WO2022209441A1 - Absorber - Google Patents

Absorber Download PDF

Info

Publication number
WO2022209441A1
WO2022209441A1 PCT/JP2022/007363 JP2022007363W WO2022209441A1 WO 2022209441 A1 WO2022209441 A1 WO 2022209441A1 JP 2022007363 W JP2022007363 W JP 2022007363W WO 2022209441 A1 WO2022209441 A1 WO 2022209441A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
resin particles
absorbent
mass
less
Prior art date
Application number
PCT/JP2022/007363
Other languages
French (fr)
Japanese (ja)
Inventor
知穗 大仁田
嘉津義 ▲高▼松
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Priority to JP2023510656A priority Critical patent/JPWO2022209441A1/ja
Priority to CN202280024558.6A priority patent/CN117083043A/en
Publication of WO2022209441A1 publication Critical patent/WO2022209441A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F13/531Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having a homogeneous composition through the thickness of the pad
    • A61F13/532Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having a homogeneous composition through the thickness of the pad inhomogeneous in the plane of the pad
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F13/534Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having an inhomogeneous composition through the thickness of the pad
    • A61F13/535Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having an inhomogeneous composition through the thickness of the pad inhomogeneous in the plane of the pad, e.g. core absorbent layers being of different sizes

Definitions

  • the present disclosure relates to absorbent bodies.
  • Patent Literature 1 describes a method for producing water-absorbing resin particles having a particle size suitable for use in absorbent articles such as diapers.
  • the absorber is required that the liquid once absorbed in the absorber does not easily release to the outside even when pressurized, that is, the amount of regurgitation is small.
  • the present inventors have found that the amount of backflow can be reduced by using water-absorbent resin particles exhibiting a 5-minute value of no-pressure DW of 10 ml/g or less for the absorbent body.
  • water-absorbent resin particles exhibiting a 5-minute value of no-pressure DW of 10 ml/g or less for the absorbent body.
  • leakage in the longitudinal direction of the absorbent particularly from the back side during wearing, may not be prevented.
  • One aspect of the present disclosure relates to providing an absorbent body capable of suppressing backflow after liquid absorption and reducing leakage in the longitudinal direction of the absorbent body.
  • An absorbent body is an absorbent body having a longitudinal direction and a width direction orthogonal to the longitudinal direction, wherein the water absorbent resin particles a exhibit a 5-minute value of unpressurized DW of 10 ml/g or less, and a region A containing water-absorbing resin particles b exhibiting a 5-minute value of no-pressure DW exceeding 10 ml / g, and a region comprising water-absorbing resin particles b exhibiting a 5-minute value of no-pressure DW exceeding 10 ml / g B, the amount of the water absorbent resin particles a contained in the region A is 15 to 55% by mass with respect to the total amount of the water absorbent resin particles contained in the region A, and the water absorbent resin particles contained in the region B
  • the amount of a is 0% by mass or more and less than 15% by mass with respect to the total amount of the water-absorbing resin particles contained in the region B, and at least a part of the region B is located at or near both ends in the longitudinal direction of
  • the regions B may be positioned at both ends of the absorber in the longitudinal direction and formed along the shapes of both ends of the absorber.
  • At least part of the region B may be formed at a position where the distance from the longitudinal end of the absorbent body is 0 to 40% of the length of the absorbent body in the longitudinal direction.
  • the total area of region B may be 20 to 80% of the total absorber.
  • the physiological saline water absorption speed of the water-absorbing resin particles a is 60 seconds or longer.
  • the water-absorbent resin particles a have a physiological saline water retention capacity of 16 to 55 g/g.
  • the water-absorbent resin particles a are preferably coated resin particles having a crosslinked polymer particle and a water-insoluble coating layer covering at least part of the surface of the crosslinked polymer particle.
  • an absorbent body capable of suppressing backflow after liquid absorption and reducing leakage in the longitudinal direction of the absorbent body.
  • FIG. 1 is a schematic plan view showing an embodiment of an absorbent body
  • FIG. (a) and (b) are schematic plan views showing other embodiments of the absorbent body.
  • (a) and (b) are schematic plan views showing other embodiments of the absorbent body.
  • 1 is a schematic cross-sectional view showing an embodiment of an absorbent article;
  • FIG. 2 is a schematic diagram showing a method for measuring the amount of water absorbed under load of water absorbent resin particles.
  • FIG. 3 is a schematic diagram showing a method for measuring the non-pressure DW of water absorbent resin particles. It is a schematic diagram which shows the method to evaluate the leakiness of an absorbent article.
  • each component in the composition means the total amount of the plurality of substances present in the composition unless otherwise specified when there are multiple substances corresponding to each component in the composition.
  • the term "layer” includes not only a shape structure formed over the entire surface but also a shape structure formed partially when observed as a plan view. Unless otherwise specified, the area, length and shape of the absorber refer to those in plan view.
  • a planar view of the absorbent body means that the main surface of the absorbent body (the surface that does not constitute the thickness) is placed on a horizontal plane and viewed from above in the vertical direction in the thickness direction of the absorbent body.
  • the absorbent body according to this embodiment has a longitudinal direction and a width direction orthogonal to the longitudinal direction, and has regions A and B.
  • Region A includes water absorbent resin particles a exhibiting a 5-minute value of no-pressure DW of 10 ml/g or less, and water-absorbent resin particles b exhibiting a 5-minute value of no-pressure DW exceeding 10 ml/g.
  • Region B contains water-absorbent resin particles b that exhibit a 5-minute value of unpressurized DW greater than 10 ml/g.
  • the amount of the water absorbent resin particles a contained in the region A is 15 to 55% by mass with respect to the total amount of the water absorbent resin particles contained in the region A, and the amount of the water absorbent resin particles a contained in the region B is It is 0% by mass or more and less than 15% by mass with respect to the total amount of the water-absorbent resin particles contained in B. At least part of the region B is located at or near both ends in the longitudinal direction of the absorbent body.
  • the absorber By having the absorber having the above structure, it is possible to suppress the backflow amount of the absorber after liquid absorption and reduce leakage in the longitudinal direction of the absorber. Specifically, by arranging the region A containing a sufficient amount of the water-absorbent resin particles a with a sufficiently low 5-minute value of the non-pressurized DW, the amount of water absorption is saved and the initial diffusibility of the liquid is increased. , the backflow amount after liquid absorption is reduced. In addition, since a region B containing a sufficient amount of water-absorbing resin particles b having a 5-minute value of non-pressurized DW higher than a certain value is arranged at or near both ends of the absorbent body, it is not absorbed in the region A. It is possible to quickly absorb the collected liquid in the region B and reduce leakage in the longitudinal direction of the absorbent body.
  • Region A includes water-absorbing resin particles a exhibiting a 5-minute value of no-pressure DW of 10 ml/g or less, and water-absorbing resin particles b exhibiting a 5-minute value of no-pressure DW exceeding 10 ml/g.
  • the amount of the water absorbent resin particles a contained in the region A is 15 to 55% by mass with respect to the total amount of the water absorbent resin particles contained in the region A.
  • the amount of the water-absorbent resin particles a contained in the region A is 18% by mass or more, 19% by mass or more, 20% by mass or more, 25% by mass or more, or 30% by mass with respect to the total amount of the water-absorbent resin particles contained in the region A. % or more, 35% by mass or more, 40% by mass or more, 45% by mass or more, or 50% by mass or more, 53% by mass or less, 50% by mass or less, 45% by mass or less, 40% by mass or less, 35% by mass % or less, 30 mass % or less, 25 mass % or less, or 22 mass % or less.
  • the amount of the water absorbent resin particles a contained in the region A may be 18 to 53 mass % or 20 to 50 mass % with respect to the total amount of the water absorbent resin particles contained in the region A.
  • the amount of water-absorbing resin particles b contained in region A is 45% by mass or more, 50% by mass or more, 55% by mass or more, 60% by mass or more, relative to the total amount of water-absorbing resin particles contained in region A. It may be 65% by mass or more, 70% by mass or more, 75% by mass or more, 80% by mass or more, 81% by mass or more, or 82% by mass or more.
  • the amount of the water absorbent resin particles b contained in the region A is 85% by mass or less, 82% by mass or less, 81% by mass or less, 80% by mass or less with respect to the total amount of the water absorbent resin particles contained in the region A, It may be 75% by mass or less, 70% by mass or less, 65% by mass or less, 60% by mass or less, 55% by mass or less, or 52% by mass or less.
  • the amount of the water absorbent resin particles b contained in the region A may be 45 to 85 mass % or 50 to 80 mass % with respect to the total amount of the water absorbent resin particles contained in the region A.
  • the water-absorbing resin particles a contained in the region A from the viewpoint of improving the absorption speed and reducing the amount of backflow after absorbing the liquid by increasing the initial diffusibility of the liquid and suppressing the occurrence of the gel blocking phenomenon. and the amount of the water absorbent resin particles b is preferably within the above range.
  • Region B contains water-absorbent resin particles b that exhibit a 5-minute value of non-pressurized DW of more than 10 ml/g.
  • the amount of the water absorbent resin particles b contained in the region B is more than 85% by mass with respect to the total amount of the water absorbent resin particles contained in the region B.
  • the amount of the water absorbent resin particles b contained in the region B is 88% by mass or more, 90% by mass or more, 92% by mass or more, 95% by mass or more, 98% by mass of the total amount of the water absorbent resin particles contained in the region B. Above, it may be 99% by mass or more, 99.5% by mass or more, or 100% by mass.
  • the amount of water-absorbing resin particles b contained in region B is 100% by mass or less, 99.5% by mass or less, 99% by mass or less, or 98% by mass or less with respect to the total amount of water-absorbing resin particles contained in region B. It's okay.
  • the amount of the water absorbent resin particles b contained in the region B may be 88 to 100% by mass, or 90 to 100% by weight with respect to the total amount of the water absorbent resin particles contained in the region B.
  • Region B may or may not contain water-absorbent resin particles a.
  • the amount of the water absorbent resin particles a contained in the region B is 0 mass % or more and less than 15 mass % with respect to the total amount of the water absorbent resin particles contained in the region B.
  • the amount of the water absorbent resin particles a contained in the region B is 0.5% by mass or more, 1% by mass or more, 2% by mass or more, 5% by mass or more, 7 % by mass or more, 10% by mass or more, or 12% by mass or more, 12% by mass or less, 10% by mass or less, 7% by mass or less, 5% by mass or less, 2% by mass or less, 1% by mass or less, or It may be 0.5% by mass or less.
  • the amounts of the water absorbent resin particles a and the water absorbent resin particles b contained in the region B are preferably within the above range.
  • the amount of the water absorbent resin particles a contained in the region B may be 0 to 12% by weight, or 0 to 10% by weight with respect to the total amount of the water absorbent resin particles contained in the region B.
  • the water-absorbent resin particles a contained in region A and the water-absorbent resin particles a contained in region B may be of the same type, or may be of different types, for example, obtained under different manufacturing conditions.
  • the water-absorbent resin particles b contained in the region A and the water-absorbent resin particles b contained in the region B may be of the same type, or may be of different types, for example, obtained under different production conditions.
  • FIG. 1 is a schematic plan view of the absorbent body according to the present embodiment, and is viewed from the side with which the liquid contacts first when the absorbent body is used.
  • the absorber 10 is sheet-like, rectangular in plan view, and has a longitudinal direction X and a width direction Y orthogonal to the longitudinal direction.
  • the length in the longitudinal direction X is longer than the length in the width direction Y.
  • a ratio X/Y of the length in the longitudinal direction X to the length in the width direction Y may be 1.0 to 5.0.
  • the ratio X/Y may be 1.5 or greater, 2.0 or greater, 2.5 or greater, or 3.0 or greater, and 4.5 or less, 4.0 or less, 3.5 or less, or 3.0 or less.
  • the absorbent body 10 has two regions B at both ends in the longitudinal direction. Region B is rectangular and formed to extend along the shape of both ends of absorbent body 10 . In FIG. 1, the region B is in contact with the entire lengthwise end 1 of the absorbent body 10, and connects portions of the two opposite short lengthwise ends 3 to each other. A region A occupies a portion of the absorbent body 10 other than the region B, including the vicinity of the central portion of the absorbent body. By arranging the region A near the center of the absorbent body, the amount of water absorption in the vicinity of the central part of the absorbent body, which the liquid first comes into contact with in the early stage of water absorption, is saved, and the initial diffusibility of the liquid is further increased. can be reduced more efficiently.
  • the longitudinal length d1 of the absorbent body 10 in one region B is 10 to 40% of the longitudinal length (maximum length) of the absorbent body 10.
  • the longitudinal length d1 of the absorbent body 10 in region B is 12% or more, 15% or more, 18% or more, 20% or more, 25% or more, 30% or more, or 35% of the longitudinal length of the absorbent body 10. % or more, and may be 35% or less, 30% or less, 25% or less, 20% or less, 15% or less, or 12% or less.
  • the length d1 is the maximum length of the region B in the longitudinal direction of the absorbent body 10, and in the embodiment shown in FIG. 1, the length d1 is constant over the entire width direction of the absorbent body.
  • FIGS. 2(a) and 2(b) are schematic plan views showing modifications of the absorbent body 10.
  • FIG. 2( a ) regions B are formed in the vicinity of both longitudinal ends of the absorbent body 10 .
  • the region B is formed to extend near the longitudinal end 1 and is not in contact with the longitudinal end 1 and the lateral end 3 of the absorbent body 10 .
  • region B absorbs It is formed at a position where the distance d2 from the longitudinal end 1 of the body 10 is 0 to 40% of the length (maximum length) of the absorbent body 10 in the longitudinal direction.
  • the formation position of the region B is such that the distance d2 from the longitudinal end 1 of the absorbent body 10 is 0% or more, 3% or more, 5% or more, 8% or more, or 10% of the longitudinal length of the absorbent body 10.
  • At least part of the region B is formed at a position where the distance d2 from the longitudinal end 1 of the absorbent body 10 is 3 to 35% or 5 to 30% of the longitudinal length of the absorbent body 10.
  • Region B may be formed in a position other than the above in addition to the above range of absorbent body 10 .
  • the entire region B (100% of the total area of the region B) is formed at a position where the distance d2 from the longitudinal end 1 of the absorbent body 10 is 0 to 40% of the length of the absorbent body 10 in the longitudinal direction. preferably.
  • the portion of the end 1 that serves as a reference for the distance d2 is the portion of the end 1 that extends farthest to the outside of the absorbent body.
  • any part of the edge 1 may be used as the reference for the distance d2 of the edge 1.
  • the regions B are divided into 6 regions, and 3 regions are formed near the two ends 1 of the absorbent body 10 in the longitudinal direction.
  • the region B formed at one end side in the longitudinal direction of the absorbent body 10 may be one, or may be divided into a plurality of regions.
  • each region B is drawn as a rectangle, but it may have any shape such as a circle, an ellipse, a polygon, and an irregular shape.
  • FIGS. 3(a) and 3(b) are schematic plan views showing modifications of the absorbent body 10.
  • the region B is formed in an annular shape over the entire circumference of the absorbent body 10 .
  • a region A is formed in the vicinity of the central portion of the absorbent body 10 .
  • the regions B formed around the entire circumference of the absorbent body 10 may all be connected to one (may be an endless ring), and even if there are one or more locations divided by the region A good.
  • the regions B need only be formed at least at the longitudinal ends of the absorbent body 10 or in the vicinity thereof, and may or may not be formed at the lateral ends 3 of the absorbent body 10 or in the vicinity thereof. good.
  • the longitudinal end 1 and the lateral end 3 of the absorber 10 may be straight or curved.
  • the shape of the absorbent body 10 is typically rectangular, but the shape is not particularly limited as long as it has a longitudinal direction X and a width direction Y shorter than this.
  • the absorber 10 has a longitudinal end 1 that curves outwardly, and a transverse end 3 that curves outwardly.
  • regions B are formed along the shape of both ends of the absorbent body 10 in the longitudinal direction.
  • the ends 3 in the width direction may be curved lines convex outward from the absorbent body, or may be straight lines.
  • the ends 1 in the longitudinal direction may be curved lines convex toward the inner side of the absorbent body, or may be straight lines.
  • the region B is formed at a position where the distance d2 from the end 1 in the longitudinal direction of the absorbent body 10 is 0 to 40% of the length d in the longitudinal direction of the absorbent body 10.
  • the distance d2 from the direction edge 1 refers to the longitudinal distance from the position of the longitudinal edge 1 that protrudes most outward in the longitudinal direction.
  • the total area of region A may be 20 to 80% of the area of absorbent body 10 .
  • the area of the region A is 20% or more, 25% or more, 30% or more, 35% or more, 40% or more, 45% or more, 50% or more, 55% or more, 60% or more of the area of the absorbent body 10, 65% or more, 70% or more, 75% or more, 80% or less, 75% or less, 70% or less, 65% or less, 60% or less, 55% or less, 50% or less, 45% or less, 40% 35% or less, 30% or less, or 25% or less.
  • the total area of region B may be 20 to 80% of the area of absorbent body 10 .
  • the area of the region B is 20% or more, 25% or more, 30% or more, 35% or more, 40% or more, 45% or more, 50% or more, 55% or more, 60% or more of the area of the absorbent body 10, 65% or more, 70% or more, 75% or more, 80% or less, 75% or less, 70% or less, 65% or less, 60% or less, 55% or less, 50% or less, 45% or less, 40% 35% or less, 30% or less, or 25% or less.
  • the absorbent body 10 may be line-symmetrical or asymmetrical with respect to an axis passing through the central part of the absorbent body and parallel to the longitudinal direction of the absorbent body.
  • the absorbent body may be line-symmetrical or asymmetrical with respect to an axis passing through the central portion of the absorbent body and parallel to the lateral direction of the absorbent body.
  • the water absorbent resin particles a show a 5-minute value of no-pressure DW of 10 ml/g or less.
  • the 5-minute value of no-pressure DW is the water absorption rate represented by the amount of physiological saline absorbed by the water-absorbing resin particles in 5 minutes after contact with the physiological saline under no pressure.
  • the non-pressurized DW is represented by the absorbed amount [mL] per 1 g of the water-absorbing resin particles before absorption of physiological saline.
  • the 5-minute value of the non-pressurized DW of the water absorbent resin particles a is less than 10 ml/g, 9 ml/g or less, 8 ml/g or less, 7 ml/g or less, 6 ml/g or less, 5 ml/g or less, 4 ml/g or less. , or 3 ml/g or less.
  • the 5-minute value of the non-pressurized DW of the water absorbent resin particles a is 0.1 ml/g or more, 1 ml/g or more, 2 ml/g or more, 3 ml/g or more, 4 ml/g or more, 5 ml/g or more, 6 ml/g or more.
  • the 5-minute value of the non-pressurized DW of the water absorbent resin particles a may be 0.1 ml/g or more and less than 10 ml/g, or 1 ml/g or more and 9 ml/g or less.
  • the 5-minute value of no-pressure DW is measured by the method described in Examples below.
  • the physiological saline water retention capacity of the water-absorbing resin particles a is 16 g/g or more, 20 g/g or more, 25 g/g or more, 30 g/g or more, from the viewpoint of making it easier to achieve both prevention of liquid leakage and excellent regurgitation amount.
  • the physiological saline water retention capacity of the water absorbent resin particles a may be 16 to 55 g/g, 25 to 51 g/g, or 32 to 47 g/g.
  • the water retention capacity of physiological saline is measured by the method described in Examples below.
  • the water absorption rate of the water-absorbing resin particles a is 60 seconds or longer, 61 seconds or longer, 70 seconds or longer, 75 seconds or longer, 80 seconds or longer, 85 seconds or longer, 90 seconds or longer, and 95 seconds. 98 seconds or more, or 100 seconds or more, 240 seconds or less, 200 seconds or less, 180 seconds or less, 170 seconds or less, 160 seconds or less, 150 seconds or less, 140 seconds or less, 130 seconds or less, 120 seconds or less , 110 seconds or less, or 105 seconds or less.
  • the water absorption speed of the water absorbent resin particles a may be 60 to 240 seconds, or 60 to 200 seconds.
  • the water-absorbent resin particles a When the water absorption speed of the water-absorbent resin particles a is 60 seconds or more, the initial diffusibility of urine is increased, an excellent amount of regurgitation is more likely to be achieved, and the occurrence of gel blocking phenomenon is easily suppressed, which is preferable. It is preferable that the water-absorbent resin particles a have a remarkably lower water absorption speed according to the Vortex method than the water-absorbent resin particles b.
  • the water absorption rate of the water absorbent resin particles Aa by the Vortex method may be 1.5 to 3 times the value of the water absorbent resin particles b.
  • the water absorption rate by the Vortex method is measured in accordance with Japanese Industrial Standards JIS K 7224 (1996) as described in Examples below.
  • the water absorption under load of the water absorbent resin particles a may be, for example, 16 ml/g or more, 18 ml/g or more, 20 ml/g or more, 22 ml/g or more, or 24 ml/g or more, and may be 30 ml/g or less, 28 ml. /g or less, 26 ml/g or less, or 24 ml/g or less.
  • the water absorption under load of the water absorbent resin particles a may be 16 to 30 ml/g, or 18 to 28 ml/g. The water absorption under load is measured by the method described in Examples below.
  • the water-absorbing resin particles a may be, for example, crosslinked polymer particles and coated resin particles having a water-insoluble coating layer covering at least part of the surface of the crosslinked polymer particles.
  • the crosslinked polymer particles that make up the coated resin particles contain a water-absorbing resin, and may contain, for example, a crosslinked polymer formed by polymerization of a monomer containing an ethylenically unsaturated monomer.
  • the crosslinked polymer can have monomeric units derived from ethylenically unsaturated monomers.
  • Crosslinked polymer particles can be produced, for example, by a method including a step of polymerizing a monomer containing an ethylenically unsaturated monomer. Examples of the polymerization method include a reverse phase suspension polymerization method, an aqueous solution polymerization method, a bulk polymerization method, a precipitation polymerization method, and the like.
  • the ethylenically unsaturated monomer may be a water-soluble ethylenically unsaturated monomer (an ethylenically unsaturated monomer whose solubility in 100 g of water is 1 g or more at 98°C).
  • water-soluble ethylenically unsaturated monomers include (meth)acrylic acid and its salts, 2-(meth)acrylamido-2-methylpropanesulfonic acid and its salts, (meth)acrylamide, N,N-dimethyl (Meth)acrylamide, 2-hydroxyethyl (meth)acrylate, N-methylol (meth)acrylamide, polyethylene glycol mono (meth)acrylate, N,N-diethylaminoethyl (meth)acrylate, N,N-diethylaminopropyl (meth) Acrylate, diethylaminopropyl (meth)acrylamide and the like.
  • the amino group may be quaternized.
  • Ethylenically unsaturated monomers may be used alone or in combination of two or more.
  • the acid group may be neutralized with an alkaline neutralizer before use in the polymerization reaction.
  • the neutralization degree of the ethylenically unsaturated monomer with an alkaline neutralizing agent is, for example, 10 to 100 mol%, 50 to 90 mol%, or 60 to 80 mol of the acidic groups in the ethylenically unsaturated monomer. %.
  • the ethylenically unsaturated monomer is at least one selected from the group consisting of (meth)acrylic acid and its salts, acrylamide, methacrylamide, and N,N-dimethylacrylamide. It may contain a compound of the species.
  • the ethylenically unsaturated monomer may contain at least one compound selected from the group consisting of (meth)acrylic acid and its salts, and acrylamide.
  • a monomer other than the ethylenically unsaturated monomers described above may be used.
  • Such monomers can be used, for example, by mixing with an aqueous solution containing the ethylenically unsaturated monomers described above.
  • the amount of ethylenically unsaturated monomer used may be 70 to 100 mol % of the total amount of monomers.
  • the ratio of (meth)acrylic acid and its salt may be 70 to 100 mol % with respect to the total amount of monomers.
  • Cross-linking may occur due to self-crosslinking during polymerization, but cross-linking may be promoted by using an internal cross-linking agent.
  • the use of an internal cross-linking agent facilitates control of the water absorption properties (water retention capacity, etc.) of the crosslinked polymer particles.
  • An internal cross-linking agent is usually added to the reaction solution during the polymerization reaction.
  • the crosslinked polymer particles may be crosslinked in the vicinity of the surface (surface crosslinked).
  • the crosslinked polymer particles may be composed only of polymer particles (crosslinked polymer). Additional ingredients may also be included.
  • the additional component can be located inside the polymer particles, on the surface of the polymer particles, or both.
  • An additional ingredient may be a flow improver (lubricant).
  • the fluidity improver may contain inorganic particles. Examples of inorganic particles include silica particles such as amorphous silica.
  • the shape of the coated resin particles is not particularly limited, and may be, for example, substantially spherical, crushed, or granular, or may be an aggregate of primary particles having these shapes.
  • the median particle size of the coated resin particles may be 100-800 ⁇ m, 150-700 ⁇ m, 200-600 ⁇ m, or 250-500 ⁇ m.
  • the median particle size can be measured by the following method.
  • the sieve top is accumulated in descending order of particle size, and the relationship between the sieve opening and the integrated value of the mass percentage of the particles remaining on the sieve is plotted on logarithmic probability paper.
  • the particle size corresponding to the cumulative mass percentage of 50% by mass is obtained as the median particle size.
  • the water-insoluble coating layer that constitutes the coated resin particles is a layer that contains a water-insoluble component.
  • the water-insoluble component may include not only completely water-insoluble substances but also substances slightly soluble in water (poorly water-soluble substances).
  • the solubility of the water-insoluble component in 100 g of water at 25° C. is, for example, less than 10 g, preferably less than 5 g, more preferably less than 3 g, and even more preferably less than 1 g.
  • the coating layer may be a layer containing at least one water-insoluble component selected from water-insoluble organic compounds and water-insoluble inorganic compounds.
  • water-insoluble organic compounds include acid-modified polymers containing substituted or unsubstituted alkene as structural units, and polymers containing substituted or unsubstituted alkene as structural units and polymers containing alkylene oxide as structural units.
  • Mixed compositions include polyurethanes, polyesters, polyamides, polystyrenes, polycarbonates, polyacrylates, and polyacetals.
  • acid-modified polymers containing substituted or unsubstituted alkenes as structural units and mixed compositions of polymers containing substituted or unsubstituted alkenes as structural units and polymers containing alkylene oxides as structural units
  • it contains at least one selected from the group consisting of an acid-modified copolymer containing unsubstituted alkene as a structural unit, and a copolymer containing unsubstituted alkene as a structural unit and a polymer containing alkylene oxide as a structural unit. It is more preferable to contain at least one selected from the group consisting of a mixed composition of
  • the acid-modified copolymer containing unsubstituted alkenes as structural units may be acid-modified copolymers containing only two or more unsubstituted alkenes as structural units, and one or more unsubstituted alkenes and Acid-modified copolymers containing monomer components other than unsubstituted alkenes as structural units may also be used.
  • Preferred are acid-modified copolymers containing only two or more unsubstituted alkenes as structural units, more preferably acid-modified copolymers containing only two unsubstituted alkenes as structural units.
  • Unsubstituted alkenes used in such copolymers include, for example, ethylene, propylene, and butenes, preferably ethylene and propylene are used.
  • the acid modification of the copolymer may be realized with at least one acid anhydride selected from the group consisting of maleic anhydride, succinic anhydride, and phthalic anhydride, preferably maleic anhydride and/or It is realized by succinic anhydride, more preferably by maleic anhydride.
  • the acid-modified copolymer containing an unsubstituted alkene as a structural unit is preferably an acid-modified ethylene/propylene copolymer, and is a maleic anhydride-modified ethylene/propylene copolymer. is more preferable.
  • the copolymer containing unsubstituted alkenes contained in the mixed composition as structural units may be a copolymer containing only two or more unsubstituted alkenes as structural units, and may be a copolymer containing only one or two or more unsubstituted alkenes and unsubstituted It may be a copolymer containing monomer components other than alkenes as structural units. Preferably, it is a copolymer containing one type of unsubstituted alkene and a monomer component other than the unsubstituted alkene as structural units.
  • unsubstituted alkenes used in the copolymer examples include ethylene, propylene, and butene, preferably ethylene and/or propylene, more preferably ethylene.
  • a monomer component other than the unsubstituted alkene used in the copolymer a water-soluble ethylenically unsaturated monomer is preferably used.
  • the water-soluble ethylenically unsaturated monomer the compounds listed above can be used, but (meth)acrylic acid and/or salts thereof are preferably used.
  • the copolymer containing alkene as a structural unit is preferably a copolymer containing ethylene and a water-soluble ethylenically unsaturated monomer as a structural unit, and ethylene and (meth) acrylic acid and / or a salt thereof as a structural unit. is more preferred, a copolymer containing ethylene and an acrylate as structural units is more preferred, and a copolymer containing ethylene and sodium acrylate as structural units (ethylene/sodium acrylate copolymer) is particularly preferred.
  • the polymer containing the alkylene oxide contained in the mixed composition as a structural unit may be a polyalkylene oxide (homopolymer) containing only one alkylene oxide as a structural unit, or two or more alkylene oxides as structural units. It may be a polyalkylene oxide (copolymer) containing one or more alkylene oxides and may be a copolymer containing monomer components other than alkylene oxide as structural units, but preferably only one type of alkylene oxide is used as a constituent unit.
  • Alkylene oxide includes, for example, ethylene oxide or propylene oxide, preferably ethylene oxide.
  • the polymer containing alkylene oxide as a structural unit is selected from the group consisting of a homopolymer (polyethylene glycol) containing ethylene oxide as a structural unit and an ethylene-propylene copolymer containing ethylene oxide and propylene oxide as structural units. At least one is preferable, and polyethylene glycol is more preferable.
  • water-insoluble inorganic compounds include light anhydrous silicic acid, calcium silicate, silicon dioxide (silica), talc, silicon oxide, and synthetic hydrotalcite. These inorganic compounds may be used individually by 1 type, and may be used in combination of multiple types. Preferably, at least one of silicon dioxide and talc is used, and silicon dioxide is more preferably used because it can exhibit relatively high water permeability when the coating layer is formed. Silicon dioxide may be hydrophilic or hydrophobic. Silicon dioxide is preferably hydrophobic because it facilitates adjustment of the water absorption rate of the water-absorbent resin particles and the 5-minute value of the no-pressure DW within an appropriate range.
  • the crosslinked polymer particles and a coating material may be mixed to form a coating layer on at least part of the surface of the crosslinked polymer particles.
  • the coating material is, for example, a component capable of forming the coating layer described above or a material forming the component.
  • the coating material may contain polyurethane itself, or may contain polyol and polyisocyanate, which are the forming materials of the polyurethane.
  • the method of forming the coating layer is not particularly limited.
  • a coating material can be brought into contact with the dispersed crosslinked polymer particles to form a coating layer.
  • the coating material is dissolved in the dispersion medium in which the polymer particles are dispersed, the crosslinked polymer particles and the coating material are added to the dispersion medium to form a coating layer on the surface of the crosslinked polymer particles. good too.
  • a polyol and a polyisocyanate are used as the coating material
  • an aqueous solution of the polyol is mixed with the dispersion liquid of the crosslinked polymer particles so that the crosslinked polymer particles and the polyol are brought into contact with each other, and then the liquid containing the polyisocyanate is applied.
  • the polyol and polyisocyanate may be polymerized to form a coating layer containing polyurethane on the surface of the crosslinked polymer particles.
  • the dispersion medium may contain a hydrocarbon solvent.
  • hydrocarbon solvents include chain aliphatic hydrocarbons such as n-hexane, n-heptane, 2-methylhexane, 3-methylhexane, 2,3-dimethylpentane, 3-ethylpentane and n-octane.
  • Aromatic hydrocarbons such as benzene, toluene and xylene can be mentioned.
  • a coating layer can be formed by pressing the coating material onto the surface of the crosslinked polymer particles using a particle compounding device. Specifically, a predetermined amount of crosslinked polymer particles and a solid inorganic compound are charged into a particle compounding device. After that, the crosslinked polymer particles and the inorganic compound are subjected to stress (compressive stress and shear stress) by rotation of the stirring blades provided in the device, and the stress causes the inorganic compound to be pressure-bonded to the surface of the crosslinked polymer particles for coating. A resin particle is produced.
  • the 5-minute value of the non-pressurized DW of the water absorbent resin particles b is more than 10 ml/g.
  • the 5-minute value of the non-pressurized DW of the water absorbent resin particles b is 11 ml/g or more, 13 ml/g or more, 15 ml/g or more, 20 ml/g or more, 25 ml/g or more, 30 ml/g or more, 35 ml/g or more.
  • the 5-minute value of the non-pressurized DW of the water absorbent resin particles b is 70 ml/g or less, 65 ml/g or less, 60 ml/g or less, 55 ml/g or less, 50 ml/g or less, 45 ml/g or less, 40 ml/g or less. , 35 ml/g or less, 30 ml/g or less, or 25 ml/g or less.
  • the 5-minute value of the non-pressurized DW of the water absorbent resin particles b may be more than 10 ml/g and 70 ml/g or less, or 15 ml/g or more and 60 ml/g or less.
  • the physiological saline water retention capacity of the water-absorbent resin particles b is 16 g/g or more, 20 g/g or more, 25 g/g or more, 30 g/g or more, from the viewpoint of making it easier to achieve both prevention of liquid leakage and excellent regurgitation amount.
  • the water-absorbent resin particles b may have a physiological saline water retention capacity of 16 to 55 g/g, 25 to 51 g/g, or 32 to 47 g/g.
  • the water absorption speed (water absorption speed according to the Vortex method) of the water-absorbing resin particles b is 2 seconds or more, 5 seconds or more, 10 seconds or more, 15 seconds or more, 20 seconds or more, 25 seconds or more, 30 seconds or more, 32 seconds or more, 35 seconds or more. Seconds or more, or 38 seconds or more, and may be 55 seconds or less, 50 seconds or less, 45 seconds or less, 43 seconds or less, 40 seconds or less, or 38 seconds or less.
  • the water absorption speed of the water absorbent resin particles b may be 2 to 55 seconds, 5 to 50 seconds, or 10 to 45 seconds.
  • the water absorption under load of the water absorbent resin particles b may be, for example, 16 ml/g or more, 18 ml/g or more, 20 ml/g or more, 22 ml/g or more, or 24 ml/g or more, and may be 30 ml/g or less, 28 ml. /g or less, 26 ml/g or less, or 24 ml/g or less.
  • the water absorption under load of the water absorbent resin particles b may be 16 to 30 ml/g, or 18 to 28 ml/g.
  • the water absorbent resin particles b may contain, for example, crosslinked polymer particles formed by polymerization of monomers containing ethylenically unsaturated monomers.
  • the crosslinked polymer particles can have monomer units derived from ethylenically unsaturated monomers.
  • the water absorbent resin particles can be produced, for example, by a method including a step of polymerizing a monomer containing an ethylenically unsaturated monomer. Examples of the polymerization method include a reverse phase suspension polymerization method, an aqueous solution polymerization method, a bulk polymerization method, a precipitation polymerization method, and the like.
