WO2022209325A1 - Composite, method for manufacturing same, resin-filled plate, laminate, and method for manufacturing same - Google Patents
Composite, method for manufacturing same, resin-filled plate, laminate, and method for manufacturing same Download PDFInfo
- Publication number
- WO2022209325A1 WO2022209325A1 PCT/JP2022/005063 JP2022005063W WO2022209325A1 WO 2022209325 A1 WO2022209325 A1 WO 2022209325A1 JP 2022005063 W JP2022005063 W JP 2022005063W WO 2022209325 A1 WO2022209325 A1 WO 2022209325A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin
- plate
- composite
- filled
- semi
- Prior art date
Links
- 229920005989 resin Polymers 0.000 title claims abstract description 338
- 239000011347 resin Substances 0.000 title claims abstract description 338
- 239000002131 composite material Substances 0.000 title claims abstract description 107
- 238000004519 manufacturing process Methods 0.000 title claims description 31
- 238000000034 method Methods 0.000 title claims description 28
- 150000004767 nitrides Chemical class 0.000 claims abstract description 92
- 239000011148 porous material Substances 0.000 claims abstract description 45
- 229920001187 thermosetting polymer Polymers 0.000 claims abstract description 13
- 239000011342 resin composition Substances 0.000 claims description 110
- 229910052751 metal Inorganic materials 0.000 claims description 33
- 239000002184 metal Substances 0.000 claims description 33
- 238000010438 heat treatment Methods 0.000 claims description 24
- 238000005470 impregnation Methods 0.000 claims description 19
- 230000003746 surface roughness Effects 0.000 claims description 18
- 238000000576 coating method Methods 0.000 claims description 14
- 239000011248 coating agent Substances 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 9
- 238000010030 laminating Methods 0.000 claims description 3
- 238000003825 pressing Methods 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 description 42
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 41
- 229910052582 BN Inorganic materials 0.000 description 40
- 150000001875 compounds Chemical class 0.000 description 33
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 27
- 238000005245 sintering Methods 0.000 description 24
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 18
- XLJMAIOERFSOGZ-UHFFFAOYSA-M cyanate Chemical compound [O-]C#N XLJMAIOERFSOGZ-UHFFFAOYSA-M 0.000 description 13
- 238000011049 filling Methods 0.000 description 13
- XQUPVDVFXZDTLT-UHFFFAOYSA-N 1-[4-[[4-(2,5-dioxopyrrol-1-yl)phenyl]methyl]phenyl]pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C(C=C1)=CC=C1CC1=CC=C(N2C(C=CC2=O)=O)C=C1 XQUPVDVFXZDTLT-UHFFFAOYSA-N 0.000 description 12
- 238000005259 measurement Methods 0.000 description 12
- 239000000203 mixture Substances 0.000 description 11
- 239000003822 epoxy resin Substances 0.000 description 10
- 238000009413 insulation Methods 0.000 description 10
- -1 polybutylene terephthalate Polymers 0.000 description 10
- 229920000647 polyepoxide Polymers 0.000 description 10
- 239000000843 powder Substances 0.000 description 10
- 125000003700 epoxy group Chemical group 0.000 description 9
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 8
- 229910052802 copper Inorganic materials 0.000 description 8
- 239000010949 copper Substances 0.000 description 8
- 230000017525 heat dissipation Effects 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 6
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 6
- 238000003475 lamination Methods 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 238000005755 formation reaction Methods 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 229920000877 Melamine resin Polymers 0.000 description 4
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 4
- 229920001807 Urea-formaldehyde Polymers 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 4
- 235000010338 boric acid Nutrition 0.000 description 4
- 229960002645 boric acid Drugs 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000005011 phenolic resin Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- XAZPKEBWNIUCKF-UHFFFAOYSA-N 1-[4-[4-[2-[4-[4-(2,5-dioxopyrrol-1-yl)phenoxy]phenyl]propan-2-yl]phenoxy]phenyl]pyrrole-2,5-dione Chemical compound C=1C=C(OC=2C=CC(=CC=2)N2C(C=CC2=O)=O)C=CC=1C(C)(C)C(C=C1)=CC=C1OC(C=C1)=CC=C1N1C(=O)C=CC1=O XAZPKEBWNIUCKF-UHFFFAOYSA-N 0.000 description 3
- AHMSEHIYZJLTGM-UHFFFAOYSA-N 2-(2-ethyl-4-methylimidazol-1-yl)acetonitrile Chemical compound CCC1=NC(C)=CN1CC#N AHMSEHIYZJLTGM-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 239000006087 Silane Coupling Agent Substances 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- AHZMUXQJTGRNHT-UHFFFAOYSA-N [4-[2-(4-cyanatophenyl)propan-2-yl]phenyl] cyanate Chemical compound C=1C=C(OC#N)C=CC=1C(C)(C)C1=CC=C(OC#N)C=C1 AHZMUXQJTGRNHT-UHFFFAOYSA-N 0.000 description 3
- 229920000180 alkyd Polymers 0.000 description 3
- 239000002518 antifoaming agent Substances 0.000 description 3
- 239000004327 boric acid Substances 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 3
- 239000002270 dispersing agent Substances 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- 229920001568 phenolic resin Polymers 0.000 description 3
- 229920003192 poly(bis maleimide) Polymers 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 229920002379 silicone rubber Polymers 0.000 description 3
- 239000004945 silicone rubber Substances 0.000 description 3
- 238000009736 wetting Methods 0.000 description 3
- 239000000080 wetting agent Substances 0.000 description 3
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 2
- MEVBAGCIOOTPLF-UHFFFAOYSA-N 2-[[5-(oxiran-2-ylmethoxy)naphthalen-2-yl]oxymethyl]oxirane Chemical compound C1OC1COC(C=C1C=CC=2)=CC=C1C=2OCC1CO1 MEVBAGCIOOTPLF-UHFFFAOYSA-N 0.000 description 2
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 2
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 2
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000011164 primary particle Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 235000019587 texture Nutrition 0.000 description 2
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- ITWBWJFEJCHKSN-UHFFFAOYSA-N 1,4,7-triazonane Chemical compound C1CNCCNCCN1 ITWBWJFEJCHKSN-UHFFFAOYSA-N 0.000 description 1
- JOLQKTGDSGKSKJ-UHFFFAOYSA-N 1-ethoxypropan-2-ol Chemical compound CCOCC(C)O JOLQKTGDSGKSKJ-UHFFFAOYSA-N 0.000 description 1
- GEGLCBTXYBXOJA-UHFFFAOYSA-N 1-methoxyethanol Chemical compound COC(C)O GEGLCBTXYBXOJA-UHFFFAOYSA-N 0.000 description 1
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 1
- PTTPXKJBFFKCEK-UHFFFAOYSA-N 2-Methyl-4-heptanone Chemical compound CC(C)CC(=O)CC(C)C PTTPXKJBFFKCEK-UHFFFAOYSA-N 0.000 description 1
- IMSODMZESSGVBE-UHFFFAOYSA-N 2-Oxazoline Chemical compound C1CN=CO1 IMSODMZESSGVBE-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- 229940093475 2-ethoxyethanol Drugs 0.000 description 1
- ULKLGIFJWFIQFF-UHFFFAOYSA-N 5K8XI641G3 Chemical compound CCC1=NC=C(C)N1 ULKLGIFJWFIQFF-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 108010068977 Golgi membrane glycoproteins Proteins 0.000 description 1
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 1
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004954 Polyphthalamide Substances 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- AUYQDAWLRQFANO-UHFFFAOYSA-N [4-[(4-cyanatophenyl)methyl]phenyl] cyanate Chemical compound C1=CC(OC#N)=CC=C1CC1=CC=C(OC#N)C=C1 AUYQDAWLRQFANO-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 229920000800 acrylic rubber Polymers 0.000 description 1
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000009694 cold isostatic pressing Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 229960003280 cupric chloride Drugs 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 1
- 238000000113 differential scanning calorimetry Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920006375 polyphtalamide Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 235000019592 roughness Nutrition 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000005829 trimerization reaction Methods 0.000 description 1
- 238000003826 uniaxial pressing Methods 0.000 description 1
- 229920006305 unsaturated polyester Polymers 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/18—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B9/00—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/583—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/82—Coating or impregnation with organic materials
- C04B41/83—Macromolecular compounds
Definitions
- the present disclosure relates to a composite and its manufacturing method, a resin-filled plate, and a laminate and its manufacturing method.
- Components such as power devices, transistors, thyristors, and CPUs are required to efficiently dissipate the heat generated during use.
- a composite composed of a resin and a ceramic such as boron nitride is used as a heat dissipation member.
- a composite obtained by impregnating a porous ceramic sintered body for example, a boron nitride sintered body
- a resin-impregnated boron nitride sintered body the primary particles constituting the boron nitride sintered body are brought into direct contact with the circuit board to reduce the thermal resistance of the laminate and improve heat dissipation. is also being studied (see Patent Document 2, for example).
- the resin part is maintained in a semi-cured state, and the adhesion is improved by further curing the resin when connecting to an adherend such as a metal sheet.
- the inventors of the present invention have found that the resin is in a semi-cured state and becomes fluid due to heating at the time of connection, so that part of the resin flows out from the side of the composite, reducing the amount of resin in the composite, voids, etc. It has been found that the insulation may not be exhibited to the extent expected. The present disclosure is made based on this finding.
- One aspect of the present disclosure is a resin-filled plate including a porous nitride sintered plate and a first resin filled in the pores of the nitride sintered plate, and on a main surface of the resin-filled plate and a semi-cured resin layer containing a second resin provided on at least a part thereof, wherein the curing rate of the first resin is 70% or more, and the semi-cured resin layer contains a thermosetting resin. , providing a complex.
- the first resin filled in the resin-filled plate has a relatively high cure rate, so that the outflow of the resin when connecting to the adherend can be suppressed. Since the resin filled in the resin-filled plate has a high curing rate, the resin itself does not have sufficient adhesiveness. However, the above composite further has a semi-cured resin layer on at least part of the main surface of the resin-filled plate. As a result, the composite can exhibit excellent adhesion to adherends and excellent insulating properties.
- the difference between the curing rate of the first resin and the curing rate of the second resin may be 30% or more.
- the hardening rate of the first resin is 30% or more advanced than the hardening rate of the second resin, so that the outflow of the resin when connecting to the adherend is further reduced and the adhesiveness is sufficiently secured. can do.
- the curing rate of the first resin may be 90% or less. When the curing rate of the first resin is 90% or less, it is possible to ensure appropriate flexibility, and further suppress damage to the composite during distribution, pressure bonding to the adherend, etc. can.
- the thickness of the semi-cured resin layer may be 0.5 to 25.0% of the thickness of the nitride sintered plate.
- the main surface of the resin-filled plate may have a surface roughness Rz of 3 to 25 ⁇ m.
- the surface roughness Rz of the main surface of the resin-filled plate is within the above range, the adhesive force between the resin-filled plate and the semi-cured resin layer can be further improved, and the adhesion between the resin-filled plate and the semi-cured resin layer can be improved. It is possible to suppress the formation of voids and the like at the interface, and further suppress the decrease in heat dissipation inside the composite. Due to such action, the resin-filled plate can be suitably used to prepare a laminate having both adhesiveness and heat dissipation at a higher level.
- the median pore diameter of the nitride sintered plate may be 0.3 to 6.0 ⁇ m.
- the median pore diameter of the nitride sintered plate is within the above range, it is possible to improve the filling property of the first resin and improve the thermal conductivity of the nitride sintered plate.
- the wettability with the second resin can be improved, and the adhesiveness between the resin-filled plate and the semi-cured resin layer can be further improved.
- One aspect of the present disclosure provides a laminate comprising the composite described above and a metal sheet provided on the composite.
- the laminate includes the composite described above, it can exhibit excellent insulating properties.
- One aspect of the present disclosure is a resin-filled plate including a porous nitride sintered plate and a resin filled in the pores of the nitride sintered plate, wherein the curing rate of the resin is 70% or more. I will provide a.
- the above resin-filled plate has a high cure rate of the filled resin, and even when heated, the resin is suppressed from flowing out of the nitride sintered plate. Therefore, the resin-filled plate can be suitably used for producing the above composite.
- the curing rate of the resin may be 90% or less.
- the curing rate of the resin is 90% or less, it is possible to ensure appropriate flexibility, and it is possible to further suppress breakage during distribution.
- the main surface may have a surface roughness Rz of 3 to 25 ⁇ m.
- the surface roughness Rz of the main surface of the resin-filled plate is within the above range, the semi-cured resin layer can be more easily formed on the resin-filled plate.
- One aspect of the present disclosure includes an impregnation step of impregnating a porous nitride sintered plate with a first resin composition to obtain a resin-impregnated body, and heating the resin-impregnated body to fill the pores with the resin composition.
- curing proceeds so that the curing rate of the first resin reaches a predetermined value or more, the first resin is sufficiently fixed in the resin-filled plate, and the first resin flows out by reheating.
- the adhesiveness of the composite to the adherend can be imparted.
- Such a manufacturing method can provide a composite that can exhibit excellent insulating properties after being adhered to an adherend.
- the coating step may be a step of providing the semi-cured resin layer on at least a portion of the main surface of the resin-filled plate by applying a second resin composition to the resin-filled plate and heating the second resin composition. Since the coating step is a step as described above, the hardening rate of the second resin can be freely adjusted, and the resin hardening rate can be set to suit the application of the composite.
- the coating step may be a step of providing the semi-cured resin layer on at least part of the main surface of the resin-filled plate by bonding a semi-cured material of the second resin composition to the resin-filled plate. .
- the resin thickness of the second resin can be made uniform, and the resulting composite can exhibit more stable adhesive strength with the adherend.
- One aspect of the present disclosure provides a method for manufacturing a laminate, which includes a lamination step of laminating the composite obtained by the above-described manufacturing method and a metal sheet, and heating and pressurizing them.
- the manufacturing method of the laminate can provide a laminate capable of exhibiting excellent insulation properties because the above-described composite is used.
- the present disclosure it is possible to provide a composite that can exhibit excellent insulation after bonding to an adherend, and a method for producing the same.
- the present disclosure can also provide resin-filled plates suitable for preparing the composites described above.
- FIG. 1 is a perspective view showing an example of a composite.
- FIG. 2 is a schematic diagram showing a cross section along line II-II in FIG.
- FIG. 3 is a cross-sectional view showing an example of a laminate.
- each component in the composition means the total amount of the multiple substances present in the composition unless otherwise specified when there are multiple substances corresponding to each component in the composition. .
- One embodiment of the composite includes a resin-filled plate containing a porous nitride sintered plate, a first resin filled in the pores of the nitride sintered plate, and a main surface of the resin-filled plate and a semi-cured resin layer containing a second resin provided on at least a part of the.
- the curing rate of the first resin is 70% or more.
- the semi-cured resin layer contains a thermosetting resin.
- the shape of the composite is not particularly limited, and may be, for example, a sheet shape.
- FIG. 1 is a perspective view showing an example of a complex.
- FIG. 2 is a schematic diagram showing a cross section along line II-II in FIG.
- the composite 10 has a resin-filled plate 12 and semi-cured resin layers 14 on both main surfaces of a pair of main surfaces 12 a of the resin-filled plate 12 .
- the composite 10 is shown as an example in which the semi-cured resin layer 14 is provided so as to cover the entire main surface 12a of both resin-filled plates 12, but the adhesiveness to the adherend is ensured. It is sufficient if the semi-cured resin layer 14 is provided on at least a part of the resin-filled plate 12 .
- the semi-cured resin layer 14 when the semi-cured resin layer 14 is partially provided, it is desirable to provide it in the center so as not to entrap gas or the like when it comes into contact with the adherend, reducing the effect of the semi-cured resin layer 14 melting and spreading.
- the semi-cured resin layer 14 may be provided so as to be smaller than the area of the main surface 12 a of the resin-filled plate 12 .
- the composite 10 is shown as an example in which the semi-cured resin layer 14 is provided on both main surfaces 12a of the resin-filled plate 12, depending on the adhesiveness of the resin-filled plate 12, only one main surface may be provided.
- the composite 10 may further have a semi-cured resin layer on the side surface of the resin-filled plate 12 .
- the outflow of the first resin from the resin-filled plate 12 is sufficiently suppressed, and the semi-cured resin layer does not have to be provided on the side surface of the resin-filled plate 12 .
- the thickness of the composite 10 may be, for example, less than 10.0 mm, less than 5.0 mm, or less than 2.0 mm.
- the lower limit of the thickness of the composite 10 may be, for example, 0.1 mm or more, 0.2 mm or more, 0.3 mm or more, or 0.5 mm or more. This allows the composite 10 to be sufficiently miniaturized.
- Such a composite 10 is suitably used, for example, as a component of a semiconductor device.
- the thickness of composite 10 may be adjusted within the ranges described above, and may be from 0.1 mm to less than 10.0 mm, or from 0.2 mm to less than 2.0 mm.
- the thickness of the composite 10 is measured along the direction perpendicular to the main surface.
- the thickness of the composite 10 is measured at 10 arbitrary points, and the arithmetic mean value thereof should be within the above range.
- the size of the main surface 12a of the resin-filled plate 12 is not particularly limited, and may be, for example, 50 mm 2 or more, 200 mm 2 or more, 500 mm 2 or more, 800 mm 2 or more, or 1000 mm 2 or more.
- the sizes of the main surfaces 12a of the resin-filled plates 12 are generally the same, but they do not need to be exactly the same, and may be different from each other.
- the upper limit of the surface roughness Rz of the main surface 12a of the resin-filled plate 12 may be, for example, 25 ⁇ m or less, 23 ⁇ m or less, or 20 ⁇ m or less.
- the lower limit of the surface roughness Rz of the main surface 12a of the resin-filled plate 12 may be, for example, 3 ⁇ m or more, 5 ⁇ m or more, or 7 ⁇ m or more.
- the surface roughness Rz of the main surface 12a of the resin-filled plate 12 may be adjusted within the range described above, and may be, for example, 3-25 ⁇ m, or 7-20 ⁇ m.
- the surface roughnesses Rz of both main surfaces 12a of the resin-filled plate 12 may be the same or different, but even if they are different, it is desirable that both main surfaces 12a are within the above range. .
- the surface roughness Rz in this specification is the maximum height roughness specified in JIS B 0601: 2013 "Use of geometric properties of products (GPS) - surface texture: contour curve method - terms, definitions and surface texture parameters" means.
- the surface roughness Rz is a value measured according to JIS B 0601:2013.
- the volume ratio of the first resin in the resin-filled plate 12 may be, for example, 30-60% by volume, or 35-55% by volume, based on the total volume of the resin-filled plate 12 .
- the volume ratio of the nitride particles constituting the porous nitride sintered plate in the resin-filled plate 12 is, for example, 40 to 70% by volume, or 45 to 65% by volume, based on the total volume of the resin-filled plate 12. It's okay.
- the resin-filled plate 12 having such a volume ratio can exhibit excellent strength.
- porous nitride sintered plates include boron nitride sintered plates.
- the nitride sintered plate contains nitride particles and pores formed by sintering nitride primary particles.
- the median pore size of the pores of the nitride sintered plate may be, for example, 6.0 ⁇ m or less, 5.0 ⁇ m or less, 4.0 ⁇ m or less, or 3.5 ⁇ m or less. Since such a nitride sintered plate has a small pore size, it is possible to sufficiently increase the contact area between the nitride particles. Therefore, thermal conductivity can be increased.
- the median pore diameter of the pores of the nitride sintered plate may be, for example, 0.3 ⁇ m or more, 0.5 ⁇ m or more, 1.0 ⁇ m or more, or 1.5 ⁇ m or more. Since such a nitride sintered plate can be sufficiently deformed by pressurization during bonding, it has excellent adhesion to other members (adherends).
- the median pore size of the pores of the nitride sintered plate may be adjusted within the above range, and may be, for example, 0.3-6.0 ⁇ m, or 1.5-3.5 ⁇ m.
- the median pore diameter of the pores of the nitride sintered plate can be measured by the following procedure. First, the composite is heated to remove the semi-cured resin layer and the first resin. Then, using a mercury porosimeter, the pore size distribution is determined when the nitride sintered plate is pressed while increasing the pressure from 0.0042 MPa to 206.8 MPa. When the horizontal axis is the pore diameter and the vertical axis is the cumulative pore volume, the pore diameter when the cumulative pore volume reaches 50% of the total pore volume is the median pore diameter. As the mercury porosimeter, for example, one manufactured by Shimadzu Corporation can be used.
- the porosity of the nitride sintered plate that is, the ratio of the pore volume (V1) in the nitride sintered plate may be 30 to 65% by volume, and may be 40 to 60% by volume. If the porosity becomes too large, the strength of the nitride sintered plate tends to decrease. On the other hand, if the porosity is too small, less resin tends to ooze out when the composite is adhered to another member.
- the porosity is obtained by calculating the bulk density [B (kg/m 3 )] from the volume and mass of the nitride sintered plate, and using this bulk density and the theoretical density [A (kg/m 3 )] of the nitride. , can be obtained by the following formula (1).
- the nitride sintered plate may contain at least one selected from the group consisting of boron nitride, aluminum nitride, and silicon nitride.
- the theoretical density A is 2280 kg/m 3 .
- aluminum nitride the theoretical density A is 3260 kg/m 3 .
- silicon nitride the theoretical density A is 3170 kg/m 3 .
- Porosity (volume%) [1-(B/A)] x 100 (1)
- the bulk density B may be 800 to 1500 kg/m 3 or 1000 to 1400 kg/m 3 . If the bulk density B becomes too small, the strength of the nitride sintered plate tends to decrease. On the other hand, if the bulk density B is too high, the amount of resin filled in the composite may decrease, resulting in a loss of good adhesion of the composite.
- the thickness of the nitride sintered plate may be, for example, 10.0 mm or less, 5.0 mm or less, or 2.0 mm or less.
- the lower limit of the thickness of the nitride sintered plate may be, for example, 0.1 mm or more, or 0.5 mm or more.
- the thickness of the nitride sintered plate is measured along the direction perpendicular to the main surface, and if the thickness is not constant, select 10 arbitrary locations to measure the thickness, and the average value is the above may be within the range of
- the thickness of the nitride sintered plate may be adjusted within the above range, and may be, for example, 0.1-10.0 mm, or 0.5-2.0 mm.
- the first resin contained in the resin-filled plate 12 is a cured product (C stage) or semi-cured product (B stage) of a resin composition containing a main agent and a curing agent.
- the cured product is obtained by completing the curing reaction of the resin composition.
- the semi-cured product is obtained by partially progressing the curing reaction of the resin composition.
- the semi-cured product can be further cured by a subsequent curing treatment.
- the first resin may contain a thermosetting resin or the like generated by the reaction of the main agent and curing agent in the resin composition.
- the semi-cured product may contain monomers such as a main agent and a curing agent in addition to the thermosetting resin as a resin component. It can be confirmed by, for example, a differential scanning calorimeter that the resin contained in the composite is a semi-cured product (B stage) before becoming a cured product (C stage).
- the first resin contained in the resin-filled plate 12 has a cured rate higher than that of the conventional resin-filled plate.
- the curing rate of the first resin is 70% or more, and may be, for example, 72% or more, 75% or more, or 80% or more.
- the upper limit of the cure rate of the first resin is not particularly limited, but may be, for example, 90% or less, 88% or less, or 85% or less.
- the cure rate of the first resin may be adjusted within the above range, and may be, for example, 70-90%, or 72-85%.
- the cure rate of the first resin can be determined by measurement using a differential scanning calorimeter. First, the calorific value Q per unit mass generated when 2 mg of the uncured resin composition is completely cured is measured. Then, a 10 mg sample taken from the resin included in the composite sheet is heated in the same manner, and the calorific value R per unit mass generated when the sample is completely cured is determined. At this time, the mass of the sample used for the measurement with the differential scanning calorimeter is the same as that of the resin composition used for the measurement of the calorific value Q. Assuming that c (% by mass) of a thermosetting component is contained in the resin, the curing rate of the resin composition impregnated in the composite sheet is obtained by the following formula (A).
