WO2022209282A1 - 心拍出量計測センサ、および制御プログラム - Google Patents

心拍出量計測センサ、および制御プログラム Download PDF

Info

Publication number
WO2022209282A1
WO2022209282A1 PCT/JP2022/004389 JP2022004389W WO2022209282A1 WO 2022209282 A1 WO2022209282 A1 WO 2022209282A1 JP 2022004389 W JP2022004389 W JP 2022004389W WO 2022209282 A1 WO2022209282 A1 WO 2022209282A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
antenna elements
cardiac output
unit
measurement sensor
Prior art date
Application number
PCT/JP2022/004389
Other languages
English (en)
French (fr)
Inventor
滝太郎 矢部
圭 本田
信一郎 須田
淳 曽根
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2022209282A1 publication Critical patent/WO2022209282A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/029Measuring or recording blood output from the heart, e.g. minute volume
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/0507Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  using microwaves or terahertz waves

Definitions

  • the present invention relates to a cardiac output measurement sensor and a control program.
  • Patent Document 1 discloses a device that includes a transmitting antenna, a receiving antenna, and an estimating unit.
  • the transmitting antenna transmits radio waves such as microwaves to the patient's chest
  • the receiving antenna receives the radio waves transmitted from the transmitting antenna
  • the estimating unit measures the phase or amplitude intensity of the radio waves received by the receiving antenna. Based on this, the cardiac output of the person to be measured is detected (see Patent Document 1).
  • the received waves obtained by the receiving antennas may not be suitable for measuring cardiac output. If the transmitter/receiver antenna is misaligned with respect to the heart and used in a state unsuitable for measuring cardiac output, the resulting measurement accuracy of the cardiac output decreases.
  • the obtained change in cardiac output may not be the same as the antenna installation position. It is not possible to determine whether this is due to a change in the patient's condition or a change in the patient's condition.
  • the present invention has been made in view of the above circumstances, and is capable of acquiring waveform data of each of a plurality of antenna elements, and furthermore, of cardiac output that can estimate the volume of blood pumped from the heart with relatively high accuracy. It aims at providing a measurement sensor and a control program.
  • the cardiac output measurement sensor of the present invention comprises: a transmitting antenna for transmitting electromagnetic waves toward a living body; a receiving antenna arranged to face the transmitting antenna with the heart of the living body interposed therebetween; a cardiac output estimating unit for estimating the volume of blood pumped from the heart using the electromagnetic wave received by the receiving antenna and transmitted through the living body; at least one of the transmitting antenna and the receiving antenna includes a plurality of antenna elements and a high-speed switching unit that sequentially switches ON/OFF of each of the antenna elements at a predetermined cycle; Furthermore, a point data recording unit that records measurement values for each of the plurality of antenna elements turned on by the high-speed switching unit as point data in association with each antenna element; and a waveform data generation unit that arranges the point data recorded by the point data recording unit and generates waveform data representing the temporal change of the measured value for each of the plurality of antenna elements.
  • the control program of the present invention is a transmitting antenna for transmitting electromagnetic waves toward a living body; a receiving antenna arranged to face the transmitting antenna with the heart of the living body interposed therebetween; a cardiac output estimating unit for estimating the volume of blood pumped from the heart using the electromagnetic wave received by the receiving antenna and transmitted through the living body; At least one of the transmitting antenna and the receiving antenna includes a plurality of antenna elements and a high-speed switching unit that sequentially switches ON/OFF of each of the antenna elements at a predetermined cycle.
  • a computer that controls a cardiac output measurement sensor.
  • a control program executed in a step (a) of recording measurement values for each of the plurality of antenna elements turned on by the high-speed switching unit as point data in association with each antenna element; and a step (b) of arranging the point data recorded in step (a) and generating waveform data representing changes in the measured values over time for each of the plurality of antenna elements.
  • the cardiac output measurement sensor and the control program according to the present invention it is possible to obtain waveform data of each of the plurality of antenna elements, and as a result, it is possible to estimate the volume of blood pumped from the heart with relatively high accuracy.
  • FIG. 1 is a schematic perspective view showing the entire cardiac output measurement sensor in the first embodiment;
  • FIG. 1 is a block diagram showing the configuration of a cardiac output measurement sensor according to a first embodiment;
  • FIG. 2 is a diagram showing a configuration example of a transmitting/receiving antenna in the first embodiment;
  • FIG. It is a figure which shows the structural example of the transmission/reception antenna in a modification.
  • FIG. 11 is a diagram showing a configuration example of a transmitting/receiving antenna in another modified example;
  • FIG. 4 is a schematic diagram showing high-speed switching processing of each antenna element in element scanning processing;
  • 5B is a schematic diagram showing point data obtained by the process of FIG. 5A;
  • FIG. FIG. 5B is a schematic diagram showing waveform data generated from the point data of FIG. 5B;
  • 4 is a flowchart showing waveform data generation processing and cardiac output measurement processing;
  • Cardiac output usually refers to the volume of blood pumped from the heart per minute, but in this specification, the volume of blood pumped from the heart is called cardiac output. Sometimes.
  • FIG. 1 is a schematic diagram showing the entire cardiac output measurement sensor 1000 according to the first embodiment of the present invention.
  • FIG. 2 is a block diagram showing the configuration of the cardiac output measuring sensor 1000 according to the first embodiment, and
  • FIG. 3 is a diagram showing a configuration example of the transmitting/receiving antenna in the first embodiment.
  • FIG. 1 shows a state in which a patient 90 (also called a living body or subject) is lying on a bed 95 (supine position).
  • the cardiac output measurement sensor 1000 measures (estimates) the amount of blood pumped from the heart, such as the cardiac output of the patient 90 .
  • the cardiac output measurement sensor 1000 is used for examination of heart failure, follow-up observation after heart surgery, verification of medication effects and side effects of heart disease, and the like.
  • a user such as a nurse or a doctor aligns the line connecting the centers of the transmitting antenna 11 and the receiving antenna 12 with the heart 91. They are arranged so as to face each other with the heart 91 interposed therebetween.
  • a radio wave shield made of cloth may be used to cover the chest of the patient 90 and the entire transmitting/receiving antenna during measurement.
  • receiving antenna 12 is positioned below patient 90 and transmitting antenna 11 is positioned above patient 90 .
  • the receiving antenna 12 is placed on a bed 95 on which the patient 90 lies supine.
  • the upper transmitting antenna 11 is attached to a U-shaped movable fixed base (not shown) when viewed from the side.
  • This fixed base can manually adjust the height of the transmitting antenna 11 .
  • the transmitting antenna 11 is arranged above the patient 90 while being slightly separated from the patient 90 by a fixed base. The purpose of the separation is not to interfere with the patient's 90 breathing and to prevent unintended movement of the transmitting antenna 11 due to contact with the patient 90 .
  • the arrangement of the transmitting and receiving antennas is not limited to the arrangement shown in FIG. 1 and the like.
  • the patient 90 may be turned upside down so that the transmitting antenna 11 is arranged below the patient 90 (back side) and the receiving antenna 12 is arranged above the patient 90 (front side).
  • the cardiac output measurement sensor 1000 includes a transmitting antenna 11, a receiving antenna 12, and a device body 20.
  • the apparatus main body 20 is mounted on a movable frame (not shown) and arranged beside the bed 95 .
  • the device main body 20 operates with an internal battery or power supplied from a commercial power source. Both antenna units are connected to the device main body 20 through the signal cable 13, through which data signals are transmitted and received and power is supplied.
  • the transmitting/receiving antenna will be described later.
  • the apparatus main body 20 includes a transmission/reception controller 14 , a control section 21 , a storage section 22 , an input/output I/F (interface) 23 and a communication I/F 24 .
  • Transmit/receive controller 14 is electrically connected to transmitting antenna 11 and receiving antenna 12 via signal cable 13 . Under the control of the control unit 21 , the transmission/reception controller 14 controls the timing of transmission/reception between both antenna units and acquires measured values (received signals) from the reception antenna 12 .
  • the control unit 21 includes a CPU, RAM, ROM, etc., and controls each unit in the device according to a program stored in the ROM or the storage unit 22 .
  • the control unit 21 functions as a point data recording unit 211, a waveform data generation unit 212, an element determination unit 213, and a cardiac output estimation unit 214 by executing programs.
  • the point data recording unit 211 generates point data in which the measured values are recorded in association with the antenna elements.
  • a waveform data generator 212 generates waveform data.
  • the element determination unit 213 determines antenna elements to be used in estimating the cardiac output based on the feature amount of the waveform data.
  • the cardiac output estimator 214 estimates (calculates) the cardiac output of the patient 90 , that is, the volume of blood pumped from the heart 91 .
  • the storage unit 22 is composed of a semiconductor memory in which various programs and various data are stored in advance, and a magnetic memory such as a hard disk.
  • the storage unit 22 also stores point data, waveform data, and the like.
  • the input/output I/F 23 functions as an input/output unit, has input/output terminals conforming to the USB and DVI standards, etc., and is connected to input devices such as a keyboard, mouse, and microphone, and output devices such as a display, speaker, and printer. It is an interface to In the example shown in FIGS. 1 and 3, the input/output I/F 23 is connected to the touch panel 51 .
  • the touch panel 51 is composed of a liquid crystal panel and a touch pad superimposed thereon, and receives instructions from the user to start antenna element determination processing and cardiac output measurement. Note that an input/output device such as the touch panel 51 may be included in the configuration of the device body 20 .
  • the communication I/F 24 is an interface that transmits and receives data via wired or wireless communication with an external terminal device such as a PC (personal computer), tablet terminal, or the like via a network or peer-to-peer.