  • the same aspect as the crosslinked polymer particles constituting the above-described coated resin particles can be applied.
  • the water absorbent resin particles b may not be coated with a resin.
  • the water-absorbent resin particles b may be crosslinked near the surface (surface crosslinked).
  • the water-absorbent resin particles b may be composed only of polymer particles (crosslinked polymer).
  • An additional ingredient may be a flow improver (lubricant).
  • the fluidity improver may contain inorganic particles. Examples of inorganic particles include silica particles such as amorphous silica.
  • the shape of the water-absorbing resin particles b is not particularly limited.
  • the median particle size of the water-absorbing resin particles b may be 100-800 ⁇ m, 150-700 ⁇ m, 200-600 ⁇ m, or 250-500 ⁇ m.
  • the regions A and B may each contain a fibrous material in addition to the water absorbent resin particles.
  • Region A and region B may be a mixture containing water absorbent resin particles and fibrous materials.
  • the structure of the absorbent body may be, for example, a structure in which water-absorbing resin particles and fibrous substances are uniformly mixed.
  • the total content of the water-absorbing resin particles in the entire absorbent body is 10% by mass or more, 20% by mass or more, 30% by mass or more, 40% by mass or more, or 50% by mass with respect to the total of the water-absorbing resin particles and fibrous materials. % or more, 60% by mass or more, 80% by mass or more, 90% by mass or more, 95% by mass or more, or 100% by mass, 100% by mass or less, 98% by mass or less, 96% by mass or less, 95% by mass or less , 90% by mass or less, 85% by mass or less, 80% by mass or less, 75% by mass or less, 70% by mass or less, or 65% by mass or less.
  • the total content of the water absorbent resin particles in the entire absorbent body is 10 to 100% by mass, 30 to 100% by mass, or 50 to 100% by mass with respect to the total of the water absorbent resin particles and the fibrous material. good.
  • the total content of the water-absorbent resin particles in region A is 10% by mass or more, 20% by mass or more, 30% by mass or more, 40% by mass or more, based on the total content of the water-absorbent resin particles and fibrous materials in region A. 50% by mass or more, 60% by mass or more, 80% by mass or more, 90% by mass or more, or 95% by mass or more, 100% by mass, 100% by mass or less, 98% by mass or less, 96% by mass or less, 95 % by mass or less, 90% by mass or less, 85% by mass or less, 80% by mass or less, 75% by mass or less, 70% by mass or less, or 65% by mass or less.
  • the total content of water absorbent resin particles in region A is 10 to 100% by mass, 30 to 100% by mass, or 50 to 100% by mass with respect to the total content of water absorbent resin particles and fibrous materials in region A.
  • the total content of the water-absorbent resin particles in region B is 10% by mass or more, 20% by mass or more, 30% by mass or more, 40% by mass or more with respect to the total of the water-absorbent resin particles and fibrous materials in region B, 50% by mass or more, 60% by mass or more, 80% by mass or more, 90% by mass or more, or 95% by mass or more, 100% by mass, 100% by mass or less, 98% by mass or less, 96% by mass or less, 95 % by mass or less, 90% by mass or less, 85% by mass or less, 80% by mass or less, 75% by mass or less, 70% by mass or less, or 65% by mass or less.
  • the total content of water absorbent resin particles in region B is 10 to 100% by mass, 30 to 100% by mass, or 50 to 100% by mass with respect to the total content of water absorbent resin particles and fibrous materials in region B.
  • the total content of the water-absorbent resin particles a in the entire absorber is 3% by mass or more, 5% by mass or more, 10% by mass or more, 12% by mass or more with respect to the total content of the water-absorbent resin particles in the entire absorber. , 15% by mass or more, 18% by mass or more, 20% by mass or more, 22% by mass or more, 25% by mass or more, 30% by mass or more, 35% by mass or more, or 40% by mass or more, and 50% by mass or less , 45% by mass or less, 40% by mass or less, 35% by mass or less, 30% by mass or less, or 25% by mass or less.
  • the total content of the water absorbent resin particles a in the entire absorbent body is 3 to 50% by mass, 5 to 40% by mass, or 10 to 25% by mass with respect to the total content of the water absorbent resin particles in the entire absorbent body. There may be.
  • the total content of the water absorbent resin particles b in the entire absorbent body is 50% by mass or more, 55% by mass or more, 60% by mass or more, 65% by mass or more with respect to the total content of the water absorbent resin particles in the entire absorbent body. , 70% by mass or more, 75% by mass or more, 80% by mass or more, 85% by mass or more, 90% by mass or more, or 95% by mass or more, and 97% by mass or less, 95% by mass or less, 90% by mass or less , 85% by mass or less, 80% by mass or less, 75% by mass or less, 70% by mass or less, 65% by mass or less, 60% by mass or less, or 55% by mass or less.
  • the total content of the water absorbent resin particles b in the entire absorbent body is 50 to 97% by mass, 60 to 95% by mass, or 75 to 90% by mass with respect to the total content of the water absorbent resin particles in the entire absorbent body. There may be.
  • the total content of water-absorbing resin particles in the entire absorbent body is 100 g or more, 200 g or more, 300 g or more, 400 g or more, 500 g or more, 600 g or more, 700 g or more, 800 g or more, or 900 g or more per 1 m 2 of the absorbent body.
  • it may be 1000g or less, 900g or less, 800g or less, 700g or less, 600g or less, 500g or less, 400g or less, or 300g or less.
  • the total content of water absorbent resin particles in the entire absorbent body may be 100 to 1000 g per 1 m 2 of the absorbent body.
  • the total content of the water-absorbing resin particles in region A may be 100 g or more, 200 g or more, 300 g or more, 400 g or more, 500 g or more, 600 g or more, 700 g or more, 800 g or more, or 900 g or more per square meter of region A. , 1000 g or less, 900 g or less, 800 g or less, 700 g or less, 600 g or less, 500 g or less, 400 g or less, or 300 g or less.
  • the total content of water absorbent resin particles in the region A may be 100 to 1000 g per 1 m 2 of the region A.
  • the total content of the water-absorbing resin particles in region B is 100 g or more, 200 g or more, 300 g or more, 400 g or more, 500 g or more, 600 g or more, 700 g or more, 800 g or more, or 900 g or more per 1 m 2 of region B. Well, it may be 1000g or less, 900g or less, 800g or less, 700g or less, 600g or less, 500g or less, 400g or less, or 300g or less.
  • the total content of water-absorbing resin particles in region B may be 100 to 1000 g per 1 m 2 of region B.
  • the content of the fibrous material in the absorbent body may be 10 g or more, 50 g or more, or 100 g or more, and may be 800 g or less, 600 g or less, 500 g or less, 300 g or less, or 200 g or less per 1 m 2 of the absorbent body. .
  • the content of fibrous material in the absorbent may be 10-800 g, 10-500 g, or 10-300 g per square meter of absorbent.
  • the content of the fibrous material in region A may be 10 g or more, 50 g or more, or 100 g or more, and 800 g or less, 600 g or less, 500 g or less, 300 g or less, or 200 g or less per 1 m 2 of region A. good.
  • the fibrous content in region A may be from 10 to 800 g, from 10 to 500 g, or from 10 to 300 g per square meter of region A.
  • the content of the fibrous material in region B may be 10 g or more, 50 g or more, or 100 g or more, and 800 g or less, 600 g or less, 500 g or less, 300 g or less, or 200 g or less per 1 m 2 of region B. good.
  • the fibrous content in region B may be from 10 to 800 g, from 10 to 500 g, or from 10 to 300 g per square meter of region B.
  • fibrous materials include pulverized wood pulp; cotton; cotton linter; rayon; cellulosic fibers such as cellulose acetate; synthetic fibers such as polyamide, polyester and polyolefin;
  • the fibrous material may be used alone or in combination of two or more.
  • Hydrophilic fibers can be used as fibrous materials.
  • hydrophilic fibers cellulosic fibers such as wood pulp, cotton, cotton linter, rayon, and cellulose acetate are preferred.
  • the fibers may be adhered to each other by adding an adhesive binder to the fibrous material.
  • adhesive binder examples include heat-fusible synthetic fibers, hot-melt adhesives, adhesive emulsions, and the like.
  • An adhesive binder may be used independently and may be used in combination of 2 or more type.
  • Heat-fusible synthetic fibers include, for example, all-melting binders such as polyethylene, polypropylene and ethylene-propylene copolymer; Only the polyethylene portion can be heat-sealed in the above-mentioned non-total melting type binder.
  • Hot melt adhesives include, for example, ethylene-vinyl acetate copolymer, styrene-isoprene-styrene block copolymer, styrene-butadiene-styrene block copolymer, styrene-ethylene-butylene-styrene block copolymer, styrene-ethylene-propylene-styrene block copolymer. , amorphous polypropylene, and other base polymers with tackifiers, plasticizers, antioxidants, and the like.
  • adhesive emulsions include polymers of at least one monomer selected from the group consisting of methyl methacrylate, styrene, acrylonitrile, 2-ethylhexyl acrylate, butyl acrylate, butadiene, ethylene, and vinyl acetate.
  • the absorber according to this embodiment may contain inorganic powder (for example, amorphous silica), deodorant, antibacterial agent, pigment, dye, fragrance, adhesive, and the like. These additives can impart various functions to the absorbent.
  • the absorber may contain inorganic powder separately from the inorganic particles in the water absorbent resin particles. Examples of inorganic powders include silicon dioxide, zeolite, kaolin, and clay-based powders.
  • the shape of the absorber according to this embodiment may be, for example, a sheet shape.
  • the thickness of the absorber (for example, the thickness of a sheet-like absorber) may be 0.1-20 mm or 0.3-15 mm.
  • a liquid flow path may be provided in the absorber.
  • the liquid channels may be provided, for example, by embossing the absorbent body.
  • the absorbent body forming the region A and the absorbent body forming the region B are manufactured in a sheet form, respectively, and then cut into a predetermined shape to form the region A and the region B.
  • the absorber according to this embodiment is suitable as a structure of an absorbent article. That is, the absorbent article may include the absorbent body according to this embodiment. Other constituent members of the absorbent article include a core wrap that retains the shape of the absorbent body and prevents the constituent members of the absorbent body from falling off and flowing; liquid-impermeable sheet; a liquid-impermeable sheet disposed on the outermost side opposite to the side into which the liquid to be absorbed is permeated.
  • Absorbent articles include diapers (e.g., paper diapers), toilet training pants, incontinence pads, sanitary materials (sanitary napkins, tampons, etc.), perspiration pads, pet sheets, simple toilet members, animal excrement disposal materials, and the like. .
  • the absorbent article may be disposable.
  • FIG. 4 is a cross-sectional view showing an example of an absorbent article.
  • the absorbent article 100 shown in FIG. 4 includes an absorbent body 10, core wrap sheets 20a and 20b, a liquid permeable sheet 30, and a liquid impermeable sheet 40.
  • the liquid impermeable sheet 40, the core wrap sheet 20b, the absorbent body 10, the core wrap sheet 20a, and the liquid permeable sheet 30 are laminated in this order.
  • the absorbent body 10 has water absorbent resin particles 10a and a fiber layer 10b containing fibrous materials.
  • the water absorbent resin particles 10a are dispersed in the fiber layer 10b.
  • the water absorbent resin particles 10a are water absorbent resin particles a, water absorbent resin particles b, or a mixture thereof.
  • the core wrap sheet 20a is arranged on one side of the absorbent body 10 (upper side of the absorbent body 10 in FIG. 4) while being in contact with the absorbent body 10.
  • the core wrap sheet 20b is arranged on the other side of the absorbent body 10 (lower side of the absorbent body 10 in FIG. 4) while being in contact with the absorbent body 10.
  • the absorbent body 10 is arranged between the core wrap sheet 20a and the core wrap sheet 20b.
  • the core wrap sheets 20a and 20b include tissues, nonwoven fabrics, woven fabrics, synthetic resin films having liquid permeable holes, net-like sheets having meshes, and the like.
  • the core wrap sheet 20a and the core wrap sheet 20b have, for example, main surfaces of the same size as the absorber 10. As shown in FIG.
  • the liquid-permeable sheet 30 is arranged on the outermost side on the side into which the liquid to be absorbed enters.
  • the liquid-permeable sheet 30 is arranged on the core wrap sheet 20a while being in contact with the core wrap sheet 20a.
  • the liquid-permeable sheet 30 may be a sheet made of resin or fiber commonly used in the technical field.
  • the liquid-permeable sheet 30 is made of, for example, polyolefins such as polyethylene (PE) and polypropylene (PP), polyethylene terephthalate (PET), and polytrimethylene from the viewpoint of liquid permeability, flexibility, and strength when used in absorbent articles.
  • Polyester such as terephthalate (PTT) and polyethylene naphthalate (PEN), polyamide such as nylon, synthetic resin such as rayon, or synthetic fibers containing these synthetic resins, cotton, silk, hemp, or pulp It may be a natural fiber containing (cellulose).
  • the liquid permeable sheet 30 may contain synthetic fibers. Synthetic fibers may in particular be polyolefin fibers, polyester fibers or combinations thereof. These materials may be used alone, or two or more materials may be used in combination.
  • the liquid-permeable sheet 30 may be a nonwoven fabric, a porous sheet, or a combination thereof.
  • a nonwoven is a sheet in which fibers are intertwined without being woven.
  • the nonwoven fabric may be a nonwoven fabric (short fiber nonwoven fabric) composed of short fibers (ie, staple) or a nonwoven fabric (long fiber nonwoven fabric) composed of long fibers (ie, filaments).
  • the staple may generally have a fiber length of several hundred mm or less, although not limited thereto.
  • the liquid-permeable sheet 30 is a thermal-bonded nonwoven fabric, an air-through nonwoven fabric, a resin-bonded nonwoven fabric, a spunbonded nonwoven fabric, a melt-blown nonwoven fabric, an air-laid nonwoven fabric, a spunlaced nonwoven fabric, a point-bonded nonwoven fabric, or a laminate of two or more types of nonwoven fabrics selected from these. It's okay.
  • These non-woven fabrics may be formed, for example, from the synthetic or natural fibers mentioned above.
  • the laminate of two or more types of nonwoven fabrics may be, for example, a spunbond/meltblown/spunbond nonwoven fabric, which is a composite nonwoven fabric in which a spunbond nonwoven fabric, a meltblown nonwoven fabric, and a spunbond nonwoven fabric are laminated in this order.
  • the liquid-permeable sheet 30 may be a thermal-bond nonwoven fabric, an air-through nonwoven fabric, a spunbond nonwoven fabric, or a spunbond/meltblown/spunbond nonwoven fabric from the viewpoint of liquid leakage suppression.
  • the nonwoven fabric used as the liquid permeable sheet 30 preferably has moderate hydrophilicity in order to improve the liquid absorption performance of the absorbent article. From the viewpoint of having moderate hydrophilicity, the liquid-permeable sheet 30 is tested according to Paper Pulp Test Method No. 2 by the Japan Pulp and Paper Technical Association. 68 (2000), a hydrophilicity of 5 to 200. The hydrophilicity of the nonwoven fabric may be 10-150. Paper pulp test method no. 68 can be referred to, for example, WO2011/086843.
  • the non-woven fabric having hydrophilicity as described above may be formed of fibers showing moderate hydrophilicity such as rayon fibers, for example, and hydrophobic chemical fibers such as polyolefin fibers and polyester fibers are hydrophilized. It may be formed from fibers obtained by Methods for obtaining a nonwoven fabric containing hydrophobic chemical fibers that have been hydrophilized include, for example, a method of obtaining a nonwoven fabric by a spunbond method using a mixture of hydrophobic chemical fibers and a hydrophilizing agent; Examples include a method of entraining a hydrophilizing agent when producing a spunbond nonwoven fabric from fibers, and a method of impregnating a spunbond nonwoven fabric obtained using hydrophobic chemical fibers with a hydrophilizing agent.
  • hydrophilizing agents examples include anionic surfactants such as aliphatic sulfonates and higher alcohol sulfates, cationic surfactants such as quaternary ammonium salts, polyethylene glycol fatty acid esters, polyglycerin fatty acid esters, and sorbitan fatty acids.
  • anionic surfactants such as esters, silicone surfactants such as polyoxyalkylene-modified silicones, and stain release agents made of polyester, polyamide, acrylic or urethane resins are used.
  • the liquid-permeable sheet 30 is moderately bulky from the viewpoint of imparting good liquid permeability, flexibility, strength and cushioning properties to the absorbent article, and from the viewpoint of increasing the liquid permeation speed of the absorbent article. It may be a nonwoven fabric with a large
  • the nonwoven fabric used for the liquid-permeable sheet 30 may have a basis weight of 5 to 200 g/m 2 , 8 to 150 g/m 2 , or 10 to 100 g/m 2 .
  • the thickness of the nonwoven fabric used for the liquid-permeable sheet 30 may be 20-1400 ⁇ m, 50-1200 ⁇ m, or 80-1000 ⁇ m.
  • the surface of the liquid permeable sheet 30 may be embossed or perforated in order to improve the diffusibility of the liquid. Embossing or perforating can be carried out by a known method.
  • the liquid-permeable sheet 30 may contain a skin lotion, a moisturizing agent, an antioxidant, an anti-inflammatory agent, a pH adjuster, and the like.
  • the shape of the liquid-permeable sheet 30 depends on the shapes of the absorbent body and absorbent article, but may be a shape that covers the absorbent body 10 so as to prevent liquid leakage.
  • the size relationship of the absorbent body 10, the core wrap sheets 20a and 20b, the liquid permeable sheet 30, and the liquid impermeable sheet 40 is not particularly limited, and is appropriately adjusted according to the use of the absorbent article.
  • the method for retaining the shape of the absorbent body 10 using the core wrap sheets 20a and 20b is not particularly limited, and as shown in FIG. You may wrap an absorber with a sheet.
  • the absorbent article 100 is manufactured, for example, by a method including placing the absorbent body 10 in the core wrap sheets 20a and 20b and placing them between the liquid permeable sheet 30 and the liquid impermeable sheet 40. can do.
  • a laminate in which the liquid impermeable sheet 40, the core wrap sheet 20b, the absorber 10, the core wrap sheet 20a, and the liquid permeable sheet 30 are laminated in this order is pressurized as necessary.
  • the shape of the absorbent article 100 is appropriately determined according to its use.
  • the absorbent article when it is a urine pad or a sanitary napkin, it may be approximately rectangular, oval, hourglass, battledore, or the like.
  • the absorbent article may also include members as appropriate according to the application and function. Examples thereof include a liquid acquisition diffusion sheet, which will be described later.
  • the absorbent article may include a liquid acquisition diffusion sheet.
  • a liquid acquisition and diffusion sheet may be placed, for example, on the bottom surface of the liquid permeable sheet 30 .
  • Adhesion between the liquid acquisition diffusion sheet and the liquid permeable sheet 30 may use a hot melt adhesive, heat embossing, or ultrasonic welding.
  • the liquid acquisition/diffusion sheet a non-woven fabric or a resin film having a large number of through-holes can be used.
  • the nonwoven fabric materials similar to those described in the section of the liquid permeable sheet 30 can be used. It is preferable because it has excellent liquid transfer characteristics.
  • the liquid acquisition and diffusion sheet is normally arranged in the central portion with a width shorter than that of the absorbent body 10, but may be arranged over the entire width.
  • the length of the liquid acquisition and diffusion sheet in the front-rear direction may be substantially the same as the total length of the absorbent article, may be substantially the same as the total length of the absorbent body 10, or may be within a range of lengths assuming the portion into which the liquid is introduced. good.
  • the outer cover nonwoven fabric may be arranged outside the liquid impermeable sheet 40 .
  • the outer cover nonwoven fabric can be adhered to the liquid impermeable sheet 40 using an adhesive, for example.
  • the outer cover nonwoven fabric may be formed of one or more layers and may be a soft material.
  • the outer cover non-woven fabric may be given a soft touch, may have a pattern printed on it, may have a plurality of joints, embossed parts, etc. so as to appeal to consumers' willingness to purchase or for other reasons. It may be machined or formed into a three-dimensional form.
  • leg gather The absorbent article according to the present embodiment includes legs having stretchable elastic members arranged outside both widthwise end portions of the absorbent body 10 and substantially parallel to the longitudinal direction of the absorbent body 10. May have gathers.
  • the length of the leg gathers is set to be around the wearer's leg or longer.
  • the elongation rate of the leg gathers is appropriately set from the viewpoint of preventing the leakage of discharged liquid and reducing the feeling of oppression when worn for a long time.
  • the absorbent article according to the present embodiment may have front/back gathers that are arranged in the vicinity of both ends in the longitudinal direction of the absorbent article and that include elastic members that expand and contract in the width direction.
  • the absorbent article has front/back gathers that can stand up above the side edges in the width direction of the absorbent body 10 . That is, on both sides of the absorbent article in the longitudinal direction, a front/back gather sheet member having a gather elastic member is arranged to constitute a front/back gather.
  • the member for the front/back gathers is usually made of a liquid-impermeable or water-repellent material, preferably a moisture-permeable material.
  • a liquid-impermeable or water-repellent porous sheet preferably a liquid-impermeable or water-repellent porous sheet
  • a liquid-impermeable or water-repellent nonwoven fabric preferably a laminate of the porous sheet and the nonwoven fabric.
  • Nonwoven fabrics include, for example, thermal bonded nonwoven fabrics, spunbond nonwoven fabrics, meltblown nonwoven fabrics, spunlaced nonwoven fabrics, spunbond/meltblown/spunbond nonwoven fabrics, and the like.
  • the basis weight of the member may be 5 to 100 g/m 2 , 8 to 70 g/m 2 , or 10 to 40 g/m 2 .
  • aqueous solution was prepared by adding and dissolving 0.010 g (0.057 mmol) of glycidyl ether.
  • the first-stage aqueous solution was added to the n-heptane solution containing the dispersant in the flask, and the formed reaction solution was stirred for 10 minutes.
  • a surfactant solution was prepared by dissolving 0.736 g of sucrose stearate (Mitsubishi Kagaku Foods Co., Ltd., Ryoto Sugar Ester S-370, HLB: 3) as a surfactant in 6.62 g of n-heptane. prepared.
  • the surfactant solution was added to the flask, and the system was sufficiently purged with nitrogen while stirring the reaction solution with a stirrer at 550 rpm. Thereafter, the flask was immersed in a water bath at 70° C. to raise the temperature of the reaction solution, and the polymerization reaction was allowed to proceed for 60 minutes to obtain a first-stage polymerization slurry.
  • the first-stage polymerization slurry liquid in the flask was cooled to 25°C, and the whole amount of the second-stage aqueous solution was added thereto. After purging the inside of the flask with nitrogen for 30 minutes, the flask was again immersed in a water bath at 70°C to raise the temperature of the reaction solution, and the second-stage polymerization reaction was performed for 60 minutes to obtain a water-containing gel-like polymer. .
  • the flask was immersed in an oil bath set at 125°C, and 257.7 g of water was extracted from the system by azeotropic distillation of n-heptane and water. Then, 4.42 g (0.507 mmol) of 2% by mass ethylene glycol diglycidyl ether aqueous solution was added as a surface cross-linking agent to the flask, and the mixture was kept at 83° C. for 2 hours.
  • polymer particles were obtained by removing n-heptane by drying at 125°C.
  • the polymer particles were passed through a 850 ⁇ m JIS standard sieve to obtain 228 g of water absorbent resin particles (1).
  • ethylene-sodium acrylate copolymer (Sumitomo Seika Co., Ltd., Zaixen N) and polyethylene glycol (Tokyo Chemical Industry Co., Ltd., PEG6000) were prepared.
  • a coating liquid was prepared by mixing 345 g of distilled water, 200 g of a 25% by mass aqueous emulsion of ethylene-sodium acrylate copolymer, and 5 g of polyethylene glycol.
  • 500 g of water-absorbing resin particles (1) were put into a container of a fluidized bed granulator, and hot air at 50°C was blown from the bottom of the container.
  • 550 g of the coating liquid was sprayed while being dried onto the water absorbent resin particles (1) that were being blown up by air. After the coating liquid was sprayed for about 92 minutes (spray rate 6 g/min), it was dried at 50° C. for 30 minutes to obtain a precursor of coated resin particles.
  • a Teflon (registered trademark) coating vat with a bottom size of 250 x 185 (mm) was added with 100 g of the precursor of the coated resin particles, covered with aluminum foil and covered with a lid.
  • the aluminum foil was perforated and heated at 80° C. for 1 hour with a hot air dryer (ADVANTEC, FV-320). This precursor was passed through a JIS standard sieve with an opening of 850 ⁇ m to obtain 95 g of coated resin particles (1).
  • n-heptane was removed by drying in an oil bath at 125°C to obtain a coated resin particle precursor having a coating layer containing a maleic anhydride-modified ethylene/propylene copolymer.
  • This precursor was passed through a JIS standard sieve with an opening of 850 ⁇ m to obtain coated resin particles (2).
  • ⁇ Particle evaluation> [Physiological saline water retention] The measurement was performed in an environment of 25° C. and 50% humidity. 2.00 g of water-absorbent resin particles were dispersed in 500 g of 0.9% physiological saline in a 500 ml beaker, and stirred at 600 rpm for 30 minutes to swell. Pour the swollen gel into a cotton bag (Membrane No. 60, width 100 mm x length 200 mm), tie the top of the cotton bag with a rubber band, and set the centrifugal force to 167 G. 122) for 1 minute. The mass Wa (g) of the cotton bag containing the swollen gel after dehydration was measured.
  • the measuring device comprises a burette part 11 , a clamp 12 , a conduit 13 , a pedestal 14 , a measuring table 15 and a measuring part 16 placed on the measuring table 15 .
  • the burette part 11 includes a burette tube 21 with a scale, a rubber stopper 23 for sealing the upper opening of the burette tube 21, a cock 22 connected to the tip of the lower part of the burette tube 21, and the lower part of the burette tube 21.
  • a flat measuring table 15 has a through-hole 15a with a diameter of 2 mm formed in its central portion, and is supported by a pedestal 14 whose height is variable. Through hole 15 a of measurement table 15 and cock 22 of burette portion 11 are connected by conduit 13 .
  • the inner diameter of conduit 13 is 6 mm.
  • the measurement unit 16 has a Plexiglas cylinder 31 , a polyamide mesh 32 adhered to one opening of the cylinder 31 , and a weight 33 vertically movable within the cylinder 31 .
  • Cylinder 31 is placed on measuring table 15 via polyamide mesh 32 .
  • the inner diameter of the cylinder 31 is 20 mm.
  • the opening of the polyamide mesh 32 is 75 ⁇ m (200 meshes).
  • the weight 33 has a diameter of 19 mm and a mass of 119.6 g, and can apply a load of 4.14 kPa (0.6 psi) to the water absorbent resin particles 10a uniformly arranged on the polyamide mesh 32 as described later. can.
  • the measurement of the physiological saline water absorption under a load of 4.14 kPa with the measuring device shown in Fig. 5 was performed indoors at 25°C.
  • the cocks 22 and 24 of the burette part 11 were closed, and 0.9% by mass physiological saline adjusted to 25° C. was introduced into the burette tube 21 through the upper opening of the burette tube 21 .
  • the cocks 22 and 24 were opened.
  • the inside of the conduit 13 was filled with 0.9% by mass saline 50 so as not to introduce air bubbles.
  • the height of the measuring table 15 was adjusted so that the height of the water surface of the 0.9 mass % saline solution reaching the inside of the through-hole 15 a was the same as the height of the upper surface of the measuring table 15 . After the adjustment, the height of the water surface of the physiological saline solution 50 in the burette tube 21 was read from the scale of the burette tube 21, and the position was taken as the zero point (read value at 0 seconds).
  • the measurement unit 16 0.10 g of the water-absorbent resin particles 10a are uniformly arranged on the polyamide mesh 32 in the cylinder 31, a weight 33 is arranged on the water-absorbent resin particles 10a, and the cylinder 31 is moved so that the center of the cylinder 31 is It was installed so as to match the conduit opening at the center of the measuring table 15 .
  • the non-pressurized DW of the water absorbent resin particles was measured using the measuring device shown in FIG.
  • the measuring device has a burette part 11 , a conduit 13 , a measuring table 15 , a nylon mesh sheet 17 , a pedestal 14 and a clamp 12 .
  • the burette part 11 includes a burette tube 21 with a scale, a rubber stopper 23 for sealing the upper opening of the burette tube 21, a cock 22 connected to the tip of the lower part of the burette tube 21, and the lower part of the burette tube 21. It has an air introduction pipe 25 and a cock 24 connected to the .
  • the burette part 11 is fixed with a clamp 12 .
  • a flat measuring table 15 has a through-hole 15a with a diameter of 2 mm formed in its central portion, and is supported by a pedestal 14 whose height is variable.
  • Through hole 15 a of measurement table 15 and cock 22 of burette portion 11 are connected by conduit 13 .
  • the inner diameter of conduit 13 is 6 mm.
  • the measurement was performed in an environment with a temperature of 25°C and a humidity of 60 ⁇ 10%.
  • the salt solution concentration of 0.9% by mass is the concentration based on the mass of the salt solution.
  • the inside of the conduit 13 was filled with 0.9% by mass saline 50 so as not to introduce air bubbles.
  • the height of the measuring table 15 was adjusted so that the height of the water surface of the 0.9 mass % saline solution reaching the inside of the through-hole 15 a was the same as the height of the upper surface of the measuring table 15 . After the adjustment, the height of the water surface of the 0.9% by mass saline solution 50 in the burette tube 21 was read from the scale of the burette tube 21, and the position was taken as the zero point (read value at 0 seconds).
  • a nylon mesh sheet 17 (100 mm x 100 mm, 250 mesh, thickness of about 50 ⁇ m) was laid near the through hole 15a on the measurement table 15, and a cylinder with an inner diameter of 30 mm and a height of 20 mm was placed in the center. 1.00 g of water-absorbent resin particles 10a were evenly dispersed in this cylinder. After that, the cylinder was carefully removed to obtain a sample in which the water-absorbing resin particles 10a were circularly dispersed in the center of the nylon mesh sheet 17 .
  • the nylon mesh sheet 17 on which the water-absorbing resin particles 10a are placed is moved quickly enough to prevent the water-absorbing resin particles 10a from scattering so that the center of the nylon mesh sheet 17 is positioned at the through-hole 15a, and the measurement is started.
  • the time when air bubbles were first introduced into the burette tube 21 from the air introduction tube 25 was defined as the start of water absorption (0 second).
  • an air-through type porous liquid-permeable polyethylene sheet having the same size as the absorber and having a basis weight of 22 g/m 2 is placed on the upper surface of the absorber, and an air-through type porous liquid-permeable sheet made of polyethylene having the same size as the absorber and having a basis weight of 22 g/m 2 is placed on the lower surface.
  • An absorbent article was obtained by arranging the polyethylene liquid-impermeable sheets No. 2 and sandwiching the absorbent body.
  • Example 1 An absorbent article was produced as in Production Example C and evaluated. Details are shown below. Using 9.6 g of the water absorbent resin particles (1) obtained in Production Example 1 and 2.4 g of the coated resin particles (1) obtained in Production Example 2, an absorbent core having a size of 40 cm ⁇ 12 cm was produced. Then, an absorbent core (region A) measuring 30 cm ⁇ 12 cm was cut out using a cutter.
  • Example 2 An absorbent article was produced as in Production Example C and evaluated. Details are shown below. Using 9.6 g of the water absorbent resin particles (1) obtained in Production Example 1 and 2.4 g of the coated resin particles (1) obtained in Production Example 2, an absorbent core having a size of 40 cm ⁇ 12 cm was produced. Then, an absorbent core (region A) measuring 20 cm ⁇ 12 cm was cut out using a cutter.
  • an absorbent core having a size of 40 cm ⁇ 12 cm was produced. Then, using a cutter, two absorbent cores (region B) with a size of 10 cm ⁇ 12 cm were cut out. The absorbent cores of the region B were connected to both outsides of the region A to prepare an absorbent core having a size of 40 cm ⁇ 12 cm, and an absorbent article was prepared and evaluated.
  • Example 3 An absorbent article was produced as in Production Example C and evaluated. Details are shown below. Using 8.4 g of the water absorbent resin particles (1) obtained in Production Example 1 and 3.6 g of the coated resin particles (1) obtained in Production Example 2, an absorbent core having a size of 40 cm ⁇ 12 cm was produced. Then, a cutter was used to cut out an absorbent core (area A) measuring 24 cm ⁇ 12 cm.
  • Example 4 An absorbent article was produced as in Production Example C and evaluated. Details are shown below. Using 7.2 g of the water absorbent resin particles (1) obtained in Production Example 1 and 4.8 g of the coated resin particles (1) obtained in Production Example 2, an absorbent core having a size of 40 cm ⁇ 12 cm was produced. Then, an absorbent core (region A) measuring 20 cm ⁇ 12 cm was cut out using a cutter.
  • Example 5 An absorbent article was produced as in Production Example C and evaluated. Details are shown below. Using 6 g of the water absorbent resin particles (1) obtained in Production Example 1 and 6 g of the coated resin particles (1) obtained in Production Example 2, an absorbent core having a size of 40 cm ⁇ 12 cm was produced, followed by a cutter. was used to cut out an absorbent core (region A) measuring 20 cm x 12 cm.
  • Example 6 An absorbent article was produced as in Production Example C and evaluated. Details are shown below. Using 6 g of the water absorbent resin particles (1) obtained in Production Example 1 and 6 g of the coated resin particles (1) obtained in Production Example 2, an absorbent core having a size of 40 cm ⁇ 12 cm was produced, followed by a cutter. was used to cut out an absorbent core (region A) measuring 10 cm ⁇ 12 cm.
  • an absorbent core having a size of 40 cm ⁇ 12 cm was produced, and then a cutter was used to prepare an absorbent core having a size of 15 cm ⁇ 12 cm ( Two pieces of region B) were cut out.
  • the absorbent cores of the region B were connected to both outsides of the region A to prepare an absorbent core having a size of 40 cm ⁇ 12 cm, and an absorbent article was prepared and evaluated.
  • an absorbent core having a size of 40 cm ⁇ 12 cm was produced, and then a cutter was used to prepare an absorbent core having a size of 15 cm ⁇ 12 cm ( Two pieces of region B) were cut out.
  • the absorbent cores of the region B were connected to both outsides of the region A to prepare an absorbent core having a size of 40 cm ⁇ 12 cm, and an absorbent article was prepared and evaluated.
  • Example 7 An absorbent article was produced as in Production Example C and evaluated. Details are shown below. Using 9.6 g of the water absorbent resin particles (1) obtained in Production Example 1 and 2.4 g of the coated resin particles (2) obtained in Production Example 3, an absorbent core having a size of 40 cm ⁇ 12 cm was produced. Then, an absorbent core (region A) measuring 30 cm ⁇ 12 cm was cut out using a cutter.
  • Example 8 An absorbent article was produced as in Production Example C and evaluated. Details are shown below. Using 8.4 g of the collected water-absorbing resin product (1) obtained in Production Example 4 and 3.6 g of the coated resin particles (1) obtained in Production Example 2, an absorbent core having a size of 40 cm x 12 cm was produced. Then, a cutter was used to cut out an absorbent core (area A) measuring 20 cm ⁇ 12 cm.
  • Example 9 An absorbent article was produced as in Production Example F and evaluated. Details are shown below. Using 9.6 g of the water absorbent resin particles (1) obtained in Production Example 1 and 2.4 g of the coated resin particles (1) obtained in Production Example 2, an absorbent core having a size of 40 cm ⁇ 12 cm was produced. Then, a cutter was used to cut out an absorbent core (area A) measuring 22.5 cm ⁇ 9 cm.
  • FIG. 7 is a schematic diagram showing a method for evaluating the leakiness of absorbent articles.
  • a support plate 19 (an acrylic resin plate in this case) having a length of 45 cm and a thickness of 0.3 cm and having a flat inclined surface S1 was fixed by a mount 41 while being inclined at 30 ⁇ 2° with respect to the horizontal surface S0. .
  • the dropping funnel had a capacity of 300 mL, an inner diameter of about 8 mm ⁇ at the tip, and was equipped with a two-way cock.
  • a balance 43 on which a metal tray 44 is placed is installed at the bottom of the support plate 19, and receives all the test liquid that leaks from the end of the absorbent article and records its mass with an accuracy of 0.1 g. .
  • a leak test using such a device was performed according to the following procedure.
  • the test absorbent article 100 was attached onto the inclined surface S 1 of the fixed support plate 19 with its longitudinal direction along the longitudinal direction of the support plate 19 .
  • the bottom edge of the absorbent article was not stuck on the acrylic plate so as not to artificially stop leakage.
  • the test liquid 50 artificial urine adjusted to 25 ⁇ 1° C. was dropped from the dropping funnel 42 arranged vertically above the absorbent article 100 toward the center of the absorbent body in the absorbent article 100 .
  • the distance between the tip of the dropping funnel 42 and the absorbent article was 10 ⁇ 2 mm.
  • test solution 150 mL of the test solution was added at once for evaluation of the absorbent core with a size of 40 cm ⁇ 12 cm, and 70 mL of the test solution was added at once for evaluation of the absorbent core with a size of 30 cm ⁇ 9 cm.
  • the surface of the support plate 19 was smooth and no liquid was retained or absorbed by the plate.
  • the leaked test liquid was collected in the metal tray 44 arranged below the support plate 19 .
  • the weight (g) of the collected test liquid was measured by the balance 43, and the value was recorded as the amount of leakage.
  • the degree of improvement in the amount of backflow is calculated by dividing the amount of backflow in the obtained absorbent articles of Examples or Comparative Examples by the amount of backflow in the corresponding absorbent articles in Production Example A or D using only water-absorbing resin particles. did. A value of less than 1 indicates an improvement. Table 3 shows the results.

