WO2022209163A1 - Liquid crystal device, eyeglasses, method for manufacturing liquid crystal device, and electrode member - Google Patents

Liquid crystal device, eyeglasses, method for manufacturing liquid crystal device, and electrode member Download PDF

Info

Publication number
WO2022209163A1
WO2022209163A1 PCT/JP2022/001577 JP2022001577W WO2022209163A1 WO 2022209163 A1 WO2022209163 A1 WO 2022209163A1 JP 2022001577 W JP2022001577 W JP 2022001577W WO 2022209163 A1 WO2022209163 A1 WO 2022209163A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
electrode member
resistance
distribution
distribution structure
Prior art date
Application number
PCT/JP2022/001577
Other languages
French (fr)
Japanese (ja)
Inventor
義一 澁谷
太郎 前田
蕣里 李
雅則 尾▲崎▼
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to JP2023510506A priority Critical patent/JPWO2022209163A1/ja
Publication of WO2022209163A1 publication Critical patent/WO2022209163A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals

Definitions

  • the present invention relates to a liquid crystal device, spectacles, a method for manufacturing a liquid crystal device, and an electrode member.
  • the liquid crystal lens described in Patent Document 1 includes a liquid crystal layer and a plurality of line electrodes extending in a certain direction.
  • a plurality of line electrodes drive the liquid crystal of the liquid crystal layer.
  • a plurality of switches are provided corresponding to each of the plurality of line electrodes. Each switch switches between a state in which the corresponding line electrode is connected to the first AC power supply and a state in which the corresponding line electrode is connected to the second AC power supply. By controlling each switch, the optical characteristics of the liquid crystal lens are set.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a liquid crystal device, spectacles, a method for manufacturing a liquid crystal device, and an electrode member that can set the optical characteristics of a liquid crystal layer with a simple configuration. .
  • the liquid crystal device includes liquid crystal substrates sandwiching a liquid crystal layer and at least one liquid crystal unit forming a sawtooth refractive index distribution in the liquid crystal layer, wherein the liquid crystal layer overlaps the liquid crystal substrate.
  • a plurality of linear electrodes linearly extending in a straight line, and a conductive portion and a resistance distribution structure arranged at an end portion of the liquid crystal substrate so as to intersect the extending direction of the plurality of linear electrodes. and the resistance distribution structure is interposed between the conductive portion and the plurality of linear electrodes, and has a distribution of resistance values corresponding to the sawtooth-shaped refractive index distribution.
  • the liquid crystal device of the present invention may be characterized in that the outer shape of the liquid crystal unit has a curved portion when viewed two-dimensionally.
  • At least a part of the region where the sawtooth refractive index distribution is formed is provided with one or more walls for restricting movement of the liquid crystal in the in-plane direction. It may be a feature.
  • the liquid crystal device of the present invention further comprises a control section that outputs a first control voltage applied at one end of the conductive section and a second control voltage applied at the other end of the conductive section,
  • the controller may control the sawtooth-shaped refractive index distribution by outputting the second control voltage different from the first control voltage.
  • the liquid crystal device includes two liquid crystal units, and the two liquid crystal units are arranged in an overlapping manner such that the extending directions of the plurality of linear electrodes in each are substantially orthogonal. It may be characterized by
  • the spectacles of the present invention are characterized by comprising a pair of the above-described liquid crystal devices and a holding portion that holds the pair of liquid crystal devices.
  • the method of manufacturing a liquid crystal device comprises the steps of: preparing a mother transparent substrate having a liquid crystal layer disposed between two mother substrates; and electrically connecting the unit liquid crystal element and the electrode member so that the electrode member extends at the end of the unit liquid crystal element, wherein the The unit liquid crystal element includes a plurality of linear electrodes extending linearly to generate a sawtooth refractive index distribution in the liquid crystal layer, and the electrode member includes a conductive portion having electrical conductivity and the sawtooth.
  • a resistance distribution structure having a distribution of resistance values corresponding to the refractive index distribution in the form of a refractive index distribution; It is characterized in that the electrode member is interposed between the plurality of linear electrodes and connected so as to cross the extending direction of the plurality of linear electrodes.
  • the electrode member of the present invention is a rod-shaped electrode member for supplying a potential distribution corresponding to a sawtooth refractive index distribution to a liquid crystal layer, comprising: a conductive portion having electrical conductivity; a resistance distribution structure having a distribution of resistance values, wherein the conductive portion and the resistance distribution structure extend in the longitudinal direction of the electrode member, and the conductive portion is arranged in the thickness direction of the resistance distribution structure.
  • the resistance distribution structure is configured such that the electrical resistivity in the longitudinal direction is higher than the electrical resistivity in the thickness direction, and the resistance value in the thickness direction varies depending on the position in the longitudinal direction. It is characterized in that the potential distribution is caused by the change.
  • the optical properties of the liquid crystal layer can be set with a simple configuration.
  • FIG. 1A is a front view showing a liquid crystal device according to Embodiment 1 of the present invention
  • FIG. 4B is a side view showing the liquid crystal unit according to Embodiment 1
  • FIG. FIG. 2 is a cross-sectional view taken along line II-II of FIG. 1(a);
  • FIG. 2 is a cross-sectional view taken along line III-III of FIG. 1(a);
  • Fig. 1(a) is a sectional view taken along line IV-IV of Fig. 1(a);
  • 3A is a perspective view showing an electrode member of the liquid crystal device according to Embodiment 1;
  • FIG. 4B is a diagram showing a conductive portion of the electrode member according to Embodiment 1;
  • FIG. 4(a) and 4(b) are diagrams conceptually showing a method for manufacturing an electrode member according to Embodiment 1.
  • FIG. 4 is a diagram for explaining a method of manufacturing the liquid crystal unit according to Embodiment 1; 4 is a flow chart showing a method for manufacturing a liquid crystal element according to Embodiment 1.
  • FIG. 4A is a diagram showing wall portions formed in the liquid crystal layer according to Embodiment 1.
  • FIG. 3 is a block diagram showing a controller of the liquid crystal device according to Embodiment 1;
  • FIG. 5 is a diagram showing another example of potential distribution on the connection surface of the electrode member according to Embodiment 1.
  • FIG. 8A and 8B are side views showing the arrangement of electrode members according to Modification 1 and Modification 2 of Embodiment 1.
  • FIG. (a) is a perspective view showing an electrode member according to Modification 4 of Embodiment 1.
  • FIG. (b) is a diagram showing the resistivity distribution in the resistance distribution structure of the electrode member according to Modification 4 of Embodiment 1.
  • FIG. (c) is a diagram showing a resistance distribution in a resistance distribution structure according to Modification 4 of Embodiment 1.
  • FIG. (a) is a perspective view showing spectacles according to Embodiment 2 of the present invention.
  • (b) is a perspective view showing a lens member of spectacles according to Embodiment 2.
  • FIG. 8 is an exploded perspective view of a lens member according to Embodiment 2.
  • FIG. (a) is a perspective view showing an electrode member according to Embodiment 3 of the present invention.
  • (b) is a diagram showing a conductive portion of an electrode member according to Embodiment 3.
  • FIG. (a) is a diagram showing a resistance distribution in a resistance distribution structure of an electrode member according to Embodiment 3.
  • FIG. 11 is a diagram for explaining a method of manufacturing a liquid crystal unit according to Embodiment 4;
  • FIG. 1(a) is a front view showing the liquid crystal device 100.
  • the liquid crystal device 100 includes a liquid crystal unit 10 , a controller 20 and a battery 30 .
  • the liquid crystal device 100 has at least one liquid crystal unit 10 .
  • the liquid crystal unit 10 includes an electrode member 40 and a liquid crystal element 60 .
  • the liquid crystal element 60 has a plurality of linear electrodes 62 .
  • the liquid crystal element 60 functions as a liquid crystal lens (specifically, a Fresnel type cylindrical lens (linear Fresnel lens)).
  • Each of the plurality of linear electrodes 62 of Embodiment 1 extends along the first direction D1 and is arranged at intervals along the second direction D2 orthogonal to the first direction D1.
  • each of the plurality of linear electrodes 62 extends linearly.
  • the interval at which the plurality of linear electrodes 62 are arranged is, for example, 10 ⁇ m or less, preferably 5 ⁇ m or less, and more preferably 1 ⁇ m or less. be. Also, the width of each of the linear electrodes 62 may be 10 ⁇ m or less, 5 ⁇ m or less, or 1 ⁇ m or less according to the interval between the linear electrodes 62 .
  • the electrode member 40 applies a voltage to the liquid crystal element 60 to form a potential gradient in the liquid crystal element 60 . Specifically, the electrode member 40 applies a voltage to the plurality of linear electrodes 62 to apply a sawtooth potential gradient to the liquid crystal layer 65 (see FIG. 2 described later) via the plurality of linear electrodes 62 . Form.
  • the battery 30 supplies the power supply voltage PV to the controller 20 .
  • the controller 20 generates two control voltages based on the power supply voltage PV, and applies the first control voltage V1 to one end of the electrode member 40 and the second control voltage V2 to the other end thereof.
  • each of the first control voltage V1 and the second control voltage V2 is an AC voltage.
  • the electrode member 40 simultaneously applies voltages based on the first control voltage V1 and the second control voltage V2 to the plurality of linear electrodes 62 . Details of this point will be described later.
  • the electrode member 40 extends along the second direction D2 and is arranged at the end of the liquid crystal element 60 .
  • FIG. 1(b) is a side view showing the liquid crystal unit 10.
  • the electrode member 40 has a connection surface 431.
  • the linear electrodes 62 are exposed at one end of the liquid crystal element 60 in the first direction D ⁇ b>1 , and the electrode member 40 and the linear electrodes 62 are in contact with each other at the connection surface 431 .
  • the connection surface 431 electrically connects the electrode member 40 and the plurality of linear electrodes 62 .
  • the third direction D3 is orthogonal to the first direction D1 and the second direction D2.
  • a third direction D3 indicates the thickness direction of the liquid crystal element 60 .
  • FIG. 2 is a cross-sectional view along line II-II in FIG. 1(a).
  • the liquid crystal element 60 includes, in addition to a plurality of linear electrodes 62, a substrate 61, a plurality of electrical insulators 63, an alignment film 64, a liquid crystal layer 65, and an alignment film 66. It includes an electrode 67 , a substrate 68 and a seal portion 69 .
  • the substrate 61, the linear electrode 62, the electrical insulator 63, the alignment film 64, the liquid crystal layer 65, the alignment film 66, the counter electrode 67, the substrate 68, and the seal portion 69 are transparent.
  • transparent includes colored transparent, colorless transparent, and translucent.
  • the substrates 61 and 68 are a pair of substrates (liquid crystal substrates) that sandwich the liquid crystal layer 65, and are made of glass or synthetic resin, for example. Synthetic resins are, for example, polycarbonate or acrylic.
  • the linear electrode 62 and the counter electrode 67 are made of, for example, ITO (Indium Tin Oxide).
  • the electrical insulator 63 insulates adjacent linear electrodes 62 .
  • Electrical insulator 63 is, for example, silicon dioxide (SiO 2 ).
  • an alignment film 64 may also be formed between the adjacent linear electrodes 62 to function as an electrical insulator for insulating the adjacent linear electrodes 62 from each other.
  • the alignment films 64 and 66 are, for example, polyimide films.
  • the liquid crystal layer 65 contains liquid crystal.
  • the liquid crystal is, for example, a nematic liquid crystal, and the orientation of the liquid crystal is homogeneous orientation under the environment of no electric field.
  • the liquid crystal contains a large number of liquid crystal molecules LQ. 2 to 4 show the liquid crystal molecules LQ in an environment without an electric field.
  • the seal portion 69 is made of, for example, a thermosetting epoxy resin or an ultraviolet curable resin.
  • a plurality of linear electrodes 62 , a plurality of electrical insulators 63 , an alignment film 64 , a liquid crystal layer 65 , an alignment film 66 and a counter electrode 67 are arranged between the substrates 61 and 68 .
  • the substrates 61 and 68 are spaced apart in the third direction D3 and have a substantially flat plate shape.
  • the seal portion 69 is formed along the periphery of the liquid crystal layer 65 . In Embodiment 1, the sealing portion 69 closes the periphery of the liquid crystal layer 65 to prevent the liquid crystal of the liquid crystal layer 65 from flowing out to the outside.
  • Each of the plurality of linear electrodes 62 overlaps the liquid crystal layer 65 .
  • the plurality of linear electrodes 62 and the plurality of electrical insulators 63 are arranged on the same layer, and the electrical insulators 63 are arranged between the plurality of linear electrodes 62 .
  • a plurality of linear electrodes 62 and a plurality of electrical insulators 63 are formed on the main surface of the pair of main surfaces of the substrate 61 which is closer to the liquid crystal layer 65, and an alignment film 64 is formed on these surfaces. be done.
  • the counter electrode 67 in Embodiment 1 is formed in a substantially planar shape on the main surface of the pair of main surfaces of the substrate 68 that is closer to the liquid crystal layer 65 .
  • An alignment film 66 is formed on the surface of the counter electrode 67 .
  • the alignment films 64 and 66 define the alignment of the liquid crystal molecules LQ in the liquid crystal layer 65 .
  • the liquid crystal layer 65 is arranged between the plurality of linear electrodes 62 and the counter electrode 67, and causes the liquid crystal device 100 to function as a liquid crystal lens by generating a refractive index distribution by an electric field applied by these electrodes. ing.
  • FIG. 3 and 4 are diagrams for explaining how the electrode member 40 is arranged in the liquid crystal element 60
  • FIGS. 5 and 7 are diagrams for specifically explaining the configuration of the electrode member 40.
  • FIG. It has become. 6 is a diagram for explaining the potential distribution generated by the electrode member 40 of FIG. 5 and the refractive index distribution of the liquid crystal layer 65. As shown in FIG.
  • the electrode member 40 of the first embodiment includes a molded member 41, a conductive portion 42, and a resistance distribution structure 43, and an interface between the molded member 41 and the resistance distribution structure 43. (Arrangement surface 432) is arranged such that the conductive portion 42 is interposed therebetween. In addition, the conductive portion 42 intersects the extending direction (first direction D1) of the plurality of linear electrodes 62 .
  • the resistance distribution structure 43 has a distribution of resistance values corresponding to the Fresnel-type cylindrical lens-like (sawtooth-like) refractive index distribution generated in the liquid crystal layer 65 . A potential gradient corresponding to the refractive index distribution is generated and output to the plurality of linear electrodes 62 .
  • the electrode member 40 will be specifically described below with reference to these figures.
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG. 1(a).
  • FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. 1(a).
  • the electrode member 40 is arranged in a portion of the liquid crystal element 60 where the substrate 68 is cut away to expose the substrate 61 from the substrate 68 .
  • the electrode member 40 is crimped to the liquid crystal element 60 so that the connection surface 431 of the electrode member 40 is electrically connected to the plurality of linear electrodes 62 . Further, the molded member 41, the conductive portion 42, and the resistance distribution structure 43 in the electrode member 40 are stacked in this order along the third direction D3.
  • the resistance distribution structure 43 has a connection surface 431 , and the connection surface 431 is substantially planar and contacts the plurality of linear electrodes 62 .
  • the conductive portion 42 is formed in contact with the resistance distribution structure 43 on the side opposite to the connection surface 431 side. In other words, the resistance distribution structure 43 is interposed between the conductive portion 42 and the plurality of linear electrodes 62 .
  • FIG. 5A is a perspective view schematically showing how the electrode member 40 is connected to the linear electrode 62.
  • FIG. 5(a) the linear electrode 62 is indicated by a chain double-dashed line in order to make the drawing easier to see.
  • FIG. 5B is a diagram showing the conductive portion 42 of the electrode member 40. As shown in FIG. FIG. 5(b) shows the conductive portion 42 viewed from the direction DA in FIG. 5(a).
  • the molding member 41 is made of electrically insulating synthetic resin such as polycarbonate or acrylic.
  • the conductive part 42 is composed of a conductive thin film having electrical conductivity.
  • the electrical resistivity of the conductive portion 42 is substantially the same as the electrical resistivity of the linear electrode 62 or lower than the electrical resistivity of the linear electrode 62 .
  • the electrical resistivity of the conductive portion 42 is smaller than the electrical resistivity of the electrical insulator and the resistance distribution structure 43 .
  • the conductive portion 42 is formed of, for example, a metal thin film such as gold or aluminum.
  • the conductive portion 42 when the conductive portion 42 is viewed from the first direction D1, the conductive portion 42 is substantially symmetrical about the center of the electrode member 40 in the second direction D2. It is formed in a sawtooth shape and has a shape corresponding to the refractive index distribution of a Fresnel cylindrical lens. Specifically, it has a shape similar to the surface of a convex Fresnel cylindrical lens.
  • the resistance distribution structure 43 in Embodiment 1 is configured by plastically deforming the variable shape resistor.
  • the resistance distribution structure 43 has an anisotropic electrical resistance value due to deformation of its shape, and is connected to the plurality of linear electrodes 62 in that state.
  • the resistance distribution structure 43 is formed using, for example, a polymer material such as silicone as a main material, and conductors (for example, metal or carbon) are dispersed therein.
  • the resistance distribution structure 43 has an arrangement surface 432 on which the conductive portion 42 is arranged. placed in When the resistance distribution structure 43 is viewed from the first direction D1, it has a substantially sawtooth shape like the conductive portion 42 .
  • the conductive portion 42 and the resistance distribution structure 43 both extend in the second direction D2, which is the longitudinal direction of the electrode member 40, from one end P1 to the other end P2.
  • FIG. 6(a) is a diagram showing the resistance distribution RD1 in the resistance distribution structure 43 of the electrode member 40.
  • FIG. 6A the horizontal axis indicates the position along the second direction D2 in the resistance distribution structure 43, and the vertical axis indicates the electric current in the third direction D3 of the resistance distribution structure 43 at each position corresponding to the horizontal axis. Indicates the resistance value.
  • the resistance distribution structure 43 of Embodiment 1 has anisotropic electrical resistivity at least in the third direction D3 and the second direction D2, has electrical conductivity in the third direction D3, It has a relatively high electrical resistivity in the second direction D2 (electrical conductivity lower than the electrical conductivity in the third direction D3, or insulation).
  • the thickness of the resistance distribution structure 43 changes in the second direction D2 like a Fresnel lens, at each position corresponding to the horizontal axis in FIG. It is designed to take the electrical resistance value shown on the axis.
  • the electrical resistance value in the third direction D3 at each position in the second direction D2 of the resistance distribution structure 43 takes an electrical resistance value corresponding to its thickness (width in the third direction D3).
  • the electrical resistance value in the third direction D3 at each position increases as the thickness increases.
  • the resistance distribution structure 43 may have electric conductivity, or may have the same electric resistivity as that in the third direction D3.
  • the resistance distribution structure 43 has a sawtooth resistance distribution RD1 consisting of a plurality of undulations corresponding to its shape.
  • the resistance distribution RD1 indicates the distribution of electrical resistance values in the third direction D3 corresponding to each position in the second direction D2, and has a plurality of resistance gradients RG1.
  • the distribution of the electrical resistance values in the third direction D3 at each position in the second direction D2 of the resistance distribution structure 43 is substantially symmetrical (line symmetrical) with respect to the center, and has a substantially sawtooth distribution.
  • FIG. 6(b) is a diagram showing the potential distribution PD11 on the connection surface 431 of the resistance distribution structure 43.
  • FIG. 6B the vertical axis indicates the potential of the connecting surface 431 of the resistance distribution structure 43, and the horizontal axis indicates the position in the resistance distribution structure 43 along the second direction D2.
  • the first control voltage V1 applied to one end 421 of the conductive portion 42 shown in FIG. 5B is applied to the second control voltage V2 applied to the other end 422 of the conductive portion 42 is equal to
  • the shape of the potential distribution PD11 on the connection surface 431 of the resistance distribution structure 43 corresponds to the shape of the resistance distribution RD1 inverted.
  • a potential gradient PG11 indicates a potential gradient in the second direction D2.
  • the connection surface 431 has multiple potential gradients PG11 in the second direction D2.
  • the potential of the connection surface 431 is substantially constant in the first direction D1.
  • the potential distribution PD11 has a substantially sawtooth shape substantially symmetrical with respect to the axis of symmetry AX1, and the first control voltage V1 and the second control voltage V2 are the same control voltage. Therefore, the potential V10 of the connection surface 431 at the position P1 is substantially equal to the potential V20 of the connection surface 431 at the position P2.
  • FIG. 6(c) is a diagram showing the potential distribution PD12 in the liquid crystal layer 65 of the liquid crystal device 100.
  • the liquid crystal layer 65 has a potential distribution PD12 corresponding to the potential distribution PD11 of the connection surface 431.
  • a voltage having a potential distribution PD11 is applied to the plurality of linear electrodes 62 from the connection surface 431 of the resistance distribution structure 43 .
  • a potential distribution PD12 corresponding to the potential distribution PD11 of the connection surface 431 is formed in the liquid crystal layer 65 .
  • the counter electrode 67 is grounded and has a ground potential (0 V).
  • a potential gradient PG12 indicates a potential gradient in the second direction D2 in the liquid crystal layer 65 .
  • the liquid crystal layer 65 has multiple potential gradients PG12 in the second direction D2.
  • the multiple potential gradients PG12 correspond to the multiple potential gradients PG11 on the connection surface 431, respectively.
  • the liquid crystal element 60 produces a refractive index distribution PD13 according to the potential distribution PD12 (specifically, a plurality of potential gradients PG12) of the liquid crystal layer 65 to converge or diverge light.
  • the potential distribution PD12 of the liquid crystal layer 65 has a substantially sawtooth shape in the second direction D2, and the potential of the liquid crystal layer 65 is substantially constant in the first direction D1.
  • the potential distribution PD12 generated in the liquid crystal layer 65 is substantially symmetrical with respect to the optical axis AX2, and the liquid crystal element 60 functions as a Fresnel convex cylindrical lens.
  • the resistance distribution structure 43 of the electrode member 40 has a distribution of electrical resistance values in the second direction D2. Therefore, as shown in FIG. 6B, a potential distribution PD11 is formed on the connection surface 431 of the resistance distribution structure 43 according to the resistance distribution RD1. As a result, a potential distribution PD12 is formed in the liquid crystal layer 65, as shown in FIG. 6(c). Therefore, the orientation of the liquid crystal molecules LC of the liquid crystal layer 65 changes according to the potential distribution PD12.
  • the optical characteristics (refractive index distribution) of the liquid crystal layer 65 are set by the orientation of the liquid crystal molecules LC according to the potential distribution PD12, and the liquid crystal layer 65 functions as a lens.
  • FIGS. 7(a) and 7(b) are diagrams showing a method of manufacturing the electrode member 40.
  • FIG. As shown in FIGS. 7( a ) and 7 ( b ), the forming member 41 is pressed against the variable shape resistor and deformed into a resistance distribution structure 43 .
  • an arrangement surface 411 is formed on the molding member 41 .
  • the arrangement surface 411 has a substantially sawtooth shape that is substantially symmetrical in the second direction D2. has a shape approximating the surface of
  • the conductive portion 42 is formed on the surface of the placement surface 411 .
  • the conductive portion 42 is formed on the placement surface 411 by vapor-depositing a metal thin film on the molding member 41 .
  • the molded member 41 is pressed against the resistance distribution structure 43 while receiving pressure from the surroundings on the side and bottom surfaces so that the conductive portions 42 formed on the molded member 41 come into contact with the surface 433 of the resistance distribution structure 43 . be done.
  • the resistance distribution structure 43 is plastically deformed on the surface 433 corresponding to the arrangement surface 411 of the molded member 41 and the conductive portion 42 while maintaining the shape of the side surface and the bottom surface.
  • a surface 433 of the resistance distribution structure 43 before deformation is an arrangement surface 432 of the resistance distribution structure 43 after deformation. Therefore, the conductive portion 42 is arranged between the placement surface 411 of the molded member 41 and the placement surface 432 of the resistance distribution structure 43 .
  • the resistance distribution structure 43 having the resistance distribution RD1 is formed by deforming the resistance distribution structure 43. can.
  • the density of the conductors dispersed in the variable shape resistor in the crimping direction is improved.
  • anisotropy of the electrical resistivity is imparted to the variable shape resistor, and the electrical resistivity in the compression bonding direction (the third direction D3) becomes lower than that in the other directions.
  • the liquid crystal device 100 of Embodiment 1 includes the electrode member 40 as described above, and by applying a voltage to the plurality of linear electrodes 62 via the electrode member 40, the output from the controller 20 has a sawtooth shape.
  • the potential is converted into a potential corresponding to the refractive index distribution and input to each linear electrode 62, so that the optical characteristics of the liquid crystal layer 65 can be set. Therefore, the optical characteristics of the liquid crystal layer 65 can be set with a simple configuration. In other words, since the circuit configuration of the controller 20 and the design of the wiring from the controller 20 to the linear electrodes 62 can be simplified, the degree of freedom in the shape and arrangement of the liquid crystal element 60 can be improved.
  • FIG. 8 is a diagram for conceptually explaining how the unit liquid crystal elements are cut and processed from the mother transparent substrate 200 according to Embodiment 1.
  • the mother transparent substrate 200 has a substantially rectangular shape.
  • a plurality of linear electrodes 62 extending along the first direction D1 are formed in advance on the mother transparent substrate 200, and some of the plurality of linear electrodes 62 are shown in FIG.
  • the configuration of the mother transparent substrate 200 is substantially the same as the configuration of the liquid crystal element 60 described with reference to FIG.
  • a liquid crystal layer 65 is sandwiched between a substrate 61 on which an electrode 62 and an electric insulator 63 are formed.
  • FIG. 8 shows how a liquid crystal element 60 (unit liquid crystal element) constituting one unit of the final product is cut out and processed. As shown in the figure, a plurality of unit liquid crystal elements having the same shape may be cut out from one mother transparent substrate 200, or a plurality of unit liquid crystal elements 60 having different shapes may be cut out.
  • FIG. 9 is a flow chart showing the manufacturing method of the liquid crystal unit 10.
  • the manufacturing method includes steps S1 to S4.
  • step S1 an operator prepares a mother transparent substrate 200.
  • the mother transparent substrate 200 has a liquid crystal layer 65 sandwiched between two mother substrates of a size that allows a plurality of unit liquid crystal elements 60 to be allocated.
  • the mother transparent substrate 200 in the step S1 is processed collectively for each of the plurality of unit liquid crystal elements 60, such as the process of forming the linear electrodes 62, the counter electrodes 67, and the like.
  • step S1 is a step of preparing such a mother transparent substrate 200. As shown in FIG.
  • step S2 the worker cuts out the unit liquid crystal elements 60 from the mother transparent substrate 200 using a cutting tool.
  • the shape of the unit liquid crystal element 60 may be further processed after the rectangular shape is cut out, or the unit liquid crystal element 60 may be cut out directly from the mother transparent substrate 200 in an arbitrary shape. good too.
  • step S3 is performed after step S2.
  • step S3 for example, after cutting out the substrate 68 and the like at the end of the unit liquid crystal element 60 using a cutting tool in the same manner as in step S2, the liquid crystal layer 65 intervening between the substrates 68 and 61 is removed.
  • a sealing portion 69 is formed by supplying a sealing material from the outside.
  • the alignment film 64 is removed by etching or the like at the end of the unit liquid crystal element 60 from which the substrate 68 is cut out, exposing the plurality of linear electrodes 62 at the end, and forming an electrode member. 40 is secured.
  • step S4 the operator electrically connects the electrode member 40 to the unit liquid crystal element 60. Specifically, the operator crimps the electrode member 40 to the unit liquid crystal element 60 so that the connection surface 431 of the electrode member 40 contacts the plurality of linear electrodes 62, as shown in FIG.
  • the outer shape of the unit liquid crystal element 60 when viewed in plan, a shape corresponding to the curved portion is provided. Attach the electrode member 40 .
  • the electrode member 40 which is formed in a straight line or square pole shape may be bent and attached, or the electrode member 40 which is prepared by bending at least a part in advance may be attached. good too.
  • the conductive portion 42 and the resistance distribution structure 43 of the attached electrode member 40 extend along the curved portion, and the connection surface 431 of the resistance distribution structure 43 in the curved portion is a plurality of lines. contacting the electrode 62 .
  • FIG. 10(a) is a diagram showing the wall portion 201 formed in the liquid crystal layer 65 of the mother transparent substrate 200.
  • FIG. 10B is a perspective view showing the wall portion 201.
  • FIG. 10(b) is a perspective view showing an enlarged wall portion 201 included in the area AR of FIG. 10(a).
  • the liquid crystal layer 65 of the mother transparent substrate 200 has wall portions 201, which are formed to have a mesh structure in the liquid crystal layer 65.
  • the wall portion 201 is erected along the third direction D3 and formed to extend from the alignment film 64 to the alignment film 66 shown in FIG.
  • the wall portion 201 regulates the movement of the liquid crystal in the in-plane direction of the liquid crystal layer 65 (the direction substantially parallel to the substrate 61 or the substrate 68).
  • the wall portion 201 is transparent, for example, and is formed of thermosetting epoxy resin or ultraviolet curable resin. It is desirable that the wall portion 201 has a thickness and a size that do not significantly affect the driving of most of the liquid crystal molecules LQ. It is desirable to have a mesh size that does not affect the effect.
  • the size of the mesh may be, for example, 1 mm 2 or more, 4 mm 2 or more, or 10 mm 2 or more.
  • the wall portion 201 on the liquid crystal layer 65 of the mother transparent substrate 200, it is possible to cut out the unit liquid crystal element from the mother transparent substrate 200, connect the electrode member 40 to the unit liquid crystal element, or use other unit liquid crystal. It is possible to prevent the liquid crystal from flowing out of the unit liquid crystal element when working on the element.
  • the wall portion 201 is not particularly limited as long as it can regulate the movement of the liquid crystal, and may not have a mesh structure. It may also be a structure formed in the direction that restricts the movement in one direction.
  • a single wall portion 201 may be formed to restrict the movement of liquid crystal molecules, or a plurality of wall portions 201 may be formed to prevent the movement of liquid crystal molecules. may be regulated.
  • a plurality of wall portions 201 may be arranged in the liquid crystal layer 65 at a uniform density, or the wall portions 201 may be formed in various structures such as a T shape and a U shape.
  • the wall portion 201 may have a size that does not fall within 1 mm 2 or 4 mm 2 in a plan view, or may be arranged with sparseness and density.
  • the wall portion 201 may also serve as the seal portion 69, or the wall portion 201 and the seal portion 69 may be formed separately.
  • the configuration of the liquid crystal unit 10 can be simplified by having the conductive portion 42 and the resistance distribution structure 43, and various shapes can be used. , the liquid crystal unit 10 can be easily provided. Note that the mother transparent substrate 200 and the electrode member 40 can be prepared in advance, so that it becomes possible to flexibly respond to the order situation.
  • FIG. 11 is a block diagram showing the controller 20.
  • the controller 20 is driven by the power supply voltage PV supplied from the battery 30 .
  • the power supply voltage PV is a DC power supply voltage.
  • the controller 20 then generates the first control voltage V1 and the second control voltage V2 based on the power supply voltage PV.
  • each of the first control voltage V1 and the second control voltage V2 is an AC voltage.
  • the controller 20 applies the first control voltage V1 to one end 421 (FIG. 5A) of the conductive portion 42, and applies the second control voltage V2 to the other end 422 of the conductive portion 42 (FIG. 5A). applied to
  • the controller 20 includes a processor 21, a memory 22, and a power supply circuit 23.
  • the processor 21 is, for example, a CPU (Central Processing Unit).
  • the memory 22 is, for example, a semiconductor memory.
  • the processor 21 and memory 22 constitute, for example, a microcomputer.
  • Processor 21 executes a computer program stored in memory 22 to control power supply circuit 23 to generate first control voltage V1 and second control voltage V2.
  • the power supply circuit 23 generates the first control voltage V1 and the second control voltage V2.