  • Wired communication may use network interfaces conforming to standards such as Ethernet (registered trademark), SATA, PCI Express, IEEE1394, etc.
  • wireless communication may use wireless communication interfaces such as Bluetooth (registered trademark), IEEE802.11, 4G, and the like. may be used.
  • a PC 61 is connected to the communication I/F 24 .
  • the transmitting antenna 11 includes a substrate 110, a transmission waveform generator 111, and an antenna element t1.
  • the transmitting antenna 11 is provided with a single antenna element t1, and the receiving side is provided with a plurality of antenna elements (one pair configuration).
  • the transmitting antenna 11 transmits electromagnetic waves or radio waves that pass through the living body.
  • the substrate 110 is a rectangular plate-shaped member with each side of several tens mm to two hundred and several tens mm.
  • antenna element t1 a patch antenna, a dipole-type linear antenna, or a loop antenna having a side or a diameter of several tens mm to one hundred and several tens mm can be applied.
  • antenna element t1 is a patch antenna.
  • the transmission waveform generator 111 includes a radio wave generator.
  • the frequency of the generated electromagnetic wave is not particularly limited as long as it can pass through the heart 91 of the living body without ionizing action.
  • microwaves with a frequency of 300 MHz to 30 GHz are preferred, and microwaves with a frequency of 400 M to 1.0 GHz are more preferred.
  • Microwaves are suitable for measuring cardiac output due to their bio-penetrability and high sensitivity (rate of change in electric field strength) due to loss changes in heart 91 contraction/expansion.
  • the power of the radio waves to be generated is not particularly limited as long as sufficient power can be detected by the receiving antenna 12, but may be several mW to several tens of mW, for example. Further, the generated radio wave may be a continuous wave, a pulse wave, or a phase-modulated or frequency-modulated radio wave.
  • the receiving antenna 12 includes a substrate 120, an antenna array 121, a high speed switching section 122, and a sampling section 123.
  • FIG. The antenna array 121, the high-speed switching unit 122, and the sampling unit 123 are all formed on a rectangular plate-shaped substrate 120, each side of which is several tens mm to two hundred and several tens mm.
  • the antenna array 121 is composed of a plurality of antenna elements r1 to rx (hereinafter collectively referred to as "antenna element r" (the same applies to antenna element t)), which are arranged on the surface of the planar substrate 120. , are arranged in a grid on the same plane.
  • a dipole type linear antenna or a minute loop antenna can be applied as each antenna element r.
  • the antenna elements r are, for example, loop antennas each having a side or a diameter of several millimeters to ten and several millimeters. Adjacent antenna elements r are arranged without being in close contact with each other.
  • the size of the entire antenna array 121 is set to be larger than the size of the heart 91 when viewed from the back side of the living body. For example, it has a rectangular shape with one side of 100 to 150 mm.
  • the total number of antenna elements r is preferably 40 or more and 100 or less. From the viewpoint of positional accuracy (positional resolution) when determining antenna elements r to be used, which will be described later, the number is preferably 40 or more.
  • the upper limit number is preferably 100 or less from the viewpoint of one cycle time tc (sampling rate) calculated by multiplying the period ts by the total number and from the viewpoint of cost.
  • each antenna element r is a substantially rectangular loop antenna of 12 mm
  • the antenna array 121 is composed of a total of 49 antenna elements r1 to r49, 7 in length and 7 in width. Adjacent antenna elements r are arranged at intervals of about 2 mm, and the size of the entire antenna array 121 is about 100 mm square.
  • the high-speed switching unit 122 is composed of a plurality of switching elements s1 to sx (hereinafter collectively referred to as "switching elements s") corresponding to the respective antenna elements r1 to rx.
  • switching elements s switching elements s1 to sx
  • only one switching element s for example, element s1 (see FIG. 2)
  • all the other switching elements s for example, elements s2 to sx
  • the high-speed switching unit 122 turns ON only one antenna element r (and the transmission antenna element t in the example of FIG. 4A and the like).
  • the high-speed switching unit 122 controls the termination condition of the antenna element r in the OFF state, that is, grounds the antenna element r in the OFF state at high frequencies. By doing so, it is possible to reduce the influence of induction disturbances and the like caused by the antenna element in the OFF state.
  • the sampling unit 123 includes a sampling circuit, an AD conversion circuit, and a buffer circuit.
  • the sampling unit 123 samples the radio signal received by the ON-state antenna element r (for example, the element r1) and converts the electric field intensity into a digital signal (measurement value).
  • the digitized measurement values corresponding to each antenna element r are sent to the transmission/reception controller 14 of the apparatus main body 20 sequentially or collectively in a predetermined unit (for example, 49 data for each cycle time tc).
  • FIG. 4A is a diagram showing a configuration example of transmission/reception antennas in a modification (many-to-many), and FIG. 4B is a diagram showing a configuration example of transmission/reception antennas in another modification (many-to-one).
  • a plurality of antenna elements are arranged on the receiving antenna 12 side. That is, the receiving antenna 12 has an antenna array 121 and a high-speed switching section 122 that controls switching of the antenna array 121 .
  • a plurality of antenna elements t1 to tx may also be arranged on the transmitting antenna 11b side. That is, as shown in FIG. 4A, the transmission antenna 11b may include a transmission waveform generation section 111, an antenna array 113, and a high-speed switching section 112 that controls switching of the antenna array 113.
  • one antenna element may be used on the receiving antenna 12b side.
  • the receiving antenna 12b shown in FIG. 4B is composed of one receiving antenna r1 and a sampling section 123 connected thereto.
  • the number of transmitting and receiving antenna elements constituting the antenna array in the embodiments of FIGS. 3, 4A, and 4B is merely an example, and may be at least 49 or may be more.
  • the number of antenna elements t in the transmitting-side antenna array 113 may be several or may be 100 or more
  • the number of antenna elements r in the receiving-side antenna array 121 may be several or 100. You can do more than that.
  • the lower bounds of these numbers affect the positional accuracy of the placement of the antenna elements, and the upper bounds affect the sampling rate. If the number is increased, one cycle time tc becomes longer, the sampling rate becomes lower, and correct waveform data (see FIG. 5C described later) cannot be obtained.
  • the configuration in which the reception antenna side is an antenna array in FIG. 3 and the configuration in which the transmission antenna side is an antenna array in FIG. 4B the configuration in which the reception antenna side is an antenna array is better in the configuration where the transmission antenna side is an antenna array.
  • the inventor's study has revealed that the antenna element suitable for measuring cardiac output can be selected more accurately than the configuration.
  • FIGS. 5A to 5C the configuration of the transmitting/receiving antenna is described as a configuration example similar to that of the first embodiment shown in FIG. 3 (the same applies to FIG. 6).
  • the point data recording unit 211 records, as point data, the measurement values measured for each of the antenna elements r turned on by the high-speed switching unit 122 in association with each of the antenna elements r. .
  • the antenna element t on the transmitting side and the antenna element r on the receiving side are sequentially switched by high-speed switching sections 112 and 122 . That is, at a certain time, both antenna units are synchronized and switched at high speed so that only the propagation paths of one system of antenna elements t and r are activated at the same time.
  • the point data recording unit 211 records the measurement values of the antenna elements t and r turned on by the high speed switching units 112 and 122 as point data in association with the antenna elements t and r.
  • each antenna element tx (and one antenna element r1) is associated with a similar process and recorded as point data.
  • FIG. 5A is a schematic diagram showing high-speed switching processing of each antenna element in element scanning processing.
  • the transmission/reception controller 14 controls the high-speed switching unit 122 during the element scanning process (corresponding to steps S101 to S107 in FIG. 6, which will be described later).
  • FIG. 5A shows an example in which the cyclic mode is the "all cyclic mode" and the predetermined period ts is set to 100 ⁇ sec.
  • the high-speed switching unit 122 sequentially switches ON/OFF of each of the antenna elements r1 to r49 at the cycle ts in accordance with the setting of the cyclic mode and cycle.
  • the period ts and/or one cycle time tc can be set to any value.
  • the period ts can be set to any value between 10 ⁇ sec and 1 msec.
  • one cycle time tc can be set to an arbitrary value between 1 msec and 100 msec according to the setting of the cycle ts, or the wait time can be adjusted by fixing the cycle ts (for example, fixed at 100 ⁇ sec) regardless of the cycle ts. By doing so, one cycle time tc may be arbitrarily set between 5 and 100 msec.
  • the setting of the cyclic mode and period/one cycle time may be performed by the user, or may be performed automatically by the control unit 21 side.
  • the sampling unit 123 acquires a received signal corresponding to the electric field intensity received by the antenna element r in the ON state.
  • the point data recording unit 211 acquires this reception signal via the transmission/reception controller 14, associates it with each element r, and temporarily records it in the storage unit 22 or RAM.
  • FIG. 5B is a schematic diagram showing point data obtained by the processing of FIG. 5A.
  • Acquisition timings of adjacent antenna elements r are shifted by one period ts (100 ⁇ sec).
  • the acquisition time of the point data p12 of the element r2 is delayed by the period ts from the acquisition time of the point data p11 of the element r1.
  • the point data p149 of the last antenna element r49 is delayed by 48 periods ts (4.8 msec) from the point data p11 of the element r1.
  • adjacent point data are spaced for one cycle time tc.
  • the point data p21 is acquired one cycle time tc after the point data p11 of the element r1.
  • FIG. 5C is a schematic diagram showing waveform data generated from the point data in FIG. 5B.
  • This waveform data is obtained by collecting the point data recorded by the point data recording unit 211 by the waveform data generating unit 212 for each element r and arranging them chronologically.
  • FIG. 5C shows the waveform data when the element r1 is used as a representative.
  • This waveform data is composed of a large number of point data p11, p21, p23, etc. linked to the element r1.
  • the upper limit of the cycle ts is a cycle such that one cycle time tc in which a plurality of antenna elements r are turned ON is sufficiently shorter than the cardiac cycle. For example, 1/5 to 8, more preferably 1/10 of the cardiac cycle.