Abstract

This absorber has a longitudinal direction and a width direction perpendicular to the longitudinal direction, and has a region A containing water-absorbing resin particles a having a 5-minute value of non-pressurization DW of 10 ml/g or less and water-absorbing resin particles b having a 5-minute value of non-pressurization DW of more than 10 ml/g, and a region B containing the water-absorbing resin particles b having the 5-minute value of non-pressurization DW of more than 10 ml/g. The amount of the water-absorbing resin particles a contained in the region A is 15-55% by mass of the total amount of the water-absorbing resin particles contained in the region A, and the amount of the water-absorbing resin particles a contained in the region B is 0% by mass or more and less than 15% by mass of the total amount of the water-absorbing resin particles contained in the region B. The region B is at least partially located at or near both ends in the longitudinal direction of the absorber.

Description

吸収体Absorber
 本開示は、吸収体に関する。 The present disclosure relates to absorbent bodies.
 従来、尿等の水を主成分とする液体を吸収するための吸収性物品には、吸水性樹脂粒子を含有する吸収体が用いられている。例えば、特許文献1には、おむつ等の吸収性物品に好適に用いられる粒子径を有する吸水性樹脂粒子の製造方法が記載されている。 Conventionally, absorbent articles containing water-absorbent resin particles have been used in absorbent articles for absorbing liquids, such as urine, whose main component is water. For example, Patent Literature 1 describes a method for producing water-absorbing resin particles having a particle size suitable for use in absorbent articles such as diapers.
特開平6-345819号公報JP-A-6-345819
 吸収体は、吸収体内に一旦吸収された液体が、加圧しても再度外部へ放出されにくいこと、すなわち逆戻り量が少ないことが求められる。本発明者らは、10ml/g以下の無加圧DWの5分値を示す吸水性樹脂粒子を吸収体に使用することで、逆戻り量を低減できることを見出した。しかしながら、このような吸水性樹脂粒子を吸収体の全面に用いると、吸収体の長手方向、特に装着時の背面側からのモレを防げない場合があることを見出した。 The absorber is required that the liquid once absorbed in the absorber does not easily release to the outside even when pressurized, that is, the amount of regurgitation is small. The present inventors have found that the amount of backflow can be reduced by using water-absorbent resin particles exhibiting a 5-minute value of no-pressure DW of 10 ml/g or less for the absorbent body. However, it has been found that when such water-absorbent resin particles are used over the entire surface of the absorbent, leakage in the longitudinal direction of the absorbent, particularly from the back side during wearing, may not be prevented.
 本開示の一側面は、吸液後の逆戻りを抑制するとともに、吸収体の長手方向のモレを低減することができる吸収体を提供することに関する。 One aspect of the present disclosure relates to providing an absorbent body capable of suppressing backflow after liquid absorption and reducing leakage in the longitudinal direction of the absorbent body.
 本開示の一側面の吸収体は、長手方向、及び長手方向に直交する幅方向を有する吸収体であって、10ml/g以下の無加圧DWの5分値を示す吸水性樹脂粒子a、及び10ml/g超の無加圧DWの5分値を示す吸水性樹脂粒子bを含む領域Aと、10ml/g超の無加圧DWの5分値を示す吸水性樹脂粒子bを含む領域Bとを有し、領域Aに含まれる吸水性樹脂粒子aの量が、領域Aに含まれる吸水性樹脂粒子全量に対して15~55質量%であり、領域Bに含まれる吸水性樹脂粒子aの量が、領域Bに含まれる吸水性樹脂粒子全量に対して0質量%以上15質量%未満であり、領域Bの少なくとも一部は、吸収体の長手方向の両端又は両端近傍に位置する。 An absorbent body according to one aspect of the present disclosure is an absorbent body having a longitudinal direction and a width direction orthogonal to the longitudinal direction, wherein the water absorbent resin particles a exhibit a 5-minute value of unpressurized DW of 10 ml/g or less, and a region A containing water-absorbing resin particles b exhibiting a 5-minute value of no-pressure DW exceeding 10 ml / g, and a region comprising water-absorbing resin particles b exhibiting a 5-minute value of no-pressure DW exceeding 10 ml / g B, the amount of the water absorbent resin particles a contained in the region A is 15 to 55% by mass with respect to the total amount of the water absorbent resin particles contained in the region A, and the water absorbent resin particles contained in the region B The amount of a is 0% by mass or more and less than 15% by mass with respect to the total amount of the water-absorbing resin particles contained in the region B, and at least a part of the region B is located at or near both ends in the longitudinal direction of the absorbent body. .
 上記吸収体において、領域Bが、吸収体の長手方向の両端に位置し、吸収体両端の形状に沿って形成されていてよい。 In the above absorber, the regions B may be positioned at both ends of the absorber in the longitudinal direction and formed along the shapes of both ends of the absorber.
 上記吸収体において、領域Bの少なくとも一部が、吸収体の長手方向の端からの距離が吸収体の長手方向の長さの0~40%である位置に形成されていてよい。 In the absorbent body, at least part of the region B may be formed at a position where the distance from the longitudinal end of the absorbent body is 0 to 40% of the length of the absorbent body in the longitudinal direction.
 上記吸収体において、領域Bの総面積が吸収体全体に対して20~80%であってよい。 In the above absorber, the total area of region B may be 20 to 80% of the total absorber.
 吸水性樹脂粒子aの生理食塩水吸水速度が60秒以上であることが好ましい。 It is preferable that the physiological saline water absorption speed of the water-absorbing resin particles a is 60 seconds or longer.
 吸水性樹脂粒子aの生理食塩水保水量が16~55g/gであることが好ましい。 It is preferable that the water-absorbent resin particles a have a physiological saline water retention capacity of 16 to 55 g/g.
 吸水性樹脂粒子aが、架橋重合体粒子、及び該架橋重合体粒子の表面の少なくとも一部を被覆する水不溶性のコーティング層を有する被覆樹脂粒子であることが好ましい。 The water-absorbent resin particles a are preferably coated resin particles having a crosslinked polymer particle and a water-insoluble coating layer covering at least part of the surface of the crosslinked polymer particle.
 本開示の一側面によれば、吸液後の逆戻りを抑制するとともに、吸収体の長手方向のモレを低減することができる吸収体を提供することができる。 According to one aspect of the present disclosure, it is possible to provide an absorbent body capable of suppressing backflow after liquid absorption and reducing leakage in the longitudinal direction of the absorbent body.
吸収体の一実施形態を示す模式平面図である。1 is a schematic plan view showing an embodiment of an absorbent body; FIG. (a)及び(b)は吸収体の他の実施形態を示す模式平面図である。(a) and (b) are schematic plan views showing other embodiments of the absorbent body. (a)及び(b)は吸収体の他の実施形態を示す模式平面図である。(a) and (b) are schematic plan views showing other embodiments of the absorbent body. 吸収性物品の一実施形態を示す模式断面図である。1 is a schematic cross-sectional view showing an embodiment of an absorbent article; FIG. 吸水性樹脂粒子の荷重下吸水量を測定する方法を示す模式図である。FIG. 2 is a schematic diagram showing a method for measuring the amount of water absorbed under load of water absorbent resin particles. 吸水性樹脂粒子の無加圧DWを測定する方法を示す模式図である。FIG. 3 is a schematic diagram showing a method for measuring the non-pressure DW of water absorbent resin particles. 吸収性物品の漏れ性を評価する方法を示す模式図である。It is a schematic diagram which shows the method to evaluate the leakiness of an absorbent article.
 以下、本開示のいくつかの実施形態について詳細に説明する。ただし、本開示は以下の実施形態に限定されるものではない。 Several embodiments of the present disclosure will be described in detail below. However, the present disclosure is not limited to the following embodiments.
 本明細書において、「アクリル」及び「メタクリル」を合わせて「(メタ)アクリル」と表記する。「アクリレート」及び「メタクリレート」も同様に「(メタ)アクリレート」と表記する。「(ポリ)」とは、「ポリ」の接頭語がある場合及びない場合の双方を意味するものとする。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値と任意に組み合わせることができる。本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。本明細書に例示する材料は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。「層」との語は、平面図として観察したときに、全面に形成されている形状の構造に加え、一部に形成されている形状の構造も包含される。吸収体における面積、長さ及び形状は、特に断らない限り平面視した場合のものをいう。吸収体における平面視とは、吸収体の主面(厚みを構成しない面)を水平面上に置き、垂直方向の上方側から吸収体の厚さ方向に見ることをいう。 In this specification, "acrylic" and "methacrylic" are collectively referred to as "(meth)acrylic". "Acrylate" and "methacrylate" are similarly written as "(meth)acrylate". "(poly)" shall mean both with and without the "poly" prefix. In the numerical ranges described stepwise in this specification, the upper limit value or lower limit value of the numerical range in one step can be arbitrarily combined with the upper limit value or lower limit of the numerical range in another step. In the numerical ranges described herein, the upper or lower limits of the numerical ranges may be replaced with the values shown in the examples. The materials exemplified in this specification may be used alone or in combination of two or more. The content of each component in the composition means the total amount of the plurality of substances present in the composition unless otherwise specified when there are multiple substances corresponding to each component in the composition. The term "layer" includes not only a shape structure formed over the entire surface but also a shape structure formed partially when observed as a plan view. Unless otherwise specified, the area, length and shape of the absorber refer to those in plan view. A planar view of the absorbent body means that the main surface of the absorbent body (the surface that does not constitute the thickness) is placed on a horizontal plane and viewed from above in the vertical direction in the thickness direction of the absorbent body.
 本実施形態に係る吸収体は、長手方向、及び長手方向に直交する幅方向を有し、領域Aと領域Bとを有する。領域Aは、10ml/g以下の無加圧DWの5分値を示す吸水性樹脂粒子a、及び10ml/g超の無加圧DWの5分値を示す吸水性樹脂粒子bを含む。領域Bは、10ml/g超の無加圧DWの5分値を示す吸水性樹脂粒子bを含む。領域Aに含まれる吸水性樹脂粒子aの量は、領域Aに含まれる吸水性樹脂粒子全量に対して15~55質量%であり、領域Bに含まれる吸水性樹脂粒子aの量は、領域Bに含まれる吸水性樹脂粒子全量に対して0質量%以上15質量%未満である。領域Bの少なくとも一部は、吸収体の長手方向の両端部又は両端部近傍に位置する。 The absorbent body according to this embodiment has a longitudinal direction and a width direction orthogonal to the longitudinal direction, and has regions A and B. Region A includes water absorbent resin particles a exhibiting a 5-minute value of no-pressure DW of 10 ml/g or less, and water-absorbent resin particles b exhibiting a 5-minute value of no-pressure DW exceeding 10 ml/g. Region B contains water-absorbent resin particles b that exhibit a 5-minute value of unpressurized DW greater than 10 ml/g. The amount of the water absorbent resin particles a contained in the region A is 15 to 55% by mass with respect to the total amount of the water absorbent resin particles contained in the region A, and the amount of the water absorbent resin particles a contained in the region B is It is 0% by mass or more and less than 15% by mass with respect to the total amount of the water-absorbent resin particles contained in B. At least part of the region B is located at or near both ends in the longitudinal direction of the absorbent body.
 吸収体が上記構成を有することにより、吸収体の吸液後の逆戻り量を低く抑制できるとともに、吸収体長手方向の漏れを低減することができる。具体的には、無加圧DWの5分値が十分に低い吸水性樹脂粒子aを十分量含む領域Aが配置されていることによって、吸水量がセーブされて液の初期の拡散性が増し、吸液後の逆戻り量が低減される。また、吸収体の両端部又はその近傍に、無加圧DWの5分値が一定以上に高い吸水性樹脂粒子bを十分量含む領域Bが配置されていることによって、領域Aでは吸収されなかった液を領域Bにおいて素早く吸収し、吸収体長手方向における漏れを低減することができる。 By having the absorber having the above structure, it is possible to suppress the backflow amount of the absorber after liquid absorption and reduce leakage in the longitudinal direction of the absorber. Specifically, by arranging the region A containing a sufficient amount of the water-absorbent resin particles a with a sufficiently low 5-minute value of the non-pressurized DW, the amount of water absorption is saved and the initial diffusibility of the liquid is increased. , the backflow amount after liquid absorption is reduced. In addition, since a region B containing a sufficient amount of water-absorbing resin particles b having a 5-minute value of non-pressurized DW higher than a certain value is arranged at or near both ends of the absorbent body, it is not absorbed in the region A. It is possible to quickly absorb the collected liquid in the region B and reduce leakage in the longitudinal direction of the absorbent body.
 領域Aは、10ml/g以下の無加圧DWの5分値を示す吸水性樹脂粒子a、及び10ml/g超の無加圧DWの5分値を示す吸水性樹脂粒子bを含む。領域Aに含まれる吸水性樹脂粒子aの量は、領域Aに含まれる吸水性樹脂粒子全量に対して15~55質量%である。 Region A includes water-absorbing resin particles a exhibiting a 5-minute value of no-pressure DW of 10 ml/g or less, and water-absorbing resin particles b exhibiting a 5-minute value of no-pressure DW exceeding 10 ml/g. The amount of the water absorbent resin particles a contained in the region A is 15 to 55% by mass with respect to the total amount of the water absorbent resin particles contained in the region A.
 領域Aに含まれる吸水性樹脂粒子aの量は、領域Aに含まれる吸水性樹脂粒子全量に対して、18質量%以上、19質量%以上、20質量%以上、25質量%以上、30質量%以上、35質量%以上、40質量%以上、45質量%以上、又は50質量%以上であってよく、53質量%以下、50質量%以下、45質量%以下、40質量%以下、35質量%以下、30質量%以下、25質量%以下、又は22質量%以下であってよい。領域Aに含まれる吸水性樹脂粒子aの量は、領域Aに含まれる吸水性樹脂粒子全量に対して、18~53質量%又は20~50質量%であってもよい。 The amount of the water-absorbent resin particles a contained in the region A is 18% by mass or more, 19% by mass or more, 20% by mass or more, 25% by mass or more, or 30% by mass with respect to the total amount of the water-absorbent resin particles contained in the region A. % or more, 35% by mass or more, 40% by mass or more, 45% by mass or more, or 50% by mass or more, 53% by mass or less, 50% by mass or less, 45% by mass or less, 40% by mass or less, 35% by mass % or less, 30 mass % or less, 25 mass % or less, or 22 mass % or less. The amount of the water absorbent resin particles a contained in the region A may be 18 to 53 mass % or 20 to 50 mass % with respect to the total amount of the water absorbent resin particles contained in the region A.
 領域Aに含まれる吸水性樹脂粒子bの量は、領域Aに含まれる吸水性樹脂粒子全量に対して、45質量%以上であり、50質量%以上、55質量%以上、60質量%以上、65質量%以上、70質量%以上、75質量%以上、80質量%以上、81質量%以上、又は82質量%以上であってよい。領域Aに含まれる吸水性樹脂粒子bの量は、領域Aに含まれる吸水性樹脂粒子全量に対して、85質量%以下であり、82質量%以下、81質量%以下、80質量%以下、75質量%以下、70質量%以下、65質量%以下、60質量%以下、55質量%以下、又は52質量%以下であってよい。領域Aに含まれる吸水性樹脂粒子bの量は、領域Aに含まれる吸水性樹脂粒子全量に対して、45~85質量%又は50~80質量%であってもよい。液の初期の拡散性が増しゲルブロッキング現象の発生が抑制されることによって、吸収速度が改善され、かつ吸液後の逆戻り量が低減される観点から、領域Aに含まれる吸水性樹脂粒子a及び吸水性樹脂粒子bの量は上記範囲であることが好ましい。 The amount of water-absorbing resin particles b contained in region A is 45% by mass or more, 50% by mass or more, 55% by mass or more, 60% by mass or more, relative to the total amount of water-absorbing resin particles contained in region A. It may be 65% by mass or more, 70% by mass or more, 75% by mass or more, 80% by mass or more, 81% by mass or more, or 82% by mass or more. The amount of the water absorbent resin particles b contained in the region A is 85% by mass or less, 82% by mass or less, 81% by mass or less, 80% by mass or less with respect to the total amount of the water absorbent resin particles contained in the region A, It may be 75% by mass or less, 70% by mass or less, 65% by mass or less, 60% by mass or less, 55% by mass or less, or 52% by mass or less. The amount of the water absorbent resin particles b contained in the region A may be 45 to 85 mass % or 50 to 80 mass % with respect to the total amount of the water absorbent resin particles contained in the region A. The water-absorbing resin particles a contained in the region A from the viewpoint of improving the absorption speed and reducing the amount of backflow after absorbing the liquid by increasing the initial diffusibility of the liquid and suppressing the occurrence of the gel blocking phenomenon. and the amount of the water absorbent resin particles b is preferably within the above range.
 領域Bは、10ml/g超の無加圧DWの5分値を示す吸水性樹脂粒子bを含む。領域Bに含まれる吸水性樹脂粒子bの量は、領域Bに含まれる吸水性樹脂粒子全量に対して85質量%超である。 Region B contains water-absorbent resin particles b that exhibit a 5-minute value of non-pressurized DW of more than 10 ml/g. The amount of the water absorbent resin particles b contained in the region B is more than 85% by mass with respect to the total amount of the water absorbent resin particles contained in the region B.
 領域Bに含まれる吸水性樹脂粒子bの量は、領域Bに含まれる吸水性樹脂粒子全量に対して88質量%以上、90質量%以上、92質量%以上、95質量%以上、98質量%以上、99質量%以上、99.5質量%以上、又は100質量%であってよい。領域Bに含まれる吸水性樹脂粒子bの量は、領域Bに含まれる吸水性樹脂粒子全量に対して100質量%以下、99.5質量%以下、99質量%以下、又は98質量%以下であってよい。領域Bに含まれる吸水性樹脂粒子bの量は、領域Bに含まれる吸水性樹脂粒子全量に対して88~100質量%、又は90~100質量%であってもよい。 The amount of the water absorbent resin particles b contained in the region B is 88% by mass or more, 90% by mass or more, 92% by mass or more, 95% by mass or more, 98% by mass of the total amount of the water absorbent resin particles contained in the region B. Above, it may be 99% by mass or more, 99.5% by mass or more, or 100% by mass. The amount of water-absorbing resin particles b contained in region B is 100% by mass or less, 99.5% by mass or less, 99% by mass or less, or 98% by mass or less with respect to the total amount of water-absorbing resin particles contained in region B. It's okay. The amount of the water absorbent resin particles b contained in the region B may be 88 to 100% by mass, or 90 to 100% by weight with respect to the total amount of the water absorbent resin particles contained in the region B.
 領域Bは、吸水性樹脂粒子aを含んでもよく、含まなくてもよい。領域Bに含まれる吸水性樹脂粒子aの量は、領域Bに含まれる吸水性樹脂粒子全量に対して0質量%以上15質量%未満である。領域Bに含まれる吸水性樹脂粒子aの量は、領域Bに含まれる吸水性樹脂粒子全量に対して0.5質量%以上、1質量%以上、2質量%以上、5質量%以上、7質量%以上、10質量%以上、又は12質量%以上であってよく、12質量%以下、10質量%以下、7質量%以下、5質量%以下、2質量%以下、1質量%以下、又は0.5質量%以下であってよい。吸収体長手方向における漏れを低減する観点から、領域Bに含まれる吸水性樹脂粒子a、及び吸水性樹脂粒子bの量は上記範囲であることが好ましい。領域Bに含まれる吸水性樹脂粒子aの量は、領域Bに含まれる吸水性樹脂粒子全量に対して0~12質量%、又は0~10質量%であってもよい。 Region B may or may not contain water-absorbent resin particles a. The amount of the water absorbent resin particles a contained in the region B is 0 mass % or more and less than 15 mass % with respect to the total amount of the water absorbent resin particles contained in the region B. The amount of the water absorbent resin particles a contained in the region B is 0.5% by mass or more, 1% by mass or more, 2% by mass or more, 5% by mass or more, 7 % by mass or more, 10% by mass or more, or 12% by mass or more, 12% by mass or less, 10% by mass or less, 7% by mass or less, 5% by mass or less, 2% by mass or less, 1% by mass or less, or It may be 0.5% by mass or less. From the viewpoint of reducing leakage in the longitudinal direction of the absorbent body, the amounts of the water absorbent resin particles a and the water absorbent resin particles b contained in the region B are preferably within the above range. The amount of the water absorbent resin particles a contained in the region B may be 0 to 12% by weight, or 0 to 10% by weight with respect to the total amount of the water absorbent resin particles contained in the region B.
 領域Aに含まれる吸水性樹脂粒子aと、領域Bに含まれる吸水性樹脂粒子aとは同種であってもよく、異なる種類、例えば異なる製造条件で得られたものであってもよい。領域Aに含まれる吸水性樹脂粒子bと、領域Bに含まれる吸水性樹脂粒子bとは同種であってもよく、異なる種類、例えば異なる製造条件で得られたものであってもよい。 The water-absorbent resin particles a contained in region A and the water-absorbent resin particles a contained in region B may be of the same type, or may be of different types, for example, obtained under different manufacturing conditions. The water-absorbent resin particles b contained in the region A and the water-absorbent resin particles b contained in the region B may be of the same type, or may be of different types, for example, obtained under different production conditions.
 以下、図面を参照しながら本開示の吸収体の実施形態について詳細に説明する。図面の説明において同一の要素には同一の符号を付し、重複する説明は省略する。また、図面の便宜上、図面の寸法比率は説明のものと必ずしも一致しない。 Hereinafter, embodiments of the absorbent body of the present disclosure will be described in detail with reference to the drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and overlapping descriptions are omitted. Also, for convenience of drawing, the dimensional ratios in the drawings do not necessarily match those in the description.
 図1は、本実施形態に係る吸収体の模式平面図であり、吸収体の使用時に液体が先に接触する面から見たものである。吸収体10は、シート状であって、平面視で矩形であり、長手方向X、及び長手方向に直交する幅方向Yを有する。長手方向Xの長さは幅方向Yの長さよりも長い。長手方向Xの長さと幅方向Yの長さの比率X/Yは、1.0~5.0であってよい。比率X/Yは1.5以上、2.0以上、2.5以上、又は3.0以上であってよく、4.5以下、4.0以下、3.5以下、又は3.0以下であってよい。吸収体10は、長手方向の両端に2つの領域Bを有する。領域Bは矩形であり、吸収体10の両端の形状に沿って延在するように形成されている。図1において領域Bは吸収体10の長手方向の端1の全体に接しており、向かい合う2つの短手方向の端3の一部同士を結んでいる。吸収体10のうち、吸収体中心部付近を含む、領域B以外の箇所は領域Aで占められている。吸収体の中心部付近に領域Aが配置されていることによって、吸水初期に液が最初に接する吸水体中心部付近における吸水量がセーブされて液の初期の拡散性がより増し、吸液後の逆戻り量をより効率的に低減することができる。 FIG. 1 is a schematic plan view of the absorbent body according to the present embodiment, and is viewed from the side with which the liquid contacts first when the absorbent body is used. The absorber 10 is sheet-like, rectangular in plan view, and has a longitudinal direction X and a width direction Y orthogonal to the longitudinal direction. The length in the longitudinal direction X is longer than the length in the width direction Y. A ratio X/Y of the length in the longitudinal direction X to the length in the width direction Y may be 1.0 to 5.0. The ratio X/Y may be 1.5 or greater, 2.0 or greater, 2.5 or greater, or 3.0 or greater, and 4.5 or less, 4.0 or less, 3.5 or less, or 3.0 or less. can be The absorbent body 10 has two regions B at both ends in the longitudinal direction. Region B is rectangular and formed to extend along the shape of both ends of absorbent body 10 . In FIG. 1, the region B is in contact with the entire lengthwise end 1 of the absorbent body 10, and connects portions of the two opposite short lengthwise ends 3 to each other. A region A occupies a portion of the absorbent body 10 other than the region B, including the vicinity of the central portion of the absorbent body. By arranging the region A near the center of the absorbent body, the amount of water absorption in the vicinity of the central part of the absorbent body, which the liquid first comes into contact with in the early stage of water absorption, is saved, and the initial diffusibility of the liquid is further increased. can be reduced more efficiently.
 図1において、1つの領域Bの、吸収体10の長手方向の長さd1は、吸収体10の長手方向の長さ(最大長さ)の10~40%である。領域Bの吸収体10の長手方向の長さd1は、吸収体10の長手方向の長さの12%以上、15%以上、18%以上、20%以上、25%以上、30%以上又は35%以上であってよく、35%以下、30%以下、25%以下、20%以下、15%以下、又は12%以下であってよい。なお、長さd1は吸収体10の長手方向における領域Bの最大長さであり、図1に示す実施形態では長さd1は吸収体の幅方向全体に亘って一定である。 In FIG. 1, the longitudinal length d1 of the absorbent body 10 in one region B is 10 to 40% of the longitudinal length (maximum length) of the absorbent body 10. The longitudinal length d1 of the absorbent body 10 in region B is 12% or more, 15% or more, 18% or more, 20% or more, 25% or more, 30% or more, or 35% of the longitudinal length of the absorbent body 10. % or more, and may be 35% or less, 30% or less, 25% or less, 20% or less, 15% or less, or 12% or less. Note that the length d1 is the maximum length of the region B in the longitudinal direction of the absorbent body 10, and in the embodiment shown in FIG. 1, the length d1 is constant over the entire width direction of the absorbent body.
 図2(a)及び(b)は、吸収体10の変形例を示す模式平面図である。図2(a)において領域Bは、吸収体10の長手方向の両端近傍に形成されている。具体的には、領域Bは、長手方向の端1の近傍に延在するように形成されており、吸収体10の長手方向の端1及び短手方向の端3には接していない。 FIGS. 2(a) and 2(b) are schematic plan views showing modifications of the absorbent body 10. FIG. In FIG. 2( a ), regions B are formed in the vicinity of both longitudinal ends of the absorbent body 10 . Specifically, the region B is formed to extend near the longitudinal end 1 and is not in contact with the longitudinal end 1 and the lateral end 3 of the absorbent body 10 .
 領域Bの少なくとも一部(例えば、領域Bの総面積の50%以上、60%以上、70%以上、80%以上、90%以上、95%以上、98%以上、又は100%)は、吸収体10の長手方向の端1からの距離d2が、吸収体10の長手方向の長さ(最大長さ)の0~40%である位置に形成されている。領域Bの形成位置は、吸収体10の長手方向の端1からの距離d2が、吸収体10の長手方向の長さの0%以上、3%以上、5%以上、8%以上、10%以上、15%以上、又は20%以上であってよく、40%以下、35%以下、30%以下、25%以下、又は20%以下であってよい。領域Bの少なくとも一部は、吸収体10の長手方向の端1からの距離d2が、吸収体10の長手方向の長さの3~35%、又は5~30%である位置に形成されていてもよい。領域Bは、吸収体10の上記範囲内に加え、上記以外の位置に更に形成されていてもよい。領域Bの全部(領域Bの総面積の100%)が、吸収体10の長手方向の端1からの距離d2が、吸収体10の長手方向の長さの0~40%の位置に形成されていることが好ましい。なお、端1の距離d2の基準となる部分は、端1のうち最も吸収体の外側に延出した部分である。図2(a)に示す実施形態では、端1は全体に亘って幅方向と平行であるため、端1の距離d2の基準となる部分は端1のどの部分を基準にしてもよい。 At least a portion of region B (e.g., 50% or more, 60% or more, 70% or more, 80% or more, 90% or more, 95% or more, 98% or more, or 100% of the total area of region B) absorbs It is formed at a position where the distance d2 from the longitudinal end 1 of the body 10 is 0 to 40% of the length (maximum length) of the absorbent body 10 in the longitudinal direction. The formation position of the region B is such that the distance d2 from the longitudinal end 1 of the absorbent body 10 is 0% or more, 3% or more, 5% or more, 8% or more, or 10% of the longitudinal length of the absorbent body 10. 15% or more, or 20% or more, and may be 40% or less, 35% or less, 30% or less, 25% or less, or 20% or less. At least part of the region B is formed at a position where the distance d2 from the longitudinal end 1 of the absorbent body 10 is 3 to 35% or 5 to 30% of the longitudinal length of the absorbent body 10. may Region B may be formed in a position other than the above in addition to the above range of absorbent body 10 . The entire region B (100% of the total area of the region B) is formed at a position where the distance d2 from the longitudinal end 1 of the absorbent body 10 is 0 to 40% of the length of the absorbent body 10 in the longitudinal direction. preferably. Note that the portion of the end 1 that serves as a reference for the distance d2 is the portion of the end 1 that extends farthest to the outside of the absorbent body. In the embodiment shown in FIG. 2(a), since the edge 1 is parallel to the width direction over the entire length, any part of the edge 1 may be used as the reference for the distance d2 of the edge 1. FIG.
 図2(b)において領域Bは、6個に分かれて形成されており、吸収体10の2つの長手方向の端1の近傍にそれぞれ3個ずつ形成されている。このように吸収体10の長手方向の一端側に形成されている領域Bは、1つであってよく、複数に分割されていてもよい。図2(a)及び(b)において1つの領域Bはそれぞれ矩形で描かれているが、円形、楕円形、多角形、不定形等の任意の形状であってもよい。 In FIG. 2(b), the regions B are divided into 6 regions, and 3 regions are formed near the two ends 1 of the absorbent body 10 in the longitudinal direction. Thus, the region B formed at one end side in the longitudinal direction of the absorbent body 10 may be one, or may be divided into a plurality of regions. In FIGS. 2A and 2B, each region B is drawn as a rectangle, but it may have any shape such as a circle, an ellipse, a polygon, and an irregular shape.
 図3(a)及び(b)は、吸収体10の変形例を示す模式平面図である。図3(a)において領域Bは、吸収体10の全周に亘って環状に形成されている。吸収体10の中心部付近は領域Aで形成されている。吸収体10の全周に形成されている領域Bは、全てが1つにつながっていてもよく(無端環状であってもよく)、領域Aにより分断される箇所が1つ又は複数あってもよい。領域Bは、少なくとも吸収体10の長手方向の両端又はその近傍に形成されていればよく、吸収体10の短手方向の端3又はその近傍には形成されていても形成されていなくてもよい。 FIGS. 3(a) and 3(b) are schematic plan views showing modifications of the absorbent body 10. FIG. In FIG. 3( a ), the region B is formed in an annular shape over the entire circumference of the absorbent body 10 . A region A is formed in the vicinity of the central portion of the absorbent body 10 . The regions B formed around the entire circumference of the absorbent body 10 may all be connected to one (may be an endless ring), and even if there are one or more locations divided by the region A good. The regions B need only be formed at least at the longitudinal ends of the absorbent body 10 or in the vicinity thereof, and may or may not be formed at the lateral ends 3 of the absorbent body 10 or in the vicinity thereof. good.
 吸収体10の長手方向の端1及び短手方向の端3は、直線であってよく、曲線であってもよい。吸収体10の形状は典型的には矩形であるが、長手方向X及びこれより短い幅方向Yを有していれば形状は特に限定されない。図3(b)において、吸収体10は長手方向の端1が吸収体外側に凸の曲線であり、短手方向の端3が吸収体内側に凸の曲線である。図3(b)において領域Bは吸収体10の長手方向の両端の形状に沿って形成されている。短手方向の端3は吸収体外側に凸の曲線であってもよく、直線であってもよい。長手方向の端1は吸収体内側に凸の曲線であってもよく、直線であってもよい。 The longitudinal end 1 and the lateral end 3 of the absorber 10 may be straight or curved. The shape of the absorbent body 10 is typically rectangular, but the shape is not particularly limited as long as it has a longitudinal direction X and a width direction Y shorter than this. In FIG. 3(b), the absorber 10 has a longitudinal end 1 that curves outwardly, and a transverse end 3 that curves outwardly. In FIG. 3B, regions B are formed along the shape of both ends of the absorbent body 10 in the longitudinal direction. The ends 3 in the width direction may be curved lines convex outward from the absorbent body, or may be straight lines. The ends 1 in the longitudinal direction may be curved lines convex toward the inner side of the absorbent body, or may be straight lines.
 図3(b)において領域Bは、吸収体10の長手方向の端1からの距離d2が、吸収体10の長手方向長さdの0~40%の位置に形成されている。図3(b)のように吸収体10が矩形以外の形状である場合、吸収体10の長手方向長さdとは、吸収体10の長手方向に最も長い距離を指し、吸収体10の長手方向の端1からの距離d2とは、長手方向の端1のうち最も長手方向外側に突き出た位置からの長手方向の距離を指す。 In FIG. 3(b), the region B is formed at a position where the distance d2 from the end 1 in the longitudinal direction of the absorbent body 10 is 0 to 40% of the length d in the longitudinal direction of the absorbent body 10. As shown in FIG. When the absorbent body 10 has a shape other than a rectangle as shown in FIG. The distance d2 from the direction edge 1 refers to the longitudinal distance from the position of the longitudinal edge 1 that protrudes most outward in the longitudinal direction.
 領域Aの総面積は、吸収体10の面積に対して20~80%であってよい。領域Aの面積は、吸収体10の面積に対して20%以上、25%以上、30%以上、35%以上、40%以上、45%以上、50%以上、55%以上、60%以上、65%以上、70%以上、75%以上であってよく、80%以下、75%以下、70%以下、65%以下、60%以下、55%以下、50%以下、45%以下、40%以下、35%以下、30%以下、又は25%以下であってよい。 The total area of region A may be 20 to 80% of the area of absorbent body 10 . The area of the region A is 20% or more, 25% or more, 30% or more, 35% or more, 40% or more, 45% or more, 50% or more, 55% or more, 60% or more of the area of the absorbent body 10, 65% or more, 70% or more, 75% or more, 80% or less, 75% or less, 70% or less, 65% or less, 60% or less, 55% or less, 50% or less, 45% or less, 40% 35% or less, 30% or less, or 25% or less.