- the first resin examples include epoxy resin, silicone resin, cyanate resin, silicone rubber, acrylic resin, phenol resin, melamine resin, urea resin, bismaleimide resin, unsaturated polyester, fluorine resin, polyimide, polyamideimide, and polyetherimide.
- polybutylene terephthalate polyethylene terephthalate, polyphenylene ether, polyphenylene sulfide, wholly aromatic polyester, polysulfone, liquid crystal polymer, polyethersulfone, polycarbonate, maleimide resin, maleimide-modified resin, ABS (acrylonitrile-butadiene-styrene) resin, AAS (acrylonitrile - acrylic rubber/styrene) resin, AES (acrylonitrile/ethylene/propylene/diene rubber-styrene) resin, polyglycolic acid resin, polyphthalamide, and polyacetal.
- ABS acrylonitrile-butadiene-styrene
- AAS acrylonitrile - acrylic rubber/styrene
- AES acrylonitrile/ethylene/propylene/diene rubber-styrene
- the semi-cured resin layer 14 contains the second resin and has a lower curing rate than the first resin.
- the composite 10 has excellent adhesion to the adherend.
- the difference between the cure rate of the first resin and the cure rate of the second resin may be, for example, 30% or more, 35% or more, or 40% or more.
- the curing rate of the second resin can be measured using a sample taken from the semi-cured resin layer 14 in the same manner as measuring the curing rate of the first resin.
- the components of the second resin may be the same as or different from those of the first resin. From the viewpoint of improving the insulation properties after the coating, it is desirable that they are made of the same resin.
- the thickness of the semi-cured resin layer 14 may be adjusted from the viewpoint of achieving both adhesion and heat dissipation.
- the thickness of the semi-cured resin layer 14 may be, for example, 25.0% or less, 20.0% or less, or 15.0% or less based on the thickness of the nitride sintered plate.
- the thickness of the semi-cured resin layer 14 may be, for example, 0.5% or more, 1.0% or more, or 2.0% or more based on the thickness of the nitride sintered plate.
- the thickness of the semi-cured resin layer 14 may be adjusted within the above range, and is, for example, 0.5 to 25.0%, or 2.0 to 15.0%, based on the thickness of the nitride sintered plate. %.
- a laminate includes the composite and a metal sheet provided on the composite.
- the composite and the metal sheet may be joined by a cured semi-cured resin layer of the composite. That is, in one aspect of the laminate, a resin-filled plate, a cured resin layer, and a metal sheet are provided in this order. In this case, the resin filling and the metal sheet are joined via the cured resin layer.
- the metal sheet is not particularly limited as long as it is made of metal and has a sheet shape.
- the adherend (another member) mentioned in the description of the composite above may be a metal sheet.
- the metal sheet may be a metal plate or a metal foil. Examples of the material of the metal sheet include aluminum and copper.
- FIG. 3 is a cross-sectional view showing an example of a laminate.
- FIG. 3 shows a cross section of the laminate 20 cut along the lamination direction.
- Laminate 20 comprises composite 10 of FIGS. 1 and 2 and metal sheets 22 laminated on both major surfaces of composite 10 .
- the material and thickness of the plurality of metal sheets 22 may be the same or different. Also, it is not essential to provide the metal sheets 22 on both major surfaces of the composite 10 . Alternatively, only one major surface of composite 10 may be provided with metal sheet 22 .
- the metal sheet 22 in the laminate 20 is in contact with the semi-cured resin layer 14 . Thereby, the metal sheet 22 and the composite 10 are adhered with high adhesion. In order to fix this state, the semi-cured resin layer 14 may be cured to form a cured resin layer. Since the metal sheet 22 and the composite body 10 are adhered to each other with high adhesiveness, the laminated body 20 can be suitably used as a heat radiation member, for example, in a semiconductor device or the like.
- the thickness of the laminate 20 may be, for example, less than 12.0 mm, less than 6.0 mm, or less than 3.0 mm.
- the lower limit of the thickness of the laminate 20 may be, for example, 0.6 mm or more.
- the laminated body 20 can be sufficiently miniaturized.
- Such a laminate 20 is suitably used as a component of a semiconductor device, for example.
- the thickness of the laminate 20 may be adjusted within the range described above, and may be, for example, 0.6 mm or more and less than 12.0 mm, or 0.6 mm or more and less than 6.0 mm.
- the laminate 20 includes the composite 10, it is possible to achieve both high levels of thermal conductivity and insulation reliability. For example, by increasing the curing rate of the first resin in advance, the outflow of the first resin when forming the laminate is sufficiently suppressed, and the insulating properties expected of the resin-filled plate can be sufficiently exhibited. obtain.
- One embodiment of the method for producing a composite includes an impregnation step of impregnating a porous nitride sintered plate with a first resin composition to obtain a resin-impregnated body, and heating the resin-impregnated body to fill the pores. a curing step of curing or semi-curing the resin composition to obtain a resin-filled board containing a first resin; and providing a semi-cured resin layer containing a second resin on at least a portion of the main surface of the resin-filled board. and a coating step.
- the curing rate of the first resin is 70% or more.
- a nitride sintered plate prepared in advance may be used as the porous nitride sintered plate, or a nitride sintered plate prepared by the following sintering process may be used.
- a nitride sintered plate prepared by the following sintering process may be used.
- the sintering step described later can be omitted.
- a raw material powder containing nitride is prepared.
- the nitride contained in the raw material powder may contain, for example, at least one nitride selected from the group consisting of boron nitride, aluminum nitride, and silicon nitride.
- the boron nitride may be amorphous boron nitride or hexagonal boron nitride.
- the raw material powder is, for example, an amorphous boron nitride powder having an average particle size of 0.5 to 10.0 ⁇ m, or an average particle size of 3.0 to A 40.0 ⁇ m hexagonal boron nitride powder can be used.
- a compound containing nitride powder may be molded and sintered to obtain a nitride sintered body.
- the molding may be carried out, for example, by uniaxial pressing or cold isostatic pressing (CIP).
- a sintering aid may be blended into the formulation prior to molding.
- sintering aids include metal oxides such as yttrium oxide, aluminum oxide and magnesium oxide, alkali metal carbonates such as lithium carbonate and sodium carbonate, and boric acid.
- the amount of the sintering aid is, for example, 0.01 parts by mass or more, or 0.10 parts by mass with respect to a total of 100 parts by mass of the nitride and the sintering aid. or more.
- the amount of the sintering aid compounded is, for example, 20.00 parts by mass or less, 15.00 parts by mass or less, or 10.00 parts by mass or less with respect to a total of 100 parts by mass of the nitride and the sintering aid. good.
- the amount of the sintering aid may be adjusted within the above range, for example, 0.01 to 20.00 parts by mass, or 0.10 parts per 100 parts by mass of the total of the nitride and the sintering aid. It may be up to 10.00 parts by mass.
- the compound may be formed into a sheet-like molded body by, for example, a doctor blade method.
- the molding method is not particularly limited, and press molding may be performed using a mold to form a molded body.
- the molding pressure may be, for example, 5-350 MPa.
- the shape of the compact may be a sheet with a thickness of less than 2 mm. If a nitride sintered plate is produced using such a sheet-like compact, a sheet-like composite having a thickness of less than 2 mm can be produced without cutting the nitride sintered plate.
- the material loss due to processing can be reduced by forming the block into a sheet from the compact stage. Therefore, the composite can be manufactured with high yield.
- the sintering temperature in the sintering step may be, for example, 1600°C or higher, or 1700°C or higher.
- the sintering temperature may be, for example, 2200° C. or lower, or 2000° C. or lower.
- the sintering time may be, for example, 1 hour or more and may be 30 hours or less.
- the atmosphere during sintering may be, for example, an inert gas atmosphere such as nitrogen, helium, and argon.
- a batch type furnace and a continuous type furnace can be used.
- Batch type furnaces include, for example, muffle furnaces, tubular furnaces, atmosphere furnaces, and the like.
- continuous furnaces include rotary kilns, screw conveyor furnaces, tunnel furnaces, belt furnaces, pusher furnaces, and large continuous furnaces.
- a nitride sintered body or a nitride sintered plate can be obtained.
- the nitride sintered body may be block-shaped.
- a cutting step may be performed to process it so that it has a thickness of less than 2 mm.
- the nitride sintered body is cut using, for example, a wire saw.
- the wire saw may be, for example, a multi-cut wire saw or the like.
- a sheet-like nitride sintered plate having a thickness of less than 2 mm, for example, can be obtained by such a cutting process.
- the pores of the nitride sintered body are impregnated with the first resin composition having a viscosity of 10 to 500 mPa ⁇ s to obtain a resin-impregnated body.
- the impregnation of the first resin composition can be facilitated.
- the filling rate of the resin filler can be sufficiently increased.
- the viscosity of the first resin composition when the nitride sintered plate is impregnated with the first resin composition may be, for example, 440 mPa ⁇ s or less, 390 mPa ⁇ s or less, or 340 mPa ⁇ s or less. By reducing the viscosity of the first resin composition in this manner, the impregnation of the first resin composition can be sufficiently promoted.
- the viscosity of the first resin composition when the nitride sintered plate is impregnated with the first resin composition may be, for example, 15 mPa ⁇ s or more, or 20 mPa ⁇ s or more.
- the viscosity of the first resin composition may be adjusted within the range described above, and may be, for example, 15 to 440 mPa ⁇ s, or 20 to 340 mPa ⁇ s.
- the viscosity of the first resin composition may be adjusted by partially polymerizing the monomer component, or may be adjusted by adding a solvent.
- the above viscosity of the first resin composition is the viscosity at the temperature (T1) of the first resin composition when impregnating the nitride sintered plate with the first resin composition.
- This viscosity is a value measured using a rotational viscometer at a shear rate of 10 (1/sec) and a temperature (T1). Therefore, by changing the temperature T1, the viscosity when the nitride sintered plate is impregnated with the first resin composition may be adjusted.
- the temperature (T2) may be, for example, 80-140°C.
- Impregnation of the nitride sintered plate with the first resin composition may be performed under pressure or under reduced pressure.
- the impregnation method is not particularly limited, and the nitride sintered plate may be immersed in the first resin composition, or the surface of the nitride sintered plate may be coated with the first resin composition. good.
- the impregnation step may be performed under either reduced pressure or increased pressure, or a combination of impregnation under reduced pressure and increased pressure.
- the pressure in the impregnation device when the impregnation step is performed under reduced pressure conditions may be, for example, 1000 Pa or less, 500 Pa or less, 100 Pa or less, 50 Pa or less, or 20 Pa or less.
- the pressure in the impregnation device when the impregnation step is performed under pressurized conditions may be, for example, 1 MPa or higher, 3 MPa or higher, 10 MPa or higher, or 30 MPa or higher.
- the impregnation of the resin composition by capillary action may be promoted, and the filling rate of the resin in the resin filling body may be adjusted.
- the median pore diameter of the nitride sintered plate may be, for example, 0.3-6.0 ⁇ m, 0.5-5.0 ⁇ m, or 1.0-4.0 ⁇ m.
- first resin composition it is possible to use, for example, one that becomes the resin mentioned in the above description of the composite by curing or semi-curing reaction.
- the first resin composition may contain a solvent.
- Solvents include, for example, ethanol and aliphatic alcohols such as isopropanol, 2-methoxyethanol, 1-methoxyethanol, 2-ethoxyethanol, 1-ethoxy-2-propanol, 2-butoxyethanol, 2-(2-methoxy Ether alcohols such as ethoxy)ethanol, 2-(2-ethoxyethoxy)ethanol, and 2-(2-butoxyethoxy)ethanol, glycol ethers such as ethylene glycol monomethyl ether and ethylene glycol monobutyl ether, acetone, methyl ethyl ketone, methyl isobutyl Examples include ketones, ketones such as diisobutyl ketone, and aromatic hydrocarbons such as toluene and xylene.
- the first resin composition is thermosetting, for example, at least one compound selected from the group consisting of a compound having a cyanate group, a compound having a bismaleimide group, and a compound having an epoxy group, and a curing agent. , may contain.
- Examples of compounds having a cyanate group include dimethylmethylenebis(1,4-phenylene)biscyanate and bis(4-cyanatophenyl)methane.
- Dimethylmethylenebis(1,4-phenylene)biscyanate is commercially available, for example, as TACN (manufactured by Mitsubishi Gas Chemical Company, Inc., trade name).
- Examples of compounds having a bismaleimide group include N,N'-[(1-methylethylidene)bis[(p-phenylene)oxy(p-phenylene)]]bismaleimide and 4,4'-diphenylmethanebismaleimide. etc.
- N,N'-[(1-methylethylidene)bis[(p-phenylene)oxy(p-phenylene)]]bismaleimide is commercially available as BMI-80 (manufactured by K.I. Kasei Co., Ltd., trade name), for example. readily available.
- Examples of compounds having epoxy groups include bisphenol F type epoxy resins, bisphenol A type epoxy resins, biphenyl type epoxy resins, and polyfunctional epoxy resins.
- it may be 1,6-bis(2,3-epoxypropan-1-yloxy)naphthalene, which is commercially available as HP-4032D (manufactured by DIC Corporation, trade name).
- the curing agent may contain a phosphine-based curing agent and an imidazole-based curing agent.
- a phosphine-based curing agent can promote a triazine formation reaction by trimerization of a compound having a cyanate group or a cyanate resin.
- Phosphine-based curing agents include, for example, tetraphenylphosphonium tetra-p-tolylborate and tetraphenylphosphonium tetraphenylborate. Tetraphenylphosphonium tetra-p-tolylborate is commercially available, for example, as TPP-MK (manufactured by Hokko Chemical Industry Co., Ltd., trade name).
- the imidazole-based curing agent generates oxazoline and accelerates the curing reaction of the epoxy group-containing compound or epoxy resin.
- imidazole curing agents include 1-(1-cyanomethyl)-2-ethyl-4-methyl-1H-imidazole and 2-ethyl-4-methylimidazole.
- 1-(1-Cyanomethyl)-2-ethyl-4-methyl-1H-imidazole is commercially available, for example, as 2E4MZ-CN (manufactured by Shikoku Kasei Co., Ltd., trade name).
- the content of the phosphine-based curing agent is, for example, 5 parts by mass or less, 4 parts by mass or less, or It may be 3 parts by mass or less.
- the content of the phosphine-based curing agent is, for example, 0.1 parts by mass or more, or 0.5 parts by mass, with respect to 100 parts by mass of the total amount of the compound having a cyanate group, the compound having a bismaleimide group, and the compound having an epoxy group. It may be at least parts by mass.
- the content of the phosphine-based curing agent is within the above range, it is easy to prepare the resin-impregnated body.
- the content of the phosphine-based curing agent may be adjusted within the above-mentioned range, and for example, 0.5 parts per 100 parts by mass of the total amount of the compound having a cyanate group, the compound having a bismaleimide group and the compound having an epoxy group. It may be 1 to 5 parts by mass.
- the content of the imidazole-based curing agent is, for example, 0.1 parts by mass or less, 0.05 parts by mass with respect to 100 parts by mass of the total amount of the compound having a cyanate group, the compound having a bismaleimide group, and the compound having an epoxy group. parts or less, or 0.03 parts by mass or less.
- the content of the imidazole-based curing agent is, for example, 0.001 parts by mass or more, or 0.005 parts by mass with respect to 100 parts by mass of the total amount of the compound having a cyanate group, the compound having a bismaleimide group, and the compound having an epoxy group. It may be at least parts by mass.
- the content of the imidazole-based curing agent may be adjusted within the range described above. 001 to 0.1 parts by mass.
- the first resin composition may contain components other than the main agent and the curing agent.
- Other components further include, for example, other resins such as phenolic resins, melamine resins, urea resins, and alkyd resins, silane coupling agents, leveling agents, antifoaming agents, surface control agents, and wetting and dispersing agents. It's okay.
- the content of these other components may be, for example, 20% by mass or less, 10% by mass or less, or 5% by mass or less based on the total amount of the first resin composition.
- the curing step by curing or semi-curing the first resin composition in the resin-impregnated body obtained in the impregnation step, a resin-filled plate containing the first resin having a curing rate of 70% or more is prepared.
- the first resin composition is cured or semi-cured by heating and/or light irradiation depending on the type of the first resin composition (or curing agent added as necessary).
- the heating temperature for curing or semi-curing the first resin composition by heating may be, for example, 80 to 130°C.
- the first resin obtained by semi-curing or curing the first resin composition contains, as a resin component, at least one thermosetting resin selected from the group consisting of cyanate resins, bismaleimide resins, and epoxy resins. you can The first resin may also contain a curing agent.
- the first resin includes other resins such as phenolic resins, melamine resins, urea resins, and alkyd resins, as well as silane coupling agents, leveling agents, antifoaming agents, surface control agents, and components derived from wetting and dispersing agents.
- the curing step is preferably performed in a situation where the first resin composition exists around the resin-impregnated body.
- the first resin composition is supplied from the periphery of the resin-impregnated body, and the formation of voids can be further suppressed.
- the presence of the similar resin in the surroundings can also suppress the formation of voids.
- a composite is prepared by providing a semi-cured resin layer containing the second resin on at least part of the main surface of the resin-filled plate.
- the coating step is, for example, a step of applying a second resin composition to the resin-filled plate obtained in the curing step and heating it to provide a semi-cured resin layer on at least a portion of the main surface of the resin-filled plate.
- the step may include providing a semi-cured resin layer on at least a portion of the main surface of the resin-filled plate by adhering a pre-prepared semi-cured second resin composition.
- the coating method in the coating step is not particularly limited, and the resin-filled plate may be immersed in the second resin composition, or the surface of the resin-filled plate may be coated with the second resin composition. Alternatively, a separately prepared semi-cured resin layer may be adhered.
- the means for bonding the separately prepared semi-cured resin layer may be a method of transferring the semi-cured resin layer separately provided on the support. The amount of the second resin composition adhering to the resin filler may be adjusted by the viscosity of the second resin composition.
- the viscosity of the second resin composition when adhered to the resin-filled plate may be, for example, 10 to 500 mPa ⁇ s, or 15 to 400 mPa ⁇ s.
- the viscosity of the second resin composition is the viscosity at the temperature (T4) of the second resin composition when the second resin composition adheres to the resin filling.
- the viscosity is measured using a rotational viscometer at a shear rate of 10 (1/sec) and under temperature (T4).
- T4 the viscosity at which the second resin composition adheres to the resin filling may be adjusted.
- This viscosity may be adjusted by changing the temperature (T4) of the second resin composition, or may be adjusted by changing the blending amount of the solvent as in the case of the first resin composition.
- the components contained in the second resin composition may be the same as those exemplified for the first resin composition.
- the compositions of the second resin composition and the first resin composition may be the same or different.
- the second resin composition is cured or semi-cured to obtain the second resin.
- the second resin composition is cured or semi-cured by heating and/or light irradiation depending on the type of the second resin composition (or curing agent added as necessary).
- the heating temperature for curing or semi-curing the second resin composition by heating may be, for example, 80 to 130°C.
- the first The hardening rate of the second resin can be made lower than the hardening rate of the resin.
- the second resin obtained by semi-curing or curing the second resin composition contains, as a resin component, at least one thermosetting resin selected from the group consisting of cyanate resins, bismaleimide resins and epoxy resins, and a curing agent. may contain In addition to these components, the second resin includes other resins such as phenolic resins, melamine resins, urea resins, and alkyd resins, as well as silane coupling agents, leveling agents, antifoaming agents, surface control agents, and components derived from wetting and dispersing agents.
- the second resin includes other resins such as phenolic resins, melamine resins, urea resins, and alkyd resins, as well as silane coupling agents, leveling agents, antifoaming agents, surface control agents, and components derived from wetting and dispersing agents.
- the manufacturing method described above may have other steps such as a sintering step, an impregnation step, a curing step, and a coating step.
- Other steps include, for example, a step of adjusting the surface roughness Rz of the main surface of the resin-filled plate.
- the surface roughness Rz can be adjusted by, for example, polishing and removing surface particles.
- An embodiment of a method for manufacturing a laminate has a lamination step of laminating the above-described composite and metal sheets, followed by heating and pressing.
- the composite a composite obtained by any of the above-described production methods can be used. That is, the manufacturing method of the laminate may be a manufacturing method including the above-described lamination step in addition to the manufacturing method described above.
- the metal sheet may be a metal plate or a metal foil.
- a metal sheet is placed on the main surface of the composite. With the main surfaces of the composite and the metal sheet in contact with each other, pressure is applied in the direction in which the main surfaces face each other, and heating is applied. Note that the pressurization and heating need not necessarily be performed at the same time, and the heating may be performed after pressurization and crimping.
- the laminate thus obtained can be used for manufacturing semiconductor devices and the like.
- a semiconductor element may be provided on one of the metal sheets.
- the other metal sheet may be joined with cooling fins.
- Example 1 [Production of nitride sintered plate] 100 parts by mass of orthoboric acid manufactured by Shin Nippon Denko Co., Ltd. and 35 parts by mass of acetylene black (trade name: HS100) manufactured by Denka Co., Ltd. were mixed using a Henschel mixer. The obtained mixture was filled in a graphite crucible and heated at 2200° C. for 5 hours in an argon atmosphere in an arc furnace to obtain massive boron carbide (B 4 C). The resulting mass was coarsely pulverized with a jaw crusher to obtain coarse powder. This coarse powder was further pulverized by a ball mill having silicon carbide balls ( ⁇ 10 mm) to obtain pulverized powder.
- HS100 acetylene black
- the prepared pulverized powder was filled in a crucible made of boron nitride. After that, using a resistance heating furnace, heating was performed for 10 hours under conditions of 2000° C. and 0.85 MPa in a nitrogen gas atmosphere. Thus, a fired product containing boron carbonitride (B 4 CN 4 ) was obtained.
- a sintering aid was prepared by blending powdered boric acid and calcium carbonate. In preparation, 50.0 parts by mass of calcium carbonate was blended with 100 parts by mass of boric acid. At this time, the atomic ratio of boron to calcium was 17.5 atomic % of calcium to 100 atomic % of boron. 20 parts by mass of a sintering aid was blended with 100 parts by mass of the fired product, and mixed using a Henschel mixer to prepare a powdery compound.
- the compact was placed in a boron nitride container and introduced into a batch-type high-frequency furnace. In a batch-type high-frequency furnace, heating was performed for 5 hours under the conditions of atmospheric pressure, nitrogen flow rate of 5 L/min, and 2000°C. After that, the boron nitride sintered body was taken out from the boron nitride container. Thus, a sheet-like (square prism-like) boron nitride sintered body was obtained. The thickness of the boron nitride sintered plate was 0.36 mm.
- the resin composition remaining on the upper main surface of the boron nitride sintered body was smoothed using a stainless steel scraper (manufactured by Narby Co., Ltd.). An excess resin composition was removed to obtain a resin-impregnated body having a smooth main surface.
- the resin-impregnated body was heated at 160°C for 60 minutes under atmospheric pressure to semi-cure the resin composition.
- the boron nitride sintered body was exposed on part of the main surface of the composite sheet.
- the curing rate of the resin composition contained in the semi-cured product was determined by measurement using a differential scanning calorimeter. First, the calorific value Q per unit mass generated when 2 mg of the uncured resin composition was completely cured was measured. Then, a 10 mg sample taken from the semi-cured material of the composite was heated in the same manner, and the amount of heat generated per unit mass R generated when completely cured was determined. At this time, the mass of the sample used for the measurement with the differential scanning calorimeter was the same as that of the resin composition used for the measurement of the calorific value Q.
- the curing rate of the resin composition impregnated in the composite was obtained by the following formula (A).
- the curing rate of the first resin was 85%.
- Curing rate (%) of impregnated resin composition ⁇ 1-[(R/c) ⁇ 100]/Q ⁇ 100 (A)
- the filling rate of the first resin contained in the resin-filled plate was obtained by the following formula (3). The results were as shown in Table 1.