  • the maximum heart rate is 180 beats/minute, ie, 3 Hz, in consideration of heart disease.
  • the sampling rate for generating a waveform with good accuracy is preferably 30 Hz (33 msec), which is 10 times or more. Dividing this by 40, which is the lower limit number in the preferred range of 40 to 100 total number of antenna elements r, gives 0.8 msec.
  • the upper limit of the period ts was set to 1.0 msec (assuming a sampling rate of about 8 times), which is slightly wider than this. Note that the lower limit of the period ts is appropriately determined depending on the stability of sampling that depends on the circuit configuration. For example, the lower limit of the cycle ts is several tens of microseconds.
  • FIG. 6 is a flowchart showing waveform data generation processing and cardiac output measurement processing.
  • Step S101 The control unit 21 starts transmission/reception by the transmission/reception antenna in response to a user's start instruction. Specifically, the user arranges the transmitting antenna 11 and the receiving antenna 12 so as to face each other with the heart 91 interposed therebetween. Thereafter, the user inputs an instruction to start measurement using the touch panel 51, keyboard, or the like. At this time, the user may set the circulation mode and the period ts. 5A to 5C, the cyclic mode is the full cyclic mode, the number of elements is 49, the period ts is 100 ⁇ sec, and one cycle time tc is 5 msec.
  • each antenna element r is sequentially scanned in order to determine the antenna element r suitable for measuring the cardiac output, that is, the antenna element r best arranged relative to the heart 91 from among the plurality of antenna elements. to collect the measurement signal.
  • the transmitting antenna 11 continues to transmit microwaves, or transmits pulse waves in accordance with the switching timing of the antenna element r on the receiving side.
  • Step S102 the control unit 21 performs loop processing between step S106 and step S106.
  • the target antenna elements r are sequentially switched one by one from the antenna element r1 to the last antenna element rx (r49) in accordance with the setting of the all-loop mode.
  • Step S103 The high-speed switching unit 122 switches the target antenna element r to the ON state.
  • the antenna element r1 is changed from the OFF state to the ON state, and if there is another antenna element r in the ON state, it is changed to the OFF state.
  • Step S104 The sampling unit 123 acquires the measured value at the antenna element r in the ON state.
  • Step S105 The point data recording unit 211 records the measured value obtained in step S104 as point data in association with the target antenna element r. Note that this step S105 may be processed collectively in a predetermined unit (for example, 49 times of one cycle time tc). For example, the buffer of the sampling unit 123 holds data of a predetermined unit. The point data recording unit 211 collectively acquires the data of the predetermined unit and processes them collectively.
  • a predetermined unit for example, 49 times of one cycle time tc.
  • Step S106 If it is not the last antenna element rx, the target antenna element r is changed to the next at the predetermined cycle ts, and the loop processing from step S102 onward is repeated. If it is the last antenna element rx, the loop is exited and the process proceeds to step S107.
  • Step S107 The control unit 21 determines whether or not the termination condition is satisfied, and if satisfied (YES), the process proceeds to step S108, and if not satisfied (NO), the loop processing from step S102 onward is repeated.
  • the termination condition is, for example, when a period of time corresponding to one to several heartbeats (for example, several seconds) has elapsed, or when the number of repetitions (hundreds to thousands) has been reached.
  • the waveform data generator 212 generates waveform data when each of the elements r1 to rx is used from the point data. For example, waveform data as shown in FIG. 5C is generated for each element r.
  • the element determination unit 213 calculates the feature amount of each waveform data obtained using each element rx, and determines the antenna element r with the best characteristic based on the feature amount.
  • the number of antenna elements r to be determined may be one or a plurality (for example, four). This makes it possible to use properly positioned transmit and receive antennas, and thus to estimate the volume of blood pumped from the heart with high accuracy.
  • the amplitude of waveform data, the autocorrelation coefficient, the waveform area in one waveform (time integral value of amplitude), and the like can be used as the feature quantity.
  • the cardiac output measurement sensor 1000 uses the determined antenna element r to measure the received signal again, and performs the processing of step S110 below based on the waveform data of the received signal that has been measured again. Ejection volume is estimated and the behavior of the heart 91 of the patient 90 is monitored. Note that the data of the received signal measured again also becomes waveform data as shown in FIG. 5C, except that the point data are rearranged and connected.
  • the cardiac output estimator 214 estimates the cardiac output of the heart 91 of the patient 90 from the difference in signal intensity between when the heart is in the systole and in the diastole in the waveform data shown in FIG. 5C. Estimate the volume, or volume of blood pumped by the heart. Heart 91 experiences greater loss and greater signal attenuation in diastole than in systole. That is, the strength of the received signal is smaller during diastole than during systole. Since the change in signal intensity is proportional to the change in heart size, ie, the stroke volume, the cardiac output can be estimated (calculated) from the change in signal intensity.
  • a stroke volume calculated from changes in intensity of one waveform may be displayed.
  • the heartbeat frequency may also be displayed as the heart rate.
  • the body surface area may be calculated from information such as the height and weight of the subject that has been input, and the cardiac coefficient may be displayed by dividing the cardiac output by the body surface area.
  • the cardiac output measurement sensor 1000 uses the transmitting antenna 11, the receiving antenna 12, and the microwaves received by the receiving antenna 12 and transmitted through the living body to measure the cardiac output of the heart. and a cardiac output estimating unit 214 for estimating the amount of blood to be applied, and at least one of the transmitting antenna 11 and the receiving antenna 12 includes a plurality of antenna elements and ON/OFF of each of the antenna elements at a predetermined cycle. and a point data recording unit 211 that records measurement values for each of the plurality of antenna elements r turned on by the high speed switching unit 122 as point data in association with each antenna element r.
  • a waveform data generation unit 212 that arranges the point data recorded by the point data recording unit 211 and generates waveform data representing changes in measured values over time for each of the plurality of antenna elements r.
  • the predetermined cycle is set to a cycle, for example, 1 msec or less, such that one cycle time tc in which a plurality of antenna elements are turned ON is sufficiently shorter than the cardiac cycle.
  • a sufficient sampling rate can be secured and waveforms can be generated with high accuracy.
  • the configuration of the comparative example in which the high-speed switching unit 122 is not applied has the following problems.
  • a waveform is acquired at 1 msec intervals for 10 seconds for antenna element r1
  • a waveform is acquired for 10 seconds at 1 msec intervals for antenna element r2, and so on for 10 seconds for each antenna element. It is a method of acquiring waveforms in order.
  • the waveform acquired by each antenna element is affected by changes in the position of organs due to respiration, etc., making it impossible to compare the waveforms of each antenna element under the same conditions, making it suitable for measuring cardiac output. It may not be possible to select the correct antenna element.
  • one cycle time tc is set within 1 msec, and waveforms can be acquired in the same time zone (substantially simultaneously) for all antenna elements. Therefore, it is possible to compare the waveforms of the antenna elements under the same conditions without being affected by changes in organ positions due to respiration, and to select antenna elements suitable for measuring cardiac output.
  • the high-speed switching unit controls to turn ON only one antenna element among a plurality of antenna elements and turns other antenna elements OFF. is configured to be grounded at high frequencies. By doing so, it is possible to prevent the antennas from operating as one antenna by coupling with each other, and to reduce the influence from other antennas in the OFF state, thereby enabling highly accurate measurement.
  • the overall size of the antenna array 111 or 112 is set to be larger than the size of the heart when viewed from the back side of the body. Also, the total number of antenna elements is 40 or more and 100 or less. As a result, when determining antenna elements, it is possible to select an antenna element at an optimum position with sufficient positional accuracy.
  • microwaves are used as electromagnetic waves. Microwaves are attenuated less than other frequencies when passing through the human body and have relatively high loss. ) is larger than other frequencies and is suitable for measuring cardiac output.
  • the above-described configuration of the cardiac output measurement sensor 1000 is a main configuration for describing the features of the above-described embodiment, and is not limited to the above-described configuration. can be modified.
  • step S109 the waveform data is measured again using the antenna element r determined by the element determination unit 213, and the cardiac output is estimated based on the measured waveform data again.
  • the waveform data obtained using the antenna element r determined by the element determination unit 213 is extracted from the waveform data for each antenna element r generated in step S108, and the cardiac output is calculated based on the extracted waveform data. can be estimated.
  • the element determination unit 213 determines a plurality of antenna elements r as the antenna elements r to be used when estimating the cardiac output, and based on the waveform data obtained using these antenna elements r, Cardiac output may be estimated. Specifically, for example, when the feature values calculated in step S109 of four adjacent antenna elements r are very close, these four antenna elements r are used as antenna elements r for estimating the cardiac output. The cardiac output may be estimated from the average value of the cardiac output calculated based on the waveform data obtained using each antenna element r.
  • the means and methods for performing various processes in the cardiac output measurement sensor 1000 described above can be realized by either a dedicated hardware circuit or a programmed computer.
  • the program may be provided by a computer-readable recording medium such as a USB memory or DVD-ROM, or may be provided online via a network such as the Internet.
  • the program recorded on the computer-readable recording medium is usually transferred to and stored in a storage unit such as a hard disk.
  • the above program may be provided as independent application software, or may be incorporated into the software of the apparatus as one function.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Physiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

