WO2022209432A1 - Welding control method, welding power supply, welding system, welding method, and additive manufacturing method - Google Patents

Welding control method, welding power supply, welding system, welding method, and additive manufacturing method Download PDF

Info

Publication number
WO2022209432A1
WO2022209432A1 PCT/JP2022/007236 JP2022007236W WO2022209432A1 WO 2022209432 A1 WO2022209432 A1 WO 2022209432A1 JP 2022007236 W JP2022007236 W JP 2022007236W WO 2022209432 A1 WO2022209432 A1 WO 2022209432A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
period
peak
value
peak current
Prior art date
Application number
PCT/JP2022/007236
Other languages
French (fr)
Japanese (ja)
Inventor
培尓 徐
昇吾 中司
亮 小川
英市 佐藤
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN202280023452.4A priority Critical patent/CN117062686A/en
Priority to KR1020237032152A priority patent/KR20230145604A/en
Publication of WO2022209432A1 publication Critical patent/WO2022209432A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/032Seam welding; Backing means; Inserts for three-dimensional seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/09Arrangements or circuits for arc welding with pulsed current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators

Definitions

  • the present invention relates to a welding control method, a welding power source, a welding system, a welding method, and an additive manufacturing method applying gas shielded arc welding in gas shielded arc welding using a pulse waveform.
  • GMAW gas-shielded metal arc welding
  • the shielding gas contains a component with a high potential gradient such as carbon dioxide gas, nitrogen gas, hydrogen gas, or oxygen gas
  • the form of droplet transfer is globular. take a transition.
  • globular transfer since the size of droplets transferred to the molten pool becomes irregular, there has been a problem in welding workability, mainly due to the generation of spatter.
  • additive manufacturing more specifically metal additive manufacturing (WAAM: Wire and Arc Additive Manufacturing) technology, and this problem is not limited to the field of welding, It is also a common challenge in the field of additive manufacturing.
  • WAAM Wire and Arc Additive Manufacturing
  • additive manufacturing is sometimes used in a broad sense as the term “laminate manufacturing” or “rapid prototyping”, and in the present invention, the term “laminate manufacturing” is used uniformly.
  • welding may be appropriately replaced with “welding”, “additive manufacturing”, “additive manufacturing”, or the like.
  • welding control method or “welding power source”
  • layered manufacturing control method or “layered manufacturing power source”.
  • Patent Document 1 in consumable electrode arc welding using carbon dioxide alone or a mixed gas containing carbon dioxide as a main component, the welding arc is stabilized and the droplet transfer regularity is improved.
  • a technique is disclosed for significantly reducing the amount of spatters and fumes generated.
  • the technique is a method of arc welding using a pulse current in which a first pulse and a second pulse having pulse waveforms with different pulse peak current levels and pulse widths are alternately repeated as a welding current,
  • the peak current of the first pulse is 300-700A
  • the peak period is 0.3-5.0ms
  • the base current is 30-200A
  • the base period is 0.3-10ms
  • the peak current of the second pulse is 200-600A.
  • Patent Document 2 even if a carbon dioxide-based shield gas is used, one droplet transfer is possible per cycle.
  • a technique that can be restored is disclosed. Specifically, in this technique, when the regularity of droplet transfer is disturbed by some disturbance, following the first pulse for detaching the droplet, a third pulse different from the second pulse for shaping the droplet is applied.
  • This is a method of outputting, which shortens the time required to restore the regularity of droplet transfer to a normal state, compared to the conventional method. According to this method, it is possible to reduce the spatter and fume generated during the period required to restore the normal state, and as a result, even if the regularity of the droplet transfer is disturbed, the deterioration of the welding quality at that time is minimized. It is said that it is possible to stop it.
  • the present invention has been made in view of the above-described problems, and its object is to provide a first pulse period for detaching a droplet and a sufficient size of a droplet to form on the tip of a welding wire.
  • Welding control method, welding power source, welding system, and welding method capable of suppressing a phenomenon in which the regularity of droplet transfer is disturbed and reducing spatter for a waveform set to alternately generate a second pulse period and to provide a layered manufacturing method.
  • a welding control method for controlling the waveform of a welding current in gas shielded arc welding comprising:
  • the waveform of the welding current is a pulse waveform in which one cycle is a first pulse period for detaching a droplet and a second pulse period for forming a sufficiently large droplet at the tip of the welding wire.
  • the first pulse period is composed of a predetermined first peak period having a first peak current value and a first base period after the first peak period
  • the second pulse period is composed of a predetermined second peak period having a second peak current value lower than the first peak current value, and a second base period after the second peak period, a voltage detection step of outputting a voltage detection signal Vo;
  • a voltage deviation average value Verrp2_ave in a predetermined section within the second pulse period is calculated based on the difference signal.
  • a voltage deviation average calculation step and a controlled variable calculation step of calculating a controlled variable for at least one of the first peak current value and the second peak current value based on the voltage deviation average value Verrp2_ave.
  • a welding power source for performing waveform control of welding current in gas shielded arc welding is a pulse waveform in which one cycle is a first pulse period for detaching a droplet and a second pulse period for forming a sufficiently large droplet at the tip of the welding wire.
  • the first pulse period is composed of a predetermined first peak period having a first peak current value and a first base period after the first peak period
  • the second pulse period is composed of a predetermined second peak period having a second peak current value lower than the first peak current value, and a second base period after the second peak period, voltage detection means for outputting a voltage detection signal Vo;
  • a voltage deviation average value Verrp2_ave in a predetermined section within the second pulse period is calculated based on the difference signal.
  • voltage deviation average calculation means and control amount calculation means for calculating a control amount for at least one of the first peak current value and the second peak current value based on the voltage deviation average value Verrp2_ave.
  • a welding system comprising at least a welding robot, a feeding device, a welding power source, a shielding gas supply device, and a welding control device, and used for waveform control of welding current in gas-shielded arc welding,
  • the waveform of the welding current is a pulse waveform in which one cycle is a first pulse period for detaching a droplet and a second pulse period for forming a sufficiently large droplet at the tip of the welding wire.
  • the first pulse period is composed of a predetermined first peak period having a first peak current value and a first base period after the first peak period
  • the second pulse period is composed of a predetermined second peak period having a second peak current value lower than the first peak current value, and a second base period after the second peak period
  • the welding power source is voltage detection means for outputting a voltage detection signal Vo; When the difference between the voltage detection signal Vo and the predetermined set voltage Vs is used as the difference signal, a voltage deviation average value Verrp2_ave in a predetermined section within the second pulse period is calculated based on the difference signal. voltage deviation average calculation means; and control amount calculation means for calculating a control amount for at least one of the first peak current value and the second peak current value based on the voltage deviation average value Verrp2_ave.
  • the waveform of the welding current is a pulse waveform in which one cycle is a first pulse period for detaching a droplet and a second pulse period for forming a sufficiently large droplet at the tip of the welding wire.
  • the first pulse period is composed of a predetermined first peak period having a first peak current value and a first base period after the first peak period
  • the second pulse period is composed of a predetermined second peak period having a second peak current value lower than the first peak current value, and a second base period after the second peak period
  • a layered manufacturing method for performing layered manufacturing while controlling the waveform of a welding current in layered manufacturing applying gas shielded arc welding At least one gas selected from carbon dioxide gas, nitrogen gas, hydrogen gas, and oxygen gas is included as the shielding gas used in the gas-shielded arc welding,
  • the waveform of the welding current is a pulse waveform in which one cycle is a first pulse period for detaching a droplet and a second pulse period for forming a sufficiently large droplet at the tip of the welding wire.
  • the first pulse period is composed of a predetermined first peak period having a first peak current value and a first base period after the first peak period
  • the second pulse period is composed of a predetermined second peak period having a second peak current value lower than the first peak current value, and a second base period after the second peak period
  • the first pulse period for detaching a droplet and the second pulse period for forming a droplet of sufficient size on the tip of the welding wire are alternately generated.
  • FIG. 1 is a schematic diagram showing a configuration example of a welding system according to this embodiment.
  • FIG. 2A is a graph showing a reference pulse waveform;
  • FIG. 2B is an explanatory diagram of each set value in the reference pulse waveform.
  • FIG. 3 is a block diagram of the welding power source.
  • FIG. 4 is an enlarged view of the main part of the block diagram shown in FIG.
  • the upper graph in FIG. 5 is a graph showing a comparison between the voltage detection signal Vo and the voltage setting signal Vs in the second pulse period T2.
  • the lower graph in FIG. 5 is a graph showing the integrated difference between the voltage detection signal Vo and the voltage setting signal V in the second pulse period T2.
  • FIG. 6 is a graph showing an example of changes in the falling portion of the first peak current value Ip1.
  • FIG. 1 is a schematic diagram showing a configuration example of a welding system according to this embodiment.
  • FIG. 2A is a graph showing a reference pulse waveform
  • FIG. 2B is an explan
  • FIG. 7 is a graph showing a state in which predetermined fixed waveform control is added during the first base period Tb1 when no detachment detection signal is detected.
  • a predetermined fixed value Ic1 is set to a predetermined second peak current reference value Ip2_ref as the second peak current value Ip2 for the next pulse period.
  • FIG. 10 is a graph showing the application of subtracted current values;
  • FIG. 9 is a graph showing an example of each control method when a short-circuit signal is detected during the first pulse period T1 and when arc instability is detected during the second pulse period T2.
  • the welding control method of the present invention may be applied to an automatic welding device using a cart, or the welding control method of the present invention may be applied to a small portable welding robot.
  • a gas-shielded arc welding method using a pulse waveform is used.
  • a gas-shielded arc welding method to which the welding control method according to the present invention is applied will be described. Applicable.
  • FIG. 1 is a schematic diagram showing a configuration example of an arc welding system according to this embodiment.
  • the arc welding system 10 includes a welding robot 20, a welding power source 30, a controller 40, a controller 50, a feeder (not shown), and a shield gas supply (not shown).
  • the welding power source 30 is connected to the welding robot 20 via a positive power cable (not shown) so as to energize the welding wire 22, which is a consumable electrode, and is connected to the welding robot 20 via a negative power cable (not shown). (hereinafter also referred to as "work") is connected to W.
  • the connection state shown in FIG. 1 is for welding with reversed polarity. When welding with positive polarity, the polarity of the welding power source 30 may be reversed.
  • the welding power source 30 and a feeding device for feeding the welding wire 22 are connected by a signal line (not shown), and the feeding speed of the welding wire 22 can be controlled.
  • the welding robot 20 has a welding torch 21 as an end effector.
  • the welding torch 21 has an energizing mechanism for energizing the welding wire 22, that is, a contact tip (not shown).
  • a contact tip (not shown).
  • the welding torch 21 is provided with a shield gas nozzle (not shown), which is a mechanism for ejecting shield gas.
  • the shielding gas may have a gas composition that takes the form of globule migration due to the characteristics of the waveform used in this embodiment.
  • at least one of carbon dioxide gas, nitrogen gas, hydrogen gas, and oxygen gas, which has a high potential gradient, is preferably included.
  • a system containing at least one gas and containing a total of 5 to 50% of a gas other than Ar is more preferable.
  • Shield gas is supplied from a shield gas supply device.
  • the welding wire 22 used in this embodiment may be either a solid wire containing no flux or a flux-cored wire containing flux.
  • the welding wire 22 may be made of any material, such as mild steel, stainless steel, aluminum, or titanium, and the wire surface may be plated with copper or the like.
  • the diameter of the welding wire 22 is not particularly limited. In this embodiment, the upper limit of the diameter is preferably 1.6 mm and the lower limit of the diameter is 0.8 mm.
  • the work W in this embodiment is not particularly limited, and joint shape, welding posture, groove shape, etc. are not particularly limited.
  • the control device 40 mainly controls the operation of the welding robot 20.
  • the control device 40 holds teaching data in which the operation pattern of the welding robot 20, the welding start position, the welding end position, the welding conditions, the weaving operation, etc. are defined in advance. controls the behavior of
  • the control device 40 provides the welding power source 30 with welding conditions such as welding current, arc voltage, and feed speed during the welding operation according to the teaching data.
  • the controller 50 is connected to the control device 40 , creates or displays a program for operating the welding robot 20 , inputs teaching data, etc., and provides it to the control device 40 . It also has a function of manually operating the welding robot 20 . It does not matter whether the connection between the controller 50 and the control device 40 is wired or wireless.
  • the welding power source 30 generates an arc between the welding wire 22 and the work W by supplying power to the welding wire 22 and the work W according to a command from the control device 40 .
  • Welding power supply 30 also outputs a signal for controlling the speed at which welding wire 22 is fed to the feeding device in accordance with a command from control device 40 .
  • the pulse waveform of the welding current output from welding power source 30 has a first pulse period T1 for detaching the droplets and a sufficiently large pulse waveform at the tip of the welding wire.
  • a waveform set to alternately generate a second pulse period T2 for forming droplets (hereinafter also referred to as a “reference pulse waveform”) is used as a reference.
  • the first pulse period T1 has a first peak period Tp1 having a predetermined first peak current value Ip1, a first base current value Ib1 predetermined, and a first base period Tb1 after the first peak period Tp1.
  • the second pulse period T2 has a second peak period Tp2 having a second peak current value Ip2 lower than the predetermined first peak current value Ip1 and a predetermined second base current value Ib2. It is composed of a second base period Tb2 after two peak periods Tp2. Note that the first peak period Tp1 and the second peak period Tp2 each include a rising portion and a falling portion.
  • each of the first peak period Tp1 and the second peak period Tp2 is composed of a rising portion, a peak portion, and a falling portion. Furthermore, in this embodiment, one period of the reference pulse waveform is composed of the first pulse period T1 and the second pulse period T2.
  • droplets 23 and 24 grow at the tip of the welding wire 22 during the second peak period Tp2, as shown in FIG. 2A. Since the current abruptly decreases in the second base period Tb2, the pushing-up force is weakened, and the droplet 25 is shaped so as to hang down at the tip of the welding wire 22. As shown in FIG. Next, when entering the first peak period Tp1, the droplets 26 and 27 form a constriction and rapidly detach due to the influence of the electromagnetic pinch force due to the first peak current set high. At the moment when the arc moves toward the welding wire 22 after the separation, the current is lowered during the first base period Tb1. As a result, small spatter due to scattering of the constricted portion of the welding wire 22 and scattering of residual melt after separation is reduced. Thereafter, similarly, droplet transfer is performed in which droplets are repeatedly formed and detached.
  • the welding power source 30 includes a power supply unit PM that supplies electric power for generating an arc and performing welding, a correction amount calculation circuit 60 that calculates various correction amounts such as the correction current Ierr, An output current control circuit 70 that receives signals such as a feed speed command, a welding current command, and an arc voltage command and outputs a current setting signal Ir, and a correction current Ierr and a current setting signal Ir that receive the control amount of the power supply unit PM.
  • a voltage detection unit VD that detects the arc voltage during welding and outputs a voltage detection signal Vo; and a welding current during welding that detects the welding current detection signal Io. It has a current detection section ID for output and a pulse waveform correction circuit 80 for correcting a set value related to the pulse waveform.
  • the power supply unit PM receives a commercial power supply such as a three-phase 200V power supply, converts the input AC voltage into a current error amplification signal Ei which is an error amplification signal between a control output current setting signal Iset and a welding current detection signal Io, which will be described later. Accordingly, the output is controlled by an inverter, an inverter transformer, a rectifier, etc. (not shown) to output the welding current and the arc voltage. Also, a reactor WL is configured to smooth the output voltage.
  • the current detector ID detects the welding current during welding and outputs the welding current detection signal Io.
  • the welding current detection signal Io is digitally converted by an A/D converter (not shown) and input to the current error amplifier circuit EI, the output current control circuit 70, the correction amount calculation circuit 60 and other control circuits.
  • the current error amplification circuit EI inputs the current error amplification signal Ei to the power supply unit PM.
  • the power supply unit PM performs output control with an inverter, an inverter transformer, a rectifier, etc. according to the current error amplification signal Ei, and outputs welding current and arc voltage.
  • a voltage detection unit VD detects an arc voltage during welding and outputs a voltage detection signal Vo.
  • the voltage detection signal Vo is digitally converted by an A/D converter (not shown) and input to a pulse waveform correction circuit 80, an output current control circuit 70, a correction amount calculation circuit 60, and other control circuits, which will be described later.
  • the correction amount calculation circuit 60 is a general term for circuits that output various correction amounts.
  • the type of correction amount calculation circuit is not particularly limited, and the circuit may be provided as necessary.
  • Circuits that output various correction amounts include, for example, a short-circuit determination circuit, a short-circuit/arc determination circuit, an electronic reactor control circuit, and an external characteristic correction circuit.
  • a correction current Ierr is output from these correction circuits and input to the addition circuit ADD.
  • the output current control circuit 70 includes a storage section DB and a pulse state generation section 71, and outputs the current setting signal Ir generated within the output current control circuit 70 to the addition circuit ADD.
  • the storage unit DB stores data such as various initial setting signals, determinations, threshold values applied in each calculation unit, external characteristic coefficients of the welding power source 30, that is, output characteristics of the welding power source 30, and the like. output a signal to
  • the storage unit DB stores in advance the welding current setting signal Is, the voltage setting signal Vs, the wire feed speed setting signal Wfr, or the set values for waveform control, constants for calculation by various circuits, and the like. is input directly, or input from the welding current setting circuit IS, the output voltage setting circuit VS, the wire feed speed setting circuit WFR, etc., and stored.
  • each set value is input to various circuits through the storage section DB, but these set values may be directly input to various circuits, and the storage section DB may be used as an output current control circuit. 70 may be provided independently.
  • the waveform control setting values include, for example, the peak period, peak current, base period, base current, pulse period, etc. when performing pulse waveform control, and when performing waveform control during a short circuit, Examples include a set value for a control period, a set value for an inclination, and the like. For example, in the present embodiment, as shown in FIG.
  • the pulse state generator 71 in the output current control circuit 70 is used to control the pulse waveform of the welding current, as shown in this embodiment, and inputs set values related to various pulse waveforms from the storage unit DB.
  • a correction signal output from the pulse waveform correction circuit 80 is input, and a current setting signal Ir having a pulse waveform is output.
  • the addition circuit ADD inputs the correction current Ierr output from the correction amount calculation circuit 60 .
  • the addition circuit ADD adds the current setting signal Ir output from the output current control circuit 70 to the correction current Ierr, and outputs the control output current setting signal Iset to the current error amplifier circuit EI.
  • the correction current Ierr may be input to the addition circuit ADD not only from the correction amount calculation circuit 60 but also from other control circuits (not shown).
  • the pulse waveform correction circuit 80 has a voltage deviation average calculator 81 as a voltage deviation average calculator and a pulse waveform control amount calculator 82 as a control amount calculator.
  • a process for outputting the peak current correction command signal Ip2ref_set for the purpose of correcting the second peak current Ip2 to increase or decrease will be described.
  • the peak current correction command signal Ip2ref_set for the second peak current Ip2 may be used, or the peak current correction command signal Ip1ref_set for the first peak current value Ip1 may be used, or both may be calculated and output. good.
  • the voltage deviation average calculation unit 81 receives at least the voltage setting signal Vs and the voltage detection signal Vo, and calculates the voltage deviation average value Verrp2_ave necessary for calculating the peak current manipulated variable Di_sum in the pulse waveform control amount calculation unit 82. and output to the pulse waveform control amount calculator 82 .
  • the voltage deviation average calculator 81 inputs the voltage setting signal Vs and the voltage detection signal Vo, and calculates the difference value Verr between the voltage setting signal Vs and the voltage detection signal Vo for each predetermined detection sampling. . For example, if the sampling period is set to 0.05 msec (50 ⁇ sec), the difference value Verr is calculated every 0.05 msec.
  • the voltage deviation average calculator 81 extracts at least one second pulse difference signal Verrp2, which is a difference signal for each sampling number in a predetermined interval within the second pulse period T2, for the difference value Verr. , the second pulse difference signal Verrp2 is integrated for the number of sampling times to calculate a voltage deviation integrated value Verrp2_sum. Specifically, as shown in FIG.
  • the second pulse difference signal Verrp2 from the start of rising of the second peak period Tp2 to an arbitrary time within the second pulse period T2 is integrated by the sampling number.
  • the difference described in (a) and (b) above is the difference between the voltage detection signal Vo as the actual measurement value and the set voltage (voltage setting signal) Vs as the reference value. It can also be said to be a deviation, and the difference signal may be rephrased as a voltage deviation signal.
  • the entire second pulse period T2 is preferably the sampling range.
  • the voltage deviation average calculator 81 divides the calculated voltage deviation integrated value Verrp2_sum by the sampling number (referred to as “2ndcnt” in FIG. 4) counted by the second pulse period sampling counter (not shown). Then, the smoothed voltage deviation average value Verrp2_ave is calculated.
  • the pulse waveform control amount calculation unit 82 inputs the voltage deviation average value Verrp2_ave output from the voltage deviation average calculation unit 81 to the pulse waveform control amount calculation unit 82, which will be described in detail below.
  • the peak current manipulated variable Di_sum which is the correction amount
  • the peak current correction command signal Ip2ref_set of the second peak current is generated by the pulse state generator 71.
  • the pulse waveform control amount calculator 82 inputs the voltage deviation average value Verrp2_ave, and multiplies the voltage deviation average value Verrp2_ave by at least a predetermined gain value P2_gain and a current correction coefficient Ic_ave described later as a correction coefficient. and the current manipulated variable Di is calculated.
  • the gain value P2_gain is stored in a database in the storage unit DB and is determined in advance, and is preferably set for each feeding speed or set welding current at least because an appropriate gain value can be set.
  • the calculated current manipulated variable Di is integrated for each period (see "Integration ⁇ Di" in FIG. 4).
  • the peak current manipulated variable Di_sum is calculated as D1
  • the current manipulated variable Di calculated in the next cycle is D2.
  • the manipulated peak current Di_sum is calculated as D1+D2
  • the manipulated peak current Di_sum is calculated as D1+D2+D3.
  • the first pulse period T1 for detaching a droplet and the formation of a sufficiently large droplet at the tip of the welding wire At least one of the first peak current value Ip1 in the first pulse period T1 and the second peak current value Ip2 in the second pulse period T2 for the waveform set to alternately generate the second pulse period T2 for By controlling , it is possible to prevent the regularity of droplet transfer from being disturbed, and to further reduce the occurrence of spatter.
  • the peak current manipulated variable Di_sum When the peak current manipulated variable Di_sum is out of the limiter range, that is, when it exceeds or falls below the limiter range, for example, the excess amount of the manipulated variable exceeding the limiter is removed during the first peak period Tp1 and the first peak period Tp1.
  • the correction amount may be compensated for different set values in the base period Tb1 and the second base period Tb2. For example, it is preferable to control at least one of the base time and base current in the second base period Tb2 and the base time and base current in the first base period Tb1. Further, when it is determined that the limiter has been exceeded, a predetermined value may be increased or decreased with respect to the first peak current value Ip1 or the first base period Tb1. Thus, even when the control amount of the second peak current value Ip2 is out of the control amount range, it is possible to suppress the regularity of droplet transfer from being disturbed.
  • This current correction coefficient Ic_ave is calculated by adding the welding current setting signal Is and the peak current manipulated variable Di_sum before the current cycle.
  • the voltage deviation average value Verrp2_ave By multiplying the voltage deviation average value Verrp2_ave by the current correction coefficient Ic_ave, it is possible to control the amount of change during increase or decrease. That is, when the second peak current Ip2 is increased in the next cycle, the value of the current correction coefficient Ic_ave is increased, so that the pulse in the next cycle is greatly increased. Further, when the second peak current Ip2 is decreased in the next period, the value of the current correction coefficient Ic_ave becomes smaller, so that the pulse in the next period is reduced.
  • the control is performed as described above.
  • it is determined whether the peak current manipulated variable Di_sum is positive or negative, and a predetermined value is used as a correction coefficient to control the voltage.
  • the deviation average value Verrp2_ave may be multiplied.
  • the slopes of the rising portion Tu and the trailing portion Td in at least one of the first peak period Tp1 and the second peak period Tp2 are changed in multiple steps, so that the melting Disturbance of the regularity of droplet migration can be suppressed more effectively.
  • FIG. 6 shows an example in which the slope of the falling portion Td is changed in multiple stages when the first peak period Tp1 consists of the rising portion Tu, the peak portion Tp, and the falling portion Td.
  • the falling portion Td shown in FIG. 6 is an example in which the slope changes in three stages: a first slope section Td1 having an exponential curve with a slope, a holding section Tdc in which a predetermined current value is maintained, and a It is composed of a second slope section Td2 that drops to the first base current value Ib1 instantaneously.
  • FIG. 7 is a graph showing a state in which the third pulse, which is predetermined fixed waveform control, is added when the detachment detection signal is not detected at the trailing edge Td of the first peak period Tp1.
  • the detachment detection signal it is preferable to determine whether or not the regularity of droplet transfer has been disturbed by detecting or not detecting the detachment detection signal within the first pulse period T1. If the detachment detection signal is not detected within the first pulse period T1, it is determined that the regularity of droplet transfer is disturbed, and an arbitrarily set period is set between the first pulse period T1 and the second pulse period T2. As fixed waveform control, a third pulse period T3 is inserted. After the insertion of the third pulse period T3, the transition to the second pulse period T2 may be performed without a detachment detection signal, or the third pulse period T3 may be continuously inserted until the detachment detection signal is detected. good.
  • the third pulse period T3 of the present embodiment has a waveform including a third peak period Tp3 and a third base period Tb3.
  • the third peak current Ip3 in the third pulse period T3 is preferably different from the second peak current Ip2 in the second pulse period T2, as disclosed in Japanese Patent Application Laid-Open No. 2009-233728. .
  • FIG. 8 is a graph for explaining a control method for the next second peak period Tp2 when the detachment detection signal is not detected even after performing fixed waveform control.
  • the current value Ip2 in the second peak period Tp2 of the next period is set to the predetermined fixed value Ic1 with respect to the predetermined second peak current reference value Ip2_ref. It is preferable to control so that the subtracted value is applied. If the detachment detection signal is not detected within the third pulse period T3, a phenomenon may occur in which the arc length becomes excessive during the next pulse period, that is, within the second pulse period T2. It is possible to stabilize the transfer of droplets, and thus to suppress the disturbance of the regularity of the transfer of droplets.
  • FIG. 9 is a graph showing an example of a control method when a short-circuit signal is detected during the first pulse period T1.
  • the current value Ip2 of the second peak period Tp2 of the next pulse period is set to a predetermined fixed value Ic2 with respect to a predetermined second peak current reference value Ip2_ref. should be controlled to apply an increased value.
  • FIG. 9 is a graph showing an example of a control method when arc instability is detected during the second pulse period T2.
  • the current value Ip1 in the first peak period Tp1 of the next pulse cycle must be set to the predetermined first peak current Control may be performed so that a value obtained by increasing a predetermined fixed value Ic3 is applied to the reference value Ip1_ref.
  • the detection of arc instability means the detection of arc deflection in the present embodiment, and the arc deflection is detected when a steep voltage rise signal exceeding a predetermined threshold value is confirmed within the second pulse period T2. I judge.
  • the present invention is not limited to the above-described embodiment, and can be modified, improved, etc. as appropriate.
  • the output current control circuit 70 and the pulse waveform correction circuit 80 are configured independently, but they may be integrated into one circuit.
  • a welding control method for controlling the waveform of a welding current in gas shielded arc welding comprising:
  • the waveform of the welding current is a pulse waveform in which one cycle is a first pulse period for detaching a droplet and a second pulse period for forming a sufficiently large droplet at the tip of the welding wire.
  • the first pulse period is composed of a predetermined first peak period having a first peak current value and a first base period after the first peak period
  • the second pulse period is composed of a predetermined second peak period having a second peak current value lower than the first peak current value, and a second base period after the second peak period, a voltage detection step of outputting a voltage detection signal Vo;
  • a voltage deviation average value Verrp2_ave in a predetermined section within the second pulse period is calculated based on the difference signal.
  • a voltage deviation average calculation step a controlled variable calculation step of calculating a controlled variable for at least one of the first peak current value and the second peak current value based on the voltage deviation average value Verrp2_ave.
  • At least one control amount range is determined in advance, base time and base current in the second base period when at least one of the calculated control amount of the first peak current value and the second peak current value is out of the predetermined control amount range; And the welding control method according to (1) or (2), wherein at least one of a base time and a base current value in the first base period is controlled. According to this configuration, even when the control amount of the second peak current value is out of the control amount range, it is possible to suppress the regularity of droplet transfer from being disturbed.
  • the correction coefficient is a current correction coefficient Ic_ave
  • the rising portion and the falling portion in at least one of the first peak period and the second peak period have a slope of three steps or less. welding control method. According to this configuration, it becomes easier to grasp the detachment detection signal, and it is possible to more effectively suppress the disturbance of the regularity of droplet transfer.
  • a welding power source that performs waveform control of a welding current in gas shielded arc welding,
  • the waveform of the welding current is a pulse waveform in which one cycle is a first pulse period for detaching a droplet and a second pulse period for forming a sufficiently large droplet at the tip of the welding wire.
  • the first pulse period is composed of a predetermined first peak period having a first peak current value and a first base period after the first peak period
  • the second pulse period is composed of a predetermined second peak period having a second peak current value lower than the first peak current value, and a second base period after the second peak period, voltage detection means for outputting a voltage detection signal Vo;
  • a voltage deviation average value Verrp2_ave in a predetermined section within the second pulse period is calculated based on the difference signal.
  • control amount calculation means for calculating a control amount for at least one of the first peak current value and the second peak current value based on the voltage deviation average value Verrp2_ave.
  • a welding system comprising at least a welding robot, a feeding device, a welding power source, a shielding gas supply device, and a welding control device, and used for waveform control of welding current in gas-shielded arc welding,
  • the waveform of the welding current is a pulse waveform in which one cycle is a first pulse period for detaching a droplet and a second pulse period for forming a sufficiently large droplet at the tip of the welding wire.
  • the first pulse period is composed of a predetermined first peak period having a first peak current value and a first base period after the first peak period
  • the second pulse period is composed of a predetermined second peak period having a second peak current value lower than the first peak current value, and a second base period after the second peak period
  • the welding power source is voltage detection means for outputting a voltage detection signal Vo; When the difference between the voltage detection signal Vo and the predetermined set voltage Vs is used as the difference signal, a voltage deviation average value Verrp2_ave in a predetermined section within the second pulse period is calculated based on the difference signal.
  • control amount calculation means for calculating a control amount for at least one of the first peak current value and the second peak current value based on the voltage deviation average value Verrp2_ave.
  • the waveform of the welding current is a pulse waveform in which one cycle is a first pulse period for detaching a droplet and a second pulse period for forming a sufficiently large droplet at the tip of the welding wire.
  • the first pulse period is composed of a predetermined first peak period having a first peak current value and a first base period after the first peak period
  • the second pulse period is composed of a predetermined second peak period having a second peak current value lower than the first peak current value, and a second base period after the second peak period
  • the shield gas contains a component with a high potential gradient such as carbon dioxide gas, nitrogen gas, hydrogen gas, and oxygen gas, so that the form of droplet transfer is changed to globular transfer. Even so, by controlling at least one of the first peak current value in the first pulse period and the second peak current value in the second pulse period, it is possible to suppress the disturbance of the regularity of droplet transfer, thereby reducing spattering. can be further reduced.
  • a layered manufacturing method that performs layered manufacturing while controlling the waveform of a welding current in layered manufacturing that applies gas shielded arc welding, At least one gas selected from carbon dioxide gas, nitrogen gas, hydrogen gas, and oxygen gas is included as the shielding gas used in the gas-shielded arc welding,
  • the waveform of the welding current is a pulse waveform in which one cycle is a first pulse period for detaching a droplet and a second pulse period for forming a sufficiently large droplet at the tip of the welding wire.
  • the first pulse period is composed of a predetermined first peak period having a first peak current value and a first base period after the first peak period
  • the second pulse period is composed of a predetermined second peak period having a second peak current value lower than the first peak current value, and a second base period after the second peak period
  • a voltage deviation average calculation step a controlled variable calculation step of calculating a controlled variable for at least one of the first peak current value and the second peak current value based on the voltage deviation average value Verrp2_ave.
  • the inclusion of components with a high potential gradient such as carbon dioxide gas, nitrogen gas, hydrogen gas, and oxygen gas in the shielding gas prevents droplet transfer. Even if the form takes globular transfer, controlling at least one of the first peak current value in the first pulse period and the second peak current value in the second pulse period disturbs the regularity of droplet transfer. can be suppressed, and the occurrence of spatter can be further reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Robotics (AREA)
  • Arc Welding Control (AREA)
  • Manipulator (AREA)
  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