  • the power supply circuit 23 has, for example, an inverter, and further has a first power supply circuit that generates the first control voltage V1 and a second power supply circuit that generates the second control voltage V2.
  • the controller 20 controls the power supply circuit 23 so that the first control voltage V1 and the second control voltage V2 are the same. As a result, the first control voltage V1 and the second control voltage V2 having the same effective value are generated, and the potential distribution PD11 is formed on the connection surface 431 of the electrode member 40 as shown in FIG.
  • the controller 20 in Embodiment 1 may control the refractive index distribution of the liquid crystal layer 65 by varying the effective values of the first control voltage V1 and the second control voltage V2.
  • FIG. 12 is a diagram showing the potential distribution on the connection surface 431 of the electrode member 40 when the effective values of the first control voltage V1 and the second control voltage V2 are different.
  • the potential distribution PD11a on the connection surface 431 of the electrode member 40 changes from the potential distribution PD11 shown in FIG.
  • the potential distribution is almost inclined with respect to .
  • the axis of symmetry AX1 is inclined with respect to the direction of the perpendicular, and the potential V10 of the connection surface 431 at the position P1 is different from the potential V20 of the connection surface 431 at the position P2.
  • a potential distribution corresponding to the potential distribution PD11a is formed in the liquid crystal layer 65 (a plurality of potential gradients corresponding to the plurality of potential gradients PG11a are formed), and the optical axis AX2 of the liquid crystal element 60 is also inclined.
  • the effective value of the first control voltage V1 is greater than the effective value of the second control voltage V2. It can be small.
  • the controller 20 of the first embodiment individually controls the voltages (the first control voltage V1 and the second control voltage V2) applied to both ends of the electrode member 40, thereby controlling the potential distribution formed in the liquid crystal layer 65.
  • the overall tilt of the PD 12 (FIG. 6C) and the tilt direction of the optical axis AX2 of the liquid crystal element 60 can be controlled.
  • the focal length of the liquid crystal element 60 functioning as a lens is changed by controlling the effective values of the first control voltage V1 and the second control voltage V2 while making them the same. You can control it. In this case, the greater the effective values of the first control voltage V1 and the second control voltage V2, the shorter the focal length. Even when the effective values of the first control voltage V1 and the second control voltage V2 are different and the optical axis of the liquid crystal element 60 is tilted, the effective value of the first control voltage V1 and the effective value of the second control voltage V2 are different. By controlling the average magnitude of the values, the focal length can be controlled.
  • the controller 20 of the first embodiment when the power supply voltage PV is input from the battery 30 and the output of the control voltage to the electrode member 40 is started, or when the control of the focal length and the optical axis of the liquid crystal element 60 is started.
  • initialization may be performed to remove the distortion of the liquid crystal molecules LQ (FIG. 2).
  • the effective value of the voltage applied to the electrode member 40 during this initialization (hereinafter referred to as the initialization voltage) is the value for forming a sawtooth refractive index distribution in the liquid crystal layer 65 and causing the liquid crystal element 60 to function as a lens. It may be twice or more the effective value of a typical control voltage (for example, the effective value of the maximum control voltage that can be input when functioning as a lens).
  • the controller 20 preferably makes the waveform of the initialization voltage match the time constant of the resistance distribution structure 43 .
  • the waveform of the initialization voltage may be a rectangular wave, a triangular wave, or a sine wave.
  • FIG. 13(a) is a diagram showing the appearance of the electrode member 40 and the liquid crystal element 60 according to Modification 1
  • FIG. 13(b) shows the appearance of the electrode member 40 and the liquid crystal element 60 according to Modification 2. It is a diagram. In FIG. 13(b), the connection surface 431 and the linear electrode 62 are shown with a gap therebetween for easy viewing of the drawing.
  • the connection surface 431 of the electrode member 40 is substantially planar, and is connected to the plurality of linear electrodes 62 from the end of the liquid crystal element 60 .
  • each linear electrode 62 is exposed at the end surface perpendicular to the liquid crystal layer 65 .
  • the resistance distribution structure 43 of the electrode member 40 and the linear electrode 62 are connected by bringing the connection surface 431 of the electrode member 40 into contact with the end surface.
  • the film thickness of the plurality of linear electrodes 62 is relatively thick, thereby making it easier to connect with the electrode member 40 .
  • Modification 1 is different from Embodiment 1 in the points described above, but is substantially the same as Embodiment 1 except for this point, and description of substantially the same construction will be omitted.
  • the electrode member 40 is configured to have a step.
  • the electrode member 40 engages with the edge portion of the liquid crystal element 60 due to this step, so that the structure is such that the liquid crystal element 60 is easily fixed during crimping.
  • the variable shape resistor may be plastically deformed so as to generate a step in the resistance distribution structure 43 (see FIG. 7).
  • Modification 2 is different from Embodiment 1 in the points described above, but is substantially the same as Embodiment 1 except for this point, and description of substantially the same construction will be omitted.
  • Modification 3 Next, Modification 3 of Embodiment 1 will be described.
  • the resistance distribution structure 43 of the electrode member 40 in Modification 3 is different from the resistance distribution structure 43 of Embodiment 1 in that it is manufactured by a three-dimensional modeling apparatus (three-dimensional printer). Modification 3 will be described below.
  • the electrode member 40 in Modification 3 includes a conductive portion 42 and a resistance distribution structure 43 as in Embodiment 1.
  • the conductive portion 42 and the resistance distribution structure 43 are aligned in the longitudinal direction of the electrode member 40 (
  • the conductive portions 42 extend in the second direction D2) and are arranged so as to be stacked in the thickness direction (third direction D3) of the resistance distribution structure 43 .
  • the resistance distribution structure 43 has the same external shape as the resistance distribution structure 43 shown in FIG. 7(c), and has an undulating surface in the shape of a Fresnel cylindrical lens.
  • the conductive portion 42 vapor-deposited on the surface of the molding member 41 is arranged on this Fresnel-type cylindrical lens-like surface.
  • the resistance distribution structure 43 in Modification 3 is manufactured by three-dimensional modeling in which materials are successively laminated in the longitudinal direction of the electrode member 40 . Specifically, layers are formed by combining materials along a two-dimensional slice shape in a direction perpendicular to the second direction D2, and sequentially stacked (combined) in the second direction D2, Anisotropy is generated.
  • the resistance distribution structure 43 of Modification 3 includes a first layer with high electrical conductivity and a second layer with lower electrical conductivity than the first layer. By periodically arranging the two types of layers, the electrical resistivity in the lamination direction is configured to be higher than the electrical resistivity in the other direction (two-dimensional slice direction).
  • the first and second layers of the resistance distribution structure 43 are formed, for example, by alternately laminating metal layers with high electrical conductivity and ceramic layers with low electrical conductivity (or with insulating properties). good too.
  • a material with high electrical conductivity as the main material and a material with lower electrical conductivity than the main material as a secondary material, by periodically increasing or decreasing the amount of the secondary material added during lamination, the content of the primary material
  • a first layer having a high ⁇ and a low content of the secondary material and a second layer having a low content of the primary material and a high content of the secondary material may be formed.
  • a predetermined material with high electrical conductivity and periodically modifying the predetermined material two types of layers are formed. Anisotropy may occur.
  • three-dimensional modeling is performed so that a metal layer composed of aluminum and a modified layer formed by oxidizing aluminum are periodically arranged.
  • the lamination pitch of the layers with high electrical conductivity and the layers with low electrical conductivity in the resistance distribution structure 43 is not particularly limited. length.
  • the resistance distribution structure 43 of Modification 3 has the configuration as described above, and generates the potential distribution PD11 as shown in FIG.
  • the resistance distribution structure 43 of Modification 3 differs from Embodiment 1 in that it has the above-described configuration. The remaining description of the resulting configuration is omitted.
  • Modification 4 an electrode member 40 according to Modification 4 of Embodiment 1 of the present invention will be described with reference to FIG. Modification 4 is different from Embodiment 1 mainly in that the electrode member 40 does not include the molding member 41 shown in FIG. Differences of the fourth modification from the first embodiment will be mainly described below.
  • FIG. 14(a) is a perspective view showing an electrode member 40 according to Modification 4.
  • the linear electrode 62 is indicated by a chain double-dashed line in order to make the drawing easier to see.
  • the electrode member 40 includes a conductive portion 42A and a resistance distribution structure 43A, which extend along the longitudinal direction of the electrode member 40. As shown in FIG. 14(a),
  • the conductive part 42A is a conductive thin film similar to the conductive part 42 shown in FIG. Moreover, the resistance distribution structure 43A is substantially rectangular parallelepiped, and the thickness at each position in the second direction D2 is substantially constant.
  • the resistance distribution structure 43A has a connection surface 431 and an arrangement surface 432A, and the connection surface 431 and the arrangement surface 432A in Modification 4 are formed in a substantially planar shape so as to face each other. Also, the conductive portion 42A is arranged on the arrangement surface 432A.
  • the resistance distribution structure 43A of Modification 4 has anisotropic electrical resistivity in the third direction D3 and the second direction D2, electrical conductivity in the third direction D3, and electrical conductivity in the second direction D2. is shaped to have a relatively high electrical resistivity at. Furthermore, the resistance distribution structure 43A of Modification 4 is shaped such that the resistivity in the thickness direction (third direction D3) varies depending on the position in the longitudinal direction (second direction D2). there is
  • the layer with high electrical conductivity is shaped so that the electrical resistivity changes according to the position in the second direction D2.
  • the electrical conductivity may be changed according to the position in the second direction D2 by controlling parameters such as pressure and the degree of polymerization at the time of molding.
  • the electrical conductivity may be changed according to the position in the second direction D2 by controlling the amount of material added, the degree of modification, and the like.
  • FIG. 14B is a diagram showing the resistivity distribution RVD in the thickness direction of the resistance distribution structure 43A of the electrode member 40 according to Modification 4. As shown in FIG. 14B, the vertical axis indicates the electrical resistivity in the thickness direction, and the horizontal axis indicates the position in the second direction D2 in the resistance distribution structure 43A.
  • FIG. 14C is a diagram showing the resistance distribution RD1 in the resistance distribution structure 43A according to Modification 4. As shown in FIG.
  • the electrical resistivity in the thickness direction of the resistance distribution structure 43A varies substantially in a sawtooth shape according to the position in the second direction D2.
  • the resistance distribution structure 43A has a resistivity distribution RVD in the thickness direction, and the resistivity distribution RVD includes a plurality of resistivity gradients RVG and has a substantially line-symmetrical distribution.
  • the shape of the resistance distribution RD1 of the resistance distribution structure 43A corresponds to the shape of the resistivity distribution RVD since its thickness is constant.
  • the resistance distribution RD1 of the resistance distribution structure 43A is similar to the resistance distribution RD1 of the resistance distribution structure 43 shown in FIG. A potential gradient PG12) is formed.
  • Modification 4 differs from Embodiment 1 in the configuration of the resistance distribution structure 43A as described above, but is substantially the same as the configuration of Embodiment 1 except for this point. are omitted.
  • Embodiment 2 A pair of spectacles 300 according to Embodiment 2 of the present invention will be described with reference to FIGS. 15 and 16.
  • differences of the second embodiment from the first embodiment will be mainly described.
  • FIG. 15(a) is a perspective view showing spectacles 300 according to Embodiment 2.
  • spectacles 300 include a frame FL, a pair of lens members LN, a controller 20 and a battery 30 .
  • a pair of lens members LN, the controller 20, and the battery 30 constitute a liquid crystal device.
  • the glasses 300 also include one or both of the pair of non-contact detection units 25 and the electrooculography sensor 11 as an eye detection unit.
  • a frame FL holds a pair of lens members LN.
  • the controller 20, the pair of non-contact detection units 25, and the battery 30 are mounted on the frame FL.
  • the frame FL includes a pair of rims 1, a bridge 2, a pair of end pieces 3, a pair of hinges 4, a pair of temples 5, a pair of temple tips 6, and a nose pad 7. It's okay.
  • a rim 1 holds a lens member LN.
  • the rim 1 corresponds to an example of a "holding part”.
  • the bridge 2 connects one rim 1 and the other rim 1 of the pair of rims 1 .
  • the end piece 3 is located at the outer edge of the rim 1 with respect to the bridge 2.
  • the end piece 3 connects the rim 1 and the temple 5 via the hinge 4 .
  • the hinge 4 rotatably supports the temple 5 with respect to the endpiece 3 .
  • a pair of temples 5 sandwich the head of the wearer of the spectacles 300 .
  • a modern 6 covers the tip region of the temple 5 and contacts the top of the wearer's ear.
  • the non-contact detection unit 25 detects eye movements of the wearer of the spectacles 300 .
  • the pair of non-contact detection units 25 are installed on the top of one rim 1 and the top of the other rim 1 so as to detect the movement of the wearer's left eye and the movement of the right eye, respectively. be done.
  • the electro-oculogram sensor 11 measures the electro-oculography of both eyes to detect the movement of the wearer's eyes.
  • the electro-oculogram sensor 11 includes an electrode 8 and a pair of electrodes 9 .
  • An electrode 8 is arranged on the nose pad 7 .
  • Electrode 8 contacts the nose of the wearer of spectacles 300 .
  • a pair of electrodes 9 are arranged on a pair of temples 5, respectively.
  • the pair of electrodes 9 are in contact with the temples (skin) of the wearer of the spectacles 300, respectively.
  • Electrode 8 detects the voltage at the nose, that is, the voltage at approximately the center of the left and right eyes.
  • a pair of electrodes 9 also detect the voltage of the left and right temples, that is, the voltage of the outer portions of the left and right eyes. Specifically, the electrode 8 and one electrode 9 measure the ocular potential of the left eye, and the electrode 8 and the other electrode 9 measure the ocular potential of the right eye.
  • FIG. 15(b) is a perspective view schematically showing the lens member LN of the spectacles 300.
  • the lens member LN includes a first liquid crystal unit 10A and a second liquid crystal unit 10B.
  • the first liquid crystal unit 10A and the second liquid crystal unit 10B each have the same configuration as that of the first embodiment, are superimposed and adhered, and held by the rim 1 in FIG. 15(a).
  • FIG. 16 is an exploded perspective view of the lens member LN.
  • the first liquid crystal unit 10A and the second liquid crystal unit 10B each include an electrode member 40 and a liquid crystal element 60, and the plurality of linear electrodes 62 in the first liquid crystal unit 10A It overlaps with the plurality of linear electrodes 62 in the second liquid crystal unit 10B so as to be substantially perpendicular to each other.
  • 16 conceptually shows the resistance distribution of the electrode member 40 in the first liquid crystal unit 10A and the second liquid crystal unit 10B, and the potential distribution output by the electrode member 40.
  • part of the substrate is removed so that the linear electrode 62 is exposed, and the electrode member 40 is arranged. It extends along the second direction D2.
  • part of the substrate is removed so as to expose the linear electrode 62, and the electrode member 40 is arranged along the first direction D1. extend.
  • the electrode member 40 (resistance distribution structure 43 not shown in FIG. 16) of the first liquid crystal unit 10A has a resistance distribution RD1 undulating in a sawtooth shape in the horizontal direction for the wearer.
  • a control voltage applied across the member 40 generates a potential distribution PD11.
  • a potential distribution corresponding to the potential distribution PD11 is generated in the liquid crystal layer 65 of the first liquid crystal unit 10A, and the light is generally focused and condensed in a straight line perpendicular to the wearer.
  • the electrode member 40 (resistance distribution structure 43 not shown in FIG. 16) of the second liquid crystal unit 10B has a resistance distribution RD2 undulating in a sawtooth shape in the vertical direction for the wearer. Then, a control voltage applied across the electrode member 40 generates a potential distribution PD21. As a result, a potential distribution corresponding to the potential distribution PD21 is generated in the liquid crystal layer 65 of the second liquid crystal unit 10B, and the light is generally focused and condensed in a straight line that is horizontal to the wearer.
  • the lens power in the horizontal direction and the vertical direction can be individually controlled, and the focus of each of the first liquid crystal unit 10A and the second liquid crystal unit 10B can be controlled.
  • aligning the distance it is possible to provide the lens member LN that can focus on one point.
  • at least part of the electrode members 40 of the first liquid crystal unit 10A and the second liquid crystal unit 10B may be held so as to be hidden by the rim 1, or the electrode members 40 may be held by the rim 1 so as to cover the liquid crystal elements. It may be fixed (or crimped) to the end of 60 .
  • the controller 20 controls not only the first control voltage V1 and the second control voltage V2 that are input to both ends of the electrode member 40 of the first liquid crystal unit 10A, but also the second control voltage that is input to both ends of the electrode member 40 of the second liquid crystal unit 10B. 3 to output a control voltage V3 and a fourth control voltage V4.
  • the power supply circuit 23 of the controller 20 generates the first control voltage V1 to the fourth control voltage V4, and controls both ends of the electrode member 40 of the first liquid crystal unit 10A and the electrodes of the second liquid crystal unit 10B. Output to both ends of the member 40 .
  • controller 20 of the second embodiment outputs control voltages for the left and right lens members LN of the spectacles 300, the first control voltage V1 to the fourth control voltage V4 for the left eye lens member LN and the right eye output the first control voltage V1 to the fourth control voltage V4 to the lens member LN.
  • the controller 20 of the second embodiment detects the direction of the line of sight of the left eye of the wearer of the spectacles 300 and The gaze direction of the eye is calculated.
  • the line-of-sight direction of the wearer's left eye is also referred to as “line-of-sight direction SLL”
  • the line-of-sight direction of the wearer's right eye is also referred to as "line-of-sight direction SLR”.
  • the controller 20 controls the first to fourth control voltages V1 to V4 to be output to the left and right lens members LN of the spectacles 300 based on the line-of-sight direction SLL and the line-of-sight direction SLR. Therefore, the optical axis and/or the focal length of the left and right lens members LN are controlled according to the line-of-sight direction SLL and the line-of-sight direction SLR.
  • the pair of non-contact detection units 25 or the electro-oculography sensor 11 detects the convergence of both eyes of the wearer of the spectacles 300
  • the left and right lens members LN that focus and converge in the vertical direction for the wearer
  • the control voltage of one liquid crystal unit 10A is controlled respectively.
  • the first liquid crystal unit 10A of the lens member LN for the left eye and the first liquid crystal unit 10A of the lens member LN for the right eye have a sawtooth refractive index distribution directed toward the nose of the wearer.
  • two control voltages with different effective values are applied to both ends of the electrode member 40, respectively.
  • convergence is a movement in which the eyeballs of both eyes move inward or widen outward when the wearer of the spectacles 300 tries to gaze at an object.
  • the control voltage of the two lens members LN is controlled as described above to obtain a sawtooth refractive index
  • each of the non-contact detection units 25 may include, for example, a light source such as an LED (Light Emitting Diode) and an imaging unit such as a camera (for example, a video camera).
  • a light source such as an LED (Light Emitting Diode)
  • an imaging unit such as a camera (for example, a video camera).
  • Embodiment 3 An electrode member 40 according to Embodiment 3 of the present invention will be described with reference to FIGS. 17 and 18.
  • FIG. The main difference from Embodiment 1 with the electrode member 40 of FIG. 7 is that the electrode member 40 according to Embodiment 3 includes at least one auxiliary electrode 45 .
  • differences of the third embodiment from the first embodiment will be mainly described.
  • FIG. 17(a) is a perspective view showing an electrode member 40 according to Embodiment 3.
  • FIG. 17(b) is a diagram showing the conductive portion 42 and the auxiliary electrode 45 of the electrode member 40 according to the third embodiment.
  • FIG. 17(b) shows the conductive portion 42 and the auxiliary electrode 45 viewed from the direction DA in FIG. 17(a).
  • the electrode member 40 has at least one auxiliary electrode 45 .
  • the electrode member 40 includes a plurality of auxiliary electrodes 45 in the conductive portion 42 , and the auxiliary electrodes 45 apply a control voltage from a location other than both ends of the conductive portion 42 to connect the connection surface 431 . It is possible to control the potential distribution PD31 that occurs at .
  • the plurality of auxiliary electrodes 45 are spaced apart in the second direction D2 and extend along the first direction D1. Specifically, the auxiliary electrode 45 is electrically connected to the conductive portion 42 by contacting the central region CA of the conductive portion 42 in the second direction D2. Also, although the auxiliary electrode 45 is in contact with the placement surface 432 of the resistance distribution structure 43 , it may be placed between the molding member 41 and the conductive portion 42 .
  • the controller 20 shown in FIG. 11 applies the auxiliary control voltage CV to the plurality of auxiliary electrodes 45.
  • the power supply circuit 23 applies the auxiliary control voltage CV to the auxiliary electrode 45 under the control of the processor 21 .
  • the controller 20 applies 0 V as the auxiliary control voltage CV to the plurality of auxiliary electrodes 45 to set the potential of each auxiliary electrode 45 to the ground potential.
  • FIG. 18(a) is a diagram showing the resistance distribution RD1 in the third direction D3 at each position in the second direction D2 in the resistance distribution structure 43 of the electrode member 40 according to the third embodiment.
  • the resistance distribution RD1 is similar to the resistance distribution RD1 shown in FIG. 6(a).
  • FIG. 18(b) is a diagram showing the potential distribution PD31 on the connection surface 431 of the resistance distribution structure 43 according to the third embodiment.
  • the control voltages applied across the conductive portion 42 shown in FIG. 17(b) are equal.
  • the connection surface 431 of the resistance distribution structure 43 has a potential distribution PD31 in the second direction D2, and the potential distribution PD31 has a plurality of potential gradients PG31.
  • each gradient of the potential gradient PG31 is larger than in the case of FIG. 6(b).
  • the potential distribution PD31 of the connection surface 431 of the resistance distribution structure 43 is substantially symmetrical with respect to the axis of symmetry AX1 and has a substantially sawtooth shape in the second direction D2.
  • FIG. 18(c) is a diagram showing the potential distribution PD32 in the liquid crystal layer 65 of the liquid crystal device 100 according to the third embodiment.
  • the alignment films 64 and 66 are omitted for simplification of the drawing.
  • the liquid crystal layer 65 has a potential distribution PD32 corresponding to the potential distribution PD31 of the connection surface 431 shown in FIG. 18(b).
  • the potential distribution PD32 of the liquid crystal layer 65 includes a plurality of potential gradients PG32, and has a substantially sawtooth shape that is substantially symmetrical with respect to the optical axis AX2.
  • the liquid crystal element 60 produces a refractive index distribution PD33 according to the potential distribution PD32 (specifically, a plurality of potential gradients PG32) of the liquid crystal layer 65 to converge or diverge light.
  • the liquid crystal layer 65 functions as a convex Fresnel cylindrical lens.
  • the controller 20 shown in FIG. 11 controls the effective values of the first control voltage V1 and the second control voltage V2 in the same manner as in the first embodiment so that the focal length of the liquid crystal element 60 is and the tilt direction of the optical axis AX2 can be controlled. Further, the controller 20 of Embodiment 3 can further adjust the potential gradient PG32 included in the potential distribution PD32 generated in the liquid crystal layer 65 by controlling the auxiliary control voltage CV applied to the auxiliary electrode 45 .
  • auxiliary electrodes 45 are arranged as shown in FIG. 17(b), and the auxiliary control voltage CV is applied to each of them. may be applied with the auxiliary control voltage CV.
  • the liquid crystal layer 65 has an asymmetric refractive index distribution, but the optical axis AX2 can be shifted from the center. , optical properties can be adjusted.
  • the auxiliary electrode 45 does not necessarily need to be arranged in the center, and may be arranged regularly at a plurality of positions away from the center. Further, the auxiliary control voltage CV applied to the one or more auxiliary electrodes 45 does not necessarily have to be the ground potential, and may be an AC voltage having an effective value. Further, when a plurality of auxiliary electrodes 45 are arranged on the conductive portion 42, mutually different auxiliary control voltages may be applied to the plurality of auxiliary electrodes 45, thereby reducing the sawtooth potential distribution PD32 generated in the liquid crystal layer 65. may be adjusted.
  • FIG. 19 is a diagram for conceptually explaining how the unit liquid crystal elements are separated from the mother transparent substrate 200 and processed according to the fourth embodiment.
  • a plurality of inner regions 71 are arranged in a grid pattern at intervals, and a frame-shaped region (outer edge region 72) is arranged so as to partition each inner region 71. be.
  • the inner region 71 and the outer edge region 72 are regions with different densities in which the wall portions 201 are formed as shown in FIG. It's becoming
  • the mother transparent substrate 200 of Embodiment 4 mainly differs from the mother transparent substrate 200 of Embodiment 1 in this respect.
  • each of the inner regions 71 of the mother transparent substrate 200 corresponds to the unit liquid crystal element 60 and is separated by the cutout line 73 into an arbitrary shape as in the case of the first embodiment. processed.
  • the outer edge region 72 is positioned near the outer edge of the liquid crystal layer 65
  • the inner region 71 is positioned inside the outer edge region 72 .
  • the inner area 71 and the outer edge area 72 are areas in which a plurality of linear electrodes 62 extend, and areas where an electric field is applied from the linear electrodes 62 to drive the liquid crystal molecules and produce a refractive index distribution. It has become. Furthermore, the wall portion 201 is formed in at least the outer edge region 72 out of the inner region 71 and the outer edge region 72 to restrict the movement of the liquid crystal molecules, thereby reducing the leakage of the liquid crystal to the outside of the unit liquid crystal element 60 . Also, by arranging the inner region 71 in the center of the liquid crystal layer 65 and arranging the outer edge region 72 so as to surround the inner region 71, the leakage of liquid crystal to the outside can be reduced.
  • the wall portion 201 when the wall portion 201 is formed in a mesh (or grid) structure as shown in FIG.
  • the density of the walls 201 may be varied by reducing the size of the mesh.
  • the wall portion 201 having a mesh structure as shown in FIG. good. By doing so, the liquid crystal molecules efficiently spread over the liquid crystal layer 65 when the mother transparent substrate 200 is prepared.
  • the walls 201 surround the inner region 71 so as to block linear access to the inner region 71 from the outside of the liquid crystal layer 65 of the liquid crystal element 60. It is preferably located at 72 . Even in such a case where the wall portions 201 are scattered, leakage of liquid crystal from the inner region 71 can be reduced.
  • the arrangement pitch of the wall portions 201 in the outer edge region 72 may be smaller than the arrangement pitch in the inner region 71 , or the wall portions 201 may be arranged only in the outer edge region 72 and the wall portions 201 may be arranged in the inner region 71 . 201 may not exist.
  • Embodiment 4 differs from Embodiment 1 mainly in the above points. Except for this point, the configuration of Embodiment 4 is substantially the same as that of Embodiment 1, and the description of the configuration that is substantially similar is omitted.
  • the electrode member 40 in which the conductive portion 42 and the resistance distribution structure 43 are integrated as in the above-described Embodiment 1, etc. it is not limited to such a mode.
  • the conductive portion 42 and the resistance distribution structure 43 may be configured as separate parts and arranged at the end portion of the liquid crystal substrate in different steps. Both of the conductive portion 42 and the resistance distribution structure 43, or only the latter may be built into the edge portion of the liquid crystal substrate by three-dimensional modeling or patterning directly on the substrate 61. FIG.
  • the resistance distribution structure 43 for example, a wiring group made of a material having a relatively high resistivity is patterned so as to have a length corresponding to the sawtooth refractive index distribution.
  • a structure in which each of the groups is connected to the linear electrode 62 may be used.
  • the mother transparent substrate 200 has a rectangular shape and is assigned to the n ⁇ n unit liquid crystal elements 60.
  • the unit liquid crystal element 60 may be assigned to each strip.
  • the step of exposing the plurality of linear electrodes 62 from the substrate 68 may be performed on the mother transparent substrate 200 before the unit liquid crystal elements 60 are separated.
  • Embodiment 1 and the like an example is shown in which the liquid crystal element 60 (liquid crystal device 100) having an external shape as shown in FIG.
  • the liquid crystal element 60 may be processed into various external shapes such as molds, the electrode members 40 may also have curved portions according to the external shape, or the electrode members 40 may be curved in the longitudinal direction. Further, the liquid crystal element 60 may have, for example, an external shape in which the electrode member 40 and the end portion to which the electrode member 40 is crimped are formed in a straight line, and the portion other than the end portion is curved.
  • the lens member LN may be machined into various contours.
  • the application of the liquid crystal device 100 of Embodiment 1 and the like is not particularly limited, for example, a head-mounted display or goggles for realizing virtual reality (VR), augmented reality (AR), or mixed reality (MR). may be applied. Further, when applied to these or spectacles, control may be performed to correct astigmatism.
  • the liquid crystal device 100 can also be applied to, for example, glasses for eye treatment, eyeglasses for assisting eyesight, eyeglasses for eye training, single glasses, goggle-type glasses, and the like.
  • the end of the liquid crystal element 60 to which the electrode member 40 is crimped is ensured to be wide, and the position of the liquid crystal element 60 to which the electrode member 40 is crimped can be changed within a predetermined range.
  • the position of the optical axis AX2 can be changed by making it possible to change the position where the electrode member 40 is crimped in the direction in which the plurality of linear electrodes 62 are arranged side by side.
  • the end portion of the lens member LN to which the electrode member 40 is crimped is ensured to be wide, and the position of the electrode member 40 in the first liquid crystal unit 10A (second liquid crystal unit 10B) is shifted in the second direction D2 (the second direction D2).
  • the position of the optical axis AX2 can be changed according to the feeling of use of the wearer.
  • the spectacles 300 of Embodiment 2 are configured to have a clearance (gap) at the end of the liquid crystal element 60 to which the electrode member 40 is crimped while the lens member LN is held by the rim 1.
  • the position of the optical axis of the liquid crystal element 60 may be changed by removing the lens member LN from the rim 1 to change the position of the electrode member 40 .
  • the electrode member 40 is arranged at one end of the substrate 61 so as to cross the extending direction of the plurality of linear electrodes 62 of the liquid crystal element 60.
  • the unit 10 may have two or more electrode members 40 .
  • two electrode members 40 may be arranged at the ends of the liquid crystal element 60 facing each other (for example, the upper end and the lower end). With such two electrode members 40, the voltage applied to the plurality of linear electrodes 62 can be stabilized.
  • the resistance distribution structure 43 at one end is arranged to have a resistance value distribution corresponding to a convex Fresnel cylindrical lens.
  • the resistance distribution structure 43 at the other end has a distribution of resistance values corresponding to a concave Fresnel cylindrical lens, and a control voltage is supplied to one of the two electrode members 40.
  • the focal length adjustment range can be expanded.
  • two mother transparent substrates 200 shown in FIG. It is also possible to use two mother transparent substrates 200 stacked in the third direction D3 and adhered so as to be substantially orthogonal to the linear electrodes 62 of the transparent substrates 200 .
  • the substrates 61 on which the linear electrodes 62 are formed in the two mother transparent substrates 200 are adhered to each other, and the liquid crystal element 60 of the first liquid crystal unit 10A and the liquid crystal element 60 of the second liquid crystal unit 10B are adhered. It may be cut out in a state where it is cut out.
  • the present invention provides a liquid crystal device, spectacles, a method for manufacturing a liquid crystal device, and an electrode member, and has industrial applicability.
  • liquid crystal device 1 rim (holding part) 10 liquid crystal unit 10A first liquid crystal unit 10B second liquid crystal unit 20 controller (control unit) 40 electrode member 43 resistance distribution structure 42 conductive portion 45 auxiliary electrode 60 liquid crystal element (unit liquid crystal element) 62 linear electrode 65 liquid crystal layer 67 counter electrode 100 liquid crystal device 200 mother transparent substrate 201 wall portion