- Filling rate (% by volume) of the first resin in the resin-filled plate ⁇ (Bulk density of the resin-filled plate-Bulk density of the boron nitride sintered plate)/(Theoretical density of the resin-filled plate-Bulk density of the boron nitride sintered plate ) ⁇ 100 (3)
- the bulk density of the boron nitride sintered plate and the resin-filled plate conforms to JIS Z 8807:2012 "Method for measuring density and specific gravity by geometric measurement", and It was determined based on the volume calculated from the length (measured with a vernier caliper) and the mass of the boron nitride sintered plate or resin-filled plate measured with an electronic balance (see JIS Z 8807:2012, Item 9).
- the theoretical density of the resin-filled plate was determined by the following formula (4).
- Theoretical density of resin-filled plate bulk density of boron nitride sintered plate + true density of resin ⁇ (1-bulk density of boron nitride sintered plate/true density of boron nitride) (4)
- the boron nitride sintered plate and the true density of the resin were measured using a dry automatic densitometer in accordance with JIS Z 8807:2012 "Method for measuring density and specific gravity by gas replacement method”. 1 determined from the volume and mass of the resin (see formulas (14) to (17) in item 11 of JIS Z 8807:2012).
- the resin-filled plate obtained as described above had a surface roughness Rz of 18 ⁇ m.
- a resin composition was prepared by the same method as in preparing the resin-filled plate, and the resin composition was heated at 160° C. for 30 minutes to adjust the curing rate to 38%. composition.
- the second resin composition was dripped onto the main surface of the resin-filled plate while maintaining its temperature. Under atmospheric pressure, the second resin composition dropped onto the main surface of the resin-filled plate is spread using a spatula made of silicone rubber, the resin composition is spread over the entire main surface, and then cooled to room temperature. A composite having a semi-cured resin layer containing the second resin was obtained. The thickness of the semi-cured resin layer was 0.03 mm.
- an image of the laminate viewed from above in a direction perpendicular to the lamination direction is acquired, and the acquired image is analyzed using image analysis software (manufactured by GNU General Public License, GIMP).
- image analysis software manufactured by GNU General Public License, GIMP.
- a quantification process was performed to distinguish between a region derived from the first resin and the second resin that flowed out and a region other than that. From the binarized image, the area Y of the region derived from the first resin and the second resin was determined, and the ratio (value of Y/X) to the area of the copper plate was calculated. Table 1 shows the results.
- ⁇ Measurement of Dielectric Breakdown Voltage of Laminate> The obtained composite was placed between two copper plates, heated and pressed under conditions of 200° C. and 5 MPa for 5 minutes, and further heated under conditions of 200° C. and atmospheric pressure for 2 hours. A laminate obtained by the above was prepared. The dielectric breakdown voltage was measured using the laminate described above. First, an etching resist agent was screen-printed on one surface of the laminate so as to form a circular shape with a diameter of 20 mm, and the entire surface of the laminate structure was screen-printed with an etching resist agent. After printing, the etching resist agent was irradiated with ultraviolet rays to be cured to form a resist.
- the copper plate on which the circular resist was formed was etched with a cupric chloride solution to form a circular copper circuit with a diameter of 20 mm on one surface of the laminate.
- the laminated structure having a circular copper circuit formed thereon was obtained, which was the object to be measured.
- the dielectric breakdown voltage of the obtained laminated structure was measured according to JIS C2110-1:2016 using a withstand voltage tester (manufactured by Kikusui Denshi Kogyo Co., Ltd., device name: TOS-8700).
- Example 2 [Preparation of resin-filled plate] 80 parts by mass of a compound having a cyanate group, 20 parts by mass of a compound having a bismaleimide group, and 50 parts by mass of a compound having an epoxy group were weighed into a container, and the total amount of the above three compounds was 100 parts by mass. 1 part by mass of a phosphine-based curing agent and 0.01 part by mass of an imidazole-based curing agent were added and mixed. Since the epoxy resin was in a solid state at room temperature, it was mixed while being heated to about 80°C. The resulting thermosetting composition had a viscosity of 10 mPa ⁇ sec at 100°C.
- the prepared resin composition was heated to 100° C., it was dropped onto the upper main surface of the boron nitride sintered body using a dispenser while maintaining the temperature to impregnate the resin composition.
- the amount of the resin composition dropped was 1.5 times the total volume of the pores of the boron nitride sintered body. Part of the resin composition remained on the main surface without impregnating the boron nitride sintered body.
- thermosetting composition The following compounds were used to prepare the thermosetting composition.
- Phosphine-based curing agent tetraphenylphosphonium tetra-p-tolylborate (manufactured by Chemical Co., Ltd., trade name: TPP-MK)
- Imidazole-based curing agent 1-(1-cyanomethyl)-2-ethyl-4-methyl-1H-imidazole (manufactured by Shikoku Chemical Industry Co., Ltd., trade name: 2E4MZ-CN)
- the resin composition remaining on the upper main surface of the boron nitride sintered body was smoothed using a stainless steel scraper (manufactured by Narby Co., Ltd.). An excess resin composition was removed to obtain a resin-impregnated body having a smooth main surface.
- the resin-impregnated body was heated at 80°C for 60 hours under atmospheric pressure to semi-cure the resin composition.
- the boron nitride sintered body was exposed on part of the main surface of the composite sheet.
- a resin composition was prepared by the same method as in preparing the resin-filled plate, and the resin composition was heated at 120° C. for 7 hours to adjust the curing rate to 32%. composition.
- the second resin composition was dripped onto the main surface of the resin-filled plate while maintaining its temperature. Under atmospheric pressure, the second resin composition dropped onto the main surface of the resin-filled plate is spread using a spatula made of silicone rubber, the resin composition is spread over the entire main surface, and then cooled to room temperature. A composite having a semi-cured resin layer containing the second resin was obtained. The thickness of the semi-cured resin layer was 0.03 mm.
- Example 2 and Comparative Examples 1 and 2 the filling rate and curing rate of the first resin, the surface roughness Rz, the curing rate of the second resin, and the semi-cured resin layer were measured. Measured as in 1. Regarding the production of the laminates prepared in Example 2 and Comparative Examples 1 and 2, the outflow amount and dielectric breakdown voltage were evaluated. Table 1 shows the results.
- the present disclosure it is possible to provide a composite that can exhibit excellent insulation after bonding to an adherend, and a method for producing the same.
- the present disclosure can also provide resin-filled plates suitable for preparing the composites described above.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Laminated Bodies (AREA)
Abstract
One aspect of the present disclosure provides a composite having: a resin-filled plate that includes a porous nitride sintered plate, and a first resin with which pores in the nitride sintered plate are filled; and a semi-cured resin layer that includes a second resin and that is provided on at least part of the principal surface of the resin-filled plate, the curing rate of the first resin being 70% or greater, and the semi-cured resin layer containing a thermosetting resin.
Description
本開示は、複合体及びその製造方法、樹脂充填板、並びに、積層体及びその製造方法に関する。
The present disclosure relates to a composite and its manufacturing method, a resin-filled plate, and a laminate and its manufacturing method.
パワーデバイス、トランジスタ、サイリスタ、及びCPU等の部品においては、使用時に発生する熱を効率的に放熱することが求められる。このような要請から、従来、電子部品を実装するプリント配線板の絶縁層の高熱伝導化を図ったり、電子部品又はプリント配線板を、電気絶縁性を有する熱インターフェース材(Thermal Interface Materials)を介してヒートシンクに取り付けたりすることが行われてきた。このような絶縁層及び熱インターフェース材には、放熱部材として、樹脂と窒化ホウ素等のセラミックスとで構成される複合体が用いられる。
Components such as power devices, transistors, thyristors, and CPUs are required to efficiently dissipate the heat generated during use. In response to such demands, it has been conventional practice to increase the thermal conductivity of the insulating layer of the printed wiring board on which electronic components are mounted, or to place the electronic components or the printed wiring board through a thermal interface material having electrical insulation. It has been practiced to attach it to a heat sink. For such an insulating layer and thermal interface material, a composite composed of a resin and a ceramic such as boron nitride is used as a heat dissipation member.
このような複合体として、多孔性のセラミックス焼結体(例えば、窒化ホウ素焼結体)に樹脂を含浸させた複合体が検討されている(例えば、特許文献1参照)。また、回路基板と樹脂含浸窒化ホウ素焼結体とを有する積層体において、窒化ホウ素焼結体を構成する一次粒子と回路基板とを直接接触させて、積層体の熱抵抗を低減し、放熱性を改善することも検討されている(例えば、特許文献2参照)。
As such a composite, a composite obtained by impregnating a porous ceramic sintered body (for example, a boron nitride sintered body) with a resin has been studied (see, for example, Patent Document 1). In addition, in a laminate having a circuit board and a resin-impregnated boron nitride sintered body, the primary particles constituting the boron nitride sintered body are brought into direct contact with the circuit board to reduce the thermal resistance of the laminate and improve heat dissipation. is also being studied (see Patent Document 2, for example).
高電圧下で使用される回路基板等と共に使用される複合体にはより絶縁性に優れることが求められる。
Composites that are used together with circuit boards used under high voltage are required to have better insulation.
本開示は、被着体への接着後に優れた絶縁性を発揮し得る複合体及びその製造方法を提供することを目的とする。本開示はまた、上述の複合体を調製するために好適な樹脂充填板を提供することを目的とする。本開示はまた、優れた絶縁性を有する積層体及びその製造方法を提供することを目的とする。
An object of the present disclosure is to provide a composite that can exhibit excellent insulation after bonding to an adherend, and a method for producing the same. Another object of the present disclosure is to provide a resin-filled plate suitable for preparing the composites described above. Another object of the present disclosure is to provide a laminate having excellent insulating properties and a method for manufacturing the same.
上述のような複合体では樹脂部が半硬化状態に維持されており、金属シート等の被着体との接続時に樹脂を更に硬化させることによって接着性の向上を図っている。本発明者らは検討によって、樹脂が半硬化状態であり接続時の加熱によって流動的となることで、複合体の側面から樹脂の一部が流れ出し、複合体中の樹脂量の低下、ボイド等の発生を招き、期待し得るほどの絶縁性が発揮されない場合があることを見出した。本開示は、当該知見に基づいてなされたものである。
In the composite as described above, the resin part is maintained in a semi-cured state, and the adhesion is improved by further curing the resin when connecting to an adherend such as a metal sheet. The inventors of the present invention have found that the resin is in a semi-cured state and becomes fluid due to heating at the time of connection, so that part of the resin flows out from the side of the composite, reducing the amount of resin in the composite, voids, etc. It has been found that the insulation may not be exhibited to the extent expected. The present disclosure is made based on this finding.
本開示の一側面は、多孔質の窒化物焼結板と、上記窒化物焼結板の気孔に充填された第1樹脂と、を含む樹脂充填板と、上記樹脂充填板の主面上の少なくとも一部に設けられた、第2樹脂を含む半硬化樹脂層と、を有し、上記第1樹脂の硬化率が70%以上であり、上記半硬化樹脂層が熱硬化性樹脂を含有する、複合体を提供する。
One aspect of the present disclosure is a resin-filled plate including a porous nitride sintered plate and a first resin filled in the pores of the nitride sintered plate, and on a main surface of the resin-filled plate and a semi-cured resin layer containing a second resin provided on at least a part thereof, wherein the curing rate of the first resin is 70% or more, and the semi-cured resin layer contains a thermosetting resin. , providing a complex.
上記複合体は、樹脂充填板に充填されている第1樹脂の硬化率が比較的高くなっていることによって、被着体に接続する際の樹脂の流れ出しが抑制され得る。樹脂充填板に充填された樹脂は硬化率が高いためにそれ自体では十分な接着性を有しない。しかし、上記複合体は、樹脂充填板の主面上の少なくとも一部に半硬化樹脂層を更に有する。これによって、上記複合体は、被着体への接着性に優れ、且つ優れた絶縁性を発揮し得る。
In the composite, the first resin filled in the resin-filled plate has a relatively high cure rate, so that the outflow of the resin when connecting to the adherend can be suppressed. Since the resin filled in the resin-filled plate has a high curing rate, the resin itself does not have sufficient adhesiveness. However, the above composite further has a semi-cured resin layer on at least part of the main surface of the resin-filled plate. As a result, the composite can exhibit excellent adhesion to adherends and excellent insulating properties.
上記第1樹脂の硬化率と上記第2樹脂の硬化率との差が30%以上であってよい。第1樹脂の硬化率が第2樹脂の硬化率よりも30%以上硬化が進んだ状態であることによって、被着体への接続時における樹脂の流れ出しをより低減し、接着性も十分に確保することができる。
The difference between the curing rate of the first resin and the curing rate of the second resin may be 30% or more. The hardening rate of the first resin is 30% or more advanced than the hardening rate of the second resin, so that the outflow of the resin when connecting to the adherend is further reduced and the adhesiveness is sufficiently secured. can do.
上記第1樹脂の硬化率が90%以下であってよい。第1樹脂の硬化率が90%以下であることによって、柔軟性を適度に確保することができ、流通時、被着体への加圧接着時などにおいて複合体が破損等することをより抑制できる。
The curing rate of the first resin may be 90% or less. When the curing rate of the first resin is 90% or less, it is possible to ensure appropriate flexibility, and further suppress damage to the composite during distribution, pressure bonding to the adherend, etc. can.
上記半硬化樹脂層の厚さが、上記窒化物焼結板の厚さの0.5~25.0%であってよい。半硬化樹脂層の厚さが上記範囲内であることによって、接着性と放熱性とをより高水準で両立可能な積層体を調製できる。
The thickness of the semi-cured resin layer may be 0.5 to 25.0% of the thickness of the nitride sintered plate. By setting the thickness of the semi-cured resin layer within the above range, it is possible to prepare a laminate that achieves a higher level of both adhesiveness and heat dissipation.
上記樹脂充填板の主面における表面粗さRzが3~25μmであってよい。樹脂充填板の主面における表面粗さRzが上記範囲内であることによって、樹脂充填板と半硬化樹脂層との接着力をより向上させることができ、樹脂充填板と半硬化樹脂層との界面に空隙等ができることを抑制し、複合体内部での放熱性の低下をさらに抑制できる。このような作用によって、上記樹脂充填板は、接着性と放熱性とをより高水準で両立可能な積層体を調製するために好適に使用できる。
The main surface of the resin-filled plate may have a surface roughness Rz of 3 to 25 μm. When the surface roughness Rz of the main surface of the resin-filled plate is within the above range, the adhesive force between the resin-filled plate and the semi-cured resin layer can be further improved, and the adhesion between the resin-filled plate and the semi-cured resin layer can be improved. It is possible to suppress the formation of voids and the like at the interface, and further suppress the decrease in heat dissipation inside the composite. Due to such action, the resin-filled plate can be suitably used to prepare a laminate having both adhesiveness and heat dissipation at a higher level.
上記窒化物焼結板のメジアン細孔径が0.3~6.0μmであってよい。窒化物焼結板のメジアン細孔径が上記範囲内であることで、第1樹脂の充填性を向上させ、且つ窒化物焼結板の熱伝導率を向上させることができる。また上記充填性を確保することで第2樹脂との濡れ性を向上することもでき、樹脂充填板と半硬化樹脂層との接着性をより向上することができる。
The median pore diameter of the nitride sintered plate may be 0.3 to 6.0 μm. When the median pore diameter of the nitride sintered plate is within the above range, it is possible to improve the filling property of the first resin and improve the thermal conductivity of the nitride sintered plate. In addition, by ensuring the filling property, the wettability with the second resin can be improved, and the adhesiveness between the resin-filled plate and the semi-cured resin layer can be further improved.
本開示の一側面は、上述の複合体と、上記複合体上に設けられた金属シートと、を備える、積層体を提供する。
One aspect of the present disclosure provides a laminate comprising the composite described above and a metal sheet provided on the composite.
上記積層体は、上述の複合体を備えることから、優れた絶縁性を発揮し得る。
Since the laminate includes the composite described above, it can exhibit excellent insulating properties.
本開示の一側面は、多孔質の窒化物焼結板と、上記窒化物焼結板の気孔に充填された樹脂と、を含み、上記樹脂の硬化率が70%以上である、樹脂充填板を提供する。
One aspect of the present disclosure is a resin-filled plate including a porous nitride sintered plate and a resin filled in the pores of the nitride sintered plate, wherein the curing rate of the resin is 70% or more. I will provide a.
上記樹脂充填板は、充填された樹脂の硬化率が高く、加熱された場合であっても当該樹脂が窒化物焼結板から流れ出すことが抑制されている。このため上記樹脂充填板は、上述の複合体の製造に好適に使用できる。
The above resin-filled plate has a high cure rate of the filled resin, and even when heated, the resin is suppressed from flowing out of the nitride sintered plate. Therefore, the resin-filled plate can be suitably used for producing the above composite.
上記樹脂充填板において、上記樹脂の硬化率が90%以下であってよい。樹脂の硬化率が90%以下であることによって、柔軟性を適度に確保することができ、流通時などにおける破損等することをより抑制できる。
In the resin-filled plate, the curing rate of the resin may be 90% or less. When the curing rate of the resin is 90% or less, it is possible to ensure appropriate flexibility, and it is possible to further suppress breakage during distribution.
上記樹脂充填板において、主面における表面粗さRzが3~25μmあってよい。樹脂充填板の主面における表面粗さRzが上記範囲内であることによって、樹脂充填板上に半硬化樹脂層をより容易に設けることができる。
In the above resin-filled plate, the main surface may have a surface roughness Rz of 3 to 25 μm. When the surface roughness Rz of the main surface of the resin-filled plate is within the above range, the semi-cured resin layer can be more easily formed on the resin-filled plate.
本開示の一側面は、多孔質の窒化物焼結板に第1樹脂組成物を含浸して樹脂含浸体を得る含浸工程と、上記樹脂含浸体を加熱して気孔に充填された上記樹脂組成物を硬化又は半硬化して第1樹脂を含む樹脂充填板を得る硬化工程と、第2樹脂を含む半硬化樹脂層を上記樹脂充填板の主面上の少なくとも一部に設ける被覆工程と、を有し、上記第1樹脂の硬化率が70%以上である、複合体の製造方法を提供する。
One aspect of the present disclosure includes an impregnation step of impregnating a porous nitride sintered plate with a first resin composition to obtain a resin-impregnated body, and heating the resin-impregnated body to fill the pores with the resin composition. a curing step of curing or semi-curing an object to obtain a resin-filled board containing a first resin; a coating step of providing a semi-cured resin layer containing a second resin on at least a portion of the main surface of the resin-filled board; and the curing rate of the first resin is 70% or more.
上記製造方法は、硬化工程において第1樹脂の硬化率が所定値以上となるように硬化を進行させ、樹脂充填板中に第1樹脂を十分に固定化させ、再加熱による第1樹脂の流れ出しを抑制しつつ、被覆工程において第2樹脂を含む半硬化状態の半硬化樹脂層を設けることによって、複合体の被着体への接着性を付与させることができる。このような製法によって、被着体への接着後に優れた絶縁性を発揮し得る複合体を提供できる。
In the above manufacturing method, in the curing step, curing proceeds so that the curing rate of the first resin reaches a predetermined value or more, the first resin is sufficiently fixed in the resin-filled plate, and the first resin flows out by reheating. By providing a semi-cured resin layer in a semi-cured state containing the second resin in the coating step, the adhesiveness of the composite to the adherend can be imparted. Such a manufacturing method can provide a composite that can exhibit excellent insulating properties after being adhered to an adherend.
上記被覆工程では、上記樹脂充填板に第2樹脂組成物を付着させ、加熱することによって、上記樹脂充填板の主面上の少なくとも一部に上記半硬化樹脂層を設ける工程であってよい。被覆工程が上述のような工程であることによって、第2樹脂の硬化率を自由に調整することができ、複合体の用途に合った樹脂硬化率とすることができる。
The coating step may be a step of providing the semi-cured resin layer on at least a portion of the main surface of the resin-filled plate by applying a second resin composition to the resin-filled plate and heating the second resin composition. Since the coating step is a step as described above, the hardening rate of the second resin can be freely adjusted, and the resin hardening rate can be set to suit the application of the composite.
上記被覆工程では、上記樹脂充填板に第2樹脂組成物の半硬化物を接着することによって、上記樹脂充填板の主面上の少なくとも一部に上記半硬化樹脂層を設ける工程であってよい。被覆工程が上述のような工程であることによって、第2樹脂の樹脂厚さを均一化することができ、得られる複合体は被着体とのより安定した接着強度を発揮し得る。
The coating step may be a step of providing the semi-cured resin layer on at least part of the main surface of the resin-filled plate by bonding a semi-cured material of the second resin composition to the resin-filled plate. . By using the coating step as described above, the resin thickness of the second resin can be made uniform, and the resulting composite can exhibit more stable adhesive strength with the adherend.
本開示の一側面は、上述の製造方法で得られた複合体と、金属シートと、を積層し、加熱及び加圧する積層工程を有する、積層体の製造方法を提供する。
One aspect of the present disclosure provides a method for manufacturing a laminate, which includes a lamination step of laminating the composite obtained by the above-described manufacturing method and a metal sheet, and heating and pressurizing them.
上記積層体の製造方法は、上述の複合体を用いることから、優れた絶縁性を発揮し得る積層体を提供できる。
The manufacturing method of the laminate can provide a laminate capable of exhibiting excellent insulation properties because the above-described composite is used.
本開示によれば、被着体への接着後に優れた絶縁性を発揮し得る複合体及びその製造方法を提供できる。本開示によればまた、上述の複合体を調製するために好適な樹脂充填板を提供できる。本開示によればまた、優れた絶縁性を有する積層体及びその製造方法を提供できる。
According to the present disclosure, it is possible to provide a composite that can exhibit excellent insulation after bonding to an adherend, and a method for producing the same. The present disclosure can also provide resin-filled plates suitable for preparing the composites described above. According to the present disclosure, it is also possible to provide a laminate having excellent insulating properties and a method for manufacturing the same.
以下、場合によって図面を参照して、本開示の実施形態を説明する。ただし、以下の実施形態は、本開示を説明するための例示であり、本開示を以下の内容に限定する趣旨ではない。説明において、同一要素又は同一機能を有する要素には同一符号を用い、場合によって重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、各要素の寸法比率は図示の比率に限られるものではない。
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings as the case may be. However, the following embodiments are examples for explaining the present disclosure, and are not intended to limit the present disclosure to the following contents. In the description, the same reference numerals are used for the same elements or elements having the same functions, and duplicate descriptions are omitted depending on the case. In addition, unless otherwise specified, positional relationships such as up, down, left, and right are based on the positional relationships shown in the drawings. Furthermore, the dimensional ratio of each element is not limited to the illustrated ratio.
本明細書において例示する材料は特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。組成物中の各成分の含有量は、組成物中の各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
The materials exemplified in this specification can be used singly or in combination of two or more unless otherwise specified. The content of each component in the composition means the total amount of the multiple substances present in the composition unless otherwise specified when there are multiple substances corresponding to each component in the composition. .
複合体の一実施形態は、多孔質の窒化物焼結板と、上記窒化物焼結板の気孔に充填された第1樹脂と、を含む樹脂充填板と、上記樹脂充填板の主面上の少なくとも一部に設けられた、第2樹脂を含む半硬化樹脂層と、を有する。上記第1樹脂の硬化率が70%以上である。また上記半硬化樹脂層が熱硬化性樹脂を含有する。複合体の形状は特に限定されず、例えば、シート状であってよい。
One embodiment of the composite includes a resin-filled plate containing a porous nitride sintered plate, a first resin filled in the pores of the nitride sintered plate, and a main surface of the resin-filled plate and a semi-cured resin layer containing a second resin provided on at least a part of the. The curing rate of the first resin is 70% or more. Further, the semi-cured resin layer contains a thermosetting resin. The shape of the composite is not particularly limited, and may be, for example, a sheet shape.
