WO2022209136A1 - Lens device and imaging device - Google Patents

Lens device and imaging device Download PDF

Info

Publication number
WO2022209136A1
WO2022209136A1 PCT/JP2022/000997 JP2022000997W WO2022209136A1 WO 2022209136 A1 WO2022209136 A1 WO 2022209136A1 JP 2022000997 W JP2022000997 W JP 2022000997W WO 2022209136 A1 WO2022209136 A1 WO 2022209136A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
polarizer
lens
image
ring
Prior art date
Application number
PCT/JP2022/000997
Other languages
French (fr)
Japanese (ja)
Inventor
臣一 下津
哲也 藤川
智大 島田
敏浩 青井
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2023510295A priority Critical patent/JPWO2022209136A1/ja
Publication of WO2022209136A1 publication Critical patent/WO2022209136A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B11/00Filters or other obturators specially adapted for photographic purposes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof

Definitions

  • the technology of the present disclosure relates to a lens device and an imaging device.
  • Japanese Patent Application Laid-Open No. 2002-303513 discloses an imaging means for acquiring a plurality of images of an object to be observed with polarized light having different polarization directions, and processing the plurality of images acquired by the imaging means to determine the brightness of the object to be observed.
  • An observation apparatus which has an image processing means for creating an image and an image display means for displaying the brightness image of the observed object created by the image processing means.
  • Japanese Patent Application Laid-Open No. 2016-208136 describes a first surface, a second surface that forms a vertical angle of 60 degrees at one end of the first surface, and a 60 degree angle at the other end of the first surface. and a third surface forming an angle of 60 degrees with respect to the second surface as well. and a second prism that divides the light beams into two light beams and makes the two light beams perpendicularly incident on the first surface; It has a splitting surface that passes through the intersection of the first surface and the third surface and is perpendicular to the second surface.
  • a multi-function image acquisition device that simultaneously captures and acquires multiple images simultaneously.
  • Japanese National Publication of International Patent Application No. 2009-226131 discloses a screen provided on the front side of an apparatus main body, and a camera for receiving electromagnetic waves provided on the front side of the apparatus main body and around the screen.
  • a mirror is provided on the surface of the screen, and a polarizing filter or liquid crystal element is placed inside the screen.
  • the image is projected onto the element and projected onto the screen, and on the other hand, when the camera and the administration device are in the off state, the mirror reflects the light to create a reflection image, and if there is a person in front of the screen, the figure of the human body can be seen.
  • An image display device capable of displaying a reflected image is disclosed.
  • One embodiment according to the technology of the present disclosure provides a lens device and an imaging device that can limit the movement of the focus lens when displacing the polarizer.
  • a first aspect of the technology of the present disclosure includes a focus lens that transmits light, a movement mechanism that moves the focus lens in the optical axis direction, a first position that transmits a first polarized component included in light, and light a polarizer displaced to a second position for transmitting a second polarized component included in the polarizer, a displacement mechanism for displacing the polarizer, a first state for allowing movement of the focus lens by the movement mechanism, and a focus lens by the movement mechanism and a first lock mechanism having a second state that restricts movement of the lens.
  • a second aspect of the technology of the present disclosure is the lens device according to the first aspect, in which the first state and the second state are switched based on the displacement of the polarizer by the displacement mechanism.
  • a third aspect of the technology of the present disclosure is the lens device according to the first aspect or the second aspect, further comprising a diaphragm through which light passes and a changing mechanism that changes the aperture amount of light by the diaphragm. and a second lock mechanism having a third state that permits change of the aperture amount by the change mechanism and a fourth state that restricts change of the aperture amount by the change mechanism.
  • a fourth aspect of the technology of the present disclosure is the lens device according to the third aspect, in which the third state and the fourth state are switched based on the displacement of the polarizer by the displacement mechanism.
  • a fifth aspect of the technology of the present disclosure is the lens device according to the fourth aspect, in which switching between the first state and the second state and switching between the third state and the fourth state are performed in parallel. lens device.
  • a sixth aspect of the technology of the present disclosure is the lens device according to any one of the first to fifth aspects, wherein the displacement mechanism includes a rotation mechanism that rotates the polarizer around the optical axis direction. lens device.
  • a seventh aspect of the technology of the present disclosure is the lens device according to any one of the first to fifth aspects, wherein the polarizer includes a first polarizer that transmits a first polarized component; and a second polarizer that transmits two polarized components, and the displacement mechanism includes a slide mechanism that switches between the first polarizer and the second polarizer by sliding the polarizer in a direction crossing the optical axis direction. It is a device.
  • An eighth aspect of the technology of the present disclosure is the lens device according to any one of the first to seventh aspects, further comprising a lens barrel that supports the moving mechanism and the displacement mechanism, wherein the first state is , the first lock mechanism is a state in which the movement mechanism is released from the lens barrel, and the second state is a lens device in which the first lock mechanism is in a state in which the movement mechanism is fixed to the lens barrel.
  • a ninth aspect of the technology of the present disclosure is the lens device according to any one of the first to seventh aspects, further comprising a lens barrel that supports the moving mechanism and the displacement mechanism, wherein the first state is , a state in which the first locking mechanism is removed from the lens barrel, and a second state is a state in which the first locking mechanism is attached to the lens barrel.
  • a tenth aspect of the technology of the present disclosure is the lens device according to any one of the first to seventh aspects, wherein the moving mechanism has a first engaging portion, and the first locking mechanism has and a second engaging portion, the first state being a state in which the first engaging portion is separated from the second engaging portion, and the second state being a state in which the first engaging portion is separated from the second engaging portion.
  • Fig. 4 is a lens device in an engaged state;
  • An eleventh aspect of the technology of the present disclosure is, in the lens device of the tenth aspect, a sensor that detects the position of the polarizer, and a first and a driving mechanism.
  • a twelfth aspect of the technology of the present disclosure is the lens device according to the eleventh aspect, further comprising a first processor that controls the first driving mechanism based on the detection result of the sensor.
  • a thirteenth aspect of the technology of the present disclosure is the lens device according to any one of the first to seventh aspects, wherein a second drive mechanism for driving the first lock mechanism and a second drive mechanism are and a controlling second processor.
  • a fourteenth aspect of the technology of the present disclosure is the lens device according to the thirteenth aspect, wherein the second processor controls the second drive mechanism to switch the first locking mechanism to the first state in the first mode. and a second mode in which the first lock mechanism controls the second drive mechanism to switch to the second state.
  • a fifteenth aspect of the technology of the present disclosure is the lens device according to the fourteenth aspect, wherein the second processor switches between the first mode and the second mode based on an external instruction or information obtained from the subject. It is a lens device that switches to
  • a sixteenth aspect of the technology of the present disclosure is, in the lens device according to any one of the first to fifteenth aspects, a third drive mechanism that drives the displacement mechanism, and a control of the third drive mechanism. and a third processor.
  • a seventeenth aspect of the technology of the present disclosure is the lens device according to the sixteenth aspect, wherein the third processor causes the image sensor to capture an image of light transmitted through the polarizer when the polarizer is at the first position. and a second image obtained by imaging the light transmitted through the polarizer with the image sensor when the polarizer is at the second position. is a lens device that controls the
  • An eighteenth aspect of the technology of the present disclosure is the lens device according to any one of the first to seventeenth aspects, further comprising a filter that selectively transmits near-infrared light contained in the light. lens device.
  • a nineteenth aspect of the technology of the present disclosure is the lens device according to the eighteenth aspect, wherein the filter is integrated with the polarizer.
  • a twentieth aspect of the technology of the present disclosure is an image pickup including the lens device according to any one of the first to nineteenth aspects, and an image sensor on which light transmitted through the lens device forms an image. It is a device.
  • FIG. 2 is a block diagram showing an example of an imaging device main body according to the first embodiment;
  • FIG. It is a figure which shows an example of operation
  • It is a perspective view showing an example of a lens device concerning a 1st embodiment.
  • It is a figure which shows an example of the polarizer which concerns on 1st Embodiment.
  • FIG. 5 is a graph showing an example of the relationship between the incident angle and the reflectance for the first polarized component and the second polarized component included in the reflected light; It is a perspective view which shows an example of a to-be-photographed object. It is a figure which shows an example of a 1st near-infrared light image. It is a figure which shows an example of a 2nd near-infrared light image. It is a figure which shows an example of the flow of the usage method of the imaging device which concerns on 1st Embodiment. It is a figure which shows an example of the polarizer which concerns on 2nd Embodiment. It is a figure which shows an example of the polarizer which concerns on 3rd Embodiment.
  • FIG. 12 is a side cross-sectional view showing an example of an imaging device according to a sixth embodiment; It is a figure which shows an example of the turret filter which concerns on 6th Embodiment. It is a figure which shows an example of the lens apparatus which concerns on 7th Embodiment.
  • FIG. 12 is a cross-sectional view of the lens device according to the seventh embodiment at the position of the first ring; FIG.
  • FIG. 14 is a cross-sectional view of the lens device according to the seventh embodiment at the position of the second ring; It is a figure which shows an example of the lens apparatus which concerns on 8th Embodiment.
  • FIG. 20 is a cross-sectional view at the position of the first ring of the lens device according to the eighth embodiment;
  • FIG. 21 is a cross-sectional view at the position of the second ring of the lens device according to the eighth embodiment; It is a figure which shows an example of the lens apparatus which concerns on 9th Embodiment. It is a figure which shows an example of the lens apparatus which concerns on 10th Embodiment.
  • FIG. 21 is a cross-sectional view at the position of the third ring of the lens device according to the tenth embodiment;
  • FIG. 22 is a block diagram showing an example of an imaging device according to an eleventh embodiment
  • FIG. FIG. 21 is a block diagram showing an example of a functional configuration of a CPU according to an eleventh embodiment
  • FIG. FIG. 22 is a flow chart showing an example of the operation of the CPU according to the eleventh embodiment
  • FIG. FIG. 22 is a block diagram showing an example of an imaging device according to a twelfth embodiment
  • FIG. 22 is a flow chart showing an example of the operation of a CPU according to the twelfth embodiment
  • CPU is an abbreviation for "Central Processing Unit”.
  • GPU is an abbreviation for "Graphics Processing Unit”.
  • NVM is an abbreviation for "Non-Volatile Memory”.
  • RAM is an abbreviation for "Random Access Memory”.
  • IC is an abbreviation for "Integrated Circuit”.
  • ASIC is an abbreviation for "Application Specific Integrated Circuit”.
  • PLD is an abbreviation for "Programmable Logic Device”.
  • FPGA is an abbreviation for "Field-Programmable Gate Array”.
  • SoC is an abbreviation for "System-on-a-chip.”
  • SSD is an abbreviation for "Solid State Drive”.
  • HDD is an abbreviation for "Hard Disk Drive”.
  • EEPROM is an abbreviation for "Electrically Erasable and Programmable Read Only Memory”.
  • SRAM is an abbreviation for "Static Random Access Memory”.
  • I/F is an abbreviation for "Interface”.
  • USB is an abbreviation for "Universal Serial Bus”.
  • CMOS is an abbreviation for "Complementary Metal Oxide Semiconductor”.
  • CCD is an abbreviation for "Charge Coupled Device”.
  • LAN is an abbreviation for "Local Area Network”.
  • WAN is an abbreviation for "Wide Area Network”.
  • BPF is an abbreviation for "Band Pass Filter”.
  • Ir is an abbreviation for "Infrared Rays”.
  • EL is an abbreviation for "Electro Luminescence”.
  • perpendicular means an error that is generally allowed in the technical field to which the technology of the present disclosure belongs, in addition to perfect verticality, and does not go against the spirit of the technology of the present disclosure. It refers to the vertical in the sense of including the error of
  • horizontal means an error that is generally allowed in the technical field to which the technology of the present disclosure belongs, in addition to being completely horizontal, and is not contrary to the spirit of the technology of the present disclosure.
  • parallel means, in addition to complete parallelism, an error that is generally allowed in the technical field to which the technology of the present disclosure belongs, and does not go against the spirit of the technology of the present disclosure. It refers to parallel in the sense of including the error of In the description of this specification, “orthogonal” is an error that is generally allowed in the technical field to which the technology of the present disclosure belongs, in addition to perfect orthogonality, and is not contrary to the spirit of the technology of the present disclosure.
  • match means, in addition to perfect match, an error that is generally allowed in the technical field to which the technology of the present disclosure belongs, and does not go against the spirit of the technology of the present disclosure. It refers to a match in terms of meaning including errors in
  • the term “equidistant interval” means an error that is generally allowed in the technical field to which the technology of the present disclosure belongs, in addition to perfectly equal intervals, and is contrary to the spirit of the technology of the present disclosure. It refers to equal intervals in the sense of including errors to the extent that they do not occur.
  • the imaging device 10 includes an imaging device body 12 and a lens device 14 .
  • the lens device 14 is provided on the front surface of the imaging device main body 12 .
  • the lens device 14 may be a fixed lens device fixed to the imaging device body 12 or an interchangeable lens device removable from the imaging device body 12 .
  • the imaging device main body 12 has an image sensor 16 .
  • the image sensor 16 has a light receiving surface 16A.
  • Light transmitted through the lens device 14 forms an image on the light receiving surface 16A.
  • a plurality of photodiodes (not shown) are arranged in a matrix on the light receiving surface 16A.
  • the plurality of photodiodes includes a plurality of silicon photodiodes sensitive to visible light and a plurality of indium-gallium-arsenide photodiodes sensitive to near-infrared light.
  • the silicon photodiode will be referred to as a Si diode
  • the indium-gallium-arsenide photodiode will be referred to as an InGaAs diode.
  • a plurality of Si diodes generate and output analog image data according to the received visible light.
  • a plurality of InGaAs diodes generate and output analog image data corresponding to the received near-infrared light.
  • CMOS image sensor is exemplified as the image sensor 16, but the technology of the present disclosure is not limited to this. The technology of the present disclosure is also established.
  • the imaging device body 12 includes a control circuit 20, a display 22, a reception device 24, and an external I/F 26.
  • the control circuit 20 includes an image sensor driver 28 , signal processing circuitry 30 , display control circuitry 32 , acceptance circuitry 34 and computer 36 .
  • Image sensor driver 28 , signal processing circuit 30 , display control circuit 32 , reception circuit 34 , and external I/F 26 are connected to computer 36 via input/output I/F 38 .
  • the computer 36 includes a CPU 42, NVM 44, and RAM 46.
  • CPU 42 , NVM 44 and RAM 46 are interconnected via bus 48 .
  • Bus 48 is connected to input/output I/F 38 .
  • the NVM 44 is a non-temporary storage medium and stores various parameters and various programs.
  • NVM 44 is an EEPROM.
  • the RAM 46 temporarily stores various information and is used as a work memory.
  • the CPU 42 reads necessary programs from the NVM 44 and executes the read programs on the RAM 46 .
  • the CPU 42 controls the entire imaging device 10 according to programs executed on the RAM 46 .
  • the image sensor driver 28 outputs an imaging timing signal to the image sensor 16 according to instructions from the CPU 42 .
  • the image sensor 16 captures light according to the imaging timing signal.
  • the signal processing circuit 30 performs various signal processing on the analog image data output from the image sensor 16 to generate and output digital image data.
  • the CPU 42 generates image display data based on the digital image data.
  • the display 22 is, for example, a liquid crystal display or an EL display, and displays images and/or character information.
  • the display control circuit 32 causes the display 22 to display an image based on the image display data.
  • the reception device 24 is, for example, a device such as a touch panel and/or a switch, and receives instructions given by the user.
  • the reception circuit 34 outputs a reception signal according to the instruction given to the reception device 24 by the user.
  • the external I/F 26 is an interface communicably connected to an external device.
  • the lens device 14 includes a lens barrel 52, a focus lens 54, an aperture 56, a filter 60, a polarizer 58, a focus lens moving mechanism 62, an aperture changing mechanism 64, a polarizer rotating mechanism 66, and a A lock mechanism 68 is provided.
  • the lens barrel 52 is formed in a cylindrical shape.
  • the lens barrel 52 is arranged at a position where the central axis of the lens barrel 52 and the optical axis OA of the lens device 14 coincide.
  • the optical axis OA of the lens device 14 is an axis perpendicular to the light receiving surface 16A and extending from the center of the light receiving surface 16A.
  • the focus lens 54 and the diaphragm 56 are housed inside the lens barrel 52 .
  • a focus lens moving mechanism 62 and an aperture changing mechanism 64 which will be described later, are supported by the lens barrel 52 .
  • the focus lens 54 is supported by the lens barrel 52 via a focus lens moving mechanism 62
  • the diaphragm 56 is supported by the lens barrel 52 via a diaphragm changing mechanism 64 .
  • the focus lens 54 is a lens for adjusting the focus position of the image formed on the light receiving surface 16A of the image sensor 16.
  • the focus lens 54 is arranged at a position where the central axis of the focus lens 54 and the optical axis OA of the lens device 14 coincide.
  • a coating layer that transmits near-infrared light may be formed on the surface of the focus lens 54 .
  • the diaphragm 56 is an optical element for adjusting the amount of light that passes through the lens device 14.
  • the diaphragm 56 has a plurality of blades 56A, and an opening 56B is formed in the center of the plurality of blades 56A.
  • Light passing through the focus lens 54 passes through the aperture 56B.
  • the diaphragm 56 is a movable diaphragm in which the aperture diameter of an opening 56B is variable by opening and closing a plurality of blades 56A.
  • the diaphragm 56 is arranged between the focus lens 54 and the image sensor 16 .
  • the diaphragm 56 is arranged at a position where the central axis of the diaphragm 56 and the optical axis OA of the lens device 14 coincide.
  • the focus lens 54 may be a single lens, or may be a lens group having a plurality of lenses. Also, the lens device 14 may include other lenses in addition to the focus lens 54 . The lens device 14 may also include other optical elements such as a half mirror.
  • the focus lens moving mechanism 62 is a mechanism for moving the focus lens 54 in a direction parallel to the optical axis OA (hereinafter referred to as "optical axis direction").
  • the focus lens moving mechanism 62 is an example of a “moving mechanism” according to the technology of the present disclosure.
  • the focus lens moving mechanism 62 includes a first ring 72 , a first guide groove 74 and a first power conversion mechanism 76 .
  • the first ring 72 (see also FIG. 4) is formed in an annular shape.
  • a first uneven portion 78 is formed on the outer peripheral surface of the first ring 72 .
  • the first uneven portion 78 is a flat knurl.
  • the first guide groove 74 is formed on the outer peripheral surface of the lens barrel 52 .
  • the first guide groove 74 extends annularly along the circumferential direction of the lens barrel 52 .
  • the first ring 72 is accommodated in the first guide groove 74 .
  • the first ring 72 rotates while being guided by the first guide groove 74 .
  • the first ring 72 is bi-directionally rotatable along the circumferential direction of the first guide groove 74 .
  • the first power conversion mechanism 76 is provided between the first ring 72 and the focus lens 54.
  • the first power conversion mechanism 76 converts the rotational force applied to the first ring 72 into a rectilinear force in the optical axis direction, and applies the rectilinear force to the focus lens 54 .
  • the focus lens 54 is moved in the optical axis direction by applying a linear force to the focus lens 54 .
  • the first power conversion mechanism 76 moves the focus lens 54 toward the image side or the object side in accordance with the rotation direction of the first ring 72 .
  • the aperture change mechanism 64 is a mechanism for changing the aperture amount of light by the aperture 56 .
  • the aperture change mechanism 64 is an example of a "change mechanism" according to the technology of the present disclosure.
  • the aperture change mechanism 64 includes a second ring 82 , a second guide groove 84 and a second power conversion mechanism 86 .
  • the second ring 82 (see also FIG. 4) is formed in an annular shape.
  • a second uneven portion 88 (see also FIG. 4) is formed on the outer peripheral surface of the second ring 82 .
  • the second uneven portion 88 is a flat knurl.
  • a second guide groove 84 is formed on the outer peripheral surface of the lens barrel 52 .
  • the second guide groove 84 extends annularly along the circumferential direction of the lens barrel 52 .
  • the second ring 82 is housed in the second guide groove 84 .
  • the second ring 82 rotates while being guided by the second guide groove 84 .
  • the second ring 82 is bidirectionally rotatable along the circumferential direction of the second guide groove 84 .
  • the second power conversion mechanism 86 is provided between the second ring 82 and the throttle 56.
  • the second power conversion mechanism 86 converts the rotational force applied to the second ring 82 into force in the opening/closing direction of the plurality of blades 56A, and applies the force in the opening/closing direction to the plurality of blades 56A. By applying force in the opening/closing direction to the blades 56A, the blades 56A operate in the opening/closing direction.
  • the second power conversion mechanism 86 operates the plurality of blades 56A in the opening direction or the closing direction in accordance with the rotational direction of the second ring 82 . By operating the plurality of blades 56A in the opening direction, the diameter of the opening 56B is enlarged, and by operating the plurality of blades 56A in the closing direction, the diameter of the opening 56B is reduced.
  • a first boss portion 92 projecting radially outward of the first ring 72 is formed on a part of the first ring 72 in the circumferential direction.
  • a part of the second ring 82 in the circumferential direction is formed with a second boss portion 102 projecting radially outward of the second ring 82 .
  • a first through hole 94 is formed in the first boss portion 92 .
  • the first through hole 94 penetrates the first ring 72 in the radial direction.
  • the lens barrel 52 is formed with an arcuate first long hole 96 extending in the circumferential direction of the lens barrel 52 .
  • the first long hole 96 penetrates the lens barrel 52 in the radial direction.
  • the first long hole 96 is formed at a position communicating with the first through hole 94 .
  • a first housing groove 98 extending in the circumferential direction of the lens barrel 52 is formed in the inner peripheral surface of the lens barrel 52 .
  • the first accommodation groove 98 is located radially inside the barrel 52 with respect to the first guide groove 74 .
  • a second through hole 104 is formed in the second boss portion 102 .
  • the second through hole 104 penetrates the second ring 82 in the radial direction.
  • the lens barrel 52 is formed with an arc-shaped second long hole 106 extending in the circumferential direction of the lens barrel 52 .
  • the second long hole 106 penetrates the lens barrel 52 in the radial direction.
  • the second elongated hole 106 is formed at a position communicating with the second through hole 104 .
  • a second accommodation groove 108 extending in the circumferential direction of the lens barrel 52 is formed in the inner peripheral surface of the lens barrel 52 .
  • the second housing groove 108 is positioned radially inside the barrel 52 with respect to the second guide groove 84 .
  • the locking mechanism 68 has a first locking mechanism 112 and a second locking mechanism 114 .
  • the first locking mechanism 112 is provided corresponding to the focus lens moving mechanism 62
  • the second locking mechanism 114 is provided corresponding to the diaphragm changing mechanism 64 .
  • the first locking mechanism 112 has a first bolt 122 and a first nut 124.
  • a shaft portion 122A of the first bolt 122 is inserted into the first through hole 94 and the first elongated hole 96, and a head portion 122B of the first bolt 122 is in contact with the top surface of the first boss portion 92. .
  • the first nut 124 is housed in the first housing groove 98 .
  • the first nut 124 is formed with a first screw hole 124A penetrating in the axial direction of the first nut 124 .
  • the tip of the shaft portion 122A of the first bolt 122 is screwed into the first screw hole 124A.
  • the state in which the movement of the focus lens 54 is permitted is an example of the “first state” according to the technology of the present disclosure
  • the state in which the movement of the focus lens 54 is restricted is the “second state” according to the technology of the present disclosure. is an example of
  • the second locking mechanism 114 has the same configuration as the first locking mechanism 112.
  • the second locking mechanism 114 has a second bolt 132 and a second nut 134 .
  • a shaft portion 132A of the second bolt 132 is inserted into the second through hole 104 and the second elongated hole 106, and a head portion 132B of the second bolt 132 is in contact with the top surface of the second boss portion 102.
  • the second nut 134 is housed in the second housing groove 108 .
  • the second nut 134 is formed with a second screw hole 134A penetrating in the axial direction of the second nut 134 .
  • the tip of the shaft portion 132A of the second bolt 132 is screwed into the second screw hole 134A.
  • the polarizer 58 and filter 60 are arranged at the front end of the lens arrangement 14 .
  • the polarizer 58 and filter 60 are supported by the lens barrel 52 via a polarizer rotating mechanism 66, which will be described later.
  • the filter 60 is arranged on the object side with respect to the polarizer 58, but may be arranged on the image side with respect to the polarizer 58.
  • FIG. The filter 60 is an optical element having a property of transmitting only near-infrared light contained in light.
  • the filter 60 is arranged at a position where the central axis of the filter 60 and the optical axis OA of the lens device 14 coincide.
  • the filter 60 may be a turret filter that selectively transmits light in a plurality of wavelength bands (visible light and near-infrared light in different wavelength bands within the near-infrared wavelength band, for example).
  • a turret filter as the filter 60 will be described later in a sixth embodiment.
  • the polarizer 58 has a transmission axis 58A orthogonal to the central axis of the polarizer 58.
  • the polarizer 58 is an optical element having the property of transmitting only light that oscillates in the direction of the transmission axis 58A and blocking light that oscillates in directions other than the direction of the transmission axis 58A.
  • the polarizer 58 is arranged at a position where the central axis of the polarizer 58 and the optical axis OA of the lens device 14 coincide.
  • the polarizer rotating mechanism 66 is a mechanism for rotating the polarizer 58 around the optical axis direction.
  • the polarizer rotating mechanism 66 is an example of the “displacement mechanism” and the “rotating mechanism” according to the technology of the present disclosure.
  • the polarizer rotation mechanism 66 includes a third ring 142 and a support ring 144. As shown in FIG.
  • the third ring 142 (see also FIG. 4) is formed in an annular shape.
  • a support ring 144 is formed at the front end of the lens barrel 52 .
  • the support ring 144 extends annularly along the circumferential direction of the lens barrel 52 .
  • the third ring 142 is supported on the outer peripheral surface of the support ring 144 .
  • the third ring 142 rotates while being supported by the support ring 144 .
  • the third ring 142 is bi-directionally rotatable along the circumferential direction of the support ring 144 .
  • a polarizer 58 is fixed to the third ring 142 via a connecting mechanism (not shown).
  • the polarizer 58 rotates together with the third ring 142 .
  • the filter 60 may be integrated with the polarizer 58 .
  • the filter 60 may be fixed to the third ring 142 via a connecting mechanism. The filter 60 may then rotate together with the third ring 142 and the polarizer 58 .
  • FIG. 5 shows a case where the rotation angle ⁇ of the polarizer 58 is 0° and a case where the rotation angle ⁇ of the polarizer 58 is 90°.
  • the rotation angle ⁇ of the polarizer 58 is 0°
  • the first polarized component contained in the light is transmitted through the polarizer 58.
  • the rotation angle ⁇ of the polarizer 58 is 90°
  • the light is The included second polarization component is transmitted through the polarizer 58 .
  • the first polarization component is the polarization component that oscillates in the direction of the transmission axis 58A when the rotation angle ⁇ is 0°
  • the second polarization component is the direction of the transmission axis 58A when the rotation angle ⁇ is 90°.
  • the image sensor 16 When the first polarized component is received by the light receiving surface 16A of the image sensor 16, the image sensor 16 outputs analog image data corresponding to the first polarized component. On the other hand, when the second polarization component is received by the light receiving surface 16A of the image sensor 16, the image sensor 16 outputs analog image data corresponding to the second polarization component. In the imaging device 10, an image is displayed on the display 22 based on the analog image data.
  • FIG. 5 shows, as an example, a case where the rotation angle ⁇ of the polarizer 58 is 0° and a case where the rotation angle ⁇ of the polarizer 58 is 90°. It is possible to rotate 360° around the optical axis direction. Polarized light component oscillating in the direction of the transmission axis 58A is transmitted through the polarizer 58 regardless of the rotation angle ⁇ of the polarizer 58 . When the polarized component transmitted through the polarizer 58 is received by the light receiving surface 16A of the image sensor 16, the image sensor 16 outputs analog image data corresponding to the polarized component. In the example shown in FIG.
  • the rotational position of the polarizer 58 when the rotation angle ⁇ is 0° is an example of the “first position” according to the technology of the present disclosure
  • when the rotation angle ⁇ is 90° is an example of the "second position” according to the technology of the present disclosure.
  • the rotation of the polarizer 58 is an example of "polarizer displacement" according to the technology of the present disclosure.
  • FIG. 6 shows an example of the relationship between the incident angle and the reflectance for the first polarized component and the second polarized component when the light is reflected light.
  • the reflectance of the first polarization component is greater than the reflectance of the second polarization component in the range of incident angles greater than 0° and less than 90°. Further, for example, when the incident angle is in the range of 40° to 70°, the reflectance of the second polarized component remains close to 0, but the reflectance of the first polarized component increases as the incident angle increases. growing. Thus, the reflected light has polarization dependence.
  • FIG. 7 An example of the subject 150 is shown in FIG. 7 as an example.
  • a subject 150 has a desk 152 , a stand 154 placed on the desk 152 , and a soldering iron 156 placed on the stand 154 .
  • FIG. 8 shows an example of a first near-infrared light image 160 obtained by imaging the subject 150 with the imaging device 10 .
  • the first near-infrared light image 160 is an image when the rotation angle ⁇ of the polarizer 58 is 0°.
  • the first near-infrared light image 160 includes a stereoscopic image 162 , a thermal radiation image 164 and a reflected image 166 .
  • the stereoscopic image 162 is an image based on the near-infrared light reflected by the subject 150 and the near-infrared light contained in the electromagnetic waves emitted from the subject 150 by thermal radiation.
  • the thermal radiation image 164 is an image based on near-infrared light contained in electromagnetic waves emitted from the desk 152 heated by the tip of the soldering iron 156 by thermal radiation.
  • the reflected image 166 is an image based on the reflected light of the near-infrared light contained in the electromagnetic wave emitted from the tip of the soldering iron 156 by thermal radiation and reflected on the desk 152 .
  • a reflected image 166 included in the first near-infrared light image 160 is an image based on the first polarization component (see FIG. 6). Therefore, the reflected image 166 included in the first near-infrared light image 160 has higher brightness than the reflected image 166 included in the second near-infrared light image 170 described later.
  • the entity image 162 is an image representing the entity of the subject 150 .
  • the thermal radiation image 164 does not represent the substance of the subject 150, and is an image that appears to shine as a whole.
  • the reflected image 166 represents the substance of the subject 150, but is an enlarged image of the substance. In this way, the first near-infrared light image 160 includes the reflected image 166 in addition to the stereoscopic image 162 and the thermal radiation image 164 . becomes difficult to see.
  • FIG. 9 shows an example of a second near-infrared light image 170 obtained by imaging the subject 150 with the imaging device 10 .
  • the second near-infrared light image 170 is an image when the rotation angle ⁇ of the polarizer 58 is 90°.
  • the second near-infrared light image 170 includes a solid image 162 , a thermal radiation image 164 , and a reflected image 166 .
  • a reflected image 166 included in the second near-infrared light image 170 is an image based on the second polarization component (see FIG. 6). Therefore, the reflected image 166 included in the second near-infrared light image 170 has lower luminance than the reflected image 166 included in the first near-infrared light image 160 described above.
  • the brightness of the reflected image 166 can be changed by the user rotating the polarizer 58 .
  • FIG. 10 shows an example of how to use the imaging device 10 according to the first embodiment.
  • a method of using the imaging device 10 by a firefighter rushing into a fire scene will be described. It should be noted that the method of use of this example starts from a state in which the imaging device 10 is powered on and a live view image is displayed on the display 22 .
  • step S1 the firefighter rotates the first ring 72 while checking the live view image displayed on the display 22 before entering the fire scene.
  • the focal position is adjusted.
  • the firefighter sets the focus position at a position 5 m from the imaging device 10 .
  • step S2 the firefighter sets the first locking mechanism 112 to the locked state. Thereby, the position of the focus lens 54 is fixed.
  • step S3 the firefighter rotates the second ring 82 to adjust the throttle amount of the throttle 56.
  • step S4 the firefighter sets the second locking mechanism 114 to the locked state. As a result, the aperture amount of the aperture 56 is fixed.
  • step S5 the firefighter rushes into the fire site while checking the live view image displayed on the display 22.
  • step S6 the firefighter adjusts the rotation angle of the polarizer 58 to an angle at which the reflected image 166 is suppressed by rotating the third ring 142 while checking the live view image displayed on the display 22. do.
  • step S7 the firefighter causes the imaging device 10 to image the fire scene. This provides a near-infrared image of the fire scene.
  • the imaging device 10 is in the unlocked state in which movement of the focus lens 54 by the focus lens moving mechanism 62 is allowed, and in the state in which movement of the focus lens 54 by the focus lens moving mechanism 62 is restricted. and a first locking mechanism 112 having a locked state.
  • the first locking mechanism 112 is switched between an unlocked state and a locked state based on the rotation of the polarizer 58 by the polarizer rotating mechanism 66 . Therefore, by locking the first locking mechanism 112, the movement of the focus lens 54 can be restricted when the polarizer 58 is rotated.
  • the imaging device 10 also includes a second lock mechanism 114 that has an unlocked state that allows the aperture change mechanism 64 to change the aperture amount and a locked state that restricts the aperture change mechanism 64 from changing the aperture amount.
  • the second locking mechanism 114 is switched between an unlocked state and a locked state based on the rotation of the polarizer 58 by the polarizer rotating mechanism 66 . Therefore, by locking the second locking mechanism 114, when the polarizer 58 is rotated, the change of the aperture amount can be restricted.
  • the polarizer rotating mechanism 66 includes a rotating mechanism that rotates the polarizer 58 around the optical axis direction. Therefore, by rotating the polarizer 58 with the polarizer rotating mechanism 66, the polarization component transmitted through the polarizer 58 can be changed. In addition, by changing the polarized component transmitted through the polarizer 58, the brightness of the reflected image 166 displayed on the display 22 can be increased or decreased. Further, by fixing the position of the polarizer 58 at a position where the brightness of the reflected image 166 is weakened, it is possible to suppress the appearance of the reflected image 166 in the image displayed on the display 22 .
  • the polarizer rotating mechanism 66 rotates the polarizer 58 by 360° around the optical axis direction. Therefore, the brightness of the reflected image 166 displayed on the display 22 can be increased or decreased by rotating the polarizer 58 by 360 degrees. Also, the number of reflected images 166 can be determined by ascertaining that the brightness of the reflected images 166 increases or decreases.
  • the unlocked state of the first locking mechanism 112 is a state in which the first locking mechanism 112 releases the fixation of the focus lens moving mechanism 62 to the lens barrel 52
  • the locked state of the first locking mechanism 112 is the first locking state.
  • the lock mechanism 112 is in a state in which the focus lens moving mechanism 62 is fixed to the lens barrel 52 . Therefore, by switching the first lock mechanism 112 between the unlocked state and the locked state, a state in which movement of the focus lens 54 by the focus lens moving mechanism 62 is permitted and a state in which the focus lens 54 is allowed to move by the focus lens moving mechanism 62 are changed. You can switch to and from restricted states.
  • the unlocked state of the second locking mechanism 114 is a state in which the second locking mechanism 114 has released the aperture change mechanism 64 from the lens barrel 52
  • the locked state of the second locking mechanism 114 is the second
  • the lock mechanism 114 is in a state in which the diaphragm change mechanism 64 is fixed to the lens barrel 52 . Therefore, by switching the second lock mechanism 114 between the unlocked state and the locked state, a state in which change of the aperture amount by the aperture change mechanism 64 is permitted and a state in which change in the aperture amount by the aperture change mechanism 64 is restricted. can be switched to
  • the filter 60 is integrated with the polarizer 58 . Therefore, for example, compared with the case where the filter 60 is separate from the polarizer 58, the number of parts can be reduced.
  • the rotation range of the polarizer 58 is set in the range of 0° to 90°, as compared with the first embodiment.
  • the support ring 144 and/or the third ring 142 are provided with a limiting mechanism that limits the rotation angle of the third ring 142, so that the rotation range of the polarizer 58 is from 0° to 90°. is set to
  • the rotation angle ⁇ of the polarizer 58 can be switched between 0° and 90°.
  • the upper limit of the rotation angle ⁇ of the polarizer 58 is set to 90° in the second embodiment, it may be set to a value other than 90°.
  • a polarizer slide mechanism 180 is used instead of the polarizer rotation mechanism 66 (see FIG. 1) according to the first embodiment.
  • the polarizer slide mechanism 180 is an example of a “displacement mechanism” and a “slide mechanism” according to the technology of the present disclosure.
  • the polarizer slide mechanism 180 is a mechanism for sliding the polarizer 58 in a direction crossing the optical axis direction.
  • the direction intersecting the optical axis direction may be any direction as long as it intersects the optical axis direction.
  • the polarizer slide mechanism 180 includes a slide member 182 and guide grooves 184 .
  • the slide member 182 is formed in a plate shape.
  • the slide member 182 is arranged with the optical axis direction as the plate thickness direction.
  • the guide groove 184 is formed at the front end of the lens barrel 52 (see FIG. 1).
  • the guide groove 184 extends linearly along a direction crossing the optical axis direction.
  • the guide direction the direction in which the guide groove 184 extends.
  • the slide member 182 slides in the guide direction by being supported by the guide groove 184 .
  • the slide member 182 is bidirectionally slidable along the guide direction.
  • the polarizer 58 has a first polarizer 186 and a second polarizer 188 .
  • the first polarizer 186 and the second polarizer 188 are arranged side by side in the guide direction.
  • the first polarizer 186 has a first transmission axis 186A orthogonal to the central axis of the first polarizer 186. As shown in FIG. As an example, the first transmission axis 186A extends along a direction orthogonal to the guide direction when viewed from the optical axis direction.
  • the first polarizer 186 is an optical element having a property of transmitting only light that oscillates in the direction of the first transmission axis 186A and blocking light that oscillates in directions other than the direction of the first transmission axis 186A.
  • the second polarizer 188 has a second transmission axis 188A perpendicular to the central axis of the second polarizer 188.
  • the second transmission axis 188A extends along the guide direction when viewed from the optical axis direction.
  • the second polarizer 188 is an optical element having a property of transmitting only light that oscillates in the direction of the second transmission axis 188A and blocking light that oscillates in directions other than the direction of the second transmission axis 188A.
  • the polarizer 58 has a first polarizer 186 that transmits the first polarization component and a second polarizer 188 that transmits the second polarization component, and the polarizer slide mechanism 180 has a polarization
  • the first polarizer 186 and the second polarizer 188 are switched by sliding the polarizer 58 in a direction crossing the optical axis direction. Therefore, by sliding the polarizer 58 by the polarizer slide mechanism 180, the polarization component transmitted through the polarizer 58 can be changed.
  • the brightness of the reflected image 166 displayed on the display 22 can be increased or decreased.
  • fixing the position of the polarizer 58 at a position where the brightness of the reflected image 166 is weakened it is possible to suppress the appearance of the reflected image 166 in the image displayed on the display 22 .
  • the polarizer slide mechanism 180 is used to slide the polarizer 58 in the direction crossing the optical axis direction.
  • a polarizer rotation mechanism for rotating 58 around the optical axis direction may be used.
  • the first polarizer 186 and the second polarizer 188 may be switched by rotating the polarizer 58 around the optical axis direction.
  • the polarizer 58 has two polarizers, the first polarizer 186 and the second polarizer 188, but may have three or more polarizers with different transmission axes. good.
  • the position of the polarizer 58 is changed with respect to the first embodiment. That is, the polarizer 58 is arranged on the object side with respect to the filter 60 . Polarizer 58 is separate from filter 60 . The filter 60 is fixed with respect to the lens barrel 52 and the polarizer 58 rotates integrally with the third ring 142 . Even with such a configuration, the same effects as in the first embodiment can be obtained.
  • the position of the filter 60 is changed with respect to the first embodiment. That is, the filter 60 is housed inside the lens barrel 52 . As an example, filter 60 is positioned between aperture 56 and image sensor 16 . Note that the filter 60 may be arranged at any position. For example, the filter 60 may be arranged on the subject side with respect to the focus lens 54 or may be arranged between the focus lens 54 and the diaphragm 56 . Even with such a configuration, the same effects as in the first embodiment can be obtained.
  • a turret filter 190 is used instead of the filter 60 (see FIG. 1) according to the first embodiment.
  • the turret filter 190 selects light in a plurality of wavelength bands included in the light (for example, visible light and near-infrared light in different wavelength bands within the near-infrared wavelength band). It is a transparent rotating filter.
  • the turret filter 190 is housed inside the barrel 52 .
  • turret filter 190 is positioned between diaphragm 56 and image sensor 16 . Note that the turret filter 190 may be arranged at any position.
  • the turret filter 190 may be arranged on the object side with respect to the focus lens 54 or may be arranged between the focus lens 54 and the diaphragm 56 .
  • the turret filter 190 is an example of "a filter that selectively transmits near-infrared light contained in light" according to the technology of the present disclosure.
  • the polarizer 58 is housed inside the lens barrel 52 .
  • the polarizer 58 is arranged on the object side with respect to the focus lens 54 .
  • the polarizer 58 may be arranged at any position.
  • polarizer 58 may be positioned between focus lens 54 and diaphragm 56 and between diaphragm 56 and turret filter 190 .
  • Polarizer 58 may also be placed between turret filter 190 and image sensor 16 .
  • a polarizer rotating mechanism 200 and a turret filter rotating mechanism 210 are used.
  • the polarizer rotating mechanism 200 is a mechanism for rotating the polarizer 58 around the optical axis direction.
  • the polarizer rotating mechanism 200 is an example of the “displacement mechanism” and the “rotating mechanism” according to the technology of the present disclosure.
  • the polarizer rotating mechanism 200 has a third ring 202 , a third guide groove 204 and a power transmission mechanism 206 .
  • the third ring 202 is formed in an annular shape.
  • a third guide groove 204 is formed on the outer peripheral surface of the lens barrel 52 .
  • the third guide groove 204 extends annularly along the circumferential direction of the lens barrel 52 .
  • the third ring 202 is accommodated in the third guide groove 204 .
  • the third ring 202 rotates while being guided by the third guide groove 204 .
  • the third ring 202 is bi-directionally rotatable along the circumferential direction of the third guide groove 204 .
  • a power transmission mechanism 206 is provided between the third ring 202 and the polarizer 58 .
  • the power transmission mechanism 206 transmits the rotational force applied to the third ring 202 to the polarizer 58 .
  • the polarizer 58 is rotated by transmitting a rotational force to the polarizer 58 .
  • the power transmission mechanism 206 rotates the polarizer 58 in a direction corresponding to the direction of rotation of the third ring 202 .
  • the turret filter rotating mechanism 210 is a mechanism for rotating the turret filter 190 around the optical axis direction.
  • the turret filter rotation mechanism 210 has a fourth ring 212 , a fourth guide groove 214 and a power transmission mechanism 216 .
  • the fourth ring 212 is formed in an annular shape.
  • a fourth guide groove 214 is formed on the outer peripheral surface of the lens barrel 52 .
  • the fourth guide groove 214 extends annularly along the circumferential direction of the lens barrel 52 .
  • the fourth ring 212 is housed in the fourth guide groove 214 .
  • the fourth ring 212 is bidirectionally rotatable along the circumferential direction of the fourth guide groove 214 .
  • the power transmission mechanism 216 is provided between the fourth ring 212 and the turret filter 190.
  • the power transmission mechanism 216 transmits the rotational force applied to the fourth ring 212 to the turret filter 190 .
  • the turret filter 190 is rotated by transmitting a rotational force to the turret filter 190 .
  • the power transmission mechanism 216 rotates the turret filter 190 in a direction corresponding to the rotational direction of the fourth ring 212 .
  • a part of the third ring 202 in the circumferential direction is formed with a third boss portion 222 that protrudes radially outward from the third ring 202 .
  • a third through hole 224 is formed in the third boss portion 222 .
  • the third through hole 224 penetrates the third ring 202 in the radial direction.
  • the lens barrel 52 is formed with an arcuate third long hole 226 extending in the circumferential direction of the lens barrel 52 .
  • the third long hole 226 penetrates the lens barrel 52 in the radial direction.
  • the third long hole 226 is formed at a position communicating with the third through hole 224 .
  • a third housing groove 228 extending in the circumferential direction of the lens barrel 52 is formed in the inner peripheral surface of the lens barrel 52 .
  • a fourth boss portion 232 projecting radially outward of the fourth ring 212 is formed on a portion of the fourth ring 212 in the circumferential direction.
  • a fourth through hole 234 is formed in the fourth boss portion 232 .
  • the fourth through hole 234 penetrates the fourth ring 212 in the radial direction.
  • the lens barrel 52 is formed with an arcuate fourth long hole 236 extending in the circumferential direction of the lens barrel 52 .
  • the fourth long hole 236 penetrates the lens barrel 52 in the radial direction.
  • the fourth long hole 236 is formed at a position communicating with the fourth through hole 234 .
  • a fourth housing groove 238 extending in the circumferential direction of the lens barrel 52 is formed in the inner peripheral surface of the lens barrel 52 .
  • the lock mechanism 68 includes a third lock mechanism 242 and a fourth lock mechanism 244 in addition to the first lock mechanism 112 and the second lock mechanism 114 .
  • a third locking mechanism 242 is provided corresponding to the polarizer rotating mechanism 200
  • a fourth locking mechanism 244 is provided corresponding to the turret filter rotating mechanism 210 .
  • the third locking mechanism 242 and the fourth locking mechanism 244 have the same configuration as the first locking mechanism 112 and the second locking mechanism 114, respectively.
  • the third locking mechanism 242 has a third bolt 252 and a third nut 254.
  • a shaft portion 252A of the third bolt 252 is inserted into the third through hole 224 and the third elongated hole 226, and a head portion 252B of the third bolt 252 is in contact with the top surface of the third boss portion 222.
  • the third nut 254 is housed in the third housing groove 228 .
  • the third nut 254 is formed with a third screw hole 254A penetrating through the third nut 254 in the axial direction. The tip of the shaft portion 252A of the third bolt 252 is screwed into the third screw hole 254A.
  • the third nut 254 When the third bolt 252 rotates in the tightening direction, the third nut 254 is pressed against the bottom surface of the third housing groove 228 . In this state, the third ring 142 is fixed with respect to the lens barrel 52 and the rotation of the polarizer 58 by the polarizer rotating mechanism 66 is restricted. On the other hand, when the third bolt 252 rotates in the loosening direction, the third nut 254 is separated from the bottom surface of the third receiving groove 228 . In this state, the fixing of the third ring 142 to the lens barrel 52 is released, and the rotation of the polarizer 58 by the polarizer rotating mechanism 66 is allowed.
  • the state in which the rotation of the polarizer 58 is permitted is an example of the “first state” and the “third state” according to the technology of the present disclosure
  • the state in which the rotation of the polarizer 58 is restricted is the state of the technology of the present disclosure. It is an example of the "second state” and the "fourth state”.
  • the fourth locking mechanism 244 has a fourth bolt 262 and a fourth nut 264.
  • a shaft portion 262A of the fourth bolt 262 is inserted into the fourth through hole 234 and the fourth elongated hole 236, and a head portion 262B of the fourth bolt 262 is in contact with the top surface of the fourth boss portion 232. .
  • the fourth nut 264 is housed in the fourth housing groove 238 .
  • the fourth nut 264 is formed with a fourth screw hole 264A penetrating in the axial direction of the fourth nut 264 .
  • the tip of the shaft portion 262A of the fourth bolt 262 is screwed into the fourth screw hole 264A.
  • the state in which the turret filter 190 is permitted to rotate is an example of the “first state” and the “third state” according to the technology of the present disclosure, and the state in which the rotation of the turret filter 190 is restricted is the state of the technology of the present disclosure. It is an example of the "second state” and the "fourth state”.
  • the turret filter 190 has a disc 192 .
  • the disk 192 is provided with an Ir cut filter 194, a first BPF 196A, a second BPF 196B, a third BPF 196C, and a fourth BPF 196D as a plurality of optical filters at equal intervals along the circumferential direction of the disk 192.
  • the Ir cut filter 194, the first BPF 196A, the second BPF 196B, the third BPF 196C, and the fourth BPF 196D are referred to as optical filters unless they need to be distinguished and described.
  • the first BPF 196A, the second BPF 196B, the third BPF 196C, and the fourth BPF 196D will be referred to as BPFs 196 unless they need to be distinguished and described.
  • the turret filter 190 selectively inserts and removes a plurality of optical filters with respect to the optical path in a turret method.
  • the Ir cut filter 194, the first BPF 196A, the second BPF 196B, the third BPF 196C, and the fourth BPF 196D are selectively inserted into the optical path by rotating the turret filter 190 in the direction of the arc arrow R shown in FIG. be taken off.
  • the optical axis OA passes through the center of the optical filter, and the center of the optical filter inserted into the optical path coincides with the center of the light receiving surface 16A of the image sensor 16.
  • the Ir cut filter 194 is an optical filter that cuts infrared rays and transmits only light other than infrared rays.
  • BPF 196 is an optical filter that transmits near-infrared light.
  • the first BPF 196A, the second BPF 196B, the third BPF 196C, and the fourth BPF 196D transmit near-infrared light in different wavelength bands.
  • the first BPF 196A is an optical filter that corresponds to a wavelength band near 1000 nm (nanometers). As an example, the first BPF 196A transmits only near-infrared light in the wavelength band from 950 nm to 1100 nm. The near-infrared light transmitted through the first BPF 196A is hereinafter referred to as first near-infrared light.
  • the second BPF 196B is an optical filter corresponding to a wavelength band near 1250 nm.
  • the second BPF 196B transmits only near-infrared light in the wavelength band from 1150 nm to 1350 nm.
  • the near-infrared light transmitted through the second BPF 196B is hereinafter referred to as second near-infrared light.
  • the third BPF 196C is an optical filter corresponding to a wavelength band near 1550 nm.
  • the third BPF 196C transmits only near-infrared light in the wavelength band from 1500 nm to 1750 nm.
  • the near-infrared light transmitted through the third BPF 196C is hereinafter referred to as third near-infrared light.
  • the fourth BPF 196D is an optical filter corresponding to a wavelength band near 2150 nm.
  • the fourth BPF 196D transmits only near-infrared light in the wavelength band from 2000 nm to 2400 nm.
  • the near-infrared light transmitted through the fourth BPF 196D is hereinafter referred to as fourth near-infrared light.
  • the first near-infrared light, the second near-infrared light, the third near-infrared light, and the fourth near-infrared light are referred to as near-infrared light unless it is necessary to distinguish them.
  • each band mentioned here includes an error that is generally allowed in the technical field to which the technology of the present disclosure belongs and that does not deviate from the gist of the technology of the present disclosure.
  • each wavelength band mentioned here is merely an example, and different wavelength bands may be used.
  • the plurality of Si diodes arranged on the light receiving surface 16A transmit the received visible light. It outputs analog image data obtained by capturing light. This realizes a function of obtaining a visible light image by imaging visible light.
  • the BPF 196 is inserted into the optical path and the near-infrared light transmitted through the BPF 196 is imaged on the light receiving surface 16A of the image sensor 16, a plurality of InGaAs diodes arranged on the light receiving surface 16A receive the near-infrared light. and outputs analog image data obtained by imaging the . This realizes a function of obtaining a near-infrared light image by capturing near-infrared light.
  • the imaging device 10 has an unlocked state that allows rotation of the polarizer 58 by the polarizer rotating mechanism 200 and a locked state that restricts rotation of the polarizer 58 by the polarizer rotating mechanism 200.
  • 3 lock mechanism 242 is provided. Therefore, the third locking mechanism 242 can fix the position of the polarizer 58 .
  • the imaging apparatus 10 has a fourth lock mechanism 244 having an unlocked state in which rotation of the turret filter 190 by the turret filter rotation mechanism 210 is permitted and a locked state in which rotation of the turret filter 190 by the turret filter rotation mechanism 210 is restricted. Prepare. Therefore, the fourth lock mechanism 244 can fix the position of the turret filter 190 .
  • the imaging device 10 further includes a turret filter 190 that selectively transmits near-infrared light contained in the light. Therefore, by selecting near-infrared light that passes through the turret filter 190, a near-infrared light image corresponding to the wavelength band of the near-infrared light can be displayed on the display 22.
  • a turret filter 190 that selectively transmits near-infrared light contained in the light. Therefore, by selecting near-infrared light that passes through the turret filter 190, a near-infrared light image corresponding to the wavelength band of the near-infrared light can be displayed on the display 22.
  • a lock cover 270 is used instead of the lock mechanism 68 (see FIG. 1) according to the first embodiment.
  • the lock cover 270 is an example of the "first lock mechanism" according to the technology of the present disclosure.
  • the lock cover 270 is an arcuate plate material with a central angle of greater than 180°.
  • Lock cover 270 has flexibility. The axial length of the lock cover 270 is set so that the lock cover 270 covers the first ring 72 and the second ring 82 when the lock cover 270 is attached to the outer peripheral surface of the lens barrel 52 .
  • An uneven portion 272 is formed on the inner peripheral surface of the lock cover 270 .
  • the uneven portion 272 is a flat knurl.
  • the uneven portion 272 engages with the first uneven portion 78 formed on the outer peripheral surface of the first ring 72 and the second uneven portion 88 formed on the outer peripheral surface of the second ring 82 .
  • the first uneven portion 78 and the second uneven portion 88 are examples of the “first engaging portion” according to the technology of the present disclosure, and the uneven portion 272 is the “second engaging portion” of the technology of the present disclosure. An example.
  • the lock cover 270 when the lock cover 270 is removed from the outer peripheral surface of the lens barrel 52 , the concave-convex portion 272 is separated from the first concave-convex portion 78 and the second concave-convex portion 88 . In this state, the fixing of the first ring 72 to the lens barrel 52 and the fixing of the second ring 82 to the lens barrel 52 are released. changes are allowed.
  • the state in which the lock cover 270 is removed from the outer peripheral surface of the lens barrel 52 is an example of the “first state” according to the technology of the present disclosure, and the state in which the lock cover 270 is attached to the outer peripheral surface of the lens barrel 52 is It is an example of the "second state” according to the technology of the present disclosure.
  • the imaging device 10 has a lock cover 270 .
  • the lock cover 270 When the lock cover 270 is removed from the lens barrel 52 , it is in an unlocked state that allows the focus lens 54 to be moved by the focus lens moving mechanism 62 .
  • the lock cover 270 is attached to the lens barrel 52 , the lock cover 270 is in a locked state that restricts the movement of the focus lens 54 by the focus lens moving mechanism 62 . Therefore, by switching the lock cover 270 between a state in which the lock cover 270 is removed from the lens barrel 52 and a state in which it is attached to the lens barrel 52, a state in which the focus lens 54 is allowed to move by the focus lens moving mechanism 62 and a state in which the focus lens moving mechanism 62 is allowed to move. , the movement of the focus lens 54 is restricted by .
  • the lock cover 270 when the lock cover 270 is removed from the lens barrel 52, it is in an unlocked state that allows the aperture change mechanism 64 to change the aperture amount.
  • the lock cover 270 when the lock cover 270 is attached to the lens barrel 52, the lock cover 270 is in a locked state that limits the change of the aperture amount by the aperture change mechanism 64. As shown in FIG. Therefore, by switching the lock cover 270 between the state in which the lock cover 270 is removed from the lens barrel 52 and the state in which it is attached to the lens barrel 52, the state in which the aperture change mechanism 64 is permitted to change the aperture amount and the aperture amount by the aperture change mechanism 64 are allowed. can be switched to a state in which changes to the
  • the operability of the lens device 14 is improved as compared with the case where the state is switched independently.
  • first ring 72 and the second ring 82 may each have a first engaging portion, which is a concave portion or a convex portion other than the flat knurl, instead of the first concave-convex portion 78 and the second concave-convex portion 88. good.
  • lock cover 270 may have a second engaging portion, which is a convex portion or concave portion other than the flat knurl, instead of the uneven portion 272 .
  • a lock mechanism 280 is used instead of the lock mechanism 68 (see FIG. 1) according to the first embodiment.
  • the lock mechanism 280 is provided on the rear end side of the lens barrel 52 relative to the first ring 72 and the second ring 82 .
  • the lock mechanism 280 has a lock member 282 and guide grooves 284 .
  • the guide groove 284 is formed along the axial direction of the lens barrel 52 .
  • the locking member 282 slides in the axial direction of the lens barrel 52 by being supported by the guide groove 284 .
  • the lock member 282 has an unlocked position (see the left diagram of FIG.
  • the lock mechanism 280 is an example of the "first lock mechanism” and the "second lock mechanism” according to the technology of the present disclosure.
  • an uneven portion 286 is formed on the inner surface of the locking member 282 (that is, the surface facing the outer peripheral surface of the lens barrel 52).
  • the uneven portion 286 is a flat knurl.
  • the uneven portion 286 engages with the first uneven portion 78 formed on the outer peripheral surface of the first ring 72 and the second uneven portion 88 formed on the outer peripheral surface of the second ring 82 .
  • the first uneven portion 78 and the second uneven portion 88 are examples of the “first engaging portion” according to the technology of the present disclosure, and the uneven portion 286 is the “second engaging portion” according to the technology of the present disclosure. An example.
  • the concave-convex portion 286 engages with the first concave-convex portion 78 and the second concave-convex portion 88 .
  • the first ring 72 and the second ring 82 are fixed to the lens barrel 52, and movement of the focus lens 54 by the focus lens moving mechanism 62 and change of the aperture amount by the aperture change mechanism 64 are restricted.
  • the concave-convex portion 286 is separated from the first concave-convex portion 78 and the second concave-convex portion 88 .
  • the state in which the lock member 282 is slid to the unlocked position is an example of the "first state” according to the technology of the present disclosure
  • the state in which the lock member 282 is slid to the lock position is the “second state” according to the technology of the present disclosure. It is an example of "state”.
  • the imaging device 10 includes a lock mechanism 280 having a lock member 282 and a guide groove 284.
  • a lock member 282 When the lock member 282 is slid to the unlocked position, it is in an unlocked state that allows the focus lens 54 to be moved by the focus lens moving mechanism 62 .
  • the lock member 282 when the lock member 282 is slid to the lock position, the lock member 282 is in a locked state in which movement of the focus lens 54 by the focus lens moving mechanism 62 is restricted. Therefore, by switching the lock member 282 between the unlocked position and the locked position, the movement of the focus lens 54 by the focus lens moving mechanism 62 is allowed and the movement of the focus lens 54 by the focus lens moving mechanism 62 is restricted. can be switched to and from
  • the lock member 282 when the lock member 282 is slid to the unlocked position, it is in an unlocked state that allows the aperture change mechanism 64 to change the aperture amount.
  • the lock member 282 when the lock member 282 is slid to the lock position, the lock member 282 is in a locked state in which the change of the aperture amount by the aperture change mechanism 64 is restricted. Therefore, by switching the lock member 282 between the unlocked position and the locked position, a state in which the change of the aperture amount by the aperture change mechanism 64 is permitted and a state in which the change in the aperture amount by the aperture change mechanism 64 is restricted. You can switch.
  • first ring 72 and the second ring 82 may each have a first engaging portion which is a concave or convex portion other than the flat knurl instead of the first concave-convex portion 78 and the second concave-convex portion 88. good.
  • the lock member 282 may have a second engaging portion, which is a convex portion or concave portion other than the flat knurl, instead of the uneven portion 286 .
  • the locking mechanism 280 As shown in FIG. 23 as an example, in the ninth embodiment, the locking mechanism 280 according to the eighth embodiment is modified as follows. That is, the lock mechanism 280 has a first lock mechanism 292 and a second lock mechanism 294. As shown in FIG. The first locking mechanism 292 is provided on the front end side of the lens barrel 52 relative to the first ring 72 , and the second locking mechanism 294 is provided on the rear end side of the lens barrel 52 relative to the second ring 82 . The first locking mechanism 292 has a first locking member 302 and a first guide groove 304 , and the second locking mechanism 294 has a second locking member 312 and a second guide groove 314 .
  • first locking member 302 and the first guide groove 304 are the same as the locking member 282 and the guide groove 284 according to the eighth embodiment. Also, the configurations of the second locking member 312 and the second guide groove 314 are the same as those of the locking member 282 and the guide groove 284 according to the eighth embodiment.
  • the first locking member 302 slides between an unlocked position (see the left diagram of FIG. 23) retracted from the first ring 72 and a locked position overlapping the first ring 72 (see the right diagram of FIG. 23).
  • the second locking member 312 slides between an unlocked position (see the left diagram of FIG. 23) retracted from the second ring 82 and a locked position (see the right diagram of FIG. 23) overlapping the second ring 82 .
  • the concave-convex portion of the first locking member 302 engages with the first concave-convex portion 78 .
  • the first ring 72 is fixed to the lens barrel 52 and movement of the focus lens 54 by the focus lens moving mechanism 62 is restricted.
  • the uneven portion of the first locking member 302 is separated from the first uneven portion 78 .
  • the fixation of the first ring 72 to the lens barrel 52 is released, and movement of the focus lens 54 by the focus lens moving mechanism 62 is permitted.
  • the state in which the first locking member 302 is slid to the unlocked position is an example of the “first state” according to the technology of the present disclosure
  • the state in which the first locking member 302 is slid to the locked position is the state according to the technology of the present disclosure. This is an example of such a “second state”.
  • the uneven portion of the second locking member 312 engages with the second uneven portion 88 .
  • the second ring 82 is fixed to the lens barrel 52, and the change of the aperture amount by the aperture changing mechanism 64 is restricted.
  • the uneven portion of the second locking member 312 is separated from the second uneven portion 88 . In this state, the fixing of the second ring 82 to the lens barrel 52 is released, and the change of the aperture amount by the aperture change mechanism 64 is allowed.
  • the state in which the second locking member 312 is slid to the unlocked position is an example of the “first state” according to the technology of the present disclosure
  • the state in which the second locking member 312 is slid to the locked position is the state according to the technology of the present disclosure. This is an example of such a “second state”.
  • the imaging device 10 includes a first locking mechanism 292 having a first locking member 302 and a first guide groove 304.
  • first lock member 302 When the first lock member 302 is slid to the unlocked position, it is in an unlocked state that allows the focus lens 54 to be moved by the focus lens moving mechanism 62 .
  • first lock member 302 when the first lock member 302 is slid to the lock position, it is in a locked state in which movement of the focus lens 54 by the focus lens moving mechanism 62 is restricted. Therefore, by switching the first lock member 302 between the unlocked position and the locked position, a state in which movement of the focus lens 54 by the focus lens moving mechanism 62 is allowed and a state in which the movement of the focus lens 54 by the focus lens moving mechanism 62 is permitted. You can switch to and from restricted states.
  • the imaging device 10 also includes a second locking mechanism 294 having a second locking member 312 and a second guide groove 314 .
  • a second locking mechanism 294 having a second locking member 312 and a second guide groove 314 .
  • the second lock member 312 is in an unlocked state that allows the aperture change mechanism 64 to change the aperture amount.
  • the second lock member 312 is slid to the lock position, the second lock member 312 is in a locked state that restricts the change of the aperture amount by the aperture change mechanism 64 . Therefore, by switching the second lock member 312 between the unlocked position and the locked position, the state in which the change of the aperture amount by the aperture change mechanism 64 is allowed and the state in which the change in the aperture amount by the aperture change mechanism 64 is restricted. can be switched to
  • the first locking mechanism 292 and the second locking mechanism 294 are independent of each other. Therefore, the first locking mechanism 292 and the second locking mechanism 294 can be switched independently between the unlocked state and the locked state.
  • a third guide groove 322 is formed on the outer peripheral surface of the lens barrel 52 .
  • the third guide groove 322 extends annularly along the circumferential direction of the lens barrel 52 .
  • the third ring 142 of the polarizer rotating mechanism 66 is accommodated in the third guide groove 322 .
  • the third ring 142 is bidirectionally rotatable along the circumferential direction of the third guide groove 322 .
  • a polarizer 58 is housed inside the lens barrel 52 .
  • a polarizer 58 is fixed to the third ring 142 via a connecting mechanism (not shown).
  • a third uneven portion 146 is formed on the outer peripheral surface of the third ring 142 .
  • the lock member 282 is in an unlocked position (see the left diagram of FIG. 24) in which it is retracted from the first ring 72, the second ring 82, and the third ring 142, and a position in which it is retracted from the third ring 142 and slides between a first locking position overlapping (see middle view of FIG. 24) and a second locking position (see right view of FIG. 24) overlapping first ring 72, second ring 82 and third ring 142; .
  • the concave-convex portion 286 of the locking member 282 engages with the third concave-convex portion 146 .
  • the uneven portion 286 of the locking member 282 is also engaged with the first uneven portion 78 and the second uneven portion 88 .
  • the first ring 72, the second ring 82, and the third ring 142 are fixed to the lens barrel 52, the focus lens 54 is moved by the focus lens moving mechanism 62, and the aperture amount is changed by the aperture changing mechanism 64. , and the rotation of the polarizer 58 by the polarizer rotating mechanism 66 is restricted.
  • the uneven portion 286 of the locking member 282 is engaged with the first uneven portion 78 and the second uneven portion 88, but the uneven portion 286 of the locking member 282 is engaged with the third uneven portion. It becomes a state separated from the uneven portion 146 . In this state, the movement of the focus lens 54 by the focus lens moving mechanism 62 and the change of the aperture amount by the aperture changing mechanism 64 are restricted, but the third ring 142 is released from the lens barrel 52 and the polarizer rotating mechanism 66 is released. Rotation of polarizer 58 by is allowed.
  • the uneven portion 286 of the lock member 282 is separated from the first uneven portion 78, the second uneven portion 88, and the third uneven portion 146.
  • the fixing of the first ring 72 to the lens barrel 52, the fixing of the second ring 82 to the lens barrel 52, and the fixing of the third ring 142 to the lens barrel 52 are released. Movement, change of the aperture amount by the aperture changing mechanism 64, and rotation of the polarizer 58 by the polarizer rotating mechanism 66 are permitted.
  • the state in which the lock member 282 is slid to the unlocked position is an example of the “first state” according to the technology of the present disclosure.
  • the state of being slid to the position is an example of the "second state” according to the technology of the present disclosure.
  • the unlocked state allows the focus lens 54 to be moved by the focus lens moving mechanism 62 .
  • the lock member 282 is slid to the first lock position or the second lock position, the lock member 282 is in a locked state in which movement of the focus lens 54 by the focus lens moving mechanism 62 is restricted. Therefore, by switching the lock member 282 between the unlocked position and the first locked position or the second locked position, the state in which the focus lens moving mechanism 62 is permitted to move the focus lens 54 and the focus state by the focus lens moving mechanism 62 are changed. It is possible to switch to a state in which the movement of the lens 54 is restricted.
  • the lock member 282 when the lock member 282 is slid to the unlocked position, it is in an unlocked state that allows the aperture change mechanism 64 to change the aperture amount.
  • the lock member 282 when the lock member 282 is slid to the first lock position or the second lock position, the lock member 282 is in a locked state that limits the change of the aperture amount by the aperture change mechanism 64 . Therefore, by switching the lock member 282 between the unlocked position and the first lock position or the second lock position, the change of the aperture amount by the aperture change mechanism 64 is permitted, and the aperture change by the aperture change mechanism 64 is permitted. can be switched to and from the restricted state.
  • the lock member 282 when the lock member 282 is slid to the unlocked position, it is in an unlocked state that allows the polarizer 58 to be rotated by the polarizer rotating mechanism 66 .
  • the lock member 282 when the lock member 282 is slid to the second lock position, the lock member 282 is locked to restrict the rotation of the polarizer 58 by the polarizer rotating mechanism 66 . Therefore, by switching the lock member 282 between the unlocked position and the second locked position, the state in which the rotation of the polarizer 58 by the polarizer rotation mechanism 66 is allowed and the rotation of the polarizer 58 by the polarizer rotation mechanism 66 are changed. You can switch to and from restricted states.
  • the configuration of the imaging device 10 is changed as follows from the first embodiment. That is, the focus lens moving mechanism 62 has a first engaging portion 332 and the diaphragm changing mechanism 64 has a third engaging portion 336 .
  • the lock mechanism 68 has a second engagement portion 334 , a fourth engagement portion 338 and a drive mechanism 340 .
  • the second engaging portion 334 engages with the first engaging portion 332 and the fourth engaging portion 338 engages with the third engaging portion 336 .
  • the first engaging portion 332 is a convex portion or a concave portion
  • the second engaging portion 334 is a concave portion or a convex portion that engages with the first engaging portion 332
  • the third engaging portion 336 is a convex portion or a concave portion
  • the fourth engaging portion 338 is a concave portion or a convex portion that engages with the third engaging portion 336 .
  • the lock mechanism 68 is an example of the "first lock mechanism" and the "second lock mechanism" according to the technology of the present disclosure.
  • the drive mechanism 340 has a first actuator (not shown) that moves the second engaging portion 334 and a second actuator (not shown) that moves the fourth engaging portion 338 .
  • Actuators such as electromagnetic solenoids are used for the first actuator and the second actuator, for example.
  • the second engaging portion 334 is moved by the power applied by the first actuator, and the second engaging portion 334 is separated from the first engaging portion 332, and the second engaging portion 334 is separated from the first engaging portion. 332 and the engaged state.
  • the drive mechanism 340 is an example of the "first drive mechanism” and the "second drive mechanism” according to the technology of the present disclosure.
  • the state in which the second engaging portion 334 is engaged with the first engaging portion 332 is an example of the “first state” according to the technology of the present disclosure, and the second engaging portion 334 is separated from the first engaging portion 332
  • the separated state is an example of a "second state" according to the technology of the present disclosure.
  • a state in which the fourth engaging portion 338 is engaged with the third engaging portion 336 is an example of a “first state” according to the technology of the present disclosure, and the fourth engaging portion 338 is separated from the third engaging portion 336 The separated state is an example of a "second state" according to the technology of the present disclosure.
  • a sensor 342 is used.
  • a sensor 342 detects the rotational position of the polarizer 58 and outputs a rotation signal corresponding to the rotational position.
  • a sensor such as a potentiometer that detects the rotational position is used.
  • the rotation signal is an example of the "sensor detection result" according to the technology of the present disclosure.
  • the NVM 44 stores an imaging support processing program 350 .
  • the imaging support processing program 350 is an example of a “program” according to the technology of the present disclosure.
  • the CPU 42 reads the imaging support processing program 350 from the NVM 44 and executes the read imaging support processing program 350 on the RAM 46 .
  • the CPU 42 performs imaging support processing according to an imaging support processing program 350 executed on the RAM 46 .
  • the CPU 42 operates as a rotation signal acquisition section 352 , a lock determination section 354 , an unlock control section 356 and a lock control section 358 .
  • the rotation signal acquisition unit 352 acquires the rotation signal input from the sensor 342 .
  • the lock determination unit 354 determines whether or not to lock. As an example, the lock determination unit 354 determines to unlock when determining that the polarizer 58 is not rotating based on the rotation signal. On the other hand, when the lock determination unit 354 determines that the polarizer 58 is rotating based on the rotation signal, it determines that the lock is to be performed.
  • the lock determination unit 354 determines to unlock when it determines that an unlock instruction to unlock has been received by the receiving device 24 and/or the external I/F 26 .
  • the lock determination unit 354 determines that the lock instruction to lock has been received by the receiving device 24 and/or the external I/F 26, it determines to lock.
  • the instruction to lock that is received by the reception device 24 and/or the external I/F 26 is an example of the "instruction from outside" according to the technology of the present disclosure.
  • the CPU 42 has an unlock mode and a lock mode as operation modes.
  • the lock determination unit 354 determines to unlock, the CPU 42 switches to the unlock mode, and when the lock determination unit 354 determines to lock, the CPU 42 switches to the lock mode.
  • the CPU 42 operates as the unlock control unit 356 in the unlock mode.
  • the CPU 42 operates as the lock controller 358 in the lock mode.
  • the unlock mode is an example of the "first mode” according to the technology of the present disclosure
  • the lock mode is an example of the "second mode” according to the technology of the present disclosure.
  • the CPU 42 is an example of the "first processor” and the "second processor” according to the technology of the present disclosure.
  • the unlock control unit 356 outputs an unlock command to the drive mechanism 340 .
  • the drive mechanism 340 moves the second engaging portion 334 away from the first engaging portion 332 and moves the fourth engaging portion 338 away from the third engaging portion 336. Let As a result, the lock mechanism 68 is unlocked, and movement of the focus lens 54 and change of the aperture amount by the aperture change mechanism 64 are permitted.
  • the lock control unit 358 outputs a lock command to the drive mechanism 340.
  • the drive mechanism 340 moves the second engaging portion 334 in a direction to engage with the first engaging portion 332 and engages the fourth engaging portion 338 with the third engaging portion 336. move in the direction Thereby, the lock mechanism 68 is locked, and the movement of the focus lens 54 and the change of the aperture amount by the aperture change mechanism 64 are restricted.
  • FIG. 28 shows an example of the flow of imaging support processing according to the eleventh embodiment.
  • step S11 the rotation signal acquisition unit 352 acquires the rotation signal input from the sensor 342.
  • step S12 the lock determination unit 354 determines whether or not to lock based on the rotation signal and the instruction received by the reception device 24 and/or the external I/F 26.
  • step S12 when the lock determination unit 354 determines to lock, the process shown in FIG. 28 proceeds to step S13.
  • step S14 the process shown in FIG. 28 proceeds to step S14.
  • the unlock control unit 356 outputs an unlock command to the drive mechanism 340 to bring the lock mechanism 68 into the unlocked state.
  • the unlock control unit 356 outputs a lock command to the drive mechanism 340 to bring the lock mechanism 68 into the locked state.
  • the process shown in FIG. 28 returns to step S11 after step S13 or step S14. Then, the process shown in FIG. 28 repeats steps S11 to S13 or S14 until it is stopped by an instruction from the user and/or an instruction from the outside.
  • the lock mechanism 68 is switched between the unlocked state and the locked state according to the detection result of the sensor 342 . Therefore, when the user rotates the polarizer 58, the trouble of switching the locking mechanism 68 between the unlocked state and the locked state can be saved.
  • the CPU 42 switches between the unlock mode and the lock mode based on an external instruction accepted by the accepting device 24 and/or the external I/F 26 . Therefore, by giving an instruction from the receiving device 24 and/or the external I/F 26 to the CPU 42, the lock mechanism 68 can be switched between the unlocked state and the locked state.
  • the CPU 42 switches between the unlock mode and the lock mode based on an external instruction received by the reception device 24 and/or the external I/F 26, but switches to the unlock mode based on information obtained from the subject. and lock mode.
  • Information obtained from the subject in this case includes, for example, the subject's type, temperature, environment, motion, and the like.
  • the configuration of the imaging device 10 is changed as follows from the eleventh embodiment. That is, the polarizer rotating mechanism 66 has a motor 362 . Motor 362 imparts rotational force to polarizer 58 .
  • the CPU 42 operates as a first image acquisition section 372 , a first rotation control section 374 , a second image acquisition section 376 , a rotation necessity determination section 378 and a second rotation control section 380 .
  • the first image acquisition unit 372 acquires a first image based on first digital image data obtained by capturing an image of light transmitted through the polarizer 58 by the image sensor 16. do.
  • the first image is the image obtained when the polarizer 58 is in the first position.
  • the first rotation control section 374 outputs a first rotation command to rotate the polarizer 58 from the first position to the second position.
  • the second position is a position where the polarizer 58 is rotated 90 degrees from the first position.
  • Motor 362 rotates polarizer 58 from the first position to the second position according to the first rotation command.
  • the second image acquisition unit 376 acquires a second image based on second digital image data obtained by capturing an image of light transmitted through the polarizer 58 by the image sensor 16 .
  • the second image is the image obtained when the polarizer 58 is in the second position.
  • the rotation necessity determination unit 378 determines whether or not the polarizer 58 needs to be rotated. As an example, the rotation necessity determining unit 378 compares the first image and the second image, and determines that the second image includes the reflected image 166 and the first image does not include the reflected image 166. In this case, it is determined that the polarizer 58 needs to be rotated. On the other hand, the rotation necessity determining unit 378 compares the first image and the second image, and determines that the second image does not include the reflected image 166 and the first image includes the reflected image 166. In this case, it is determined that the polarizer 58 does not need to be rotated.
  • the rotation necessity determination unit 378 determines that the polarizer 58 does not need to be rotated when the reflected image 166 is not included in both the first image and the second image. Further, when the reflected image 166 is included in both the first image and the second image, the rotation necessity determination unit 378 determines that the brightness of the reflected image 166 included in the second image is the same as that of the reflected image 166 included in the first image. , it is determined that the polarizer 58 needs to be rotated. On the other hand, when the reflected image 166 is included in both the first image and the second image, the rotation necessity determination unit 378 determines that the brightness of the reflected image 166 included in the second image is the brightness of the reflected image 166 included in the first image. , it is determined that the polarizer 58 does not need to be rotated. The rotation necessity determination unit 378 determines whether or not the reflected image 166 is included in the first image and the second image by using various image analysis processes.
  • the second rotation control unit 380 rotates the polarizer 58 from the second position to the first position. Outputs a rotation command.
  • Motor 362 rotates polarizer 58 from the second position to the first position according to the second rotation command.
  • the CPU 42 is an example of a “third processor” according to the technology of the present disclosure.
  • the motor 362 is an example of a "third drive mechanism”.
  • FIG. 30 shows an example of the flow of imaging support processing according to the twelfth embodiment.
  • step S21 the first image acquisition unit 372 acquires the first image based on the first digital image data.
  • the first rotation controller 374 outputs a first rotation command to rotate the polarizer 58 from the first position to the second position.
  • the second image acquisition unit 376 acquires the second image based on the second digital image data.
  • step S24 the rotation necessity determination unit 378 determines whether or not the polarizer 58 needs to be rotated based on the first image and the second image. In step S24, if the rotation necessity determining unit 378 determines that the polarizer 58 needs to be rotated, the process shown in FIG. 30 proceeds to step S25. On the other hand, if the rotation necessity determining unit 378 determines in step S24 that the polarizer 58 does not need to be rotated, the process shown in FIG. 30 ends.
  • step S25 the second rotation control section 380 outputs a second rotation command to rotate the polarizer 58 from the second position to the first position.
  • the CPU 42 controls the first image obtained by the image sensor 16 capturing the light transmitted through the polarizer 58 when the polarizer 58 is at the first position.
  • the polarizer rotating mechanism 66 is controlled based on a second image obtained by imaging the light transmitted through the polarizer 58 when the polarizer 58 is at the second position by the image sensor 16 . Therefore, for example, the user can save the trouble of rotating the polarizer 58 by the polarizer rotating mechanism 66 while checking the first image and the second image.
  • a lens-interchangeable digital camera is exemplified as the imaging device 10, but this is merely an example, and a fixed-lens digital camera, a smart device, It may be a digital camera incorporated in various electronic devices such as a wearable terminal, a cell observation device, an ophthalmologic observation device, or a surgical microscope.
  • the imaging device 10 may be a glasses-type eyewear terminal or a head-mounted display terminal worn on the head.
  • a display may be provided for only one eye, or may be provided for both eyes.
  • the display may be formed to be translucent.
  • the CPU 42 was exemplified, but instead of or together with the CPU 42, at least one other CPU, at least one GPU, and/or at least one TPU may be used.
  • the imaging support processing program 350 may be stored in a portable non-temporary storage medium such as an SSD or USB memory.
  • the imaging support processing program 350 stored in the non-temporary storage medium is installed in the computer 36 of the imaging device 10 .
  • the CPU 42 executes imaging support processing according to the imaging support processing program 350 .
  • the imaging support processing program 350 is stored in a storage device such as another computer or a server device connected to the imaging device 10 via a network, and the imaging support processing program 350 is downloaded in response to a request from the imaging device 10. and may be installed on computer 36 .
  • imaging support processing program 350 it is not necessary to store all of the imaging support processing program 350 in another computer 36 connected to the imaging device 10, a storage device such as a server device, or the NVM 44, and a part of the imaging support processing program 350 is stored. You can let it go.
  • the computer 36 is incorporated in the imaging device 10 shown in FIG. 2, the technology of the present disclosure is not limited to this, and the computer 36 may be provided outside the imaging device 10, for example.
  • the computer 36 including the CPU 42, NVM 44, and RAM is illustrated in the above embodiment, the technology of the present disclosure is not limited to this, and instead of the computer 36, an ASIC, FPGA, and/or PLD may be used. A device containing Also, instead of the computer 36, a combination of hardware and software configurations may be used.
  • processors include a CPU, which is a general-purpose processor that functions as a hardware resource that executes imaging support processing by executing software, that is, a program.
  • processors include, for example, FPGAs, PLDs, ASICs, and other dedicated electric circuits that are processors having circuit configurations specially designed to execute specific processing.
  • Each processor has a built-in memory or is connected to the memory, and each processor uses the memory to execute imaging support processing.
  • the hardware resource that executes the imaging support processing may be configured with one of these various processors, or a combination of two or more processors of the same or different types (for example, a combination of multiple FPGAs, or (combination of CPU 42 and FPGA). Also, the hardware resource for executing the imaging support process may be one processor.
  • one processor is configured by combining one or more CPUs and software, and this processor functions as a hardware resource for executing imaging support processing.
  • this processor functions as a hardware resource for executing imaging support processing.
  • SoC SoC
  • a and/or B is synonymous with “at least one of A and B.” That is, “A and/or B” means that only A, only B, or a combination of A and B may be used. Also, in this specification, when three or more matters are expressed by connecting with “and/or”, the same idea as “A and/or B" is applied.

Abstract

This lens device comprises: a focus lens through which light passes; a moving mechanism which moves the focus lens in the optical axis direction; a polarizer displaced to a first position at which a first polarized light component included in the light passes through and a second position at which a second polarized light component included in the light passes through; a displacement mechanism which displaces the polarizer; and a first lock mechanism having a first state in which the movement of the focus lens by the moving mechanism is allowed, and a second state in which the movement of the focus lens by the moving mechanism is restricted.

Description

レンズ装置及び撮像装置Lens device and imaging device
 本開示の技術は、レンズ装置及び撮像装置に関する。 The technology of the present disclosure relates to a lens device and an imaging device.
 特開2002-303513号公報には、観測対象物の偏光方向の異なる偏光による複数の画像を取得するための撮像手段と、撮像手段により取得した複数の画像を処理して観測対象物の明るさ画像を作成する画像処理手段と、画像処理手段により作成された観測対象物の明るさ画像を表示する画像表示手段を有する観測装置が開示されている。 Japanese Patent Application Laid-Open No. 2002-303513 discloses an imaging means for acquiring a plurality of images of an object to be observed with polarized light having different polarization directions, and processing the plurality of images acquired by the imaging means to determine the brightness of the object to be observed. An observation apparatus is disclosed which has an image processing means for creating an image and an image display means for displaying the brightness image of the observed object created by the image processing means.
 特開2016-208136号公報には、第1の面と、第1の面の一端に60度の頂角を形成するように連なる第2の面と、第1の面の他端に60度の頂角を形成するように連なると共に第2の面に対しても60度の角度をなす第3の面と、を有する第1プリズムと、入射画像光を互いに平行な第1光束と第2光束とに分光して、2つの光束を第1の面に垂直に入射させる第2プリズムと、第2の面に臨ませて配置された1つの撮像装置と、を備え、第1プリズムは、第1の面と第3の面との交点を通って第2の面と直交する分割面を有し、分割面に、第1光束を第1直進光と第1反射光とに分光する第1内部光学フィルタと、第2光束を第2直進光と第2反射光とに分光する第2内部光学フィルタとが設定され、第1直進光と第2直進光とが、それぞれ第1プリズム内で全反射されることなく第3の面でのみ全反射された後、第2の面から垂直に出射される2つの出射画像光とされ、第1反射光と第2反射光とが、それぞれ第1プリズム内で全反射されることなく第1の面でのみ全反射された後、第2の面から垂直に出射される2つの出射画像光とされ、撮像装置が、各出射画像光を同時に撮像して複数の画像を同時に取得する多機能画像取得装置が開示されている。 Japanese Patent Application Laid-Open No. 2016-208136 describes a first surface, a second surface that forms a vertical angle of 60 degrees at one end of the first surface, and a 60 degree angle at the other end of the first surface. and a third surface forming an angle of 60 degrees with respect to the second surface as well. and a second prism that divides the light beams into two light beams and makes the two light beams perpendicularly incident on the first surface; It has a splitting surface that passes through the intersection of the first surface and the third surface and is perpendicular to the second surface. 1 internal optical filter and a second internal optical filter for splitting the second light flux into a second straight light and a second reflected light are set, and the first straight light and the second straight light are respectively transmitted through the first prism. After being totally reflected only by the third surface without being totally reflected by the second surface, the first reflected light and the second reflected light are formed into two emitted image lights that are emitted perpendicularly from the second surface. After being totally reflected only by the first surface without being totally reflected in the first prism, the two emitted image lights are vertically emitted from the second surface. A multi-function image acquisition device is disclosed that simultaneously captures and acquires multiple images simultaneously.
 特表2009-226131号公報には、装置本体の前面側に設けられた画面と、装置本体の前面側でかつ画面の周囲に設けられた、電磁波を受光するためのカメラとを有し、画面の表面に鏡が設けられ、画面の内側に偏光フィルター又は液晶素子が配置されており、一方で、カメラと投写装置がオン状態にあるとき、カメラから得られる画像を投写装置により偏光フィルター又は液晶素子に投写し画面上に投写し、他方で、カメラと投与装置がオフの状態にあるとき、鏡が光を反射して反射画像をつくり、画面の前方に人間がいる場合、人体の姿を反射画像として映すことができる画像表示装置が開示されている。 Japanese National Publication of International Patent Application No. 2009-226131 discloses a screen provided on the front side of an apparatus main body, and a camera for receiving electromagnetic waves provided on the front side of the apparatus main body and around the screen. A mirror is provided on the surface of the screen, and a polarizing filter or liquid crystal element is placed inside the screen. When the image is projected onto the element and projected onto the screen, and on the other hand, when the camera and the administration device are in the off state, the mirror reflects the light to create a reflection image, and if there is a person in front of the screen, the figure of the human body can be seen. An image display device capable of displaying a reflected image is disclosed.
 本開示の技術に係る一つの実施形態は、偏光子を変位させる場合に、フォーカスレンズの移動を制限することができるレンズ装置及び撮像装置を提供する。 One embodiment according to the technology of the present disclosure provides a lens device and an imaging device that can limit the movement of the focus lens when displacing the polarizer.
 本開示の技術に係る第1の態様は、光が透過するフォーカスレンズと、フォーカスレンズを光軸方向に移動させる移動機構と、光に含まれる第1偏光成分を透過させる第1位置と、光に含まれる第2偏光成分を透過させる第2位置とに変位する偏光子と、偏光子を変位させる変位機構と、移動機構によるフォーカスレンズの移動を許容する第1状態と、移動機構によるフォーカスレンズの移動を制限する第2状態とを有する第1ロック機構と、を備えたレンズ装置である。 A first aspect of the technology of the present disclosure includes a focus lens that transmits light, a movement mechanism that moves the focus lens in the optical axis direction, a first position that transmits a first polarized component included in light, and light a polarizer displaced to a second position for transmitting a second polarized component included in the polarizer, a displacement mechanism for displacing the polarizer, a first state for allowing movement of the focus lens by the movement mechanism, and a focus lens by the movement mechanism and a first lock mechanism having a second state that restricts movement of the lens.
 本開示の技術に係る第2の態様は、第1の態様に係るレンズ装置において、変位機構による偏光子の変位に基づいて、第1状態と第2状態とが切り替わるレンズ装置である。 A second aspect of the technology of the present disclosure is the lens device according to the first aspect, in which the first state and the second state are switched based on the displacement of the polarizer by the displacement mechanism.
 本開示の技術に係る第3の態様は、第1の態様又は第2の態様に係るレンズ装置において、光が通過する絞りと、絞りによる光の絞り量を変更する変更機構と、をさらに備え、変更機構による絞り量の変更を許容する第3状態と、変更機構による絞り量の変更を制限する第4状態とを有する第2ロック機構と、を備えたレンズ装置である。 A third aspect of the technology of the present disclosure is the lens device according to the first aspect or the second aspect, further comprising a diaphragm through which light passes and a changing mechanism that changes the aperture amount of light by the diaphragm. and a second lock mechanism having a third state that permits change of the aperture amount by the change mechanism and a fourth state that restricts change of the aperture amount by the change mechanism.
 本開示の技術に係る第4の態様は、第3の態様に係るレンズ装置において、変位機構による偏光子の変位に基づいて、第3状態と第4状態とが切り替わるレンズ装置である。 A fourth aspect of the technology of the present disclosure is the lens device according to the third aspect, in which the third state and the fourth state are switched based on the displacement of the polarizer by the displacement mechanism.
 本開示の技術に係る第5の態様は、第4の態様に係るレンズ装置において、第1状態と第2状態との切り替わりと、第3状態と第4状態との切り替わりは並行して行われるレンズ装置である。 A fifth aspect of the technology of the present disclosure is the lens device according to the fourth aspect, in which switching between the first state and the second state and switching between the third state and the fourth state are performed in parallel. lens device.
 本開示の技術に係る第6の態様は、第1の態様から第5の態様の何れか一つに係るレンズ装置において、変位機構は、偏光子を光軸方向周りに回転させる回転機構を含むレンズ装置である。 A sixth aspect of the technology of the present disclosure is the lens device according to any one of the first to fifth aspects, wherein the displacement mechanism includes a rotation mechanism that rotates the polarizer around the optical axis direction. lens device.
 本開示の技術に係る第7の態様は、第1の態様から第5の態様の何れか一つに係るレンズ装置において、偏光子は、第1偏光成分を透過させる第1偏光子と、第2偏光成分を透過させる第2偏光子とを有し、変位機構は、偏光子を光軸方向に対する交差方向にスライドさせることにより第1偏光子と第2偏光子とを切り替えるスライド機構を含むレンズ装置である。 A seventh aspect of the technology of the present disclosure is the lens device according to any one of the first to fifth aspects, wherein the polarizer includes a first polarizer that transmits a first polarized component; and a second polarizer that transmits two polarized components, and the displacement mechanism includes a slide mechanism that switches between the first polarizer and the second polarizer by sliding the polarizer in a direction crossing the optical axis direction. It is a device.
 本開示の技術に係る第8の態様は、第1の態様から第7の態様の何れか一つに係るレンズ装置において、移動機構及び変位機構を支持する鏡筒をさらに備え、第1状態は、第1ロック機構が、鏡筒に対する移動機構の固定を解除した状態であり、第2状態は、第1ロック機構が、鏡筒に対して移動機構を固定した状態であるレンズ装置である。 An eighth aspect of the technology of the present disclosure is the lens device according to any one of the first to seventh aspects, further comprising a lens barrel that supports the moving mechanism and the displacement mechanism, wherein the first state is , the first lock mechanism is a state in which the movement mechanism is released from the lens barrel, and the second state is a lens device in which the first lock mechanism is in a state in which the movement mechanism is fixed to the lens barrel.
 本開示の技術に係る第9の態様は、第1の態様から第7の態様の何れか一つに係るレンズ装置において、移動機構及び変位機構を支持する鏡筒をさらに備え、第1状態は、第1ロック機構が鏡筒から取り外された状態であり、第2状態は、第1ロック機構が鏡筒に装着された状態であるレンズ装置である。 A ninth aspect of the technology of the present disclosure is the lens device according to any one of the first to seventh aspects, further comprising a lens barrel that supports the moving mechanism and the displacement mechanism, wherein the first state is , a state in which the first locking mechanism is removed from the lens barrel, and a second state is a state in which the first locking mechanism is attached to the lens barrel.
 本開示の技術に係る第10の態様は、第1の態様から第7の態様の何れか一つに係るレンズ装置において、移動機構は、第1係合部を有し、第1ロック機構は、第2係合部を有し、第1状態は、第1係合部が第2係合部と離れた状態であり、第2状態は、第1係合部が第2係合部と係合した状態であるレンズ装置である。 A tenth aspect of the technology of the present disclosure is the lens device according to any one of the first to seventh aspects, wherein the moving mechanism has a first engaging portion, and the first locking mechanism has and a second engaging portion, the first state being a state in which the first engaging portion is separated from the second engaging portion, and the second state being a state in which the first engaging portion is separated from the second engaging portion. Fig. 4 is a lens device in an engaged state;
 本開示の技術に係る第11の態様は、第10の態様に係るレンズ装置において、偏光子の位置を検出するセンサと、センサの検出結果に応じて、第2係合部を移動させる第1駆動機構と、をさらに備えるレンズ装置である。 An eleventh aspect of the technology of the present disclosure is, in the lens device of the tenth aspect, a sensor that detects the position of the polarizer, and a first and a driving mechanism.
 本開示の技術に係る第12の態様は、第11の態様に係るレンズ装置において、センサの検出結果に基づいて第1駆動機構を制御する第1プロセッサをさらに備えるレンズ装置である。 A twelfth aspect of the technology of the present disclosure is the lens device according to the eleventh aspect, further comprising a first processor that controls the first driving mechanism based on the detection result of the sensor.
 本開示の技術に係る第13の態様は、第1の態様から第7の態様の何れか一つに係るレンズ装置において、第1ロック機構を駆動する第2駆動機構と、第2駆動機構を制御する第2プロセッサと、をさらに備えるレンズ装置である。 A thirteenth aspect of the technology of the present disclosure is the lens device according to any one of the first to seventh aspects, wherein a second drive mechanism for driving the first lock mechanism and a second drive mechanism are and a controlling second processor.
 本開示の技術に係る第14の態様は、第13の態様に係るレンズ装置において、第2プロセッサは、第2駆動機構に対し、第1ロック機構が第1状態に切り替わる制御を行う第1モードと、第2駆動機構に対し、第1ロック機構が第2状態に切り替わる制御を行う第2モードと、を有するレンズ装置である。 A fourteenth aspect of the technology of the present disclosure is the lens device according to the thirteenth aspect, wherein the second processor controls the second drive mechanism to switch the first locking mechanism to the first state in the first mode. and a second mode in which the first lock mechanism controls the second drive mechanism to switch to the second state.
 本開示の技術に係る第15の態様は、第14の態様に係るレンズ装置において、第2プロセッサは、外部からの指示、又は被写体から得られる情報に基づいて、第1モードと第2モードとに切り替わるレンズ装置である。 A fifteenth aspect of the technology of the present disclosure is the lens device according to the fourteenth aspect, wherein the second processor switches between the first mode and the second mode based on an external instruction or information obtained from the subject. It is a lens device that switches to
 本開示の技術に係る第16の態様は、第1の態様から第15の態様の何れか一つに係るレンズ装置において、変位機構を駆動する第3駆動機構と、第3駆動機構を制御する第3プロセッサと、をさらに備えるレンズ装置である。 A sixteenth aspect of the technology of the present disclosure is, in the lens device according to any one of the first to fifteenth aspects, a third drive mechanism that drives the displacement mechanism, and a control of the third drive mechanism. and a third processor.
 本開示の技術に係る第17の態様は、第16の態様に係るレンズ装置において、第3プロセッサは、偏光子が第1位置にある場合に偏光子を透過した光がイメージセンサによって撮像されることで得られた第1画像と、偏光子が第2位置にある場合に偏光子を透過した光がイメージセンサによって撮像されることで得られた第2画像とに基づいて、第3駆動機構を制御するレンズ装置である。 A seventeenth aspect of the technology of the present disclosure is the lens device according to the sixteenth aspect, wherein the third processor causes the image sensor to capture an image of light transmitted through the polarizer when the polarizer is at the first position. and a second image obtained by imaging the light transmitted through the polarizer with the image sensor when the polarizer is at the second position. is a lens device that controls the
 本開示の技術に係る第18の態様は、第1の態様から第17の態様の何れか一つに係るレンズ装置において、光に含まれる近赤外光を選択して透過するフィルタをさらに備えるレンズ装置である。 An eighteenth aspect of the technology of the present disclosure is the lens device according to any one of the first to seventeenth aspects, further comprising a filter that selectively transmits near-infrared light contained in the light. lens device.
 本開示の技術に係る第19の態様は、第18の態様に係るレンズ装置において、フィルタは、偏光子と一体であるレンズ装置である。 A nineteenth aspect of the technology of the present disclosure is the lens device according to the eighteenth aspect, wherein the filter is integrated with the polarizer.
 本開示の技術に係る第20の態様は、第1の態様から第19の態様の何れか一つに係るレンズ装置と、レンズ装置を透過した光が結像されるイメージセンサと、を備える撮像装置である。 A twentieth aspect of the technology of the present disclosure is an image pickup including the lens device according to any one of the first to nineteenth aspects, and an image sensor on which light transmitted through the lens device forms an image. It is a device.
第1実施形態に係る撮像装置の一例を示す側面断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is side sectional drawing which shows an example of the imaging device which concerns on 1st Embodiment. 第1実施形態に係る撮像装置本体の一例を示すブロック図である。2 is a block diagram showing an example of an imaging device main body according to the first embodiment; FIG. 第1実施形態に係るロック機構の動作の一例を示す図である。It is a figure which shows an example of operation|movement of the locking mechanism which concerns on 1st Embodiment. 第1実施形態に係るレンズ装置の一例を示す斜視図である。It is a perspective view showing an example of a lens device concerning a 1st embodiment. 第1実施形態に係る偏光子の一例を示す図である。It is a figure which shows an example of the polarizer which concerns on 1st Embodiment. 反射光に含まれる第1偏光成分及び第2偏光成分について入射角と反射率との関係の一例を示すグラフである。5 is a graph showing an example of the relationship between the incident angle and the reflectance for the first polarized component and the second polarized component included in the reflected light; 被写体の一例を示す斜視図である。It is a perspective view which shows an example of a to-be-photographed object. 第1近赤外光画像の一例を示す図である。It is a figure which shows an example of a 1st near-infrared light image. 第2近赤外光画像の一例を示す図である。It is a figure which shows an example of a 2nd near-infrared light image. 第1実施形態に係る撮像装置の使用方法の流れの一例を示す図である。It is a figure which shows an example of the flow of the usage method of the imaging device which concerns on 1st Embodiment. 第2実施形態に係る偏光子の一例を示す図である。It is a figure which shows an example of the polarizer which concerns on 2nd Embodiment. 第3実施形態に係る偏光子の一例を示す図である。It is a figure which shows an example of the polarizer which concerns on 3rd Embodiment. 第4実施形態に係る撮像装置の一例を示す側面断面図である。It is a side sectional view showing an example of an imaging device concerning a 4th embodiment. 第5実施形態に係る撮像装置の一例を示す側面断面図である。It is a side sectional view showing an example of an imaging device concerning a 5th embodiment. 第6実施形態に係る撮像装置の一例を示す側面断面図である。FIG. 12 is a side cross-sectional view showing an example of an imaging device according to a sixth embodiment; 第6実施形態に係るターレットフィルタの一例を示す図である。It is a figure which shows an example of the turret filter which concerns on 6th Embodiment. 第7実施形態に係るレンズ装置の一例を示す図である。It is a figure which shows an example of the lens apparatus which concerns on 7th Embodiment. 第7実施形態に係るレンズ装置の第1リングの位置での断面図である。FIG. 12 is a cross-sectional view of the lens device according to the seventh embodiment at the position of the first ring; 第7実施形態に係るレンズ装置の第2リングの位置での断面図である。FIG. 14 is a cross-sectional view of the lens device according to the seventh embodiment at the position of the second ring; 第8実施形態に係るレンズ装置の一例を示す図である。It is a figure which shows an example of the lens apparatus which concerns on 8th Embodiment. 第8実施形態に係るレンズ装置の第1リングの位置での断面図である。FIG. 20 is a cross-sectional view at the position of the first ring of the lens device according to the eighth embodiment; 第8実施形態に係るレンズ装置の第2リングの位置での断面図である。FIG. 21 is a cross-sectional view at the position of the second ring of the lens device according to the eighth embodiment; 第9実施形態に係るレンズ装置の一例を示す図である。It is a figure which shows an example of the lens apparatus which concerns on 9th Embodiment. 第10実施形態に係るレンズ装置の一例を示す図である。It is a figure which shows an example of the lens apparatus which concerns on 10th Embodiment. 第10実施形態に係るレンズ装置の第3リングの位置での断面図である。FIG. 21 is a cross-sectional view at the position of the third ring of the lens device according to the tenth embodiment; 第11実施形態に係る撮像装置の一例を示すブロック図である。FIG. 22 is a block diagram showing an example of an imaging device according to an eleventh embodiment; FIG. 第11実施形態に係るCPUの機能的な構成の一例を示すブロック図である。FIG. 21 is a block diagram showing an example of a functional configuration of a CPU according to an eleventh embodiment; FIG. 第11実施形態に係るCPUの動作の一例を示すフローチャートである。FIG. 22 is a flow chart showing an example of the operation of the CPU according to the eleventh embodiment; FIG. 第12実施形態に係る撮像装置の一例を示すブロック図である。FIG. 22 is a block diagram showing an example of an imaging device according to a twelfth embodiment; FIG. 第12実施形態に係るCPUの動作の一例を示すフローチャートである。FIG. 22 is a flow chart showing an example of the operation of a CPU according to the twelfth embodiment; FIG.
 以下、添付図面に従って本開示の技術に係るレンズ装置及び撮像装置の一例について説明する。 An example of a lens device and an imaging device according to the technology of the present disclosure will be described below with reference to the accompanying drawings.
 先ず、以下の説明で使用される文言について説明する。 First, the wording used in the following explanation will be explained.
 CPUとは、“Central Processing Unit”の略称を指す。GPUとは、“Graphics Processing Unit”の略称を指す。NVMとは、“Non-Volatile Memory”の略称を指す。RAMとは、“Random Access Memory”の略称を指す。ICとは、“Integrated Circuit”の略称を指す。ASICとは、“Application Specific Integrated Circuit”の略称を指す。PLDとは、“Programmable Logic Device”の略称を指す。FPGAとは、“Field-Programmable Gate Array”の略称を指す。SoCとは、“System-on-a-chip”の略称を指す。SSDとは、“Solid State Drive”の略称を指す。HDDとは、“Hard Disk Drive”の略称を指す。EEPROMとは、“Electrically Erasable and Programmable Read Only Memory”の略称を指す。SRAMとは、“Static Random Access Memory”の略称を指す。I/Fとは、“Interface”の略称を指す。USBとは、“Universal Serial Bus”の略称を指す。CMOSとは、“Complementary Metal Oxide Semiconductor”の略称を指す。CCDとは、“Charge Coupled Device”の略称を指す。LANとは、“Local Area Network”の略称を指す。WANとは、“Wide Area Network”の略称を指す。BPFとは、“Band Pass Filter”の略称を指す。Irとは、“Infrared Rays”の略称を指す。ELとは、“Electro Luminescence”の略称を指す。  CPU is an abbreviation for "Central Processing Unit". GPU is an abbreviation for "Graphics Processing Unit". NVM is an abbreviation for "Non-Volatile Memory". RAM is an abbreviation for "Random Access Memory". IC is an abbreviation for "Integrated Circuit". ASIC is an abbreviation for "Application Specific Integrated Circuit". PLD is an abbreviation for "Programmable Logic Device". FPGA is an abbreviation for "Field-Programmable Gate Array". SoC is an abbreviation for "System-on-a-chip." SSD is an abbreviation for "Solid State Drive". HDD is an abbreviation for "Hard Disk Drive". EEPROM is an abbreviation for "Electrically Erasable and Programmable Read Only Memory". SRAM is an abbreviation for "Static Random Access Memory". I/F is an abbreviation for "Interface". USB is an abbreviation for "Universal Serial Bus". CMOS is an abbreviation for "Complementary Metal Oxide Semiconductor". CCD is an abbreviation for "Charge Coupled Device". LAN is an abbreviation for "Local Area Network". WAN is an abbreviation for "Wide Area Network". BPF is an abbreviation for "Band Pass Filter". Ir is an abbreviation for "Infrared Rays". EL is an abbreviation for "Electro Luminescence".
 本明細書の説明において、「垂直」とは、完全な垂直の他に、本開示の技術が属する技術分野で一般的に許容される誤差であって、本開示の技術の趣旨に反しない程度の誤差を含めた意味合いでの垂直を指す。本明細書の説明において、「水平」とは、完全な水平の他に、本開示の技術が属する技術分野で一般的に許容される誤差であって、本開示の技術の趣旨に反しない程度の誤差を含めた意味合いでの水平を指す。本明細書の説明において、「平行」とは、完全な平行の他に、本開示の技術が属する技術分野で一般的に許容される誤差であって、本開示の技術の趣旨に反しない程度の誤差を含めた意味合いでの平行を指す。本明細書の説明において、「直交」とは、完全な直交の他に、本開示の技術が属する技術分野で一般的に許容される誤差であって、本開示の技術の趣旨に反しない程度の誤差を含めた意味合いでの直交を指す。本明細書の説明において、「一致」とは、完全な一致の他に、本開示の技術が属する技術分野で一般的に許容される誤差であって、本開示の技術の趣旨に反しない程度の誤差を含めた意味合いでの一致を指す。本明細書の説明において、「等間隔」とは、完全な等間隔の他に、本開示の技術が属する技術分野で一般的に許容される誤差であって、本開示の技術の趣旨に反しない程度の誤差を含めた意味合いでの等間隔を指す。 In the description of this specification, "perpendicular" means an error that is generally allowed in the technical field to which the technology of the present disclosure belongs, in addition to perfect verticality, and does not go against the spirit of the technology of the present disclosure. It refers to the vertical in the sense of including the error of In the description of this specification, "horizontal" means an error that is generally allowed in the technical field to which the technology of the present disclosure belongs, in addition to being completely horizontal, and is not contrary to the spirit of the technology of the present disclosure. It refers to the horizontal in the sense of including the error of In the description of this specification, "parallel" means, in addition to complete parallelism, an error that is generally allowed in the technical field to which the technology of the present disclosure belongs, and does not go against the spirit of the technology of the present disclosure. It refers to parallel in the sense of including the error of In the description of this specification, "orthogonal" is an error that is generally allowed in the technical field to which the technology of the present disclosure belongs, in addition to perfect orthogonality, and is not contrary to the spirit of the technology of the present disclosure. It refers to orthogonality in the sense of including the error of In the description of this specification, "match" means, in addition to perfect match, an error that is generally allowed in the technical field to which the technology of the present disclosure belongs, and does not go against the spirit of the technology of the present disclosure. It refers to a match in terms of meaning including errors in In the description of this specification, the term “equidistant interval” means an error that is generally allowed in the technical field to which the technology of the present disclosure belongs, in addition to perfectly equal intervals, and is contrary to the spirit of the technology of the present disclosure. It refers to equal intervals in the sense of including errors to the extent that they do not occur.
 [第1実施形態]
 一例として図1に示すように、撮像装置10は、撮像装置本体12と、レンズ装置14とを備える。レンズ装置14は、撮像装置本体12の前面に設けられている。レンズ装置14は、撮像装置本体12に固定された固定式のレンズ装置でもよく、撮像装置本体12に対して取り外し可能な交換式のレンズ装置でもよい。
[First embodiment]
As shown in FIG. 1 as an example, the imaging device 10 includes an imaging device body 12 and a lens device 14 . The lens device 14 is provided on the front surface of the imaging device main body 12 . The lens device 14 may be a fixed lens device fixed to the imaging device body 12 or an interchangeable lens device removable from the imaging device body 12 .
 撮像装置本体12は、イメージセンサ16を備える。イメージセンサ16は、受光面16Aを有する。受光面16Aには、レンズ装置14を透過した光が結像される。受光面16Aには、複数のフォトダイオード(図示省略)がマトリクス状に配置されている。 The imaging device main body 12 has an image sensor 16 . The image sensor 16 has a light receiving surface 16A. Light transmitted through the lens device 14 forms an image on the light receiving surface 16A. A plurality of photodiodes (not shown) are arranged in a matrix on the light receiving surface 16A.
 一例として、複数のフォトダイオードには、可視光に感度を有する複数のシリコンフォトダイオードと、近赤外光に感度を有する複数のインジウム・ガリウム・ヒ素フォトダイオードとが含まれている。以降、シリコンフォトダイオードを、Siダイオードと称し、インジウム・ガリウム・ヒ素フォトダイオードを、InGaAsダイオードと称する。複数のSiダイオードは、受光した可視光に応じたアナログ画像データを生成して出力する。複数のInGaAsダイオードは、受光した近赤外光に応じたアナログ画像データを生成して出力する。 As an example, the plurality of photodiodes includes a plurality of silicon photodiodes sensitive to visible light and a plurality of indium-gallium-arsenide photodiodes sensitive to near-infrared light. Hereinafter, the silicon photodiode will be referred to as a Si diode, and the indium-gallium-arsenide photodiode will be referred to as an InGaAs diode. A plurality of Si diodes generate and output analog image data according to the received visible light. A plurality of InGaAs diodes generate and output analog image data corresponding to the received near-infrared light.
 第1実施形態では、イメージセンサ16としてCMOSイメージセンサを例示しているが、本開示の技術はこれに限定されず、例えば、イメージセンサ16がCCDイメージセンサ等の他種類のイメージセンサであっても本開示の技術は成立する。 In the first embodiment, a CMOS image sensor is exemplified as the image sensor 16, but the technology of the present disclosure is not limited to this. The technology of the present disclosure is also established.
 一例として図2に示すように、撮像装置本体12は、制御回路20、ディスプレイ22、受付デバイス24、及び外部I/F26を備える。制御回路20は、イメージセンサドライバ28、信号処理回路30、ディスプレイ制御回路32、受付回路34、及びコンピュータ36を備える。イメージセンサドライバ28、信号処理回路30、ディスプレイ制御回路32、受付回路34、及び外部I/F26は、入出力I/F38を介してコンピュータ36と接続されている。 As shown in FIG. 2 as an example, the imaging device body 12 includes a control circuit 20, a display 22, a reception device 24, and an external I/F 26. The control circuit 20 includes an image sensor driver 28 , signal processing circuitry 30 , display control circuitry 32 , acceptance circuitry 34 and computer 36 . Image sensor driver 28 , signal processing circuit 30 , display control circuit 32 , reception circuit 34 , and external I/F 26 are connected to computer 36 via input/output I/F 38 .
 コンピュータ36は、CPU42、NVM44、及びRAM46を備えている。CPU42、NVM44、及びRAM46は、バス48を介して相互に接続されている。バス48は、入出力I/F38に接続されている。 The computer 36 includes a CPU 42, NVM 44, and RAM 46. CPU 42 , NVM 44 and RAM 46 are interconnected via bus 48 . Bus 48 is connected to input/output I/F 38 .
 NVM44は、非一時的記憶媒体であり、各種パラメータ及び各種プログラムを記憶している。例えば、NVM44は、EEPROMである。但し、これは、あくまでも一例に過ぎず、EEPROMに代えて、又は、EEPROMと共に、HDD、及び/又はSSD等をNVM44として適用してもよい。RAM46は、各種情報を一時的に記憶し、ワークメモリとして用いられる。CPU42は、NVM44から必要なプログラムを読み出し、読み出したプログラムをRAM46上で実行する。CPU42は、RAM46上で実行するプログラムに従って撮像装置10の全体を制御する。 The NVM 44 is a non-temporary storage medium and stores various parameters and various programs. For example, NVM 44 is an EEPROM. However, this is merely an example, and an HDD and/or an SSD may be applied as the NVM 44 instead of or together with the EEPROM. The RAM 46 temporarily stores various information and is used as a work memory. The CPU 42 reads necessary programs from the NVM 44 and executes the read programs on the RAM 46 . The CPU 42 controls the entire imaging device 10 according to programs executed on the RAM 46 .
 イメージセンサドライバ28は、CPU42の指示に従って、イメージセンサ16に撮像タイミング信号を出力する。イメージセンサ16は、撮像タイミング信号に従って光を撮像する。信号処理回路30は、イメージセンサ16から出力されたアナログ画像データに対して各種の信号処理を施すことによりデジタル画像データを生成して出力する。CPU42は、デジタル画像データに基づいて、画像表示データを生成する。 The image sensor driver 28 outputs an imaging timing signal to the image sensor 16 according to instructions from the CPU 42 . The image sensor 16 captures light according to the imaging timing signal. The signal processing circuit 30 performs various signal processing on the analog image data output from the image sensor 16 to generate and output digital image data. The CPU 42 generates image display data based on the digital image data.
 ディスプレイ22は、例えば、液晶ディスプレイ又はELディスプレイ等であり、画像及び/又は文字情報等を表示する。ディスプレイ制御回路32は、画像表示データに基づいて、ディスプレイ22に画像を表示させる。 The display 22 is, for example, a liquid crystal display or an EL display, and displays images and/or character information. The display control circuit 32 causes the display 22 to display an image based on the image display data.
 受付デバイス24は、例えば、タッチパネル及び/又はスイッチ等のデバイスであり、ユーザから与えられた指示を受け付ける。受付回路34は、ユーザによって受付デバイス24に与えられた指示に応じた受付信号を出力する。外部I/F26は、外部装置と通信可能に接続されるインターフェースである。 The reception device 24 is, for example, a device such as a touch panel and/or a switch, and receives instructions given by the user. The reception circuit 34 outputs a reception signal according to the instruction given to the reception device 24 by the user. The external I/F 26 is an interface communicably connected to an external device.
 一例として図1に示すように、レンズ装置14は、鏡筒52、フォーカスレンズ54、絞り56、フィルタ60、偏光子58、フォーカスレンズ移動機構62、絞り変更機構64、偏光子回転機構66、及びロック機構68を備える。 As an example shown in FIG. 1, the lens device 14 includes a lens barrel 52, a focus lens 54, an aperture 56, a filter 60, a polarizer 58, a focus lens moving mechanism 62, an aperture changing mechanism 64, a polarizer rotating mechanism 66, and a A lock mechanism 68 is provided.
 鏡筒52は、筒状に形成されている。鏡筒52は、鏡筒52の中心軸とレンズ装置14の光軸OAとが一致する位置に配置されている。レンズ装置14の光軸OAは、受光面16Aに対して垂直であり、かつ、受光面16Aの中心から延びる軸である。 The lens barrel 52 is formed in a cylindrical shape. The lens barrel 52 is arranged at a position where the central axis of the lens barrel 52 and the optical axis OA of the lens device 14 coincide. The optical axis OA of the lens device 14 is an axis perpendicular to the light receiving surface 16A and extending from the center of the light receiving surface 16A.
 フォーカスレンズ54及び絞り56は、鏡筒52の内側に収容されている。後述するフォーカスレンズ移動機構62及び絞り変更機構64は、鏡筒52に支持されている。フォーカスレンズ54は、フォーカスレンズ移動機構62を介して鏡筒52に支持されており、絞り56は、絞り変更機構64を介して鏡筒52に支持されている。 The focus lens 54 and the diaphragm 56 are housed inside the lens barrel 52 . A focus lens moving mechanism 62 and an aperture changing mechanism 64 , which will be described later, are supported by the lens barrel 52 . The focus lens 54 is supported by the lens barrel 52 via a focus lens moving mechanism 62 , and the diaphragm 56 is supported by the lens barrel 52 via a diaphragm changing mechanism 64 .
 フォーカスレンズ54は、イメージセンサ16の受光面16Aに結像された像の合焦位置を調節するためのレンズである。フォーカスレンズ54は、フォーカスレンズ54の中心軸とレンズ装置14の光軸OAとが一致する位置に配置されている。フォーカスレンズ54の表面には、近赤外光を透過するコーティング層が形成されていてもよい。 The focus lens 54 is a lens for adjusting the focus position of the image formed on the light receiving surface 16A of the image sensor 16. The focus lens 54 is arranged at a position where the central axis of the focus lens 54 and the optical axis OA of the lens device 14 coincide. A coating layer that transmits near-infrared light may be formed on the surface of the focus lens 54 .
 絞り56は、レンズ装置14を透過する光の量を調節するための光学要素である。絞り56は、複数枚の羽根56Aを有しており、複数枚の羽根56Aの中心には、開口56Bが形成されている。フォーカスレンズ54を透過した光は開口56Bを通過する。絞り56は、複数枚の羽根56Aが開閉することによって開口56Bの口径が可変である可動式の絞りである。一例として、絞り56は、フォーカスレンズ54とイメージセンサ16との間に配置されている。絞り56は、絞り56の中心軸とレンズ装置14の光軸OAとが一致する位置に配置されている。 The diaphragm 56 is an optical element for adjusting the amount of light that passes through the lens device 14. The diaphragm 56 has a plurality of blades 56A, and an opening 56B is formed in the center of the plurality of blades 56A. Light passing through the focus lens 54 passes through the aperture 56B. The diaphragm 56 is a movable diaphragm in which the aperture diameter of an opening 56B is variable by opening and closing a plurality of blades 56A. As an example, the diaphragm 56 is arranged between the focus lens 54 and the image sensor 16 . The diaphragm 56 is arranged at a position where the central axis of the diaphragm 56 and the optical axis OA of the lens device 14 coincide.
 なお、フォーカスレンズ54は、単一のレンズでもよく、また、複数のレンズを有するレンズ群でもよい。また、レンズ装置14は、フォーカスレンズ54に加えてその他のレンズを備えていてもよい。また、レンズ装置14は、例えばハーフミラー等のその他の光学素子を備えていてもよい。 Note that the focus lens 54 may be a single lens, or may be a lens group having a plurality of lenses. Also, the lens device 14 may include other lenses in addition to the focus lens 54 . The lens device 14 may also include other optical elements such as a half mirror.
 フォーカスレンズ移動機構62は、フォーカスレンズ54を光軸OAと平行な方向(以降、光軸方向と称する)に移動させるための機構である。フォーカスレンズ移動機構62は、本開示の技術に係る「移動機構」の一例である。フォーカスレンズ移動機構62は、第1リング72、第1案内溝74、及び第1動力変換機構76を備える。第1リング72(図4も参照)は、環状に形成されている。第1リング72の外周面には、第1凹凸部78(図4も参照)が形成されている。一例として、第1凹凸部78は、平目ローレットである。第1案内溝74は、鏡筒52の外周面に形成されている。第1案内溝74は、鏡筒52の周方向に沿って環状に延びている。第1リング72は、第1案内溝74に収容されている。第1リング72に対して回転力が付与されることにより、第1リング72が第1案内溝74に案内されながら回転する。第1リング72は、第1案内溝74の周方向に沿って双方向に回転可能である。 The focus lens moving mechanism 62 is a mechanism for moving the focus lens 54 in a direction parallel to the optical axis OA (hereinafter referred to as "optical axis direction"). The focus lens moving mechanism 62 is an example of a "moving mechanism" according to the technology of the present disclosure. The focus lens moving mechanism 62 includes a first ring 72 , a first guide groove 74 and a first power conversion mechanism 76 . The first ring 72 (see also FIG. 4) is formed in an annular shape. A first uneven portion 78 (see also FIG. 4) is formed on the outer peripheral surface of the first ring 72 . As an example, the first uneven portion 78 is a flat knurl. The first guide groove 74 is formed on the outer peripheral surface of the lens barrel 52 . The first guide groove 74 extends annularly along the circumferential direction of the lens barrel 52 . The first ring 72 is accommodated in the first guide groove 74 . By applying a rotational force to the first ring 72 , the first ring 72 rotates while being guided by the first guide groove 74 . The first ring 72 is bi-directionally rotatable along the circumferential direction of the first guide groove 74 .
 第1動力変換機構76は、第1リング72とフォーカスレンズ54との間に設けられている。第1動力変換機構76は、第1リング72に対して付与された回転力を光軸方向の直進力に変換し、直進力をフォーカスレンズ54に対して付与する。フォーカスレンズ54に対して直進力が付与されることにより、フォーカスレンズ54が光軸方向に移動する。第1動力変換機構76は、第1リング72の回転方向に対応して、フォーカスレンズ54を像側又は被写体側に移動させる。 The first power conversion mechanism 76 is provided between the first ring 72 and the focus lens 54. The first power conversion mechanism 76 converts the rotational force applied to the first ring 72 into a rectilinear force in the optical axis direction, and applies the rectilinear force to the focus lens 54 . The focus lens 54 is moved in the optical axis direction by applying a linear force to the focus lens 54 . The first power conversion mechanism 76 moves the focus lens 54 toward the image side or the object side in accordance with the rotation direction of the first ring 72 .
 絞り変更機構64は、絞り56による光の絞り量を変更するための機構である。絞り変更機構64は、本開示の技術に係る「変更機構」の一例である。絞り変更機構64は、第2リング82、第2案内溝84、及び第2動力変換機構86を備える。第2リング82(図4も参照)は、環状に形成されている。第2リング82の外周面には、第2凹凸部88(図4も参照)が形成されている。一例として、第2凹凸部88は、平目ローレットである。第2案内溝84は、鏡筒52の外周面に形成されている。第2案内溝84は、鏡筒52の周方向に沿って環状に延びている。第2リング82は、第2案内溝84に収容されている。第2リング82に対して回転力が付与されることにより、第2リング82が第2案内溝84に案内されながら回転する。第2リング82は、第2案内溝84の周方向に沿って双方向に回転可能である。 The aperture change mechanism 64 is a mechanism for changing the aperture amount of light by the aperture 56 . The aperture change mechanism 64 is an example of a "change mechanism" according to the technology of the present disclosure. The aperture change mechanism 64 includes a second ring 82 , a second guide groove 84 and a second power conversion mechanism 86 . The second ring 82 (see also FIG. 4) is formed in an annular shape. A second uneven portion 88 (see also FIG. 4) is formed on the outer peripheral surface of the second ring 82 . As an example, the second uneven portion 88 is a flat knurl. A second guide groove 84 is formed on the outer peripheral surface of the lens barrel 52 . The second guide groove 84 extends annularly along the circumferential direction of the lens barrel 52 . The second ring 82 is housed in the second guide groove 84 . By applying a rotational force to the second ring 82 , the second ring 82 rotates while being guided by the second guide groove 84 . The second ring 82 is bidirectionally rotatable along the circumferential direction of the second guide groove 84 .
 第2動力変換機構86は、第2リング82と絞り56との間に設けられている。第2動力変換機構86は、第2リング82に対して付与された回転力を複数の羽根56Aの開閉方向の力に変換し、開閉方向の力を複数の羽根56Aに対して付与する。複数の羽根56Aに対して開閉方向の力が付与されることにより、複数の羽根56Aが開閉方向に作動する。第2動力変換機構86は、第2リング82の回転方向に対応して、複数の羽根56Aを開方向又は閉方向に作動させる。複数の羽根56Aが開方向に作動することにより、開口56Bの口径が拡大し、複数の羽根56Aが閉方向に作動することにより、開口56Bの口径が縮小する。 The second power conversion mechanism 86 is provided between the second ring 82 and the throttle 56. The second power conversion mechanism 86 converts the rotational force applied to the second ring 82 into force in the opening/closing direction of the plurality of blades 56A, and applies the force in the opening/closing direction to the plurality of blades 56A. By applying force in the opening/closing direction to the blades 56A, the blades 56A operate in the opening/closing direction. The second power conversion mechanism 86 operates the plurality of blades 56A in the opening direction or the closing direction in accordance with the rotational direction of the second ring 82 . By operating the plurality of blades 56A in the opening direction, the diameter of the opening 56B is enlarged, and by operating the plurality of blades 56A in the closing direction, the diameter of the opening 56B is reduced.
 一例として図4に示すように、第1リング72の周方向の一部には、第1リング72の径方向外側に突出する第1ボス部92が形成されている。同様に、第2リング82の周方向の一部には、第2リング82の径方向外側に突出する第2ボス部102が形成されている。 As shown in FIG. 4 as an example, a first boss portion 92 projecting radially outward of the first ring 72 is formed on a part of the first ring 72 in the circumferential direction. Similarly, a part of the second ring 82 in the circumferential direction is formed with a second boss portion 102 projecting radially outward of the second ring 82 .
 一例として図1に示すように、第1ボス部92には、第1貫通孔94が形成されている。第1貫通孔94は、第1リング72の径方向に貫通している。鏡筒52には、鏡筒52の周方向に延びる円弧状の第1長孔96が形成されている。第1長孔96は、鏡筒52の径方向に貫通している。第1長孔96は、第1貫通孔94と連通する位置に形成されている。鏡筒52の内周面には、鏡筒52の周方向に延びる第1収容溝98が形成されている。第1収容溝98は、第1案内溝74に対する鏡筒52の径方向内側に位置する。 As shown in FIG. 1 as an example, a first through hole 94 is formed in the first boss portion 92 . The first through hole 94 penetrates the first ring 72 in the radial direction. The lens barrel 52 is formed with an arcuate first long hole 96 extending in the circumferential direction of the lens barrel 52 . The first long hole 96 penetrates the lens barrel 52 in the radial direction. The first long hole 96 is formed at a position communicating with the first through hole 94 . A first housing groove 98 extending in the circumferential direction of the lens barrel 52 is formed in the inner peripheral surface of the lens barrel 52 . The first accommodation groove 98 is located radially inside the barrel 52 with respect to the first guide groove 74 .
 第2ボス部102には、第2貫通孔104が形成されている。第2貫通孔104は、第2リング82の径方向に貫通している。鏡筒52には、鏡筒52の周方向に延びる円弧状の第2長孔106が形成されている。第2長孔106は、鏡筒52の径方向に貫通している。第2長孔106は、第2貫通孔104と連通する位置に形成されている。鏡筒52の内周面には、鏡筒52の周方向に延びる第2収容溝108が形成されている。第2収容溝108は、第2案内溝84に対する鏡筒52の径方向内側に位置する。 A second through hole 104 is formed in the second boss portion 102 . The second through hole 104 penetrates the second ring 82 in the radial direction. The lens barrel 52 is formed with an arc-shaped second long hole 106 extending in the circumferential direction of the lens barrel 52 . The second long hole 106 penetrates the lens barrel 52 in the radial direction. The second elongated hole 106 is formed at a position communicating with the second through hole 104 . A second accommodation groove 108 extending in the circumferential direction of the lens barrel 52 is formed in the inner peripheral surface of the lens barrel 52 . The second housing groove 108 is positioned radially inside the barrel 52 with respect to the second guide groove 84 .
 ロック機構68は、第1ロック機構112及び第2ロック機構114を備える。第1ロック機構112は、フォーカスレンズ移動機構62に対応して設けられており、第2ロック機構114は、絞り変更機構64に対応して設けられている。 The locking mechanism 68 has a first locking mechanism 112 and a second locking mechanism 114 . The first locking mechanism 112 is provided corresponding to the focus lens moving mechanism 62 , and the second locking mechanism 114 is provided corresponding to the diaphragm changing mechanism 64 .
 第1ロック機構112は、第1ボルト122及び第1ナット124を有する。第1ボルト122の軸部122Aは、第1貫通孔94及び第1長孔96に挿入されており、第1ボルト122の頭部122Bは、第1ボス部92の天面に当接している。第1ナット124は、第1収容溝98に収容されている。第1ナット124には、第1ナット124の軸方向に貫通する第1ネジ孔124Aが形成されている。第1ボルト122の軸部122Aの先端部は、第1ネジ孔124Aと螺合されている。 The first locking mechanism 112 has a first bolt 122 and a first nut 124. A shaft portion 122A of the first bolt 122 is inserted into the first through hole 94 and the first elongated hole 96, and a head portion 122B of the first bolt 122 is in contact with the top surface of the first boss portion 92. . The first nut 124 is housed in the first housing groove 98 . The first nut 124 is formed with a first screw hole 124A penetrating in the axial direction of the first nut 124 . The tip of the shaft portion 122A of the first bolt 122 is screwed into the first screw hole 124A.
 一例として図3の上図に示すように、第1ボルト122が締まる方向に回転すると、第1ナット124が第1収容溝98の底面に押し付けられた状態になる。この状態では、第1リング72が鏡筒52に対して固定され、フォーカスレンズ移動機構62によるフォーカスレンズ54の移動が制限される。一方、一例として図3の下図に示すように、第1ボルト122が緩む方向に回転すると、第1ナット124が第1収容溝98の底面から離れた状態になる。この状態では、鏡筒52に対する第1リング72の固定が解除され、フォーカスレンズ移動機構62によるフォーカスレンズ54の移動が許容される。フォーカスレンズ54の移動が許容された状態は、本開示の技術に係る「第1状態」の一例であり、フォーカスレンズ54の移動が制限された状態は、本開示の技術に係る「第2状態」の一例である。 As an example, as shown in the upper diagram of FIG. 3, when the first bolt 122 rotates in the tightening direction, the first nut 124 is pressed against the bottom surface of the first housing groove 98 . In this state, the first ring 72 is fixed to the lens barrel 52 and movement of the focus lens 54 by the focus lens moving mechanism 62 is restricted. On the other hand, as shown in the lower diagram of FIG. 3 as an example, when the first bolt 122 rotates in the loosening direction, the first nut 124 is separated from the bottom surface of the first receiving groove 98 . In this state, the fixation of the first ring 72 to the lens barrel 52 is released, and movement of the focus lens 54 by the focus lens moving mechanism 62 is permitted. The state in which the movement of the focus lens 54 is permitted is an example of the “first state” according to the technology of the present disclosure, and the state in which the movement of the focus lens 54 is restricted is the “second state” according to the technology of the present disclosure. is an example of
 第2ロック機構114は、第1ロック機構112と同様の構成である。第2ロック機構114は、第2ボルト132及び第2ナット134を有する。第2ボルト132の軸部132Aは、第2貫通孔104及び第2長孔106に挿入されており、第2ボルト132の頭部132Bは、第2ボス部102の天面に当接している。第2ナット134は、第2収容溝108に収容されている。第2ナット134には、第2ナット134の軸方向に貫通する第2ネジ孔134Aが形成されている。第2ボルト132の軸部132Aの先端部は、第2ネジ孔134Aと螺合されている。 The second locking mechanism 114 has the same configuration as the first locking mechanism 112. The second locking mechanism 114 has a second bolt 132 and a second nut 134 . A shaft portion 132A of the second bolt 132 is inserted into the second through hole 104 and the second elongated hole 106, and a head portion 132B of the second bolt 132 is in contact with the top surface of the second boss portion 102. . The second nut 134 is housed in the second housing groove 108 . The second nut 134 is formed with a second screw hole 134A penetrating in the axial direction of the second nut 134 . The tip of the shaft portion 132A of the second bolt 132 is screwed into the second screw hole 134A.
 一例として図3の上図に示すように、第2ボルト132が締まる方向に回転すると、第2ナット134が第2収容溝108の底面に押し付けられた状態になる。この状態では、第2リング82が鏡筒52に対して固定され、絞り変更機構64による絞り量の変更が制限される。一方、一例として図3の下図に示すように、第2ボルト132が緩む方向に回転すると、第2ナット134が第2収容溝108の底面から離れた状態になる。この状態では、鏡筒52に対する第2リング82の固定が解除され、絞り変更機構64による絞り量の変更が許容される。絞り量の変更が許容された状態は、本開示の技術に係る「第3状態」の一例であり、絞り量の変更が制限された状態は、本開示の技術に係る「第4状態」の一例である。 As an example, as shown in the upper diagram of FIG. 3 , when the second bolt 132 rotates in the tightening direction, the second nut 134 is pressed against the bottom surface of the second housing groove 108 . In this state, the second ring 82 is fixed to the lens barrel 52, and the change of the aperture amount by the aperture changing mechanism 64 is restricted. On the other hand, as shown in the lower diagram of FIG. 3 as an example, when the second bolt 132 rotates in the loosening direction, the second nut 134 is separated from the bottom surface of the second housing groove 108 . In this state, the fixing of the second ring 82 to the lens barrel 52 is released, and the change of the aperture amount by the aperture change mechanism 64 is permitted. The state in which the change of the aperture amount is permitted is an example of the "third state" according to the technology of the present disclosure, and the state in which the change of the aperture amount is restricted is the "fourth state" according to the technology of the present disclosure. An example.
 一例として図1に示すように、偏光子58及びフィルタ60は、レンズ装置14の前端部に配置されている。偏光子58及びフィルタ60は、後述する偏光子回転機構66を介して鏡筒52に支持されている。図1に示す例では、一例として、フィルタ60は、偏光子58に対する被写体側に配置されているが、偏光子58に対する像側に配置されていてもよい。フィルタ60は、光に含まれる近赤外光のみを透過させる性質を有する光学要素である。フィルタ60は、フィルタ60の中心軸とレンズ装置14の光軸OAとが一致する位置に配置されている。 As shown in FIG. 1 as an example, the polarizer 58 and filter 60 are arranged at the front end of the lens arrangement 14 . The polarizer 58 and filter 60 are supported by the lens barrel 52 via a polarizer rotating mechanism 66, which will be described later. In the example shown in FIG. 1, as an example, the filter 60 is arranged on the object side with respect to the polarizer 58, but may be arranged on the image side with respect to the polarizer 58. FIG. The filter 60 is an optical element having a property of transmitting only near-infrared light contained in light. The filter 60 is arranged at a position where the central axis of the filter 60 and the optical axis OA of the lens device 14 coincide.
 なお、フィルタ60は、複数の波長帯域の光(一例として、可視光、及び、近赤外波長帯域内の異なる波長帯域の近赤外光)を選択して透過するターレットフィルタでもよい。フィルタ60としてターレットフィルタを用いた例については、後の第6実施形態で説明する。 Note that the filter 60 may be a turret filter that selectively transmits light in a plurality of wavelength bands (visible light and near-infrared light in different wavelength bands within the near-infrared wavelength band, for example). An example using a turret filter as the filter 60 will be described later in a sixth embodiment.
 偏光子58は、偏光子58の中心軸と直交する透過軸58Aを有している。偏光子58は、透過軸58Aの方向に振幅する光のみを透過し、透過軸58Aの方向以外の方向に振幅する光を遮断する性質を有する光学要素である。偏光子58は、偏光子58の中心軸とレンズ装置14の光軸OAとが一致する位置に配置されている。 The polarizer 58 has a transmission axis 58A orthogonal to the central axis of the polarizer 58. The polarizer 58 is an optical element having the property of transmitting only light that oscillates in the direction of the transmission axis 58A and blocking light that oscillates in directions other than the direction of the transmission axis 58A. The polarizer 58 is arranged at a position where the central axis of the polarizer 58 and the optical axis OA of the lens device 14 coincide.
 偏光子回転機構66は、偏光子58を光軸方向周りに回転させるための機構である。偏光子回転機構66は、本開示の技術に係る「変位機構」及び「回転機構」の一例である。偏光子回転機構66は、第3リング142及び支持リング144を備える。第3リング142(図4も参照)は、環状に形成されている。支持リング144は、鏡筒52の前端部に形成されている。支持リング144は、鏡筒52の周方向に沿って環状に延びている。第3リング142は、支持リング144の外周面に支持されている。第3リング142に対して回転力が付与されることにより、第3リング142が支持リング144に支持されながら回転する。第3リング142は、支持リング144の周方向に沿って双方向に回転可能である。 The polarizer rotating mechanism 66 is a mechanism for rotating the polarizer 58 around the optical axis direction. The polarizer rotating mechanism 66 is an example of the “displacement mechanism” and the “rotating mechanism” according to the technology of the present disclosure. The polarizer rotation mechanism 66 includes a third ring 142 and a support ring 144. As shown in FIG. The third ring 142 (see also FIG. 4) is formed in an annular shape. A support ring 144 is formed at the front end of the lens barrel 52 . The support ring 144 extends annularly along the circumferential direction of the lens barrel 52 . The third ring 142 is supported on the outer peripheral surface of the support ring 144 . By applying a rotational force to the third ring 142 , the third ring 142 rotates while being supported by the support ring 144 . The third ring 142 is bi-directionally rotatable along the circumferential direction of the support ring 144 .
 第3リング142には、連結機構(図示省略)を介して偏光子58が固定されている。偏光子58は、第3リング142と一体に回転する。なお、フィルタ60は、偏光子58と一体でもよい。また、フィルタ60は、第3リング142に連結機構を介して固定されていてもよい。そして、フィルタ60は、第3リング142及び偏光子58と一体に回転してもよい。 A polarizer 58 is fixed to the third ring 142 via a connecting mechanism (not shown). The polarizer 58 rotates together with the third ring 142 . Note that the filter 60 may be integrated with the polarizer 58 . Also, the filter 60 may be fixed to the third ring 142 via a connecting mechanism. The filter 60 may then rotate together with the third ring 142 and the polarizer 58 .
 一例として図5には、偏光子58の回転角度θが0°である場合と、偏光子58の回転角度θが90°である場合が示されている。偏光子58の回転角度θが0°である場合には、光に含まれる第1偏光成分が偏光子58を透過し、偏光子58の回転角度θが90°である場合には、光に含まれる第2偏光成分が偏光子58を透過する。第1偏光成分は、回転角度θが0°である場合の透過軸58Aの方向に振幅する偏光成分であり、第2偏光成分は、回転角度θが90°である場合の透過軸58Aの方向に振幅する偏光成分である。 As an example, FIG. 5 shows a case where the rotation angle θ of the polarizer 58 is 0° and a case where the rotation angle θ of the polarizer 58 is 90°. When the rotation angle θ of the polarizer 58 is 0°, the first polarized component contained in the light is transmitted through the polarizer 58. When the rotation angle θ of the polarizer 58 is 90°, the light is The included second polarization component is transmitted through the polarizer 58 . The first polarization component is the polarization component that oscillates in the direction of the transmission axis 58A when the rotation angle θ is 0°, and the second polarization component is the direction of the transmission axis 58A when the rotation angle θ is 90°. is a polarization component with an amplitude of .
 第1偏光成分がイメージセンサ16の受光面16Aで受光されると、イメージセンサ16が第1偏光成分に応じたアナログ画像データを出力する。一方、第2偏光成分がイメージセンサ16の受光面16Aで受光されると、イメージセンサ16が第2偏光成分に応じたアナログ画像データを出力する。撮像装置10では、アナログ画像データに基づいてディスプレイ22に画像が表示される。 When the first polarized component is received by the light receiving surface 16A of the image sensor 16, the image sensor 16 outputs analog image data corresponding to the first polarized component. On the other hand, when the second polarization component is received by the light receiving surface 16A of the image sensor 16, the image sensor 16 outputs analog image data corresponding to the second polarization component. In the imaging device 10, an image is displayed on the display 22 based on the analog image data.
 なお、図5には、一例として、偏光子58の回転角度θが0°である場合と、偏光子58の回転角度θが90°である場合が示されているが、偏光子58は、光軸方向周りに360°回転することが可能である。偏光子58の回転角度θがどの角度にある場合でも、透過軸58Aの方向に振幅する偏光成分が偏光子58を透過する。そして、偏光子58を透過した偏光成分がイメージセンサ16の受光面16Aで受光されると、イメージセンサ16が偏光成分に応じたアナログ画像データを出力する。図5に示す例において、回転角度θが0°である場合の偏光子58の回転位置は、本開示の技術に係る「第1位置」の一例であり、回転角度θが90°である場合の偏光子58の回転位置は、本開示の技術に係る「第2位置」の一例である。また、偏光子58の回転は、本開示の技術に係る「偏光子の変位」の一例である。 FIG. 5 shows, as an example, a case where the rotation angle θ of the polarizer 58 is 0° and a case where the rotation angle θ of the polarizer 58 is 90°. It is possible to rotate 360° around the optical axis direction. Polarized light component oscillating in the direction of the transmission axis 58A is transmitted through the polarizer 58 regardless of the rotation angle θ of the polarizer 58 . When the polarized component transmitted through the polarizer 58 is received by the light receiving surface 16A of the image sensor 16, the image sensor 16 outputs analog image data corresponding to the polarized component. In the example shown in FIG. 5, the rotational position of the polarizer 58 when the rotation angle θ is 0° is an example of the “first position” according to the technology of the present disclosure, and when the rotation angle θ is 90° is an example of the "second position" according to the technology of the present disclosure. Also, the rotation of the polarizer 58 is an example of "polarizer displacement" according to the technology of the present disclosure.
 一例として図6には、光が反射光である場合の第1偏光成分及び第2偏光成分について入射角と反射率との関係の一例が示されている。入射角が0°よりも大きく90°よりも小さい範囲では、第1偏光成分の反射率は、第2偏光成分の反射率よりも大きい。また、例えば、入射角が40°から70°の範囲では、第2偏光成分の反射率は、0に近い値のままであるが、第1偏光成分の反射率は、入射角が大きくなるに従って大きくなる。このように、反射光は、偏光依存性を有する。 As an example, FIG. 6 shows an example of the relationship between the incident angle and the reflectance for the first polarized component and the second polarized component when the light is reflected light. The reflectance of the first polarization component is greater than the reflectance of the second polarization component in the range of incident angles greater than 0° and less than 90°. Further, for example, when the incident angle is in the range of 40° to 70°, the reflectance of the second polarized component remains close to 0, but the reflectance of the first polarized component increases as the incident angle increases. growing. Thus, the reflected light has polarization dependence.
 一例として図7には、被写体150の一例が示されている。被写体150は、机152、机152の上に置かれた台154、及び台154の上に置かれた半田ごて156を有する。 An example of the subject 150 is shown in FIG. 7 as an example. A subject 150 has a desk 152 , a stand 154 placed on the desk 152 , and a soldering iron 156 placed on the stand 154 .
 一例として図8には、撮像装置10によって被写体150を撮像することで得られた第1近赤外光画像160の一例が示されている。例えば、第1近赤外光画像160は、偏光子58の回転角度θが0°である場合の画像である。第1近赤外光画像160には、実体像162、熱輻射像164、及び反射像166が含まれる。 As an example, FIG. 8 shows an example of a first near-infrared light image 160 obtained by imaging the subject 150 with the imaging device 10 . For example, the first near-infrared light image 160 is an image when the rotation angle θ of the polarizer 58 is 0°. The first near-infrared light image 160 includes a stereoscopic image 162 , a thermal radiation image 164 and a reflected image 166 .
 実体像162は、被写体150で反射した近赤外光、及び被写体150から熱輻射により発せられた電磁波に含まれる近赤外光に基づく画像である。熱輻射像164は、半田ごて156の先端部によって加熱された机152の上から熱輻射により発せられた電磁波に含まれる近赤外光に基づく画像である。反射像166は、半田ごて156の先端部から熱輻射により発せられた電磁波に含まれる近赤外光が机152の上で反射した反射光に基づく画像である。 The stereoscopic image 162 is an image based on the near-infrared light reflected by the subject 150 and the near-infrared light contained in the electromagnetic waves emitted from the subject 150 by thermal radiation. The thermal radiation image 164 is an image based on near-infrared light contained in electromagnetic waves emitted from the desk 152 heated by the tip of the soldering iron 156 by thermal radiation. The reflected image 166 is an image based on the reflected light of the near-infrared light contained in the electromagnetic wave emitted from the tip of the soldering iron 156 by thermal radiation and reflected on the desk 152 .
 第1近赤外光画像160に含まれる反射像166は、第1偏光成分(図6参照)に基づく画像である。このため、第1近赤外光画像160に含まれる反射像166は、後述する第2近赤外光画像170に含まれる反射像166よりも輝度が高い。実体像162は、被写体150の実体を表す画像になっている。熱輻射像164は、被写体150の実体を表しておらず、全体的に光って見える画像になっている。反射像166は、被写体150の実体を表しているが、実体を拡大した画像になっている。このように、第1近赤外光画像160には、実体像162及び熱輻射像164に加えて、反射像166が含まれるので、反射像166の影響により、実体像162及び熱輻射像164が見えにくくなる。 A reflected image 166 included in the first near-infrared light image 160 is an image based on the first polarization component (see FIG. 6). Therefore, the reflected image 166 included in the first near-infrared light image 160 has higher brightness than the reflected image 166 included in the second near-infrared light image 170 described later. The entity image 162 is an image representing the entity of the subject 150 . The thermal radiation image 164 does not represent the substance of the subject 150, and is an image that appears to shine as a whole. The reflected image 166 represents the substance of the subject 150, but is an enlarged image of the substance. In this way, the first near-infrared light image 160 includes the reflected image 166 in addition to the stereoscopic image 162 and the thermal radiation image 164 . becomes difficult to see.
 一例として図9には、撮像装置10によって被写体150を撮像することで得られた第2近赤外光画像170の一例が示されている。例えば、第2近赤外光画像170は、偏光子58の回転角度θが90°である場合の画像である。第2近赤外光画像170には、実体像162及び熱輻射像164、及び反射像166が含まれる。第2近赤外光画像170に含まれる反射像166は、第2偏光成分(図6参照)に基づく画像である。このため、第2近赤外光画像170に含まれる反射像166は、上述の第1近赤外光画像160に含まれる反射像166よりも輝度が低い。 As an example, FIG. 9 shows an example of a second near-infrared light image 170 obtained by imaging the subject 150 with the imaging device 10 . For example, the second near-infrared light image 170 is an image when the rotation angle θ of the polarizer 58 is 90°. The second near-infrared light image 170 includes a solid image 162 , a thermal radiation image 164 , and a reflected image 166 . A reflected image 166 included in the second near-infrared light image 170 is an image based on the second polarization component (see FIG. 6). Therefore, the reflected image 166 included in the second near-infrared light image 170 has lower luminance than the reflected image 166 included in the first near-infrared light image 160 described above.
 このように、第1実施形態に係る撮像装置10では、ユーザが偏光子58を回転させることにより、反射像166の輝度を変更することができる。 Thus, in the imaging device 10 according to the first embodiment, the brightness of the reflected image 166 can be changed by the user rotating the polarizer 58 .
 次に、第1実施形態に係る撮像装置10の作用について図10を参照しながら説明する。図10には、第1実施形態に係る撮像装置10の使用方法の一例が示されている。ここでは、一例として、火災現場に突入する消防士が撮像装置10を使用する場合の使用方法を例に挙げて説明する。なお、本例の使用方法は、撮像装置10に電源が投入され、ディスプレイ22にライブビュー画像が表示されている状態から開始される。 Next, the action of the imaging device 10 according to the first embodiment will be described with reference to FIG. FIG. 10 shows an example of how to use the imaging device 10 according to the first embodiment. Here, as an example, a method of using the imaging device 10 by a firefighter rushing into a fire scene will be described. It should be noted that the method of use of this example starts from a state in which the imaging device 10 is powered on and a live view image is displayed on the display 22 .
 図10に示す撮像装置10の使用方法では、先ず、ステップS1で、消防士は、火災現場に突入する前に、ディスプレイ22に表示されたライブビュー画像を確認しながら、第1リング72を回転させてフォーカスレンズ54の位置を調節することにより、焦点位置を調節する。このとき、例えば、消防士は、撮像装置10から5mの位置に焦点位置を設定する。 In the method of using the imaging device 10 shown in FIG. 10, first, in step S1, the firefighter rotates the first ring 72 while checking the live view image displayed on the display 22 before entering the fire scene. By adjusting the position of the focus lens 54, the focal position is adjusted. At this time, for example, the firefighter sets the focus position at a position 5 m from the imaging device 10 .
 ステップS2で、消防士は、第1ロック機構112をロック状態に設定する。これにより、フォーカスレンズ54の位置が固定される。 At step S2, the firefighter sets the first locking mechanism 112 to the locked state. Thereby, the position of the focus lens 54 is fixed.
 ステップS3で、消防士は、第2リング82を回転させて、絞り56による絞り量を調節する。 In step S3, the firefighter rotates the second ring 82 to adjust the throttle amount of the throttle 56.
 ステップS4で、消防士は、第2ロック機構114をロック状態に設定する。これにより、絞り56による絞り量が固定される。 At step S4, the firefighter sets the second locking mechanism 114 to the locked state. As a result, the aperture amount of the aperture 56 is fixed.
 ステップS5で、消防士は、ディスプレイ22に表示されたライブビュー画像を確認しながら、火災現場に突入する。 In step S5, the firefighter rushes into the fire site while checking the live view image displayed on the display 22.
 ステップS6で、消防士は、ディスプレイ22に表示されたライブビュー画像を確認しながら、第3リング142を回転させることにより、偏光子58の回転角度を、反射像166が抑制される角度に調節する。 In step S6, the firefighter adjusts the rotation angle of the polarizer 58 to an angle at which the reflected image 166 is suppressed by rotating the third ring 142 while checking the live view image displayed on the display 22. do.
 ステップS7で、消防士は、撮像装置10に対して火災現場を撮像させる。これにより、火災現場の近赤外光画像が得られる。 In step S7, the firefighter causes the imaging device 10 to image the fire scene. This provides a near-infrared image of the fire scene.
 以上詳述した通り、第1実施形態では、撮像装置10は、フォーカスレンズ移動機構62によるフォーカスレンズ54の移動を許容するロック解除状態と、フォーカスレンズ移動機構62によるフォーカスレンズ54の移動を制限するロック状態とを有する第1ロック機構112を備える。第1ロック機構112は、偏光子回転機構66による偏光子58の回転に基づいて、ロック解除状態とロック状態とに切り替えられる。したがって、第1ロック機構112をロック状態にすることにより、偏光子58を回転させる場合に、フォーカスレンズ54の移動を制限することができる。 As described in detail above, in the first embodiment, the imaging device 10 is in the unlocked state in which movement of the focus lens 54 by the focus lens moving mechanism 62 is allowed, and in the state in which movement of the focus lens 54 by the focus lens moving mechanism 62 is restricted. and a first locking mechanism 112 having a locked state. The first locking mechanism 112 is switched between an unlocked state and a locked state based on the rotation of the polarizer 58 by the polarizer rotating mechanism 66 . Therefore, by locking the first locking mechanism 112, the movement of the focus lens 54 can be restricted when the polarizer 58 is rotated.
 また、撮像装置10は、絞り変更機構64による絞り量の変更を許容するロック解除状態と、絞り変更機構64による絞り量の変更を制限するロック状態とを有する第2ロック機構114を備える。第2ロック機構114は、偏光子回転機構66による偏光子58の回転に基づいて、ロック解除状態とロック状態とに切り替えられる。したがって、第2ロック機構114をロック状態にすることにより、偏光子58を回転させる場合に、絞り量の変更を制限することができる。 The imaging device 10 also includes a second lock mechanism 114 that has an unlocked state that allows the aperture change mechanism 64 to change the aperture amount and a locked state that restricts the aperture change mechanism 64 from changing the aperture amount. The second locking mechanism 114 is switched between an unlocked state and a locked state based on the rotation of the polarizer 58 by the polarizer rotating mechanism 66 . Therefore, by locking the second locking mechanism 114, when the polarizer 58 is rotated, the change of the aperture amount can be restricted.
 また、偏光子回転機構66は、偏光子58を光軸方向周りに回転させる回転機構を含む。したがって、偏光子回転機構66によって偏光子58を回転させることにより、偏光子58を透過する偏光成分を変更することができる。また、偏光子58を透過する偏光成分を変更することにより、ディスプレイ22に表示される反射像166の輝度を強めたり弱めたりすることができる。また、偏光子58の位置を反射像166の輝度が弱まった位置で固定することにより、ディスプレイ22に表示される画像に反射像166が表れることを抑制することができる。 Also, the polarizer rotating mechanism 66 includes a rotating mechanism that rotates the polarizer 58 around the optical axis direction. Therefore, by rotating the polarizer 58 with the polarizer rotating mechanism 66, the polarization component transmitted through the polarizer 58 can be changed. In addition, by changing the polarized component transmitted through the polarizer 58, the brightness of the reflected image 166 displayed on the display 22 can be increased or decreased. Further, by fixing the position of the polarizer 58 at a position where the brightness of the reflected image 166 is weakened, it is possible to suppress the appearance of the reflected image 166 in the image displayed on the display 22 .
 また、偏光子回転機構66は、偏光子58を光軸方向周りに360°回転させる。したがって、偏光子58を360°回転させることに伴って、ディスプレイ22に表示される反射像166の輝度を強めたり弱めたりすることができる。また、反射像166の輝度が強まったり弱まったりすることを把握することにより、反射像166の数を把握することができる。 Also, the polarizer rotating mechanism 66 rotates the polarizer 58 by 360° around the optical axis direction. Therefore, the brightness of the reflected image 166 displayed on the display 22 can be increased or decreased by rotating the polarizer 58 by 360 degrees. Also, the number of reflected images 166 can be determined by ascertaining that the brightness of the reflected images 166 increases or decreases.
 また、第1ロック機構112のロック解除状態は、第1ロック機構112が、鏡筒52に対するフォーカスレンズ移動機構62の固定を解除した状態であり、第1ロック機構112のロック状態は、第1ロック機構112が、鏡筒52に対してフォーカスレンズ移動機構62を固定した状態である。したがって、第1ロック機構112をロック解除状態とロック状態とに切り替えることにより、フォーカスレンズ移動機構62によるフォーカスレンズ54の移動が許容される状態と、フォーカスレンズ移動機構62によるフォーカスレンズ54の移動が制限される状態とに切り替えることができる。 Further, the unlocked state of the first locking mechanism 112 is a state in which the first locking mechanism 112 releases the fixation of the focus lens moving mechanism 62 to the lens barrel 52, and the locked state of the first locking mechanism 112 is the first locking state. The lock mechanism 112 is in a state in which the focus lens moving mechanism 62 is fixed to the lens barrel 52 . Therefore, by switching the first lock mechanism 112 between the unlocked state and the locked state, a state in which movement of the focus lens 54 by the focus lens moving mechanism 62 is permitted and a state in which the focus lens 54 is allowed to move by the focus lens moving mechanism 62 are changed. You can switch to and from restricted states.
 同様に、第2ロック機構114のロック解除状態は、第2ロック機構114が、鏡筒52に対する絞り変更機構64の固定を解除した状態であり、第2ロック機構114のロック状態は、第2ロック機構114が、鏡筒52に対して絞り変更機構64を固定した状態である。したがって、第2ロック機構114をロック解除状態とロック状態とに切り替えることにより、絞り変更機構64による絞り量の変更が許容される状態と、絞り変更機構64による絞り量の変更が制限される状態とに切り替えることができる。 Similarly, the unlocked state of the second locking mechanism 114 is a state in which the second locking mechanism 114 has released the aperture change mechanism 64 from the lens barrel 52, and the locked state of the second locking mechanism 114 is the second The lock mechanism 114 is in a state in which the diaphragm change mechanism 64 is fixed to the lens barrel 52 . Therefore, by switching the second lock mechanism 114 between the unlocked state and the locked state, a state in which change of the aperture amount by the aperture change mechanism 64 is permitted and a state in which change in the aperture amount by the aperture change mechanism 64 is restricted. can be switched to
 また、一例として、フィルタ60は、偏光子58と一体である。したがって、例えば、フィルタ60が偏光子58と別体である場合に比して、部品点数を削減することができる。 Also, as an example, the filter 60 is integrated with the polarizer 58 . Therefore, for example, compared with the case where the filter 60 is separate from the polarizer 58, the number of parts can be reduced.
 [第2実施形態]
 一例として図11に示すように、第2実施形態では、第1実施形態に対し、偏光子58の回転範囲が0°から90°の範囲に設定されている。例えば、第3リング142の回転角度を制限する制限機構が支持リング144及び/又は第3リング142(図1参照)に設けられることにより、偏光子58の回転範囲が0°から90°の範囲に設定される。第2実施形態では、偏光子58の回転角度θを0°と90とに切り替えることができる。なお、第2実施形態では、偏光子58の回転角度θの上限が、90°に設定されているが、90°以外に設定されてもよい。
[Second embodiment]
As an example, as shown in FIG. 11, in the second embodiment, the rotation range of the polarizer 58 is set in the range of 0° to 90°, as compared with the first embodiment. For example, the support ring 144 and/or the third ring 142 (see FIG. 1) are provided with a limiting mechanism that limits the rotation angle of the third ring 142, so that the rotation range of the polarizer 58 is from 0° to 90°. is set to In the second embodiment, the rotation angle θ of the polarizer 58 can be switched between 0° and 90°. Although the upper limit of the rotation angle θ of the polarizer 58 is set to 90° in the second embodiment, it may be set to a value other than 90°.
 [第3実施形態]
 一例として図12に示すように、第3実施形態では、第1実施形態に係る偏光子回転機構66(図1参照)の代わりに、偏光子スライド機構180が用いられている。偏光子スライド機構180は、本開示の技術に係る「変位機構」及び「スライド機構」の一例である。偏光子スライド機構180は、偏光子58を光軸方向に対する交差方向にスライドさせるための機構である。光軸方向に対する交差方向は、光軸方向に対して交差する方向であれば、どの方向でもよい。
[Third Embodiment]
As an example, as shown in FIG. 12, in the third embodiment, a polarizer slide mechanism 180 is used instead of the polarizer rotation mechanism 66 (see FIG. 1) according to the first embodiment. The polarizer slide mechanism 180 is an example of a “displacement mechanism” and a “slide mechanism” according to the technology of the present disclosure. The polarizer slide mechanism 180 is a mechanism for sliding the polarizer 58 in a direction crossing the optical axis direction. The direction intersecting the optical axis direction may be any direction as long as it intersects the optical axis direction.
 偏光子スライド機構180は、スライド部材182及びガイド溝184を備える。スライド部材182は、板状に形成されている。スライド部材182は、光軸方向を板厚方向として配置されている。ガイド溝184は、鏡筒52(図1参照)の前端部に形成されている。ガイド溝184は、光軸方向に対する交差方向に沿って直線状に延びている。以下、ガイド溝184が延びる方向をガイド方向と称する。スライド部材182は、ガイド溝184に支持されることにより、ガイド方向にスライドする。スライド部材182に対してスライド力が付与されることにより、スライド部材182がガイド溝184に支持されながらスライドする。スライド部材182は、ガイド方向に沿って双方向にスライド可能である。 The polarizer slide mechanism 180 includes a slide member 182 and guide grooves 184 . The slide member 182 is formed in a plate shape. The slide member 182 is arranged with the optical axis direction as the plate thickness direction. The guide groove 184 is formed at the front end of the lens barrel 52 (see FIG. 1). The guide groove 184 extends linearly along a direction crossing the optical axis direction. Hereinafter, the direction in which the guide groove 184 extends will be referred to as the guide direction. The slide member 182 slides in the guide direction by being supported by the guide groove 184 . By applying a sliding force to the slide member 182 , the slide member 182 slides while being supported by the guide grooves 184 . The slide member 182 is bidirectionally slidable along the guide direction.
 偏光子58は、第1偏光子186及び第2偏光子188を備える。第1偏光子186及び第2偏光子188は、ガイド方向に並んで配置されている。第1偏光子186は、第1偏光子186の中心軸と直交する第1透過軸186Aを有している。一例として、第1透過軸186Aは、光軸方向から見てガイド方向と直交する方向に沿って延びている。第1偏光子186は、第1透過軸186Aの方向に振幅する光のみを透過し、第1透過軸186Aの方向以外の方向に振幅する光を遮断する性質を有する光学要素である。 The polarizer 58 has a first polarizer 186 and a second polarizer 188 . The first polarizer 186 and the second polarizer 188 are arranged side by side in the guide direction. The first polarizer 186 has a first transmission axis 186A orthogonal to the central axis of the first polarizer 186. As shown in FIG. As an example, the first transmission axis 186A extends along a direction orthogonal to the guide direction when viewed from the optical axis direction. The first polarizer 186 is an optical element having a property of transmitting only light that oscillates in the direction of the first transmission axis 186A and blocking light that oscillates in directions other than the direction of the first transmission axis 186A.
 第2偏光子188は、第2偏光子188の中心軸と直交する第2透過軸188Aを有している。一例として、第2透過軸188Aは、光軸方向から見てガイド方向に沿って延びている。第2偏光子188は、第2透過軸188Aの方向に振幅する光のみを透過し、第2透過軸188Aの方向以外の方向に振幅する光を遮断する性質を有する光学要素である。スライド部材182がスライドすることにより、光軸OA上の光路に挿入される偏光子が第1偏光子186と第2偏光子188とに切り替えられる。偏光子58のスライドは、本開示の技術に係る「偏光子の変位」の一例である。 The second polarizer 188 has a second transmission axis 188A perpendicular to the central axis of the second polarizer 188. As an example, the second transmission axis 188A extends along the guide direction when viewed from the optical axis direction. The second polarizer 188 is an optical element having a property of transmitting only light that oscillates in the direction of the second transmission axis 188A and blocking light that oscillates in directions other than the direction of the second transmission axis 188A. By sliding the slide member 182 , the polarizer inserted into the optical path on the optical axis OA is switched between the first polarizer 186 and the second polarizer 188 . The sliding of the polarizer 58 is an example of "polarizer displacement" according to the technology of the present disclosure.
 第3実施形態では、偏光子58は、第1偏光成分を透過させる第1偏光子186と、第2偏光成分を透過させる第2偏光子188とを有し、偏光子スライド機構180は、偏光子58を光軸方向に対する交差方向にスライドさせることにより第1偏光子186と第2偏光子188とを切り替える。したがって、偏光子スライド機構180によって偏光子58をスライドさせることにより、偏光子58を透過する偏光成分を変更することができる。また、偏光子58を透過する偏光成分を変更することにより、ディスプレイ22に表示される反射像166の輝度を強めたり弱めたりすることができる。また、偏光子58の位置を反射像166の輝度が弱まった位置で固定することにより、ディスプレイ22に表示される画像に反射像166が表れることを抑制することができる。 In the third embodiment, the polarizer 58 has a first polarizer 186 that transmits the first polarization component and a second polarizer 188 that transmits the second polarization component, and the polarizer slide mechanism 180 has a polarization The first polarizer 186 and the second polarizer 188 are switched by sliding the polarizer 58 in a direction crossing the optical axis direction. Therefore, by sliding the polarizer 58 by the polarizer slide mechanism 180, the polarization component transmitted through the polarizer 58 can be changed. In addition, by changing the polarized component transmitted through the polarizer 58, the brightness of the reflected image 166 displayed on the display 22 can be increased or decreased. Further, by fixing the position of the polarizer 58 at a position where the brightness of the reflected image 166 is weakened, it is possible to suppress the appearance of the reflected image 166 in the image displayed on the display 22 .
 なお、第3実施形態では、偏光子58を光軸方向に対する交差方向にスライドさせるための偏光子スライド機構180が用いられているが、第1偏光子186及び第2偏光子188を有する偏光子58を光軸方向周りに周回させるための偏光子周回機構が用いられてもよい。そして、偏光子58が光軸方向周りに周回することにより第1偏光子186と第2偏光子188とが切り替えられてもよい。 In the third embodiment, the polarizer slide mechanism 180 is used to slide the polarizer 58 in the direction crossing the optical axis direction. A polarizer rotation mechanism for rotating 58 around the optical axis direction may be used. Then, the first polarizer 186 and the second polarizer 188 may be switched by rotating the polarizer 58 around the optical axis direction.
 また、第3実施形態では、偏光子58は、第1偏光子186及び第2偏光子188の2つの偏光子を有するが、互いに透過軸が異なる3つ以上の偏光子を有していてもよい。 Further, in the third embodiment, the polarizer 58 has two polarizers, the first polarizer 186 and the second polarizer 188, but may have three or more polarizers with different transmission axes. good.
 [第4実施形態]
 一例として図13に示すように、第4実施形態では、第1実施形態に対し、偏光子58の位置が変更されている。つまり、偏光子58は、フィルタ60に対する被写体側に配置されている。偏光子58は、フィルタ60と別体である。フィルタ60は、鏡筒52に対して固定されており、偏光子58は、第3リング142と一体に回転する。このような構成によっても、第1実施形態と同様の効果が得られる。
[Fourth Embodiment]
As an example, as shown in FIG. 13, in the fourth embodiment, the position of the polarizer 58 is changed with respect to the first embodiment. That is, the polarizer 58 is arranged on the object side with respect to the filter 60 . Polarizer 58 is separate from filter 60 . The filter 60 is fixed with respect to the lens barrel 52 and the polarizer 58 rotates integrally with the third ring 142 . Even with such a configuration, the same effects as in the first embodiment can be obtained.
 [第5実施形態]
 一例として図14に示すように、第5実施形態では、第1実施形態に対し、フィルタ60の位置が変更されている。つまり、フィルタ60は、鏡筒52の内側に収容されている。一例として、フィルタ60は、絞り56とイメージセンサ16との間に配置されている。なお、フィルタ60は、どの位置に配置されてもよい。例えば、フィルタ60は、フォーカスレンズ54に対する被写体側に配置されてもよく、フォーカスレンズ54と絞り56との間に配置されてもよい。このような構成によっても、第1実施形態と同様の効果が得られる。
[Fifth embodiment]
As shown in FIG. 14 as an example, in the fifth embodiment, the position of the filter 60 is changed with respect to the first embodiment. That is, the filter 60 is housed inside the lens barrel 52 . As an example, filter 60 is positioned between aperture 56 and image sensor 16 . Note that the filter 60 may be arranged at any position. For example, the filter 60 may be arranged on the subject side with respect to the focus lens 54 or may be arranged between the focus lens 54 and the diaphragm 56 . Even with such a configuration, the same effects as in the first embodiment can be obtained.
 [第6実施形態]
 一例として図15に示すように、第6実施形態では、第1実施形態に係るフィルタ60(図1参照)の代わりに、ターレットフィルタ190が用いられている。ターレットフィルタ190は、後に詳述する通り、光に含まれる複数の波長帯域の光(一例として、可視光、及び、近赤外波長帯域内の異なる波長帯域の近赤外光)を選択して透過する回転式のフィルタである。ターレットフィルタ190は、鏡筒52の内側に収容されている。一例として、ターレットフィルタ190は、絞り56とイメージセンサ16との間に配置されている。なお、ターレットフィルタ190は、どの位置に配置されてもよい。例えば、ターレットフィルタ190は、フォーカスレンズ54に対する被写体側に配置されてもよく、フォーカスレンズ54と絞り56との間に配置されてもよい。ターレットフィルタ190は、本開示の技術に係る「光に含まれる近赤外光を選択して透過するフィルタ」の一例である。
[Sixth Embodiment]
As an example, as shown in FIG. 15, in the sixth embodiment, a turret filter 190 is used instead of the filter 60 (see FIG. 1) according to the first embodiment. As will be described in detail later, the turret filter 190 selects light in a plurality of wavelength bands included in the light (for example, visible light and near-infrared light in different wavelength bands within the near-infrared wavelength band). It is a transparent rotating filter. The turret filter 190 is housed inside the barrel 52 . As an example, turret filter 190 is positioned between diaphragm 56 and image sensor 16 . Note that the turret filter 190 may be arranged at any position. For example, the turret filter 190 may be arranged on the object side with respect to the focus lens 54 or may be arranged between the focus lens 54 and the diaphragm 56 . The turret filter 190 is an example of "a filter that selectively transmits near-infrared light contained in light" according to the technology of the present disclosure.
 また、第6実施形態では、偏光子58は、鏡筒52の内側に収容されている。一例として、偏光子58は、フォーカスレンズ54に対する被写体側に配置されている。なお、偏光子58は、どの位置に配置されてもよい。例えば、偏光子58は、フォーカスレンズ54と絞り56との間に配置されてもよく、絞り56とターレットフィルタ190との間に配置されてもよい。また、偏光子58は、ターレットフィルタ190とイメージセンサ16との間に配置されてもよい。 Also, in the sixth embodiment, the polarizer 58 is housed inside the lens barrel 52 . As an example, the polarizer 58 is arranged on the object side with respect to the focus lens 54 . Note that the polarizer 58 may be arranged at any position. For example, polarizer 58 may be positioned between focus lens 54 and diaphragm 56 and between diaphragm 56 and turret filter 190 . Polarizer 58 may also be placed between turret filter 190 and image sensor 16 .
 また、第6実施形態では、偏光子回転機構200及びターレットフィルタ回転機構210が用いられている。 Also, in the sixth embodiment, a polarizer rotating mechanism 200 and a turret filter rotating mechanism 210 are used.
 偏光子回転機構200は、偏光子58を光軸方向周りに回転させるための機構である。偏光子回転機構200は、本開示の技術に係る「変位機構」及び「回転機構」の一例である。偏光子回転機構200は、第3リング202、第3案内溝204、及び動力伝達機構206を備える。第3リング202は、環状に形成されている。第3案内溝204は、鏡筒52の外周面に形成されている。第3案内溝204は、鏡筒52の周方向に沿って環状に延びている。第3リング202は、第3案内溝204に収容されている。第3リング202に対して回転力が付与されることにより、第3リング202が第3案内溝204に案内されながら回転する。第3リング202は、第3案内溝204の周方向に沿って双方向に回転可能である。 The polarizer rotating mechanism 200 is a mechanism for rotating the polarizer 58 around the optical axis direction. The polarizer rotating mechanism 200 is an example of the “displacement mechanism” and the “rotating mechanism” according to the technology of the present disclosure. The polarizer rotating mechanism 200 has a third ring 202 , a third guide groove 204 and a power transmission mechanism 206 . The third ring 202 is formed in an annular shape. A third guide groove 204 is formed on the outer peripheral surface of the lens barrel 52 . The third guide groove 204 extends annularly along the circumferential direction of the lens barrel 52 . The third ring 202 is accommodated in the third guide groove 204 . By applying a rotational force to the third ring 202 , the third ring 202 rotates while being guided by the third guide groove 204 . The third ring 202 is bi-directionally rotatable along the circumferential direction of the third guide groove 204 .
 動力伝達機構206は、第3リング202と偏光子58との間に設けられている。動力伝達機構206は、第3リング202に対して付与された回転力を偏光子58に伝達する。偏光子58に対して回転力が伝達されることにより、偏光子58が回転する。動力伝達機構206は、第3リング202の回転方向に対応する方向に偏光子58を回転させる。 A power transmission mechanism 206 is provided between the third ring 202 and the polarizer 58 . The power transmission mechanism 206 transmits the rotational force applied to the third ring 202 to the polarizer 58 . The polarizer 58 is rotated by transmitting a rotational force to the polarizer 58 . The power transmission mechanism 206 rotates the polarizer 58 in a direction corresponding to the direction of rotation of the third ring 202 .
 ターレットフィルタ回転機構210は、ターレットフィルタ190を光軸方向周りに回転させるための機構である。ターレットフィルタ回転機構210は、第4リング212、第4案内溝214、及び動力伝達機構216を備える。第4リング212は、環状に形成されている。第4案内溝214は、鏡筒52の外周面に形成されている。第4案内溝214は、鏡筒52の周方向に沿って環状に延びている。第4リング212は、第4案内溝214に収容されている。第4リング212に対して回転力が付与されることにより、第4リング212が第4案内溝214に案内されながら回転する。第4リング212は、第4案内溝214の周方向に沿って双方向に回転可能である。 The turret filter rotating mechanism 210 is a mechanism for rotating the turret filter 190 around the optical axis direction. The turret filter rotation mechanism 210 has a fourth ring 212 , a fourth guide groove 214 and a power transmission mechanism 216 . The fourth ring 212 is formed in an annular shape. A fourth guide groove 214 is formed on the outer peripheral surface of the lens barrel 52 . The fourth guide groove 214 extends annularly along the circumferential direction of the lens barrel 52 . The fourth ring 212 is housed in the fourth guide groove 214 . By applying a rotational force to the fourth ring 212 , the fourth ring 212 rotates while being guided by the fourth guide groove 214 . The fourth ring 212 is bidirectionally rotatable along the circumferential direction of the fourth guide groove 214 .
 動力伝達機構216は、第4リング212とターレットフィルタ190との間に設けられている。動力伝達機構216は、第4リング212に対して付与された回転力をターレットフィルタ190に伝達する。ターレットフィルタ190に対して回転力が伝達されることにより、ターレットフィルタ190が回転する。動力伝達機構216は、第4リング212の回転方向に対応する方向にターレットフィルタ190を回転させる。 The power transmission mechanism 216 is provided between the fourth ring 212 and the turret filter 190. The power transmission mechanism 216 transmits the rotational force applied to the fourth ring 212 to the turret filter 190 . The turret filter 190 is rotated by transmitting a rotational force to the turret filter 190 . The power transmission mechanism 216 rotates the turret filter 190 in a direction corresponding to the rotational direction of the fourth ring 212 .
 第3リング202の周方向の一部には、第3リング202の径方向外側に突出する第3ボス部222が形成されている。第3ボス部222には、第3貫通孔224が形成されている。第3貫通孔224は、第3リング202の径方向に貫通している。鏡筒52には、鏡筒52の周方向に延びる円弧状の第3長孔226が形成されている。第3長孔226は、鏡筒52の径方向に貫通している。第3長孔226は、第3貫通孔224と連通する位置に形成されている。鏡筒52の内周面には、鏡筒52の周方向に延びる第3収容溝228が形成されている。 A part of the third ring 202 in the circumferential direction is formed with a third boss portion 222 that protrudes radially outward from the third ring 202 . A third through hole 224 is formed in the third boss portion 222 . The third through hole 224 penetrates the third ring 202 in the radial direction. The lens barrel 52 is formed with an arcuate third long hole 226 extending in the circumferential direction of the lens barrel 52 . The third long hole 226 penetrates the lens barrel 52 in the radial direction. The third long hole 226 is formed at a position communicating with the third through hole 224 . A third housing groove 228 extending in the circumferential direction of the lens barrel 52 is formed in the inner peripheral surface of the lens barrel 52 .
 同様に、第4リング212の周方向の一部には、第4リング212の径方向外側に突出する第4ボス部232が形成されている。第4ボス部232には、第4貫通孔234が形成されている。第4貫通孔234は、第4リング212の径方向に貫通している。鏡筒52には、鏡筒52の周方向に延びる円弧状の第4長孔236が形成されている。第4長孔236は、鏡筒52の径方向に貫通している。第4長孔236は、第4貫通孔234と連通する位置に形成されている。鏡筒52の内周面には、鏡筒52の周方向に延びる第4収容溝238が形成されている。 Similarly, a fourth boss portion 232 projecting radially outward of the fourth ring 212 is formed on a portion of the fourth ring 212 in the circumferential direction. A fourth through hole 234 is formed in the fourth boss portion 232 . The fourth through hole 234 penetrates the fourth ring 212 in the radial direction. The lens barrel 52 is formed with an arcuate fourth long hole 236 extending in the circumferential direction of the lens barrel 52 . The fourth long hole 236 penetrates the lens barrel 52 in the radial direction. The fourth long hole 236 is formed at a position communicating with the fourth through hole 234 . A fourth housing groove 238 extending in the circumferential direction of the lens barrel 52 is formed in the inner peripheral surface of the lens barrel 52 .
 また、第6実施形態では、ロック機構68は、第1ロック機構112及び第2ロック機構114に加えて、第3ロック機構242及び第4ロック機構244を備える。第3ロック機構242は、偏光子回転機構200に対応して設けられており、第4ロック機構244は、ターレットフィルタ回転機構210に対応して設けられている。第3ロック機構242及び第4ロック機構244は、第1ロック機構112及び第2ロック機構114と同様の構成である。 Also, in the sixth embodiment, the lock mechanism 68 includes a third lock mechanism 242 and a fourth lock mechanism 244 in addition to the first lock mechanism 112 and the second lock mechanism 114 . A third locking mechanism 242 is provided corresponding to the polarizer rotating mechanism 200 , and a fourth locking mechanism 244 is provided corresponding to the turret filter rotating mechanism 210 . The third locking mechanism 242 and the fourth locking mechanism 244 have the same configuration as the first locking mechanism 112 and the second locking mechanism 114, respectively.
 第3ロック機構242は、第3ボルト252及び第3ナット254を有する。第3ボルト252の軸部252Aは、第3貫通孔224及び第3長孔226に挿入されており、第3ボルト252の頭部252Bは、第3ボス部222の天面に当接している。第3ナット254は、第3収容溝228に収容されている。第3ナット254には、第3ナット254の軸方向に貫通する第3ネジ孔254Aが形成されている。第3ボルト252の軸部252Aの先端部は、第3ネジ孔254Aと螺合されている。 The third locking mechanism 242 has a third bolt 252 and a third nut 254. A shaft portion 252A of the third bolt 252 is inserted into the third through hole 224 and the third elongated hole 226, and a head portion 252B of the third bolt 252 is in contact with the top surface of the third boss portion 222. . The third nut 254 is housed in the third housing groove 228 . The third nut 254 is formed with a third screw hole 254A penetrating through the third nut 254 in the axial direction. The tip of the shaft portion 252A of the third bolt 252 is screwed into the third screw hole 254A.
 第3ボルト252が締まる方向に回転すると、第3ナット254が第3収容溝228の底面に押し付けられた状態になる。この状態では、第3リング142が鏡筒52に対して固定され、偏光子回転機構66による偏光子58の回転が制限される。一方、第3ボルト252が緩む方向に回転すると、第3ナット254が第3収容溝228の底面から離れた状態になる。この状態では、鏡筒52に対する第3リング142の固定が解除され、偏光子回転機構66による偏光子58の回転が許容される。偏光子58の回転が許容された状態は、本開示の技術に係る「第1状態」及び「第3状態」の一例であり、偏光子58の回転が制限された状態は、本開示の技術に係る「第2状態」及び「第4状態」の一例である。 When the third bolt 252 rotates in the tightening direction, the third nut 254 is pressed against the bottom surface of the third housing groove 228 . In this state, the third ring 142 is fixed with respect to the lens barrel 52 and the rotation of the polarizer 58 by the polarizer rotating mechanism 66 is restricted. On the other hand, when the third bolt 252 rotates in the loosening direction, the third nut 254 is separated from the bottom surface of the third receiving groove 228 . In this state, the fixing of the third ring 142 to the lens barrel 52 is released, and the rotation of the polarizer 58 by the polarizer rotating mechanism 66 is allowed. The state in which the rotation of the polarizer 58 is permitted is an example of the “first state” and the “third state” according to the technology of the present disclosure, and the state in which the rotation of the polarizer 58 is restricted is the state of the technology of the present disclosure. It is an example of the "second state" and the "fourth state".
 第4ロック機構244は、第4ボルト262及び第4ナット264を有する。第4ボルト262の軸部262Aは、第4貫通孔234及び第4長孔236に挿入されており、第4ボルト262の頭部262Bは、第4ボス部232の天面に当接している。第4ナット264は、第4収容溝238に収容されている。第4ナット264には、第4ナット264の軸方向に貫通する第4ネジ孔264Aが形成されている。第4ボルト262の軸部262Aの先端部は、第4ネジ孔264Aと螺合されている。 The fourth locking mechanism 244 has a fourth bolt 262 and a fourth nut 264. A shaft portion 262A of the fourth bolt 262 is inserted into the fourth through hole 234 and the fourth elongated hole 236, and a head portion 262B of the fourth bolt 262 is in contact with the top surface of the fourth boss portion 232. . The fourth nut 264 is housed in the fourth housing groove 238 . The fourth nut 264 is formed with a fourth screw hole 264A penetrating in the axial direction of the fourth nut 264 . The tip of the shaft portion 262A of the fourth bolt 262 is screwed into the fourth screw hole 264A.
 第4ボルト262が締まる方向に回転すると、第4ナット264が第4収容溝238の底面に押し付けられた状態になる。この状態では、第4リング212が鏡筒52に対して固定され、ターレットフィルタ回転機構210によるターレットフィルタ190の回転が制限される。一方、第4ボルト262が緩む方向に回転すると、第4ナット264が第4収容溝238の底面から離れた状態になる。この状態では、鏡筒52に対する第4リング212の固定が解除され、ターレットフィルタ回転機構210によるターレットフィルタ190の回転が許容される。ターレットフィルタ190の回転が許容された状態は、本開示の技術に係る「第1状態」及び「第3状態」の一例であり、ターレットフィルタ190の回転が制限された状態は、本開示の技術に係る「第2状態」及び「第4状態」の一例である。 When the fourth bolt 262 rotates in the tightening direction, the fourth nut 264 is pressed against the bottom surface of the fourth housing groove 238 . In this state, the fourth ring 212 is fixed to the lens barrel 52, and the rotation of the turret filter 190 by the turret filter rotation mechanism 210 is restricted. On the other hand, when the fourth bolt 262 rotates in the loosening direction, the fourth nut 264 is separated from the bottom surface of the fourth housing groove 238 . In this state, the fixing of the fourth ring 212 to the lens barrel 52 is released, and the rotation of the turret filter 190 by the turret filter rotation mechanism 210 is permitted. The state in which the turret filter 190 is permitted to rotate is an example of the “first state” and the “third state” according to the technology of the present disclosure, and the state in which the rotation of the turret filter 190 is restricted is the state of the technology of the present disclosure. It is an example of the "second state" and the "fourth state".
 一例として図16に示すように、ターレットフィルタ190は、円板192を備える。円板192には、円板192の周方向に沿って等間隔に複数の光学フィルタとして、Irカットフィルタ194、第1BPF196A、第2BPF196B、第3BPF196C、及び第4BPF196Dが設けられている。以下では、特に区別して説明する必要がない場合、Irカットフィルタ194、第1BPF196A、第2BPF196B、第3BPF196C、及び第4BPF196Dを光学フィルタと称する。また、以下では、特に区別して説明する必要がない場合、第1BPF196A、第2BPF196B、第3BPF196C、及び第4BPF196DをBPF196と称する。 As shown in FIG. 16 as an example, the turret filter 190 has a disc 192 . The disk 192 is provided with an Ir cut filter 194, a first BPF 196A, a second BPF 196B, a third BPF 196C, and a fourth BPF 196D as a plurality of optical filters at equal intervals along the circumferential direction of the disk 192. Hereinafter, the Ir cut filter 194, the first BPF 196A, the second BPF 196B, the third BPF 196C, and the fourth BPF 196D are referred to as optical filters unless they need to be distinguished and described. Further, hereinafter, the first BPF 196A, the second BPF 196B, the third BPF 196C, and the fourth BPF 196D will be referred to as BPFs 196 unless they need to be distinguished and described.
 ターレットフィルタ190は、ターレット方式で複数の光学フィルタを光路に対して選択的に挿脱させる。具体的には、図16に示す円弧矢印R方向にターレットフィルタ190が回転することで、Irカットフィルタ194、第1BPF196A、第2BPF196B、第3BPF196C、及び第4BPF196Dが、光路に対して選択的に挿脱される。光学フィルタが光路に挿入されると、光学フィルタの中心を光軸OAが貫き、光路に挿入された光学フィルタの中心とイメージセンサ16の受光面16Aの中心とが一致する。 The turret filter 190 selectively inserts and removes a plurality of optical filters with respect to the optical path in a turret method. Specifically, the Ir cut filter 194, the first BPF 196A, the second BPF 196B, the third BPF 196C, and the fourth BPF 196D are selectively inserted into the optical path by rotating the turret filter 190 in the direction of the arc arrow R shown in FIG. be taken off. When the optical filter is inserted into the optical path, the optical axis OA passes through the center of the optical filter, and the center of the optical filter inserted into the optical path coincides with the center of the light receiving surface 16A of the image sensor 16. FIG.
 Irカットフィルタ194は、赤外線をカットし、赤外線以外の光のみを透過させる光学フィルタである。BPF196は、近赤外光を透過させる光学フィルタである。第1BPF196A、第2BPF196B、第3BPF196C、及び第4BPF196Dは、それぞれ異なる波長帯域の近赤外光を透過させる。 The Ir cut filter 194 is an optical filter that cuts infrared rays and transmits only light other than infrared rays. BPF 196 is an optical filter that transmits near-infrared light. The first BPF 196A, the second BPF 196B, the third BPF 196C, and the fourth BPF 196D transmit near-infrared light in different wavelength bands.
 第1BPF196Aは、1000nm(ナノメートル)近傍の波長帯域に対応している光学フィルタである。一例として、第1BPF196Aは、950nmから1100nmの波長帯域の近赤外光のみを透過させる。以下、第1BPF196Aを透過した近赤外光を第1近赤外光と称する。 The first BPF 196A is an optical filter that corresponds to a wavelength band near 1000 nm (nanometers). As an example, the first BPF 196A transmits only near-infrared light in the wavelength band from 950 nm to 1100 nm. The near-infrared light transmitted through the first BPF 196A is hereinafter referred to as first near-infrared light.
 第2BPF196Bは、1250nm近傍の波長帯域に対応している光学フィルタである。一例として、第2BPF196Bは、1150nmから1350nmの波長帯域の近赤外光のみを透過させる。以下、第2BPF196Bを透過した近赤外光を第2近赤外光と称する。 The second BPF 196B is an optical filter corresponding to a wavelength band near 1250 nm. As an example, the second BPF 196B transmits only near-infrared light in the wavelength band from 1150 nm to 1350 nm. The near-infrared light transmitted through the second BPF 196B is hereinafter referred to as second near-infrared light.
 第3BPF196Cは、1550nm近傍の波長帯域に対応している光学フィルタである。一例として、第3BPF196Cは、1500nmから1750nmの波長帯域の近赤外光のみを透過させる。以下、第3BPF196Cを透過した近赤外光を第3近赤外光と称する。 The third BPF 196C is an optical filter corresponding to a wavelength band near 1550 nm. As an example, the third BPF 196C transmits only near-infrared light in the wavelength band from 1500 nm to 1750 nm. The near-infrared light transmitted through the third BPF 196C is hereinafter referred to as third near-infrared light.
 第4BPF196Dは、2150nm近傍の波長帯域に対応している光学フィルタである。一例として、第4BPF196Dは、2000nmから2400nmの波長帯域の近赤外光のみを透過させる。以下、第4BPF196Dを透過した近赤外光を第4近赤外光と称する。 The fourth BPF 196D is an optical filter corresponding to a wavelength band near 2150 nm. As an example, the fourth BPF 196D transmits only near-infrared light in the wavelength band from 2000 nm to 2400 nm. The near-infrared light transmitted through the fourth BPF 196D is hereinafter referred to as fourth near-infrared light.
 以下では、特に区別して説明する必要がない場合、第1近赤外光、第2近赤外光、第3近赤外光、及び第4近赤外光を近赤外光と称する。なお、ここで挙げた各帯域には、本開示の技術が属する技術分野で一般的に許容される誤差であって、本開示の技術の趣旨を逸脱しない範囲内の誤差も含まれている。また、ここで挙げた各波長帯域は、あくまでも一例に過ぎず、それぞれ異なる波長帯域であればよい。 Hereinafter, the first near-infrared light, the second near-infrared light, the third near-infrared light, and the fourth near-infrared light are referred to as near-infrared light unless it is necessary to distinguish them. Note that each band mentioned here includes an error that is generally allowed in the technical field to which the technology of the present disclosure belongs and that does not deviate from the gist of the technology of the present disclosure. Further, each wavelength band mentioned here is merely an example, and different wavelength bands may be used.
 Irカットフィルタ194が光路に挿入され、Irカットフィルタ194を透過した可視光がイメージセンサ16の受光面16Aに結像されると、受光面16Aに配置された複数のSiダイオードが、受光した可視光を撮像することで得たアナログ画像データを出力する。これにより、可視光を撮像することにより可視光画像を得る機能が実現される。またBPF196が光路に挿入され、BPF196を透過した近赤外光がイメージセンサ16の受光面16Aに結像されると、受光面16Aに配置された複数のInGaAsダイオードが、受光した近赤外光を撮像することで得たアナログ画像データを出力する。これにより、近赤外光を撮像することにより近赤外光画像を得る機能が実現される。 When the Ir cut filter 194 is inserted into the optical path and the visible light transmitted through the Ir cut filter 194 is imaged on the light receiving surface 16A of the image sensor 16, the plurality of Si diodes arranged on the light receiving surface 16A transmit the received visible light. It outputs analog image data obtained by capturing light. This realizes a function of obtaining a visible light image by imaging visible light. Further, when the BPF 196 is inserted into the optical path and the near-infrared light transmitted through the BPF 196 is imaged on the light receiving surface 16A of the image sensor 16, a plurality of InGaAs diodes arranged on the light receiving surface 16A receive the near-infrared light. and outputs analog image data obtained by imaging the . This realizes a function of obtaining a near-infrared light image by capturing near-infrared light.
 第6実施形態では、撮像装置10は、偏光子回転機構200による偏光子58の回転を許容するロック解除状態と、偏光子回転機構200による偏光子58の回転を制限するロック状態とを有する第3ロック機構242を備える。したがって、第3ロック機構242により、偏光子58の位置を固定することができる。 In the sixth embodiment, the imaging device 10 has an unlocked state that allows rotation of the polarizer 58 by the polarizer rotating mechanism 200 and a locked state that restricts rotation of the polarizer 58 by the polarizer rotating mechanism 200. 3 lock mechanism 242 is provided. Therefore, the third locking mechanism 242 can fix the position of the polarizer 58 .
 また、撮像装置10は、ターレットフィルタ回転機構210によるターレットフィルタ190の回転を許容するロック解除状態と、ターレットフィルタ回転機構210によるターレットフィルタ190の回転を制限するロック状態とを有する第4ロック機構244を備える。したがって、第4ロック機構244により、ターレットフィルタ190の位置を固定することができる。 Further, the imaging apparatus 10 has a fourth lock mechanism 244 having an unlocked state in which rotation of the turret filter 190 by the turret filter rotation mechanism 210 is permitted and a locked state in which rotation of the turret filter 190 by the turret filter rotation mechanism 210 is restricted. Prepare. Therefore, the fourth lock mechanism 244 can fix the position of the turret filter 190 .
 また、撮像装置10は、光に含まれる近赤外光を選択して透過するターレットフィルタ190をさらに備える。したがって、ターレットフィルタ190を透過する近赤外光を選択することにより、近赤外光の波長帯域に対応する近赤外光画像をディスプレイ22に表示させることができる。 In addition, the imaging device 10 further includes a turret filter 190 that selectively transmits near-infrared light contained in the light. Therefore, by selecting near-infrared light that passes through the turret filter 190, a near-infrared light image corresponding to the wavelength band of the near-infrared light can be displayed on the display 22. FIG.
 [第7実施形態]
 一例として図17に示すように、第7実施形態では、第1実施形態に係るロック機構68(図1参照)の代わりに、ロックカバー270が用いられている。ロックカバー270は、本開示の技術に係る「第1ロック機構」の一例である。一例として、ロックカバー270は、中心角が180°よりも大きい円弧状の板材である。ロックカバー270は、可撓性を有する。ロックカバー270の軸長は、ロックカバー270が鏡筒52の外周面に装着された状態において、ロックカバー270が第1リング72及び第2リング82を覆う長さに設定されている。ロックカバー270の内周面には、凹凸部272が形成されている。一例として、凹凸部272は、平目ローレットである。凹凸部272は、第1リング72の外周面に形成された第1凹凸部78、及び第2リング82の外周面に形成された第2凹凸部88とそれぞれ係合する。第1凹凸部78及び第2凹凸部88は、本開示の技術に係る「第1係合部」の一例であり、凹凸部272は、本開示の技術に係る「第2係合部」の一例である。
[Seventh Embodiment]
As an example, as shown in FIG. 17, in the seventh embodiment, a lock cover 270 is used instead of the lock mechanism 68 (see FIG. 1) according to the first embodiment. The lock cover 270 is an example of the "first lock mechanism" according to the technology of the present disclosure. As an example, the lock cover 270 is an arcuate plate material with a central angle of greater than 180°. Lock cover 270 has flexibility. The axial length of the lock cover 270 is set so that the lock cover 270 covers the first ring 72 and the second ring 82 when the lock cover 270 is attached to the outer peripheral surface of the lens barrel 52 . An uneven portion 272 is formed on the inner peripheral surface of the lock cover 270 . As an example, the uneven portion 272 is a flat knurl. The uneven portion 272 engages with the first uneven portion 78 formed on the outer peripheral surface of the first ring 72 and the second uneven portion 88 formed on the outer peripheral surface of the second ring 82 . The first uneven portion 78 and the second uneven portion 88 are examples of the “first engaging portion” according to the technology of the present disclosure, and the uneven portion 272 is the “second engaging portion” of the technology of the present disclosure. An example.
 一例として図18及び図19に示すように、ロックカバー270が鏡筒52の外周面に装着されると、凹凸部272が第1凹凸部78及び第2凹凸部88と係合した状態になる。この状態では、第1リング72及び第2リング82が鏡筒52に対して固定され、フォーカスレンズ移動機構62によるフォーカスレンズ54の移動、及び絞り変更機構64による絞り量の変更が制限される。一方、ロックカバー270が鏡筒52の外周面から取り外されると、凹凸部272が第1凹凸部78及び第2凹凸部88と離れた状態になる。この状態では、鏡筒52に対する第1リング72の固定、及び鏡筒52に対する第2リング82の固定が解除され、フォーカスレンズ移動機構62によるフォーカスレンズ54の移動、及び絞り変更機構64による絞り量の変更が許容される。ロックカバー270が鏡筒52の外周面から取り外された状態は、本開示の技術に係る「第1状態」の一例であり、ロックカバー270が鏡筒52の外周面に装着された状態は、本開示の技術に係る「第2状態」の一例である。 As an example, as shown in FIGS. 18 and 19, when the lock cover 270 is attached to the outer peripheral surface of the lens barrel 52, the concave-convex portion 272 is engaged with the first concave-convex portion 78 and the second concave-convex portion 88. . In this state, the first ring 72 and the second ring 82 are fixed to the lens barrel 52, and movement of the focus lens 54 by the focus lens moving mechanism 62 and change of the aperture amount by the aperture change mechanism 64 are restricted. On the other hand, when the lock cover 270 is removed from the outer peripheral surface of the lens barrel 52 , the concave-convex portion 272 is separated from the first concave-convex portion 78 and the second concave-convex portion 88 . In this state, the fixing of the first ring 72 to the lens barrel 52 and the fixing of the second ring 82 to the lens barrel 52 are released. changes are allowed. The state in which the lock cover 270 is removed from the outer peripheral surface of the lens barrel 52 is an example of the “first state” according to the technology of the present disclosure, and the state in which the lock cover 270 is attached to the outer peripheral surface of the lens barrel 52 is It is an example of the "second state" according to the technology of the present disclosure.
 第7実施形態では、撮像装置10は、ロックカバー270を備える。ロックカバー270は、鏡筒52から取り外された状態では、フォーカスレンズ移動機構62によるフォーカスレンズ54の移動を許容するロック解除状態になる。一方、ロックカバー270は、鏡筒52に装着された状態では、フォーカスレンズ移動機構62によるフォーカスレンズ54の移動を制限するロック状態になる。したがって、ロックカバー270を鏡筒52から取り外した状態と鏡筒52に装着した状態とに切り替えることにより、フォーカスレンズ移動機構62によるフォーカスレンズ54の移動が許容される状態と、フォーカスレンズ移動機構62によるフォーカスレンズ54の移動が制限される状態とに切り替えることができる。 In the seventh embodiment, the imaging device 10 has a lock cover 270 . When the lock cover 270 is removed from the lens barrel 52 , it is in an unlocked state that allows the focus lens 54 to be moved by the focus lens moving mechanism 62 . On the other hand, when the lock cover 270 is attached to the lens barrel 52 , the lock cover 270 is in a locked state that restricts the movement of the focus lens 54 by the focus lens moving mechanism 62 . Therefore, by switching the lock cover 270 between a state in which the lock cover 270 is removed from the lens barrel 52 and a state in which it is attached to the lens barrel 52, a state in which the focus lens 54 is allowed to move by the focus lens moving mechanism 62 and a state in which the focus lens moving mechanism 62 is allowed to move. , the movement of the focus lens 54 is restricted by .
 また、ロックカバー270は、鏡筒52から取り外された状態では、絞り変更機構64による絞り量の変更を許容するロック解除状態になる。一方、ロックカバー270は、鏡筒52に装着された状態では、絞り変更機構64による絞り量の変更を制限するロック状態になる。したがって、ロックカバー270を鏡筒52から取り外した状態と鏡筒52に装着した状態とに切り替えることにより、絞り変更機構64による絞り量の変更が許容される状態と、絞り変更機構64による絞り量の変更が制限される状態とに切り替えることができる。 Further, when the lock cover 270 is removed from the lens barrel 52, it is in an unlocked state that allows the aperture change mechanism 64 to change the aperture amount. On the other hand, when the lock cover 270 is attached to the lens barrel 52, the lock cover 270 is in a locked state that limits the change of the aperture amount by the aperture change mechanism 64. As shown in FIG. Therefore, by switching the lock cover 270 between the state in which the lock cover 270 is removed from the lens barrel 52 and the state in which it is attached to the lens barrel 52, the state in which the aperture change mechanism 64 is permitted to change the aperture amount and the aperture amount by the aperture change mechanism 64 are allowed. can be switched to a state in which changes to the
 また、フォーカスレンズ54の移動を許容するロック解除状態とフォーカスレンズ54の移動を制限するロック状態との切り替わりと、絞り量の変更を許容するロック解除状態と絞り量の変更を制限するロック状態との切り替わりは並行して行われる。したがって、例えば、フォーカスレンズ54の移動を許容するロック解除状態とフォーカスレンズ54の移動を制限するロック状態との切り替わりと、絞り量の変更を許容するロック解除状態と絞り量の変更を制限するロック状態との切り替わりが独立して行われる場合に比して、レンズ装置14の操作性が向上する。 Switching between an unlocked state that allows movement of the focus lens 54 and a locked state that restricts movement of the focus lens 54; are switched in parallel. Therefore, for example, switching between an unlocked state that permits movement of the focus lens 54 and a locked state that restricts movement of the focus lens 54, an unlocked state that permits change in the aperture amount, and a locked state that restricts change in the aperture amount. The operability of the lens device 14 is improved as compared with the case where the state is switched independently.
 なお、第1リング72及び第2リング82は、第1凹凸部78及び第2凹凸部88の代わりに、平目ローレット以外の凹部又は凸部である第1係合部をそれぞれ有していてもよい。また、ロックカバー270は、凹凸部272の代わりに、平目ローレット以外の凸部又は凹部である第2係合部を有していてもよい。 It should be noted that the first ring 72 and the second ring 82 may each have a first engaging portion, which is a concave portion or a convex portion other than the flat knurl, instead of the first concave-convex portion 78 and the second concave-convex portion 88. good. Further, the lock cover 270 may have a second engaging portion, which is a convex portion or concave portion other than the flat knurl, instead of the uneven portion 272 .
 [第8実施形態]
 一例として図20に示すように、第8実施形態では、第1実施形態に係るロック機構68(図1参照)の代わりに、ロック機構280が用いられている。ロック機構280は、第1リング72及び第2リング82よりも鏡筒52の後端側に設けられている。一例として、ロック機構280は、ロック部材282及びガイド溝284を有する。ガイド溝284は、鏡筒52の軸方向に沿って形成されている。ロック部材282は、ガイド溝284に支持されることにより、鏡筒52の軸方向にスライドする。ロック部材282は、第1リング72及び第2リング82から退避したロック解除位置(図20の左図参照)と、第1リング72及び第2リング82と重なるロック位置(図20の右図参照)との間でスライドする。ロック機構280は、本開示の技術に係る「第1ロック機構」及び「第2ロック機構」の一例である。
[Eighth Embodiment]
As an example, as shown in FIG. 20, in the eighth embodiment, a lock mechanism 280 is used instead of the lock mechanism 68 (see FIG. 1) according to the first embodiment. The lock mechanism 280 is provided on the rear end side of the lens barrel 52 relative to the first ring 72 and the second ring 82 . As an example, the lock mechanism 280 has a lock member 282 and guide grooves 284 . The guide groove 284 is formed along the axial direction of the lens barrel 52 . The locking member 282 slides in the axial direction of the lens barrel 52 by being supported by the guide groove 284 . The lock member 282 has an unlocked position (see the left diagram of FIG. 20) in which the lock member 282 is retracted from the first ring 72 and the second ring 82, and a locked position (see the right diagram of FIG. 20) in which the first ring 72 and the second ring 82 overlap. ). The lock mechanism 280 is an example of the "first lock mechanism" and the "second lock mechanism" according to the technology of the present disclosure.
 一例として図21及び図22に示すように、ロック部材282の内側面(すなわち、鏡筒52の外周面と対向する面)には、凹凸部286が形成されている。一例として、凹凸部286は、平目ローレットである。凹凸部286は、第1リング72の外周面に形成された第1凹凸部78、及び第2リング82の外周面に形成された第2凹凸部88とそれぞれ係合する。第1凹凸部78及び第2凹凸部88は、本開示の技術に係る「第1係合部」の一例であり、凹凸部286は、本開示の技術に係る「第2係合部」の一例である。 As an example, as shown in FIGS. 21 and 22, an uneven portion 286 is formed on the inner surface of the locking member 282 (that is, the surface facing the outer peripheral surface of the lens barrel 52). As an example, the uneven portion 286 is a flat knurl. The uneven portion 286 engages with the first uneven portion 78 formed on the outer peripheral surface of the first ring 72 and the second uneven portion 88 formed on the outer peripheral surface of the second ring 82 . The first uneven portion 78 and the second uneven portion 88 are examples of the “first engaging portion” according to the technology of the present disclosure, and the uneven portion 286 is the “second engaging portion” according to the technology of the present disclosure. An example.
 一例として図21及び図22に示すように、ロック部材282がロック位置にスライドすると、凹凸部286が第1凹凸部78及び第2凹凸部88と係合した状態になる。この状態では、第1リング72及び第2リング82が鏡筒52に対して固定され、フォーカスレンズ移動機構62によるフォーカスレンズ54の移動、及び絞り変更機構64による絞り量の変更が制限される。一方、ロック部材282がロック解除位置にスライドすると、凹凸部286が第1凹凸部78及び第2凹凸部88と離れた状態になる。この状態では、鏡筒52に対する第1リング72の固定、及び鏡筒52に対する第2リング82の固定が解除され、フォーカスレンズ移動機構62によるフォーカスレンズ54の移動、及び絞り変更機構64による絞り量の変更が許容される。ロック部材282がロック解除位置にスライドした状態は、本開示の技術に係る「第1状態」の一例であり、ロック部材282がロック位置にスライドした状態は、本開示の技術に係る「第2状態」の一例である。 As an example, as shown in FIGS. 21 and 22 , when the lock member 282 slides to the locked position, the concave-convex portion 286 engages with the first concave-convex portion 78 and the second concave-convex portion 88 . In this state, the first ring 72 and the second ring 82 are fixed to the lens barrel 52, and movement of the focus lens 54 by the focus lens moving mechanism 62 and change of the aperture amount by the aperture change mechanism 64 are restricted. On the other hand, when the lock member 282 slides to the unlocked position, the concave-convex portion 286 is separated from the first concave-convex portion 78 and the second concave-convex portion 88 . In this state, the fixing of the first ring 72 to the lens barrel 52 and the fixing of the second ring 82 to the lens barrel 52 are released. changes are allowed. The state in which the lock member 282 is slid to the unlocked position is an example of the "first state" according to the technology of the present disclosure, and the state in which the lock member 282 is slid to the lock position is the "second state" according to the technology of the present disclosure. It is an example of "state".
 第8実施形態では、撮像装置10は、ロック部材282及びガイド溝284を有するロック機構280を備える。ロック部材282は、ロック解除位置にスライドした状態では、フォーカスレンズ移動機構62によるフォーカスレンズ54の移動を許容するロック解除状態になる。一方、ロック部材282は、ロック位置にスライドした状態では、フォーカスレンズ移動機構62によるフォーカスレンズ54の移動を制限するロック状態になる。したがって、ロック部材282をロック解除位置とロック位置とに切り替えることにより、フォーカスレンズ移動機構62によるフォーカスレンズ54の移動が許容される状態と、フォーカスレンズ移動機構62によるフォーカスレンズ54の移動が制限される状態とに切り替えることができる。 In the eighth embodiment, the imaging device 10 includes a lock mechanism 280 having a lock member 282 and a guide groove 284. When the lock member 282 is slid to the unlocked position, it is in an unlocked state that allows the focus lens 54 to be moved by the focus lens moving mechanism 62 . On the other hand, when the lock member 282 is slid to the lock position, the lock member 282 is in a locked state in which movement of the focus lens 54 by the focus lens moving mechanism 62 is restricted. Therefore, by switching the lock member 282 between the unlocked position and the locked position, the movement of the focus lens 54 by the focus lens moving mechanism 62 is allowed and the movement of the focus lens 54 by the focus lens moving mechanism 62 is restricted. can be switched to and from
 同様に、ロック部材282は、ロック解除位置にスライドした状態では、絞り変更機構64による絞り量の変更を許容するロック解除状態になる。一方、ロック部材282は、ロック位置にスライドした状態では、絞り変更機構64による絞り量の変更を制限するロック状態になる。したがって、ロック部材282をロック解除位置とロック位置とに切り替えることにより、絞り変更機構64による絞り量の変更が許容される状態と、絞り変更機構64による絞り量の変更が制限される状態とに切り替えることができる。 Similarly, when the lock member 282 is slid to the unlocked position, it is in an unlocked state that allows the aperture change mechanism 64 to change the aperture amount. On the other hand, when the lock member 282 is slid to the lock position, the lock member 282 is in a locked state in which the change of the aperture amount by the aperture change mechanism 64 is restricted. Therefore, by switching the lock member 282 between the unlocked position and the locked position, a state in which the change of the aperture amount by the aperture change mechanism 64 is permitted and a state in which the change in the aperture amount by the aperture change mechanism 64 is restricted. You can switch.
 なお、ロック部材282を、第2リング82のみと重なる位置にスライドさせることも可能である。この場合には、絞り変更機構64による絞り量の変更が制限され、フォーカスレンズ移動機構62によるフォーカスレンズ54の移動が許容される。 Note that it is also possible to slide the lock member 282 to a position where it overlaps only the second ring 82 . In this case, the change of the aperture amount by the aperture changing mechanism 64 is restricted, and the movement of the focus lens 54 by the focus lens moving mechanism 62 is permitted.
 また、第1リング72及び第2リング82は、第1凹凸部78及び第2凹凸部88の代わりに、平目ローレット以外の凹部又は凸部である第1係合部をそれぞれ有していてもよい。また、ロック部材282は、凹凸部286の代わりに、平目ローレット以外の凸部又は凹部である第2係合部を有していてもよい。 Also, the first ring 72 and the second ring 82 may each have a first engaging portion which is a concave or convex portion other than the flat knurl instead of the first concave-convex portion 78 and the second concave-convex portion 88. good. Also, the lock member 282 may have a second engaging portion, which is a convex portion or concave portion other than the flat knurl, instead of the uneven portion 286 .
 [第9実施形態]
 一例として図23に示すように、第9実施形態では、第8実施形態に係るロック機構280が次のように変更されている。つまり、ロック機構280は、第1ロック機構292及び第2ロック機構294を有する。第1ロック機構292は、第1リング72よりも鏡筒52の前端側に設けられおり、第2ロック機構294は、第2リング82よりも鏡筒52の後端側に設けられている。第1ロック機構292は、第1ロック部材302及び第1ガイド溝304を有し、第2ロック機構294は、第2ロック部材312及び第2ガイド溝314を有する。第1ロック部材302及び第1ガイド溝304の構成は、第8実施形態に係るロック部材282及びガイド溝284と同様である。また、第2ロック部材312及び第2ガイド溝314の構成は、第8実施形態に係るロック部材282及びガイド溝284と同様である。
[Ninth Embodiment]
As shown in FIG. 23 as an example, in the ninth embodiment, the locking mechanism 280 according to the eighth embodiment is modified as follows. That is, the lock mechanism 280 has a first lock mechanism 292 and a second lock mechanism 294. As shown in FIG. The first locking mechanism 292 is provided on the front end side of the lens barrel 52 relative to the first ring 72 , and the second locking mechanism 294 is provided on the rear end side of the lens barrel 52 relative to the second ring 82 . The first locking mechanism 292 has a first locking member 302 and a first guide groove 304 , and the second locking mechanism 294 has a second locking member 312 and a second guide groove 314 . The structures of the first locking member 302 and the first guide groove 304 are the same as the locking member 282 and the guide groove 284 according to the eighth embodiment. Also, the configurations of the second locking member 312 and the second guide groove 314 are the same as those of the locking member 282 and the guide groove 284 according to the eighth embodiment.
 第1ロック部材302は、第1リング72から退避したロック解除位置(図23の左図参照)と、第1リング72と重なるロック位置(図23の右図参照)との間でスライドする。第2ロック部材312は、第2リング82から退避したロック解除位置(図23の左図参照)と、第2リング82と重なるロック位置(図23の右図参照)との間でスライドする。 The first locking member 302 slides between an unlocked position (see the left diagram of FIG. 23) retracted from the first ring 72 and a locked position overlapping the first ring 72 (see the right diagram of FIG. 23). The second locking member 312 slides between an unlocked position (see the left diagram of FIG. 23) retracted from the second ring 82 and a locked position (see the right diagram of FIG. 23) overlapping the second ring 82 .
 第1ロック部材302がロック位置にスライドすると、第1ロック部材302の凹凸部が第1凹凸部78と係合した状態になる。この状態では、第1リング72が鏡筒52に対して固定され、フォーカスレンズ移動機構62によるフォーカスレンズ54の移動が制限される。一方、第1ロック部材302がロック解除位置にスライドすると、第1ロック部材302の凹凸部が第1凹凸部78と離れた状態になる。この状態では、鏡筒52に対する第1リング72の固定が解除され、フォーカスレンズ移動機構62によるフォーカスレンズ54の移動が許容される。第1ロック部材302がロック解除位置にスライドした状態は、本開示の技術に係る「第1状態」の一例であり、第1ロック部材302がロック位置にスライドした状態は、本開示の技術に係る「第2状態」の一例である。 When the first locking member 302 slides to the locked position, the concave-convex portion of the first locking member 302 engages with the first concave-convex portion 78 . In this state, the first ring 72 is fixed to the lens barrel 52 and movement of the focus lens 54 by the focus lens moving mechanism 62 is restricted. On the other hand, when the first locking member 302 slides to the unlocked position, the uneven portion of the first locking member 302 is separated from the first uneven portion 78 . In this state, the fixation of the first ring 72 to the lens barrel 52 is released, and movement of the focus lens 54 by the focus lens moving mechanism 62 is permitted. The state in which the first locking member 302 is slid to the unlocked position is an example of the “first state” according to the technology of the present disclosure, and the state in which the first locking member 302 is slid to the locked position is the state according to the technology of the present disclosure. This is an example of such a “second state”.
 同様に、第2ロック部材312がロック位置にスライドすると、第2ロック部材312の凹凸部が第2凹凸部88と係合した状態になる。この状態では、第2リング82が鏡筒52に対して固定され、絞り変更機構64による絞り量の変更が制限される。一方、第2ロック部材312がロック解除位置にスライドすると、第2ロック部材312の凹凸部が第2凹凸部88と離れた状態になる。この状態では、鏡筒52に対する第2リング82の固定が解除され、絞り変更機構64による絞り量の変更が許容される。第2ロック部材312がロック解除位置にスライドした状態は、本開示の技術に係る「第1状態」の一例であり、第2ロック部材312がロック位置にスライドした状態は、本開示の技術に係る「第2状態」の一例である。 Similarly, when the second locking member 312 slides to the locked position, the uneven portion of the second locking member 312 engages with the second uneven portion 88 . In this state, the second ring 82 is fixed to the lens barrel 52, and the change of the aperture amount by the aperture changing mechanism 64 is restricted. On the other hand, when the second locking member 312 slides to the unlocked position, the uneven portion of the second locking member 312 is separated from the second uneven portion 88 . In this state, the fixing of the second ring 82 to the lens barrel 52 is released, and the change of the aperture amount by the aperture change mechanism 64 is allowed. The state in which the second locking member 312 is slid to the unlocked position is an example of the “first state” according to the technology of the present disclosure, and the state in which the second locking member 312 is slid to the locked position is the state according to the technology of the present disclosure. This is an example of such a “second state”.
 第9実施形態では、撮像装置10は、第1ロック部材302及び第1ガイド溝304を有する第1ロック機構292を備える。第1ロック部材302は、ロック解除位置にスライドした状態では、フォーカスレンズ移動機構62によるフォーカスレンズ54の移動を許容するロック解除状態になる。一方、第1ロック部材302は、ロック位置にスライドした状態では、フォーカスレンズ移動機構62によるフォーカスレンズ54の移動を制限するロック状態になる。したがって、第1ロック部材302をロック解除位置とロック位置とに切り替えることにより、フォーカスレンズ移動機構62によるフォーカスレンズ54の移動が許容される状態と、フォーカスレンズ移動機構62によるフォーカスレンズ54の移動が制限される状態とに切り替えることができる。 In the ninth embodiment, the imaging device 10 includes a first locking mechanism 292 having a first locking member 302 and a first guide groove 304. When the first lock member 302 is slid to the unlocked position, it is in an unlocked state that allows the focus lens 54 to be moved by the focus lens moving mechanism 62 . On the other hand, when the first lock member 302 is slid to the lock position, it is in a locked state in which movement of the focus lens 54 by the focus lens moving mechanism 62 is restricted. Therefore, by switching the first lock member 302 between the unlocked position and the locked position, a state in which movement of the focus lens 54 by the focus lens moving mechanism 62 is allowed and a state in which the movement of the focus lens 54 by the focus lens moving mechanism 62 is permitted. You can switch to and from restricted states.
 また、撮像装置10は、第2ロック部材312及び第2ガイド溝314を有する第2ロック機構294を備える。第2ロック部材312は、ロック解除位置にスライドした状態では、絞り変更機構64による絞り量の変更を許容するロック解除状態になる。一方、第2ロック部材312は、ロック位置にスライドした状態では、絞り変更機構64による絞り量の変更を制限するロック状態になる。したがって、第2ロック部材312をロック解除位置とロック位置とに切り替えることにより、絞り変更機構64による絞り量の変更が許容される状態と、絞り変更機構64による絞り量の変更が制限される状態とに切り替えることができる。 The imaging device 10 also includes a second locking mechanism 294 having a second locking member 312 and a second guide groove 314 . When the second lock member 312 is slid to the unlocked position, the second lock member 312 is in an unlocked state that allows the aperture change mechanism 64 to change the aperture amount. On the other hand, when the second lock member 312 is slid to the lock position, the second lock member 312 is in a locked state that restricts the change of the aperture amount by the aperture change mechanism 64 . Therefore, by switching the second lock member 312 between the unlocked position and the locked position, the state in which the change of the aperture amount by the aperture change mechanism 64 is allowed and the state in which the change in the aperture amount by the aperture change mechanism 64 is restricted. can be switched to
 また、第9実施形態では、第1ロック機構292及び第2ロック機構294が互いに独立している。したがって、第1ロック機構292及び第2ロック機構294をそれぞれ独立してロック解除状態とロック状態とに切り替えることができる。 Also, in the ninth embodiment, the first locking mechanism 292 and the second locking mechanism 294 are independent of each other. Therefore, the first locking mechanism 292 and the second locking mechanism 294 can be switched independently between the unlocked state and the locked state.
 [第10実施形態]
 一例として図24に示すように、第10実施形態では、第8実施形態に対し、レンズ装置14の構成が次のように変更されている。つまり、鏡筒52の外周面には、第3案内溝322が形成されている。第3案内溝322は、鏡筒52の周方向に沿って環状に延びている。偏光子回転機構66の第3リング142は、第3案内溝322に収容されている。第3リング142に対して回転力が付与されることにより、第3リング142が第3案内溝322に案内されながら回転する。第3リング142は、第3案内溝322の周方向に沿って双方向に回転可能である。偏光子58は、鏡筒52の内側に収容されている。第3リング142には、連結機構(図示省略)を介して偏光子58が固定されている。第3リング142の外周面には、第3凹凸部146が形成されている。
[Tenth embodiment]
As an example, as shown in FIG. 24, in the tenth embodiment, the configuration of the lens device 14 is changed as follows from the eighth embodiment. That is, a third guide groove 322 is formed on the outer peripheral surface of the lens barrel 52 . The third guide groove 322 extends annularly along the circumferential direction of the lens barrel 52 . The third ring 142 of the polarizer rotating mechanism 66 is accommodated in the third guide groove 322 . By applying a rotational force to the third ring 142 , the third ring 142 rotates while being guided by the third guide groove 322 . The third ring 142 is bidirectionally rotatable along the circumferential direction of the third guide groove 322 . A polarizer 58 is housed inside the lens barrel 52 . A polarizer 58 is fixed to the third ring 142 via a connecting mechanism (not shown). A third uneven portion 146 is formed on the outer peripheral surface of the third ring 142 .
 ロック部材282は、第1リング72、第2リング82、及び第3リング142から退避したロック解除位置(図24の左図参照)と、第3リング142から退避し、第2リング82及びと重なる第1ロック位置(図24の中図参照)と、第1リング72、第2リング82、及び第3リング142と重なる第2ロック位置(図24の右図参照)との間でスライドする。 The lock member 282 is in an unlocked position (see the left diagram of FIG. 24) in which it is retracted from the first ring 72, the second ring 82, and the third ring 142, and a position in which it is retracted from the third ring 142 and slides between a first locking position overlapping (see middle view of FIG. 24) and a second locking position (see right view of FIG. 24) overlapping first ring 72, second ring 82 and third ring 142; .
 一例として図25に示すように、ロック部材282が第2ロック位置にスライドすると、ロック部材282の凹凸部286が第3凹凸部146と係合した状態になる。また、このときには、ロック部材282の凹凸部286が第1凹凸部78及び第2凹凸部88にも係合した状態になる。この状態では、第1リング72、第2リング82、及び第3リング142が鏡筒52に対して固定され、フォーカスレンズ移動機構62によるフォーカスレンズ54の移動、絞り変更機構64による絞り量の変更、及び偏光子回転機構66による偏光子58の回転が制限される。 As an example, as shown in FIG. 25 , when the locking member 282 slides to the second locking position, the concave-convex portion 286 of the locking member 282 engages with the third concave-convex portion 146 . At this time, the uneven portion 286 of the locking member 282 is also engaged with the first uneven portion 78 and the second uneven portion 88 . In this state, the first ring 72, the second ring 82, and the third ring 142 are fixed to the lens barrel 52, the focus lens 54 is moved by the focus lens moving mechanism 62, and the aperture amount is changed by the aperture changing mechanism 64. , and the rotation of the polarizer 58 by the polarizer rotating mechanism 66 is restricted.
 一方、ロック部材282が第1ロック位置にスライドすると、ロック部材282の凹凸部286が第1凹凸部78及び第2凹凸部88と係合されるが、ロック部材282の凹凸部286が第3凹凸部146と離れた状態になる。この状態では、フォーカスレンズ移動機構62によるフォーカスレンズ54の移動及び絞り変更機構64による絞り量の変更が制限されるが、鏡筒52に対する第3リング142の固定が解除され、偏光子回転機構66による偏光子58の回転が許容される。 On the other hand, when the locking member 282 slides to the first locking position, the uneven portion 286 of the locking member 282 is engaged with the first uneven portion 78 and the second uneven portion 88, but the uneven portion 286 of the locking member 282 is engaged with the third uneven portion. It becomes a state separated from the uneven portion 146 . In this state, the movement of the focus lens 54 by the focus lens moving mechanism 62 and the change of the aperture amount by the aperture changing mechanism 64 are restricted, but the third ring 142 is released from the lens barrel 52 and the polarizer rotating mechanism 66 is released. Rotation of polarizer 58 by is allowed.
 また、ロック部材282がロック解除位置にスライドすると、ロック部材282の凹凸部286が第1凹凸部78、第2凹凸部88、及び第3凹凸部146と離れた状態になる。この状態では、鏡筒52に対する第1リング72の固定、鏡筒52に対する第2リング82の固定、鏡筒52に対する第3リング142の固定が解除され、フォーカスレンズ移動機構62によるフォーカスレンズ54の移動、絞り変更機構64による絞り量の変更、及び偏光子回転機構66による偏光子58の回転が許容される。 Further, when the lock member 282 slides to the unlocked position, the uneven portion 286 of the lock member 282 is separated from the first uneven portion 78, the second uneven portion 88, and the third uneven portion 146. In this state, the fixing of the first ring 72 to the lens barrel 52, the fixing of the second ring 82 to the lens barrel 52, and the fixing of the third ring 142 to the lens barrel 52 are released. Movement, change of the aperture amount by the aperture changing mechanism 64, and rotation of the polarizer 58 by the polarizer rotating mechanism 66 are permitted.
 ロック部材282がロック解除位置にスライドした状態は、本開示の技術に係る「第1状態」の一例であり、ロック部材282が第1ロック位置にスライドした状態、及びロック部材282が第2ロック位置にスライドした状態は、本開示の技術に係る「第2状態」の一例である。 The state in which the lock member 282 is slid to the unlocked position is an example of the “first state” according to the technology of the present disclosure. The state of being slid to the position is an example of the "second state" according to the technology of the present disclosure.
 第10実施形態では、ロック部材282は、ロック解除位置にスライドした状態では、フォーカスレンズ移動機構62によるフォーカスレンズ54の移動を許容するロック解除状態になる。一方、ロック部材282は、第1ロック位置又は第2ロック位置にスライドした状態では、フォーカスレンズ移動機構62によるフォーカスレンズ54の移動を制限するロック状態になる。したがって、ロック部材282をロック解除位置と第1ロック位置又は第2ロック位置とに切り替えることにより、フォーカスレンズ移動機構62によるフォーカスレンズ54の移動が許容される状態と、フォーカスレンズ移動機構62によるフォーカスレンズ54の移動が制限される状態とに切り替えることができる。 In the tenth embodiment, when the lock member 282 is slid to the unlocked position, the unlocked state allows the focus lens 54 to be moved by the focus lens moving mechanism 62 . On the other hand, when the lock member 282 is slid to the first lock position or the second lock position, the lock member 282 is in a locked state in which movement of the focus lens 54 by the focus lens moving mechanism 62 is restricted. Therefore, by switching the lock member 282 between the unlocked position and the first locked position or the second locked position, the state in which the focus lens moving mechanism 62 is permitted to move the focus lens 54 and the focus state by the focus lens moving mechanism 62 are changed. It is possible to switch to a state in which the movement of the lens 54 is restricted.
 同様に、ロック部材282は、ロック解除位置にスライドした状態では、絞り変更機構64による絞り量の変更を許容するロック解除状態になる。一方、ロック部材282は、第1ロック位置又は第2ロック位置にスライドした状態では、絞り変更機構64による絞り量の変更を制限するロック状態になる。したがって、ロック部材282をロック解除位置と第1ロック位置又は第2ロック位置とに切り替えることにより、絞り変更機構64による絞り量の変更が許容される状態と、絞り変更機構64による絞り量の変更が制限される状態とに切り替えることができる。 Similarly, when the lock member 282 is slid to the unlocked position, it is in an unlocked state that allows the aperture change mechanism 64 to change the aperture amount. On the other hand, when the lock member 282 is slid to the first lock position or the second lock position, the lock member 282 is in a locked state that limits the change of the aperture amount by the aperture change mechanism 64 . Therefore, by switching the lock member 282 between the unlocked position and the first lock position or the second lock position, the change of the aperture amount by the aperture change mechanism 64 is permitted, and the aperture change by the aperture change mechanism 64 is permitted. can be switched to and from the restricted state.
 また、ロック部材282は、ロック解除位置にスライドした状態では、偏光子回転機構66による偏光子58の回転を許容するロック解除状態になる。一方、ロック部材282は、第2ロック位置にスライドした状態では、偏光子回転機構66による偏光子58の回転を制限するロック状態になる。したがって、ロック部材282をロック解除位置と第2ロック位置とに切り替えることにより、偏光子回転機構66による偏光子58の回転が許容される状態と、偏光子回転機構66による偏光子58の回転が制限される状態とに切り替えることができる。 Also, when the lock member 282 is slid to the unlocked position, it is in an unlocked state that allows the polarizer 58 to be rotated by the polarizer rotating mechanism 66 . On the other hand, when the lock member 282 is slid to the second lock position, the lock member 282 is locked to restrict the rotation of the polarizer 58 by the polarizer rotating mechanism 66 . Therefore, by switching the lock member 282 between the unlocked position and the second locked position, the state in which the rotation of the polarizer 58 by the polarizer rotation mechanism 66 is allowed and the rotation of the polarizer 58 by the polarizer rotation mechanism 66 are changed. You can switch to and from restricted states.
 [第11実施形態]
 一例として図26に示すように、第11実施形態では、第1実施形態に対し、撮像装置10の構成が次のように変更されている。つまり、フォーカスレンズ移動機構62は、第1係合部332を有し、絞り変更機構64は、第3係合部336を有する。ロック機構68は、第2係合部334、第4係合部338、及び駆動機構340を有する。第2係合部334は、第1係合部332と係合し、第4係合部338は、第3係合部336と係合する。例えば、第1係合部332は、凸部又は凹部であり、第2係合部334は、第1係合部332と係合する凹部又は凸部である。同様に、例えば、第3係合部336は、凸部又は凹部であり、第4係合部338は、第3係合部336と係合する凹部又は凸部である。ロック機構68は、本開示の技術に係る「第1ロック機構」及び「第2ロック機構」の一例である。
[Eleventh embodiment]
As an example, as shown in FIG. 26, in the eleventh embodiment, the configuration of the imaging device 10 is changed as follows from the first embodiment. That is, the focus lens moving mechanism 62 has a first engaging portion 332 and the diaphragm changing mechanism 64 has a third engaging portion 336 . The lock mechanism 68 has a second engagement portion 334 , a fourth engagement portion 338 and a drive mechanism 340 . The second engaging portion 334 engages with the first engaging portion 332 and the fourth engaging portion 338 engages with the third engaging portion 336 . For example, the first engaging portion 332 is a convex portion or a concave portion, and the second engaging portion 334 is a concave portion or a convex portion that engages with the first engaging portion 332 . Similarly, for example, the third engaging portion 336 is a convex portion or a concave portion, and the fourth engaging portion 338 is a concave portion or a convex portion that engages with the third engaging portion 336 . The lock mechanism 68 is an example of the "first lock mechanism" and the "second lock mechanism" according to the technology of the present disclosure.
 駆動機構340は、第2係合部334を移動させる第1アクチュエータ(図示省略)と、第4係合部338を移動させる第2アクチュエータ(図示省略)とを有する。第1アクチュエータ及び第2アクチュエータには、例えば、電磁ソレノイド等のアクチュエータが用いられる。第1アクチュエータによって付与された動力により第2係合部334が移動し、第2係合部334が第1係合部332と離れた状態と、第2係合部334が第1係合部332と係合した状態とに切り替えられる。駆動機構340は、本開示の技術に係る「第1駆動機構」及び「第2駆動機構」の一例である。 The drive mechanism 340 has a first actuator (not shown) that moves the second engaging portion 334 and a second actuator (not shown) that moves the fourth engaging portion 338 . Actuators such as electromagnetic solenoids are used for the first actuator and the second actuator, for example. The second engaging portion 334 is moved by the power applied by the first actuator, and the second engaging portion 334 is separated from the first engaging portion 332, and the second engaging portion 334 is separated from the first engaging portion. 332 and the engaged state. The drive mechanism 340 is an example of the "first drive mechanism" and the "second drive mechanism" according to the technology of the present disclosure.
 第2係合部334が第1係合部332と係合した状態では、第1リング72が鏡筒52に対して固定され、フォーカスレンズ移動機構62によるフォーカスレンズ54の移動が制限される。一方、第2係合部334が第1係合部332と離れた状態では、鏡筒52に対する第1リング72の固定が解除され、フォーカスレンズ移動機構62によるフォーカスレンズ54の移動が許容される。第2係合部334が第1係合部332と係合した状態は、本開示の技術に係る「第1状態」の一例であり、第2係合部334が第1係合部332から離れた状態は、本開示の技術に係る「第2状態」の一例である。 When the second engaging portion 334 is engaged with the first engaging portion 332, the first ring 72 is fixed to the lens barrel 52, and movement of the focus lens 54 by the focus lens moving mechanism 62 is restricted. On the other hand, when the second engaging portion 334 is separated from the first engaging portion 332, the fixing of the first ring 72 to the lens barrel 52 is released, and movement of the focus lens 54 by the focus lens moving mechanism 62 is allowed. . The state in which the second engaging portion 334 is engaged with the first engaging portion 332 is an example of the “first state” according to the technology of the present disclosure, and the second engaging portion 334 is separated from the first engaging portion 332 The separated state is an example of a "second state" according to the technology of the present disclosure.
 同様に、第4係合部338が第3係合部336と係合した状態では、第2リング82が鏡筒52に対して固定され、絞り変更機構64による絞り量の変更が制限される。一方、第4係合部338が第3係合部336と離れた状態では、鏡筒52に対する第2リング82の固定が解除され、絞り変更機構64による絞り量の変更が許容される。第4係合部338が第3係合部336と係合した状態は、本開示の技術に係る「第1状態」の一例であり、第4係合部338が第3係合部336から離れた状態は、本開示の技術に係る「第2状態」の一例である。 Similarly, when the fourth engaging portion 338 is engaged with the third engaging portion 336, the second ring 82 is fixed to the lens barrel 52, and the change of the aperture amount by the aperture changing mechanism 64 is restricted. . On the other hand, when the fourth engaging portion 338 is separated from the third engaging portion 336, the fixing of the second ring 82 to the lens barrel 52 is released, and the aperture change mechanism 64 is allowed to change the aperture amount. A state in which the fourth engaging portion 338 is engaged with the third engaging portion 336 is an example of a “first state” according to the technology of the present disclosure, and the fourth engaging portion 338 is separated from the third engaging portion 336 The separated state is an example of a "second state" according to the technology of the present disclosure.
 また、第11実施形態では、センサ342が用いられている。センサ342は、偏光子58の回転位置を検出し、回転位置に応じた回転信号を出力する。センサ342には、例えばポテンショメータ等の回転位置を検出するセンサが用いられる。回転信号は、本開示の技術に係る「センサの検出結果」の一例である。 Also, in the eleventh embodiment, a sensor 342 is used. A sensor 342 detects the rotational position of the polarizer 58 and outputs a rotation signal corresponding to the rotational position. For the sensor 342, a sensor such as a potentiometer that detects the rotational position is used. The rotation signal is an example of the "sensor detection result" according to the technology of the present disclosure.
 一例として図27に示すように、NVM44には、撮像支援処理プログラム350が記憶されている。撮像支援処理プログラム350は、本開示の技術に係る「プログラム」の一例である。CPU42は、NVM44から撮像支援処理プログラム350を読み出し、読み出した撮像支援処理プログラム350をRAM46上で実行する。CPU42は、RAM46上で実行する撮像支援処理プログラム350に従って撮像支援処理を行う。撮像支援処理では、CPU42は、回転信号取得部352、ロック判定部354、ロック解除制御部356、及びロック制御部358として動作する。 As shown in FIG. 27 as an example, the NVM 44 stores an imaging support processing program 350 . The imaging support processing program 350 is an example of a “program” according to the technology of the present disclosure. The CPU 42 reads the imaging support processing program 350 from the NVM 44 and executes the read imaging support processing program 350 on the RAM 46 . The CPU 42 performs imaging support processing according to an imaging support processing program 350 executed on the RAM 46 . In the imaging support process, the CPU 42 operates as a rotation signal acquisition section 352 , a lock determination section 354 , an unlock control section 356 and a lock control section 358 .
 一例として図26に示すように、回転信号取得部352は、センサ342から入力された回転信号を取得する。 As shown in FIG. 26 as an example, the rotation signal acquisition unit 352 acquires the rotation signal input from the sensor 342 .
 ロック判定部354は、ロックをするか否かを判定する。一例として、ロック判定部354は、回転信号に基づいて偏光子58が回転していないと判定した場合には、ロックを解除すると判定する。一方、ロック判定部354は、回転信号に基づいて偏光子58が回転していると判定した場合には、ロックすると判定する。 The lock determination unit 354 determines whether or not to lock. As an example, the lock determination unit 354 determines to unlock when determining that the polarizer 58 is not rotating based on the rotation signal. On the other hand, when the lock determination unit 354 determines that the polarizer 58 is rotating based on the rotation signal, it determines that the lock is to be performed.
 また、一例として、ロック判定部354は、ロックを解除する旨のロック解除指示が受付デバイス24及び/又は外部I/F26によって受け付けられたと判定した場合には、ロックを解除すると判定する。一方、ロック判定部354は、ロックする旨のロック指示が受付デバイス24及び/又は外部I/F26によって受け付けられたと判定した場合には、ロックすると判定する。受付デバイス24及び/又は外部I/F26によって受け付けられたロックをする旨の指示は、本開示の技術に係る「外部からの指示」の一例である。 Further, as an example, the lock determination unit 354 determines to unlock when it determines that an unlock instruction to unlock has been received by the receiving device 24 and/or the external I/F 26 . On the other hand, when the lock determination unit 354 determines that the lock instruction to lock has been received by the receiving device 24 and/or the external I/F 26, it determines to lock. The instruction to lock that is received by the reception device 24 and/or the external I/F 26 is an example of the "instruction from outside" according to the technology of the present disclosure.
 CPU42は、動作モードとして、ロック解除モード及びロックモードを有する。ロック判定部354によってロックを解除すると判定された場合、CPU42は、ロック解除モードに切り替わり、ロック判定部354によってロックすると判定された場合、CPU42は、ロックモードに切り替わる。CPU42は、ロック解除モードでは、ロック解除制御部356として動作する。一方、CPU42は、ロックモードでは、ロック制御部358として動作する。ロック解除モードは、本開示の技術に係る「第1モード」の一例であり、ロックモードは、本開示の技術に係る「第2モード」の一例である。CPU42は、本開示の技術に係る「第1プロセッサ」及び「第2プロセッサ」の一例である。 The CPU 42 has an unlock mode and a lock mode as operation modes. When the lock determination unit 354 determines to unlock, the CPU 42 switches to the unlock mode, and when the lock determination unit 354 determines to lock, the CPU 42 switches to the lock mode. The CPU 42 operates as the unlock control unit 356 in the unlock mode. On the other hand, the CPU 42 operates as the lock controller 358 in the lock mode. The unlock mode is an example of the "first mode" according to the technology of the present disclosure, and the lock mode is an example of the "second mode" according to the technology of the present disclosure. The CPU 42 is an example of the "first processor" and the "second processor" according to the technology of the present disclosure.
 ロック解除制御部356は、駆動機構340に対してロック解除指令を出力する。駆動機構340は、ロック解除指令を受け取ると、第2係合部334を第1係合部332から離れる方向に移動させ、第4係合部338を第3係合部336から離れる方向に移動させる。これにより、ロック機構68がロック解除状態になり、フォーカスレンズ54の移動、及び絞り変更機構64による絞り量の変更が許容される。 The unlock control unit 356 outputs an unlock command to the drive mechanism 340 . Upon receiving the unlock command, the drive mechanism 340 moves the second engaging portion 334 away from the first engaging portion 332 and moves the fourth engaging portion 338 away from the third engaging portion 336. Let As a result, the lock mechanism 68 is unlocked, and movement of the focus lens 54 and change of the aperture amount by the aperture change mechanism 64 are permitted.
 ロック制御部358は、駆動機構340に対してロック指令を出力する。駆動機構340は、ロック指令を受け取ると、第2係合部334を第1係合部332と係合する方向に移動させ、第4係合部338を第3係合部336と係合する方向に移動させる。これにより、ロック機構68がロック状態になり、フォーカスレンズ54の移動、及び絞り変更機構64による絞り量の変更が制限される。 The lock control unit 358 outputs a lock command to the drive mechanism 340. Upon receiving the lock command, the drive mechanism 340 moves the second engaging portion 334 in a direction to engage with the first engaging portion 332 and engages the fourth engaging portion 338 with the third engaging portion 336. move in the direction Thereby, the lock mechanism 68 is locked, and the movement of the focus lens 54 and the change of the aperture amount by the aperture change mechanism 64 are restricted.
 次に、第11実施形態に係る撮像装置10の作用について図28を参照しながら説明する。図28には、第11実施形態に係る撮像支援処理の流れの一例が示されている。 Next, the action of the imaging device 10 according to the eleventh embodiment will be described with reference to FIG. FIG. 28 shows an example of the flow of imaging support processing according to the eleventh embodiment.
 図28に示す撮像支援処理では、先ず、ステップS11で、回転信号取得部352は、センサ342から入力された回転信号を取得する。 In the imaging support process shown in FIG. 28, first, in step S11, the rotation signal acquisition unit 352 acquires the rotation signal input from the sensor 342. FIG.
 ステップS12で、ロック判定部354は、回転信号、並びに、受付デバイス24及び/又は外部I/F26によって受け付けられた指示に基づいて、ロックをするか否かを判定する。ステップS12において、ロック判定部354でロックをすると判定された場合、図28に示す処理は、ステップS13に移行する。一方、ステップS12において、ロック判定部354でロックをしないと判定された場合、図28に示す処理は、ステップS14に移行する。 In step S12, the lock determination unit 354 determines whether or not to lock based on the rotation signal and the instruction received by the reception device 24 and/or the external I/F 26. In step S12, when the lock determination unit 354 determines to lock, the process shown in FIG. 28 proceeds to step S13. On the other hand, if the lock determination unit 354 determines not to lock in step S12, the process shown in FIG. 28 proceeds to step S14.
 ステップS13で、ロック解除制御部356は、駆動機構340に対してロック解除指令を出力し、ロック機構68をロック解除状態にさせる。 At step S13, the unlock control unit 356 outputs an unlock command to the drive mechanism 340 to bring the lock mechanism 68 into the unlocked state.
 ステップS14で、ロック解除制御部356は、駆動機構340に対してロック指令を出力し、ロック機構68をロック状態にさせる。 At step S14, the unlock control unit 356 outputs a lock command to the drive mechanism 340 to bring the lock mechanism 68 into the locked state.
 図28に示す処理は、ステップS13又はステップS14の後に、ステップS11に戻る。そして、図28に示す処理は、ユーザからの指示、及び/又は外部からの指示により中止されるまでステップS11からステップS13又はステップS14を繰り返し実行する。 The process shown in FIG. 28 returns to step S11 after step S13 or step S14. Then, the process shown in FIG. 28 repeats steps S11 to S13 or S14 until it is stopped by an instruction from the user and/or an instruction from the outside.
 以上詳述した通り、第11実施形態では、センサ342の検出結果に応じて、ロック機構68がロック解除状態とロック状態とに切り替えられる。したがって、ユーザが偏光子58を回転させる場合にロック機構68をロック解除状態とロック状態とに切り替える手間を省くことができる。 As detailed above, in the eleventh embodiment, the lock mechanism 68 is switched between the unlocked state and the locked state according to the detection result of the sensor 342 . Therefore, when the user rotates the polarizer 58, the trouble of switching the locking mechanism 68 between the unlocked state and the locked state can be saved.
 また、CPU42は、受付デバイス24及び/又は外部I/F26によって受け付けられた外部からの指示に基づいて、ロック解除モードとロックモードとに切り替わる。したがって、受付デバイス24及び/又は外部I/F26からCPU42に対して指示を与えることにより、ロック機構68をロック解除状態とロック状態とに切り替えることができる。 Also, the CPU 42 switches between the unlock mode and the lock mode based on an external instruction accepted by the accepting device 24 and/or the external I/F 26 . Therefore, by giving an instruction from the receiving device 24 and/or the external I/F 26 to the CPU 42, the lock mechanism 68 can be switched between the unlocked state and the locked state.
 なお、CPU42は、受付デバイス24及び/又は外部I/F26によって受け付けられた外部からの指示に基づいて、ロック解除モードとロックモードとに切り替わるが、被写体から得られる情報に基づいて、ロック解除モードとロックモードとに切り替わってもよい。この場合の被写体から得られる情報としては、例えば、被写体の種類、温度、環境、及び動作等が挙げられる。 Note that the CPU 42 switches between the unlock mode and the lock mode based on an external instruction received by the reception device 24 and/or the external I/F 26, but switches to the unlock mode based on information obtained from the subject. and lock mode. Information obtained from the subject in this case includes, for example, the subject's type, temperature, environment, motion, and the like.
 [第12実施形態]
 一例として図29に示すように、第12実施形態では、第11実施形態に対し、撮像装置10の構成が次のように変更されている。つまり、偏光子回転機構66は、モータ362を有する。モータ362は、偏光子58に回転力を付与する。
[Twelfth Embodiment]
As an example, as shown in FIG. 29, in the twelfth embodiment, the configuration of the imaging device 10 is changed as follows from the eleventh embodiment. That is, the polarizer rotating mechanism 66 has a motor 362 . Motor 362 imparts rotational force to polarizer 58 .
 CPU42は、第1画像取得部372、第1回転制御部374、第2画像取得部376、回転要否判定部378、及び第2回転制御部380として動作する。 The CPU 42 operates as a first image acquisition section 372 , a first rotation control section 374 , a second image acquisition section 376 , a rotation necessity determination section 378 and a second rotation control section 380 .
 一例として図29に示すように、第1画像取得部372は、偏光子58を透過した光がイメージセンサ16によって撮像されることで得られた第1デジタル画像データに基づいて第1画像を取得する。第1画像は、偏光子58が第1位置にある場合に得られた画像である。 As an example, as shown in FIG. 29, the first image acquisition unit 372 acquires a first image based on first digital image data obtained by capturing an image of light transmitted through the polarizer 58 by the image sensor 16. do. The first image is the image obtained when the polarizer 58 is in the first position.
 第1回転制御部374は、偏光子58を第1位置から第2位置に回転させる旨の第1回転指令を出力する。一例として、第2位置は、第1位置から偏光子58が90°回転した位置である。モータ362は、第1回転指令に従い、偏光子58を第1位置から第2位置に回転させる。 The first rotation control section 374 outputs a first rotation command to rotate the polarizer 58 from the first position to the second position. As an example, the second position is a position where the polarizer 58 is rotated 90 degrees from the first position. Motor 362 rotates polarizer 58 from the first position to the second position according to the first rotation command.
 第2画像取得部376は、偏光子58を透過した光がイメージセンサ16によって撮像されることで得られた第2デジタル画像データに基づいて第2画像を取得する。第2画像は、偏光子58が第2位置にある場合に得られた画像である。 The second image acquisition unit 376 acquires a second image based on second digital image data obtained by capturing an image of light transmitted through the polarizer 58 by the image sensor 16 . The second image is the image obtained when the polarizer 58 is in the second position.
 回転要否判定部378は、偏光子58を回転させる必要があるか否かを判定する。
 一例として、回転要否判定部378は、第1画像及び第2画像を比較し、第2画像に反射像166が含まれており、第1画像に反射像166が含まれていないと判定した場合には、偏光子58を回転させる必要があると判定する。一方、回転要否判定部378は、第1画像及び第2画像を比較し、第2画像に反射像166が含まれておらず、第1画像に反射像166が含まれていると判定した場合には、偏光子58を回転させる必要がないと判定する。
The rotation necessity determination unit 378 determines whether or not the polarizer 58 needs to be rotated.
As an example, the rotation necessity determining unit 378 compares the first image and the second image, and determines that the second image includes the reflected image 166 and the first image does not include the reflected image 166. In this case, it is determined that the polarizer 58 needs to be rotated. On the other hand, the rotation necessity determining unit 378 compares the first image and the second image, and determines that the second image does not include the reflected image 166 and the first image includes the reflected image 166. In this case, it is determined that the polarizer 58 does not need to be rotated.
 また、回転要否判定部378は、第1画像及び第2画像の両方に反射像166が含まれていない場合には、偏光子58を回転させる必要がないと判定する。また、回転要否判定部378は、第1画像及び第2画像の両方に反射像166が含まれる場合に、第2画像に含まれる反射像166の輝度が第1画像に含まれる反射像166の輝度よりも高い場合には、偏光子58を回転させる必要があると判定する。一方、回転要否判定部378は、第1画像及び第2画像の両方に反射像166が含まれる場合に、第2画像に含まれる反射像166の輝度が第1画像に含まれる反射像166の輝度よりも低い場合には、偏光子58を回転させる必要がないと判定する。回転要否判定部378は、各種画像解析処理を用いることにより第1画像及び第2画像に反射像166が含まれているか否かを判定する。 Further, the rotation necessity determination unit 378 determines that the polarizer 58 does not need to be rotated when the reflected image 166 is not included in both the first image and the second image. Further, when the reflected image 166 is included in both the first image and the second image, the rotation necessity determination unit 378 determines that the brightness of the reflected image 166 included in the second image is the same as that of the reflected image 166 included in the first image. , it is determined that the polarizer 58 needs to be rotated. On the other hand, when the reflected image 166 is included in both the first image and the second image, the rotation necessity determination unit 378 determines that the brightness of the reflected image 166 included in the second image is the brightness of the reflected image 166 included in the first image. , it is determined that the polarizer 58 does not need to be rotated. The rotation necessity determination unit 378 determines whether or not the reflected image 166 is included in the first image and the second image by using various image analysis processes.
 第2回転制御部380は、回転要否判定部378によって偏光子58を回転させる必要があると判定された場合には、偏光子58を第2位置から第1位置に回転させる旨の第2回転指令を出力する。モータ362は、第2回転指令に従い、偏光子58を第2位置から第1位置に回転させる。CPU42は、本開示の技術に係る「第3プロセッサ」の一例である。モータ362は、「第3駆動機構」の一例である。 When the rotation necessity determination unit 378 determines that the polarizer 58 needs to be rotated, the second rotation control unit 380 rotates the polarizer 58 from the second position to the first position. Outputs a rotation command. Motor 362 rotates polarizer 58 from the second position to the first position according to the second rotation command. The CPU 42 is an example of a "third processor" according to the technology of the present disclosure. The motor 362 is an example of a "third drive mechanism".
 次に、第12実施形態に係る撮像装置10の作用について図30を参照しながら説明する。図30には、第12実施形態に係る撮像支援処理の流れの一例が示されている。 Next, the action of the imaging device 10 according to the twelfth embodiment will be described with reference to FIG. FIG. 30 shows an example of the flow of imaging support processing according to the twelfth embodiment.
 図30に示す撮像支援処理では、先ず、ステップS21で、第1画像取得部372は、第1デジタル画像データに基づいて第1画像を取得する。 In the imaging support process shown in FIG. 30, first, in step S21, the first image acquisition unit 372 acquires the first image based on the first digital image data.
 ステップS22で、第1回転制御部374は、第1回転指令を出力し、偏光子58を第1位置から第2位置に回転させる。 At step S22, the first rotation controller 374 outputs a first rotation command to rotate the polarizer 58 from the first position to the second position.
 ステップS23で、第2画像取得部376は、第2デジタル画像データに基づいて第2画像を取得する。 At step S23, the second image acquisition unit 376 acquires the second image based on the second digital image data.
 ステップS24で、回転要否判定部378は、第1画像及び第2画像に基づいて、偏光子58を回転させる必要があるか否かを判定する。ステップS24において、回転要否判定部378で偏光子58を回転させる必要があると判定された場合、図30に示す処理は、ステップS25に移行する。一方、ステップS24において、回転要否判定部378で偏光子58を回転させる必要がないと判定された場合、図30に示す処理は、終了する。 In step S24, the rotation necessity determination unit 378 determines whether or not the polarizer 58 needs to be rotated based on the first image and the second image. In step S24, if the rotation necessity determining unit 378 determines that the polarizer 58 needs to be rotated, the process shown in FIG. 30 proceeds to step S25. On the other hand, if the rotation necessity determining unit 378 determines in step S24 that the polarizer 58 does not need to be rotated, the process shown in FIG. 30 ends.
 ステップS25で、第2回転制御部380は、第2回転指令を出力し、偏光子58を第2位置から第1位置に回転させる。 In step S25, the second rotation control section 380 outputs a second rotation command to rotate the polarizer 58 from the second position to the first position.
 図30に示す処理は、ステップS25後に、終了する。 The processing shown in FIG. 30 ends after step S25.
 以上詳述した通り、第12実施形態では、CPU42は、偏光子58が第1位置にある場合に偏光子58を透過した光がイメージセンサ16によって撮像されることで得られた第1画像と、偏光子58が第2位置にある場合に偏光子58を透過した光がイメージセンサ16によって撮像されることで得られた第2画像とに基づいて、偏光子回転機構66を制御する。したがって、例えば、ユーザが第1画像及び第2画像を確認しながら偏光子回転機構66によって偏光子58を回転させる手間を省くことができる。 As described in detail above, in the twelfth embodiment, the CPU 42 controls the first image obtained by the image sensor 16 capturing the light transmitted through the polarizer 58 when the polarizer 58 is at the first position. , the polarizer rotating mechanism 66 is controlled based on a second image obtained by imaging the light transmitted through the polarizer 58 when the polarizer 58 is at the second position by the image sensor 16 . Therefore, for example, the user can save the trouble of rotating the polarizer 58 by the polarizer rotating mechanism 66 while checking the first image and the second image.
 以上、第1実施形態から第12実施形態について説明したが、上記実施形態及び変形例に記載された構成のうち、組み合わせ可能な構成は、適宜組み合わされてもよい。また、上記実施形態及び変形例が組み合わされた場合に、重複する複数のステップがある場合、各種条件等に応じて複数のステップに優先順位が付与されてもよい。 The first to twelfth embodiments have been described above, but among the configurations described in the above embodiments and modifications, configurations that can be combined may be combined as appropriate. Further, when the above-described embodiment and modifications are combined, if there are multiple overlapping steps, priority may be given to the multiple steps according to various conditions.
 また、上記実施形態では、撮像装置10として、レンズ交換式のデジタルカメラを例示しているが、これは、あくまでも一例に過ぎず、レンズ固定式のデジタルカメラであってもよいし、スマートデバイス、ウェアラブル端末、細胞観察装置、眼科観察装置、又は外科顕微鏡等の各種の電子機器に内蔵されるデジタルカメラであってもよい。また、撮像装置10は、眼鏡型のアイウェア端末でもよく、頭部に装着するヘッドマウントディスプレイ端末でもよい。また、アイウェア端末又はヘッドマウントディスプレイ端末において、ディスプレイは、片目に対してのみ設けられていてもよく、また、両目に対して設けられていてもよい。また、ディスプレイは、半透明に形成されていてもよい。 Further, in the above-described embodiment, a lens-interchangeable digital camera is exemplified as the imaging device 10, but this is merely an example, and a fixed-lens digital camera, a smart device, It may be a digital camera incorporated in various electronic devices such as a wearable terminal, a cell observation device, an ophthalmologic observation device, or a surgical microscope. Further, the imaging device 10 may be a glasses-type eyewear terminal or a head-mounted display terminal worn on the head. Also, in the eyewear terminal or the head-mounted display terminal, a display may be provided for only one eye, or may be provided for both eyes. Also, the display may be formed to be translucent.
 また、上記実施形態では、CPU42を例示したが、CPU42に代えて、又は、CPU42と共に、他の少なくとも1つのCPU、少なくとも1つのGPU、及び/又は、少なくとも1つのTPUを用いてもよい。 Also, in the above embodiment, the CPU 42 was exemplified, but instead of or together with the CPU 42, at least one other CPU, at least one GPU, and/or at least one TPU may be used.
 また、上記実施形態では、NVM44に撮像支援処理プログラム350が記憶されている形態例を挙げて説明したが、本開示の技術はこれに限定されない。例えば、撮像支援処理プログラム350がSSD又はUSBメモリなどの可搬型の非一時的記憶媒体に記憶されていてもよい。非一時的記憶媒体に記憶されている撮像支援処理プログラム350は、撮像装置10のコンピュータ36にインストールされる。CPU42は、撮像支援処理プログラム350に従って撮像支援処理を実行する。 Further, in the above embodiment, an example of the form in which the imaging support processing program 350 is stored in the NVM 44 has been described, but the technology of the present disclosure is not limited to this. For example, the imaging support processing program 350 may be stored in a portable non-temporary storage medium such as an SSD or USB memory. The imaging support processing program 350 stored in the non-temporary storage medium is installed in the computer 36 of the imaging device 10 . The CPU 42 executes imaging support processing according to the imaging support processing program 350 .
 また、ネットワークを介して撮像装置10に接続される他のコンピュータ又はサーバ装置等の記憶装置に撮像支援処理プログラム350を記憶させておき、撮像装置10の要求に応じて撮像支援処理プログラム350がダウンロードされ、コンピュータ36にインストールされてもよい。 Further, the imaging support processing program 350 is stored in a storage device such as another computer or a server device connected to the imaging device 10 via a network, and the imaging support processing program 350 is downloaded in response to a request from the imaging device 10. and may be installed on computer 36 .
 なお、撮像装置10に接続される他のコンピュータ36又はサーバ装置等の記憶装置、又はNVM44に撮像支援処理プログラム350の全てを記憶させておく必要はなく、撮像支援処理プログラム350の一部を記憶させておいてもよい。 Note that it is not necessary to store all of the imaging support processing program 350 in another computer 36 connected to the imaging device 10, a storage device such as a server device, or the NVM 44, and a part of the imaging support processing program 350 is stored. You can let it go.
 また、図2に示す撮像装置10にはコンピュータ36が内蔵されているが、本開示の技術はこれに限定されず、例えば、コンピュータ36が撮像装置10の外部に設けられてもよい。 Although the computer 36 is incorporated in the imaging device 10 shown in FIG. 2, the technology of the present disclosure is not limited to this, and the computer 36 may be provided outside the imaging device 10, for example.
 また、上記実施形態では、CPU42、NVM44、及びRAMを含むコンピュータ36が例示されているが、本開示の技術はこれに限定されず、コンピュータ36に代えて、ASIC、FPGA、及び/又はPLDを含むデバイスを適用してもよい。また、コンピュータ36に代えて、ハードウェア構成及びソフトウェア構成の組み合わせを用いてもよい。 Further, although the computer 36 including the CPU 42, NVM 44, and RAM is illustrated in the above embodiment, the technology of the present disclosure is not limited to this, and instead of the computer 36, an ASIC, FPGA, and/or PLD may be used. A device containing Also, instead of the computer 36, a combination of hardware and software configurations may be used.
 また、上記実施形態で説明した撮像支援処理を実行するハードウェア資源としては、次に示す各種のプロセッサを用いることができる。プロセッサとしては、例えば、ソフトウェア、すなわち、プログラムを実行することで、撮像支援処理を実行するハードウェア資源として機能する汎用的なプロセッサであるCPUが挙げられる。また、プロセッサとしては、例えば、FPGA、PLD、又はASICなどの特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路が挙げられる。何れのプロセッサにもメモリが内蔵又は接続されており、何れのプロセッサもメモリを使用することで撮像支援処理を実行する。 Also, as hardware resources for executing the imaging support processing described in the above embodiment, the following various processors can be used. Examples of the processor include a CPU, which is a general-purpose processor that functions as a hardware resource that executes imaging support processing by executing software, that is, a program. Also, processors include, for example, FPGAs, PLDs, ASICs, and other dedicated electric circuits that are processors having circuit configurations specially designed to execute specific processing. Each processor has a built-in memory or is connected to the memory, and each processor uses the memory to execute imaging support processing.
 撮像支援処理を実行するハードウェア資源は、これらの各種のプロセッサのうちの1つで構成されてもよいし、同種または異種の2つ以上のプロセッサの組み合わせ(例えば、複数のFPGAの組み合わせ、又はCPU42とFPGAとの組み合わせ)で構成されてもよい。また、撮像支援処理を実行するハードウェア資源は1つのプロセッサであってもよい。 The hardware resource that executes the imaging support processing may be configured with one of these various processors, or a combination of two or more processors of the same or different types (for example, a combination of multiple FPGAs, or (combination of CPU 42 and FPGA). Also, the hardware resource for executing the imaging support process may be one processor.
 1つのプロセッサで構成する例としては、第1に、1つ以上のCPUとソフトウェアの組み合わせで1つのプロセッサを構成し、このプロセッサが、撮像支援処理を実行するハードウェア資源として機能する形態がある。第2に、SoCなどに代表されるように、撮像支援処理を実行する複数のハードウェア資源を含むシステム全体の機能を1つのICチップで実現するプロセッサを使用する形態がある。このように、撮像支援処理は、ハードウェア資源として、上記各種のプロセッサの1つ以上を用いて実現される。 As an example of configuration with one processor, first, there is a form in which one processor is configured by combining one or more CPUs and software, and this processor functions as a hardware resource for executing imaging support processing. . Secondly, as typified by SoC, etc., there is a form that uses a processor that realizes the function of the entire system including multiple hardware resources for executing imaging support processing with a single IC chip. In this way, the imaging support processing is implemented using one or more of the above-described various processors as hardware resources.
 更に、これらの各種のプロセッサのハードウェア的な構造としては、より具体的には、半導体素子などの回路素子を組み合わせた電気回路を用いることができる。また、上記の撮像支援処理はあくまでも一例である。したがって、主旨を逸脱しない範囲内において不要なステップを削除したり、新たなステップを追加したり、処理順序を入れ替えたりしてもよいことは言うまでもない。 Furthermore, as the hardware structure of these various processors, more specifically, an electric circuit in which circuit elements such as semiconductor elements are combined can be used. Also, the imaging support process described above is merely an example. Therefore, it goes without saying that unnecessary steps may be deleted, new steps added, and the order of processing may be changed without departing from the scope of the invention.
 以上に示した記載内容及び図示内容は、本開示の技術に係る部分についての詳細な説明であり、本開示の技術の一例に過ぎない。例えば、上記の構成、機能、作用、及び効果に関する説明は、本開示の技術に係る部分の構成、機能、作用、及び効果の一例に関する説明である。よって、本開示の技術の主旨を逸脱しない範囲内において、以上に示した記載内容及び図示内容に対して、不要な部分を削除したり、新たな要素を追加したり、置き換えたりしてもよいことは言うまでもない。また、錯綜を回避し、本開示の技術に係る部分の理解を容易にするために、以上に示した記載内容及び図示内容では、本開示の技術の実施を可能にする上で特に説明を要しない技術常識等に関する説明は省略されている。 The descriptions and illustrations shown above are detailed descriptions of the parts related to the technology of the present disclosure, and are merely examples of the technology of the present disclosure. For example, the above descriptions of configurations, functions, actions, and effects are descriptions of examples of configurations, functions, actions, and effects of portions related to the technology of the present disclosure. Therefore, unnecessary parts may be deleted, new elements added, or replaced with respect to the above-described description and illustration without departing from the gist of the technology of the present disclosure. Needless to say. In addition, in order to avoid complication and facilitate understanding of the portion related to the technology of the present disclosure, the descriptions and illustrations shown above require particular explanation in order to enable implementation of the technology of the present disclosure. Descriptions of common technical knowledge, etc., that are not used are omitted.
 本明細書において、「A及び/又はB」は、「A及びBのうちの少なくとも1つ」と同義である。つまり、「A及び/又はB」は、Aだけであってもよいし、Bだけであってもよいし、A及びBの組み合わせであってもよい、という意味である。また、本明細書において、3つ以上の事柄を「及び/又は」で結び付けて表現する場合も、「A及び/又はB」と同様の考え方が適用される。 In this specification, "A and/or B" is synonymous with "at least one of A and B." That is, "A and/or B" means that only A, only B, or a combination of A and B may be used. Also, in this specification, when three or more matters are expressed by connecting with "and/or", the same idea as "A and/or B" is applied.
 本明細書に記載された全ての文献、特許出願及び技術規格は、個々の文献、特許出願及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 All publications, patent applications and technical standards mentioned herein are expressly incorporated herein by reference to the same extent as if each individual publication, patent application and technical standard were specifically and individually noted to be incorporated by reference. incorporated by reference into the book.

Claims (20)

  1.  光が透過するフォーカスレンズと、
     前記フォーカスレンズを光軸方向に移動させる移動機構と、
     前記光に含まれる第1偏光成分を透過させる第1位置と、前記光に含まれる第2偏光成分を透過させる第2位置とに変位する偏光子と、
     前記偏光子を変位させる変位機構と、
     前記移動機構による前記フォーカスレンズの移動を許容する第1状態と、前記移動機構による前記フォーカスレンズの移動を制限する第2状態とを有する第1ロック機構と、
     を備えたレンズ装置。
    A focus lens that allows light to pass through,
    a moving mechanism for moving the focus lens in the optical axis direction;
    a polarizer displaced between a first position that transmits a first polarization component contained in the light and a second position that transmits a second polarization component contained in the light;
    a displacement mechanism that displaces the polarizer;
    a first lock mechanism having a first state that permits movement of the focus lens by the movement mechanism and a second state that restricts movement of the focus lens by the movement mechanism;
    A lens device with a
  2.  前記変位機構による前記偏光子の変位に基づいて、前記第1状態と前記第2状態とが切り替わる請求項1に記載のレンズ装置。 The lens device according to claim 1, wherein the first state and the second state are switched based on displacement of the polarizer by the displacement mechanism.
  3.  前記光が通過する絞りと、
     前記絞りによる前記光の絞り量を変更する変更機構と、
     をさらに備え、
     前記変更機構による前記絞り量の変更を許容する第3状態と、前記変更機構による前記絞り量の変更を制限する第4状態とを有する第2ロック機構と、
     を備えた請求項1又は請求項2に記載のレンズ装置。
    an aperture through which the light passes;
    a changing mechanism for changing the aperture amount of the light by the aperture;
    further comprising
    a second lock mechanism having a third state that permits change of the throttle amount by the change mechanism and a fourth state that restricts change of the throttle amount by the change mechanism;
    The lens device according to claim 1 or 2, comprising:
  4.  前記変位機構による前記偏光子の変位に基づいて、前記第3状態と前記第4状態とが切り替わる請求項3に記載のレンズ装置。 The lens device according to claim 3, wherein the third state and the fourth state are switched based on the displacement of the polarizer by the displacement mechanism.
  5.  前記第1状態と前記第2状態との切り替わりと、前記第3状態と前記第4状態との切り替わりは並行して行われる請求項4に記載のレンズ装置。 The lens device according to claim 4, wherein switching between the first state and the second state and switching between the third state and the fourth state are performed in parallel.
  6.  前記変位機構は、前記偏光子を前記光軸方向周りに回転させる回転機構を含む
     請求項1から請求項5の何れか一項に記載のレンズ装置。
    The lens device according to any one of claims 1 to 5, wherein the displacement mechanism includes a rotation mechanism that rotates the polarizer around the optical axis direction.
  7.  前記偏光子は、前記第1偏光成分を透過させる第1偏光子と、前記第2偏光成分を透過させる第2偏光子とを有し、
     前記変位機構は、前記偏光子を前記光軸方向に対する交差方向にスライドさせることにより前記第1偏光子と前記第2偏光子とを切り替えるスライド機構を含む
     請求項1から請求項5の何れか一項に記載のレンズ装置。
    The polarizer has a first polarizer that transmits the first polarization component and a second polarizer that transmits the second polarization component,
    6. The displacement mechanism includes a slide mechanism for switching between the first polarizer and the second polarizer by sliding the polarizer in a direction crossing the optical axis direction. The lens device according to the paragraph.
  8.  前記移動機構及び前記変位機構を支持する鏡筒をさらに備え、
     前記第1状態は、前記第1ロック機構が、前記鏡筒に対する前記移動機構の固定を解除した状態であり、
     前記第2状態は、前記第1ロック機構が、前記鏡筒に対して前記移動機構を固定した状態である
     請求項1から請求項7の何れか一項に記載のレンズ装置。
    further comprising a lens barrel that supports the moving mechanism and the displacement mechanism;
    the first state is a state in which the first locking mechanism releases the fixing of the moving mechanism to the lens barrel;
    The lens device according to any one of claims 1 to 7, wherein the second state is a state in which the first locking mechanism fixes the moving mechanism to the lens barrel.
  9.  前記移動機構及び前記変位機構を支持する鏡筒をさらに備え、
     前記第1状態は、前記第1ロック機構が前記鏡筒から取り外された状態であり、
     前記第2状態は、前記第1ロック機構が前記鏡筒に装着された状態である
     請求項1から請求項7の何れか一項に記載のレンズ装置。
    further comprising a lens barrel that supports the moving mechanism and the displacement mechanism;
    the first state is a state in which the first locking mechanism is removed from the lens barrel;
    The lens device according to any one of claims 1 to 7, wherein the second state is a state in which the first lock mechanism is attached to the lens barrel.
  10.  前記移動機構は、第1係合部を有し、
     前記第1ロック機構は、第2係合部を有し、
     前記第1状態は、前記第1係合部が前記第2係合部と離れた状態であり、
     前記第2状態は、前記第1係合部が前記第2係合部と係合した状態である
     請求項1から請求項7の何れか一項に記載のレンズ装置。
    The moving mechanism has a first engaging portion,
    The first locking mechanism has a second engaging portion,
    The first state is a state in which the first engaging portion is separated from the second engaging portion,
    The lens device according to any one of Claims 1 to 7, wherein the second state is a state in which the first engaging portion is engaged with the second engaging portion.
  11.  前記偏光子の位置を検出するセンサと、
     前記センサの検出結果に応じて、前記第2係合部を移動させる第1駆動機構と、
     をさらに備える
     請求項10に記載のレンズ装置。
    a sensor that detects the position of the polarizer;
    a first drive mechanism that moves the second engaging portion according to the detection result of the sensor;
    11. The lens device of claim 10, further comprising:
  12.  前記センサの検出結果に基づいて前記第1駆動機構を制御する第1プロセッサをさらに備える
     請求項11に記載のレンズ装置。
    12. The lens device according to claim 11, further comprising a first processor that controls said first driving mechanism based on the detection result of said sensor.
  13.  前記第1ロック機構を駆動する第2駆動機構と、
     前記第2駆動機構を制御する第2プロセッサと、をさらに備える
     請求項1から請求項7の何れか一項に記載のレンズ装置。
    a second drive mechanism that drives the first lock mechanism;
    The lens apparatus according to any one of claims 1 to 7, further comprising a second processor that controls the second drive mechanism.
  14.  前記第2プロセッサは、前記第2駆動機構に対し、前記第1ロック機構が前記第1状態に切り替わる制御を行う第1モードと、前記第2駆動機構に対し、前記第1ロック機構が前記第2状態に切り替わる制御を行う第2モードと、を有する
     請求項13に記載のレンズ装置。
    The second processor controls the second drive mechanism in a first mode in which the first lock mechanism is switched to the first state; 14. The lens device according to claim 13, further comprising a second mode that controls switching between two states.
  15.  前記第2プロセッサは、外部からの指示、又は被写体から得られる情報に基づいて、前記第1モードと前記第2モードとに切り替わる
     請求項14に記載のレンズ装置。
    15. The lens apparatus according to claim 14, wherein said second processor switches between said first mode and said second mode based on an external instruction or information obtained from a subject.
  16.  前記変位機構を駆動する第3駆動機構と、
     前記第3駆動機構を制御する第3プロセッサと、をさらに備える
     請求項1から請求項15の何れか一項に記載のレンズ装置。
    a third drive mechanism that drives the displacement mechanism;
    16. The lens apparatus according to any one of claims 1 to 15, further comprising a third processor that controls said third drive mechanism.
  17.  前記第3プロセッサは、前記偏光子が前記第1位置にある場合に前記偏光子を透過した前記光がイメージセンサによって撮像されることで得られた第1画像と、前記偏光子が前記第2位置にある場合に前記偏光子を透過した前記光が前記イメージセンサによって撮像されることで得られた第2画像とに基づいて、前記第3駆動機構を制御する
     請求項16に記載のレンズ装置。
    The third processor generates a first image obtained by an image sensor capturing the light transmitted through the polarizer when the polarizer is at the first position, and 17. The lens device according to claim 16, wherein the third drive mechanism is controlled based on a second image obtained by imaging the light transmitted through the polarizer with the image sensor when the lens device is in the position. .
  18.  前記光に含まれる近赤外光を選択して透過するフィルタをさらに備える
     請求項1から請求項17の何れか一項に記載のレンズ装置。
    The lens device according to any one of claims 1 to 17, further comprising a filter that selectively transmits near-infrared light contained in the light.
  19.  前記フィルタは、前記偏光子と一体である
     請求項18に記載にレンズ装置。
    19. A lens device according to claim 18, wherein the filter is integral with the polarizer.
  20.  請求項1から請求項19の何れか一項に記載のレンズ装置と、
     前記レンズ装置を透過した前記光が結像されるイメージセンサと、
     を備える撮像装置。
    a lens device according to any one of claims 1 to 19;
    an image sensor on which the light transmitted through the lens device is imaged;
    An imaging device comprising:
PCT/JP2022/000997 2021-03-31 2022-01-13 Lens device and imaging device WO2022209136A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023510295A JPWO2022209136A1 (en) 2021-03-31 2022-01-13

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021061523 2021-03-31
JP2021-061523 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022209136A1 true WO2022209136A1 (en) 2022-10-06

Family

ID=83458510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000997 WO2022209136A1 (en) 2021-03-31 2022-01-13 Lens device and imaging device

Country Status (2)

Country Link
JP (1) JPWO2022209136A1 (en)
WO (1) WO2022209136A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614912U (en) * 1984-06-15 1986-01-13 株式会社日立製作所 Polarizer switching device
JP2001264610A (en) * 2000-03-16 2001-09-26 Canon Inc Camera
JP2006208714A (en) * 2005-01-27 2006-08-10 Sony Corp Imaging apparatus
JP2010217321A (en) * 2009-03-13 2010-09-30 Fujifilm Corp Lens device
JP2011002718A (en) * 2009-06-19 2011-01-06 Toshiba Corp Image pickup device
JP2014174504A (en) * 2013-03-13 2014-09-22 Nikon Corp Lens barrel and digital camera

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614912U (en) * 1984-06-15 1986-01-13 株式会社日立製作所 Polarizer switching device
JP2001264610A (en) * 2000-03-16 2001-09-26 Canon Inc Camera
JP2006208714A (en) * 2005-01-27 2006-08-10 Sony Corp Imaging apparatus
JP2010217321A (en) * 2009-03-13 2010-09-30 Fujifilm Corp Lens device
JP2011002718A (en) * 2009-06-19 2011-01-06 Toshiba Corp Image pickup device
JP2014174504A (en) * 2013-03-13 2014-09-22 Nikon Corp Lens barrel and digital camera

Also Published As

Publication number Publication date
JPWO2022209136A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
US10962784B2 (en) Substrate-guide optical device
JP6874143B2 (en) Compact optotype tracking with folded display optics
US10520732B2 (en) Head-mounted display eyeball tracker integrated system
US9958684B1 (en) Compact display engine with MEMS scanners
CN104570382B (en) The device and method of optical image super-resolution are shifted using integral
KR20170097661A (en) Substrate-guided optical device
JP6597615B2 (en) Projection display
WO2018187128A1 (en) Scanner-illuminated lcos projector for head mounted display
CN113748366A (en) Optical waveguide splitter
US20080151379A1 (en) Substrate-Guide Optical Device Utilizing Polarization Beam Splitters
US20160077351A1 (en) Optical system, optical member, micro-mirror array, display device, and image pickup device
US9971150B1 (en) Compact display engine with MEMS scanners
TWI665470B (en) System, method and apparatus for polarization control
CN108885353A (en) Projection arrangement, optical projection system and glasses type display device
CN108181709A (en) AR display devices and wearable AR equipment
TW200810528A (en) Monitoring lens apparatus and monitoring camera
CN110221439A (en) Augmented reality equipment and augmented reality adjusting method
US11693224B2 (en) Optical adapter for microscope and method for adjusting direction of optical image
WO2022209136A1 (en) Lens device and imaging device
US10073327B2 (en) Optical apparatus and image pickup apparatus
CN101699346A (en) Projection type video display device, and optical unit and polarized beam splitting member to be used therefor
CN110161685A (en) AR display device and wearable AR equipment
JP2603697B2 (en) Imaging optical system for endoscope
US7386230B2 (en) Wide-angle shooting apparatus and optical device
CN115202050A (en) Image display device, head-mounted display, image display system, and pattern polarizer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779369

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023510295

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779369

Country of ref document: EP

Kind code of ref document: A1