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

A liquid crystal device provided with at least one liquid crystal unit having liquid crystal substrates sandwiching a liquid crystal layer in which a sawtooth-shaped refractive-index distribution is formed, the liquid crystal device characterized by: comprising a plurality of linear electrodes (62) that overlap the liquid crystal layer and extend linearly, and a conductor section (42) and a resistance distribution structure (43) that are disposed at the ends of the liquid crystal substrates so as to intersect the extension direction of the plurality of linear electrodes (62); and each resistance distribution structure (43) being interposed between the corresponding conductor section (42) and the plurality of linear electrodes (62) and having a resistance distribution corresponding to the sawtooth-shaped refractive-index distribution.

Description

液晶デバイス、眼鏡、液晶デバイスの製造方法および電極部材Liquid crystal device, glasses, method for manufacturing liquid crystal device, and electrode member
 本発明は、液晶デバイス、眼鏡、液晶デバイスの製造方法および電極部材に関する。 The present invention relates to a liquid crystal device, spectacles, a method for manufacturing a liquid crystal device, and an electrode member.
 特許文献1に記載された液晶レンズは、液晶層と、一定方向に延びる複数のライン電極とを備える。複数のライン電極は、液晶層の液晶を駆動する。複数のライン電極にそれぞれ対応して複数のスイッチが設けられる。各スイッチは、対応するライン電極が第1交流電源に接続される状態と、対応するライン電極が第2交流電源に接続される状態とを切り替える。各スイッチを制御することで、液晶レンズの光学的特性が設定される。 The liquid crystal lens described in Patent Document 1 includes a liquid crystal layer and a plurality of line electrodes extending in a certain direction. A plurality of line electrodes drive the liquid crystal of the liquid crystal layer. A plurality of switches are provided corresponding to each of the plurality of line electrodes. Each switch switches between a state in which the corresponding line electrode is connected to the first AC power supply and a state in which the corresponding line electrode is connected to the second AC power supply. By controlling each switch, the optical characteristics of the liquid crystal lens are set.
特開2016-90718号公報JP 2016-90718 A
 しかしながら、特許文献1に記載された液晶レンズでは、各スイッチを制御して、一本ずつライン電極を制御することが要求される。従って、液晶レンズの構成および制御が煩雑である。 However, in the liquid crystal lens described in Patent Document 1, it is required to control the line electrodes one by one by controlling each switch. Therefore, the configuration and control of the liquid crystal lens are complicated.
 本発明は上記課題に鑑みてなされたものであり、その目的は、簡素な構成によって液晶層の光学的特性を設定できる液晶デバイス、眼鏡、液晶デバイスの製造方法および電極部材を提供することにある。 The present invention has been made in view of the above problems, and an object thereof is to provide a liquid crystal device, spectacles, a method for manufacturing a liquid crystal device, and an electrode member that can set the optical characteristics of a liquid crystal layer with a simple configuration. .
 本発明の液晶デバイスにおいて、液晶層を挟持する液晶基板を有して前記液晶層に鋸歯状の屈折率分布を形成する少なくとも1つの液晶ユニットを備えた液晶デバイスであって、前記液晶層に重複して直線状に延在する複数の線状電極と、前記複数の線状電極の延在方向と交差するように前記液晶基板の端部にて配置される導電部と抵抗分布構造とを有し、前記抵抗分布構造は、前記導電部と前記複数の線状電極との間に介在して、前記鋸歯状の屈折率分布に対応した抵抗値の分布を有する、ことを特徴とする。 In the liquid crystal device of the present invention, the liquid crystal device includes liquid crystal substrates sandwiching a liquid crystal layer and at least one liquid crystal unit forming a sawtooth refractive index distribution in the liquid crystal layer, wherein the liquid crystal layer overlaps the liquid crystal substrate. a plurality of linear electrodes linearly extending in a straight line, and a conductive portion and a resistance distribution structure arranged at an end portion of the liquid crystal substrate so as to intersect the extending direction of the plurality of linear electrodes. and the resistance distribution structure is interposed between the conductive portion and the plurality of linear electrodes, and has a distribution of resistance values corresponding to the sawtooth-shaped refractive index distribution.
 本発明の液晶デバイスにおいて、前記液晶ユニットの外形は、平面的に見て湾曲した部分を有する、ことを特徴としてもよい。 The liquid crystal device of the present invention may be characterized in that the outer shape of the liquid crystal unit has a curved portion when viewed two-dimensionally.
 本発明の液晶デバイスにおいて、前記鋸歯状の屈折率分布が形成される領域の少なくとも一部には、面内方向への液晶の移動を規制する1または複数の壁部が配置される、ことを特徴としてもよい。 In the liquid crystal device of the present invention, at least a part of the region where the sawtooth refractive index distribution is formed is provided with one or more walls for restricting movement of the liquid crystal in the in-plane direction. It may be a feature.
 本発明の液晶デバイスにおいて、前記導電部の一方端部にて印加する第1制御電圧と、前記導電部の他方端部にて印加する第2制御電圧と、を出力する制御部をさらに備え、前記制御部は、前記第1制御電圧とは異なる前記第2制御電圧を出力することにより前記鋸歯状の屈折率分布を制御する、ことを特徴としてもよい。 The liquid crystal device of the present invention further comprises a control section that outputs a first control voltage applied at one end of the conductive section and a second control voltage applied at the other end of the conductive section, The controller may control the sawtooth-shaped refractive index distribution by outputting the second control voltage different from the first control voltage.
 本発明の液晶デバイスにおいて、前記液晶デバイスは、2つの前記液晶ユニットを含み、前記2つの液晶ユニットは、それぞれにおける前記複数の線状電極の延在方向が略直交するように重複して配置される、ことを特徴としてもよい。 In the liquid crystal device of the present invention, the liquid crystal device includes two liquid crystal units, and the two liquid crystal units are arranged in an overlapping manner such that the extending directions of the plurality of linear electrodes in each are substantially orthogonal. It may be characterized by
 本発明の眼鏡において、上記の液晶デバイスを一対備え、前記一対の液晶デバイスを保持する保持部を備えた、ことを特徴する。 The spectacles of the present invention are characterized by comprising a pair of the above-described liquid crystal devices and a holding portion that holds the pair of liquid crystal devices.
 本発明の液晶デバイスの製造方法において、液晶デバイスの製造方法であって、2つのマザー基板間に液晶層が配置されたマザー透明基板を準備する工程と、前記マザー透明基板から、所定の形状を有した単位液晶素子を切り出す工程と、前記単位液晶素子の端部にて電極部材が延在するように、前記単位液晶素子と前記電極部材とを電気的に接続する工程と、を含み、前記単位液晶素子は、鋸歯状の屈折率分布を液晶層内に生じさせるために直線状に延在する複数の線状電極を含み、前記電極部材は、電気伝導性を有する導電部と、前記鋸歯状の屈折率分布に対応した抵抗値の分布を有する抵抗分布構造と、を含み、前記単位液晶素子と前記電極部材とを電気的に接続する工程では、前記抵抗分布構造が前記導電部と前記複数の線状電極との間に介在して、前記電極部材が前記複数の線状電極の延在方向と交差するように接続される、ことを特徴とする。 In the method of manufacturing a liquid crystal device of the present invention, the method of manufacturing a liquid crystal device comprises the steps of: preparing a mother transparent substrate having a liquid crystal layer disposed between two mother substrates; and electrically connecting the unit liquid crystal element and the electrode member so that the electrode member extends at the end of the unit liquid crystal element, wherein the The unit liquid crystal element includes a plurality of linear electrodes extending linearly to generate a sawtooth refractive index distribution in the liquid crystal layer, and the electrode member includes a conductive portion having electrical conductivity and the sawtooth. a resistance distribution structure having a distribution of resistance values corresponding to the refractive index distribution in the form of a refractive index distribution; It is characterized in that the electrode member is interposed between the plurality of linear electrodes and connected so as to cross the extending direction of the plurality of linear electrodes.
 本発明の電極部材において、鋸歯状の屈折率分布に対応する電位分布を液晶層に供給するための棒状の電極部材であって、電気伝導性を有する導電部と、前記屈折率分布に対応した抵抗値の分布を有する抵抗分布構造と、を含み、前記導電部および前記抵抗分布構造は、前記電極部材の長手方向に延在し、前記導電部は、前記抵抗分布構造の厚さ方向に配置され、前記抵抗分布構造は、前記長手方向の電気抵抗率が前記厚さ方向の電気抵抗率よりも高くなるように構成されて、前記長手方向の位置に応じて前記厚さ方向の抵抗値が変化することにより前記電位分布を生じさせる、ことを特徴とする。 The electrode member of the present invention is a rod-shaped electrode member for supplying a potential distribution corresponding to a sawtooth refractive index distribution to a liquid crystal layer, comprising: a conductive portion having electrical conductivity; a resistance distribution structure having a distribution of resistance values, wherein the conductive portion and the resistance distribution structure extend in the longitudinal direction of the electrode member, and the conductive portion is arranged in the thickness direction of the resistance distribution structure. The resistance distribution structure is configured such that the electrical resistivity in the longitudinal direction is higher than the electrical resistivity in the thickness direction, and the resistance value in the thickness direction varies depending on the position in the longitudinal direction. It is characterized in that the potential distribution is caused by the change.
 本発明によれば、簡素な構成によって液晶層の光学的特性を設定できる。 According to the present invention, the optical properties of the liquid crystal layer can be set with a simple configuration.
(a)は、本発明の実施形態1に係る液晶デバイスを示す正面図である。(b)は、実施形態1に係る液晶ユニットを示す側面図である。1A is a front view showing a liquid crystal device according to Embodiment 1 of the present invention; FIG. 4B is a side view showing the liquid crystal unit according to Embodiment 1; FIG. 図1(a)のII-II線に沿った断面図である。FIG. 2 is a cross-sectional view taken along line II-II of FIG. 1(a); 図1(a)のIII-III線に沿った断面図である。FIG. 2 is a cross-sectional view taken along line III-III of FIG. 1(a); 図1(a)のIV-IV線に沿った断面図である。Fig. 1(a) is a sectional view taken along line IV-IV of Fig. 1(a); (a)は、実施形態1に係る液晶デバイスの電極部材を示す斜視図である。(b)は、実施形態1に係る電極部材の導電部を示す図である。3A is a perspective view showing an electrode member of the liquid crystal device according to Embodiment 1; FIG. 4B is a diagram showing a conductive portion of the electrode member according to Embodiment 1; FIG. (a)は、実施形態1に係る電極部材の抵抗分布構造における抵抗分布を示す図である。(b)は、実施形態1に係る抵抗分布構造の接続面における電位分布を示す図である。(c)は、実施形態1に係る液晶デバイスの液晶層における電位分布を示す図である。(a) is a diagram showing the resistance distribution in the resistance distribution structure of the electrode member according to the first embodiment. (b) is a diagram showing the potential distribution on the connecting surface of the resistance distribution structure according to the first embodiment. (c) is a diagram showing a potential distribution in the liquid crystal layer of the liquid crystal device according to Embodiment 1. FIG. (a)(b)は、実施形態1に係る電極部材の作製方法を概念的に示す図である。4(a) and 4(b) are diagrams conceptually showing a method for manufacturing an electrode member according to Embodiment 1. FIG. 実施形態1における液晶ユニットの製造方法を説明するための図である。FIG. 4 is a diagram for explaining a method of manufacturing the liquid crystal unit according to Embodiment 1; 実施形態1に係る液晶素子の製造方法を示すフローチャートである。4 is a flow chart showing a method for manufacturing a liquid crystal element according to Embodiment 1. FIG. (a)は、実施形態1に係る液晶層に形成される壁部を示す図である。(b)は、実施形態1に係る壁部を示す斜視図である。4A is a diagram showing wall portions formed in the liquid crystal layer according to Embodiment 1. FIG. (b) is a perspective view showing a wall portion according to Embodiment 1. FIG. 実施形態1に係る液晶デバイスのコントローラーを示すブロック図である。3 is a block diagram showing a controller of the liquid crystal device according to Embodiment 1; FIG. 実施形態1に係る電極部材の接続面における電位分布の他の例を示す図である。5 is a diagram showing another example of potential distribution on the connection surface of the electrode member according to Embodiment 1. FIG. (a)(b)は、実施形態1の変形例1と変形例2にかかる電極部材の配置を示す側面図である。8A and 8B are side views showing the arrangement of electrode members according to Modification 1 and Modification 2 of Embodiment 1. FIG. (a)は、実施形態1の変形例4に係る電極部材を示す斜視図である。(b)は、実施形態1の変形例4に係る電極部材の抵抗分布構造における抵抗率分布を示す図である。(c)は、実施形態1の変形例4に係る抵抗分布構造における抵抗分布を示す図である。(a) is a perspective view showing an electrode member according to Modification 4 of Embodiment 1. FIG. (b) is a diagram showing the resistivity distribution in the resistance distribution structure of the electrode member according to Modification 4 of Embodiment 1. FIG. (c) is a diagram showing a resistance distribution in a resistance distribution structure according to Modification 4 of Embodiment 1. FIG. (a)は、本発明の実施形態2に係る眼鏡を示す斜視図である。(b)は、実施形態2に係る眼鏡のレンズ部材を示す斜視図である。(a) is a perspective view showing spectacles according to Embodiment 2 of the present invention. (b) is a perspective view showing a lens member of spectacles according to Embodiment 2. FIG. 実施形態2に係るレンズ部材の分解斜視図である。8 is an exploded perspective view of a lens member according to Embodiment 2. FIG. (a)は、本発明の実施形態3に係る電極部材を示す斜視図である。(b)は、実施形態3に係る電極部材の導電部を示す図である。(a) is a perspective view showing an electrode member according to Embodiment 3 of the present invention. (b) is a diagram showing a conductive portion of an electrode member according to Embodiment 3. FIG. (a)は、実施形態3に係る電極部材の抵抗分布構造における抵抗分布を示す図である。(b)は、実施形態3に係る抵抗分布構造の接続面における電位分布を示す図である。(c)は、実施形態3に係る液晶デバイスの液晶層における電位分布を示す図である。(a) is a diagram showing a resistance distribution in a resistance distribution structure of an electrode member according to Embodiment 3. FIG. (b) is a diagram showing the potential distribution on the connecting surface of the resistance distribution structure according to the third embodiment. (c) is a diagram showing the potential distribution in the liquid crystal layer of the liquid crystal device according to Embodiment 3. FIG. 実施形態4における液晶ユニットの製造方法を説明するための図である。FIG. 11 is a diagram for explaining a method of manufacturing a liquid crystal unit according to Embodiment 4;
 以下、本発明の実施形態について、図面を参照しながら説明する。なお、図中、同一または相当部分については同一の参照符号を付して説明を繰り返さない。また、本発明の実施形態において、図面の理解を容易にするために、三次元直交座標系のX軸、Y軸、およびZ軸を適宜付記している。さらに、実施形態において、電気抵抗値の単位は「Ω」であり、電気抵抗率の単位は「Ω・m」である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated. In addition, in the embodiments of the present invention, the X-axis, Y-axis, and Z-axis of the three-dimensional orthogonal coordinate system are appropriately added to facilitate understanding of the drawings. Furthermore, in the embodiment, the unit of electrical resistance is "Ω" and the unit of electrical resistivity is "Ω·m".
 (実施形態1)
 図1~図13を参照して、本発明の実施形態1に係る液晶デバイス100を説明する。まず、図1を参照して液晶デバイス100を説明する。図1(a)は、液晶デバイス100を示す正面図である。
(Embodiment 1)
A liquid crystal device 100 according to Embodiment 1 of the present invention will be described with reference to FIGS. 1 to 13. FIG. First, a liquid crystal device 100 will be described with reference to FIG. FIG. 1(a) is a front view showing the liquid crystal device 100. FIG.
 図1(a)に示すように、液晶デバイス100は、液晶ユニット10と、コントローラー20と、バッテリー30とを備える。換言すれば、液晶デバイス100は、少なくとも1つの液晶ユニット10を備える。液晶ユニット10は、電極部材40と、液晶素子60とを備える。液晶素子60は、複数の線状電極62を備える。液晶素子60は、液晶レンズ(具体的には、フレネル型シリンドリカルレンズ(リニアフレネルレンズ))として機能する。実施形態1の複数の線状電極62の各々は、第1方向D1に沿って延び、第1方向D1に直交する第2方向D2に沿って間隔をあけて配置される。例えば、複数の線状電極62の各々は、直線状に延在する。 As shown in FIG. 1( a ), the liquid crystal device 100 includes a liquid crystal unit 10 , a controller 20 and a battery 30 . In other words, the liquid crystal device 100 has at least one liquid crystal unit 10 . The liquid crystal unit 10 includes an electrode member 40 and a liquid crystal element 60 . The liquid crystal element 60 has a plurality of linear electrodes 62 . The liquid crystal element 60 functions as a liquid crystal lens (specifically, a Fresnel type cylindrical lens (linear Fresnel lens)). Each of the plurality of linear electrodes 62 of Embodiment 1 extends along the first direction D1 and is arranged at intervals along the second direction D2 orthogonal to the first direction D1. For example, each of the plurality of linear electrodes 62 extends linearly.
 複数の線状電極62が配置される間隔は、例えば、10μm以下というような寸法にし、5μm以下というような寸法にするのが好適であり、1μm以下というような寸法にするのがより好適である。また、線状電極62のそれぞれの幅としては、線状電極62の間隔に合わせて10μm以下、5μm以下、あるいは、1μm以下とするようにしてもよい。 The interval at which the plurality of linear electrodes 62 are arranged is, for example, 10 μm or less, preferably 5 μm or less, and more preferably 1 μm or less. be. Also, the width of each of the linear electrodes 62 may be 10 μm or less, 5 μm or less, or 1 μm or less according to the interval between the linear electrodes 62 .
 電極部材40は、液晶素子60に電位勾配を形成するための電圧を、液晶素子60に対して印加する。具体的には、電極部材40は、複数の線状電極62に対して電圧を印加して、複数の線状電極62を介して液晶層65(後述の図2)に鋸歯状の電位勾配を形成する。 The electrode member 40 applies a voltage to the liquid crystal element 60 to form a potential gradient in the liquid crystal element 60 . Specifically, the electrode member 40 applies a voltage to the plurality of linear electrodes 62 to apply a sawtooth potential gradient to the liquid crystal layer 65 (see FIG. 2 described later) via the plurality of linear electrodes 62 . Form.
 さらに具体的には、バッテリー30は電源電圧PVをコントローラー20に供給する。そして、コントローラー20は、電源電圧PVに基づいて2つの制御電圧を生成し、電極部材40の一方端部に第1制御電圧V1を、他方端部に第2制御電圧V2を印加する。実施形態1では、第1制御電圧V1および第2制御電圧V2の各々は、交流電圧である。さらに、電極部材40は、第1制御電圧V1および第2制御電圧V2に基づく電圧を複数の線状電極62に同時に印加する。この点の詳細は後述する。 More specifically, the battery 30 supplies the power supply voltage PV to the controller 20 . The controller 20 generates two control voltages based on the power supply voltage PV, and applies the first control voltage V1 to one end of the electrode member 40 and the second control voltage V2 to the other end thereof. In Embodiment 1, each of the first control voltage V1 and the second control voltage V2 is an AC voltage. Furthermore, the electrode member 40 simultaneously applies voltages based on the first control voltage V1 and the second control voltage V2 to the plurality of linear electrodes 62 . Details of this point will be described later.
 実施形態1では、電極部材40は、第2方向D2に沿って延在し、液晶素子60の端部に配置される。 In Embodiment 1, the electrode member 40 extends along the second direction D2 and is arranged at the end of the liquid crystal element 60 .
 図1(b)は、液晶ユニット10を示す側面図である。図1(b)に示すように、電極部材40は接続面431を有する。液晶素子60における第1方向D1の一方端部において、複数の線状電極62が露出されており、電極部材40と複数の線状電極62が接続面431で接触する。接続面431では、電極部材40と複数の線状電極62とが電気的に接続される。なお、表記の便宜上、図1(b)では、一本の線状電極62だけが図中に表記されており、接続面431と線状電極62とが間隔をあけて示される。実施形態1では、第3方向D3は、第1方向D1および第2方向D2に直交する。第3方向D3は、液晶素子60の厚み方向を示す。 FIG. 1(b) is a side view showing the liquid crystal unit 10. FIG. As shown in FIG. 1(b), the electrode member 40 has a connection surface 431. As shown in FIG. The linear electrodes 62 are exposed at one end of the liquid crystal element 60 in the first direction D<b>1 , and the electrode member 40 and the linear electrodes 62 are in contact with each other at the connection surface 431 . The connection surface 431 electrically connects the electrode member 40 and the plurality of linear electrodes 62 . For convenience of notation, only one linear electrode 62 is illustrated in FIG. In Embodiment 1, the third direction D3 is orthogonal to the first direction D1 and the second direction D2. A third direction D3 indicates the thickness direction of the liquid crystal element 60 .
 図2は、図1(a)のII-II線に沿った断面図である。図2に示すように、液晶素子60は、複数の線状電極62に加えて、基板61と、複数の電気絶縁体63と、配向膜64と、液晶層65と、配向膜66と、対向電極67と、基板68と、シール部69とを備える。 FIG. 2 is a cross-sectional view along line II-II in FIG. 1(a). As shown in FIG. 2, the liquid crystal element 60 includes, in addition to a plurality of linear electrodes 62, a substrate 61, a plurality of electrical insulators 63, an alignment film 64, a liquid crystal layer 65, and an alignment film 66. It includes an electrode 67 , a substrate 68 and a seal portion 69 .
 基板61、線状電極62、電気絶縁体63、配向膜64、液晶層65、配向膜66、対向電極67、基板68、および、シール部69は、透明である。本明細書において、「透明」は、有色透明、無色透明、および、半透明を含む。 The substrate 61, the linear electrode 62, the electrical insulator 63, the alignment film 64, the liquid crystal layer 65, the alignment film 66, the counter electrode 67, the substrate 68, and the seal portion 69 are transparent. As used herein, "transparent" includes colored transparent, colorless transparent, and translucent.
 基板61および基板68は、液晶層65を挟持する一対の基板(液晶基板)であり、例えば、ガラスまたは合成樹脂によって形成される。合成樹脂は、例えば、ポリカーボネートまたはアクリルである。線状電極62および対向電極67は、例えば、ITO(インジウム・スズ酸化物:Indium Tin Oxide)により形成される。 The substrates 61 and 68 are a pair of substrates (liquid crystal substrates) that sandwich the liquid crystal layer 65, and are made of glass or synthetic resin, for example. Synthetic resins are, for example, polycarbonate or acrylic. The linear electrode 62 and the counter electrode 67 are made of, for example, ITO (Indium Tin Oxide).
 電気絶縁体63は、隣接する線状電極62を絶縁する。電気絶縁体63は、例えば、二酸化ケイ素(SiO2)である。なお、例えば、電気絶縁体63に代えて、配向膜64が、隣接する線状電極62の間にも形成されて、隣接する線状電極62を絶縁する電気絶縁体として機能してもよい。 The electrical insulator 63 insulates adjacent linear electrodes 62 . Electrical insulator 63 is, for example, silicon dioxide (SiO 2 ). For example, instead of the electrical insulator 63, an alignment film 64 may also be formed between the adjacent linear electrodes 62 to function as an electrical insulator for insulating the adjacent linear electrodes 62 from each other.
 配向膜64および配向膜66は、例えば、ポリイミド膜である。液晶層65は液晶を含む。液晶は、例えば、ネマティック液晶であり、液晶の配向は、無電場の環境下では、ホモジニアス配向である。液晶は多数の液晶分子LQを含む。なお、図2~図4では、無電場の環境化での液晶分子LQが示される。シール部69は、例えば、熱硬化型エポキシ樹脂や紫外線硬化型樹脂によって形成される。 The alignment films 64 and 66 are, for example, polyimide films. The liquid crystal layer 65 contains liquid crystal. The liquid crystal is, for example, a nematic liquid crystal, and the orientation of the liquid crystal is homogeneous orientation under the environment of no electric field. The liquid crystal contains a large number of liquid crystal molecules LQ. 2 to 4 show the liquid crystal molecules LQ in an environment without an electric field. The seal portion 69 is made of, for example, a thermosetting epoxy resin or an ultraviolet curable resin.
 複数の線状電極62、複数の電気絶縁体63、配向膜64、液晶層65、配向膜66、および、対向電極67は、基板61と基板68との間に配置される。基板61および基板68は、第3方向D3に間隔をあけて配置され、略平板形状を有する。シール部69は、液晶層65の周縁に沿って形成される。実施形態1では、シール部69は、液晶層65の周縁を塞ぎ、液晶層65の液晶が外部に流出することを防止する。 A plurality of linear electrodes 62 , a plurality of electrical insulators 63 , an alignment film 64 , a liquid crystal layer 65 , an alignment film 66 and a counter electrode 67 are arranged between the substrates 61 and 68 . The substrates 61 and 68 are spaced apart in the third direction D3 and have a substantially flat plate shape. The seal portion 69 is formed along the periphery of the liquid crystal layer 65 . In Embodiment 1, the sealing portion 69 closes the periphery of the liquid crystal layer 65 to prevent the liquid crystal of the liquid crystal layer 65 from flowing out to the outside.
 複数の線状電極62の各々は、液晶層65に重複する。また、複数の線状電極62と複数の電気絶縁体63とは同一階層に配置され、電気絶縁体63は、複数の線状電極62のそれぞれの間に配置される。また、複数の線状電極62と複数の電気絶縁体63は、基板61の一対の主面のうち液晶層65に近い側の主面に形成され、これらの表面には、配向膜64が形成される。 Each of the plurality of linear electrodes 62 overlaps the liquid crystal layer 65 . Moreover, the plurality of linear electrodes 62 and the plurality of electrical insulators 63 are arranged on the same layer, and the electrical insulators 63 are arranged between the plurality of linear electrodes 62 . A plurality of linear electrodes 62 and a plurality of electrical insulators 63 are formed on the main surface of the pair of main surfaces of the substrate 61 which is closer to the liquid crystal layer 65, and an alignment film 64 is formed on these surfaces. be done.
 実施形態1における対向電極67は、基板68の一対の主面のうち液晶層65に近い側の主面にて、略平面状に形成される。対向電極67の表面には、配向膜66が形成される。配向膜64および配向膜66は、液晶層65における液晶分子LQの配向を定める。 The counter electrode 67 in Embodiment 1 is formed in a substantially planar shape on the main surface of the pair of main surfaces of the substrate 68 that is closer to the liquid crystal layer 65 . An alignment film 66 is formed on the surface of the counter electrode 67 . The alignment films 64 and 66 define the alignment of the liquid crystal molecules LQ in the liquid crystal layer 65 .
 液晶層65は、複数の線状電極62と対向電極67との間に配置されて、これらの電極によって印加される電界により屈折率分布を生じさせることにより、液晶デバイス100を液晶レンズとして機能させている。 The liquid crystal layer 65 is arranged between the plurality of linear electrodes 62 and the counter electrode 67, and causes the liquid crystal device 100 to function as a liquid crystal lens by generating a refractive index distribution by an electric field applied by these electrodes. ing.
 ここで特に、図3~図7を用いて実施形態1における電極部材40について説明をする。図3および図4は、電極部材40が液晶素子60にて配置される様子を説明するための図であり、図5および図7は、電極部材40の構成を具体的に説明するための図となっている。また図6は、図5の電極部材40によって生成される電位分布や液晶層65の屈折率分布を説明するための図となっている。 Here, the electrode member 40 according to Embodiment 1 will be particularly described with reference to FIGS. 3 to 7. FIG. 3 and 4 are diagrams for explaining how the electrode member 40 is arranged in the liquid crystal element 60, and FIGS. 5 and 7 are diagrams for specifically explaining the configuration of the electrode member 40. FIG. It has become. 6 is a diagram for explaining the potential distribution generated by the electrode member 40 of FIG. 5 and the refractive index distribution of the liquid crystal layer 65. As shown in FIG.
 図3等で示されるように、実施形態1の電極部材40としては、成形部材41と導電部42と抵抗分布構造43を含んで構成されて、成形部材41と抵抗分布構造43の間の界面(配置面432)において導電部42が介在するように配置されたものとなっている。また、導電部42は、複数の線状電極62の延在方向(第1方向D1)と交差する。そして抵抗分布構造43は、液晶層65にて生成されるフレネル型のシリンドリカルレンズ状(鋸歯状)の屈折率分布に対応した抵抗値の分布を備えており、導電部42からの印加電圧から当該屈折率分布に対応した電位勾配を生成して複数の線状電極62に出力するようになっている。以下、これらの図を用いて、電極部材40について具体的に説明する。 As shown in FIG. 3 and the like, the electrode member 40 of the first embodiment includes a molded member 41, a conductive portion 42, and a resistance distribution structure 43, and an interface between the molded member 41 and the resistance distribution structure 43. (Arrangement surface 432) is arranged such that the conductive portion 42 is interposed therebetween. In addition, the conductive portion 42 intersects the extending direction (first direction D1) of the plurality of linear electrodes 62 . The resistance distribution structure 43 has a distribution of resistance values corresponding to the Fresnel-type cylindrical lens-like (sawtooth-like) refractive index distribution generated in the liquid crystal layer 65 . A potential gradient corresponding to the refractive index distribution is generated and output to the plurality of linear electrodes 62 . The electrode member 40 will be specifically described below with reference to these figures.