 領域Bの総面積は、吸収体10の面積に対して20~80%であってよい。領域Bの面積は、吸収体10の面積に対して20%以上、25%以上、30%以上、35%以上、40%以上、45%以上、50%以上、55%以上、60%以上、65%以上、70%以上、75%以上であってよく、80%以下、75%以下、70%以下、65%以下、60%以下、55%以下、50%以下、45%以下、40%以下、35%以下、30%以下、又は25%以下であってよい。 The total area of region B may be 20 to 80% of the area of absorbent body 10 . The area of the region B is 20% or more, 25% or more, 30% or more, 35% or more, 40% or more, 45% or more, 50% or more, 55% or more, 60% or more of the area of the absorbent body 10, 65% or more, 70% or more, 75% or more, 80% or less, 75% or less, 70% or less, 65% or less, 60% or less, 55% or less, 50% or less, 45% or less, 40% 35% or less, 30% or less, or 25% or less.
 吸収体10は、吸収体の中央部を通り吸収体の長手方向と平行な軸を基準として線対称であってよく、非対称であってもよい。吸収体は吸収体の中央部を通り吸収体の短手方向と平行な軸を基準として線対称であってよく、非対称であってもよい。 The absorbent body 10 may be line-symmetrical or asymmetrical with respect to an axis passing through the central part of the absorbent body and parallel to the longitudinal direction of the absorbent body. The absorbent body may be line-symmetrical or asymmetrical with respect to an axis passing through the central portion of the absorbent body and parallel to the lateral direction of the absorbent body.
[吸水性樹脂粒子a]
 吸水性樹脂粒子aは、10ml/g以下の無加圧DWの5分値を示す。無加圧DWの5分値は、吸水性樹脂粒子が、無加圧下で生理食塩水と接触してから5分経過するまでに生理食塩水を吸収した量で表される吸水速度である。無加圧DWは、生理食塩水の吸収前の吸水性樹脂粒子1g当たりの吸収量[mL]で表される。
[Water absorbent resin particles a]
The water absorbent resin particles a show a 5-minute value of no-pressure DW of 10 ml/g or less. The 5-minute value of no-pressure DW is the water absorption rate represented by the amount of physiological saline absorbed by the water-absorbing resin particles in 5 minutes after contact with the physiological saline under no pressure. The non-pressurized DW is represented by the absorbed amount [mL] per 1 g of the water-absorbing resin particles before absorption of physiological saline.
 吸水性樹脂粒子aの無加圧DWの5分値は、10ml/g未満、9ml/g以下、8ml/g以下、7ml/g以下、6ml/g以下、5ml/g以下、4ml/g以下、又は3ml/g以下であってもよい。吸水性樹脂粒子aの無加圧DWの5分値は、0.1ml/g以上、1ml/g以上、2ml/g以上、3ml/g以上、4ml/g以上、5ml/g以上、6ml/g以上、7ml/g以上、又は8ml/g以上であってよい。吸水性樹脂粒子aの無加圧DWの5分値は、0.1ml/g以上10ml/g未満、又は1ml/g以上9ml/g以下であってもよい。無加圧DWの5分値は、後述する実施例に記載の方法によって測定される。 The 5-minute value of the non-pressurized DW of the water absorbent resin particles a is less than 10 ml/g, 9 ml/g or less, 8 ml/g or less, 7 ml/g or less, 6 ml/g or less, 5 ml/g or less, 4 ml/g or less. , or 3 ml/g or less. The 5-minute value of the non-pressurized DW of the water absorbent resin particles a is 0.1 ml/g or more, 1 ml/g or more, 2 ml/g or more, 3 ml/g or more, 4 ml/g or more, 5 ml/g or more, 6 ml/g or more. g or more, 7 ml/g or more, or 8 ml/g or more. The 5-minute value of the non-pressurized DW of the water absorbent resin particles a may be 0.1 ml/g or more and less than 10 ml/g, or 1 ml/g or more and 9 ml/g or less. The 5-minute value of no-pressure DW is measured by the method described in Examples below.
 吸水性樹脂粒子aの生理食塩水保水量は、液体の漏れ防止と優れた逆戻り量を両立しやすくする観点から、16g/g以上、20g/g以上、25g/g以上、30g/g以上、32g/g以上、34g/g以上、36g/g以上、又は38g/g以上であってよく、55g/g以下、53g/g以下、51g/g以下、49g/g以下、47g/g以下、45g/g以下、43g/g以下、41g/g以下、又は39g/g以下であってよい。吸水性樹脂粒子aの生理食塩水保水量は、16~55g/g、25~51g/g、又は32~47g/gであってもよい。生理食塩水の保水量は、後述する実施例に記載の方法によって測定される。 The physiological saline water retention capacity of the water-absorbing resin particles a is 16 g/g or more, 20 g/g or more, 25 g/g or more, 30 g/g or more, from the viewpoint of making it easier to achieve both prevention of liquid leakage and excellent regurgitation amount. may be 32 g/g or greater, 34 g/g or greater, 36 g/g or greater, or 38 g/g or greater; 55 g/g or less; 53 g/g or less; 51 g/g or less; It may be 45 g/g or less, 43 g/g or less, 41 g/g or less, or 39 g/g or less. The physiological saline water retention capacity of the water absorbent resin particles a may be 16 to 55 g/g, 25 to 51 g/g, or 32 to 47 g/g. The water retention capacity of physiological saline is measured by the method described in Examples below.
 吸水性樹脂粒子aの吸水速度(Vortex法による生理食塩水吸水速度)は、60秒以上、61秒以上、70秒以上、75秒以上、80秒以上、85秒以上、90秒以上、95秒以上、98秒以上、又は100秒以上であってよく、240秒以下、200秒以下、180秒以下、170秒以下、160秒以下、150秒以下、140秒以下、130秒以下、120秒以下、110秒以下、又は105秒以下であってよい。吸水性樹脂粒子aの吸水速度は、60~240秒、又は60~200秒であってもよい。吸水性樹脂粒子aの吸水速度が60秒以上であることによって、尿の初期の拡散性が増し、優れた逆戻り量をより達成しやすく、ゲルブロッキング現象の発生を抑制しやすいため好ましい。吸水性樹脂粒子aは吸水性樹脂粒子bと比べてVortex法による吸水速度が著しく低いことが好ましい。吸水性樹脂粒子AaのVortex法による吸水速度は、吸水性樹脂粒子bでの値の1.5~3倍であってよい。Vortex法による吸水速度は、後述する実施例に記載のとおり(日本工業規格JIS K 7224(1996))に準拠して測定する。 The water absorption rate of the water-absorbing resin particles a (physiological saline water absorption rate according to the Vortex method) is 60 seconds or longer, 61 seconds or longer, 70 seconds or longer, 75 seconds or longer, 80 seconds or longer, 85 seconds or longer, 90 seconds or longer, and 95 seconds. 98 seconds or more, or 100 seconds or more, 240 seconds or less, 200 seconds or less, 180 seconds or less, 170 seconds or less, 160 seconds or less, 150 seconds or less, 140 seconds or less, 130 seconds or less, 120 seconds or less , 110 seconds or less, or 105 seconds or less. The water absorption speed of the water absorbent resin particles a may be 60 to 240 seconds, or 60 to 200 seconds. When the water absorption speed of the water-absorbent resin particles a is 60 seconds or more, the initial diffusibility of urine is increased, an excellent amount of regurgitation is more likely to be achieved, and the occurrence of gel blocking phenomenon is easily suppressed, which is preferable. It is preferable that the water-absorbent resin particles a have a remarkably lower water absorption speed according to the Vortex method than the water-absorbent resin particles b. The water absorption rate of the water absorbent resin particles Aa by the Vortex method may be 1.5 to 3 times the value of the water absorbent resin particles b. The water absorption rate by the Vortex method is measured in accordance with Japanese Industrial Standards JIS K 7224 (1996) as described in Examples below.
 吸水性樹脂粒子aの荷重下吸水量は、例えば、16ml/g以上、18ml/g以上、20ml/g以上、22ml/g以上、又は24ml/g以上であってよく、30ml/g以下、28ml/g以下、26ml/g以下、又は24ml/g以下であってよい。吸水性樹脂粒子aの荷重下吸水量は、16~30ml/g、又は18~28ml/gであってもよい。荷重下吸水量は後述の実施例に記載の方法によって測定される。 The water absorption under load of the water absorbent resin particles a may be, for example, 16 ml/g or more, 18 ml/g or more, 20 ml/g or more, 22 ml/g or more, or 24 ml/g or more, and may be 30 ml/g or less, 28 ml. /g or less, 26 ml/g or less, or 24 ml/g or less. The water absorption under load of the water absorbent resin particles a may be 16 to 30 ml/g, or 18 to 28 ml/g. The water absorption under load is measured by the method described in Examples below.
 吸水性樹脂粒子aは、例えば、架橋重合体粒子、及び該架橋重合体粒子の表面の少なくとも一部を被覆する水不溶性のコーティング層を有する被覆樹脂粒子であってもよい。 The water-absorbing resin particles a may be, for example, crosslinked polymer particles and coated resin particles having a water-insoluble coating layer covering at least part of the surface of the crosslinked polymer particles.
 被覆樹脂粒子を構成する架橋重合体粒子は、吸水性を有する樹脂を含み、例えば、エチレン性不飽和単量体を含む単量体の重合により形成された架橋重合体を含んでいてよい。該架橋重合体は、エチレン性不飽和単量体に由来する単量体単位を有することができる。架橋重合体粒子は、例えば、エチレン性不飽和単量体を含む単量体を重合させる工程を含む方法により、製造することができる。重合方法としては、逆相懸濁重合法、水溶液重合法、バルク重合法、沈殿重合法等が挙げられる。 The crosslinked polymer particles that make up the coated resin particles contain a water-absorbing resin, and may contain, for example, a crosslinked polymer formed by polymerization of a monomer containing an ethylenically unsaturated monomer. The crosslinked polymer can have monomeric units derived from ethylenically unsaturated monomers. Crosslinked polymer particles can be produced, for example, by a method including a step of polymerizing a monomer containing an ethylenically unsaturated monomer. Examples of the polymerization method include a reverse phase suspension polymerization method, an aqueous solution polymerization method, a bulk polymerization method, a precipitation polymerization method, and the like.
 エチレン性不飽和単量体は、水溶性エチレン性不飽和単量体(水100gに対する溶解度が98℃で1g以上のエチレン性不飽和単量体)であってもよい。水溶性エチレン性不飽和単量体としては、例えば、(メタ)アクリル酸及びその塩、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸及びその塩、(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリレート、N-メチロール(メタ)アクリルアミド、ポリエチレングリコールモノ(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノプロピル(メタ)アクリレート、ジエチルアミノプロピル(メタ)アクリルアミド等が挙げられる。エチレン性不飽和単量体がアミノ基を有する場合、当該アミノ基は4級化されていてもよい。エチレン性不飽和単量体は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。 The ethylenically unsaturated monomer may be a water-soluble ethylenically unsaturated monomer (an ethylenically unsaturated monomer whose solubility in 100 g of water is 1 g or more at 98°C). Examples of water-soluble ethylenically unsaturated monomers include (meth)acrylic acid and its salts, 2-(meth)acrylamido-2-methylpropanesulfonic acid and its salts, (meth)acrylamide, N,N-dimethyl (Meth)acrylamide, 2-hydroxyethyl (meth)acrylate, N-methylol (meth)acrylamide, polyethylene glycol mono (meth)acrylate, N,N-diethylaminoethyl (meth)acrylate, N,N-diethylaminopropyl (meth) Acrylate, diethylaminopropyl (meth)acrylamide and the like. When the ethylenically unsaturated monomer has an amino group, the amino group may be quaternized. Ethylenically unsaturated monomers may be used alone or in combination of two or more.
 エチレン性不飽和単量体が酸基を有する場合、その酸基をアルカリ性中和剤によって中和してから重合反応に用いてもよい。エチレン性不飽和単量体における、アルカリ性中和剤による中和度は、例えば、エチレン性不飽和単量体中の酸性基の10~100モル%、50~90モル%、又は60~80モル%であってもよい。 When the ethylenically unsaturated monomer has an acid group, the acid group may be neutralized with an alkaline neutralizer before use in the polymerization reaction. The neutralization degree of the ethylenically unsaturated monomer with an alkaline neutralizing agent is, for example, 10 to 100 mol%, 50 to 90 mol%, or 60 to 80 mol of the acidic groups in the ethylenically unsaturated monomer. %.
 工業的に入手が容易である観点から、エチレン性不飽和単量体は、(メタ)アクリル酸及びその塩、アクリルアミド、メタクリルアミド、並びに、N,N-ジメチルアクリルアミドからなる群より選ばれる少なくとも1種の化合物を含んでいてもよい。エチレン性不飽和単量体が、(メタ)アクリル酸及びその塩、並びに、アクリルアミドからなる群より選ばれる少なくとも1種の化合物を含んでいてもよい。 From the viewpoint of industrial availability, the ethylenically unsaturated monomer is at least one selected from the group consisting of (meth)acrylic acid and its salts, acrylamide, methacrylamide, and N,N-dimethylacrylamide. It may contain a compound of the species. The ethylenically unsaturated monomer may contain at least one compound selected from the group consisting of (meth)acrylic acid and its salts, and acrylamide.
 架橋重合体粒子を得るための単量体としては、上述のエチレン性不飽和単量体以外の単量体が使用されてもよい。このような単量体は、例えば、上述のエチレン性不飽和単量体を含む水溶液に混合して用いることができる。エチレン性不飽和単量体の使用量は、単量体全量に対して70~100モル%であってもよい。(メタ)アクリル酸及びその塩の割合が単量体全量に対して70~100モル%であってもよい。 As a monomer for obtaining crosslinked polymer particles, a monomer other than the ethylenically unsaturated monomers described above may be used. Such monomers can be used, for example, by mixing with an aqueous solution containing the ethylenically unsaturated monomers described above. The amount of ethylenically unsaturated monomer used may be 70 to 100 mol % of the total amount of monomers. The ratio of (meth)acrylic acid and its salt may be 70 to 100 mol % with respect to the total amount of monomers.
 重合の際に自己架橋による架橋が生じ得るが、内部架橋剤を用いることで架橋を促してもよい。内部架橋剤を用いると、架橋重合体粒子の吸水特性(保水量等)を制御しやすい。内部架橋剤は、通常、重合反応の際に反応液に添加される。 Cross-linking may occur due to self-crosslinking during polymerization, but cross-linking may be promoted by using an internal cross-linking agent. The use of an internal cross-linking agent facilitates control of the water absorption properties (water retention capacity, etc.) of the crosslinked polymer particles. An internal cross-linking agent is usually added to the reaction solution during the polymerization reaction.
 架橋重合体粒子は、表面近傍の架橋(表面架橋)が行われたものであってもよい。また、架橋重合体粒子は、重合体粒子(架橋重合体)のみから構成されていてもよいが、例えば、ゲル安定剤、金属キレート剤、及び流動性向上剤(滑剤)等から選ばれる各種の追加の成分を更に含んでいてもよい。追加の成分は、重合体粒子の内部、重合体粒子の表面上、又はそれらの両方に配置され得る。追加の成分は、流動性向上剤(滑剤)であってもよい。流動性向上剤は無機粒子を含んでいてもよい。無機粒子としては、例えば、非晶質シリカ等のシリカ粒子が挙げられる。 The crosslinked polymer particles may be crosslinked in the vicinity of the surface (surface crosslinked). In addition, the crosslinked polymer particles may be composed only of polymer particles (crosslinked polymer). Additional ingredients may also be included. The additional component can be located inside the polymer particles, on the surface of the polymer particles, or both. An additional ingredient may be a flow improver (lubricant). The fluidity improver may contain inorganic particles. Examples of inorganic particles include silica particles such as amorphous silica.
 被覆樹脂粒子の形状は、特に限定されず、例えば、略球状、破砕状又は顆粒状であってもよく、これらの形状を有する一次粒子が凝集した形状であってもよい。 The shape of the coated resin particles is not particularly limited, and may be, for example, substantially spherical, crushed, or granular, or may be an aggregate of primary particles having these shapes.
 被覆樹脂粒子の中位粒子径は、100~800μm、150~700μm、200~600μm、又は250~500μmであってよい。中位粒子径は、以下の方法で測定することができる。 The median particle size of the coated resin particles may be 100-800 μm, 150-700 μm, 200-600 μm, or 250-500 μm. The median particle size can be measured by the following method.
[中位粒子径の測定法]
 JIS標準篩を上から、目開き600μmの篩、目開き500μmの篩、目開き425μmの篩、目開き300μmの篩、目開き250μmの篩、目開き180μmの篩、目開き150μmの篩、及び、受け皿の順に組み合わせる。組み合わせた最上の篩に、吸水性樹脂粒子50gを入れ、ロータップ式振とう器(株式会社飯田製作所製)を用いてJIS Z 8815(1994)に準じて分級する。分級後、各篩上に残った粒子の質量を全量に対する質量百分率として算出し粒度分布を求める。この粒度分布に関して粒子径の大きい方から順に篩上を積算することにより、篩の目開きと篩上に残った粒子の質量百分率の積算値との関係を対数確率紙にプロットする。確率紙上のプロットを直線で結ぶことにより、積算質量百分率50質量%に相当する粒子径を中位粒子径として得る。
[Method for measuring median particle size]
JIS standard sieves from the top, 600 μm sieve, 500 μm sieve, 425 μm 425 μm sieve, 300 μm sieve, 250 μm sieve, 180 μm sieve, 150 μm sieve, and , in the order of the saucer. 50 g of the water-absorbing resin particles are placed in the combined uppermost sieve, and classified according to JIS Z 8815 (1994) using a low-tap shaker (manufactured by Iida Seisakusho Co., Ltd.). After classification, the mass of the particles remaining on each sieve is calculated as a mass percentage of the total amount to determine the particle size distribution. For this particle size distribution, the sieve top is accumulated in descending order of particle size, and the relationship between the sieve opening and the integrated value of the mass percentage of the particles remaining on the sieve is plotted on logarithmic probability paper. By connecting the plots on the probability paper with a straight line, the particle size corresponding to the cumulative mass percentage of 50% by mass is obtained as the median particle size.
 被覆樹脂粒子を構成する水不溶性のコーティング層は、水不溶性成分を含む層である。本明細書において、水不溶性成分は、完全に水に不溶な物質だけでなく、水に対して僅かに溶解性を示す物質(水難溶性の物質)を含み得る。水不溶性成分の水100gに対する溶解度は、例えば、25℃で10g未満であり、好ましくは5g未満であり、より好ましくは3g未満であり、更に好ましくは1g未満である。 The water-insoluble coating layer that constitutes the coated resin particles is a layer that contains a water-insoluble component. In the present specification, the water-insoluble component may include not only completely water-insoluble substances but also substances slightly soluble in water (poorly water-soluble substances). The solubility of the water-insoluble component in 100 g of water at 25° C. is, for example, less than 10 g, preferably less than 5 g, more preferably less than 3 g, and even more preferably less than 1 g.
 コーティング層は、水不溶性の有機化合物及び水不溶性の無機化合物から選択される少なくとも1種の水不溶性成分を含む層であってもよい。 The coating layer may be a layer containing at least one water-insoluble component selected from water-insoluble organic compounds and water-insoluble inorganic compounds.
 水不溶性の有機化合物としては、例えば、置換又は無置換のアルケンを構成単位として含むポリマーの酸変性物、置換又は無置換のアルケンを構成単位として含むポリマーとアルキレンオキシドを構成単位として含むポリマーとの混合組成物、ポリウレタン、ポリエステル、ポリアミド、ポリスチレン、ポリカーボネート、ポリアクリレート、及びポリアセタールが挙げられる。 Examples of water-insoluble organic compounds include acid-modified polymers containing substituted or unsubstituted alkene as structural units, and polymers containing substituted or unsubstituted alkene as structural units and polymers containing alkylene oxide as structural units. Mixed compositions include polyurethanes, polyesters, polyamides, polystyrenes, polycarbonates, polyacrylates, and polyacetals.
 これらの中でも、置換又は無置換のアルケンを構成単位として含むポリマーの酸変性物、及び、置換又は無置換のアルケンを構成単位として含むポリマーとアルキレンオキシドを構成単位として含むポリマーとの混合組成物からなる群から選択される少なくとも1種を含むことが好ましく、無置換アルケンを構成単位として含むコポリマーの酸変性物、及び、無置換アルケンを構成単位として含むコポリマーとアルキレンオキシドを構成単位として含むポリマーとの混合組成物からなる群から選択される少なくとも1種を含むことがより好ましい。 Among these, acid-modified polymers containing substituted or unsubstituted alkenes as structural units, and mixed compositions of polymers containing substituted or unsubstituted alkenes as structural units and polymers containing alkylene oxides as structural units Preferably, it contains at least one selected from the group consisting of an acid-modified copolymer containing unsubstituted alkene as a structural unit, and a copolymer containing unsubstituted alkene as a structural unit and a polymer containing alkylene oxide as a structural unit. It is more preferable to contain at least one selected from the group consisting of a mixed composition of
 無置換アルケンを構成単位として含むコポリマーの酸変性物は、2種以上の無置換アルケンのみを構成単位として含むコポリマーの酸変性物であってもよく、1種又は2種以上の無置換アルケンと無置換アルケン以外のモノマー成分を構成単位として含むコポリマーの酸変性物であってもよい。好ましくは、2種以上の無置換アルケンのみを構成単位として含むコポリマーの酸変性物であり、より好ましくは、2種の無置換アルケンのみを構成単位として含むコポリマーの酸変性物である。当該コポリマーに用いられる無置換アルケンとしては、例えば、エチレン、プロピレン、及びブテンが挙げられるが、好ましくはエチレン及びプロピレンが用いられる。 The acid-modified copolymer containing unsubstituted alkenes as structural units may be acid-modified copolymers containing only two or more unsubstituted alkenes as structural units, and one or more unsubstituted alkenes and Acid-modified copolymers containing monomer components other than unsubstituted alkenes as structural units may also be used. Preferred are acid-modified copolymers containing only two or more unsubstituted alkenes as structural units, more preferably acid-modified copolymers containing only two unsubstituted alkenes as structural units. Unsubstituted alkenes used in such copolymers include, for example, ethylene, propylene, and butenes, preferably ethylene and propylene are used.
 また、当該コポリマーの酸変性は、無水マレイン酸、無水コハク酸、及び無水フタル酸からなる群より選ばれる少なくとも1種の酸無水物によって実現されていてもよく、好ましくは無水マレイン酸及び/又は無水コハク酸によって実現されており、より好ましくは無水マレイン酸によって実現されている。 In addition, the acid modification of the copolymer may be realized with at least one acid anhydride selected from the group consisting of maleic anhydride, succinic anhydride, and phthalic anhydride, preferably maleic anhydride and/or It is realized by succinic anhydride, more preferably by maleic anhydride.
 これらを総括すると、無置換アルケンを構成単位として含むコポリマーの酸変性物は、エチレン・プロピレン共重合体の酸変性物であることが好ましく、エチレン・プロピレン共重合体の無水マレイン酸変性物であることがより好ましい。 In summary, the acid-modified copolymer containing an unsubstituted alkene as a structural unit is preferably an acid-modified ethylene/propylene copolymer, and is a maleic anhydride-modified ethylene/propylene copolymer. is more preferable.
 混合組成物に含まれる無置換アルケンを構成単位として含むコポリマーは、2種以上の無置換アルケンのみを構成単位として含むコポリマーであってもよく、1種又は2種以上の無置換アルケンと無置換アルケン以外のモノマー成分を構成単位として含むコポリマーであってもよい。好ましくは、1種の無置換アルケンと無置換アルケン以外のモノマー成分を構成単位として含むコポリマーである。 The copolymer containing unsubstituted alkenes contained in the mixed composition as structural units may be a copolymer containing only two or more unsubstituted alkenes as structural units, and may be a copolymer containing only one or two or more unsubstituted alkenes and unsubstituted It may be a copolymer containing monomer components other than alkenes as structural units. Preferably, it is a copolymer containing one type of unsubstituted alkene and a monomer component other than the unsubstituted alkene as structural units.
 当該コポリマーに用いられる無置換アルケンとしては、例えば、エチレン、プロピレン、及びブテンが挙げられるが、好ましくはエチレン及び/又はプロピレンが用いられ、より好ましくはエチレンが用いられる。また、当該コポリマーに用いられる無置換アルケン以外のモノマー成分としては、水溶性エチレン性不飽和単量体が好ましく用いられる。水溶性エチレン性不飽和単量体としては、上で列挙した化合物を用いることができるが、好ましくは(メタ)アクリル酸及び/又はその塩が用いられる。 Examples of unsubstituted alkenes used in the copolymer include ethylene, propylene, and butene, preferably ethylene and/or propylene, more preferably ethylene. As a monomer component other than the unsubstituted alkene used in the copolymer, a water-soluble ethylenically unsaturated monomer is preferably used. As the water-soluble ethylenically unsaturated monomer, the compounds listed above can be used, but (meth)acrylic acid and/or salts thereof are preferably used.
 これらを総括すると、アルケンを構成単位として含むコポリマーとしては、エチレンと水溶性エチレン性不飽和単量体を構成単位として含むコポリマーが好ましく、エチレンと(メタ)アクリル酸及び/又はその塩を構成単位として含むコポリマーがより好ましく、エチレンとアクリル酸塩を構成単位として含むコポリマーがさらに好ましく、エチレンとアクリル酸ナトリウムを構成単位として含むコポリマー(エチレン・アクリル酸ナトリウム共重合体)が特に好ましい。 Summarizing these, the copolymer containing alkene as a structural unit is preferably a copolymer containing ethylene and a water-soluble ethylenically unsaturated monomer as a structural unit, and ethylene and (meth) acrylic acid and / or a salt thereof as a structural unit. is more preferred, a copolymer containing ethylene and an acrylate as structural units is more preferred, and a copolymer containing ethylene and sodium acrylate as structural units (ethylene/sodium acrylate copolymer) is particularly preferred.
 混合組成物に含まれるアルキレンオキシドを構成単位として含むポリマーは、1種のアルキレンオキシドのみを構成単位として含むポリアルキレンオキシド(ホモポリマー)であってもよく、2種以上のアルキレンオキシドを構成単位として含むポリアルキレンオキシド(コポリマー)であってもよく、1種又は2種以上のアルキレンオキシドとアルキレンオキシド以外のモノマー成分を構成単位として含むコポリマーであってもよいが、好ましくは1種のアルキレンオキシドのみを構成単位として含むポリアルキレンオキシドが用いられる。 The polymer containing the alkylene oxide contained in the mixed composition as a structural unit may be a polyalkylene oxide (homopolymer) containing only one alkylene oxide as a structural unit, or two or more alkylene oxides as structural units. It may be a polyalkylene oxide (copolymer) containing one or more alkylene oxides and may be a copolymer containing monomer components other than alkylene oxide as structural units, but preferably only one type of alkylene oxide is used as a constituent unit.
 アルキレンオキシドとしては、例えば、エチレンオキシド又はプロピレンオキシドが挙げられ、好ましくはエチレンオキシドが挙げられる。 Alkylene oxide includes, for example, ethylene oxide or propylene oxide, preferably ethylene oxide.
 これらを総括すると、アルキレンオキシドを構成単位として含むポリマーは、エチレンオキシドを構成単位として含むホモポリマー(ポリエチレングリコール)及びエチレンオキシドとプロピレンオキシドを構成単位として含むエチレン-プロピレン共重合体からなる群から選択される少なくとも1種であることが好ましく、ポリエチレングリコールがより好ましい。 In summary, the polymer containing alkylene oxide as a structural unit is selected from the group consisting of a homopolymer (polyethylene glycol) containing ethylene oxide as a structural unit and an ethylene-propylene copolymer containing ethylene oxide and propylene oxide as structural units. At least one is preferable, and polyethylene glycol is more preferable.
 水不溶性の無機化合物としては、例えば、軽質無水ケイ酸、ケイ酸カルシウム、二酸化ケイ素(シリカ)、タルク、酸化ケイ素、及び合成ヒドロタルサイトが挙げられる。これらの無機化合物は、1種単独で用いてもよく、複数種を組み合わせて用いてもよい。好ましくは、コーティング層を形成した際、比較的高い透水性を示し得ることから、二酸化ケイ素及びタルクのうち少なくとも一種が用いられ、より好ましくは二酸化ケイ素が用いられる。二酸化ケイ素は、親水性であってもよく疎水性であってもよい。吸水性樹脂粒子の吸水速度及び無加圧DWの5分値を適切な範囲に調整しやすいことから、二酸化ケイ素は疎水性であることが好ましい。 Examples of water-insoluble inorganic compounds include light anhydrous silicic acid, calcium silicate, silicon dioxide (silica), talc, silicon oxide, and synthetic hydrotalcite. These inorganic compounds may be used individually by 1 type, and may be used in combination of multiple types. Preferably, at least one of silicon dioxide and talc is used, and silicon dioxide is more preferably used because it can exhibit relatively high water permeability when the coating layer is formed. Silicon dioxide may be hydrophilic or hydrophobic. Silicon dioxide is preferably hydrophobic because it facilitates adjustment of the water absorption rate of the water-absorbent resin particles and the 5-minute value of the no-pressure DW within an appropriate range.
 架橋重合体粒子にコーティング層を形成する場合、架橋重合体粒子と、コーティング材料とを混合して、架橋重合体粒子の表面の少なくとも一部にコーティング層を形成してよい。コーティング材料は、例えば、上述のコーティング層を形成し得る成分又はその成分の形成材料である。例えば、コーティング層が、ポリウレタンを含む場合、コーティング材料は、ポリウレタンそのものを含んでいてもよく、該ポリウレタンの形成材料であるポリオール及びポリイソシアネートを含んでいてもよい。 When forming a coating layer on the crosslinked polymer particles, the crosslinked polymer particles and a coating material may be mixed to form a coating layer on at least part of the surface of the crosslinked polymer particles. The coating material is, for example, a component capable of forming the coating layer described above or a material forming the component. For example, when the coating layer contains polyurethane, the coating material may contain polyurethane itself, or may contain polyol and polyisocyanate, which are the forming materials of the polyurethane.
 コーティング層の形成方法は、特に限定されない。例えば、架橋重合体粒子を分散状態とした後、分散状態にある架橋重合体粒子にコーティング材料を接触させてコーティング層を形成することができる。具体的には、重合体粒子を分散させる分散媒にコーティング材料が溶解する場合、分散媒に架橋重合体粒子とコーティング材料とを添加して、架橋重合体粒子の表面にコーティング層を形成してもよい。また、コーティング材料としてポリオール及びポリイソシアネートを用いる場合、架橋重合体粒子の分散液にポリオールの水溶液を混合することによって、架橋重合体粒子とポリオールとを接触させた後、ポリイソシアネートを含有する液を混合して、ポリオールとポリイソシアネートとを重合させて、架橋重合体粒子の表面にポリウレタンを含むコーティング層を形成してもよい。 The method of forming the coating layer is not particularly limited. For example, after dispersing the crosslinked polymer particles, a coating material can be brought into contact with the dispersed crosslinked polymer particles to form a coating layer. Specifically, when the coating material is dissolved in the dispersion medium in which the polymer particles are dispersed, the crosslinked polymer particles and the coating material are added to the dispersion medium to form a coating layer on the surface of the crosslinked polymer particles. good too. Further, when a polyol and a polyisocyanate are used as the coating material, an aqueous solution of the polyol is mixed with the dispersion liquid of the crosslinked polymer particles so that the crosslinked polymer particles and the polyol are brought into contact with each other, and then the liquid containing the polyisocyanate is applied. Upon mixing, the polyol and polyisocyanate may be polymerized to form a coating layer containing polyurethane on the surface of the crosslinked polymer particles.
 分散媒は、炭化水素系溶媒を含んでよい。炭化水素系溶媒としては、例えば、n-ヘキサン、n-ヘプタン、2-メチルヘキサン、3-メチルヘキサン、2,3-ジメチルペンタン、3-エチルペンタン、n-オクタン等の鎖状脂肪族炭化水素;シクロヘキサン、メチルシクロヘキサン、シクロペンタン、メチルシクロペンタン、trans-1,2-ジメチルシクロペンタン、cis-1,3-ジメチルシクロペンタン、trans-1,3-ジメチルシクロペンタン等の脂環式炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素が挙げられる。 The dispersion medium may contain a hydrocarbon solvent. Examples of hydrocarbon solvents include chain aliphatic hydrocarbons such as n-hexane, n-heptane, 2-methylhexane, 3-methylhexane, 2,3-dimethylpentane, 3-ethylpentane and n-octane. alicyclic hydrocarbons such as cyclohexane, methylcyclohexane, cyclopentane, methylcyclopentane, trans-1,2-dimethylcyclopentane, cis-1,3-dimethylcyclopentane, trans-1,3-dimethylcyclopentane; Aromatic hydrocarbons such as benzene, toluene and xylene can be mentioned.
 固体状の無機化合物をコーティング材料として用いる場合、粒子複合化装置を用いて架橋重合体粒子の表面にコーティング材料を圧着させ、コーティング層を形成することができる。具体的には、粒子複合化装置に所定量の架橋重合体粒子と固体状の無機化合物を投入する。その後、装置に備えられた撹拌翼の回転により、架橋重合体粒子及び無機化合物に応力(圧縮応力及び剪断応力)を加え、該応力により架橋重合体粒子の表面に無機化合物を圧着させることにより被覆樹脂粒子を作製する。 When a solid inorganic compound is used as the coating material, a coating layer can be formed by pressing the coating material onto the surface of the crosslinked polymer particles using a particle compounding device. Specifically, a predetermined amount of crosslinked polymer particles and a solid inorganic compound are charged into a particle compounding device. After that, the crosslinked polymer particles and the inorganic compound are subjected to stress (compressive stress and shear stress) by rotation of the stirring blades provided in the device, and the stress causes the inorganic compound to be pressure-bonded to the surface of the crosslinked polymer particles for coating. A resin particle is produced.
[吸水性樹脂粒子b]
 吸水性樹脂粒子bの無加圧DWの5分値は10ml/g超である。吸水性樹脂粒子bの無加圧DWの5分値は、11ml/g以上、13ml/g以上、15ml/g以上、20ml/g以上、25ml/g以上、30ml/g以上、35ml/g以上、40ml/g以上、45ml/g以上、50ml/g以上、又は55ml/g以上であってよい。吸水性樹脂粒子bの無加圧DWの5分値は、70ml/g以下、65ml/g以下、60ml/g以下、55ml/g以下、50ml/g以下、45ml/g以下、40ml/g以下、35ml/g以下、30ml/g以下、又は25ml/g以下であってもよい。吸水性樹脂粒子bの無加圧DWの5分値は、10ml/g超70ml/g以下、又は15ml/g以上60ml/g以下であってもよい。
[Water absorbent resin particles b]
The 5-minute value of the non-pressurized DW of the water absorbent resin particles b is more than 10 ml/g. The 5-minute value of the non-pressurized DW of the water absorbent resin particles b is 11 ml/g or more, 13 ml/g or more, 15 ml/g or more, 20 ml/g or more, 25 ml/g or more, 30 ml/g or more, 35 ml/g or more. , 40 ml/g or more, 45 ml/g or more, 50 ml/g or more, or 55 ml/g or more. The 5-minute value of the non-pressurized DW of the water absorbent resin particles b is 70 ml/g or less, 65 ml/g or less, 60 ml/g or less, 55 ml/g or less, 50 ml/g or less, 45 ml/g or less, 40 ml/g or less. , 35 ml/g or less, 30 ml/g or less, or 25 ml/g or less. The 5-minute value of the non-pressurized DW of the water absorbent resin particles b may be more than 10 ml/g and 70 ml/g or less, or 15 ml/g or more and 60 ml/g or less.
 吸水性樹脂粒子bの生理食塩水保水量は、液体の漏れ防止と優れた逆戻り量を両立しやすくする観点から、16g/g以上、20g/g以上、25g/g以上、30g/g以上、32g/g以上、34g/g以上、36g/g以上、又は38g/g以上であってよく、55g/g以下、53g/g以下、51g/g以下、49g/g以下、47g/g以下、45g/g以下、43g/g以下、41g/g以下、又は39g/g以下であってよい。吸水性樹脂粒子bの生理食塩水保水量は、16~55g/g、25~51g/g、又は32~47g/gであってもよい。 The physiological saline water retention capacity of the water-absorbent resin particles b is 16 g/g or more, 20 g/g or more, 25 g/g or more, 30 g/g or more, from the viewpoint of making it easier to achieve both prevention of liquid leakage and excellent regurgitation amount. may be 32 g/g or greater, 34 g/g or greater, 36 g/g or greater, or 38 g/g or greater; 55 g/g or less; 53 g/g or less; 51 g/g or less; It may be 45 g/g or less, 43 g/g or less, 41 g/g or less, or 39 g/g or less. The water-absorbent resin particles b may have a physiological saline water retention capacity of 16 to 55 g/g, 25 to 51 g/g, or 32 to 47 g/g.