心拍出量計測センサ(1000)は、送信アンテナ(11)と、受信アンテナ(12)と、受信アンテナ(12)で受信した生体(90)を透過した電磁波を用いて、心臓(91)から拍出される血液量を推定する心拍出量推定部(214)と、を備え、送信アンテナ(11)および受信アンテナ(12)の少なくとも一方は、複数のアンテナ素子(r)、および該アンテナ素子(r)それぞれのON/OFFを、所定の周期で順次切り替える高速切替部(122)を含み、さらに、高速切替部(122)によりONとなった複数のアンテナ素子(r)それぞれに関する計測値を、各アンテナ素子(r)と紐付けて点データとして記録する点データ記録部(211)と、点データ記録部(211)が記録した点データを並べ、複数のアンテナ素子(r)毎に計測値の経時的変化を表す波形データを生成する波形データ生成部(212)と、を備える。

Description

心拍出量計測センサ、および制御プログラム
 本発明は、心拍出量計測センサ、および制御プログラムに関する。
 心拍出量の検出に関する従来技術として、特許文献1には、送信アンテナと、受信アンテナと、推定部と、を備えた装置が開示されている。この装置では、送信アンテナは患者の胸部にマイクロ波等の電波を送信し、受信アンテナは送信アンテナから送信された電波を受信し、推定部は、受信アンテナが受信した電波の位相又は振幅強度に基づいて、測定対象者の心拍出量を検出する(特許文献1参照)。
国際公開第2018/194093号
 しかしながら、電波を送受信する1対の送受信アンテナの生体に対する位置、特に心臓に対する送受信アンテナの位置関係によっては、受信アンテナが得る受信波が心拍出量の測定に適さない場合も考えられる。心臓に対して送受信アンテナの位置がずれている等で、心拍出量の測定に適さない状態で用いられた場合、得られる心拍出量の計測精度が低下する。
 また、計測毎の心拍出量の変化を診療に用いる際、送受信アンテナの位置を、測定に適した場所に配置させる技術がなければ、得られた心拍出量の変化がアンテナの設置位置が変化したためなのか、患者状態の変化によるものなのか判断できない。
 本発明は、上記事情に鑑みてなされたものであり、複数のアンテナ素子それぞれの波形データを取得でき、ひいては、心臓から拍出される血液量を比較的高い精度で推定可能な心拍出量計測センサ、および制御プログラムを提供することを目的とする。
 上記目的を達成するため本発明の心拍出量計測センサは、
 電磁波を生体に向けて送信する送信アンテナと、
 前記送信アンテナに対して、生体の心臓を挟んで対向するように配置された受信アンテナと、
 前記受信アンテナで受信した、前記生体を透過した電磁波を用いて、心臓から拍出される血液量を推定する心拍出量推定部と、を備え、
 前記送信アンテナおよび前記受信アンテナの少なくとも一方は、複数のアンテナ素子、および該アンテナ素子それぞれのON/OFFを、所定の周期で順次切り替える高速切替部を含み、
 さらに、前記高速切替部によりONとなった前記複数のアンテナ素子それぞれに関する計測値を、各アンテナ素子と紐付けて点データとして記録する点データ記録部と、
 前記点データ記録部が記録した点データを並べ、前記複数のアンテナ素子毎に前記計測値の経時的変化を表す波形データを生成する波形データ生成部と、を備える。
 また、上記目的を達成するため本発明の制御プログラムは、
 電磁波を生体に向けて送信する送信アンテナと、
 前記送信アンテナに対して、生体の心臓を挟んで対向するように配置された受信アンテナと、
 前記受信アンテナで受信した、前記生体を透過した電磁波を用いて、心臓から拍出される血液量を推定する心拍出量推定部と、を備え、
 前記送信アンテナおよび前記受信アンテナの少なくとも一方は、複数のアンテナ素子、および該アンテナ素子それぞれのON/OFFを、所定の周期で順次切り替える高速切替部を含む、心拍出量計測センサを制御するコンピューターで実行される制御プログラムであって、
 前記高速切替部によりONとなった前記複数のアンテナ素子それぞれに関する計測値を、各アンテナ素子と紐付けて点データとして記録するステップ(a)と、
 前記ステップ(a)で記録した点データを並べ、前記複数のアンテナ素子毎に、前記計測値の経時的変化を表す波形データを生成するステップ(b)と、を含む処理を、前記コンピューターに実行させる。
 本発明に係る心拍出量計測センサおよび制御プログラムによれば、複数のアンテナ素子それぞれの波形データを取得でき、ひいては、心臓から拍出される血液量を比較的高い精度で推定できる。
第1の実施形態における心拍出量計測センサ全体を示す概略斜視図である。 第1の実施形態に係る心拍出量計測センサの構成を示すブロック図である。 第1の実施形態における送受信アンテナの構成例を示す図である。 変形例における送受信アンテナの構成例を示す図である。 別の変形例における送受信アンテナの構成例を示す図である。 素子走査処理における各アンテナ素子の高速切り替え処理を示す模式図である。 図5Aの処理で得られた点データを示す模式図である。 図5Bの点データにより生成した波形データを示す模式図である。 波形データ生成処理および心拍出量測定処理を示すフローチャートである。
 以下、添付した図面を参照して、本発明の実施形態を説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。本発明の技術的範囲は、以下に説明する実施形態に限定されず、特許請求の範囲に記載の範囲内で種々形態を変更して実施することができる。なお、心拍出量とは、通常は1分間に心臓から拍出される血液量のことをいうが、本明細書においては、心臓から拍出される血液量のことを心拍出量ということがある。
 図1は、本発明の第1の実施形態に係る心拍出量計測センサ1000全体を示す概略図である。図2は、第1の実施形態に係る心拍出量計測センサ1000の構成を示すブロック図であり、図3は、第1の実施形態における送受信アンテナの構成例を示す図である。
 図1では、ベッド95上に患者90(生体または被検者ともいう)が横たわっている状態(仰臥位)を示している。心拍出量計測センサ1000により患者90の心拍出量等の心臓から拍出される血液量を測定(推定)する。例えば、心拍出量計測センサ1000は、心不全の検査、心臓手術後の経過観察、心臓病の投薬効果・副作用等の検証、等で用いられる。
 測定時には、看護師、医師等のユーザーにより、送信アンテナ11と受信アンテナ12の中心を結ぶ線が、心臓91に対応するように、両アンテナユニット(以下、単に「送受信アンテナ」ともいう)は、心臓91を挟んで互いに対向するように配置される。なお、外部電波による影響を減少させるために、測定中は、布製の電波シールドで、患者90の胸部および送受信アンテナ全体を覆うようにしてもよい。例えば、受信アンテナ12は、患者90の下に配置され、送信アンテナ11は、患者90の上方に配置される。具体的には、受信アンテナ12はベッド95の上に配置され、その上に患者90が仰向けに寝る。上方の送信アンテナ11は、側面視でコの字型の移動式の固定台(図示せず)に取り付けられる。この固定台は、手動で送信アンテナ11の高さを調整可能である。送信アンテナ11は、固定台により、患者90からわずかに離間した状態で、患者90の上方に配置される。離間させるのは、患者90の呼吸動作を妨げないことと、患者90との接触による、意図しない送信アンテナ11の移動を防止するためである。なお、送受信アンテナの配置は、図1等の配置に限定されない。例えば、上下を逆にし、送信アンテナ11を患者90の下方(背面側)に配置し、受信アンテナ12を患者90の上方側(前面側)に配置してもよい。
 図2に示すように、心拍出量計測センサ1000は、送信アンテナ11、受信アンテナ12、および装置本体20を含む。装置本体20は、移動式の架台(図示せず)に載せられてベッド95の脇に配置される。装置本体20は、内蔵バッテリまたは、商用電源から供給された電力により動作する。また、両アンテナユニットは、信号ケーブル13を通じて、装置本体20と接続されており、この信号ケーブル13を通じて、データ信号の送受信および電力供給が行われる。送受信アンテナに関しては、後述する。
 (装置本体20)
 装置本体20は、送受信コントローラー14、制御部21、記憶部22、入出力I/F(インターフェース)23、および通信I/F24を備える。
 (送受信コントローラー14)
 送受信コントローラー14は、信号ケーブル13を介して、送信アンテナ11および受信アンテナ12と電気的に接続される。制御部21の制御の下で、送受信コントローラー14は、両アンテナユニット間の送受信のタイミングを制御したり、受信アンテナ12からの計測値(受信信号)を取得したりする。
 (制御部21)