 図3は、図1(a)のIII-III線に沿った断面図である。図4は、図1(a)のIV-IV線に沿った断面図である。図3に示すように、電極部材40は、液晶素子60のうち、基板68を切り欠いて基板68から基板61を露出させた部分に配置される。 FIG. 3 is a cross-sectional view taken along line III-III in FIG. 1(a). FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. 1(a). As shown in FIG. 3, the electrode member 40 is arranged in a portion of the liquid crystal element 60 where the substrate 68 is cut away to expose the substrate 61 from the substrate 68 .
 図3および図4で示されるように、電極部材40は、液晶素子60に圧着されることで、電極部材40の接続面431が複数の線状電極62と電気的に接続される。また、電極部材40における成形部材41と導電部42と抵抗分布構造43とは、この順番で第3方向D3に沿って積層される。 As shown in FIGS. 3 and 4, the electrode member 40 is crimped to the liquid crystal element 60 so that the connection surface 431 of the electrode member 40 is electrically connected to the plurality of linear electrodes 62 . Further, the molded member 41, the conductive portion 42, and the resistance distribution structure 43 in the electrode member 40 are stacked in this order along the third direction D3.
 抵抗分布構造43は、接続面431を有し、接続面431は、略平面状であって複数の線状電極62に接触する。導電部42は、接続面431の側と反対側において抵抗分布構造43と接して形成されている。換言すれば、抵抗分布構造43は、導電部42と複数の線状電極62との間に介在している。 The resistance distribution structure 43 has a connection surface 431 , and the connection surface 431 is substantially planar and contacts the plurality of linear electrodes 62 . The conductive portion 42 is formed in contact with the resistance distribution structure 43 on the side opposite to the connection surface 431 side. In other words, the resistance distribution structure 43 is interposed between the conductive portion 42 and the plurality of linear electrodes 62 .
 次に、図5および図6を参照して、電極部材40の詳細を説明する。図5(a)は、電極部材40が線状電極62に接続されている様子を模式的に示す斜視図である。図5(a)では、図面を見易くするために、線状電極62が二点鎖線で示される。図5(b)は、電極部材40の導電部42を示す図である。図5(b)は、図5(a)の方向DAから見た導電部42を示している。 Next, the details of the electrode member 40 will be described with reference to FIGS. 5 and 6. FIG. FIG. 5A is a perspective view schematically showing how the electrode member 40 is connected to the linear electrode 62. FIG. In FIG. 5(a), the linear electrode 62 is indicated by a chain double-dashed line in order to make the drawing easier to see. FIG. 5B is a diagram showing the conductive portion 42 of the electrode member 40. As shown in FIG. FIG. 5(b) shows the conductive portion 42 viewed from the direction DA in FIG. 5(a).
 まず、成形部材41は、ポリカーボネートまたはアクリルといった電気絶縁性のある合成樹脂によって構成される。 First, the molding member 41 is made of electrically insulating synthetic resin such as polycarbonate or acrylic.
 次に、導電部42は、電気伝導性を有する導電性の薄膜で構成される。導電部42の電気抵抗率は、線状電極62の電気抵抗率と略同一か、または、線状電極62の電気抵抗率よりも小さい。また、導電部42の電気抵抗率は、電気絶縁体や抵抗分布構造43の電気抵抗率よりも小さい。導電部42としては、例えば、金やアルミニウム等の金属薄膜によって形成される。図5(a)および図5(b)に示すように、導電部42を第1方向D1から見た場合、導電部42は、第2方向D2における電極部材40の中央を軸としてほぼ対称な鋸歯状に形成されて、フレネル型シリンドリカルレンズ状の屈折率分布に対応した形状を有しており、具体的には、凸型のフレネル型シリンドリカルレンズの表面に近似した形状となっている。 Next, the conductive part 42 is composed of a conductive thin film having electrical conductivity. The electrical resistivity of the conductive portion 42 is substantially the same as the electrical resistivity of the linear electrode 62 or lower than the electrical resistivity of the linear electrode 62 . Also, the electrical resistivity of the conductive portion 42 is smaller than the electrical resistivity of the electrical insulator and the resistance distribution structure 43 . The conductive portion 42 is formed of, for example, a metal thin film such as gold or aluminum. As shown in FIGS. 5A and 5B, when the conductive portion 42 is viewed from the first direction D1, the conductive portion 42 is substantially symmetrical about the center of the electrode member 40 in the second direction D2. It is formed in a sawtooth shape and has a shape corresponding to the refractive index distribution of a Fresnel cylindrical lens. Specifically, it has a shape similar to the surface of a convex Fresnel cylindrical lens.
 ここで、実施形態1における抵抗分布構造43は形状可変抵抗体が塑性変形されたもので構成される。抵抗分布構造43は、形状の変形によって異方的な電気抵抗値を備えるものとなっており、その状態で複数の線状電極62に接続されたものとなっている。抵抗分布構造43は、例えば、シリコーン等の高分子材料を主材料として形成され、導電体(例えば、金属または炭素)が分散されたものとなっている。 Here, the resistance distribution structure 43 in Embodiment 1 is configured by plastically deforming the variable shape resistor. The resistance distribution structure 43 has an anisotropic electrical resistance value due to deformation of its shape, and is connected to the plurality of linear electrodes 62 in that state. The resistance distribution structure 43 is formed using, for example, a polymer material such as silicone as a main material, and conductors (for example, metal or carbon) are dispersed therein.
 抵抗分布構造43は、接続面431に加えて、導電部42が配置される配置面432を有し、導電部42は、抵抗分布構造43の第3方向D3(電極部材40の厚さ方向)に配置される。抵抗分布構造43を第1方向D1から見た場合、導電部42と同様に略鋸歯状である。導電部42および抵抗分布構造43は、電極部材40の長手方向となる第2方向D2にて共に延在し、一方端部P1から他方端部P2まで延びている。 In addition to the connection surface 431, the resistance distribution structure 43 has an arrangement surface 432 on which the conductive portion 42 is arranged. placed in When the resistance distribution structure 43 is viewed from the first direction D1, it has a substantially sawtooth shape like the conductive portion 42 . The conductive portion 42 and the resistance distribution structure 43 both extend in the second direction D2, which is the longitudinal direction of the electrode member 40, from one end P1 to the other end P2.
 次に、図6を用いて、上述の抵抗分布構造43における抵抗値の分布や、このような抵抗分布構造43を備えた電極部材40によって生成される電位分布や液晶層65の屈折率分布についての説明をする。 Next, with reference to FIG. 6, the distribution of the resistance value in the above-described resistance distribution structure 43, the potential distribution generated by the electrode member 40 having such a resistance distribution structure 43, and the refractive index distribution of the liquid crystal layer 65 will be described. to explain.
 図6(a)は、電極部材40の抵抗分布構造43における抵抗分布RD1を示す図である。図6(a)において、横軸は抵抗分布構造43における第2方向D2に沿った位置を示し、縦軸は、横軸に対応する各位置における抵抗分布構造43が有する第3方向D3の電気抵抗値を示す。 FIG. 6(a) is a diagram showing the resistance distribution RD1 in the resistance distribution structure 43 of the electrode member 40. FIG. In FIG. 6A, the horizontal axis indicates the position along the second direction D2 in the resistance distribution structure 43, and the vertical axis indicates the electric current in the third direction D3 of the resistance distribution structure 43 at each position corresponding to the horizontal axis. Indicates the resistance value.
 ここで実施形態1の抵抗分布構造43としては、少なくとも第3方向D3と第2方向D2とにおいて異方的な電気抵抗率を有しており、第3方向D3において電気伝導性を有し、第2方向D2において比較的高い電気抵抗率(第3方向D3の電気伝導性よりも低い電気伝導性、あるいは絶縁性)を有している。そして図5(a)で示されるように、第2方向D2において抵抗分布構造43の厚みがフレネルレンズ状に変化していることから、図6(a)の横軸に対応する各位置において縦軸に示すような電気抵抗値をとるようになっている。これらの図で示されるように、抵抗分布構造43の第2方向D2の各位置における第3方向D3の電気抵抗値は、その厚み(第3方向D3の幅)に対応した電気抵抗値をとるようになっており、厚みが増大するにつれて各位置における第3方向D3の電気抵抗値が増大する。なお、抵抗分布構造43の第1方向D1においては、電気伝導性を有するようにしてもよいし、第3方向D3と同程度の電気抵抗率となるようにしてもよい。 Here, the resistance distribution structure 43 of Embodiment 1 has anisotropic electrical resistivity at least in the third direction D3 and the second direction D2, has electrical conductivity in the third direction D3, It has a relatively high electrical resistivity in the second direction D2 (electrical conductivity lower than the electrical conductivity in the third direction D3, or insulation). As shown in FIG. 5A, since the thickness of the resistance distribution structure 43 changes in the second direction D2 like a Fresnel lens, at each position corresponding to the horizontal axis in FIG. It is designed to take the electrical resistance value shown on the axis. As shown in these figures, the electrical resistance value in the third direction D3 at each position in the second direction D2 of the resistance distribution structure 43 takes an electrical resistance value corresponding to its thickness (width in the third direction D3). The electrical resistance value in the third direction D3 at each position increases as the thickness increases. In addition, in the first direction D1 of the resistance distribution structure 43, the resistance distribution structure 43 may have electric conductivity, or may have the same electric resistivity as that in the third direction D3.
 図6(a)に示すように、抵抗分布構造43は、その形状に対応して、複数の起伏からなる鋸歯状の抵抗分布RD1を有する。抵抗分布RD1は、第2方向D2の各位置に対応する第3方向D3の電気抵抗値の分布を示し、複数の抵抗勾配RG1を有する。 As shown in FIG. 6(a), the resistance distribution structure 43 has a sawtooth resistance distribution RD1 consisting of a plurality of undulations corresponding to its shape. The resistance distribution RD1 indicates the distribution of electrical resistance values in the third direction D3 corresponding to each position in the second direction D2, and has a plurality of resistance gradients RG1.
 抵抗分布構造43の第2方向D2の各位置における第3方向D3の電気抵抗値の分布は、その中央を基準として略対称(線対称)であり、略鋸歯状の分布である。 The distribution of the electrical resistance values in the third direction D3 at each position in the second direction D2 of the resistance distribution structure 43 is substantially symmetrical (line symmetrical) with respect to the center, and has a substantially sawtooth distribution.
 図6(b)は、抵抗分布構造43の接続面431における電位分布PD11を示す図である。図6(b)において、縦軸は抵抗分布構造43の接続面431の電位を示し、横軸は抵抗分布構造43における第2方向D2に沿った位置を示す。図6(b)では、図5(b)に示す導電部42の一方端部421に印加される第1制御電圧V1が、導電部42の他方端部422に印加される第2制御電圧V2と等しい。 FIG. 6(b) is a diagram showing the potential distribution PD11 on the connection surface 431 of the resistance distribution structure 43. FIG. In FIG. 6B, the vertical axis indicates the potential of the connecting surface 431 of the resistance distribution structure 43, and the horizontal axis indicates the position in the resistance distribution structure 43 along the second direction D2. 6B, the first control voltage V1 applied to one end 421 of the conductive portion 42 shown in FIG. 5B is applied to the second control voltage V2 applied to the other end 422 of the conductive portion 42 is equal to
 図6(a)および図6(b)に示すように、抵抗分布構造43の接続面431における電位分布PD11の形状は、抵抗分布RD1の形状を反転した形状に対応する。電位勾配PG11は、第2方向D2の電位の勾配を示す。図6(b)の例では、接続面431は、第2方向D2において複数の電位勾配PG11を有する。また、接続面431の電位は、第1方向D1において略一定である。 As shown in FIGS. 6(a) and 6(b), the shape of the potential distribution PD11 on the connection surface 431 of the resistance distribution structure 43 corresponds to the shape of the resistance distribution RD1 inverted. A potential gradient PG11 indicates a potential gradient in the second direction D2. In the example of FIG. 6B, the connection surface 431 has multiple potential gradients PG11 in the second direction D2. Also, the potential of the connection surface 431 is substantially constant in the first direction D1.
 また、図6(b)の例では、電位分布PD11は、対称軸AX1に対して略線対称な略鋸歯状となっており、第1制御電圧V1と第2制御電圧V2が同一の制御電圧となっているため、位置P1での接続面431の電位V10は、位置P2での接続面431の電位V20と略等しくなっている。 Further, in the example of FIG. 6B, the potential distribution PD11 has a substantially sawtooth shape substantially symmetrical with respect to the axis of symmetry AX1, and the first control voltage V1 and the second control voltage V2 are the same control voltage. Therefore, the potential V10 of the connection surface 431 at the position P1 is substantially equal to the potential V20 of the connection surface 431 at the position P2.
 図6(c)は、液晶デバイス100の液晶層65における電位分布PD12を示す図である。なお、図6(c)では、図面の簡略化のために、配向膜64、66を省略している。 FIG. 6(c) is a diagram showing the potential distribution PD12 in the liquid crystal layer 65 of the liquid crystal device 100. FIG. Note that the alignment films 64 and 66 are omitted in FIG. 6C for simplification of the drawing.
 図6(c)に示すように、液晶層65は、接続面431の電位分布PD11に対応する電位分布PD12を有する。具体的には、抵抗分布構造43の接続面431から、複数の線状電極62に対して、電位分布PD11を有する電圧が印加される。その結果、液晶層65には、接続面431の電位分布PD11に対応する電位分布PD12が形成される。また、対向電極67は接地されて接地電位(0V)となっている。 As shown in FIG. 6(c), the liquid crystal layer 65 has a potential distribution PD12 corresponding to the potential distribution PD11 of the connection surface 431. As shown in FIG. Specifically, a voltage having a potential distribution PD11 is applied to the plurality of linear electrodes 62 from the connection surface 431 of the resistance distribution structure 43 . As a result, a potential distribution PD12 corresponding to the potential distribution PD11 of the connection surface 431 is formed in the liquid crystal layer 65 . Also, the counter electrode 67 is grounded and has a ground potential (0 V).
 電位勾配PG12は、液晶層65における第2方向D2の電位の勾配を示す。図6(c)の例では、液晶層65は、第2方向D2において複数の電位勾配PG12を有する。複数の電位勾配PG12は、それぞれ、接続面431における複数の電位勾配PG11に対応している。液晶素子60は、液晶層65の電位分布PD12(具体的には複数の電位勾配PG12)に応じて、屈折率分布PD13を生じさせて、光を収束または発散する。 A potential gradient PG12 indicates a potential gradient in the second direction D2 in the liquid crystal layer 65 . In the example of FIG. 6C, the liquid crystal layer 65 has multiple potential gradients PG12 in the second direction D2. The multiple potential gradients PG12 correspond to the multiple potential gradients PG11 on the connection surface 431, respectively. The liquid crystal element 60 produces a refractive index distribution PD13 according to the potential distribution PD12 (specifically, a plurality of potential gradients PG12) of the liquid crystal layer 65 to converge or diverge light.
 液晶層65の電位分布PD12は、第2方向D2において略鋸歯状となっており、さらに液晶層65の電位は、第1方向D1において略一定となっている。液晶層65に発生する電位分布PD12は光軸AX2に対して略対称となり、液晶素子60は、フレネル型かつ凸型のシリンドリカルレンズとして機能する。 The potential distribution PD12 of the liquid crystal layer 65 has a substantially sawtooth shape in the second direction D2, and the potential of the liquid crystal layer 65 is substantially constant in the first direction D1. The potential distribution PD12 generated in the liquid crystal layer 65 is substantially symmetrical with respect to the optical axis AX2, and the liquid crystal element 60 functions as a Fresnel convex cylindrical lens.
 以上、図6(a)を参照して説明したように、電極部材40の抵抗分布構造43は、第2方向D2において電気抵抗値の分布を有する。従って、図6(b)に示すように、抵抗分布構造43の接続面431には、抵抗分布RD1に応じた電位分布PD11が形成される。その結果、図6(c)に示すように、液晶層65には、電位分布PD12が形成される。よって、液晶層65の液晶分子LCの配向は電位分布PD12に応じて変化する。電位分布PD12に応じた液晶分子LCの配向によって液晶層65の光学的特性(屈折率分布)が設定され、液晶層65がレンズとして機能する。 As described above with reference to FIG. 6(a), the resistance distribution structure 43 of the electrode member 40 has a distribution of electrical resistance values in the second direction D2. Therefore, as shown in FIG. 6B, a potential distribution PD11 is formed on the connection surface 431 of the resistance distribution structure 43 according to the resistance distribution RD1. As a result, a potential distribution PD12 is formed in the liquid crystal layer 65, as shown in FIG. 6(c). Therefore, the orientation of the liquid crystal molecules LC of the liquid crystal layer 65 changes according to the potential distribution PD12. The optical characteristics (refractive index distribution) of the liquid crystal layer 65 are set by the orientation of the liquid crystal molecules LC according to the potential distribution PD12, and the liquid crystal layer 65 functions as a lens.
 次に、図7を参照して、電極部材40の作製方法を説明する。 Next, a method for manufacturing the electrode member 40 will be described with reference to FIG.
 図7(a)および図7(b)は、電極部材40の作製方法を示す図である。図7(a)および図7(b)に示すように、成形部材41は、形状可変抵抗体に押し付けられて、抵抗分布構造43に変形させる。 7(a) and 7(b) are diagrams showing a method of manufacturing the electrode member 40. FIG. As shown in FIGS. 7( a ) and 7 ( b ), the forming member 41 is pressed against the variable shape resistor and deformed into a resistance distribution structure 43 .
 具体的には、図7(a)に示すように、まず、成形部材41に配置面411が形成される。例えば、成形部材41を第1方向D1(図5(a))から見た場合、配置面411は、第2方向D2において略対称な略鋸歯状であり、具体的には、フレネル型シリンドリカルレンズの表面に近似した形状を有する。 Specifically, as shown in FIG. 7( a ), first, an arrangement surface 411 is formed on the molding member 41 . For example, when the molding member 41 is viewed from the first direction D1 (FIG. 5(a)), the arrangement surface 411 has a substantially sawtooth shape that is substantially symmetrical in the second direction D2. has a shape approximating the surface of
 次に、導電部42が配置面411の表面に形成される。導電部42は、金属薄膜が成形部材41に蒸着されることで配置面411に形成される。 Next, the conductive portion 42 is formed on the surface of the placement surface 411 . The conductive portion 42 is formed on the placement surface 411 by vapor-depositing a metal thin film on the molding member 41 .
 そして次に、成形部材41に形成された導電部42が抵抗分布構造43の表面433に当接するように、側面や底面において周囲からの圧力を受けながら、成形部材41が抵抗分布構造43に押し付けられる。その結果、図7(b)に示すように、抵抗分布構造43は、側面や底面の形状が維持されつつ、成形部材41の配置面411および導電部42に対応して表面433が塑性変形される。変形前の抵抗分布構造43の表面433が、変形後の抵抗分布構造43の配置面432である。従って、導電部42は、成形部材41の配置面411と抵抗分布構造43の配置面432との間に配置される。 Next, the molded member 41 is pressed against the resistance distribution structure 43 while receiving pressure from the surroundings on the side and bottom surfaces so that the conductive portions 42 formed on the molded member 41 come into contact with the surface 433 of the resistance distribution structure 43 . be done. As a result, as shown in FIG. 7B, the resistance distribution structure 43 is plastically deformed on the surface 433 corresponding to the arrangement surface 411 of the molded member 41 and the conductive portion 42 while maintaining the shape of the side surface and the bottom surface. be. A surface 433 of the resistance distribution structure 43 before deformation is an arrangement surface 432 of the resistance distribution structure 43 after deformation. Therefore, the conductive portion 42 is arranged between the placement surface 411 of the molded member 41 and the placement surface 432 of the resistance distribution structure 43 .
 以上、図7(a)および図7(b)を参照して説明したように、実施形態1によれば、抵抗分布構造43を変形させることで、抵抗分布RD1を有する抵抗分布構造43を形成できる。導電部42を備えた成形部材41が形状可変抵抗体(抵抗分布構造43)に圧着または熱圧着されることで、形状可変抵抗体内に分散されている導電体の圧着方向における密度が向上する。これにより形状可変抵抗体に電気抵抗率の異方性が付与されて、圧着方向(第3方向D3)の電気抵抗率が、他の方向よりも低い電気抵抗率となる。 As described above with reference to FIGS. 7A and 7B, according to the first embodiment, the resistance distribution structure 43 having the resistance distribution RD1 is formed by deforming the resistance distribution structure 43. can. By crimping or thermally compressing the molded member 41 having the conductive portion 42 to the variable shape resistor (resistance distribution structure 43), the density of the conductors dispersed in the variable shape resistor in the crimping direction is improved. As a result, anisotropy of the electrical resistivity is imparted to the variable shape resistor, and the electrical resistivity in the compression bonding direction (the third direction D3) becomes lower than that in the other directions.
 実施形態1の液晶デバイス100は、上述のような電極部材40を備えており、電極部材40を介して複数の線状電極62に電圧を印加することで、コントローラー20からの出力が鋸歯状の屈折率分布に対応した電位に変換されて各々の線状電極62に入力され、液晶層65の光学的特性を設定できる。従って、簡素な構成によって液晶層65の光学的特性を設定できる。換言すると、コントローラー20の回路構成やコントローラー20から線状電極62に至る配線の設計を簡素にできるため、液晶素子60の形状および配置等の自由度を向上できる。 The liquid crystal device 100 of Embodiment 1 includes the electrode member 40 as described above, and by applying a voltage to the plurality of linear electrodes 62 via the electrode member 40, the output from the controller 20 has a sawtooth shape. The potential is converted into a potential corresponding to the refractive index distribution and input to each linear electrode 62, so that the optical characteristics of the liquid crystal layer 65 can be set. Therefore, the optical characteristics of the liquid crystal layer 65 can be set with a simple configuration. In other words, since the circuit configuration of the controller 20 and the design of the wiring from the controller 20 to the linear electrodes 62 can be simplified, the degree of freedom in the shape and arrangement of the liquid crystal element 60 can be improved.
 次に、実施形態1における液晶ユニット10の製造方法を図8~図10を用いて説明する。 Next, a method for manufacturing the liquid crystal unit 10 according to Embodiment 1 will be described with reference to FIGS. 8 to 10. FIG.
 図8は、実施形態1に係るマザー透明基板200から単位液晶素子が切り離されて加工される様子を概念的に説明するための図であり、マザー透明基板200は、略矩形形状を有する。マザー透明基板200では、第1方向D1に沿って延びる複数の線状電極62が予め形成されており、図8では、複数の線状電極62のうちの一部が表示されている。マザー透明基板200の構成は、図2を参照して説明した液晶素子60の構成とほぼ同様であって、配向膜66および対向電極67が形成された基板68と、配向膜64と複数の線状電極62と電気絶縁体63とが形成された基板61との間に液晶層65が挟持されたものとなっているが、シール部69が未形成である点で異なっている。 FIG. 8 is a diagram for conceptually explaining how the unit liquid crystal elements are cut and processed from the mother transparent substrate 200 according to Embodiment 1. The mother transparent substrate 200 has a substantially rectangular shape. A plurality of linear electrodes 62 extending along the first direction D1 are formed in advance on the mother transparent substrate 200, and some of the plurality of linear electrodes 62 are shown in FIG. The configuration of the mother transparent substrate 200 is substantially the same as the configuration of the liquid crystal element 60 described with reference to FIG. A liquid crystal layer 65 is sandwiched between a substrate 61 on which an electrode 62 and an electric insulator 63 are formed.
 図8においては、最終製品の1単位を構成する液晶素子60(単位液晶素子)が切り出されて加工させる様子が示されている。同図で示されるように、1つのマザー透明基板200から同一形状の複数の単位液晶素子を切り出してもよいし、異なる形状の複数の単位液晶素子60を切り出すようにしてもよい。 FIG. 8 shows how a liquid crystal element 60 (unit liquid crystal element) constituting one unit of the final product is cut out and processed. As shown in the figure, a plurality of unit liquid crystal elements having the same shape may be cut out from one mother transparent substrate 200, or a plurality of unit liquid crystal elements 60 having different shapes may be cut out.
 図9は、液晶ユニット10の製造方法を示すフローチャートである。図9に示すように、製造方法は、工程S1~工程S4を含む。 FIG. 9 is a flow chart showing the manufacturing method of the liquid crystal unit 10. FIG. As shown in FIG. 9, the manufacturing method includes steps S1 to S4.
 図8および図9に示すように、まず、工程S1において、作業者は、マザー透明基板200を準備する。マザー透明基板200は、複数個の単位液晶素子60を割り当てることができる大きさの2枚のマザー基板間に液晶層65が挟持されたものとなっている。工程S1におけるマザー透明基板200は、線状電極62や対向電極67等の形成プロセス等、複数の単位液晶素子60のそれぞれで一括して加工可能な工程がまとめて実行されたものとなっており、工程S1はこのようなマザー透明基板200を準備する工程となっている。 As shown in FIGS. 8 and 9, first, in step S1, an operator prepares a mother transparent substrate 200. As shown in FIGS. The mother transparent substrate 200 has a liquid crystal layer 65 sandwiched between two mother substrates of a size that allows a plurality of unit liquid crystal elements 60 to be allocated. The mother transparent substrate 200 in the step S1 is processed collectively for each of the plurality of unit liquid crystal elements 60, such as the process of forming the linear electrodes 62, the counter electrodes 67, and the like. , step S1 is a step of preparing such a mother transparent substrate 200. As shown in FIG.
 次に、工程S2において、作業者は、切断具を使用して、マザー透明基板200から、単位液晶素子60を切り出す。マザー透明基板200からの切り出し工程では、矩形状に切り出した後にさらに単位液晶素子60の形状を加工してもよいし、マザー透明基板200から単位液晶素子60を任意の形状で直接切り出すようにしてもよい。 Next, in step S2, the worker cuts out the unit liquid crystal elements 60 from the mother transparent substrate 200 using a cutting tool. In the step of cutting out from the mother transparent substrate 200, the shape of the unit liquid crystal element 60 may be further processed after the rectangular shape is cut out, or the unit liquid crystal element 60 may be cut out directly from the mother transparent substrate 200 in an arbitrary shape. good too.
 また実施形態1においては、工程S2の後に工程S3を行う。この工程S3としては、例えば、単位液晶素子60の端部における基板68等を工程S2と同様に切断具を使用して切り出して排除した後、基板68と基板61間に介在する液晶層65を外部からシール材を供給すること等によりシール部69を形成する。そしてさらに、基板68が切り出された単位液晶素子60の端部にてエッチング等の処理をすることにより配向膜64を取り除いて、当該端部における複数の線状電極62を露出させて、電極部材40が接続する領域を確保する。 Also, in Embodiment 1, step S3 is performed after step S2. In this step S3, for example, after cutting out the substrate 68 and the like at the end of the unit liquid crystal element 60 using a cutting tool in the same manner as in step S2, the liquid crystal layer 65 intervening between the substrates 68 and 61 is removed. A sealing portion 69 is formed by supplying a sealing material from the outside. Then, the alignment film 64 is removed by etching or the like at the end of the unit liquid crystal element 60 from which the substrate 68 is cut out, exposing the plurality of linear electrodes 62 at the end, and forming an electrode member. 40 is secured.
 次に、工程S4において、作業者は、単位液晶素子60に電極部材40を電気的に接続する。具体的には、作業者は、図4に示すように、電極部材40の接続面431が複数の線状電極62に接触するように、電極部材40を単位液晶素子60に圧着する。 Next, in step S4, the operator electrically connects the electrode member 40 to the unit liquid crystal element 60. Specifically, the operator crimps the electrode member 40 to the unit liquid crystal element 60 so that the connection surface 431 of the electrode member 40 contacts the plurality of linear electrodes 62, as shown in FIG.
 また図8において例示的に記載されているように、単位液晶素子60の外形において平面的に見て湾曲している部分を含む場合には、当該湾曲している部分に対応した形状を備えた電極部材40を取り付ける。この場合においては、直線状や四角柱状につくられた電極部材40の少なくとも一部を湾曲させて取り付けてもよいし、予め少なくとも一部が湾曲して作られた電極部材40を取り付けるようにしてもよい。取り付けられた電極部材40の導電部42および抵抗分布構造43は、当該湾曲している部分に沿って延在し、当該湾曲している部分において抵抗分布構造43の接続面431は、複数の線状電極62に接触する。 Further, as illustrated in FIG. 8, when the outer shape of the unit liquid crystal element 60 includes a curved portion when viewed in plan, a shape corresponding to the curved portion is provided. Attach the electrode member 40 . In this case, at least a part of the electrode member 40 which is formed in a straight line or square pole shape may be bent and attached, or the electrode member 40 which is prepared by bending at least a part in advance may be attached. good too. The conductive portion 42 and the resistance distribution structure 43 of the attached electrode member 40 extend along the curved portion, and the connection surface 431 of the resistance distribution structure 43 in the curved portion is a plurality of lines. contacting the electrode 62 .
 次に、図10を参照して、マザー透明基板200の好ましい例を説明する。図10(a)は、マザー透明基板200の液晶層65に形成される壁部201を示す図である。図10(b)は、壁部201を示す斜視図である。具体的には、図10(b)は、図10(a)の領域ARに含まれる壁部201を拡大して示す斜視図である。 Next, a preferred example of the mother transparent substrate 200 will be described with reference to FIG. FIG. 10(a) is a diagram showing the wall portion 201 formed in the liquid crystal layer 65 of the mother transparent substrate 200. FIG. FIG. 10B is a perspective view showing the wall portion 201. FIG. Specifically, FIG. 10(b) is a perspective view showing an enlarged wall portion 201 included in the area AR of FIG. 10(a).
 図10(a)および図10(b)に示すように、マザー透明基板200の液晶層65は壁部201を備え、液晶層65において網目構造となるように形成されている。具体的には、壁部201は、第3方向D3に沿って起立しており、図2に示す配向膜64から配向膜66まで延びるように形成されている。壁部201は、液晶層65の面内方向(基板61または基板68に略平行となる方向)への液晶の移動を規制するものとなっている。 As shown in FIGS. 10(a) and 10(b), the liquid crystal layer 65 of the mother transparent substrate 200 has wall portions 201, which are formed to have a mesh structure in the liquid crystal layer 65. As shown in FIGS. Specifically, the wall portion 201 is erected along the third direction D3 and formed to extend from the alignment film 64 to the alignment film 66 shown in FIG. The wall portion 201 regulates the movement of the liquid crystal in the in-plane direction of the liquid crystal layer 65 (the direction substantially parallel to the substrate 61 or the substrate 68).
 壁部201は、例えば、透明であり、熱硬化型エポキシ樹脂あるいは紫外線硬化型樹脂によって形成される。壁部201は、大部分の液晶分子LQの駆動に大きな影響を与えないような厚みや大きさにするのが望ましく、網目構造を採用する場合にも、大部分の液晶分子LQの駆動に大きな影響を与えないような網目の大きさにするのが望ましい。なお壁部201が網目構造となるように形成される場合には、網目の大きさが、例えば1mm2以上、4mm2以上、あるいは10mm2以上といった広さとなるようにしてよい。 The wall portion 201 is transparent, for example, and is formed of thermosetting epoxy resin or ultraviolet curable resin. It is desirable that the wall portion 201 has a thickness and a size that do not significantly affect the driving of most of the liquid crystal molecules LQ. It is desirable to have a mesh size that does not affect the effect. When the wall portion 201 is formed to have a mesh structure, the size of the mesh may be, for example, 1 mm 2 or more, 4 mm 2 or more, or 10 mm 2 or more.
 マザー透明基板200の液晶層65に壁部201が形成されることで、マザー透明基板200から単位液晶素子を切り出す際や、単位液晶素子に電極部材40を接続する際、または、その他の単位液晶素子に対する作業の際に、単位液晶素子から液晶が流出することを抑制できる。 By forming the wall portion 201 on the liquid crystal layer 65 of the mother transparent substrate 200, it is possible to cut out the unit liquid crystal element from the mother transparent substrate 200, connect the electrode member 40 to the unit liquid crystal element, or use other unit liquid crystal. It is possible to prevent the liquid crystal from flowing out of the unit liquid crystal element when working on the element.
 なお壁部201としては、液晶の移動を規制できれば特に限定されず、網目構造でなくてもよいし、必ずしも一定領域を囲んで液晶分子を閉じ込めるような構造である必要はなく、例えば、直線状に形成された構造でひとつの方向への移動を規制するようなものであってもよい。またマザー透明基板200や液晶素子60の液晶層65において、単体の壁部201が形成されて液晶分子の移動が規制されてもよいし、複数の壁部201が形成されて液晶分子の移動が規制されてもよい。また複数の壁部201が均一な密度で液晶層65内に配置されてもよいし、壁部201がT字型やコの字型といった多様な構造で形成されてもよく、壁部201としては平面視において1mm2内、あるいは4mm2におさまらないような大きさであってもよいし、疎密を伴った配置であってもよい。また壁部201によりシール部69を兼ねるようにしてもよいし、壁部201とシール部69が個別に形成されてもよい。 Note that the wall portion 201 is not particularly limited as long as it can regulate the movement of the liquid crystal, and may not have a mesh structure. It may also be a structure formed in the direction that restricts the movement in one direction. In the mother transparent substrate 200 or the liquid crystal layer 65 of the liquid crystal element 60, a single wall portion 201 may be formed to restrict the movement of liquid crystal molecules, or a plurality of wall portions 201 may be formed to prevent the movement of liquid crystal molecules. may be regulated. Moreover, a plurality of wall portions 201 may be arranged in the liquid crystal layer 65 at a uniform density, or the wall portions 201 may be formed in various structures such as a T shape and a U shape. may have a size that does not fall within 1 mm 2 or 4 mm 2 in a plan view, or may be arranged with sparseness and density. The wall portion 201 may also serve as the seal portion 69, or the wall portion 201 and the seal portion 69 may be formed separately.
 以上、図8等で説明をしたように、実施形態1によれば、導電部42と抵抗分布構造43を有していることで液晶ユニット10の構成を簡素にできることもあって、多様な形状の液晶ユニット10を容易に提供できる。なおマザー透明基板200および電極部材40を予め準備しておくこともでき、受注状況に柔軟に対応できるようになる。 As described above with reference to FIG. 8 and the like, according to the first embodiment, the configuration of the liquid crystal unit 10 can be simplified by having the conductive portion 42 and the resistance distribution structure 43, and various shapes can be used. , the liquid crystal unit 10 can be easily provided. Note that the mother transparent substrate 200 and the electrode member 40 can be prepared in advance, so that it becomes possible to flexibly respond to the order situation.
 以下においては、実施形態1の液晶デバイス100におけるコントローラー20(制御部)による制御について、図11および図12を用いて説明する。 Control by the controller 20 (control unit) in the liquid crystal device 100 of Embodiment 1 will be described below with reference to FIGS. 11 and 12. FIG.
 図11は、コントローラー20を示すブロック図である。同図に示すように、コントローラー20は、バッテリー30から供給される電源電圧PVによって駆動される。電源電圧PVは直流電源電圧である。そして、コントローラー20は、電源電圧PVに基づいて、第1制御電圧V1および第2制御電圧V2を生成する。例えば、第1制御電圧V1および第2制御電圧V2の各々は、交流電圧である。コントローラー20は、第1制御電圧V1を導電部42の一方端部421(図5(a))に印加し、第2制御電圧V2を導電部42の他方端部422(図5(a))に印加する。 FIG. 11 is a block diagram showing the controller 20. FIG. As shown in the figure, the controller 20 is driven by the power supply voltage PV supplied from the battery 30 . The power supply voltage PV is a DC power supply voltage. The controller 20 then generates the first control voltage V1 and the second control voltage V2 based on the power supply voltage PV. For example, each of the first control voltage V1 and the second control voltage V2 is an AC voltage. The controller 20 applies the first control voltage V1 to one end 421 (FIG. 5A) of the conductive portion 42, and applies the second control voltage V2 to the other end 422 of the conductive portion 42 (FIG. 5A). applied to
 具体的には、コントローラー20は、プロセッサー21と、メモリー22と、電源回路23とを備える。 Specifically, the controller 20 includes a processor 21, a memory 22, and a power supply circuit 23.
 プロセッサー21は、例えば、CPU(Central Processing Unit)である。メモリー22は、例えば、半導体メモリーである。プロセッサー21およびメモリー22は、例えば、マイクロコンピューターを構成する。プロセッサー21は、メモリー22に記憶されたコンピュータープログラムを実行して、第1制御電圧V1および第2制御電圧V2を生成するように電源回路23を制御する。その結果、電源回路23は、第1制御電圧V1および第2制御電圧V2を生成する。電源回路23は、例えば、インバーターを有し、さらに、第1制御電圧V1を生成する第1電源回路と、第2制御電圧V2を生成する第2電源回路とを有する。 The processor 21 is, for example, a CPU (Central Processing Unit). The memory 22 is, for example, a semiconductor memory. The processor 21 and memory 22 constitute, for example, a microcomputer. Processor 21 executes a computer program stored in memory 22 to control power supply circuit 23 to generate first control voltage V1 and second control voltage V2. As a result, the power supply circuit 23 generates the first control voltage V1 and the second control voltage V2. The power supply circuit 23 has, for example, an inverter, and further has a first power supply circuit that generates the first control voltage V1 and a second power supply circuit that generates the second control voltage V2.
 コントローラー20は、第1制御電圧V1と第2制御電圧V2とが同一となるように、電源回路23を制御する。これにより、互いに等しい実効値の第1制御電圧V1および第2制御電圧V2が生成され、電極部材40の接続面431には、図6(b)に示すような電位分布PD11が形成される。 The controller 20 controls the power supply circuit 23 so that the first control voltage V1 and the second control voltage V2 are the same. As a result, the first control voltage V1 and the second control voltage V2 having the same effective value are generated, and the potential distribution PD11 is formed on the connection surface 431 of the electrode member 40 as shown in FIG.
 また実施形態1におけるコントローラー20としては、第1制御電圧V1と第2制御電圧V2の実効値を異ならせることにより液晶層65の屈折率分布を制御するようにしてもよい。図12は、第1制御電圧V1と第2制御電圧V2の実効値が異なる場合の電極部材40の接続面431における電位分布を示す図である。 Further, the controller 20 in Embodiment 1 may control the refractive index distribution of the liquid crystal layer 65 by varying the effective values of the first control voltage V1 and the second control voltage V2. FIG. 12 is a diagram showing the potential distribution on the connection surface 431 of the electrode member 40 when the effective values of the first control voltage V1 and the second control voltage V2 are different.
 図12に示されるように、第1制御電圧V1と第2制御電圧V2の実効値が異なることで、電極部材40の接続面431における電位分布PD11aは、図6(b)に示す電位分布PD11に対してほぼ傾斜したような電位分布となる。また、対称軸AX1が、垂線の方向を基準として傾斜したものとなり、位置P1での接続面431の電位V10は、位置P2での接続面431の電位V20と異なるものとなる。液晶層65には、電位分布PD11aに対応する電位分布が形成され(複数の電位勾配PG11aに対応する複数の電位勾配が形成され)、液晶素子60の光軸AX2も傾斜したものとなる。 As shown in FIG. 12, since the effective values of the first control voltage V1 and the second control voltage V2 are different, the potential distribution PD11a on the connection surface 431 of the electrode member 40 changes from the potential distribution PD11 shown in FIG. The potential distribution is almost inclined with respect to . Also, the axis of symmetry AX1 is inclined with respect to the direction of the perpendicular, and the potential V10 of the connection surface 431 at the position P1 is different from the potential V20 of the connection surface 431 at the position P2. A potential distribution corresponding to the potential distribution PD11a is formed in the liquid crystal layer 65 (a plurality of potential gradients corresponding to the plurality of potential gradients PG11a are formed), and the optical axis AX2 of the liquid crystal element 60 is also inclined.
 図12においては、第1制御電圧V1の実効値が第2制御電圧V2の実効値よりも大きくなっているが、第1制御電圧V1の実効値が、第2制御電圧V2の実効値よりも小さくてもよい。このように実施形態1のコントローラー20は、電極部材40の両端に印加する電圧(第1制御電圧V1と第2制御電圧V2)を個別に制御することで、液晶層65に形成される電位分布PD12(図6(c))の全体的な傾斜や液晶素子60の光軸AX2の傾斜方向を制御できる。 In FIG. 12, the effective value of the first control voltage V1 is greater than the effective value of the second control voltage V2. It can be small. As described above, the controller 20 of the first embodiment individually controls the voltages (the first control voltage V1 and the second control voltage V2) applied to both ends of the electrode member 40, thereby controlling the potential distribution formed in the liquid crystal layer 65. The overall tilt of the PD 12 (FIG. 6C) and the tilt direction of the optical axis AX2 of the liquid crystal element 60 can be controlled.
 また、実施形態1では、第1制御電圧V1と第2制御電圧V2が同一になるようにしつつ、これらの実効値の大きさを制御することで、レンズとして機能する液晶素子60の焦点距離を制御できる。この場合において、第1制御電圧V1および第2制御電圧V2の実効値が大きい程、焦点距離が小さくなる。また、第1制御電圧V1と第2制御電圧V2の実効値が異なって液晶素子60の光軸が傾斜する場合であっても、第1制御電圧V1の実効値と第2制御電圧V2の実効値の平均の大きさを制御することで、焦点距離を制御できる。 Further, in the first embodiment, the focal length of the liquid crystal element 60 functioning as a lens is changed by controlling the effective values of the first control voltage V1 and the second control voltage V2 while making them the same. You can control it. In this case, the greater the effective values of the first control voltage V1 and the second control voltage V2, the shorter the focal length. Even when the effective values of the first control voltage V1 and the second control voltage V2 are different and the optical axis of the liquid crystal element 60 is tilted, the effective value of the first control voltage V1 and the effective value of the second control voltage V2 are different. By controlling the average magnitude of the values, the focal length can be controlled.
 また、実施形態1のコントローラー20としては、バッテリー30から電源電圧PVが入力されて電極部材40への制御電圧の出力を開始する際、あるいは、液晶素子60の焦点距離や光軸の制御を開始する際に、液晶分子LQ(図2)のひずみを除去するための初期化を実行してもよい。この初期化の際に電極部材40に印加する電圧(以下、初期化電圧)の実効値としては、液晶層65に鋸歯状の屈折率分布を形成して液晶素子60をレンズとして機能させる際の代表的な制御電圧の実効値(例えば、レンズとして機能させる際に入力されうる最大の制御電圧の実効値)の2倍以上としてもよい。 Further, as the controller 20 of the first embodiment, when the power supply voltage PV is input from the battery 30 and the output of the control voltage to the electrode member 40 is started, or when the control of the focal length and the optical axis of the liquid crystal element 60 is started. When doing so, initialization may be performed to remove the distortion of the liquid crystal molecules LQ (FIG. 2). The effective value of the voltage applied to the electrode member 40 during this initialization (hereinafter referred to as the initialization voltage) is the value for forming a sawtooth refractive index distribution in the liquid crystal layer 65 and causing the liquid crystal element 60 to function as a lens. It may be twice or more the effective value of a typical control voltage (for example, the effective value of the maximum control voltage that can be input when functioning as a lens).
 またコントローラー20は、初期化電圧の波形を抵抗分布構造43の有する時定数に合ったものにするとよい。また初期化電圧の波形としては、矩形波であってもよいし、三角波または正弦波であってもよい。 Also, the controller 20 preferably makes the waveform of the initialization voltage match the time constant of the resistance distribution structure 43 . Also, the waveform of the initialization voltage may be a rectangular wave, a triangular wave, or a sine wave.
(変形例1、変形例2)
 次に、図13を参照して、実施形態1の変形例1および変形例2について説明する。図13(a)は、変形例1に係る電極部材40と液晶素子60の様子を示す図であり、図13(b)は、変形例2に係る電極部材40と液晶素子60の様子を示す図である。図13(b)では、図面を見易くするために、接続面431と線状電極62とが間隔をあけて示される。
(Modification 1, Modification 2)
Next, Modifications 1 and 2 of Embodiment 1 will be described with reference to FIG. 13 . FIG. 13(a) is a diagram showing the appearance of the electrode member 40 and the liquid crystal element 60 according to Modification 1, and FIG. 13(b) shows the appearance of the electrode member 40 and the liquid crystal element 60 according to Modification 2. It is a diagram. In FIG. 13(b), the connection surface 431 and the linear electrode 62 are shown with a gap therebetween for easy viewing of the drawing.
 図13(a)に示すように、変形例1では、電極部材40における接続面431は略平面状であり、液晶素子60の端部から、複数の線状電極62に接続する。具体的には、マザー透明基板200から単位液晶素子60を切り出してシール材で液晶層65を封止した後、液晶層65に対して垂直となる端面にて各線状電極62が露出するようにし、当該端面に電極部材40の接続面431を接触させることで、電極部材40の抵抗分布構造43と線状電極62を接続する。変形例1においては、複数の線状電極62の膜厚に比較的厚みを持たせることで、電極部材40と接続しやすくなる。変形例1は、以上のような点で実施形態1と相違しているが、かかる点を除いて実施形態1の構成とほぼ同様であり、ほぼ同様となる構成についての説明は省略する。 As shown in FIG. 13( a ), in Modification 1, the connection surface 431 of the electrode member 40 is substantially planar, and is connected to the plurality of linear electrodes 62 from the end of the liquid crystal element 60 . Specifically, after cutting out the unit liquid crystal element 60 from the mother transparent substrate 200 and sealing the liquid crystal layer 65 with a sealing material, each linear electrode 62 is exposed at the end surface perpendicular to the liquid crystal layer 65 . , the resistance distribution structure 43 of the electrode member 40 and the linear electrode 62 are connected by bringing the connection surface 431 of the electrode member 40 into contact with the end surface. In Modification 1, the film thickness of the plurality of linear electrodes 62 is relatively thick, thereby making it easier to connect with the electrode member 40 . Modification 1 is different from Embodiment 1 in the points described above, but is substantially the same as Embodiment 1 except for this point, and description of substantially the same construction will be omitted.
 図13(b)に示すように、変形例2では、電極部材40が段差を有するように構成されている。変形例2では、この段差によって、電極部材40が液晶素子60の端部で係合するため、圧着の際に固定されやすい構造となっている。変形例2における電極部材40としては、例えば、抵抗分布構造43にて段差が生じるように、形状可変抵抗体を塑性変形してもよい(図7参照)。変形例2は、以上のような点で実施形態1と相違しているが、かかる点を除いて実施形態1の構成とほぼ同様であり、ほぼ同様となる構成についての説明は省略する。 As shown in FIG. 13(b), in Modification 2, the electrode member 40 is configured to have a step. In Modified Example 2, the electrode member 40 engages with the edge portion of the liquid crystal element 60 due to this step, so that the structure is such that the liquid crystal element 60 is easily fixed during crimping. As the electrode member 40 in Modification 2, for example, the variable shape resistor may be plastically deformed so as to generate a step in the resistance distribution structure 43 (see FIG. 7). Modification 2 is different from Embodiment 1 in the points described above, but is substantially the same as Embodiment 1 except for this point, and description of substantially the same construction will be omitted.
 (変形例3)
 次に、実施形態1の変形例3について説明する。変形例3における電極部材40の抵抗分布構造43は、3次元造形装置(3次元プリンタ)により製造される点において、実施形態1の抵抗分布構造43とは相違している。以下、変形例3について説明する。
(Modification 3)
Next, Modification 3 of Embodiment 1 will be described. The resistance distribution structure 43 of the electrode member 40 in Modification 3 is different from the resistance distribution structure 43 of Embodiment 1 in that it is manufactured by a three-dimensional modeling apparatus (three-dimensional printer). Modification 3 will be described below.
 まず変形例3における電極部材40は、実施形態1と同様に、導電部42と抵抗分布構造43を含んで構成されて、導電部42と抵抗分布構造43は揃って電極部材40の長手方向(第2方向D2)に延在するとともに、導電部42は、抵抗分布構造43の厚さ方向(第3方向D3)に積み上げられるように配置されたものとなっている。また抵抗分布構造43は、図7(c)で示される抵抗分布構造43と同様の外形形状を有しており、フレネル型のシリンドリカルレンズ状の起伏のある表面を有している。成形部材41の表面に蒸着された導電部42は、このフレネル型のシリンドリカルレンズ状の表面に配置される。 First, the electrode member 40 in Modification 3 includes a conductive portion 42 and a resistance distribution structure 43 as in Embodiment 1. The conductive portion 42 and the resistance distribution structure 43 are aligned in the longitudinal direction of the electrode member 40 ( The conductive portions 42 extend in the second direction D2) and are arranged so as to be stacked in the thickness direction (third direction D3) of the resistance distribution structure 43 . The resistance distribution structure 43 has the same external shape as the resistance distribution structure 43 shown in FIG. 7(c), and has an undulating surface in the shape of a Fresnel cylindrical lens. The conductive portion 42 vapor-deposited on the surface of the molding member 41 is arranged on this Fresnel-type cylindrical lens-like surface.
 以下においては、変形例3における抵抗分布構造43について、図7(c)を用いてさらに詳しく説明する。変形例3の抵抗分布構造43は、電極部材40の長手方向に材料が逐次積層される3次元造形によって製造される。具体的には、第2方向D2に対して垂直となる方向の2次元スライス形状に沿って材料を結合させた層を形成し、第2方向D2に逐次的に積み上げる(結合する)ことで、異方性を生じさせたものとなっている。 In the following, the resistance distribution structure 43 in Modification 3 will be described in more detail with reference to FIG. 7(c). The resistance distribution structure 43 of Modification 3 is manufactured by three-dimensional modeling in which materials are successively laminated in the longitudinal direction of the electrode member 40 . Specifically, layers are formed by combining materials along a two-dimensional slice shape in a direction perpendicular to the second direction D2, and sequentially stacked (combined) in the second direction D2, Anisotropy is generated.
 また、変形例3の抵抗分布構造43は、電気伝導性の高い第1層と、第1層よりも電気伝導性の低い第2層を含んで構成される。2種類の層が周期的に配置されることで、積層方向における電気抵抗率が他の方向(2次元スライス方向)における電気抵抗率よりも高くなるように構成される。 Also, the resistance distribution structure 43 of Modification 3 includes a first layer with high electrical conductivity and a second layer with lower electrical conductivity than the first layer. By periodically arranging the two types of layers, the electrical resistivity in the lamination direction is configured to be higher than the electrical resistivity in the other direction (two-dimensional slice direction).
 抵抗分布構造43の第1層と第2層としては、例えば、電気伝導性の高い金属層と、電気伝導性の低い(あるいは絶縁性のある)セラミック層を交互に積層することで形成してもよい。また、電気伝導性の高い材料を主材料とし、主材料よりも電気伝導性の低い材料を副材料として、積層時における副材料の付加量を周期的に増減することにより、主材料の含有量が高く副材料の含有量が低い第1層と、主材料の含有量が低く副材料の含有量が高い第2層を形成してもよい。 The first and second layers of the resistance distribution structure 43 are formed, for example, by alternately laminating metal layers with high electrical conductivity and ceramic layers with low electrical conductivity (or with insulating properties). good too. In addition, by using a material with high electrical conductivity as the main material and a material with lower electrical conductivity than the main material as a secondary material, by periodically increasing or decreasing the amount of the secondary material added during lamination, the content of the primary material A first layer having a high σ and a low content of the secondary material and a second layer having a low content of the primary material and a high content of the secondary material may be formed.
 また、電気伝導性の高い所定の材料を積層しつつ周期的に当該所定の材料を改質することで2種類の層を形成し、これにより、積層方向と2次元スライス方向とで抵抗率の異方性が生じるようにしてもよい。この場合には、例えば、アルミニウムによって構成される金属層と、アルミニウムを酸化させた改質層とが周期的に配置されるように3次元造形をする。 Further, by stacking a predetermined material with high electrical conductivity and periodically modifying the predetermined material, two types of layers are formed. Anisotropy may occur. In this case, for example, three-dimensional modeling is performed so that a metal layer composed of aluminum and a modified layer formed by oxidizing aluminum are periodically arranged.
 また、抵抗分布構造43における電気伝導性の高い層と電気伝導性の低い層の積層ピッチとしては、特に限定されず、例えば、10μm以下、あるいは、線状電極62のピッチの1/2以下の長さとなるようにするのが好適である。 In addition, the lamination pitch of the layers with high electrical conductivity and the layers with low electrical conductivity in the resistance distribution structure 43 is not particularly limited. length.
 変形例3の抵抗分布構造43は、以上のような構成を有して、図6(b)のような電位分布PD11を接続面431において生じさせるものとなっている。変形例3の抵抗分布構造43は、以上のような構成を有している点で実施形態1と相違しているが、かかる点を除いて実施形態1の構成とほぼ同様であり、ほぼ同様となる構成についての残りの説明は省略する。 The resistance distribution structure 43 of Modification 3 has the configuration as described above, and generates the potential distribution PD11 as shown in FIG. The resistance distribution structure 43 of Modification 3 differs from Embodiment 1 in that it has the above-described configuration. The remaining description of the resulting configuration is omitted.
 (変形例4)
 次に、図14を参照して、本発明の実施形態1の変形例4に係る電極部材40を説明する。変形例4は、電極部材40が図5(a)に示す成形部材41を備えておらず、抵抗分布構造43Aが3次元造形装置によって製造される点で、実施形態1と主に異なる。以下、変形例4が実施形態1と異なる点を主に説明する。
(Modification 4)
Next, an electrode member 40 according to Modification 4 of Embodiment 1 of the present invention will be described with reference to FIG. Modification 4 is different from Embodiment 1 mainly in that the electrode member 40 does not include the molding member 41 shown in FIG. Differences of the fourth modification from the first embodiment will be mainly described below.
 図14(a)は、変形例4に係る電極部材40を示す斜視図である。図14(a)では、図面を見易くするために、線状電極62が二点鎖線で示される。図14(a)に示すように、電極部材40は、導電部42Aと、抵抗分布構造43Aとを備え、これらは電極部材40の長手方向に沿って延在する。 FIG. 14(a) is a perspective view showing an electrode member 40 according to Modification 4. FIG. In FIG. 14(a), the linear electrode 62 is indicated by a chain double-dashed line in order to make the drawing easier to see. As shown in FIG. 14(a), the electrode member 40 includes a conductive portion 42A and a resistance distribution structure 43A, which extend along the longitudinal direction of the electrode member 40. As shown in FIG.
 導電部42Aは、図5(a)に示す導電部42と同様の導電性薄膜であるが、略平面状に形成されて、抵抗分布構造43の厚さ方向に配置される。また、抵抗分布構造43Aは、略直方体であり、第2方向D2における各位置の厚みがほぼ一定である。抵抗分布構造43Aは、接続面431と、配置面432Aとを有し、変形例4における接続面431と配置面432Aは互いに対向して略平面状に形成される。また、配置面432Aには、導電部42Aが配置される。 The conductive part 42A is a conductive thin film similar to the conductive part 42 shown in FIG. Moreover, the resistance distribution structure 43A is substantially rectangular parallelepiped, and the thickness at each position in the second direction D2 is substantially constant. The resistance distribution structure 43A has a connection surface 431 and an arrangement surface 432A, and the connection surface 431 and the arrangement surface 432A in Modification 4 are formed in a substantially planar shape so as to face each other. Also, the conductive portion 42A is arranged on the arrangement surface 432A.
 変形例4の抵抗分布構造43Aは、第3方向D3と第2方向D2とにおいて異方的な電気抵抗率を有しており、第3方向D3において電気伝導性を有し、第2方向D2において比較的高い電気抵抗率を有するように造形される。またさらに変形例4の抵抗分布構造43Aは、その長手方向(第2方向D2)の位置に応じて厚さ方向(第3方向D3)の抵抗率が変化するように造形されたものとなっている。 The resistance distribution structure 43A of Modification 4 has anisotropic electrical resistivity in the third direction D3 and the second direction D2, electrical conductivity in the third direction D3, and electrical conductivity in the second direction D2. is shaped to have a relatively high electrical resistivity at. Furthermore, the resistance distribution structure 43A of Modification 4 is shaped such that the resistivity in the thickness direction (third direction D3) varies depending on the position in the longitudinal direction (second direction D2). there is
 抵抗分布構造43Aの3次元造形としては、変形例3の場合と同様に、例えば、電気伝導性が高い層と、電気伝導性が低い層とが周期的に配置されるように第2方向D2に逐次的に積層するとよい。そしてさらに、電気伝導性の高い層については、第2方向D2の位置に応じて電気抵抗率が変化するように造形する。この電気伝導性の高い層としては、その造形時に圧力や重合度合い等に関してのパラメータを制御することで、第2方向D2の位置に応じて電気伝導性を変化させるようにしてもよいし、副材料の付加量や改質の度合い等を制御することで、第2方向D2の位置に応じて電気伝導性を変化させるようにしてもよい。 As for the three-dimensional modeling of the resistance distribution structure 43A, as in the case of Modification 3, for example, a layer with high electrical conductivity and a layer with low electrical conductivity are arranged periodically in the second direction D2. It is recommended that the Furthermore, the layer with high electrical conductivity is shaped so that the electrical resistivity changes according to the position in the second direction D2. As for the layer with high electrical conductivity, the electrical conductivity may be changed according to the position in the second direction D2 by controlling parameters such as pressure and the degree of polymerization at the time of molding. The electrical conductivity may be changed according to the position in the second direction D2 by controlling the amount of material added, the degree of modification, and the like.