 吸水性樹脂粒子bの吸水速度(Vortex法による吸水速度)は、2秒以上、5秒以上、10秒以上、15秒以上、20秒以上、25秒以上、30秒以上、32秒以上、35秒以上、又は38秒以上であってよく、55秒以下、50秒以下、45秒以下、43秒以下、40秒以下、又は38秒以下であってよい。吸水性樹脂粒子bの吸水速度が55秒以下であることによって、吸収体の長手方向の漏れをより防ぎやすいため好ましい。吸水性樹脂粒子bの吸水速度は、2~55秒、5~50秒、又は10~45秒であってもよい。 The water absorption speed (water absorption speed according to the Vortex method) of the water-absorbing resin particles b is 2 seconds or more, 5 seconds or more, 10 seconds or more, 15 seconds or more, 20 seconds or more, 25 seconds or more, 30 seconds or more, 32 seconds or more, 35 seconds or more. Seconds or more, or 38 seconds or more, and may be 55 seconds or less, 50 seconds or less, 45 seconds or less, 43 seconds or less, 40 seconds or less, or 38 seconds or less. When the water absorption speed of the water absorbent resin particles b is 55 seconds or less, leakage in the longitudinal direction of the absorbent body can be more easily prevented, which is preferable. The water absorption speed of the water absorbent resin particles b may be 2 to 55 seconds, 5 to 50 seconds, or 10 to 45 seconds.
 吸水性樹脂粒子bの荷重下吸水量は、例えば、16ml/g以上、18ml/g以上、20ml/g以上、22ml/g以上、又は24ml/g以上であってよく、30ml/g以下、28ml/g以下、26ml/g以下、又は24ml/g以下であってよい。吸水性樹脂粒子bの荷重下吸水量は、16~30ml/g、又は18~28ml/gであってもよい。 The water absorption under load of the water absorbent resin particles b may be, for example, 16 ml/g or more, 18 ml/g or more, 20 ml/g or more, 22 ml/g or more, or 24 ml/g or more, and may be 30 ml/g or less, 28 ml. /g or less, 26 ml/g or less, or 24 ml/g or less. The water absorption under load of the water absorbent resin particles b may be 16 to 30 ml/g, or 18 to 28 ml/g.
 吸水性樹脂粒子bは、例えば、エチレン性不飽和単量体を含む単量体の重合により形成された架橋重合体粒子を含んでいてよい。該架橋重合体粒子は、エチレン性不飽和単量体に由来する単量体単位を有することができる。吸水性樹脂粒子は、例えば、エチレン性不飽和単量体を含む単量体を重合させる工程を含む方法により、製造することができる。重合方法としては、逆相懸濁重合法、水溶液重合法、バルク重合法、沈殿重合法等が挙げられる。 The water absorbent resin particles b may contain, for example, crosslinked polymer particles formed by polymerization of monomers containing ethylenically unsaturated monomers. The crosslinked polymer particles can have monomer units derived from ethylenically unsaturated monomers. The water absorbent resin particles can be produced, for example, by a method including a step of polymerizing a monomer containing an ethylenically unsaturated monomer. Examples of the polymerization method include a reverse phase suspension polymerization method, an aqueous solution polymerization method, a bulk polymerization method, a precipitation polymerization method, and the like.
 吸水性樹脂粒子bを構成する架橋重合体粒子は、例えば、上述の被覆樹脂粒子を構成する架橋重合体粒子と同様の態様を適用できる。吸水性樹脂粒子bは、樹脂による被覆がなされていないものであってよい。 For the crosslinked polymer particles constituting the water absorbent resin particles b, for example, the same aspect as the crosslinked polymer particles constituting the above-described coated resin particles can be applied. The water absorbent resin particles b may not be coated with a resin.
 吸水性樹脂粒子bは、表面近傍の架橋(表面架橋)が行われたものであってもよい。また、吸水性樹脂粒子bは、重合体粒子(架橋重合体)のみから構成されていてもよいが、例えば、ゲル安定剤、金属キレート剤、及び流動性向上剤(滑剤)等から選ばれる各種の追加の成分を更に含んでいてもよい。追加の成分は、重合体粒子の内部、重合体粒子の表面上、又はそれらの両方に配置され得る。追加の成分は、流動性向上剤(滑剤)であってもよい。流動性向上剤は無機粒子を含んでいてもよい。無機粒子としては、例えば、非晶質シリカ等のシリカ粒子が挙げられる。 The water-absorbent resin particles b may be crosslinked near the surface (surface crosslinked). The water-absorbent resin particles b may be composed only of polymer particles (crosslinked polymer). may further comprise additional components of The additional component can be located inside the polymer particles, on the surface of the polymer particles, or both. An additional ingredient may be a flow improver (lubricant). The fluidity improver may contain inorganic particles. Examples of inorganic particles include silica particles such as amorphous silica.
 吸水性樹脂粒子bの形状は、特に限定されず、例えば、略球状、破砕状又は顆粒状であってもよく、これらの形状を有する一次粒子が凝集した形状であってもよい。 The shape of the water-absorbing resin particles b is not particularly limited.
 吸水性樹脂粒子bの中位粒子径は、100~800μm、150~700μm、200~600μm、又は250~500μmであってよい。 The median particle size of the water-absorbing resin particles b may be 100-800 μm, 150-700 μm, 200-600 μm, or 250-500 μm.
[吸収体]
 吸収体において、領域A及び領域Bはそれぞれ吸水性樹脂粒子の他に繊維状物を含んでいてもよい。領域A及び領域Bは、吸水性樹脂粒子及び繊維状物を含む混合物であってよい。吸収体の構成としては、例えば、吸水性樹脂粒子及び繊維状物が均一混合された構成であってよい。
[Absorber]
In the absorbent body, the regions A and B may each contain a fibrous material in addition to the water absorbent resin particles. Region A and region B may be a mixture containing water absorbent resin particles and fibrous materials. The structure of the absorbent body may be, for example, a structure in which water-absorbing resin particles and fibrous substances are uniformly mixed.
 吸収体全体における吸水性樹脂粒子の総含有量は、吸水性樹脂粒子及び繊維状物の合計に対して、10質量%以上、20質量%以上、30質量%以上、40質量%以上、50質量%以上、60質量%以上、80質量%以上、90質量%以上、95質量%以上又は100質量%であってよく、100質量%以下、98質量%以下、96質量%以下、95質量%以下、90質量%以下、85質量%以下、80質量%以下、75質量%以下、70質量%以下、又は65質量%以下であってよい。吸収体全体における吸水性樹脂粒子の総含有量は、吸水性樹脂粒子及び繊維状物の合計に対して、10~100質量%、30~100質量%、又は50~100質量%であってもよい。 The total content of the water-absorbing resin particles in the entire absorbent body is 10% by mass or more, 20% by mass or more, 30% by mass or more, 40% by mass or more, or 50% by mass with respect to the total of the water-absorbing resin particles and fibrous materials. % or more, 60% by mass or more, 80% by mass or more, 90% by mass or more, 95% by mass or more, or 100% by mass, 100% by mass or less, 98% by mass or less, 96% by mass or less, 95% by mass or less , 90% by mass or less, 85% by mass or less, 80% by mass or less, 75% by mass or less, 70% by mass or less, or 65% by mass or less. The total content of the water absorbent resin particles in the entire absorbent body is 10 to 100% by mass, 30 to 100% by mass, or 50 to 100% by mass with respect to the total of the water absorbent resin particles and the fibrous material. good.
 領域Aにおける吸水性樹脂粒子の総含有量は、領域Aにおける吸水性樹脂粒子及び繊維状物の合計に対して、10質量%以上、20質量%以上、30質量%以上、40質量%以上、50質量%以上、60質量%以上、80質量%以上、90質量%以上、又は95質量%以上であってよく、100質量%、100質量%以下、98質量%以下、96質量%以下、95質量%以下、90質量%以下、85質量%以下、80質量%以下、75質量%以下、70質量%以下、又は65質量%以下であってよい。領域Aにおける吸水性樹脂粒子の総含有量は、領域Aにおける吸水性樹脂粒子及び繊維状物の合計に対して、10~100質量%、30~100質量%、又は50~100質量%であってもよい。 The total content of the water-absorbent resin particles in region A is 10% by mass or more, 20% by mass or more, 30% by mass or more, 40% by mass or more, based on the total content of the water-absorbent resin particles and fibrous materials in region A. 50% by mass or more, 60% by mass or more, 80% by mass or more, 90% by mass or more, or 95% by mass or more, 100% by mass, 100% by mass or less, 98% by mass or less, 96% by mass or less, 95 % by mass or less, 90% by mass or less, 85% by mass or less, 80% by mass or less, 75% by mass or less, 70% by mass or less, or 65% by mass or less. The total content of water absorbent resin particles in region A is 10 to 100% by mass, 30 to 100% by mass, or 50 to 100% by mass with respect to the total content of water absorbent resin particles and fibrous materials in region A. may
 領域Bにおける吸水性樹脂粒子の総含有量は、領域Bにおける吸水性樹脂粒子及び繊維状物の合計に対して、10質量%以上、20質量%以上、30質量%以上、40質量%以上、50質量%以上、60質量%以上、80質量%以上、90質量%以上、又は95質量%以上であってよく、100質量%、100質量%以下、98質量%以下、96質量%以下、95質量%以下、90質量%以下、85質量%以下、80質量%以下、75質量%以下、70質量%以下、又は65質量%以下であってよい。領域Bにおける吸水性樹脂粒子の総含有量は、領域Bにおける吸水性樹脂粒子及び繊維状物の合計に対して、10~100質量%、30~100質量%、又は50~100質量%であってもよい。 The total content of the water-absorbent resin particles in region B is 10% by mass or more, 20% by mass or more, 30% by mass or more, 40% by mass or more with respect to the total of the water-absorbent resin particles and fibrous materials in region B, 50% by mass or more, 60% by mass or more, 80% by mass or more, 90% by mass or more, or 95% by mass or more, 100% by mass, 100% by mass or less, 98% by mass or less, 96% by mass or less, 95 % by mass or less, 90% by mass or less, 85% by mass or less, 80% by mass or less, 75% by mass or less, 70% by mass or less, or 65% by mass or less. The total content of water absorbent resin particles in region B is 10 to 100% by mass, 30 to 100% by mass, or 50 to 100% by mass with respect to the total content of water absorbent resin particles and fibrous materials in region B. may
 吸収体全体における吸水性樹脂粒子aの総含有量は、吸収体全体における吸水性樹脂粒子の総含有量に対して、3質量%以上、5質量%以上、10質量%以上、12質量%以上、15質量%以上、18質量%以上、20質量%以上、22質量%以上、25質量%以上、30質量%以上、35質量%以上、又は40質量%以上であってよく、50質量%以下、45質量%以下、40質量%以下、35質量%以下、30質量%以下、又は25質量%以下であってよい。吸収体全体における吸水性樹脂粒子aの総含有量は、吸収体全体における吸水性樹脂粒子の総含有量に対して、3~50質量%、5~40質量%、又は10~25質量%であってもよい。 The total content of the water-absorbent resin particles a in the entire absorber is 3% by mass or more, 5% by mass or more, 10% by mass or more, 12% by mass or more with respect to the total content of the water-absorbent resin particles in the entire absorber. , 15% by mass or more, 18% by mass or more, 20% by mass or more, 22% by mass or more, 25% by mass or more, 30% by mass or more, 35% by mass or more, or 40% by mass or more, and 50% by mass or less , 45% by mass or less, 40% by mass or less, 35% by mass or less, 30% by mass or less, or 25% by mass or less. The total content of the water absorbent resin particles a in the entire absorbent body is 3 to 50% by mass, 5 to 40% by mass, or 10 to 25% by mass with respect to the total content of the water absorbent resin particles in the entire absorbent body. There may be.
 吸収体全体における吸水性樹脂粒子bの総含有量は、吸収体全体における吸水性樹脂粒子の総含有量に対して、50質量%以上、55質量%以上、60質量%以上、65質量%以上、70質量%以上、75質量%以上、80質量%以上、85質量%以上、90質量%以上、又は95質量%以上であってよく、97質量%以下、95質量%以下、90質量%以下、85質量%以下、80質量%以下、75質量%以下、70質量%以下、65質量%以下、60質量%以下、又は55質量%以下であってよい。吸収体全体における吸水性樹脂粒子bの総含有量は、吸収体全体における吸水性樹脂粒子の総含有量に対して、50~97質量%、60~95質量%、又は75~90質量%であってもよい。 The total content of the water absorbent resin particles b in the entire absorbent body is 50% by mass or more, 55% by mass or more, 60% by mass or more, 65% by mass or more with respect to the total content of the water absorbent resin particles in the entire absorbent body. , 70% by mass or more, 75% by mass or more, 80% by mass or more, 85% by mass or more, 90% by mass or more, or 95% by mass or more, and 97% by mass or less, 95% by mass or less, 90% by mass or less , 85% by mass or less, 80% by mass or less, 75% by mass or less, 70% by mass or less, 65% by mass or less, 60% by mass or less, or 55% by mass or less. The total content of the water absorbent resin particles b in the entire absorbent body is 50 to 97% by mass, 60 to 95% by mass, or 75 to 90% by mass with respect to the total content of the water absorbent resin particles in the entire absorbent body. There may be.
 吸収体全体における吸水性樹脂粒子の総含有量は、吸収体1m当たり、100g以上、200g以上、300g以上、400g以上、500g以上、600g以上、700g以上、800g以上、又は900g以上であってよく、1000g以下、900g以下、800g以下、700g以下、600g以下、500g以下、400g以下、又は300g以下であってよい。吸収体全体における吸水性樹脂粒子の総含有量は、吸収体1m当たり、100~1000gであってもよい。 The total content of water-absorbing resin particles in the entire absorbent body is 100 g or more, 200 g or more, 300 g or more, 400 g or more, 500 g or more, 600 g or more, 700 g or more, 800 g or more, or 900 g or more per 1 m 2 of the absorbent body. Well, it may be 1000g or less, 900g or less, 800g or less, 700g or less, 600g or less, 500g or less, 400g or less, or 300g or less. The total content of water absorbent resin particles in the entire absorbent body may be 100 to 1000 g per 1 m 2 of the absorbent body.
 領域Aにおける吸水性樹脂粒子の総含有量は、領域Aの1m当たり、100g以上、200g以上、300g以上、400g以上、500g以上、600g以上、700g以上、800g以上、900g以上であってよく、1000g以下、900g以下、800g以下、700g以下、600g以下、500g以下、400g以下、又は300g以下であってよい。領域Aにおける吸水性樹脂粒子の総含有量は、領域Aの1m当たり、100~1000gであってもよい。 The total content of the water-absorbing resin particles in region A may be 100 g or more, 200 g or more, 300 g or more, 400 g or more, 500 g or more, 600 g or more, 700 g or more, 800 g or more, or 900 g or more per square meter of region A. , 1000 g or less, 900 g or less, 800 g or less, 700 g or less, 600 g or less, 500 g or less, 400 g or less, or 300 g or less. The total content of water absorbent resin particles in the region A may be 100 to 1000 g per 1 m 2 of the region A.
 領域Bにおける吸水性樹脂粒子の総含有量は、領域Bの1m当たり、100g以上、200g以上、300g以上、400g以上、500g以上、600g以上、700g以上、800g以上、又は900g以上であってよく、1000g以下、900g以下、800g以下、700g以下、600g以下、500g以下、400g以下、又は300g以下であってよい。領域Bにおける吸水性樹脂粒子の総含有量は、領域Bの1m当たり、100~1000gであってもよい。 The total content of the water-absorbing resin particles in region B is 100 g or more, 200 g or more, 300 g or more, 400 g or more, 500 g or more, 600 g or more, 700 g or more, 800 g or more, or 900 g or more per 1 m 2 of region B. Well, it may be 1000g or less, 900g or less, 800g or less, 700g or less, 600g or less, 500g or less, 400g or less, or 300g or less. The total content of water-absorbing resin particles in region B may be 100 to 1000 g per 1 m 2 of region B.
 吸収体における繊維状物の含有量は、吸収体1m当たり、10g以上、50g以上、又は100g以上であってよく、800g以下、600g以下、500g以下、300g以下、又は200g以下であってよい。吸収体における繊維状物の含有量は、吸収体1m当たり、10~800g、10~500g、又は10~300gであってもよい。 The content of the fibrous material in the absorbent body may be 10 g or more, 50 g or more, or 100 g or more, and may be 800 g or less, 600 g or less, 500 g or less, 300 g or less, or 200 g or less per 1 m 2 of the absorbent body. . The content of fibrous material in the absorbent may be 10-800 g, 10-500 g, or 10-300 g per square meter of absorbent.
 領域Aにおける繊維状物の含有量は、領域Aの1m当たり、10g以上、50g以上、又は100g以上であってよく、800g以下、600g以下、500g以下、300g以下、又は200g以下であってよい。領域Aにおける繊維状物の含有量は、領域Aの1m当たり、10~800g、10~500g、又は10~300gであってもよい。 The content of the fibrous material in region A may be 10 g or more, 50 g or more, or 100 g or more, and 800 g or less, 600 g or less, 500 g or less, 300 g or less, or 200 g or less per 1 m 2 of region A. good. The fibrous content in region A may be from 10 to 800 g, from 10 to 500 g, or from 10 to 300 g per square meter of region A.
 領域Bにおける繊維状物の含有量は、領域Bの1m当たり、10g以上、50g以上、又は100g以上であってよく、800g以下、600g以下、500g以下、300以下、又は200g以下であってよい。領域Bにおける繊維状物の含有量は、領域Bの1m当たり、10~800g、10~500g、又は10~300gであってもよい。 The content of the fibrous material in region B may be 10 g or more, 50 g or more, or 100 g or more, and 800 g or less, 600 g or less, 500 g or less, 300 g or less, or 200 g or less per 1 m 2 of region B. good. The fibrous content in region B may be from 10 to 800 g, from 10 to 500 g, or from 10 to 300 g per square meter of region B.
 繊維状物としては、例えば、微粉砕された木材パルプ;コットン;コットンリンター;レーヨン;セルロースアセテート等のセルロース系繊維;ポリアミド、ポリエステル、ポリオレフィン等の合成繊維;これらの繊維の混合物などが挙げられる。繊維状物は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。繊維状物としては、親水性繊維を用いることができる。親水性繊維としては、上述した、木材パルプ;コットン;コットンリンター;レーヨン;セルロースアセテート等のセルロース系繊維が好ましい。 Examples of fibrous materials include pulverized wood pulp; cotton; cotton linter; rayon; cellulosic fibers such as cellulose acetate; synthetic fibers such as polyamide, polyester and polyolefin; The fibrous material may be used alone or in combination of two or more. Hydrophilic fibers can be used as fibrous materials. As hydrophilic fibers, cellulosic fibers such as wood pulp, cotton, cotton linter, rayon, and cellulose acetate are preferred.
 吸収体の使用前及び使用中における形態保持性を高めるために、繊維状物に接着性バインダーを添加することによって繊維同士を接着させてもよい。接着性バインダーとしては、熱融着性合成繊維、ホットメルト接着剤、接着性エマルジョン等が挙げられる。接着性バインダーは、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。 In order to enhance the shape retention of the absorbent material before and during use, the fibers may be adhered to each other by adding an adhesive binder to the fibrous material. Examples of adhesive binders include heat-fusible synthetic fibers, hot-melt adhesives, adhesive emulsions, and the like. An adhesive binder may be used independently and may be used in combination of 2 or more type.
 熱融着性合成繊維としては、例えば、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体等の全融型バインダー;ポリプロピレンとポリエチレンとのサイドバイサイド又は芯鞘構造からなる非全融型バインダーなどが挙げられる。上述の非全融型バインダーにおいては、ポリエチレン部分のみ熱融着することができる。 Heat-fusible synthetic fibers include, for example, all-melting binders such as polyethylene, polypropylene and ethylene-propylene copolymer; Only the polyethylene portion can be heat-sealed in the above-mentioned non-total melting type binder.
 ホットメルト接着剤としては、例えば、エチレン-酢酸ビニルコポリマー、スチレン-イソプレン-スチレンブロックコポリマー、スチレン-ブタジエン-スチレンブロックコポリマー、スチレン-エチレン-ブチレン-スチレンブロックコポリマー、スチレン-エチレン-プロピレン-スチレンブロックコポリマー、アモルファスポリプロピレン等のベースポリマーと、粘着付与剤、可塑剤、酸化防止剤等との混合物が挙げられる。 Hot melt adhesives include, for example, ethylene-vinyl acetate copolymer, styrene-isoprene-styrene block copolymer, styrene-butadiene-styrene block copolymer, styrene-ethylene-butylene-styrene block copolymer, styrene-ethylene-propylene-styrene block copolymer. , amorphous polypropylene, and other base polymers with tackifiers, plasticizers, antioxidants, and the like.
 接着性エマルジョンとしては、例えば、メチルメタクリレート、スチレン、アクリロニトリル、2-エチルヘキシルアクリレート、ブチルアクリレート、ブタジエン、エチレン、及び酢酸ビニルからなる群より選ばれる少なくとも一種の単量体の重合物が挙げられる。 Examples of adhesive emulsions include polymers of at least one monomer selected from the group consisting of methyl methacrylate, styrene, acrylonitrile, 2-ethylhexyl acrylate, butyl acrylate, butadiene, ethylene, and vinyl acetate.
 本実施形態に係る吸収体は、無機粉末(例えば非晶質シリカ)、消臭剤、抗菌剤、顔料、染料、香料、粘着剤等を含有してもよい。これらの添加剤により、吸収体に種々の機能を付与することができる。吸水性樹脂粒子が無機粒子を含む場合、吸収体は、吸水性樹脂粒子中の無機粒子とは別に無機粉末を含有してよい。無機粉末としては、例えば、二酸化ケイ素、ゼオライト、カオリン、クレイ系が挙げられる。 The absorber according to this embodiment may contain inorganic powder (for example, amorphous silica), deodorant, antibacterial agent, pigment, dye, fragrance, adhesive, and the like. These additives can impart various functions to the absorbent. When the water absorbent resin particles contain inorganic particles, the absorber may contain inorganic powder separately from the inorganic particles in the water absorbent resin particles. Examples of inorganic powders include silicon dioxide, zeolite, kaolin, and clay-based powders.
 本実施形態に係る吸収体の形状は、例えばシート状であってよい。吸収体の厚さ(例えば、シート状の吸収体の厚さ)は、0.1~20mm又は0.3~15mmであってよい。 The shape of the absorber according to this embodiment may be, for example, a sheet shape. The thickness of the absorber (for example, the thickness of a sheet-like absorber) may be 0.1-20 mm or 0.3-15 mm.
 吸収体には、液体の流路が設けられていてよい。液体の流路は、例えば、吸収体にエンボス加工が施されることによって設けられてよい。 A liquid flow path may be provided in the absorber. The liquid channels may be provided, for example, by embossing the absorbent body.
 領域A及び領域Bを有する吸収体は、例えば、領域Aを構成する吸収体と領域Bを構成する吸収体とをそれぞれシート状に製造した後、所定の形状に切断し、領域Aと領域Bとを接合することによって製造することができる。また、領域A及び領域Bを有する吸収体は、吸収体全体のうち、吸水性樹脂粒子aのみを含む領域を製造した後、吸水性樹脂粒子bのみを含む領域を製造し、2層を重ね合わせることによって製造してもよい。また、領域A及び領域Bを有する吸収体は、1枚のシート状吸収体を製造する際に、散布する吸収性樹脂粒子の種類を速やかに切り替えるダクトを用いることによって製造してもよい。 In the absorbent body having the regions A and B, for example, the absorbent body forming the region A and the absorbent body forming the region B are manufactured in a sheet form, respectively, and then cut into a predetermined shape to form the region A and the region B. can be manufactured by joining the Further, for the absorbent body having the regions A and B, after manufacturing the region containing only the water-absorbing resin particles a in the entire absorber, the region containing only the water-absorbing resin particles b is manufactured, and two layers are laminated. It may be manufactured by combining. Also, the absorbent body having the regions A and B may be manufactured by using a duct for rapidly switching the type of absorbent resin particles to be dispersed when manufacturing one sheet-like absorbent body.
[吸収性物品]
 本実施形態に係る吸収体は、吸収性物品の構成として好適である。すなわち吸収性物品は、本実施形態に係る吸収体を備えていてよい。吸収性物品の他の構成部材としては、吸収体を保形するとともに吸収体の構成部材の脱落や流動を防止するコアラップ;吸液対象の液が浸入する側の最外部に配置される液体透過性シート;吸液対象の液が浸入する側とは反対側の最外部に配置される液体不透過性シート等が挙げられる。吸収性物品としては、おむつ(例えば紙おむつ)、トイレトレーニングパンツ、失禁パッド、衛生材料(生理用ナプキン、タンポン等)、汗取りパッド、ペットシート、簡易トイレ用部材、動物排泄物処理材などが挙げられる。吸収性物品は使い捨てであってもよい。
[Absorbent article]
The absorber according to this embodiment is suitable as a structure of an absorbent article. That is, the absorbent article may include the absorbent body according to this embodiment. Other constituent members of the absorbent article include a core wrap that retains the shape of the absorbent body and prevents the constituent members of the absorbent body from falling off and flowing; liquid-impermeable sheet; a liquid-impermeable sheet disposed on the outermost side opposite to the side into which the liquid to be absorbed is permeated. Absorbent articles include diapers (e.g., paper diapers), toilet training pants, incontinence pads, sanitary materials (sanitary napkins, tampons, etc.), perspiration pads, pet sheets, simple toilet members, animal excrement disposal materials, and the like. . The absorbent article may be disposable.
 図4は、吸収性物品の一例を示す断面図である。図4に示す吸収性物品100は、吸収体10と、コアラップシート20a,20bと、液体透過性シート30と、液体不透過性シート40と、を備える。吸収性物品100において、液体不透過性シート40、コアラップシート20b、吸収体10、コアラップシート20a、及び、液体透過性シート30がこの順に積層している。図4において、部材間に間隙があるように図示されている部分があるが、当該間隙が存在することなく部材間が密着していてよい。 FIG. 4 is a cross-sectional view showing an example of an absorbent article. The absorbent article 100 shown in FIG. 4 includes an absorbent body 10, core wrap sheets 20a and 20b, a liquid permeable sheet 30, and a liquid impermeable sheet 40. As shown in FIG. In the absorbent article 100, the liquid impermeable sheet 40, the core wrap sheet 20b, the absorbent body 10, the core wrap sheet 20a, and the liquid permeable sheet 30 are laminated in this order. In FIG. 4, there is a part where there is a gap between the members, but the members may be in close contact with each other without the gap.
 吸収体10は、吸水性樹脂粒子10aと、繊維状物を含む繊維層10bと、を有する。吸水性樹脂粒子10aは、繊維層10b内に分散している。吸水性樹脂粒子10aは、吸水性樹脂粒子a、吸水性樹脂粒子b、又はこれらの混合物である。 The absorbent body 10 has water absorbent resin particles 10a and a fiber layer 10b containing fibrous materials. The water absorbent resin particles 10a are dispersed in the fiber layer 10b. The water absorbent resin particles 10a are water absorbent resin particles a, water absorbent resin particles b, or a mixture thereof.
 コアラップシート20aは、吸収体10に接した状態で吸収体10の一方面側(図4中、吸収体10の上側)に配置されている。コアラップシート20bは、吸収体10に接した状態で吸収体10の他方面側(図4中、吸収体10の下側)に配置されている。吸収体10は、コアラップシート20aとコアラップシート20bとの間に配置されている。コアラップシート20a,20bとしては、ティッシュ、不織布、織布、液体透過孔を有する合成樹脂フィルム、網目を有するネット状シート等が挙げられる。コアラップシート20a及びコアラップシート20bは、例えば、吸収体10と同等の大きさの主面を有している。 The core wrap sheet 20a is arranged on one side of the absorbent body 10 (upper side of the absorbent body 10 in FIG. 4) while being in contact with the absorbent body 10. As shown in FIG. The core wrap sheet 20b is arranged on the other side of the absorbent body 10 (lower side of the absorbent body 10 in FIG. 4) while being in contact with the absorbent body 10. As shown in FIG. The absorbent body 10 is arranged between the core wrap sheet 20a and the core wrap sheet 20b. Examples of the core wrap sheets 20a and 20b include tissues, nonwoven fabrics, woven fabrics, synthetic resin films having liquid permeable holes, net-like sheets having meshes, and the like. The core wrap sheet 20a and the core wrap sheet 20b have, for example, main surfaces of the same size as the absorber 10. As shown in FIG.
 液体透過性シート30は、吸収対象の液が浸入する側の最外部に配置されている。液体透過性シート30は、コアラップシート20aに接した状態でコアラップシート20a上に配置されている。液体透過性シート30としては、当該技術分野で通常用いられる樹脂又は繊維から形成されたシートであってよい。液体透過性シート30は、吸収性物品に用いられる際の液体浸透性、柔軟性及び強度の観点から、例えばポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン、ポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート(PTT)、及びポリエチレンナフタレート(PEN)等のポリエステル、ナイロン等のポリアミド、レーヨンなどの合成樹脂、又はこれら合成樹脂を含む合成繊維を含んでいてもよく、綿、絹、麻、又はパルプ(セルロース)を含む天然繊維であってもよい。液体透過性シート30の強度を高める観点から、液体透過性シート30が合成繊維を含んでいてもよい。合成繊維は、特に、ポリオレフィン繊維、ポリエステル繊維又はこれらの組み合わせであってよい。これらの素材は、単独で用いられてもよく、2種類以上の素材を組み合わせて用いられてもよい。 The liquid-permeable sheet 30 is arranged on the outermost side on the side into which the liquid to be absorbed enters. The liquid-permeable sheet 30 is arranged on the core wrap sheet 20a while being in contact with the core wrap sheet 20a. The liquid-permeable sheet 30 may be a sheet made of resin or fiber commonly used in the technical field. The liquid-permeable sheet 30 is made of, for example, polyolefins such as polyethylene (PE) and polypropylene (PP), polyethylene terephthalate (PET), and polytrimethylene from the viewpoint of liquid permeability, flexibility, and strength when used in absorbent articles. Polyester such as terephthalate (PTT) and polyethylene naphthalate (PEN), polyamide such as nylon, synthetic resin such as rayon, or synthetic fibers containing these synthetic resins, cotton, silk, hemp, or pulp It may be a natural fiber containing (cellulose). From the viewpoint of increasing the strength of the liquid permeable sheet 30, the liquid permeable sheet 30 may contain synthetic fibers. Synthetic fibers may in particular be polyolefin fibers, polyester fibers or combinations thereof. These materials may be used alone, or two or more materials may be used in combination.
 液体透過性シート30は、不織布、多孔質シート、又はこれらの組み合わせであってよい。不織布は、繊維を織らずに絡み合わせたシートである。不織布は、短繊維(すなわちステープル)で構成される不織布(短繊維不織布)であってもよく、長繊維(すなわちフィラメント)で構成される不織布(長繊維不織布)であってもよい。ステープルは、これに限定されないが、一般的には数百mm以下の繊維長を有していてよい。 The liquid-permeable sheet 30 may be a nonwoven fabric, a porous sheet, or a combination thereof. A nonwoven is a sheet in which fibers are intertwined without being woven. The nonwoven fabric may be a nonwoven fabric (short fiber nonwoven fabric) composed of short fibers (ie, staple) or a nonwoven fabric (long fiber nonwoven fabric) composed of long fibers (ie, filaments). The staple may generally have a fiber length of several hundred mm or less, although not limited thereto.
 液体透過性シート30は、サーマルボンド不織布、エアスルー不織布、レジンボンド不織布、スパンボンド不織布、メルトブロー不織布、エアレイド不織布、スパンレース不織布、ポイントボンド不織布、又はこれらから選ばれる2種類以上の不織布の積層体であってよい。これら不織布は、例えば、上述の合成繊維又は天然繊維によって形成されたものであってよい。2種類以上の不織布の積層体は、例えば、スパンボンド不織布、メルトブロー不織布及びスパンボンド不織布を有し、これらがこの順に積層された複合不織布であるスパンボンド/メルトブロー/スパンボンド不織布であってよい。液体透過性シート30は、液体漏れ抑制の観点から、サーマルボンド不織布、エアスルー不織布、スパンボンド不織布、又はスパンボンド/メルトブロー/スパンボンド不織布であってよい。 The liquid-permeable sheet 30 is a thermal-bonded nonwoven fabric, an air-through nonwoven fabric, a resin-bonded nonwoven fabric, a spunbonded nonwoven fabric, a melt-blown nonwoven fabric, an air-laid nonwoven fabric, a spunlaced nonwoven fabric, a point-bonded nonwoven fabric, or a laminate of two or more types of nonwoven fabrics selected from these. It's okay. These non-woven fabrics may be formed, for example, from the synthetic or natural fibers mentioned above. The laminate of two or more types of nonwoven fabrics may be, for example, a spunbond/meltblown/spunbond nonwoven fabric, which is a composite nonwoven fabric in which a spunbond nonwoven fabric, a meltblown nonwoven fabric, and a spunbond nonwoven fabric are laminated in this order. The liquid-permeable sheet 30 may be a thermal-bond nonwoven fabric, an air-through nonwoven fabric, a spunbond nonwoven fabric, or a spunbond/meltblown/spunbond nonwoven fabric from the viewpoint of liquid leakage suppression.
 液体透過性シート30として用いられる不織布は、吸収性物品の液体吸収性能を向上させるために、適度な親水性を有していることが望ましい。適度な親水性を有している観点から、液体透過性シート30は、紙パルプ技術協会による紙パルプ試験方法No.68(2000)の測定方法に従って測定される親水度が5~200の不織布であってよい。不織布の前記親水度は、10~150であってよい。紙パルプ試験方法No.68の詳細については、例えばWO2011/086843号を参照することができる。 The nonwoven fabric used as the liquid permeable sheet 30 preferably has moderate hydrophilicity in order to improve the liquid absorption performance of the absorbent article. From the viewpoint of having moderate hydrophilicity, the liquid-permeable sheet 30 is tested according to Paper Pulp Test Method No. 2 by the Japan Pulp and Paper Technical Association. 68 (2000), a hydrophilicity of 5 to 200. The hydrophilicity of the nonwoven fabric may be 10-150. Paper pulp test method no. 68 can be referred to, for example, WO2011/086843.
 上述のような親水性を有する不織布は、例えば、レーヨン繊維のように適度な親水度を示す繊維によって形成されたものでもよく、ポリオレフィン繊維、ポリエステル繊維のような疎水性の化学繊維を親水化処理して得た繊維によって形成されたものであってもよい。親水化処理された疎水性の化学繊維を含む不織布を得る方法としては、例えば、疎水性の化学繊維に親水化剤を混合したものを用いてスパンボンド法にて不織布を得る方法、疎水性化学繊維でスパンボンド不織布を作製する際に親水化剤を同伴させる方法、疎水性の化学繊維を用いて得たスパンボンド不織布に親水化剤を含浸させる方法が挙げられる。親水化剤としては、脂肪族スルホン酸塩、高級アルコール硫酸エステル塩等のアニオン系界面活性剤、第4級アンモニウム塩等のカチオン系界面活性剤、ポリエチレングリコール脂肪酸エステル、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル等のノニオン系界面活性剤、ポリオキシアルキレン変性シリコーン等のシリコーン系界面活性剤、及びポリエステル系、ポリアミド系、アクリル系、ウレタン系の樹脂からなるステイン・リリース剤等が用いられる。 The non-woven fabric having hydrophilicity as described above may be formed of fibers showing moderate hydrophilicity such as rayon fibers, for example, and hydrophobic chemical fibers such as polyolefin fibers and polyester fibers are hydrophilized. It may be formed from fibers obtained by Methods for obtaining a nonwoven fabric containing hydrophobic chemical fibers that have been hydrophilized include, for example, a method of obtaining a nonwoven fabric by a spunbond method using a mixture of hydrophobic chemical fibers and a hydrophilizing agent; Examples include a method of entraining a hydrophilizing agent when producing a spunbond nonwoven fabric from fibers, and a method of impregnating a spunbond nonwoven fabric obtained using hydrophobic chemical fibers with a hydrophilizing agent. Examples of hydrophilizing agents include anionic surfactants such as aliphatic sulfonates and higher alcohol sulfates, cationic surfactants such as quaternary ammonium salts, polyethylene glycol fatty acid esters, polyglycerin fatty acid esters, and sorbitan fatty acids. Nonionic surfactants such as esters, silicone surfactants such as polyoxyalkylene-modified silicones, and stain release agents made of polyester, polyamide, acrylic or urethane resins are used.