 制御部21は、CPU、RAM、ROM、等を含みROMまたは記憶部22に記憶されたプログラムにしたがって、装置内の各部の制御を行う。制御部21は、プログラムを実行することにより、点データ記録部211、波形データ生成部212、素子決定部213、および心拍出量推定部214として機能する。点データ記録部211は計測値をアンテナ素子と紐付けて記録した点データを生成する。波形データ生成部212は波形データを生成する。素子決定部213は、波形データの特徴量に基づいて、心拍出量の推定の際に用いるアンテナ素子を決定する。心拍出量推定部214は、患者90の心拍出量、すなわち心臓91から拍出される血液量を推定(算出)する。これらの機能については後述する(後述の図5A~図5C、および図6)。
 (記憶部22)
 記憶部22は、予め各種プログラムや各種データを格納しておく半導体メモリや、ハードディスク等の磁気メモリから構成される。また記憶部22には、点データ、および波形データ等が記憶される。
 (入出力I/F23)
 入出力I/F23は、入出力部として機能し、USB、DVIの規格等に準拠した入出力端子を備え、キーボード、マウス、マイク等の入力装置およびディスプレイ、スピーカ、プリンタ等の出力装置と接続するインターフェースである。図1、図3に示す例では、入出力I/F23には、タッチパネル51が接続されている。タッチパネル51は、液晶パネルおよびこれに重畳させたタッチパッドで構成され、これを介して、ユーザーからアンテナ素子決定処理、および心拍出量測定の開始指示を受け付ける。なお、タッチパネル51等の入出力装置を、装置本体20の構成に含めてもよい。
 (通信I/F24)
 通信I/F24は、PC(パーソナルコンピュータ)、タブレット端末、等の外部の端末装置とネットワーク経由、またはピアツーピアで、有線または無線通信によるデータの送受信を行うインターフェースである。有線通信では、イーサネット(登録商標)、SATA、PCI Express、IEEE1394、等の規格によるネットワークインターフェースを用いてもよく、無線通信では、Bluetooth(登録商標)、IEEE802.11、4Gなどの無線通信インターフェースを用いてもよい。図1、図3に示す例では、通信I/F24には、PC61が接続されている。
 (送信アンテナ11)
 図2、図3に示すように送信アンテナ11は、基板110、送信波形生成部111、およびアンテナ素子t1で構成される。図3に示す第1の実施形態では、後述の変形例(図4A等)とは異なり、送信アンテナ11は、単一のアンテナ素子t1を備え、受信側は複数のアンテナ素子を備える(1対多の構成)。
 送信アンテナ11は、生体を透過する電磁波乃至電波を送信する。基板110は、各辺が数十mm~二百数十mmの全体が矩形板状の部材であり、この基板110上に送信波形生成部111、およびアンテナ素子t1が配置される。アンテナ素子t1として、一辺または直径が数十mm~百数十mmのパッチアンテナ、ダイポール形式の線状アンテナ、またはループアンテナを適用できる。例えば、アンテナ素子t1は、パッチアンテナである。
 送信波形生成部111は、電波生成器を含む。生成する電磁波の周波数は、生体の心臓91を電離作用なく透過することができれば特に限定されない。例えば、周波数300MHz~30GHzのマイクロ波が好ましく、より好ましくは400M~1.0GHzのマイクロ波である。マイクロ波は、生体透過性と、心臓91の収縮/拡張における損失変化による感度(電界強度の変化率)が高いため、心拍出量の測定に好適である。生成する電波の電力は、受信アンテナ12において十分な電力が検出できれば特に限定されないが、例えば、数mW~数十mWとしてもよい。また、生成する電波は、連続波、パルス波、または位相変調若しくは周波数変調を施した電波のいずれでもよい。
 (受信アンテナ12)
 図2、図3に示すように受信アンテナ12は、基板120、アンテナアレイ121、高速切替部122、およびサンプリング部123を含む。アンテナアレイ121、高速切替部122、およびサンプリング部123は、各辺が数十mm~二百数十mmの全体が矩形板状の基板120上に形成される。
 アンテナアレイ121は、複数のアンテナ素子r1~rx(以下、これらを総称して、「アンテナ素子r」ともいう(アンテナ素子tも同じ))で構成され、これらは平面状の基板120の表面に、同一平面上で格子状に配置される。送信側を単一のアンテナ素子t、受信側を複数のアンテナ素子rで構成することで、電界を作る送信アンテナの位置が一定となり、電磁波による電界が安定する。
 図3に示す第1の実施形態においては、各アンテナ素子rとして、ダイポール形式の線状アンテナ、または微小ループアンテナを適用できる。アンテナ素子rは、例えばそれぞれが、一辺または直径が数mm~十数mmのループアンテナである。隣接するアンテナ素子r同士は、密着することなく配置している。アンテナアレイ121全体のサイズとしては、生体の背面側から視たときの心臓91のサイズよりも大きいサイズに設定している。例えば、1辺が100~150mmの矩形形状である。
 また、アンテナ素子rの総個数は、好ましくは40個以上100個以下である。後述の使用するアンテナ素子rを決定する際の位置精度(位置解像度)の観点から、40個以上とすることが好ましい。上限個数は、周期tsと総個数を乗じることで算出される1サイクル時間tc(サンプリングレート)の観点や、コストの観点から100個以下が好ましい。例えば図3に示す例では、アンテナ素子rそれぞれは12mmの略矩形のループアンテナであり、アンテナアレイ121は、縦横7個ずつの総数49個のアンテナ素子r1~r49で構成される。そして、隣接するアンテナ素子r同士の間隔は2mm程度で配置され、アンテナアレイ121全体のサイズは約100mm角である。
 高速切替部122は、各アンテナ素子r1~rxに対応した複数のスイッチング素子s1~sx(以下、これらを総称して、「スイッチング素子s」ともいう)で構成される。高速切替部122では、いずれか1個のスイッチング素子s(例えば素子s1(図2参照))のみをON状態にし、その他のスイッチング素子s(例えば素子s2~sx)は全てOFFにする。複数のアンテナ素子を同時にON状態で動作させた場合、アンテナ同士が結合し、1つのアンテナとして動作してしまい、所望の計測値が得られない虞がある。このような現象を避けるため、高速切替部122では、1つのアンテナ素子r(および図4A等の例では送信アンテナ素子t)のみをON状態にする。
 また、高速切替部122は、OFF状態のアンテナ素子rの終端条件を制御する、すなわち、OFF状態のアンテナ素子rを、高周波的に接地する。このようにすることで、OFF状態のアンテナ素子による誘導障害等の影響を減らせる。
 サンプリング部123は、サンプリング回路と、AD変換回路、バッファー回路を含む。サンプリング部123は、ON状態のアンテナ素子r(例えば素子r1)が受信した電波信号をサンプリングし、電界強度をデジタル信号(計測値)に変換する。各アンテナ素子rに対応したデジタル化した計測値は、逐次、または所定単位(例えば、1サイクル時間tc毎の49個のデータ)でまとめて、装置本体20の送受信コントローラー14に送られる。
 (送受信アンテナの変形例)
 図4Aは、変形例(多対多)における送受信アンテナの構成例を示す図であり、図4Bは、別の変形例(多対1)における送受信アンテナの構成例を示す図である。
 上述した図3に示す第1の実施形態(1対多)では、受信アンテナ12側に複数のアンテナ素子を配置した。すなわち、受信アンテナ12がアンテナアレイ121、およびこれをスイッチング制御する高速切替部122を備えた。しかしながら、図4Aに示す変形例のように、送信アンテナ11b側にも複数のアンテナ素子t1~txを配置してもよい。すなわち、図4Aに示すように、送信アンテナ11bが、送信波形生成部111とともに、アンテナアレイ113、およびこれをスイッチング制御する高速切替部112を備えてもよい。なお、アンテナアレイ113および高速切替部112は、受信アンテナ12のアンテナアレイ121および高速切替部122と同様の構成を備えるため、説明を省略する。
 また、図4Bに示す別の変形例(多対1)のように、受信アンテナ12b側を1つのアンテナ素子としてもよい。図4Bに示す受信アンテナ12bは、1つの受信アンテナr1とこれに接続したサンプリング部123で構成される。なお、図3、図4A、図4Bの実施形態でのアンテナアレイを構成する送受信アンテナ素子の数は、あくまでも例示であり、49個よりも少なくともよく、多くてもよい。例えば、送信側アンテナアレイ113のアンテナ素子tの個数を数個にしてもよく、100個以上にしてもよく、受信側アンテナアレイ121のアンテナ素子rの個数を数個にしてもよく、100個以上にしてもよい。これらの数の下限はアンテナ素子の配置の位置精度に影響し、上限は、サンプリングレートに影響する。数を多くすると、1サイクル時間tcが長くなり、サンプリングレートが低くなり、正しい波形データ(後述の図5C参照)が得られなくなる。