図1は、複合体の一例を示す斜視図である。図2は、図1のII-II線に沿った断面を示す模式図である。複合体10は、樹脂充填板12と、樹脂充填板12の一対の主面12aの両主面上に半硬化樹脂層14を有する。図1においては、複合体10は、樹脂充填板12の両方の主面12aの全体を覆うように半硬化樹脂層14を設けられた例で示したが、被着体との接着性を確保できればよく、半硬化樹脂層14が樹脂充填板12の少なくとも一部に設けられていればよい。ただし半硬化樹脂層14を部分的に設ける場合には、被着体との接触時にガス等をかみこまないように中央に設けられることが望ましく、半硬化樹脂層14が溶融し広がる影響を低減する観点から、樹脂充填板12の主面12aの面積よりも小さくなるように半硬化樹脂層14を設けてもよい。また、複合体10は、半硬化樹脂層14が樹脂充填板12の両方の主面12a上に設けられた例で示したが、樹脂充填板12の接着性によっては、一方の主面であってもよい。また、複合体10は、樹脂充填板12の側面に半硬化樹脂層を更に有していてもよい。ただし、本開示に係る複合体においては樹脂充填板12からの第1樹脂の流れ出しは十分に抑制されており、半硬化樹脂層を樹脂充填板12の側面に設けなくてもよい。
FIG. 1 is a perspective view showing an example of a complex. FIG. 2 is a schematic diagram showing a cross section along line II-II in FIG. The composite 10 has a resin-filled plate 12 and semi-cured resin layers 14 on both main surfaces of a pair of main surfaces 12 a of the resin-filled plate 12 . In FIG. 1, the composite 10 is shown as an example in which the semi-cured resin layer 14 is provided so as to cover the entire main surface 12a of both resin-filled plates 12, but the adhesiveness to the adherend is ensured. It is sufficient if the semi-cured resin layer 14 is provided on at least a part of the resin-filled plate 12 . However, when the semi-cured resin layer 14 is partially provided, it is desirable to provide it in the center so as not to entrap gas or the like when it comes into contact with the adherend, reducing the effect of the semi-cured resin layer 14 melting and spreading. In view of this, the semi-cured resin layer 14 may be provided so as to be smaller than the area of the main surface 12 a of the resin-filled plate 12 . In addition, although the composite 10 is shown as an example in which the semi-cured resin layer 14 is provided on both main surfaces 12a of the resin-filled plate 12, depending on the adhesiveness of the resin-filled plate 12, only one main surface may be provided. may Moreover, the composite 10 may further have a semi-cured resin layer on the side surface of the resin-filled plate 12 . However, in the composite according to the present disclosure, the outflow of the first resin from the resin-filled plate 12 is sufficiently suppressed, and the semi-cured resin layer does not have to be provided on the side surface of the resin-filled plate 12 .
複合体10の厚さは、例えば、10.0mm未満、5.0mm未満、又は2.0mm未満であってもよい。複合体10の厚さの下限は、例えば、0.1mm以上、0.2mm以上、0.3mm以上、又は0.5mm以上であってよい。これによって、複合体10を十分に小型化することができる。このような複合体10は、例えば半導体装置の部品として好適に用いられる。複合体10の厚さは上述の範囲内で調整してよく、0.1mm以上10.0mm未満、又は0.2mm以上2.0mm未満でってよい。
The thickness of the composite 10 may be, for example, less than 10.0 mm, less than 5.0 mm, or less than 2.0 mm. The lower limit of the thickness of the composite 10 may be, for example, 0.1 mm or more, 0.2 mm or more, 0.3 mm or more, or 0.5 mm or more. This allows the composite 10 to be sufficiently miniaturized. Such a composite 10 is suitably used, for example, as a component of a semiconductor device. The thickness of composite 10 may be adjusted within the ranges described above, and may be from 0.1 mm to less than 10.0 mm, or from 0.2 mm to less than 2.0 mm.
複合体10の厚さは、主面に直交する方向に沿って測定される。複合体10の厚さが一定ではない場合、任意の10箇所を選択して厚さの測定を行い、その算術平均値が上述の範囲であればよい。
The thickness of the composite 10 is measured along the direction perpendicular to the main surface. When the thickness of the composite 10 is not constant, the thickness is measured at 10 arbitrary points, and the arithmetic mean value thereof should be within the above range.
樹脂充填板12の主面12aのサイズは特に限定はなく、例えば、50mm2以上、200mm2以上、500mm2以上、800mm2以上、又は1000mm2以上であってもよい。樹脂充填板12の主面12aのサイズは、一般に同一であるが、完全に一致している必要はなく、互いに異なっていてもよい。
The size of the main surface 12a of the resin-filled plate 12 is not particularly limited, and may be, for example, 50 mm 2 or more, 200 mm 2 or more, 500 mm 2 or more, 800 mm 2 or more, or 1000 mm 2 or more. The sizes of the main surfaces 12a of the resin-filled plates 12 are generally the same, but they do not need to be exactly the same, and may be different from each other.
樹脂充填板12の主面12aにおける表面粗さRzの上限値は、例えば、25μm以下、23μm以下、又は20μm以下であってよい。表面粗さRzの上限値が上記範囲内であると、樹脂充填板と半硬化樹脂層との界面に空隙等ができることを抑制し、複合体内部での放熱性の低下を更に抑制できる。樹脂充填板12の主面12aにおける表面粗さRzの下限値は、例えば、3μm以上、5μm以上、又は7μm以上であってよい。表面粗さRzの下限値が上記範囲内であると、樹脂充填板と半硬化樹脂層との接着力をより向上させることができる。樹脂充填板12の主面12aにおける表面粗さRzは上述の範囲内で調整してよく、例えば、3~25μmであってよく、7~20μmであってよい。樹脂充填板12の両方の主面12aにおける表面粗さRzは、同一であっても、異なってもよいが、異なる場合であっても主面12aの両者が上述の範囲内であることが望ましい。
The upper limit of the surface roughness Rz of the main surface 12a of the resin-filled plate 12 may be, for example, 25 μm or less, 23 μm or less, or 20 μm or less. When the upper limit of the surface roughness Rz is within the above range, formation of voids at the interface between the resin-filled plate and the semi-cured resin layer can be suppressed, thereby further suppressing deterioration of heat dissipation inside the composite. The lower limit of the surface roughness Rz of the main surface 12a of the resin-filled plate 12 may be, for example, 3 μm or more, 5 μm or more, or 7 μm or more. When the lower limit of the surface roughness Rz is within the above range, the adhesion between the resin-filled plate and the semi-cured resin layer can be further improved. The surface roughness Rz of the main surface 12a of the resin-filled plate 12 may be adjusted within the range described above, and may be, for example, 3-25 μm, or 7-20 μm. The surface roughnesses Rz of both main surfaces 12a of the resin-filled plate 12 may be the same or different, but even if they are different, it is desirable that both main surfaces 12a are within the above range. .
本明細書における表面粗さRzは、JIS B 0601:2013「製品の幾何特性使用(GPS)-表面性状:輪郭曲線方式-用語、定義及び表面性状パラメータ」で規定される最大高さ粗さを意味する。表面粗さRzは、JIS B 0601:2013の記載に準拠して測定される値である。
The surface roughness Rz in this specification is the maximum height roughness specified in JIS B 0601: 2013 "Use of geometric properties of products (GPS) - surface texture: contour curve method - terms, definitions and surface texture parameters" means. The surface roughness Rz is a value measured according to JIS B 0601:2013.
樹脂充填板12における第1樹脂の体積比率は、樹脂充填板12の全体積を基準として、例えば、30~60体積%、又は35~55体積%であってよい。樹脂充填板12における多孔質の窒化物焼結板を構成する窒化物粒子の体積比率は、樹脂充填板12の全体積を基準として、例えば、40~70体積%、又は45~65体積%であってよい。このような体積比率の樹脂充填板12は、優れた強度を発揮し得る。
The volume ratio of the first resin in the resin-filled plate 12 may be, for example, 30-60% by volume, or 35-55% by volume, based on the total volume of the resin-filled plate 12 . The volume ratio of the nitride particles constituting the porous nitride sintered plate in the resin-filled plate 12 is, for example, 40 to 70% by volume, or 45 to 65% by volume, based on the total volume of the resin-filled plate 12. It's okay. The resin-filled plate 12 having such a volume ratio can exhibit excellent strength.
多孔質の窒化物焼結板としては、例えば、窒化ホウ素焼結板等が挙げられる。窒化物焼結板は、窒化物の一次粒子同士が焼結して構成される窒化物粒子と気孔とを含有する。窒化物焼結板の気孔のメジアン細孔径は、例えば、6.0μm以下、5.0μm以下、4.0μm以下、又は3.5μm以下であってよい。このような窒化物焼結板は、気孔のサイズが小さいことから、窒化物粒子の粒子同士の接触面積を十分に大きくすることができる。したがって、熱伝導率を高くすることができる。窒化物焼結板の気孔のメジアン細孔径は、例えば、0.3μm以上、0.5μm以上、1.0μm以上、又は1.5μm以上であってよい。このような窒化物焼結板は、接着する際に加圧すると十分に変形できるため、他部材(被着体)との密着性に優れる。窒化物焼結板の気孔のメジアン細孔径は上述の範囲内で調整してよく、例えば、0.3~6.0μm、又は1.5~3.5μmであってよい。
Examples of porous nitride sintered plates include boron nitride sintered plates. The nitride sintered plate contains nitride particles and pores formed by sintering nitride primary particles. The median pore size of the pores of the nitride sintered plate may be, for example, 6.0 μm or less, 5.0 μm or less, 4.0 μm or less, or 3.5 μm or less. Since such a nitride sintered plate has a small pore size, it is possible to sufficiently increase the contact area between the nitride particles. Therefore, thermal conductivity can be increased. The median pore diameter of the pores of the nitride sintered plate may be, for example, 0.3 μm or more, 0.5 μm or more, 1.0 μm or more, or 1.5 μm or more. Since such a nitride sintered plate can be sufficiently deformed by pressurization during bonding, it has excellent adhesion to other members (adherends). The median pore size of the pores of the nitride sintered plate may be adjusted within the above range, and may be, for example, 0.3-6.0 μm, or 1.5-3.5 μm.
窒化物焼結板の気孔のメジアン細孔径は、以下の手順で測定することができる。まず、複合体を加熱して半硬化樹脂層及び第1樹脂を除去する。そして、水銀ポロシメーターを用い、0.0042MPaから206.8MPaまで圧力を増やしながら窒化物焼結板を加圧したときの細孔径分布を求める。横軸を細孔径、縦軸を累積細孔容積としたときに、累積細孔容積が全細孔容積の50%に達するときの細孔径がメジアン細孔径である。水銀ポロシメーターとしては、例えば、株式会社島津製作所製のものを用いることができる。
The median pore diameter of the pores of the nitride sintered plate can be measured by the following procedure. First, the composite is heated to remove the semi-cured resin layer and the first resin. Then, using a mercury porosimeter, the pore size distribution is determined when the nitride sintered plate is pressed while increasing the pressure from 0.0042 MPa to 206.8 MPa. When the horizontal axis is the pore diameter and the vertical axis is the cumulative pore volume, the pore diameter when the cumulative pore volume reaches 50% of the total pore volume is the median pore diameter. As the mercury porosimeter, for example, one manufactured by Shimadzu Corporation can be used.
窒化物焼結板の気孔率、すなわち、窒化物焼結板における気孔の体積(V1)の比率は、30~65体積%であってよく、40~60体積%であってよい。気孔率が大きくなり過ぎると窒化物焼結板の強度が低下する傾向にある。一方、気孔率が小さくなり過ぎると複合体が他部材と接着される際にしみ出す樹脂が少なくなる傾向にある。
The porosity of the nitride sintered plate, that is, the ratio of the pore volume (V1) in the nitride sintered plate may be 30 to 65% by volume, and may be 40 to 60% by volume. If the porosity becomes too large, the strength of the nitride sintered plate tends to decrease. On the other hand, if the porosity is too small, less resin tends to ooze out when the composite is adhered to another member.
気孔率は、窒化物焼結板の体積及び質量から、かさ密度[B(kg/m3)]を算出し、このかさ密度と窒化物の理論密度[A(kg/m3)]とから、下記式(1)によって求めることができる。窒化物焼結板は、窒化ホウ素、窒化アルミニウム、又は窒化ケイ素からなる群から選択される少なくとも一種を含んでよい。窒化ホウ素の場合、理論密度Aは2280kg/m3である。窒化アルミニウムの場合、理論密度Aは3260kg/m3である。窒化ケイ素の場合、理論密度Aは3170kg/m3である。
気孔率(体積%)=[1-(B/A)]×100 (1) The porosity is obtained by calculating the bulk density [B (kg/m 3 )] from the volume and mass of the nitride sintered plate, and using this bulk density and the theoretical density [A (kg/m 3 )] of the nitride. , can be obtained by the following formula (1). The nitride sintered plate may contain at least one selected from the group consisting of boron nitride, aluminum nitride, and silicon nitride. For boron nitride, the theoretical density A is 2280 kg/m 3 . For aluminum nitride, the theoretical density A is 3260 kg/m 3 . For silicon nitride, the theoretical density A is 3170 kg/m 3 .
Porosity (volume%) = [1-(B/A)] x 100 (1)
気孔率(体積%)=[1-(B/A)]×100 (1) The porosity is obtained by calculating the bulk density [B (kg/m 3 )] from the volume and mass of the nitride sintered plate, and using this bulk density and the theoretical density [A (kg/m 3 )] of the nitride. , can be obtained by the following formula (1). The nitride sintered plate may contain at least one selected from the group consisting of boron nitride, aluminum nitride, and silicon nitride. For boron nitride, the theoretical density A is 2280 kg/m 3 . For aluminum nitride, the theoretical density A is 3260 kg/m 3 . For silicon nitride, the theoretical density A is 3170 kg/m 3 .
Porosity (volume%) = [1-(B/A)] x 100 (1)
窒化物焼結板が窒化ホウ素焼結体である場合、かさ密度Bは、800~1500kg/m3であってよく、1000~1400kg/m3であってもよい。かさ密度Bが小さくなり過ぎると窒化物焼結板の強度が低下する傾向にある。一方、かさ密度Bが大きくなり過ぎると樹脂の充填量が減少して複合体の良好な接着性が損なわれる場合がある。
When the nitride sintered plate is a boron nitride sintered body, the bulk density B may be 800 to 1500 kg/m 3 or 1000 to 1400 kg/m 3 . If the bulk density B becomes too small, the strength of the nitride sintered plate tends to decrease. On the other hand, if the bulk density B is too high, the amount of resin filled in the composite may decrease, resulting in a loss of good adhesion of the composite.
窒化物焼結板の厚さは、例えば、10.0mm以下、5.0mm以下、又は2.0mm以下であってもよい。窒化物焼結板の厚さの下限は、例えば、0.1mm以上、又は0.5mm以上であってよい。窒化物焼結板の厚さは、主面に直交する方向に沿って測定され、厚さが一定ではない場合、任意の10箇所を選択して厚さの測定を行い、その平均値が上述の範囲であればよい。窒化物焼結板の厚さは上述の範囲内で調整してよく、例えば、0.1~10.0mm、又は0.5~2.0mmであってよい。
The thickness of the nitride sintered plate may be, for example, 10.0 mm or less, 5.0 mm or less, or 2.0 mm or less. The lower limit of the thickness of the nitride sintered plate may be, for example, 0.1 mm or more, or 0.5 mm or more. The thickness of the nitride sintered plate is measured along the direction perpendicular to the main surface, and if the thickness is not constant, select 10 arbitrary locations to measure the thickness, and the average value is the above may be within the range of The thickness of the nitride sintered plate may be adjusted within the above range, and may be, for example, 0.1-10.0 mm, or 0.5-2.0 mm.
樹脂充填板12に含まれる第1樹脂は、主剤及び硬化剤を含む樹脂組成物の硬化物(Cステージ)又は半硬化物(Bステージ)である。硬化物は、樹脂組成物の硬化反応が完全に進行したものである。半硬化物は、樹脂組成物の硬化反応が一部進行したものである。半硬化物は、その後の硬化処理によって、更に硬化させることができる。
The first resin contained in the resin-filled plate 12 is a cured product (C stage) or semi-cured product (B stage) of a resin composition containing a main agent and a curing agent. The cured product is obtained by completing the curing reaction of the resin composition. The semi-cured product is obtained by partially progressing the curing reaction of the resin composition. The semi-cured product can be further cured by a subsequent curing treatment.
第1樹脂は、樹脂組成物中の主剤及び硬化剤が反応して生成する熱硬化性樹脂等を含んでもよい。上記半硬化物は、樹脂成分として、熱硬化性樹脂に加えて主剤及び硬化剤等のモノマーを含んでもよい。複合体に含まれる樹脂が硬化物(Cステージ)となる前の半硬化物(Bステージ)であることは、例えば、示差走査熱量計によって確認することができる。
The first resin may contain a thermosetting resin or the like generated by the reaction of the main agent and curing agent in the resin composition. The semi-cured product may contain monomers such as a main agent and a curing agent in addition to the thermosetting resin as a resin component. It can be confirmed by, for example, a differential scanning calorimeter that the resin contained in the composite is a semi-cured product (B stage) before becoming a cured product (C stage).
樹脂充填板12に含まれる第1樹脂は、従来の樹脂充填板に比べて樹脂の硬化率を進行させたものである。第1樹脂の硬化率は70%以上であるが、例えば、72%以上、75%以上、又は80%以上であってよい。第1樹脂の硬化率が上記範囲内であると、被着体との接着時における第1樹脂の流れ出しを更に抑制され、得られる積層体の絶縁性を更に向上させることができる。第1樹脂の硬化率の上限値は、特に限定されるものではないが、例えば、90%以下、88%以下、又は85%以下であってよい。第1樹脂の硬化率の上限値が上記範囲内であることによって、柔軟性を適度に確保することができ、流通時、被着体への加圧接着時などにおいて複合体が破損等することをより抑制できる。第1樹脂の硬化率は上述の範囲内で調整してよく、例えば、70~90%、又は72~85%であってよい。
The first resin contained in the resin-filled plate 12 has a cured rate higher than that of the conventional resin-filled plate. The curing rate of the first resin is 70% or more, and may be, for example, 72% or more, 75% or more, or 80% or more. When the curing rate of the first resin is within the above range, the outflow of the first resin during adhesion to the adherend is further suppressed, and the insulation properties of the obtained laminate can be further improved. The upper limit of the cure rate of the first resin is not particularly limited, but may be, for example, 90% or less, 88% or less, or 85% or less. When the upper limit of the curing rate of the first resin is within the above range, it is possible to ensure appropriate flexibility, and the composite will not be damaged during distribution, pressure bonding to an adherend, etc. can be further suppressed. The cure rate of the first resin may be adjusted within the above range, and may be, for example, 70-90%, or 72-85%.
第1樹脂の硬化率は、示差走査熱量計を用いた測定によって決定することができる。まず、未硬化の状態の樹脂組成物2mgを完全に硬化させた際に生じる単位質量当たりの発熱量Qを測定する。そして、複合シートが備える樹脂から採取したサンプル10mgを同様に昇温させて、完全に硬化させた際に生じる単位質量当たりの発熱量Rを求める。このとき、示差走査熱量計による測定に使用するサンプルの質量は、発熱量Qの測定に用いた樹脂組成物と同一とする。樹脂中に熱硬化性を有する成分がc(質量%)含有されているとすると、下記式(A)によって複合シートに含浸している樹脂組成物の硬化率が求められる。なお、樹脂が完全に硬化したか否かは、示差走査熱量測定によって得られる発熱曲線において、発熱が終了することで確認することができる。
含浸されている樹脂組成物の硬化率(%)={1-[(R/c)×100]/Q}×100・・・(A) The cure rate of the first resin can be determined by measurement using a differential scanning calorimeter. First, the calorific value Q per unit mass generated when 2 mg of the uncured resin composition is completely cured is measured. Then, a 10 mg sample taken from the resin included in the composite sheet is heated in the same manner, and the calorific value R per unit mass generated when the sample is completely cured is determined. At this time, the mass of the sample used for the measurement with the differential scanning calorimeter is the same as that of the resin composition used for the measurement of the calorific value Q. Assuming that c (% by mass) of a thermosetting component is contained in the resin, the curing rate of the resin composition impregnated in the composite sheet is obtained by the following formula (A). Whether or not the resin is completely cured can be confirmed by the end of heat generation in the heat generation curve obtained by differential scanning calorimetry.
Curing rate (%) of impregnated resin composition={1-[(R/c)×100]/Q}×100 (A)
含浸されている樹脂組成物の硬化率(%)={1-[(R/c)×100]/Q}×100・・・(A) The cure rate of the first resin can be determined by measurement using a differential scanning calorimeter. First, the calorific value Q per unit mass generated when 2 mg of the uncured resin composition is completely cured is measured. Then, a 10 mg sample taken from the resin included in the composite sheet is heated in the same manner, and the calorific value R per unit mass generated when the sample is completely cured is determined. At this time, the mass of the sample used for the measurement with the differential scanning calorimeter is the same as that of the resin composition used for the measurement of the calorific value Q. Assuming that c (% by mass) of a thermosetting component is contained in the resin, the curing rate of the resin composition impregnated in the composite sheet is obtained by the following formula (A). Whether or not the resin is completely cured can be confirmed by the end of heat generation in the heat generation curve obtained by differential scanning calorimetry.
Curing rate (%) of impregnated resin composition={1-[(R/c)×100]/Q}×100 (A)
第1樹脂は、例えば、エポキシ樹脂、シリコーン樹脂、シアネート樹脂、シリコーンゴム、アクリル樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、ビスマレイミド樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリフェニレンエーテル、ポリフェニレンサルファイド、全芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネート、マレイミド樹脂、マレイミド変性樹脂、ABS(アクリロニトリル-ブタジエン-スチレン)樹脂、AAS(アクリロニトリル-アクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴム-スチレン)樹脂、ポリグリコール酸樹脂、ポリフタルアミド、及びポリアセタールからなる群より選ばれる少なくとも一種を含んでいてよい。
Examples of the first resin include epoxy resin, silicone resin, cyanate resin, silicone rubber, acrylic resin, phenol resin, melamine resin, urea resin, bismaleimide resin, unsaturated polyester, fluorine resin, polyimide, polyamideimide, and polyetherimide. , polybutylene terephthalate, polyethylene terephthalate, polyphenylene ether, polyphenylene sulfide, wholly aromatic polyester, polysulfone, liquid crystal polymer, polyethersulfone, polycarbonate, maleimide resin, maleimide-modified resin, ABS (acrylonitrile-butadiene-styrene) resin, AAS (acrylonitrile - acrylic rubber/styrene) resin, AES (acrylonitrile/ethylene/propylene/diene rubber-styrene) resin, polyglycolic acid resin, polyphthalamide, and polyacetal.
半硬化樹脂層14は第2樹脂を含み、第1樹脂の硬化率よりも低い。半硬化樹脂層14を有することによって、複合体10は被着体への接着性に優れる。第1樹脂の硬化率と第2樹脂の硬化率との差は、例えば、30%以上、35%以上、又は40%以上であってよい。第2樹脂の硬化率は、半硬化樹脂層14から採取するサンプルを用いて、第1樹脂の硬化率を測定するのと同様にして測定することができる。
The semi-cured resin layer 14 contains the second resin and has a lower curing rate than the first resin. By having the semi-cured resin layer 14, the composite 10 has excellent adhesion to the adherend. The difference between the cure rate of the first resin and the cure rate of the second resin may be, for example, 30% or more, 35% or more, or 40% or more. The curing rate of the second resin can be measured using a sample taken from the semi-cured resin layer 14 in the same manner as measuring the curing rate of the first resin.
第2樹脂の成分は第1樹脂と同一であっても、異なってもよいが、樹脂充填板12と半硬化樹脂層14との接着性を向上させ、複合体10と被着体とを接着した後の絶縁性を向上させる観点からは、同一の樹脂で構成されることが望ましい。
The components of the second resin may be the same as or different from those of the first resin. From the viewpoint of improving the insulation properties after the coating, it is desirable that they are made of the same resin.