 液体透過性シート30は、吸収性物品に、良好な液体浸透性、柔軟性、強度及びクッション性を付与できる観点、及び吸収性物品の液体浸透速度を速める観点から、適度に嵩高く、目付量が大きい不織布であってよい。液体透過性シート30に用いられる不織布の目付量は、5~200g/mであってよく、8~150g/mであってよく、10~100g/mであってよい。液体透過性シート30に用いられる不織布の厚さは、20~1400μmであってよく、50~1200μmであってよく、80~1000μmであってよい。 The liquid-permeable sheet 30 is moderately bulky from the viewpoint of imparting good liquid permeability, flexibility, strength and cushioning properties to the absorbent article, and from the viewpoint of increasing the liquid permeation speed of the absorbent article. It may be a nonwoven fabric with a large The nonwoven fabric used for the liquid-permeable sheet 30 may have a basis weight of 5 to 200 g/m 2 , 8 to 150 g/m 2 , or 10 to 100 g/m 2 . The thickness of the nonwoven fabric used for the liquid-permeable sheet 30 may be 20-1400 μm, 50-1200 μm, or 80-1000 μm.
 また、液体透過性シート30には、液体の拡散性を向上させるために、表面にエンボス加工又は穿孔加工が施されていてもよい。エンボス加工又は穿孔加工を施すにあたっては、公知の方法にて実施することができる。また、肌への刺激を低減させるために、液体透過性シート30には、スキンローション、保湿剤、抗酸化剤、抗炎症剤、pH調整剤等が配合されていてもよい。液体透過性シート30の形状は、吸収体及び吸収性物品の形状にもよるが、液体の漏れが生じないように、吸収体10が覆われる形状であってよい。 In addition, the surface of the liquid permeable sheet 30 may be embossed or perforated in order to improve the diffusibility of the liquid. Embossing or perforating can be carried out by a known method. In order to reduce irritation to the skin, the liquid-permeable sheet 30 may contain a skin lotion, a moisturizing agent, an antioxidant, an anti-inflammatory agent, a pH adjuster, and the like. The shape of the liquid-permeable sheet 30 depends on the shapes of the absorbent body and absorbent article, but may be a shape that covers the absorbent body 10 so as to prevent liquid leakage.
 吸収体10、コアラップシート20a,20b、液体透過性シート30、及び、液体不透過性シート40の大小関係は、特に限定されず、吸収性物品の用途等に応じて適宜調整される。また、コアラップシート20a,20bを用いて吸収体10を保形する方法は、特に限定されず、図4に示すように複数のコアラップシートにより吸収体を包んでよく、1枚のコアラップシートにより吸収体を包んでもよい。 The size relationship of the absorbent body 10, the core wrap sheets 20a and 20b, the liquid permeable sheet 30, and the liquid impermeable sheet 40 is not particularly limited, and is appropriately adjusted according to the use of the absorbent article. In addition, the method for retaining the shape of the absorbent body 10 using the core wrap sheets 20a and 20b is not particularly limited, and as shown in FIG. You may wrap an absorber with a sheet.
 吸収性物品100は、例えば、吸収体10をコアラップシート20a,20bの中に配置し、これらを液体透過性シート30及び液体不透過性シート40の間に配置することを含む方法により、製造することができる。液体不透過性シート40、コアラップシート20b、吸収体10、コアラップシート20a、及び液体透過性シート30の順に積層された積層体が、必要により加圧される。 The absorbent article 100 is manufactured, for example, by a method including placing the absorbent body 10 in the core wrap sheets 20a and 20b and placing them between the liquid permeable sheet 30 and the liquid impermeable sheet 40. can do. A laminate in which the liquid impermeable sheet 40, the core wrap sheet 20b, the absorber 10, the core wrap sheet 20a, and the liquid permeable sheet 30 are laminated in this order is pressurized as necessary.
 吸収性物品100の形状は、用途に応じて適宜定められ、例えば、吸収性物品が尿パッド又は生理用ナプキンである場合、略長方形、楕円形、砂時計形、羽子板形等が挙げられる。 The shape of the absorbent article 100 is appropriately determined according to its use. For example, when the absorbent article is a urine pad or a sanitary napkin, it may be approximately rectangular, oval, hourglass, battledore, or the like.
 吸収性物品には、上述した液体透過性シート、吸収体、液体不透過性シート及びコアラップの他にも、用途や機能に合わせて適宜、部材が存在してもよい。例えば、後述する液体獲得拡散シート等が挙げられる。 In addition to the liquid-permeable sheet, absorber, liquid-impermeable sheet, and core wrap described above, the absorbent article may also include members as appropriate according to the application and function. Examples thereof include a liquid acquisition diffusion sheet, which will be described later.
(液体獲得拡散シート)
 図1には示されていないが、吸収性物品は、液体獲得拡散シートを含んでいてもよい。液体獲得拡散シートは、例えば、液体透過性シート30の下面に配置されていてよい。これにより、液体透過性シート30を透過した液を吸収体10側へ速やかに移動させること、あるいは逆戻りを更に低減することができる。液体獲得拡散シート及び液体透過性シート30間の接着は、ホットメルト接着剤を用いてもよく、ヒートエンボス又は超音波溶着を用いることもできる。液体獲得拡散シートとしては、不織布を用いる他、多数の透過孔を有する樹脂フィルムを用いることもできる。不織布としては、液体透過性シート30の項に記載したものと同様の素材を用いることができるが、液体透過性シート30より親水性が高いもの、又は繊維密度が高いほうが、吸収体方向への液の移動特性に優れるため好ましい。
(liquid acquisition diffusion sheet)
Although not shown in FIG. 1, the absorbent article may include a liquid acquisition diffusion sheet. A liquid acquisition and diffusion sheet may be placed, for example, on the bottom surface of the liquid permeable sheet 30 . As a result, the liquid that has permeated the liquid permeable sheet 30 can be quickly moved to the absorbent body 10 side, or the backflow can be further reduced. Adhesion between the liquid acquisition diffusion sheet and the liquid permeable sheet 30 may use a hot melt adhesive, heat embossing, or ultrasonic welding. As the liquid acquisition/diffusion sheet, a non-woven fabric or a resin film having a large number of through-holes can be used. As the nonwoven fabric, materials similar to those described in the section of the liquid permeable sheet 30 can be used. It is preferable because it has excellent liquid transfer characteristics.
 液体獲得拡散シートは、通常、吸収体10より短い幅にて中央部に配置されるが、全幅にわたって配置されてもよい。液体獲得拡散シートの前後方向長さは、吸収性物品の全長と略同一でもよく、吸収体10の全長と略同一でもよく、液が投入される部分を想定した範囲の長さであってもよい。 The liquid acquisition and diffusion sheet is normally arranged in the central portion with a width shorter than that of the absorbent body 10, but may be arranged over the entire width. The length of the liquid acquisition and diffusion sheet in the front-rear direction may be substantially the same as the total length of the absorbent article, may be substantially the same as the total length of the absorbent body 10, or may be within a range of lengths assuming the portion into which the liquid is introduced. good.
(アウターカバー不織布)
 また、アウターカバー不織布が、液体不透過性シート40の外側に配置されていてもよい。アウターカバー不織布は、例えば、接着剤を用いて液体不透過性シート40に接着されることができる。アウターカバー不織布は、1層以上で形成されてもよく、軟質材であってもよい。アウターカバー不織布は、消費者の購入意欲に訴求できるように、あるいはその他の理由に応じて、柔軟な触感を付与されていてもよく、絵柄がプリントされていてもよく、複数の結合部、エンボス加工、あるいは三次元の形態を形成されていてもよい。
(Outer cover non-woven fabric)
Also, the outer cover nonwoven fabric may be arranged outside the liquid impermeable sheet 40 . The outer cover nonwoven fabric can be adhered to the liquid impermeable sheet 40 using an adhesive, for example. The outer cover nonwoven fabric may be formed of one or more layers and may be a soft material. The outer cover non-woven fabric may be given a soft touch, may have a pattern printed on it, may have a plurality of joints, embossed parts, etc. so as to appeal to consumers' willingness to purchase or for other reasons. It may be machined or formed into a three-dimensional form.
(レッグギャザー)
 本実施形態に係る吸収性物品は、吸収体10における幅方向の両端部よりも外側に配置され、吸収体10の長手方向と略平行に設置される、伸縮性を有する弾性部材を備えたレッグギャザーを有していてもよい。レッグギャザーの長さは、装着者の足回りかそれを上回る程度に設定される。レッグギャザーの伸長率は、排出される液体の漏れを防止しつつ、長時間装着時の圧迫感が少ないなどの観点から適宜設定される。
(leg gather)
The absorbent article according to the present embodiment includes legs having stretchable elastic members arranged outside both widthwise end portions of the absorbent body 10 and substantially parallel to the longitudinal direction of the absorbent body 10. May have gathers. The length of the leg gathers is set to be around the wearer's leg or longer. The elongation rate of the leg gathers is appropriately set from the viewpoint of preventing the leakage of discharged liquid and reducing the feeling of oppression when worn for a long time.
(前面/背面ギャザー)
 本実施形態に係る吸収性物品は、吸収性物品における長手方向の両端部近傍に配置され、幅方向に伸縮する弾性部材を備える前面/背面ギャザーを有していてもよい。
(front/back gather)
The absorbent article according to the present embodiment may have front/back gathers that are arranged in the vicinity of both ends in the longitudinal direction of the absorbent article and that include elastic members that expand and contract in the width direction.
 吸収性物品は、吸収体10の幅方向の側縁部上方に立ち上がることができる前面/背面ギャザーを備えている。すなわち、吸収性物品における長手方向の両側のそれぞれには、ギャザー弾性部材を有する前面/背面ギャザーのシート用部材が配されて、前面/背面ギャザーが構成されている。 The absorbent article has front/back gathers that can stand up above the side edges in the width direction of the absorbent body 10 . That is, on both sides of the absorbent article in the longitudinal direction, a front/back gather sheet member having a gather elastic member is arranged to constitute a front/back gather.
 前面/背面ギャザー用の部材は、通常、液不透過性又は撥水性の素材であって、好ましくは透湿性の素材が用いられる。例えば、液不透過性又は撥水性の多孔質シート、液不透過性又は撥水性の不織布、上記多孔質シートと該不織布との積層体等が挙げられる。不織布としては、例えば、サーマルボンド不織布、スパンボンド不織布、メルトブロー不織布、スパンレース不織布、スパンボンド/メルトブロー/スパンボンド不織布等が挙げられる。上記部材の目付量は、5~100g/mであってよく、8~70g/mであってよく、10~40g/mであってよい。 The member for the front/back gathers is usually made of a liquid-impermeable or water-repellent material, preferably a moisture-permeable material. Examples thereof include a liquid-impermeable or water-repellent porous sheet, a liquid-impermeable or water-repellent nonwoven fabric, and a laminate of the porous sheet and the nonwoven fabric. Nonwoven fabrics include, for example, thermal bonded nonwoven fabrics, spunbond nonwoven fabrics, meltblown nonwoven fabrics, spunlaced nonwoven fabrics, spunbond/meltblown/spunbond nonwoven fabrics, and the like. The basis weight of the member may be 5 to 100 g/m 2 , 8 to 70 g/m 2 , or 10 to 40 g/m 2 .
 以下、実施例を挙げて本開示について更に具体的に説明する。ただし、本開示はこれら実施例に限定されるものではない。 Hereinafter, the present disclosure will be described more specifically with examples. However, the present disclosure is not limited to these examples.
<粒子の製造>
[製造例1]
 還流冷却器、滴下ロート、窒素ガス導入管、及び撹拌機を備えた、内径11cm、内容積2Lの丸底円筒型セパラブルフラスコを準備した。撹拌機としては、翼径5cmの4枚傾斜パドル翼を2段で有する撹拌翼を有するものを用いた。上記フラスコに、n-ヘプタン293g、及び分散剤として無水マレイン酸変性エチレン・プロピレン共重合体(三井化学株式会社、ハイワックス1105A)0.736gを投入して混合した。フラスコ内の混合物を300rpmで撹拌しつつ、80℃まで昇温することにより、分散剤をn-ヘプタンに溶解した。形成された溶液を50℃まで冷却した。
<Production of particles>
[Production Example 1]
A round-bottom cylindrical separable flask with an inner diameter of 11 cm and an internal volume of 2 L was prepared, equipped with a reflux condenser, a dropping funnel, a nitrogen gas inlet tube, and a stirrer. As a stirrer, a stirring blade having two stages of four inclined paddle blades with a blade diameter of 5 cm was used. 293 g of n-heptane and 0.736 g of a maleic anhydride-modified ethylene-propylene copolymer (Hi-Wax 1105A, Mitsui Chemicals, Inc.) as a dispersant were added to the flask and mixed. The dispersant was dissolved in n-heptane by raising the temperature to 80° C. while stirring the mixture in the flask at 300 rpm. The formed solution was cooled to 50°C.
 内容積300mLのビーカーに、水溶性エチレン性不飽和単量体として80.5質量%のアクリル酸水溶液92.0g(1.03モル)を入れ、外部より冷却しつつ、20.9質量%の水酸化ナトリウム水溶液147.7gをビーカー内に滴下することにより、75モル%の中和を行った。その後、増粘剤としてヒドロキシルエチルセルロースを0.092g(住友精化株式会社、HEC AW-15F)、ラジカル重合開始剤として過硫酸カリウム0.0736g(0.272ミリモル)、内部架橋剤としてエチレングリコールジグリシジルエーテル0.010g(0.057ミリモル)を加えて溶解することにより、第1段目の水溶液を調製した。 In a beaker with an internal volume of 300 mL, 92.0 g (1.03 mol) of an aqueous acrylic acid solution of 80.5% by mass as a water-soluble ethylenically unsaturated monomer is added, and while cooling from the outside, 20.9% by mass of Neutralization of 75 mol % was carried out by dropping 147.7 g of an aqueous sodium hydroxide solution into the beaker. After that, 0.092 g (Sumitomo Seika Co., Ltd., HEC AW-15F) of hydroxyl ethyl cellulose as a thickener, 0.0736 g (0.272 mmol) of potassium persulfate as a radical polymerization initiator, and ethylene glycol diethylene as an internal cross-linking agent. A first stage aqueous solution was prepared by adding and dissolving 0.010 g (0.057 mmol) of glycidyl ether.
 第1段目の水溶液を、上記フラスコ内の分散剤を含むn-ヘプタン溶液に添加し、形成された反応液を10分間撹拌した。別途、n-ヘプタン6.62gに界面活性剤であるショ糖ステアリン酸エステル(三菱化学フーズ株式会社、リョートーシュガーエステルS-370、HLB:3)0.736gを溶解させた界面活性剤溶液を用意した。該界面活性剤溶液を上記フラスコに加え、撹拌機の回転数を550rpmとして反応液を撹拌しながら系内を窒素で十分に置換した。その後、上記フラスコを70℃の水浴に浸漬して反応液を昇温し、60分間重合反応を進行させることにより、第1段目の重合スラリー液を得た。 The first-stage aqueous solution was added to the n-heptane solution containing the dispersant in the flask, and the formed reaction solution was stirred for 10 minutes. Separately, a surfactant solution was prepared by dissolving 0.736 g of sucrose stearate (Mitsubishi Kagaku Foods Co., Ltd., Ryoto Sugar Ester S-370, HLB: 3) as a surfactant in 6.62 g of n-heptane. prepared. The surfactant solution was added to the flask, and the system was sufficiently purged with nitrogen while stirring the reaction solution with a stirrer at 550 rpm. Thereafter, the flask was immersed in a water bath at 70° C. to raise the temperature of the reaction solution, and the polymerization reaction was allowed to proceed for 60 minutes to obtain a first-stage polymerization slurry.
 別の内容積500mLのビーカーに、80.5質量%のアクリル酸水溶液128.8g(1.44モル)を入れ、外部より冷却しつつ、27質量%の水酸化ナトリウム水溶液159.0gを滴下して、75モル%のアクリル酸を中和した。中和後のアクリル酸水溶液が入ったビーカーに、ラジカル重合開始剤として過硫酸カリウム0.103g(0.381ミリモル)と、内部架橋剤としてエチレングリコールジグリシジルエーテル0.0116g(0.067ミリモル)とを加えてこれらを溶解することにより、第2段目の水性液を調製した。 128.8 g (1.44 mol) of an 80.5% by mass acrylic acid aqueous solution was placed in another beaker having an internal volume of 500 mL, and 159.0 g of a 27% by mass aqueous sodium hydroxide solution was added dropwise while cooling from the outside. to neutralize 75 mole percent of the acrylic acid. 0.103 g (0.381 mmol) of potassium persulfate as a radical polymerization initiator and 0.0116 g (0.067 mmol) of ethylene glycol diglycidyl ether as an internal cross-linking agent were placed in a beaker containing the neutralized acrylic acid aqueous solution. were added and dissolved to prepare a second-stage aqueous solution.
 撹拌機の回転数を1000rpmとして撹拌しながら、上記フラスコ内の第1段目の重合スラリー液を25℃に冷却し、そこに第2段目の水溶液の全量を加えた。フラスコ内を窒素で30分間置換した後、再度、フラスコを70℃の水浴に浸漬して反応液を昇温し、60分間の第2段目の重合反応により、含水ゲル状重合体を得た。 While stirring the stirrer at a rotation speed of 1000 rpm, the first-stage polymerization slurry liquid in the flask was cooled to 25°C, and the whole amount of the second-stage aqueous solution was added thereto. After purging the inside of the flask with nitrogen for 30 minutes, the flask was again immersed in a water bath at 70°C to raise the temperature of the reaction solution, and the second-stage polymerization reaction was performed for 60 minutes to obtain a water-containing gel-like polymer. .
 その後、125℃に設定した油浴に上記フラスコを浸漬し、n-ヘプタンと水との共沸蒸留により257.7gの水を系外へ抜き出した。次いで、フラスコに表面架橋剤として2質量%のエチレングリコールジグリシジルエーテル水溶液4.42g(0.507ミリモル)を添加し、83℃で2時間保持した。 After that, the flask was immersed in an oil bath set at 125°C, and 257.7 g of water was extracted from the system by azeotropic distillation of n-heptane and water. Then, 4.42 g (0.507 mmol) of 2% by mass ethylene glycol diglycidyl ether aqueous solution was added as a surface cross-linking agent to the flask, and the mixture was kept at 83° C. for 2 hours.
 さらに、125℃での乾燥によりn-ヘプタンを除去することによって、重合体粒子を得た。この重合体粒子を850μmのJIS標準ふるいに通過させ、吸水性樹脂粒子(1)を228g得た。 Furthermore, polymer particles were obtained by removing n-heptane by drying at 125°C. The polymer particles were passed through a 850 μm JIS standard sieve to obtain 228 g of water absorbent resin particles (1).
[製造例2]
 コーティング材料として、エチレン―アクリル酸ナトリウム共重合体(住友精化株式会社、ザイクセンN)及びポリエチレングリコール(東京化成工業株式会社、PEG6000)を準備した。蒸留水345g、エチレン―アクリル酸ナトリウム共重合体の25質量%水分散エマルジョン200g、及びポリエチレングリコール5gを混合して、コーティング液を調製した。
[Production Example 2]
As coating materials, ethylene-sodium acrylate copolymer (Sumitomo Seika Co., Ltd., Zaixen N) and polyethylene glycol (Tokyo Chemical Industry Co., Ltd., PEG6000) were prepared. A coating liquid was prepared by mixing 345 g of distilled water, 200 g of a 25% by mass aqueous emulsion of ethylene-sodium acrylate copolymer, and 5 g of polyethylene glycol.
 流動層造粒機のコンテナに吸水性樹脂粒子(1)500gを投入し、コンテナの下部から50℃の温風で送風した。送風で巻き上げられている吸水性樹脂粒子(1)に、コーティング液550gを乾燥させながら噴霧した。コーティング液を約92分(噴霧速度6g/min)かけて噴霧した後、50℃で30分間乾燥して、被覆樹脂粒子の前駆体を得た。  500 g of water-absorbing resin particles (1) were put into a container of a fluidized bed granulator, and hot air at 50°C was blown from the bottom of the container. 550 g of the coating liquid was sprayed while being dried onto the water absorbent resin particles (1) that were being blown up by air. After the coating liquid was sprayed for about 92 minutes (spray rate 6 g/min), it was dried at 50° C. for 30 minutes to obtain a precursor of coated resin particles.
 底寸法250×185(mm)のテフロン(登録商標)コーティングバットに被覆樹脂粒子の前駆体100gを加え、アルミホイルを被せて蓋をした。アルミホイルに穿孔し、熱風乾燥機(ADVANTEC、FV―320)にて80℃で1時間加熱した。この前駆体を目開き850μmのJIS標準篩に通過させ、被覆樹脂粒子(1)95gを得た。 A Teflon (registered trademark) coating vat with a bottom size of 250 x 185 (mm) was added with 100 g of the precursor of the coated resin particles, covered with aluminum foil and covered with a lid. The aluminum foil was perforated and heated at 80° C. for 1 hour with a hot air dryer (ADVANTEC, FV-320). This precursor was passed through a JIS standard sieve with an opening of 850 μm to obtain 95 g of coated resin particles (1).
[製造例3]
 還流冷却器、滴下ロート、窒素ガス導入管、及び撹拌機を備えた、内径11cm、内容積2Lの丸底円筒型セパラブルフラスコを準備した。撹拌機としては、翼径5cmの4枚傾斜パドル翼を2段で有する撹拌翼を有するものを用いた。上記フラスコに、n-ヘプタン250g、製造例1で得られた吸水性樹脂粒子(1)を100g、及び無水マレイン酸変性エチレン・プロピレン共重合体(三井化学株式会社、ハイワックス1105A)20gを投入し、1000rpmで撹拌しつつ、85℃まで昇温して10分間撹拌した。これにより、無水マレイン酸変性エチレン・プロピレン共重合体がn-ヘプタンに溶解したコーティング液を、吸水性樹脂粒子の表面に付着させた。
[Production Example 3]
A round-bottom cylindrical separable flask with an inner diameter of 11 cm and an internal volume of 2 L was prepared, equipped with a reflux condenser, a dropping funnel, a nitrogen gas inlet tube, and a stirrer. As a stirrer, a stirring blade having two stages of four inclined paddle blades with a blade diameter of 5 cm was used. 250 g of n-heptane, 100 g of the water-absorbent resin particles (1) obtained in Production Example 1, and 20 g of maleic anhydride-modified ethylene/propylene copolymer (Hi-Wax 1105A, Mitsui Chemicals, Inc.) were added to the flask. Then, while stirring at 1000 rpm, the temperature was raised to 85° C. and the mixture was stirred for 10 minutes. As a result, a coating liquid in which the maleic anhydride-modified ethylene/propylene copolymer was dissolved in n-heptane was adhered to the surface of the water absorbent resin particles.
 その後、125℃の油浴で乾燥によりn-ヘプタンを除去することによって、無水マレイン酸変性エチレン・プロピレン共重合体を含むコーティング層を有する被覆樹脂粒子の前駆体を得た。この前駆体を目開き850μmのJIS標準ふるいに通過させ、被覆樹脂粒子(2)を得た。 Then, n-heptane was removed by drying in an oil bath at 125°C to obtain a coated resin particle precursor having a coating layer containing a maleic anhydride-modified ethylene/propylene copolymer. This precursor was passed through a JIS standard sieve with an opening of 850 μm to obtain coated resin particles (2).
[製造例4]
 日本国内で市販されている子供用のおむつ(ユニ・チャーム株式会社、商品名:ムーニーマン、スーパービッグ、パンツタイプ)から、吸水性樹脂粒子とパルプで構成された吸収体混合物を取り出した。次に、吸収体混合物からパルプを取り除き、約40gの吸水性樹脂採取品(1)を得た。
[Production Example 4]
An absorbent mixture composed of water-absorbing resin particles and pulp was taken out from a child's diaper (Unicharm Co., Ltd., product names: Moonyman, Super Big, Pants Type) commercially available in Japan. Next, the pulp was removed from the absorbent mixture to obtain about 40 g of water-absorbing resin sample (1).
<粒子評価>
[生理食塩水保水量]
 測定は、25℃、湿度50%の環境下で行った。吸水性樹脂粒子2.00gを、500ml容のビーカー中で0.9%生理食塩水500gに分散し、600rpmで30分間撹拌して膨潤させた。膨潤ゲルを綿袋(メンブロード60番、横100mm×縦200mm)に注ぎ込み、綿袋の上部を輪ゴムで縛り、遠心力が167Gとなるよう設定した脱水機(株式会社コクサン製、品番:H-122)を用いて1分間脱水した。脱水後の膨潤ゲルを含んだ綿袋の質量Wa(g)を測定した。吸水性樹脂粒子を添加せずに同様の操作を行い、綿袋の湿潤時の空質量Wb(g)を測定し、以下の式から生理食塩水保水量を算出した。結果を表1に示す。
 生理食塩水保水量(g/g)=[Wa-Wb]/吸水性樹脂粒子の量
<Particle evaluation>
[Physiological saline water retention]
The measurement was performed in an environment of 25° C. and 50% humidity. 2.00 g of water-absorbent resin particles were dispersed in 500 g of 0.9% physiological saline in a 500 ml beaker, and stirred at 600 rpm for 30 minutes to swell. Pour the swollen gel into a cotton bag (Membrane No. 60, width 100 mm x length 200 mm), tie the top of the cotton bag with a rubber band, and set the centrifugal force to 167 G. 122) for 1 minute. The mass Wa (g) of the cotton bag containing the swollen gel after dehydration was measured. The same operation was performed without adding the water-absorbent resin particles, and the empty weight Wb (g) of the wet cotton bag was measured, and the physiological saline water retention capacity was calculated from the following formula. Table 1 shows the results.
Physiological saline water retention amount (g / g) = [Wa - Wb] / amount of water absorbent resin particles
[吸水速度]
 100mlビーカーに0.9%塩化ナトリウム水溶液50.0g及びマグネチックスターラーバー(8mmφ×30mm、リング無し)を加え、25℃に調整した恒温水槽に設置した。次に、吸水性樹脂粒子2.00gを精秤し、600rpmに調整したビーカー内に加えると同時にストップウォッチによる計測を開始した。その後、渦が消失して液面が水平になった時点を終点とし、ストップウォッチを停止して吸水速度を記録した。結果を表1に示す。
[Water absorption rate]
50.0 g of 0.9% sodium chloride aqueous solution and a magnetic stirrer bar (8 mmφ×30 mm, without ring) were added to a 100 ml beaker and placed in a constant temperature water bath adjusted to 25°C. Next, 2.00 g of the water-absorbing resin particles were precisely weighed and added into a beaker adjusted to 600 rpm, and at the same time, measurement with a stopwatch was started. After that, when the vortex disappeared and the liquid level became horizontal, the stopwatch was stopped and the water absorption speed was recorded. Table 1 shows the results.
[AUL(4.14kPa荷重下での生理食塩水吸水量)の測定]
 4.14kPa荷重下での生理食塩水吸水量(荷重下吸水量)は、図5に概略を示す測定装置を用いて測定した。測定装置は、ビュレット部11、クランプ12、導管13、架台14、測定台15、及び測定台15上に置かれた測定部16を備えている。ビュレット部11は、目盛が記載されたビュレット管21と、ビュレット管21の上部の開口を密栓するゴム栓23と、ビュレット管21の下部の先端に連結されたコック22と、ビュレット管21の下部に連結された空気導入管25及びコック24とを有する。ビュレット部11はクランプ12で固定されている。平板状の測定台15は、その中央部に形成された直径2mmの貫通孔15aを有しており、高さが可変の架台14によって支持されている。測定台15の貫通孔15aとビュレット部11のコック22とが導管13によって連結されている。導管13の内径は6mmである。
[Measurement of AUL (normal saline water absorption under 4.14 kPa load)]
Physiological saline water absorption under a load of 4.14 kPa (water absorption under load) was measured using a measuring apparatus outlined in FIG. The measuring device comprises a burette part 11 , a clamp 12 , a conduit 13 , a pedestal 14 , a measuring table 15 and a measuring part 16 placed on the measuring table 15 . The burette part 11 includes a burette tube 21 with a scale, a rubber stopper 23 for sealing the upper opening of the burette tube 21, a cock 22 connected to the tip of the lower part of the burette tube 21, and the lower part of the burette tube 21. It has an air introduction pipe 25 and a cock 24 connected to the . The burette part 11 is fixed with a clamp 12 . A flat measuring table 15 has a through-hole 15a with a diameter of 2 mm formed in its central portion, and is supported by a pedestal 14 whose height is variable. Through hole 15 a of measurement table 15 and cock 22 of burette portion 11 are connected by conduit 13 . The inner diameter of conduit 13 is 6 mm.
 測定部16は、プレキシグラス製の円筒31、円筒31の一方の開口部に接着されたポリアミドメッシュ32、及び円筒31内で上下方向に可動な重り33を有している。円筒31は、ポリアミドメッシュ32を介して、測定台15上に載置されている。円筒31の内径は20mmである。ポリアミドメッシュ32の目開きは、75μm(200メッシュ)である。重り33は、直径19mm、質量119.6gであり、後記するようにポリアミドメッシュ32上に均一に配置された吸水性樹脂粒子10aに対して4.14kPa(0.6psi)の荷重を加えることができる。 The measurement unit 16 has a Plexiglas cylinder 31 , a polyamide mesh 32 adhered to one opening of the cylinder 31 , and a weight 33 vertically movable within the cylinder 31 . Cylinder 31 is placed on measuring table 15 via polyamide mesh 32 . The inner diameter of the cylinder 31 is 20 mm. The opening of the polyamide mesh 32 is 75 μm (200 meshes). The weight 33 has a diameter of 19 mm and a mass of 119.6 g, and can apply a load of 4.14 kPa (0.6 psi) to the water absorbent resin particles 10a uniformly arranged on the polyamide mesh 32 as described later. can.
 図5に示す測定装置による4.14kPa荷重下の生理食塩水吸水量の測定は、25℃の室内で行なった。まず、ビュレット部11のコック22及びコック24を閉め、25℃に調節された0.9質量%生理食塩水をビュレット管21上部の開口からビュレット管21に入れた。次に、ゴム栓23でビュレット管21の上部開口を密栓した後、コック22及びコック24を開けた。気泡が入らないよう導管13内部を0.9質量%食塩水50で満たした。貫通孔15a内に到達した0.9質量%食塩水の水面の高さが、測定台15の上面の高さと同じになるように、測定台15の高さを調整した。調整後、ビュレット管21内の生理食塩水50の水面の高さをビュレット管21の目盛で読み取り、その位置をゼロ点(0秒時点の読み値)とした。 The measurement of the physiological saline water absorption under a load of 4.14 kPa with the measuring device shown in Fig. 5 was performed indoors at 25°C. First, the cocks 22 and 24 of the burette part 11 were closed, and 0.9% by mass physiological saline adjusted to 25° C. was introduced into the burette tube 21 through the upper opening of the burette tube 21 . Next, after sealing the upper opening of the burette tube 21 with a rubber stopper 23, the cocks 22 and 24 were opened. The inside of the conduit 13 was filled with 0.9% by mass saline 50 so as not to introduce air bubbles. The height of the measuring table 15 was adjusted so that the height of the water surface of the 0.9 mass % saline solution reaching the inside of the through-hole 15 a was the same as the height of the upper surface of the measuring table 15 . After the adjustment, the height of the water surface of the physiological saline solution 50 in the burette tube 21 was read from the scale of the burette tube 21, and the position was taken as the zero point (read value at 0 seconds).
 測定部16では、円筒31内のポリアミドメッシュ32上に0.10gの吸水性樹脂粒子10aを均一に配置し、吸水性樹脂粒子10a上に重り33を配置し、円筒31を、その中心部が測定台15中心部の導管口に一致するように設置した。吸水性樹脂粒子10aが導管13からの生理食塩水を吸水し始めた時から60分後のビュレット管21内の生理食塩水の減少量(すなわち、吸水性樹脂粒子10aが吸水した生理食塩水量)Wc(ml)を読み取り、以下の式により吸水性樹脂粒子10aの4.14kPa荷重下の生理食塩水吸水量を算出した。結果を表1に示す。
 4.14kPa荷重下の生理食塩水吸水量(ml/g)=Wc(ml)/吸水性樹脂粒子の質量(g)
In the measurement unit 16, 0.10 g of the water-absorbent resin particles 10a are uniformly arranged on the polyamide mesh 32 in the cylinder 31, a weight 33 is arranged on the water-absorbent resin particles 10a, and the cylinder 31 is moved so that the center of the cylinder 31 is It was installed so as to match the conduit opening at the center of the measuring table 15 . Decreased amount of physiological saline in burette tube 21 60 minutes after water-absorbent resin particles 10a began to absorb physiological saline from conduit 13 (that is, the amount of physiological saline absorbed by water-absorbent resin particles 10a) Wc (ml) was read, and the physiological saline water absorption amount of the water absorbent resin particles 10a under a load of 4.14 kPa was calculated according to the following formula. Table 1 shows the results.
Physiological saline water absorption amount (ml/g) under a load of 4.14 kPa = Wc (ml)/mass of water absorbent resin particles (g)
[無加圧DW]
 吸水性樹脂粒子の無加圧DWは、図6に示す測定装置を用いて測定した。当該測定装置は、ビュレット部11、導管13、測定台15、ナイロンメッシュシート17、架台14、及びクランプ12を有する。ビュレット部11は、目盛が記載されたビュレット管21と、ビュレット管21の上部の開口を密栓するゴム栓23と、ビュレット管21の下部の先端に連結されたコック22と、ビュレット管21の下部に連結された空気導入管25及びコック24とを有する。ビュレット部11はクランプ12で固定されている。平板状の測定台15は、その中央部に形成された直径2mmの貫通孔15aを有しており、高さが可変の架台14によって支持されている。測定台15の貫通孔15aとビュレット部11のコック22とが導管13によって連結されている。導管13の内径は6mmである。
[No pressure DW]
The non-pressurized DW of the water absorbent resin particles was measured using the measuring device shown in FIG. The measuring device has a burette part 11 , a conduit 13 , a measuring table 15 , a nylon mesh sheet 17 , a pedestal 14 and a clamp 12 . The burette part 11 includes a burette tube 21 with a scale, a rubber stopper 23 for sealing the upper opening of the burette tube 21, a cock 22 connected to the tip of the lower part of the burette tube 21, and the lower part of the burette tube 21. It has an air introduction pipe 25 and a cock 24 connected to the . The burette part 11 is fixed with a clamp 12 . A flat measuring table 15 has a through-hole 15a with a diameter of 2 mm formed in its central portion, and is supported by a pedestal 14 whose height is variable. Through hole 15 a of measurement table 15 and cock 22 of burette portion 11 are connected by conduit 13 . The inner diameter of conduit 13 is 6 mm.
 測定は温度25℃、湿度60±10%の環境下で行なわれた。まずビュレット部11のコック22とコック24を閉め、25℃に調節された0.9質量%食塩水50をビュレット管21上部の開口からビュレット管21に入れた。食塩水の濃度0.9質量%は、食塩水の質量を基準とする濃度である。ゴム栓23でビュレット管21の開口の密栓した後、コック22及びコック24を開けた。気泡が入らないように導管13内部を0.9質量%食塩水50で満たした。貫通孔15a内に到達した0.9質量%食塩水の水面の高さが、測定台15の上面の高さと同じになるように、測定台15の高さを調整した。調整後、ビュレット管21内の0.9質量%食塩水50の水面の高さをビュレット管21の目盛で読み取り、その位置をゼロ点(0秒時点の読み値)とした。 The measurement was performed in an environment with a temperature of 25°C and a humidity of 60±10%. First, the cocks 22 and 24 of the burette part 11 were closed, and a 0.9% by mass saline solution 50 adjusted to 25° C. was introduced into the burette tube 21 through the upper opening of the burette tube 21 . The salt solution concentration of 0.9% by mass is the concentration based on the mass of the salt solution. After sealing the opening of the burette tube 21 with a rubber stopper 23, the cocks 22 and 24 were opened. The inside of the conduit 13 was filled with 0.9% by mass saline 50 so as not to introduce air bubbles. The height of the measuring table 15 was adjusted so that the height of the water surface of the 0.9 mass % saline solution reaching the inside of the through-hole 15 a was the same as the height of the upper surface of the measuring table 15 . After the adjustment, the height of the water surface of the 0.9% by mass saline solution 50 in the burette tube 21 was read from the scale of the burette tube 21, and the position was taken as the zero point (read value at 0 seconds).
 測定台15上の貫通孔15aの近傍にてナイロンメッシュシート17(100mm×100mm、250メッシュ、厚さ約50μm)を敷き、その中央部に、内径30mm、高さ20mmのシリンダーを置いた。このシリンダー内に、1.00gの吸水性樹脂粒子10aを均一に散布した。その後、シリンダーを注意深く取り除き、ナイロンメッシュシート17の中央部に吸水性樹脂粒子10aが円状に分散されたサンプルを得た。次いで、吸水性樹脂粒子10aが載置されたナイロンメッシュシート17を、その中心が貫通孔15aの位置になるように、吸水性樹脂粒子10aが散逸しない程度にすばやく移動させて、測定を開始した。空気導入管25からビュレット管21内に気泡が最初に導入された時点を吸水開始(0秒)とした。 A nylon mesh sheet 17 (100 mm x 100 mm, 250 mesh, thickness of about 50 µm) was laid near the through hole 15a on the measurement table 15, and a cylinder with an inner diameter of 30 mm and a height of 20 mm was placed in the center. 1.00 g of water-absorbent resin particles 10a were evenly dispersed in this cylinder. After that, the cylinder was carefully removed to obtain a sample in which the water-absorbing resin particles 10a were circularly dispersed in the center of the nylon mesh sheet 17 . Next, the nylon mesh sheet 17 on which the water-absorbing resin particles 10a are placed is moved quickly enough to prevent the water-absorbing resin particles 10a from scattering so that the center of the nylon mesh sheet 17 is positioned at the through-hole 15a, and the measurement is started. . The time when air bubbles were first introduced into the burette tube 21 from the air introduction tube 25 was defined as the start of water absorption (0 second).
 ビュレット管21内の0.9質量%食塩水50の減少量(すなわち、吸水性樹脂粒子10aが吸収した0.9質量%食塩水の量)を0.1mL単位で順次読み取り、吸水性樹脂粒子10aの吸水開始から起算して5分後の0.9質量%食塩水50の減量分Wd(g)を読み取った。Wdから、下記式により無加圧DWの5分値を求めた。無加圧DWは、吸水性樹脂粒子10aの1.00g当たりの吸水量である。結果を表1に示す。
 無加圧DWの5分値(mL/g)=Wd/1.00
The amount of decrease in the 0.9% by mass saline solution 50 in the burette tube 21 (that is, the amount of 0.9% by mass saline solution absorbed by the water absorbent resin particles 10a) is sequentially read in units of 0.1 mL, and the water absorbent resin particles Five minutes after the start of water absorption of 10a, the weight loss Wd (g) of the 0.9% by mass saline solution 50 was read. From Wd, the 5-minute value of no-pressure DW was determined by the following formula. The non-pressurized DW is the water absorption amount per 1.00 g of the water absorbent resin particles 10a. Table 1 shows the results.
5-minute value of unpressurized DW (mL/g) = Wd/1.00
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<吸収体の作製>
[製造例A]
 吸水性樹脂粒子12.0g及び解砕パルプ(レオニア社製レイフロック)8.0gを用い、空気抄造によって均一混合することにより、40cm×12cmの大きさの吸収体コアを作製した。次に、吸収体コアの上下を、吸収体コアと同じ大きさで坪量16g/mの2枚のティッシュッペーパーで挟み、全体に141kPaの荷重を30秒間加えてプレスすることにより、吸水性樹脂含有率60質量%の吸収体を作製した。
<Preparation of absorber>
[Production Example A]
12.0 g of water-absorbing resin particles and 8.0 g of crushed pulp (Rayfloc manufactured by Leonia) were uniformly mixed by air papermaking to prepare an absorbent core with a size of 40 cm×12 cm. Next, the upper and lower sides of the absorbent core were sandwiched between two tissue papers of the same size as the absorbent core and having a basis weight of 16 g/m 2 , and a load of 141 kPa was applied to the whole for 30 seconds to absorb water. An absorbent body having a 60% by mass organic resin content was produced.
 さらに吸収体の上面に、吸収体と同じ大きさで坪量22g/mのポリエチレン製エアスルー型多孔質液体透過性シートを配置し、下面に、吸収体と同じ大きさで坪量22g/mのポリエチレン製液体不透過性シートを配置して、吸収体を挟みつけることにより、吸収性物品を得た。 Furthermore, an air-through type porous liquid-permeable polyethylene sheet having the same size as the absorber and having a basis weight of 22 g/m 2 is placed on the upper surface of the absorber, and an air-through type porous liquid-permeable sheet made of polyethylene having the same size as the absorber and having a basis weight of 22 g/m 2 is placed on the lower surface. An absorbent article was obtained by arranging the polyethylene liquid-impermeable sheets No. 2 and sandwiching the absorbent body.
[製造例B]
 吸水性樹脂粒子12.0gの代わりに、あらかじめ所定の割合で混ぜ合わせた吸水性樹脂粒子及び被覆樹脂粒子の合計12.0gを用いたこと以外は製造例Aと同様にして、吸収性物品を作製した。
[Production Example B]
An absorbent article was produced in the same manner as in Production Example A, except that instead of 12.0 g of the water-absorbing resin particles, a total of 12.0 g of the water-absorbing resin particles and the coated resin particles previously mixed in a predetermined ratio was used. made.
[製造例C]
 あらかじめ所定の割合で混ぜ合わせた吸水性樹脂粒子及び被覆樹脂粒子を合計12.0gと、解砕パルプ(レオニア社製レイフロック)8.0gとを用い、空気抄造によって均一混合することにより、40cm×12cmの大きさの吸収体コアを作製した。別途、吸水性樹脂粒子12.0g及び解砕パルプ8.0gを用いて、同様に吸収体コアを作製した。各々の吸収体コアを目的の大きさにカッターで切り、隣り合わせて配置することにより、40cm×12cmの大きさの吸収体コアを作製した。以降は製造例Aと同様の方法で吸収性物品を作製した。
[Production Example C]
A total of 12.0 g of water-absorbent resin particles and coated resin particles pre-mixed at a predetermined ratio and 8.0 g of crushed pulp (Layfloc manufactured by Leonia) are uniformly mixed by air papermaking to obtain a 40 cm An absorbent core with a size of ×12 cm was produced. Separately, using 12.0 g of water-absorbing resin particles and 8.0 g of crushed pulp, an absorbent core was produced in the same manner. Each absorbent core was cut into a target size with a cutter and arranged side by side to prepare an absorbent core with a size of 40 cm x 12 cm. Thereafter, an absorbent article was produced in the same manner as in Production Example A.
[製造例D]
 吸水性樹脂粒子12.0g及び解砕パルプ(レオニア社製レイフロック)8.0gを用い、空気抄造によって均一混合することにより、40cm×12cmの大きさの吸収体コアを作製した。続いてカッターを用いて該吸収体コアを30cm×9cmの大きさに切り出し、以降は製造例Aと同様の方法で吸収性物品を作製した。
[Production Example D]
12.0 g of water-absorbing resin particles and 8.0 g of crushed pulp (Rayfloc manufactured by Leonia) were uniformly mixed by air papermaking to prepare an absorbent core with a size of 40 cm×12 cm. Subsequently, a cutter was used to cut the absorbent core into a size of 30 cm×9 cm.
[製造例E]
 吸水性樹脂粒子12.0gの代わりに、あらかじめ所定の割合で混ぜ合わせた吸水性樹脂粒子と被覆樹脂粒子を合計12.0g用いたこと以外は製造例Dと同様にして、吸収性物品を作製した。
[Production Example E]
An absorbent article was produced in the same manner as in Production Example D, except that a total of 12.0 g of water absorbent resin particles and coated resin particles previously mixed at a predetermined ratio was used instead of 12.0 g of water absorbent resin particles. did.
[製造例F]
 あらかじめ所定の割合で混ぜ合わせた吸水性樹脂粒子及び被覆樹脂粒子を合計12.0gと、解砕パルプ(レオニア社製レイフロック)8.0gを用い、空気抄造によって均一混合することにより、40cm×12cmの大きさの吸収体コアを作製した。別途、吸水性樹脂粒子12.0g及び解砕パルプ8.0gを用いて、同様に吸収体コアを作製した。各々の吸収体コアを目的の大きさにカッターで切り、つなげ合わせ、30cm×9cmの大きさの吸収体コアを作製した。以降は製造例Aと同様の方法で吸収性物品を作製した。
[Production Example F]
A total of 12.0 g of water-absorbent resin particles and coated resin particles premixed at a predetermined ratio and 8.0 g of crushed pulp (Layfloc manufactured by Leonia) were uniformly mixed by air papermaking to obtain a 40 cm × An absorbent core with a size of 12 cm was produced. Separately, using 12.0 g of water-absorbing resin particles and 8.0 g of crushed pulp, an absorbent core was produced in the same manner. Each absorbent core was cut into a desired size with a cutter and joined together to produce an absorbent core with a size of 30 cm×9 cm. Thereafter, an absorbent article was produced in the same manner as in Production Example A.
[比較例1]
 製造例1で得られた吸水性樹脂粒子(1)12gを用いて製造例Aのとおりに吸収性物品を作製し、評価を行った。
[Comparative Example 1]
Using 12 g of the water absorbent resin particles (1) obtained in Production Example 1, an absorbent article was produced as in Production Example A and evaluated.
[比較例2]
 製造例1で得られた吸水性樹脂粒子(1)9.6g及び製造例2で得られた被覆樹脂粒子(1)2.4gを用いて製造例Bのとおりに吸収性物品を作製し、評価を行った。
[Comparative Example 2]
Using 9.6 g of the water absorbent resin particles (1) obtained in Production Example 1 and 2.4 g of the coated resin particles (1) obtained in Production Example 2, an absorbent article was produced as in Production Example B, made an evaluation.
[実施例1]
 製造例Cのとおりに吸収性物品を作製し、評価を行った。以下に詳細を示す。製造例1で得られた吸水性樹脂粒子(1)9.6gと製造例2で得られた被覆樹脂粒子(1)2.4gを用いて40cm×12cmの大きさの吸収体コアを作製し、続いてカッターを用いて30cm×12cmの大きさの吸収体コア(領域A)を切り出した。
[Example 1]
An absorbent article was produced as in Production Example C and evaluated. Details are shown below. Using 9.6 g of the water absorbent resin particles (1) obtained in Production Example 1 and 2.4 g of the coated resin particles (1) obtained in Production Example 2, an absorbent core having a size of 40 cm×12 cm was produced. Then, an absorbent core (region A) measuring 30 cm×12 cm was cut out using a cutter.
 製造例1で得られた吸水性樹脂粒子(1)12gのみを用いて40cm×12cmの大きさの吸収体コアを作製し、続いてカッターを用いて5cm×12cmの大きさの吸収体コア(領域B)を2枚切り出した。領域Aの両外側に領域Bの吸収体コアをつなぎ合わせ、40cm×12cmの大きさの吸収体コアを作製し、吸収性物品を作製して評価を行った。 Using only 12 g of the water absorbent resin particles (1) obtained in Production Example 1, an absorbent core with a size of 40 cm × 12 cm was produced, and then a cutter was used to prepare an absorbent core with a size of 5 cm × 12 cm ( Two pieces of region B) were cut out. The absorbent cores of the region B were connected to both outsides of the region A to prepare an absorbent core having a size of 40 cm×12 cm, and an absorbent article was prepared and evaluated.
[実施例2]
 製造例Cのとおりに吸収性物品を作製し、評価を行った。以下に詳細を示す。製造例1で得られた吸水性樹脂粒子(1)9.6g及び製造例2で得られた被覆樹脂粒子(1)2.4gを用いて40cm×12cmの大きさの吸収体コアを作製し、続いてカッターを用いて20cm×12cmの大きさの吸収体コア(領域A)を切り出した。
[Example 2]
An absorbent article was produced as in Production Example C and evaluated. Details are shown below. Using 9.6 g of the water absorbent resin particles (1) obtained in Production Example 1 and 2.4 g of the coated resin particles (1) obtained in Production Example 2, an absorbent core having a size of 40 cm×12 cm was produced. Then, an absorbent core (region A) measuring 20 cm×12 cm was cut out using a cutter.
 製造例1で得られた吸水性樹脂粒子(1)10.8g及び製造例2で得られた被覆樹脂粒子(1)1.2gを用いて40cm×12cmの大きさの吸収体コアを作製し、続いてカッターを用いて10cm×12cmの大きさの吸収体コア(領域B)を2枚切り出した。領域Aの両外側に領域Bの吸収体コアをつなぎ合わせ、40cm×12cmの大きさの吸収体コアを作製し、吸収性物品を作製して評価を行った。 Using 10.8 g of the water absorbent resin particles (1) obtained in Production Example 1 and 1.2 g of the coated resin particles (1) obtained in Production Example 2, an absorbent core having a size of 40 cm×12 cm was produced. Then, using a cutter, two absorbent cores (region B) with a size of 10 cm×12 cm were cut out. The absorbent cores of the region B were connected to both outsides of the region A to prepare an absorbent core having a size of 40 cm×12 cm, and an absorbent article was prepared and evaluated.
[比較例3]
 製造例1で得られた吸水性樹脂粒子(1)8.4g及び製造例2で得られた被覆樹脂粒子(1)3.6gを用いて製造例Bのとおりに吸収性物品を作製し、評価を行った。
[Comparative Example 3]
Using 8.4 g of the water absorbent resin particles (1) obtained in Production Example 1 and 3.6 g of the coated resin particles (1) obtained in Production Example 2, an absorbent article was produced as in Production Example B, made an evaluation.
[実施例3]
 製造例Cのとおりに吸収性物品を作製し、評価を行った。以下に詳細を示す。製造例1で得られた吸水性樹脂粒子(1)8.4g及び製造例2で得られた被覆樹脂粒子(1)3.6gを用いて40cm×12cmの大きさの吸収体コアを作製し、続いてカッターを用いて24cm×12cmの大きさの吸収体コア(領域A)を切り出した。
[Example 3]
An absorbent article was produced as in Production Example C and evaluated. Details are shown below. Using 8.4 g of the water absorbent resin particles (1) obtained in Production Example 1 and 3.6 g of the coated resin particles (1) obtained in Production Example 2, an absorbent core having a size of 40 cm×12 cm was produced. Then, a cutter was used to cut out an absorbent core (area A) measuring 24 cm×12 cm.
 製造例1で得られた吸水性樹脂粒子(1)12gのみを用いて40cm×12cmの大きさの吸収体コアを作製し、続いてカッターを用いて8cm×12cmの大きさの吸収体コア(領域B)を2枚切り出した。領域Aの両外側に領域Bの吸収体コアをつなぎ合わせ、40cm×12cmの大きさの吸収体コアを作製し、吸収性物品を作製して評価を行った。 Using only 12 g of the water-absorbent resin particles (1) obtained in Production Example 1, an absorbent core with a size of 40 cm × 12 cm was produced, and then a cutter was used to prepare an absorbent core with a size of 8 cm × 12 cm ( Two pieces of region B) were cut out. The absorbent cores of the region B were connected to both outsides of the region A to prepare an absorbent core having a size of 40 cm×12 cm, and an absorbent article was prepared and evaluated.
[比較例4]
 製造例1で得られた吸水性樹脂粒子(1)7.2g及び製造例2で得られた被覆樹脂粒子(1)4.8gを用いて製造例Bのとおりに吸収性物品を作製し、評価を行った。
[Comparative Example 4]
Using 7.2 g of the water absorbent resin particles (1) obtained in Production Example 1 and 4.8 g of the coated resin particles (1) obtained in Production Example 2, an absorbent article was produced as in Production Example B, made an evaluation.
[実施例4]
 製造例Cのとおりに吸収性物品を作製し、評価を行った。以下に詳細を示す。製造例1で得られた吸水性樹脂粒子(1)7.2gと製造例2で得られた被覆樹脂粒子(1)4.8gを用いて40cm×12cmの大きさの吸収体コアを作製し、続いてカッターを用いて20cm×12cmの大きさの吸収体コア(領域A)を切り出した。
[Example 4]
An absorbent article was produced as in Production Example C and evaluated. Details are shown below. Using 7.2 g of the water absorbent resin particles (1) obtained in Production Example 1 and 4.8 g of the coated resin particles (1) obtained in Production Example 2, an absorbent core having a size of 40 cm×12 cm was produced. Then, an absorbent core (region A) measuring 20 cm×12 cm was cut out using a cutter.
 製造例1で得られた吸水性樹脂粒子(1)12gのみを用いて40cm×12cmの大きさの吸収体コアを作製し、続いてカッターを用いて10cm×12cmの大きさの吸収体コア(領域B)を2枚切り出した。領域Aの両外側に領域Bの吸収体コアをつなぎ合わせ、40cm×12cmの大きさの吸収体コアを作製し、吸収性物品を作製して評価を行った。 Using only 12 g of the water-absorbent resin particles (1) obtained in Production Example 1, an absorbent core with a size of 40 cm × 12 cm was produced, and then a cutter was used to prepare an absorbent core with a size of 10 cm × 12 cm ( Two pieces of region B) were cut out. The absorbent cores of the region B were connected to both outsides of the region A to prepare an absorbent core having a size of 40 cm×12 cm, and an absorbent article was prepared and evaluated.
[比較例5]
 製造例1で得られた吸水性樹脂粒子(1)6g及び製造例2で得られた被覆樹脂粒子(1)6gを用いて製造例Bのとおりに吸収性物品を作製し、評価を行った。
[Comparative Example 5]
Using 6 g of the water absorbent resin particles (1) obtained in Production Example 1 and 6 g of the coated resin particles (1) obtained in Production Example 2, an absorbent article was produced and evaluated as in Production Example B. .
[実施例5]
 製造例Cのとおりに吸収性物品を作製し、評価を行った。以下に詳細を示す。製造例1で得られた吸水性樹脂粒子(1)6g及び製造例2で得られた被覆樹脂粒子(1)6gを用いて40cm×12cmの大きさの吸収体コアを作製し、続いてカッターを用いて20cm×12cmの大きさの吸収体コア(領域A)を切り出した。
[Example 5]
An absorbent article was produced as in Production Example C and evaluated. Details are shown below. Using 6 g of the water absorbent resin particles (1) obtained in Production Example 1 and 6 g of the coated resin particles (1) obtained in Production Example 2, an absorbent core having a size of 40 cm × 12 cm was produced, followed by a cutter. was used to cut out an absorbent core (region A) measuring 20 cm x 12 cm.
 製造例1で得られた吸水性樹脂粒子(1)12gのみを用いて40cm×12cmの大きさの吸収体コアを作製し、続いてカッターを用いて10cm×12cmの大きさの吸収体コア(領域B)を2枚切り出した。領域Aの両外側に領域Bの吸収体コアをつなぎ合わせ、40cm×12cmの大きさの吸収体コアを作製し、吸収性物品を作製して評価を行った。 Using only 12 g of the water-absorbent resin particles (1) obtained in Production Example 1, an absorbent core with a size of 40 cm × 12 cm was produced, and then a cutter was used to prepare an absorbent core with a size of 10 cm × 12 cm ( Two pieces of region B) were cut out. The absorbent cores of the region B were connected to both outsides of the region A to prepare an absorbent core having a size of 40 cm×12 cm, and an absorbent article was prepared and evaluated.
[実施例6]
 製造例Cのとおりに吸収性物品を作製し、評価を行った。以下に詳細を示す。製造例1で得られた吸水性樹脂粒子(1)6g及び製造例2で得られた被覆樹脂粒子(1)6gを用いて40cm×12cmの大きさの吸収体コアを作製し、続いてカッターを用いて10cm×12cmの大きさの吸収体コア(領域A)を切り出した。
[Example 6]
An absorbent article was produced as in Production Example C and evaluated. Details are shown below. Using 6 g of the water absorbent resin particles (1) obtained in Production Example 1 and 6 g of the coated resin particles (1) obtained in Production Example 2, an absorbent core having a size of 40 cm × 12 cm was produced, followed by a cutter. was used to cut out an absorbent core (region A) measuring 10 cm×12 cm.
 製造例1で得られた吸水性樹脂粒子(1)12gのみを用いて40cm×12cmの大きさの吸収体コアを作製し、続いてカッターを用いて15cm×12cmの大きさの吸収体コア(領域B)を2枚切り出した。領域Aの両外側に領域Bの吸収体コアをつなぎ合わせ、40cm×12cmの大きさの吸収体コアを作製し、吸収性物品を作製して評価を行った。 Using only 12 g of the water-absorbing resin particles (1) obtained in Production Example 1, an absorbent core having a size of 40 cm × 12 cm was produced, and then a cutter was used to prepare an absorbent core having a size of 15 cm × 12 cm ( Two pieces of region B) were cut out. The absorbent cores of the region B were connected to both outsides of the region A to prepare an absorbent core having a size of 40 cm×12 cm, and an absorbent article was prepared and evaluated.
[比較例6]
 製造例Cのとおりに吸収性物品を作製し、評価を行った。以下に詳細を示す。製造例1で得られた吸水性樹脂粒子(1)3.6g及び製造例2で得られた被覆樹脂粒子(1)8.4gを用いて40cm×12cmの大きさの吸収体コアを作製し、続いてカッターを用いて10cm×12cmの大きさの吸収体コア(領域A)を切り出した。
[Comparative Example 6]
An absorbent article was produced as in Production Example C and evaluated. Details are shown below. Using 3.6 g of the water absorbent resin particles (1) obtained in Production Example 1 and 8.4 g of the coated resin particles (1) obtained in Production Example 2, an absorbent core having a size of 40 cm×12 cm was produced. Then, a cutter was used to cut out an absorbent core (region A) measuring 10 cm×12 cm.
 製造例1で得られた吸水性樹脂粒子(1)12gのみを用いて40cm×12cmの大きさの吸収体コアを作製し、続いてカッターを用いて15cm×12cmの大きさの吸収体コア(領域B)を2枚切り出した。領域Aの両外側に領域Bの吸収体コアをつなぎ合わせ、40cm×12cmの大きさの吸収体コアを作製し、吸収性物品を作製して評価を行った。 Using only 12 g of the water-absorbing resin particles (1) obtained in Production Example 1, an absorbent core having a size of 40 cm × 12 cm was produced, and then a cutter was used to prepare an absorbent core having a size of 15 cm × 12 cm ( Two pieces of region B) were cut out. The absorbent cores of the region B were connected to both outsides of the region A to prepare an absorbent core having a size of 40 cm×12 cm, and an absorbent article was prepared and evaluated.
[比較例7]
 製造例1で得られた吸水性樹脂粒子(1)9.6g及び製造例3で得られた被覆樹脂粒子(2)2.4gを用いて製造例Bのとおりに吸収性物品を作製し、評価を行った。
[Comparative Example 7]
Using 9.6 g of the water absorbent resin particles (1) obtained in Production Example 1 and 2.4 g of the coated resin particles (2) obtained in Production Example 3, an absorbent article was produced as in Production Example B, made an evaluation.
[実施例7]
 製造例Cのとおりに吸収性物品を作製し、評価を行った。以下に詳細を示す。製造例1で得られた吸水性樹脂粒子(1)9.6g及び製造例3で得られた被覆樹脂粒子(2)2.4gを用いて40cm×12cmの大きさの吸収体コアを作製し、続いてカッターを用いて30cm×12cmの大きさの吸収体コア(領域A)を切り出した。
[Example 7]
An absorbent article was produced as in Production Example C and evaluated. Details are shown below. Using 9.6 g of the water absorbent resin particles (1) obtained in Production Example 1 and 2.4 g of the coated resin particles (2) obtained in Production Example 3, an absorbent core having a size of 40 cm×12 cm was produced. Then, an absorbent core (region A) measuring 30 cm×12 cm was cut out using a cutter.
 製造例1で得られた吸水性樹脂粒子(1)12gのみを用いて40cm×12cmの大きさの吸収体コアを作製し、続いてカッターを用いて5cm×12cmの大きさの吸収体コア(領域B)を2枚切り出した。領域Aの両外側に領域Bの吸収体コアをつなぎ合わせ、40cm×12cmの大きさの吸収体コアを作製し、吸収性物品を作製して評価を行った。 Using only 12 g of the water absorbent resin particles (1) obtained in Production Example 1, an absorbent core with a size of 40 cm × 12 cm was produced, and then a cutter was used to prepare an absorbent core with a size of 5 cm × 12 cm ( Two pieces of region B) were cut out. The absorbent cores of the region B were connected to both outsides of the region A to prepare an absorbent core having a size of 40 cm×12 cm, and an absorbent article was prepared and evaluated.
[比較例8]
 製造例4で得られた吸水性樹脂採取品(1)12gを用いて製造例Aのとおりに吸収性物品を作製し、評価を行った。
[Comparative Example 8]
Using 12 g of the water absorbent resin sample (1) obtained in Production Example 4, an absorbent article was produced as in Production Example A and evaluated.
[比較例9]
 製造例4で得られた吸水性樹脂採取品(1)8.4g及び製造例2で得られた被覆樹脂粒子(1)3.6gを用いて製造例Bのとおりに吸収性物品を作製し、評価を行った。
[Comparative Example 9]
Using 8.4 g of the collected water-absorbent resin product (1) obtained in Production Example 4 and 3.6 g of the coated resin particles (1) obtained in Production Example 2, an absorbent article was produced as in Production Example B. , made an evaluation.
[実施例8]
 製造例Cのとおりに吸収性物品を作製し、評価を行った。以下に詳細を示す。製造例4で得られた吸水性樹脂採取品(1)8.4g及び製造例2で得られた被覆樹脂粒子(1)3.6gを用いて40cm×12cmの大きさの吸収体コアを作製し、続いてカッターを用いて20cm×12cmの大きさの吸収体コア(領域A)を切り出した。
[Example 8]
An absorbent article was produced as in Production Example C and evaluated. Details are shown below. Using 8.4 g of the collected water-absorbing resin product (1) obtained in Production Example 4 and 3.6 g of the coated resin particles (1) obtained in Production Example 2, an absorbent core having a size of 40 cm x 12 cm was produced. Then, a cutter was used to cut out an absorbent core (area A) measuring 20 cm×12 cm.
 製造例1で得られた吸水性樹脂粒子(1)12gのみを用いて40cm×12cmの大きさの吸収体コアを作製し、続いてカッターを用いて10cm×12cmの大きさの吸収体コア(領域B)を2枚切り出した。領域Aの両外側に領域Bの吸収体コアをつなぎ合わせ、40cm×12cmの大きさの吸収体コアを作製し、吸収性物品を作製して評価を行った。 Using only 12 g of the water-absorbent resin particles (1) obtained in Production Example 1, an absorbent core with a size of 40 cm × 12 cm was produced, and then a cutter was used to prepare an absorbent core with a size of 10 cm × 12 cm ( Two pieces of region B) were cut out. The absorbent cores of the region B were connected to both outsides of the region A to prepare an absorbent core having a size of 40 cm×12 cm, and an absorbent article was prepared and evaluated.
[比較例10]
 製造例1で得られた吸水性樹脂粒子(1)12gを用いて製造例Dのとおりに吸収性物品を作製し、評価を行った。
[Comparative Example 10]
Using 12 g of the water absorbent resin particles (1) obtained in Production Example 1, an absorbent article was produced as in Production Example D and evaluated.
[比較例11]
 製造例1で得られた吸水性樹脂粒子(1)9.6g及び製造例2で得られた被覆樹脂粒子(1)2.4gを用いて製造例Eのとおりに吸収性物品を作製し、評価を行った。
[Comparative Example 11]
Using 9.6 g of the water absorbent resin particles (1) obtained in Production Example 1 and 2.4 g of the coated resin particles (1) obtained in Production Example 2, an absorbent article was produced as in Production Example E, made an evaluation.
[実施例9]
 製造例Fのとおりに吸収性物品を作製し、評価を行った。以下に詳細を示す。製造例1で得られた吸水性樹脂粒子(1)9.6g及び製造例2で得られた被覆樹脂粒子(1)2.4gを用いて40cm×12cmの大きさの吸収体コアを作製し、続いてカッターを用いて22.5cm×9cmの大きさの吸収体コア(領域A)を切り出した。
[Example 9]
An absorbent article was produced as in Production Example F and evaluated. Details are shown below. Using 9.6 g of the water absorbent resin particles (1) obtained in Production Example 1 and 2.4 g of the coated resin particles (1) obtained in Production Example 2, an absorbent core having a size of 40 cm×12 cm was produced. Then, a cutter was used to cut out an absorbent core (area A) measuring 22.5 cm×9 cm.
 製造例1で得られた吸水性樹脂粒子(1)12gのみを用いて40cm×12cmの大きさの吸収体コアを作製し、続いてカッターを用いて3.75cm×9cmの大きさの吸収体コア(領域B)を2枚切り出した。領域Aの両外側に領域Bの吸収体コアをつなぎ合わせ、30cm×9cmの大きさの吸収体コアを作製し、吸収性物品を作製して評価を行った。 Using only 12 g of the water absorbent resin particles (1) obtained in Production Example 1, an absorbent core with a size of 40 cm × 12 cm was produced, and then an absorbent core with a size of 3.75 cm × 9 cm was produced using a cutter. Two cores (region B) were cut out. The absorbent cores of the region B were connected to both outsides of the region A to prepare an absorbent core having a size of 30 cm×9 cm, and an absorbent article was prepared and evaluated.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<吸収体評価>
[試験液の調製]
 10L容の容器に、塩化ナトリウム100.0g、塩化カルシウム二水和物3.0g、塩化マグネシウム六水和物6.0g、1%トリトン(ポリオキシエチレン[10]オクタルフェニルエーテルX-100を1.0g、及び蒸留水99.0gを混合して調製したもの)、及び蒸留水9866.0gを入れ、完全に溶解させた。該溶液を少量の青色1号で着色し、試験液を調製した。
<Evaluation of absorber>
[Preparation of test solution]
In a 10 L container, 100.0 g of sodium chloride, 3.0 g of calcium chloride dihydrate, 6.0 g of magnesium chloride hexahydrate, 1% triton (polyoxyethylene [10] octalphenyl ether X-100) .0 g and 99.0 g of distilled water) and 9866.0 g of distilled water were added and dissolved completely. The solution was colored with a small amount of Blue No. 1 to prepare a test solution.
[吸収体の性能評価]
(30°漏れ試験)
 図7は吸収性物品の漏れ性を評価する方法を示す模式図である。平坦な傾斜面Sを有する長さ45cm、厚さ0.3cmの支持板19(ここではアクリル樹脂板)を、水平面Sに対して30±2°に傾斜した状態で架台41によって固定した。滴下ロートは、容量300mL、先端部の内径が約8mmφ、二方コック付きであり、8mL/秒で液が投入されるようにコックの絞りを調整した。支持板19の下部には、金属製トレイ44を載置した天秤43が設置されており、吸収性物品の末端から漏れとして流れ落ちる試験液をすべて受けとめ、その質量を0.1gの精度で記録した。このような装置を用いた漏れ試験は以下の手順で行った。
[Performance evaluation of absorber]
(30° leak test)
FIG. 7 is a schematic diagram showing a method for evaluating the leakiness of absorbent articles. A support plate 19 (an acrylic resin plate in this case) having a length of 45 cm and a thickness of 0.3 cm and having a flat inclined surface S1 was fixed by a mount 41 while being inclined at 30 ± 2° with respect to the horizontal surface S0. . The dropping funnel had a capacity of 300 mL, an inner diameter of about 8 mmφ at the tip, and was equipped with a two-way cock. A balance 43 on which a metal tray 44 is placed is installed at the bottom of the support plate 19, and receives all the test liquid that leaks from the end of the absorbent article and records its mass with an accuracy of 0.1 g. . A leak test using such a device was performed according to the following procedure.
 温度25±2℃の室内において、固定された支持板19の傾斜面S上に、試験用の吸収性物品100を、その長手方向が支持板19の長手方向に沿う向きで貼り付けた。漏れを作為的に止めないために、吸収性物品の下端はアクリル板上には貼り付けなかった。次いで、吸収性物品100中の吸収体の中央に向けて、吸収性物品の鉛直上方に配置された滴下ロート42から、25±1℃に調整した試験液50(人工尿)を滴下した。滴下ロート42の先端と吸収性物品との距離は10±2mmであった。40cm×12cmの大きさの吸収体コアの評価では試験液150mLを、30cm×9cmの大きさの吸収体コアの評価では試験駅70mLを一度に投入した。支持板19の表面は滑らかであり、板に液体が滞留したり吸収されたりすることはなかった。吸収性物品100に吸収されなかった試験液が支持板19の下部から漏れ出た場合、漏れ出た試験液を支持板19の下方に配置された金属製トレイ44内に回収した。回収された試験液の重量(g)を天秤43によって測定し、その値を漏れ量として記録した。 In a room at a temperature of 25±2° C., the test absorbent article 100 was attached onto the inclined surface S 1 of the fixed support plate 19 with its longitudinal direction along the longitudinal direction of the support plate 19 . The bottom edge of the absorbent article was not stuck on the acrylic plate so as not to artificially stop leakage. Next, the test liquid 50 (artificial urine) adjusted to 25±1° C. was dropped from the dropping funnel 42 arranged vertically above the absorbent article 100 toward the center of the absorbent body in the absorbent article 100 . The distance between the tip of the dropping funnel 42 and the absorbent article was 10±2 mm. 150 mL of the test solution was added at once for evaluation of the absorbent core with a size of 40 cm×12 cm, and 70 mL of the test solution was added at once for evaluation of the absorbent core with a size of 30 cm×9 cm. The surface of the support plate 19 was smooth and no liquid was retained or absorbed by the plate. When the test liquid that was not absorbed by the absorbent article 100 leaked from the lower part of the support plate 19 , the leaked test liquid was collected in the metal tray 44 arranged below the support plate 19 . The weight (g) of the collected test liquid was measured by the balance 43, and the value was recorded as the amount of leakage.
(吸収性物品の吸収速度)
 まず、水平の台上に吸収性物品を置いた。吸収性物品の中心部に、内径3cmの開口部を有する液投入用シリンダーを置き、40cm×12cmの大きさの吸収体コアの評価では150mL、30cm×9cmの大きさの吸収体コアの評価では70mLの試験液をシリンダー内に一度に投入した。試験液の投入開始から試験液が完全に吸収性物品へ吸収されるまでの時間を吸収速度(秒)として測定した。結果を表3に示す。
(Absorption speed of absorbent article)
First, an absorbent article was placed on a horizontal table. A liquid charging cylinder having an opening with an inner diameter of 3 cm is placed in the center of the absorbent article, and 150 mL in the evaluation of the absorbent core with a size of 40 cm × 12 cm, and 150 mL in the evaluation of the absorbent core with a size of 30 cm × 9 cm. 70 mL of the test solution was introduced into the cylinder at once. The absorption speed (seconds) was measured as the time from when the test liquid was introduced until the test liquid was completely absorbed by the absorbent article. Table 3 shows the results.
(吸収速度改善度)
 得られた実施例又は比較例の吸収性物品における吸収速度を、対応する吸水性樹脂粒子のみを用いた製造例A又はDにおける吸収性物品における吸収速度で除し、吸収速度の改善度を算出した。結果を表3に示す。1未満である場合に改善されたことを示す。
(Absorption rate improvement)
The absorption rate in the absorbent article of the obtained example or comparative example is divided by the absorption rate in the absorbent article in Production Example A or D using only the corresponding water-absorbing resin particles, and the degree of improvement in the absorption rate is calculated. did. Table 3 shows the results. A value of less than 1 indicates an improvement.
(逆戻り量)
 上記吸収性物品の吸収速度測定で用いたシリンダーを外し、吸収性物品をそのままの状態で保存した。試験液投入終了から5分経過後、吸収性物品上の試験液投入位置付近に、あらかじめ質量(約75g)を測定しておいた10cm四方の濾紙を置き、更にその上に底面が10cm×10cmの質量5.0kg(約0.7psi)の重りを載せた。5分間の荷重後、濾紙の質量を測定し、増加した質量を逆戻り量(g)とした。結果を表3に示す。
(Reverse amount)
The cylinder used for measuring the absorption speed of the absorbent article was removed, and the absorbent article was stored as it was. After 5 minutes from the end of adding the test solution, place a 10 cm square filter paper whose mass (about 75 g) was measured in advance near the position on the absorbent article where the test solution was added, and further place the filter paper on each side with a bottom surface of 10 cm × 10 cm. was loaded with a mass of 5.0 kg (about 0.7 psi). After the load was applied for 5 minutes, the mass of the filter paper was measured, and the increased mass was defined as the amount of reversion (g). Table 3 shows the results.
(逆戻り量改善度)
 得られた実施例又は比較例の吸収性物品における逆戻り量を、対応する吸水性樹脂粒子のみを用いた製造例A又はDにおける吸収性物品における逆戻り量で除し、逆戻り量の改善度を算出した。1未満である場合に改善されたことを示す。結果を表3に示す。
(Return amount improvement)
The degree of improvement in the amount of backflow is calculated by dividing the amount of backflow in the obtained absorbent articles of Examples or Comparative Examples by the amount of backflow in the corresponding absorbent articles in Production Example A or D using only water-absorbing resin particles. did. A value of less than 1 indicates an improvement. Table 3 shows the results.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例で得られた吸収性物品は長手方向における漏れ量が低減されているとともに、逆戻り量が改善されたことが示された。 It was shown that the absorbent articles obtained in Examples had a reduced amount of leakage in the longitudinal direction and an improved amount of reversion.
 1…長手方向の端、3…短手方向の端、10…吸収体、10a…吸水性樹脂粒子、10b…繊維層、20a,20b…コアラップシート、30…液体透過性シート、40…液体不透過性シート、50…試験液、100…吸収性物品。

 
REFERENCE SIGNS LIST 1 longitudinal end 3 lateral end 10 absorbent 10a water absorbent resin particles 10b fiber layer 20a, 20b core wrap sheet 30 liquid permeable sheet 40 liquid Impermeable sheet, 50... Test solution, 100... Absorbent article.

Claims (7)

  1.  長手方向、及び前記長手方向に直交する幅方向を有する吸収体であって、
     10ml/g以下の無加圧DWの5分値を示す吸水性樹脂粒子a、及び10ml/g超の無加圧DWの5分値を示す吸水性樹脂粒子bを含む領域Aと、
     10ml/g超の無加圧DWの5分値を示す吸水性樹脂粒子bを含む領域Bとを有し、
     前記領域Aに含まれる前記吸水性樹脂粒子aの量が、前記領域Aに含まれる吸水性樹脂粒子全量に対して15~55質量%であり、
     前記領域Bに含まれる前記吸水性樹脂粒子aの量が、前記領域Bに含まれる吸水性樹脂粒子全量に対して0質量%以上15質量%未満であり、
     前記領域Bの少なくとも一部は、当該吸収体の前記長手方向の両端又は両端近傍に位置する、吸収体。
    An absorbent body having a longitudinal direction and a width direction orthogonal to the longitudinal direction,
    a region A containing water-absorbing resin particles a exhibiting a 5-minute value of no-pressure DW of 10 ml/g or less and water-absorbing resin particles b exhibiting a 5-minute value of no-pressure DW exceeding 10 ml/g;
    and a region B containing water-absorbing resin particles b exhibiting a 5-minute value of non-pressurized DW exceeding 10 ml / g,
    The amount of the water absorbent resin particles a contained in the region A is 15 to 55% by mass with respect to the total amount of the water absorbent resin particles contained in the region A,
    The amount of the water absorbent resin particles a contained in the region B is 0% by mass or more and less than 15% by mass with respect to the total amount of the water absorbent resin particles contained in the region B,
    At least part of the region B is an absorbent body located at or near both ends in the longitudinal direction of the absorbent body.
  2.  前記領域Bが、当該吸収体の前記長手方向の両端に位置し、当該吸収体両端の形状に沿って形成されている、請求項1に記載の吸収体。 The absorbent body according to claim 1, wherein the regions B are located at both ends of the absorbent body in the longitudinal direction and are formed along the shapes of both ends of the absorbent body.
  3.  前記領域Bの少なくとも一部が、当該吸収体の前記長手方向の端からの距離が当該吸収体の前記長手方向の長さの0~40%である位置に形成されている、請求項1又は2に記載の吸収体。 1 or 2, wherein at least part of said region B is formed at a position where the distance from said longitudinal end of said absorbent is 0 to 40% of said longitudinal length of said absorbent. 2. The absorbent body according to 2.
  4.  前記領域Bの総面積が当該吸収体全体に対して20~80%である、請求項1~3のいずれか一項に記載の吸収体。 The absorbent body according to any one of claims 1 to 3, wherein the total area of said region B is 20 to 80% of the entire absorbent body.
  5.  前記吸水性樹脂粒子aの生理食塩水吸水速度が60秒以上である、請求項1~4のいずれか一項に記載の吸収体。 The absorber according to any one of claims 1 to 4, wherein the water-absorbent resin particles a have a physiological saline water absorption speed of 60 seconds or more.
  6.  前記吸水性樹脂粒子aの生理食塩水保水量が16~55g/gである、請求項1~5のいずれか一項に記載の吸収体。 The absorbent body according to any one of claims 1 to 5, wherein the water-absorbent resin particles a have a physiological saline water retention capacity of 16 to 55 g/g.
  7.  前記吸水性樹脂粒子aが、架橋重合体粒子、及び該架橋重合体粒子の表面の少なくとも一部を被覆する水不溶性のコーティング層を有する被覆樹脂粒子である、請求項1~6のいずれか一項に記載の吸収体。

     
    7. The water-absorbent resin particles a are coated resin particles having a crosslinked polymer particle and a water-insoluble coating layer covering at least part of the surface of the crosslinked polymer particle. 10. Absorber according to item.

PCT/JP2022/007363 2021-03-30 2022-02-22 Absorber WO2022209441A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023510656A JPWO2022209441A1 (en) 2021-03-30 2022-02-22
CN202280024558.6A CN117083043A (en) 2021-03-30 2022-02-22 Absorbent body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-058076 2021-03-30
JP2021058076 2021-03-30

Publications (1)

Publication Number Publication Date
WO2022209441A1 true WO2022209441A1 (en) 2022-10-06

Family

ID=83455947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007363 WO2022209441A1 (en) 2021-03-30 2022-02-22 Absorber

Country Status (3)

Country Link
JP (1) JPWO2022209441A1 (en)
CN (1) CN117083043A (en)
WO (1) WO2022209441A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001309941A (en) * 2000-04-28 2001-11-06 Oji Paper Co Ltd Disposable absorbing article
JP2018110731A (en) * 2017-01-12 2018-07-19 株式会社リブドゥコーポレーション Sheet member for absorbent article and absorbent article

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001309941A (en) * 2000-04-28 2001-11-06 Oji Paper Co Ltd Disposable absorbing article
JP2018110731A (en) * 2017-01-12 2018-07-19 株式会社リブドゥコーポレーション Sheet member for absorbent article and absorbent article

Also Published As

Publication number Publication date
JPWO2022209441A1 (en) 2022-10-06
CN117083043A (en) 2023-11-17

Similar Documents

Publication Publication Date Title
JP4841654B2 (en) Absorbent articles
US20160151213A1 (en) Fluid-absorbent article
TWI594738B (en) Absorber and absorbent article using the same
JP6184669B2 (en) Absorber and absorbent article using the same
CN112638337A (en) Feminine hygiene absorbent article
CN114787245A (en) Water-absorbent resin particles and absorbent
WO2020184394A1 (en) Water absorbent resin particle, absorber, absorbent article, method for measuring permeation retention rate of water absorbent resin particle, and method for producing water absorbent resin particle
WO2016207444A1 (en) New absorbent article comprising an acquisition/distribution layer and process for making it
KR20210137068A (en) absorbent resin particles
WO2022209972A1 (en) Absorber
JP2007143676A (en) Body liquid absorbing article which is excellent in diffusibility
JP7129490B2 (en) Water Absorbent Resin Particles, Absorbent, Absorbent Article, and Method for Measuring Liquid Suction Force
WO2022209441A1 (en) Absorber
KR20210101250A (en) absorbent article
JP2005334616A (en) Absorber and absorptive article using the same
JP2002165837A (en) Absorptive article
US20220219140A1 (en) Water-absorbent resin particles
WO2022255301A1 (en) Absorbent article
WO2023233925A1 (en) Absorbent body and absorbent article
WO2022210115A1 (en) Absorbent, and absorbent article
JP4758174B2 (en) Disposable body fluid absorbent article
WO2022014335A1 (en) Absorber
JP6775050B2 (en) Absorbent article
WO2021187501A1 (en) Water-absorbing sheet and absorbent article
JP2022182695A (en) Absorber and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779666

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023510656

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280024558.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779666

Country of ref document: EP

Kind code of ref document: A1