 図3の受信アンテナ側をアンテナアレイにする構成と図4Bの送信アンテナ側をアンテナアレイにする構成を比較すると、受信アンテナ側をアンテナアレイにする構成の方が、送信アンテナ側をアンテナアレイにする構成よりも、心拍出量の測定に好適なアンテナ素子をより正確に選定できることが発明者の検討により明らかになっている。
 (点データ記録部211、および波形データ生成部212)
 次に、図5Aから図5Cを参照し、点データ記録部211、および波形データ生成部212の機能について説明する。なお、以下の説明においては、送受信アンテナの構成は、図3に示した第1の実施形態のような構成例であるとして説明する(図6も同様)。この場合、以下に説明するように点データ記録部211は、高速切替部122によりONとなったアンテナ素子rそれぞれに関して計測された計測値を、アンテナ素子rそれぞれと紐付けて点データとして記録する。
 なお、図4Aに示した変形例(多対多)を適用する場合には、送信側のアンテナ素子t、および受信側のアンテナ素子rを順次、高速切替部112、122により切り替える。すなわち、ある時刻では、同時に1系統のアンテナ素子t、rの伝播経路のみが作動するように、両アンテナユニットを同期させながら高速で切り替える。この場合、点データ記録部211は、高速切替部112、122によりONとなったアンテナ素子t、rそれぞれに関する計測値を、アンテナ素子t、rそれぞれと紐付けて点データとして記録する。例えば、ある時刻では、送信のアンテナ素子txと受信のアンテナ素子rxの伝播経路で送受信された受信信号を、これらの送受信のアンテナtx、rxに紐付けて、点データとして記録される。図4Bに示した別の変形例(多対1)でも同様の処理により、それぞれのアンテナ素子tx(と1つのアンテナ素子r1)に紐付けて、点データとして記録される。
 図5Aは、素子走査処理における各アンテナ素子の高速切り替え処理を示す模式図である。送受信コントローラー14は、素子走査処理時(後述の図6のステップS101~S107に対応)には、高速切替部122を制御する。図5Aでは、巡回モードが「全巡回モード」で、所定の周期tsが100μsecに設定された例を示している。素子走査処理時においては、高速切替部122は巡回モードと周期の設定に応じて、アンテナ素子r1~r49まで、それぞれのON/OFFを周期tsで順次切り替える。なお、他の巡回モードとしては、「一部巡回モード」がある。この一部巡回モードでは、アンテナアレイ121のうち一部のアンテナ素子rのみを間引いて一巡させる。例えば、アンテナ素子r1、r3,r5……r47、r49のように1つ置きのアンテナ素子rを使用したり、奇数列のアンテナ素子rのみを使用したりする。
 また周期ts、および/または1サイクル時間tcも任意の値に設定できる。例えば周期tsは、10μsec~1msecの間で任意の値を設定できる。また、1サイクル時間tcは、周期tsの設定にともない1msec~100msecの間で任意の値に設定したり、周期tsによらず、例えば周期tsを固定(例えば100μsec固定)で、ウェイト時間を調整することで、1サイクル時間tcを5~100msecの間で任意の設定にしたりしてもよい。この巡回モードと周期/1サイクル時間の設定は、ユーザーによりおこなわれてもよく、制御部21側で自動におこなってもよい。
 サンプリング部123はON状態にあるアンテナ素子rが受信した電界強度に応じた受信信号を取得する。点データ記録部211は、送受信コントローラー14を介して、この受信信号を取得し、各素子rと紐付けて、記憶部22またはRAMに一時的に記録する。
 図5Bは、図5Aの処理で得られた点データを示す模式図である。隣接するアンテナ素子rでは、1つの周期ts(100μsec)分だけ、取得タイミングがずれる。例えば、素子r2の点データp12の取得時刻は、素子r1の点データp11の取得時刻よりも周期ts分だけ遅れた時刻になる。同様に最後のアンテナ素子r49の点データp149は、素子r1の点データp11よりも、48の周期ts分(4.8msec)遅れることになる。また、1つの素子においては、隣接する点データは、1サイクル時間tc分の間隔となる。例えば、素子r1の点データp11よりも1サイクル時間tc後に点データp21が取得されることになる。1サイクル時間tcは、総個数(多対多の場合は組み合わせ数)に周期tsを乗じることにより算出できる。例えば図5Bでは、1サイクル時間tcは4.9msec(=49×100μsec)となる。なお、図5Bおよび以下においては、数値を丸めて4.9msecを5msecで表記する。
 図5Cは、図5Bの点データにより生成した波形データを示す模式図である。この波形データは、波形データ生成部212が、点データ記録部211が記録した点データを、素子r毎に収集して、経時的に並べたものである。図5Cでは、素子r1を用いた際の波形データを代表として示している。この波形データは、素子r1に紐付けられた多数の点データp11、p21、p23等で構成される。
 (所定の周期tsの範囲)
 周期tsの上限は、複数のアンテナ素子rへのONが一巡する1サイクル時間tcが、心周期よりも十分に短くなるような周期である。例えば、心周期の5~8分の1、より好ましくは10分の1である。具体的には、心拍数の最大値は、心疾患を考慮して最大180回/分、すなわち3Hzとする。一般に、精度よく波形を生成するためのサンプリングレートは、その10倍以上が好ましく30Hz(33msec)となる。これをアンテナ素子rの総個数の好ましい範囲40~100個の下限個数の40で除すると0.8msecとなる。周期tsの上限としては、これよりも少し広めの1.0msec(サンプリングレートを8倍程度想定)とした。なお周期tsの下限は、回路構成に依存するサンプリングの安定性により適宜決定される。例えば周期tsの下限は数十μsecである。
 (波形データ生成および心拍出量測定処理)
 図6は、波形データ生成処理および心拍出量測定処理を示すフローチャートである。
 (ステップS101)
 制御部21は、ユーザーの開始指示により送受信アンテナによる送受信を開始させる。具体的には、ユーザーは、送信アンテナ11と受信アンテナ12を互いに、心臓91を挟んだ状態で対向させて配置する。その後、ユーザーは、タッチパネル51やキーボード等により、測定開始の指示を入力する。この時に、ユーザーは、巡回モードと周期tsの設定を行ってもよい。以下においては、図5Aから図5Cと同様に、巡回モードは全巡回モードで、素子数は49個で、周期tsが100μsec、1サイクル時間tcが5msecとして説明する。
 (素子走査処理(S102から107))
 このステップS102からS107の処理は素子走査処理である。この素子走査処理では、複数のアンテナ素子の中から心拍出量の測定に好適な、すなわち、心臓91に対する配置位置が最もよいアンテナ素子rを決定するために、各アンテナ素子rを順に走査して、計測信号を収集する。なお、素子走査処理の実行中は、送信アンテナ11では、マイクロ波を送信し続ける、または、受信側のアンテナ素子rの切り替えタイミングに合わせた、パルス波を送信する。
 (ステップS102)
 ステップS102では、制御部21は、ステップS106との間でループの処理を行う。このループでは、全巡回モードの設定に応じて、アンテナ素子r1から最後のアンテナ素子rx(r49)まで1つずつ順々に対象のアンテナ素子rを切り替える。
 (ステップS103)
 高速切替部122により、対象となるアンテナ素子rをON状態に切り替える。例えば、アンテナ素子r1をOFF状態からON状態に変更し、他のON状態のアンテナ素子rがあればこれをOFF状態に変更する。
 (ステップS104)
 サンプリング部123は、ON状態のアンテナ素子rでの計測値を取得する。
 (ステップS105)
 点データ記録部211は、ステップS104で取得した計測値を、対象のアンテナ素子rと紐付けて点データとして記録する。なお、このステップS105は所定単位(例えば1サイクル時間tcの49個分)でまとめて処理するようにしてもよい。例えば、サンプリング部123のバッファーで所定単位のデータを保持しておく。そして点データ記録部211では、この所定単位のデータをまとめて取得し、一括して処理する。
 (ステップS106)
 最後のアンテナ素子rxでなければ、所定周期tsで、対象のアンテナ素子rを次に変更して、ステップS102以下のループ処理を繰り返す。最後のアンテナ素子rxであればループを抜けて処理をステップS107に進める。
 (ステップS107)
 制御部21は、終了条件を満たしているか判定し、満たしていれば(YES)、処理をステップS108に進め、満たしていなければ(NO)、ステップS102以下のループ処理を繰り返す。終了条件としては、例えば1~数回の心拍相当の時間(例えば数秒)が経過した場合、または繰り返し回数(数百~千回)に到達した場合である。