 図14(b)は、変形例4に係る電極部材40の抵抗分布構造43Aの厚さ方向の抵抗率分布RVDを示す図である。図14(b)において、縦軸は厚さ方向の電気抵抗率を示し、横軸は抵抗分布構造43Aにおける第2方向D2の位置を示す。図14(c)は、変形例4に係る抵抗分布構造43Aにおける抵抗分布RD1を示す図である。

FIG. 14B is a diagram showing the resistivity distribution RVD in the thickness direction of the resistance distribution structure 43A of the electrode member 40 according to Modification 4. As shown in FIG. In FIG. 14B, the vertical axis indicates the electrical resistivity in the thickness direction, and the horizontal axis indicates the position in the second direction D2 in the resistance distribution structure 43A. FIG. 14C is a diagram showing the resistance distribution RD1 in the resistance distribution structure 43A according to Modification 4. As shown in FIG.
 図14(b)に示すように、抵抗分布構造43Aの厚さ方向の電気抵抗率は、第2方向D2の位置に応じて略鋸歯状に変化している。つまり、抵抗分布構造43Aは、厚さ方向の抵抗率分布RVDを有しており、抵抗率分布RVDには複数の抵抗率勾配RVGが含まれて、略線対称の分布となっている。 As shown in FIG. 14(b), the electrical resistivity in the thickness direction of the resistance distribution structure 43A varies substantially in a sawtooth shape according to the position in the second direction D2. In other words, the resistance distribution structure 43A has a resistivity distribution RVD in the thickness direction, and the resistivity distribution RVD includes a plurality of resistivity gradients RVG and has a substantially line-symmetrical distribution.
 図14(c)に示すように、抵抗分布構造43Aの抵抗分布RD1の形状は、その厚さが一定であることから、抵抗率分布RVDの形状に対応している。そして抵抗分布構造43Aの抵抗分布RD1は、図6(a)に示す抵抗分布構造43の抵抗分布RD1と同様になり、液晶層65には、図6(c)に示す電位分布PD12(複数の電位勾配PG12)が形成される。 As shown in FIG. 14(c), the shape of the resistance distribution RD1 of the resistance distribution structure 43A corresponds to the shape of the resistivity distribution RVD since its thickness is constant. The resistance distribution RD1 of the resistance distribution structure 43A is similar to the resistance distribution RD1 of the resistance distribution structure 43 shown in FIG. A potential gradient PG12) is formed.
 変形例4は、以上のような抵抗分布構造43Aの構成で実施形態1と相違しているが、かかる点を除いて実施形態1の構成とほぼ同様であり、ほぼ同様となる構成についての説明は省略する。 Modification 4 differs from Embodiment 1 in the configuration of the resistance distribution structure 43A as described above, but is substantially the same as the configuration of Embodiment 1 except for this point. are omitted.
 (実施形態2)
 図15および図16を参照して、本発明の実施形態2に係る眼鏡300を説明する。実施形態2では、実施形態1に係る液晶デバイス100が眼鏡300に適用される。以下、実施形態2が実施形態1と異なる点を主に説明する。
(Embodiment 2)
A pair of spectacles 300 according to Embodiment 2 of the present invention will be described with reference to FIGS. 15 and 16. FIG. In Embodiment 2, the liquid crystal device 100 according to Embodiment 1 is applied to spectacles 300 . In the following, differences of the second embodiment from the first embodiment will be mainly described.
 図15(a)は、実施形態2に係る眼鏡300を示す斜視図である。図15(a)に示すように、眼鏡300は、フレームFLと、一対のレンズ部材LNと、コントローラー20と、バッテリー30とを備える。一対のレンズ部材LNとコントローラー20とバッテリー30とは、液晶デバイスを構成する。また、眼鏡300は、一対の非接触検出部25と眼電位センサー11のうちの一方または双方を、眼検知部として備えている。 FIG. 15(a) is a perspective view showing spectacles 300 according to Embodiment 2. FIG. As shown in FIG. 15( a ), spectacles 300 include a frame FL, a pair of lens members LN, a controller 20 and a battery 30 . A pair of lens members LN, the controller 20, and the battery 30 constitute a liquid crystal device. The glasses 300 also include one or both of the pair of non-contact detection units 25 and the electrooculography sensor 11 as an eye detection unit.
 フレームFLは一対のレンズ部材LNを保持する。また、フレームFLには、コントローラー20、一対の非接触検出部25、および、バッテリー30が搭載される。 A frame FL holds a pair of lens members LN. In addition, the controller 20, the pair of non-contact detection units 25, and the battery 30 are mounted on the frame FL.
 具体的には、フレームFLは、一対のリム1と、ブリッジ2と、一対のヨロイ3と、一対の丁番4と、一対のテンプル5と、一対のモダン6と、ノーズパッド7とを含んでもよい。リム1はレンズ部材LNを保持する。リム1は「保持部」の一例に相当する。 Specifically, the frame FL includes a pair of rims 1, a bridge 2, a pair of end pieces 3, a pair of hinges 4, a pair of temples 5, a pair of temple tips 6, and a nose pad 7. It's okay. A rim 1 holds a lens member LN. The rim 1 corresponds to an example of a "holding part".
 ブリッジ2は、一対のリム1のうちの一方のリム1と他方のリム1とを連結する。ヨロイ3は、ブリッジ2に対してリム1の外側端部に位置する。ヨロイ3は、丁番4を介してリム1とテンプル5とを連結する。丁番4は、ヨロイ3に対してテンプル5を回動自在に支持する。一対のテンプル5は、眼鏡300の装着者の頭部を挟み込む。モダン6は、テンプル5の先端領域を覆い、装着者の耳の上部に接触する。 The bridge 2 connects one rim 1 and the other rim 1 of the pair of rims 1 . The end piece 3 is located at the outer edge of the rim 1 with respect to the bridge 2. The end piece 3 connects the rim 1 and the temple 5 via the hinge 4 . The hinge 4 rotatably supports the temple 5 with respect to the endpiece 3 . A pair of temples 5 sandwich the head of the wearer of the spectacles 300 . A modern 6 covers the tip region of the temple 5 and contacts the top of the wearer's ear.
 非接触検出部25は、眼鏡300の装着者の眼の動きを検出する。具体的には、一対の非接触検出部25は、それぞれ、装着者の左眼の動きおよび右眼の動きを検出するように、一方のリム1の上部と、他方のリム1の上部に設置される。 The non-contact detection unit 25 detects eye movements of the wearer of the spectacles 300 . Specifically, the pair of non-contact detection units 25 are installed on the top of one rim 1 and the top of the other rim 1 so as to detect the movement of the wearer's left eye and the movement of the right eye, respectively. be done.
 眼電位センサー11は、両眼の眼電位を計測して装着者の眼の動きを検出する。具体的には、眼電位センサー11は、電極8と、一対の電極9とを含む。電極8は、ノーズパッド7に配置される。電極8は、眼鏡300の装着者の鼻に接触する。一対の電極9は、それぞれ、一対のテンプル5に配置される。そして、一対の電極9は、それぞれ、眼鏡300の装着者のこめかみ(肌)に接触する。電極8は、鼻、つまり、左右の眼の略中央部分の電圧を検出する。また、一対の電極9は、左右のこめかみ、つまり、左右の眼の外側部分の電圧を検出する。具体的には、電極8と一方の電極9とは、左眼の眼電位を計測し、電極8と他方の電極9とは、右眼の眼電位を計測する。 The electro-oculogram sensor 11 measures the electro-oculography of both eyes to detect the movement of the wearer's eyes. Specifically, the electro-oculogram sensor 11 includes an electrode 8 and a pair of electrodes 9 . An electrode 8 is arranged on the nose pad 7 . Electrode 8 contacts the nose of the wearer of spectacles 300 . A pair of electrodes 9 are arranged on a pair of temples 5, respectively. The pair of electrodes 9 are in contact with the temples (skin) of the wearer of the spectacles 300, respectively. Electrode 8 detects the voltage at the nose, that is, the voltage at approximately the center of the left and right eyes. A pair of electrodes 9 also detect the voltage of the left and right temples, that is, the voltage of the outer portions of the left and right eyes. Specifically, the electrode 8 and one electrode 9 measure the ocular potential of the left eye, and the electrode 8 and the other electrode 9 measure the ocular potential of the right eye.
 図15(b)は、眼鏡300のレンズ部材LNを模式的に示す斜視図である。図15(b)に示すように、レンズ部材LNは、第1液晶ユニット10Aと、第2液晶ユニット10Bとを備える。この第1液晶ユニット10Aおよび第2液晶ユニット10Bは、それぞれ実施形態1と同様の構成を有するとともに、重ね合わされて接着されて、図15(a)のリム1で保持される。 FIG. 15(b) is a perspective view schematically showing the lens member LN of the spectacles 300. FIG. As shown in FIG. 15(b), the lens member LN includes a first liquid crystal unit 10A and a second liquid crystal unit 10B. The first liquid crystal unit 10A and the second liquid crystal unit 10B each have the same configuration as that of the first embodiment, are superimposed and adhered, and held by the rim 1 in FIG. 15(a).
 以下では、図16を参照してレンズ部材LNの構成について説明する。図16は、レンズ部材LNの分解斜視図である。図16に示すように、第1液晶ユニット10Aおよび第2液晶ユニット10Bは、電極部材40と、液晶素子60とをそれぞれ備えており、第1液晶ユニット10Aにおける複数の線状電極62は、第2液晶ユニット10Bにおける複数の線状電極62とほぼ直交するように重複して配置される。また図16の図中右側においては、第1液晶ユニット10Aおよび第2液晶ユニット10Bにおける電極部材40が有する抵抗分布や、電極部材40によって出力される電位分布が概念的に記載されている。 The configuration of the lens member LN will be described below with reference to FIG. FIG. 16 is an exploded perspective view of the lens member LN. As shown in FIG. 16, the first liquid crystal unit 10A and the second liquid crystal unit 10B each include an electrode member 40 and a liquid crystal element 60, and the plurality of linear electrodes 62 in the first liquid crystal unit 10A It overlaps with the plurality of linear electrodes 62 in the second liquid crystal unit 10B so as to be substantially perpendicular to each other. 16 conceptually shows the resistance distribution of the electrode member 40 in the first liquid crystal unit 10A and the second liquid crystal unit 10B, and the potential distribution output by the electrode member 40. FIG.
 また図16で示されるように、第1液晶ユニット10Aの上辺に対応する位置の端部では、線状電極62が露出するように基板の一部が取り除かれて、電極部材40が配置されて第2方向D2に沿って延びる。一方、第2液晶ユニット10Bの右辺に対応する位置の端部においても、線状電極62が露出するように基板の一部が取り除かれて、電極部材40が配置されて第1方向D1に沿って延びる。 Further, as shown in FIG. 16, at the end of the position corresponding to the upper side of the first liquid crystal unit 10A, part of the substrate is removed so that the linear electrode 62 is exposed, and the electrode member 40 is arranged. It extends along the second direction D2. On the other hand, at the end of the position corresponding to the right side of the second liquid crystal unit 10B, part of the substrate is removed so as to expose the linear electrode 62, and the electrode member 40 is arranged along the first direction D1. extend.
 図16で示されるように、第1液晶ユニット10Aの電極部材40(図16において不図示の抵抗分布構造43)は、装着者にとって水平方向に鋸歯状に起伏した抵抗分布RD1を有し、電極部材40の両端に印加される制御電圧により電位分布PD11を発生させる。これにより、第1液晶ユニット10Aの液晶層65内に、電位分布PD11に対応した電位分布が発生して、装着者にとって垂直方向となる直線状に概ね焦点が結ばれて集光される。 As shown in FIG. 16, the electrode member 40 (resistance distribution structure 43 not shown in FIG. 16) of the first liquid crystal unit 10A has a resistance distribution RD1 undulating in a sawtooth shape in the horizontal direction for the wearer. A control voltage applied across the member 40 generates a potential distribution PD11. As a result, a potential distribution corresponding to the potential distribution PD11 is generated in the liquid crystal layer 65 of the first liquid crystal unit 10A, and the light is generally focused and condensed in a straight line perpendicular to the wearer.
 同様に、図16で示されるように、第2液晶ユニット10Bの電極部材40(図16において不図示の抵抗分布構造43)は、装着者にとって垂直方向に鋸歯状に起伏した抵抗分布RD2を有し、電極部材40の両端に印加される制御電圧により電位分布PD21を発生させる。これにより、第2液晶ユニット10Bの液晶層65内に、電位分布PD21に対応した電位分布が発生して、装着者にとって水平方向となる直線状に概ね焦点が結ばれて集光される。 Similarly, as shown in FIG. 16, the electrode member 40 (resistance distribution structure 43 not shown in FIG. 16) of the second liquid crystal unit 10B has a resistance distribution RD2 undulating in a sawtooth shape in the vertical direction for the wearer. Then, a control voltage applied across the electrode member 40 generates a potential distribution PD21. As a result, a potential distribution corresponding to the potential distribution PD21 is generated in the liquid crystal layer 65 of the second liquid crystal unit 10B, and the light is generally focused and condensed in a straight line that is horizontal to the wearer.
 第1液晶ユニット10Aと第2液晶ユニット10Bが重ね合わせて保持されることで、水平方向と垂直方向のレンズパワーを個別に制御でき、第1液晶ユニット10Aと第2液晶ユニット10Bのそれぞれの焦点距離をそろえることで1か所に焦点を収束させることができるレンズ部材LNを提供できる。またこのとき、第1液晶ユニット10Aと第2液晶ユニット10Bの電極部材40の少なくとも一部が、リム1によって隠れるように保持されるようにしてもよいし、リム1によって電極部材40が液晶素子60の端部に固定(または圧着)されるようにしてもよい。 By overlapping and holding the first liquid crystal unit 10A and the second liquid crystal unit 10B, the lens power in the horizontal direction and the vertical direction can be individually controlled, and the focus of each of the first liquid crystal unit 10A and the second liquid crystal unit 10B can be controlled. By aligning the distance, it is possible to provide the lens member LN that can focus on one point. At this time, at least part of the electrode members 40 of the first liquid crystal unit 10A and the second liquid crystal unit 10B may be held so as to be hidden by the rim 1, or the electrode members 40 may be held by the rim 1 so as to cover the liquid crystal elements. It may be fixed (or crimped) to the end of 60 .
 次に、図11および図16を参照して、レンズ部材LNの制御を説明する。コントローラー20は、第1液晶ユニット10Aの電極部材40の両端に入力される第1制御電圧V1および第2制御電圧V2だけでなく、第2液晶ユニット10Bの電極部材40の両端に入力される第3制御電圧V3および第4制御電圧V4を出力する。具体的には、コントローラー20の電源回路23は、第1制御電圧V1~第4制御電圧V4を生成して、第1液晶ユニット10Aの電極部材40の両端、および、第2液晶ユニット10Bの電極部材40の両端に出力する。 Next, control of the lens member LN will be described with reference to FIGS. 11 and 16. FIG. The controller 20 controls not only the first control voltage V1 and the second control voltage V2 that are input to both ends of the electrode member 40 of the first liquid crystal unit 10A, but also the second control voltage that is input to both ends of the electrode member 40 of the second liquid crystal unit 10B. 3 to output a control voltage V3 and a fourth control voltage V4. Specifically, the power supply circuit 23 of the controller 20 generates the first control voltage V1 to the fourth control voltage V4, and controls both ends of the electrode member 40 of the first liquid crystal unit 10A and the electrodes of the second liquid crystal unit 10B. Output to both ends of the member 40 .
 また実施形態2のコントローラー20は、眼鏡300における左右のレンズ部材LNの制御電圧を出力するため、左眼用のレンズ部材LNへの第1制御電圧V1~第4制御電圧V4と、右眼用のレンズ部材LNへの第1制御電圧V1~第4制御電圧V4を出力する。 Further, since the controller 20 of the second embodiment outputs control voltages for the left and right lens members LN of the spectacles 300, the first control voltage V1 to the fourth control voltage V4 for the left eye lens member LN and the right eye output the first control voltage V1 to the fourth control voltage V4 to the lens member LN.
 またさらに、実施形態2のコントローラー20は、眼検知部(非接触検出部25の各々、あるいは、眼電位センサー11)の検出結果に基づいて、眼鏡300の装着者の左眼の視線方向と右眼の視線方向とを算出する。以下、装着者の左眼の視線方向を「視線方向SLL」ともいい、装着者の右眼の視線方向を「視線方向SLR」ともいう。 Furthermore, the controller 20 of the second embodiment detects the direction of the line of sight of the left eye of the wearer of the spectacles 300 and The gaze direction of the eye is calculated. Hereinafter, the line-of-sight direction of the wearer's left eye is also referred to as "line-of-sight direction SLL", and the line-of-sight direction of the wearer's right eye is also referred to as "line-of-sight direction SLR".
 そして、コントローラー20は、視線方向SLLおよび視線方向SLRに基づいて、眼鏡300の左右のレンズ部材LNに出力する第1制御電圧V1~第4制御電圧V4を制御する。従って、視線方向SLLおよび視線方向SLRに応じて、左右のレンズ部材LNの光軸および/または焦点距離が制御される。 Then, the controller 20 controls the first to fourth control voltages V1 to V4 to be output to the left and right lens members LN of the spectacles 300 based on the line-of-sight direction SLL and the line-of-sight direction SLR. Therefore, the optical axis and/or the focal length of the left and right lens members LN are controlled according to the line-of-sight direction SLL and the line-of-sight direction SLR.
 例えば、一対の非接触検出部25または眼電位センサー11が、眼鏡300の装着者の両眼の輻輳を検出すると、装着者にとって垂直方向に焦点を結んで集光する左右のレンズ部材LNの第1液晶ユニット10Aの制御電圧がそれぞれ制御される。具体的には、左眼用のレンズ部材LNの第1液晶ユニット10Aおよび右眼用のレンズ部材LNの第1液晶ユニット10Aが、装着者の鼻側に向かうように鋸歯状の屈折率分布の光軸を傾斜させるべく(図12参照)、電極部材40の両端に実効値が異なる2つの制御電圧をそれぞれ印加する。なお、輻輳とは、眼鏡300の装着者が対象物を注視しようとする際に、両眼の眼球が内側に寄ったり、外側に広がったりする動きのことである。 For example, when the pair of non-contact detection units 25 or the electro-oculography sensor 11 detects the convergence of both eyes of the wearer of the spectacles 300, the left and right lens members LN that focus and converge in the vertical direction for the wearer The control voltage of one liquid crystal unit 10A is controlled respectively. Specifically, the first liquid crystal unit 10A of the lens member LN for the left eye and the first liquid crystal unit 10A of the lens member LN for the right eye have a sawtooth refractive index distribution directed toward the nose of the wearer. In order to tilt the optical axis (see FIG. 12), two control voltages with different effective values are applied to both ends of the electrode member 40, respectively. Note that convergence is a movement in which the eyeballs of both eyes move inward or widen outward when the wearer of the spectacles 300 tries to gaze at an object.
 眼鏡300の装着者が、任意の対象物に焦点を合わせる輻輳の動き等の視線の動きを検出した際に、上記のように2つのレンズ部材LNの制御電圧を制御して鋸歯状の屈折率分布の光軸を調整することで、コマ収差を補正して視認性を改善できる。 When the wearer of the spectacles 300 detects a movement of the line of sight such as a movement of convergence that focuses on an arbitrary object, the control voltage of the two lens members LN is controlled as described above to obtain a sawtooth refractive index By adjusting the optical axis of the distribution, coma aberration can be corrected and visibility can be improved.
 なお、実施形態2の眼検知部に適用するアイトラッキング技術としては、例えば、角膜反射法、暗瞳孔法、または、明瞳孔法等の非接触型を採用してもよいし、眼電位法等の接触型を採用してもよく、これらに限定されない。また、非接触検出部25の各々は、例えば、LED(Light Emitting Diode)のような光源と、カメラ(例えば、ビデオカメラ)のような撮像部とを含んで構成されるようにしてもよい。 As the eye tracking technology applied to the eye detection unit of the second embodiment, for example, a non-contact type such as a corneal reflection method, a dark pupil method, or a bright pupil method may be adopted, or an electro-oculography method or the like. contact type may be adopted, and is not limited to these. Further, each of the non-contact detection units 25 may include, for example, a light source such as an LED (Light Emitting Diode) and an imaging unit such as a camera (for example, a video camera).
 (実施形態3)
 図17および図18を参照して、本発明の実施形態3に係る電極部材40を説明する。実施形態3に係る電極部材40が少なくとも1つの補助電極45を備えている点で、図7の電極部材40を備えた実施形態1と主に異なる。以下、実施形態3が実施形態1と異なる点を主に説明する。
(Embodiment 3)
An electrode member 40 according to Embodiment 3 of the present invention will be described with reference to FIGS. 17 and 18. FIG. The main difference from Embodiment 1 with the electrode member 40 of FIG. 7 is that the electrode member 40 according to Embodiment 3 includes at least one auxiliary electrode 45 . In the following, differences of the third embodiment from the first embodiment will be mainly described.
 図17(a)は、実施形態3に係る電極部材40を示す斜視図である。図17(b)は、実施形態3に係る電極部材40の導電部42および補助電極45を示す図である。図17(b)は、図17(a)の方向DAから見た導電部42および補助電極45を示している。 FIG. 17(a) is a perspective view showing an electrode member 40 according to Embodiment 3. FIG. FIG. 17(b) is a diagram showing the conductive portion 42 and the auxiliary electrode 45 of the electrode member 40 according to the third embodiment. FIG. 17(b) shows the conductive portion 42 and the auxiliary electrode 45 viewed from the direction DA in FIG. 17(a).
 図17(a)および図17(b)に示すように、電極部材40は、少なくとも1つの補助電極45を備える。実施形態3では、電極部材40は、導電部42において複数の補助電極45を備えており、補助電極45により、導電部42の両端とは別の箇所から制御電圧を印加して、接続面431において生じる電位分布PD31を制御できる。複数の補助電極45は、第2方向D2において間隔をあけて配置されて第1方向D1に沿って延びる。具体的には、補助電極45は、第2方向D2における導電部42の中央領域CAに接触して、導電部42と電気的に接続される。また、補助電極45は、抵抗分布構造43の配置面432に接触しているが、成形部材41と導電部42との間に配置されてもよい。 As shown in FIGS. 17( a ) and 17 ( b ), the electrode member 40 has at least one auxiliary electrode 45 . In Embodiment 3, the electrode member 40 includes a plurality of auxiliary electrodes 45 in the conductive portion 42 , and the auxiliary electrodes 45 apply a control voltage from a location other than both ends of the conductive portion 42 to connect the connection surface 431 . It is possible to control the potential distribution PD31 that occurs at . The plurality of auxiliary electrodes 45 are spaced apart in the second direction D2 and extend along the first direction D1. Specifically, the auxiliary electrode 45 is electrically connected to the conductive portion 42 by contacting the central region CA of the conductive portion 42 in the second direction D2. Also, although the auxiliary electrode 45 is in contact with the placement surface 432 of the resistance distribution structure 43 , it may be placed between the molding member 41 and the conductive portion 42 .
 図11に示すコントローラー20は、複数の補助電極45に補助制御電圧CVを印加する。具体的には、電源回路23が、プロセッサー21の制御を受けて、補助制御電圧CVを補助電極45に印加する。 The controller 20 shown in FIG. 11 applies the auxiliary control voltage CV to the plurality of auxiliary electrodes 45. Specifically, the power supply circuit 23 applies the auxiliary control voltage CV to the auxiliary electrode 45 under the control of the processor 21 .
 実施形態3では、コントローラー20は、複数の補助電極45に対して、補助制御電圧CVとして0Vを印加して、各補助電極45の電位を接地電位に設定する。 In Embodiment 3, the controller 20 applies 0 V as the auxiliary control voltage CV to the plurality of auxiliary electrodes 45 to set the potential of each auxiliary electrode 45 to the ground potential.
 図18(a)は、実施形態3に係る電極部材40の抵抗分布構造43における第2方向D2の各位置における第3方向D3の抵抗分布RD1を示す図である。抵抗分布RD1は、図6(a)に示す抵抗分布RD1と同様である。 FIG. 18(a) is a diagram showing the resistance distribution RD1 in the third direction D3 at each position in the second direction D2 in the resistance distribution structure 43 of the electrode member 40 according to the third embodiment. The resistance distribution RD1 is similar to the resistance distribution RD1 shown in FIG. 6(a).
 図18(b)は、実施形態3に係る抵抗分布構造43の接続面431における電位分布PD31を示す図である。図18(b)では、図17(b)に示す導電部42の両端に印加される制御電圧が等しい。図18(b)に示すように、抵抗分布構造43の接続面431は、第2方向D2において電位分布PD31を有し、電位分布PD31は、複数の電位勾配PG31を有する。実施形態3では補助電極45から接地電位が印加されるため、電位勾配PG31のそれぞれの勾配が図6(b)の場合と比べて大きくなっている。 FIG. 18(b) is a diagram showing the potential distribution PD31 on the connection surface 431 of the resistance distribution structure 43 according to the third embodiment. In FIG. 18(b), the control voltages applied across the conductive portion 42 shown in FIG. 17(b) are equal. As shown in FIG. 18B, the connection surface 431 of the resistance distribution structure 43 has a potential distribution PD31 in the second direction D2, and the potential distribution PD31 has a plurality of potential gradients PG31. In Embodiment 3, since the ground potential is applied from the auxiliary electrode 45, each gradient of the potential gradient PG31 is larger than in the case of FIG. 6(b).
 また図18(b)において示されるように、抵抗分布構造43の接続面431の電位分布PD31は、対称軸AX1を基準として略対称であり、第2方向D2において略鋸歯状である。 Also, as shown in FIG. 18(b), the potential distribution PD31 of the connection surface 431 of the resistance distribution structure 43 is substantially symmetrical with respect to the axis of symmetry AX1 and has a substantially sawtooth shape in the second direction D2.
 図18(c)は、実施形態3に係る液晶デバイス100の液晶層65における電位分布PD32を示す図である。なお、図18(c)では、図面の簡略化のために、配向膜64、66を省略している。図18(c)に示すように、液晶層65は、図18(b)に示す接続面431の電位分布PD31に対応する電位分布PD32を有する。液晶層65の電位分布PD32は、複数の電位勾配PG32を含んでおり、光軸AX2を基準として略対称な略鋸歯状となる。液晶素子60は、液晶層65の電位分布PD32(具体的には複数の電位勾配PG32)に応じて、屈折率分布PD33を生じさせて、光を収束または発散する。これにより、液晶層65は、凸型のフレネル型のシリンドリカルレンズとして機能することとなる。 FIG. 18(c) is a diagram showing the potential distribution PD32 in the liquid crystal layer 65 of the liquid crystal device 100 according to the third embodiment. In addition, in FIG. 18C, the alignment films 64 and 66 are omitted for simplification of the drawing. As shown in FIG. 18(c), the liquid crystal layer 65 has a potential distribution PD32 corresponding to the potential distribution PD31 of the connection surface 431 shown in FIG. 18(b). The potential distribution PD32 of the liquid crystal layer 65 includes a plurality of potential gradients PG32, and has a substantially sawtooth shape that is substantially symmetrical with respect to the optical axis AX2. The liquid crystal element 60 produces a refractive index distribution PD33 according to the potential distribution PD32 (specifically, a plurality of potential gradients PG32) of the liquid crystal layer 65 to converge or diverge light. As a result, the liquid crystal layer 65 functions as a convex Fresnel cylindrical lens.
 また、実施形態3では、図11に示すコントローラー20は、実施形態1の場合と同様に、第1制御電圧V1と第2制御電圧V2の実効値を制御することで、液晶素子60の焦点距離や光軸AX2の傾斜方向を制御できる。また、実施形態3のコントローラー20は、さらに、補助電極45に印加する補助制御電圧CVを制御することで、液晶層65に生じる電位分布PD32に含まれる電位勾配PG32を調整できる。 Further, in the third embodiment, the controller 20 shown in FIG. 11 controls the effective values of the first control voltage V1 and the second control voltage V2 in the same manner as in the first embodiment so that the focal length of the liquid crystal element 60 is and the tilt direction of the optical axis AX2 can be controlled. Further, the controller 20 of Embodiment 3 can further adjust the potential gradient PG32 included in the potential distribution PD32 generated in the liquid crystal layer 65 by controlling the auxiliary control voltage CV applied to the auxiliary electrode 45 .
 なお実施形態3では、図17(b)のように3本の補助電極45が配置されて、それぞれに補助制御電圧CVが印加されているが、このうちから選択された1以上の補助電極45に補助制御電圧CVを印加してもよい。例えば、3本のうちの左右いずれか1本のみの補助電極45に接地電位が印加される場合、液晶層65にて非対称な屈折率分布となるものの、光軸AX2を中央からずらすことができ、光学的特性を調整できる。 In the third embodiment, three auxiliary electrodes 45 are arranged as shown in FIG. 17(b), and the auxiliary control voltage CV is applied to each of them. may be applied with the auxiliary control voltage CV. For example, if the ground potential is applied to only one of the three auxiliary electrodes 45, either left or right, the liquid crystal layer 65 has an asymmetric refractive index distribution, but the optical axis AX2 can be shifted from the center. , optical properties can be adjusted.
 また補助電極45としては、必ずしも中央に配置する必要はなく、中央から離れた複数の位置に規則的に配置されてもよい。また、1または複数の補助電極45に印加する補助制御電圧CVとしては、必ずしも接地電位である必要はなく、実効値を有する交流電圧を印加してもよい。また、複数の補助電極45が導電部42に配置される場合に、互いに異なる補助制御電圧が複数の補助電極45に印加されてもよく、これにより液晶層65に生じる鋸歯状の電位分布PD32を調整してもよい。 Also, the auxiliary electrode 45 does not necessarily need to be arranged in the center, and may be arranged regularly at a plurality of positions away from the center. Further, the auxiliary control voltage CV applied to the one or more auxiliary electrodes 45 does not necessarily have to be the ground potential, and may be an AC voltage having an effective value. Further, when a plurality of auxiliary electrodes 45 are arranged on the conductive portion 42, mutually different auxiliary control voltages may be applied to the plurality of auxiliary electrodes 45, thereby reducing the sawtooth potential distribution PD32 generated in the liquid crystal layer 65. may be adjusted.
 (実施形態4)
 次に図19を参照して、実施形態4について説明する。図19は、実施形態4に係るマザー透明基板200から単位液晶素子が切り離されて加工される様子を概念的に説明するための図である。
(Embodiment 4)
Next, Embodiment 4 will be described with reference to FIG. FIG. 19 is a diagram for conceptually explaining how the unit liquid crystal elements are separated from the mother transparent substrate 200 and processed according to the fourth embodiment.
 同図で示されるように、マザー透明基板200では、複数の内側領域71が間隔を置いて格子状に配列されて、各内側領域71を仕切るように枠状領域(外縁領域72)が配置される。この内側領域71と外縁領域72は、図10のような壁部201が形成される密度が異なる領域となっており、外縁領域72のほうが内側領域71よりも壁部201の密度が高いものとなっている。実施形態4のマザー透明基板200は、このような点において実施形態1のマザー透明基板200と主に相違している。 As shown in the figure, in the mother transparent substrate 200, a plurality of inner regions 71 are arranged in a grid pattern at intervals, and a frame-shaped region (outer edge region 72) is arranged so as to partition each inner region 71. be. The inner region 71 and the outer edge region 72 are regions with different densities in which the wall portions 201 are formed as shown in FIG. It's becoming The mother transparent substrate 200 of Embodiment 4 mainly differs from the mother transparent substrate 200 of Embodiment 1 in this respect.
 図19において示されるように、マザー透明基板200の内側領域71のそれぞれは、単位液晶素子60に対応しており、切り出し線73によって切り離されて、実施形態1の場合と同様に任意の形状に加工される。単位液晶素子60では、液晶層65の外縁に近い場所に外縁領域72が位置しており、外縁領域72よりも内側となる場所に内側領域71が位置している。 As shown in FIG. 19, each of the inner regions 71 of the mother transparent substrate 200 corresponds to the unit liquid crystal element 60 and is separated by the cutout line 73 into an arbitrary shape as in the case of the first embodiment. processed. In the unit liquid crystal element 60 , the outer edge region 72 is positioned near the outer edge of the liquid crystal layer 65 , and the inner region 71 is positioned inside the outer edge region 72 .
 内側領域71および外縁領域72は、複数の線状電極62が延在している領域であり、線状電極62から電界が印加されることで液晶分子が駆動されて屈折率の分布が生じる領域となっている。また、内側領域71と外縁領域72のうちの少なくとも外縁領域72において壁部201が形成されて液晶分子の移動が規制されることで、単位液晶素子60の外部への液晶の漏出を少なくできる。また内側領域71が液晶層65の中央に配置されて、内側領域71を囲むように外縁領域72が配置されることでも、外部への液晶の漏出を少なくできる。 The inner area 71 and the outer edge area 72 are areas in which a plurality of linear electrodes 62 extend, and areas where an electric field is applied from the linear electrodes 62 to drive the liquid crystal molecules and produce a refractive index distribution. It has become. Furthermore, the wall portion 201 is formed in at least the outer edge region 72 out of the inner region 71 and the outer edge region 72 to restrict the movement of the liquid crystal molecules, thereby reducing the leakage of the liquid crystal to the outside of the unit liquid crystal element 60 . Also, by arranging the inner region 71 in the center of the liquid crystal layer 65 and arranging the outer edge region 72 so as to surround the inner region 71, the leakage of liquid crystal to the outside can be reduced.
 また壁部201としては、例えば、実施形態1の図10のような網目状(あるいは升目状)の構造で形成される場合には、内側領域71では網目の大きさが大きく、外縁領域72では網目の大きさが小さくなるようにして、壁部201の密度を異なるようにしてもよい。また壁部201としては、図10のような網目状の構造の場合には、壁部201に仕切られた各領域にて切り欠きを設けて隣接する領域や内側領域71と繋がるようにしてもよい。このようにすることで、マザー透明基板200を準備する際に液晶分子が効率的に液晶層65にいきわたるようになる。 For example, when the wall portion 201 is formed in a mesh (or grid) structure as shown in FIG. The density of the walls 201 may be varied by reducing the size of the mesh. Further, in the case of the wall portion 201 having a mesh structure as shown in FIG. good. By doing so, the liquid crystal molecules efficiently spread over the liquid crystal layer 65 when the mother transparent substrate 200 is prepared.
 また複数の壁部201が配置される場合には、液晶素子60における液晶層65の外部から内側領域71への直線的なアクセスを遮るように、内側領域71を囲むようにして壁部201が外縁領域72に配置されるようにするのが好適である。このように壁部201が点在するような場合であっても、内側領域71からの液晶の漏出を少なくできる。外縁領域72における壁部201の配列ピッチが、内側領域71における配列ピッチよりも小さくなるように形成されてもよいし、外縁領域72のみに壁部201が配置されて、内側領域71において壁部201が存在しないようにしてもよい。 When a plurality of walls 201 are arranged, the walls 201 surround the inner region 71 so as to block linear access to the inner region 71 from the outside of the liquid crystal layer 65 of the liquid crystal element 60. It is preferably located at 72 . Even in such a case where the wall portions 201 are scattered, leakage of liquid crystal from the inner region 71 can be reduced. The arrangement pitch of the wall portions 201 in the outer edge region 72 may be smaller than the arrangement pitch in the inner region 71 , or the wall portions 201 may be arranged only in the outer edge region 72 and the wall portions 201 may be arranged in the inner region 71 . 201 may not exist.
 また図19のように、マザー透明基板200にて壁部201を備えた外縁領域72が形成されることで液晶の漏出を少なくできるので、シール部69による液晶層65の封止工程自体を省略するようにしてもよいし、シール部69を形成する領域を少なくするようにしてもよい。 As shown in FIG. 19, since the outer edge region 72 having the wall portion 201 is formed on the mother transparent substrate 200, leakage of the liquid crystal can be reduced, so that the step of sealing the liquid crystal layer 65 by the sealing portion 69 itself is omitted. Alternatively, the area where the seal portion 69 is formed may be reduced.
 上記の実施形態4は、以上のような点で実施形態1と主に相違しているが、かかる点を除いて実施形態1の構成とほぼ同様であり、ほぼ同様となる構成についての説明は省略する。 The above-described Embodiment 4 differs from Embodiment 1 mainly in the above points. Except for this point, the configuration of Embodiment 4 is substantially the same as that of Embodiment 1, and the description of the configuration that is substantially similar is omitted.
 なお上記の実施形態1等のように、導電部42と抵抗分布構造43が一体化した電極部材40を液晶基板の端部に配置するのが好適であるが、このような態様には限定されず、例えば、導電部42と抵抗分布構造43が別部品として構成されて、異なる工程で液晶基板の端部に配置されてもよい。また導電部42や抵抗分布構造43としては、両者、あるいは、後者のみが、基板61上で直接的に三次元造形やパターニングされることで液晶基板の端部に作りこまれてもよい。抵抗分布構造43としては、例えば、比較的高い抵抗率の材料による配線群が鋸歯状の屈折率分布に対応した長さをそれぞれ有するようにパターニングされて、液晶基板の端部付近にて、配線群のそれぞれが線状電極62に接続されるような構造であってもよい。 Although it is preferable to dispose the electrode member 40 in which the conductive portion 42 and the resistance distribution structure 43 are integrated as in the above-described Embodiment 1, etc., at the end portion of the liquid crystal substrate, it is not limited to such a mode. Instead, for example, the conductive portion 42 and the resistance distribution structure 43 may be configured as separate parts and arranged at the end portion of the liquid crystal substrate in different steps. Both of the conductive portion 42 and the resistance distribution structure 43, or only the latter may be built into the edge portion of the liquid crystal substrate by three-dimensional modeling or patterning directly on the substrate 61. FIG. As the resistance distribution structure 43, for example, a wiring group made of a material having a relatively high resistivity is patterned so as to have a length corresponding to the sawtooth refractive index distribution. A structure in which each of the groups is connected to the linear electrode 62 may be used.
 なお実施形態1等においては、マザー透明基板200が矩形状となってn個×n個の単位液晶素子60に割り当てられるようになっているが、例えばマザー透明基板200としては、1個×n個の短冊状に単位液晶素子60が割り当てられるようになっていてもよい。この場合には、基板68から複数の線状電極62を露出させる工程を単位液晶素子60の切り離し前のマザー透明基板200において実行するようにしてもよい。 In Embodiment 1 and the like, the mother transparent substrate 200 has a rectangular shape and is assigned to the n×n unit liquid crystal elements 60. The unit liquid crystal element 60 may be assigned to each strip. In this case, the step of exposing the plurality of linear electrodes 62 from the substrate 68 may be performed on the mother transparent substrate 200 before the unit liquid crystal elements 60 are separated.
 なお実施形態1等においては、図8で示されるような外形形状の液晶素子60(液晶デバイス100)が製造される例が示されているが、これらに限定されず、例えば、丸形や楕円型といった様々な外形形状に液晶素子60を加工して良く、電極部材40もその外形形状にあわせて湾曲した部分を備えるようにしてよいし、電極部材40の長手方向が湾曲されてもよい。また液晶素子60としては、例えば、電極部材40や電極部材40が圧着される端部が直線状に形成されて、当該端部以外で湾曲した部分を備えるような外形形状であってもよい。また実施形態2における眼鏡300のレンズ部材LNについても同様であり、図8や図15(b)のような外形形状の液晶素子60やレンズ部材LNには限定されず、丸形や楕円型といった様々な外形形状にレンズ部材LNを加工して良い。 In Embodiment 1 and the like, an example is shown in which the liquid crystal element 60 (liquid crystal device 100) having an external shape as shown in FIG. The liquid crystal element 60 may be processed into various external shapes such as molds, the electrode members 40 may also have curved portions according to the external shape, or the electrode members 40 may be curved in the longitudinal direction. Further, the liquid crystal element 60 may have, for example, an external shape in which the electrode member 40 and the end portion to which the electrode member 40 is crimped are formed in a straight line, and the portion other than the end portion is curved. The same applies to the lens member LN of the spectacles 300 according to the second embodiment, and the liquid crystal element 60 and the lens member LN are not limited to the outer shape as shown in FIGS. The lens member LN may be machined into various contours.
 なお実施形態1等の液晶デバイス100についての用途は特に限定されないが、例えば、仮想現実(VR)、拡張現実(AR)、または、複合現実(MR)を実現するためのヘッドマウントディスプレイやゴーグルに適用されてもよい。また、これらや眼鏡に適用される場合には、乱視補正を行う制御をしてもよい。また、液晶デバイス100としては、例えば、眼の治療用の眼鏡、視力の補助用の眼鏡、または、眼のトレーニング用の眼鏡、片めがね、ゴーグル型の眼鏡等にも適用できる。 Although the application of the liquid crystal device 100 of Embodiment 1 and the like is not particularly limited, for example, a head-mounted display or goggles for realizing virtual reality (VR), augmented reality (AR), or mixed reality (MR). may be applied. Further, when applied to these or spectacles, control may be performed to correct astigmatism. The liquid crystal device 100 can also be applied to, for example, glasses for eye treatment, eyeglasses for assisting eyesight, eyeglasses for eye training, single glasses, goggle-type glasses, and the like.
 以上、図面を参照して本発明の実施形態について説明した。ただし、本発明は、上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲で種々の態様において実施できる。また、上記の実施形態に開示される複数の構成要素は適宜改変可能である。例えば、ある実施形態に示される全構成要素のうちのある構成要素を別の実施形態の構成要素に追加してもよく、または、ある実施形態に示される全構成要素のうちのいくつかの構成要素を実施形態から削除してもよい。 The embodiments of the present invention have been described above with reference to the drawings. However, the present invention is not limited to the above-described embodiments, and can be embodied in various aspects without departing from the spirit of the present invention. Also, the plurality of constituent elements disclosed in the above embodiments can be modified as appropriate. For example, some of all the components shown in one embodiment may be added to the components of another embodiment, or some configurations of all the components shown in one embodiment may be added. Elements may be deleted from the embodiment.
 また、図面は、発明の理解を容易にするために、それぞれの構成要素を主体に模式的に示しており、図示された各構成要素の厚さ、長さ、個数、間隔等は、図面作成の都合上から実際とは異なる場合もある。また、上記の実施形態で示す各構成要素の構成は一例であって、特に限定されるものではなく、本発明の効果から実質的に逸脱しない範囲で種々の変更が可能であることは言うまでもない。 In addition, the drawings schematically show each component mainly for easy understanding of the invention, and the thickness, length, number, spacing, etc. It may be different from the actual one due to the convenience of Further, the configuration of each component shown in the above embodiment is an example and is not particularly limited, and it goes without saying that various modifications are possible within a range that does not substantially deviate from the effects of the present invention. .
 (1)上記の実施形態1において、電極部材40が圧着される液晶素子60の端部を広めに確保し、液晶素子60における電極部材40の圧着される位置を所定の範囲で変更できるようにしてもよい。電極部材40が圧着される位置を複数の線状電極62が並設される方向にて変更できるようにすることで、光軸AX2の位置を変更できる。また実施形態2において、レンズ部材LNにおける電極部材40の圧着される端部を広めに確保し、第1液晶ユニット10A(第2液晶ユニット10B)における電極部材40の位置を第2方向D2(第1方向D1)で変更できるようにすることで、装着者の使用感に合わせて光軸AX2の位置を変更できる。また実施形態2の眼鏡300としては、リム1でレンズ部材LNを保持している状態では、電極部材40が圧着される液晶素子60の端部においてクリアランス(隙間)を有するように構成されており、リム1からレンズ部材LNを取り外して電極部材40の位置を変更できるようにすることで液晶素子60の光軸の位置を変更できるようにしてもよい。 (1) In the first embodiment described above, the end of the liquid crystal element 60 to which the electrode member 40 is crimped is ensured to be wide, and the position of the liquid crystal element 60 to which the electrode member 40 is crimped can be changed within a predetermined range. may The position of the optical axis AX2 can be changed by making it possible to change the position where the electrode member 40 is crimped in the direction in which the plurality of linear electrodes 62 are arranged side by side. Further, in Embodiment 2, the end portion of the lens member LN to which the electrode member 40 is crimped is ensured to be wide, and the position of the electrode member 40 in the first liquid crystal unit 10A (second liquid crystal unit 10B) is shifted in the second direction D2 (the second direction D2). By making it possible to change in one direction D1), the position of the optical axis AX2 can be changed according to the feeling of use of the wearer. Further, the spectacles 300 of Embodiment 2 are configured to have a clearance (gap) at the end of the liquid crystal element 60 to which the electrode member 40 is crimped while the lens member LN is held by the rim 1. Alternatively, the position of the optical axis of the liquid crystal element 60 may be changed by removing the lens member LN from the rim 1 to change the position of the electrode member 40 .
 (2)上記の実施形態においては、電極部材40は、液晶素子60の複数の線状電極62の延在方向と交差するように、基板61における1つの端部に配置されているが、液晶ユニット10としては、2つ以上の電極部材40を備えていてもよい。この場合は、例えば、2つの電極部材40が、液晶素子60の互いに向かい合う端部(例えば、上側端部と下側端部)に配置されてもよい。このような2つの電極部材40により、複数の線状電極62への印加電圧を安定的にできる。また、液晶素子60の互いに向かい合う端部にて2つの電極部材40を配置する場合には、一方端部の抵抗分布構造43を凸型のフレネル型シリンドリカルレンズに対応した抵抗値の分布を有するようにし、他方端部の抵抗分布構造43を凹型のフレネル型シリンドリカルレンズに対応した抵抗値の分布を有するようにし、2つの電極部材40のうちの一方に制御電圧が供給されるようにすることで焦点距離の調整範囲を拡大できる。 (2) In the above embodiment, the electrode member 40 is arranged at one end of the substrate 61 so as to cross the extending direction of the plurality of linear electrodes 62 of the liquid crystal element 60. The unit 10 may have two or more electrode members 40 . In this case, for example, two electrode members 40 may be arranged at the ends of the liquid crystal element 60 facing each other (for example, the upper end and the lower end). With such two electrode members 40, the voltage applied to the plurality of linear electrodes 62 can be stabilized. When the two electrode members 40 are arranged at the ends of the liquid crystal element 60 facing each other, the resistance distribution structure 43 at one end is arranged to have a resistance value distribution corresponding to a convex Fresnel cylindrical lens. , and the resistance distribution structure 43 at the other end has a distribution of resistance values corresponding to a concave Fresnel cylindrical lens, and a control voltage is supplied to one of the two electrode members 40. The focal length adjustment range can be expanded.
 (3)また、実施形態2のレンズ部材LNを製造する場合においては、図8に示すマザー透明基板200を2枚用意して、一方のマザー透明基板200の線状電極62が、他方のマザー透明基板200の線状電極62に略直交するように、2枚のマザー透明基板200を第3方向D3に重ねて接着されたものを用いてもよい。この場合は、2枚のマザー透明基板200における線状電極62が形成された基板61が互いに接着されて、第1液晶ユニット10Aの液晶素子60と第2液晶ユニット10Bの液晶素子60が接着された状態で切り出されるようにしてもよい。 (3) Further, when manufacturing the lens member LN of Embodiment 2, two mother transparent substrates 200 shown in FIG. It is also possible to use two mother transparent substrates 200 stacked in the third direction D3 and adhered so as to be substantially orthogonal to the linear electrodes 62 of the transparent substrates 200 . In this case, the substrates 61 on which the linear electrodes 62 are formed in the two mother transparent substrates 200 are adhered to each other, and the liquid crystal element 60 of the first liquid crystal unit 10A and the liquid crystal element 60 of the second liquid crystal unit 10B are adhered. It may be cut out in a state where it is cut out.
 本発明は、液晶デバイス、眼鏡、液晶デバイスの製造方法および電極部材を提供するものであり、産業上の利用可能性を有する。 The present invention provides a liquid crystal device, spectacles, a method for manufacturing a liquid crystal device, and an electrode member, and has industrial applicability.
 1 リム(保持部)
 10 液晶ユニット
 10A 第1液晶ユニット
 10B 第2液晶ユニット
 20 コントローラー(制御部)
 40 電極部材
 43 抵抗分布構造
 42 導電部
 45 補助電極
 60 液晶素子(単位液晶素子)
 62 線状電極
 65 液晶層
 67 対向電極
 100 液晶デバイス
 200 マザー透明基板
 201 壁部
1 rim (holding part)
10 liquid crystal unit 10A first liquid crystal unit 10B second liquid crystal unit 20 controller (control unit)
40 electrode member 43 resistance distribution structure 42 conductive portion 45 auxiliary electrode 60 liquid crystal element (unit liquid crystal element)
62 linear electrode 65 liquid crystal layer 67 counter electrode 100 liquid crystal device 200 mother transparent substrate 201 wall portion

Claims (8)

  1.  液晶層を挟持する液晶基板を有して前記液晶層に鋸歯状の屈折率分布を形成する少なくとも1つの液晶ユニットを備えた液晶デバイスであって、
     前記液晶層に重複して直線状に延在する複数の線状電極と、
     前記複数の線状電極の延在方向と交差するように前記液晶基板の端部にて配置される導電部と抵抗分布構造と
    を有し、
     前記抵抗分布構造は、前記導電部と前記複数の線状電極との間に介在して、前記鋸歯状の屈折率分布に対応した抵抗値の分布を有する、ことを特徴とする液晶デバイス。
    A liquid crystal device comprising at least one liquid crystal unit having liquid crystal substrates sandwiching a liquid crystal layer and forming a sawtooth refractive index distribution in the liquid crystal layer,
    a plurality of linear electrodes overlapping and linearly extending over the liquid crystal layer;
    a conductive portion and a resistance distribution structure arranged at an end portion of the liquid crystal substrate so as to intersect the extending direction of the plurality of linear electrodes;
    The liquid crystal device according to claim 1, wherein the resistance distribution structure is interposed between the conductive portion and the plurality of linear electrodes, and has a distribution of resistance values corresponding to the sawtooth-shaped refractive index distribution.
  2.  前記液晶ユニットの外形は、平面的に見て湾曲した部分を有する請求項1に記載の液晶デバイス。 The liquid crystal device according to claim 1, wherein the outer shape of the liquid crystal unit has a curved portion when viewed two-dimensionally.
  3.  前記鋸歯状の屈折率分布が形成される領域の少なくとも一部には、面内方向への液晶の移動を規制する1または複数の壁部が配置される、ことを特徴とする請求項1または請求項2に記載の液晶デバイス。 2. One or a plurality of wall portions for restricting movement of the liquid crystal in an in-plane direction are disposed in at least a portion of the region where the sawtooth refractive index distribution is formed. 3. A liquid crystal device according to claim 2.
  4.  前記導電部の一方端部にて印加する第1制御電圧と、前記導電部の他方端部にて印加する第2制御電圧と、を出力する制御部をさらに備え、
     前記制御部は、前記第1制御電圧とは異なる前記第2制御電圧を出力することにより前記鋸歯状の屈折率分布を制御する、ことを特徴とする請求項1から請求項3のいずれか1項に記載の液晶デバイス。
    A control unit that outputs a first control voltage applied at one end of the conductive portion and a second control voltage applied at the other end of the conductive portion,
    4. The control section according to any one of claims 1 to 3, wherein the control section controls the sawtooth refractive index distribution by outputting the second control voltage different from the first control voltage. The liquid crystal device according to the item.
  5.  前記液晶デバイスは、2つの前記液晶ユニットを含み、
     前記2つの液晶ユニットは、それぞれにおける前記複数の線状電極の延在方向が略直交するように重複して配置される、ことを特徴とする請求項1から請求項4のいずれか1項に記載の液晶デバイス。
    The liquid crystal device includes two liquid crystal units,
    5. The liquid crystal unit according to any one of claims 1 to 4, wherein the two liquid crystal units are overlapped so that the extending directions of the plurality of linear electrodes in each are substantially orthogonal to each other. The described liquid crystal device.
  6.  請求項5に記載の液晶デバイスを一対備え、
     前記一対の液晶デバイスを保持する保持部を備えた眼鏡。
    A pair of liquid crystal devices according to claim 5,
    Glasses comprising a holding portion for holding the pair of liquid crystal devices.
  7.  液晶デバイスの製造方法であって、
     2つのマザー基板間に液晶層が配置されたマザー透明基板を準備する工程と、
     前記マザー透明基板から、所定の形状を有した単位液晶素子を切り出す工程と、
     前記単位液晶素子の端部にて電極部材が延在するように、前記単位液晶素子と前記電極部材とを電気的に接続する工程と、
     を含み、
     前記単位液晶素子は、鋸歯状の屈折率分布を液晶層内に生じさせるために直線状に延在する複数の線状電極を含み、
     前記電極部材は、電気伝導性を有する導電部と、前記鋸歯状の屈折率分布に対応した抵抗値の分布を有する抵抗分布構造と、を含み、
     前記単位液晶素子と前記電極部材とを電気的に接続する工程では、前記抵抗分布構造が前記導電部と前記複数の線状電極との間に介在して、前記電極部材が前記複数の線状電極の延在方向と交差するように接続される、ことを特徴とする液晶デバイスの製造方法。
    A method for manufacturing a liquid crystal device,
    preparing a mother transparent substrate having a liquid crystal layer disposed between two mother substrates;
    a step of cutting out a unit liquid crystal element having a predetermined shape from the mother transparent substrate;
    electrically connecting the unit liquid crystal element and the electrode member such that the electrode member extends at the end of the unit liquid crystal element;
    including
    The unit liquid crystal element includes a plurality of linear electrodes extending linearly to generate a sawtooth refractive index distribution in the liquid crystal layer,
    The electrode member includes a conductive portion having electrical conductivity and a resistance distribution structure having a resistance value distribution corresponding to the sawtooth refractive index distribution,
    In the step of electrically connecting the unit liquid crystal element and the electrode member, the resistance distribution structure is interposed between the conductive portion and the plurality of linear electrodes, and the electrode member is connected to the plurality of linear electrodes. A method of manufacturing a liquid crystal device, wherein the electrodes are connected so as to intersect the extending direction of the electrodes.
  8.  鋸歯状の屈折率分布に対応する電位分布を液晶層に供給するための棒状の電極部材であって、
     電気伝導性を有する導電部と、
     前記屈折率分布に対応した抵抗値の分布を有する抵抗分布構造と、
    を含み、
     前記導電部および前記抵抗分布構造は、前記電極部材の長手方向に延在し、
     前記導電部は、前記抵抗分布構造の厚さ方向に配置され、
     前記抵抗分布構造は、前記長手方向の電気抵抗率が前記厚さ方向の電気抵抗率よりも高くなるように構成されて、前記長手方向の位置に応じて前記厚さ方向の抵抗値が変化することにより前記電位分布を生じさせる、ことを特徴とする電極部材。
    A rod-shaped electrode member for supplying a potential distribution corresponding to a sawtooth refractive index distribution to a liquid crystal layer,
    a conductive portion having electrical conductivity;
    a resistance distribution structure having a distribution of resistance values corresponding to the refractive index distribution;
    including
    The conductive portion and the resistance distribution structure extend in the longitudinal direction of the electrode member,
    The conductive portion is arranged in the thickness direction of the resistance distribution structure,
    The resistance distribution structure is configured such that the electrical resistivity in the longitudinal direction is higher than the electrical resistivity in the thickness direction, and the resistance value in the thickness direction changes according to the position in the longitudinal direction. An electrode member characterized in that the electric potential distribution is generated by:
PCT/JP2022/001577 2021-03-29 2022-01-18 Liquid crystal device, eyeglasses, method for manufacturing liquid crystal device, and electrode member WO2022209163A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023510506A JPWO2022209163A1 (en) 2021-03-29 2022-01-18

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021055476 2021-03-29
JP2021-055476 2021-03-29

Publications (1)

Publication Number Publication Date
WO2022209163A1 true WO2022209163A1 (en) 2022-10-06

Family

ID=83458603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001577 WO2022209163A1 (en) 2021-03-29 2022-01-18 Liquid crystal device, eyeglasses, method for manufacturing liquid crystal device, and electrode member

Country Status (2)

Country Link
JP (1) JPWO2022209163A1 (en)
WO (1) WO2022209163A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62209412A (en) * 1986-03-10 1987-09-14 Jiesu:Kk Variable focal length liquid crystal lens for correcting astigmatism
JPH05188343A (en) * 1992-01-09 1993-07-30 Nippon Telegr & Teleph Corp <Ntt> Light direction control element
WO2013151164A1 (en) * 2012-04-06 2013-10-10 シャープ株式会社 Stereoscopic display device
WO2020255248A1 (en) * 2019-06-18 2020-12-24 国立大学法人大阪大学 Liquid crystal element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62209412A (en) * 1986-03-10 1987-09-14 Jiesu:Kk Variable focal length liquid crystal lens for correcting astigmatism
JPH05188343A (en) * 1992-01-09 1993-07-30 Nippon Telegr & Teleph Corp <Ntt> Light direction control element
WO2013151164A1 (en) * 2012-04-06 2013-10-10 シャープ株式会社 Stereoscopic display device
WO2020255248A1 (en) * 2019-06-18 2020-12-24 国立大学法人大阪大学 Liquid crystal element

Also Published As

Publication number Publication date
JPWO2022209163A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
CN106662680B (en) Control of dynamic lens
JP2022058891A (en) Spectacles and optical element
US11221488B1 (en) Tunable and foveated lens systems
CN105992969B (en) Liquid crystal lenticular lens element, method of driving the same, stereoscopic display device, and terminal
CN109669277B (en) Active matrix focusing lens and focusing glasses with same
US11086143B1 (en) Tunable and foveated lens systems
CN105702171A (en) Display device and display method
US10114223B2 (en) Imaging device and data eyeglasses
US11243448B2 (en) Varifocal optical assembly providing astigmatism compensation
US11287648B2 (en) Inconspicuous near-eye electrical circuits
WO2018016390A1 (en) Liquid crystal element, deflection element and eye glasses
WO2020097149A2 (en) Inconspicuous near-eye electrical components
US20240168342A1 (en) Optical devices and head-mounted displays employing tunable cylindrical lenses
WO2022209163A1 (en) Liquid crystal device, eyeglasses, method for manufacturing liquid crystal device, and electrode member
JP7073455B2 (en) Lenses, lens blanks and eyewear
TWI791621B (en) Eyewear
US20220057691A1 (en) Tunable optical lens and electronic apparatus employing the same
JP2017203952A (en) Image display device, glasses type image display device, and binocular image display device
KR20220022838A (en) Tunable optical lens and electronic apparatus employing the same
CN205751379U (en) Display device
CN112596269A (en) Adjustable liquid lens, optical vision correction glasses and control method thereof
US20230258936A1 (en) Optical elements with spatially-variable optical power
US11885972B1 (en) Optical element having peripheral foveating region
US20240134234A1 (en) Liquid crystal element and eyeglasses
US20230258959A1 (en) Actively adaptive optical elements and apparatuses

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779395

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023510506

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779395

Country of ref document: EP

Kind code of ref document: A1