The present invention suppresses the phenomenon of a disturbance in the regularity of droplet transfer, and reduces sputter. This welding control method, which controls a pulse waveform having one cycle formed of a first pulse period (T1) and a second pulse period (T2) , has: a voltage detection step for outputting, by a voltage detection means (VD), a voltage detection signal (Vo); a voltage deviation average calculation step for calculating, by a voltage deviation average calculation means (81), a voltage deviation average value (Verrp2_ave) in a predetermined section in the second pulse period (T2), on the basis of a difference signal, which is a difference between the voltage detection signal (Vo) and a predetermined set voltage (Vs); and a control amount calculation step for calculating, by a control amount calculation means (82), a control amount for at least one of a first peak current value (Ip1) and a second peak current value (Ip2), on the basis of the voltage deviation average value (Verrp2_ave).

Description

溶接制御方法、溶接電源、溶接システム、溶接方法及び積層造形方法Welding control method, welding power source, welding system, welding method and additive manufacturing method
 本発明は、パルス波形を用いたガスシールドアーク溶接における溶接制御方法、溶接電源、溶接システム、溶接方法及びガスシールドアーク溶接を応用した積層造形方法に関する。 The present invention relates to a welding control method, a welding power source, a welding system, a welding method, and an additive manufacturing method applying gas shielded arc welding in gas shielded arc welding using a pulse waveform.
 ガスシールドアーク溶接(GMAW:Gas-shielded Metal Arc Welding)において、シールドガス中に炭酸ガス、窒素ガス、水素ガス、酸素ガス等の電位傾度の高い成分が含まれる場合、溶滴移行の形態はグロビュラー移行をとる。グロビュラー移行は、溶融池へ移行する溶滴サイズが不規則になるため、従来、スパッタの発生を主とする溶接作業性に課題があった。なお、このGMAWの応用例として、「付加製造」(Additive Manufacturing)技術、より具体的には金属積層造型(WAAM:Wire and Arc Additive Manufacturing)技術があり、本課題は溶接の分野だけでなく、付加製造の分野においても共通の課題となる。
 なお、付加製造という用語は、広義では「積層造形」または「ラピットプロトタイピング」の用語で用いられることがあり、本発明においては、統一して「積層造形」の用語を用いる。また、本発明の溶接技術を積層造形に適用する場合は、「溶接」の用語を「溶着」、「付加製造」または「積層造形」等に適宜言い換えるとよい。例えば、溶接として扱う場合は「溶接制御方法」や「溶接電源」となるが、積層造形として扱う場合は、「積層造形制御方法」や「積層造形電源」と言い換える。
In gas-shielded metal arc welding (GMAW), if the shielding gas contains a component with a high potential gradient such as carbon dioxide gas, nitrogen gas, hydrogen gas, or oxygen gas, the form of droplet transfer is globular. take a transition. In globular transfer, since the size of droplets transferred to the molten pool becomes irregular, there has been a problem in welding workability, mainly due to the generation of spatter. As an application example of this GMAW, there is "additive manufacturing" technology, more specifically metal additive manufacturing (WAAM: Wire and Arc Additive Manufacturing) technology, and this problem is not limited to the field of welding, It is also a common challenge in the field of additive manufacturing.
Note that the term additive manufacturing is sometimes used in a broad sense as the term “laminate manufacturing” or “rapid prototyping”, and in the present invention, the term “laminate manufacturing” is used uniformly. Further, when the welding technique of the present invention is applied to additive manufacturing, the term "welding" may be appropriately replaced with "welding", "additive manufacturing", "additive manufacturing", or the like. For example, when it is treated as welding, it is "welding control method" or "welding power source", but when it is treated as layered manufacturing, it is rephrased as "layered manufacturing control method" or "layered manufacturing power source".
 上記課題を解決するにあたり、特許文献1には、炭酸ガス単体又は炭酸ガスを主成分とする混合ガスを用いた消耗電極式アーク溶接において、溶接アークを安定させ、溶滴の移行規則性を向上させて、スパッタ発生量及びヒューム発生量を大幅に低減させる技術が開示されている。
 具体的に、当該技術は、相互にパルスピーク電流レベル及びパルス幅の異なるパルス波形を有する第1パルスと第2パルスとが交互に繰り返されるパルス電流を溶接電流としてアーク溶接する方法であって、第1パルスのピーク電流が300~700A、ピーク期間が0.3~5.0ms、ベース電流が30~200A、ベース期間が0.3~10msであり、第2パルスのピーク電流が200~600A、ピーク期間が1.0~15ms、ベース電流が30~200A、ベース期間が3.0~20msとするものである。この方法によれば、溶接アークの安定性を向上させ、大粒スパッタ発生量及びヒューム発生量を大幅に低減できると共に、溶滴離脱時のワイヤ先端のくびれ部分の飛散による小粒スパッタ及び溶滴離脱後のワイヤに残留した融液の飛散によるスパッタを大幅に低減できるとされている。
In order to solve the above problems, in Patent Document 1, in consumable electrode arc welding using carbon dioxide alone or a mixed gas containing carbon dioxide as a main component, the welding arc is stabilized and the droplet transfer regularity is improved. A technique is disclosed for significantly reducing the amount of spatters and fumes generated.
Specifically, the technique is a method of arc welding using a pulse current in which a first pulse and a second pulse having pulse waveforms with different pulse peak current levels and pulse widths are alternately repeated as a welding current, The peak current of the first pulse is 300-700A, the peak period is 0.3-5.0ms, the base current is 30-200A, the base period is 0.3-10ms, and the peak current of the second pulse is 200-600A. , a peak period of 1.0 to 15 ms, a base current of 30 to 200 A, and a base period of 3.0 to 20 ms. According to this method, the stability of the welding arc can be improved, and the amount of large spatter and fume generated can be greatly reduced. It is said that the spatter caused by the scattering of the melt remaining on the wire can be greatly reduced.
 また、特許文献2には、炭酸ガス主体のシールドガスを用いても、1周期あたり1溶滴移行が可能であり、何らかの外乱で溶滴移行の規則性が乱れても、即座に正常状態に復帰させることができる技術が開示されている。
 具体的に、当該技術は、何らかの外乱で溶滴移行の規則性が乱れたときに、溶滴を離脱させる第1パルスに続いて、溶滴を整形する第2パルスとは異なる第3パルスを出力する方法であって、溶滴移行の規則性を正常状態に復帰させるまでに要する期間を従来よりも短縮するものである。この方法によれば、正常状態に復帰させるまでに要する期間に発生するスパッタ及びヒュームを低減できる結果、仮に溶滴移行の規則性が乱れたとしても、そのときの溶接の品質の低下を最小限に食い止めることができるとされている。
Further, in Patent Document 2, even if a carbon dioxide-based shield gas is used, one droplet transfer is possible per cycle. A technique that can be restored is disclosed.
Specifically, in this technique, when the regularity of droplet transfer is disturbed by some disturbance, following the first pulse for detaching the droplet, a third pulse different from the second pulse for shaping the droplet is applied. This is a method of outputting, which shortens the time required to restore the regularity of droplet transfer to a normal state, compared to the conventional method. According to this method, it is possible to reduce the spatter and fume generated during the period required to restore the normal state, and as a result, even if the regularity of the droplet transfer is disturbed, the deterioration of the welding quality at that time is minimized. It is said that it is possible to stop it.
日本国特開2007-237270号公報Japanese Patent Application Laid-Open No. 2007-237270 日本国特開2009-233728号公報Japanese Patent Application Laid-Open No. 2009-233728
 しかしながら、特許文献1の技術は、特許文献2の段落0017で指摘されているように、第1パルスと第2パルスとを交互に生成するように設定した波形に対し、何らかの外乱で溶滴移行の規則性が乱れると、正常状態に復活するまでの期間、スパッタ及びヒュームが発生する。また、特許文献2の技術は、溶滴移行の規則性が乱れた場合に、第1パルスと第2パルスとを交互に生成するように設定した波形に対して、溶滴移行を行わせる第3パルスを出力することで、正常状態に復帰できるようにリセットするものであるが、この第3パルスがスパッタ発生の原因となる。よって、スパッタを顕著に低減させるためには、溶滴移行の規則性が乱れる現象を抑制する必要が生じる。 However, as pointed out in paragraph 0017 of Patent Document 2, in the technique of Patent Document 1, droplet transfer occurs due to some disturbance with respect to the waveform set to alternately generate the first pulse and the second pulse. When this regularity is disturbed, spatters and fumes are generated until the normal state is restored. Further, the technique of Patent Document 2 is a waveform that is set to alternately generate a first pulse and a second pulse when the regularity of droplet transfer is disturbed. By outputting 3 pulses, it is reset so as to return to a normal state, but this 3rd pulse causes the generation of spatter. Therefore, in order to significantly reduce the spatter, it is necessary to suppress the phenomenon that the regularity of droplet transfer is disturbed.
 本発明は、前述した課題に鑑みてなされたものであり、その目的は、溶滴を離脱させるための第1パルス期間と、溶接ワイヤの先端に十分な大きさの溶滴を形成させるための第2パルス期間とを交互に生成するように設定した波形に対し、溶滴移行の規則性が乱れる現象を抑制し、スパッタを低減することができる溶接制御方法、溶接電源、溶接システム、溶接方法及び積層造形方法を提供することにある。 The present invention has been made in view of the above-described problems, and its object is to provide a first pulse period for detaching a droplet and a sufficient size of a droplet to form on the tip of a welding wire. Welding control method, welding power source, welding system, and welding method capable of suppressing a phenomenon in which the regularity of droplet transfer is disturbed and reducing spatter for a waveform set to alternately generate a second pulse period and to provide a layered manufacturing method.
 したがって、本発明の上記目的は、溶接制御方法に係る下記[1]の構成により達成される。
[1] ガスシールドアーク溶接において溶接電流の波形制御を行う溶接制御方法であって、
 前記溶接電流の波形は、溶滴を離脱させるための第1パルス期間と、溶接ワイヤの先端に十分な大きさの溶滴を形成させるための第2パルス期間とを、1周期とするパルス波形であり、
 前記第1パルス期間は、あらかじめ定めた、第1ピーク電流値を有する第1ピーク期間と、前記第1ピーク期間後の第1ベース期間とから構成され、
 前記第2パルス期間は、あらかじめ定めた、前記第1ピーク電流値よりも低い第2ピーク電流値を有する第2ピーク期間と、前記第2ピーク期間後の第2ベース期間とから構成され、
 電圧検出信号Voを出力する電圧検出ステップと、
 前記電圧検出信号Voとあらかじめ定めた設定電圧Vsとの差分を差分信号とする場合に、前記差分信号に基づいて、前記第2パルス期間内においてあらかじめ定めた区間における電圧偏差平均値Verrp2_aveを算出する電圧偏差平均算出ステップと、
 前記電圧偏差平均値Verrp2_aveに基づいて、前記第1ピーク電流値及び前記第2ピーク電流値のうち少なくとも一方の制御量を算出する制御量算出ステップと、を有することを特徴とする溶接制御方法。
Therefore, the above object of the present invention is achieved by the following configuration [1] relating to the welding control method.
[1] A welding control method for controlling the waveform of a welding current in gas shielded arc welding, comprising:
The waveform of the welding current is a pulse waveform in which one cycle is a first pulse period for detaching a droplet and a second pulse period for forming a sufficiently large droplet at the tip of the welding wire. and
The first pulse period is composed of a predetermined first peak period having a first peak current value and a first base period after the first peak period,
The second pulse period is composed of a predetermined second peak period having a second peak current value lower than the first peak current value, and a second base period after the second peak period,
a voltage detection step of outputting a voltage detection signal Vo;
When the difference between the voltage detection signal Vo and the predetermined set voltage Vs is used as the difference signal, a voltage deviation average value Verrp2_ave in a predetermined section within the second pulse period is calculated based on the difference signal. a voltage deviation average calculation step;
and a controlled variable calculation step of calculating a controlled variable for at least one of the first peak current value and the second peak current value based on the voltage deviation average value Verrp2_ave.
 また、本発明の上記目的は、溶接電源に係る下記[2]の構成により達成される。
[2] ガスシールドアーク溶接において溶接電流の波形制御を行う溶接電源であって、
 前記溶接電流の波形は、溶滴を離脱させるための第1パルス期間と、溶接ワイヤの先端に十分な大きさの溶滴を形成させるための第2パルス期間とを、1周期とするパルス波形であり、
 前記第1パルス期間は、あらかじめ定めた、第1ピーク電流値を有する第1ピーク期間と、前記第1ピーク期間後の第1ベース期間とから構成され、
 前記第2パルス期間は、あらかじめ定めた、前記第1ピーク電流値よりも低い第2ピーク電流値を有する第2ピーク期間と、前記第2ピーク期間後の第2ベース期間とから構成され、
 電圧検出信号Voを出力する電圧検出手段と、
 前記電圧検出信号Voとあらかじめ定めた設定電圧Vsとの差分を差分信号とする場合に、前記差分信号に基づいて、前記第2パルス期間内においてあらかじめ定めた区間における電圧偏差平均値Verrp2_aveを算出する電圧偏差平均算出手段と、
 前記電圧偏差平均値Verrp2_aveに基づいて、前記第1ピーク電流値及び前記第2ピーク電流値のうち少なくとも一方の制御量を算出する制御量算出手段と、を有することを特徴とする溶接電源。
Further, the above object of the present invention is achieved by the following configuration [2] relating to a welding power source.
[2] A welding power source for performing waveform control of welding current in gas shielded arc welding,
The waveform of the welding current is a pulse waveform in which one cycle is a first pulse period for detaching a droplet and a second pulse period for forming a sufficiently large droplet at the tip of the welding wire. and
The first pulse period is composed of a predetermined first peak period having a first peak current value and a first base period after the first peak period,
The second pulse period is composed of a predetermined second peak period having a second peak current value lower than the first peak current value, and a second base period after the second peak period,
voltage detection means for outputting a voltage detection signal Vo;
When the difference between the voltage detection signal Vo and the predetermined set voltage Vs is used as the difference signal, a voltage deviation average value Verrp2_ave in a predetermined section within the second pulse period is calculated based on the difference signal. voltage deviation average calculation means;
and control amount calculation means for calculating a control amount for at least one of the first peak current value and the second peak current value based on the voltage deviation average value Verrp2_ave.
 また、本発明の上記目的は、溶接システムに係る下記[3]の構成により達成される。
[3] 溶接ロボットと、送給装置と、溶接電源と、シールドガス供給装置と、溶接制御装置と、を少なくとも備え、ガスシールドアーク溶接において溶接電流の波形制御に用いられる溶接システムであって、
 前記溶接電流の波形は、溶滴を離脱させるための第1パルス期間と、溶接ワイヤの先端に十分な大きさの溶滴を形成させるための第2パルス期間とを、1周期とするパルス波形であり、
 前記第1パルス期間は、あらかじめ定めた、第1ピーク電流値を有する第1ピーク期間と、前記第1ピーク期間後の第1ベース期間とから構成され、
 前記第2パルス期間は、あらかじめ定めた、前記第1ピーク電流値よりも低い第2ピーク電流値を有する第2ピーク期間と、前記第2ピーク期間後の第2ベース期間とから構成され、
 前記溶接電源は、
 電圧検出信号Voを出力する電圧検出手段と、
 前記電圧検出信号Voとあらかじめ定めた設定電圧Vsとの差分を差分信号とする場合に、前記差分信号に基づいて、前記第2パルス期間内においてあらかじめ定めた区間における電圧偏差平均値Verrp2_aveを算出する電圧偏差平均算出手段と、
 前記電圧偏差平均値Verrp2_aveに基づいて、前記第1ピーク電流値及び前記第2ピーク電流値のうち少なくとも一方の制御量を算出する制御量算出手段と、を有することを特徴とする溶接システム。
Further, the above object of the present invention is achieved by the configuration [3] below relating to the welding system.
[3] A welding system comprising at least a welding robot, a feeding device, a welding power source, a shielding gas supply device, and a welding control device, and used for waveform control of welding current in gas-shielded arc welding,
The waveform of the welding current is a pulse waveform in which one cycle is a first pulse period for detaching a droplet and a second pulse period for forming a sufficiently large droplet at the tip of the welding wire. and
The first pulse period is composed of a predetermined first peak period having a first peak current value and a first base period after the first peak period,
The second pulse period is composed of a predetermined second peak period having a second peak current value lower than the first peak current value, and a second base period after the second peak period,
The welding power source is
voltage detection means for outputting a voltage detection signal Vo;
When the difference between the voltage detection signal Vo and the predetermined set voltage Vs is used as the difference signal, a voltage deviation average value Verrp2_ave in a predetermined section within the second pulse period is calculated based on the difference signal. voltage deviation average calculation means;
and control amount calculation means for calculating a control amount for at least one of the first peak current value and the second peak current value based on the voltage deviation average value Verrp2_ave.
 また、本発明の上記目的は、溶接方法に係る下記[4]の構成により達成される。
[4] ガスシールドアーク溶接において溶接電流の波形制御を行いながら、アーク溶接する溶接方法であって、
 前記アーク溶接に用いられるシールドガスとして、炭酸ガス、窒素ガス、水素ガス及び酸素ガスのうち少なくとも一つのガスを含み、
 前記溶接電流の波形は、溶滴を離脱させるための第1パルス期間と、溶接ワイヤの先端に十分な大きさの溶滴を形成させるための第2パルス期間とを、1周期とするパルス波形であり、
 前記第1パルス期間は、あらかじめ定めた、第1ピーク電流値を有する第1ピーク期間と、前記第1ピーク期間後の第1ベース期間とから構成され、
 前記第2パルス期間は、あらかじめ定めた、前記第1ピーク電流値よりも低い第2ピーク電流値を有する第2ピーク期間と、前記第2ピーク期間後の第2ベース期間とから構成され、
 前記波形制御の方法として、
 電圧検出信号Voを出力する電圧検出ステップと、
 前記電圧検出信号Voとあらかじめ定めた設定電圧Vsとの差分を差分信号とする場合に、前記差分信号に基づいて、前記第2パルス期間内においてあらかじめ定めた区間における電圧偏差平均値Verrp2_aveを算出する電圧偏差平均算出ステップと、
 前記電圧偏差平均値Verrp2_aveに基づいて、前記第1ピーク電流値及び前記第2ピーク電流値のうち少なくとも一方の制御量を算出する制御量算出ステップと、を有することを特徴とする溶接方法。
Further, the above object of the present invention is achieved by the following configuration [4] relating to the welding method.
[4] A welding method for arc welding while controlling the waveform of the welding current in gas shielded arc welding,
At least one of carbon dioxide gas, nitrogen gas, hydrogen gas and oxygen gas is included as the shielding gas used for arc welding,
The waveform of the welding current is a pulse waveform in which one cycle is a first pulse period for detaching a droplet and a second pulse period for forming a sufficiently large droplet at the tip of the welding wire. and
The first pulse period is composed of a predetermined first peak period having a first peak current value and a first base period after the first peak period,
The second pulse period is composed of a predetermined second peak period having a second peak current value lower than the first peak current value, and a second base period after the second peak period,
As the waveform control method,
a voltage detection step of outputting a voltage detection signal Vo;
When the difference between the voltage detection signal Vo and the predetermined set voltage Vs is used as the difference signal, a voltage deviation average value Verrp2_ave in a predetermined section within the second pulse period is calculated based on the difference signal. a voltage deviation average calculation step;
and a controlled variable calculation step of calculating a controlled variable for at least one of the first peak current value and the second peak current value based on the voltage deviation average value Verrp2_ave.
 また、本発明の上記目的は、積層造形方法に係る下記[5]の構成により達成される。
[5] ガスシールドアーク溶接を応用した積層造形において溶接電流の波形制御を行いながら、積層造形を行う積層造形方法であって、
 前記ガスシールドアーク溶接に用いられるシールドガスとして、炭酸ガス、窒素ガス、水素ガス及び酸素ガスのうち少なくとも一つのガスを含み、
 前記溶接電流の波形は、溶滴を離脱させるための第1パルス期間と、溶接ワイヤの先端に十分な大きさの溶滴を形成させるための第2パルス期間とを、1周期とするパルス波形であり、
 前記第1パルス期間は、あらかじめ定めた、第1ピーク電流値を有する第1ピーク期間と、前記第1ピーク期間後の第1ベース期間とから構成され、
 前記第2パルス期間は、あらかじめ定めた、前記第1ピーク電流値よりも低い第2ピーク電流値を有する第2ピーク期間と、前記第2ピーク期間後の第2ベース期間とから構成され、
 前記波形制御の方法として、
 電圧検出信号Voを出力する電圧検出ステップと、
 前記電圧検出信号Voとあらかじめ定めた設定電圧Vsとの差分を差分信号とする場合に、前記差分信号に基づいて、前記第2パルス期間内においてあらかじめ定めた区間における電圧偏差平均値Verrp2_aveを算出する電圧偏差平均算出ステップと、
 前記電圧偏差平均値Verrp2_aveに基づいて、前記第1ピーク電流値及び前記第2ピーク電流値のうち少なくとも一方の制御量を算出する制御量算出ステップと、を有することを特徴とする積層造形方法。
In addition, the above object of the present invention is achieved by the following configuration [5] related to the layered manufacturing method.
[5] A layered manufacturing method for performing layered manufacturing while controlling the waveform of a welding current in layered manufacturing applying gas shielded arc welding,
At least one gas selected from carbon dioxide gas, nitrogen gas, hydrogen gas, and oxygen gas is included as the shielding gas used in the gas-shielded arc welding,
The waveform of the welding current is a pulse waveform in which one cycle is a first pulse period for detaching a droplet and a second pulse period for forming a sufficiently large droplet at the tip of the welding wire. and
The first pulse period is composed of a predetermined first peak period having a first peak current value and a first base period after the first peak period,
The second pulse period is composed of a predetermined second peak period having a second peak current value lower than the first peak current value, and a second base period after the second peak period,
As the waveform control method,
a voltage detection step of outputting a voltage detection signal Vo;
When the difference between the voltage detection signal Vo and the predetermined set voltage Vs is used as the difference signal, a voltage deviation average value Verrp2_ave in a predetermined section within the second pulse period is calculated based on the difference signal. a voltage deviation average calculation step;
and a controlled variable calculation step of calculating a controlled variable for at least one of the first peak current value and the second peak current value based on the voltage deviation average value Verrp2_ave.
 本発明によれば、溶滴を離脱させるための第1パルス期間と、溶接ワイヤの先端に十分な大きさの溶滴を形成させるための第2パルス期間とを交互に生成するように設定した波形に対し、第1パルス期間の第1ピーク電流値及び第2パルス期間の第2ピーク電流値のうち少なくとも一方を制御することで、溶滴移行の規則性が乱れる現象を抑制でき、スパッタの発生をより低減させることができる。 According to the present invention, the first pulse period for detaching a droplet and the second pulse period for forming a droplet of sufficient size on the tip of the welding wire are alternately generated. By controlling at least one of the first peak current value in the first pulse period and the second peak current value in the second pulse period with respect to the waveform, the phenomenon that the regularity of droplet transfer is disturbed can be suppressed. Occurrence can be further reduced.
図1は、本実施形態に係る溶接システムの一構成例を示す概略図である。FIG. 1 is a schematic diagram showing a configuration example of a welding system according to this embodiment. 図2Aは、基準パルス波形を示すグラフである。FIG. 2A is a graph showing a reference pulse waveform; 図2Bは、基準パルス波形における各設定値の説明図である。FIG. 2B is an explanatory diagram of each set value in the reference pulse waveform. 図3は、溶接電源のブロック図である。FIG. 3 is a block diagram of the welding power source. 図4は、図3に示すブロック図の要部拡大図である。FIG. 4 is an enlarged view of the main part of the block diagram shown in FIG. 図5における上側のグラフは、第2パルス期間T2における電圧検出信号Voと電圧設定信号Vsとを比較して示すグラフである。また、図5における下側のグラフは、第2パルス期間T2における電圧検出信号Voと電圧設定信号Vとの差分を積算して示すグラフである。The upper graph in FIG. 5 is a graph showing a comparison between the voltage detection signal Vo and the voltage setting signal Vs in the second pulse period T2. The lower graph in FIG. 5 is a graph showing the integrated difference between the voltage detection signal Vo and the voltage setting signal V in the second pulse period T2. 図6は、第1ピーク電流値Ip1の立下り部の変化の一例を示すグラフである。FIG. 6 is a graph showing an example of changes in the falling portion of the first peak current value Ip1. 図7は、離脱検出信号が検出されない場合、第1ベース期間Tb1中に、あらかじめ定めた固定波形制御を追加する状態を示すグラフである。FIG. 7 is a graph showing a state in which predetermined fixed waveform control is added during the first base period Tb1 when no detachment detection signal is detected. 図8は、固定波形制御中に離脱検出信号が検出されない場合、次のパルス期間の第2ピーク電流値Ip2として、あらかじめ定めた第2ピーク電流基準値Ip2_refに対してあらかじめ定めた固定値Ic1を減算した電流値を適用した状態を示すグラフである。In FIG. 8, when the detachment detection signal is not detected during fixed waveform control, a predetermined fixed value Ic1 is set to a predetermined second peak current reference value Ip2_ref as the second peak current value Ip2 for the next pulse period. FIG. 10 is a graph showing the application of subtracted current values; FIG. 図9は、第1パルス期間T1中に短絡信号を検出した場合及び第2パルス期間T2中にアーク不安定を検出した場合における、それぞれの制御方法の一例を示すグラフである。FIG. 9 is a graph showing an example of each control method when a short-circuit signal is detected during the first pulse period T1 and when arc instability is detected during the second pulse period T2.
 以下、本発明に係る一実施形態について図面を参照しつつ説明する。なお、本実施形態は溶接ロボットを用いた場合の一例であり、本発明に係る溶接制御方法は本実施形態の構成に限定されるものではない。例えば、台車を用いた自動溶接装置に本発明の溶接制御方法を適用してもよいし、可搬型の小型溶接ロボットに本発明の溶接制御方法を適用してもよい。また、本実施形態では、パルス波形を用いたガスシールドアーク溶接方法を用いている。
 さらに本実施形態においては、本発明に係る溶接制御方法を適用したガスシールドアーク溶接方法について説明するが、本発明に係る溶接制御方法は、ガスシールドアーク溶接を応用した積層造形方法についても同様に適用可能である。
An embodiment according to the present invention will be described below with reference to the drawings. Note that this embodiment is an example in which a welding robot is used, and the welding control method according to the present invention is not limited to the configuration of this embodiment. For example, the welding control method of the present invention may be applied to an automatic welding device using a cart, or the welding control method of the present invention may be applied to a small portable welding robot. Moreover, in this embodiment, a gas-shielded arc welding method using a pulse waveform is used.
Furthermore, in this embodiment, a gas-shielded arc welding method to which the welding control method according to the present invention is applied will be described. Applicable.
<アーク溶接システムの概要>
 まず、本実施形態の溶接制御方法で用いられるアーク溶接システムの概要について説明する。図1は、本実施形態に係るアーク溶接システムの構成例を示す概略図である。アーク溶接システム10は、溶接ロボット20、溶接電源30、制御装置40、コントローラ50、不図示の送給装置及び不図示のシールドガス供給装置を備えている。
<Overview of arc welding system>
First, the outline of the arc welding system used in the welding control method of this embodiment will be described. FIG. 1 is a schematic diagram showing a configuration example of an arc welding system according to this embodiment. The arc welding system 10 includes a welding robot 20, a welding power source 30, a controller 40, a controller 50, a feeder (not shown), and a shield gas supply (not shown).
 溶接電源30は、不図示のプラスのパワーケーブルを介して、消耗式電極である溶接ワイヤ22に通電できるように溶接ロボット20に接続され、不図示のマイナスのパワーケーブルを介して、被溶接物(以降、「ワーク」とも称する。)Wと接続されている。図1に示す接続状態は、逆極性で溶接を行う場合であり、正極性で溶接を行う場合、溶接電源30における極性を逆にすればよい。 The welding power source 30 is connected to the welding robot 20 via a positive power cable (not shown) so as to energize the welding wire 22, which is a consumable electrode, and is connected to the welding robot 20 via a negative power cable (not shown). (hereinafter also referred to as "work") is connected to W. The connection state shown in FIG. 1 is for welding with reversed polarity. When welding with positive polarity, the polarity of the welding power source 30 may be reversed.
 また、溶接電源30と、溶接ワイヤ22を送給するための送給装置とは、不図示の信号線によって接続され、溶接ワイヤ22の送り速度を制御することができる。 Also, the welding power source 30 and a feeding device for feeding the welding wire 22 are connected by a signal line (not shown), and the feeding speed of the welding wire 22 can be controlled.
 溶接ロボット20は、エンドエフェクタとして、溶接トーチ21を備えている。溶接トーチ21は、溶接ワイヤ22に通電させる通電機構、すなわち不図示のコンタクトチップを有している。溶接ワイヤ22は、コンタクトチップからの通電により、その先端からアークを発生し、その熱で溶接の対象であるワークWを溶接する。 The welding robot 20 has a welding torch 21 as an end effector. The welding torch 21 has an energizing mechanism for energizing the welding wire 22, that is, a contact tip (not shown). When the welding wire 22 is energized from the contact tip, an arc is generated from the tip of the welding wire 22, and the heat from the welding wire 22 welds the workpiece W to be welded.
 さらに、溶接トーチ21は、シールドガスを噴出する機構である不図示のシールドガスノズルを備える。シールドガスは、本実施形態で用いる波形の特性上、グロビュール移行の形態をとるガス組成にすればよい。具体的には、電位傾度の高い、炭酸ガス、窒素ガス、水素ガス及び酸素ガスのうち少なくとも一つのガスが含まれることが好ましい。また、汎用性の観点から炭酸ガス単体で用いる場合がより好ましく、アルゴンガス(以降、「Ar」とも称する。)との混合ガスの場合は、炭酸ガス、窒素ガス、水素ガス及び酸素ガスのうち少なくとも一つのガスが含まれ、Ar以外のガスが、合計で5~50%に混合した系がより好ましい。シールドガスは、シールドガス供給装置から供給される。 Furthermore, the welding torch 21 is provided with a shield gas nozzle (not shown), which is a mechanism for ejecting shield gas. The shielding gas may have a gas composition that takes the form of globule migration due to the characteristics of the waveform used in this embodiment. Specifically, at least one of carbon dioxide gas, nitrogen gas, hydrogen gas, and oxygen gas, which has a high potential gradient, is preferably included. In addition, from the viewpoint of versatility, it is more preferable to use carbon dioxide alone, and in the case of a mixed gas with argon gas (hereinafter also referred to as “Ar”), among carbon dioxide, nitrogen gas, hydrogen gas and oxygen gas A system containing at least one gas and containing a total of 5 to 50% of a gas other than Ar is more preferable. Shield gas is supplied from a shield gas supply device.
 本実施形態で使用する溶接ワイヤ22は、フラックスを含まないソリッドワイヤとフラックスを含むフラックス入りワイヤのどちらでもよい。溶接ワイヤ22の材質も問わず、例えば、軟鋼でもよいし、ステンレス、アルミニウム、チタンでもよく、ワイヤ表面に銅等のめっきがあってもよい。さらに、溶接ワイヤ22の径も特に問わない。本実施形態の場合、好ましくは径の上限を1.6mmとし、径の下限を0.8mmとする。 The welding wire 22 used in this embodiment may be either a solid wire containing no flux or a flux-cored wire containing flux. The welding wire 22 may be made of any material, such as mild steel, stainless steel, aluminum, or titanium, and the wire surface may be plated with copper or the like. Furthermore, the diameter of the welding wire 22 is not particularly limited. In this embodiment, the upper limit of the diameter is preferably 1.6 mm and the lower limit of the diameter is 0.8 mm.
 また、本実施形態におけるワークWは特に問わず、継手形状、溶接姿勢や開先形状なども特に問わない。 In addition, the work W in this embodiment is not particularly limited, and joint shape, welding posture, groove shape, etc. are not particularly limited.
 制御装置40は、主に溶接ロボット20の動作を制御する。制御装置40は、あらかじめ溶接ロボット20の動作パターン、溶接開始位置、溶接終了位置、溶接条件、ウィービング動作等を定めた教示データを保持し、溶接ロボット20に対してこれらを指示して溶接ロボット20の動作を制御する。また、制御装置40は、教示データに従い、溶接作業中の溶接電流、アーク電圧、送給速度等の溶接条件を溶接電源30に与える。 The control device 40 mainly controls the operation of the welding robot 20. The control device 40 holds teaching data in which the operation pattern of the welding robot 20, the welding start position, the welding end position, the welding conditions, the weaving operation, etc. are defined in advance. controls the behavior of In addition, the control device 40 provides the welding power source 30 with welding conditions such as welding current, arc voltage, and feed speed during the welding operation according to the teaching data.
 コントローラ50は、制御装置40に接続され、溶接ロボット20を動作させるためのプログラム作成又は表示、教示データの入力等を行い、制御装置40へ与える。また、溶接ロボット20のマニュアル操作を行う機能も有する。なお、コントローラ50と制御装置40の接続は、有線であるか無線であるかを特に問わない。 The controller 50 is connected to the control device 40 , creates or displays a program for operating the welding robot 20 , inputs teaching data, etc., and provides it to the control device 40 . It also has a function of manually operating the welding robot 20 . It does not matter whether the connection between the controller 50 and the control device 40 is wired or wireless.
 溶接電源30は、制御装置40からの指令により、溶接ワイヤ22及びワークWに電力を供給することで、溶接ワイヤ22とワークWとの間にアークを発生させる。また、溶接電源30は、制御装置40からの指令により、送給装置に溶接ワイヤ22を送給する速度を制御するための信号を出力する。 The welding power source 30 generates an arc between the welding wire 22 and the work W by supplying power to the welding wire 22 and the work W according to a command from the control device 40 . Welding power supply 30 also outputs a signal for controlling the speed at which welding wire 22 is fed to the feeding device in accordance with a command from control device 40 .
<基準パルス波形>
 次に、溶接電源30から出力される溶接電流のパルス波形について説明する。本実施形態において、溶接電源30から出力される溶接電流のパルス波形は、図2Aに示すように、溶滴を離脱させるための第1パルス期間T1と、溶接ワイヤの先端に充分な大きさの溶滴を形成させるための第2パルス期間T2と、を交互に生成するように設定した波形(以降、「基準パルス波形」とも称する。)を基準とする。
<Reference pulse waveform>
Next, the pulse waveform of the welding current output from welding power source 30 will be described. In this embodiment, as shown in FIG. 2A, the pulse waveform of the welding current output from the welding power source 30 has a first pulse period T1 for detaching the droplets and a sufficiently large pulse waveform at the tip of the welding wire. A waveform set to alternately generate a second pulse period T2 for forming droplets (hereinafter also referred to as a “reference pulse waveform”) is used as a reference.
 第1パルス期間T1は、あらかじめ定めた第1ピーク電流値Ip1を有する第1ピーク期間Tp1と、あらかじめ定めた第1ベース電流値Ib1を有し、第1ピーク期間Tp1後の第1ベース期間Tb1で構成される。また、第2パルス期間T2は、あらかじめ定めた第1ピーク電流値Ip1よりも低い第2ピーク電流値Ip2を有する第2ピーク期間Tp2と、あらかじめ定めた第2ベース電流値Ib2を有し、第2ピーク期間Tp2後の第2ベース期間Tb2で構成される。
 なお、第1ピーク期間Tp1及び第2ピーク期間Tp2は、それぞれ、立上り部や立下り部も含む。すなわち、第1ピーク期間Tp1及び第2ピーク期間Tp2は、それぞれ、立上り部、ピーク部及び立下り部で構成される。さらに、本実施形態において基準パルス波形の1周期は、第1パルス期間T1と第2パルス期間T2で構成される。
The first pulse period T1 has a first peak period Tp1 having a predetermined first peak current value Ip1, a first base current value Ib1 predetermined, and a first base period Tb1 after the first peak period Tp1. consists of Further, the second pulse period T2 has a second peak period Tp2 having a second peak current value Ip2 lower than the predetermined first peak current value Ip1 and a predetermined second base current value Ib2. It is composed of a second base period Tb2 after two peak periods Tp2.
Note that the first peak period Tp1 and the second peak period Tp2 each include a rising portion and a falling portion. That is, each of the first peak period Tp1 and the second peak period Tp2 is composed of a rising portion, a peak portion, and a falling portion. Furthermore, in this embodiment, one period of the reference pulse waveform is composed of the first pulse period T1 and the second pulse period T2.
 このようなパルス条件により溶接を実施すると、図2Aに示すように、第2ピーク期間Tp2中では、溶滴23,24のように溶接ワイヤ22の先端で成長する。第2ベース期間Tb2では電流が急激に減少するため、押上げ力が弱まり、溶滴25は溶接ワイヤ22の先端で垂れ下がるように整形される。次いで、第1ピーク期間Tp1に入ると、高く設定した第1ピーク電流による電磁ピンチ力の影響により、溶滴26,27はくびれを形成して急速に離脱する。そして、離脱後に溶接ワイヤ22側にアークが移動する瞬間においては、第1ベース期間Tb1に電流が下がっている状態にする。これにより、溶接ワイヤ22のくびれ部分の飛散及び離脱後の残留融液の飛散による小粒スパッタが低減する。以後、同様にして、溶滴が形成し、離脱することを繰り返す溶滴移行が行われる。 When welding is performed under such pulse conditions, droplets 23 and 24 grow at the tip of the welding wire 22 during the second peak period Tp2, as shown in FIG. 2A. Since the current abruptly decreases in the second base period Tb2, the pushing-up force is weakened, and the droplet 25 is shaped so as to hang down at the tip of the welding wire 22. As shown in FIG. Next, when entering the first peak period Tp1, the droplets 26 and 27 form a constriction and rapidly detach due to the influence of the electromagnetic pinch force due to the first peak current set high. At the moment when the arc moves toward the welding wire 22 after the separation, the current is lowered during the first base period Tb1. As a result, small spatter due to scattering of the constricted portion of the welding wire 22 and scattering of residual melt after separation is reduced. Thereafter, similarly, droplet transfer is performed in which droplets are repeatedly formed and detached.
<溶接電源の機能構成>
 続いて、本実施形態に係る溶接電源30の機能構成について詳細に説明する。図3に示すように、溶接電源30は、アークを発生させて溶接を行うための電力を供給する電力供給部PMと、補正電流Ierrなどの各種補正量を算出する補正量算出回路60と、送給速度指令、溶接電流指令、アーク電圧指令などの信号を受け取り、電流設定信号Irを出力する出力電流制御回路70と、補正電流Ierrや電流設定信号Irを受け取り、電力供給部PMの制御量を演算する加算回路ADDと、溶接中のアーク電圧を検出して電圧検出信号Voを出力する電圧検出手段である電圧検出部VDと、溶接中の溶接電流を検出して溶接電流検出信号Ioを出力する電流検出部IDと、パルス波形に係る設定値を補正するパルス波形補正回路80を備える。
<Functional configuration of welding power source>
Next, the functional configuration of the welding power source 30 according to this embodiment will be described in detail. As shown in FIG. 3, the welding power source 30 includes a power supply unit PM that supplies electric power for generating an arc and performing welding, a correction amount calculation circuit 60 that calculates various correction amounts such as the correction current Ierr, An output current control circuit 70 that receives signals such as a feed speed command, a welding current command, and an arc voltage command and outputs a current setting signal Ir, and a correction current Ierr and a current setting signal Ir that receive the control amount of the power supply unit PM. a voltage detection unit VD that detects the arc voltage during welding and outputs a voltage detection signal Vo; and a welding current during welding that detects the welding current detection signal Io. It has a current detection section ID for output and a pulse waveform correction circuit 80 for correcting a set value related to the pulse waveform.
 電力供給部PMは、3相200V等の商用電源を入力として、入力された交流電圧を、後述する制御出力電流設定信号Isetと溶接電流検出信号Ioとの誤差増幅信号である電流誤差増幅信号Eiに従って、不図示のインバータ、インバータトランス、整流器等で出力制御を行い、溶接電流及びアーク電圧を出力する。また、出力電圧を平滑するためにリアクトルWLを構成する。 The power supply unit PM receives a commercial power supply such as a three-phase 200V power supply, converts the input AC voltage into a current error amplification signal Ei which is an error amplification signal between a control output current setting signal Iset and a welding current detection signal Io, which will be described later. Accordingly, the output is controlled by an inverter, an inverter transformer, a rectifier, etc. (not shown) to output the welding current and the arc voltage. Also, a reactor WL is configured to smooth the output voltage.
 電流検出部IDは、溶接中の溶接電流を検出して溶接電流検出信号Ioを出力する。溶接電流検出信号Ioは、図示しないA/D変換部でデジタル変換され、電流誤差増幅回路EI、出力電流制御回路70、補正量算出回路60及びその他制御回路などへ入力される。なお、電流誤差増幅回路EIは、電流誤差増幅信号Eiを電力供給部PMへ入力する。電力供給部PMは、この電流誤差増幅信号Eiに従って、インバータ、インバータトランス、整流器等で出力制御を行い、溶接電流及びアーク電圧を出力する。 The current detector ID detects the welding current during welding and outputs the welding current detection signal Io. The welding current detection signal Io is digitally converted by an A/D converter (not shown) and input to the current error amplifier circuit EI, the output current control circuit 70, the correction amount calculation circuit 60 and other control circuits. The current error amplification circuit EI inputs the current error amplification signal Ei to the power supply unit PM. The power supply unit PM performs output control with an inverter, an inverter transformer, a rectifier, etc. according to the current error amplification signal Ei, and outputs welding current and arc voltage.
 電圧検出部VDは、溶接中のアーク電圧を検出して電圧検出信号Voを出力する。電圧検出信号Voは、図示しないA/D変換部でデジタル変換され、後述するパルス波形補正回路80、出力電流制御回路70、補正量算出回路60及びその他の制御回路などへ入力される。 A voltage detection unit VD detects an arc voltage during welding and outputs a voltage detection signal Vo. The voltage detection signal Vo is digitally converted by an A/D converter (not shown) and input to a pulse waveform correction circuit 80, an output current control circuit 70, a correction amount calculation circuit 60, and other control circuits, which will be described later.
 ここで補正量算出回路60は、各種補正量を出力する回路の総称としている。本実施形態において、補正量の算出回路の種類は特に問わず、必要に応じて備えればよい。各種補正量を出力する回路として、例えば、短絡判定回路、短絡/アーク判別回路、電子リアクトル制御回路、外部特性補正回路等が挙げられる。これら補正回路から補正電流Ierrを出力し、加算回路ADDに入力する。 Here, the correction amount calculation circuit 60 is a general term for circuits that output various correction amounts. In the present embodiment, the type of correction amount calculation circuit is not particularly limited, and the circuit may be provided as necessary. Circuits that output various correction amounts include, for example, a short-circuit determination circuit, a short-circuit/arc determination circuit, an electronic reactor control circuit, and an external characteristic correction circuit. A correction current Ierr is output from these correction circuits and input to the addition circuit ADD.
 出力電流制御回路70は、記憶部DB及びパルス状態生成部71を含み、出力電流制御回路70内で生成した電流設定信号Irを加算回路ADDへ出力する。記憶部DBは、初期の各種設定信号、各判定、各算出部で適用する閾値、溶接電源30の外部特性係数、すなわち溶接電源30の出力特性等のデータを有しており、各回路、各部に対し信号を出力する。 The output current control circuit 70 includes a storage section DB and a pulse state generation section 71, and outputs the current setting signal Ir generated within the output current control circuit 70 to the addition circuit ADD. The storage unit DB stores data such as various initial setting signals, determinations, threshold values applied in each calculation unit, external characteristic coefficients of the welding power source 30, that is, output characteristics of the welding power source 30, and the like. output a signal to
 例えば、本実施形態において、記憶部DBには、あらかじめ、溶接電流設定信号Is、電圧設定信号Vs、ワイヤ送給速度設定信号Wfr、又は波形制御の設定値や各種回路で算出するための定数などが直接入力され、又は溶接電流設定回路IS、出力電圧設定回路VS、ワイヤ送給速度設定回路WFRなどからそれぞれ入力され、格納されている。なお、本実施形態では、記憶部DBを通じて各設定値を各種回路へ入力しているが、これらの設定値は直接的に各種回路へ入力してもよいし、記憶部DBを出力電流制御回路70外へ独立して備えてもよい。 For example, in the present embodiment, the storage unit DB stores in advance the welding current setting signal Is, the voltage setting signal Vs, the wire feed speed setting signal Wfr, or the set values for waveform control, constants for calculation by various circuits, and the like. is input directly, or input from the welding current setting circuit IS, the output voltage setting circuit VS, the wire feed speed setting circuit WFR, etc., and stored. In this embodiment, each set value is input to various circuits through the storage section DB, but these set values may be directly input to various circuits, and the storage section DB may be used as an output current control circuit. 70 may be provided independently.
 また、波形制御の設定値とは、例えば、パルス波形制御を行う場合は、ピーク期間、ピーク電流、ベース期間、ベース電流、パルス周期などが挙げられ、短絡時の波形制御を行う場合においては、制御期間の設定値、傾斜の設定値等が挙げられる。
 例えば、本実施形態においては、図2Bに示すように、第1ピーク電流基準値Ip1_ref、第1ベース電流基準値Ib1_ref、第1ピーク期間基準値Tp1_ref、第1ベース期間基準値Tb1_ref、第2ピーク電流基準値Ip2_ref、第2ベース電流基準値Ib2_ref、第2ピーク期間基準値Tp2_ref、第2ベース期間基準値Tb2_ref、第1ピーク立上り期間基準値Tp1u_ref、第1ピーク立下り期間基準値Tp1d_ref、第2ピーク立上り期間基準値Tp2u_ref、第2ピーク立下り期間基準値Tp2d_refなどが、波形制御の設定値として用いられる。
Also, the waveform control setting values include, for example, the peak period, peak current, base period, base current, pulse period, etc. when performing pulse waveform control, and when performing waveform control during a short circuit, Examples include a set value for a control period, a set value for an inclination, and the like.
For example, in the present embodiment, as shown in FIG. 2B, a first peak current reference value Ip1_ref, a first base current reference value Ib1_ref, a first peak period reference value Tp1_ref, a first base period reference value Tb1_ref, a second peak Current reference value Ip2_ref, second base current reference value Ib2_ref, second peak period reference value Tp2_ref, second base period reference value Tb2_ref, first peak rising period reference value Tp1u_ref, first peak falling period reference value Tp1d_ref, second The peak rising period reference value Tp2u_ref, the second peak falling period reference value Tp2d_ref, and the like are used as waveform control set values.
 出力電流制御回路70におけるパルス状態生成部71は、本実施形態で示すように、溶接電流をパルス波形制御する場合に用いられ、記憶部DBから各種パルス波形に係る設定値を入力するとともに、後述するパルス波形補正回路80から出力される補正信号を入力し、パルス波形の電流設定信号Irを出力する。 The pulse state generator 71 in the output current control circuit 70 is used to control the pulse waveform of the welding current, as shown in this embodiment, and inputs set values related to various pulse waveforms from the storage unit DB. A correction signal output from the pulse waveform correction circuit 80 is input, and a current setting signal Ir having a pulse waveform is output.
 加算回路ADDは、補正量算出回路60から出力される補正電流Ierrを入力する。加算回路ADDは、補正電流Ierrに、出力電流制御回路70から出力される電流設定信号Irを加算して、電流誤差増幅回路EIへ制御出力電流設定信号Isetを出力する。補正電流Ierrは、補正量算出回路60から出力されるものだけでなく、不図示のその他の制御回路から出力されたものについても、加算回路ADDに入力されてもよい。 The addition circuit ADD inputs the correction current Ierr output from the correction amount calculation circuit 60 . The addition circuit ADD adds the current setting signal Ir output from the output current control circuit 70 to the correction current Ierr, and outputs the control output current setting signal Iset to the current error amplifier circuit EI. The correction current Ierr may be input to the addition circuit ADD not only from the correction amount calculation circuit 60 but also from other control circuits (not shown).
<パルス波形補正回路の機能構成>
 次に、本実施形態に係るパルス波形補正回路80の機能構成について、図4に基づいて詳細に説明する。図4に示すように、パルス波形補正回路80は、電圧偏差平均算出手段である電圧偏差平均算出部81と、制御量算出手段であるパルス波形制御量算出部82を有する。
 なお、本実施形態では、第2ピーク電流Ip2を増減させるように補正することを目的としたピーク電流補正指令信号Ip2ref_setを出力するためのプロセスを説明するが、出力するピーク電流補正指令信号として、本実施形態のように第2ピーク電流Ip2のピーク電流補正指令信号Ip2ref_setでもよいし、又は第1ピーク電流値Ip1のピーク電流補正指令信号Ip1ref_setでもよく、あるいはその両方を算出して出力してもよい。
<Functional configuration of pulse waveform correction circuit>
Next, the functional configuration of the pulse waveform correction circuit 80 according to this embodiment will be described in detail with reference to FIG. As shown in FIG. 4, the pulse waveform correction circuit 80 has a voltage deviation average calculator 81 as a voltage deviation average calculator and a pulse waveform control amount calculator 82 as a control amount calculator.
In this embodiment, a process for outputting the peak current correction command signal Ip2ref_set for the purpose of correcting the second peak current Ip2 to increase or decrease will be described. As in the present embodiment, the peak current correction command signal Ip2ref_set for the second peak current Ip2 may be used, or the peak current correction command signal Ip1ref_set for the first peak current value Ip1 may be used, or both may be calculated and output. good.
 電圧偏差平均算出部81は、少なくとも電圧設定信号Vs及び電圧検出信号Voを入力し、パルス波形制御量算出部82においてピーク電流操作量Di_sumを算出するために必要な電圧偏差平均値Verrp2_aveを算出して、パルス波形制御量算出部82へ出力する。 The voltage deviation average calculation unit 81 receives at least the voltage setting signal Vs and the voltage detection signal Vo, and calculates the voltage deviation average value Verrp2_ave necessary for calculating the peak current manipulated variable Di_sum in the pulse waveform control amount calculation unit 82. and output to the pulse waveform control amount calculator 82 .
 以下、電圧偏差平均算出部81において、電圧偏差平均値Verrp2_aveの算出過程について一例を挙げる。 An example of the calculation process of the voltage deviation average value Verrp2_ave in the voltage deviation average calculation unit 81 will be given below.
 (a)電圧偏差平均算出部81は、電圧設定信号Vs及び電圧検出信号Voを入力し、あらかじめ定めた検出のサンプリングごとに、電圧設定信号Vsと電圧検出信号Voとの差分値Verrを算出する。例えば、サンプリング周期を0.05msec(50μsec)とした設定した場合は、0.05msecごとに差分値Verrを算出する。
 (b)電圧偏差平均算出部81は、この差分値Verrを、第2パルス期間T2内において、あらかじめ定めた区間におけるサンプリング数ごとの差分信号である第2パルス差分信号Verrp2を少なくとも1つ抽出し、その第2パルス差分信号Verrp2をサンプリング数分積算して、電圧偏差積算値Verrp2_sumを算出する。具体的には、図5に示すように、例えば、第2ピーク期間Tp2の立ち上がり開始から、第2パルス期間T2内の任意の時間までの第2パルス差分信号Verrp2をサンプリング数分積算する。
 ここで、上記(a)や(b)で述べている差分は、上述のとおり実測値としての電圧検出信号Voと基準値としての設定電圧(電圧設定信号)Vsとの差であることから電圧偏差とも言え、差分信号は電圧偏差信号と言い換えてもよい。
 なお、後述する電圧偏差平均値Verrp2_aveの精度を向上させ、より精度よく溶接制御するためには、第2ピーク期間Tp2の立ち上がりから、第2ベース期間Tb2の最後まで、すなわち第2パルス期間T2全体をサンプリングの範囲とすることが好ましい。
 (c)電圧偏差平均算出部81は、算出された電圧偏差積算値Verrp2_sumを、不図示の第2パルス期間サンプリングカウンタ部によってカウントされたサンプリング数(図4において「2ndcnt」と称する。)で除して、平滑化された電圧偏差平均値Verrp2_aveを算出する。
(a) The voltage deviation average calculator 81 inputs the voltage setting signal Vs and the voltage detection signal Vo, and calculates the difference value Verr between the voltage setting signal Vs and the voltage detection signal Vo for each predetermined detection sampling. . For example, if the sampling period is set to 0.05 msec (50 μsec), the difference value Verr is calculated every 0.05 msec.
(b) The voltage deviation average calculator 81 extracts at least one second pulse difference signal Verrp2, which is a difference signal for each sampling number in a predetermined interval within the second pulse period T2, for the difference value Verr. , the second pulse difference signal Verrp2 is integrated for the number of sampling times to calculate a voltage deviation integrated value Verrp2_sum. Specifically, as shown in FIG. 5, for example, the second pulse difference signal Verrp2 from the start of rising of the second peak period Tp2 to an arbitrary time within the second pulse period T2 is integrated by the sampling number.
Here, the difference described in (a) and (b) above is the difference between the voltage detection signal Vo as the actual measurement value and the set voltage (voltage setting signal) Vs as the reference value. It can also be said to be a deviation, and the difference signal may be rephrased as a voltage deviation signal.
In addition, in order to improve the accuracy of the voltage deviation average value Verrp2_ave, which will be described later, and to perform welding control more accurately, from the rise of the second peak period Tp2 to the end of the second base period Tb2, that is, the entire second pulse period T2 is preferably the sampling range.
(c) The voltage deviation average calculator 81 divides the calculated voltage deviation integrated value Verrp2_sum by the sampling number (referred to as “2ndcnt” in FIG. 4) counted by the second pulse period sampling counter (not shown). Then, the smoothed voltage deviation average value Verrp2_ave is calculated.
 続いて、パルス波形制御量算出部82は、電圧偏差平均算出部81より出力された電圧偏差平均値Verrp2_aveを以下で詳細に説明するパルス波形制御量算出部82へ入力し、第2ピーク電流の補正量であるピーク電流操作量Di_sumを算出し、該ピーク電流操作量Di_sumに第2ピーク電流基準値Ip2_refを加算することによって、第2ピーク電流のピーク電流補正指令信号Ip2ref_setをパルス状態生成部71へ入力する。 Subsequently, the pulse waveform control amount calculation unit 82 inputs the voltage deviation average value Verrp2_ave output from the voltage deviation average calculation unit 81 to the pulse waveform control amount calculation unit 82, which will be described in detail below. By calculating the peak current manipulated variable Di_sum, which is the correction amount, and adding the second peak current reference value Ip2_ref to the peak current manipulated variable Di_sum, the peak current correction command signal Ip2ref_set of the second peak current is generated by the pulse state generator 71. Enter to
 以下、パルス波形制御量算出部82において、第2ピーク電流Ip2のピーク電流補正指令信号Ip2ref_setの算出過程について一例を挙げる。 An example of the calculation process of the peak current correction command signal Ip2ref_set of the second peak current Ip2 in the pulse waveform control amount calculation unit 82 will be given below.
 (d)パルス波形制御量算出部82は、電圧偏差平均値Verrp2_aveを入力し、電圧偏差平均値Verrp2_aveに対して、少なくとも、あらかじめ定めたゲイン値P2_gain及び補正係数として後述する電流補正係数Ic_aveを乗算し、電流操作量Diを算出する。ゲイン値P2_gainは、本実施形態において、記憶部DBにおいてデータベース化されてあらかじめ定められ、少なくとも送給速度又は設定溶接電流ごとに設定されていると、適正なゲイン値を設定できるため好ましい。
 (e)算出された電流操作量Diは、周期ごとに積算される(図4の「積算ΣDi」を参照)。例えば、溶接開始直後である最初の1周期目に算出された電流操作量DiがD1のとき、ピーク電流操作量Di_sumはD1として算出され、次の周期に算出された電流操作量DiがD2のとき、ピーク電流操作量Di_sumはD1+D2として算出され、その次の周期に算出された電流操作量DiがD3のとき、ピーク電流操作量Di_sumはD1+D2+D3として算出される。
 (f)算出されたピーク電流操作量Di_sumは、あらかじめ定めた操作量のリミッター範囲内、ここでは第2ピーク電流値Ip2の制御量範囲内であれば、第2ピーク電流基準値Ip2_refを加算することによって、第2ピーク電流Ip2のピーク電流補正指令信号Ip2ref_setをパルス状態生成部71へ入力する。
(d) The pulse waveform control amount calculator 82 inputs the voltage deviation average value Verrp2_ave, and multiplies the voltage deviation average value Verrp2_ave by at least a predetermined gain value P2_gain and a current correction coefficient Ic_ave described later as a correction coefficient. and the current manipulated variable Di is calculated. In the present embodiment, the gain value P2_gain is stored in a database in the storage unit DB and is determined in advance, and is preferably set for each feeding speed or set welding current at least because an appropriate gain value can be set.
(e) The calculated current manipulated variable Di is integrated for each period (see "Integration ΣDi" in FIG. 4). For example, when the current manipulated variable Di calculated in the first cycle immediately after the start of welding is D1, the peak current manipulated variable Di_sum is calculated as D1, and the current manipulated variable Di calculated in the next cycle is D2. Then, the manipulated peak current Di_sum is calculated as D1+D2, and when the manipulated current Di calculated in the next cycle is D3, the manipulated peak current Di_sum is calculated as D1+D2+D3.
(f) If the calculated peak current manipulated variable Di_sum is within the predetermined manipulated variable limiter range, here within the controlled variable range of the second peak current value Ip2, the second peak current reference value Ip2_ref is added. Thereby, the peak current correction command signal Ip2ref_set of the second peak current Ip2 is input to the pulse state generator 71 .
 以上のように、本実施形態に係るパルス波形補正回路80の機能に基づけば、溶滴を離脱させるための第1パルス期間T1と、溶接ワイヤの先端に十分な大きさの溶滴を形成させるための第2パルス期間T2とを交互に生成するように設定した波形に対し、第1パルス期間T1の第1ピーク電流値Ip1及び第2パルス期間T2の第2ピーク電流値Ip2のうち少なくとも一方を制御することで、溶滴移行の規則性が乱れることを抑制でき、スパッタの発生をより低減させることができる。 As described above, based on the function of the pulse waveform correction circuit 80 according to the present embodiment, the first pulse period T1 for detaching a droplet and the formation of a sufficiently large droplet at the tip of the welding wire At least one of the first peak current value Ip1 in the first pulse period T1 and the second peak current value Ip2 in the second pulse period T2 for the waveform set to alternately generate the second pulse period T2 for By controlling , it is possible to prevent the regularity of droplet transfer from being disturbed, and to further reduce the occurrence of spatter.
 なお、ピーク電流操作量Di_sumが、リミッター範囲を外れた場合、すなわちリミッター範囲を上回った場合又は下回った場合は、例えば、リミッターを超えた操作量の過剰分を、第1ピーク期間Tp1、第1ベース期間Tb1、第2ベース期間Tb2における別の設定値に対して、補正量を補わせてもよい。例えば、第2ベース期間Tb2におけるベース時間及びベース電流、並びに第1ベース期間Tb1におけるベース時間及びベース電流の少なくとも一つを制御するのが好ましい。また、リミッターを超えたと判定した場合において、あらかじめ定めた値を第1ピーク電流値Ip1又は第1ベース期間Tb1に対し、増減させてもよい。このように、第2ピーク電流値Ip2の制御量が、制御量の範囲を外れた場合にも、溶滴移行の規則性が乱れること抑制することができる。 When the peak current manipulated variable Di_sum is out of the limiter range, that is, when it exceeds or falls below the limiter range, for example, the excess amount of the manipulated variable exceeding the limiter is removed during the first peak period Tp1 and the first peak period Tp1. The correction amount may be compensated for different set values in the base period Tb1 and the second base period Tb2. For example, it is preferable to control at least one of the base time and base current in the second base period Tb2 and the base time and base current in the first base period Tb1. Further, when it is determined that the limiter has been exceeded, a predetermined value may be increased or decreased with respect to the first peak current value Ip1 or the first base period Tb1. Thus, even when the control amount of the second peak current value Ip2 is out of the control amount range, it is possible to suppress the regularity of droplet transfer from being disturbed.