 (ステップS108)
 波形データ生成部212は、点データから素子r1~素子rxのそれぞれを用いた際の波形データを生成する。例えば図5Cのような波形データを素子r毎に生成する。
 (ステップS109)
 素子決定部213は、各素子rxを用いて得られた各波形データの特徴量を算出し、特徴量に基づいて、最も特性がよいアンテナ素子rを決定する。決定するアンテナ素子rの個数は、1個でもよく、複数個(例えば4個)でもよい。これにより、適正に配置された送受信アンテナを利用でき、ひいては高い精度で心臓から拍出される血液量を推定可能となる。ここで特徴量としては、例えば、波形データの振幅、自己相関係数、1波形における波形面積(振幅の時間積分値)、等を用いることができる。以降は、心拍出量計測センサ1000は、この決定したアンテナ素子rを用いて、再度受信信号を測定し、再度測定した受信信号の波形データに基づいて下記ステップS110の処理を行って心拍出量を推定し、患者90の心臓91の挙動をモニターする。なお、再度測定した受信信号のデータも、点データを並べ替えて繋いでいる点を除き、図5Cに示すような波形データとなる。
 (ステップS110)
 心拍出量推定部214は、図5Cに示したような波形データにおいて、心臓が収縮期にあるときと、拡張期にあるときの信号強度の差分から、患者90の心臓91の心拍出量、または心臓から拍出される血液量を推定する。心臓91は、収縮期に比べて拡張期においては、損失がより大きくなり、信号の減衰が大きくなる。すなわち収縮期に比べて拡張期では、受信信号の強度が小さくなる。この信号強度の変化は、心臓の大きさの変化、すなわち1拍出量に比例するので、信号強度の変化により心拍出量を推定(算出)できる。なお、心拍出量に加えて、1つの波形の強度の変化から算出される1回拍出量を表示させてもよい。また、心拍出量に加えて、さらに心拍動の周波数を、心拍数として表示してもよい。さらに、入力された被験者の身長や体重等の情報から体表面積を算出し、心拍出量を体表面積で割ることで、心係数として表示してもよい。
 以上説明したように、本実施形態に係る心拍出量計測センサ1000は、送信アンテナ11と、受信アンテナ12と、受信アンテナ12で受信した生体を透過したマイクロ波を用いて、心臓から拍出される血液量を推定する心拍出量推定部214と、を備え、送信アンテナ11および受信アンテナ12の少なくとも一方は、複数のアンテナ素子、および該アンテナ素子それぞれのON/OFFを、所定の周期で順次切り替える高速切替部122を含み、さらに、高速切替部122によりONとなった複数のアンテナ素子rそれぞれに関する計測値を、各アンテナ素子rと紐付けて点データとして記録する点データ記録部211と、点データ記録部211が記録した点データを並べ、複数のアンテナ素子r毎に計測値の経時的変化を表す波形データを生成する波形データ生成部212と、を備える。このように構成することで、複数のアンテナ素子それぞれの波形データを取得でき、これにより最適なアンテナ素子を用いて測定でき、ひいては、心臓から拍出される血液量を比較的高い精度で推定できる。
 また、所定の周期は、複数のアンテナ素子へのONが一巡する1サイクル時間tcが、心周期よりも十分に短くなるような周期、例えば1msec以下に設定されている。これにより十分なサンプリングレートを確保でき、波形を精度よく生成できる。
 例えば、本実施形態とは異なり、高速切替部122を適用しない比較例の構成の場合、次のような問題がある。例えば、比較例では、アンテナ素子r1について10秒間、1msec間隔で波形を取得し、その次はアンテナ素子r2について10秒間、1msec間隔で波形を取得する、というように1つのアンテナ素子について10秒間ずつ順番に波形を取得する方式となる。この比較例では、アンテナ素子r1とアンテナ素子r49との波形取得時刻に480秒の差が生じることになる。この場合、各アンテナ素子が取得した波形が、呼吸に伴う臓器位置の変動等の影響を受け、同等の条件で各アンテナ素子の波形を比較することができなくなり、心拍出量の測定に適したアンテナ素子を正しく選択できなくなるおそれがある。
 これに対して、本実施形態では、1サイクル時間tcが1msec以内に設定されており、全てのアンテナ素子について同一の時間帯(略同時)で波形を取得できる。このため、呼吸に伴う臓器位置の変動等の影響を受けることなく同等の条件でアンテナ素子の波形を比較することができ、心拍出量の測定に好適なアンテナ素子を選択できる。
 また、本実施形態では、高速切替部は、複数のアンテナ素子のうち、1つの1つのアンテナ素子のみをONにし、他のアンテナ素子をOFFにするように制御する、また、OFF状態のアンテナ素子の終端条件を、高周波的に接地するように構成する。このようにすることで、アンテナ同士が結合し、1つのアンテナとして動作してしまうことを防止し、またOFF状態の他のアンテナからの影響を減少でき、高精度で計測できる。
 またアンテナアレイ111または112の全体の大きさは、身体の背面側から視たときの心臓のサイズよりも大きいサイズに設定されている。またアンテナ素子の総個数が、40個以上100個以下である。これにより、アンテナ素子を決定する際に、十分な位置精度で最適な位置のアンテナ素子を選択できる。
 また巡回モードと周期を変更可能とすることで、電磁波の送受信条件を最適な条件に設定できる。
 また本実施形態では、受信アンテナ12側に、複数のアンテナ素子rおよび高速切替部122を備えた構成とすることが可能である。これにより、電磁波による電界が安定する。
 また、本実施形態では電磁波としてマイクロ波を用いる。マイクロ波は、人体を透過する際の減衰が他の周波数よりも少なく、また損失が比較的高い心臓の拡張/収縮の動きに応じた損失変化にともなう信号の変化の感度(信号強度の増減率)が他の周波数よりも大きく、心拍出量の測定に好適である。
 以上に説明した、心拍出量計測センサ1000の構成は、上述の実施形態の特徴を説明するにあたって主要構成を説明したのであって、上述の構成に限られず、特許請求の範囲内において、種種改変することができる。
 例えば、上記の実施形態では、ステップS109において、素子決定部213が決定したアンテナ素子rを用いて波形データを再度測定し、再度測定した波形データに基づいて心拍出量を推定する例を記載したが、ステップS108で生成したアンテナ素子r毎の波形データから、素子決定部213が決定したアンテナ素子rを用いて得られた波形データを抽出し、抽出した波形データに基づいて心拍出量を推定してもよい。
 また、ステップS109において、心拍出量の推定の際に用いるアンテナ素子rとして複数のアンテナ素子rを素子決定部213により決定し、それらのアンテナ素子rを用いて得られた波形データに基づいて心拍出量を推定してもよい。具体的には、例えば、隣接する4つのアンテナ素子rのステップS109で算出された特徴量が非常に近い場合、この4つのアンテナ素子rを心拍出量の推定の際に用いるアンテナ素子rとして決定し、各アンテナ素子rを用いて得られた波形データに基づいて算出された心拍出量の平均値から心拍出量を推定してもよい。
 また、上述した心拍出量計測センサ1000における各種処理を行う手段および方法は、専用のハードウェア回路、またはプログラムされたコンピューターのいずれによっても実現することが可能である。上記プログラムは、例えば、USBメモリやDVD-ROM等のコンピューター読み取り可能な記録媒体によって提供されてもよいし、インターネット等のネットワークを介してオンラインで提供されてもよい。この場合、コンピューター読み取り可能な記録媒体に記録されたプログラムは、通常、ハードディスク等の記憶部に転送され記憶される。また、上記プログラムは、単独のアプリケーションソフトとして提供されてもよいし、一機能として装置のソフトウエアに組み込まれてもよい。
 本出願は、2021年3月29日に出願された日本国特許出願第2021-54907号に基づいており、その開示内容は、参照により全体として引用されている。
1000 心拍出量計測センサ
11、11b 送信アンテナユニット
 110 基板
 111 送信波形生成部
 112 高速切替部
 113 アンテナアレイ(送信側)
 t1~tx アンテナ素子(送信側)
12、12b 受信アンテナユニット
 120 基板
 121 アンテナアレイ(受信側)
 122 高速切替部
 123 サンプリング部
13 信号ケーブル
14 送受信コントローラー
20 装置本体
 21 制御部
  211 点データ記録部
  212 波形データ生成部
  213 素子決定部
  214 心拍出量推定部
 22 記憶部
 23 入出力I/F
 24 通信I/F
51 タッチパネル
61 PC