半硬化樹脂層14の厚さは、接着力と放熱性との両立を図る観点から調整してよい。半硬化樹脂層14の厚さは、窒化物焼結板の厚さを基準として、例えば、25.0%以下、20.0%以下、又は15.0%以下であってよい。半硬化樹脂層14の厚さの上限値が上記範囲内であることで、放熱性の低下を十分に抑制できる。半硬化樹脂層14の厚さは、窒化物焼結板の厚さを基準として、例えば、0.5%以上、1.0%以上、又は2.0%以上であってよい。半硬化樹脂層14の厚さの下限値が上記範囲内であることで、半硬化樹脂層14の樹脂充填板への固着がより強固なものとなり、また被着体との接着性をより向上させることができる。半硬化樹脂層14の厚さは上述の範囲内で調整してよく、窒化物焼結板の厚さを基準として、例えば、0.5~25.0%、又は2.0~15.0%であってよい。
The thickness of the semi-cured resin layer 14 may be adjusted from the viewpoint of achieving both adhesion and heat dissipation. The thickness of the semi-cured resin layer 14 may be, for example, 25.0% or less, 20.0% or less, or 15.0% or less based on the thickness of the nitride sintered plate. When the upper limit of the thickness of the semi-cured resin layer 14 is within the above range, it is possible to sufficiently suppress a decrease in heat dissipation. The thickness of the semi-cured resin layer 14 may be, for example, 0.5% or more, 1.0% or more, or 2.0% or more based on the thickness of the nitride sintered plate. When the lower limit of the thickness of the semi-cured resin layer 14 is within the above range, the semi-cured resin layer 14 is more firmly fixed to the resin-filled plate, and the adhesiveness to the adherend is further improved. can be made The thickness of the semi-cured resin layer 14 may be adjusted within the above range, and is, for example, 0.5 to 25.0%, or 2.0 to 15.0%, based on the thickness of the nitride sintered plate. %.
上述の複合体10は、加熱時の第1樹脂の流れ出しが抑制されていることから、金属シート等と積層する場合においても樹脂充填体の性状変化が実用上、十分に抑制されており、高度な絶縁性を要求される積層体を形成するために有用である。積層体の一実施形態は、上記複合体と、上記複合体上に設けられた金属シートと、を有する。上記複合体と、金属シートとは複合体の有する半硬化樹脂層の硬化物によって接合されていてもよい。つまり、積層体の一態様では、樹脂充填板、硬化樹脂層、及び金属シートをこの順に備える。この場合、樹脂充填体及び金属シートは硬化樹脂層を介して接合されている。
In the composite 10 described above, since the outflow of the first resin during heating is suppressed, even when laminated with a metal sheet or the like, the property change of the resin filling is sufficiently suppressed in practice, and the high degree of It is useful for forming a laminate that requires good insulation. One embodiment of a laminate includes the composite and a metal sheet provided on the composite. The composite and the metal sheet may be joined by a cured semi-cured resin layer of the composite. That is, in one aspect of the laminate, a resin-filled plate, a cured resin layer, and a metal sheet are provided in this order. In this case, the resin filling and the metal sheet are joined via the cured resin layer.
金属シートは、シート形状を有する金属製のものであれば特に制限されない。上述の複合体の説明で挙げた被着体(他部材)が金属シートであってよい。金属シートは、金属板であってよく、金属箔であってもよい。金属シートの材質は、例えば、アルミニウム、及び銅等が挙げられる。
The metal sheet is not particularly limited as long as it is made of metal and has a sheet shape. The adherend (another member) mentioned in the description of the composite above may be a metal sheet. The metal sheet may be a metal plate or a metal foil. Examples of the material of the metal sheet include aluminum and copper.
図3は、積層体の一例を示す断面図である。図3は、積層体20を積層方向に沿って切断したときの断面を示している。積層体20は、図1及び図2の複合体10と、複合体10の両主面上に積層された金属シート22とを備える。複数ある金属シート22の材質及び厚さは互いに同じであってよく、異なっていてもよい。また、複合体10の両方の主面に金属シート22を備えることは必須ではない。変形例では、複合体10の一方の主面のみに金属シート22を備えていてもよい。
FIG. 3 is a cross-sectional view showing an example of a laminate. FIG. 3 shows a cross section of the laminate 20 cut along the lamination direction. Laminate 20 comprises composite 10 of FIGS. 1 and 2 and metal sheets 22 laminated on both major surfaces of composite 10 . The material and thickness of the plurality of metal sheets 22 may be the same or different. Also, it is not essential to provide the metal sheets 22 on both major surfaces of the composite 10 . Alternatively, only one major surface of composite 10 may be provided with metal sheet 22 .
積層体20における金属シート22は、半硬化樹脂層14に接している。これによって、金属シート22と複合体10とが高い密着性で接着している。この状態を固定するために、半硬化樹脂層14を硬化させ、硬化樹脂層としてもよい。積層体20は、このように金属シート22と複合体10とが高い密着性で接着しているため、例えば放熱部材として、半導体装置等に好適に用いることができる。
The metal sheet 22 in the laminate 20 is in contact with the semi-cured resin layer 14 . Thereby, the metal sheet 22 and the composite 10 are adhered with high adhesion. In order to fix this state, the semi-cured resin layer 14 may be cured to form a cured resin layer. Since the metal sheet 22 and the composite body 10 are adhered to each other with high adhesiveness, the laminated body 20 can be suitably used as a heat radiation member, for example, in a semiconductor device or the like.
積層体20の厚さは、例えば、12.0mm未満、6.0mm未満、又は3.0mm未満であってよい。積層体20の厚さの下限は、例えば、0.6mm以上であってよい。これによって、積層体20を十分に小型化することができる。このような積層体20は、例えば半導体装置の部品として好適に用いられる。積層体20の厚さは上述の範囲内で調整してよく、例えば、0.6mm以上12.0mm未満、又は0.6mm以上6.0mm未満であってよい。
The thickness of the laminate 20 may be, for example, less than 12.0 mm, less than 6.0 mm, or less than 3.0 mm. The lower limit of the thickness of the laminate 20 may be, for example, 0.6 mm or more. As a result, the laminated body 20 can be sufficiently miniaturized. Such a laminate 20 is suitably used as a component of a semiconductor device, for example. The thickness of the laminate 20 may be adjusted within the range described above, and may be, for example, 0.6 mm or more and less than 12.0 mm, or 0.6 mm or more and less than 6.0 mm.
積層体20は、複合体10を備えるため、熱伝導性と絶縁信頼性を高水準に両立することができる。例えば、第1樹脂の硬化率を予め高めておくことによって、積層体を形成する際の第1樹脂の流れ出しが十分に抑制されており、樹脂充填板に期待される絶縁性を十分に発揮させ得る。
Since the laminate 20 includes the composite 10, it is possible to achieve both high levels of thermal conductivity and insulation reliability. For example, by increasing the curing rate of the first resin in advance, the outflow of the first resin when forming the laminate is sufficiently suppressed, and the insulating properties expected of the resin-filled plate can be sufficiently exhibited. obtain.
上述の複合体は、例えば、以下のような方法で製造することができる。複合体の製造方法の一実施形態は、多孔質の窒化物焼結板に第1樹脂組成物を含浸して樹脂含浸体を得る含浸工程と、上記樹脂含浸体を加熱して気孔に充填された上記樹脂組成物を硬化又は半硬化して第1樹脂を含む樹脂充填板を得る硬化工程と、第2樹脂を含む半硬化樹脂層を上記樹脂充填板の主面上の少なくとも一部に設ける被覆工程と、を有する。ここで、上記第1樹脂の硬化率が70%以上である。
The above composite can be produced, for example, by the following method. One embodiment of the method for producing a composite includes an impregnation step of impregnating a porous nitride sintered plate with a first resin composition to obtain a resin-impregnated body, and heating the resin-impregnated body to fill the pores. a curing step of curing or semi-curing the resin composition to obtain a resin-filled board containing a first resin; and providing a semi-cured resin layer containing a second resin on at least a portion of the main surface of the resin-filled board. and a coating step. Here, the curing rate of the first resin is 70% or more.
多孔質の窒化物焼結板は、予め調製された窒化物焼結板を使用してもよく、また、次のような焼結工程で調製した窒化物焼結板を用いてもよい。多孔質の窒化物焼結板として、予め調製された窒化物焼結板を使用する場合には、後述する焼結工程は省略することができる。
A nitride sintered plate prepared in advance may be used as the porous nitride sintered plate, or a nitride sintered plate prepared by the following sintering process may be used. When a previously prepared nitride sintered plate is used as the porous nitride sintered plate, the sintering step described later can be omitted.
焼結工程によって窒化物焼結板を調製する場合には、まず、窒化物を含む原料粉末を準備する。原料粉末に含まれる窒化物は、例えば、窒化ホウ素、窒化アルミニウム、及び窒化ケイ素からなる群から選択される少なくとも一種の窒化物を含有してよい。窒化ホウ素を含有する場合、窒化ホウ素は、アモルファス状の窒化ホウ素であってよく、六方晶状の窒化ホウ素であってもよい。窒化物焼結板として窒化ホウ素焼結板を調製する場合、原料粉末として、例えば、平均粒径が0.5~10.0μmであるアモルファス窒化ホウ素粉末、又は、平均粒径が3.0~40.0μmである六方晶窒化ホウ素粉末を用いることができる。
When preparing a nitride sintered plate by a sintering process, first, a raw material powder containing nitride is prepared. The nitride contained in the raw material powder may contain, for example, at least one nitride selected from the group consisting of boron nitride, aluminum nitride, and silicon nitride. When boron nitride is contained, the boron nitride may be amorphous boron nitride or hexagonal boron nitride. When preparing a boron nitride sintered plate as a nitride sintered plate, the raw material powder is, for example, an amorphous boron nitride powder having an average particle size of 0.5 to 10.0 μm, or an average particle size of 3.0 to A 40.0 μm hexagonal boron nitride powder can be used.
焼結工程では、窒化物粉末を含む配合物を成形して焼結し窒化物焼結体を得てもよい。成形は、例えば、一軸加圧で行ってよく、冷間等方加圧(CIP)法で行ってもよい。成形の前に、焼結助剤を配合して配合物を得てもよい。焼結助剤としては、例えば、酸化イットリウム、酸化アルミニウム及び酸化マグネシウム等の金属酸化物、炭酸リチウム及び炭酸ナトリウム等のアルカリ金属の炭酸塩、並びにホウ酸等が挙げられる。焼結助剤を配合する場合は、焼結助剤の配合量は、窒化物及び焼結助剤の合計100質量部に対して、例えば、0.01質量部以上、又は0.10質量部以上であってよい。焼結助剤の配合量は、窒化物及び焼結助剤の合計100質量部に対して、例えば、20.00質量部以下、15.00質量部以下又は10.00質量部以下であってよい。焼結助剤の添加量を上記範囲内とすることで、窒化物焼結体のメジアン細孔径を後述の範囲に調整し易くなる。焼結助剤の配合量は上述の範囲内で調整してよく、窒化物及び焼結助剤の合計100質量部に対して、例えば、0.01~20.00質量部、又は0.10~10.00質量部であってよい。
In the sintering step, a compound containing nitride powder may be molded and sintered to obtain a nitride sintered body. The molding may be carried out, for example, by uniaxial pressing or cold isostatic pressing (CIP). A sintering aid may be blended into the formulation prior to molding. Examples of sintering aids include metal oxides such as yttrium oxide, aluminum oxide and magnesium oxide, alkali metal carbonates such as lithium carbonate and sodium carbonate, and boric acid. When a sintering aid is blended, the amount of the sintering aid is, for example, 0.01 parts by mass or more, or 0.10 parts by mass with respect to a total of 100 parts by mass of the nitride and the sintering aid. or more. The amount of the sintering aid compounded is, for example, 20.00 parts by mass or less, 15.00 parts by mass or less, or 10.00 parts by mass or less with respect to a total of 100 parts by mass of the nitride and the sintering aid. good. By setting the amount of the sintering aid to be added within the above range, it becomes easier to adjust the median pore diameter of the nitride sintered body within the range described below. The amount of the sintering aid may be adjusted within the above range, for example, 0.01 to 20.00 parts by mass, or 0.10 parts per 100 parts by mass of the total of the nitride and the sintering aid. It may be up to 10.00 parts by mass.
配合物は、例えば、ドクターブレード法によってシート状の成形体としてよい。成形方法は特に限定されず、金型を用いてプレス成形を行って成形体としてもよい。成形圧力は、例えば、5~350MPaであってよい。成形体の形状は、厚さが2mm未満のシート状であってよい。このようなシート状の成形体を用いて窒化物焼結板を製造すれば、窒化物焼結板を切断することなく、厚さが2mm未満のシート状の複合体を製造することができる。また、ブロック状の窒化物焼結体を切断してシート状とする場合に比べて、成形体の段階からシート状にすることによって、加工による材料ロスを低減することができる。したがって、高い歩留まりで複合体を製造することができる。
The compound may be formed into a sheet-like molded body by, for example, a doctor blade method. The molding method is not particularly limited, and press molding may be performed using a mold to form a molded body. The molding pressure may be, for example, 5-350 MPa. The shape of the compact may be a sheet with a thickness of less than 2 mm. If a nitride sintered plate is produced using such a sheet-like compact, a sheet-like composite having a thickness of less than 2 mm can be produced without cutting the nitride sintered plate. In addition, compared to the case where a block-shaped nitride sintered body is cut to form a sheet, the material loss due to processing can be reduced by forming the block into a sheet from the compact stage. Therefore, the composite can be manufactured with high yield.
焼結工程の焼結温度は、例えば、1600℃以上であってよく、1700℃以上であってもよい。焼結温度は、例えば、2200℃以下であってよく、2000℃以下であってもよい。焼結時間は、例えば、1時間以上であってよく、30時間以下であってもよい。焼結時の雰囲気は、例えば、窒素、ヘリウム、及びアルゴン等の不活性ガス雰囲気下であってよい。
The sintering temperature in the sintering step may be, for example, 1600°C or higher, or 1700°C or higher. The sintering temperature may be, for example, 2200° C. or lower, or 2000° C. or lower. The sintering time may be, for example, 1 hour or more and may be 30 hours or less. The atmosphere during sintering may be, for example, an inert gas atmosphere such as nitrogen, helium, and argon.
焼結には、例えば、バッチ式炉及び連続式炉等を用いることができる。バッチ式炉としては、例えば、マッフル炉、管状炉、及び雰囲気炉等を挙げることができる。連続式炉としては、例えば、ロータリーキルン、スクリューコンベア炉、トンネル炉、ベルト炉、プッシャー炉、及び大形連続炉等を挙げることができる。このようにして、窒化物焼結体又は窒化物焼結板を得ることができる。窒化物焼結体はブロック状であってよい。
For sintering, for example, a batch type furnace and a continuous type furnace can be used. Batch type furnaces include, for example, muffle furnaces, tubular furnaces, atmosphere furnaces, and the like. Examples of continuous furnaces include rotary kilns, screw conveyor furnaces, tunnel furnaces, belt furnaces, pusher furnaces, and large continuous furnaces. Thus, a nitride sintered body or a nitride sintered plate can be obtained. The nitride sintered body may be block-shaped.
窒化物焼結体がブロック状である場合、2mm未満の厚さとなるように加工する切断工程を行ってもよい。切断工程では、窒化物焼結体を、例えば、ワイヤーソーを用いて切断する。ワイヤーソーは、例えば、マルチカットワイヤーソー等であってよい。このような切断工程によって、例えば厚さが2mm未満のシート状の窒化物焼結板を得ることができる。これによって、次の含浸工程において、窒化物焼結体に第1樹脂組成物を円滑に含浸することができる。
When the nitride sintered body is block-shaped, a cutting step may be performed to process it so that it has a thickness of less than 2 mm. In the cutting step, the nitride sintered body is cut using, for example, a wire saw. The wire saw may be, for example, a multi-cut wire saw or the like. A sheet-like nitride sintered plate having a thickness of less than 2 mm, for example, can be obtained by such a cutting process. Thereby, the nitride sintered body can be smoothly impregnated with the first resin composition in the next impregnation step.
含浸工程では、窒化物焼結体の気孔に10~500mPa・sの粘度を有する第1樹脂組成物を含浸して樹脂含浸体を得る。窒化物焼結体の厚さを小さくすることで、第1樹脂組成物の含浸を円滑にすることができる。また、第1樹脂組成物の粘度を含浸に適した範囲にすることによって、樹脂充填体の充填率を十分に高くすることができる。
In the impregnation step, the pores of the nitride sintered body are impregnated with the first resin composition having a viscosity of 10 to 500 mPa·s to obtain a resin-impregnated body. By reducing the thickness of the nitride sintered body, the impregnation of the first resin composition can be facilitated. Also, by setting the viscosity of the first resin composition to a range suitable for impregnation, the filling rate of the resin filler can be sufficiently increased.
窒化物焼結板に第1樹脂組成物を含浸する際の第1樹脂組成物の粘度は、例えば、440mPa・s以下、390mPa・s以下、又は340mPa・s以下であってよい。このように第1樹脂組成物の粘度を低くすることによって、第1樹脂組成物の含浸を十分に促進することができる。窒化物焼結板に第1樹脂組成物を含浸する際の第1樹脂組成物の粘度は、例えば、15mPa・s以上、又は20mPa・s以上であってよい。このように第1樹脂組成物の粘度に下限を設けることによって、一旦気孔内に含浸した第1樹脂組成物が気孔から流出することをより抑制することができる。第1樹脂組成物の粘度は上述の範囲内で調整してよく、例えば、15~440mPa・s、又は20~340mPa・sであってよい。第1樹脂組成物の粘度は、モノマー成分を一部重合して調整してもよく、溶剤を加えて調整してもよい。
The viscosity of the first resin composition when the nitride sintered plate is impregnated with the first resin composition may be, for example, 440 mPa·s or less, 390 mPa·s or less, or 340 mPa·s or less. By reducing the viscosity of the first resin composition in this manner, the impregnation of the first resin composition can be sufficiently promoted. The viscosity of the first resin composition when the nitride sintered plate is impregnated with the first resin composition may be, for example, 15 mPa·s or more, or 20 mPa·s or more. By thus setting a lower limit for the viscosity of the first resin composition, it is possible to further suppress the first resin composition once impregnated in the pores from flowing out from the pores. The viscosity of the first resin composition may be adjusted within the range described above, and may be, for example, 15 to 440 mPa·s, or 20 to 340 mPa·s. The viscosity of the first resin composition may be adjusted by partially polymerizing the monomer component, or may be adjusted by adding a solvent.
上述の第1樹脂組成物の上記粘度は、窒化物焼結板に第1樹脂組成物を含浸する際の第1樹脂組成物の温度(T1)における粘度である。この粘度は、回転式粘度計を用いて、剪断速度が10(1/秒)、温度(T1)の下で測定される値である。したがって、温度T1を変えることによって、窒化物焼結板に第1樹脂組成物を含浸する際の粘度を調節してもよい。
The above viscosity of the first resin composition is the viscosity at the temperature (T1) of the first resin composition when impregnating the nitride sintered plate with the first resin composition. This viscosity is a value measured using a rotational viscometer at a shear rate of 10 (1/sec) and a temperature (T1). Therefore, by changing the temperature T1, the viscosity when the nitride sintered plate is impregnated with the first resin composition may be adjusted.
窒化物焼結板に第1樹脂組成物を含浸する際の温度(T1)は、例えば、第1樹脂組成物を半硬化する温度(T2)以上、且つ温度T3(=T2+20℃)未満であってよい。温度(T2)は、例えば、80~140℃であってよい。窒化物焼結板への第1樹脂組成物の含浸は、加圧下で行ってよく、減圧下で行ってもよい。含浸する方法は特に限定されず、第1樹脂組成物中に窒化物焼結板を浸漬してもよいし、窒化物焼結板の表面に第1樹脂組成物を塗布することで行ってもよい。
The temperature (T1) at which the nitride sintered plate is impregnated with the first resin composition is, for example, the temperature (T2) at which the first resin composition is semi-cured or higher and less than the temperature T3 (=T2 + 20 ° C.). you can The temperature (T2) may be, for example, 80-140°C. Impregnation of the nitride sintered plate with the first resin composition may be performed under pressure or under reduced pressure. The impregnation method is not particularly limited, and the nitride sintered plate may be immersed in the first resin composition, or the surface of the nitride sintered plate may be coated with the first resin composition. good.
含浸工程は、減圧条件下及び加圧条件下のどちらで行ってもよく、減圧条件下での含浸と、加圧条件下での含浸とを組み合わせて行ってもよい。減圧条件下で含浸工程を実施する場合における含浸装置内の圧力は、例えば、1000Pa以下、500Pa以下、100Pa以下、50Pa以下、又は20Pa以下であってよい。加圧条件下で含浸工程を実施する場合における含浸装置内の圧力は、例えば、1MPa以上、3MPa以上、10MPa以上、又は30MPa以上であってよい。
The impregnation step may be performed under either reduced pressure or increased pressure, or a combination of impregnation under reduced pressure and increased pressure. The pressure in the impregnation device when the impregnation step is performed under reduced pressure conditions may be, for example, 1000 Pa or less, 500 Pa or less, 100 Pa or less, 50 Pa or less, or 20 Pa or less. The pressure in the impregnation device when the impregnation step is performed under pressurized conditions may be, for example, 1 MPa or higher, 3 MPa or higher, 10 MPa or higher, or 30 MPa or higher.
窒化物焼結板における気孔の細孔径を調整することによって、毛細管現象による樹脂組成物の含浸を促進し、樹脂充填体における樹脂の充填率を調整してもよい。このような観点から、窒化物焼結板のメジアン細孔径は、例えば、0.3~6.0μm、0.5~5.0μm、又は1.0~4.0μmであってもよい。
By adjusting the pore size of the pores in the nitride sintered plate, the impregnation of the resin composition by capillary action may be promoted, and the filling rate of the resin in the resin filling body may be adjusted. From this point of view, the median pore diameter of the nitride sintered plate may be, for example, 0.3-6.0 μm, 0.5-5.0 μm, or 1.0-4.0 μm.
第1樹脂組成物は、例えば、硬化又は半硬化反応によって上述の複合体の説明で挙げた樹脂となるものを用いることができる。
For the first resin composition, it is possible to use, for example, one that becomes the resin mentioned in the above description of the composite by curing or semi-curing reaction.
第1樹脂組成物は溶剤を含んでいてもよい。溶剤としては、例えば、エタノール、及びイソプロパノール等の脂肪族アルコール、2-メトキシエタノール、1-メトキシエタノール、2-エトキシエタノール、1-エトキシ-2-プロパノール、2-ブトキシエタノール、2-(2-メトキシエトキシ)エタノール、2-(2-エトキシエトキシ)エタノール、及び2-(2-ブトキシエトキシ)エタノール等のエーテルアルコール、エチレングリコールモノメチルエーテル、及びエチレングリコールモノブチルエーテル等のグリコールエーテル、アセトン、メチルエチルケトン、メチルイソブチルケトン、及びジイソブチルケトン等のケトン、並びにトルエン、及びキシレン等の芳香族炭化水素などが挙げられる。
The first resin composition may contain a solvent. Solvents include, for example, ethanol and aliphatic alcohols such as isopropanol, 2-methoxyethanol, 1-methoxyethanol, 2-ethoxyethanol, 1-ethoxy-2-propanol, 2-butoxyethanol, 2-(2-methoxy Ether alcohols such as ethoxy)ethanol, 2-(2-ethoxyethoxy)ethanol, and 2-(2-butoxyethoxy)ethanol, glycol ethers such as ethylene glycol monomethyl ether and ethylene glycol monobutyl ether, acetone, methyl ethyl ketone, methyl isobutyl Examples include ketones, ketones such as diisobutyl ketone, and aromatic hydrocarbons such as toluene and xylene.
第1樹脂組成物は、熱硬化性であり、例えば、シアネート基を有する化合物、ビスマレイミド基を有する化合物及びエポキシ基を有する化合物からなる群より選択される少なくとも1種の化合物と、硬化剤と、を含有してよい。
The first resin composition is thermosetting, for example, at least one compound selected from the group consisting of a compound having a cyanate group, a compound having a bismaleimide group, and a compound having an epoxy group, and a curing agent. , may contain.
シアネート基を有する化合物としては、例えば、ジメチルメチレンビス(1,4-フェニレン)ビスシアナート、及びビス(4-シアネートフェニル)メタン等が挙げられる。ジメチルメチレンビス(1,4-フェニレン)ビスシアナートは、例えば、TACN(三菱ガス化学株式会社製、商品名)として商業的に入手可能である。
Examples of compounds having a cyanate group include dimethylmethylenebis(1,4-phenylene)biscyanate and bis(4-cyanatophenyl)methane. Dimethylmethylenebis(1,4-phenylene)biscyanate is commercially available, for example, as TACN (manufactured by Mitsubishi Gas Chemical Company, Inc., trade name).
ビスマレイミド基を有する化合物としては、例えば、N,N’-[(1-メチルエチリデン)ビス[(p-フェニレン)オキシ(p-フェニレン)]]ビスマレイミド、及び4,4’-ジフェニルメタンビスマレイミド等が挙げられる。N,N’-[(1-メチルエチリデン)ビス[(p-フェニレン)オキシ(p-フェニレン)]]ビスマレイミドは、例えば、BMI-80(ケイ・アイ化成株式会社製、商品名)として商業的に入手可能である。
Examples of compounds having a bismaleimide group include N,N'-[(1-methylethylidene)bis[(p-phenylene)oxy(p-phenylene)]]bismaleimide and 4,4'-diphenylmethanebismaleimide. etc. N,N'-[(1-methylethylidene)bis[(p-phenylene)oxy(p-phenylene)]]bismaleimide is commercially available as BMI-80 (manufactured by K.I. Kasei Co., Ltd., trade name), for example. readily available.
エポキシ基を有する化合物としては、例えば、ビスフェノールF型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、及び多官能エポキシ樹脂等が挙げられる。例えば、HP-4032D(DIC株式会社製、商品名)として商業的に入手可能である1,6-ビス(2,3-エポキシプロパン-1-イルオキシ)ナフタレン等であってもよい。
Examples of compounds having epoxy groups include bisphenol F type epoxy resins, bisphenol A type epoxy resins, biphenyl type epoxy resins, and polyfunctional epoxy resins. For example, it may be 1,6-bis(2,3-epoxypropan-1-yloxy)naphthalene, which is commercially available as HP-4032D (manufactured by DIC Corporation, trade name).
硬化剤は、ホスフィン系硬化剤及びイミダゾール系硬化剤を含有してもよい。ホスフィン系硬化剤はシアネート基を有する化合物又はシアネート樹脂の三量化によるトリアジン生成反応を促進し得る。ホスフィン系硬化剤としては、例えば、テトラフェニルホスホニウムテトラ-p-トリルボレート、及びテトラフェニルホスホニウムテトラフェニルボレート等が挙げられる。テトラフェニルホスホニウムテトラ-p-トリルボレートは、例えば、TPP-MK(北興化学工業株式会社製、商品名)として商業的に入手可能である。
The curing agent may contain a phosphine-based curing agent and an imidazole-based curing agent. A phosphine-based curing agent can promote a triazine formation reaction by trimerization of a compound having a cyanate group or a cyanate resin. Phosphine-based curing agents include, for example, tetraphenylphosphonium tetra-p-tolylborate and tetraphenylphosphonium tetraphenylborate. Tetraphenylphosphonium tetra-p-tolylborate is commercially available, for example, as TPP-MK (manufactured by Hokko Chemical Industry Co., Ltd., trade name).
イミダゾール系硬化剤はオキサゾリンを生成し、エポキシ基を有する化合物又はエポキシ樹脂の硬化反応を促進する。イミダゾール系硬化剤としては、例えば、1-(1-シアノメチル)-2-エチル-4-メチル-1H-イミダゾール、及び2-エチル-4-メチルイミダゾール等が挙げられる。1-(1-シアノメチル)-2-エチル-4-メチル-1H-イミダゾールは、例えば、2E4MZ-CN(四国化成工業株式会社製、商品名)として商業的に入手可能である。
The imidazole-based curing agent generates oxazoline and accelerates the curing reaction of the epoxy group-containing compound or epoxy resin. Examples of imidazole curing agents include 1-(1-cyanomethyl)-2-ethyl-4-methyl-1H-imidazole and 2-ethyl-4-methylimidazole. 1-(1-Cyanomethyl)-2-ethyl-4-methyl-1H-imidazole is commercially available, for example, as 2E4MZ-CN (manufactured by Shikoku Kasei Co., Ltd., trade name).
ホスフィン系硬化剤の含有量は、シアネート基を有する化合物、ビスマレイミド基を有する化合物及びエポキシ基を有する化合物の合計量100質量部に対して、例えば、5質量部以下、4質量部以下、又は3質量部以下であってよい。ホスフィン系硬化剤の含有量は、シアネート基を有する化合物、ビスマレイミド基を有する化合物及びエポキシ基を有する化合物の合計量100質量部に対して、例えば、0.1質量部以上、又は0.5質量部以上であってよい。ホスフィン系硬化剤の含有量が上記範囲内であると、樹脂含浸体の調製が容易である。ホスフィン系硬化剤の含有量は上述の範囲内で調整してよく、シアネート基を有する化合物、ビスマレイミド基を有する化合物及びエポキシ基を有する化合物の合計量100質量部に対して、例えば、0.1~5質量部であってよい。
The content of the phosphine-based curing agent is, for example, 5 parts by mass or less, 4 parts by mass or less, or It may be 3 parts by mass or less. The content of the phosphine-based curing agent is, for example, 0.1 parts by mass or more, or 0.5 parts by mass, with respect to 100 parts by mass of the total amount of the compound having a cyanate group, the compound having a bismaleimide group, and the compound having an epoxy group. It may be at least parts by mass. When the content of the phosphine-based curing agent is within the above range, it is easy to prepare the resin-impregnated body. The content of the phosphine-based curing agent may be adjusted within the above-mentioned range, and for example, 0.5 parts per 100 parts by mass of the total amount of the compound having a cyanate group, the compound having a bismaleimide group and the compound having an epoxy group. It may be 1 to 5 parts by mass.
イミダゾール系硬化剤の含有量は、シアネート基を有する化合物、ビスマレイミド基を有する化合物及びエポキシ基を有する化合物の合計量100質量部に対して、例えば、0.1質量部以下、0.05質量部以下、又は0.03質量部以下であってよい。イミダゾール系硬化剤の含有量は、シアネート基を有する化合物、ビスマレイミド基を有する化合物及びエポキシ基を有する化合物の合計量100質量部に対して、例えば、0.001質量部以上、又は0.005質量部以上であってよい。イミダゾール系硬化剤の含有量が上記範囲内であると、樹脂含浸体の調製が容易である。イミダゾール系硬化剤の含有量は上述の範囲内で調整してよく、シアネート基を有する化合物、ビスマレイミド基を有する化合物及びエポキシ基を有する化合物の合計量100質量部に対して、例えば、0.001~0.1質量部であってよい。
The content of the imidazole-based curing agent is, for example, 0.1 parts by mass or less, 0.05 parts by mass with respect to 100 parts by mass of the total amount of the compound having a cyanate group, the compound having a bismaleimide group, and the compound having an epoxy group. parts or less, or 0.03 parts by mass or less. The content of the imidazole-based curing agent is, for example, 0.001 parts by mass or more, or 0.005 parts by mass with respect to 100 parts by mass of the total amount of the compound having a cyanate group, the compound having a bismaleimide group, and the compound having an epoxy group. It may be at least parts by mass. When the content of the imidazole-based curing agent is within the above range, preparation of the resin-impregnated body is easy. The content of the imidazole-based curing agent may be adjusted within the range described above. 001 to 0.1 parts by mass.
第1樹脂組成物は、主剤及び硬化剤とは別の成分を含んでよい。その他の成分としては、例えば、フェノール樹脂、メラミン樹脂、尿素樹脂、及びアルキド樹脂等のその他の樹脂、シランカップリング剤、レベリング剤、消泡剤、表面調整剤、並びに湿潤分散剤等を更に含んでもよい。これらのその他の成分の含有量は、第1樹脂組成物全量を基準として、例えば、20質量%以下であってよく、10質量%以下であってよく、5質量%以下であってよい。
The first resin composition may contain components other than the main agent and the curing agent. Other components further include, for example, other resins such as phenolic resins, melamine resins, urea resins, and alkyd resins, silane coupling agents, leveling agents, antifoaming agents, surface control agents, and wetting and dispersing agents. It's okay. The content of these other components may be, for example, 20% by mass or less, 10% by mass or less, or 5% by mass or less based on the total amount of the first resin composition.
硬化工程では、含浸工程によって得られた樹脂含浸体における第1樹脂組成物を硬化又は半硬化させることによって、硬化率が70%以上となる第1樹脂を含む樹脂充填板を調製する。硬化工程では、第1樹脂組成物(又は必要に応じて添加される硬化剤)の種類に応じて、加熱、及び/又は光照射により、第1樹脂組成物を硬化又は半硬化させる。
In the curing step, by curing or semi-curing the first resin composition in the resin-impregnated body obtained in the impregnation step, a resin-filled plate containing the first resin having a curing rate of 70% or more is prepared. In the curing step, the first resin composition is cured or semi-cured by heating and/or light irradiation depending on the type of the first resin composition (or curing agent added as necessary).
硬化工程において、加熱によって第1樹脂組成物を硬化又は半硬化させる場合の加熱温度は、例えば、80~130℃であってよい。第1樹脂組成物の半硬化又は硬化によって得られる第1樹脂は、樹脂成分として、シアネート樹脂、ビスマレイミド樹脂、及びエポキシ樹脂からなる群より選択される少なくとも1種の熱硬化性樹脂を含有してよい。まただい1樹脂は、硬化剤を含有してもよい。第1樹脂は、これらの成分の他に、例えば、フェノール樹脂、メラミン樹脂、尿素樹脂、及びアルキド樹脂等のその他の樹脂、並びに、シランカップリング剤、レベリング剤、消泡剤、表面調整剤、及び湿潤分散剤等に由来する成分を含有してもよい。
In the curing step, the heating temperature for curing or semi-curing the first resin composition by heating may be, for example, 80 to 130°C. The first resin obtained by semi-curing or curing the first resin composition contains, as a resin component, at least one thermosetting resin selected from the group consisting of cyanate resins, bismaleimide resins, and epoxy resins. you can The first resin may also contain a curing agent. In addition to these components, the first resin includes other resins such as phenolic resins, melamine resins, urea resins, and alkyd resins, as well as silane coupling agents, leveling agents, antifoaming agents, surface control agents, and components derived from wetting and dispersing agents.
硬化工程は樹脂含浸体の周囲に第1樹脂組成物が存在する状況で行うことが好ましい。このようにすることによって、第1樹脂組成物の硬化収縮によって体積が減じる場合にも樹脂含浸体の周囲から第1樹脂組成物が供給され、空隙が生じることを更に抑制することができる。また硬化反応を停止させ、冷却する際に生じる第1樹脂の固化収縮によって体積が減じる場合にも周囲に同様の樹脂が存在することによって、やはり空隙の発生を抑制し得る。
The curing step is preferably performed in a situation where the first resin composition exists around the resin-impregnated body. By doing so, even when the volume is reduced due to curing shrinkage of the first resin composition, the first resin composition is supplied from the periphery of the resin-impregnated body, and the formation of voids can be further suppressed. Moreover, even when the volume is reduced due to solidification shrinkage of the first resin that occurs when the curing reaction is stopped and cooled, the presence of the similar resin in the surroundings can also suppress the formation of voids.
被覆工程では樹脂充填板の主面上の少なくとも一部に第2樹脂を含む半硬化樹脂層を設けることで、複合体を調製する。被覆工程は、例えば、硬化工程で得られた樹脂充填板に第2樹脂組成物を付着させ、加熱することによって、樹脂充填板の主面上の少なくとも一部に半硬化樹脂層を設ける工程であってよく、また予め調製された第2樹脂組成物の半硬化物を接着することによって、樹脂充填板の主面上の少なくとも一部に半硬化樹脂層を設ける工程個であってもよい。
In the coating step, a composite is prepared by providing a semi-cured resin layer containing the second resin on at least part of the main surface of the resin-filled plate. The coating step is, for example, a step of applying a second resin composition to the resin-filled plate obtained in the curing step and heating it to provide a semi-cured resin layer on at least a portion of the main surface of the resin-filled plate. Alternatively, the step may include providing a semi-cured resin layer on at least a portion of the main surface of the resin-filled plate by adhering a pre-prepared semi-cured second resin composition.
被覆工程における、被覆の方法は特に限定されず、第2樹脂組成物中に樹脂充填板を浸漬してもよいし、樹脂充填板の表面に第2樹脂組成物を塗布することで行ってもよいし、別途調製した半硬化物樹脂層を接着することで行ってもよい。別途調製した半硬化物樹脂層を接着する手段は、別途支持体上に設けられた半硬化物樹脂層を転写する方法であってよい。樹脂充填体に付着する第2樹脂組成物の量は、第2樹脂組成物の粘度で調節してもよい。
The coating method in the coating step is not particularly limited, and the resin-filled plate may be immersed in the second resin composition, or the surface of the resin-filled plate may be coated with the second resin composition. Alternatively, a separately prepared semi-cured resin layer may be adhered. The means for bonding the separately prepared semi-cured resin layer may be a method of transferring the semi-cured resin layer separately provided on the support. The amount of the second resin composition adhering to the resin filler may be adjusted by the viscosity of the second resin composition.
樹脂充填板に付着する際の第2樹脂組成物の粘度は、例えば、10~500mPa・s、又は15~400mPa・sであってよい。
The viscosity of the second resin composition when adhered to the resin-filled plate may be, for example, 10 to 500 mPa·s, or 15 to 400 mPa·s.
第2樹脂組成物の上記粘度は、樹脂充填体に第2樹脂組成物を付着する際の第2樹脂組成物の温度(T4)における粘度である。この粘度は、回転式粘度計を用いて、剪断速度が10(1/秒)であり、温度(T4)の下で測定される。温度(T4)を変えることによって、樹脂充填体に第2樹脂組成物を付着する際の粘度を調節してもよい。この粘度は、第2樹脂組成物の温度(T4)を変えるによって調整してもよいし、第1樹脂組成物と同様に溶剤の配合量を変えることで調整してもよい。
The viscosity of the second resin composition is the viscosity at the temperature (T4) of the second resin composition when the second resin composition adheres to the resin filling. The viscosity is measured using a rotational viscometer at a shear rate of 10 (1/sec) and under temperature (T4). By changing the temperature (T4), the viscosity at which the second resin composition adheres to the resin filling may be adjusted. This viscosity may be adjusted by changing the temperature (T4) of the second resin composition, or may be adjusted by changing the blending amount of the solvent as in the case of the first resin composition.
第2樹脂組成物の含有成分は、第1樹脂組成物で例示したものと同じものを使用できる。第2樹脂組成物と第1樹脂組成物の組成は、互いに同一であってもよいし、異なっていてもよい。樹脂充填板に第2樹脂組成物を付着した後、第2樹脂組成物を硬化又は半硬化させて第2樹脂を得る。第2樹脂組成物(又は必要に応じて添加される硬化剤)の種類に応じて、加熱、及び/又は光照射により、第2樹脂組成物を硬化又は半硬化させる。
The components contained in the second resin composition may be the same as those exemplified for the first resin composition. The compositions of the second resin composition and the first resin composition may be the same or different. After adhering the second resin composition to the resin-filled plate, the second resin composition is cured or semi-cured to obtain the second resin. The second resin composition is cured or semi-cured by heating and/or light irradiation depending on the type of the second resin composition (or curing agent added as necessary).
加熱によって第2樹脂組成物を硬化又は半硬化させる場合の加熱温度は、例えば、80~130℃であってよい。第1樹脂組成物と第2樹脂組成物の組成が同一である場合、ここでの加熱温度を硬化工程時の加熱温度よりも低く設定すること、又は加熱時間を短く設定することによって、第1樹脂の硬化率よりも第2樹脂の硬化率を低くすることができる。
The heating temperature for curing or semi-curing the second resin composition by heating may be, for example, 80 to 130°C. When the compositions of the first resin composition and the second resin composition are the same, the first The hardening rate of the second resin can be made lower than the hardening rate of the resin.
第2樹脂組成物の半硬化又は硬化によって得られる第2樹脂は、樹脂成分として、シアネート樹脂、ビスマレイミド樹脂及びエポキシ樹脂からなる群より選択される少なくとも1種の熱硬化性樹脂、並びに硬化剤を含有してよい。第2樹脂は、これらの成分の他に、例えば、フェノール樹脂、メラミン樹脂、尿素樹脂、及びアルキド樹脂等のその他の樹脂、並びに、シランカップリング剤、レベリング剤、消泡剤、表面調整剤、及び湿潤分散剤等に由来する成分を含有してもよい。
The second resin obtained by semi-curing or curing the second resin composition contains, as a resin component, at least one thermosetting resin selected from the group consisting of cyanate resins, bismaleimide resins and epoxy resins, and a curing agent. may contain In addition to these components, the second resin includes other resins such as phenolic resins, melamine resins, urea resins, and alkyd resins, as well as silane coupling agents, leveling agents, antifoaming agents, surface control agents, and components derived from wetting and dispersing agents.
上述の製造方法は、焼結工程、含浸工程、硬化工程及び被覆工程の他の工程を有してもよい。他の工程としては、例えば、樹脂充填板の主面の表面粗さRzを調整する工程等が挙げられる。表面粗さRzを調整は、例えば、研磨、及び、表面粒子の除去等によって行うことができる。
The manufacturing method described above may have other steps such as a sintering step, an impregnation step, a curing step, and a coating step. Other steps include, for example, a step of adjusting the surface roughness Rz of the main surface of the resin-filled plate. The surface roughness Rz can be adjusted by, for example, polishing and removing surface particles.
積層体の製造方法の一実施形態は、上述の複合体と、金属シートと、を積層し、加熱及び加圧する積層工程を有する。上記複合体としては、上述のいずれかの製造方法で得られた複合体を用いることができる。すなわち、積層体の製造方法は、上述の製造方法に加えて、上記積層工程を有する製造方法であってよい。金属シートは、金属板であってよく、金属箔であってもよい。
An embodiment of a method for manufacturing a laminate has a lamination step of laminating the above-described composite and metal sheets, followed by heating and pressing. As the composite, a composite obtained by any of the above-described production methods can be used. That is, the manufacturing method of the laminate may be a manufacturing method including the above-described lamination step in addition to the manufacturing method described above. The metal sheet may be a metal plate or a metal foil.
積層工程では、複合体の主面上に金属シートを配置する。複合体と金属シートの主面同士を接触させた状態で、主面同士が対向する方向に加圧するとともに、加熱する。なお、加圧と加熱は必ずしも同時に行う必要はなく、加圧して圧着した後に加熱してもよい。
In the lamination process, a metal sheet is placed on the main surface of the composite. With the main surfaces of the composite and the metal sheet in contact with each other, pressure is applied in the direction in which the main surfaces face each other, and heating is applied. Note that the pressurization and heating need not necessarily be performed at the same time, and the heating may be performed after pressurization and crimping.
このようにして得られた積層体は、半導体装置等の製造に用いることができる。一方の金属シート上に半導体素子を設けてもよい。他方の金属シートは冷却フィンと接合されてもよい。
The laminate thus obtained can be used for manufacturing semiconductor devices and the like. A semiconductor element may be provided on one of the metal sheets. The other metal sheet may be joined with cooling fins.
以上、本開示の幾つかの実施形態について説明したが、本開示は上記実施形態に何ら限定されるものではない。また、上述した実施形態についての説明内容は、互いに適用することができる。
Although several embodiments of the present disclosure have been described above, the present disclosure is not limited to the above embodiments. Also, the descriptions of the above-described embodiments can be applied to each other.
以下、本開示について、実施例及び比較例を用いてより詳細に説明する。なお、本開示は以下の実施例に限定されるものではない。
Hereinafter, the present disclosure will be described in more detail using examples and comparative examples. It should be noted that the present disclosure is not limited to the following examples.
(実施例1)
[窒化物焼結板の作製]
新日本電工株式会社製のオルトホウ酸100質量部と、デンカ株式会社製のアセチレンブラック(商品名:HS100)35質量部とをヘンシェルミキサーを用いて混合した。得られた混合物を、黒鉛製のルツボ中に充填し、アーク炉にて、アルゴン雰囲気で、2200℃にて5時間加熱し、塊状の炭化ホウ素(B4C)を得た。得られた塊状物を、ジョークラッシャーで粗粉砕して粗粉を得た。この粗粉を、炭化珪素製のボール(φ10mm)を有するボールミルによってさらに粉砕して粉砕粉を得た。 (Example 1)
[Production of nitride sintered plate]
100 parts by mass of orthoboric acid manufactured by Shin Nippon Denko Co., Ltd. and 35 parts by mass of acetylene black (trade name: HS100) manufactured by Denka Co., Ltd. were mixed using a Henschel mixer. The obtained mixture was filled in a graphite crucible and heated at 2200° C. for 5 hours in an argon atmosphere in an arc furnace to obtain massive boron carbide (B 4 C). The resulting mass was coarsely pulverized with a jaw crusher to obtain coarse powder. This coarse powder was further pulverized by a ball mill having silicon carbide balls (φ10 mm) to obtain pulverized powder.
[窒化物焼結板の作製]
新日本電工株式会社製のオルトホウ酸100質量部と、デンカ株式会社製のアセチレンブラック(商品名:HS100)35質量部とをヘンシェルミキサーを用いて混合した。得られた混合物を、黒鉛製のルツボ中に充填し、アーク炉にて、アルゴン雰囲気で、2200℃にて5時間加熱し、塊状の炭化ホウ素(B4C)を得た。得られた塊状物を、ジョークラッシャーで粗粉砕して粗粉を得た。この粗粉を、炭化珪素製のボール(φ10mm)を有するボールミルによってさらに粉砕して粉砕粉を得た。 (Example 1)
[Production of nitride sintered plate]
100 parts by mass of orthoboric acid manufactured by Shin Nippon Denko Co., Ltd. and 35 parts by mass of acetylene black (trade name: HS100) manufactured by Denka Co., Ltd. were mixed using a Henschel mixer. The obtained mixture was filled in a graphite crucible and heated at 2200° C. for 5 hours in an argon atmosphere in an arc furnace to obtain massive boron carbide (B 4 C). The resulting mass was coarsely pulverized with a jaw crusher to obtain coarse powder. This coarse powder was further pulverized by a ball mill having silicon carbide balls (φ10 mm) to obtain pulverized powder.
調製した粉砕粉を、窒化ホウ素製のルツボに充填した。その後、抵抗加熱炉を用い、窒素ガス雰囲気下で、2000℃、0.85MPaの条件で10時間加熱した。このようにして炭窒化ホウ素(B4CN4)を含む焼成物を得た。
The prepared pulverized powder was filled in a crucible made of boron nitride. After that, using a resistance heating furnace, heating was performed for 10 hours under conditions of 2000° C. and 0.85 MPa in a nitrogen gas atmosphere. Thus, a fired product containing boron carbonitride (B 4 CN 4 ) was obtained.
粉末状のホウ酸と炭酸カルシウムを配合して焼結助剤を調製した。調製にあたっては、100質量部のホウ酸に対して、炭酸カルシウムを50.0質量部配合した。このときのホウ素とカルシウムの原子比率は、ホウ素100原子%に対してカルシウムが17.5原子%であった。焼成物100質量部に対して焼結助剤を20質量部配合し、ヘンシェルミキサーを用いて混合して粉末状の配合物を調製した。
A sintering aid was prepared by blending powdered boric acid and calcium carbonate. In preparation, 50.0 parts by mass of calcium carbonate was blended with 100 parts by mass of boric acid. At this time, the atomic ratio of boron to calcium was 17.5 atomic % of calcium to 100 atomic % of boron. 20 parts by mass of a sintering aid was blended with 100 parts by mass of the fired product, and mixed using a Henschel mixer to prepare a powdery compound.
配合物を、粉末プレス機を用いて、150MPaで30秒間加圧して、シート状(縦×横×厚さ=50mm×50mm×0.35mm)の成形体を得た。成形体を窒化ホウ素製容器に入れ、バッチ式高周波炉に導入した。バッチ式高周波炉において、常圧、窒素流量5L/分、2000℃の条件で5時間加熱した。その後、窒化ホウ素製容器から窒化ホウ素焼結体を取り出した。このようにして、シート状(四角柱状)の窒化ホウ素焼結体を得た。窒化ホウ素焼結板の厚さは0.36mmであった。
Using a powder press, the compound was pressed at 150 MPa for 30 seconds to obtain a sheet-like molded body (length x width x thickness = 50 mm x 50 mm x 0.35 mm). The compact was placed in a boron nitride container and introduced into a batch-type high-frequency furnace. In a batch-type high-frequency furnace, heating was performed for 5 hours under the conditions of atmospheric pressure, nitrogen flow rate of 5 L/min, and 2000°C. After that, the boron nitride sintered body was taken out from the boron nitride container. Thus, a sheet-like (square prism-like) boron nitride sintered body was obtained. The thickness of the boron nitride sintered plate was 0.36 mm.
<メジアン細孔径の測定>
得られた窒化ホウ素焼結体について、株式会社島津製作所製の水銀ポロシメーター(装置名:オートポアIV9500)を用い、0.0042MPaから206.8MPaまで圧力を増加しながら細孔容積分布を測定した。積算細孔容積が全細孔容積の50%に達する細孔径を、「メジアン細孔径」とした。結果を表1に示す。 <Measurement of median pore size>
The pore volume distribution of the resulting boron nitride sintered body was measured using a mercury porosimeter (device name: Autopore IV9500) manufactured by Shimadzu Corporation while increasing the pressure from 0.0042 MPa to 206.8 MPa. The pore diameter at which the accumulated pore volume reached 50% of the total pore volume was defined as the "median pore diameter". Table 1 shows the results.
得られた窒化ホウ素焼結体について、株式会社島津製作所製の水銀ポロシメーター(装置名:オートポアIV9500)を用い、0.0042MPaから206.8MPaまで圧力を増加しながら細孔容積分布を測定した。積算細孔容積が全細孔容積の50%に達する細孔径を、「メジアン細孔径」とした。結果を表1に示す。 <Measurement of median pore size>
The pore volume distribution of the resulting boron nitride sintered body was measured using a mercury porosimeter (device name: Autopore IV9500) manufactured by Shimadzu Corporation while increasing the pressure from 0.0042 MPa to 206.8 MPa. The pore diameter at which the accumulated pore volume reached 50% of the total pore volume was defined as the "median pore diameter". Table 1 shows the results.
[樹脂充填板の作製]
市販のエポキシ樹脂(三菱ケミカル株式会社製、商品名:エピコート807)100質量部に対し、市販の硬化剤(日本合成化学工業株式会社製、商品名:アクメックスH-8を10質量部配合して、樹脂組成物を調製した。調製した樹脂組成物を120℃で15分間加熱した後、その温度を維持したままディスペンサーを用いて、窒化ホウ素焼結体の上側の主面上に滴下して樹脂組成物を含浸した。樹脂組成物の滴下量は、窒化ホウ素焼結体の気孔の総体積の1.5倍とした。樹脂組成物の一部は、窒化ホウ素焼結体に含浸せず、主面上に残存した。 [Preparation of resin-filled plate]
10 parts by mass of a commercially available curing agent (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., product name: Akmex H-8) was blended with 100 parts by mass of a commercially available epoxy resin (manufactured by Mitsubishi Chemical Corporation, product name: Epicoat 807). After heating the prepared resin composition at 120 ° C. for 15 minutes, using a dispenser while maintaining the temperature, drop it onto the upper main surface of the boron nitride sintered body. It was impregnated with a resin composition.The amount of the resin composition dropped was 1.5 times the total volume of the pores of the boron nitride sintered body.A part of the resin composition was not impregnated into the boron nitride sintered body. , remained on the main surface.
市販のエポキシ樹脂(三菱ケミカル株式会社製、商品名:エピコート807)100質量部に対し、市販の硬化剤(日本合成化学工業株式会社製、商品名:アクメックスH-8を10質量部配合して、樹脂組成物を調製した。調製した樹脂組成物を120℃で15分間加熱した後、その温度を維持したままディスペンサーを用いて、窒化ホウ素焼結体の上側の主面上に滴下して樹脂組成物を含浸した。樹脂組成物の滴下量は、窒化ホウ素焼結体の気孔の総体積の1.5倍とした。樹脂組成物の一部は、窒化ホウ素焼結体に含浸せず、主面上に残存した。 [Preparation of resin-filled plate]
10 parts by mass of a commercially available curing agent (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., product name: Akmex H-8) was blended with 100 parts by mass of a commercially available epoxy resin (manufactured by Mitsubishi Chemical Corporation, product name: Epicoat 807). After heating the prepared resin composition at 120 ° C. for 15 minutes, using a dispenser while maintaining the temperature, drop it onto the upper main surface of the boron nitride sintered body. It was impregnated with a resin composition.The amount of the resin composition dropped was 1.5 times the total volume of the pores of the boron nitride sintered body.A part of the resin composition was not impregnated into the boron nitride sintered body. , remained on the main surface.
大気圧下、窒化ホウ素焼結体の上側の主面上に残存する樹脂組成物を、ステンレス製のスクレーパー(株式会社ナルビー製)を用いて平滑化した。余剰分の樹脂組成物を除去し、主面が平滑である樹脂含浸体を得た。
Under atmospheric pressure, the resin composition remaining on the upper main surface of the boron nitride sintered body was smoothed using a stainless steel scraper (manufactured by Narby Co., Ltd.). An excess resin composition was removed to obtain a resin-impregnated body having a smooth main surface.
樹脂含浸体を、大気圧下、160℃で60分間加熱して樹脂組成物を半硬化させた。このようにして、四角柱状の複合シート(縦×横×厚さ=50mm×50mm×0.36mm)を作製した。複合シートの主面の一部には、窒化ホウ素焼結体が露出していた。
The resin-impregnated body was heated at 160°C for 60 minutes under atmospheric pressure to semi-cure the resin composition. Thus, a quadrangular prism-shaped composite sheet (length x width x thickness = 50 mm x 50 mm x 0.36 mm) was produced. The boron nitride sintered body was exposed on part of the main surface of the composite sheet.
<第1樹脂の硬化率の測定>
上記半硬化物に含まれている樹脂組成物の硬化率は、示差走査熱量計を用いた測定によって決定した。まず、未硬化の状態の樹脂組成物2mgを完全に硬化させた際に生じる単位質量当たりの発熱量Qを測定した。そして、複合体が備える半硬化物から採取したサンプル10mgを同様に昇温させて、完全に硬化させた際に生じる単位質量当たりの発熱量Rを求めた。このとき、示差走査熱量計による測定に使用するサンプルの質量は、発熱量Qの測定に用いた樹脂組成物と同一とした。半硬化物中に熱硬化性を有する成分がc(質量%)含有されているとして、下記式(A)によって複合体に含浸している樹脂組成物の硬化率が求めた。第1樹脂の硬化率は85%であった。
含浸されている樹脂組成物の硬化率(%)={1-[(R/c)×100]/Q}×100・・・(A) <Measurement of Curing Rate of First Resin>
The curing rate of the resin composition contained in the semi-cured product was determined by measurement using a differential scanning calorimeter. First, the calorific value Q per unit mass generated when 2 mg of the uncured resin composition was completely cured was measured. Then, a 10 mg sample taken from the semi-cured material of the composite was heated in the same manner, and the amount of heat generated per unit mass R generated when completely cured was determined. At this time, the mass of the sample used for the measurement with the differential scanning calorimeter was the same as that of the resin composition used for the measurement of the calorific value Q. Assuming that c (% by mass) of a thermosetting component is contained in the semi-cured product, the curing rate of the resin composition impregnated in the composite was obtained by the following formula (A). The curing rate of the first resin was 85%.
Curing rate (%) of impregnated resin composition={1-[(R/c)×100]/Q}×100 (A)
上記半硬化物に含まれている樹脂組成物の硬化率は、示差走査熱量計を用いた測定によって決定した。まず、未硬化の状態の樹脂組成物2mgを完全に硬化させた際に生じる単位質量当たりの発熱量Qを測定した。そして、複合体が備える半硬化物から採取したサンプル10mgを同様に昇温させて、完全に硬化させた際に生じる単位質量当たりの発熱量Rを求めた。このとき、示差走査熱量計による測定に使用するサンプルの質量は、発熱量Qの測定に用いた樹脂組成物と同一とした。半硬化物中に熱硬化性を有する成分がc(質量%)含有されているとして、下記式(A)によって複合体に含浸している樹脂組成物の硬化率が求めた。第1樹脂の硬化率は85%であった。
含浸されている樹脂組成物の硬化率(%)={1-[(R/c)×100]/Q}×100・・・(A) <Measurement of Curing Rate of First Resin>
The curing rate of the resin composition contained in the semi-cured product was determined by measurement using a differential scanning calorimeter. First, the calorific value Q per unit mass generated when 2 mg of the uncured resin composition was completely cured was measured. Then, a 10 mg sample taken from the semi-cured material of the composite was heated in the same manner, and the amount of heat generated per unit mass R generated when completely cured was determined. At this time, the mass of the sample used for the measurement with the differential scanning calorimeter was the same as that of the resin composition used for the measurement of the calorific value Q. Assuming that c (% by mass) of a thermosetting component is contained in the semi-cured product, the curing rate of the resin composition impregnated in the composite was obtained by the following formula (A). The curing rate of the first resin was 85%.
Curing rate (%) of impregnated resin composition={1-[(R/c)×100]/Q}×100 (A)
<第1樹脂の充填率の測定>
樹脂充填板に含まれる第1樹脂の充填率を、以下の式(3)によって求めた。結果は表1に示すとおりであった。
樹脂充填板における第1樹脂の充填率(体積%)={(樹脂充填板のかさ密度-窒化ホウ素焼結板のかさ密度)/(樹脂充填板の理論密度-窒化ホウ素焼結板のかさ密度)}×100 …(3) <Measurement of filling rate of first resin>
The filling rate of the first resin contained in the resin-filled plate was obtained by the following formula (3). The results were as shown in Table 1.
Filling rate (% by volume) of the first resin in the resin-filled plate = {(Bulk density of the resin-filled plate-Bulk density of the boron nitride sintered plate)/(Theoretical density of the resin-filled plate-Bulk density of the boron nitride sintered plate )}×100 (3)
樹脂充填板に含まれる第1樹脂の充填率を、以下の式(3)によって求めた。結果は表1に示すとおりであった。
樹脂充填板における第1樹脂の充填率(体積%)={(樹脂充填板のかさ密度-窒化ホウ素焼結板のかさ密度)/(樹脂充填板の理論密度-窒化ホウ素焼結板のかさ密度)}×100 …(3) <Measurement of filling rate of first resin>
The filling rate of the first resin contained in the resin-filled plate was obtained by the following formula (3). The results were as shown in Table 1.
Filling rate (% by volume) of the first resin in the resin-filled plate = {(Bulk density of the resin-filled plate-Bulk density of the boron nitride sintered plate)/(Theoretical density of the resin-filled plate-Bulk density of the boron nitride sintered plate )}×100 (3)
窒化ホウ素焼結板及び樹脂充填板のかさ密度は、JIS Z 8807:2012の「幾何学的測定による密度及び比重の測定方法」に準拠し、窒化ホウ素焼結板又は樹脂充填板の各辺の長さ(ノギスによって測定)から計算した体積と、電子天秤によって測定した窒化ホウ素焼結板又は樹脂充填板の質量に基づいて求めた(JIS Z 8807:2012の9項参照)。樹脂充填板の理論密度は、下記式(4)によって求めた。
樹脂充填板の理論密度=窒化ホウ素焼結板のかさ密度+樹脂の真密度×(1-窒化ホウ素焼結板のかさ密度/窒化ホウ素の真密度) … (4) The bulk density of the boron nitride sintered plate and the resin-filled plate conforms to JIS Z 8807:2012 "Method for measuring density and specific gravity by geometric measurement", and It was determined based on the volume calculated from the length (measured with a vernier caliper) and the mass of the boron nitride sintered plate or resin-filled plate measured with an electronic balance (see JIS Z 8807:2012, Item 9). The theoretical density of the resin-filled plate was determined by the following formula (4).
Theoretical density of resin-filled plate = bulk density of boron nitride sintered plate + true density of resin × (1-bulk density of boron nitride sintered plate/true density of boron nitride) (4)
樹脂充填板の理論密度=窒化ホウ素焼結板のかさ密度+樹脂の真密度×(1-窒化ホウ素焼結板のかさ密度/窒化ホウ素の真密度) … (4) The bulk density of the boron nitride sintered plate and the resin-filled plate conforms to JIS Z 8807:2012 "Method for measuring density and specific gravity by geometric measurement", and It was determined based on the volume calculated from the length (measured with a vernier caliper) and the mass of the boron nitride sintered plate or resin-filled plate measured with an electronic balance (see JIS Z 8807:2012, Item 9). The theoretical density of the resin-filled plate was determined by the following formula (4).
Theoretical density of resin-filled plate = bulk density of boron nitride sintered plate + true density of resin × (1-bulk density of boron nitride sintered plate/true density of boron nitride) (4)
窒化ホウ素焼結板及び樹脂の真密度は、JIS Z 8807:2012の「気体置換法による密度及び比重の測定方法」に準拠し、乾式自動密度計を用いて測定した窒化ホウ素焼結板及び第1樹脂の体積及び質量から求めた(JIS Z 8807:2012の11項の式(14)~(17)参照)。
The boron nitride sintered plate and the true density of the resin were measured using a dry automatic densitometer in accordance with JIS Z 8807:2012 "Method for measuring density and specific gravity by gas replacement method". 1 determined from the volume and mass of the resin (see formulas (14) to (17) in item 11 of JIS Z 8807:2012).
[複合体の作製]
上述のようにして得た樹脂充填板は表面粗さRzが18μmであった。 [Preparation of complex]
The resin-filled plate obtained as described above had a surface roughness Rz of 18 μm.
上述のようにして得た樹脂充填板は表面粗さRzが18μmであった。 [Preparation of complex]
The resin-filled plate obtained as described above had a surface roughness Rz of 18 μm.
次に、樹脂充填板を調製する際に調製したのと同じ方法によって樹脂組成物を用意し、当該樹脂組成物を160℃で30分間加熱し、硬化率を38%に調整し、第2樹脂組成物とした。第2樹脂組成物をその温度を維持したまま、樹脂充填板の主面に滴下した。大気圧下、樹脂充填板の主面に滴下した第2樹脂組成物をシリコーンゴム製のヘラを用いて塗り伸ばし、主面全体に樹脂組成物を塗り広げた後、室温まで冷却することによって、第2樹脂を含む半硬化樹脂層を設けた複合体を得た。半硬化樹脂層の厚さは0.03mmであった。
Next, a resin composition was prepared by the same method as in preparing the resin-filled plate, and the resin composition was heated at 160° C. for 30 minutes to adjust the curing rate to 38%. composition. The second resin composition was dripped onto the main surface of the resin-filled plate while maintaining its temperature. Under atmospheric pressure, the second resin composition dropped onto the main surface of the resin-filled plate is spread using a spatula made of silicone rubber, the resin composition is spread over the entire main surface, and then cooled to room temperature. A composite having a semi-cured resin layer containing the second resin was obtained. The thickness of the semi-cured resin layer was 0.03 mm.
<第2樹脂の硬化率の測定>
第1樹脂と同様の方法によって、第2樹脂の硬化率を測定した。第2樹脂の硬化率は38%であった。 <Measurement of Hardening Rate of Second Resin>
The cure rate of the second resin was measured by the same method as for the first resin. The curing rate of the second resin was 38%.
第1樹脂と同様の方法によって、第2樹脂の硬化率を測定した。第2樹脂の硬化率は38%であった。 <Measurement of Hardening Rate of Second Resin>
The cure rate of the second resin was measured by the same method as for the first resin. The curing rate of the second resin was 38%.
<積層体作製時の流れ出し量の評価>
銅板(縦×横×厚さ=20mm×20mm×1mm)を片面に、もう片面をテフロンシートで挟み、上述の複合体(縦×横×厚さ=20mm×20mm×0.36mm)を配置して、複合体及び銅板の積層体を作製した。当該積層体を200℃及び5MPaの条件下で5分間加熱及び加圧した後、200℃及び大気圧の条件下で2時間加熱処理した。これによって積層体を得た。この積層体に対し、積層体を作製する際の流れ出し量を以下の手順で評価した。上記積層体得るための加熱処理後、積層体を積層方向に垂直な方向から平面視する画像を取得し、取得した画像を、画像解析ソフト(GNU General Public License社製、GIMP)を用いて二値化処理して、流れ出した第1樹脂及び第2樹脂に由来する領域と、それ以外の領域とに区別した。二値化した画像から、第1樹脂及び第2樹脂に由来する領域の面積Yを決定し、銅板の面積に対する比(Y/Xの値)を算出した。結果を表1に示す。 <Evaluation of outflow amount during laminate production>
A copper plate (length x width x thickness = 20 mm x 20 mm x 1 mm) is sandwiched on one side and a Teflon sheet on the other side, and the above composite (length x width x thickness = 20 mm x 20 mm x 0.36 mm) is placed. Thus, a laminate of the composite and the copper plate was produced. The laminate was heated and pressurized under conditions of 200° C. and 5 MPa for 5 minutes, and then heat-treated under conditions of 200° C. and atmospheric pressure for 2 hours. A laminate was thus obtained. With respect to this laminate, the outflow amount when producing the laminate was evaluated by the following procedure. After the heat treatment for obtaining the laminate, an image of the laminate viewed from above in a direction perpendicular to the lamination direction is acquired, and the acquired image is analyzed using image analysis software (manufactured by GNU General Public License, GIMP). A quantification process was performed to distinguish between a region derived from the first resin and the second resin that flowed out and a region other than that. From the binarized image, the area Y of the region derived from the first resin and the second resin was determined, and the ratio (value of Y/X) to the area of the copper plate was calculated. Table 1 shows the results.
銅板(縦×横×厚さ=20mm×20mm×1mm)を片面に、もう片面をテフロンシートで挟み、上述の複合体(縦×横×厚さ=20mm×20mm×0.36mm)を配置して、複合体及び銅板の積層体を作製した。当該積層体を200℃及び5MPaの条件下で5分間加熱及び加圧した後、200℃及び大気圧の条件下で2時間加熱処理した。これによって積層体を得た。この積層体に対し、積層体を作製する際の流れ出し量を以下の手順で評価した。上記積層体得るための加熱処理後、積層体を積層方向に垂直な方向から平面視する画像を取得し、取得した画像を、画像解析ソフト(GNU General Public License社製、GIMP)を用いて二値化処理して、流れ出した第1樹脂及び第2樹脂に由来する領域と、それ以外の領域とに区別した。二値化した画像から、第1樹脂及び第2樹脂に由来する領域の面積Yを決定し、銅板の面積に対する比(Y/Xの値)を算出した。結果を表1に示す。 <Evaluation of outflow amount during laminate production>
A copper plate (length x width x thickness = 20 mm x 20 mm x 1 mm) is sandwiched on one side and a Teflon sheet on the other side, and the above composite (length x width x thickness = 20 mm x 20 mm x 0.36 mm) is placed. Thus, a laminate of the composite and the copper plate was produced. The laminate was heated and pressurized under conditions of 200° C. and 5 MPa for 5 minutes, and then heat-treated under conditions of 200° C. and atmospheric pressure for 2 hours. A laminate was thus obtained. With respect to this laminate, the outflow amount when producing the laminate was evaluated by the following procedure. After the heat treatment for obtaining the laminate, an image of the laminate viewed from above in a direction perpendicular to the lamination direction is acquired, and the acquired image is analyzed using image analysis software (manufactured by GNU General Public License, GIMP). A quantification process was performed to distinguish between a region derived from the first resin and the second resin that flowed out and a region other than that. From the binarized image, the area Y of the region derived from the first resin and the second resin was determined, and the ratio (value of Y/X) to the area of the copper plate was calculated. Table 1 shows the results.
<積層体の絶縁破壊電圧の測定>
得られた複合体を、2枚の銅板間に上記複合体を配置し、200℃及び5MPaの条件下で5分間加熱及び加圧して、更に200℃及び大気圧の条件下で2時間加熱して得られる積層体を調製した。上述の積層体を用いて絶縁破壊電圧の測定を行った。まず、積層体の一方の面に、直径が20mmの円形状となるようにエッチングレジスト剤をスクリーン印刷し、上記積層構造体の他方の面には、全面にエッチングレジスト剤をスクリーン印刷した。印刷後、エッチングレジスト剤に紫外線を照射して硬化させレジストを形成した。次に、円形状のレジストが形成された側の銅板を塩化第二銅液でエッチングし、積層体の一方の面に直径が20mmの円形状の銅回路を形成した。このようにして、測定対象である、円形状の銅回路が形成された上記積層構造体を得た。得られた積層構造体を対象として、JIS C2110-1:2016にしたがって、耐圧試験器(菊水電子工業株式会社製、装置名:TOS-8700)を用い、絶縁破壊電圧を測定した。 <Measurement of Dielectric Breakdown Voltage of Laminate>
The obtained composite was placed between two copper plates, heated and pressed under conditions of 200° C. and 5 MPa for 5 minutes, and further heated under conditions of 200° C. and atmospheric pressure for 2 hours. A laminate obtained by the above was prepared. The dielectric breakdown voltage was measured using the laminate described above. First, an etching resist agent was screen-printed on one surface of the laminate so as to form a circular shape with a diameter of 20 mm, and the entire surface of the laminate structure was screen-printed with an etching resist agent. After printing, the etching resist agent was irradiated with ultraviolet rays to be cured to form a resist. Next, the copper plate on which the circular resist was formed was etched with a cupric chloride solution to form a circular copper circuit with a diameter of 20 mm on one surface of the laminate. In this way, the laminated structure having a circular copper circuit formed thereon was obtained, which was the object to be measured. The dielectric breakdown voltage of the obtained laminated structure was measured according to JIS C2110-1:2016 using a withstand voltage tester (manufactured by Kikusui Denshi Kogyo Co., Ltd., device name: TOS-8700).
得られた複合体を、2枚の銅板間に上記複合体を配置し、200℃及び5MPaの条件下で5分間加熱及び加圧して、更に200℃及び大気圧の条件下で2時間加熱して得られる積層体を調製した。上述の積層体を用いて絶縁破壊電圧の測定を行った。まず、積層体の一方の面に、直径が20mmの円形状となるようにエッチングレジスト剤をスクリーン印刷し、上記積層構造体の他方の面には、全面にエッチングレジスト剤をスクリーン印刷した。印刷後、エッチングレジスト剤に紫外線を照射して硬化させレジストを形成した。次に、円形状のレジストが形成された側の銅板を塩化第二銅液でエッチングし、積層体の一方の面に直径が20mmの円形状の銅回路を形成した。このようにして、測定対象である、円形状の銅回路が形成された上記積層構造体を得た。得られた積層構造体を対象として、JIS C2110-1:2016にしたがって、耐圧試験器(菊水電子工業株式会社製、装置名:TOS-8700)を用い、絶縁破壊電圧を測定した。 <Measurement of Dielectric Breakdown Voltage of Laminate>
The obtained composite was placed between two copper plates, heated and pressed under conditions of 200° C. and 5 MPa for 5 minutes, and further heated under conditions of 200° C. and atmospheric pressure for 2 hours. A laminate obtained by the above was prepared. The dielectric breakdown voltage was measured using the laminate described above. First, an etching resist agent was screen-printed on one surface of the laminate so as to form a circular shape with a diameter of 20 mm, and the entire surface of the laminate structure was screen-printed with an etching resist agent. After printing, the etching resist agent was irradiated with ultraviolet rays to be cured to form a resist. Next, the copper plate on which the circular resist was formed was etched with a cupric chloride solution to form a circular copper circuit with a diameter of 20 mm on one surface of the laminate. In this way, the laminated structure having a circular copper circuit formed thereon was obtained, which was the object to be measured. The dielectric breakdown voltage of the obtained laminated structure was measured according to JIS C2110-1:2016 using a withstand voltage tester (manufactured by Kikusui Denshi Kogyo Co., Ltd., device name: TOS-8700).
(実施例2)
[樹脂充填板の作製]
容器に、シアネート基を有する化合物が80質量部、ビスマレイミド基を有する化合物が20質量部、エポキシ基を有する化合物が50質量部となるように測り取り、上記3種の化合物合計量100質量部に対して、ホスフィン系硬化剤を1質量部及びイミダゾール系硬化剤を0.01質量部加えて混合した。なお、エポキシ樹脂が室温で固体状態であったため、80℃程度に加熱した状態で混合した。得られた熱硬化性組成物の100℃における粘度は、10mPa・秒であった。調製した樹脂組成物を100℃にした後、その温度を維持したままディスペンサーを用いて、窒化ホウ素焼結体の上側の主面上に滴下して樹脂組成物を含浸した。樹脂組成物の滴下量は、窒化ホウ素焼結体の気孔の総体積の1.5倍とした。樹脂組成物の一部は、窒化ホウ素焼結体に含浸せず、主面上に残存した。 (Example 2)
[Preparation of resin-filled plate]
80 parts by mass of a compound having a cyanate group, 20 parts by mass of a compound having a bismaleimide group, and 50 parts by mass of a compound having an epoxy group were weighed into a container, and the total amount of the above three compounds was 100 parts by mass. 1 part by mass of a phosphine-based curing agent and 0.01 part by mass of an imidazole-based curing agent were added and mixed. Since the epoxy resin was in a solid state at room temperature, it was mixed while being heated to about 80°C. The resulting thermosetting composition had a viscosity of 10 mPa·sec at 100°C. After the prepared resin composition was heated to 100° C., it was dropped onto the upper main surface of the boron nitride sintered body using a dispenser while maintaining the temperature to impregnate the resin composition. The amount of the resin composition dropped was 1.5 times the total volume of the pores of the boron nitride sintered body. Part of the resin composition remained on the main surface without impregnating the boron nitride sintered body.
[樹脂充填板の作製]
容器に、シアネート基を有する化合物が80質量部、ビスマレイミド基を有する化合物が20質量部、エポキシ基を有する化合物が50質量部となるように測り取り、上記3種の化合物合計量100質量部に対して、ホスフィン系硬化剤を1質量部及びイミダゾール系硬化剤を0.01質量部加えて混合した。なお、エポキシ樹脂が室温で固体状態であったため、80℃程度に加熱した状態で混合した。得られた熱硬化性組成物の100℃における粘度は、10mPa・秒であった。調製した樹脂組成物を100℃にした後、その温度を維持したままディスペンサーを用いて、窒化ホウ素焼結体の上側の主面上に滴下して樹脂組成物を含浸した。樹脂組成物の滴下量は、窒化ホウ素焼結体の気孔の総体積の1.5倍とした。樹脂組成物の一部は、窒化ホウ素焼結体に含浸せず、主面上に残存した。 (Example 2)
[Preparation of resin-filled plate]
80 parts by mass of a compound having a cyanate group, 20 parts by mass of a compound having a bismaleimide group, and 50 parts by mass of a compound having an epoxy group were weighed into a container, and the total amount of the above three compounds was 100 parts by mass. 1 part by mass of a phosphine-based curing agent and 0.01 part by mass of an imidazole-based curing agent were added and mixed. Since the epoxy resin was in a solid state at room temperature, it was mixed while being heated to about 80°C. The resulting thermosetting composition had a viscosity of 10 mPa·sec at 100°C. After the prepared resin composition was heated to 100° C., it was dropped onto the upper main surface of the boron nitride sintered body using a dispenser while maintaining the temperature to impregnate the resin composition. The amount of the resin composition dropped was 1.5 times the total volume of the pores of the boron nitride sintered body. Part of the resin composition remained on the main surface without impregnating the boron nitride sintered body.
熱硬化性組成物の調製には、以下の化合物を用いた。
The following compounds were used to prepare the thermosetting composition.
シアネート基を有する化合物:ジメチルメチレンビス(1,4-フェニレン)ビスシアナート(三菱ガス化学株式会社製、商品名:TA-CN)
ビスマレイミド基を有する化合物:N,N’-[(1-メチルエチリデン)ビス[(p-フェニレン)オキシ(p-フェニレン)]]ビスマレイミド(ケイ・アイ化成株式会社製、商品名:BMI-80)
エポキシ基を有する化合物:1,6-ビス(2,3-エポキシプロパン-1-イルオキシ)ナフタレン(DIC株式会社製、商品名:HP-4032D) Compound having a cyanate group: dimethylmethylenebis(1,4-phenylene)biscyanate (Mitsubishi Gas Chemical Company, Inc., trade name: TA-CN)
Compound having a bismaleimide group: N,N'-[(1-methylethylidene)bis[(p-phenylene)oxy(p-phenylene)]]bismaleimide (manufactured by K.I. Kasei Co., Ltd., trade name: BMI- 80)
Compound having an epoxy group: 1,6-bis(2,3-epoxypropan-1-yloxy)naphthalene (manufactured by DIC Corporation, trade name: HP-4032D)
ビスマレイミド基を有する化合物:N,N’-[(1-メチルエチリデン)ビス[(p-フェニレン)オキシ(p-フェニレン)]]ビスマレイミド(ケイ・アイ化成株式会社製、商品名:BMI-80)
エポキシ基を有する化合物:1,6-ビス(2,3-エポキシプロパン-1-イルオキシ)ナフタレン(DIC株式会社製、商品名:HP-4032D) Compound having a cyanate group: dimethylmethylenebis(1,4-phenylene)biscyanate (Mitsubishi Gas Chemical Company, Inc., trade name: TA-CN)
Compound having a bismaleimide group: N,N'-[(1-methylethylidene)bis[(p-phenylene)oxy(p-phenylene)]]bismaleimide (manufactured by K.I. Kasei Co., Ltd., trade name: BMI- 80)
Compound having an epoxy group: 1,6-bis(2,3-epoxypropan-1-yloxy)naphthalene (manufactured by DIC Corporation, trade name: HP-4032D)
ホスフィン系硬化剤:テトラフェニルホスホニウムテトラ-p-トリルボレート(化学株式会社製、商品名:TPP-MK)
イミダゾール系硬化剤:1-(1-シアノメチル)-2-エチル-4-メチル-1H-イミダゾール(四国化成工業株式会社製、商品名:2E4MZ-CN) Phosphine-based curing agent: tetraphenylphosphonium tetra-p-tolylborate (manufactured by Chemical Co., Ltd., trade name: TPP-MK)
Imidazole-based curing agent: 1-(1-cyanomethyl)-2-ethyl-4-methyl-1H-imidazole (manufactured by Shikoku Chemical Industry Co., Ltd., trade name: 2E4MZ-CN)
イミダゾール系硬化剤:1-(1-シアノメチル)-2-エチル-4-メチル-1H-イミダゾール(四国化成工業株式会社製、商品名:2E4MZ-CN) Phosphine-based curing agent: tetraphenylphosphonium tetra-p-tolylborate (manufactured by Chemical Co., Ltd., trade name: TPP-MK)
Imidazole-based curing agent: 1-(1-cyanomethyl)-2-ethyl-4-methyl-1H-imidazole (manufactured by Shikoku Chemical Industry Co., Ltd., trade name: 2E4MZ-CN)
次に、大気圧下、窒化ホウ素焼結体の上側の主面上に残存する樹脂組成物を、ステンレス製のスクレーパー(株式会社ナルビー製)を用いて平滑化した。余剰分の樹脂組成物を除去し、主面が平滑である樹脂含浸体を得た。
Next, under atmospheric pressure, the resin composition remaining on the upper main surface of the boron nitride sintered body was smoothed using a stainless steel scraper (manufactured by Narby Co., Ltd.). An excess resin composition was removed to obtain a resin-impregnated body having a smooth main surface.
樹脂含浸体を、大気圧下、80℃で60時間加熱して樹脂組成物を半硬化させた。このようにして、四角柱状の複合シート(縦×横×厚さ=50mm×50mm×0.38mm)を作製した。複合シートの主面の一部には、窒化ホウ素焼結体が露出していた。
The resin-impregnated body was heated at 80°C for 60 hours under atmospheric pressure to semi-cure the resin composition. Thus, a quadrangular prism-shaped composite sheet (length x width x thickness = 50 mm x 50 mm x 0.38 mm) was produced. The boron nitride sintered body was exposed on part of the main surface of the composite sheet.
次に、樹脂充填板を調製する際に調製したのと同じ方法によって樹脂組成物を用意し、当該樹脂組成物を120℃で7時間加熱し、硬化率を32%に調整し、第2樹脂組成物とした。第2樹脂組成物をその温度を維持したまま、樹脂充填板の主面に滴下した。大気圧下、樹脂充填板の主面に滴下した第2樹脂組成物をシリコーンゴム製のヘラを用いて塗り伸ばし、主面全体に樹脂組成物を塗り広げた後、室温まで冷却することによって、第2樹脂を含む半硬化樹脂層を設けた複合体を得た。半硬化樹脂層の厚さは0.03mmであった。
Next, a resin composition was prepared by the same method as in preparing the resin-filled plate, and the resin composition was heated at 120° C. for 7 hours to adjust the curing rate to 32%. composition. The second resin composition was dripped onto the main surface of the resin-filled plate while maintaining its temperature. Under atmospheric pressure, the second resin composition dropped onto the main surface of the resin-filled plate is spread using a spatula made of silicone rubber, the resin composition is spread over the entire main surface, and then cooled to room temperature. A composite having a semi-cured resin layer containing the second resin was obtained. The thickness of the semi-cured resin layer was 0.03 mm.
(比較例1)
窒化物焼結版の厚さを0.40mmにしたこと、第1樹脂の硬化率を29%としたこと、第2樹脂の硬化率を35%としたこと、第2樹脂の厚さを0.01mmとしたこと以外は、実施例1と同様の手順によって、複合体及び積層体を調製した。 (Comparative example 1)
The thickness of the nitride sintered plate was set to 0.40 mm, the hardening rate of the first resin was set to 29%, the hardening rate of the second resin was set to 35%, and the thickness of the second resin was set to 0. Composites and laminates were prepared by the same procedure as in Example 1, except that the thickness was 0.01 mm.
窒化物焼結版の厚さを0.40mmにしたこと、第1樹脂の硬化率を29%としたこと、第2樹脂の硬化率を35%としたこと、第2樹脂の厚さを0.01mmとしたこと以外は、実施例1と同様の手順によって、複合体及び積層体を調製した。 (Comparative example 1)
The thickness of the nitride sintered plate was set to 0.40 mm, the hardening rate of the first resin was set to 29%, the hardening rate of the second resin was set to 35%, and the thickness of the second resin was set to 0. Composites and laminates were prepared by the same procedure as in Example 1, except that the thickness was 0.01 mm.
(比較例2)
窒化物焼結版の厚さを0.37mmにしたこと、第1樹脂の硬化率を48%としたこと、第2樹脂の硬化率を40%としたこと、第2樹脂の厚さを0.05mmとしたこと以外は、実施例2と同様の手順によって、複合体及び積層体を調製した。 (Comparative example 2)
The thickness of the nitride sintered plate was set to 0.37 mm, the hardening rate of the first resin was set to 48%, the hardening rate of the second resin was set to 40%, and the thickness of the second resin was set to 0. Composites and laminates were prepared by the same procedure as in Example 2, except that the thickness was 0.05 mm.
窒化物焼結版の厚さを0.37mmにしたこと、第1樹脂の硬化率を48%としたこと、第2樹脂の硬化率を40%としたこと、第2樹脂の厚さを0.05mmとしたこと以外は、実施例2と同様の手順によって、複合体及び積層体を調製した。 (Comparative example 2)
The thickness of the nitride sintered plate was set to 0.37 mm, the hardening rate of the first resin was set to 48%, the hardening rate of the second resin was set to 40%, and the thickness of the second resin was set to 0. Composites and laminates were prepared by the same procedure as in Example 2, except that the thickness was 0.05 mm.
実施例2、及び比較例1,2で調製した複合体及び積層体について、第1樹脂の充填率及び硬化率、表面粗さRz、第2樹脂の硬化率、並びに半硬化樹脂層を実施例1と同様に測定した。実施例2、及び比較例1,2で調製した積層体の製造について、流れ出し量及び絶縁破壊電圧の評価を行った。結果を表1に示す。
Regarding the composites and laminates prepared in Example 2 and Comparative Examples 1 and 2, the filling rate and curing rate of the first resin, the surface roughness Rz, the curing rate of the second resin, and the semi-cured resin layer were measured. Measured as in 1. Regarding the production of the laminates prepared in Example 2 and Comparative Examples 1 and 2, the outflow amount and dielectric breakdown voltage were evaluated. Table 1 shows the results.
本開示によれば、被着体への接着後に優れた絶縁性を発揮し得る複合体及びその製造方法を提供できる。本開示によればまた、上述の複合体を調製するために好適な樹脂充填板を提供できる。本開示によればまた、優れた絶縁性を有する積層体及びその製造方法を提供できる。
According to the present disclosure, it is possible to provide a composite that can exhibit excellent insulation after bonding to an adherend, and a method for producing the same. The present disclosure can also provide resin-filled plates suitable for preparing the composites described above. According to the present disclosure, it is also possible to provide a laminate having excellent insulating properties and a method for manufacturing the same.
10…複合体、12…樹脂充填板、12a…主面、14…半硬化樹脂層、20…積層体、22…金属シート。
DESCRIPTION OFSYMBOLS 10... Composite, 12... Resin-filled board, 12a... Main surface, 14... Semi-hardened resin layer, 20... Laminated body, 22... Metal sheet.
DESCRIPTION OF
Claims (14)
- 多孔質の窒化物焼結板と、前記窒化物焼結板の気孔に充填された第1樹脂と、を含む樹脂充填板と、
前記樹脂充填板の主面上の少なくとも一部に設けられた、第2樹脂を含む半硬化樹脂層と、を有し、
前記第1樹脂の硬化率が70%以上であり、
前記半硬化樹脂層が熱硬化性樹脂を含有する、複合体。 a resin-filled plate including a porous nitride sintered plate and a first resin filled in the pores of the nitride sintered plate;
a semi-cured resin layer containing a second resin provided on at least a portion of the main surface of the resin-filled plate;
The curing rate of the first resin is 70% or more,
A composite, wherein the semi-cured resin layer contains a thermosetting resin. - 前記第1樹脂の硬化率と前記第2樹脂の硬化率との差が30%以上である、請求項1に記載の複合体。 The composite according to claim 1, wherein the difference between the curing rate of the first resin and the curing rate of the second resin is 30% or more.
- 前記第1樹脂の硬化率が90%以下である、請求項1又は2に記載の複合体。 The composite according to claim 1 or 2, wherein the curing rate of the first resin is 90% or less.
- 前記半硬化樹脂層の厚さが、前記窒化物焼結板の厚さの0.5~25.0%である、請求項1~3のいずれか一項に記載の複合体。 The composite according to any one of claims 1 to 3, wherein the semi-cured resin layer has a thickness of 0.5 to 25.0% of the thickness of the nitride sintered plate.
- 前記樹脂充填板の主面における表面粗さRzが3~25μmである、請求項1~4のいずれか一項に記載の複合体。 The composite according to any one of claims 1 to 4, wherein the main surface of the resin-filled plate has a surface roughness Rz of 3 to 25 µm.
- 前記窒化物焼結板のメジアン細孔径が0.3~6.0μmである、請求項1~5のいずれか一項に記載の複合体。 The composite according to any one of claims 1 to 5, wherein the nitride sintered plate has a median pore diameter of 0.3 to 6.0 µm.
- 請求項1~6のいずれか一項に記載の複合体と、前記複合体上に設けられた金属シートと、を備える、積層体。 A laminate comprising the composite according to any one of claims 1 to 6 and a metal sheet provided on the composite.
- 多孔質の窒化物焼結板と、前記窒化物焼結板の気孔に充填された樹脂と、を含み、
前記樹脂の硬化率が70%以上である、樹脂充填板。 including a porous nitride sintered plate and a resin filled in the pores of the nitride sintered plate,
A resin-filled plate, wherein the curing rate of the resin is 70% or more. - 前記樹脂の硬化率が90%以下である、請求項8に記載の樹脂充填板。 The resin-filled plate according to claim 8, wherein the curing rate of the resin is 90% or less.
- 主面における表面粗さRzが3~25μmある、請求項8又は9に記載の樹脂充填板。 The resin-filled plate according to claim 8 or 9, wherein the main surface has a surface roughness Rz of 3 to 25 μm.
- 多孔質の窒化物焼結板に第1樹脂組成物を含浸して樹脂含浸体を得る含浸工程と、
前記樹脂含浸体を加熱して気孔に充填された前記樹脂組成物を硬化又は半硬化して第1樹脂を含む樹脂充填板を得る硬化工程と、
第2樹脂を含む半硬化樹脂層を前記樹脂充填板の主面上の少なくとも一部に設ける被覆工程と、を有し、
前記第1樹脂の硬化率が70%以上である、複合体の製造方法。 an impregnation step of impregnating a porous nitride sintered plate with the first resin composition to obtain a resin-impregnated body;
a curing step of heating the resin-impregnated body to cure or semi-cure the resin composition filled in the pores to obtain a resin-filled plate containing a first resin;
a coating step of providing a semi-cured resin layer containing a second resin on at least part of the main surface of the resin-filled plate;
A method for producing a composite, wherein the curing rate of the first resin is 70% or more. - 前記被覆工程では、前記樹脂充填板に第2樹脂組成物を付着させ、加熱することによって、前記樹脂充填板の主面上の少なくとも一部に前記半硬化樹脂層を設ける、請求項11に記載の複合体の製造方法。 12. The semi-cured resin layer according to claim 11, wherein in the covering step, the second resin composition is applied to the resin-filled plate and heated to form the semi-cured resin layer on at least a portion of the main surface of the resin-filled plate. A method for producing a composite of
- 前記被覆工程では、前記樹脂充填板に第2樹脂組成物の半硬化物を接着することによって、前記樹脂充填板の主面上の少なくとも一部に前記半硬化樹脂層を設ける、請求項11に記載の複合体の製造方法。 12. The method according to claim 11, wherein in the covering step, the semi-cured resin layer is provided on at least part of the main surface of the resin-filled plate by bonding a semi-cured material of the second resin composition to the resin-filled plate. A method of making the described composite.
- 請求項11~13のいずれか一項に記載の製造方法で得られた複合体と、金属シートと、を積層し、加熱及び加圧する積層工程を有する、積層体の製造方法。
A method for producing a laminate, comprising a step of laminating the composite obtained by the production method according to any one of claims 11 to 13 and a metal sheet, followed by heating and pressing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022554354A JP7217391B1 (en) | 2021-03-31 | 2022-02-09 | Composite and its manufacturing method, and laminate and its manufacturing method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-059680 | 2021-03-31 | ||
JP2021059680 | 2021-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022209325A1 true WO2022209325A1 (en) | 2022-10-06 |
Family
ID=83455935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/005063 WO2022209325A1 (en) | 2021-03-31 | 2022-02-09 | Composite, method for manufacturing same, resin-filled plate, laminate, and method for manufacturing same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7217391B1 (en) |
WO (1) | WO2022209325A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023162705A1 (en) * | 2022-02-28 | 2023-08-31 | デンカ株式会社 | Composite sheet and laminate |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023054031A1 (en) * | 2021-09-28 | 2023-04-06 | デンカ株式会社 | Laminate part and method for manufacturing same, and laminate and method for manufacturing same |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008073875A (en) * | 2006-09-19 | 2008-04-03 | Toray Ind Inc | Frp molded object and its manufacturing method |
WO2015022956A1 (en) * | 2013-08-14 | 2015-02-19 | 電気化学工業株式会社 | Boron nitride/resin composite circuit board, and circuit board including boron nitride/resin composite integrated with heat radiation plate |
WO2017155110A1 (en) * | 2016-03-10 | 2017-09-14 | デンカ株式会社 | Ceramic resin composite body |
WO2019111978A1 (en) * | 2017-12-05 | 2019-06-13 | デンカ株式会社 | Nitride ceramic resin composite body |
WO2019172345A1 (en) * | 2018-03-07 | 2019-09-12 | デンカ株式会社 | Temporarily bonded body composed of ceramic resin complex and metal plate and method for manufacturing same, and transporter comprising said temporarily bonded body and delivery method using same |
WO2020203586A1 (en) * | 2019-03-29 | 2020-10-08 | デンカ株式会社 | Composite, method for producing composite, laminate, and method for producing laminate |
-
2022
- 2022-02-09 JP JP2022554354A patent/JP7217391B1/en active Active
- 2022-02-09 WO PCT/JP2022/005063 patent/WO2022209325A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008073875A (en) * | 2006-09-19 | 2008-04-03 | Toray Ind Inc | Frp molded object and its manufacturing method |
WO2015022956A1 (en) * | 2013-08-14 | 2015-02-19 | 電気化学工業株式会社 | Boron nitride/resin composite circuit board, and circuit board including boron nitride/resin composite integrated with heat radiation plate |
WO2017155110A1 (en) * | 2016-03-10 | 2017-09-14 | デンカ株式会社 | Ceramic resin composite body |
WO2019111978A1 (en) * | 2017-12-05 | 2019-06-13 | デンカ株式会社 | Nitride ceramic resin composite body |
WO2019172345A1 (en) * | 2018-03-07 | 2019-09-12 | デンカ株式会社 | Temporarily bonded body composed of ceramic resin complex and metal plate and method for manufacturing same, and transporter comprising said temporarily bonded body and delivery method using same |
WO2020203586A1 (en) * | 2019-03-29 | 2020-10-08 | デンカ株式会社 | Composite, method for producing composite, laminate, and method for producing laminate |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023162705A1 (en) * | 2022-02-28 | 2023-08-31 | デンカ株式会社 | Composite sheet and laminate |
JP7374391B1 (en) * | 2022-02-28 | 2023-11-06 | デンカ株式会社 | Composite sheets and laminates |
Also Published As
Publication number | Publication date |
---|---|
JP7217391B1 (en) | 2023-02-02 |
JPWO2022209325A1 (en) | 2022-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017155110A1 (en) | Ceramic resin composite body | |
JP7217391B1 (en) | Composite and its manufacturing method, and laminate and its manufacturing method | |
JP7566727B2 (en) | Composite, method for producing composite, laminate, and method for producing laminate | |
JP7550869B2 (en) | Composite and manufacturing method thereof, and laminate and manufacturing method thereof | |
JP7458479B2 (en) | Composite and method for producing the composite | |
JP7248867B2 (en) | Composite sheet and laminate | |
WO2021200965A1 (en) | Composite sheet | |
JP7148758B1 (en) | Composite sheet and its manufacturing method, and laminate and its manufacturing method | |
JP7176159B2 (en) | Composite sheet and its manufacturing method, and laminate and its manufacturing method | |
JP7165844B2 (en) | Composite sheet and its manufacturing method, and laminate and its manufacturing method | |
WO2023162705A1 (en) | Composite sheet and laminate | |
JP7196367B2 (en) | Composite sheet and its manufacturing method, laminate and its manufacturing method, and power device | |
JP7381806B2 (en) | Laminated parts and methods for manufacturing the same, laminates and methods for manufacturing the same | |
WO2023190236A1 (en) | Composite and production method therefor, and assembly, circuit substrate, and power module | |
JP7080427B1 (en) | Evaluation method for estimating the adhesiveness of composite sheets, laminated bodies, and composite sheets | |
JP7319482B2 (en) | Ceramic plate manufacturing method, ceramic plate, composite sheet, and laminated substrate | |
JP7263634B1 (en) | COMPOSITE SHEET, COMPOSITE SHEET MANUFACTURING METHOD, AND LAMINATED SUBSTRATE | |
WO2024048206A1 (en) | Laminate, method for producing laminate, laminated substrate, and method for producing laminated substrate | |
JP2024033151A (en) | Composite substrate manufacturing method and composite substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2022554354 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22779554 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22779554 Country of ref document: EP Kind code of ref document: A1 |