 ところで、本実施形態においては、補正係数として電流補正係数Ic_aveを用いた例を挙げている。この電流補正係数Ic_aveは、溶接電流設定信号Isと、現周期より前のピーク電流操作量Di_sumを加算して算出する。この電流補正係数Ic_aveが、電圧偏差平均値Verrp2_aveに乗算されることによって、増減時の変化量を制御することができる。すなわち、次周期において第2ピーク電流Ip2を増加させる場合には、電流補正係数Ic_aveの値が大きくなるので、次周期のパルスを大きく増加させるように働く。また、次周期において第2ピーク電流Ip2を減少させる場合には、電流補正係数Ic_aveの値が小さくなるので、次周期のパルスを小さく減少させるように働く。
 このように、次周期の第2ピーク電流Ip2を増加させる場合と、減少させる場合の変化量をそれぞれ変えることで、より精度よく第2パルス期間T2における溶接ワイヤ22の溶融量を制御することができる。このように、電流補正係数Ic_aveを補正係数として用いると制御の観点から好ましい。
By the way, in the present embodiment, an example using the current correction coefficient Ic_ave as the correction coefficient is given. This current correction coefficient Ic_ave is calculated by adding the welding current setting signal Is and the peak current manipulated variable Di_sum before the current cycle. By multiplying the voltage deviation average value Verrp2_ave by the current correction coefficient Ic_ave, it is possible to control the amount of change during increase or decrease. That is, when the second peak current Ip2 is increased in the next cycle, the value of the current correction coefficient Ic_ave is increased, so that the pulse in the next cycle is greatly increased. Further, when the second peak current Ip2 is decreased in the next period, the value of the current correction coefficient Ic_ave becomes smaller, so that the pulse in the next period is reduced.
In this way, by changing the amount of change when the second peak current Ip2 in the next cycle is increased and when it is decreased, the amount of welding wire 22 melted in the second pulse period T2 can be controlled more accurately. can. Thus, using the current correction coefficient Ic_ave as a correction coefficient is preferable from the viewpoint of control.
 なお、本実施形態においては上記のように制御しているが、例えば簡便な方法としてピーク電流操作量Di_sumがプラスであるかマイナスであるかを判断して、あらかじめ定めた値を補正係数として電圧偏差平均値Verrp2_aveに乗算してもよい。 In this embodiment, the control is performed as described above. However, as a simple method, for example, it is determined whether the peak current manipulated variable Di_sum is positive or negative, and a predetermined value is used as a correction coefficient to control the voltage. The deviation average value Verrp2_ave may be multiplied.
 また、本実施形態においては、第1ピーク期間Tp1及び第2ピーク期間Tp2のうち少なくとも一方における、立上り部Tu、及び立下り部Tdの傾斜部において、その傾きを多段に変化させることによって、溶滴移行の規則性が乱れることをより効果的に抑制することができる。 In addition, in the present embodiment, the slopes of the rising portion Tu and the trailing portion Td in at least one of the first peak period Tp1 and the second peak period Tp2 are changed in multiple steps, so that the melting Disturbance of the regularity of droplet migration can be suppressed more effectively.
 図6に、第1ピーク期間Tp1が立上り部Tu、ピーク部Tp及び立下り部Tdからなる場合において、立下り部Tdの傾きを多段変化させた例を示す。図6に示す立下り部Tdは、その傾きが3段階に変化した例であり、傾きが指数関数的な曲線を持つ第1傾斜区間Td1、あらかじめ定めた電流値に保持する保持区間Tdc、及び瞬時に第1ベース電流値Ib1まで降下させる第2傾斜区間Td2で構成されている。 FIG. 6 shows an example in which the slope of the falling portion Td is changed in multiple stages when the first peak period Tp1 consists of the rising portion Tu, the peak portion Tp, and the falling portion Td. The falling portion Td shown in FIG. 6 is an example in which the slope changes in three stages: a first slope section Td1 having an exponential curve with a slope, a holding section Tdc in which a predetermined current value is maintained, and a It is composed of a second slope section Td2 that drops to the first base current value Ib1 instantaneously.
 第1ピーク期間Tp1の立下り部Tdの傾きを図6のように多段変化させることによって、第1パルス期間T1における離脱検知のシグナルをより把握しやすくなる。離脱検知のシグナルを見逃した場合、健全な溶滴移行状態にも関わらず、溶滴移行の規則性を復帰させるための特別な制御を割り込ませると、それが原因となり、溶滴移行の規則性が乱れる可能性があることから、上記のように離脱検知のシグナルが確実に把握できれば、溶滴移行の規則性が乱れることを、より効果的に抑制することができる。なお、立下り部Td又は立上り部Tuにおける傾きの多段変化は、制御の容易性、すなわち制御効率と、多段にすることの効果の度合から見て、3段以下に設定するのが好ましい。 By changing the slope of the falling portion Td of the first peak period Tp1 in multiple stages as shown in FIG. 6, it becomes easier to grasp the detachment detection signal in the first pulse period T1. If the detachment detection signal is overlooked and special control is interrupted to restore the regularity of droplet transfer despite the state of healthy droplet transfer, this will cause the regularity of droplet transfer to If the detachment detection signal can be reliably grasped as described above, it is possible to more effectively suppress the disturbance of the regularity of droplet transfer. Note that it is preferable to set the multi-step change of the slope in the falling portion Td or the rising portion Tu to three steps or less in terms of ease of control, that is, control efficiency, and the degree of effect of multi-step.
 次に、本実施形態の溶接制御方法により、溶滴移行の規則性が乱れることを抑制できたとしても、なお、溶滴移行の規則性が乱れた場合に、溶滴移行の規則性を復帰する手段について、図7を参照して説明する。図7は、第1ピーク期間Tp1における立下り部Tdにおいて離脱検出信号が検出されない場合に、あらかじめ定めた固定波形制御である第3パルスを追加する状態を示すグラフである。 Next, even if it is possible to suppress the disturbance of the regularity of droplet transfer by the welding control method of the present embodiment, if the regularity of droplet transfer is disturbed, the regularity of droplet transfer is restored. A means for doing so will be described with reference to FIG. FIG. 7 is a graph showing a state in which the third pulse, which is predetermined fixed waveform control, is added when the detachment detection signal is not detected at the trailing edge Td of the first peak period Tp1.
 本実施形態において、溶滴移行の規則性が乱れたかどうかの判定は、第1パルス期間T1内の離脱検出信号の検出有無で判定するのがよい。第1パルス期間T1内で離脱検出信号が検出されない場合には、溶滴移行の規則性が乱れたと判定し、第1パルス期間T1と、第2パルス期間T2との間に、任意に設定した固定波形制御として、第3パルス期間T3を挿入する。第3パルス期間T3挿入後は、離脱検出信号が無くとも第2パルス期間T2へ移行してもよいし、離脱検出信号が検出されるまで、連続して第3パルス期間T3を挿入してもよい。なお、本実施形態の第3パルス期間T3は、第3ピーク期間Tp3と第3ベース期間Tb3からなる波形である。そして、第3パルス期間T3における第3ピーク電流Ip3は、例えば日本国特開2009-233728号に示すように、第2パルス期間T2における第2ピーク電流Ip2とは異なるものを採用するのがよい。 In the present embodiment, it is preferable to determine whether or not the regularity of droplet transfer has been disturbed by detecting or not detecting the detachment detection signal within the first pulse period T1. If the detachment detection signal is not detected within the first pulse period T1, it is determined that the regularity of droplet transfer is disturbed, and an arbitrarily set period is set between the first pulse period T1 and the second pulse period T2. As fixed waveform control, a third pulse period T3 is inserted. After the insertion of the third pulse period T3, the transition to the second pulse period T2 may be performed without a detachment detection signal, or the third pulse period T3 may be continuously inserted until the detachment detection signal is detected. good. Note that the third pulse period T3 of the present embodiment has a waveform including a third peak period Tp3 and a third base period Tb3. The third peak current Ip3 in the third pulse period T3 is preferably different from the second peak current Ip2 in the second pulse period T2, as disclosed in Japanese Patent Application Laid-Open No. 2009-233728. .
 また、上記固定波形制御の期間である第3パルス期間T3内で、離脱検出信号が検出されない場合に、第2パルス期間T2へ移行する場合の他の制御方法について、図8を参照して説明する。図8は、固定波形制御を行ってもなお、離脱検出信号が検出されない場合における、次の第2ピーク期間Tp2の制御方法を説明するためのグラフである。 Another control method for shifting to the second pulse period T2 when the detachment detection signal is not detected within the third pulse period T3, which is the fixed waveform control period, will be described with reference to FIG. do. FIG. 8 is a graph for explaining a control method for the next second peak period Tp2 when the detachment detection signal is not detected even after performing fixed waveform control.
 第3パルス期間T3内に離脱検出信号が検出されない場合に、次期間の第2ピーク期間Tp2の電流値Ip2は、あらかじめ定めた第2ピーク電流基準値Ip2_refに対し、あらかじめ定めた固定値Ic1を減算した値を適用するように制御するとよい。第3パルス期間T3内で離脱検出信号が検出されない場合、次のパルス期間、すなわち第2パルス期間T2内のアーク長が過大になる現象が発生し得るため、この制御により、より効果的に溶滴移行の安定化を図ることができ、ひいては溶滴移行の規則性が乱れるのを抑制することができる。 When the detachment detection signal is not detected within the third pulse period T3, the current value Ip2 in the second peak period Tp2 of the next period is set to the predetermined fixed value Ic1 with respect to the predetermined second peak current reference value Ip2_ref. It is preferable to control so that the subtracted value is applied. If the detachment detection signal is not detected within the third pulse period T3, a phenomenon may occur in which the arc length becomes excessive during the next pulse period, that is, within the second pulse period T2. It is possible to stabilize the transfer of droplets, and thus to suppress the disturbance of the regularity of the transfer of droplets.
 さらに、第1パルス期間T1中に、短絡信号を検出した場合に、アーク電圧が低下する現象が発生して溶滴移行の規則性が乱れるおそれがある。この場合の制御方法について、図9を参照して説明する。図9は、第1パルス期間T1中に短絡信号を検出した場合における制御方法の一例を示すグラフである。 Furthermore, when a short-circuit signal is detected during the first pulse period T1, a phenomenon in which the arc voltage drops may occur and the regularity of droplet transfer may be disturbed. A control method in this case will be described with reference to FIG. FIG. 9 is a graph showing an example of a control method when a short-circuit signal is detected during the first pulse period T1.
 第1パルス期間T1中に短絡信号を検出した場合に、次のパルス期間の第2ピーク期間Tp2の電流値Ip2を、あらかじめ定めた第2ピーク電流基準値Ip2_refに対し、あらかじめ定めた固定値Ic2を増加した値を適用するように制御するとよい。この制御により、アーク長を長くして溶滴移行の規則性が乱れるのを、より効果的に抑制することができる。 When a short-circuit signal is detected during the first pulse period T1, the current value Ip2 of the second peak period Tp2 of the next pulse period is set to a predetermined fixed value Ic2 with respect to a predetermined second peak current reference value Ip2_ref. should be controlled to apply an increased value. By this control, it is possible to more effectively suppress disturbance of the regularity of droplet transfer due to lengthening of the arc length.
 また、第2パルス期間T2において、アーク不安定を検出した場合、次のパルス周期の溶滴移行の規則性が乱れるおそれがある。この場合の制御方法について、図9を参照して説明する。図9は、第2パルス期間T2中にアーク不安定を検出した場合における制御方法の一例を示すグラフである。図9に示すように、次のパルス周期の溶滴移行の規則性の乱れを解消するためには、次のパルス周期の第1ピーク期間Tp1の電流値Ip1は、あらかじめ定めた第1ピーク電流基準値Ip1_refに対し、あらかじめ定めた固定値Ic3を増加した値を適用するように制御するとよい。なお、アーク不安定の検出は、本実施形態においてはアーク偏向の検出を意味し、第2パルス期間T2内で、あらかじめ定めた閾値を超える急峻な電圧上昇のシグナルが確認された場合にアーク偏向と判定する。 Also, when arc instability is detected in the second pulse period T2, the regularity of droplet transfer in the next pulse period may be disturbed. A control method in this case will be described with reference to FIG. FIG. 9 is a graph showing an example of a control method when arc instability is detected during the second pulse period T2. As shown in FIG. 9, in order to eliminate the disturbance in the regularity of droplet transfer in the next pulse cycle, the current value Ip1 in the first peak period Tp1 of the next pulse cycle must be set to the predetermined first peak current Control may be performed so that a value obtained by increasing a predetermined fixed value Ic3 is applied to the reference value Ip1_ref. Note that the detection of arc instability means the detection of arc deflection in the present embodiment, and the arc deflection is detected when a steep voltage rise signal exceeding a predetermined threshold value is confirmed within the second pulse period T2. I judge.
 以上、本発明の一実施形態について詳細に説明したが、本発明は、前述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。例えば、上記の実施形態においては、出力電流制御回路70とパルス波形補正回路80を独立して構成したが、1つの回路に纏めた構成としてもよい。 Although one embodiment of the present invention has been described in detail above, the present invention is not limited to the above-described embodiment, and can be modified, improved, etc. as appropriate. For example, in the above embodiment, the output current control circuit 70 and the pulse waveform correction circuit 80 are configured independently, but they may be integrated into one circuit.
 以上のとおり、本明細書には次の事項が開示されている。 As described above, the following items are disclosed in this specification.
(1) ガスシールドアーク溶接において溶接電流の波形制御を行う溶接制御方法であって、
 前記溶接電流の波形は、溶滴を離脱させるための第1パルス期間と、溶接ワイヤの先端に十分な大きさの溶滴を形成させるための第2パルス期間とを、1周期とするパルス波形であり、
 前記第1パルス期間は、あらかじめ定めた、第1ピーク電流値を有する第1ピーク期間と、前記第1ピーク期間後の第1ベース期間とから構成され、
 前記第2パルス期間は、あらかじめ定めた、前記第1ピーク電流値よりも低い第2ピーク電流値を有する第2ピーク期間と、前記第2ピーク期間後の第2ベース期間とから構成され、
 電圧検出信号Voを出力する電圧検出ステップと、
 前記電圧検出信号Voとあらかじめ定めた設定電圧Vsとの差分を差分信号とする場合に、前記差分信号に基づいて、前記第2パルス期間内においてあらかじめ定めた区間における電圧偏差平均値Verrp2_aveを算出する電圧偏差平均算出ステップと、
 前記電圧偏差平均値Verrp2_aveに基づいて、前記第1ピーク電流値及び前記第2ピーク電流値のうち少なくとも一方の制御量を算出する制御量算出ステップと、を有することを特徴とする溶接制御方法。
 この構成によれば、第1パルス期間の第1ピーク電流値及び第2パルス期間の第2ピーク電流値のうち少なくとも一方を制御することで、溶滴移行の規則性が乱れることを抑制でき、スパッタの発生をより低減させることができる。
(1) A welding control method for controlling the waveform of a welding current in gas shielded arc welding, comprising:
The waveform of the welding current is a pulse waveform in which one cycle is a first pulse period for detaching a droplet and a second pulse period for forming a sufficiently large droplet at the tip of the welding wire. and
The first pulse period is composed of a predetermined first peak period having a first peak current value and a first base period after the first peak period,
The second pulse period is composed of a predetermined second peak period having a second peak current value lower than the first peak current value, and a second base period after the second peak period,
a voltage detection step of outputting a voltage detection signal Vo;
When the difference between the voltage detection signal Vo and the predetermined set voltage Vs is used as the difference signal, a voltage deviation average value Verrp2_ave in a predetermined section within the second pulse period is calculated based on the difference signal. a voltage deviation average calculation step;
and a controlled variable calculation step of calculating a controlled variable for at least one of the first peak current value and the second peak current value based on the voltage deviation average value Verrp2_ave.
According to this configuration, by controlling at least one of the first peak current value in the first pulse period and the second peak current value in the second pulse period, it is possible to suppress the regularity of droplet transfer from being disturbed. Spatter generation can be further reduced.
(2) 前記電圧偏差平均値Verrp2_aveを、前記第2パルス期間全体により算出する、(1)に記載の溶接制御方法。
 この構成によれば、電圧偏差平均値Verrp2_aveの精度が向上し、より精度よく溶接制御することができる。
(2) The welding control method according to (1), wherein the voltage deviation average value Verrp2_ave is calculated based on the entire second pulse period.
According to this configuration, the accuracy of the voltage deviation average value Verrp2_ave is improved, and welding can be controlled with higher accuracy.
(3) 前記制御量算出ステップにおいて、前記第1ピーク電流値及び前記第2ピーク電流値のうち少なくとも一方の制御量を算出するにあたり、前記第1ピーク電流値及び前記第2ピーク電流値のうち少なくとも一方の制御量範囲をあらかじめ定めておき、
 算出された前記第1ピーク電流値及び前記第2ピーク電流値のうち少なくとも一方の制御量が、前記あらかじめ定めた制御量範囲を外れた場合に、前記第2ベース期間におけるベース時間及びベース電流、並びに前記第1ベース期間におけるベース時間及びベース電流値のうち少なくとも一つを制御する、(1)又は(2)に記載の溶接制御方法。
 この構成によれば、第2ピーク電流値の制御量が、制御量の範囲を外れた場合にも、溶滴移行の規則性が乱れるのを抑制することができる。
(3) In the controlled variable calculation step, when calculating the controlled variable of at least one of the first peak current value and the second peak current value, At least one control amount range is determined in advance,
base time and base current in the second base period when at least one of the calculated control amount of the first peak current value and the second peak current value is out of the predetermined control amount range; And the welding control method according to (1) or (2), wherein at least one of a base time and a base current value in the first base period is controlled.
According to this configuration, even when the control amount of the second peak current value is out of the control amount range, it is possible to suppress the regularity of droplet transfer from being disturbed.
(4) 前記制御量算出ステップにおいて、
 前記電圧偏差平均値Verrp2_aveに対して、少なくとも、あらかじめ定めたゲイン値P2_gain及び補正係数を乗じて、電流操作量Diを算出し、
 前記第1ピーク電流値及び前記第2ピーク電流値のうち少なくとも一方を増減させるためのピーク電流制御量Di_sumを、任意の過去の周期から現周期までの前記電流操作量Diの積算値として算出する、(1)~(3)のいずれか1つに記載の溶接制御方法。
 この構成によれば、より精度よく第2パルス期間T2における溶接ワイヤ22の溶融量を制御することができる。
(4) In the control amount calculation step,
multiplying the voltage deviation average value Verrp2_ave by at least a predetermined gain value P2_gain and a correction coefficient to calculate a current manipulated variable Di;
A peak current control amount Di_sum for increasing or decreasing at least one of the first peak current value and the second peak current value is calculated as an integrated value of the current manipulated variable Di from an arbitrary past cycle to the current cycle. , (1) to (3).
According to this configuration, the amount of welding wire 22 melted during the second pulse period T2 can be controlled more accurately.
(5) 前記補正係数を電流補正係数Ic_aveとし、
 前記電流補正係数Ic_aveは、少なくとも、あらかじめ定めた溶接電流設定信号Is及び前記ピーク電流制御量Di_sumを加算した値を含む、(4)に記載の溶接制御方法。
 この構成によれば、より精度よく第2パルス期間T2における溶接ワイヤ22の溶融量を制御することができる。
(5) The correction coefficient is a current correction coefficient Ic_ave,
The welding control method according to (4), wherein the current correction coefficient Ic_ave includes at least a value obtained by adding a predetermined welding current setting signal Is and the peak current control amount Di_sum.
According to this configuration, the amount of welding wire 22 melted during the second pulse period T2 can be controlled more accurately.
(6) 前記ゲイン値P2_gainは、少なくとも、前記溶接ワイヤの送給速度又は設定溶接電流に基づいて設定される、(4)又は(5)に記載の溶接制御方法。
 この構成によれば、溶接ワイヤの送給速度又は設定溶接電流に基づいた、適正なゲイン値を設定できる。
(6) The welding control method according to (4) or (5), wherein the gain value P2_gain is set based on at least the feeding speed of the welding wire or the set welding current.
According to this configuration, an appropriate gain value can be set based on the welding wire feed speed or the set welding current.
(7) 前記第1ピーク期間及び前記第2ピーク期間のうち少なくとも一方における、立上り部及び立下り部は、3段以下の傾きを有する、(1)~(6)のいずれか1つに記載の溶接制御方法。
 この構成によれば、離脱検知のシグナルをより把握しやすくなり、溶滴移行の規則性が乱れることをより効果的に抑制することができる。
(7) According to any one of (1) to (6), the rising portion and the falling portion in at least one of the first peak period and the second peak period have a slope of three steps or less. welding control method.
According to this configuration, it becomes easier to grasp the detachment detection signal, and it is possible to more effectively suppress the disturbance of the regularity of droplet transfer.
(8) 前記第1ピーク期間における立下り部は、第1傾斜区間、電流一定区間及び第2傾斜区間からなる、(1)~(7)のいずれか1つに記載の溶接制御方法。
 この構成によれば、離脱検知のシグナルをより把握しやすくなり、溶滴移行の規則性が乱れることをより効果的に抑制することができる。
(8) The welding control method according to any one of (1) to (7), wherein the falling portion in the first peak period consists of a first slope section, a constant current section and a second slope section.
According to this configuration, it becomes easier to grasp the detachment detection signal, and it is possible to more effectively suppress the disturbance of the regularity of droplet transfer.
(9) 前記第1ピーク期間における前記立下り部において離脱検出信号が検出されない場合に、
 前記第1ベース期間中に、あらかじめ定めた固定波形制御を追加する、(8)に記載の溶接制御方法。
 この構成によれば、より効果的に溶滴移行の安定化を図ることができ、ひいては溶滴移行の規則性が乱れるのを抑制することができる。
(9) when no detachment detection signal is detected in the trailing portion of the first peak period,
The welding control method according to (8), wherein a predetermined fixed waveform control is added during the first base period.
According to this configuration, the droplet transfer can be stabilized more effectively, and the disturbance of the regularity of the droplet transfer can be suppressed.
(10) 前記固定波形制御中に前記離脱検出信号が検出されない場合に、
 次のパルス期間における前記第2ピーク電流値として、あらかじめ定めた第2ピーク電流基準値に対してあらかじめ定めた固定値Ic1を減算した値を適用する、(9)に記載の溶接制御方法。
 この構成によれば、より効果的に溶滴移行の安定化を図ることができ、ひいては溶滴移行の規則性が乱れるのを抑制することができる。
(10) When the departure detection signal is not detected during the fixed waveform control,
The welding control method according to (9), wherein a value obtained by subtracting a predetermined fixed value Ic1 from a predetermined second peak current reference value is applied as the second peak current value in the next pulse period.
According to this configuration, the droplet transfer can be stabilized more effectively, and the disturbance of the regularity of the droplet transfer can be suppressed.
(11) 前記第1パルス期間中に短絡信号を検出した場合に、
 次のパルス期間における前記第2ピーク電流値として、あらかじめ定めた第2ピーク電流基準値に対してあらかじめ定めた固定値Ic2を加算した値を適用する、(1)~(10)のいずれか1つに記載の溶接制御方法。
 この構成によれば、アーク長を長くして溶滴移行の規則性が乱れることを、より効果的に抑制することができる。
(11) when a short-circuit signal is detected during the first pulse period,
Any one of (1) to (10), wherein a value obtained by adding a predetermined fixed value Ic2 to a predetermined second peak current reference value is applied as the second peak current value in the next pulse period. The welding control method described in 1.
According to this configuration, it is possible to more effectively suppress the disturbance of the regularity of droplet transfer due to the lengthening of the arc.
(12) 前記第2パルス期間中にアーク不安定を検出した場合に
 次のパルス期間における前記第1ピーク電流値として、あらかじめ定めた第1ピーク電流基準値に対してあらかじめ定めた固定値Ic3を加算した値を適用する、(1)~(11)のいずれか1つに記載の溶接制御方法。
 この構成によれば、次のパルス周期の溶滴移行の規則性が乱れることをより効果的に抑制することができる。
(12) When arc instability is detected during the second pulse period, a predetermined fixed value Ic3 with respect to a predetermined first peak current reference value is set as the first peak current value in the next pulse period. The welding control method according to any one of (1) to (11), wherein the added value is applied.
According to this configuration, it is possible to more effectively suppress the disturbance of the droplet transfer regularity in the next pulse cycle.
(13) ガスシールドアーク溶接において溶接電流の波形制御を行う溶接電源であって、
 前記溶接電流の波形は、溶滴を離脱させるための第1パルス期間と、溶接ワイヤの先端に十分な大きさの溶滴を形成させるための第2パルス期間とを、1周期とするパルス波形であり、
 前記第1パルス期間は、あらかじめ定めた、第1ピーク電流値を有する第1ピーク期間と、前記第1ピーク期間後の第1ベース期間とから構成され、
 前記第2パルス期間は、あらかじめ定めた、前記第1ピーク電流値よりも低い第2ピーク電流値を有する第2ピーク期間と、前記第2ピーク期間後の第2ベース期間とから構成され、
 電圧検出信号Voを出力する電圧検出手段と、
 前記電圧検出信号Voとあらかじめ定めた設定電圧Vsとの差分を差分信号とする場合に、前記差分信号に基づいて、前記第2パルス期間内においてあらかじめ定めた区間における電圧偏差平均値Verrp2_aveを算出する電圧偏差平均算出手段と、
 前記電圧偏差平均値Verrp2_aveに基づいて、前記第1ピーク電流値及び前記第2ピーク電流値のうち少なくとも一方の制御量を算出する制御量算出手段と、を有することを特徴とする溶接電源。
 この構成によれば、第1パルス期間の第1ピーク電流値及び第2パルス期間の第2ピーク電流値のうち少なくとも一方を制御することで、溶滴移行の規則性が乱れることを抑制でき、スパッタの発生をより低減させることができる。
(13) A welding power source that performs waveform control of a welding current in gas shielded arc welding,
The waveform of the welding current is a pulse waveform in which one cycle is a first pulse period for detaching a droplet and a second pulse period for forming a sufficiently large droplet at the tip of the welding wire. and
The first pulse period is composed of a predetermined first peak period having a first peak current value and a first base period after the first peak period,
The second pulse period is composed of a predetermined second peak period having a second peak current value lower than the first peak current value, and a second base period after the second peak period,
voltage detection means for outputting a voltage detection signal Vo;
When the difference between the voltage detection signal Vo and the predetermined set voltage Vs is used as the difference signal, a voltage deviation average value Verrp2_ave in a predetermined section within the second pulse period is calculated based on the difference signal. voltage deviation average calculation means;
and control amount calculation means for calculating a control amount for at least one of the first peak current value and the second peak current value based on the voltage deviation average value Verrp2_ave.
According to this configuration, by controlling at least one of the first peak current value in the first pulse period and the second peak current value in the second pulse period, it is possible to suppress the regularity of droplet transfer from being disturbed. Spatter generation can be further reduced.
(14) 溶接ロボットと、送給装置と、溶接電源と、シールドガス供給装置と、溶接制御装置と、を少なくとも備え、ガスシールドアーク溶接において溶接電流の波形制御に用いられる溶接システムであって、
 前記溶接電流の波形は、溶滴を離脱させるための第1パルス期間と、溶接ワイヤの先端に十分な大きさの溶滴を形成させるための第2パルス期間とを、1周期とするパルス波形であり、
 前記第1パルス期間は、あらかじめ定めた、第1ピーク電流値を有する第1ピーク期間と、前記第1ピーク期間後の第1ベース期間とから構成され、
 前記第2パルス期間は、あらかじめ定めた、前記第1ピーク電流値よりも低い第2ピーク電流値を有する第2ピーク期間と、前記第2ピーク期間後の第2ベース期間とから構成され、
 前記溶接電源は、
 電圧検出信号Voを出力する電圧検出手段と、
 前記電圧検出信号Voとあらかじめ定めた設定電圧Vsとの差分を差分信号とする場合に、前記差分信号に基づいて、前記第2パルス期間内においてあらかじめ定めた区間における電圧偏差平均値Verrp2_aveを算出する電圧偏差平均算出手段と、
 前記電圧偏差平均値Verrp2_aveに基づいて、前記第1ピーク電流値及び前記第2ピーク電流値のうち少なくとも一方の制御量を算出する制御量算出手段と、を有することを特徴とする溶接システム。
 この構成によれば、第1パルス期間の第1ピーク電流値及び第2パルス期間の第2ピーク電流値のうち少なくとも一方を制御することで、溶滴移行の規則性が乱れることを抑制でき、スパッタの発生をより低減させることができる。
(14) A welding system comprising at least a welding robot, a feeding device, a welding power source, a shielding gas supply device, and a welding control device, and used for waveform control of welding current in gas-shielded arc welding,
The waveform of the welding current is a pulse waveform in which one cycle is a first pulse period for detaching a droplet and a second pulse period for forming a sufficiently large droplet at the tip of the welding wire. and
The first pulse period is composed of a predetermined first peak period having a first peak current value and a first base period after the first peak period,
The second pulse period is composed of a predetermined second peak period having a second peak current value lower than the first peak current value, and a second base period after the second peak period,
The welding power source is
voltage detection means for outputting a voltage detection signal Vo;
When the difference between the voltage detection signal Vo and the predetermined set voltage Vs is used as the difference signal, a voltage deviation average value Verrp2_ave in a predetermined section within the second pulse period is calculated based on the difference signal. voltage deviation average calculation means;
and control amount calculation means for calculating a control amount for at least one of the first peak current value and the second peak current value based on the voltage deviation average value Verrp2_ave.
According to this configuration, by controlling at least one of the first peak current value in the first pulse period and the second peak current value in the second pulse period, it is possible to suppress the regularity of droplet transfer from being disturbed. Spatter generation can be further reduced.
(15) ガスシールドアーク溶接において溶接電流の波形制御を行いながら、アーク溶接する溶接方法であって、
 前記アーク溶接に用いられるシールドガスとして、炭酸ガス、窒素ガス、水素ガス及び酸素ガスのうち少なくとも一つのガスを含み、
 前記溶接電流の波形は、溶滴を離脱させるための第1パルス期間と、溶接ワイヤの先端に十分な大きさの溶滴を形成させるための第2パルス期間とを、1周期とするパルス波形であり、
 前記第1パルス期間は、あらかじめ定めた、第1ピーク電流値を有する第1ピーク期間と、前記第1ピーク期間後の第1ベース期間とから構成され、
 前記第2パルス期間は、あらかじめ定めた、前記第1ピーク電流値よりも低い第2ピーク電流値を有する第2ピーク期間と、前記第2ピーク期間後の第2ベース期間とから構成され、
 前記波形制御の方法として、
 電圧検出信号Voを出力する電圧検出ステップと、
 前記電圧検出信号Voとあらかじめ定めた設定電圧Vsとの差分を差分信号とする場合に、前記差分信号に基づいて、前記第2パルス期間内においてあらかじめ定めた区間における電圧偏差平均値Verrp2_aveを算出する電圧偏差平均算出ステップと、
 前記電圧偏差平均値Verrp2_aveに基づいて、前記第1ピーク電流値及び前記第2ピーク電流値のうち少なくとも一方の制御量を算出する制御量算出ステップと、を有することを特徴とする溶接方法。
 この構成によれば、ガスシールドアーク溶接において、シールドガス中に炭酸ガス、窒素ガス、水素ガス、酸素ガスのような電位傾度の高い成分が含まれることで、溶滴移行の形態がグロビュラー移行をとったとしても、第1パルス期間の第1ピーク電流値及び第2パルス期間の第2ピーク電流値のうち少なくとも一方を制御することで、溶滴移行の規則性が乱れることを抑制でき、スパッタの発生をより低減させることができる。
(15) A welding method for arc welding while controlling the waveform of the welding current in gas shielded arc welding,
At least one of carbon dioxide gas, nitrogen gas, hydrogen gas and oxygen gas is included as the shielding gas used for arc welding,
The waveform of the welding current is a pulse waveform in which one cycle is a first pulse period for detaching a droplet and a second pulse period for forming a sufficiently large droplet at the tip of the welding wire. and
The first pulse period is composed of a predetermined first peak period having a first peak current value and a first base period after the first peak period,
The second pulse period is composed of a predetermined second peak period having a second peak current value lower than the first peak current value, and a second base period after the second peak period,
As the waveform control method,
a voltage detection step of outputting a voltage detection signal Vo;
When the difference between the voltage detection signal Vo and the predetermined set voltage Vs is used as the difference signal, a voltage deviation average value Verrp2_ave in a predetermined section within the second pulse period is calculated based on the difference signal. a voltage deviation average calculation step;
and a controlled variable calculation step of calculating a controlled variable for at least one of the first peak current value and the second peak current value based on the voltage deviation average value Verrp2_ave.
According to this configuration, in gas-shielded arc welding, the shield gas contains a component with a high potential gradient such as carbon dioxide gas, nitrogen gas, hydrogen gas, and oxygen gas, so that the form of droplet transfer is changed to globular transfer. Even so, by controlling at least one of the first peak current value in the first pulse period and the second peak current value in the second pulse period, it is possible to suppress the disturbance of the regularity of droplet transfer, thereby reducing spattering. can be further reduced.
(16) ガスシールドアーク溶接を応用した積層造形において溶接電流の波形制御を行いながら、積層造形を行う積層造形方法であって、
 前記ガスシールドアーク溶接に用いられるシールドガスとして、炭酸ガス、窒素ガス、水素ガス及び酸素ガスのうち少なくとも一つのガスを含み、
 前記溶接電流の波形は、溶滴を離脱させるための第1パルス期間と、溶接ワイヤの先端に十分な大きさの溶滴を形成させるための第2パルス期間とを、1周期とするパルス波形であり、
 前記第1パルス期間は、あらかじめ定めた、第1ピーク電流値を有する第1ピーク期間と、前記第1ピーク期間後の第1ベース期間とから構成され、
 前記第2パルス期間は、あらかじめ定めた、前記第1ピーク電流値よりも低い第2ピーク電流値を有する第2ピーク期間と、前記第2ピーク期間後の第2ベース期間とから構成され、
 前記波形制御の方法として、
 電圧検出信号Voを出力する電圧検出ステップと、
 前記電圧検出信号Voとあらかじめ定めた設定電圧Vsとの差分を差分信号とする場合に、前記差分信号に基づいて、前記第2パルス期間内においてあらかじめ定めた区間における電圧偏差平均値Verrp2_aveを算出する電圧偏差平均算出ステップと、
 前記電圧偏差平均値Verrp2_aveに基づいて、前記第1ピーク電流値及び前記第2ピーク電流値のうち少なくとも一方の制御量を算出する制御量算出ステップと、を有することを特徴とする積層造形方法。
 この構成によれば、ガスシールドアーク溶接を応用した積層造形において、シールドガス中に炭酸ガス、窒素ガス、水素ガス、酸素ガスのような電位傾度の高い成分が含まれることで、溶滴移行の形態がグロビュラー移行をとったとしても、第1パルス期間の第1ピーク電流値及び第2パルス期間の第2ピーク電流値のうち少なくとも一方を制御することで、溶滴移行の規則性が乱れることを抑制でき、スパッタの発生をより低減させることができる。
(16) A layered manufacturing method that performs layered manufacturing while controlling the waveform of a welding current in layered manufacturing that applies gas shielded arc welding,
At least one gas selected from carbon dioxide gas, nitrogen gas, hydrogen gas, and oxygen gas is included as the shielding gas used in the gas-shielded arc welding,
The waveform of the welding current is a pulse waveform in which one cycle is a first pulse period for detaching a droplet and a second pulse period for forming a sufficiently large droplet at the tip of the welding wire. and
The first pulse period is composed of a predetermined first peak period having a first peak current value and a first base period after the first peak period,
The second pulse period is composed of a predetermined second peak period having a second peak current value lower than the first peak current value, and a second base period after the second peak period,
As the waveform control method,
a voltage detection step of outputting a voltage detection signal Vo;
When the difference between the voltage detection signal Vo and the predetermined set voltage Vs is used as the difference signal, a voltage deviation average value Verrp2_ave in a predetermined section within the second pulse period is calculated based on the difference signal. a voltage deviation average calculation step;
and a controlled variable calculation step of calculating a controlled variable for at least one of the first peak current value and the second peak current value based on the voltage deviation average value Verrp2_ave.
According to this configuration, in additive manufacturing using gas-shielded arc welding, the inclusion of components with a high potential gradient such as carbon dioxide gas, nitrogen gas, hydrogen gas, and oxygen gas in the shielding gas prevents droplet transfer. Even if the form takes globular transfer, controlling at least one of the first peak current value in the first pulse period and the second peak current value in the second pulse period disturbs the regularity of droplet transfer. can be suppressed, and the occurrence of spatter can be further reduced.
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。 Various embodiments have been described above with reference to the drawings, but it goes without saying that the present invention is not limited to such examples. It is obvious that a person skilled in the art can conceive of various modifications or modifications within the scope described in the claims, and these also belong to the technical scope of the present invention. Understood. Moreover, each component in the above embodiments may be combined arbitrarily without departing from the gist of the invention.
 なお、本出願は、2021年3月31日出願の日本特許出願(特願2021-061901)に基づくものであり、その内容は本出願の中に参照として援用される。 This application is based on a Japanese patent application (Japanese Patent Application No. 2021-061901) filed on March 31, 2021, the contents of which are incorporated herein by reference.
10 アーク溶接システム
20 溶接ロボット
22 溶接ワイヤ
23~27 溶滴
30 溶接電源
40 制御装置(溶接制御装置)
80 パルス波形補正回路
81 電圧偏差平均算出部(電圧偏差平均算出手段)
82 パルス波形制御量算出部(制御量算出手段)
Di 電流操作量
Di_sum ピーク電流操作量
Ib1 第1ベース電流値
Ib1_ref 第1ベース電流基準値
Ib2 第2ベース電流値
Ib2_ref 第2ベース電流基準値
Ic1、Ic2、Ic3 あらかじめ定めた固定値
Ic_ave 電流補正係数
Ip1 第1ピーク電流値
Ip1_ref 第1ピーク電流基準値
Ip2 第2ピーク電流値
Ip2_ref 第2ピーク電流基準値
P2_gain ゲイン値
T1 第1パルス期間
T2 第2パルス期間
T3 第3パルス期間(固定波形制御)
Tb1 第1ベース期間
Tb2 第2ベース期間
Td 立下り部
Td1 第1傾斜区間
Tdc 保持区間(電流一定区間)
Td2 第2傾斜区間
Tp1 第1ピーク期間
Tp2 第2ピーク期間
Tu 立上り部
VD 電圧検出部(電圧検出手段)
Verrp2 第2パルス差分信号
Verrp2_ave 電圧偏差平均値
Verrp2_sum 電圧偏差積算値
Vo 電圧検出信号
Vs 電圧設定信号(設定電圧)
10 arc welding system 20 welding robot 22 welding wires 23 to 27 droplets 30 welding power source 40 control device (welding control device)
80 pulse waveform correction circuit 81 voltage deviation average calculation unit (voltage deviation average calculation means)
82 pulse waveform control amount calculation unit (control amount calculation means)
Di Manipulated current value Di_sum Manipulated peak current value Ib1 First base current value Ib1_ref First base current reference value Ib2 Second base current value Ib2_ref Second base current reference value Ic1, Ic2, Ic3 Predetermined fixed value Ic_ave Current correction coefficient Ip1 First peak current value Ip1_ref First peak current reference value Ip2 Second peak current value Ip2_ref Second peak current reference value P2_gain Gain value T1 First pulse period T2 Second pulse period T3 Third pulse period (fixed waveform control)
Tb1 First base period Tb2 Second base period Td Falling section Td1 First slope section Tdc Hold section (constant current section)
Td2 Second slope section Tp1 First peak period Tp2 Second peak period Tu Rise portion VD Voltage detection section (voltage detection means)
Verrp2 Second pulse difference signal Verrp2_ave Voltage deviation average value Verrp2_sum Voltage deviation integrated value Vo Voltage detection signal Vs Voltage setting signal (set voltage)

Claims (21)

  1.  ガスシールドアーク溶接において溶接電流の波形制御を行う溶接制御方法であって、
     前記溶接電流の波形は、溶滴を離脱させるための第1パルス期間と、溶接ワイヤの先端に十分な大きさの溶滴を形成させるための第2パルス期間とを、1周期とするパルス波形であり、
     前記第1パルス期間は、あらかじめ定めた、第1ピーク電流値を有する第1ピーク期間と、前記第1ピーク期間後の第1ベース期間とから構成され、
     前記第2パルス期間は、あらかじめ定めた、前記第1ピーク電流値よりも低い第2ピーク電流値を有する第2ピーク期間と、前記第2ピーク期間後の第2ベース期間とから構成され、
     電圧検出信号Voを出力する電圧検出ステップと、
     前記電圧検出信号Voとあらかじめ定めた設定電圧Vsとの差分を差分信号とする場合に、前記差分信号に基づいて、前記第2パルス期間内においてあらかじめ定めた区間における電圧偏差平均値Verrp2_aveを算出する電圧偏差平均算出ステップと、
     前記電圧偏差平均値Verrp2_aveに基づいて、前記第1ピーク電流値及び前記第2ピーク電流値のうち少なくとも一方の制御量を算出する制御量算出ステップと、を有することを特徴とする溶接制御方法。
    A welding control method for controlling the waveform of a welding current in gas shielded arc welding,
    The waveform of the welding current is a pulse waveform in which one cycle is a first pulse period for detaching a droplet and a second pulse period for forming a sufficiently large droplet at the tip of the welding wire. and
    The first pulse period is composed of a predetermined first peak period having a first peak current value and a first base period after the first peak period,
    The second pulse period is composed of a predetermined second peak period having a second peak current value lower than the first peak current value, and a second base period after the second peak period,
    a voltage detection step of outputting a voltage detection signal Vo;
    When the difference between the voltage detection signal Vo and the predetermined set voltage Vs is used as the difference signal, a voltage deviation average value Verrp2_ave in a predetermined section within the second pulse period is calculated based on the difference signal. a voltage deviation average calculation step;
    and a controlled variable calculation step of calculating a controlled variable for at least one of the first peak current value and the second peak current value based on the voltage deviation average value Verrp2_ave.
  2.  前記電圧偏差平均値Verrp2_aveを、前記第2パルス期間全体により算出する、請求項1に記載の溶接制御方法。 The welding control method according to claim 1, wherein the voltage deviation average value Verrp2_ave is calculated from the entire second pulse period.
  3.  前記制御量算出ステップにおいて、前記第1ピーク電流値及び前記第2ピーク電流値のうち少なくとも一方の制御量を算出するにあたり、前記第1ピーク電流値及び前記第2ピーク電流値のうち少なくとも一方の制御量範囲をあらかじめ定めておき、
     算出された前記第1ピーク電流値及び前記第2ピーク電流値のうち少なくとも一方の制御量が、前記あらかじめ定めた制御量範囲を外れた場合に、前記第2ベース期間におけるベース時間及びベース電流、並びに前記第1ベース期間におけるベース時間及びベース電流値のうち少なくとも一つを制御する、請求項1又は2に記載の溶接制御方法。
    In the controlled variable calculation step, in calculating the controlled variable of at least one of the first peak current value and the second peak current value, at least one of the first peak current value and the second peak current value Predetermine the control amount range,
    base time and base current in the second base period when at least one of the calculated control amount of the first peak current value and the second peak current value is out of the predetermined control amount range; and at least one of a base time and a base current value in the first base period.
  4.  前記制御量算出ステップにおいて、
     前記電圧偏差平均値Verrp2_aveに対して、少なくとも、あらかじめ定めたゲイン値P2_gain及び補正係数を乗じて、電流操作量Diを算出し、
     前記第1ピーク電流値及び前記第2ピーク電流値のうち少なくとも一方を増減させるためのピーク電流制御量Di_sumを、任意の過去の周期から現周期までの前記電流操作量Diの積算値として算出する、請求項1又は2に記載の溶接制御方法。
    In the control amount calculation step,
    multiplying the voltage deviation average value Verrp2_ave by at least a predetermined gain value P2_gain and a correction coefficient to calculate a current manipulated variable Di;
    A peak current control amount Di_sum for increasing or decreasing at least one of the first peak current value and the second peak current value is calculated as an integrated value of the current manipulated variable Di from an arbitrary past cycle to the current cycle. The welding control method according to claim 1 or 2.
  5.  前記補正係数を電流補正係数Ic_aveとし、
     前記電流補正係数Ic_aveは、少なくとも、あらかじめ定めた溶接電流設定信号Is及び前記ピーク電流制御量Di_sumを加算した値を含む、請求項4に記載の溶接制御方法。
    Let the correction coefficient be a current correction coefficient Ic_ave,
    The welding control method according to claim 4, wherein said current correction coefficient Ic_ave includes at least a value obtained by adding a predetermined welding current setting signal Is and said peak current control amount Di_sum.
  6.  前記制御量算出ステップにおいて、
     前記電圧偏差平均値Verrp2_aveに対して、少なくとも、あらかじめ定めたゲイン値P2_gain及び補正係数を乗じて、電流操作量Diを算出し、
     前記第1ピーク電流値及び前記第2ピーク電流値のうち少なくとも一方を増減させるためのピーク電流制御量Di_sumを、任意の過去の周期から現周期までの前記電流操作量Diの積算値として算出する、請求項3に記載の溶接制御方法。
    In the control amount calculation step,
    multiplying the voltage deviation average value Verrp2_ave by at least a predetermined gain value P2_gain and a correction coefficient to calculate a current manipulated variable Di;
    A peak current control amount Di_sum for increasing or decreasing at least one of the first peak current value and the second peak current value is calculated as an integrated value of the current manipulated variable Di from an arbitrary past cycle to the current cycle. 4. The welding control method according to claim 3.
  7.  前記補正係数を電流補正係数Ic_aveとし、
     前記電流補正係数Ic_aveは、少なくとも、あらかじめ定めた溶接電流設定信号Is及び前記ピーク電流制御量Di_sumを加算した値を含む、請求項6に記載の溶接制御方法。
    Let the correction coefficient be a current correction coefficient Ic_ave,
    The welding control method according to claim 6, wherein said current correction coefficient Ic_ave includes at least a value obtained by adding a predetermined welding current setting signal Is and said peak current control amount Di_sum.
  8.  前記ゲイン値P2_gainは、少なくとも、前記溶接ワイヤの送給速度又は設定溶接電流に基づいて設定される、請求項4に記載の溶接制御方法。 The welding control method according to claim 4, wherein the gain value P2_gain is set based on at least the feeding speed of the welding wire or a set welding current.
  9.  前記ゲイン値P2_gainは、少なくとも、前記溶接ワイヤの送給速度又は設定溶接電流に基づいて設定される、請求項5に記載の溶接制御方法。 The welding control method according to claim 5, wherein the gain value P2_gain is set based on at least the feeding speed of the welding wire or a set welding current.
  10.  前記ゲイン値P2_gainは、少なくとも、前記溶接ワイヤの送給速度又は設定溶接電流に基づいて設定される、請求項6に記載の溶接制御方法。 The welding control method according to claim 6, wherein the gain value P2_gain is set based on at least the feeding speed of the welding wire or a set welding current.
  11.  前記ゲイン値P2_gainは、少なくとも、前記溶接ワイヤの送給速度又は設定溶接電流に基づいて設定される、請求項7に記載の溶接制御方法。 The welding control method according to claim 7, wherein the gain value P2_gain is set based on at least the feeding speed of the welding wire or a set welding current.
  12.  前記第1ピーク期間及び前記第2ピーク期間のうち少なくとも一方における、立上り部及び立下り部は、3段以下の傾きを有する、請求項1又は2に記載の溶接制御方法。 The welding control method according to claim 1 or 2, wherein the rising portion and the falling portion in at least one of the first peak period and the second peak period have an inclination of three steps or less.
  13.  前記第1ピーク期間における立下り部は、第1傾斜区間、電流一定区間及び第2傾斜区間からなる、請求項1又は2に記載の溶接制御方法。 The welding control method according to claim 1 or 2, wherein the falling portion in the first peak period consists of a first slope section, a constant current section and a second slope section.
  14.  前記第1ピーク期間における前記立下り部において離脱検出信号が検出されない場合に、
     前記第1ベース期間中に、あらかじめ定めた固定波形制御を追加する、請求項13に記載の溶接制御方法。
    when no detachment detection signal is detected in the falling portion of the first peak period,
    14. The method of controlling welding according to claim 13, further comprising adding a predetermined fixed waveform control during said first base period.
  15.  前記固定波形制御中に前記離脱検出信号が検出されない場合に、
     次のパルス期間における前記第2ピーク電流値として、あらかじめ定めた第2ピーク電流基準値に対してあらかじめ定めた固定値Ic1を減算した値を適用する、請求項14に記載の溶接制御方法。
    When the detachment detection signal is not detected during the fixed waveform control,
    15. The welding control method according to claim 14, wherein a value obtained by subtracting a predetermined fixed value Ic1 from a predetermined second peak current reference value is applied as the second peak current value in the next pulse period.
  16.  前記第1パルス期間中に短絡信号を検出した場合に、
     次のパルス期間における前記第2ピーク電流値として、あらかじめ定めた第2ピーク電流基準値に対してあらかじめ定めた固定値Ic2を加算した値を適用する、請求項1又は2に記載の溶接制御方法。
    when a short-circuit signal is detected during the first pulse period,
    The welding control method according to claim 1 or 2, wherein a value obtained by adding a predetermined fixed value Ic2 to a predetermined second peak current reference value is applied as the second peak current value in the next pulse period. .
  17.  前記第2パルス期間中にアーク不安定を検出した場合に
     次のパルス期間における前記第1ピーク電流値として、あらかじめ定めた第1ピーク電流基準値に対してあらかじめ定めた固定値Ic3を加算した値を適用する、請求項1又は2に記載の溶接制御方法。
    A value obtained by adding a predetermined fixed value Ic3 to a predetermined first peak current reference value as the first peak current value in the next pulse period when arc instability is detected during the second pulse period. The welding control method according to claim 1 or 2, applying
  18.  ガスシールドアーク溶接において溶接電流の波形制御を行う溶接電源であって、
     前記溶接電流の波形は、溶滴を離脱させるための第1パルス期間と、溶接ワイヤの先端に十分な大きさの溶滴を形成させるための第2パルス期間とを、1周期とするパルス波形であり、
     前記第1パルス期間は、あらかじめ定めた、第1ピーク電流値を有する第1ピーク期間と、前記第1ピーク期間後の第1ベース期間とから構成され、
     前記第2パルス期間は、あらかじめ定めた、前記第1ピーク電流値よりも低い第2ピーク電流値を有する第2ピーク期間と、前記第2ピーク期間後の第2ベース期間とから構成され、
     電圧検出信号Voを出力する電圧検出手段と、
     前記電圧検出信号Voとあらかじめ定めた設定電圧Vsとの差分を差分信号とする場合に、前記差分信号に基づいて、前記第2パルス期間内においてあらかじめ定めた区間における電圧偏差平均値Verrp2_aveを算出する電圧偏差平均算出手段と、
     前記電圧偏差平均値Verrp2_aveに基づいて、前記第1ピーク電流値及び前記第2ピーク電流値のうち少なくとも一方の制御量を算出する制御量算出手段と、を有することを特徴とする溶接電源。
    A welding power source that performs waveform control of welding current in gas shielded arc welding,
    The waveform of the welding current is a pulse waveform in which one cycle is a first pulse period for detaching a droplet and a second pulse period for forming a sufficiently large droplet at the tip of the welding wire. and
    The first pulse period is composed of a predetermined first peak period having a first peak current value and a first base period after the first peak period,
    The second pulse period is composed of a predetermined second peak period having a second peak current value lower than the first peak current value, and a second base period after the second peak period,
    voltage detection means for outputting a voltage detection signal Vo;
    When the difference between the voltage detection signal Vo and the predetermined set voltage Vs is used as the difference signal, a voltage deviation average value Verrp2_ave in a predetermined section within the second pulse period is calculated based on the difference signal. voltage deviation average calculation means;
    and control amount calculation means for calculating a control amount for at least one of the first peak current value and the second peak current value based on the voltage deviation average value Verrp2_ave.
  19.  溶接ロボットと、送給装置と、溶接電源と、シールドガス供給装置と、溶接制御装置と、を少なくとも備え、ガスシールドアーク溶接において溶接電流の波形制御に用いられる溶接システムであって、
     前記溶接電流の波形は、溶滴を離脱させるための第1パルス期間と、溶接ワイヤの先端に十分な大きさの溶滴を形成させるための第2パルス期間とを、1周期とするパルス波形であり、
     前記第1パルス期間は、あらかじめ定めた、第1ピーク電流値を有する第1ピーク期間と、前記第1ピーク期間後の第1ベース期間とから構成され、
     前記第2パルス期間は、あらかじめ定めた、前記第1ピーク電流値よりも低い第2ピーク電流値を有する第2ピーク期間と、前記第2ピーク期間後の第2ベース期間とから構成され、
     前記溶接電源は、
     電圧検出信号Voを出力する電圧検出手段と、
     前記電圧検出信号Voとあらかじめ定めた設定電圧Vsとの差分を差分信号とする場合に、前記差分信号に基づいて、前記第2パルス期間内においてあらかじめ定めた区間における電圧偏差平均値Verrp2_aveを算出する電圧偏差平均算出手段と、
     前記電圧偏差平均値Verrp2_aveに基づいて、前記第1ピーク電流値及び前記第2ピーク電流値のうち少なくとも一方の制御量を算出する制御量算出手段と、を有することを特徴とする溶接システム。
    A welding system comprising at least a welding robot, a feeding device, a welding power source, a shielding gas supply device, and a welding control device, and used for waveform control of a welding current in gas-shielded arc welding,
    The waveform of the welding current is a pulse waveform in which one cycle is a first pulse period for detaching a droplet and a second pulse period for forming a sufficiently large droplet at the tip of the welding wire. and
    The first pulse period is composed of a predetermined first peak period having a first peak current value and a first base period after the first peak period,
    The second pulse period is composed of a predetermined second peak period having a second peak current value lower than the first peak current value, and a second base period after the second peak period,
    The welding power source is
    voltage detection means for outputting a voltage detection signal Vo;
    When the difference between the voltage detection signal Vo and the predetermined set voltage Vs is used as the difference signal, a voltage deviation average value Verrp2_ave in a predetermined section within the second pulse period is calculated based on the difference signal. voltage deviation average calculation means;
    and control amount calculation means for calculating a control amount for at least one of the first peak current value and the second peak current value based on the voltage deviation average value Verrp2_ave.
  20.  ガスシールドアーク溶接において溶接電流の波形制御を行いながら、アーク溶接する溶接方法であって、
     前記アーク溶接に用いられるシールドガスとして、炭酸ガス、窒素ガス、水素ガス及び酸素ガスのうち少なくとも一つのガスを含み、
     前記溶接電流の波形は、溶滴を離脱させるための第1パルス期間と、溶接ワイヤの先端に十分な大きさの溶滴を形成させるための第2パルス期間とを、1周期とするパルス波形であり、
     前記第1パルス期間は、あらかじめ定めた、第1ピーク電流値を有する第1ピーク期間と、前記第1ピーク期間後の第1ベース期間とから構成され、
     前記第2パルス期間は、あらかじめ定めた、前記第1ピーク電流値よりも低い第2ピーク電流値を有する第2ピーク期間と、前記第2ピーク期間後の第2ベース期間とから構成され、
     前記波形制御の方法として、
     電圧検出信号Voを出力する電圧検出ステップと、
     前記電圧検出信号Voとあらかじめ定めた設定電圧Vsとの差分を差分信号とする場合に、前記差分信号に基づいて、前記第2パルス期間内においてあらかじめ定めた区間における電圧偏差平均値Verrp2_aveを算出する電圧偏差平均算出ステップと、
     前記電圧偏差平均値Verrp2_aveに基づいて、前記第1ピーク電流値及び前記第2ピーク電流値のうち少なくとも一方の制御量を算出する制御量算出ステップと、を有することを特徴とする溶接方法。
    A welding method for arc welding while controlling the waveform of the welding current in gas shielded arc welding,
    At least one of carbon dioxide gas, nitrogen gas, hydrogen gas and oxygen gas is included as the shielding gas used for arc welding,
    The waveform of the welding current is a pulse waveform in which one cycle is a first pulse period for detaching a droplet and a second pulse period for forming a sufficiently large droplet at the tip of the welding wire. and
    The first pulse period is composed of a predetermined first peak period having a first peak current value and a first base period after the first peak period,
    The second pulse period is composed of a predetermined second peak period having a second peak current value lower than the first peak current value, and a second base period after the second peak period,
    As the waveform control method,
    a voltage detection step of outputting a voltage detection signal Vo;
    When the difference between the voltage detection signal Vo and the predetermined set voltage Vs is used as the difference signal, a voltage deviation average value Verrp2_ave in a predetermined section within the second pulse period is calculated based on the difference signal. a voltage deviation average calculation step;
    and a controlled variable calculation step of calculating a controlled variable for at least one of the first peak current value and the second peak current value based on the voltage deviation average value Verrp2_ave.
  21.  ガスシールドアーク溶接を応用した積層造形において溶接電流の波形制御を行いながら、積層造形を行う積層造形方法であって、
     前記ガスシールドアーク溶接に用いられるシールドガスとして、炭酸ガス、窒素ガス、水素ガス及び酸素ガスのうち少なくとも一つのガスを含み、
     前記溶接電流の波形は、溶滴を離脱させるための第1パルス期間と、溶接ワイヤの先端に十分な大きさの溶滴を形成させるための第2パルス期間とを、1周期とするパルス波形であり、
     前記第1パルス期間は、あらかじめ定めた、第1ピーク電流値を有する第1ピーク期間と、前記第1ピーク期間後の第1ベース期間とから構成され、
     前記第2パルス期間は、あらかじめ定めた、前記第1ピーク電流値よりも低い第2ピーク電流値を有する第2ピーク期間と、前記第2ピーク期間後の第2ベース期間とから構成され、
     前記波形制御の方法として、
     電圧検出信号Voを出力する電圧検出ステップと、
     前記電圧検出信号Voとあらかじめ定めた設定電圧Vsとの差分を差分信号とする場合に、前記差分信号に基づいて、前記第2パルス期間内においてあらかじめ定めた区間における電圧偏差平均値Verrp2_aveを算出する電圧偏差平均算出ステップと、
     前記電圧偏差平均値Verrp2_aveに基づいて、前記第1ピーク電流値及び前記第2ピーク電流値のうち少なくとも一方の制御量を算出する制御量算出ステップと、を有することを特徴とする積層造形方法。
    A layered manufacturing method for performing layered manufacturing while controlling the waveform of a welding current in layered manufacturing applying gas shielded arc welding,
    At least one gas selected from carbon dioxide gas, nitrogen gas, hydrogen gas, and oxygen gas is included as the shielding gas used in the gas-shielded arc welding,
    The waveform of the welding current is a pulse waveform in which one cycle is a first pulse period for detaching a droplet and a second pulse period for forming a sufficiently large droplet at the tip of the welding wire. and
    The first pulse period is composed of a predetermined first peak period having a first peak current value and a first base period after the first peak period,
    The second pulse period is composed of a predetermined second peak period having a second peak current value lower than the first peak current value, and a second base period after the second peak period,
    As the waveform control method,
    a voltage detection step of outputting a voltage detection signal Vo;
    When the difference between the voltage detection signal Vo and the predetermined set voltage Vs is used as the difference signal, a voltage deviation average value Verrp2_ave in a predetermined section within the second pulse period is calculated based on the difference signal. a voltage deviation average calculation step;
    and a controlled variable calculation step of calculating a controlled variable for at least one of the first peak current value and the second peak current value based on the voltage deviation average value Verrp2_ave.
PCT/JP2022/007236 2021-03-31 2022-02-22 Welding control method, welding power supply, welding system, welding method, and additive manufacturing method WO2022209432A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280023452.4A CN117062686A (en) 2021-03-31 2022-02-22 Welding control method, welding power source, welding system, welding method, and lamination molding method
KR1020237032152A KR20230145604A (en) 2021-03-31 2022-02-22 Welding control method, welding power source, welding system, welding method and additive manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-061901 2021-03-31
JP2021061901A JP2022157591A (en) 2021-03-31 2021-03-31 Welding control method, welding electric power source, welding system, welding method and laminate molding method