Claims (13)

  1.  電磁波を生体に向けて送信する送信アンテナと、
     前記送信アンテナに対して、前記生体の心臓を挟んで対向するように配置された受信アンテナと、
     前記受信アンテナで受信した、前記生体を透過した電磁波を用いて、心臓から拍出される血液量を推定する心拍出量推定部と、を備え、
     前記送信アンテナおよび前記受信アンテナの少なくとも一方は、複数のアンテナ素子、および該アンテナ素子それぞれのON/OFFを、所定の周期で順次切り替える高速切替部を含み、
     さらに、前記高速切替部によりONとなった前記複数のアンテナ素子それぞれに関する計測値を、各アンテナ素子と紐付けて点データとして記録する点データ記録部と、
     前記点データ記録部が記録した点データを並べ、前記複数のアンテナ素子毎に前記計測値の経時的変化を表す波形データを生成する波形データ生成部と、を備える、心拍出量計測センサ。
  2.  前記所定の周期は、複数の前記アンテナ素子へのONが一巡する1サイクル時間が、心周期よりも十分に短くなるような周期に設定されている、請求項1に記載の心拍出量計測センサ。
  3.  前記所定の周期は、1msec以下である、請求項2に記載の心拍出量計測センサ。
  4.  前記高速切替部は、複数の前記アンテナ素子のうち、1つのアンテナ素子のみをONにし、他のアンテナ素子をOFFにするように制御する、請求項1から請求項3のいずれかに記載の心拍出量計測センサ。
  5.  前記高速切替部は、OFF状態の前記アンテナ素子の終端条件を制御する、請求項1から請求項4のいずれかに記載の心拍出量計測センサ。
  6.  複数の前記アンテナ素子は、同一平面上に格子状に配置されたアンテナアレイである、請求項1から請求項5のいずれかに記載の心拍出量計測センサ。
  7.  前記アンテナアレイの全体の大きさは、身体の背面側から視たときの心臓のサイズよりも大きいサイズに設定されている、請求項6に記載の心拍出量計測センサ。
  8.  前記アンテナアレイは、アンテナ素子の総個数が、40個以上100個以下である、請求項7に記載の心拍出量計測センサ。
  9.  前記高速切替部は、複数の前記アンテナ素子の全部を一巡させる全巡回モードと、一部の前記アンテナ素子のみを間引いて一巡させる一部巡回モードとの切り替え、および/または、前記所定の周期、もしくは複数の前記アンテナ素子へのONが一巡する1サイクル時間の変更が可能である、請求項1から請求項8のいずれかに記載の心拍出量計測センサ。
  10.  前記受信アンテナが、複数の前記アンテナ素子、および前記高速切替部を備える、請求項1から請求項9のいずれかに記載の心拍出量計測センサ。
  11.  前記電磁波がマイクロ波であることを特徴とする請求項1から請求項10のいずれかに記載の心拍出量計測センサ。
  12.  前記波形データ生成部が生成した波形データに基づいて、前記複数のアンテナ素子から前記心臓から拍出される血液量の推定の際に用いるアンテナ素子を決定する素子決定部をさらに備え、前記心拍出量推定部は、前記素子決定部により決定された前記アンテナ素子を用いて得られた計測値の経時的変化を表す波形データに基づいて、心臓から拍出される血液量を推定する、請求項1から請求項11のいずれかに記載の心拍出量計測センサ。
  13.  電磁波を生体に向けて送信する送信アンテナと、
     前記送信アンテナに対して、前記生体の心臓を挟んで対向するように配置された受信アンテナと、
     前記受信アンテナで受信した、前記生体を透過した電磁波を用いて、心臓から拍出される血液量を推定する心拍出量推定部と、を備え、
     前記送信アンテナおよび前記受信アンテナの少なくとも一方は、複数のアンテナ素子、および該アンテナ素子それぞれのON/OFFを、所定の周期で順次切り替える高速切替部を含む、心拍出量計測センサを制御するコンピューターで実行される制御プログラムであって、
     前記高速切替部によりONとなった前記複数のアンテナ素子それぞれに関する計測値を、各アンテナ素子と紐付けて点データとして記録するステップ(a)と、
     前記ステップ(a)で記録した点データを並べ、前記複数のアンテナ素子毎に前記計測値の経時的変化を表す波形データを生成するステップ(b)と、を含む処理を、前記コンピューターに実行させるための制御プログラム。
PCT/JP2022/004389 2021-03-29 2022-02-04 心拍出量計測センサ、および制御プログラム WO2022209282A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021054907A JP2024072895A (ja) 2021-03-29 2021-03-29 心拍出量計測センサ、および制御プログラム
JP2021-054907 2021-03-29

Publications (1)

Publication Number Publication Date
WO2022209282A1 true WO2022209282A1 (ja) 2022-10-06

Family

ID=83458799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004389 WO2022209282A1 (ja) 2021-03-29 2022-02-04 心拍出量計測センサ、および制御プログラム

Country Status (2)

Country Link
JP (1) JP2024072895A (ja)
WO (1) WO2022209282A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002058659A (ja) * 2000-08-18 2002-02-26 Micro Wave Lab:Kk マイクロ波微動センサー
JP2016202516A (ja) * 2015-04-21 2016-12-08 学校法人 関西大学 心容積及び心拍出量の推定装置
JP2021003567A (ja) * 2017-04-19 2021-01-14 学校法人 関西大学 生体情報の推定装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002058659A (ja) * 2000-08-18 2002-02-26 Micro Wave Lab:Kk マイクロ波微動センサー
JP2016202516A (ja) * 2015-04-21 2016-12-08 学校法人 関西大学 心容積及び心拍出量の推定装置
JP2021003567A (ja) * 2017-04-19 2021-01-14 学校法人 関西大学 生体情報の推定装置

Also Published As

Publication number Publication date
JP2024072895A (ja) 2024-05-29

Similar Documents

Publication Publication Date Title
JP6511481B2 (ja) 心臓機能のマイクロ波監視
CN102088903B (zh) 用于多普勒雷达的自动发射功率调节
US11266375B2 (en) Device and method for determining fetal heart rate
CN106999090B (zh) 用于估计生理特性的值的装置和方法
US20130135137A1 (en) Device, system and method for measuring vital signs
CN102421371A (zh) 胎儿监视设备和方法
US20180368804A1 (en) Patient monitoring and treatment systems and methods
WO2018137977A1 (en) A method and apparatus for measuring a physiological characteristic of a subject
Hall et al. A phased array non-contact vital signs sensor with automatic beam steering
WO2015084092A1 (ko) 휴대용 초음파 진단장치의 저전력모드를 수행하는 수행방법 및 이를 적용하기 위한 휴대용 초음파 진단장치
WO2022209282A1 (ja) 心拍出量計測センサ、および制御プログラム
US20200029930A1 (en) Electronic system for foetal monitoring
US20240000333A1 (en) Heart and lung monitoring with coherent signal dispersion
TWI577336B (zh) 用於偵測胎動之可穿戴裝置及其方法
CN219594618U (zh) 构成为结合磁共振设备使用的心电图设备和磁共振设备
WO2022209283A1 (ja) 心拍出量計測センサ、および制御プログラム
WO2021066020A1 (ja) 測定装置及び測定方法
JP2022152253A (ja) 心拍出量計測センサーおよび心拍出量計測センサーの制御プログラム
JP2022154291A (ja) 心拍出量計測センサーおよび心拍出量計測センサーの制御プログラム
JP2022152182A (ja) 生体情報計測装置、生体情報計測装置の制御方法、および生体情報計測装置の制御プログラム
WO2024038629A1 (ja) 生体状態測定装置、生体状態測定方法、プログラム及び生体状態測定システム
WO2022209271A1 (ja) 測定装置、測定方法および測定プログラム
Krishnan A SURVEY OF CONTACTLESS
JP2024028147A (ja) 生体状態測定装置、生体状態測定方法、プログラム及び生体状態測定システム
EP2989992B1 (en) Medical imaging apparatus and method of generating medical image

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP