unit.
  • the color component of the light quantified by the color sensor unit based on the numerical value of the predetermined color component of the inspection light and the numerical value of the color component of the inspection light quantified by the color sensor unit.
  • An aerosol generating device capable of performing a calibration process for calibrating a numerical value.
  • the controller emits a numerical value of a predetermined color component from the light projecting section in a state where the cartridge cover does not contain the cartridge and no light from the outside of the cartridge cover enters the inside of the cartridge cover. and the calibration process can be executed based on the numerical value of the predetermined color component of the inspection light and the numerical value of the color component of the inspection light quantified by the color sensor unit.
  • the aerosol generator can be calibrated for the color identification sensor even after it is shipped from the factory. can distinguish different colors.
  • Aerosol inhaler (aerosol generator) 10 power supply unit 12 discharge terminal (connector) 15 Operation unit 20 Cartridge cover 24 Color identification sensor 241 Light projection unit 242 Color sensor unit 40 Cartridge (aerosol source storage unit) 42 storage chamber 43 heating chamber 45 first heater (heater) 47 Connection terminal 48 Electrode part 49 Colored part 61 Power supply 63 MCU (controller) 63a memory (storage medium) 71 aerosol source

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)

Abstract

An aerosol aspirator (1) is provided with a power supply unit (10), a detachable cartridge (40) in which an aerosol source (71) is stored, and a color classification sensor (24). In the cartridge (40), a coloring unit (49) is formed. The power supply unit (10) is provided with a power supply (61), and an MCU 63 which can control the electric discharge from the power supply (61) to a first heater (45). The MCU 63 can execute aerosol source information acquisition processing for acquiring information about the aerosol source (71) stored in the cartridge (40) on the basis of information about the color that is colored by the coloring unit (49) and is classified by the color classification sensor (24).

Description

エアロゾル生成装置aerosol generator
 本発明は、エアロゾル生成装置に関する。 The present invention relates to an aerosol generator.
 特許文献1には、エアロゾル源を加熱することによって気化及び/又は霧化してエアロゾルを生成するエアロゾル送達システム(エアロゾル生成装置)が開示されている。特許文献1のエアロゾル送達システムにおいて、生成されたエアロゾルは、エアロゾル生成要素(香味源)が収容された第2のエアロゾル生成装置(収容室)を流れることによって、香味源に含まれる香味成分がエアロゾルに付加され、ユーザは、香味成分が含まれるエアロゾルを吸引することができる。 Patent Document 1 discloses an aerosol delivery system (aerosol generator) that generates an aerosol by vaporizing and/or atomizing an aerosol source by heating. In the aerosol delivery system of Patent Document 1, the generated aerosol flows through the second aerosol generation device (accommodation chamber) in which the aerosol-generating element (flavor source) is accommodated, whereby the flavor component contained in the flavor source becomes an aerosol. The user can inhale the aerosol containing the flavor component.
 また、特許文献1には、リザーバ基板のエアロゾル前駆体組成物と、第2のエアロゾル生成装置のエアロゾル生成要素と、の双方にメンソールが含まれていてもよい旨が開示されている。 Patent Document 1 also discloses that both the aerosol precursor composition of the reservoir substrate and the aerosol-generating element of the second aerosol-generating device may contain menthol.
 エアロゾル生成装置のユーザも、紙巻たばこ等の喫煙者と同様に、ユーザによって好みの香喫味は様々である。例えば、エアロゾル生成装置のユーザにも、メンソールの風味を好む者と、メンソールの風味を含まないレギュラーの風味を好む者とがいる。このように嗜好が異なるそれぞれのユーザに対応するため、エアロゾル生成装置は、複数種類のエアロゾル源及び/又は香味源を選択可能であり、複数種類の香喫味が付加されたエアロゾルを生成可能であることが望ましい。さらに、ユーザに最適な香喫味を提供するためには、選択されたエアロゾル源及び/又は香味源に応じて、エアロゾル源及び/又は香味源を加熱する負荷への放電を制御するモードを別個に設定するのが好ましい。 Users of aerosol generators have different tastes and flavors, just like smokers of cigarettes. For example, users of aerosol generators include those who prefer menthol flavor and those who prefer regular flavor without menthol flavor. In order to accommodate users with different tastes, the aerosol generator can select multiple types of aerosol sources and/or flavor sources, and can generate aerosols to which multiple types of flavors are added. is desirable. Furthermore, in order to provide the user with the optimal flavor and taste, depending on the aerosol source and/or flavor source selected, separate modes for controlling the discharge to the load that heats the aerosol source and/or flavor source may be provided. preferably set.
 そこで、特許文献2には、喫煙物品上に印刷された識別情報から、特定喫煙物品を識別可能な検出器を備え、検出器によって識別された特定喫煙物品に基づいて、加熱プロトコルを確立する電気加熱式喫煙システムが開示されている。 Therefore, in Patent Document 2, a detector is provided that can identify a specific smoking article from identification information printed on the smoking article, and an electric heating protocol is established based on the specific smoking article identified by the detector. A heated smoking system is disclosed.
 また、特許文献3には、シガレットの結合部に突出している突起の個数に基づいてシガレットの種類を把握可能なシガレット感知部を備え、シガレット感知部によって把握されたシガレットの種類に対応する温度プロファイルを選定し、選定した温度プロファイルによってヒータに供給されるバッテリの電力を制御するエアロゾル生成装置が開示されている。 Further, in Patent Document 3, a cigarette sensor is provided that can detect the type of cigarette based on the number of protrusions protruding from the joint of the cigarette, and a temperature profile corresponding to the type of cigarette detected by the cigarette sensor. and controlling the battery power supplied to the heater according to the selected temperature profile.
日本国特開2019-150031号公報Japanese Patent Application Laid-Open No. 2019-150031 日本国特表2012-513750号公報Japanese special table 2012-513750 日本国特表2020-526208号公報Japanese special table 2020-526208
 しかしながら、特許文献2の電気加熱式喫煙システムでは、喫煙物品上に識別情報を印刷する工程が必要になり、特許文献3のエアロゾル生成装置では、シガレットの種類別に異なる個数の突起をシガレットの結合部に形成する工程が必要になる。このように、特許文献2の電気加熱式喫煙システム、及び、特許文献3のエアロゾル生成装置では、喫煙物品やシガレットに識別情報を付する工程が必要となるため、製造時の工数が増加してしまう、という課題があった。 However, the electrically heated smoking system of Patent Document 2 requires a step of printing identification information on the smoking article, and the aerosol generating device of Patent Document 3 uses different numbers of projections for different types of cigarettes at the joints of the cigarettes. A process of forming a As described above, the electrically heated smoking system of Patent Document 2 and the aerosol generator of Patent Document 3 require a step of attaching identification information to smoking articles and cigarettes, which increases the number of man-hours during manufacturing. There was a problem of getting lost.
 本発明は、エアロゾル源に関する情報を取得可能であり、且つ、エアロゾル源貯留ユニットに識別情報を付する工程が不要で製造時の工数を低減できるエアロゾル生成装置を提供する。 The present invention provides an aerosol generator that can acquire information about the aerosol source, does not require a step of attaching identification information to the aerosol source storage unit, and can reduce man-hours during manufacturing.
 本発明は、
 エアロゾル源が貯留された着脱可能なエアロゾル源貯留ユニットと、
 前記エアロゾル源を加熱して気化及び/又は霧化させるヒータと、
 前記ヒータと電気的に接続される電源と、前記電源から前記ヒータへの放電を制御可能なコントローラと、を有する電源ユニットと、
 を備えるエアロゾル生成装置であって、
 前記エアロゾル源貯留ユニットには、着色された着色部が形成されており、
 前記エアロゾル生成装置は、前記着色部に着色された色を識別可能な色識別センサをさらに備え、
 前記コントローラは、
 前記色識別センサによって識別された前記着色部に着色された色に関する情報に基づいて、前記エアロゾル源貯留ユニットに貯留する前記エアロゾル源に関する情報を取得する、エアロゾル源情報取得処理を実行可能である。
The present invention
a detachable aerosol source storage unit storing an aerosol source;
a heater that heats the aerosol source to vaporize and/or atomize;
a power supply unit having a power supply electrically connected to the heater and a controller capable of controlling discharge from the power supply to the heater;
An aerosol generator comprising
A colored portion is formed in the aerosol source storage unit,
The aerosol generating device further comprises a color identification sensor capable of identifying the color of the colored portion,
The controller is
It is possible to execute an aerosol source information acquisition process of acquiring information on the aerosol source stored in the aerosol source storage unit based on information on the color of the colored portion identified by the color identification sensor.
 本発明によれば、エアロゾル源貯留ユニットに貯留するエアロゾル源に関する情報を取得可能であり、且つ、エアロゾル源貯留ユニットに識別情報を付する工程が不要で製造時の工数を低減できる。 According to the present invention, it is possible to acquire information on the aerosol source stored in the aerosol source storage unit, and the step of attaching identification information to the aerosol source storage unit is unnecessary, thereby reducing man-hours during manufacturing.
エアロゾル吸引器の概略構成を模式的に示す斜視図である。1 is a perspective view schematically showing the schematic configuration of an aerosol inhaler; FIG. 図1のエアロゾル吸引器の他の斜視図である。Figure 2 is another perspective view of the aerosol inhaler of Figure 1; 図1のエアロゾル吸引器の断面図である。Figure 2 is a cross-sectional view of the aerosol inhaler of Figure 1; 図1のエアロゾル吸引器における電源ユニットの斜視図である。2 is a perspective view of a power supply unit in the aerosol inhaler of FIG. 1; FIG. 図3の領域Aの要部拡大図であり、図1のエアロゾル吸引器における色識別センサ周辺を示した図である。4 is an enlarged view of a main part of area A in FIG. 3, showing the vicinity of a color identification sensor in the aerosol inhaler of FIG. 1. FIG. 図1のエアロゾル吸引器のハードウエア構成を示す模式図である。FIG. 2 is a schematic diagram showing the hardware configuration of the aerosol inhaler of FIG. 1; 図6に示す電源ユニットの具体例を示す図である。7 is a diagram showing a specific example of the power supply unit shown in FIG. 6; FIG. 図1のエアロゾル吸引器の動作を示すフローチャート(その1:電源オン制御)である。FIG. 2 is a flowchart (part 1: power-on control) showing the operation of the aerosol inhaler of FIG. 1; FIG. 図1のエアロゾル吸引器の動作を示すフローチャート(その2:カートリッジ識別処理)である。FIG. 2 is a flowchart (part 2: cartridge identification processing) showing the operation of the aerosol inhaler of FIG. 1; FIG. 図1のエアロゾル吸引器の動作を示すフローチャート(その3:スタンバイ制御)である。FIG. 2 is a flowchart (No. 3: standby control) showing the operation of the aerosol inhaler of FIG. 1; FIG. 図1のエアロゾル吸引器の動作を示すフローチャート(その4:放電制御及びエアロゾル生成制御)である。FIG. 4 is a flowchart (part 4: discharge control and aerosol generation control) showing the operation of the aerosol inhaler of FIG. 1; FIG. 図1のエアロゾル吸引器の動作を示すフローチャート(その5:残量更新処理及び電源オフ制御)である。FIG. 5 is a flowchart (No. 5: remaining amount update processing and power off control) showing the operation of the aerosol inhaler of FIG. 1; FIG. メンソールモードによる具体的な制御例を示す説明図(その1:エアロゾル源及び香味源が共にメンソールを含む場合)である。FIG. 4 is an explanatory diagram showing a specific example of control in the menthol mode (No. 1: when both the aerosol source and the flavor source contain menthol); メンソールモードによる具体的な制御例を示す説明図(その2:エアロゾル源のみがメンソールを含む場合)である。FIG. 10 is an explanatory diagram (part 2: when only the aerosol source contains menthol) showing a specific control example in the menthol mode;
 以下、本発明のエアロゾル生成装置の一実施形態であるエアロゾル吸引器1について、図1から図14を参照して説明する。なお、図面は、符号の向きに見るものとする。 The aerosol inhaler 1, which is one embodiment of the aerosol generating device of the present invention, will be described below with reference to FIGS. 1 to 14. FIG. It should be noted that the drawings are viewed in the direction of the reference numerals.
(エアロゾル吸引器の全体概要)
 図1~図3に示すように、エアロゾル吸引器1は、燃焼を伴わずにエアロゾルを生成し、生成されたエアロゾルに香味成分を付加して、香味成分が含まれるエアロゾルをユーザが吸引可能とするための器具である。一例として、エアロゾル吸引器1は、棒形状となっている。
(Overview of aerosol inhaler)
As shown in FIGS. 1 to 3, the aerosol inhaler 1 generates an aerosol without combustion, adds a flavoring component to the generated aerosol, and enables a user to inhale the aerosol containing the flavoring component. It is a tool for As an example, the aerosol inhaler 1 has a bar shape.
 エアロゾル吸引器1は、電源ユニット10と、エアロゾル源71を貯留するカートリッジ40が収容されるカートリッジカバー20と、香味源52が収容される収容室53を有するカプセル50が収容されるカプセルホルダ30と、を備える。電源ユニット10、カートリッジカバー20、及びカプセルホルダ30は、エアロゾル吸引器1の長手方向の一端側から他端側に向かって、この順に設けられている。電源ユニット10は、エアロゾル吸引器1の長手方向に延びる中心線Lを中心とする略円筒形状を有している。カートリッジカバー20、及びカプセルホルダ30は、エアロゾル吸引器1の長手方向に延びる中心線Lを中心とする略円環形状を有している。電源ユニット10の外周面とカートリッジカバー20の外周面とは、略同一径の略円環形状であり、カプセルホルダ30は、電源ユニット10及びカートリッジカバー20よりもやや小径の略円環形状となっている。 The aerosol inhaler 1 includes a power supply unit 10, a cartridge cover 20 housing a cartridge 40 storing an aerosol source 71, and a capsule holder 30 housing a capsule 50 having a storage chamber 53 housing a flavor source 52. , provided. The power supply unit 10, the cartridge cover 20, and the capsule holder 30 are provided in this order from one longitudinal end of the aerosol inhaler 1 to the other longitudinal end. The power supply unit 10 has a substantially cylindrical shape centered on the center line L extending in the longitudinal direction of the aerosol inhaler 1 . The cartridge cover 20 and the capsule holder 30 have a substantially annular shape centered on the center line L extending in the longitudinal direction of the aerosol inhaler 1 . The outer peripheral surface of the power supply unit 10 and the outer peripheral surface of the cartridge cover 20 have a substantially circular ring shape with substantially the same diameter, and the capsule holder 30 has a substantially circular ring shape with a slightly smaller diameter than the power supply unit 10 and the cartridge cover 20. ing.
 以下、本明細書等では説明を簡単かつ明確にするために、棒形状のエアロゾル吸引器1の長手方向を第1方向Xと定義する。そして、第1方向Xにおいて、エアロゾル吸引器1の電源ユニット10が配置されている側を底部側、エアロゾル吸引器1のカプセルホルダ30が配置されている側を頂部側、と便宜上定義する。図面には、エアロゾル吸引器1の第1方向Xにおける底部側をD、エアロゾル吸引器1の第1方向における頂部側をU、として示す。 Hereinafter, in this specification and the like, the longitudinal direction of the rod-shaped aerosol inhaler 1 is defined as the first direction X in order to simplify and clarify the description. In the first direction X, the side on which the power supply unit 10 of the aerosol inhaler 1 is arranged is defined as the bottom side, and the side on which the capsule holder 30 of the aerosol inhaler 1 is arranged is defined as the top side for convenience. In the drawing, the bottom side of the aerosol inhaler 1 in the first direction X is indicated by D and the top side of the aerosol inhaler 1 in the first direction by U.
 カートリッジカバー20は、底部側及び頂部側の両端面が開口した中空の略円環形状となっている。カートリッジカバー20は、底部側の端部で、電源ユニット10の頂部側の端部と連結する。カートリッジカバー20は、電源ユニット10に対して着脱可能となっている。 The cartridge cover 20 has a hollow, substantially annular shape with both end faces on the bottom side and the top side opened. The bottom end of the cartridge cover 20 is connected to the top end of the power supply unit 10 . The cartridge cover 20 is detachable from the power supply unit 10 .
 カプセルホルダ30は、底部側及び頂部側の両端面が開口した中空の略円環形状となっている。カプセルホルダ30は、底部側の端部で、カートリッジカバー20の頂部側の端部と連結する。カプセルホルダ30は、例えば、アルミニウム等の金属によって形成されている。カプセルホルダ30は、カートリッジカバー20に対して着脱可能となっている。 The capsule holder 30 has a hollow, substantially annular shape with both end faces on the bottom side and the top side opened. The capsule holder 30 is connected at its bottom end to the top end of the cartridge cover 20 . The capsule holder 30 is made of metal such as aluminum, for example. The capsule holder 30 is detachable from the cartridge cover 20 .
 カートリッジ40は、略円筒形状を有し、カートリッジカバー20の内部に収容される。カートリッジ40は、カプセルホルダ30をカートリッジカバー20から取り外した状態で、カートリッジカバー20の内部に収容することができ、カートリッジカバー20の内部から取り出すことができる。したがって、エアロゾル吸引器1は、カートリッジ40を交換して使用可能である。 The cartridge 40 has a substantially cylindrical shape and is housed inside the cartridge cover 20 . The cartridge 40 can be accommodated inside the cartridge cover 20 with the capsule holder 30 removed from the cartridge cover 20 and can be taken out from the inside of the cartridge cover 20 . Therefore, the aerosol inhaler 1 can be used by replacing the cartridge 40 .
 カプセル50は、略円筒形状を有し、第1方向Xにおける頂部側の端部が、カプセルホルダ30の頂部側の端部から第1方向Xに露出するように、中空の略円環形状のカプセルホルダ30の中空部に収容される。カプセル50は、カプセルホルダ30に対して着脱可能となっている。したがって、エアロゾル吸引器1は、カプセル50を交換して使用可能である。 The capsule 50 has a substantially cylindrical shape, and has a hollow, substantially annular shape such that the top-side end in the first direction X is exposed in the first direction X from the top-side end of the capsule holder 30 . It is housed in the hollow portion of the capsule holder 30 . The capsule 50 is detachable from the capsule holder 30 . Therefore, the aerosol inhaler 1 can be used by replacing the capsule 50 .
(電源ユニット)
 図3及び図4に示すように、電源ユニット10は、第1方向Xに延びる中心線Lを中心とする中空の略円環形状の電源ユニットケース11を備える。電源ユニットケース11は、例えば、ステンレス等の金属によって形成されている。電源ユニットケース11は、電源ユニットケース11の第1方向Xにおける頂部側の端面である頂面11aと、電源ユニットケース11の第1方向Xにおける底部側の端面である底面11bと、頂面11aから底面11bへと中心線Lを中心とする略円環状に第1方向Xに延びる側面11cと、を有する。
(Power supply unit)
As shown in FIGS. 3 and 4, the power supply unit 10 includes a power supply unit case 11 having a hollow, substantially annular shape centered on a center line L extending in the first direction X. As shown in FIGS. The power supply unit case 11 is made of, for example, metal such as stainless steel. The power supply unit case 11 has a top surface 11a that is an end surface on the top side of the power supply unit case 11 in the first direction X, a bottom surface 11b that is an end surface on the bottom side of the power supply unit case 11 in the first direction X, and a top surface 11a. and a side surface 11c extending in the first direction X in a substantially annular shape centered on the center line L from the bottom surface 11b.
 電源ユニットケース11の頂面11aには、放電端子12が設けられている。放電端子12は、電源ユニットケース11の頂面11aから第1方向Xの頂部側に突出するように設けられている。 A discharge terminal 12 is provided on the top surface 11 a of the power supply unit case 11 . The discharge terminal 12 is provided so as to protrude from the top surface 11 a of the power supply unit case 11 toward the top side in the first direction X. As shown in FIG.
 また、頂面11aには、放電端子12の近傍に、後述するカートリッジ40の加熱室43に空気を供給する空気供給部13が設けられている。空気供給部13は、電源ユニットケース11の頂面11aから第1方向Xの頂部側に突出するように設けられている。 An air supply unit 13 for supplying air to a heating chamber 43 of the cartridge 40, which will be described later, is provided on the top surface 11a near the discharge terminal 12. As shown in FIG. The air supply portion 13 is provided so as to protrude from the top surface 11 a of the power supply unit case 11 toward the top portion side in the first direction X. As shown in FIG.
 電源ユニットケース11の側面11cには、外部電源(図示省略)と電気的に接続可能な充電端子14が設けられる。本実施形態では、充電端子14は、底面11b近傍の側面11cに設けられており、例えば、USB(Universal Serial Bus)端子、microUSB端子等が接続可能なレセプタクルである。 A charging terminal 14 that can be electrically connected to an external power supply (not shown) is provided on the side surface 11c of the power supply unit case 11 . In this embodiment, the charging terminal 14 is provided on the side surface 11c near the bottom surface 11b, and is a receptacle to which a USB (Universal Serial Bus) terminal, a microUSB terminal, or the like can be connected, for example.
 なお、充電端子14は、外部電源から送電される電力を非接触で受電可能な受電部であってもよい。このような場合、充電端子14(受電部)は、受電コイルから構成されていてもよい。非接触による電力伝送(WPT:Wireless Power Transfer)の方式は、電磁誘導型でもよいし、磁気共鳴型でもよいし、電磁誘導型と磁気共鳴型の組合せでもよい。また、充電端子14は、外部電源から送電される電力を無接点で受電可能な受電部であってもよい。別の一例として、充電端子14は、USB端子、microUSB端子等が接続可能なレセプタクルと、上記した受電部と、の双方を有していてもよい。 It should be noted that the charging terminal 14 may be a power receiving unit capable of contactlessly receiving power transmitted from an external power source. In such a case, charging terminal 14 (power receiving unit) may be composed of a power receiving coil. The wireless power transfer (WPT) method may be an electromagnetic induction type, a magnetic resonance type, or a combination of the electromagnetic induction type and the magnetic resonance type. Also, the charging terminal 14 may be a power receiving unit capable of contactlessly receiving power transmitted from an external power supply. As another example, the charging terminal 14 may have both a receptacle to which a USB terminal, a microUSB terminal, or the like can be connected, and the power receiving section described above.
 電源ユニットケース11の側面11cには、ユーザが操作可能な操作部15が設けられている。操作部15は、頂面11a近傍の側面11cに設けられている。本実施形態では、操作部15は、第1方向Xから見て、中心線Lを中心にして充電端子14から約180度離れた位置に設けられている。本実施形態では、操作部15は、電源ユニットケース11の側面11cを外側から見て、円形状の押しボタン式のスイッチである。なお、操作部15は、円形状以外の形状でもよいし、押しボタン式以外のスイッチ又はタッチパネル等から構成されていてもよい。 On the side surface 11c of the power supply unit case 11, an operation section 15 that can be operated by the user is provided. The operating portion 15 is provided on the side surface 11c near the top surface 11a. In the present embodiment, the operating portion 15 is provided at a position about 180 degrees away from the charging terminal 14 with the center line L as the center when viewed from the first direction X. As shown in FIG. In this embodiment, the operation unit 15 is a circular push-button switch when the side surface 11c of the power supply unit case 11 is viewed from the outside. Note that the operation unit 15 may have a shape other than a circular shape, and may be composed of a switch other than a push button type, a touch panel, or the like.
 電源ユニットケース11には、各種情報を通知する通知部16が設けられている。通知部16は、発光素子161と振動素子162と、によって構成されている(図6参照)。本実施形態では、発光素子161は、操作部15の電源ユニットケース11内側に設けられている。円形状の操作部15の周囲は、電源ユニットケース11の側面11cを外側から見て透光性を有し、発光素子161によって点灯するように構成される。本実施形態では、発光素子161は、赤色、緑色、青色、白色、紫色に発光可能となっている。 The power supply unit case 11 is provided with a notification section 16 that notifies various information. The notification unit 16 is composed of a light emitting element 161 and a vibration element 162 (see FIG. 6). In this embodiment, the light emitting element 161 is provided inside the power supply unit case 11 of the operation section 15 . The periphery of the circular operating portion 15 is translucent when viewed from the outside of the side surface 11 c of the power supply unit case 11 and is configured to be illuminated by the light emitting element 161 . In this embodiment, the light emitting element 161 can emit red, green, blue, white, and purple light.
 電源ユニットケース11には、内部に外気を取り込む不図示の空気取込口が設けられている。空気取込口は、充電端子14の周囲に設けられていてもよく、操作部15の周囲に設けられていてもよく、充電端子14及び操作部15から離れた位置で電源ユニットケース11に設けられていてもよい。空気取込口は、カートリッジカバー20に設けられていてもよい。空気取込口は、上記した箇所のうち2以上の箇所に設けられていてもよい。 The power supply unit case 11 is provided with an air intake port (not shown) that takes in outside air. The air intake port may be provided around the charging terminal 14 or may be provided around the operation unit 15, and may be provided in the power supply unit case 11 at a position away from the charging terminal 14 and the operation unit 15. may have been The air intake port may be provided in the cartridge cover 20 . The air intake port may be provided at two or more of the locations described above.
 中空の略円環形状の電源ユニットケース11の中空部には、電源61と、吸気センサ62と、MCU63(MCU:Micro Controller Unit)と、充電IC64(IC:Integrated Circuit)と、が収容されている。電源ユニットケース11の内部には、さらに、LDOレギュレータ65(LDO:Low Drop Out)と、DC/DCコンバータ66と、電圧センサ671及び電流センサ672を含む第1温度検出用素子67と、電圧センサ681及び電流センサ682を含む第2温度検出用素子68と、が収容されている(図6及び図7参照)。 A power supply 61, an intake sensor 62, an MCU 63 (MCU: Micro Controller Unit), and a charging IC 64 (IC: Integrated Circuit) are accommodated in the hollow portion of the hollow, substantially annular power supply unit case 11. there is Inside the power supply unit case 11, furthermore, an LDO regulator 65 (LDO: Low Drop Out), a DC/DC converter 66, a first temperature detection element 67 including a voltage sensor 671 and a current sensor 672, a voltage sensor 681 and a second temperature sensing element 68 including a current sensor 682 (see FIGS. 6 and 7).
 電源61は、二次電池や電気二重層キャパシタ等の充放電可能な蓄電デバイスであり、好ましくは、リチウムイオン二次電池である。電源61の電解質は、ゲル状の電解質、電解液、固体電解質、イオン液体の1つ又はこれらの組合せで構成されていてもよい。 The power supply 61 is a chargeable/dischargeable power storage device such as a secondary battery or an electric double layer capacitor, preferably a lithium ion secondary battery. The electrolyte of the power source 61 may be composed of one or a combination of a gel electrolyte, an electrolytic solution, a solid electrolyte, and an ionic liquid.
 吸気センサ62は、操作部15の近傍に設けられている。吸気センサ62は、パフ(吸引)動作を検出する圧力センサである。吸気センサ62は、後述するカプセル50の吸口58を通じたユーザの吸引により生じた、電源ユニット10の内部の圧力(内圧)変化の値を出力するよう構成されている。吸気センサ62は、例えば、空気取込口からカプセル50の吸口58に向けて吸引される空気の流量(すなわち、ユーザのパフ動作)に応じて変化する内圧に応じた出力値(例えば、電圧値又は電流値)を出力する。吸気センサ62は、アナログ値を出力してもよいし、アナログ値から変換したデジタル値を出力してもよい。 The intake sensor 62 is provided in the vicinity of the operation section 15. The intake sensor 62 is a pressure sensor that detects a puff (suction) action. The intake sensor 62 is configured to output a change in the internal pressure (internal pressure) of the power supply unit 10 caused by the user's suction through the mouthpiece 58 of the capsule 50, which will be described later. The intake sensor 62 outputs an output value (e.g., a voltage value or current value). The intake sensor 62 may output an analog value, or may output a digital value converted from an analog value.
 吸気センサ62は、検出する圧力を補償するために、電源ユニット10の置かれている環境の温度(外気温)を検出する温度センサを内蔵していてもよい。吸気センサ62は、圧力センサではなく、コンデンサマイクロフォンや流量センサ等から構成されていてもよい。 The intake sensor 62 may incorporate a temperature sensor that detects the temperature of the environment in which the power supply unit 10 is placed (outside air temperature) in order to compensate for the detected pressure. The intake sensor 62 may be composed of a condenser microphone, a flow rate sensor, or the like instead of a pressure sensor.
 MCU63は、エアロゾル吸引器1の各種の制御を行う電子部品である。MCU63は、具体的にはプロセッサを主体に構成されており、プロセッサの動作に必要なRAM(Random Access Memory)及び各種情報を記憶するROM(Read Only Memory)等の記憶媒体により構成されるメモリ63aをさらに含む(図6参照)。本明細書におけるプロセッサとは、具体的には、半導体素子等の回路素子を組み合わせた電気回路である。 The MCU 63 is an electronic component that performs various controls for the aerosol inhaler 1. The MCU 63 is specifically composed mainly of a processor, and a memory 63a composed of a storage medium such as a RAM (Random Access Memory) necessary for the operation of the processor and a ROM (Read Only Memory) for storing various information. (See FIG. 6). A processor in this specification is, specifically, an electric circuit in which circuit elements such as semiconductor elements are combined.
 MCU63は、パフ動作が行われて、吸気センサ62の出力値が閾値を超えると、エアロゾル生成要求がなされたと判定し、その後、吸気センサ62の出力値がこの閾値を下回ると、エアロゾル生成要求が終了されたと判定する。このように、吸気センサ62の出力値はエアロゾル生成要求を示す信号として利用される。したがって、吸気センサ62は、エアロゾル生成要求を出力するセンサを構成する。なお、MCU63に代えて吸気センサ62が上記の判定を行い、MCU63は当該判定結果に応じたデジタル値を吸気センサ62から受け取ってもよい。具体的一例として、エアロゾル生成要求がなされたと判定される場合には吸気センサ62はハイレベルの信号を出力し、エアロゾル生成要求が終了されたと判定される場合には吸気センサ62はローレベルの信号を出力してもよい。また、エアロゾル生成要求がなされたとMCU63又は吸気センサ62が判定する閾値と、エアロゾル生成要求が終了されたとMCU63又は吸気センサ62が判定する閾値は異なっていてもよい。 The MCU 63 determines that an aerosol generation request has been made when a puff operation is performed and the output value of the intake sensor 62 exceeds the threshold. Determine that it is finished. Thus, the output value of the intake sensor 62 is used as a signal indicating the aerosol generation request. Therefore, the intake sensor 62 constitutes a sensor that outputs an aerosol generation request. Alternatively, instead of the MCU 63 , the intake sensor 62 may make the above determination, and the MCU 63 may receive a digital value corresponding to the determination result from the intake sensor 62 . As a specific example, the intake sensor 62 outputs a high level signal when it is determined that the aerosol generation request has been made, and the intake sensor 62 outputs a low level signal when it is determined that the aerosol generation request has ended. may be output. Also, the threshold at which the MCU 63 or the intake sensor 62 determines that the aerosol generation request has been made may differ from the threshold at which the MCU 63 or the intake sensor 62 determines that the aerosol generation request has ended.
 なお、MCU63は、吸気センサ62に代えて、操作部15の操作に基づいてエアロゾル生成要求を検出するようにしてもよい。例えば、ユーザがエアロゾルの吸引を開始するために操作部15に対し所定の操作を行うと、操作部15がエアロゾル生成要求を示す信号をMCU63に出力するように構成してもよい。この場合には、操作部15が、エアロゾル生成要求を出力するセンサを構成する。 Note that the MCU 63 may detect the aerosol generation request based on the operation of the operation unit 15 instead of the intake sensor 62 . For example, when the user performs a predetermined operation on the operation unit 15 to start inhaling aerosol, the operation unit 15 may output a signal indicating an aerosol generation request to the MCU 63 . In this case, the operation unit 15 constitutes a sensor that outputs an aerosol generation request.
 充電IC64は、充電端子14の近傍に設けられている。充電IC64は、充電端子14から入力され電源61に充電される電力を制御して、電源61の充電制御を行う。なお、充電IC64は、MCU63の近傍に配置されていてもよい。 The charging IC 64 is provided near the charging terminal 14 . The charging IC 64 controls charging of the power source 61 by controlling the power input from the charging terminal 14 and charged to the power source 61 . In addition, charge IC64 may be arrange|positioned in the vicinity of MCU63.
(カートリッジ)
 図3に示すように、カートリッジ40は、軸方向を長手方向とする略円柱形状のカートリッジケース41を備える。カートリッジケース41は、例えばポリカーボネート等の無色透明な樹脂によって形成されている。カートリッジケース41の内部には、エアロゾル源71を貯留する貯留室42と、エアロゾル源71を加熱する加熱室43と、が形成されている。加熱室43には、貯留室42に貯留されたエアロゾル源71を加熱室43に輸送して加熱室43で保持するウィック44と、ウィック44に保持されたエアロゾル源71を加熱して気化及び/又は霧化させる第1ヒータ45と、が収容されている。カートリッジ40は、第1ヒータ45によって加熱されて気化及び/又は霧化したエアロゾル源71を、エアロゾル化して加熱室43からカプセル50に向かって輸送する第1エアロゾル流路46をさらに備える。
(cartridge)
As shown in FIG. 3, the cartridge 40 includes a substantially cylindrical cartridge case 41 whose longitudinal direction is the axial direction. The cartridge case 41 is made of colorless and transparent resin such as polycarbonate. A storage chamber 42 for storing the aerosol source 71 and a heating chamber 43 for heating the aerosol source 71 are formed inside the cartridge case 41 . The heating chamber 43 includes a wick 44 that transports the aerosol source 71 stored in the storage chamber 42 to the heating chamber 43 and holds it in the heating chamber 43, and heats the aerosol source 71 held in the wick 44 to vaporize and/or Or the first heater 45 for atomization is accommodated. The cartridge 40 further includes a first aerosol flow path 46 that aerosolizes and transports the aerosol source 71 heated by the first heater 45 to be vaporized and/or atomized from the heating chamber 43 toward the capsule 50 .
 貯留室42と加熱室43とは、カートリッジ40の長手方向に互いに隣接して形成されている。加熱室43は、カートリッジ40の長手方向一端側に形成されており、貯留室42は、カートリッジ40の長手方向で加熱室43と隣接し、カートリッジ40の長手方向他端側の端部まで延びるように形成されている。 The storage chamber 42 and the heating chamber 43 are formed adjacent to each other in the longitudinal direction of the cartridge 40 . The heating chamber 43 is formed at one longitudinal end of the cartridge 40 , and the storage chamber 42 is adjacent to the heating chamber 43 in the longitudinal direction of the cartridge 40 and extends to the other longitudinal end of the cartridge 40 . is formed in
 貯留室42は、カートリッジ40の長手方向を軸方向とする中空の略円環形状を有し、円環部にエアロゾル源71を貯留する。貯留室42には、樹脂ウェブ又は綿等の多孔体が収容され、かつ、エアロゾル源71が多孔体に含浸されていてもよい。貯留室42には、樹脂ウェブ又は綿上の多孔質体が収容されず、エアロゾル源71のみが貯留されていてもよい。エアロゾル源71は、グリセリン及び/又はプロピレングリコールなどの液体を含む。 The storage chamber 42 has a hollow, substantially annular shape whose axial direction is the longitudinal direction of the cartridge 40, and stores the aerosol source 71 in the annular portion. The storage chamber 42 may contain a porous body such as a resin web or cotton, and the porous body may be impregnated with the aerosol source 71 . The storage chamber 42 may store only the aerosol source 71 without storing the resin web or the cotton-like porous body. Aerosol source 71 includes liquids such as glycerin and/or propylene glycol.
 エアロゾル源71は、メンソール80を含んでいてもよい。本実施形態では、メンソール80を含まないエアロゾル源71が貯留室42に貯留したレギュラータイプのカートリッジ40と、メンソール80を含むエアロゾル源71が貯留室42に貯留したメンソールタイプのカートリッジ40とが、エアロゾル吸引器1の製造者等によってユーザに対し提供される。図3においては、メンソール80を含むエアロゾル源71が貯留室42に貯留したメンソールタイプのカートリッジ40が装着された例を示している。また、図3では、説明をわかりやすくするために、メンソール80を粒子状に示しているが、本実施形態では、メンソール80は、グリセリン及び/又はプロピレングリコールなどの液体に溶解している。また、図3等に示されたメンソール80は模擬的なものに過ぎず、貯留室42におけるメンソール80の位置や数量、カプセル50におけるメンソール80の位置や数量、メンソール80と香味源52の位置関係は実物とは必ずしも一致しない点に留意されたい。 The aerosol source 71 may contain menthol 80. In this embodiment, a regular type cartridge 40 in which an aerosol source 71 not containing menthol 80 is stored in a storage chamber 42 and a menthol type cartridge 40 in which an aerosol source 71 containing menthol 80 is stored in a storage chamber 42 are divided into aerosol It is provided to the user by the manufacturer of the suction device 1 or the like. FIG. 3 shows an example in which a menthol-type cartridge 40 in which an aerosol source 71 containing menthol 80 is stored in a storage chamber 42 is attached. In addition, in FIG. 3, the menthol 80 is shown in the form of particles for the sake of clarity of explanation, but in this embodiment, the menthol 80 is dissolved in a liquid such as glycerin and/or propylene glycol. Moreover, the menthol 80 shown in FIG. Note that does not necessarily match the real thing.
 ウィック44は、毛管現象を利用して貯留室42に貯留するエアロゾル源71を、貯留室42から加熱室43に引き込んで、加熱室43で保持する液保持部材である。ウィック44は、例えば、ガラス繊維や多孔質セラミックなどによって構成される。なお、ウィック44は、貯留室42の内部に延伸してもよい。 The wick 44 is a liquid retaining member that draws the aerosol source 71 stored in the storage chamber 42 from the storage chamber 42 into the heating chamber 43 using capillary action and retains the aerosol source 71 in the heating chamber 43 . The wick 44 is made of glass fiber, porous ceramic, or the like, for example. Note that the wick 44 may extend inside the storage chamber 42 .
 第1ヒータ45は、接続端子47と電気的に接続している。本実施形態では、第1ヒータ45は、所定ピッチでウィック44に巻き回された電熱線(コイル)によって構成されている。なお、第1ヒータ45は、ウィック44に保持されたエアロゾル源71を加熱して気化及び/又は霧化させることが可能な素子であればよい。第1ヒータ45は、例えば、発熱抵抗体、セラミックヒータ、及び誘導加熱式のヒータ等の発熱素子であってもよい。第1ヒータ45は、温度と電気抵抗値とが相関を持つものが用いられる。第1ヒータ45としては、例えば、温度の増加に伴って電気抵抗値も増加するPTC(Positive Temperature Coefficient)特性を有するものが用いられる。これに代えて、第1ヒータ45としては、例えば、温度の増加に伴って電気抵抗値が減少するNTC(Negative Temperature Coefficient)特性を有するものが用いられてもよい。また、第1ヒータ45の一部は、加熱室43の外部に設けられていてもよい。 The first heater 45 is electrically connected to the connection terminal 47 . In this embodiment, the first heater 45 is composed of a heating wire (coil) wound around the wick 44 at a predetermined pitch. Note that the first heater 45 may be any element that can heat the aerosol source 71 held by the wick 44 to vaporize and/or atomize it. The first heater 45 may be, for example, a heating element such as a heating resistor, a ceramic heater, or an induction heater. As the first heater 45, a heater having a correlation between temperature and electrical resistance is used. As the first heater 45, for example, a heater having a PTC (Positive Temperature Coefficient) characteristic in which the electric resistance value increases as the temperature increases is used. Alternatively, for example, the first heater 45 may have NTC (Negative Temperature Coefficient) characteristics in which the electrical resistance value decreases as the temperature increases. Also, part of the first heater 45 may be provided outside the heating chamber 43 .
 第1エアロゾル流路46は、中空の略円環形状を有する貯留室42の中空部に形成され、カートリッジ40の長手方向に延びている。第1エアロゾル流路46は、カートリッジ40の長手方向に略円環状に延びる壁部46aによって形成されている。第1エアロゾル流路46の壁部46aは、略円環形状を有する貯留室42の内周側壁部にもなっている。第1エアロゾル流路46は、カートリッジ40の長手方向における第1端部461が加熱室43と接続しており、カートリッジ40の長手方向における第2端部462がカートリッジケース41の他端側の端面に開口している。 The first aerosol flow path 46 is formed in the hollow portion of the storage chamber 42 having a hollow, substantially annular shape, and extends in the longitudinal direction of the cartridge 40 . The first aerosol flow path 46 is formed by a wall portion 46 a extending in a substantially annular shape in the longitudinal direction of the cartridge 40 . A wall portion 46a of the first aerosol flow path 46 also serves as an inner peripheral side wall portion of the storage chamber 42 having a substantially annular shape. The first aerosol channel 46 is connected to the heating chamber 43 at a first end 461 in the longitudinal direction of the cartridge 40 , and is connected to the heating chamber 43 at a second end 462 in the longitudinal direction of the cartridge 40 at the other end of the cartridge case 41 . is open to
 カートリッジケース41の長手方向一端側の端部、すなわちカートリッジ40の長手方向において、加熱室43が配置されている側のカートリッジケース41の端部には、接続端子47が設けられた電極部48が嵌合されている。電極部48は、カートリッジケース41と略同中心且つ略同径の有底円筒形状であり、電極部48の底面48aは、カートリッジ40の長手方向において、加熱室43が配置されている側のカートリッジ40の端面を構成する。接続端子47は、電極部48の底面48aのカートリッジ40の外側を向く面に設けられており、カートリッジ40の外表面に露出している。 An electrode portion 48 provided with a connection terminal 47 is provided at one end of the cartridge case 41 in the longitudinal direction, that is, at the end of the cartridge case 41 on the side where the heating chamber 43 is arranged in the longitudinal direction of the cartridge 40 . mated. The electrode portion 48 has a bottomed cylindrical shape that is approximately the same center and approximately the same diameter as the cartridge case 41 . 40 end faces. The connection terminal 47 is provided on the surface of the bottom surface 48 a of the electrode portion 48 facing the outside of the cartridge 40 and is exposed on the outer surface of the cartridge 40 .
 カートリッジ40には、着色された着色部49が形成されている。本実施形態では、着色部49は、カートリッジ40の電極部48に形成されている。本実施形態では、着色部49は、電極部48の少なくとも一部を着色された樹脂で形成することによって形成されている。本実施形態では、着色部49は、有底円筒形状の電極部48全体に形成されており、電極部48の円筒面の外表面は、着色部49となっている。本実施形態では、着色部49は、カートリッジ40の外表面の一部を構成しており、カートリッジ40の外部から視認可能になっている。なお、着色部49は、無色透明な樹脂によって形成されているカートリッジケース41の内部に位置し、カートリッジ40の外部から、無色透明な樹脂によって形成されているカートリッジケース41を介して視認可能になっていてもよい。なお、着色部49は、カートリッジ40に形成されていればよく、電極部48以外に形成されていてもよい。このとき、着色部49は、カートリッジ40の外表面の一部を構成しており、カートリッジ40の外部から視認可能になっていることが好ましい。 A colored portion 49 is formed in the cartridge 40 . In this embodiment, the colored portion 49 is formed on the electrode portion 48 of the cartridge 40 . In this embodiment, the colored portion 49 is formed by forming at least part of the electrode portion 48 with colored resin. In this embodiment, the colored portion 49 is formed on the entire bottomed cylindrical electrode portion 48 , and the outer surface of the cylindrical surface of the electrode portion 48 is the colored portion 49 . In this embodiment, the colored portion 49 forms part of the outer surface of the cartridge 40 and is visible from the outside of the cartridge 40 . The colored portion 49 is located inside the cartridge case 41 made of colorless and transparent resin, and is visible from the outside of the cartridge 40 through the cartridge case 41 made of colorless and transparent resin. may be Note that the colored portion 49 may be formed on the cartridge 40 and may be formed on a portion other than the electrode portion 48 . At this time, the colored portion 49 forms part of the outer surface of the cartridge 40 and is preferably visible from the outside of the cartridge 40 .
 着色部49は、カートリッジ40の貯留室42に貯留したエアロゾル源71のフレーバタイプごとに異なる色に着色されている。着色部49は、カートリッジ40の貯留室42に貯留したエアロゾル源71のフレーバタイプごとに異なる任意の色に着色されていてよい。着色部49は、カートリッジ40の貯留室42に貯留したエアロゾル源71のフレーバタイプごとに赤色、緑色及び青色のいずれかに着色されていることが好ましい。本実施形態では、メンソール80を含まないエアロゾル源71が貯留室42に貯留したレギュラータイプのカートリッジ40の着色部49は、赤色に着色されており、メンソール80を含むエアロゾル源71が貯留室42に貯留したメンソールタイプのカートリッジ40の着色部49は、緑色に着色されている。 The colored portion 49 is colored differently for each flavor type of the aerosol source 71 stored in the storage chamber 42 of the cartridge 40 . The colored portion 49 may be colored in an arbitrary color that differs for each flavor type of the aerosol source 71 stored in the storage chamber 42 of the cartridge 40 . The colored portion 49 is preferably colored red, green, or blue for each flavor type of the aerosol source 71 stored in the storage chamber 42 of the cartridge 40 . In this embodiment, the colored portion 49 of the regular type cartridge 40 in which the aerosol source 71 not containing the menthol 80 is stored in the storage chamber 42 is colored red, and the aerosol source 71 containing the menthol 80 is stored in the storage chamber 42. The colored portion 49 of the stored menthol type cartridge 40 is colored green.
 着色部49は、光を透過しないように形成されている。 The colored portion 49 is formed so as not to transmit light.
 カートリッジ40は、カートリッジ40の長手方向が、エアロゾル吸引器1の長手方向である第1方向Xとなるように、中空の略円環形状のカートリッジカバー20の中空部に収容される。さらに、カートリッジ40は、第1方向Xにおいて、加熱室43がエアロゾル吸引器1の底部側(すなわち電源ユニット10側)、貯留室42がエアロゾル吸引器1の頂部側(すなわちカプセル50側)となるように、カートリッジカバー20の中空部に収容される。 The cartridge 40 is housed in the hollow portion of the hollow, substantially annular cartridge cover 20 so that the longitudinal direction of the cartridge 40 is aligned with the first direction X, which is the longitudinal direction of the aerosol inhaler 1 . Further, in the first direction X, the cartridge 40 has the heating chamber 43 on the bottom side of the aerosol inhaler 1 (that is, the power supply unit 10 side), and the storage chamber 42 on the top side of the aerosol inhaler 1 (that is, the capsule 50 side). , is accommodated in the hollow portion of the cartridge cover 20. As shown in FIG.
 カートリッジ40の第1エアロゾル流路46は、カートリッジ40がカートリッジカバー20の内部に収容された状態において、エアロゾル吸引器1の中心線L上を第1方向Xに延びるように形成されている。 The first aerosol flow path 46 of the cartridge 40 is formed to extend in the first direction X along the center line L of the aerosol inhaler 1 when the cartridge 40 is housed inside the cartridge cover 20 .
 カートリッジ40は、エアロゾル吸引器1の使用時において、接続端子47が電源ユニットケース11の頂面11aに設けられた放電端子12と接触した状態が維持されるように、カートリッジカバー20の中空部に収容される。電源ユニット10の放電端子12とカートリッジ40の接続端子47とが接触することによって、電源ユニット10の電源61は、放電端子12及び接続端子47を介して、カートリッジ40の第1ヒータ45と電気的に接続される。 The cartridge 40 is inserted into the hollow portion of the cartridge cover 20 so that the connection terminal 47 is kept in contact with the discharge terminal 12 provided on the top surface 11a of the power supply unit case 11 when the aerosol inhaler 1 is used. be accommodated. By contacting the discharge terminal 12 of the power supply unit 10 with the connection terminal 47 of the cartridge 40 , the power supply 61 of the power supply unit 10 is electrically connected to the first heater 45 of the cartridge 40 via the discharge terminal 12 and the connection terminal 47 . connected to
 さらに、カートリッジ40は、エアロゾル吸引器1の使用時において、電源ユニットケース11に設けられた不図示の空気取込口から流入した空気が、図3中の矢印Bで示すように、電源ユニットケース11の頂面11aに設けられた空気供給部13から加熱室43に取り込まれるように、カートリッジカバー20の中空部に収容される。なお、矢印Bは、図3中において中心線Lに対して傾いているが、中心線Lと同一方向であってもよい。換言すれば、矢印Bは、中心線Lに対して平行であってもよい。 Furthermore, when the aerosol inhaler 1 is used, the cartridge 40 allows the air flowing in from an air intake port (not shown) provided in the power supply unit case 11 to flow into the power supply unit case as indicated by an arrow B in FIG. The air is housed in the hollow portion of the cartridge cover 20 so as to be taken into the heating chamber 43 from the air supply portion 13 provided on the top surface 11 a of the cartridge cover 20 . Although the arrow B is inclined with respect to the center line L in FIG. 3, it may be in the same direction as the center line L. In other words, the arrow B may be parallel to the centerline L.
 第1ヒータ45は、エアロゾル吸引器1の使用時において、電源61から、電源ユニットケース11に設けられた放電端子12と、カートリッジ40に設けられた接続端子47と、を介して供給される電力によって、ウィック44に保持されたエアロゾル源71を、燃焼を伴わずに加熱する。そして、加熱室43において、第1ヒータ45によって加熱されたエアロゾル源71は、気化及び/又は霧化する。このとき、カートリッジ40が、メンソール80を含むエアロゾル源71が貯留室42に貯留したメンソールタイプである場合、気化及び/又は霧化したエアロゾル源71には、気化及び/又は霧化したグリセリン及び/又はプロピレングリコールなどとともに、気化及び/又は霧化したメンソール80も含まれる。 When the aerosol inhaler 1 is used, the first heater 45 is supplied with electric power from the power supply 61 through the discharge terminal 12 provided on the power supply unit case 11 and the connection terminal 47 provided on the cartridge 40. heats the aerosol source 71 held in the wick 44 without combustion. Then, in the heating chamber 43, the aerosol source 71 heated by the first heater 45 is vaporized and/or atomized. At this time, when the cartridge 40 is a menthol type in which the aerosol source 71 containing the menthol 80 is stored in the storage chamber 42, the vaporized and/or atomized aerosol source 71 includes vaporized and/or atomized glycerin and/or or vaporized and/or atomized menthol 80 together with propylene glycol or the like.
 そして、加熱室43で気化及び/又は霧化したエアロゾル源71は、電源ユニットケース11の空気供給部13から加熱室43に取り込まれた空気を分散媒としてエアロゾル化する。さらに、加熱室43で気化及び/又は霧化したエアロゾル源71と、電源ユニットケース11の空気供給部13から加熱室43に取り込まれた空気とは、加熱室43と連通する第1エアロゾル流路46の第1端部461から、第1エアロゾル流路46の第2端部462へと、さらにエアロゾル化しながら第1エアロゾル流路46を流れる。加熱室43で気化及び/又は霧化したエアロゾル源71は、第1エアロゾル流路46を流れる過程で温度が低下し、エアロゾル化が促進される。このようにして、加熱室43で気化及び/又は霧化したエアロゾル源71と、電源ユニットケース11の空気供給部13から加熱室43に取り込まれた空気と、によって、加熱室43及び第1エアロゾル流路46でエアロゾル72が生成される。カートリッジ40が、メンソール80を含むエアロゾル源71が貯留室42に貯留したメンソールタイプである場合、加熱室43及び第1エアロゾル流路46でエアロゾル72には、エアロゾル源71由来のエアロゾル化したメンソール80も含まれる。 Then, the aerosol source 71 vaporized and/or atomized in the heating chamber 43 aerosolizes the air taken into the heating chamber 43 from the air supply section 13 of the power supply unit case 11 as a dispersion medium. Further, the aerosol source 71 vaporized and/or atomized in the heating chamber 43 and the air taken into the heating chamber 43 from the air supply section 13 of the power supply unit case 11 are connected to the heating chamber 43 through a first aerosol flow path. It flows through the first aerosol channel 46 from the first end 461 of 46 to the second end 462 of the first aerosol channel 46 while being further aerosolized. The temperature of the aerosol source 71 vaporized and/or atomized in the heating chamber 43 decreases while flowing through the first aerosol flow path 46, promoting aerosolization. Thus, the heating chamber 43 and the first aerosol are generated by the aerosol source 71 vaporized and/or atomized in the heating chamber 43 and the air taken into the heating chamber 43 from the air supply section 13 of the power supply unit case 11. Aerosol 72 is generated in channel 46 . When the cartridge 40 is of the menthol type in which the aerosol source 71 containing the menthol 80 is stored in the storage chamber 42, the aerosol 72 in the heating chamber 43 and the first aerosol flow path 46 contains the aerosolized menthol 80 derived from the aerosol source 71. is also included.
(カプセル)
 カプセル50は、略円筒形状を有し、両端面が開口して略円環状に延びる側壁51を備える。側壁51は、例えば、プラスチック等の樹脂によって形成されている。カプセル50は、香味源52が収容される収容室53を備える。
(capsule)
The capsule 50 has a substantially cylindrical shape and includes a side wall 51 extending substantially annularly with both end faces open. The side walls 51 are made of, for example, resin such as plastic. Capsule 50 comprises a containment chamber 53 in which flavor source 52 is contained.
 香味源52は、たばこ原料を顆粒状に成形したたばこ顆粒521を含む。香味源52は、たばこ顆粒521に加えて、メンソール80を含んでいてもよい。本実施形態では、メンソール80を含まない香味源52を収容するレギュラータイプのカプセル50と、メンソール80を含む香味源52を収容するメンソールタイプのカプセル50とが、エアロゾル吸引器1の製造者等によってユーザに対し提供される。図3においては、メンソール80を含む香味源52を収容するメンソールタイプのカプセル50が装着された例を示している。メンソールタイプのカプセル50の香味源52は、たばこ顆粒521にメンソール80が吸着されている。 The flavor source 52 includes tobacco granules 521 formed by granulating tobacco raw materials. Flavor source 52 may contain menthol 80 in addition to tobacco granules 521 . In this embodiment, the regular type capsule 50 containing the flavor source 52 not containing the menthol 80 and the menthol type capsule 50 containing the flavor source 52 containing the menthol 80 are produced by the manufacturer of the aerosol inhaler 1 or the like. provided to the user. FIG. 3 shows an example in which a menthol-type capsule 50 containing a flavor source 52 containing menthol 80 is attached. The flavor source 52 of the menthol-type capsule 50 has menthol 80 adsorbed to tobacco granules 521 .
 なお、香味源52は、たばこ顆粒521に代えて、刻みたばこが含まれていてもよい。また、香味源52は、たばこ顆粒521に代えて、たばこ以外の植物(例えば、ミント、漢方、又はハーブ等)が含まれていてもよい。また、香味源52は、メンソール80に加えて他の香料が付加されていてもよい。 The flavor source 52 may contain shredded tobacco instead of the tobacco granules 521. Also, the flavor source 52 may contain plants other than tobacco (for example, mint, Chinese medicine, herbs, etc.) instead of the tobacco granules 521 . Also, the flavor source 52 may be added with other flavoring agents in addition to the menthol 80 .
 収容室53は、側壁51に取り囲まれたカプセル50の内部空間に形成されている。収容室53は、略円筒形状に延びるカプセル50の円筒軸方向の一端側に設けられる入口部54と、カプセル50の円筒軸方向の他端側に設けられる出口部55と、を備える。入口部54は、カプセル50の底部に形成されており、カプセル50の底面を構成する。入口部54は、香味源52が通過不能であり、エアロゾル72が通過可能な、網目状の隔壁となっている。出口部55は、カプセル50の円筒軸方向において、側壁51の頂部側の端部で、側壁51に取り囲まれたカプセル50の内部空間に充填されたフィルタ部材である。出口部55は、香味源52が通過不能であり、エアロゾル72が通過可能な、フィルタ部材である。本実施形態では、出口部55は、カプセル50の頂部近傍に設けられているが、出口部55は、カプセル50の頂部から離間した位置に設けられていてもよい。収容室53は、側壁51と、入口部54と、出口部55と、によって取り囲まれている。 The accommodation chamber 53 is formed in the internal space of the capsule 50 surrounded by the side walls 51 . The storage chamber 53 includes an inlet portion 54 provided at one end side of the capsule 50 extending in a substantially cylindrical shape in the cylindrical axial direction, and an outlet portion 55 provided at the other end side of the capsule 50 in the cylindrical axial direction. The inlet portion 54 is formed in the bottom portion of the capsule 50 and constitutes the bottom surface of the capsule 50 . The inlet portion 54 is a mesh-shaped partition through which the flavor source 52 cannot pass but the aerosol 72 can pass. The outlet part 55 is a filter member filled in the inner space of the capsule 50 surrounded by the side wall 51 at the top side end of the side wall 51 in the cylindrical axis direction of the capsule 50 . Outlet portion 55 is a filter member through which flavor source 52 is impermeable and aerosol 72 is permeable. Although the outlet 55 is provided near the top of the capsule 50 in this embodiment, the outlet 55 may be provided at a position spaced apart from the top of the capsule 50 . The containing chamber 53 is surrounded by side walls 51 , an inlet portion 54 and an outlet portion 55 .
 カプセル50において、出口部55の円筒軸方向の他端側、すなわち、出口部55の円筒軸方向の頂部側には、ユーザが吸引動作を行う吸口58が形成されている。 In the capsule 50, on the other end side of the outlet portion 55 in the axial direction of the cylinder, that is, on the top side of the outlet portion 55 in the axial direction of the cylinder, a suction port 58 for the user to perform a suction operation is formed.
(カプセルホルダ)
 カプセルホルダ30は、略円環状に第1方向Xに延びる側壁31を備え、底部側及び頂部側の両端面が開口した中空の略円環形状となっている。側壁31は、カプセル50の側壁51よりも、わずかに大径の略円環形状となっている。側壁31は、例えば、アルミニウム等の金属によって形成されている。カプセルホルダ30は、底部側の端部で、カートリッジカバー20の頂部側の端部と、螺合や係止等によって連結され、カートリッジカバー20に対して着脱可能となっている。略円環形状の側壁31の内周面31aは、エアロゾル吸引器1の中心線Lを中心とする円環形状であり、カートリッジ40の第1エアロゾル流路46よりも大径、且つ、カートリッジカバー20よりも小径となっている。
(capsule holder)
The capsule holder 30 has a substantially annular side wall 31 extending in the first direction X, and has a hollow substantially annular shape with both end faces on the bottom side and the top side opened. The side wall 31 has a substantially annular shape with a slightly larger diameter than the side wall 51 of the capsule 50 . The side walls 31 are made of metal such as aluminum, for example. The bottom side end of the capsule holder 30 is connected to the top side end of the cartridge cover 20 by screwing, engagement, or the like, so that the capsule holder 30 can be attached to and detached from the cartridge cover 20 . The inner peripheral surface 31a of the substantially annular side wall 31 has an annular shape centered on the center line L of the aerosol inhaler 1, has a larger diameter than the first aerosol flow path 46 of the cartridge 40, and has a cartridge cover. It has a smaller diameter than 20.
 カプセルホルダ30は、側壁31の底部側の端部に設けられた底壁32を備える。底壁32は、例えば樹脂によって形成されている。底壁32は、側壁31の底部側の端部に固定され、側壁31の底部側の端部で側壁31の内周面によって囲まれた中空部を後述する連通孔33を除き閉塞する。 The capsule holder 30 has a bottom wall 32 provided at the end of the side wall 31 on the bottom side. The bottom wall 32 is made of resin, for example. The bottom wall 32 is fixed to the bottom side end of the side wall 31 and closes the hollow portion surrounded by the inner peripheral surface of the side wall 31 at the bottom side end of the side wall 31 except for a communication hole 33 which will be described later.
 底壁32には、第1方向Xに貫通する連通孔33が設けられている。連通孔33は、第1方向から見て、中心線Lと重なる位置に形成されている。カートリッジ40がカートリッジカバー20の内部に収容された、かつ、カプセルホルダ30がカートリッジカバー20に装着された状態において、連通孔33は、第1方向Xの頂部側から見て、カートリッジ40の第1エアロゾル流路46が連通孔33の内部に位置するように形成されている。 A communication hole 33 penetrating in the first direction X is provided in the bottom wall 32 . The communication hole 33 is formed at a position overlapping the center line L when viewed from the first direction. When the cartridge 40 is accommodated inside the cartridge cover 20 and the capsule holder 30 is attached to the cartridge cover 20, the communication hole 33 is the first An aerosol flow path 46 is formed so as to be positioned inside the communication hole 33 .
 カプセルホルダ30の側壁31には、第2ヒータ34が設けられている。第2ヒータ34は、略円環形状の側壁31に沿った円環形状を有し、第1方向Xに延びている。第2ヒータ34は、カプセル50の収容室53を加熱して収容室53に収容された香味源52を加熱する。第2ヒータ34は、カプセル50の収容室53を加熱することによって香味源52を加熱可能な素子であればよい。第2ヒータ34は、例えば、発熱抵抗体、セラミックヒータ、及び誘導加熱式のヒータ等の発熱素子であってもよい。第2ヒータ34は、温度と電気抵抗値とが相関を持つものが用いられる。第2ヒータ34としては、例えば、温度の増加に伴って電気抵抗値も増加するPTC(Positive Temperature Coefficient)特性を有するものが用いられる。これに代えて、第2ヒータ34としては、例えば、温度の増加に伴って電気抵抗値が減少するNTC(Negative Temperature Coefficient)特性を有するものが用いられてもよい。 A second heater 34 is provided on the side wall 31 of the capsule holder 30 . The second heater 34 has an annular shape along the substantially annular side wall 31 and extends in the first direction X. As shown in FIG. The second heater 34 heats the storage chamber 53 of the capsule 50 to heat the flavor source 52 stored in the storage chamber 53 . The second heater 34 may be any element that can heat the flavor source 52 by heating the housing chamber 53 of the capsule 50 . The second heater 34 may be, for example, a heating element such as a heating resistor, a ceramic heater, or an induction heater. The second heater 34 has a correlation between temperature and electrical resistance. As the second heater 34, for example, a heater having a PTC (Positive Temperature Coefficient) characteristic is used in which the electrical resistance value increases as the temperature increases. Alternatively, the second heater 34 may have, for example, NTC (Negative Temperature Coefficient) characteristics in which the electrical resistance value decreases as the temperature increases.
 カートリッジカバー20が電源ユニット10に装着され、かつ、カプセルホルダ30がカートリッジカバー20に装着された状態において、第2ヒータ34は、電源ユニット10の電源61と電気的に接続される(図6及び図7参照)。具体的には、カートリッジカバー20が電源ユニット10に装着され、かつ、カプセルホルダ30がカートリッジカバー20に装着された状態であるときには、電源ユニット10の放電端子17(図6参照)とカプセルホルダ30の接続端子(不図示)とが接触することによって、カプセルホルダ30の第2ヒータ34は、放電端子17及びカプセルホルダ30の接続端子を介して、電源ユニット10の電源61と電気的に接続される。 With the cartridge cover 20 attached to the power supply unit 10 and the capsule holder 30 attached to the cartridge cover 20, the second heater 34 is electrically connected to the power supply 61 of the power supply unit 10 (FIGS. 6 and 6). See Figure 7). Specifically, when the cartridge cover 20 is attached to the power supply unit 10 and the capsule holder 30 is attached to the cartridge cover 20, the discharge terminal 17 (see FIG. 6) of the power supply unit 10 and the capsule holder 30 , the second heater 34 of the capsule holder 30 is electrically connected to the power supply 61 of the power supply unit 10 via the discharge terminal 17 and the connection terminals of the capsule holder 30. be.
(エアロゾル吸引器の使用時における構成)
 このように構成されたエアロゾル吸引器1は、電源ユニット10に、カートリッジカバー20、カプセルホルダ30、カートリッジ40、及びカプセル50が装着された状態で使用される。この状態では、エアロゾル吸引器1には、少なくとも、カートリッジ40に設けられた第1エアロゾル流路46と、カプセルホルダ30の底壁32に設けられた連通孔33と、によって、エアロゾル流路90が形成される。エアロゾル流路90は、カートリッジ40の加熱室43とカプセル50の収容室53とを接続し、加熱室43で生成されたエアロゾル72を加熱室43から収容室53へと輸送する。
(Configuration when using an aerosol inhaler)
The aerosol inhaler 1 configured as described above is used with the cartridge cover 20, the capsule holder 30, the cartridge 40, and the capsule 50 attached to the power supply unit 10. FIG. In this state, the aerosol inhaler 1 has an aerosol channel 90 formed by at least the first aerosol channel 46 provided in the cartridge 40 and the communication hole 33 provided in the bottom wall 32 of the capsule holder 30. It is formed. The aerosol channel 90 connects the heating chamber 43 of the cartridge 40 and the storage chamber 53 of the capsule 50 and transports the aerosol 72 generated in the heating chamber 43 from the heating chamber 43 to the storage chamber 53 .
 そして、エアロゾル吸引器1は、使用時において、ユーザが吸口58から吸引動作を行うと、電源ユニットケース11に設けられた不図示の空気取込口から流入した空気が、図3中の矢印Bで示すように、電源ユニットケース11の頂面11aに設けられた空気供給部13からカートリッジ40の加熱室43に取り込まれる。さらに、第1ヒータ45が発熱し、ウィック44に保持されたエアロゾル源71が加熱され、加熱室43において、第1ヒータ45によって加熱されたエアロゾル源71が気化及び/又は霧化する。そして、第1ヒータ45によって気化及び/又は霧化したエアロゾル源71は、電源ユニットケース11の空気供給部13から加熱室43に取り込まれた空気を分散媒としてエアロゾル化する。加熱室43で気化及び/又は霧化したエアロゾル源71と、電源ユニットケース11の空気供給部13から加熱室43に取り込まれた空気とは、加熱室43と連通する第1エアロゾル流路46の第1端部461から、第1エアロゾル流路46の第2端部462へと、さらにエアロゾル化しながら第1エアロゾル流路46を流れる。このように生成されたエアロゾル72は、第1エアロゾル流路46の第2端部462から、カプセルホルダ30の底壁32に設けられた連通孔33を通って、カプセル50の入口部54から収容室53に導入される。 Then, when the aerosol inhaler 1 is in use, when the user performs a suction operation from the suction port 58, the air that has flowed in from the air intake port (not shown) provided in the power supply unit case 11 will flow into the direction indicated by the arrow B in FIG. , the air is taken into the heating chamber 43 of the cartridge 40 from the air supply portion 13 provided on the top surface 11a of the power supply unit case 11. As shown in FIG. Further, the first heater 45 generates heat, the aerosol source 71 held by the wick 44 is heated, and the aerosol source 71 heated by the first heater 45 is vaporized and/or atomized in the heating chamber 43 . Then, the aerosol source 71 vaporized and/or atomized by the first heater 45 aerosolizes the air taken into the heating chamber 43 from the air supply section 13 of the power supply unit case 11 as a dispersion medium. The aerosol source 71 vaporized and/or atomized in the heating chamber 43 and the air taken into the heating chamber 43 from the air supply section 13 of the power supply unit case 11 pass through the first aerosol flow path 46 communicating with the heating chamber 43 . It flows through the first aerosol channel 46 from the first end 461 to the second end 462 of the first aerosol channel 46 while being further aerosolized. The aerosol 72 generated in this manner passes from the second end 462 of the first aerosol channel 46 through the communication hole 33 provided in the bottom wall 32 of the capsule holder 30 and is received from the inlet 54 of the capsule 50 . introduced into chamber 53;
 入口部54から収容室53に導入されたエアロゾル72は、収容室53を入口部54から出口部55へとエアロゾル吸引器1の第1方向Xに流れる際に、収容室53に収容された香味源52を通過することによって、香味源52から香味成分が付加される。 The aerosol 72 introduced into the storage chamber 53 from the entrance portion 54 mixes with the flavor stored in the storage chamber 53 when flowing through the storage chamber 53 from the entrance portion 54 to the outlet portion 55 in the first direction X of the aerosol inhaler 1 . Flavor components are added from the flavor source 52 by passing through the source 52 .
 このようにして、エアロゾル72は、収容室53を入口部54から出口部55へとエアロゾル吸引器1の第1方向Xに流れる。よって、本実施形態では、収容室53において、入口部54から出口部55へとエアロゾル72が流れるエアロゾル72の流れ方向は、カプセル50の円筒軸方向であり、エアロゾル吸引器1の第1方向Xとなっている。 In this way, the aerosol 72 flows in the first direction X of the aerosol inhaler 1 from the inlet portion 54 to the outlet portion 55 in the storage chamber 53 . Therefore, in the present embodiment, the flow direction of the aerosol 72 flowing from the inlet portion 54 to the outlet portion 55 in the storage chamber 53 is the cylindrical axis direction of the capsule 50 and the first direction X of the aerosol inhaler 1. It has become.
 さらに、エアロゾル吸引器1の使用時において、カプセルホルダ30に設けられた第2ヒータ34は、発熱して収容室53を加熱する。これにより、収容室53に収容された香味源52と、収容室53を流れるエアロゾル72と、が加熱される。 Furthermore, when the aerosol inhaler 1 is used, the second heater 34 provided in the capsule holder 30 generates heat to heat the storage chamber 53 . Thereby, the flavor source 52 accommodated in the accommodation chamber 53 and the aerosol 72 flowing through the accommodation chamber 53 are heated.
(カートリッジカバー及び色識別センサ)
 図5に示すように、カートリッジカバー20は、第1方向Xに延びる略円環形状の外周壁21と、外周壁21の円環内部で、外周壁21と略同一中心であり、外周壁21と対向して第1方向Xに延びる略円環形状の内周壁22と、を有する。外周壁21は、例えば、ステンレス等の金属によって形成されており、光を透過しない。内周壁22は、例えば、ポリカーボネート等の樹脂によって形成されており、無色透明で光を透過する。
(Cartridge cover and color identification sensor)
As shown in FIG. 5, the cartridge cover 20 has a substantially annular outer peripheral wall 21 extending in the first direction X, and the outer peripheral wall 21 and the outer peripheral wall 21 are substantially concentric within the annular ring of the outer peripheral wall 21 . and a substantially annular inner peripheral wall 22 extending in the first direction X facing the . The outer peripheral wall 21 is made of, for example, metal such as stainless steel, and does not transmit light. The inner peripheral wall 22 is made of, for example, a resin such as polycarbonate, and is colorless and transparent to transmit light.
 外周壁21と内周壁22との間には空間部23が形成されている。空間部23には、カートリッジ40の着色部49に着色された色を識別可能な色識別センサ24が設けられている。したがって、カートリッジ40は、カートリッジカバー20の内周壁22によって囲まれた、内周壁22の内側の空間に収容され、色識別センサ24は、カートリッジ40が収容される空間とは内周壁22によって隔てられ、内周壁22の外側に形成された空間部23に設けられる。これにより、色識別センサ24を半田や接着剤等を用いてカートリッジカバー20に固定した場合でも、エアロゾル吸引器1の使用時において、ユーザが吸引動作を行った際に、色識別センサ24の固定に用いた半田や接着剤等の成分をユーザが吸引することを防止できる。 A space 23 is formed between the outer peripheral wall 21 and the inner peripheral wall 22 . A color identification sensor 24 capable of identifying the color of the colored portion 49 of the cartridge 40 is provided in the space 23 . Therefore, the cartridge 40 is accommodated in the space inside the inner peripheral wall 22 surrounded by the inner peripheral wall 22 of the cartridge cover 20, and the color identification sensor 24 is separated from the space in which the cartridge 40 is accommodated by the inner peripheral wall 22. , are provided in a space 23 formed outside the inner peripheral wall 22 . As a result, even when the color identification sensor 24 is fixed to the cartridge cover 20 using solder, adhesive, or the like, the color identification sensor 24 cannot be fixed when the user performs the suction operation when using the aerosol inhaler 1 . It is possible to prevent the user from sucking components such as solder and adhesive used in the assembly.
 色識別センサ24は、カートリッジカバー20が電源ユニット10に装着されて、カートリッジ40がカートリッジカバー20の内部に装着された状態において、カートリッジ40の着色部49と対向する位置に設けられている。本実施形態では、色識別センサ24は、カートリッジカバー20が電源ユニット10に装着されて、カートリッジ40がカートリッジカバー20の内部に装着された状態において、カートリッジ40の電極部48の円筒面の外表面と径方向外側で対向する位置に配置されている。 The color identification sensor 24 is provided at a position facing the colored portion 49 of the cartridge 40 when the cartridge cover 20 is attached to the power supply unit 10 and the cartridge 40 is attached inside the cartridge cover 20 . In this embodiment, when the cartridge cover 20 is attached to the power supply unit 10 and the cartridge 40 is attached inside the cartridge cover 20 , the color identification sensor 24 detects the external surface of the cylindrical surface of the electrode portion 48 of the cartridge 40 . are arranged at positions facing each other on the outside in the radial direction.
 色識別センサ24は、カートリッジ40の着色部49に向かって、カートリッジカバー20の内部に光を投光可能な投光部241と、カートリッジ40の着色部49から反射した光を受光し、受光した光の色成分を数値化するカラーセンサ部242と、を有する。 The color identification sensor 24 receives light reflected from a light projecting portion 241 capable of projecting light into the interior of the cartridge cover 20 toward the colored portion 49 of the cartridge 40, and the light reflected from the colored portion 49 of the cartridge 40. and a color sensor unit 242 that quantifies the color components of light.
 空間部23には、色識別センサ24とカートリッジカバー20の内周壁22との間に、光を透過しない遮光部材25が設けられている。遮光部材25は、例えば、内周壁22の外周壁21と対向する側の面に接着された光を透過しない遮光フィルムであってもよいし、内周壁22の外周壁21と対向する側の面に成膜された光を透過しない材料による遮光膜であってもよい。 A light blocking member 25 that does not transmit light is provided between the color identification sensor 24 and the inner peripheral wall 22 of the cartridge cover 20 in the space 23 . The light shielding member 25 may be, for example, a light shielding film adhered to the surface of the inner peripheral wall 22 facing the outer peripheral wall 21 , or a surface of the inner peripheral wall 22 facing the outer peripheral wall 21 . A light-shielding film made of a material that does not transmit light and is formed as a film may also be used.
 遮光部材25には、光を透過する光透過部25aが形成されている。光透過部25aは、例えば、遮光部材25に形成された貫通孔である。光透過部25aは、カートリッジカバー20が電源ユニット10に装着されて、カートリッジ40がカートリッジカバー20の内部に装着された状態において、色識別センサ24の投光部241と、カートリッジ40の着色部49との間、及び、色識別センサ24のカラーセンサ部242と、カートリッジ40の着色部49との間に、それぞれ形成されている。なお、光透過部25aは、カートリッジカバー20が電源ユニット10に装着されて、カートリッジ40がカートリッジカバー20の内部に装着された状態において、色識別センサ24の投光部241及びカラーセンサ部242の双方と、カートリッジ40の着色部49との間となる位置及び大きさに形成されていてもよい。 The light shielding member 25 is formed with a light transmitting portion 25a that transmits light. The light transmitting portion 25a is, for example, a through hole formed in the light shielding member 25. As shown in FIG. When the cartridge cover 20 is attached to the power supply unit 10 and the cartridge 40 is attached inside the cartridge cover 20, the light transmitting portion 25a is configured to transmit light to the light emitting portion 241 of the color identification sensor 24 and the coloring portion 49 of the cartridge 40. and between the color sensor portion 242 of the color identification sensor 24 and the coloring portion 49 of the cartridge 40, respectively. The light transmitting portion 25a is a light transmitting portion 241 and a color sensor portion 242 of the color identification sensor 24 when the cartridge cover 20 is attached to the power supply unit 10 and the cartridge 40 is attached inside the cartridge cover 20. It may be formed at a position and size between both and the colored portion 49 of the cartridge 40 .
 色識別センサ24の投光部241は、カートリッジ40の着色部49に向かって、カートリッジカバー20の内部に白色光を投光する。投光部241は、例えば、青色LED素子と黄色蛍光体とを有し、青色LED素子から発光される青色光と、青色LED素子から発光される青色光によって黄色蛍光体で励起されて発光される黄色光とが混色されることによって白色光が生成されるものであってもよい。投光部241は、例えば、近紫外LED素子と赤色蛍光体、緑色蛍光体、及び青色蛍光体と、を有し、近紫外LED素子から発光される近紫外光によって赤色蛍光体で励起されて発光される赤色光と、緑色蛍光体で励起されて発光される緑色光と、青色蛍光体で励起されて発光される青色光と、が混色されることによって白色光が生成されるものであってもよい。投光部241は、例えば、赤色LED素子、緑色LED素子、及び青色LED素子を有し、赤色LED素子から発光される赤色光、緑色LED素子から発光される緑色光、及び青色LED素子から発光される青色光が混色されることによって白色光が生成されるものであってもよい。 The light projecting section 241 of the color identification sensor 24 projects white light inside the cartridge cover 20 toward the coloring section 49 of the cartridge 40 . The light projecting unit 241 has, for example, a blue LED element and a yellow phosphor, and the yellow phosphor is excited by the blue light emitted from the blue LED element and the blue light emitted from the blue LED element to emit light. White light may be produced by mixing with yellow light. The light projecting unit 241 includes, for example, a near-ultraviolet LED element, a red phosphor, a green phosphor, and a blue phosphor, and the red phosphor is excited by the near-ultraviolet light emitted from the near-ultraviolet LED element. White light is generated by mixing the emitted red light, the green light emitted when excited by the green phosphor, and the blue light emitted when excited by the blue phosphor. may The light projecting unit 241 has, for example, a red LED element, a green LED element, and a blue LED element, and emits red light emitted from the red LED element, green light emitted from the green LED element, and light emitted from the blue LED element. White light may be generated by mixing the blue light that is applied.
 投光部241から投光された白色光は、遮光部材25の光透過部25aを通って、カートリッジ40の着色部49を照射する。カートリッジ40の着色部49に照射された白色光は、着色部49に着色された色に応じて特定の波長の光が反射する。 The white light projected from the light projecting portion 241 passes through the light transmitting portion 25 a of the light shielding member 25 and irradiates the colored portion 49 of the cartridge 40 . The white light irradiated to the colored portion 49 of the cartridge 40 reflects light of a specific wavelength according to the color of the colored portion 49 .
 色識別センサ24のカラーセンサ部242は、着色部49に着色された色に応じて反射して、遮光部材25の光透過部25aを通った光を受光する受光部と、受光部で受光した光の色成分を数値化するアナログデジタル変換器と、を有する。 The color sensor portion 242 of the color identification sensor 24 receives the light reflected by the colored portion 49 in accordance with the color and passes through the light transmitting portion 25a of the light shielding member 25, and the light receiving portion receives the light. and an analog-to-digital converter for digitizing the color components of the light.
 例えば、色識別センサ24のカラーセンサ部242において、受光部は、赤色成分を受光するフォトダイオード、緑色成分を受光するフォトダイオード、及び青色成分を受光するフォトダイオードを有し、アナログデジタル変換器は、赤色成分を受光するフォトダイオード、緑色成分を受光するフォトダイオード、及び青色成分を受光するフォトダイオードそれぞれの受光量から、受光部で受光した光の赤色成分、緑色成分、及び青色成分をそれぞれ0~255の値に数値化する。 For example, in the color sensor unit 242 of the color identification sensor 24, the light receiving unit has a photodiode that receives the red component, a photodiode that receives the green component, and a photodiode that receives the blue component, and the analog-to-digital converter is , the amount of light received by each of the photodiode that receives the red component, the photodiode that receives the green component, and the photodiode that receives the blue component, the red component, the green component, and the blue component of the light received by the light receiving unit are set to 0, respectively. It quantifies to a value of ~255.
 また、例えば、色識別センサ24のカラーセンサ部242において、受光部は、可視領域内にて波長分割された複数のフォトダイオードを有し、アナログデジタル変換器は、各フォトダイオードの受光量から、受光部で受光した光の赤色成分、緑色成分、及び青色成分をそれぞれ0~255の値に数値化してもよい。 Further, for example, in the color sensor unit 242 of the color identification sensor 24, the light receiving unit has a plurality of photodiodes that are wavelength-divided within the visible region, and the analog-to-digital converter converts the amount of light received by each photodiode into The red component, the green component, and the blue component of the light received by the light receiving section may each be quantified into values from 0 to 255.
 このとき、カートリッジ40の着色部49は、光を透過しないように形成されているので、着色部49に着色された色に応じて反射する反射光の光量を多くすることができる。これにより、色識別センサ24のカラーセンサ部242において、着色部49に着色された色に応じて反射する光をより多く受光部で受光することができるので、受光部で受光した光の色成分を精度よく数値化することができ、着色部49に着色された色を精度よく識別できる。 At this time, since the colored portion 49 of the cartridge 40 is formed so as not to transmit light, it is possible to increase the amount of reflected light reflected according to the color of the colored portion 49 . As a result, in the color sensor portion 242 of the color identification sensor 24, the light receiving portion can receive more light reflected according to the color of the colored portion 49, so that the color components of the light received by the light receiving portion can be quantified with high accuracy, and the color of the colored portion 49 can be identified with high accuracy.
 カートリッジ40の着色部49は、赤色、緑色及び青色のいずれかに着色されている(本実施形態では、メンソール80を含まないエアロゾル源71が貯留室42に貯留したレギュラータイプのカートリッジ40の着色部49は、赤色に着色されており、メンソール80を含むエアロゾル源71が貯留室42に貯留したメンソールタイプのカートリッジ40の着色部49は、緑色に着色されている)ので、色識別センサ24のカラーセンサ部242において、アナログデジタル変換器で数値化された、受光部で受光した光の赤色成分、緑色成分、及び青色成分の値から、カートリッジ40の着色部49に着色された色を識別することが容易となる。 The colored portion 49 of the cartridge 40 is colored red, green, or blue (in this embodiment, the colored portion 49 of the regular type cartridge 40 in which the aerosol source 71 not containing the menthol 80 is stored in the storage chamber 42). 49 is colored red, and the colored portion 49 of the menthol type cartridge 40 in which the aerosol source 71 containing menthol 80 is stored in the storage chamber 42 is colored green). In the sensor unit 242, the color of the coloring unit 49 of the cartridge 40 is identified from the values of the red, green, and blue components of the light received by the light receiving unit, which are digitized by the analog-to-digital converter. becomes easier.
 また、色識別センサ24がカートリッジカバー20に設けられているので、エアロゾル吸引器1を大型化することなく、カートリッジ40の着色部49の近傍に色識別センサ24を配置でき、精度よくカートリッジ40の着色部49に着色された色を識別できる。 Further, since the color identification sensor 24 is provided on the cartridge cover 20, the color identification sensor 24 can be arranged in the vicinity of the colored portion 49 of the cartridge 40 without increasing the size of the aerosol inhaler 1. The color applied to the colored portion 49 can be identified.
 また、色識別センサ24とカートリッジカバー20の内周壁22との間には、光を透過しない遮光部材25が設けられており、投光部241から投光された白色光は、遮光部材25の光透過部25aを通って、カートリッジ40の着色部49を照射するので、投光部241から投光された白色光以外の光がカートリッジ40の着色部49に照射されることを抑制できる。さらに、色識別センサ24とカートリッジカバー20の内周壁22との間には、光を透過しない遮光部材25が設けられており、色識別センサ24のカラーセンサ部242は、着色部49に着色された色に応じて反射して、遮光部材25の光透過部25aを通った光を受光するので、色識別センサ24のカラーセンサ部242が、着色部49に着色された色に応じて反射した光以外の光を受光することを抑制できる。これにより、色識別センサ24のカラーセンサ部242において、カートリッジ40の着色部49に着色された色を精度よく識別できる。 A light blocking member 25 that does not transmit light is provided between the color identification sensor 24 and the inner peripheral wall 22 of the cartridge cover 20 . Since the colored portion 49 of the cartridge 40 is irradiated through the light transmitting portion 25a, it is possible to prevent the colored portion 49 of the cartridge 40 from being irradiated with light other than the white light projected from the light projecting portion 241 . Further, a light blocking member 25 that does not transmit light is provided between the color identification sensor 24 and the inner peripheral wall 22 of the cartridge cover 20, and the color sensor portion 242 of the color identification sensor 24 is colored in the colored portion 49. Since the light is reflected according to the color of the light and received through the light transmitting portion 25a of the light shielding member 25, the color sensor portion 242 of the color identification sensor 24 reflects the light according to the color of the colored portion 49. Reception of light other than light can be suppressed. Accordingly, the color of the colored portion 49 of the cartridge 40 can be accurately identified in the color sensor portion 242 of the color identification sensor 24 .
 色識別センサ24のカラーセンサ部242は、アナログデジタル変換器において数値化された受光部で受光した光の赤色成分、緑色成分、及び青色成分の各値から、色相(Hue)、彩度(Saturation)、及び、輝度(Lightness)の、三つの色成分に変換するHSL変換を行ってもよい。HSL変換では、受光部で受光した光の赤色成分、緑色成分、及び青色成分それぞれの0~255の値に応じて、色相(Hue)が0度~360度の値、彩度(Saturation)が0~100の値、輝度(Lightness)が0~100の値に変換される。これにより、受光部で受光した光の色成分を、受光部における受光輝度のバラつきに対して精度よく数値化することができる。 The color sensor unit 242 of the color identification sensor 24 determines the hue and saturation from the values of the red, green and blue components of the light received by the light receiving unit which are digitized by the analog-to-digital converter. ) and Lightness. In the HSL conversion, the hue (Hue) is a value of 0 to 360 degrees and the saturation (Saturation) is set to A value from 0 to 100 is converted to a value from 0 to 100 for the brightness. Thereby, the color components of the light received by the light receiving section can be quantified with high accuracy with respect to the variation in the light receiving luminance in the light receiving section.
 また、色識別センサ24のカラーセンサ部242は、アナログデジタル変換器において数値化された受光部で受光した光の赤色成分、緑色成分、及び青色成分の各値から、公知の色見本帳の色識別情報に変換してもよい。 Further, the color sensor unit 242 of the color identification sensor 24 uses the values of the red, green, and blue components of the light received by the light-receiving unit, which are digitized by the analog-to-digital converter, to determine the color of a known color sample book. You may convert into identification information.
 色識別センサ24は、カラーセンサ部242のアナログデジタル変換器において数値化された受光部で受光した光の赤色成分、緑色成分、及び青色成分それぞれの0~255値、HSL変換された色相(Hue)の0度~360度の値、彩度(Saturation)の0~100の値、及び輝度(Lightness)の0~100の値、並びに、色見本帳の色識別情報、の少なくとも1つを、カートリッジ40の着色部49に着色された色に関する情報として、MCU63に出力する。 The color identification sensor 24 has values of 0 to 255 for each of the red, green, and blue components of the light received by the light-receiving unit digitized by the analog-to-digital converter of the color sensor unit 242, and HSL-converted hue (Hue ) of 0 to 360 degrees, Saturation of 0 to 100, and Brightness of 0 to 100, and color identification information of the color sample book, at least one of It is output to the MCU 63 as information about the color of the coloring portion 49 of the cartridge 40 .
(電源ユニットの詳細)
 次に、電源ユニット10の詳細について、図6を参照しながら説明する。図6に示すように、電源ユニット10において、電源61の出力電圧を変換して第1ヒータ45へ印加可能な電圧変換器の一例であるDC/DCコンバータ66は、電源ユニット10にカートリッジ40が装着された状態において、第1ヒータ45と電源61との間に接続されている。MCU63は、DC/DCコンバータ66と電源61の間に接続されている。第2ヒータ34は、電源ユニット10にカートリッジ40が装着された状態において、MCU63とDC/DCコンバータ66との間に設けられた接続ノードに接続されている。このように、電源ユニット10では、カートリッジ40が装着された状態において、DC/DCコンバータ66及び第1ヒータ45の直列回路と、第2ヒータ34とが、電源61に対し並列接続されている。
(details of power supply unit)
Next, details of the power supply unit 10 will be described with reference to FIG. As shown in FIG. 6, in the power supply unit 10, a DC/DC converter 66, which is an example of a voltage converter capable of converting the output voltage of the power supply 61 and applying it to the first heater 45, is installed in the power supply unit 10. It is connected between the first heater 45 and the power source 61 in the attached state. MCU 63 is connected between DC/DC converter 66 and power supply 61 . The second heater 34 is connected to a connection node provided between the MCU 63 and the DC/DC converter 66 when the cartridge 40 is attached to the power supply unit 10 . Thus, in the power supply unit 10 , the series circuit of the DC/DC converter 66 and the first heater 45 and the second heater 34 are connected in parallel to the power supply 61 when the cartridge 40 is attached.
 DC/DCコンバータ66は、MCU63によって制御され、入力電圧(例えば電源61の出力電圧)を昇圧可能な昇圧回路であり、入力電圧又は入力電圧を昇圧した電圧を第1ヒータ45へ印加可能に構成されている。DC/DCコンバータ66による第1ヒータ45への印加電圧を変化させることで、第1ヒータ45へ供給される電力を調整できるため、第1ヒータ45により気化又は霧化されるエアロゾル源71の量を制御することができる。DC/DCコンバータ66としては、例えば、出力電圧を監視しながらスイッチング素子のオン/オフ時間を制御することで、入力電圧を希望する出力電圧に変換するスイッチングレギュレータを用いることができる。DC/DCコンバータ66としてスイッチングレギュレータを用いる場合には、スイッチング素子を制御することで、入力電圧を昇圧せずに、そのまま出力させることができる。DC/DCコンバータ66は、例えば、第1ヒータ45への印加電圧を、後述するV1~V5[V]等とするために用いられてもよい。 The DC/DC converter 66 is a booster circuit controlled by the MCU 63 and capable of boosting an input voltage (for example, the output voltage of the power supply 61), and is configured to apply the input voltage or a voltage obtained by boosting the input voltage to the first heater 45. It is Since the power supplied to the first heater 45 can be adjusted by changing the voltage applied to the first heater 45 by the DC/DC converter 66, the amount of the aerosol source 71 vaporized or atomized by the first heater 45 can be controlled. As the DC/DC converter 66, for example, a switching regulator can be used that converts an input voltage into a desired output voltage by controlling the on/off time of a switching element while monitoring the output voltage. When a switching regulator is used as the DC/DC converter 66, by controlling the switching element, the input voltage can be directly output without being boosted. The DC/DC converter 66 may be used, for example, to set the voltage applied to the first heater 45 to V1 to V5 [V], which will be described later.
 MCU63は、第2ヒータ34への放電を制御するため、第2ヒータ34の温度、香味源52の温度、又は収容室53の温度(すなわち後述する第2温度T2)を取得できるように構成される。また、MCU63は、第1ヒータ45の温度を取得できるように構成されることが好ましい。第1ヒータ45の温度は、第1ヒータ45やエアロゾル源71の過熱の抑制や、第1ヒータ45が気化又は霧化するエアロゾル源71の量を高度に制御するために用いることができる。 The MCU 63 is configured to acquire the temperature of the second heater 34, the temperature of the flavor source 52, or the temperature of the storage chamber 53 (that is, a second temperature T2 described later) in order to control discharge to the second heater 34. be. Also, the MCU 63 is preferably configured to acquire the temperature of the first heater 45 . The temperature of the first heater 45 can be used to suppress overheating of the first heater 45 and/or the aerosol source 71 and to highly control the amount of the aerosol source 71 vaporized or atomized by the first heater 45 .
 電圧センサ671は、第1ヒータ45に印加される電圧値を測定して出力する。電流センサ672は、第1ヒータ45を貫流する電流値を測定して出力する。電圧センサ671の出力と、電流センサ672の出力は、それぞれ、MCU63に入力される。MCU63は、電圧センサ671の出力と電流センサ672の出力とに基づいて第1ヒータ45の抵抗値を取得し、取得した第1ヒータ45の抵抗値に基づいて第1ヒータ45の温度を取得する。 The voltage sensor 671 measures and outputs the voltage value applied to the first heater 45 . The current sensor 672 measures and outputs the current value flowing through the first heater 45 . The output of the voltage sensor 671 and the output of the current sensor 672 are input to the MCU 63 respectively. The MCU 63 acquires the resistance value of the first heater 45 based on the output of the voltage sensor 671 and the output of the current sensor 672, and acquires the temperature of the first heater 45 based on the acquired resistance value of the first heater 45. .
 なお、第1ヒータ45の抵抗値を取得する際に、第1ヒータ45に定電流を流す構成とすれば、第1温度検出用素子67において電流センサ672は不要である。同様に、第1ヒータ45の抵抗値を取得する際に、第1ヒータ45に定電圧を印加する構成とすれば、第1温度検出用素子67において電圧センサ671は不要である。 If a constant current is passed through the first heater 45 when obtaining the resistance value of the first heater 45, the current sensor 672 in the first temperature detection element 67 is unnecessary. Similarly, if a constant voltage is applied to the first heater 45 when obtaining the resistance value of the first heater 45 , the voltage sensor 671 is not required in the first temperature detection element 67 .
 電圧センサ681は、第2ヒータ34に印加される電圧値を測定して出力する。電流センサ682は、第2ヒータ34を貫流する電流値を測定して出力する。電圧センサ681の出力と、電流センサ682の出力は、それぞれ、MCU63に入力される。MCU63は、電圧センサ681の出力と電流センサ682の出力とに基づいて第2ヒータ34の抵抗値を取得し、取得した第2ヒータ34の抵抗値に基づいて第2ヒータ34の温度を取得する。 The voltage sensor 681 measures and outputs the voltage value applied to the second heater 34 . The current sensor 682 measures and outputs the current value flowing through the second heater 34 . The output of the voltage sensor 681 and the output of the current sensor 682 are input to the MCU 63 respectively. The MCU 63 acquires the resistance value of the second heater 34 based on the output of the voltage sensor 681 and the output of the current sensor 682, and acquires the temperature of the second heater 34 based on the acquired resistance value of the second heater 34. .
 ここで、第2ヒータ34の温度は、第2ヒータ34によって加熱される香味源52の温度と厳密には一致しないが、香味源52の温度とほぼ同じと見做すことができる。また、第2ヒータ34の温度は、第2ヒータ34によって加熱されるカプセル50の収容室53の温度と厳密には一致しないが、カプセル50の収容室53の温度とほぼ同じと見做すことができる。このため、第2温度検出用素子68は、香味源52の温度、又はカプセル50の収容室53の温度を検出するための温度検出用素子として用いることもできる。 Here, although the temperature of the second heater 34 does not strictly match the temperature of the flavor source 52 heated by the second heater 34, it can be regarded as substantially the same as the temperature of the flavor source 52. Also, although the temperature of the second heater 34 does not strictly match the temperature of the storage chamber 53 of the capsule 50 heated by the second heater 34, it can be regarded as substantially the same as the temperature of the storage chamber 53 of the capsule 50. can be done. Therefore, the second temperature detection element 68 can also be used as a temperature detection element for detecting the temperature of the flavor source 52 or the temperature of the storage chamber 53 of the capsule 50 .
 なお、第2ヒータ34の抵抗値を取得する際に、第2ヒータ34に定電流を流す構成とすれば、第2温度検出用素子68において電流センサ682は不要である。同様に、第2ヒータ34の抵抗値を取得する際に、第2ヒータ34に定電圧を印加する構成とすれば、第2温度検出用素子68において電圧センサ681は不要である。 If a constant current is passed through the second heater 34 when obtaining the resistance value of the second heater 34, the current sensor 682 in the second temperature detection element 68 is unnecessary. Similarly, if a constant voltage is applied to the second heater 34 when obtaining the resistance value of the second heater 34 , the voltage sensor 681 is not required in the second temperature detection element 68 .
 第2温度検出用素子68をカプセルホルダ30やカートリッジ40に設けても、第2温度検出用素子68の出力に基づき第2ヒータ34の温度、香味源52の温度、又はカプセル50の収容室53の温度を取得できるが、第2温度検出用素子68は、エアロゾル吸引器1において交換頻度が最も低い電源ユニット10に設けることが好ましい。このようにすれば、カプセルホルダ30及びカートリッジ40の製造コストを下げて、電源ユニット10に比べて交換頻度の高いカプセルホルダ30やカートリッジ40を安価にユーザに提供することが可能となる。 Even if the second temperature detection element 68 is provided in the capsule holder 30 or the cartridge 40, the temperature of the second heater 34, the temperature of the flavor source 52, or the storage chamber 53 of the capsule 50 is determined based on the output of the second temperature detection element 68. However, it is preferable that the second temperature detection element 68 be provided in the power supply unit 10 that is replaced most frequently in the aerosol inhaler 1 . By doing so, it is possible to reduce the manufacturing cost of the capsule holder 30 and the cartridge 40 and provide the user with the capsule holder 30 and the cartridge 40, which are replaced more frequently than the power supply unit 10, at a low cost.
 図7は、図6に示す電源ユニット10の具体例を示す図である。図7では、第2温度検出用素子68として電流センサ682を持たず、かつ、第1温度検出用素子67として電流センサ672を持たない構成の具体例を示している。 FIG. 7 is a diagram showing a specific example of the power supply unit 10 shown in FIG. FIG. 7 shows a specific example of a configuration that does not have the current sensor 682 as the second temperature detection element 68 and does not have the current sensor 672 as the first temperature detection element 67 .
 図7に示すように、電源ユニット10は、電源61と、MCU63と、LDOレギュレータ65と、開閉器SW1と、開閉器SW1に並列接続された抵抗素子R1及び開閉器SW2の直列回路とからなる並列回路C1と、開閉器SW3と、開閉器SW3に並列接続された抵抗素子R2及び開閉器SW4の直列回路とからなる並列回路C2と、電圧センサ671を構成するオペアンプOP1及びアナログデジタル変換器ADC1と、電圧センサ681を構成するオペアンプOP2及びアナログデジタル変換器ADC2と、を備える。 As shown in FIG. 7, the power supply unit 10 includes a power supply 61, an MCU 63, an LDO regulator 65, a switch SW1, and a series circuit of a resistance element R1 connected in parallel to the switch SW1 and a switch SW2. A parallel circuit C2 consisting of a parallel circuit C1, a switch SW3, a resistor element R2 connected in parallel to the switch SW3, and a series circuit of the switch SW4, an operational amplifier OP1 and an analog-to-digital converter ADC1 that constitute the voltage sensor 671. , and an operational amplifier OP2 and an analog-to-digital converter ADC2 that constitute the voltage sensor 681 .
 本明細書にて説明する抵抗素子とは、固定の電気抵抗値を持つ素子であればよく、例えば抵抗器、ダイオード、又はトランジスタ等である。図7の例では、抵抗素子R1及び抵抗素子R2が、それぞれ抵抗器となっている。 The resistive element described in this specification may be any element that has a fixed electrical resistance value, such as a resistor, diode, or transistor. In the example of FIG. 7, the resistive element R1 and the resistive element R2 are resistors.
 本明細書にて説明する開閉器とは、配線路の遮断と導通を切り替えるトランジスタ等のスイッチング素子であり、例えば、絶縁ゲートバイポーラトランジスタ(IGBT:Insulated Gate Bipolar Transistor)等のバイポーラトランジスタや、金属酸化膜半導体電界効果トランジスタ(MOSFET:Metal-Oxide-Semiconductor Field-Effect Transistor)等の電界効果トランジスタとすることができる。また、本明細書にて説明する開閉器は、リレー(継電器)によって構成されてもよい。図7の例では、開閉器SW1~SW4は、それぞれトランジスタとなっている。 The switch described in this specification is a switching element such as a transistor that switches between disconnection and conduction of a wiring path. It may be a field effect transistor such as a film semiconductor field effect transistor (MOSFET: Metal-Oxide-Semiconductor Field-Effect Transistor). Also, the switches described in this specification may be configured by relays. In the example of FIG. 7, each of the switches SW1 to SW4 is a transistor.
 LDOレギュレータ65は、電源61の正極に接続された主正母線LUに接続されている。MCU63は、LDOレギュレータ65と、電源61の負極に接続された主負母線LDとに接続されている。MCU63は、開閉器SW1~SW4の各々にも接続されており、これらの開閉制御を行う。LDOレギュレータ65は、電源61からの電圧を降圧して出力する。LDOレギュレータ65の出力電圧V0は、MCU63、DC/DCコンバータ66、オペアンプOP1、オペアンプOP2、及び通知部16の各々の動作電圧としても利用される。 The LDO regulator 65 is connected to the main positive bus LU connected to the positive terminal of the power supply 61 . The MCU 63 is connected to the LDO regulator 65 and the main negative bus LD connected to the negative pole of the power supply 61 . The MCU 63 is also connected to each of the switches SW1 to SW4 and performs opening/closing control thereof. The LDO regulator 65 steps down the voltage from the power supply 61 and outputs it. The output voltage V0 of the LDO regulator 65 is also used as the operating voltage of each of the MCU 63, the DC/DC converter 66, the operational amplifier OP1, the operational amplifier OP2, and the notification unit 16.
 DC/DCコンバータ66は、主正母線LUに接続されている。第1ヒータ45は、主負母線LDに接続される。並列回路C1は、DC/DCコンバータ66と第1ヒータ45とに接続されている。 The DC/DC converter 66 is connected to the main positive bus LU. The first heater 45 is connected to the main negative bus LD. A parallel circuit C1 is connected to the DC/DC converter 66 and the first heater 45 .
 並列回路C2は、主正母線LUに接続されている。第2ヒータ34は、並列回路C2と主負母線LDとに接続される。 The parallel circuit C2 is connected to the main positive bus LU. The second heater 34 is connected to the parallel circuit C2 and the main negative bus LD.
 オペアンプOP1の非反転入力端子は、並列回路C1と第1ヒータ45との接続ノードに接続されている。オペアンプOP1の反転入力端子は、オペアンプOP1の出力端子及び主負母線LDの各々に抵抗素子を介して接続されている。 The non-inverting input terminal of the operational amplifier OP1 is connected to the connection node between the parallel circuit C1 and the first heater 45. The inverting input terminal of the operational amplifier OP1 is connected to the output terminal of the operational amplifier OP1 and the main negative bus LD through a resistance element.
 オペアンプOP2の非反転入力端子は、並列回路C2と第2ヒータ34との接続ノードに接続されている。オペアンプOP2の反転入力端子は、オペアンプOP2の出力端子及び主負母線LDの各々に抵抗素子を介して接続されている。 A non-inverting input terminal of the operational amplifier OP2 is connected to a connection node between the parallel circuit C2 and the second heater 34. The inverting input terminal of the operational amplifier OP2 is connected to the output terminal of the operational amplifier OP2 and the main negative bus LD through a resistance element.
 アナログデジタル変換器ADC1は、オペアンプOP1の出力端子に接続されている。アナログデジタル変換器ADC2は、オペアンプOP2の出力端子に接続されている。アナログデジタル変換器ADC1とアナログデジタル変換器ADC2は、MCU63の外部に設けられていてもよい。 The analog-to-digital converter ADC1 is connected to the output terminal of the operational amplifier OP1. The analog-to-digital converter ADC2 is connected to the output terminal of the operational amplifier OP2. The analog-to-digital converter ADC1 and the analog-to-digital converter ADC2 may be provided outside the MCU 63 .
(MCU)
 次に、MCU63の機能について説明する。MCU63は、メモリ63aに記憶されたプログラムをプロセッサが実行することにより実現される機能ブロックとして、温度検出部と、電力制御部と、通知制御部と、を備える。
(MCU)
Next, functions of the MCU 63 will be described. The MCU 63 includes a temperature detection section, a power control section, and a notification control section as functional blocks implemented by the processor executing a program stored in the memory 63a.
 温度検出部は、第1温度検出用素子67の出力に基づいて、第1ヒータ45の温度である第1温度T1を取得する。また、温度検出部は、第2温度検出用素子68の出力に基づいて、第2ヒータ34の温度、香味源52の温度、又は収容室53の温度である第2温度T2を取得する。 The temperature detection unit acquires the first temperature T1, which is the temperature of the first heater 45, based on the output of the first temperature detection element 67. In addition, the temperature detection section obtains a second temperature T2, which is the temperature of the second heater 34, the temperature of the flavor source 52, or the temperature of the storage chamber 53, based on the output of the second temperature detection element 68.
 図7に示す回路例の場合、温度検出部は、開閉器SW1、開閉器SW3、及び開閉器SW4を遮断状態に制御し、開閉器SW2を導通状態に制御した状態で、アナログデジタル変換器ADC1の出力値(第1ヒータ45に印加される電圧値)を取得し、この出力値に基づいて第1温度T1を取得する。 In the case of the circuit example shown in FIG. 7, the temperature detection unit controls the switch SW1, the switch SW3, and the switch SW4 to be in an interrupted state, and controls the switch SW2 to be in a conducting state. (the voltage value applied to the first heater 45) is acquired, and the first temperature T1 is acquired based on this output value.
 なお、オペアンプOP1の非反転入力端子を抵抗素子R1のDC/DCコンバータ66側の端子に接続し、オペアンプOP1の反転入力端子を抵抗素子R1の開閉器SW2側の端子に接続する構成としてもよい。この場合には、温度検出部は、開閉器SW1、開閉器SW3、及び開閉器SW4を遮断状態に制御し、開閉器SW2を導通状態に制御した状態で、アナログデジタル変換器ADC1の出力値(抵抗素子R1に印加される電圧値)を取得し、この出力値に基づいて第1温度T1を取得することができる。 The non-inverting input terminal of the operational amplifier OP1 may be connected to the terminal of the resistance element R1 on the DC/DC converter 66 side, and the inverting input terminal of the operational amplifier OP1 may be connected to the terminal of the resistance element R1 on the switch SW2 side. . In this case, the temperature detection unit controls the switch SW1, the switch SW3, and the switch SW4 to be in a disconnected state, and controls the switch SW2 to be in a conductive state. voltage value applied to the resistance element R1) can be obtained, and the first temperature T1 can be obtained based on this output value.
 また、図7に示す回路例の場合、温度検出部は、開閉器SW1、開閉器SW2、及び開閉器SW3を遮断状態に制御し、開閉器SW4を導通状態に制御した状態で、アナログデジタル変換器ADC2の出力値(第2ヒータ34に印加される電圧値)を取得し、この出力値に基づいて第2温度T2を取得する。 Further, in the case of the circuit example shown in FIG. 7, the temperature detection unit controls the switch SW1, the switch SW2, and the switch SW3 to be in a disconnected state, and controls the switch SW4 to be in a conducting state. The output value of the device ADC2 (the voltage value applied to the second heater 34) is obtained, and the second temperature T2 is obtained based on this output value.
 なお、オペアンプOP2の非反転入力端子を抵抗素子R2の主正母線LU側の端子に接続し、オペアンプOP2の反転入力端子を抵抗素子R2の開閉器SW4側の端子に接続する構成としてもよい。この場合には、温度検出部は、開閉器SW1、開閉器SW2、及び開閉器SW3を遮断状態に制御し、開閉器SW4を導通状態に制御した状態で、アナログデジタル変換器ADC2の出力値(抵抗素子R2に印加される電圧値)を取得し、この出力値に基づいて第2温度T2を取得することができる。 The non-inverting input terminal of the operational amplifier OP2 may be connected to the terminal of the resistive element R2 on the main positive bus LU side, and the inverting input terminal of the operational amplifier OP2 may be connected to the terminal of the resistive element R2 on the switch SW4 side. In this case, the temperature detection unit controls the switch SW1, the switch SW2, and the switch SW3 to be in a disconnected state, and controls the switch SW4 to be in a conductive state. voltage value applied to the resistance element R2) can be obtained, and the second temperature T2 can be obtained based on this output value.
 通知制御部は、各種情報をユーザに対して通知するように通知部16を制御する。例えば、通知制御部は、カプセル50の交換タイミングとなったことを検出すると、カプセル50の交換を促すカプセル交換通知を行うように通知部16を制御する。また、通知制御部は、カートリッジ40の交換タイミングとなったことを検出すると、カートリッジ40の交換を促すカートリッジ交換通知を行うように通知部16を制御する。さらに、通知制御部は、電源61の残量が少なくなったことを検出すると、電源61の交換又は充電を促す通知を行うように通知部16を制御したり、所定のタイミングでMCU63による制御状態(例えば後述のメンソールモードやレギュラーモード)を通知するように通知部16を制御したりしてもよい。 The notification control unit controls the notification unit 16 to notify the user of various types of information. For example, when the notification control unit detects that it is time to replace the capsule 50 , the notification control unit controls the notification unit 16 to issue a capsule replacement notification that prompts replacement of the capsule 50 . When the notification control unit detects that it is time to replace the cartridge 40 , the notification control unit controls the notification unit 16 to issue a cartridge replacement notification that prompts replacement of the cartridge 40 . Further, when the notification control unit detects that the power supply 61 has become low, the notification control unit controls the notification unit 16 so as to issue a notification prompting replacement or charging of the power supply 61, or changes the control state by the MCU 63 at a predetermined timing. (For example, menthol mode or regular mode, which will be described later) may be controlled to notify the notification unit 16 .
 電力制御部は、電源61から第1ヒータ45への放電(以下、単に、第1ヒータ45への放電ともいう)、及び電源61から第2ヒータ34への放電(以下、単に、第2ヒータ34への放電ともいう)を制御する。例えば、電源ユニット10が図7に示した回路構成を有する場合、電力制御部は、開閉器SW2、開閉器SW3、及び開閉器SW4を遮断状態(すなわちオフ)にし、開閉器SW1を導通状態(すなわちオン)にすることで、第1ヒータ45への放電を実現できる。また、電源ユニット10が図7に示した回路構成を有する場合、電力制御部は、開閉器SW1、開閉器SW2、及び開閉器SW4を遮断状態にし、開閉器SW3を導通状態にすることで、第2ヒータ34への放電を実現できる。 The power control unit controls discharge from the power supply 61 to the first heater 45 (hereinafter also simply referred to as discharge to the first heater 45) and discharge from the power supply 61 to the second heater 34 (hereinafter simply referred to as the second heater 34). For example, when the power supply unit 10 has the circuit configuration shown in FIG. 7, the power control section puts the switch SW2, the switch SW3, and the switch SW4 in the cutoff state (that is, off), and the switch SW1 in the conductive state ( That is, by turning it on, discharge to the first heater 45 can be realized. Further, when the power supply unit 10 has the circuit configuration shown in FIG. 7, the power control section puts the switches SW1, SW2, and SW4 in the cut-off state, and puts the switch SW3 in the conductive state. Discharge to the second heater 34 can be realized.
 電力制御部は、吸気センサ62の出力に基づき、ユーザからのエアロゾルの生成要求を検出すると(すなわちユーザによる吸引動作が行われると)、第1ヒータ45及び第2ヒータ34への放電を行わせる。これにより、エアロゾルの生成要求に応じて、第1ヒータ45によるエアロゾル源71の加熱(すなわちエアロゾルの生成)、及び第2ヒータ34による香味源52の加熱が行われる。このとき、電力制御部は、エアロゾルの生成要求に応じて生成されるエアロゾル(気化及び/又は霧化したエアロゾル源71)に対し、香味源52から付加される香味成分量(以下、単に、香味成分量ともいう。例えば後述の香味成分量Wflavor)が所定の目標量へ収束するように、第1ヒータ45及び第2ヒータ34への放電を制御する。この目標量は適宜決められる値であるが、例えば、香味成分量の目標範囲を適宜決定し、この目標範囲における中央値を目標量として定めてもよい。これにより、香味成分量を目標量に収束させることで、香味成分量をある程度幅を持たせた目標範囲にも収束させることができる。なお、香味成分量、目標量の単位としては重量(例えば[mg])が用いられてよい。 When the power control unit detects an aerosol generation request from the user based on the output of the intake sensor 62 (that is, when the user performs an inhalation operation), it causes the first heater 45 and the second heater 34 to discharge. . As a result, the heating of the aerosol source 71 by the first heater 45 (that is, the generation of the aerosol) and the heating of the flavor source 52 by the second heater 34 are performed according to the aerosol generation request. At this time, the power control unit controls the amount of flavor component added from the flavor source 52 (hereinafter simply referred to as flavor For example, the discharge to the first heater 45 and the second heater 34 is controlled so that the flavor component amount W flavor described later converges to a predetermined target amount. This target amount is a value determined as appropriate. For example, a target range for the amount of flavor component may be determined as appropriate, and the median value within this target range may be determined as the target amount. As a result, by converging the flavor component amount to the target amount, the flavor component amount can be converged to a target range with a certain width. Weight (for example, [mg]) may be used as the unit of the amount of flavor component and the target amount.
 例えば、電力制御部は、エアロゾル源71と香味源52とのいずれにもメンソールが含まれていない場合と、エアロゾル源71と香味源52とのうちエアロゾル源71のみにメンソールが含まれている場合と、エアロゾル源71と香味源52とのうちエアロゾル源71及び香味源52の両方にメンソールが含まれている場合とで、第1ヒータ45への放電態様、及び第2ヒータ34への放電態様を異ならせる。これにより、エアロゾル吸引器1に装着されたカートリッジ40のエアロゾル源71やカプセル50の香味源52のフレーバタイプに応じて、第1ヒータ45や第2ヒータ34への放電を適切に制御し、適切な量の香味成分やメンソールを含むエアロゾルをユーザに対し安定して供給することを可能にする。なお、これらのそれぞれの場合についての第1ヒータ45への放電態様、及び第2ヒータ34への放電態様の具体例については、図13及び図14等を用いて後述する。 For example, the power control unit can be set when neither the aerosol source 71 nor the flavor source 52 contains menthol, or when only the aerosol source 71 of the aerosol source 71 and the flavor source 52 contains menthol. and the case where both the aerosol source 71 and the flavor source 52 of the aerosol source 71 and the flavor source 52 contain menthol. be different. Thereby, according to the flavor type of the aerosol source 71 of the cartridge 40 attached to the aerosol inhaler 1 and the flavor source 52 of the capsule 50, the discharge to the first heater 45 and the second heater 34 can be controlled appropriately. To stably supply a user with an aerosol containing an appropriate amount of flavor component and menthol. Concrete examples of the discharge mode to the first heater 45 and the discharge mode to the second heater 34 in each of these cases will be described later with reference to FIGS. 13 and 14 and the like.
 また、エアロゾル吸引器1に装着されたカートリッジ40のエアロゾル源71やカプセル50の香味源52のフレーバタイプに応じた適切な第1ヒータ45への放電、及び第2ヒータ34への放電を実現するため、MCU63は、カートリッジ40に貯留されたエアロゾル源71と、カプセル50に収容された香味源52とのそれぞれにメンソールが含まれているか否かを判断(識別)可能に構成される。電力制御部は、この判断結果(識別結果)に基づいて、第1ヒータ45への放電、及び第2ヒータ34への放電を制御する。なお、エアロゾル源71と香味源52とのそれぞれにメンソールが含まれているか否かの判断は、任意の方法を用いて実現してよい。例えば、後述するように、MCU63は、操作部15に対して行われた操作に基づき、エアロゾル源71と香味源52とのそれぞれにメンソールが含まれているか否かを判断してよい。また、例えば、後述するように、MCU63は、ユーザによる操作部15の操作によらず、エアロゾル源71と香味源52とのそれぞれにメンソールが含まれているか否かを判断してよい。 Also, appropriate discharge to the first heater 45 and discharge to the second heater 34 according to the flavor type of the aerosol source 71 of the cartridge 40 attached to the aerosol inhaler 1 and the flavor source 52 of the capsule 50 are realized. Therefore, the MCU 63 is configured to be able to determine (identify) whether or not each of the aerosol source 71 stored in the cartridge 40 and the flavor source 52 accommodated in the capsule 50 contains menthol. The power control unit controls discharge to the first heater 45 and discharge to the second heater 34 based on this determination result (identification result). It should be noted that any method may be used to determine whether or not each of the aerosol source 71 and the flavor source 52 contains menthol. For example, as will be described later, the MCU 63 may determine whether the aerosol source 71 and the flavor source 52 each contain menthol based on the operation performed on the operation unit 15 . Further, for example, as will be described later, the MCU 63 may determine whether or not each of the aerosol source 71 and the flavor source 52 contains menthol, regardless of the operation of the operation unit 15 by the user.
 MCU63は、電源61から第1ヒータ45への放電及び電源61から第2ヒータ34への放電を制御してエアロゾル吸引器1を動作させる複数のモードを有する。MCU63は、エアロゾル吸引器1を動作させるモードとして、後述するレギュラーモードと、後述するメンソールモードと、スリープモードと、を少なくとも有する。スリープモードは、レギュラーモード及びメンソールモードよりもエアロゾル吸引器1の消費電力が少なく、かつレギュラーモード及びメンソールモードへ直接的又は間接的に遷移可能である。加えて、MCU63は、エアロゾル吸引器1を動作させるモードとして、パワーモードをさらに有していてもよい。このような場合、スリープモードは、パワーモードよりもエアロゾル吸引器1の消費電力が少なく、かつパワーモードへ直接的に遷移可能である。したがって、MCU63は、エアロゾル吸引器1をスリープモードへ遷移させることで、必要に応じて他のモードへの復帰が可能な状態を維持しつつ、エアロゾル吸引器1の消費電力を低減できる。なお、本実施形態では、エアロゾル吸引器1は、スリープモードで動作しているとき、ユーザが吸引動作を行ってもエアロゾル生成制御は実行されない。 The MCU 63 has a plurality of modes for operating the aerosol inhaler 1 by controlling discharge from the power supply 61 to the first heater 45 and discharge from the power supply 61 to the second heater 34 . The MCU 63 has at least a regular mode described later, a menthol mode described later, and a sleep mode as modes for operating the aerosol inhaler 1 . In the sleep mode, the power consumption of the aerosol inhaler 1 is less than in the regular mode and the menthol mode, and the transition to the regular mode and the menthol mode can be made directly or indirectly. Additionally, the MCU 63 may further have a power mode as a mode for operating the aerosol inhaler 1 . In such a case, in the sleep mode, the power consumption of the aerosol inhaler 1 is less than in the power mode, and direct transition to the power mode is possible. Therefore, by causing the aerosol inhaler 1 to transition to the sleep mode, the MCU 63 can reduce the power consumption of the aerosol inhaler 1 while maintaining a state in which it is possible to return to another mode as necessary. In this embodiment, when the aerosol inhaler 1 operates in the sleep mode, the aerosol generation control is not executed even if the user performs an inhalation operation.
 レギュラーモードは、エアロゾル吸引器1に装着されたカートリッジ40のエアロゾル源71のフレーバタイプがレギュラータイプである場合(すなわちエアロゾル源71にメンソールが含まれていない場合)に、第1ヒータ45及び第2ヒータ34への放電の制御が最適化された態様である。メンソールモードは、エアロゾル吸引器1に装着されたカートリッジ40のエアロゾル源71のフレーバタイプがメンソールタイプである場合(すなわちエアロゾル源71にメンソールが含まれている場合)に、第1ヒータ45及び第2ヒータ34への放電の制御が最適化された態様である。エラーモードは、電源61から第2ヒータ34への放電を抑制するモードであり、例えば、電源61から第2ヒータ34への放電を行わないように制御するモードである。 In the regular mode, the first heater 45 and the second The control of the discharge to the heater 34 is optimized. In the menthol mode, the first heater 45 and the second The control of the discharge to the heater 34 is optimized. The error mode is a mode that suppresses discharge from the power supply 61 to the second heater 34 , for example, a mode that controls discharge from the power supply 61 to the second heater 34 .
 なお、前述のメンソールモードを細分化して、第1メンソールモードと、第2メンソールモードと、を有していてもよい。例えば、第1メンソールモードは、エアロゾル吸引器1に装着されたカートリッジ40のエアロゾル源71及びカプセル50の香味源52の双方のフレーバタイプがメンソールタイプである場合(すなわちエアロゾル源71及び香味源52の双方にメンソールが含まれている場合)に最適化された態様である。第2メンソールモードは、エアロゾル吸引器1に装着されたカートリッジ40のエアロゾル源71及びカプセル50の香味源52のうち、カートリッジ40のエアロゾル源71のみフレーバタイプがメンソールタイプである場合(すなわちエアロゾル源71及び香味源52のうち、エアロゾル源71のみにメンソールが含まれている場合)に最適化された態様である。 The above menthol mode may be subdivided into a first menthol mode and a second menthol mode. For example, the first menthol mode is when the flavor types of both the aerosol source 71 of the cartridge 40 and the flavor source 52 of the capsule 50 attached to the aerosol inhaler 1 are menthol types (that is, the aerosol source 71 and the flavor source 52 Both contain menthol). In the second menthol mode, of the aerosol source 71 of the cartridge 40 attached to the aerosol inhaler 1 and the flavor source 52 of the capsule 50, only the aerosol source 71 of the cartridge 40 has a menthol flavor type (that is, the aerosol source 71 and the flavor source 52, only the aerosol source 71 contains menthol).
 MCU63は、現在のモードがレギュラーモードであるかメンソールモードであるかと、香味源52に含まれる香味成分残量Wcapsule(npuff-1)と、に基づいて、第2ヒータ34の目標温度(以下、目標温度Tcap_targetともいう)を設定する。なお、以降の説明では香味成分残量Wcapsuleを、単に香味源52の残量と記載することもある。 The MCU 63 determines the target temperature of the second heater 34 ( hereinafter also referred to as target temperature Tcap_target ) is set. In the following description, the flavor component remaining amount W capsule may simply be described as the remaining amount of the flavor source 52 .
 電力制御部は、第2温度検出用素子68の出力に基づく第2ヒータ34の温度(以下、温度Tcap_senseともいう)が、設定された目標温度Tcap_targetに収束するように、電源61から第1ヒータ45への放電、及び電源61から第2ヒータ34への放電を制御する。 The power control unit controls the temperature of the second heater 34 based on the output of the second temperature detection element 68 (hereinafter also referred to as temperature T cap_sense ) to converge to the set target temperature T cap_target from the power supply 61 . It controls discharge to the first heater 45 and discharge from the power source 61 to the second heater 34 .
 これにより、エアロゾル吸引器1に装着されたカートリッジ40のエアロゾル源71やカプセル50の香味源52のフレーバタイプに応じて、第1ヒータ45及び第2ヒータ34への放電を適切に制御し、適切な量の香味成分やメンソールを含むエアロゾルをユーザに対し安定して供給することを可能にする。 Thereby, according to the flavor type of the aerosol source 71 of the cartridge 40 attached to the aerosol inhaler 1 and the flavor source 52 of the capsule 50, the discharge to the first heater 45 and the second heater 34 is appropriately controlled, To stably supply an aerosol containing a sufficient amount of flavor components and menthol to a user.
 なお、これらのそれぞれの場合についての第1ヒータ45及び第2ヒータ34への放電の制御の具体例については、図13及び図14等を用いて後述する。 Specific examples of controlling the discharge to the first heater 45 and the second heater 34 in each of these cases will be described later with reference to FIGS. 13 and 14 and the like.
(エアロゾルの生成に用いられる各種パラメータ)
 MCU63による具体的な第1ヒータ45等への放電制御について説明する前に、ここで、MCU63による第1ヒータ45等への放電制御に用いられる各種パラメータについて説明する。
(Various parameters used for aerosol generation)
Before describing specific discharge control to the first heater 45 and the like by the MCU 63, here, various parameters used for discharge control to the first heater 45 and the like by the MCU 63 will be described.
 ユーザによる1回の吸引動作に対し、第1ヒータ45による加熱で生成されて香味源52(すなわちカプセル50内)を通過するエアロゾルの重量[mg]を、エアロゾル重量Waerosolと記載する。エアロゾル重量Waerosol分のエアロゾルを生成するために第1ヒータ45へ供給が必要な電力を、霧化電力Pliquidと記載する。また、霧化電力Pliquidの第1ヒータ45への供給時間を、供給時間tsenseと記載する。なお、第1ヒータ45の過熱抑制等の観点から、供給時間tsenseには、所定の上限値tupper(例えば2.4[s])が設けられており、MCU63は、供給時間tsenseが上限値tupperに到達した場合には、吸気センサ62の出力値にかかわらず、第1ヒータ45への電力供給を停止するようになっている(後述のステップS38、S39参照)。 The weight [mg] of the aerosol generated by heating by the first heater 45 and passing through the flavor source 52 (that is, inside the capsule 50) for one inhalation by the user is described as the aerosol weight W aerosol . The power required to be supplied to the first heater 45 to generate the aerosol for the weight of the aerosol W aerosol is referred to as atomization power P liquid . Also, the supply time of the atomization power P liquid to the first heater 45 is described as supply time t sense . From the viewpoint of suppressing overheating of the first heater 45, etc., the supply time t sense is provided with a predetermined upper limit value t upper (for example, 2.4 [s]), and the MCU 63 sets the supply time t sense to When the upper limit value t_upper is reached, power supply to the first heater 45 is stopped regardless of the output value of the intake sensor 62 (see steps S38 and S39 described later).
 また、カプセル50がエアロゾル吸引器1に装着されてから、ユーザによるnpuff回(ただしnpuffは0以上の自然数)の吸引動作が行われたときの、香味源52に含まれる香味成分の重量[mg]を、香味成分残量Wcapsule(npuff)と記載する。なお、新品のカプセル50(装着されてから1回も吸引動作が行われていないカプセル50)の香味源52に含まれる香味成分の重量[mg]、すなわち香味成分残量Wcapsule(npuff=0)を、Winitialとも記載する。 Also, the weight of the flavor component contained in the flavor source 52 when the user performs the inhalation operation n puff times (where n puff is a natural number equal to or greater than 0) after the capsule 50 is attached to the aerosol inhaler 1 [mg] is described as the remaining flavor component W capsule (n puff ). Note that the weight [mg] of the flavor component contained in the flavor source 52 of the new capsule 50 (capsule 50 that has not been sucked even once since being attached), that is, the remaining amount of flavor component W capsule (n puff = 0) is also described as W initial .
 また、ユーザによる1回の吸引動作に対し、香味源52(すなわちカプセル50内)を通過するエアロゾルに付加される香味成分の重量[mg]を、香味成分量Wflavorと記載する。そして、香味源52の温度に関するパラメータを、温度パラメータTcapsuleと記載する。温度パラメータTcapsuleは、前述した第2温度T2を示すパラメータであり、例えば、第2ヒータ34の温度を示すパラメータである。 Also, the weight [mg] of the flavor component added to the aerosol passing through the flavor source 52 (that is, inside the capsule 50) for one inhalation action by the user is described as the flavor component amount W flavor . A parameter related to the temperature of the flavor source 52 is described as a temperature parameter T capsule . The temperature parameter T capsule is a parameter that indicates the second temperature T2 described above, and is a parameter that indicates the temperature of the second heater 34, for example.
 香味成分量Wflavorは、香味成分残量Wcapsule、温度パラメータTcapsule、及びエアロゾル重量Waerosolに依存することが実験的にわかっている。したがって、香味成分量Wflavorは、下記の式(1)によりモデル化することができる。 It has been experimentally found that the flavor component amount W flavor depends on the residual flavor component W capsule , the temperature parameter T capsule and the aerosol weight W aerosol . Therefore, the flavor component amount W flavor can be modeled by the following equation (1).
 Wflavor=β×(Wcapsule×Tcapsule)×γ×Waerosol ・・(1) W flavor = β x (W capsule x T capsule ) x γ x W aerosol (1)
 上記の式(1)におけるβは、ユーザによる1回の吸引動作に対して生成されたエアロゾルが香味源52を通過する際にどの程度の香味成分がエアロゾルに付加されるかの割合を示す係数であり、実験的に求められる。また、上記の式(1)におけるγは、実験的に求められる係数である。1回の吸引動作が行われている期間において、温度パラメータTcapsule及び香味成分残量Wcapsuleはそれぞれ変動し得るが、これらを一定値として取り扱うために、ここではこのようなγを導入している。 β in the above formula (1) is a coefficient that indicates the ratio of how much flavor component is added to the aerosol when the aerosol generated for one inhalation action by the user passes through the flavor source 52. , which is determined experimentally. Also, γ in the above equation (1) is a coefficient obtained experimentally. Although the temperature parameter T capsule and the remaining flavor component W capsule may fluctuate during the period during which one suction operation is performed, γ is introduced here in order to treat them as constant values. there is
 香味成分残量Wcapsuleは、ユーザによる吸引動作が行われるごとに減少していく。このため、香味成分残量Wcapsuleは、吸引動作が行われた回数(以下、吸引回数ともいう)に反比例する。また、エアロゾル吸引器1では、吸引動作が行われるごとに第1ヒータ45への放電が行われるので、香味成分残量Wcapsuleは、エアロゾルを生成するために第1ヒータ45への放電が行われた回数や第1ヒータ45への放電が行われた期間の累積値に反比例するともいえる。 The flavor component remaining amount W capsule decreases each time the user performs an inhalation operation. For this reason, the flavor component remaining amount W capsule is inversely proportional to the number of times the suction operation has been performed (hereinafter, also referred to as the number of times of suction). Further, in the aerosol inhaler 1, discharge to the first heater 45 is performed each time an inhalation operation is performed. It can also be said that it is inversely proportional to the number of times the first heater 45 is discharged or the cumulative value of the period during which the discharge to the first heater 45 is performed.
 上記の式(1)からわかるように、ユーザによる1回の吸引動作に対して生成されるエアロゾル重量Waerosolをほぼ一定に制御することを想定すると、香味成分量Wflavorを安定化させるためには、香味成分残量Wcapsuleの減少(すなわち吸引回数の増加)に伴って、温度パラメータTcapsule(すなわち香味源52の温度)を高める必要がある。 As can be seen from the above formula (1), assuming that the aerosol weight W aerosol generated for one inhalation action by the user is controlled to be substantially constant, in order to stabilize the flavor component amount W flavor , it is necessary to increase the temperature parameter T capsule (ie, the temperature of the flavor source 52) as the remaining amount of flavor component W capsule decreases (ie, the number of draws increases).
 このため、MCU63(電力制御部)は、エアロゾル吸引器1に装着されたカートリッジ40のエアロゾル源71及びカプセル50の香味源52のうち、カートリッジ40のエアロゾル源71のフレーバタイプがレギュラータイプである場合(すなわちエアロゾル源71にメンソールが含まれていない場合)には、レギュラーモードで動作して第1ヒータ45及び第2ヒータ34への放電を制御する。MCU63は、レギュラーモードで動作する場合、香味成分残量Wcapsuleの減少(すなわち吸引回数の増加)に伴って、香味源52の温度を高めるべく、第2ヒータ34への放電を制御するようになっている(図13及び図14参照)。 Therefore, when the flavor type of the aerosol source 71 of the cartridge 40 among the aerosol source 71 of the cartridge 40 and the flavor source 52 of the capsule 50 attached to the aerosol inhaler 1 is the regular type, the MCU 63 (power control unit) When the aerosol source 71 does not contain menthol, it operates in regular mode to control discharge to the first heater 45 and the second heater 34 . When operating in the regular mode, the MCU 63 controls discharge to the second heater 34 in order to increase the temperature of the flavor source 52 as the flavor component remaining amount W capsule decreases (that is, the number of suctions increases). (See FIGS. 13 and 14).
 その一方で、MCU63(電力制御部)は、エアロゾル吸引器1に装着されたカートリッジ40のエアロゾル源71及びカプセル50の香味源52のうち、カートリッジ40のエアロゾル源71のフレーバタイプがメンソールタイプである場合(すなわちエアロゾル源71にメンソールが含まれている場合)には、レギュラーモードとは異なるメンソールモードで動作する。MCU63は、メンソールモードで動作する場合、適切な量のメンソールをユーザに供給する観点から、香味成分残量Wcapsuleの減少(すなわち吸引回数の増加)に伴って、香味源52の温度を下げるべく、第2ヒータ34への放電を制御するようになっている(図13及び図14参照)。これにより、後述するように、適切な量のメンソールをユーザに供給することが可能となる。 On the other hand, the MCU 63 (power control unit) determines that the flavor type of the aerosol source 71 of the cartridge 40 among the aerosol source 71 of the cartridge 40 and the flavor source 52 of the capsule 50 attached to the aerosol inhaler 1 is menthol type. (ie, the aerosol source 71 contains menthol), it operates in a menthol mode different from the regular mode. When the MCU 63 operates in the menthol mode, from the viewpoint of supplying an appropriate amount of menthol to the user, the MCU 63 lowers the temperature of the flavor source 52 as the remaining amount of flavor component W capsule decreases (that is, the number of inhalations increases). , discharge to the second heater 34 (see FIGS. 13 and 14). This makes it possible to supply the user with an appropriate amount of menthol, as will be described later.
 ところで、香味成分残量Wcapsuleの減少に伴って香味源52の温度も下げると、香味成分量Wflavorの減少につながる。このため、MCU63は、香味成分残量Wcapsuleの減少に伴って香味源52の温度も下げた場合には、第1ヒータ45への印加電圧を高めて第1ヒータ45へ供給する電力を増加させることで、エアロゾル重量Waerosolを増加させてもよい(図13参照)。これにより、適切な量のメンソールをユーザに供給するために香味源52の温度を下げることに起因する香味成分量Wflavorの減少を、第1ヒータ45による加熱で生成されるエアロゾル重量Waerosolの増加で補填することができるため、ユーザの口内に供給される香味成分量Wflavorの減少を抑制し、ユーザに対して安定したメンソールと香味成分の供給を可能にする。 By the way, if the temperature of the flavor source 52 is also lowered as the flavor component remaining amount W capsule decreases, the flavor component amount W flavor will decrease. Therefore, when the temperature of the flavor source 52 is lowered as the residual flavor component W capsule decreases, the MCU 63 increases the voltage applied to the first heater 45 to increase the power supplied to the first heater 45. The aerosol weight W aerosol may be increased by increasing the weight of the aerosol (see Figure 13). As a result, the decrease in the amount of flavor component W flavor caused by lowering the temperature of the flavor source 52 in order to supply an appropriate amount of menthol to the user is reduced by the weight of the aerosol W aerosol generated by heating by the first heater 45. Since it is possible to compensate for the increase, it is possible to suppress the decrease in the amount W flavor of the flavor component supplied to the user's mouth and to stably supply the menthol and the flavor component to the user.
(エアロゾル吸引器の動作)
 次に、エアロゾル吸引器1の動作の一例について、図8~図12を参照しながら説明する。以下に説明するエアロゾル吸引器1の動作は、例えば、MCU63のプロセッサがメモリ63aに予め記憶されたプログラムを実行することにより実現される。
(Action of aerosol inhaler)
Next, an example of the operation of the aerosol inhaler 1 will be described with reference to FIGS. 8 to 12. FIG. The operation of the aerosol inhaler 1 described below is realized, for example, by the processor of the MCU 63 executing a program pre-stored in the memory 63a.
<電源オン制御>
 図8に示すように、MCU63は、ユーザによって操作部15が電源オン操作されると(ステップS1:YES)、電源オン制御を実行して、エアロゾル吸引器1を動作させるモードをスリープモードからパワーモードに切り替える(ステップS2)。一方、MCU63は、ユーザによって操作部15が電源オン操作されるまでは、エアロゾル吸引器1を動作させるモードをスリープモードのまま待機する(ステップS1:NOのループ)。つまり、ステップS1においてYESが判断されると、MCU63は、エアロゾル吸引器1を動作させるモードを、スリープモードからパワーモードへ切り替える。電源オン操作は、例えば、操作部15が、所定時間(例えば2[秒])以内に、連続して3回押圧される操作である。
<Power ON control>
As shown in FIG. 8, when the operation unit 15 is turned on by the user (step S1: YES), the MCU 63 executes power-on control to switch the mode of operating the aerosol inhaler 1 from the sleep mode to the power mode. mode (step S2). On the other hand, the MCU 63 waits while the mode for operating the aerosol inhaler 1 remains in the sleep mode until the operation unit 15 is turned on by the user (step S1: NO loop). That is, when YES is determined in step S1, the MCU 63 switches the mode for operating the aerosol inhaler 1 from the sleep mode to the power mode. The power-on operation is, for example, an operation in which the operation unit 15 is pressed three times consecutively within a predetermined time (for example, 2 [seconds]).
 なお、MCU63は、スリープモードからパワーモードに切り替わることを契機として、第2ヒータ34の温度が予め設定された予熱温度(以下、予熱温度Tcap_preともいう)となるように電源61から第2ヒータ34への放電を行う予熱制御を行ってもよい。これにより、パワーモードに切り替わった直後から、第2ヒータ34の温度を高めておくことができる。例えば、MCU63がメンソールモードでエアロゾル生成制御を実行する場合、当初、目標温度Tcap_targetは、高めの80[℃]に設定される。このため、目標温度Tcap_targetに達するまでにはある程度の時間を要するが、予熱制御を行うことで、エアロゾル生成要求を検出する前に予め第2ヒータ34を目標温度Tcap_targetに近づけておくことができる。これにより、設定される目標温度Tcap_targetが高温であっても、エアロゾル生成制御の実行直後(例えば、いわゆる吸い始め)から、適切に香味が付加されたエアロゾルをユーザに対し安定して供給することが可能となる。 When the sleep mode is switched to the power mode, the MCU 63 controls the second heater 34 from the power supply 61 so that the temperature of the second heater 34 reaches a preset preheating temperature (hereinafter also referred to as preheating temperature T cap_pre ). Preheating control for discharging to 34 may be performed. As a result, the temperature of the second heater 34 can be increased immediately after switching to the power mode. For example, when the MCU 63 performs aerosol generation control in menthol mode, the target temperature T cap_target is initially set to a high 80[°C]. Therefore, it takes a certain amount of time to reach the target temperature T cap_target , but by performing preheating control, it is possible to bring the second heater 34 closer to the target temperature T cap_target in advance before detecting the aerosol generation request. can. As a result, even if the set target temperature T cap_target is high, it is possible to stably supply the user with an appropriately flavored aerosol immediately after execution of the aerosol generation control (for example, the start of inhalation). becomes possible.
 MCU63は、エアロゾル吸引器1を動作させるモードがスリープモードからパワーモードに遷移すると、カートリッジ40のエアロゾル源71及びカプセル50の香味源52のフレーバタイプを識別するカートリッジ識別処理を開始する(ステップS3)。 When the mode for operating the aerosol inhaler 1 transitions from the sleep mode to the power mode, the MCU 63 starts cartridge identification processing for identifying the flavor types of the aerosol source 71 of the cartridge 40 and the flavor source 52 of the capsule 50 (step S3). .
<カートリッジ識別処理>
 図9に示すように、カートリッジ識別処理において、MCU63は、まず、電源オン制御の実行直後であるか否かを判定する(ステップS101)。例えば、MCU63は、電源オン制御の実行後、1回もカートリッジ識別処理が実行されていなければ、電源オン制御の実行直後であると判定し(ステップS101:YES)、ステップS111に進み、後述するエアロゾル源情報取得処理を実行する。一方、MCU63は、電源オン制御の実行後、1回以上カートリッジ識別処理が実行されていれば、電源オン制御の実行直後でないと判定し(ステップS101:NO)、カートリッジ40の交換が行われたか否かを判定する(ステップS102)。
<Cartridge Identification Processing>
As shown in FIG. 9, in the cartridge identification process, the MCU 63 first determines whether or not the power-on control has just been executed (step S101). For example, if the cartridge identification process has not been executed even once after the execution of the power-on control, the MCU 63 determines that the power-on control has just been executed (step S101: YES), and proceeds to step S111, which will be described later. Execute aerosol source information acquisition processing. On the other hand, if the cartridge identification process has been executed one or more times after executing the power-on control, the MCU 63 determines that it is not immediately after the execution of the power-on control (step S101: NO), and determines whether the cartridge 40 has been replaced. It is determined whether or not (step S102).
 なお、MCU63は、ステップS102において、カートリッジ40の交換を任意の方法で検知してよい。 Note that the MCU 63 may detect replacement of the cartridge 40 by any method in step S102.
 例えば、MCU63は、電圧センサ671と電流センサ672を用いて取得される一対の放電端子12間の電気抵抗値に基づき、カートリッジ40の交換を検知してもよい。一対の放電端子12間に第1ヒータ45が接続されることで一対の放電端子12が導通した状態と、一対の放電端子12間に第1ヒータ45が接続されず一対の放電端子12が空気により絶縁された状態とのそれぞれにおいて、MCU63が取得できる放電端子12間の電気抵抗値が異なることは明白である。したがって、MCU63は、放電端子12間の電気抵抗値に基づき、カートリッジ40の交換を検知できる。 For example, the MCU 63 may detect replacement of the cartridge 40 based on the electrical resistance value between the pair of discharge terminals 12 obtained using the voltage sensor 671 and current sensor 672 . The first heater 45 is connected between the pair of discharge terminals 12 and the pair of discharge terminals 12 are electrically connected. It is clear that the electric resistance value between the discharge terminals 12 that the MCU 63 can acquire differs between the state of being insulated by . Therefore, the MCU 63 can detect replacement of the cartridge 40 based on the electrical resistance value between the discharge terminals 12 .
 本実施形態では、放電端子12間の電気抵抗値に基づいて、電源ユニット10の放電端子12にカートリッジ40の接続端子47が電気的に接続されていない状態から、電源ユニット10の放電端子12にカートリッジ40の接続端子47が電気的に接続された状態へと遷移したことが検知されたとき、カートリッジ40が交換されたと判定する。 In this embodiment, based on the electrical resistance value between the discharge terminals 12, the state where the connection terminal 47 of the cartridge 40 is not electrically connected to the discharge terminal 12 of the power supply unit 10 is changed to the discharge terminal 12 of the power supply unit 10. When it is detected that the connection terminal 47 of the cartridge 40 is electrically connected, it is determined that the cartridge 40 has been replaced.
 カートリッジ40の交換が行われていれば(ステップS102:YES)、カートリッジ40が変更され、エアロゾル源71のフレーバタイプが変更された可能性があるので、MCU63は、前述のステップS111に進み、後述するエアロゾル源情報取得処理を実行する。 If the cartridge 40 has been replaced (step S102: YES), there is a possibility that the cartridge 40 has been changed and the flavor type of the aerosol source 71 has been changed. Execute aerosol source information acquisition processing.
 カートリッジ40の交換が行われていなければ(ステップS102:NO)、後述する残量更新処理で、カートリッジ交換通知(ステップS47)が実行された否かを判定する(ステップS103)。なお、ステップS102は省略されてもよい。つまり、ステップS101で否定が判定される場合(ステップS101:NO)、MCU63は、処理をステップS103に進めてもよい。ステップS102を省略することで、前述したカートリッジ40の交換を検知する機能が不要になるため、電源ユニット10のコストや体積を小さくすることができる。 If the cartridge 40 has not been replaced (step S102: NO), it is determined whether or not a cartridge replacement notification (step S47) has been issued in the remaining amount update process (step S103). Note that step S102 may be omitted. That is, when negative determination is made in step S101 (step S101: NO), the MCU 63 may advance the process to step S103. By omitting step S102, the function of detecting replacement of the cartridge 40 described above becomes unnecessary, so the cost and volume of the power supply unit 10 can be reduced.
 残量更新処理で、カートリッジ交換通知(ステップS47)が実行されている場合(ステップS103:YES)、エアロゾル吸引器1に装着されたカートリッジ40は寿命に達した状態となっている。そのため、カートリッジ交換通知(ステップS47)の実行後に、ユーザによってカートリッジ40の交換が行われたにもかかわらず、ステップS102におけるカートリッジ40の交換の検知が誤検知である可能性がある。したがって、MCU63は、前述のステップS111に進み、後述するエアロゾル源情報取得処理を実行する。 In the remaining amount update process, if the cartridge replacement notification (step S47) has been executed (step S103: YES), the cartridge 40 attached to the aerosol inhaler 1 has reached the end of its life. Therefore, even though the cartridge 40 has been replaced by the user after the cartridge replacement notification (step S47) is executed, there is a possibility that the detection of replacement of the cartridge 40 in step S102 is an erroneous detection. Therefore, the MCU 63 proceeds to the above-described step S111 and executes the aerosol source information acquisition process, which will be described later.
 後述する残量更新処理で、カートリッジ交換通知(ステップS47)が実行されていない場合(ステップS103:NO)、前回のカートリッジ識別処理実行時からカートリッジ40の交換が行われておらず、カートリッジ40のエアロゾル源71のフレーバタイプは、前回のカートリッジ識別処理における識別結果から変更されていないと考えられる。したがって、MCU63は、前回のカートリッジ識別処理におけるエアロゾル源71のフレーバタイプの識別結果をメモリ63aから読み出す。MCU63は、エアロゾル源71のフレーバタイプの識別結果を、前回のカートリッジ識別処理におけるエアロゾル源71のフレーバタイプの識別結果と同一に設定する(ステップS104)。そして、カートリッジ識別処理におけるエアロゾル源71のフレーバタイプの識別結果をメモリ63aに保存して(ステップS105)、カートリッジ識別処理を終了する。 In the remaining amount update process, which will be described later, if the cartridge replacement notification (step S47) has not been executed (step S103: NO), the cartridge 40 has not been replaced since the previous cartridge identification process was executed, and the cartridge 40 has been replaced. It is considered that the flavor type of the aerosol source 71 has not been changed from the identification result in the previous cartridge identification process. Therefore, the MCU 63 reads the flavor type identification result of the aerosol source 71 in the previous cartridge identification process from the memory 63a. The MCU 63 sets the flavor type identification result of the aerosol source 71 to be the same as the flavor type identification result of the aerosol source 71 in the previous cartridge identification process (step S104). Then, the identification result of the flavor type of the aerosol source 71 in the cartridge identification process is saved in the memory 63a (step S105), and the cartridge identification process ends.
 ≪エアロゾル源情報取得処理≫
 エアロゾル源情報取得処理では、カートリッジカバー20に設けられた色識別センサ24によって識別された、カートリッジ40の着色部49に着色された色に関する情報に基づいて、カートリッジ40の貯留室42に貯留するエアロゾル源71に関する情報を取得する。本実施形態では、エアロゾル源情報取得処理によって、カートリッジ40の貯留室42に貯留するエアロゾル源71のフレーバタイプ情報を取得する。
≪Aerosol source information acquisition processing≫
In the aerosol source information acquisition process, the aerosol stored in the storage chamber 42 of the cartridge 40 is determined based on the information about the color of the colored portion 49 of the cartridge 40 identified by the color identification sensor 24 provided on the cartridge cover 20. Obtain information about the source 71 . In this embodiment, the flavor type information of the aerosol source 71 stored in the storage chamber 42 of the cartridge 40 is acquired by the aerosol source information acquisition process.
 エアロゾル源情報取得処理において、MCU63は、まず、色識別センサ24を制御して、投光部241から、カートリッジ40の着色部49に向かって、カートリッジカバー20の内部に白色光を投光させる(ステップS111)。投光部241から投光された白色光は、遮光部材25の光透過部25aを通って、カートリッジ40の着色部49を照射する。カートリッジ40の着色部49に照射された白色光は、着色部49に着色された色に応じて特定の波長の光が反射する。カラーセンサ部242の受光部は、着色部49に着色された色に応じて着色部49から反射して、遮光部材25の光透過部25aを通った光を受光する。そして、カラーセンサ部242のアナログデジタル変換器によって、受光部で受光した光の色成分が数値化される。 In the aerosol source information acquisition process, the MCU 63 first controls the color identification sensor 24 to project white light from the light projecting section 241 toward the coloring section 49 of the cartridge 40 into the inside of the cartridge cover 20 ( step S111). The white light projected from the light projecting portion 241 passes through the light transmitting portion 25 a of the light shielding member 25 and irradiates the colored portion 49 of the cartridge 40 . The white light irradiated to the colored portion 49 of the cartridge 40 reflects light of a specific wavelength according to the color of the colored portion 49 . The light receiving portion of the color sensor portion 242 receives the light reflected from the colored portion 49 according to the color of the colored portion 49 and passed through the light transmitting portion 25 a of the light shielding member 25 . Then, the analog-to-digital converter of the color sensor section 242 digitizes the color components of the light received by the light receiving section.
 色識別センサ24は、カラーセンサ部242のアナログデジタル変換器において数値化された受光部で受光した光の赤色成分、緑色成分、及び青色成分それぞれの0~255の値、HSL変換された色相(Hue)の0度~360度の値、彩度(Saturation)の0~100の値、及び輝度(Lightness)の0~100の値、並びに、色見本帳の色識別情報、の少なくとも1つを、カートリッジ40の着色部49に着色された色に関する情報として、MCU63に出力する。 The color identification sensor 24 has values of 0 to 255 for each of the red, green, and blue components of the light received by the light-receiving unit digitized by the analog-to-digital converter of the color sensor unit 242, and the HSL-converted hue ( Hue) value of 0 to 360 degrees, Saturation value of 0 to 100, Brightness value of 0 to 100, and at least one of the color identification information of the color sample book , to the MCU 63 as information about the color of the coloring portion 49 of the cartridge 40 .
 MCU63のメモリ63aには、色識別センサ24から取得する、カートリッジ40の着色部49に着色された色に関する情報と、カートリッジ40の貯留室42に貯留するエアロゾル源71のフレーバタイプと、を紐づけする着色部-エアロゾル源対応テーブルが記憶されている。 In the memory 63a of the MCU 63, information about the color of the colored portion 49 of the cartridge 40 obtained from the color identification sensor 24 and the flavor type of the aerosol source 71 stored in the storage chamber 42 of the cartridge 40 are linked. A coloring portion-aerosol source correspondence table is stored.
 MCU63は、メモリ63aに記憶されている着色部-エアロゾル源対応テーブルを参照し、色識別センサ24から取得したカートリッジ40の着色部49に着色された色に関する情報に基づいて、カートリッジ40の貯留室42に貯留するエアロゾル源71のフレーバタイプの情報を取得する(ステップS112)。 The MCU 63 refers to the colored portion-aerosol source correspondence table stored in the memory 63a, and based on the information about the color of the colored portion 49 of the cartridge 40 acquired from the color identification sensor 24, the storage chamber of the cartridge 40 Information on the flavor type of the aerosol source 71 stored in 42 is obtained (step S112).
 本実施形態では、メンソール80を含まないエアロゾル源71が貯留室42に貯留したレギュラータイプのカートリッジ40の着色部49は、赤色に着色されており、メンソール80を含むエアロゾル源71が貯留室42に貯留したメンソールタイプのカートリッジ40の着色部49は、緑色に着色されている。そして、メモリ63aに記憶されている着色部-エアロゾル源対応テーブルは、カートリッジ40の着色部49が赤色であることと、カートリッジ40の貯留室42に貯留したエアロゾル源71が、メンソール80を含まないレギュラータイプであることが紐づけられており、カートリッジ40の着色部49が緑色であることと、カートリッジ40の貯留室42に貯留したエアロゾル源71が、メンソール80を含むメンソールタイプであることが紐づけられている。そして、MCU63は、メモリ63aに記憶されている着色部-エアロゾル源対応テーブルを参照し、色識別センサ24から取得したカートリッジ40の着色部49に着色された色が赤色であることを示す情報であるとき、カートリッジ40の貯留室42に貯留するエアロゾル源71がメンソール80を含まないレギュラータイプであると識別する。また、MCU63は、メモリ63aに記憶されている着色部-エアロゾル源対応テーブルを参照し、色識別センサ24から取得したカートリッジ40の着色部49に着色された色が緑色であることを示す情報であるとき、カートリッジ40の貯留室42に貯留するエアロゾル源71がメンソール80を含むメンソールタイプであると識別する。このようにして、MCU63は、色識別センサ24から取得したカートリッジ40の着色部49に着色された色に関する情報に基づいて、カートリッジ40の貯留室42に貯留するエアロゾル源71のフレーバタイプの情報を取得する。 In this embodiment, the colored portion 49 of the regular type cartridge 40 in which the aerosol source 71 not containing the menthol 80 is stored in the storage chamber 42 is colored red, and the aerosol source 71 containing the menthol 80 is stored in the storage chamber 42. The colored portion 49 of the stored menthol type cartridge 40 is colored green. The colored portion-aerosol source correspondence table stored in the memory 63a indicates that the colored portion 49 of the cartridge 40 is red, and that the aerosol source 71 stored in the storage chamber 42 of the cartridge 40 does not contain menthol 80. It is associated with being a regular type, with the fact that the colored portion 49 of the cartridge 40 is green, and that the aerosol source 71 stored in the storage chamber 42 of the cartridge 40 is of the menthol type including the menthol 80 . is attached. Then, the MCU 63 refers to the colored portion-aerosol source correspondence table stored in the memory 63a, and obtains information from the color identification sensor 24 indicating that the colored portion 49 of the cartridge 40 is red. At some point, the aerosol source 71 stored in the storage chamber 42 of the cartridge 40 is identified as the regular type that does not contain the menthol 80 . The MCU 63 also refers to the colored portion-aerosol source correspondence table stored in the memory 63a, and obtains information from the color identification sensor 24 indicating that the colored portion 49 of the cartridge 40 is green. At some point, the aerosol source 71 stored in the storage chamber 42 of the cartridge 40 is identified as being of the menthol type containing the menthol 80 . In this way, the MCU 63 acquires flavor type information of the aerosol source 71 stored in the storage chamber 42 of the cartridge 40 based on the information about the color of the colored portion 49 of the cartridge 40 acquired from the color identification sensor 24. get.
 このように、MCU63は、カートリッジカバー20に設けられた色識別センサ24によって識別された、カートリッジ40の着色部49に着色された色に関する情報に基づいて、カートリッジ40の貯留室42に貯留するエアロゾル源71に関する情報を取得する、エアロゾル源情報取得処理を実行可能である。カートリッジ40の着色部49は、着色された樹脂によって成形できるので、エアロゾル吸引器1は、カートリッジ40の製造時において、カートリッジ40にバーコード及び二次元コードや突起等の識別情報を取り付ける工程を追加する必要がなく、カートリッジ40の貯留室42に貯留するエアロゾル源71に関する情報を取得することができる。これにより、エアロゾル吸引器1は、カートリッジ40の貯留室42に貯留するエアロゾル源71に関する情報を取得可能であり、且つ、カートリッジ40に識別情報を取り付ける工程が不要で製造時の工数を低減できる。 In this way, the MCU 63 detects the aerosol stored in the storage chamber 42 of the cartridge 40 based on the information about the color of the colored portion 49 of the cartridge 40 identified by the color identification sensor 24 provided on the cartridge cover 20 . An aerosol source information acquisition process can be performed to acquire information about the source 71 . Since the colored portion 49 of the cartridge 40 can be molded with colored resin, the aerosol inhaler 1 adds a step of attaching identification information such as a bar code, a two-dimensional code, or a projection to the cartridge 40 when manufacturing the cartridge 40. Information about the aerosol source 71 stored in the storage chamber 42 of the cartridge 40 can be obtained without the need to do so. As a result, the aerosol inhaler 1 can acquire information about the aerosol source 71 stored in the storage chamber 42 of the cartridge 40, and the step of attaching identification information to the cartridge 40 is unnecessary, thereby reducing man-hours during manufacturing.
 次に、MCU63は、直前に実行したステップS112において、カートリッジ40の貯留室42に貯留するエアロゾル源71のフレーバタイプの情報を取得できたか否かを判定する(ステップS113)。 Next, the MCU 63 determines whether information on the flavor type of the aerosol source 71 stored in the storage chamber 42 of the cartridge 40 has been acquired in step S112 executed immediately before (step S113).
 直前に実行したステップS112において、カートリッジ40の貯留室42に貯留するエアロゾル源71のフレーバタイプの情報を取得できた場合(ステップS113:YES)、カートリッジ40の貯留室42に貯留するエアロゾル源71のフレーバタイプを取得したフレーバタイプ情報に設定する(ステップS114)。そして、ステップS105に進み、カートリッジ識別処理におけるエアロゾル源71のフレーバタイプの識別結果をメモリ63aに保存して、カートリッジ識別処理を終了する。 If information on the flavor type of the aerosol source 71 stored in the storage chamber 42 of the cartridge 40 has been acquired in step S112 executed immediately before (step S113: YES), the aerosol source 71 stored in the storage chamber 42 of the cartridge 40 is The flavor type is set to the acquired flavor type information (step S114). Then, in step S105, the identification result of the flavor type of the aerosol source 71 in the cartridge identification process is stored in the memory 63a, and the cartridge identification process ends.
 直前に実行したステップS112において、カートリッジ40の貯留室42に貯留するエアロゾル源71のフレーバタイプの情報を取得できなかった場合(ステップS113:NO)は、エアロゾル源71のフレーバタイプの識別結果をレギュラータイプに設定する(ステップS115)。そして、ステップS105に進み、カートリッジ識別処理におけるエアロゾル源71のフレーバタイプの識別結果をメモリ63aに保存して、カートリッジ識別処理を終了する。 If the flavor type information of the aerosol source 71 stored in the storage chamber 42 of the cartridge 40 could not be obtained in step S112 executed immediately before (step S113: NO), the flavor type identification result of the aerosol source 71 is The type is set (step S115). Then, in step S105, the identification result of the flavor type of the aerosol source 71 in the cartridge identification process is stored in the memory 63a, and the cartridge identification process ends.
 このように、MCU63は、ユーザによって操作部15が電源オン操作された後に、カートリッジ識別処理を実行し、電源ユニット10の放電端子12にカートリッジ40の接続端子47が電気的に接続されていない状態から、電源ユニット10の放電端子12にカートリッジ40の接続端子47が電気的に接続された状態へと遷移することを契機として、エアロゾル源情報取得処理を実行する。 As described above, the MCU 63 executes the cartridge identification process after the operation unit 15 is turned on by the user, and the connection terminal 47 of the cartridge 40 is not electrically connected to the discharge terminal 12 of the power supply unit 10 . Then, when the connection terminal 47 of the cartridge 40 is electrically connected to the discharge terminal 12 of the power supply unit 10, the aerosol source information acquisition process is executed.
 したがって、電源ユニット10の放電端子12にカートリッジ40の接続端子47が電気的に接続されていない状態から、電源ユニット10の放電端子12にカートリッジ40の接続端子47が電気的に接続された状態へと遷移するという、エアロゾル吸引器1に装着されたカートリッジ40が交換された蓋然性が高いときに、エアロゾル源情報取得処理を実行するようにできる。これにより、エアロゾル源情報取得処理を実行する回数を削減でき、エアロゾル源情報取得処理によって消費する電源61の消費電力を節約できる。 Therefore, the state in which the connection terminal 47 of the cartridge 40 is not electrically connected to the discharge terminal 12 of the power supply unit 10 changes to the state in which the connection terminal 47 of the cartridge 40 is electrically connected to the discharge terminal 12 of the power supply unit 10. When there is a high probability that the cartridge 40 attached to the aerosol inhaler 1 has been replaced, the aerosol source information acquisition process can be executed. As a result, the number of times the aerosol source information acquisition process is executed can be reduced, and the power consumption of the power supply 61 consumed by the aerosol source information acquisition process can be saved.
 また、本実施形態では、ユーザによって操作部15が電源オン操作された後、すなわち、エアロゾル吸引器1を動作させるモードがスリープモードからパワーモードに切り替わった後に、エアロゾル源情報取得処理を含むカートリッジ識別処理を実行する。したがって、スリープモード時にはエアロゾル源情報取得処理を実行しないので、スリープモード時における電源61の消費電力をより少なくすることができる。これにより、電源61の消費電力をより節約できる。 Further, in the present embodiment, after the operation unit 15 is turned on by the user, that is, after the mode for operating the aerosol inhaler 1 is switched from the sleep mode to the power mode, the cartridge identification including the aerosol source information acquisition process is performed. Execute the process. Therefore, since the aerosol source information acquisition process is not executed in the sleep mode, power consumption of the power supply 61 in the sleep mode can be further reduced. Thereby, the power consumption of the power supply 61 can be further saved.
 エアロゾル吸引器1は、カートリッジ識別処理によってメモリ63aに保存されたエアロゾル源71のフレーバタイプの識別結果、すなわち、カートリッジ40の貯留室42に貯留するエアロゾル源71にメンソールが含まれるか否かに関する情報を、外部に送信可能となっている。 The aerosol inhaler 1 receives the identification result of the flavor type of the aerosol source 71 stored in the memory 63a by the cartridge identification processing, that is, information on whether or not the aerosol source 71 stored in the storage chamber 42 of the cartridge 40 contains menthol. can be sent to the outside.
 例えば、エアロゾル吸引器1は、充電端子14がUSB端子、microUSB端子等、データの送受信が可能な端子のレセプタクルであり、充電端子14にUSB端子、microUSB端子等の端子が接続されると、USB端子、microUSB端子等の端子を有するケーブルを介して、カートリッジ40の貯留室42に貯留するエアロゾル源71にメンソールが含まれるか否かに関する情報をスマートフォンやコンピュータ等の外部の情報端末に送信するようになっていてもよい。 For example, in the aerosol inhaler 1, the charging terminal 14 is a receptacle of a terminal capable of transmitting and receiving data such as a USB terminal and a microUSB terminal. Information on whether or not menthol is contained in the aerosol source 71 stored in the storage chamber 42 of the cartridge 40 is transmitted to an external information terminal such as a smartphone or a computer via a cable having a terminal such as a terminal and a microUSB terminal. can be
 また、例えば、エアロゾル吸引器1は、電源ユニットケース11の中空部に、外部と無線通信可能な無線通信チップが収容されており、カートリッジ40の貯留室42に貯留するエアロゾル源71にメンソールが含まれるか否かに関する情報を無線通信チップから、スマートフォンやコンピュータ等の外部の情報端末に無線通信によって送信するようになっていてもよい。 Further, for example, in the aerosol inhaler 1, a wireless communication chip capable of wireless communication with the outside is accommodated in the hollow portion of the power supply unit case 11, and the aerosol source 71 stored in the storage chamber 42 of the cartridge 40 contains menthol. The wireless communication chip may transmit information about whether or not the wireless communication is available to an external information terminal such as a smart phone or a computer by wireless communication.
 これにより、カートリッジ40の貯留室42に貯留するエアロゾル源71にメンソールが含まれるか否かに関する情報を、スマートフォンやコンピュータ等の外部の情報端末で確認することができるので、エアロゾル吸引器1をスマートフォンやコンピュータ等の外部の情報端末と連携して動作させることが可能となる。 As a result, information regarding whether or not the aerosol source 71 stored in the storage chamber 42 of the cartridge 40 contains menthol can be confirmed by an external information terminal such as a smartphone or a computer. It is possible to operate in cooperation with an external information terminal such as a computer.
 また、エアロゾル吸引器1のメモリ63aは、過去に実行されたエアロゾル源識別処理の識別結果を蓄積して保存可能であり、過去にエアロゾル吸引器1に装着されたカートリッジ40それぞれについて、エアロゾル源71にメンソールが含まれるか否かに関する情報を外部に送信可能となっていてもよい。 In addition, the memory 63a of the aerosol inhaler 1 can accumulate and store the identification results of the aerosol source identification processing executed in the past. Information regarding whether or not menthol is contained in may be transmitted to the outside.
 これにより、エアロゾル吸引器1に過去に装着されたカートリッジ40の履歴を外部に送信することができるので、エアロゾル吸引器1のユーザが好む香喫味等の情報を、スマートフォンやコンピュータ等の外部の情報端末に収集できる。また、ユーザがエアロゾル吸引器1を修理等のために店舗に持ち込んだ際に、エアロゾル吸引器1に過去に装着されたカートリッジ40の履歴をカスタマーサービスセンタのサーバ等に収集することが可能となるので、エアロゾル吸引器1に過去に装着されたカートリッジ40の履歴情報を活用して、エアロゾル吸引器1のカスタマーサービスを向上できる。 As a result, the history of the cartridge 40 attached to the aerosol inhaler 1 in the past can be transmitted to the outside, so that the information such as the flavor and taste preferred by the user of the aerosol inhaler 1 can be transmitted to the external information such as a smartphone or a computer. can be collected on your device. Further, when the user brings the aerosol inhaler 1 to a store for repair or the like, it is possible to collect the history of the cartridges 40 attached to the aerosol inhaler 1 in the past in the customer service center server or the like. Therefore, the customer service of the aerosol inhaler 1 can be improved by utilizing the history information of the cartridges 40 attached to the aerosol inhaler 1 in the past.
<スタンバイ制御>
 図10に示すように、MCU63は、カートリッジ識別処理が終了すると、カートリッジ識別処理の識別結果に基づいて、カートリッジ40の貯留室42に貯留するエアロゾル源71のフレーバタイプがメンソールタイプであるか否かを判定する(ステップS4)。MCU63は、カートリッジ識別処理において、カートリッジ40の貯留室42に貯留するエアロゾル源71のフレーバタイプの識別結果がメンソールタイプに設定されている場合、ステップS4において肯定を判定し(ステップS4:YES)、処理をステップS5に進める。続いてMCU63は、エアロゾル吸引器1を動作させるモードをパワーモードからメンソールモードに切り替え(ステップS5)、メンソールモード処理を実行する。一方、MCU63は、カートリッジ識別処理において、カートリッジ40の貯留室42に貯留するエアロゾル源71のフレーバタイプの識別結果がメンソールタイプに設定されていない場合、すなわち、カートリッジ識別処理において、カートリッジ40の貯留室42に貯留するエアロゾル源71のフレーバタイプの識別結果がレギュラータイプに設定されている場合、ステップS4において否定を判定し(ステップS4:NO)、処理をステップS6に進める。続いてMCU63は、エアロゾル吸引器1を動作させるモードをパワーモードからレギュラーモードに切り替え(ステップS6)、レギュラーモード処理を実行する。
<Standby control>
As shown in FIG. 10, when the cartridge identification process ends, the MCU 63 determines whether the flavor type of the aerosol source 71 stored in the storage chamber 42 of the cartridge 40 is menthol type based on the identification result of the cartridge identification process. is determined (step S4). In the cartridge identification process, if the flavor type identification result of the aerosol source 71 stored in the storage chamber 42 of the cartridge 40 is set to the menthol type, the MCU 63 determines affirmatively in step S4 (step S4: YES), The process proceeds to step S5. Subsequently, the MCU 63 switches the mode for operating the aerosol inhaler 1 from the power mode to the menthol mode (step S5), and executes menthol mode processing. On the other hand, when the identification result of the flavor type of the aerosol source 71 stored in the storage chamber 42 of the cartridge 40 is not set to the menthol type in the cartridge identification process, the MCU 63 performs the storage chamber of the cartridge 40 in the cartridge identification process. If the identification result of the flavor type of the aerosol source 71 stored in 42 is set to the regular type, a negative determination is made in step S4 (step S4: NO), and the process proceeds to step S6. Subsequently, the MCU 63 switches the mode for operating the aerosol inhaler 1 from the power mode to the regular mode (step S6), and executes regular mode processing.
 ≪メンソールモード処理≫
 メンソールモード処理において、MCU63は、まず、メンソールモードである旨を通知部16によってユーザに通知する(ステップS7)。このとき、MCU63は、例えば、発光素子161を緑色で発光させるとともに振動素子162を振動させることで、メンソールモードである旨の通知を行う。
≪Menthol mode treatment≫
In the menthol mode process, the MCU 63 first notifies the user of the menthol mode through the notification unit 16 (step S7). At this time, the MCU 63 notifies the menthol mode by causing the light emitting element 161 to emit green light and vibrating the vibrating element 162, for example.
 次に、MCU63は、香味源52に含まれる香味成分残量Wcapsule(npuff-1)に基づいて、第2ヒータ34の目標温度Tcap_targetと、第1ヒータ45へ供給する霧化電力(以下、霧化電力Pliquidともいう)とを設定し(ステップS8)、ステップS21へ進む。ここで、香味成分残量Wcapsule(npuff-1)は、新品のカプセル50の装着後に吸引動作が1回も行われていなければWinitialとなり、吸引動作が1回以上行われていれば直前の残量更新処理(後述)により算出された香味成分残量Wcapsule(npuff)となる。なお、メンソールモードにおける目標温度Tcap_target等の具体的な設定例については、図13及び図14等を用いて後述する。 Next, the MCU 63 determines the target temperature T cap_target of the second heater 34 and the atomization power supplied to the first heater 45 ( hereinafter also referred to as atomization power P liquid ) is set (step S8), and the process proceeds to step S21. Here, the flavor component remaining amount W capsule (n puff -1) is W initial if the suction operation has not been performed even once after the new capsule 50 has been attached, and is W initial if the suction operation has been performed one or more times. The flavor component remaining amount W capsule (n puff ) calculated by the immediately preceding remaining amount updating process (described later) is obtained. A specific setting example of the target temperature T cap_target and the like in the menthol mode will be described later with reference to FIGS. 13 and 14 and the like.
 ≪レギュラーモード処理≫
 レギュラーモード処理において、MCU63は、まず、レギュラーモードである旨を通知部16によってユーザに通知する(ステップS9)。このとき、MCU63は、例えば、発光素子161を白色で発光させるとともに振動素子162を振動させることで、レギュラーモードである旨の通知を行う。
≪Regular mode processing≫
In the regular mode process, the MCU 63 first notifies the user of the regular mode through the notification unit 16 (step S9). At this time, the MCU 63 notifies the regular mode by, for example, causing the light emitting element 161 to emit white light and vibrating the vibrating element 162 .
 次に、MCU63は、香味源52に含まれる香味成分残量Wcapsule(npuff-1)に基づいて、第2ヒータ34の目標温度Tcap_targetと、目標の香味成分量Wflavorを達成するのに必要なエアロゾル重量Waerosolを決定する(ステップS10)。ステップS10において、MCU63は、例えば、上記の式(1)を変形して得られる下記の式(2)からエアロゾル重量Waerosolを算出し、算出されたエアロゾル重量Waerosolに決定する。 Next, the MCU 63 achieves the target temperature T cap_target of the second heater 34 and the target flavor component amount W flavor based on the flavor component remaining amount W capsule (n puff −1) contained in the flavor source 52 . Determine the aerosol weight W_aerosol required for (step S10). In step S10, the MCU 63 calculates the aerosol weight W aerosol from, for example, the following formula (2) obtained by modifying the above formula (1), and determines the calculated aerosol weight W aerosol .
Figure JPOXMLDOC01-appb-M000001

                  
Figure JPOXMLDOC01-appb-M000001

                  
 上記の式(2)におけるβ及びγは、上記の式(1)のβ及びγと同一であり、実験的に求められる。また、上記の式(2)において、目標となる香味成分量Wflavorは、エアロゾル吸引器1の製造者によって予め設定される。そして、上記の式(2)における香味成分残量Wcapsule(npuff-1)は、新品のカプセル50の装着後に吸引動作が1回も行われていなければWinitialとなり、吸引動作が1回以上行われていれば直前の残量更新処理により算出された香味成分残量Wcapsule(npuff)となる。 β and γ in the above formula (2) are the same as β and γ in the above formula (1) and are determined experimentally. In addition, in the above formula (2), the target flavor component amount W flavor is set in advance by the manufacturer of the aerosol inhaler 1 . The remaining amount of flavor component W capsule (n puff -1) in the above equation (2) becomes W initial if no suction operation has been performed after the new capsule 50 has been attached, and the suction operation has been performed once. If the above processes have been performed, the flavor component remaining amount W capsule (n puff ) calculated by the last remaining amount updating process is obtained.
 次に、MCU63は、ステップS10で決定したエアロゾル重量Waerosolに基づいて、第1ヒータ45へ供給する霧化電力Pliquidを設定する(ステップS11)。ステップS11において、MCU63は、例えば、下記の式(3)から霧化電力Pliquidを算出し、算出された霧化電力Pliquidを設定する。 Next, the MCU 63 sets the atomization power P liquid to be supplied to the first heater 45 based on the aerosol weight W aerosol determined in step S10 (step S11). In step S11, the MCU 63 calculates the atomization power P liquid from, for example, the following equation (3), and sets the calculated atomization power P liquid .
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 上記の式(3)におけるαは、β及びγと同様に実験的に求められる係数である。また、上記の式(3)におけるエアロゾル重量Waerosolは、ステップS10で決定したエアロゾル重量Waerosolである。そして、上記の式(3)におけるtは、霧化電力Pliquidを供給する見込みの供給時間tsenseであり、例えば上限値tupperとすることができる。 α in the above equation (3) is a coefficient obtained experimentally, like β and γ. Also, the aerosol weight W aerosol in the above formula (3) is the aerosol weight W aerosol determined in step S10. Further, t in the above equation (3) is the supply time t sense for which the atomization power P liquid is expected to be supplied, and can be the upper limit value t upper , for example.
 次に、MCU63は、ステップS11で決定した霧化電力Pliquidがその時点において電源61から第1ヒータ45に放電可能な所定の上限電力以下であるか否かを判定する(ステップS12)。霧化電力Pliquidが上限電力以下であれば(ステップS12:YES)、MCU63は、前述したステップS21へ移行する。一方、霧化電力Pliquidが上限電力を超えていれば(ステップS12:NO)、MCU63は、目標温度Tcap_targetを所定量だけ増加させて(ステップS13)、ステップS10へ復帰する。 Next, the MCU 63 determines whether or not the atomization power P liquid determined in step S11 is equal to or less than a predetermined upper limit power that can be discharged from the power supply 61 to the first heater 45 at that time (step S12). If the atomization power P liquid is equal to or less than the upper limit power (step S12: YES), the MCU 63 proceeds to step S21 described above. On the other hand, if the atomization power P liquid exceeds the upper limit power (step S12: NO), the MCU 63 increases the target temperature T cap_target by a predetermined amount (step S13), and returns to step S10.
 すなわち、前述した式(1)からわかるように、目標温度Tcap_target(すなわちTcapsule)を増やすことで、その分、目標の香味成分量Wflavorを達成するのに必要なエアロゾル重量Waerosolを減らすことができるので、その結果、上記のステップS11で決定される霧化電力Pliquidを減らすことができる。MCU63は、ステップS10~S13を繰り返すことで、当初はNOと判定されたステップS12の判定をそのうちにYESと判定させることができ、図9に示したステップS21へ移行させることが可能となる。 That is, as can be seen from the above equation (1), by increasing the target temperature T cap_target (that is, T capsule ), the aerosol weight W aerosol required to achieve the target flavor component amount W flavor is correspondingly reduced. As a result, the atomization power P liquid determined in step S11 can be reduced. By repeating steps S10 to S13, the MCU 63 can make the determination of step S12, which was initially determined as NO, eventually become YES, and can shift to step S21 shown in FIG.
<放電制御>
 図11に示すように、次に、MCU63は、第2温度検出用素子68の出力に基づいて、現在の第2ヒータ34の温度(以下、温度Tcap_senseともいう)を取得する(ステップS21)。第2ヒータ34の温度である温度Tcap_senseは、前述した温度パラメータTcapsuleの一例である。なお、ここでは、温度パラメータTcapsuleとして、第2ヒータ34の温度を用いる例を説明するが、第2ヒータ34の温度に代えて、香味源52又は収容室53の温度を用いるようにしてもよい。
<Discharge control>
As shown in FIG. 11, the MCU 63 then acquires the current temperature of the second heater 34 (hereinafter also referred to as temperature T cap_sense ) based on the output of the second temperature detection element 68 (step S21). . The temperature T cap_sense , which is the temperature of the second heater 34, is an example of the aforementioned temperature parameter T capsule . Here, an example in which the temperature of the second heater 34 is used as the temperature parameter T capsule will be described. good.
 次に、MCU63は、メンソールモード処理又はレギュラーモード処理で設定した目標温度Tcap_targetと、取得した温度Tcap_senseとに基づいて、温度Tcap_senseが目標温度Tcap_targetに収束するように、電源61から第2ヒータ34への放電を制御する(ステップS22)。このとき、MCU63は、温度Tcap_senseが目標温度Tcap_targetに収束するように、例えばPID(Proportional-Integral-Differential)制御を行う。 Next, based on the target temperature T cap_target set in the menthol mode process or the regular mode process and the acquired temperature T cap_sense , the MCU 63 controls the temperature T cap_sense from the power supply 61 so that the temperature T cap_sense converges to the target temperature T cap_target . The discharge to the 2 heater 34 is controlled (step S22). At this time, the MCU 63 performs PID (Proportional-Integral-Differential) control, for example, so that the temperature T cap_sense converges to the target temperature T cap_target .
 また、温度Tcap_senseを目標温度Tcap_targetに収束させる制御として、PID制御の代わりに、第2ヒータ34への電力供給をオン・オフするON/OFF制御、P(Proportional)制御、あるいはPI(Proportional-Integral)制御等を用いてもよい。また、目標温度Tcap_targetがヒステリシスを有してもよい。 As the control for converging the temperature T cap_sense to the target temperature T cap_target , instead of PID control, ON/OFF control for turning on/off the power supply to the second heater 34, P (proportional) control, or PI (proportional control) -Integral) control or the like may be used. Also, the target temperature T cap_target may have hysteresis.
 次に、MCU63は、エアロゾル生成要求があったか否かを判定する(ステップS23)。エアロゾル生成要求がなければ(ステップS23:NO)、MCU63は、エアロゾル生成要求がない状態で所定期間が経過したか否かを判定する(ステップS24)。エアロゾル生成要求がない状態で所定期間が経過していなければ(ステップS24:NO)、MCU63は、ステップS21へ復帰する。 Next, the MCU 63 determines whether or not there is an aerosol generation request (step S23). If there is no aerosol generation request (step S23: NO), the MCU 63 determines whether or not a predetermined period has passed without an aerosol generation request (step S24). If the predetermined period has not elapsed without an aerosol generation request (step S24: NO), the MCU 63 returns to step S21.
 エアロゾル生成要求がない状態で所定期間が経過すると(ステップS24:YES)、MCU63は、第2ヒータ34への放電を停止し(ステップS25)、エアロゾル吸引器1を動作させるモードをスリープモードに切り替え(ステップS26)、後述のステップS51へ進む。 When a predetermined period of time elapses without an aerosol generation request (step S24: YES), the MCU 63 stops discharging to the second heater 34 (step S25), and switches the operating mode of the aerosol inhaler 1 to the sleep mode. (Step S26), and proceeds to step S51, which will be described later.
<エアロゾル生成制御>
 一方、MCU63は、エアロゾルの生成要求があれば(ステップS23:YES)、エアロゾル生成制御を実行する。まず、MCU63は、第2ヒータ34による香味源52の加熱(すなわち第2ヒータ34への放電)を一旦停止し、第2温度検出用素子68の出力に基づいて、温度Tcap_senseを取得する(ステップS30)。なお、MCU63は、ステップS11を実行する際に第2ヒータ34による香味源52の加熱(すなわち第2ヒータ34への放電)を停止しなくてもよい。
<Aerosol generation control>
On the other hand, if there is an aerosol generation request (step S23: YES), the MCU 63 executes aerosol generation control. First, the MCU 63 temporarily stops heating the flavor source 52 by the second heater 34 (that is, discharging to the second heater 34), and acquires the temperature T cap_sense based on the output of the second temperature detection element 68 ( step S30). Note that the MCU 63 does not have to stop heating the flavor source 52 by the second heater 34 (that is, discharge to the second heater 34) when executing step S11.
 次に、MCU63は、取得した温度Tcap_senseが、設定した目標温度Tcap_target-δ(ただしδ≧0)よりも高いか否かを判定する(ステップS31)。このδは、エアロゾル吸引器1の製造者が任意に定めることができる。温度Tcap_senseが目標温度Tcap_target-δよりも高ければ(ステップS31:YES)、MCU63は、現在の霧化電力Pliquid-Δ(ただしΔ>0)を新たな霧化電力Pliquidとして設定し(ステップS32)、ステップS35へ進む。 Next, the MCU 63 determines whether or not the acquired temperature T cap_sense is higher than the set target temperature T cap_target −δ (where δ≧0) (step S31). This δ can be arbitrarily determined by the manufacturer of the aerosol inhaler 1 . If the temperature T cap_sense is higher than the target temperature T cap_target −δ (step S31: YES), the MCU 63 sets the current atomization power P liquid −Δ (where Δ>0) as the new atomization power P liquid . (Step S32), and proceeds to step S35.
 一方、温度Tcap_senseが目標温度Tcap_target-δよりも高くなければ(ステップS31:NO)、MCU63は、温度Tcap_senseが目標温度Tcap_target-δよりも低いか否かを判定する(ステップS33)。温度Tcap_senseが目標温度Tcap_target-δよりも低ければ(ステップS33:YES)、MCU63は、現在の霧化電力Pliquid+Δを新たな霧化電力Pliquidとして設定し(ステップS34)、ステップS35へ進む。 On the other hand, if the temperature T cap_sense is not higher than the target temperature T cap_target −δ (step S31: NO), the MCU 63 determines whether the temperature T cap_sense is lower than the target temperature T cap_target −δ (step S33). . If the temperature T cap_sense is lower than the target temperature T cap_target −δ (step S33: YES), the MCU 63 sets the current atomization power P liquid +Δ as a new atomization power P liquid (step S34), and step S35. proceed to
 一方、温度Tcap_senseが目標温度Tcap_target-δよりも低くなければ(ステップS33:NO)、温度Tcap_sense=目標温度Tcap_target-δであるため、MCU63は、現在の霧化電力Pliquidを維持して、そのままステップS35へ進む。 On the other hand, if the temperature T cap_sense is not lower than the target temperature T cap_target - δ (step S33: NO), the MCU 63 maintains the current atomization power P liquid because the temperature T cap_sense = target temperature T cap_target - δ. Then, the process proceeds to step S35.
 詳細は図14等を用いて後述するが、本実施形態では、メンソールモードによって目標温度Tcap_targetを制御している際に、MCU63は、所定のタイミングで目標温度Tcap_targetを80[℃]から60[℃]に変更する。このような目標温度Tcap_targetの変更直後にあっては、そのときの第2ヒータ34の温度である温度Tcap_sense(例えば80[℃])が変更後の目標温度Tcap_target(すなわち60[℃])を超過している可能性がある。このような場合に、MCU63は、ステップS32においてNO判定して、ステップS34の処理を行うことにより霧化電力Pliquidを減らすようになっている。これにより、目標温度Tcap_targetを80[℃]から60[℃]に変更した直後等で、香味源52や第2ヒータ34等の実際の温度が60[℃]よりも高いような場合であっても、霧化電力Pliquidを減らして、第1ヒータ45による加熱で生成されて香味源52に供給されるエアロゾル源71の量を減らすことができる。したがって、過剰なメンソールがユーザの口内に供給されることを抑制し、適切な量のメンソールをユーザに対し安定して供給できる。 Details will be described later with reference to FIG. Change to [°C]. Immediately after the target temperature T cap_target is changed, the temperature T cap_sense (for example, 80 [° C.]), which is the temperature of the second heater 34 at that time, is changed to the target temperature T cap_target (that is, 60 [° C.]) after the change. ) may have been exceeded. In such a case, the MCU 63 makes a NO determination in step S32 and performs the process of step S34 to reduce the atomization power P liquid . As a result, even if the actual temperature of the flavor source 52, the second heater 34, etc. is higher than 60 [° C.] immediately after the target temperature T cap_target is changed from 80 [° C.] to 60 [° C.]. However, the atomization power P liquid can be reduced to reduce the amount of the aerosol source 71 generated by heating by the first heater 45 and supplied to the flavor source 52 . Therefore, excessive supply of menthol into the user's mouth can be suppressed, and an appropriate amount of menthol can be stably supplied to the user.
 次に、MCU63は、現在のモードをユーザに通知する(ステップS35)。例えば、メンソールモードの場合(すなわちメンソールモード処理を実行した場合)には、ステップS35において、MCU63は、例えば、発光素子161を緑色で発光させることで、メンソールモードである旨をユーザに通知する。一方、レギュラーモードの場合(すなわちレギュラーモード処理を実行した場合)には、ステップS35において、MCU63は、例えば、発光素子161を白色で発光させることで、レギュラーモードである旨をユーザに通知する。 Next, the MCU 63 notifies the user of the current mode (step S35). For example, in the case of the menthol mode (that is, when the menthol mode process is executed), the MCU 63 notifies the user of the menthol mode by, for example, causing the light emitting element 161 to emit green light in step S35. On the other hand, in the case of the regular mode (that is, when the regular mode process is executed), the MCU 63 notifies the user of the regular mode by, for example, causing the light emitting element 161 to emit white light in step S35.
 次に、MCU63は、ステップS33又はステップS34で設定した霧化電力Pliquidが第1ヒータ45に供給されるようにDC/DCコンバータ66を制御する(ステップS36)。具体的には、MCU63は、DC/DCコンバータ66による第1ヒータ45への印加電圧を制御することで、霧化電力Pliquidが第1ヒータ45に供給されるようにする。これにより、霧化電力Pliquidが第1ヒータ45へ供給され、第1ヒータ45によるエアロゾル源71の加熱が行われ、気化及び/又は霧化したエアロゾル源71が発生する。 Next, the MCU 63 controls the DC/DC converter 66 so that the atomization power P liquid set in step S33 or step S34 is supplied to the first heater 45 (step S36). Specifically, the MCU 63 controls the voltage applied to the first heater 45 by the DC/DC converter 66 so that the atomization power P liquid is supplied to the first heater 45 . Thereby, the atomization power P liquid is supplied to the first heater 45, the aerosol source 71 is heated by the first heater 45, and the aerosol source 71 that is vaporized and/or atomized is generated.
 次に、MCU63は、エアロゾルの生成要求が終了したか否かを判定する(ステップS37)。エアロゾルの生成要求が終了していない場合(ステップS37:NO)、MCU63は、霧化電力Pliquidの供給開始時からの経過時間、すなわち供給時間tsenseが上限値tupperに到達したか否かを判定する(ステップS38)。供給時間tsenseが上限値tupperに到達していなければ(ステップS38:NO)、MCU63は、ステップS36へ復帰する。この場合には、第1ヒータ45への霧化電力Pliquidの供給、すなわち気化及び/又は霧化したエアロゾル源71の生成が継続される。 Next, the MCU 63 determines whether or not the aerosol generation request has ended (step S37). If the aerosol generation request has not ended (step S37: NO), the MCU 63 determines whether the elapsed time from the start of the supply of the atomization power P liquid , that is, the supply time t sense has reached the upper limit value t upper . is determined (step S38). If the supply time t sense has not reached the upper limit value t upper (step S38: NO), the MCU 63 returns to step S36. In this case, the supply of atomization power P liquid to the first heater 45, that is, the generation of the vaporized and/or atomized aerosol source 71 continues.
 一方、エアロゾルの生成要求が終了した場合(ステップS37:YES)、及び供給時間tsenseが上限値tupperに到達した場合(ステップS38:YES)、MCU63は、第1ヒータ45への霧化電力Pliquidの供給(すなわち第1ヒータ45への放電)を停止して(ステップS39)、エアロゾル生成制御を終了する。 On the other hand, when the aerosol generation request has ended (step S37: YES) and when the supply time t sense reaches the upper limit value t upper (step S38: YES), the MCU 63 supplies the atomization power to the first heater 45. The supply of P liquid (that is, the discharge to the first heater 45) is stopped (step S39), and the aerosol generation control ends.
 このようにして、MCU63は、エアロゾル生成制御を実行する際、電源61から第1ヒータ45への放電及び電源61から第2ヒータ34への放電を、メンソールモード又はレギュラーモードで制御する。 In this way, the MCU 63 controls the discharge from the power supply 61 to the first heater 45 and the discharge from the power supply 61 to the second heater 34 in menthol mode or regular mode when executing aerosol generation control.
<残量更新処理>
 図12に示すように、MCU63は、エアロゾル生成制御を終了すると、香味源52に含まれる香味成分残量を算出する残量更新処理を実行する。
<Remaining amount update process>
As shown in FIG. 12 , when the aerosol generation control ends, the MCU 63 executes remaining amount update processing for calculating the remaining amount of the flavor component contained in the flavor source 52 .
 残量更新処理において、MCU63は、まず、霧化電力Pliquidを供給した供給時間tsenseを取得する(ステップS41)。次に、MCU63は、パフ数カウンタのカウント値であるnpuffに「1」を加算する(ステップS42)。 In the remaining amount update process, the MCU 63 first acquires the supply time t sense during which the atomization power P liquid is supplied (step S41). Next, the MCU 63 adds "1" to n puff , which is the count value of the puff number counter (step S42).
 そして、MCU63は、取得した供給時間tsenseと、エアロゾルの生成要求に応じて第1ヒータ45へ供給した霧化電力Pliquidと、エアロゾルの生成要求を検知した際に設定した目標温度Tcap_targetと、に基づいて、香味源52に含まれる香味成分残量Wcapsule(npuff)を更新する(ステップS43)。MCU63は、例えば、下記の式(4)から香味成分残量Wcapsule(npuff)を算出し、算出した香味成分残量Wcapsule(npuff)をメモリ63aに記憶することで、香味成分残量Wcapsule(npuff)の更新を行う。 Then, the MCU 63 stores the acquired supply time t sense , the atomization power P liquid supplied to the first heater 45 in response to the aerosol generation request, and the target temperature T cap_target set when the aerosol generation request was detected. , the remaining amount of flavor component W capsule (n puff ) contained in the flavor source 52 is updated (step S43). For example, the MCU 63 calculates the residual flavor component W capsule (n puff ) from the following equation (4), and stores the calculated residual flavor component W capsule (n puff ) in the memory 63a. Update the quantity W capsule (n puff ).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 上記の式(4)におけるαは、上記の式(3)のαと同一であり、実験的に求められる。上記の式(4)におけるβ及びγは、上記の式(1)のβ及びγと同一であり、実験的に求められる。また、上記の式(4)におけるδは、ステップS32で用いたδと同一であり、エアロゾル吸引器1の製造者によって予め設定される。 α in the above formula (4) is the same as α in the above formula (3) and is obtained experimentally. β and γ in the above formula (4) are the same as β and γ in the above formula (1) and are determined experimentally. δ in the above equation (4) is the same as δ used in step S32 and is set in advance by the manufacturer of the aerosol inhaler 1 .
 次に、MCU63は、更新後の香味成分残量Wcapsule(npuff)が、カプセル交換通知を行う条件となる所定の残量閾値未満であるか否かを判定する(ステップS44)。更新後の香味成分残量Wcapsule(npuff)が残量閾値以上であれば(ステップS44:NO)、香味源52に含まれる(すなわちカプセル50内に)香味成分がまだ十分に残っていると考えられるため、MCU63は、そのままステップS51へ進む。 Next, the MCU 63 determines whether or not the updated flavor component remaining amount W capsule (n puff ) is less than a predetermined remaining amount threshold, which is a condition for notifying capsule replacement (step S44). If the remaining amount of flavor ingredient W capsule (n puff ) after updating is equal to or greater than the remaining amount threshold (step S44: NO), the flavor ingredient contained in the flavor source 52 (that is, in the capsule 50) still remains sufficiently. Therefore, the MCU 63 directly proceeds to step S51.
 一方、更新後の香味成分残量Wcapsule(npuff)が残量閾値未満であれば(ステップS44:YES)、香味源52に含まれる香味成分がほぼなくなったと考えられるため、MCU63は、カートリッジ40交換後のカプセル50の交換回数が所定回数であるか否かを判定する(ステップS45)。例えば、本実施形態では、1つのカートリッジ40に5つのカプセル50を組み合わせた形態でユーザに提供されるようになっている。この場合、ステップS25において、MCU63は、カートリッジ40交換後のカプセル50の交換回数が5回か否かを判定する。 On the other hand, if the updated flavor component remaining amount W capsule (n puff ) is less than the remaining amount threshold (step S44: YES), it is considered that the flavor ingredient contained in the flavor source 52 is almost gone. It is determined whether or not the number of exchanges of the capsule 50 after the exchange of 40 is a predetermined number (step S45). For example, in this embodiment, one cartridge 40 is provided to the user in a form in which five capsules 50 are combined. In this case, in step S25, the MCU 63 determines whether or not the capsule 50 has been replaced five times after the cartridge 40 has been replaced.
 カートリッジ40交換後のカプセル50の交換回数が所定回数(本実施形態では5回)でなければ(ステップS45:NO)、カートリッジ40のエアロゾル源71の残量が、未使用の香味源52の残量を閾値以下にするために必要な量以上であると推定し、カートリッジ40はまだ使用できる状態であるとして、MCU63は、カプセル交換通知を行う(ステップS46)。本実施形態では、MCU63は、エアロゾル吸引器1をメンソールモードで動作させているときは緑色で、エアロゾル吸引器1をレギュラーモードで動作させているときは白色で、発光素子161を点滅させることで、カプセル交換通知を行う。 If the number of exchanges of the capsules 50 after the cartridge 40 is exchanged is not the predetermined number (five times in this embodiment) (step S45: NO), the remaining amount of the aerosol source 71 in the cartridge 40 is equal to the remaining amount of the unused flavor source 52. The MCU 63 presumes that the amount is equal to or greater than the amount required to reduce the amount to the threshold value or less, and the cartridge 40 is still usable, and notifies the capsule replacement (step S46). In this embodiment, the MCU 63 blinks the light-emitting element 161 in green when the aerosol inhaler 1 is operating in the menthol mode, and in white when the aerosol inhaler 1 is operating in the regular mode. , to notify capsule exchange.
 一方、カートリッジ40交換後のカプセル50の交換回数が所定回数(本実施形態では5回)であれば(ステップS45:YES)、カートリッジ40のエアロゾル源71の残量が、未使用の香味源52の残量を閾値以下にするために必要な量未満であると推定して、カートリッジ40は寿命に達した状態であるとして、MCU63は、カートリッジ交換通知を行う(ステップS47)。本実施形態では、MCU63は、発光素子161を青色で点滅させることで、カートリッジ交換通知を行う。 On the other hand, if the capsule 50 has been replaced a predetermined number of times (five times in the present embodiment) after the cartridge 40 has been replaced (step S45: YES), the remaining amount of the aerosol source 71 in the cartridge 40 is equal to the unused flavor source 52 The MCU 63 assumes that the remaining amount of the cartridge 40 is less than the amount required to reduce the remaining amount to the threshold value or less, and determines that the cartridge 40 has reached the end of its life, and notifies the cartridge replacement (step S47). In this embodiment, the MCU 63 notifies the replacement of the cartridge by blinking the light emitting element 161 in blue.
 次に、MCU63は、パフ数カウンタのカウント値を1にリセットするカウンタリセット制御を実行するとともに、目標温度Tcap_targetの設定を初期化する(ステップS48)。目標温度Tcap_targetの設定初期化にあたって、MCU63は、例えば、目標温度Tcap_targetを絶対零度である-273[℃]に設定する。これにより、実質的に、そのときの第2ヒータ34の温度にかかわらず、第2ヒータ34への放電を停止させ、第2ヒータ34による香味源52の加熱を停止できる。 Next, the MCU 63 executes counter reset control to reset the count value of the puff number counter to 1, and initializes the setting of the target temperature T cap_target (step S48). In initializing the setting of the target temperature T cap_target , the MCU 63 sets the target temperature T cap_target to −273 [° C.], which is absolute zero, for example. Thereby, substantially, regardless of the temperature of the second heater 34 at that time, the discharge to the second heater 34 is stopped, and the heating of the flavor source 52 by the second heater 34 can be stopped.
<電源オフ制御>
 次に、MCU63は、ユーザによって操作部15が電源オフ操作されたか否かを判定する(ステップS51)。本実施形態では、電源オフ操作は、所定時間(例えば3[秒])以上、操作部15を押圧したままの状態を維持する操作である。そして、ユーザによって操作部15が電源オフ操作されていないとされると(ステップS51:NO)、MCU63は、ステップS3へ復帰する。一方、ユーザによって操作部15が電源オフ操作されたとされると(ステップS51:YES)、MCU63は、電源オフ制御を実行して、エアロゾル吸引器1を動作させるモードをスリープモードに切り替え(ステップS52)、一連の処理を終了する。
<Power off control>
Next, the MCU 63 determines whether or not the operation unit 15 has been turned off by the user (step S51). In this embodiment, the power off operation is an operation of keeping the operation unit 15 pressed for a predetermined time (for example, 3 [seconds]) or more. When it is determined that the operation unit 15 has not been turned off by the user (step S51: NO), the MCU 63 returns to step S3. On the other hand, when the operation unit 15 is turned off by the user (step S51: YES), the MCU 63 executes power off control to switch the mode of operating the aerosol inhaler 1 to the sleep mode (step S52). ), ending the series of processes.
 このように、MCU63は、エアロゾル源情報取得処理を含むカートリッジ識別処理の結果に基づいて、電源61から第1ヒータ45及び第2ヒータ34への放電を制御する。これにより、エアロゾル吸引器1に装着されたカートリッジ40のエアロゾル源71の種類に応じて、第1ヒータ45及び第2ヒータ34への放電を適切に制御し、適切な量の香味成分やエアロゾルをユーザに対し安定して供給することができる。 Thus, the MCU 63 controls discharge from the power supply 61 to the first heater 45 and the second heater 34 based on the result of the cartridge identification process including the aerosol source information acquisition process. Thereby, according to the type of the aerosol source 71 of the cartridge 40 attached to the aerosol inhaler 1, the discharge to the first heater 45 and the second heater 34 is appropriately controlled, and an appropriate amount of flavor component and aerosol is produced. It can be stably supplied to users.
 より詳細には、MCU63は、電源61から第1ヒータ45及び第2ヒータ34への放電を複数のモードで制御可能であり、エアロゾル源情報取得処理を含むカートリッジ識別処理の結果に基づいて、複数のモードから1つのモードを選択し、選択したモードで電源61から第1ヒータ45及び第2ヒータ34への放電を制御する。これにより、簡素な制御で、エアロゾル吸引器1に装着されたカートリッジ40のエアロゾル源71の種類に応じて、第1ヒータ45及び第2ヒータ34への放電を適切に制御し、適切な量の香味成分やエアロゾルをユーザに対し安定して供給することができる。 More specifically, the MCU 63 can control discharge from the power source 61 to the first heater 45 and the second heater 34 in a plurality of modes, and based on the result of the cartridge identification process including the aerosol source information acquisition process, a plurality of , and discharge from the power source 61 to the first heater 45 and the second heater 34 is controlled in the selected mode. As a result, with simple control, the discharge to the first heater 45 and the second heater 34 can be appropriately controlled according to the type of the aerosol source 71 of the cartridge 40 attached to the aerosol inhaler 1, and an appropriate amount of discharge can be achieved. Flavor components and aerosols can be stably supplied to users.
 本実施形態では、電源61から第1ヒータ45及び第2ヒータ34への放電を、レギュラーモードとメンソールモードとを少なくとも含む複数のモードで制御可能であり、エアロゾル源情報取得処理において、エアロゾル源71にメンソールが含まれることを示す情報を取得できた場合、メンソールモードで電源61から第1ヒータ45及び第2ヒータ34への放電を制御し、エアロゾル源情報取得処理において、エアロゾル源71にメンソールが含まれないことを示す情報を取得できた場合、レギュラーモードで電源61から第1ヒータ45及び第2ヒータ34への放電を制御する。したがって、エアロゾル吸引器1に装着されたカートリッジ40のエアロゾル源71が、メンソールを含む場合とメンソールを含まない場合とに応じて、第1ヒータ45及び第2ヒータ34への放電を適切に制御し、適切な量の香味成分やメンソールを含むエアロゾルをユーザに対し安定して供給することができる。 In this embodiment, the discharge from the power source 61 to the first heater 45 and the second heater 34 can be controlled in a plurality of modes including at least the regular mode and the menthol mode. If information indicating that menthol is contained in is acquired, the discharge from the power supply 61 to the first heater 45 and the second heater 34 is controlled in the menthol mode, and in the aerosol source information acquisition process, the aerosol source 71 contains menthol. When the information indicating that it is not included is acquired, the discharge from the power source 61 to the first heater 45 and the second heater 34 is controlled in the regular mode. Therefore, the discharge to the first heater 45 and the second heater 34 is appropriately controlled depending on whether the aerosol source 71 of the cartridge 40 attached to the aerosol inhaler 1 contains menthol or does not contain menthol. , an aerosol containing an appropriate amount of flavor component and menthol can be stably supplied to the user.
 また、本実施形態では、エアロゾル源情報取得処理において、カートリッジ40の貯留室42に貯留するエアロゾル源71にメンソールが含まれるか否かに関する情報を取得できなかった場合、レギュラーモードで電源61から第1ヒータ45及び第2ヒータ34への放電を制御する。したがって、カートリッジ40の貯留室42に貯留するエアロゾル源71にメンソールが含まれていない場合に、MCU63がメンソールモードで第1ヒータ45及び第2ヒータ34への放電を制御することを確実に防止できる。これにより、メンソールが含まれていないエアロゾル源71がメンソールモードで加熱されることによる意図しない香喫味の発生を防止でき、少なくとも香味源由来の香喫味を安定してユーザに供給することができる。 Further, in the present embodiment, in the aerosol source information acquisition process, if information regarding whether or not the aerosol source 71 stored in the storage chamber 42 of the cartridge 40 contains menthol cannot be acquired, the power source 61 is switched to the first mode in the regular mode. It controls discharge to the first heater 45 and the second heater 34 . Therefore, when the aerosol source 71 stored in the storage chamber 42 of the cartridge 40 does not contain menthol, it is possible to reliably prevent the MCU 63 from controlling discharge to the first heater 45 and the second heater 34 in the menthol mode. . As a result, it is possible to prevent the generation of unintended flavor and taste due to the heating of the aerosol source 71 not containing menthol in the menthol mode, and at least the flavor and taste derived from the flavor source can be stably supplied to the user.
(キャリブレーション処理)
 次に、エアロゾル吸引器1における色識別センサ24のキャリブレーションについて説明する。
(Calibration processing)
Next, calibration of the color identification sensor 24 in the aerosol inhaler 1 will be described.
 エアロゾル吸引器1は、工場出荷後に、色識別センサ24のキャリブレーションを行うことが可能となっている。以下に説明する色識別センサ24のキャリブレーションは、例えば、MCU63のプロセッサが、メモリ63aに予め記憶されたキャリブレーション処理のプログラムを実行することにより実現される。 The aerosol inhaler 1 is capable of calibrating the color identification sensor 24 after shipment from the factory. The calibration of the color identification sensor 24, which will be described below, is realized, for example, by the processor of the MCU 63 executing a calibration processing program pre-stored in the memory 63a.
 キャリブレーション処理において、MCU63は、まず、色識別センサ24のカラーセンサ部242に所定の色成分の数値を有する検査光を受光させる。 In the calibration process, the MCU 63 first causes the color sensor section 242 of the color identification sensor 24 to receive inspection light having a predetermined color component numerical value.
 例えば、検査光を発光可能であり、カートリッジカバー20に収容可能な発光装置をカートリッジ40に代えてカートリッジカバー20に収容し、検査光は、カートリッジカバー20に収容された発光装置から発光される、赤色、緑色、青色等、所定の色成分の数値を有する光であってもよい。また、検査光は、赤色、緑色、青色等、異なる色成分の数値を有する複数の光を別個に発光し、それぞれの光を色識別センサ24のカラーセンサ部242に受光させてもよい。 For example, a light emitting device capable of emitting inspection light and housed in the cartridge cover 20 is housed in the cartridge cover 20 instead of the cartridge 40, and the light emitting device housed in the cartridge cover 20 emits inspection light. Light having predetermined numerical values of color components such as red, green, and blue may also be used. Alternatively, the inspection light may emit a plurality of lights having different numerical values of color components such as red, green, and blue, and cause the color sensor section 242 of the color identification sensor 24 to receive each light.
 また、例えば、カートリッジカバー20に収容可能な検査装置をカートリッジ40に代えてカートリッジカバー20に収容し、検査装置は、カートリッジカバー20に収容された状態において、少なくとも色識別センサ24の投光部241及びカラーセンサ部242と対向する領域が所定の色成分の数値を有する色に着色されており、投光部241から投光された白色光を、検査装置における所定の色成分の数値を有する色に着色された領域で反射させて、当該領域から反射された光を色識別センサ24のカラーセンサ部242に受光させてもよい。すなわち、検査光は、投光部241から投光された白色光が、検査装置における所定の色成分の数値を有する色に着色された領域で反射した光であってもよい。また、少なくとも色識別センサ24の投光部241及びカラーセンサ部242と対向する領域が、赤色、緑色、青色等、異なる色成分の数値を有する色に着色された複数の検査装置を有し、異なる色成分の数値を有する色に着色された検査装置それぞれから反射された光を色識別センサ24のカラーセンサ部242に受光させてもよい。 Further, for example, an inspection device that can be accommodated in the cartridge cover 20 is accommodated in the cartridge cover 20 in place of the cartridge 40, and the inspection device, in the state accommodated in the cartridge cover 20, is at least the light projection part 241 of the color identification sensor 24. and the area facing the color sensor unit 242 is colored with a color having a predetermined numerical value of the color component, and the white light projected from the light projecting unit 241 is used as a color having a predetermined numerical value of the color component in the inspection apparatus. Alternatively, the light may be reflected by a colored area, and the color sensor section 242 of the color identification sensor 24 may receive the light reflected from the area. That is, the inspection light may be white light projected from the light projecting unit 241 and reflected by a region colored with a predetermined color component numerical value in the inspection apparatus. In addition, at least the area facing the light projection unit 241 and the color sensor unit 242 of the color identification sensor 24 has a plurality of inspection devices colored with colors having different numerical values of color components such as red, green, and blue, The color sensor section 242 of the color identification sensor 24 may receive the light reflected from each of the inspection devices colored with different color component numerical values.
 色識別センサ24のカラーセンサ部242は、検査光を受光すると、受光した検査光の色成分を数値化する。例えば、カラーセンサ部242は、受光部で受光した検査光の赤色成分、緑色成分、及び青色成分をそれぞれ0~255の値に数値化する。そして、色識別センサ24は、受光部で受光した検査光の赤色成分、緑色成分、及び青色成分それぞれの0~255の値をMCU63に出力する。 Upon receiving the inspection light, the color sensor unit 242 of the color identification sensor 24 quantifies the color components of the received inspection light. For example, the color sensor unit 242 converts the red, green, and blue components of the inspection light received by the light receiving unit into numerical values of 0 to 255, respectively. Then, the color identification sensor 24 outputs to the MCU 63 values of 0 to 255 for each of the red, green, and blue components of the inspection light received by the light receiving section.
 MCU63のメモリ63aには、検査光の所定の色成分の数値に関する情報が記憶されている。例えば、MCU63のメモリ63aには、検査光の赤色成分、緑色成分、及び青色成分それぞれについての0~255の値が記憶されている。 The memory 63a of the MCU 63 stores information on numerical values of predetermined color components of the inspection light. For example, the memory 63a of the MCU 63 stores values of 0 to 255 for each of the red, green, and blue components of the inspection light.
 MCU63は、次に、メモリ63aに記憶された検査光の所定の色成分の数値と、カラーセンサ部242で数値化された検査光の色成分の数値と、に基づいて、カラーセンサ部242で数値化された光の色成分の数値を較正する。例えば、MCU63は、メモリ63aに記憶された検査光の赤色成分、緑色成分、及び青色成分それぞれについての0~255の値と一致するように、色識別センサ24のカラーセンサ部242で数値化された受光部で受光した検査光の赤色成分、緑色成分、及び青色成分をそれぞれ0~255の値を較正する。 Next, the MCU 63 uses the color sensor unit 242 based on the numerical values of the predetermined color components of the inspection light stored in the memory 63a and the numerical values of the color components of the inspection light digitized by the color sensor unit 242. Calibrate the numerical values of the color components of the digitized light. For example, the MCU 63 is digitized by the color sensor unit 242 of the color identification sensor 24 so as to match the values of 0 to 255 for each of the red, green, and blue components of the inspection light stored in the memory 63a. The red component, green component, and blue component of the inspection light received by the light receiving unit are each calibrated to a value of 0 to 255.
 このようにして、MCU63は、カラーセンサ部242に所定の色成分の数値を有する検査光を受光させ、メモリ63aに記憶された検査光の所定の色成分の数値と、カラーセンサ部242で数値化された検査光の色成分の数値と、に基づいて、カラーセンサ部242で数値化された検査光の色成分の数値を較正する、キャリブレーション処理を実行可能である。 In this way, the MCU 63 causes the color sensor unit 242 to receive the inspection light having the numerical value of the predetermined color component, and the color sensor unit 242 detects the numerical value of the predetermined color component of the inspection light stored in the memory 63a. A calibration process for calibrating the numerical values of the color components of the inspection light digitized by the color sensor unit 242 can be executed based on the converted numerical values of the color components of the inspection light.
 これにより、エアロゾル吸引器1は、工場出荷後にも、色識別センサ24のキャリブレーションを行うことが可能であるので、エアロゾル吸引器1を長期間使用しても、色識別センサ24によって精度が低下することなくカートリッジ40の着色部49に着色された色を識別できる。 As a result, even after the aerosol inhaler 1 is shipped from the factory, the color identification sensor 24 can be calibrated. Therefore, even if the aerosol inhaler 1 is used for a long period of time, the color identification sensor 24 will reduce the accuracy. The color applied to the colored portion 49 of the cartridge 40 can be identified without having to do so.
 なお、MCU63は、キャリブレーション処理において、カラーセンサ部242の数値化処理が較正された光の色成分の数値となるようにしてもよいし、カラーセンサ部242で数値化された光の色成分の数値を、較正された光の色成分の数値となるようにMCU63で補正するようにしてもよい。 In the calibration process, the MCU 63 may cause the color sensor unit 242 to digitize the calibrated light color component values, or the color sensor unit 242 may digitize the light color components. may be corrected by the MCU 63 so as to become the calibrated numerical values of the color components of the light.
(キャリブレーション処理の変形例)
 次に、エアロゾル吸引器1における色識別センサ24のキャリブレーションの変形例について説明する。
(Modified example of calibration processing)
Next, a modified example of calibration of the color identification sensor 24 in the aerosol inhaler 1 will be described.
 エアロゾル吸引器1は、工場出荷後に、色識別センサ24のキャリブレーションを行うことが可能となっている。以下に説明する色識別センサ24のキャリブレーションは、例えば、MCU63のプロセッサが、メモリ63aに予め記憶されたキャリブレーション処理のプログラムを実行することにより実現される。 The aerosol inhaler 1 is capable of calibrating the color identification sensor 24 after shipment from the factory. The calibration of the color identification sensor 24, which will be described below, is realized, for example, by the processor of the MCU 63 executing a calibration processing program pre-stored in the memory 63a.
 カートリッジカバー20には、カートリッジカバー20の外部の光がカートリッジカバー20の内部に入らないようにすることができる開閉可能なシャッターが設けられていてもよい。例えば、シャッターを閉状態とすると、カートリッジカバー20の外部の光がカートリッジカバー20の内部に入らないようにすることができる。 The cartridge cover 20 may be provided with an openable and closable shutter capable of preventing light from entering the cartridge cover 20 from outside. For example, when the shutter is closed, light outside the cartridge cover 20 can be prevented from entering the cartridge cover 20 .
 さらに、カートリッジカバー20には、前述のシャッターが閉状態であることを検知可能なシャッター開閉センサが設けられていてもよい。例えば、シャッター開閉センサは、ホール素子等を有し、前述のシャッターが閉状態であるときに、シャッターが閉状態であることを示す信号をMCU63に出力する。 Further, the cartridge cover 20 may be provided with a shutter open/close sensor capable of detecting that the aforementioned shutter is closed. For example, the shutter open/close sensor has a Hall element or the like, and outputs a signal indicating that the shutter is closed to the MCU 63 when the shutter is closed.
 MCU63は、カートリッジカバー20にカートリッジ40が収容されているか否かを任意の方法で検知可能となっている。なお、MCU63は、カートリッジカバー20にカートリッジ40が収容されているか否かを任意の方法で検知してよい。 The MCU 63 can detect whether or not the cartridge 40 is housed in the cartridge cover 20 by any method. Note that the MCU 63 may detect whether or not the cartridge 40 is accommodated in the cartridge cover 20 by any method.
 例えば、MCU63は、電圧センサ671と電流センサ672を用いて取得される一対の放電端子12間の電気抵抗値に基づき、カートリッジカバー20にカートリッジ40が収容されているか否かを検知してもよい。カートリッジカバー20にカートリッジ40が収容され、一対の放電端子12間に第1ヒータ45が接続されることで一対の放電端子12が導通した状態と、カートリッジカバー20にカートリッジ40が収容されておらず、一対の放電端子12間に第1ヒータ45が接続されず一対の放電端子12が空気により絶縁された状態とのそれぞれにおいて、MCU63が取得できる放電端子12間の電気抵抗値が異なることは明白である。したがって、MCU63は、放電端子12間の電気抵抗値に基づき、カートリッジカバー20にカートリッジ40が収容されているか否かを任意の方法で検知できる。 For example, the MCU 63 may detect whether the cartridge 40 is accommodated in the cartridge cover 20 based on the electrical resistance value between the pair of discharge terminals 12 obtained using the voltage sensor 671 and current sensor 672. . A state in which the cartridge 40 is housed in the cartridge cover 20 and the first heater 45 is connected between the pair of discharge terminals 12 so that the pair of discharge terminals 12 are conductive, and a state in which the cartridge 40 is not housed in the cartridge cover 20. , and the state in which the first heater 45 is not connected between the pair of discharge terminals 12 and the pair of discharge terminals 12 are insulated by air. is. Therefore, the MCU 63 can detect whether or not the cartridge 40 is accommodated in the cartridge cover 20 based on the electrical resistance value between the discharge terminals 12 by any method.
 MCU63は、例えば、取得した放電端子12間の電気抵抗値が、一対の放電端子12が空気により絶縁された状態であるときの電気抵抗値であり、且つ、シャッター開閉センサからシャッターが閉状態であることを示す信号が入力されているとき、カートリッジカバー20にカートリッジ40が収容されておらず、且つ、カートリッジカバー20の内部にカートリッジカバー20の外部の光が入らない状態であると判定して、色識別センサ24の投光部241から検査光を投光させる。 For example, the MCU 63 determines that the obtained electric resistance value between the discharge terminals 12 is the electric resistance value when the pair of discharge terminals 12 are insulated by the air, and the shutter opening/closing sensor indicates that the shutter is closed. When the signal indicating that the cartridge is present is input, it is determined that the cartridge 40 is not housed in the cartridge cover 20 and that light from the outside of the cartridge cover 20 does not enter the inside of the cartridge cover 20 . , the light projecting portion 241 of the color identification sensor 24 projects inspection light.
 例えば、検査光は、投光部241から投光される白色光である。なお、検査光は、投光部241から投光される、白色光とは異なる色成分を有する光であってもよい。 For example, the inspection light is white light projected from the light projecting section 241 . Note that the inspection light may be light having a color component different from the white light, which is projected from the light projecting section 241 .
 例えば、カートリッジカバー20の外周壁21の円環内部を向く内周面は、黒色又は白色に着色されている。したがって、投光部241から投光された検査光は、特定の波長の光がカートリッジカバー20の外周壁21で吸収されることはなく、色識別センサ24のカラーセンサ部242は、投光部241から投光された状態の色成分を有したままの検査光を受光する。 For example, the inner peripheral surface of the outer peripheral wall 21 of the cartridge cover 20 facing the inside of the ring is colored black or white. Therefore, in the inspection light projected from the light projecting portion 241, the light of a specific wavelength is not absorbed by the outer peripheral wall 21 of the cartridge cover 20, and the color sensor portion 242 of the color identification sensor 24 does not 241 receives the inspection light having the color components as it was projected.
 色識別センサ24のカラーセンサ部242は、投光部241から投光された状態の色成分を有したままの検査光を受光すると、受光した検査光の色成分を数値化する。例えば、カラーセンサ部242は、受光部で受光した検査光の赤色成分、緑色成分、及び青色成分をそれぞれ0~255の値に数値化する。そして、色識別センサ24は、受光部で受光した検査光の赤色成分、緑色成分、及び青色成分それぞれの0~255の値をMCU63に出力する。 When the color sensor unit 242 of the color identification sensor 24 receives the inspection light having the color components as projected from the light projecting unit 241, it quantifies the color components of the received inspection light. For example, the color sensor unit 242 converts the red, green, and blue components of the inspection light received by the light receiving unit into numerical values of 0 to 255, respectively. Then, the color identification sensor 24 outputs to the MCU 63 values of 0 to 255 for each of the red, green, and blue components of the inspection light received by the light receiving section.
 MCU63のメモリ63aには、投光部241から投光される検査光の所定の色成分の数値に関する情報が記憶されている。例えば、MCU63のメモリ63aには、検査光の赤色成分、緑色成分、及び青色成分それぞれについての0~255の値が記憶されている。 The memory 63a of the MCU 63 stores information about the numerical values of the predetermined color components of the inspection light projected from the light projecting section 241. For example, the memory 63a of the MCU 63 stores values of 0 to 255 for each of the red, green, and blue components of the inspection light.
 MCU63は、次に、メモリ63aに記憶された検査光の所定の色成分の数値と、カラーセンサ部242で数値化された検査光の色成分の数値と、に基づいて、カラーセンサ部242で数値化された光の色成分の数値を較正する。例えば、MCU63は、メモリ63aに記憶された検査光の赤色成分、緑色成分、及び青色成分それぞれについての0~255の値と一致するように、色識別センサ24のカラーセンサ部242で数値化された受光部で受光した検査光の赤色成分、緑色成分、及び青色成分をそれぞれ0~255の値を較正する。 Next, the MCU 63 uses the color sensor unit 242 based on the numerical values of the predetermined color components of the inspection light stored in the memory 63a and the numerical values of the color components of the inspection light digitized by the color sensor unit 242. Calibrate the numerical values of the color components of the digitized light. For example, the MCU 63 is digitized by the color sensor unit 242 of the color identification sensor 24 so as to match the values of 0 to 255 for each of the red, green, and blue components of the inspection light stored in the memory 63a. The red component, green component, and blue component of the inspection light received by the light receiving unit are each calibrated to a value of 0 to 255.
 このようにして、MCU63は、カートリッジカバー20にカートリッジ40が収容されておらず、且つ、カートリッジカバー20の内部にカートリッジカバー20の外部の光が入らない状態で、色識別センサ24の投光部241から所定の色成分の数値を有する検査光を投光させ、メモリ63aに記憶された検査光の所定の色成分の数値と、カラーセンサ部242で数値化された検査光の色成分の数値と、に基づいて、カラーセンサ部242で数値化された検査光の色成分の数値を較正する、キャリブレーション処理を実行可能である。 In this way, the MCU 63 detects the light projecting portion of the color identification sensor 24 in a state where the cartridge 40 is not housed in the cartridge cover 20 and no light from the outside of the cartridge cover 20 enters the inside of the cartridge cover 20 . Inspection light having a predetermined color component numerical value is emitted from 241, and the predetermined color component numerical value of the inspection light stored in the memory 63a and the color component numerical value of the inspection light digitized by the color sensor unit 242 are obtained. , a calibration process for calibrating the numerical values of the color components of the inspection light digitized by the color sensor unit 242 can be executed.
 これにより、エアロゾル吸引器1は、工場出荷後にも、色識別センサ24のキャリブレーションを行うことが可能であるので、エアロゾル吸引器1を長期間使用しても、色識別センサ24によって精度が低下することなくカートリッジ40の着色部49に着色された色を識別できる。 As a result, even after the aerosol inhaler 1 is shipped from the factory, the color identification sensor 24 can be calibrated. Therefore, even if the aerosol inhaler 1 is used for a long period of time, the color identification sensor 24 will reduce the accuracy. The color applied to the colored portion 49 of the cartridge 40 can be identified without having to do so.
 なお、MCU63は、キャリブレーション処理において、カラーセンサ部242の数値化処理が較正された光の色成分の数値となるようにしてもよいし、カラーセンサ部242で数値化された光の色成分の数値を、較正された光の色成分の数値となるようにMCU63で補正するようにしてもよい。 In the calibration process, the MCU 63 may cause the color sensor unit 242 to digitize the calibrated light color component values, or the color sensor unit 242 may digitize the light color components. may be corrected by the MCU 63 so as to become the calibrated numerical values of the color components of the light.
(メンソールモードによる具体的な制御例)
 次に、前述したメンソールモードによる具体的な制御例について、図13及び図14を参照しながら、レギュラーモードによる制御例との比較も含めて説明する。
(Specific control example in menthol mode)
Next, a specific example of control in the menthol mode described above will be described with reference to FIGS. 13 and 14, including a comparison with an example of control in the regular mode.
 エアロゾル吸引器1は、カートリッジ40の貯留室42に貯留したエアロゾル源71、及び、カプセル50に収容された香味源52の少なくとも一方にメンソール80が含まれていれば、ユーザの吸引動作によって、メンソール80を含むエアロゾル72をユーザに供給できる。このとき、エアロゾル吸引器1は、カートリッジ40内に貯留されたエアロゾル源71を加熱するヒータである第1ヒータ45、及びカプセル50(すなわち香味源52)を加熱するヒータである第2ヒータ34への放電を適切に制御して、適切な量のメンソールをユーザに安定して供給することが好ましい。以下に、エアロゾル源71及び香味源52が共にメンソール80を含む場合と、エアロゾル源71のみがメンソールを含む場合とにおいて、第1ヒータ45及び第2ヒータ34への放電の制御が最適化されたメンソールモードによる具体的な制御例を説明する。 In the aerosol inhaler 1, if at least one of the aerosol source 71 stored in the storage chamber 42 of the cartridge 40 and the flavor source 52 stored in the capsule 50 contains menthol 80, the user inhales menthol. An aerosol 72 containing 80 can be delivered to the user. At this time, the aerosol inhaler 1 is connected to the first heater 45, which is the heater for heating the aerosol source 71 stored in the cartridge 40, and the second heater 34, which is the heater for heating the capsule 50 (that is, the flavor source 52). It is preferable to appropriately control the discharge of the battery to stably supply an appropriate amount of menthol to the user. Below, the control of the discharge to the first heater 45 and the second heater 34 was optimized when both the aerosol source 71 and the flavor source 52 contained menthol 80 and when only the aerosol source 71 contained menthol. A specific example of control in the menthol mode will be described.
<エアロゾル源及び香味源が共にメンソールを含む場合>
 まず、エアロゾル源71及び香味源52が共にメンソール80を含む場合のメンソールモードによる具体的な制御例について、図13を参照して、レギュラーモードによる制御例との対比も含めて説明する。
<When both the aerosol source and the flavor source contain menthol>
First, a specific example of control in the menthol mode when both the aerosol source 71 and the flavor source 52 contain menthol 80 will be described with reference to FIG. 13, including a comparison with an example of control in the regular mode.
 なお、ここでは、新品のカプセル50がエアロゾル吸引器1に装着されてから、カプセル50内の香味成分残量が前述した残量閾値未満となるまで(すなわちカプセル50内の香味成分残量がほぼなくなるまで)、所定回数の吸引動作が行われるものとして説明する。また、この所定回数の吸引動作が行われている間には、十分な量のエアロゾル源71がカートリッジ40の貯留室42に貯留されているものとする。 Here, after the new capsule 50 is attached to the aerosol inhaler 1, until the residual amount of the flavor component in the capsule 50 becomes less than the residual amount threshold (that is, the residual amount of the flavor component in the capsule 50 is almost It is assumed that the suction operation is performed a predetermined number of times (until it is exhausted). It is also assumed that a sufficient amount of the aerosol source 71 is stored in the storage chamber 42 of the cartridge 40 while the predetermined number of suction operations are being performed.
 図13の(a)、(b)、(c)のそれぞれにおいて、横軸は、カプセル50内の香味源52に含まれる香味成分残量[mg](すなわち香味成分残量Wcapsule)を示している。図13の(a)における縦軸は、カプセル50(すなわち香味源52)を加熱するヒータである第2ヒータ34の目標温度(すなわち目標温度Tcap_target)[℃]を示している。図13の(b)における縦軸は、カートリッジ40内に貯留されたエアロゾル源71を加熱するヒータである第1ヒータ45への印加電圧[V]を示している。 In each of (a), (b), and (c) of FIG. 13 , the horizontal axis indicates the remaining amount of flavoring ingredient [mg] (that is, the remaining amount of flavoring ingredient W capsule ) contained in the flavor source 52 in the capsule 50. ing. The vertical axis in (a) of FIG. 13 indicates the target temperature (that is, the target temperature T cap_target ) [°C] of the second heater 34 that heats the capsule 50 (that is, the flavor source 52). The vertical axis in (b) of FIG. 13 indicates the voltage [V] applied to the first heater 45 that heats the aerosol source 71 stored in the cartridge 40 .
 また、図13の(c)における左側の縦軸は、1回の吸引動作によってユーザの口内に供給されるメンソール量[mg/puff]を示している。図13の(c)における右側の縦軸は、1回の吸引動作によってユーザの口内に供給される香味成分量[mg/puff]を示している。なお、1回の吸引動作によってユーザの口内に供給されるメンソール量を、以下、単位供給メンソール量ともいう。また、1回の吸引動作によってユーザの口内に供給される香味成分量を、以下、単位供給香味成分量ともいう。 Also, the vertical axis on the left side in (c) of FIG. 13 indicates the amount of menthol [mg/puff] supplied into the user's mouth by one suction operation. The vertical axis on the right side of FIG. 13(c) indicates the amount of flavor component [mg/puff] supplied into the user's mouth by one suction operation. The amount of menthol supplied into the user's mouth by one suction operation is hereinafter also referred to as a unit supply amount of menthol. Further, the amount of flavor component supplied into the user's mouth by one sucking operation is hereinafter also referred to as a unit supply amount of flavor component.
 図13において、第1期間Tm1は、カプセル50が交換された直後の一定期間である。具体的に、第1期間Tm1は、カプセル50内の香味成分残量が、Winitialであるときから、エアロゾル吸引器1の製造者によって予め設定されたWth1となるまでの期間である。ここで、Wth1は、Winitialよりも小さく、かつカプセル交換通知を行う条件となる前述した残量閾値であるWth2よりも大きい値とされる。例えば、Wth1は、新品のカプセル50が装着されてから10回程度の吸引動作が行われたときの香味成分残量とすることができる。また、図13において、第2期間Tm2は、第1期間Tm1後の期間であり、具体的には、カプセル50内の香味成分残量がWth1となってからWth2となるまでの期間である。 In FIG. 13, the first period Tm1 is a fixed period immediately after the capsule 50 is replaced. Specifically, the first period Tm1 is the period from when the remaining amount of flavoring component in the capsule 50 is W initial to when it reaches W th1 preset by the manufacturer of the aerosol inhaler 1 . Here, W th1 is set to a value smaller than W initial and larger than W th2 , which is the above-described residual capacity threshold, which is a condition for notifying capsule replacement. For example, W th1 can be the remaining amount of the flavor component when about 10 suction operations have been performed since the new capsule 50 was attached. In FIG. 13, the second period Tm2 is the period after the first period Tm1 . be.
 エアロゾル源71及び香味源52が共にメンソール80を含む場合、前述したように、MCU63は、第1ヒータ45及び第2ヒータ34への放電をメンソールモードによって制御する。具体的に、この場合のメンソールモードにあっては、図13の(a)における太実線に示すように、MCU63は、第1期間Tm1における第2ヒータ34の目標温度を80[℃]とする。 When both the aerosol source 71 and the flavor source 52 contain menthol 80, the MCU 63 controls discharge to the first heater 45 and the second heater 34 in menthol mode, as described above. Specifically, in the menthol mode in this case, as indicated by the thick solid line in FIG. .
 この場合の第1期間Tm1における第2ヒータ34の目標温度(80[℃])は、本発明における第1目標温度の一例である。例えば、この場合の第1期間Tm1における第2ヒータ34の目標温度(すなわち第1目標温度)は、メンソールの融点(例えば42~45[℃])よりも高く、かつメンソールの沸点(例えば212~216[℃])よりも低い温度である。また、この場合の第1期間Tm1における第2ヒータ34の目標温度(すなわち第1目標温度)は、90[℃]以下の温度であってもよい。これにより、本実施形態では、第1期間Tm1において、第2ヒータ34(すなわち香味源52)の温度は、第1目標温度の一例である80[℃]に収束するように制御される。したがって、第1期間Tm1において、香味源52に吸着されたメンソール80が第2ヒータ34によって適切な温度に加熱されるため、香味源52からのメンソール80の脱離が急速に進行することを抑制でき、適切な量のメンソールをユーザに安定して供給できる。 The target temperature (80[°C]) of the second heater 34 in the first period Tm1 in this case is an example of the first target temperature in the present invention. For example, the target temperature of the second heater 34 (that is, the first target temperature) in the first period Tm1 in this case is higher than the melting point of menthol (eg, 42 to 45 [° C.]) and the boiling point of menthol (eg, 212 to 45° C.). 216[°C]). In this case, the target temperature (that is, the first target temperature) of the second heater 34 in the first period Tm1 may be 90[° C.] or less. Thereby, in the present embodiment, the temperature of the second heater 34 (that is, the flavor source 52) is controlled to converge to 80[° C.], which is an example of the first target temperature, during the first period Tm1. Therefore, during the first period Tm1, the menthol 80 adsorbed to the flavor source 52 is heated to an appropriate temperature by the second heater 34, thereby suppressing rapid detachment of the menthol 80 from the flavor source 52. It is possible to stably supply an appropriate amount of menthol to users.
 そして、エアロゾル源71及び香味源52が共にメンソール80を含む場合のメンソールモードにあっては、その後の第2期間Tm2となると、MCU63は、第2ヒータ34の目標温度を直前の第1期間Tm1における目標温度よりも低い60[℃]とする。この場合の第2期間Tm2における第2ヒータ34の目標温度(60[℃])は、本発明における第2目標温度の一例である。例えば、この場合の第2期間Tm2における第2ヒータ34の目標温度(すなわち第2目標温度)も、メンソールの融点よりも高く、かつメンソールの沸点よりも低い温度である。また、この場合の第2期間Tm2における第2ヒータ34の目標温度(すなわち第2目標温度)も、90[℃]以下の温度であってもよい。これにより、本実施形態では、第2期間Tm2において、第2ヒータ34(すなわち香味源52)の温度は、第2目標温度の一例である60[℃]に収束するように制御される。したがって、第2期間Tm2においても、香味源52に吸着されたメンソール80が第2ヒータ34によって適切な温度に加熱されるため、香味源52からのメンソール80の脱離が急速に進行することを抑制でき、適切な量のメンソールをユーザに安定して供給できる。 Then, in the menthol mode in which both the aerosol source 71 and the flavor source 52 contain menthol 80, in the subsequent second period Tm2, the MCU 63 sets the target temperature of the second heater 34 to 60 [° C.], which is lower than the target temperature in The target temperature (60[° C.]) of the second heater 34 in the second period Tm2 in this case is an example of the second target temperature in the present invention. For example, the target temperature (that is, the second target temperature) of the second heater 34 in the second period Tm2 in this case is also higher than the melting point of menthol and lower than the boiling point of menthol. Further, the target temperature of the second heater 34 (that is, the second target temperature) in the second period Tm2 in this case may also be 90[° C.] or less. Thereby, in the present embodiment, the temperature of the second heater 34 (that is, the flavor source 52) is controlled to converge to 60[° C.], which is an example of the second target temperature, during the second period Tm2. Therefore, even in the second period Tm2, the menthol 80 adsorbed to the flavor source 52 is heated to an appropriate temperature by the second heater 34, so that desorption of the menthol 80 from the flavor source 52 progresses rapidly. It is possible to suppress and stably supply an appropriate amount of menthol to the user.
 このように、エアロゾル源71及び香味源52が共にメンソール80を含む場合のメンソールモードにあっては、第2期間Tm2となると、第2ヒータ34(すなわち香味源52)の温度が直前の第1期間Tm1よりも低い温度に収束するように制御される。具体的には、本実施形態において、第2ヒータ34(すなわち香味源52)の温度は、第2期間Tm2となると、直前の第1期間Tm1における80[℃]よりも低い60[℃]に収束するように制御される。 Thus, in the menthol mode in which both the aerosol source 71 and the flavor source 52 contain the menthol 80, when the second period Tm2 comes, the temperature of the second heater 34 (that is, the flavor source 52) is reduced to the immediately preceding first temperature. The temperature is controlled to converge to a temperature lower than the period Tm1. Specifically, in the present embodiment, the temperature of the second heater 34 (that is, the flavor source 52) is 60 [° C.] during the second period Tm2, which is lower than 80 [° C.] during the immediately preceding first period Tm1. controlled to converge.
 また、エアロゾル源71及び香味源52が共にメンソール80を含む場合のメンソールモードにあっては、図13の(b)における太実線に示すように、MCU63は、第1期間Tm1における第1ヒータ45への印加電圧をV1[V]とする。このV1[V]は、本発明における第1電圧の一例であり、エアロゾル吸引器1の製造者によって予め設定された電圧である。これにより、この場合の第1期間Tm1では、印加電圧V1[V]に応じた電力が電源61から第1ヒータ45へ供給され、この電力に応じた量の気化及び/又は霧化したエアロゾル源71が第1ヒータ45によって生成される。 In addition, in the menthol mode in which both the aerosol source 71 and the flavor source 52 contain menthol 80, as indicated by the thick solid line in FIG. The voltage applied to is V1 [V]. This V1 [V] is an example of the first voltage in the present invention, and is a voltage preset by the manufacturer of the aerosol inhaler 1 . As a result, in the first period Tm1 in this case, power corresponding to the applied voltage V1 [V] is supplied from the power supply 61 to the first heater 45, and the amount of vaporized and/or atomized aerosol source corresponding to the power is supplied. 71 is produced by the first heater 45 .
 そして、エアロゾル源71及び香味源52が共にメンソール80を含む場合のメンソールモードにあっては、その後の第2期間Tm2となると、MCU63は、第1ヒータ45への印加電圧をV2[V]とする。このV2[V]は、本発明における第2電圧の一例であり、図13の(b)に示すようにV1[V]よりも高い電圧である。V2[V]は、エアロゾル吸引器1の製造者によって予め設定される。なお、MCU63は、例えば、DC/DCコンバータ66を制御することで、V1[V]やV2[V]といった電圧を、第1ヒータ45へ印加できる。 Then, in the menthol mode in which both the aerosol source 71 and the flavor source 52 contain menthol 80, the MCU 63 changes the voltage applied to the first heater 45 to V2 [V] during the subsequent second period Tm2. do. This V2 [V] is an example of the second voltage in the present invention, and is a voltage higher than V1 [V] as shown in FIG. 13(b). V2 [V] is preset by the manufacturer of the aerosol inhaler 1 . Note that the MCU 63 can apply voltages such as V1 [V] and V2 [V] to the first heater 45 by controlling the DC/DC converter 66, for example.
 このように、エアロゾル源71及び香味源52が共にメンソール80を含む場合のメンソールモードにあって、第2期間Tm2における第1ヒータ45への印加電圧(ここではV2[V])は、第1期間Tm1における第1ヒータ45への印加電圧(ここではV1[V])よりも高い電圧となっている。 Thus, in the menthol mode in which both the aerosol source 71 and the flavor source 52 contain menthol 80, the applied voltage (here, V2 [V]) to the first heater 45 during the second period Tm2 is the first The voltage is higher than the voltage applied to the first heater 45 (here, V1 [V]) during the period Tm1.
 したがって、エアロゾル源71及び香味源52が共にメンソール80を含む場合のメンソールモードにあっては、第2期間Tm2となると、第1ヒータ45へ供給される電力が直前の第1期間Tm1よりも増加する。これに伴って、第1ヒータ45によって生成される気化及び/又は霧化したエアロゾル源71の量も直前の第1期間Tm1より増加する。 Therefore, in the menthol mode in which both the aerosol source 71 and the flavor source 52 contain menthol 80, during the second period Tm2, the power supplied to the first heater 45 increases more than the previous first period Tm1. do. Along with this, the amount of the vaporized and/or atomized aerosol source 71 generated by the first heater 45 also increases from the previous first period Tm1.
 エアロゾル源71及び香味源52が共にメンソール80を含んでおり、上記のメンソールモードによってMCU63が第2ヒータ34の目標温度及び第1ヒータ45への印加電圧を制御した場合の単位供給メンソール量の一例は、図13の(c)における単位供給メンソール量131aに示すものとなる。 An example of a unit supply amount of menthol when both the aerosol source 71 and the flavor source 52 contain menthol 80 and the MCU 63 controls the target temperature of the second heater 34 and the voltage applied to the first heater 45 in the menthol mode described above. is shown in the unit supplied menthol amount 131a in FIG. 13(c).
 また、エアロゾル源71及び香味源52が共にメンソール80を含んでおり、上記のメンソールモードによってMCU63が第2ヒータ34の目標温度及び第1ヒータ45への印加電圧を制御した場合の単位供給香味成分量の一例は、図13の(c)における単位供給香味成分量131bに示すものとなる。 Also, both the aerosol source 71 and the flavor source 52 contain menthol 80, and the MCU 63 controls the target temperature of the second heater 34 and the voltage applied to the first heater 45 in the above menthol mode. An example of the amount is shown in the unit supplied flavor component amount 131b in FIG. 13(c).
 単位供給メンソール量131a及び単位供給香味成分量131bと比較するため、仮に、エアロゾル源71及び香味源52が共にメンソール80を含んでいるにもかかわらず、MCU63が第1ヒータ45及び第2ヒータ34への放電(すなわち第2ヒータ34の目標温度や第1ヒータ45への印加電圧)をレギュラーモードによって制御するようにした場合の例について説明する。 For comparison with the unit supply amount of menthol 131a and the unit supply amount of flavor component 131b, assume that the MCU 63 supplies the first heater 45 and the second heater 34 even though both the aerosol source 71 and the flavor source 52 contain menthol 80. An example in which the discharge to (that is, the target temperature of the second heater 34 and the voltage applied to the first heater 45) is controlled in the regular mode will be described.
 レギュラーモードにあっては、図13の(a)における太破線に示すように、MCU63は、第1期間Tm1及び第2期間Tm2における第2ヒータ34の目標温度を、例えば、30[℃]、60[℃]、70[℃]、85[℃]といったように段階的に高めていく。なお、これらの目標温度や目標温度を変更するタイミングは、エアロゾル吸引器1の製造者によって予め設定される。また、別の一例として、レギュラーモードにおける第2ヒータ34の目標温度を変更するタイミングは、カプセル50内の香味源52に含まれる香味成分残量[mg](すなわち香味成分残量Wcapsule)から決定されてもよい。 In the regular mode, the MCU 63 sets the target temperature of the second heater 34 in the first period Tm1 and the second period Tm2 to, for example, 30[° C.], The temperature is increased in stages such as 60[°C], 70[°C], and 85[°C]. The target temperature and the timing of changing the target temperature are set in advance by the manufacturer of the aerosol inhaler 1 . As another example, the timing of changing the target temperature of the second heater 34 in the regular mode is determined from the remaining flavor component [mg] contained in the flavor source 52 in the capsule 50 (that is, the remaining flavor component W capsule ). may be determined.
 ここで、レギュラーモードの第1期間Tm1における第2ヒータ34の目標温度の最大値(ここでは70[℃])は、メンソールモードの第1期間Tm1における第2ヒータ34の目標温度(ここでは80[℃])よりも低い温度となっている。また、レギュラーモードの第2期間Tm2における第2ヒータ34の目標温度の最低値(ここでは70[℃])は、メンソールモードの第2期間Tm2における第2ヒータ34の目標温度(ここでは60[℃])よりも高い温度となっている。 Here, the maximum value of the target temperature of the second heater 34 in the first period Tm1 of the regular mode (here, 70 [° C.]) is the target temperature of the second heater 34 in the first period Tm1 of the menthol mode (here, 80 [° C.]). [°C]). In addition, the minimum value of the target temperature of the second heater 34 in the second period Tm2 of the regular mode (here, 70 [° C.]) is the target temperature of the second heater 34 in the second period Tm2 of the menthol mode (here, 60 [° C.]). °C]).
 また、レギュラーモードにあっては、図13の(b)における太破線に示すように、MCU63は、第1期間Tm1及び第2期間Tm2における第1ヒータ45への印加電圧を一定のV3[V]に維持する。このV3[V]は、V1[V]よりも高く、かつV2[V]よりも低い電圧であり、エアロゾル吸引器1の製造者によって予め設定された電圧である。なお、MCU63は、例えば、DC/DCコンバータ66を制御することで、V3[V]といった電圧を、第1ヒータ45へ印加できる。 In the regular mode, the MCU 63 sets the voltage applied to the first heater 45 during the first period Tm1 and the second period Tm2 to a constant V3 [V], as indicated by the thick dashed line in FIG. ]. This V3 [V] is higher than V1 [V] and lower than V2 [V], and is preset by the manufacturer of the aerosol inhaler 1 . Note that the MCU 63 can apply a voltage such as V3 [V] to the first heater 45 by controlling the DC/DC converter 66, for example.
 エアロゾル源71及び香味源52が共にメンソール80を含んでおり、上記のレギュラーモードによってMCU63が第2ヒータ34の目標温度及び第1ヒータ45への印加電圧を制御した場合の単位供給メンソール量の一例は、図13の(c)における単位供給メンソール量132aに示すものとなる。 An example of a unit supply amount of menthol when both the aerosol source 71 and the flavor source 52 contain menthol 80 and the MCU 63 controls the target temperature of the second heater 34 and the voltage applied to the first heater 45 in the regular mode. is shown in the unit supplied menthol amount 132a in FIG. 13(c).
 また、エアロゾル源71及び香味源52が共にメンソール80を含んでおり、上記のレギュラーモードによってMCU63が第2ヒータ34の目標温度及び第1ヒータ45への印加電圧を制御した場合の単位供給香味成分量の一例は、図13の(c)における単位供給香味成分量132bに示すものとなる。 In addition, when both the aerosol source 71 and the flavor source 52 contain menthol 80, and the MCU 63 controls the target temperature of the second heater 34 and the voltage applied to the first heater 45 in the above regular mode, the unit supplied flavor component An example of the amount is shown in unit supply flavor component amount 132b in FIG. 13(c).
 すなわち、エアロゾル源71及び香味源52が共にメンソール80を含む場合にも、レギュラーモードによって第1ヒータ45及び第2ヒータ34への放電(すなわち第2ヒータ34の目標温度や第1ヒータ45への印加電圧)を制御するようにした場合、メンソールモードによってこれらを制御するようにした場合に比べて、第1期間Tm1における第2ヒータ34の目標温度が低いため、第1期間Tm1における香味源52の温度が低くなる。 That is, even when both the aerosol source 71 and the flavor source 52 contain menthol 80, the discharge to the first heater 45 and the second heater 34 (that is, the target temperature of the second heater 34 and the When the applied voltage) is controlled, the target temperature of the second heater 34 during the first period Tm1 is lower than when these are controlled by the menthol mode. temperature decreases.
 したがって、エアロゾル源71及び香味源52が共にメンソール80を含む場合にレギュラーモードによって第1ヒータ45等への放電を制御すると、メンソールモードによって制御した場合に比べて、カプセル50内で香味源52(詳細にはたばこ顆粒521)とメンソール80とが吸着平衡状態に至るまでの時間が長くなる。この間、エアロゾル源71由来のメンソール80の多くが香味源52に吸着してしまい、香味源52を通過できるメンソール80が少なくなる。 Therefore, when both the aerosol source 71 and the flavor source 52 contain menthol 80, when the discharge to the first heater 45 and the like is controlled in the regular mode, the flavor source 52 ( Specifically, it takes longer for the tobacco granules 521) and the menthol 80 to reach an adsorption equilibrium state. During this time, most of the menthol 80 derived from the aerosol source 71 is adsorbed on the flavor source 52, and less menthol 80 can pass through the flavor source 52.
 以上のことから、エアロゾル源71及び香味源52が共にメンソール80を含む場合にレギュラーモードによって第1ヒータ45等への放電を制御すると、メンソールモードによって制御した場合に比べて、単位供給メンソール量131a及び単位供給メンソール量132aに示すように、第1期間Tm1においてユーザに供給可能な単位供給メンソール量が少なくなる。したがって、このようにすると、第1期間Tm1において、十分な量のメンソールをユーザに供給できないおそれがある。 From the above, when both the aerosol source 71 and the flavor source 52 contain menthol 80, when the discharge to the first heater 45 and the like is controlled in the regular mode, the unit supply amount of menthol 131a is greater than when controlled in the menthol mode. And as shown in the unit supply menthol amount 132a, the unit supply menthol amount that can be supplied to the user during the first period Tm1 decreases. Therefore, if this is done, there is a possibility that a sufficient amount of menthol cannot be supplied to the user during the first period Tm1.
 これに対し、エアロゾル源71及び香味源52が共にメンソール80を含む場合のメンソールモードにあっては、MCU63は、香味源52(詳細にはたばこ顆粒521)とメンソール80とが吸着平衡状態に至る前の時期と想定される第1期間Tm1において、第2ヒータ34(すなわち香味源52)を高めの80[℃]近傍の温度とする。これにより、MCU63は、第1期間Tm1において、カプセル50内で香味源52(詳細にはたばこ顆粒521)とメンソール80とが早期に吸着平衡状態に至るのを促すことができ、エアロゾル源71由来のメンソール80が香味源52に吸着するのを抑制して、エアロゾル源71由来のメンソール80のうち香味源52に吸着せずにユーザの口内に供給されるメンソール80の量を確保できる。さらに、MCU63は、第1期間Tm1において、第2ヒータ34(すなわち香味源52)を高温にすることで、香味源52(詳細にはたばこ顆粒521)から脱離してユーザの口内に供給される香味源52由来のメンソール80も増加させることができる。したがって、単位供給メンソール量131aに示すように、香味源52に含まれる香味成分が十分にある時期(新品時)から、十分な量のメンソールをユーザに供給できる。 On the other hand, in the menthol mode in which both the aerosol source 71 and the flavor source 52 contain menthol 80, the MCU 63 causes the flavor source 52 (more specifically, the tobacco granules 521) and the menthol 80 to reach an adsorption equilibrium state. In the first period Tm1 assumed to be the previous period, the temperature of the second heater 34 (that is, the flavor source 52) is increased to about 80[°C]. As a result, the MCU 63 can prompt the flavor source 52 (specifically, the tobacco granules 521) and the menthol 80 in the capsule 50 to quickly reach an adsorption equilibrium state in the first period Tm1. of the menthol 80 originating from the aerosol source 71 and supplied to the user's mouth without being adsorbed on the flavor source 52 can be ensured. Furthermore, in the first period Tm1, the MCU 63 detaches from the flavor source 52 (specifically, the tobacco granules 521) and is supplied into the user's mouth by heating the second heater 34 (that is, the flavor source 52) to a high temperature. Menthol 80 from flavor source 52 may also be increased. Therefore, as shown in the unit supply amount of menthol 131a, a sufficient amount of menthol can be supplied to the user from the time when the flavor component contained in the flavor source 52 is sufficient (when the product is new).
 なお、図13の(c)において、単位供給メンソール量133aは、エアロゾル源71及び香味源52が共にメンソール80を含む場合であって、第2ヒータ34による香味源52の加熱を行わないようにした場合の単位供給メンソール量の一例を示している。このようにした場合、第1期間Tm1における第2ヒータ34(すなわち香味源52)の温度は、室温(図13の(c)におけるR.T.参照)となる。したがって、このようにした場合も、単位供給メンソール量133aに示すように、メンソールモードによって第1ヒータ45等のへの放電を制御する場合に比べて、第1期間Tm1における香味源52の温度が低いために、第1期間Tm1において十分な量のメンソールをユーザに供給することができない。 In FIG. 13(c), the unit supply amount of menthol 133a is set so that the second heater 34 does not heat the flavor source 52 when both the aerosol source 71 and the flavor source 52 contain menthol 80. An example of the amount of menthol supplied per unit is shown. In this case, the temperature of the second heater 34 (that is, the flavor source 52) during the first period Tm1 becomes room temperature (see RT in (c) of FIG. 13). Therefore, even in this case, as shown in the unit supplied menthol amount 133a, the temperature of the flavor source 52 during the first period Tm1 is higher than in the case where the discharge to the first heater 45 or the like is controlled in the menthol mode. Due to the low level, a sufficient amount of menthol cannot be supplied to the user during the first period Tm1.
 ところで、第1期間Tm1において十分な量のメンソールをユーザに供給するため、メンソールモードにあっては、第1期間Tm1における第2ヒータ34の目標温度を高く設定するようにしている。しかしながら、第1期間Tm1を経て高温になった香味源52を第2期間Tm2においてもさらに高温で加熱し続けると、多量のメンソールがユーザに供給され、香喫味の低下につながるおそれがある。 By the way, in order to supply a sufficient amount of menthol to the user during the first period Tm1, the target temperature of the second heater 34 during the first period Tm1 is set high in the menthol mode. However, if the flavor source 52, which has reached a high temperature after the first period Tm1, continues to be heated at a higher temperature even during the second period Tm2, a large amount of menthol is supplied to the user, which may lead to deterioration of the flavor and taste.
 そこで、前述したように、メンソールモードにあっては、第2期間Tm2における第2ヒータ34の目標温度を、第1期間Tm1における第2ヒータ34の目標温度よりも低くすることで、第1期間Tm1を経て高温になった香味源52を第2期間Tm2においても高温で加熱し続けることを抑制している。これにより、単位供給メンソール量131aに示すように、香味源52(詳細にはたばこ顆粒521)とメンソール80とが吸着平衡状態に至った後の時期と想定される第2期間Tm2においては、香味源52の温度を低くすることで、香味源52(詳細にはたばこ顆粒521)に吸着可能なメンソール80の量を増やし、単位供給メンソール量の増加を抑制できる。したがって、第2期間Tm2において、ユーザに対し適切な量のメンソールを供給することが可能となる。 Therefore, as described above, in the menthol mode, the target temperature of the second heater 34 in the second period Tm2 is set lower than the target temperature of the second heater 34 in the first period Tm1. This prevents the flavor source 52, which has reached a high temperature after Tm1, from continuing to be heated at a high temperature even in the second period Tm2. As a result, as shown in the unit supply amount of menthol 131a, the flavor is By lowering the temperature of the source 52, the amount of menthol 80 that can be adsorbed by the flavor source 52 (more specifically, the tobacco granules 521) can be increased, and an increase in the amount of menthol supplied per unit can be suppressed. Therefore, it is possible to supply an appropriate amount of menthol to the user during the second period Tm2.
 また、第2期間Tm2において多量のメンソールがユーザに供給されることを抑制するため、メンソールモードにあっては、第2期間Tm2における第2ヒータ34の目標温度を低く設定している。しかしながら、このように第2ヒータ34の目標温度を低く設定すると、第2期間Tm2における単位供給メンソール量の増加を抑制できるものの、第2期間Tm2における単位供給香味成分量も減少し、ユーザに十分な吸いごたえを提供できなくなることが考えられる。 In addition, in the menthol mode, the target temperature of the second heater 34 during the second period Tm2 is set low in order to prevent a large amount of menthol from being supplied to the user during the second period Tm2. However, when the target temperature of the second heater 34 is set low in this way, although an increase in the unit amount of menthol supplied during the second period Tm2 can be suppressed, the unit amount of flavor component supplied during the second period Tm2 also decreases, which is sufficient for the user. It is conceivable that it will not be possible to provide a good sucking response.
 そこで、エアロゾル源71及び香味源52が共にメンソール80を含む場合のメンソールモードにあっては、MCU63は、第1期間Tm1における第1ヒータ45への印加電圧をV1[V]とし、その後の第2期間Tm2における第1ヒータ45への印加電圧をV1[V]よりも高いV2[V]とする。これにより、第2期間Tm2となり、第2ヒータ34の目標温度を低めの60[℃]に変更したのに合わせて、第1ヒータ45への印加電圧を高めのV2[V]に変更できる。したがって、第2期間Tm2においては、第1ヒータ45による加熱で生成されて香味源52に供給されるエアロゾル源71の量を増加させることができ、単位供給香味成分量131bに示すように、第2期間Tm2における単位供給香味成分量の減少を抑制できる。 Therefore, in the menthol mode in which both the aerosol source 71 and the flavor source 52 contain menthol 80, the MCU 63 sets the voltage applied to the first heater 45 during the first period Tm1 to V1 [V], Assume that the voltage applied to the first heater 45 in the second period Tm2 is V2 [V] higher than V1 [V]. As a result, the voltage applied to the first heater 45 can be changed to a higher V2 [V] in accordance with the second period Tm2, in which the target temperature of the second heater 34 is changed to a lower 60 [° C.]. Therefore, in the second period Tm2, the amount of the aerosol source 71 generated by heating by the first heater 45 and supplied to the flavor source 52 can be increased. It is possible to suppress the decrease in the unit amount of flavor component supplied in the second period Tm2.
<エアロゾル源のみがメンソールを含む場合の具体的な制御例>
 次に、エアロゾル源71のみがメンソール80を含む場合のMCU63による具体的な制御例について、図14を参照して説明する。エアロゾル源71のみがメンソール80を含む場合のメンソールモードにあっては、第1期間Tm1及び第2期間Tm2における第1ヒータ45への印加電圧のみが、エアロゾル源71及び香味源52が共にメンソール80を含む場合のメンソールモードとは異なる。したがって、以下では、図13の説明と異なる箇所を中心に説明することとし、図13の説明と同様の箇所についてはその説明を適宜省略する。
<Specific control example when only the aerosol source contains menthol>
Next, a specific example of control by the MCU 63 when only the aerosol source 71 contains menthol 80 will be described with reference to FIG. In the menthol mode in which only the aerosol source 71 contains menthol 80, only the voltage applied to the first heater 45 during the first period Tm1 and the second period Tm2 is such that both the aerosol source 71 and the flavor source 52 contain menthol 80. It is different from menthol mode when it contains . 13 will be mainly described below, and the description of the same portions as those of FIG. 13 will be omitted as appropriate.
 エアロゾル源71のみがメンソール80を含む場合のメンソールモードにあっては、図14の(b)における太実線に示すように、MCU63は、第1期間Tm1における第1ヒータ45への印加電圧をV4[V]とする。このV4[V]は、図14の(b)に示すようにV3[V]よりも高い電圧であり、エアロゾル吸引器1の製造者によって予め設定された電圧である。これにより、この場合の第1期間Tm1では、印加電圧V3[V]に応じた電力が電源61から第1ヒータ45へ供給され、この電力に応じた量の気化及び/又は霧化したエアロゾル源71が第1ヒータ45によって生成される。 In the menthol mode in which only the aerosol source 71 contains menthol 80, the MCU 63 reduces the voltage applied to the first heater 45 during the first period Tm1 to V4, as indicated by the thick solid line in FIG. Let it be [V]. This V4 [V] is a voltage higher than V3 [V] as shown in FIG. 14(b) and is a voltage preset by the manufacturer of the aerosol inhaler 1. As a result, in the first period Tm1 in this case, power corresponding to the applied voltage V3 [V] is supplied from the power source 61 to the first heater 45, and the amount of vaporized and/or atomized aerosol source corresponding to the power is supplied. 71 is produced by the first heater 45 .
 そして、エアロゾル源71のみがメンソール80を含む場合のメンソールモードにあっては、その後の第2期間Tm2となると、MCU63は、第1ヒータ45への印加電圧をV5[V]とする。このV5[V]は、図14の(b)に示すように、V3[V]よりは高く、V4[V]よりは低い電圧である。V5[V]は、エアロゾル吸引器1の製造者によって予め設定される。なお、MCU63は、例えば、DC/DCコンバータ66を制御することで、V4[V]やV5[V]といった電圧を、第1ヒータ45へ印加できる。 Then, in the menthol mode in which only the aerosol source 71 contains menthol 80, the MCU 63 sets the voltage applied to the first heater 45 to V5 [V] during the subsequent second period Tm2. This V5 [V] is a voltage higher than V3 [V] and lower than V4 [V], as shown in FIG. 14(b). V5 [V] is preset by the manufacturer of the aerosol inhaler 1 . Note that the MCU 63 can apply a voltage such as V4 [V] or V5 [V] to the first heater 45 by controlling the DC/DC converter 66, for example.
 エアロゾル源71のみがメンソール80を含んでおり、上記のメンソールモードによってMCU63が第2ヒータ34の目標温度及び第1ヒータ45への印加電圧を制御した場合の単位供給メンソール量の一例は、図14の(c)における単位供給メンソール量141aに示すものとなる。 An example of the unit supply amount of menthol when only the aerosol source 71 contains menthol 80 and the MCU 63 controls the target temperature of the second heater 34 and the voltage applied to the first heater 45 in the above menthol mode is shown in FIG. (c) in the unit supply amount of menthol 141a.
 エアロゾル源71のみがメンソール80を含んでおり、上記のメンソールモードによってMCU63が第2ヒータ34の目標温度及び第1ヒータ45への印加電圧を制御した場合の単位供給香味成分量の一例は、図14の(c)における単位供給香味成分量141bに示すものとなる。 An example of the unit amount of flavor component supplied when only the aerosol source 71 contains menthol 80 and the MCU 63 controls the target temperature of the second heater 34 and the voltage applied to the first heater 45 in the above menthol mode is shown in FIG. It is shown in the unit supply flavor component amount 141b in (c) of 14.
 また、エアロゾル源71のみがメンソール80を含んでおり、上記のレギュラーモードによってMCU63が第2ヒータ34の目標温度及び第1ヒータ45への印加電圧を制御した場合の単位供給メンソール量の一例は、図14の(c)における単位供給メンソール量142aに示すものとなる。 In addition, when only the aerosol source 71 contains menthol 80 and the MCU 63 controls the target temperature of the second heater 34 and the voltage applied to the first heater 45 in the regular mode, an example of the unit supply amount of menthol is The amount of menthol supplied per unit 142a in FIG. 14(c) is shown.
 エアロゾル源71のみがメンソール80を含んでおり、上記のレギュラーモードによってMCU63が第2ヒータ34の目標温度及び第1ヒータ45への印加電圧を制御した場合の単位供給香味成分量の一例は、図14の(c)における単位供給香味成分量142bに示すものとなる。 An example of the unit supply amount of flavor component when only the aerosol source 71 contains menthol 80 and the MCU 63 controls the target temperature of the second heater 34 and the voltage applied to the first heater 45 in the regular mode is shown in FIG. The amount of flavor component to be supplied per unit 142b in (c) of 14 is shown.
 また、エアロゾル源71のみがメンソール80を含んでおり、第2ヒータ34による香味源52の加熱を行わないようにした場合の単位供給メンソール量の一例は、図14の(c)における単位供給メンソール量143aに示すものとなる。 An example of the unit supply amount of menthol when only the aerosol source 71 contains the menthol 80 and the heating of the flavor source 52 by the second heater 34 is not performed is the unit supply menthol in (c) of FIG. Quantity 143a is shown.
 エアロゾル源71のみがメンソール80を含んでおり、第2ヒータ34による香味源52の加熱を行わないようにした場合の単位供給香味成分量の一例は、図14の(c)における単位供給香味成分量143bに示すものとなる。 An example of the unit supply flavor component amount when only the aerosol source 71 contains menthol 80 and the second heater 34 does not heat the flavor source 52 is the unit supply flavor component amount in FIG. is shown in quantity 143b.
 すなわち、エアロゾル源71のみがメンソール80を含む場合、すなわち、香味源52がメンソール80を含まない場合のメンソールモードにあっては、MCU63は、第1期間Tm1における第1ヒータ45への印加電圧をV4[V]とし、その後の第2期間Tm2における第1ヒータ45への印加電圧をV4[V]よりも低いV5[V]とする。これにより、カプセル50内において香味源52(詳細にはたばこ顆粒521)とメンソール80とが吸着平衡状態に至る前の時期と想定される第1期間Tm1に、第1ヒータ45に高めのV4[V]を印加して(すなわち第1ヒータ45へ大きな電力を供給して)、第1ヒータ45による加熱で生成されて香味源52に供給されるエアロゾル源71の量を増加させることができる。 That is, when only the aerosol source 71 contains menthol 80, that is, in the menthol mode when the flavor source 52 does not contain menthol 80, the MCU 63 reduces the voltage applied to the first heater 45 during the first period Tm1 to V4 [V], and the voltage applied to the first heater 45 in the subsequent second period Tm2 is V5 [V], which is lower than V4 [V]. As a result, during the first period Tm1, which is assumed to be the time before the flavor source 52 (more specifically, the tobacco granules 521) and the menthol 80 reach an adsorption equilibrium state in the capsule 50, the first heater 45 is set to a high V4 [ V] (ie, more power to first heater 45) can be applied to increase the amount of aerosol source 71 generated by heating by first heater 45 and delivered to flavor source 52.
 したがって、香味源52とメンソール80とが吸着平衡状態に至る前の時期において、エアロゾル源71由来のメンソール80のうち香味源52に吸着せずにユーザの口内に供給されるメンソール80の量を増加でき、また、カプセル50内において香味源52とメンソール80とが早期に吸着平衡状態に至るのを促せる。このため、香味源52に含まれる香味成分が十分にあるような時期(例えば、いわゆる吸い始め)から、適切かつ十分な量のメンソールをユーザに対し安定して供給できる。 Therefore, before the flavor source 52 and the menthol 80 reach an adsorption equilibrium state, of the menthol 80 derived from the aerosol source 71, the amount of the menthol 80 supplied to the user's mouth without being adsorbed to the flavor source 52 is increased. In addition, the flavor source 52 and the menthol 80 in the capsule 50 can be promoted to quickly reach an adsorption equilibrium state. Therefore, an appropriate and sufficient amount of menthol can be stably supplied to the user from the time when the flavor component contained in the flavor source 52 is sufficient (for example, the start of smoking).
 以上、本発明の一実施形態について、添付図面を参照しながら説明したが、本発明は、かかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施形態における各構成要素を任意に組み合わせてもよい。 Although one embodiment of the present invention has been described with reference to the accompanying drawings, it goes without saying that the present invention is not limited to such an embodiment. It is obvious that a person skilled in the art can conceive of various modifications or modifications within the scope described in the claims, and these also belong to the technical scope of the present invention. Understood. Moreover, each component in the above embodiments may be combined arbitrarily without departing from the spirit of the invention.
 例えば、エアロゾル吸引器1は、エアロゾル源を加熱して気化及び/又は霧化させる第1ヒータ45が電源ユニット10に設けられており、カートリッジ40及びカプセル50に代えて、エアロゾル源が貯留された着脱可能なエアロゾル源貯留ユニットを備えていてもよい。エアロゾル源貯留ユニットは、例えば、エアロゾル源が貯留されており、たばこ葉等の香味源が収容された着脱可能なリフィルであってもよい。この場合、着色部49は、リフィル等のエアロゾル源貯留ユニットに形成されている。 For example, in the aerosol inhaler 1, the power supply unit 10 is provided with a first heater 45 that heats and vaporizes and/or atomizes the aerosol source, and the aerosol source is stored instead of the cartridge 40 and the capsule 50. A removable aerosol source storage unit may be provided. The aerosol source storage unit may be, for example, a detachable refill in which the aerosol source is stored and the flavor source such as tobacco leaves is stored. In this case, the colored portion 49 is formed in an aerosol source storage unit such as a refill.
 また、例えば、着色部49は、赤色、緑色、青色に限らず、任意の色に着色されていてよい。 Also, for example, the colored portion 49 may be colored in any color, not limited to red, green, and blue.
 また、例えば、エアロゾル吸引器1の全体形状は、図1のように、電源ユニット10と、カートリッジ40と、カプセル50と、が一列に並ぶ形状には限らない。エアロゾル吸引器1は、電源ユニット10に対して、カートリッジ40及びカプセル50が交換可能に構成されていればよく、略箱状等の任意の形状を採用可能である。 Also, for example, the overall shape of the aerosol inhaler 1 is not limited to the shape in which the power supply unit 10, the cartridge 40, and the capsule 50 are arranged in a line as shown in FIG. The aerosol inhaler 1 only needs to be configured such that the cartridge 40 and the capsule 50 can be replaced with respect to the power supply unit 10, and any shape such as a substantially box-like shape can be adopted.
 また、例えば、本実施形態では、カプセルホルダ30に第2ヒータ34が設けられているものとしたが、第2ヒータ34は設けられていなくてもよい。 Also, for example, in the present embodiment, the capsule holder 30 is provided with the second heater 34, but the second heater 34 may not be provided.
 また、例えば、本実施形態では、色識別センサ24とカートリッジカバー20の内周壁22との間に、光を透過しない遮光部材25が設けられているものとしたが、遮光部材25は設けられていなくてもよい。 Further, for example, in the present embodiment, the light shielding member 25 that does not transmit light is provided between the color identification sensor 24 and the inner peripheral wall 22 of the cartridge cover 20. However, the light shielding member 25 is not provided. It doesn't have to be.
 また、例えば、カプセル50は、電源ユニット10に対して交換可能に構成されていればよく、電源ユニット10に対して着脱可能であってもよい。 Also, for example, the capsule 50 may be configured to be replaceable with respect to the power supply unit 10, and may be detachable from the power supply unit 10.
 本明細書には少なくとも以下の事項が記載されている。括弧内には、上記した実施形態において対応する構成要素等を一例として示しているが、これに限定されるものではない。 At least the following matters are described in this specification. Components in parentheses are shown as an example corresponding to the above-described embodiment, but the present invention is not limited to this.
 (1) エアロゾル源(エアロゾル源71)が貯留された着脱可能なエアロゾル源貯留ユニット(カートリッジ40)と、
 前記エアロゾル源を加熱して気化及び/又は霧化させるヒータ(第1ヒータ45)と、
 前記ヒータと電気的に接続される電源(電源61)と、前記電源から前記ヒータへの放電を制御可能なコントローラ(MCU63)と、を有する電源ユニット(電源ユニット10)と、
 を備えるエアロゾル生成装置(エアロゾル吸引器1)であって、
 前記エアロゾル源貯留ユニットには、着色された着色部(着色部49)が形成されており、
 前記エアロゾル生成装置は、前記着色部に着色された色を識別可能な色識別センサ(色識別センサ24)をさらに備え、
 前記コントローラは、
 前記色識別センサによって識別された前記着色部に着色された色に関する情報に基づいて、前記エアロゾル源貯留ユニットに貯留する前記エアロゾル源に関する情報を取得する、エアロゾル源情報取得処理を実行可能である、エアロゾル生成装置。
(1) a detachable aerosol source storage unit (cartridge 40) storing an aerosol source (aerosol source 71);
a heater (first heater 45) that heats the aerosol source to vaporize and/or atomize;
a power supply unit (power supply unit 10) having a power supply (power supply 61) electrically connected to the heater and a controller (MCU 63) capable of controlling discharge from the power supply to the heater;
An aerosol generator (aerosol inhaler 1) comprising
A colored portion (colored portion 49) is formed in the aerosol source storage unit,
The aerosol generating device further comprises a color identification sensor (color identification sensor 24) capable of identifying the color of the colored portion,
The controller is
an aerosol source information acquisition process for acquiring information on the aerosol source stored in the aerosol source storage unit based on information on the color of the colored portion identified by the color identification sensor; Aerosol generator.
 (1)によれば、コントローラは、色識別センサによって識別された着色部に着色された色に関する情報に基づいてエアロゾル源情報取得処理を実行可能であるので、エアロゾル生成装置は、エアロゾル源貯留ユニットの製造時において、エアロゾル源貯留ユニットにバーコード及び二次元コードや突起等の識別情報を取り付ける工程を追加する必要がなく、エアロゾル源貯留ユニットに貯留するエアロゾル源に関する情報を取得することができる。これにより、エアロゾル生成装置は、エアロゾル源貯留ユニットに貯留するエアロゾル源に関する情報を取得可能であり、且つ、エアロゾル源貯留ユニットに識別情報を付する工程が不要で製造時の工数を低減できる。 According to (1), the controller can execute the aerosol source information acquisition process based on the information about the color of the colored portion identified by the color identification sensor. Information on the aerosol source stored in the aerosol source storage unit can be obtained without the need to add identification information such as barcodes, two-dimensional codes, or projections to the aerosol source storage unit during manufacturing. As a result, the aerosol generator can acquire information about the aerosol source stored in the aerosol source storage unit, and the step of attaching identification information to the aerosol source storage unit is unnecessary, thereby reducing man-hours during manufacturing.
 (2) (1)に記載のエアロゾル生成装置であって、
 前記エアロゾル源貯留ユニットは、
 前記エアロゾル源を貯留する貯留室(貯留室42)と、
 前記ヒータが設けられた加熱室(加熱室43)と、
 前記ヒータと電気的に接続した接続端子(接続端子47)が設けられた電極部(電極部48)と、を有する着脱可能なカートリッジ(カートリッジ40)であり、
 前記電源ユニットの前記電源は、前記接続端子を介して前記ヒータと電気的に接続されており、
 前記着色部は、前記カートリッジに形成されている、エアロゾル生成装置。
(2) The aerosol generator according to (1),
The aerosol source storage unit,
a storage chamber (storage chamber 42) for storing the aerosol source;
a heating chamber (heating chamber 43) provided with the heater;
a detachable cartridge (cartridge 40) having an electrode portion (electrode portion 48) provided with a connection terminal (connection terminal 47) electrically connected to the heater,
The power supply of the power supply unit is electrically connected to the heater via the connection terminal,
The aerosol generating device, wherein the coloring section is formed in the cartridge.
 (2)によれば、エアロゾル生成装置は、カートリッジの製造時において、カートリッジにバーコード及び二次元コードや突起等の識別情報を取り付ける工程を追加する必要がなく、カートリッジの貯留室に貯留するエアロゾル源に関する情報を取得することができる。これにより、エアロゾル生成装置は、カートリッジの貯留室に貯留するエアロゾル源に関する情報を取得可能であり、且つ、カートリッジに識別情報を取り付ける工程が不要で製造時の工数を低減できる。 According to (2), the aerosol generating device does not need to add identification information such as a bar code, a two-dimensional code, or a protrusion to the cartridge when manufacturing the cartridge, and the aerosol stored in the storage chamber of the cartridge Information about the source can be obtained. As a result, the aerosol generator can acquire information about the aerosol source stored in the storage chamber of the cartridge, and the process of attaching identification information to the cartridge is unnecessary, thereby reducing man-hours during manufacturing.
 (3) (2)に記載のエアロゾル生成装置であって、
 前記着色部は、前記カートリッジの前記電極部に形成されている、エアロゾル生成装置。
(3) The aerosol generator according to (2),
The aerosol generating device, wherein the colored portion is formed on the electrode portion of the cartridge.
 (3)によれば、着色部はカートリッジの電極部に形成されているので、カートリッジの電極部の所定の色で製造することによって、カートリッジの貯留室に貯留するエアロゾル源に関する情報を取得可能となる。これにより、エアロゾル生成装置の製造時の工数をより低減できる。 According to (3), since the colored portion is formed in the electrode portion of the cartridge, it is possible to acquire information about the aerosol source stored in the storage chamber of the cartridge by manufacturing the electrode portion of the cartridge in a predetermined color. Become. As a result, the man-hours for manufacturing the aerosol generating device can be further reduced.
 (4) (2)又は(3)に記載のエアロゾル生成装置であって、
 前記コントローラは、
 前記エアロゾル源情報取得処理の結果に基づいて、前記電源から前記ヒータへの放電を制御する、エアロゾル生成装置。
(4) The aerosol generator according to (2) or (3),
The controller is
An aerosol generating device that controls discharge from the power supply to the heater based on the result of the aerosol source information acquisition process.
 (4)によれば、コントローラは、エアロゾル源情報取得処理の結果に基づいて、電源から前記ヒータへの放電を制御するので、エアロゾル生成装置に装着されたカートリッジのエアロゾル源の種類に応じて、ヒータへの放電を適切に制御し、適切な量の香味成分やエアロゾルをユーザに対し安定して供給することができる。 According to (4), the controller controls discharge from the power supply to the heater based on the result of the aerosol source information acquisition process. By properly controlling discharge to the heater, it is possible to stably supply an appropriate amount of flavor component or aerosol to the user.
 (5) (4)に記載のエアロゾル生成装置であって、
 前記コントローラは、
 前記電源から前記ヒータへの放電を複数のモードで制御可能であり、
 前記エアロゾル源情報取得処理の結果に基づいて、前記複数のモードから1つのモードを選択し、選択した前記モードで前記電源から前記ヒータへの放電を制御する、エアロゾル生成装置。
(5) The aerosol generator according to (4),
The controller is
discharge from the power supply to the heater can be controlled in a plurality of modes;
The aerosol generating device, which selects one mode from the plurality of modes based on the result of the aerosol source information acquisition process, and controls discharge from the power supply to the heater in the selected mode.
 (5)によれば、コントローラは、エアロゾル源情報取得処理の結果に基づいて、複数のモードから1つのモードを選択し、選択したモードで電源からヒータへの放電を制御するので、簡素な制御で、エアロゾル生成装置に装着されたカートリッジのエアロゾル源の種類に応じて、ヒータへの放電を適切に制御し、適切な量の香味成分やエアロゾルをユーザに対し安定して供給することができる。 According to (5), the controller selects one mode from a plurality of modes based on the result of the aerosol source information acquisition process, and controls the discharge from the power supply to the heater in the selected mode. Therefore, discharge to the heater can be appropriately controlled according to the type of aerosol source of the cartridge attached to the aerosol generator, and an appropriate amount of flavor component and aerosol can be stably supplied to the user.
 (6) (4)に記載のエアロゾル生成装置であって、
 前記コントローラは、
 前記電源から前記ヒータへの放電を、レギュラーモードとメンソールモードとを少なくとも含む複数のモードで制御可能であり、
 前記エアロゾル源情報取得処理において、前記エアロゾル源にメンソールが含まれることを示す情報を取得できた場合、前記メンソールモードで前記電源から前記ヒータへの放電を制御し、
 前記エアロゾル源情報取得処理において、前記エアロゾル源にメンソールが含まれないことを示す情報を取得できた場合、前記レギュラーモードで前記電源から前記ヒータへの放電を制御する、エアロゾル生成装置。
(6) The aerosol generator according to (4),
The controller is
Discharge from the power supply to the heater can be controlled in multiple modes including at least a regular mode and a menthol mode,
In the aerosol source information acquisition process, if information indicating that the aerosol source contains menthol is acquired, controlling discharge from the power supply to the heater in the menthol mode,
The aerosol generating device, wherein in the aerosol source information acquisition process, when information indicating that the aerosol source does not contain menthol is acquired, the discharge from the power supply to the heater is controlled in the regular mode.
 (6)によれば、コントローラは、エアロゾル源情報取得処理において、エアロゾル源にメンソールが含まれることを示す情報を取得できた場合、メンソールモードで電源からヒータへの放電を制御し、エアロゾル源情報取得処理において、エアロゾル源にメンソールが含まれないことを示す情報を取得できた場合、レギュラーモードで電源からヒータへの放電を制御するので、エアロゾル生成装置に装着されたカートリッジのエアロゾル源が、メンソールを含む場合とメンソールを含まない場合とに応じて、ヒータへの放電を適切に制御し、適切な量の香味成分やメンソールを含むエアロゾルをユーザに対し安定して供給することができる。 According to (6), in the aerosol source information acquisition process, if information indicating that the aerosol source contains menthol is acquired, the controller controls discharge from the power source to the heater in the menthol mode, and the aerosol source information In the acquisition process, if information indicating that the aerosol source does not contain menthol is acquired, discharge from the power supply to the heater is controlled in regular mode, so that the aerosol source of the cartridge attached to the aerosol generation device is menthol. Depending on whether or not menthol is included, the discharge to the heater can be appropriately controlled to stably supply the user with an aerosol containing an appropriate amount of flavor component and menthol.
 (7) (6)に記載のエアロゾル生成装置であって、
 前記コントローラは、
 前記エアロゾル源情報取得処理において、前記カートリッジの前記貯留室に貯留する前記エアロゾル源にメンソールが含まれるか否かに関する情報を取得できなかった場合、前記レギュラーモードで前記電源から前記ヒータへの放電を制御する、エアロゾル生成装置。
(7) The aerosol generator according to (6),
The controller is
In the aerosol source information acquisition process, if the information regarding whether or not the aerosol source stored in the storage chamber of the cartridge contains menthol cannot be acquired, discharge from the power source to the heater is performed in the regular mode. Controlled aerosol generator.
 (7)によれば、コントローラは、エアロゾル源情報取得処理において、カートリッジの貯留室に貯留するエアロゾル源にメンソールが含まれるか否かに関する情報を取得できなかった場合、レギュラーモードで電源からヒータへの放電を制御するので、カートリッジの貯留室に貯留するエアロゾル源にメンソールが含まれていない場合に、メンソールモードでヒータへの放電を制御することを確実に防止できる。これにより、メンソールが含まれていないエアロゾル源がメンソールモードで加熱されることによる意図しない香喫味の発生を防止でき、少なくとも香味源由来の香喫味を安定してユーザに供給することができる。 According to (7), in the aerosol source information acquisition process, if the controller fails to acquire information on whether or not the aerosol source stored in the storage chamber of the cartridge contains menthol, the controller switches from the power source to the heater in the regular mode. Therefore, if the aerosol source stored in the storage chamber of the cartridge does not contain menthol, it is possible to reliably prevent the discharge to the heater from being controlled in the menthol mode. As a result, it is possible to prevent the occurrence of unintended flavor and taste due to the menthol-free aerosol source being heated in the menthol mode, and at least the flavor and taste derived from the flavor source can be stably supplied to the user.
 (8) (2)~(7)のいずれかに記載のエアロゾル生成装置であって、
 前記電源ユニットは、前記電源と電気的に接続したコネクタ(放電端子12)をさらに備え、
 前記コネクタには、前記カートリッジの前記接続端子が着脱可能に電気的に接続され、
 前記コントローラは、
 前記電源ユニットの前記コネクタに前記カートリッジの前記接続端子が電気的に接続されていない状態から、前記電源ユニットの前記コネクタに前記カートリッジの前記接続端子が電気的に接続された状態へと遷移することを契機として、前記エアロゾル源情報取得処理を実行する、エアロゾル生成装置。
(8) The aerosol generator according to any one of (2) to (7),
The power supply unit further comprises a connector (discharge terminal 12) electrically connected to the power supply,
the connection terminal of the cartridge is detachably electrically connected to the connector;
The controller is
Transitioning from a state in which the connection terminal of the cartridge is not electrically connected to the connector of the power supply unit to a state in which the connection terminal of the cartridge is electrically connected to the connector of the power supply unit. an aerosol generating device that executes the aerosol source information acquisition process using the above as a trigger.
 (8)によれば、コントローラは、電源ユニットのコネクタにカートリッジの接続端子が電気的に接続されていない状態から、電源ユニットのコネクタにカートリッジの接続端子が電気的に接続された状態へと遷移するという、エアロゾル生成装置に装着されたカートリッジが交換された蓋然性が高いときに、エアロゾル源情報取得処理を実行するようにできる。これにより、エアロゾル源情報取得処理を実行する回数を削減でき、エアロゾル源情報取得処理によって消費する電源の消費電力を節約できる。 According to (8), the controller transitions from a state in which the connection terminals of the cartridge are not electrically connected to the connector of the power supply unit to a state in which the connection terminals of the cartridge are electrically connected to the connector of the power supply unit. That is, the aerosol source information acquisition process can be executed when there is a high probability that the cartridge attached to the aerosol generating device has been replaced. As a result, the number of times the aerosol source information acquisition process is executed can be reduced, and the power consumed by the aerosol source information acquisition process can be saved.
 (9) (8)に記載のエアロゾル生成装置であって、
 前記エアロゾル生成装置は、ユーザが操作可能な操作部(操作部15)をさらに備え、
 前記コントローラは、
 前記ユーザによって前記操作部が操作された後に、前記電源ユニットの前記コネクタに前記カートリッジの前記接続端子が電気的に接続されていない状態から、前記電源ユニットの前記コネクタに前記カートリッジの前記接続端子が電気的に接続された状態へと遷移することを契機として、前記エアロゾル源情報取得処理を実行する、エアロゾル生成装置。
(9) The aerosol generator according to (8),
The aerosol generating device further comprises a user-operable operation unit (operation unit 15),
The controller is
After the operation unit is operated by the user, the connection terminal of the cartridge is connected to the connector of the power supply unit from a state in which the connection terminal of the cartridge is not electrically connected to the connector of the power supply unit. An aerosol generating device that executes the aerosol source information acquisition process with transition to an electrically connected state as a trigger.
 (9)によれば、コントローラは、ユーザによって操作部が操作された後に、エアロゾル源情報取得処理を実行するので、電源の消費電力をより節約できる。 According to (9), the controller executes the aerosol source information acquisition process after the user operates the operation unit, so the power consumption of the power supply can be further saved.
 (10) (2)~(9)のいずれかに記載のエアロゾル生成装置であって、
 前記着色部は、光を透過しないように形成されている、エアロゾル生成装置。
(10) The aerosol generator according to any one of (2) to (9),
The aerosol generating device, wherein the colored portion is formed so as not to transmit light.
 (10)によれば、着色部は、光を透過しないように形成されているので、着色部に着色された色に応じて反射する反射光の光量を多くすることができる。これにより、色識別センサにおいて、着色部に着色された色を精度よく識別できる。 According to (10), since the colored portion is formed so as not to transmit light, it is possible to increase the amount of reflected light reflected according to the color of the colored portion. Thereby, in the color identification sensor, it is possible to accurately identify the color of the colored portion.
 (11) (2)~(10)のいずれかに記載のエアロゾル生成装置であって、
 前記着色部は、赤色、緑色及び青色のいずれかに着色されている、エアロゾル生成装置。
(11) The aerosol generator according to any one of (2) to (10),
The aerosol generating device, wherein the colored portion is colored red, green, or blue.
 (11)によれば、着色部は、赤色、緑色及び青色のいずれかに着色されているので、色識別センサにおいて、着色部に着色された色を識別することが容易となる。 According to (11), the colored portion is colored red, green, or blue, so that the color identification sensor can easily identify the color of the colored portion.
 (12) (2)~(11)のいずれかに記載のエアロゾル生成装置であって、
 前記エアロゾル源情報取得処理によって取得した、前記カートリッジの前記貯留室に貯留する前記エアロゾル源にメンソールが含まれるか否かに関する情報を保存可能な記憶媒体(メモリ63a)をさらに備え、
 前記記憶媒体に保存された前記カートリッジの前記貯留室に貯留する前記エアロゾル源にメンソールが含まれるか否かに関する情報を外部に送信可能である、エアロゾル生成装置。
(12) The aerosol generator according to any one of (2) to (11),
further comprising a storage medium (memory 63a) capable of storing information on whether or not the aerosol source stored in the storage chamber of the cartridge contains menthol, which is acquired by the aerosol source information acquisition process;
An aerosol generating device capable of externally transmitting information regarding whether or not menthol is contained in the aerosol source stored in the storage chamber of the cartridge stored in the storage medium.
 (12)によれば、カートリッジの貯留室に貯留するエアロゾル源にメンソールが含まれるか否かに関する情報を、スマートフォンやコンピュータ等の外部の情報端末で確認することができるので、エアロゾル生成装置をスマートフォンやコンピュータ等の外部の情報端末と連携して動作させることが可能となる。また、エアロゾル生成装置に過去に装着されたカートリッジの履歴をサーバ等の外部の情報端末に収集することが可能となるので、エアロゾル生成装置に過去に装着されたカートリッジの履歴情報を活用して、エアロゾル生成装置のカスタマーサービスを向上できる。 According to (12), information on whether or not the aerosol source stored in the storage chamber of the cartridge contains menthol can be checked on an external information terminal such as a smartphone or computer, so that the aerosol generation device can be used with a smartphone. It is possible to operate in cooperation with an external information terminal such as a computer. In addition, since it is possible to collect the history of cartridges installed in the aerosol generation device in the past in an external information terminal such as a server, the history information of the cartridges installed in the aerosol generation device in the past can be used to Improve customer service for aerosol generators.
 (13) (2)~(12)のいずれかに記載のエアロゾル生成装置であって、
 前記エアロゾル生成装置は、前記カートリッジが収容されるカートリッジカバー(カートリッジカバー20)をさらに備え、
 前記色識別センサは、前記カートリッジカバーに設けられている、エアロゾル生成装置。
(13) The aerosol generator according to any one of (2) to (12),
The aerosol generator further comprises a cartridge cover (cartridge cover 20) in which the cartridge is accommodated,
The aerosol generating device, wherein the color identification sensor is provided on the cartridge cover.
 (13)によれば、色識別センサがカートリッジカバーに設けられているので、エアロゾル生成装置を大型化することなく、カートリッジの着色部の近傍に色識別センサを配置でき、精度よくカートリッジの着色部に着色された色を識別できる。 According to (13), since the color identification sensor is provided on the cartridge cover, the color identification sensor can be arranged in the vicinity of the colored portion of the cartridge without increasing the size of the aerosol generating device. You can identify the colors colored in.
 (14) (2)~(13)のいずれかに記載のエアロゾル生成装置であって、
 前記色識別センサは、
 前記着色部に向かって光を投光可能な投光部(投光部241)と、前記着色部から反射した光を受光し、受光した光の色成分を数値化するカラーセンサ部(カラーセンサ部242)と、を有し、
 前記コントローラは、
 前記カラーセンサ部に所定の色成分の数値を有する検査光を受光させ、
 前記検査光の前記所定の色成分の数値と、前記カラーセンサ部で数値化された前記検査光の色成分の数値と、に基づいて、前記カラーセンサ部で数値化された光の色成分の数値を較正する、キャリブレーション処理を実行可能である、エアロゾル生成装置。
(14) The aerosol generator according to any one of (2) to (13),
The color identification sensor is
A light projecting section (light projecting section 241) capable of projecting light toward the colored section, and a color sensor section (color sensor) that receives the light reflected from the colored section and quantifies the color components of the received light. section 242) and
The controller is
causing the color sensor unit to receive inspection light having a numerical value of a predetermined color component;
The color component of the light quantified by the color sensor unit based on the numerical value of the predetermined color component of the inspection light and the numerical value of the color component of the inspection light quantified by the color sensor unit. An aerosol generating device capable of performing a calibration process for calibrating a numerical value.
 (14)によれば、コントローラは、カラーセンサ部に所定の色成分の数値を有する検査光を受光させ、検査光の前記所定の色成分の数値と、カラーセンサ部で数値化された検査光の色成分の数値と、に基づいて、キャリブレーション処理を実行可能であるので、エアロゾル生成装置は、工場出荷後にも、色識別センサのキャリブレーションを行うことが可能となり、エアロゾル生成装置を長期間使用しても、色識別センサによって精度が低下することなく着色部に着色された色を識別できる。 According to (14), the controller causes the color sensor unit to receive inspection light having a predetermined numerical value of a color component, Since the calibration process can be executed based on the numerical values of the color components of the aerosol generator, the color identification sensor can be calibrated even after the aerosol generator is shipped from the factory, and the aerosol generator can be used for a long period of time. Even if it is used, it is possible to identify the color applied to the colored portion without lowering accuracy by the color identification sensor.
 (15) (2)~(12)のいずれかに記載のエアロゾル生成装置であって、
 前記エアロゾル生成装置は、前記カートリッジが収容されるカートリッジカバー(カートリッジカバー20)をさらに備え、
 前記色識別センサは、
 前記カートリッジカバーの内部に設けられており、
 前記着色部に向かって光を投光可能な投光部(投光部241)と、前記着色部から反射した光を受光し、受光した光の色成分を数値化するカラーセンサ部(カラーセンサ部242)と、を有し、
 前記コントローラは、
 前記カートリッジカバーに前記カートリッジが収容されておらず、且つ、前記カートリッジカバーの内部に前記カートリッジカバーの外部の光が入らない状態で、前記投光部から所定の色成分の数値を有する検査光を投光させ、
 前記検査光の前記所定の色成分の数値と、前記カラーセンサ部で数値化された前記検査光の色成分の数値と、に基づいて、前記カラーセンサ部で数値化された光の色成分の数値を較正する、キャリブレーション処理を実行可能である、エアロゾル生成装置。
(15) The aerosol generator according to any one of (2) to (12),
The aerosol generator further comprises a cartridge cover (cartridge cover 20) in which the cartridge is accommodated,
The color identification sensor is
provided inside the cartridge cover,
A light projecting section (light projecting section 241) capable of projecting light toward the colored section, and a color sensor section (color sensor) that receives the light reflected from the colored section and quantifies the color components of the received light. section 242) and
The controller is
In a state in which the cartridge is not housed in the cartridge cover and light outside the cartridge cover does not enter the interior of the cartridge cover, inspection light having a numerical value of a predetermined color component is emitted from the light projecting unit. let it shine,
The color component of the light quantified by the color sensor unit based on the numerical value of the predetermined color component of the inspection light and the numerical value of the color component of the inspection light quantified by the color sensor unit. An aerosol generating device capable of performing a calibration process for calibrating a numerical value.
 (15)によれば、コントローラは、カートリッジカバーにカートリッジが収容されておらず、且つ、カートリッジカバーの内部にカートリッジカバーの外部の光が入らない状態で、投光部から所定の色成分の数値を有する検査光を投光させ、検査光の所定の色成分の数値と、カラーセンサ部で数値化された検査光の色成分の数値と、に基づいて、キャリブレーション処理を実行可能であるので、エアロゾル生成装置は、工場出荷後にも、色識別センサのキャリブレーションを行うことが可能となり、エアロゾル生成装置を長期間使用しても、色識別センサによって精度が低下することなく着色部に着色された色を識別できる。 According to (15), the controller emits a numerical value of a predetermined color component from the light projecting section in a state where the cartridge cover does not contain the cartridge and no light from the outside of the cartridge cover enters the inside of the cartridge cover. and the calibration process can be executed based on the numerical value of the predetermined color component of the inspection light and the numerical value of the color component of the inspection light quantified by the color sensor unit. , the aerosol generator can be calibrated for the color identification sensor even after it is shipped from the factory. can distinguish different colors.
 なお、本出願は、2021年4月1日出願の日本特許出願(特願2021-063177)に基づくものであり、その内容は本出願の中に参照として援用される。 This application is based on a Japanese patent application (Japanese Patent Application No. 2021-063177) filed on April 1, 2021, the contents of which are incorporated herein by reference.
1 エアロゾル吸引器(エアロゾル生成装置)
10 電源ユニット
12 放電端子(コネクタ)
15 操作部
20 カートリッジカバー
24 色識別センサ
241 投光部
242 カラーセンサ部
40 カートリッジ(エアロゾル源貯留ユニット)
42 貯留室
43 加熱室
45 第1ヒータ(ヒータ)
47 接続端子
48 電極部
49 着色部
61 電源
63 MCU(コントローラ)
63a メモリ(記憶媒体)
71 エアロゾル源
1 Aerosol inhaler (aerosol generator)
10 power supply unit 12 discharge terminal (connector)
15 Operation unit 20 Cartridge cover 24 Color identification sensor 241 Light projection unit 242 Color sensor unit 40 Cartridge (aerosol source storage unit)
42 storage chamber 43 heating chamber 45 first heater (heater)
47 Connection terminal 48 Electrode part 49 Colored part 61 Power supply 63 MCU (controller)
63a memory (storage medium)
71 aerosol source

Claims (15)

  1.  エアロゾル源が貯留された着脱可能なエアロゾル源貯留ユニットと、
     前記エアロゾル源を加熱して気化及び/又は霧化させるヒータと、
     前記ヒータと電気的に接続される電源と、前記電源から前記ヒータへの放電を制御可能なコントローラと、を有する電源ユニットと、
     を備えるエアロゾル生成装置であって、
     前記エアロゾル源貯留ユニットには、着色された着色部が形成されており、
     前記エアロゾル生成装置は、前記着色部に着色された色を識別可能な色識別センサをさらに備え、
     前記コントローラは、
     前記色識別センサによって識別された前記着色部に着色された色に関する情報に基づいて、前記エアロゾル源貯留ユニットに貯留する前記エアロゾル源に関する情報を取得する、エアロゾル源情報取得処理を実行可能である、エアロゾル生成装置。
    a detachable aerosol source storage unit storing an aerosol source;
    a heater that heats the aerosol source to vaporize and/or atomize;
    a power supply unit having a power supply electrically connected to the heater and a controller capable of controlling discharge from the power supply to the heater;
    An aerosol generator comprising
    A colored portion is formed in the aerosol source storage unit,
    The aerosol generating device further comprises a color identification sensor capable of identifying the color of the colored portion,
    The controller is
    an aerosol source information acquisition process for acquiring information on the aerosol source stored in the aerosol source storage unit based on information on the color of the colored portion identified by the color identification sensor; Aerosol generator.
  2.  請求項1に記載のエアロゾル生成装置であって、
     前記エアロゾル源貯留ユニットは、
     前記エアロゾル源を貯留する貯留室と、
     前記ヒータが設けられた加熱室と、
     前記ヒータと電気的に接続した接続端子が設けられた電極部と、を有する着脱可能なカートリッジであり、
     前記電源ユニットの前記電源は、前記接続端子を介して前記ヒータと電気的に接続されており、
     前記着色部は、前記カートリッジに形成されている、エアロゾル生成装置。
    The aerosol generating device of claim 1,
    The aerosol source storage unit,
    a storage chamber for storing the aerosol source;
    a heating chamber provided with the heater;
    a detachable cartridge having an electrode portion provided with a connection terminal electrically connected to the heater,
    The power supply of the power supply unit is electrically connected to the heater via the connection terminal,
    The aerosol generating device, wherein the coloring section is formed in the cartridge.
  3.  請求項2に記載のエアロゾル生成装置であって、
     前記着色部は、前記カートリッジの前記電極部に形成されている、エアロゾル生成装置。
    An aerosol generator according to claim 2,
    The aerosol generating device, wherein the colored portion is formed on the electrode portion of the cartridge.
  4.  請求項2又は3に記載のエアロゾル生成装置であって、
     前記コントローラは、
     前記エアロゾル源情報取得処理の結果に基づいて、前記電源から前記ヒータへの放電を制御する、エアロゾル生成装置。
    The aerosol generator according to claim 2 or 3,
    The controller is
    An aerosol generating device that controls discharge from the power supply to the heater based on the result of the aerosol source information acquisition process.
  5.  請求項4に記載のエアロゾル生成装置であって、
     前記コントローラは、
     前記電源から前記ヒータへの放電を複数のモードで制御可能であり、
     前記エアロゾル源情報取得処理の結果に基づいて、前記複数のモードから1つのモードを選択し、選択した前記モードで前記電源から前記ヒータへの放電を制御する、エアロゾル生成装置。
    5. The aerosol generating device of claim 4,
    The controller is
    discharge from the power supply to the heater can be controlled in a plurality of modes;
    The aerosol generating device, which selects one mode from the plurality of modes based on the result of the aerosol source information acquisition process, and controls discharge from the power supply to the heater in the selected mode.
  6.  請求項4に記載のエアロゾル生成装置であって、
     前記コントローラは、
     前記電源から前記ヒータへの放電を、レギュラーモードとメンソールモードとを少なくとも含む複数のモードで制御可能であり、
     前記エアロゾル源情報取得処理において、前記エアロゾル源にメンソールが含まれることを示す情報を取得できた場合、前記メンソールモードで前記電源から前記ヒータへの放電を制御し、
     前記エアロゾル源情報取得処理において、前記エアロゾル源にメンソールが含まれないことを示す情報を取得できた場合、前記レギュラーモードで前記電源から前記ヒータへの放電を制御する、エアロゾル生成装置。
    5. The aerosol generating device of claim 4,
    The controller is
    Discharge from the power supply to the heater can be controlled in multiple modes including at least a regular mode and a menthol mode,
    In the aerosol source information acquisition process, if information indicating that the aerosol source contains menthol is acquired, controlling discharge from the power supply to the heater in the menthol mode,
    The aerosol generating device, wherein in the aerosol source information acquisition process, when information indicating that the aerosol source does not contain menthol is acquired, the discharge from the power supply to the heater is controlled in the regular mode.
  7.  請求項6に記載のエアロゾル生成装置であって、
     前記コントローラは、
     前記エアロゾル源情報取得処理において、前記カートリッジの前記貯留室に貯留する前記エアロゾル源にメンソールが含まれるか否かに関する情報を取得できなかった場合、前記レギュラーモードで前記電源から前記ヒータへの放電を制御する、エアロゾル生成装置。
    An aerosol generator according to claim 6,
    The controller is
    In the aerosol source information acquisition process, if the information regarding whether or not the aerosol source stored in the storage chamber of the cartridge contains menthol cannot be acquired, discharge from the power source to the heater is performed in the regular mode. Controlled aerosol generator.
  8.  請求項2~7のいずれか一項に記載のエアロゾル生成装置であって、
     前記電源ユニットは、前記電源と電気的に接続したコネクタをさらに備え、
     前記コネクタには、前記カートリッジの前記接続端子が着脱可能に電気的に接続され、
     前記コントローラは、
     前記電源ユニットの前記コネクタに前記カートリッジの前記接続端子が電気的に接続されていない状態から、前記電源ユニットの前記コネクタに前記カートリッジの前記接続端子が電気的に接続された状態へと遷移することを契機として、前記エアロゾル源情報取得処理を実行する、エアロゾル生成装置。
    The aerosol generator according to any one of claims 2 to 7,
    The power supply unit further comprises a connector electrically connected to the power supply,
    the connection terminal of the cartridge is detachably electrically connected to the connector;
    The controller is
    Transitioning from a state in which the connection terminal of the cartridge is not electrically connected to the connector of the power supply unit to a state in which the connection terminal of the cartridge is electrically connected to the connector of the power supply unit. an aerosol generating device that executes the aerosol source information acquisition process using the above as a trigger.
  9.  請求項8に記載のエアロゾル生成装置であって、
     前記エアロゾル生成装置は、ユーザが操作可能な操作部をさらに備え、
     前記コントローラは、
     前記ユーザによって前記操作部が操作された後に、前記電源ユニットの前記コネクタに前記カートリッジの前記接続端子が電気的に接続されていない状態から、前記電源ユニットの前記コネクタに前記カートリッジの前記接続端子が電気的に接続された状態へと遷移することを契機として、前記エアロゾル源情報取得処理を実行する、エアロゾル生成装置。
    An aerosol generator according to claim 8,
    The aerosol generator further comprises a user-operable operation unit,
    The controller is
    After the operation unit is operated by the user, the connection terminal of the cartridge is connected to the connector of the power supply unit from a state in which the connection terminal of the cartridge is not electrically connected to the connector of the power supply unit. An aerosol generating device that executes the aerosol source information acquisition process with transition to an electrically connected state as a trigger.
  10.  請求項2~9のいずれか一項に記載のエアロゾル生成装置であって、
     前記着色部は、光を透過しないように形成されている、エアロゾル生成装置。
    The aerosol generator according to any one of claims 2 to 9,
    The aerosol generating device, wherein the colored portion is formed so as not to transmit light.
  11.  請求項2~10のいずれか一項に記載のエアロゾル生成装置であって、
     前記着色部は、赤色、緑色及び青色のいずれかに着色されている、エアロゾル生成装置。
    The aerosol generator according to any one of claims 2 to 10,
    The aerosol generating device, wherein the colored portion is colored red, green, or blue.
  12.  請求項2~11のいずれか一項に記載のエアロゾル生成装置であって、
     前記エアロゾル源情報取得処理によって取得した、前記カートリッジの前記貯留室に貯留する前記エアロゾル源にメンソールが含まれるか否かに関する情報を保存可能な記憶媒体をさらに備え、
     前記記憶媒体に保存された前記カートリッジの前記貯留室に貯留する前記エアロゾル源にメンソールが含まれるか否かに関する情報を外部に送信可能である、エアロゾル生成装置。
    The aerosol generator according to any one of claims 2 to 11,
    further comprising a storage medium capable of storing information on whether or not the aerosol source stored in the storage chamber of the cartridge contains menthol, which is acquired by the aerosol source information acquisition process;
    An aerosol generating device capable of externally transmitting information regarding whether or not menthol is contained in the aerosol source stored in the storage chamber of the cartridge stored in the storage medium.
  13.  請求項2~12のいずれか一項に記載のエアロゾル生成装置であって、
     前記エアロゾル生成装置は、前記カートリッジが収容されるカートリッジカバーをさらに備え、
     前記色識別センサは、前記カートリッジカバーに設けられている、エアロゾル生成装置。
    The aerosol generator according to any one of claims 2 to 12,
    The aerosol generator further comprises a cartridge cover housing the cartridge,
    The aerosol generating device, wherein the color identification sensor is provided on the cartridge cover.
  14.  請求項2~13のいずれか一項に記載のエアロゾル生成装置であって、
     前記色識別センサは、
     前記着色部に向かって光を投光可能な投光部と、前記着色部から反射した光を受光し、受光した光の色成分を数値化するカラーセンサ部と、を有し、
     前記コントローラは、
     前記カラーセンサ部に所定の色成分の数値を有する検査光を受光させ、
     前記検査光の前記所定の色成分の数値と、前記カラーセンサ部で数値化された前記検査光の色成分の数値と、に基づいて、前記カラーセンサ部で数値化された光の色成分の数値を較正する、キャリブレーション処理を実行可能である、エアロゾル生成装置。
    The aerosol generator according to any one of claims 2 to 13,
    The color identification sensor is
    a light projecting section capable of projecting light toward the colored section; and a color sensor section that receives the light reflected from the colored section and quantifies color components of the received light,
    The controller is
    causing the color sensor unit to receive inspection light having a numerical value of a predetermined color component;
    The color component of the light quantified by the color sensor unit based on the numerical value of the predetermined color component of the inspection light and the numerical value of the color component of the inspection light quantified by the color sensor unit. An aerosol generating device capable of performing a calibration process for calibrating a numerical value.
  15.  請求項2~12のいずれか一項に記載のエアロゾル生成装置であって、
     前記エアロゾル生成装置は、前記カートリッジが収容されるカートリッジカバーをさらに備え、
     前記色識別センサは、
     前記カートリッジカバーの内部に設けられており、
     前記着色部に向かって光を投光可能な投光部と、前記着色部から反射した光を受光し、受光した光の色成分を数値化するカラーセンサ部と、を有し、
     前記コントローラは、
     前記カートリッジカバーに前記カートリッジが収容されておらず、且つ、前記カートリッジカバーの内部に前記カートリッジカバーの外部の光が入らない状態で、前記投光部から所定の色成分の数値を有する検査光を投光させ、
     前記検査光の前記所定の色成分の数値と、前記カラーセンサ部で数値化された前記検査光の色成分の数値と、に基づいて、前記カラーセンサ部で数値化された光の色成分の数値を較正する、キャリブレーション処理を実行可能である、エアロゾル生成装置。
    The aerosol generator according to any one of claims 2 to 12,
    The aerosol generator further comprises a cartridge cover housing the cartridge,
    The color identification sensor is
    provided inside the cartridge cover,
    a light projecting section capable of projecting light toward the colored section; and a color sensor section that receives the light reflected from the colored section and quantifies color components of the received light,
    The controller is
    In a state in which the cartridge is not housed in the cartridge cover and light outside the cartridge cover does not enter the interior of the cartridge cover, inspection light having a numerical value of a predetermined color component is emitted from the light projecting unit. let it shine,
    The color component of the light quantified by the color sensor unit based on the numerical value of the predetermined color component of the inspection light and the numerical value of the color component of the inspection light quantified by the color sensor unit. An aerosol generating device capable of performing a calibration process for calibrating a numerical value.
PCT/JP2022/008581 2021-04-01 2022-03-01 Aerosol generation apparatus WO2022209527A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22779752.9A EP4316288A1 (en) 2021-04-01 2022-03-01 Aerosol generation apparatus
JP2023510695A JPWO2022209527A1 (en) 2021-04-01 2022-03-01

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021063177 2021-04-01
JP2021-063177 2021-04-01

Publications (1)

Publication Number Publication Date
WO2022209527A1 true WO2022209527A1 (en) 2022-10-06

Family

ID=83458447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008581 WO2022209527A1 (en) 2021-04-01 2022-03-01 Aerosol generation apparatus

Country Status (3)

Country Link
EP (1) EP4316288A1 (en)
JP (1) JPWO2022209527A1 (en)
WO (1) WO2022209527A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024164790A1 (en) * 2023-02-09 2024-08-15 深圳市合元科技有限公司 Aerosol generation apparatus and control method therefor
WO2024179551A1 (en) * 2023-03-02 2024-09-06 深圳市合元科技有限公司 Color testing calibration method and aerosol generation apparatus
WO2024183639A1 (en) * 2023-03-03 2024-09-12 深圳市合元科技有限公司 Control method for aerosol generating device, and aerosol generating device and system

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012513750A (en) 2008-12-24 2012-06-21 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Articles having identification information for use in an electrically heated smoking system
JP2013086502A (en) * 2011-10-24 2013-05-13 Sinfonia Technology Co Ltd Color printer
JP2016045175A (en) * 2014-08-26 2016-04-04 株式会社Jvcケンウッド Sensor circuit, correction method, and projector device
JP2019150031A (en) 2014-05-20 2019-09-12 アール・エイ・アイ・ストラテジック・ホールディングス・インコーポレイテッド Electrically-powered aerosol delivery system
WO2020006311A1 (en) * 2018-06-27 2020-01-02 Juul Labs, Inc. Connected vaporizer device systems
WO2020136866A1 (en) * 2018-12-28 2020-07-02 日本たばこ産業株式会社 Information processing device, information processing method, and program
JP2020099345A (en) * 2013-03-15 2020-07-02 アール・エイ・アイ・ストラテジック・ホールディングス・インコーポレイテッド Heating control configuration for electronic smoking article and associated system and method
JP2020524502A (en) * 2017-06-23 2020-08-20 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Nonflammable Vaping Device
JP2020526208A (en) 2017-10-30 2020-08-31 ケーティー・アンド・ジー・コーポレーション A method of controlling the temperature of the heater included in the aerosol generator for each type of cigarette and an aerosol generator that controls the temperature of the heater for each type of cigarette.
JP2020532975A (en) * 2017-09-07 2020-11-19 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム MEMS sound generators and related user interfaces and methods for aerosol generators
JP6834052B1 (en) * 2020-09-30 2021-02-24 日本たばこ産業株式会社 Power supply unit of aerosol generator
JP2021063177A (en) 2019-10-15 2021-04-22 東洋紡株式会社 Thermoplastic polyester elastomer resin composition for foam molding, foam molding, and method for producing foam molding

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012513750A (en) 2008-12-24 2012-06-21 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Articles having identification information for use in an electrically heated smoking system
JP2013086502A (en) * 2011-10-24 2013-05-13 Sinfonia Technology Co Ltd Color printer
JP2020099345A (en) * 2013-03-15 2020-07-02 アール・エイ・アイ・ストラテジック・ホールディングス・インコーポレイテッド Heating control configuration for electronic smoking article and associated system and method
JP2019150031A (en) 2014-05-20 2019-09-12 アール・エイ・アイ・ストラテジック・ホールディングス・インコーポレイテッド Electrically-powered aerosol delivery system
JP2016045175A (en) * 2014-08-26 2016-04-04 株式会社Jvcケンウッド Sensor circuit, correction method, and projector device
JP2020524502A (en) * 2017-06-23 2020-08-20 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Nonflammable Vaping Device
JP2020532975A (en) * 2017-09-07 2020-11-19 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム MEMS sound generators and related user interfaces and methods for aerosol generators
JP2020526208A (en) 2017-10-30 2020-08-31 ケーティー・アンド・ジー・コーポレーション A method of controlling the temperature of the heater included in the aerosol generator for each type of cigarette and an aerosol generator that controls the temperature of the heater for each type of cigarette.
WO2020006311A1 (en) * 2018-06-27 2020-01-02 Juul Labs, Inc. Connected vaporizer device systems
WO2020136866A1 (en) * 2018-12-28 2020-07-02 日本たばこ産業株式会社 Information processing device, information processing method, and program
JP2021063177A (en) 2019-10-15 2021-04-22 東洋紡株式会社 Thermoplastic polyester elastomer resin composition for foam molding, foam molding, and method for producing foam molding
JP6834052B1 (en) * 2020-09-30 2021-02-24 日本たばこ産業株式会社 Power supply unit of aerosol generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024164790A1 (en) * 2023-02-09 2024-08-15 深圳市合元科技有限公司 Aerosol generation apparatus and control method therefor
WO2024179551A1 (en) * 2023-03-02 2024-09-06 深圳市合元科技有限公司 Color testing calibration method and aerosol generation apparatus
WO2024183639A1 (en) * 2023-03-03 2024-09-12 深圳市合元科技有限公司 Control method for aerosol generating device, and aerosol generating device and system

Also Published As

Publication number Publication date
EP4316288A1 (en) 2024-02-07
JPWO2022209527A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
WO2022209527A1 (en) Aerosol generation apparatus
JP6890205B1 (en) Power supply unit of aerosol generator
JP6922062B1 (en) Power supply unit for aerosol generator
JP6915142B1 (en) Power supply unit of aerosol generator
WO2018055381A1 (en) Electronic vapour provision system
WO2022209528A1 (en) Aerosol generation device
CN112716059B (en) Control device for aerosol inhaler
US20230095903A1 (en) Power supply unit for aerosol generation device
US20230102556A1 (en) Aerosol generation device
JP7159410B2 (en) aerosol generator
CN115768293A (en) Aerosol generating device
WO2021058776A1 (en) Smoking substitute device
JP7535470B2 (en) Aerosol generator power supply unit
US11612188B2 (en) Power supply unit for aerosol generation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779752

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023510695

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022779752

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022779752

Country of ref document: EP

Effective date: 20231102

NENP Non-entry into the national phase

Ref country code: DE