Publications (1)

Publication Number Publication Date
WO2022209432A1 true WO2022209432A1 (en) 2022-10-06

Family

ID=83456011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007236 WO2022209432A1 (en) 2021-03-31 2022-02-22 Welding control method, welding power supply, welding system, welding method, and additive manufacturing method

Country Status (4)

Country Link
JP (1) JP2022157591A (en)
KR (1) KR20230145604A (en)
CN (1) CN117062686A (en)
WO (1) WO2022209432A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009262181A (en) * 2008-04-24 2009-11-12 Daihen Corp Output controlling method in pulse arc welding
JP2010184256A (en) * 2009-02-12 2010-08-26 Kobe Steel Ltd Welding control apparatus for pulse arc welding of consumable electrode type, arc length control method therefor, and welding system including the welding control apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5036197B2 (en) 2006-03-10 2012-09-26 株式会社神戸製鋼所 Pulse arc welding method
JP5061007B2 (en) 2008-03-28 2012-10-31 株式会社神戸製鋼所 Welding control apparatus, welding control method and program thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009262181A (en) * 2008-04-24 2009-11-12 Daihen Corp Output controlling method in pulse arc welding
JP2010184256A (en) * 2009-02-12 2010-08-26 Kobe Steel Ltd Welding control apparatus for pulse arc welding of consumable electrode type, arc length control method therefor, and welding system including the welding control apparatus

Also Published As

Publication number Publication date
JP2022157591A (en) 2022-10-14
KR20230145604A (en) 2023-10-17
CN117062686A (en) 2023-11-14

Similar Documents

Publication Publication Date Title
US8704135B2 (en) Synergistic welding system
JP5061007B2 (en) Welding control apparatus, welding control method and program thereof
JP5199910B2 (en) Welding control apparatus for consumable electrode type pulse arc welding, arc length control method thereof, and welding system equipped with the welding control apparatus
JP4859620B2 (en) Gasless process and system for girth welding in high strength applications
EP3744460B1 (en) Arc welding controlling method
KR102327740B1 (en) Control method and control device of gas shielded arc welding
US20210299773A1 (en) Arc welding control method
JPWO2017169899A1 (en) Arc welding control method
EP3530395B1 (en) Ac pulse arc welding control method
CA2561271C (en) Synergistic welding system
WO2022209432A1 (en) Welding control method, welding power supply, welding system, welding method, and additive manufacturing method
JP2019155418A (en) Arc-welding control method
WO2021153011A1 (en) Output control method for gas-shielded arc welding, welding system, welding power source, and welding control device
JP5410189B2 (en) 2-wire welding control method
CN115397597A (en) Welding power supply, welding system, control method for welding power supply, and program
JP7319238B2 (en) Arc welding control method, welding power source, welding system and detection method
WO2024034363A1 (en) Arc welding method
JP2003103368A (en) Method for controlling multiple electrode pulse arc welding process and welding equipment
JP4459768B2 (en) AC pulse arc welding welding current control method
JP7430971B2 (en) Magnetic blow suppression control method for pulsed arc welding
JP7407398B2 (en) Arc welding control method
WO2023223739A1 (en) Control method of weld bead form, electric power source control method, additive manufacturing method, control device, electric power source device, welding system, and additive manufacturing system and program
WO2023042565A1 (en) Welding control method, welding control device, welding power supply, welding system, program, welding method, and additive manufacturing method
JP2002263838A (en) Control method and welding equipment for multi- electrode pulse arc welding
JP4294149B2 (en) Arc current control method and welding apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779657

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237032152

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237032152

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 202280023452.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2301006034

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779657

Country of ref document: EP

Kind code of ref document: A1