WO2022208998A1 - Method for creating bird's-eye view using intellectual property information - Google Patents

Method for creating bird's-eye view using intellectual property information Download PDF

Info

Publication number
WO2022208998A1
WO2022208998A1 PCT/JP2021/043529 JP2021043529W WO2022208998A1 WO 2022208998 A1 WO2022208998 A1 WO 2022208998A1 JP 2021043529 W JP2021043529 W JP 2021043529W WO 2022208998 A1 WO2022208998 A1 WO 2022208998A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
node
patent classification
classification information
eye view
Prior art date
Application number
PCT/JP2021/043529
Other languages
French (fr)
Japanese (ja)
Inventor
厚至 國行
昌俊 深町
駿平 鈴木
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Publication of WO2022208998A1 publication Critical patent/WO2022208998A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/18Legal services

Definitions

  • the present invention uses information related to intellectual property such as patents to overview the distribution and mutual relationships of companies (e.g., applicants and rights holders of intellectual property) and technologies (e.g., IPC, FI, etc.) It relates to a method for creating a bird's-eye view that can be In particular, the present invention relates to a method of creating a bird's-eye view suitable for gaining unprecedented awareness of the distribution and relationships of companies and technologies.
  • the IP landscape has attracted attention as a method for formulating management strategies.
  • the IP landscape is defined as "the company's own market, including competitors, market research and development, management strategy trends, and technical information such as individual patents. It shows the bird's eye view of the current situation and future prospects for the position.”
  • IP landscape is a method that has been used by advanced companies for a long time, but the recent development of IoT technology, big data technology, AI technology, robotics technology, etc. has lowered the threshold between technologies in different fields and industries.
  • the company's adjacent industries have increased and become more complex, and data processing has become faster and more sophisticated, making it possible to adopt unprecedented analysis methods.
  • Patent 6794584 publication Japanese Patent Application Laid-Open No. 2019-152939 Japanese Patent No. 6370434
  • Patent Document 1 describes a method for illustrating a patent strategy chart, which reflects the product information related to the embodiment and the claims and the embodiment, and the inclusion relationship and / or relationship of the embodiment to the claims. Disclosed is a graphical representation of a patent strategy chart showing the nature of the patent strategy.
  • Patent Document 2 analysis target data such as applicants, patent classifications, keywords, etc., who have increased applications according to the development scale, are displayed without omission regardless of the development scale to facilitate visual discovery.
  • a patent mapping display device capable of
  • Patent Document 3 uses a corporate group/business attribute co-occurrence matrix to determine the similarity between companies by cosine similarity, etc., and to determine the distribution of companies and their mutual relationships.
  • a bird's-eye view system is disclosed.
  • Patent Document 1 and Patent Document 2 a bird's-eye view that can overlook the distribution and mutual relationships of companies (e.g., intellectual property applicants and rights holders) and technologies (e.g., IPC, FI, etc.) is disclosed. It has not been. Further, Patent Document 3 does not disclose any bird's-eye view of companies and technologies using intellectual property information such as patents.
  • companies e.g., intellectual property applicants and rights holders
  • technologies e.g., IPC, FI, etc.
  • patent maps which are simply organized patent information. These patent maps are convenient for grasping the current patent application and holding status for each company and technology, but they are not sufficient as an analysis method for formulating future management strategies. was an issue.
  • the present invention is a method for creating a technology bird's-eye view, and a specific patent (pending patent, patent expired before registration after filing, patent in existence, patent expired after registration, It includes any one or more of utility model registration during application, utility model registration extinguished before registration after filing, utility model registration in existence, and utility model registration extinguished after registration.Not limited to rights in Japan.The same shall apply hereinafter.) associated with the patent classification information given to the specific patent right holder (including one or more of the applicant, the current right holder, and the past right holder; the same shall apply hereinafter).
  • a technology distribution information acquisition step to be acquired an association step for associating rights holders based on either a value indicating the degree of commonality or a value indicating the degree of similarity of the technology distribution information of each right holder, and connecting each right holder to a node
  • the clustering step divides each node into groups that are estimated to have a relatively high degree of association from the state of the connection of each node by the edge, and the nodes, edges, and clustering results are and a display step for displaying in a graph format. etc.
  • this bird's-eye view created by the present invention is drawn using publicly systematized and maintained patent classification information, etc., it is an accurate and objective company can show the distribution and relationships between them (although you can use your own taxonomy if you prefer).
  • this bird's-eye view covers a large number of companies, and in order to associate each company based on the technology distribution or the characteristics of the technology distribution possessed by each company, it is possible to comprehensively and comprehensively view the technological relationships between many companies. can be grasped.
  • the company distribution is created in a graph format with each company as a node and the relationship between companies as an edge.
  • Embodiment 1 is the most basic embodiment and relates to all claims, but corresponds to Claim 1 in particular.
  • Embodiment 2 mainly corresponds to claim 2 .
  • Embodiment 3 mainly corresponds to claim 3 and claim 4 .
  • Embodiment 4 mainly corresponds to claim 5 .
  • Embodiment 5 mainly corresponds to claim 6 .
  • Embodiment 6 mainly corresponds to claim 7 .
  • Embodiment 7 mainly corresponds to claim 8 .
  • Embodiment 8 mainly corresponds to claim 9 .
  • the present invention is by no means limited to these embodiments, and can be embodied in various forms without departing from the scope of the invention. ⁇ Embodiment 1>
  • Embodiment 1 the most basic embodiment of the present invention will be described.
  • the outline of the steps of this embodiment is as shown in FIG. Each step will be described below.
  • the "data set recording step” records a data set that associates the patent classification information assigned to a specific patent with the right holder of that specific patent in the data set holding unit.
  • Specific patent means a pending patent, a patent extinguished before registration after filing, a patent in existence, a patent extinguished after registration, utility model registration during application, utility model registration extinguished before registration after filing, utility model registration in existence, after registration Any one or more of the lapsed utility model registrations. Therefore, for example, pending patents and patents in existence, which are rights that are currently in existence, may be targeted, or patents in existence, which are rights that have been registered, and patents that have expired after registration, may be targeted. Of course, it is also possible to include patents that have expired after filing and before being registered as an indication of trends in technological development. These points are the same for utility model registration. Of course, other combinations can be freely adopted depending on the purpose.
  • Patent classification information typically includes IPC, FI, F-term, USPC (United States Patent Classification), ECLA (European Patent Classification), CPC (Common Patent Classification), etc.
  • IPC International Patent Classification
  • FI Full States Patent Classification
  • F-term Full States Patent Classification
  • USPC United States Patent Classification
  • ECLA European Patent Classification
  • CPC Common Patent Classification
  • the above patent classification information is not necessarily limited to information using the classification code or the like as it is.
  • a code separated by the first digit of the IPC (section) or the first three digits of the IPC (class) may be used.
  • the delimitation criteria are not limited to the number of digits in classification definition such as section, class, and subclass.
  • codes of the same hierarchy based on the hierarchical concept defined in IPC may be used.
  • the first three digits of the IPC may be used for one technical field, and the first four digits of the IPC may be used for another technical field.
  • the patent classification information does not need to maintain the appearance of the original code.
  • the IPC may be converted to a form of keys such as numbers.
  • the same is true when the information related to the original patent classification remains while maintaining its characteristics, such as when IPC is used as a dimension and dimensionality is compressed.
  • Light holder includes any one or more of the above specific patent applicant, current right holder, and past right holder. Therefore, for example, the applicant may be targeted for pending patents, and the current right holder may be targeted for pending patents. Also, if necessary, past right holders may be targeted.
  • the rights holders mentioned above are not limited to the names listed in the bulletins and original records.
  • it may be the right holder of the name identification destination whose name is identified in the official gazette or original register.
  • the name of the subsidiary may be changed to the name of the parent company, or the name of the corporate group to which the company belongs may be changed.
  • the patents may be counted as patents of respective right holders, or all the joint owners may be registered under one name.
  • the right holder here broadly refers to the formal/substantial right holder of the patent.
  • the right holder information may of course be a right holder code or a company code (EDI code, etc.) of a company whose names have been collated, instead of the name of the right holder.
  • a "data set that associates patent classification information assigned to a specific patent with the right holder of the specific patent” is, for example, the X column is the right holder information and the Y column is the patent classification information.
  • the CSV format the TSV format, the Excel format, the relational database format, and the XML format may also be used. Any format is acceptable as long as the patent classification information is associated with the specific patent right holder.
  • FIG. 20 shows part of the contents of an Excel file (the patent number and right holder name are converted to dummies).
  • FIG. 21 shows part of the contents of an Excel-format file that aggregates patents for each right holder and each IPC (right holder names are converted to dummies).
  • this step it is possible to read a file that is compiled in advance for each right holder and each IPC.
  • the patent classification information data and the right holder information data may be held separately, and a data file for linking may be held to read a plurality of files in which the two are associated.
  • the actual data format is merely a matter of design by those skilled in the art.
  • a “data set storage unit” is a device or recording medium that records a data set.
  • This data set holding unit is typically an electric/magnetic recording medium such as a memory or HD, but is not limited to this. It should be noted that recording the data set here does not have to be long-term recording, and may be recording for temporary calculation for later steps.
  • the "technology distribution information acquisition step” acquires technology distribution information indicating the distribution of technologies owned by the right holder based on the patent classification information associated with the right holder in the data set.
  • technology distribution information is technology distribution information with noise removed by limiting aggregated information on patent classifications attached to patents for each right holder to patent classifications with a certain number of appearance ratios and number of applications.
  • numerical values may be standardized using the appearance ratio, the average value of the number of appearances, or the standard deviation.
  • N by multiplying the appearance ratio and the number of appearances by N, for example, those with a high appearance ratio and number of appearances may be emphasized.
  • Those skilled in the art may optionally apply such standardization or weighting of statistical features. For example, in FIG. 22, the technology distribution information is narrowed down to only patent classification information that appears 400 times or more.
  • the "associating step” associates the right holders based on either the value indicating the degree of commonality or the value indicating the degree of similarity of the technology distribution information between the respective right holders.
  • the "value indicating the degree of commonality of technology distribution information" is, for example, in the case of the degree of commonality between Company A and Company B, the number and ratio of patent classification information common to the technology distributions of Company A and Company B can be mentioned. . Specifically, as the simplest method, if two IPCs are common in the technology distribution of company A and company B, the value indicating the degree of commonality between AB is set to 2. At this time, it is of course possible to use technology distribution information that has been emphasized and standardized.
  • the value indicating this degree of commonality will be used as an edge weight in a later step, but if you want to perform calculations without weights, set 1 if the degree of commonality is above a certain level, and 0 if it is less than a certain level. good too.
  • the "value indicating the similarity of technology distribution information" is, for example, a cosine similarity, a similarity by set operation, a value based on the deviation of a probability distribution, and the like. The details of how these similarities are calculated will be described in another embodiment.
  • FIG. 23 is an example of this.
  • 13 is described in the intersecting element of company A (row) and company B (column), and this 13 is the degree of commonality between company A and company B.
  • each right holder is treated as a node, and the association between each right holder is treated as an edge, and each node is divided into groups that are estimated to have a relatively high degree of association based on the state of connection of each node by the edge.
  • a “node” is a node (point of contact) in so-called graph theory.
  • An “edge” is also an edge (side) in graph theory. Therefore, the "connection state of each node by an edge” is the connection state of each node.
  • edge weights When edge weights are taken into account, it refers to the state of connection in which weights are also taken into consideration.
  • edge weights When edge weights are taken into account, it refers to the state of connection in which weights are also taken into consideration.
  • these terms are not bound by the strict definition of graph theory, and the drawing of points of contact and edges representing the network structure is within the scope of the present invention.
  • Modularity index Q is defined as the ratio of links connecting nodes in a group minus the expected value if the links are randomly placed, for a given partition of the network.
  • Modularity Q is an index well known to those skilled in the art, but the formula is shown below just in case.
  • a formula that takes edge weights into account may be used as in the following formula. Even when using a formula that does not consider edge weights, clustering that reflects weight differences to some extent may be performed by calculating assuming that there are no edges below an arbitrary weight (with zero weight).
  • group division broadly refers to the process of creating a state in which grouping has been performed, for example, excluding clustering by algorithms such as the following greedy method is not.
  • Algorithms for clustering using the modularity index Q are also well known to those skilled in the art, and some examples will be outlined. For example, there is a greedy method that merges a cluster with another cluster from a state in which all nodes are individually separate clusters. In this method, the modularity index Q is used as a criterion for selecting clusters to be merged, and clusters with a larger Q after merging are merged as needed. Conversely, there is also a method in which all nodes are treated as one cluster, and the cluster is divided at any time using the modularity index Q as a reference. Since maximization of the modularity index Q in clustering is an NP problem, algorithms are proposed from time to time by those skilled in the art to find approximate solutions. Any algorithm may be applied to the present invention.
  • estimate in “each node is estimated to have a relatively high degree of relevance” means that the solution obtained by the calculation process may be an approximate solution as described above. ing. In other words, there is no need to continue the calculation until the exact solution is obtained, and the calculation may be terminated in the middle. However, this does not exclude the case where the obtained solution is an exact solution, and does not negate the clustering process for obtaining an exact solution. It may be estimated, for example, when the convergence rate of the convergence target in the nth and n+1th operations falls within a predetermined range. For example, the convergence rate, which is the difference, may be about 1% to 20%.
  • the feature of the above clustering is that clusters are created from the state of connection of the edges between nodes after drawing edges between nodes, not similarity information between nodes. Therefore, in the present invention, all methods of estimating the degree of relevance from the state of connection of the edges of each node can be adopted, instead of the similarity information between each node. With this feature, the present invention appropriately groups not only directly related adjacent companies but also indirectly related adjacent companies (adjacent to adjacent, etc.), and can systematically grasp the overall picture of the industrial world. There are benefits.
  • an index other than the modularity index Q may be used to evaluate the state of edge coupling between nodes.
  • spin glass method 1. If nodes belonging to the same community are connected to each other, plus; Minus if nodes belonging to the same community are not connected to each other; 4. Negative if nodes belonging to different communities are connected to each other; If nodes belonging to different communities are not connected to each other, the plus four factors are combined for scoring.
  • a clustering method that allows one node to belong to multiple groups can also be used. This includes, for example, a method of regarding a clique (a group of nodes in which all nodes are interconnected) as one group.
  • Betweenness centrality indicates how many paths of all shortest paths between two nodes include a given node (or edge), and can be defined by the following formula. This formula is for the betweenness centrality of a node, but the betweenness centrality of an edge can be calculated by changing "things passing through node i" to "things passing through edge i".
  • Display step displays nodes, edges, and clustering results in graph form. For example, FIG. 25 is monochrome, each node edge is actually colored, and each color constitutes a separate cluster.
  • Layout algorithms such as Fruchterman-Reingold, ForceAtlas2, etc. are preferably used for drawing nodes/edges. Note that the present invention does not impose any restrictions on the node/edge layout algorithm, so those skilled in the art may use any algorithm for rendering.
  • the formulas of the above two algorithms are as follows.
  • the Fruchterman-Reingold equation is as follows.
  • the formula for ForceAtlas2 is as follows. Note that k in the formula is a coefficient set by the user.
  • Algorithms such as ForceAtlas and OpenOrd can also be used for graph visualization (layout). Those skilled in the art may use these algorithms as appropriate.
  • this embodiment having the above configuration, it is possible to create a technology bird's-eye view showing the accurate and objective distribution and relationship between companies. Moreover, according to this bird's-eye view, it is possible to comprehend the technical relationships between many companies comprehensively and from a bird's-eye view. In addition, not only directly related companies but also indirectly related companies (neighbors of neighbors, etc.) can be appropriately grouped to systematically grasp the overall picture of the industrial world. Therefore, according to this bird's-eye view, there is a high possibility that unprecedented distributions and relationships between companies can be discovered, and the present invention can be said to be extremely useful for formulating future management strategies. ⁇ Embodiment 2>
  • Embodiment 2 is basically the same as Embodiment 1, but the node is one of the patent classification information given to the patent (main patent classification information), and the patent classification information based on the technology used at the same time It is characterized by creating a technology bird's-eye view that overlooks the relationship. An overview of the steps of this embodiment is as shown in FIG. Differences from the first embodiment will be described below.
  • one patent classification information of the patent among the patent classification information assigned to a specific patent is used as the main patent classification information, and the main patent classification information and the patent records the data set associated with the patent classification information in the data set holding unit.
  • Main patent classification information is typically the leading IPC, but it is not limited to this.
  • the first three digits (class) of the IPC are used as the patent classification information
  • the first three digits (class) of the most frequently assigned IPC may be adopted as the main axis. Specifically, if five IPCs are attached to one patent, three IPCs are of class A01 and the remaining two IPCs are of class B01, then A01 is adopted.
  • the nodes are the main patent classifications.
  • the edge is the commonality (or similarity) of the technologies used together between the principal patent classifications. That is, in the first embodiment, the right holder was the node, but in the present embodiment, the main patent classification is the node.
  • FIG. 26 is an example of this.
  • Embodiment 3 is basically the same as Embodiment 1, but the value indicating the degree of commonality or the value indicating the degree of similarity between nodes as a reference for drawing edges between nodes is relatively large. It has a node similarity identification information associating step for associating node similarity identification information indicating a node similarity relationship with each other, and displays the node similarity identification information in addition to nodes, edges, and clustering results in a "node similarity display substep". is characterized by In addition, it is characterized in that a plurality of nodes can be aggregated based on the node similarity identification information in the "aggregation step". The outline of the steps of this embodiment is as shown in FIGS. 3 and 4. FIG. Differences from the first embodiment will be described below.
  • Another way to create groups is to group them so that the degree of commonality and average similarity between rights holders in the group is as large as possible. Specifically, the values obtained from the number of common patent classifications, cosine similarity and similarity by set operation described later, and the degree of divergence of the probability distribution between right holders are equal to or greater than a certain value.
  • the number of groups can be arbitrarily adjusted by adjusting the constant value, which is convenient.
  • the nodes may be grouped sequentially from a combination of nodes having relatively high mutual similarity (or estimated to be high).
  • the value indicating the degree of commonality or the value indicating the degree of similarity used for the above grouping does not need to adopt the same calculation method as the value for drawing edges.
  • the above grouping may be performed using a value indicating the degree of commonality, and association between rights holders for drawing edges may be performed using a value indicating the degree of similarity.
  • the node similarity identification information is displayed on the technology bird's-eye view. For example, there is a display method that attaches the same symbol to similar nodes.
  • the grouped rights holders can be aggregated and displayed.
  • a plurality of rights holders may be collectively displayed in one node, or a plurality of nodes may be surrounded by a circle-like display. By doing so, the visibility of the graph is greatly improved.
  • This "aggregation step” may be implemented after the graph is displayed in the "display step”. In this case, the function is such that the multiple nodes that have already been displayed before aggregation are put into an aggregated state and displayed again.
  • the "aggregation step” may be performed before the "display step” so that a plurality of nodes are aggregated and displayed in advance.
  • the user may arbitrarily set and designate the timing of aggregation. Note that when nodes are aggregated, the edges and edge weights of the aggregated nodes may be totaled, and clustering processing may be executed again.
  • Embodiment 4 is basically the same as Embodiment 1, but uses patent classification information in which the number of distributions and/or the ratio of distributions in each technology distribution information is an arbitrary value or more for associating right holders. It is characterized by points. The outline of the steps of this embodiment is as shown in FIG. 1 (same as Embodiment 1). Differences from the first embodiment will be described below.
  • the technology distribution information in the present embodiment for example, it is preferable to replace aggregate information of patent classifications attached to patents for each right holder with a ratio, and use patent classification information in which the ratio is equal to or greater than an arbitrary value for association. be.
  • the arbitrary value should be adjustable by the user.
  • the two companies A and B are associated with equal weight. This can be said to have focused on only the technologies that are important to the company, discarding unimportant technologies, and making mutual associations.
  • the arbitrary value is 1% or more
  • the three companies A, B, and C are associated with equal weight.
  • the 1% patent classification and the 10% patent classification are treated in the same way as "1" in the association, so the technology that is not so important to Company C (for example, peripheral technology) was emphasized and associated. It will be.
  • peripheral technology for example, peripheral technology
  • Embodiment 5 is basically the same as Embodiment 1, but is characterized in that the values used for associating rights holders are set operations. Specifically, it is characterized by using the degree of similarity between right holders calculated by a set operation, with right holders as a set and patent classification information associated with the right holders as elements of the set. Specific methods of set operations are as follows. The outline of the steps of this embodiment is as shown in FIG. 1 (same as Embodiment 1). Differences from the first embodiment will be described below.
  • Embodiment 6 is basically the same as Embodiment 1, but is characterized in that the values used for associating rights holders are similarities using vector feature amounts. Specifically, it is characterized in that it is a degree of similarity between right holders calculated as a vector feature value based on patent classification information associated with each right holder. Specific vector calculation methods are as follows. The outline of the steps of this embodiment is as shown in FIG. 1 (same as Embodiment 1). Differences from the first embodiment will be described below.
  • Cosine similarity will be described as an example of similarity using vector features.
  • Cosine similarity is an index that expresses the closeness of angles formed by vectors.
  • the formula for calculating the cosine similarity is as follows. The vector of each node is obtained by taking each patent classification associated with the right holder as each dimension and the number of appearances of each patent classification as the size of each dimension.
  • FIG. 24 is a matrix of relationships between rights holders created by cosine similarity.
  • Embodiment 7 is basically the same as Embodiment 1, but is characterized in that the value used for associating rights holders is a value based on the deviation of the probability distribution. Specifically, the value indicating the degree of similarity in the association step is obtained from the degree of divergence of the probability distribution between right holders, where the distribution of the appearance frequency of the patent classification information associated with the right holder is set as a probability distribution. It is characterized by the use of values that can be obtained. Specific probability distribution calculation methods are as follows. The outline of the steps of this embodiment is as shown in FIG. 1 (same as Embodiment 1). Differences from the first embodiment will be described below.
  • the divergence of probability distributions between right holders is, for example, KL divergence.
  • KL divergence The formula for KL divergence is:
  • JS divergence is an index that makes KL divergence easier to use.
  • Embodiment 8 is basically the same as Embodiment 1, but adds patent classification contribution information for identifying patent classification information that contributed to the association between nodes to the nodes, the edges, or the clustering results. It is characterized in that it further has a labeling step. Furthermore, among the patent classifications that contributed to the association between each node, it is preferable to identify the patent classification information that has a large influence in the cluster created from the state of edge coupling. Below, the outline of the steps of this embodiment is as shown in FIG. Differences from the first embodiment will be described below.
  • the "patent classification that contributed to the association between each node" in the "labeling step” is the patent classification that influenced the value used for association in the association step, and is the patent classification that is common among the nodes. If there are multiple patent classifications that are common among nodes, a patent classification that is considered to have a greater influence on community formation may be selected. As an example of a value that can be used as the degree of influence here, there is a score (hereinafter referred to as SF-ICF) calculated by replacing words in TF-IDF with subclasses and documents with clusters.
  • SF-ICF score
  • TF-IDF is an index for evaluating the importance of a word in a document. Desired. It can be said that TF indicates the degree of importance of a certain word in a certain document, and IDF indicates the general appearance frequency of that word.
  • SF-ICF is a score calculated by replacing words in TF-IDF with subclasses and documents with clusters. Specifically, it can be expressed by the following formula.
  • SF-ICF uses subclasses, there is no problem in using patent classifications that are higher or lower than subclasses. Also, clusters can be used by replacing them with groups created in the third embodiment.
  • Fig. 27 shows the actual labeling.
  • the label that describes drinks, seasonings, etc. uses a rewritten IPC label that is easy to understand.
  • the present invention can be implemented as hardware, software, or both hardware and software.
  • hardware includes CPU, main memory, GPU, image memory, graphic board, or secondary storage device (hard disk, non-volatile memory, storage media such as CD and DVD, and read drives for those media). and various input/output devices.
  • any of these programs may be realized as a plurality of modularized programs, or two or more programs may be combined to be realized as one program.
  • FIG. 6 shows that each program and each data recorded in the non-volatile memory are read into the main memory and arithmetic processing is performed, and that the arithmetic result performed on the main memory can be recorded in the non-volatile memory.
  • FIG. 6 shows that each program and each data recorded in the non-volatile memory are read into the main memory and arithmetic processing is performed, and that the arithmetic result performed on the main memory can be recorded in the non-volatile memory.
  • the present invention which has the various configurations described above, it is possible to create a technology bird's-eye view that shows the accurate and objective distribution and relationship between companies. Moreover, according to this bird's-eye view, it is possible to comprehend the technical relationships between many companies comprehensively and from a bird's-eye view. Furthermore, not only directly related adjacent companies but also indirectly related adjacent companies (adjacent to adjacent, etc.) can be appropriately grouped, and the overall picture of the industrial world can be grasped systematically. Therefore, according to this bird's-eye view, there is a high possibility that unprecedented distributions and relationships between companies can be discovered, and the present invention can be said to be extremely useful for formulating future management strategies.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Finance (AREA)
  • Development Economics (AREA)
  • Marketing (AREA)
  • Accounting & Taxation (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Technology Law (AREA)
  • Primary Health Care (AREA)
  • Human Resources & Organizations (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Health & Medical Sciences (AREA)
  • Game Theory and Decision Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

[Problem] To create a technological bird's-eye view that would make it possible to discover and analyze a relationship between enterprise, technology, and business that cannot be discovered by a traditional approach. [Means for Solving Problem] [Solution] The present invention associates rightful claimants with each other by technological features on the basis of a dataset in which patent classification information and rightful claimants are associated and, adopting each rightful claimant as a node and the association of rightful claimants with each other as an edge, clusters each node by a group the degree of association of which is relatively high and creates a technological bird's-eye view in graph form.

Description

知財情報を用いた俯瞰図の作成方法How to create bird's-eye view using intellectual property information
 本発明は、特許等の知財に関連する情報を用いて、企業(例えば知財の出願人や権利者など)や技術(例えばIPCやFIなど)の分布及び相互の関連などを俯瞰することができる俯瞰図を作成する方法に関する。とりわけ、企業や技術の分布及び関係性について今までにない気付きを得るのに好適な俯瞰図を作成する方法に関する。 The present invention uses information related to intellectual property such as patents to overview the distribution and mutual relationships of companies (e.g., applicants and rights holders of intellectual property) and technologies (e.g., IPC, FI, etc.) It relates to a method for creating a bird's-eye view that can be In particular, the present invention relates to a method of creating a bird's-eye view suitable for gaining unprecedented awareness of the distribution and relationships of companies and technologies.
 近年、経営戦略を策定するための手法としてIPランドスケープが注目されている。IPランドスケープとは、平成28年度特許庁産業財産権制度問題調査研究報告書によると「自社、競合他社、市場の研究開発、経営戦略等の動向及び個別特許等の技術情報を含み、自社の市場ポジションについて現状の俯瞰・将来の展望等を示すもの」である。 In recent years, the IP landscape has attracted attention as a method for formulating management strategies. According to the 2016 Patent Office Industrial Property Rights System Issues Survey Research Report, the IP landscape is defined as "the company's own market, including competitors, market research and development, management strategy trends, and technical information such as individual patents. It shows the bird's eye view of the current situation and future prospects for the position."
 IPランドスケープは、先進的な企業では以前から活用されてきた手法だが、近年のIoT技術やビッグデータ技術、AI技術、ロボティクス技術などの発達により、異なる領域の技術や産業間の敷居が低くなり、自社の隣接業界が増加・複雑化したことや、データ処理の高速化、高機能化により、今までにない分析手法の採用が可能となったことなどにより、一層の注目を集めるようになっている。 IP landscape is a method that has been used by advanced companies for a long time, but the recent development of IoT technology, big data technology, AI technology, robotics technology, etc. has lowered the threshold between technologies in different fields and industries. The company's adjacent industries have increased and become more complex, and data processing has become faster and more sophisticated, making it possible to adopt unprecedented analysis methods. there is
 このよう状況のなか、様々なIPランドスケープ手法や、IPランドスケープのためのツールが開発されている。 Under these circumstances, various IP landscape methods and tools for IP landscape have been developed.
特許6794584公報Patent 6794584 publication 特開2019-152939公報Japanese Patent Application Laid-Open No. 2019-152939 特許6370434公報Japanese Patent No. 6370434
 特許文献1には、特許戦略チャートの図示方法であって、実施態様及び特許請求の範囲と実施態様に関連する製品情報を反映させて、特許請求の範囲に対する実施態様の包含関係及び/ 又は関連性を示す特許戦略チャートの図示方法が開示されている。 Patent Document 1 describes a method for illustrating a patent strategy chart, which reflects the product information related to the embodiment and the claims and the embodiment, and the inclusion relationship and / or relationship of the embodiment to the claims. Disclosed is a graphical representation of a patent strategy chart showing the nature of the patent strategy.
 特許文献2には、開発規模に準じた出願の伸びのあった出願人や特許分類、キーワード等の分析対象データを、開発規模に関係なく漏れなく表示し、視覚的な発見を容易にすることが可能な特許マップ作成表示装置が開示されている。 In Patent Document 2, analysis target data such as applicants, patent classifications, keywords, etc., who have increased applications according to the development scale, are displayed without omission regardless of the development scale to facilitate visual discovery. A patent mapping display device capable of
 特許文献3には、特許情報についての言及はないものの企業グループ・事業属性共起マトリックスを用いて、コサイン類似度などにより、企業間の類似性を判断し、企業の分布及び相互の関連などを俯瞰するシステムが開示されている。 Although Patent Document 3 does not mention patent information, it uses a corporate group/business attribute co-occurrence matrix to determine the similarity between companies by cosine similarity, etc., and to determine the distribution of companies and their mutual relationships. A bird's-eye view system is disclosed.
 特許文献1および特許文献2においては、企業(例えば知財の出願人や権利者など)や技術(例えばIPCやFIなど)の分布及び相互の関連などを俯瞰することができる俯瞰図が一切開示されていない。また、特許文献3においては特許等の知財情報を用いた企業や技術の俯瞰図については一切開示されていない。 In Patent Document 1 and Patent Document 2, a bird's-eye view that can overlook the distribution and mutual relationships of companies (e.g., intellectual property applicants and rights holders) and technologies (e.g., IPC, FI, etc.) is disclosed. It has not been. Further, Patent Document 3 does not disclose any bird's-eye view of companies and technologies using intellectual property information such as patents.
 また、上記の文献以外について、特許情報から企業や技術の俯瞰図を作成する方法を開示する文献は多数存在するものの、それは特許情報を整理したに過ぎない、いわゆる特許MAPである。これら特許MAPは企業ごと技術ごとの現在の特許の出願、保有状況を把握する用途には便利だが、将来の経営戦略を策定するための分析手法としては十分ではなく、より高度な分析手法の開発が課題となっていた。 In addition to the above documents, there are many documents that disclose methods for creating bird's-eye views of companies and technologies from patent information, but they are so-called patent maps, which are simply organized patent information. These patent maps are convenient for grasping the current patent application and holding status for each company and technology, but they are not sufficient as an analysis method for formulating future management strategies. was an issue.
 以上のような課題を解決するために、本発明は、技術俯瞰図を作成する方法であって、特定の特許(出願中特許、出願後登録前消滅特許、存続中特許、登録後消滅特許、出願中実用新案登録、出願後登録前消滅実用新案登録、存続中実用新案登録、登録後消滅実用新案登録のいずれか一以上を含むものをいう。日本国の権利に限定されない。以下同じ。)に付与されている特許分類情報と、その特定の特許の権利者(出願人、現在の権利者、過去の権利者のいずれか一以上を含むものをいう。以下同じ。)とを、関連付けたデータセットをデータセット保持部に記録するデータセット記録ステップと、前記データセットにて権利者に関連付けられている特許分類情報に基づいて、その権利者が保有する技術の分布を示す技術分布情報を取得する技術分布情報取得ステップと、各権利者どうしの技術分布情報の共通度を示す値又は類似度を示す値のいずれかを基準として権利者どうしを関連付ける関連付ステップと、各権利者をノードとし各権利者どうしの関連付けをエッジとし、エッジによる各ノードの結合の状態から、各ノードを相対的に関連度が高いと推定されるグループに分割するクラスタリングステップと、ノード、エッジ、クラスタリング結果をグラフ形式で表示する表示ステップと、からなる技術俯瞰図作成方法。などを提案する。 In order to solve the above problems, the present invention is a method for creating a technology bird's-eye view, and a specific patent (pending patent, patent expired before registration after filing, patent in existence, patent expired after registration, It includes any one or more of utility model registration during application, utility model registration extinguished before registration after filing, utility model registration in existence, and utility model registration extinguished after registration.Not limited to rights in Japan.The same shall apply hereinafter.) associated with the patent classification information given to the specific patent right holder (including one or more of the applicant, the current right holder, and the past right holder; the same shall apply hereinafter). a data set recording step of recording a data set in a data set holding unit; and technology distribution information indicating the distribution of technologies owned by the right holder based on the patent classification information associated with the right holder in the data set. A technology distribution information acquisition step to be acquired, an association step for associating rights holders based on either a value indicating the degree of commonality or a value indicating the degree of similarity of the technology distribution information of each right holder, and connecting each right holder to a node Assuming that the association between each rights holder is an edge, the clustering step divides each node into groups that are estimated to have a relatively high degree of association from the state of the connection of each node by the edge, and the nodes, edges, and clustering results are and a display step for displaying in a graph format. etc.
 具体的に本発明で作成される俯瞰図の特徴をあげると、まず、本俯瞰図は公的に体系化され整備された特許分類情報などを用いて描画されるため、正確かつ客観的な企業間の分布および関連性を示すことができる(ただし、必要に応じて独自に作成した分類を使用してもよい)。また、本俯瞰図は多数の企業を対象に、各企業が保有する技術分布又は技術分布の特徴から各企業間の関連付けを行うため、多数の企業間の技術的関連性を網羅的かつ俯瞰的に把握できる。さらに、本俯瞰図は企業をノード、企業間の関連をエッジとしたグラフ形式で企業分布を作成し、これをモジュラリティなどのエッジの結合状態(企業間の関係性)を示す指標などによりクラスタを作成する。よって、直接的に関係する隣接企業だけでなく間接的に関係する隣接企業(隣接の隣接など)も適切にグループ分けし、産業界の全体像を体系的に把握できる。したがって、本俯瞰図によれば従来にない企業間の分布および関連性を発見できる可能性が高く、本発明は将来の経営戦略を策定するために極めて有用といえる。 Specific features of the bird's-eye view created by the present invention are as follows. First, since this bird's-eye view is drawn using publicly systematized and maintained patent classification information, etc., it is an accurate and objective company can show the distribution and relationships between them (although you can use your own taxonomy if you prefer). In addition, this bird's-eye view covers a large number of companies, and in order to associate each company based on the technology distribution or the characteristics of the technology distribution possessed by each company, it is possible to comprehensively and comprehensively view the technological relationships between many companies. can be grasped. Furthermore, in this bird's-eye view, the company distribution is created in a graph format with each company as a node and the relationship between companies as an edge. to create Therefore, not only directly related companies but also indirectly related companies (neighbors of neighbors, etc.) can be appropriately grouped to systematically grasp the overall picture of the industrial world. Therefore, according to this bird's-eye view, there is a high possibility that unprecedented distributions and relationships between companies can be discovered, and the present invention can be said to be extremely useful for formulating future management strategies.
実施形態1のフロー図Flow chart of Embodiment 1 実施形態2のフロー図Flow chart of Embodiment 2 実施形態3のフロー図Flow chart of Embodiment 3 実施形態4のフロー図Flow chart of Embodiment 4 実施形態5のフロー図Flow chart of Embodiment 5 ハードウェア図 Hardware diagram 本発明に係る数式1Formula 1 according to the present invention 本発明に係る数式2Formula 2 according to the present invention 本発明に係る数式3Formula 3 according to the present invention 本発明に係る数式4Formula 4 according to the present invention 本発明に係る数式5Formula 5 according to the present invention 本発明に係る数式6Formula 6 according to the present invention 本発明に係る数式7Formula 7 according to the present invention 本発明に係る数式8Formula 8 according to the present invention 本発明に係る数式9Formula 9 according to the present invention 本発明に係る数式10Formula 10 according to the present invention 本発明に係る数式11Formula 11 according to the present invention 本発明に係る数式12Formula 12 according to the present invention 本発明に係る数式13Formula 13 according to the present invention 本発明に係るデータセットの例Examples of datasets according to the invention 本発明に係る技術分布の例1Example 1 of technology distribution according to the present invention 本発明に係る技術分布の例2Example 2 of technology distribution according to the present invention 本発明に係る関連付けの例1Example 1 of association according to the present invention 本発明に係る関連付けの例2Example 2 of association according to the present invention 本発明に係る技術俯瞰図の例1Example 1 of technology bird's-eye view according to the present invention 本発明に係る技術俯瞰図の例2Example 2 of technology bird's-eye view according to the present invention 本発明に係る技術俯瞰図の例3Example 3 of technology bird's-eye view according to the present invention
 以下、本発明の各実施形態について図面と共に説明する。実施形態と請求項の相互の関係は、以下のとおりである。まず、実施形態1は、最も基本的な実施形態であり、すべての請求項に関係するが、特に請求項1に対応する。実施形態2は、主に請求項2に対応する。実施形態3は、主に請求項3および請求項4に対応する。実施形態4は、主に請求項5に対応する。実施形態5は、主に請求項6に対応する。実施形態6は、主に請求項7に対応する。実施形態7は、主に請求項8に対応する。実施形態8は、主に請求項9に対応する。ただし、本発明はこれらの実施形態に何ら限定されるものではなく、その要旨を逸脱しない範囲内において、様々な態様で実施し得る。
<実施形態1>
Hereinafter, each embodiment of the present invention will be described with reference to the drawings. The mutual relationship between the embodiments and the claims is as follows. First, Embodiment 1 is the most basic embodiment and relates to all claims, but corresponds to Claim 1 in particular. Embodiment 2 mainly corresponds to claim 2 . Embodiment 3 mainly corresponds to claim 3 and claim 4 . Embodiment 4 mainly corresponds to claim 5 . Embodiment 5 mainly corresponds to claim 6 . Embodiment 6 mainly corresponds to claim 7 . Embodiment 7 mainly corresponds to claim 8 . Embodiment 8 mainly corresponds to claim 9 . However, the present invention is by no means limited to these embodiments, and can be embodied in various forms without departing from the scope of the invention.
<Embodiment 1>
 実施形態1においては、本件発明のもっとも基本的な実施形態について述べる。本実施形態のステップの概要は図1に示すとおりである。以下、各ステップについて説明する。 In Embodiment 1, the most basic embodiment of the present invention will be described. The outline of the steps of this embodiment is as shown in FIG. Each step will be described below.
 「データセット記録ステップ」は特定の特許に付与されている特許分類情報と、その特定の特許の権利者とを、関連付けたデータセットをデータセット保持部に記録する。 The "data set recording step" records a data set that associates the patent classification information assigned to a specific patent with the right holder of that specific patent in the data set holding unit.
 「特定の特許」とは出願中特許、出願後登録前消滅特許、存続中特許、登録後消滅特許、出願中実用新案登録、出願後登録前消滅実用新案登録、存続中実用新案登録、登録後消滅実用新案登録のいずれか一以上を含むものをいう。よって、例えば現在生存中の権利である出願中特許と存続中特許を対象としてもよいし、登録実績のある権利である存続中特許、登録後消滅特許を対象としてもよい。もちろん、出願後登録前消滅特許を技術開発の動向を示すものとして対象に加えることもできる。これらの点は実用新案登録についても同様である。もちろん、そのほかの組み合わせも目的に応じて自由に採用することができる。 "Specific patent" means a pending patent, a patent extinguished before registration after filing, a patent in existence, a patent extinguished after registration, utility model registration during application, utility model registration extinguished before registration after filing, utility model registration in existence, after registration Any one or more of the lapsed utility model registrations. Therefore, for example, pending patents and patents in existence, which are rights that are currently in existence, may be targeted, or patents in existence, which are rights that have been registered, and patents that have expired after registration, may be targeted. Of course, it is also possible to include patents that have expired after filing and before being registered as an indication of trends in technological development. These points are the same for utility model registration. Of course, other combinations can be freely adopted depending on the purpose.
 「特許分類情報」とは、代表的にはIPC、FI、Fターム、USPC(米国特許分類)、ECLA(欧州特許分類)、CPC(共通特許分類)など公的に体系化されて付される特許分類情報を指すが、これに限られない。企業内で使用される独自分類や、情報ベンダーが作成した独自分類による情報であってもよい。また、例えば請求項中に使用される語句の統計情報などから独自の分類を作成して使用してもよい。すなわち、ここでいう特許分類とは、特許を分類する情報すべてを指すものである。 "Patent classification information" typically includes IPC, FI, F-term, USPC (United States Patent Classification), ECLA (European Patent Classification), CPC (Common Patent Classification), etc. Refers to patent classification information, but is not limited to this. It may be information based on an original classification used within a company or an original classification created by an information vendor. Also, for example, a unique classification may be created from statistical information of words used in claims and used. In other words, the patent classification here refers to all information for classifying patents.
 また、上記特許分類情報は、必ずしも分類コードなどをそのまま使用した情報には限定されない。例えばIPCの上1桁(セクション)や、IPCの上3桁(クラス)などで区切ったコードをしてよい。また、区切りの基準もセクション、クラス、サブクラスなどの分類定義上の桁数に限定されるものでもない。また、桁数ではなく、IPCに定義された階層概念による同階層のコードを用いてもよい。また、ある技術分野にはIPC上3桁を用い、別の技術分野にはIPC上4桁を用いるなどしてもよい。 Also, the above patent classification information is not necessarily limited to information using the classification code or the like as it is. For example, a code separated by the first digit of the IPC (section) or the first three digits of the IPC (class) may be used. Also, the delimitation criteria are not limited to the number of digits in classification definition such as section, class, and subclass. Also, instead of using the number of digits, codes of the same hierarchy based on the hierarchical concept defined in IPC may be used. Alternatively, the first three digits of the IPC may be used for one technical field, and the first four digits of the IPC may be used for another technical field.
 また、特許分類情報は元のコードの外観的な形式を維持している必要がないことは当然である。たとえばデータ圧縮のために、IPCを数値などのキーの形式に変換してもよい。また、IPCを次元とし、次元圧縮した場合など、もとの特許分類に係る情報がその特徴を維持して残る場合も同様である。これらの点は当業者が適宜実装すべきものである。 Also, it is natural that the patent classification information does not need to maintain the appearance of the original code. For example, for data compression, the IPC may be converted to a form of keys such as numbers. In addition, the same is true when the information related to the original patent classification remains while maintaining its characteristics, such as when IPC is used as a dimension and dimensionality is compressed. These points should be appropriately implemented by those skilled in the art.
 「権利者」とは、上記特定の特許の出願人、現在の権利者、過去の権利者のいずれか一以上を含むものをいう。よって、例えば出願中特許については出願人、存続中特許であれば現在の権利者を対象とするなどしてよい。また、必要に応じて過去の権利者を対象としてもよい。 "Right holder" includes any one or more of the above specific patent applicant, current right holder, and past right holder. Therefore, for example, the applicant may be targeted for pending patents, and the current right holder may be targeted for pending patents. Also, if necessary, past right holders may be targeted.
 また、上記の権利者とは、公報や原簿に記載の名義に限定されない。例えば、公報や原簿に記載の名義を名寄せした名寄せ先の権利者であってもかまわない。また、子会社の名義を親会社の名義に変換するなどしてもよいし、企業が属する企業グループ名に変換するなどしてもよい。権利が共有である場合は、それぞれの権利者の特許として集計してもよいし、共有者全員で1名義としてもよい。すなわち、ここでいう権利者とは特許の形式的/実質的な権利者を幅広く指すものである。なお、権利者情報が権利者の名称でなく権利者コードや、名寄せした企業の企業コード(EDIコードなど)であって良いことは当然である。 In addition, the rights holders mentioned above are not limited to the names listed in the bulletins and original records. For example, it may be the right holder of the name identification destination whose name is identified in the official gazette or original register. Also, the name of the subsidiary may be changed to the name of the parent company, or the name of the corporate group to which the company belongs may be changed. If the rights are jointly owned, the patents may be counted as patents of respective right holders, or all the joint owners may be registered under one name. In other words, the right holder here broadly refers to the formal/substantial right holder of the patent. Note that the right holder information may of course be a right holder code or a company code (EDI code, etc.) of a company whose names have been collated, instead of the name of the right holder.
 「特定の特許に付与されている特許分類情報とその特定の特許の権利者とを関連付けたデータセット」とは、例えばX列目が権利者情報で、Y列目が特許分類情報であるようなCSVファイルを指す。もちろん、CSV形式以外にもTSV形式やエクセル形式でもよいし、リレーショナルデータベース形式でもよいし、XML形式であってもよい。特許分類情報とその特定の特許の権利者とを紐づけたものであればその形式は問わない。たとえば、図20はエクセル形式のファイルの内容の一部である(特許番号、権利者名称はダミーに変換している)。 A "data set that associates patent classification information assigned to a specific patent with the right holder of the specific patent" is, for example, the X column is the right holder information and the Y column is the patent classification information. points to a CSV file. Of course, in addition to the CSV format, the TSV format, the Excel format, the relational database format, and the XML format may also be used. Any format is acceptable as long as the patent classification information is associated with the specific patent right holder. For example, FIG. 20 shows part of the contents of an Excel file (the patent number and right holder name are converted to dummies).
 また、図21は権利者ごとIPCごとに特許を集計したエクセル形式のファイルの内容の一部である(権利者名称はダミーに変換している)。本ステップでは、この図21に示されたデータのように権利者ごとIPCごとにあらかじめ集計をしたファイルを読み込んでもよい。もちろん、特許分類情報データと、権利者情報データとを別々に保持し、さらに紐づけのためのデータファイルを保持することによって、両者を関連付ける形式とした複数のファイルを読み込んでもよい。実質的に特許分類情報と権利者とが関連付けられるのであれば、実際のデータ形式は当業者による設計事項に過ぎない。 In addition, FIG. 21 shows part of the contents of an Excel-format file that aggregates patents for each right holder and each IPC (right holder names are converted to dummies). In this step, as shown in FIG. 21, it is possible to read a file that is compiled in advance for each right holder and each IPC. Of course, the patent classification information data and the right holder information data may be held separately, and a data file for linking may be held to read a plurality of files in which the two are associated. As long as patent classification information and right holders are substantially associated, the actual data format is merely a matter of design by those skilled in the art.
 「データセット保持部」とはデータセットを記録する装置や記録媒体などである。このデータセット保持部は代表的にはメモリやHDなどの電気/磁気記録媒体であるが、これに限らない。なお、ここでいうデータセットを記録する、とは長期的な記録である必要はなく、後のステップのための一時的な計算のための記録であってかまわない。 A "data set storage unit" is a device or recording medium that records a data set. This data set holding unit is typically an electric/magnetic recording medium such as a memory or HD, but is not limited to this. It should be noted that recording the data set here does not have to be long-term recording, and may be recording for temporary calculation for later steps.
 「技術分布情報取得ステップ」は、前記データセットにて権利者に関連付けられている特許分類情報に基づいて、その権利者が保有する技術の分布を示す技術分布情報を取得する。 The "technology distribution information acquisition step" acquires technology distribution information indicating the distribution of technologies owned by the right holder based on the patent classification information associated with the right holder in the data set.
 「技術分布情報」とは、その権利者が保有する技術の分布を示すものであり、権利者ごとの特許に付された特許分類の統計情報である。これは単純な集計情報であって良いし、また、集計情報に強調、標準化などの処理をしたものであって良い。単純な例を挙げると、ある権利者A社が特許1と特許2を保有しており、特許1にIPC「H01M 10/02」と「A01B 1/14」が付与されており、特許2にIPC「H01M 10/02」と「A01D 29/00」が付与されていた場合、A社と関連付けられたIPCおよびその集計値は「H01M 10/02」が2、「A01B 1/14」が1、「A01D 29/00」が1となる。これを技術分布情報としてよい。なお、これは説明のための単純の例であり、実際には図21のようになる。 "Technology distribution information" indicates the distribution of technologies owned by the right holder, and is statistical information on patent classifications assigned to patents by each right holder. This may be simple aggregated information, or may be aggregated information subjected to processing such as emphasis and standardization. To give a simple example, a certain right holder Company A owns Patent 1 and Patent 2, Patent 1 is granted IPC "H01M 10/02" and "A01B 1/14", Patent 2 has If IPCs "H01M 10/02" and "A01D 29/00" are given, the IPCs associated with Company A and their aggregate values are 2 for "H01M 10/02" and 1 for "A01B 1/14" , "A01D 29/00" becomes 1. This may be used as technology distribution information. It should be noted that this is a simple example for explanation, and actually becomes as shown in FIG.
 また、技術分布情報は、権利者ごとの特許に付された特許分類の集計情報を、出現割合、出願回数が一定以上の特許分類に限定することより、ノイズを除去した技術の分布情報であって良い。また、出現割合、出現回数の平均値や標準偏差を用いて数値を標準化してもよい。さらには、出現割合、出現回数を、例えばN乗ずることにより、出現割合、出現回数の高いものをより強調するようにしてもよい。当業者はこのような統計上の特徴の標準化や強調を任意に適用してよい。例えば、図22は出現回数が400回以上の特許分類情報のみに絞り込んだものを技術分布情報としている。 In addition, technology distribution information is technology distribution information with noise removed by limiting aggregated information on patent classifications attached to patents for each right holder to patent classifications with a certain number of appearance ratios and number of applications. good Also, numerical values may be standardized using the appearance ratio, the average value of the number of appearances, or the standard deviation. Furthermore, by multiplying the appearance ratio and the number of appearances by N, for example, those with a high appearance ratio and number of appearances may be emphasized. Those skilled in the art may optionally apply such standardization or weighting of statistical features. For example, in FIG. 22, the technology distribution information is narrowed down to only patent classification information that appears 400 times or more.
 「関連付ステップ」は、各権利者どうしの技術分布情報の共通度を示す値又は類似度を示す値のいずれかを基準として権利者どうしを関連付ける。 The "associating step" associates the right holders based on either the value indicating the degree of commonality or the value indicating the degree of similarity of the technology distribution information between the respective right holders.
 「技術分布情報の共通度を示す値」とは、例えば、A社とB社の共通度であれば、A社とB社の技術分布に共通する特許分類情報の数や割合などが挙げられる。具体的には、もっとも単純な方法としてA社とB社の技術分布において、2つのIPCが共通している場合、AB間の共通度を示す値は2とする、などの方法が考えられる。なお、この際に強調や標準化を行ったあとの技術分布情報を用いてよいことは当然である。また、この共通度を示す値は後のステップでエッジウェイトとして使用されるが、ウェイトなしで計算を行いたい場合などは、共通度が一定以上ならば1、一定未満ならば0とするなどとしてもよい。 The "value indicating the degree of commonality of technology distribution information" is, for example, in the case of the degree of commonality between Company A and Company B, the number and ratio of patent classification information common to the technology distributions of Company A and Company B can be mentioned. . Specifically, as the simplest method, if two IPCs are common in the technology distribution of company A and company B, the value indicating the degree of commonality between AB is set to 2. At this time, it is of course possible to use technology distribution information that has been emphasized and standardized. In addition, the value indicating this degree of commonality will be used as an edge weight in a later step, but if you want to perform calculations without weights, set 1 if the degree of commonality is above a certain level, and 0 if it is less than a certain level. good too.
 また、「技術分布情報の類似度を示す値」とは例えば、コサイン類似度や集合演算による類似度、確率分布の乖離度に基づく値などである。これらの類似度の計算方法の詳細は別の実施形態に記載する。 Also, the "value indicating the similarity of technology distribution information" is, for example, a cosine similarity, a similarity by set operation, a value based on the deviation of a probability distribution, and the like. The details of how these similarities are calculated will be described in another embodiment.
 上記の通りに各権利者どうしを関連付けた結果は、例えば正方行列で表現できる。図23がその例である。この図23では、例えばA社(行)とB社(列)の交差する要素に、13が記載されているが、この13がA社とB社の間の共通度である。 The results of associating rights holders as described above can be represented, for example, by a square matrix. FIG. 23 is an example of this. In FIG. 23, for example, 13 is described in the intersecting element of company A (row) and company B (column), and this 13 is the degree of commonality between company A and company B.
 「クラスタリングステップ」は各権利者をノードとし各権利者どうしの関連付けをエッジとし、エッジによる各ノードの結合の状態から、各ノードを相対的に関連度が高いと推定されるグループに分割する。 In the "clustering step", each right holder is treated as a node, and the association between each right holder is treated as an edge, and each node is divided into groups that are estimated to have a relatively high degree of association based on the state of connection of each node by the edge.
 「ノード」とは、いわゆるグラフ理論におけるノード(接点)である。「エッジ」とは同様にグラフ理論におけるエッジ(辺)である。よって、「エッジによる各ノードの結合の状態」とは各ノードの繋がりの状態である。エッジウェイトを考慮する場合は、ウェイトも考慮した繋がりの状態を指す。ただし、これらの用語は厳密なグラフ理論の定義に縛られるものではなく、ネットワーク構造を表現する接点と辺を描画するものは本件発明の範囲である。 A "node" is a node (point of contact) in so-called graph theory. An "edge" is also an edge (side) in graph theory. Therefore, the "connection state of each node by an edge" is the connection state of each node. When edge weights are taken into account, it refers to the state of connection in which weights are also taken into consideration. However, these terms are not bound by the strict definition of graph theory, and the drawing of points of contact and edges representing the network structure is within the scope of the present invention.
 「エッジによる各ノードの結合の状態から、各ノードを相対的に関連度が高いと推定」する方法には、例えばモジュラリティ指標Qを用いる手法がある。モジュラリティ指標Qは、ネットワークの与えられた分割に対して、「グループ内のノード同士が繋がるリンクの割合」から「リンクがランダムに配置された場合の期待値」を引いた値として定義される。モジュラリティQは当業者に周知された指標であるが、念のために式を示すと以下の通りである。
Figure JPOXMLDOC01-appb-M000001
As a method of ``estimating that each node is relatively highly related from the state of connection of each node by an edge'', there is a method using a modularity index Q, for example. Modularity index Q is defined as the ratio of links connecting nodes in a group minus the expected value if the links are randomly placed, for a given partition of the network. . Modularity Q is an index well known to those skilled in the art, but the formula is shown below just in case.
Figure JPOXMLDOC01-appb-M000001
 なお、上記モジュラリティの式は、エッジウェイトを考慮していないが、下記の式のようにエッジウェイトを考慮する式を用いてもよい。
Figure JPOXMLDOC01-appb-M000002
 また、エッジウェイトを考慮しない式を用いる場合でも、任意のウェイト以下のエッジをないものとして(ウェイトゼロとして)計算することなどにより、ウェイトの違いをある程度反映したクラスタリングを行ってもよい。
Although the above modularity formula does not take edge weights into account, a formula that takes edge weights into account may be used as in the following formula.
Figure JPOXMLDOC01-appb-M000002
Even when using a formula that does not consider edge weights, clustering that reflects weight differences to some extent may be performed by calculating assuming that there are no edges below an arbitrary weight (with zero weight).
 上記のモジュラリティ指標Qが高いほど、グループ内のノードどうしのリンクが相対的に多い状態となるように(つまり、各ノードの関連度が相対的に高くなるように)、グループ分けできているということができる。よって、本実施形態ではQが高くなるようにグループ分割(クラスタリング)を行う。なお、念のため注記しておくと、「グループ分割」を行うとは、グループ分けが行われた状態にする処理を広く指しており、例えば下記の貪欲法などのアルゴリズムによるクラスタリングを除外するものではない。 The higher the modularity index Q, the higher the number of links between nodes in the group (that is, the higher the degree of relevance of each node). It can be said that Therefore, in this embodiment, group division (clustering) is performed so that Q becomes high. It should be noted that "dividing groups" broadly refers to the process of creating a state in which grouping has been performed, for example, excluding clustering by algorithms such as the following greedy method is not.
 モジュラリティ指標Qを用いたクラスタリングのアルゴリズムもまた当業者にとって周知のものであるが、いくつかの例を概説しておく。例えば、全ノードが個々に別々のクラスタである状態から、クラスタと別のクラスタを併合していく貪欲法がある。これは併合するクラスタを選択する基準にモジュラリティ指標Qを用いるもので、併合後のQがより大きくなるクラスタから随時併合する方法である。また、逆に全ノードを1のクラスタとして、そこからモジュラリティ指標Qを基準として随時分割していく方法もある。クラスタリングにおけるモジュラリティ指標Qの最大化はNP問題であるので、近似解を求めるためアルゴリズムは、当業者から随時提案されている。本発明にはどのようなアルゴリズムを適用してもよい。 Algorithms for clustering using the modularity index Q are also well known to those skilled in the art, and some examples will be outlined. For example, there is a greedy method that merges a cluster with another cluster from a state in which all nodes are individually separate clusters. In this method, the modularity index Q is used as a criterion for selecting clusters to be merged, and clusters with a larger Q after merging are merged as needed. Conversely, there is also a method in which all nodes are treated as one cluster, and the cluster is divided at any time using the modularity index Q as a reference. Since maximization of the modularity index Q in clustering is an NP problem, algorithms are proposed from time to time by those skilled in the art to find approximate solutions. Any algorithm may be applied to the present invention.
 なお、「各ノードを相対的に関連度が高いと推定される」における「推定される」とは、上記のように、計算処理によって求められた解が近似解であってもよいことを指している。すなわち、厳密解を得るまで延々と計算を続ける必要はなく途中で打ち切ってもよいということである。ただし、求められた解が厳密解である場合を除外するものではないし、厳密解を求めるようなクラスタリング処理を否定するものでない。n回目とn+1回目の演算における収束目的対象の収束率が所定の範囲に入る場合等に推定されるとしてよい。例えば、前記差分となる収束率が1%から20%程度としてもよい。 Note that "estimated" in "each node is estimated to have a relatively high degree of relevance" means that the solution obtained by the calculation process may be an approximate solution as described above. ing. In other words, there is no need to continue the calculation until the exact solution is obtained, and the calculation may be terminated in the middle. However, this does not exclude the case where the obtained solution is an exact solution, and does not negate the clustering process for obtaining an exact solution. It may be estimated, for example, when the convergence rate of the convergence target in the nth and n+1th operations falls within a predetermined range. For example, the convergence rate, which is the difference, may be about 1% to 20%.
 上記のクラスタリングの特徴は、ノード間の類似情報ではなく、各ノード間にエッジを引いた後に、ノード間のエッジの結合の状態からクラスタを作る点に特徴がある。よって、本発明では、各ノード間の類似情報ではなく、各ノードのエッジの結合の状態から関連度を推定する方法はすべて採用できる。この特徴により、本発明は直接的に関係する隣接企業だけでなく間接的に関係する隣接企業(隣接の隣接など)も適切にグループ分けし、産業界の全体像を体系的に把握できるという大きなメリットがあるのである。 The feature of the above clustering is that clusters are created from the state of connection of the edges between nodes after drawing edges between nodes, not similarity information between nodes. Therefore, in the present invention, all methods of estimating the degree of relevance from the state of connection of the edges of each node can be adopted, instead of the similarity information between each node. With this feature, the present invention appropriately groups not only directly related adjacent companies but also indirectly related adjacent companies (adjacent to adjacent, etc.), and can systematically grasp the overall picture of the industrial world. There are benefits.
 なお、ノード間のエッジの結合の状態を評価するのに、モジュラリティ指標Q以外の指標を用いてもよい。例えばスピングラス法がある。この方法では、1.同じコミュニティに所属するノードどうしがつながっていたらプラス、2.同じコミュニティに所属するノードどうしがつながっていなかったらマイナス、3.違うコミュニティに所属するノードどうしがつながっていたらマイナス、4.違うコミュニティに所属するノードどうしがつながっていなかったらプラスの4つの要素を組み合わせてスコアリングする。 It should be noted that an index other than the modularity index Q may be used to evaluate the state of edge coupling between nodes. For example, there is the spin glass method. In this method, 1. If nodes belonging to the same community are connected to each other, plus; Minus if nodes belonging to the same community are not connected to each other; 4. Negative if nodes belonging to different communities are connected to each other; If nodes belonging to different communities are not connected to each other, the plus four factors are combined for scoring.
 また、ランダムウォーク法がある。この方法では、ノード間をランダムにエッジを選んで移動したと仮定した場合におけるグループ化法で、例えば、より長くとどまるノードの範囲をグループとみなす。 There is also a random walk method. In this method, a grouping method assuming that edges are randomly picked and moved between nodes, for example, the range of nodes that stay longer is regarded as a group.
 また、一つのノードが複数のグループに属することを許すクラスタリング方法も使用することができる。これには、例えばクリーク(すべてのノードが相互に結合しているノード郡)を1グループとみなす方法などがある。 A clustering method that allows one node to belong to multiple groups can also be used. This includes, for example, a method of regarding a clique (a group of nodes in which all nodes are interconnected) as one group.
 また、クラスタリングのより単純な方法として、全ノードを1のクラスタとして、媒介中心性の高いエッジから切断していき、グループを作るという方法もある。なお、媒介中心性は、あるノード(またはエッジ)が、各2ノード間の全最短路のうちどれだけ多くの経路に含まれているか、を示すものであり以下の式で定義できる。この式はノードの媒介中心性についての式だが、「ノードiを通るもの」を「エッジiを通るもの」とすることで、エッジの媒介中心性を計算できる。
Figure JPOXMLDOC01-appb-M000003
As a simpler clustering method, there is also a method in which all nodes are treated as one cluster and cut from edges with high betweenness centrality to form groups. Betweenness centrality indicates how many paths of all shortest paths between two nodes include a given node (or edge), and can be defined by the following formula. This formula is for the betweenness centrality of a node, but the betweenness centrality of an edge can be calculated by changing "things passing through node i" to "things passing through edge i".
Figure JPOXMLDOC01-appb-M000003
 なお、これらクラスタリングの手法は多数あり、例えばigraphなどのライブラリを使用することで比較的簡単に実装できる。 There are many clustering methods, and they can be implemented relatively easily by using libraries such as igraph.
 「表示ステップ」はノード、エッジ、クラスタリング結果をグラフ形式で表示する。例えば図25である。図25はモノクロだが、実際には各ノードエッジに色がついており、それぞれの色ごとに別のクラスタを構成している。 "Display step" displays nodes, edges, and clustering results in graph form. For example, FIG. Although FIG. 25 is monochrome, each node edge is actually colored, and each color constitutes a separate cluster.
 ノード/エッジの描画には、例えばFruchterman-Reingold、ForceAtlas2などのレイアウトアルゴリズムを用いるのが好適である。なお、本発明はノード/エッジのレイアウトアルゴリズムには何らの制限を課すものではなく、したがって、当業者は描画に際してどのようなアルゴリズムを使ってもよい。念のため、上記の2つアルゴリズムの式を示すと以下の通りである。Fruchterman-Reingoldの式は以下の通りである。
Figure JPOXMLDOC01-appb-M000004
ForceAtlas2の式は以下の通りである。なお、式中のkは使用者が設定する係数である。
Figure JPOXMLDOC01-appb-M000005
Layout algorithms such as Fruchterman-Reingold, ForceAtlas2, etc. are preferably used for drawing nodes/edges. Note that the present invention does not impose any restrictions on the node/edge layout algorithm, so those skilled in the art may use any algorithm for rendering. Just to make sure, the formulas of the above two algorithms are as follows. The Fruchterman-Reingold equation is as follows.
Figure JPOXMLDOC01-appb-M000004
The formula for ForceAtlas2 is as follows. Note that k in the formula is a coefficient set by the user.
Figure JPOXMLDOC01-appb-M000005
 実際の描画方法についても概説しておく。上記の2つの式では、引力と斥力をもとめている。引力はエッジで接続されているノードどうしに働く。一方斥力はエッジで接続されていないノードどうしに働く。そして、引力はノード間の位置を近づけるように作用し、斥力はノード間の位置を遠ざけるように作用する。よって、各ノード間の位置関係がこれら二つの作用による最も適切な位置になるべく近づくように位置を調整する。具体的には、適切な回数ノード位置の調整を繰り返し、最も評価値の良いパターンを採用する。これにはシミュレーテッドアニーリングなどの手法を用いることが多い。詳細なアルゴリズムは、当業者にとって周知のものであるし、本件発明の必須要件でもないため、ここではこれ以上の詳細な説明は省略する。 I will also outline the actual drawing method. The above two equations require attractive force and repulsive force. Attraction acts between nodes that are connected by edges. On the other hand, repulsive force acts on nodes that are not connected by edges. The attractive force acts to bring the positions of the nodes closer together, and the repulsive force acts to move the positions of the nodes farther apart. Therefore, the positions are adjusted so that the positional relationship between each node is as close as possible to the most appropriate position by these two actions. Specifically, the adjustment of the node positions is repeated an appropriate number of times, and the pattern with the best evaluation value is adopted. Techniques such as simulated annealing are often used for this. Detailed algorithms are well known to those skilled in the art and are not essential to the present invention, so further detailed description is omitted here.
 他にもグラフ可視化(レイアウト)には例えば、ForceAtlas、OpenOrdなどのアルゴリズムが使用できる。当業者はこれらのアルゴリズムを適宜使用してよい。 Algorithms such as ForceAtlas and OpenOrd can also be used for graph visualization (layout). Those skilled in the art may use these algorithms as appropriate.
 以上の構成を有する本実施形態によって、正確かつ客観的な企業間の分布および関連性を示す技術俯瞰図を作成できる。また、この俯瞰図によれば多数の企業間の技術的関連性を網羅的かつ俯瞰的に把握できる。さらに、直接的に関係する隣接企業だけでなく間接的に関係する隣接企業(隣接の隣接など)も適切にグループ分けし、産業界の全体像を体系的に把握できる。したがって、本俯瞰図によれば従来にない企業間の分布および関連性を発見できる可能性が高く、本発明は将来の経営戦略を策定するために極めて有用といえる。
<実施形態2>
According to this embodiment having the above configuration, it is possible to create a technology bird's-eye view showing the accurate and objective distribution and relationship between companies. Moreover, according to this bird's-eye view, it is possible to comprehend the technical relationships between many companies comprehensively and from a bird's-eye view. In addition, not only directly related companies but also indirectly related companies (neighbors of neighbors, etc.) can be appropriately grouped to systematically grasp the overall picture of the industrial world. Therefore, according to this bird's-eye view, there is a high possibility that unprecedented distributions and relationships between companies can be discovered, and the present invention can be said to be extremely useful for formulating future management strategies.
<Embodiment 2>
 実施形態2は、基本的に実施形態1と同様であるが、ノードを当該特許に付与された特許分類情報の一つ(主軸特許分類情報)とし、同時に使用される技術による特許分類情報どうしの関係を俯瞰する技術俯瞰図を作成する点に特徴がある。本実施形態のステップの概要は図2に示すとおりである。以下、実施形態1と相違する点について説明する。 Embodiment 2 is basically the same as Embodiment 1, but the node is one of the patent classification information given to the patent (main patent classification information), and the patent classification information based on the technology used at the same time It is characterized by creating a technology bird's-eye view that overlooks the relationship. An overview of the steps of this embodiment is as shown in FIG. Differences from the first embodiment will be described below.
 本実施形態では「技術データセット記録ステップ」にて、特定の特許に付与された特許分類情報のうち、当該特許の一の特許分類情報を主軸特許分類情報とし、当該主軸特許分類情報と当該特許の特許分類情報とを関連付けたデータセットをデータセット保持部に記録する。 In this embodiment, in the "technical data set recording step", one patent classification information of the patent among the patent classification information assigned to a specific patent is used as the main patent classification information, and the main patent classification information and the patent records the data set associated with the patent classification information in the data set holding unit.
 「主軸特許分類情報」とは代表的には筆頭IPCであるが、これに限らない。例えばIPCの上3桁(クラス)を特許分類情報として使用する場合は、最も多く付されたIPCの上3桁(クラス)を主軸として採用しもよい。具体的には、一つの特許に5つのIPCが付されていてうち3つのIPCのクラスがA01であり、残り二つのIPCのクラスがB01であった場合、A01を採用するなどである。 "Main patent classification information" is typically the leading IPC, but it is not limited to this. For example, when the first three digits (class) of the IPC are used as the patent classification information, the first three digits (class) of the most frequently assigned IPC may be adopted as the main axis. Specifically, if five IPCs are attached to one patent, three IPCs are of class A01 and the remaining two IPCs are of class B01, then A01 is adopted.
 このようにして作成される技術俯瞰図はノードが主軸特許分類となる。また、主軸特許分類間で一緒に使用される技術の共通度(または類似度)がエッジとなる。これはすなわち、実施形態1において、権利者がノードであったが、本実施形態では主軸特許分類がノードになるということである。図26がその例である。 In the technological bird's-eye view created in this way, the nodes are the main patent classifications. Also, the edge is the commonality (or similarity) of the technologies used together between the principal patent classifications. That is, in the first embodiment, the right holder was the node, but in the present embodiment, the main patent classification is the node. FIG. 26 is an example of this.
 以上の構成を有する本実施形態によって、主軸特許分類情報と共に使用される技術の分布および関連性を示す技術俯瞰図を作成できる。また、この俯瞰図によれば多数の主軸特許分類間の技術的関連性を網羅的かつ俯瞰的に把握できる。さらに、直接的に関係する隣接主軸特許分類だけでなく間接的に関係する隣接主軸特許分類(隣接の隣接など)も適切にグループ分けし、産業界の特許技術の全体像を体系的に把握できる。したがって、本俯瞰図によれば従来にない技術間の関連性を発見できる可能性が高く、本発明は将来の経営戦略を策定するために極めて有用といえる。
<実施形態3>
According to this embodiment having the configuration described above, it is possible to create a technology bird's-eye view showing the distribution and relevance of the technology used together with the main patent classification information. In addition, according to this bird's-eye view, it is possible to comprehend technical relationships among many main patent classifications comprehensively and from a bird's-eye view. Furthermore, not only directly related main axis patent classifications but also indirectly related adjacent main axis patent classifications (adjacent to adjacent, etc.) are appropriately grouped, and the whole picture of patent technology in the industrial world can be systematically grasped. . Therefore, according to this bird's-eye view, there is a high possibility of discovering relationships between technologies that have not existed in the past, and the present invention can be said to be extremely useful for formulating future management strategies.
<Embodiment 3>
 実施形態3は、基本的に実施形態1と同様であるが、各ノード間のエッジを引く基準としたノード間の前記共通度を示す値又は前記類似度を示す値が、相対的に大きいノードどうしにノード類似関係を示すノード類似識別情報を関連付けるノード類似識別情報関連付けステップを有し、当該ノード類似識別情報をノード、エッジ、クラスタリング結果に加え、「ノード類似表示サブステップ」にて表示する点に特徴がある。また、「集約ステップ」にて、当該ノード類似識別情報に基づいて複数のノードを集約できる点に特徴がある。本実施形態のステップの概要は図3および図4に示すとおりである。以下、実施形態1と相違する点について説明する。 Embodiment 3 is basically the same as Embodiment 1, but the value indicating the degree of commonality or the value indicating the degree of similarity between nodes as a reference for drawing edges between nodes is relatively large. It has a node similarity identification information associating step for associating node similarity identification information indicating a node similarity relationship with each other, and displays the node similarity identification information in addition to nodes, edges, and clustering results in a "node similarity display substep". is characterized by In addition, it is characterized in that a plurality of nodes can be aggregated based on the node similarity identification information in the "aggregation step". The outline of the steps of this embodiment is as shown in FIGS. 3 and 4. FIG. Differences from the first embodiment will be described below.
 本実施形態は、「ノード類似識別情報関連付けステップ」にて、権利者の保有する技術が共通/類似する度合いが大きい権利者どうしをグループにする。ここでは、グループを作る方法の例を説明する(共通度、類似度の計算方法は別の実施形態で説明する。)。 In this embodiment, in the "node-similar identification information associating step", rights holders with a high degree of commonality/similarity in technologies possessed by rights holders are grouped together. Here, an example of a method of creating groups will be described (methods of calculating commonality and similarity will be described in another embodiment).
 もっとも簡単なグループを作る方法の例は、完全に権利者の保有する技術(すべての技術または保有割合の高い特徴的な技術)が完全に共通する権利者同士を1グループとする方法である。この方法は単純であるがグループ化の条件が厳しいため、グループができない可能性もある。 An example of the simplest way to create a group is to group together right holders who have completely common technologies (all technologies or characteristic technologies with a high percentage of ownership) owned by right holders. Although this method is simple, there is a possibility that it cannot be grouped because the conditions for grouping are strict.
 他のグループを作る方法として、グループ内の権利者間の共通度や平均類似度がなるべく大きくなるようにグループ化する方法がある。具体的には、共通する特許分類数や、後述するコサイン類似度や集合演算による類似度、権利者どうしの確率分布の乖離度から得られる値が、互いに一定の値以上になる権利者間でグループを作成する方法である。この方法によれば、上記一定の値を調整することにより、グループ数を任意に調整できて便利である。また、一定の値を指定するのでなく、相対的に相互の類似度が上位となる(または上位となるように推定される)ノードの組み合わせから順次グループ化してもよい。 Another way to create groups is to group them so that the degree of commonality and average similarity between rights holders in the group is as large as possible. Specifically, the values obtained from the number of common patent classifications, cosine similarity and similarity by set operation described later, and the degree of divergence of the probability distribution between right holders are equal to or greater than a certain value. A way to create a group. According to this method, the number of groups can be arbitrarily adjusted by adjusting the constant value, which is convenient. Also, instead of designating a constant value, the nodes may be grouped sequentially from a combination of nodes having relatively high mutual similarity (or estimated to be high).
 なお、上記のグループ化を行うために用いる共通度を示す値又は前記類似度を示す値は、エッジを引くための値と同じ計算方法による値を採用する必要はない。例えば上記のグループ化は共通度を示す値で行い、エッジを引くための権利者間の関連付けは類似度を示す値で行うなどしてもよい。 It should be noted that the value indicating the degree of commonality or the value indicating the degree of similarity used for the above grouping does not need to adopt the same calculation method as the value for drawing edges. For example, the above grouping may be performed using a value indicating the degree of commonality, and association between rights holders for drawing edges may be performed using a value indicating the degree of similarity.
 「ノード類似表示サブステップ」では上記ノード類似識別情報を技術俯瞰図上に表示する。例えば類似するノードに同じ記号を付する表示方法などがある。 In the "node similarity display substep", the node similarity identification information is displayed on the technology bird's-eye view. For example, there is a display method that attaches the same symbol to similar nodes.
 また、「集約ステップ」では、グループ化した権利者は集約して表示することができる。複数の権利者を1つのノードにまとめて表示してもよいし、複数のノードを円のような表示で囲むようにしてもよい。このようにすることでグラフの見やすさが大きく向上する。この「集約ステップ」は「表示ステップ」にてグラフを表示した後に実施する構成であってよい。この場合、すでに表示されている集約前の複数のノードを、集約状態にして再表示するような機能になる。また、「集約ステップ」を「表示ステップ」の前に実施しておき、あらかじめ複数のノードを集約した状態で表示するようにしてもよい。もちろん、集約のタイミングをユーザが任意に設定、指定できるようにしてよい。なお、ノードを集約した場合は、集約した各ノードのエッジ、エッジウェイトを合計し、再度、クラスタリング処理を実行する構成としてもよい。 Also, in the "aggregation step", the grouped rights holders can be aggregated and displayed. A plurality of rights holders may be collectively displayed in one node, or a plurality of nodes may be surrounded by a circle-like display. By doing so, the visibility of the graph is greatly improved. This "aggregation step" may be implemented after the graph is displayed in the "display step". In this case, the function is such that the multiple nodes that have already been displayed before aggregation are put into an aggregated state and displayed again. Also, the "aggregation step" may be performed before the "display step" so that a plurality of nodes are aggregated and displayed in advance. Of course, the user may arbitrarily set and designate the timing of aggregation. Note that when nodes are aggregated, the edges and edge weights of the aggregated nodes may be totaled, and clustering processing may be executed again.
 以上の構成を有する本実施形態によって、権利者(ノード)が、大量に存在する場合でも類似のノードを集約することによって、技術俯瞰図を見やすくすることができ、より有効な分析ができるようになる。
<実施形態4>
With this embodiment having the above configuration, even if there are a large number of rights holders (nodes), by aggregating similar nodes, it is possible to make it easier to see the technology bird's-eye view, so that more effective analysis can be performed. Become.
<Embodiment 4>
 実施形態4は、基本的に実施形態1と同様であるが、権利者どうしの関連付けに、各技術分布情報における分布の数及び/又は分布の割合が任意の値以上となる特許分類情報を用いる点に特徴がある。本実施形態のステップの概要は図1に示すとおりである(実施形態1に同じ)。以下、実施形態1と相違する点について説明する。 Embodiment 4 is basically the same as Embodiment 1, but uses patent classification information in which the number of distributions and/or the ratio of distributions in each technology distribution information is an arbitrary value or more for associating right holders. It is characterized by points. The outline of the steps of this embodiment is as shown in FIG. 1 (same as Embodiment 1). Differences from the first embodiment will be described below.
 本実施形態における技術分布情報は、例えば権利者ごとの特許に付された特許分類の集計情報を割合に置き換えて、当該割合が任意の値以上となる特許分類情報を関連付けに用いることが好適である。また、任意の値をこえた特許分類情報について、すべて重みを均一(例えば「1」)にしたうえで集計し、ノードを関連付けることが好適である。また、当該任意の値は使用者によって調整可能とするのが良い。 For the technology distribution information in the present embodiment, for example, it is preferable to replace aggregate information of patent classifications attached to patents for each right holder with a ratio, and use patent classification information in which the ratio is equal to or greater than an arbitrary value for association. be. In addition, it is preferable to assign a uniform weight (for example, “1”) to the patent classification information that exceeds an arbitrary value, aggregate the weight, and associate the nodes. Also, the arbitrary value should be adjustable by the user.
 例えば、上記構成の実施例について、A社、B社、C社の技術分布において、「H01M 10/02」がA社とB社の2社については10%の割合で分布しており、C社については1%の割合で分布していたとする(その他の技術分布については省略)。 For example, in the example of the above configuration, in the technology distribution of Company A, Company B, and Company C, "H01M 10/02" is distributed at a rate of 10% for Company A and Company B, and C It is assumed that the companies were distributed at a rate of 1% (other technology distributions are omitted).
 上記任意の値が10%以上であった場合、A社、B社の2社が均等な重みで関連付けられることになる。これは、企業にとって重要な技術のみに注目し、重要でない技術を捨象して相互の関連付けがなされたといえる。対して、上記任意の値が1%以上であった場合は、A社、B社、C社の3社が均等な重みで関連付けられることになる。この場合は、1%の特許分類も10%の特許分類も関連付けでは「1」として同列に扱われるので、C社にとってはそれほど重要ではない技術(例えば周辺技術)が強調されて関連付けがなされたことになる。このように関連付けに用いる技術の重要度を変化させることで、様々な技術俯瞰図を作成することができる。
<実施形態5>
If the arbitrary value is 10% or more, the two companies A and B are associated with equal weight. This can be said to have focused on only the technologies that are important to the company, discarding unimportant technologies, and making mutual associations. On the other hand, when the arbitrary value is 1% or more, the three companies A, B, and C are associated with equal weight. In this case, the 1% patent classification and the 10% patent classification are treated in the same way as "1" in the association, so the technology that is not so important to Company C (for example, peripheral technology) was emphasized and associated. It will be. By changing the degree of importance of the technology used for association in this way, various technology bird's-eye views can be created.
<Embodiment 5>
 実施形態5は、基本的に実施形態1と同様であるが、権利者どうしの関連付けに用いる値が集合演算である点に特徴がある。具体的には、権利者を集合とし、権利者に関連付けられている特許分類情報を集合の要素として集合演算で計算される権利者どうしの類似度を使用する点に特徴がある。具体的な集合演算の方法として以下のものがあげられる。本実施形態のステップの概要は図1に示すとおりである(実施形態1に同じ)。以下、実施形態1と相違する点について説明する。 Embodiment 5 is basically the same as Embodiment 1, but is characterized in that the values used for associating rights holders are set operations. Specifically, it is characterized by using the degree of similarity between right holders calculated by a set operation, with right holders as a set and patent classification information associated with the right holders as elements of the set. Specific methods of set operations are as follows. The outline of the steps of this embodiment is as shown in FIG. 1 (same as Embodiment 1). Differences from the first embodiment will be described below.
 具体的な集合演算の方法として以下のものがあげられる。例えば以下のJaccard係数の式は以下の通りである。
Figure JPOXMLDOC01-appb-M000006
Dice係数の式は以下の通りである。
Figure JPOXMLDOC01-appb-M000007
Simpson係数の式は以下の通りである。
Figure JPOXMLDOC01-appb-M000008
Specific methods of set operations are as follows. For example, the formula for the Jaccard coefficients below is:
Figure JPOXMLDOC01-appb-M000006
The formula for the Dice coefficient is as follows.
Figure JPOXMLDOC01-appb-M000007
The formula for the Simpson coefficient is:
Figure JPOXMLDOC01-appb-M000008
 以上の構成を有する本実施形態によって、集合演算という観点から技術俯瞰図を作成することができる。
<実施形態6>
According to this embodiment having the above configuration, it is possible to create a technical bird's-eye view from the viewpoint of set operations.
<Embodiment 6>
 実施形態6は、基本的に実施形態1と同様であるが、権利者どうしの関連付けに用いる値がベクトル特徴量を用いた類似度である点に特徴がある。具体的には、権利者に関連付けられている特許分類情報に基づいた値をベクトル特徴量として計算される権利者どうしの類似度である点に特徴がある。具体的なベクトル演算の方法として以下のものがあげられる。本実施形態のステップの概要は図1に示すとおりである(実施形態1に同じ)。以下、実施形態1と相違する点について説明する。 Embodiment 6 is basically the same as Embodiment 1, but is characterized in that the values used for associating rights holders are similarities using vector feature amounts. Specifically, it is characterized in that it is a degree of similarity between right holders calculated as a vector feature value based on patent classification information associated with each right holder. Specific vector calculation methods are as follows. The outline of the steps of this embodiment is as shown in FIG. 1 (same as Embodiment 1). Differences from the first embodiment will be described below.
 ベクトル特徴量を用いた類似度の一例としてコサイン類似度を説明する。コサイン類似度とは、ベクトル同士の成す角度の近さを表現する指標である。コサイン類似度の計算式を示すと以下の通りである。なお、各ノードのベクトルは権利者に関連付けられた各特許分類を各次元とし、各特許分類の登場回数などを各次元への大きさとすることで得られる。
Figure JPOXMLDOC01-appb-M000009
Cosine similarity will be described as an example of similarity using vector features. Cosine similarity is an index that expresses the closeness of angles formed by vectors. The formula for calculating the cosine similarity is as follows. The vector of each node is obtained by taking each patent classification associated with the right holder as each dimension and the number of appearances of each patent classification as the size of each dimension.
Figure JPOXMLDOC01-appb-M000009
 コサイン類似度によって作成した権利者同士の関係付けのマトリクスが図24である。 FIG. 24 is a matrix of relationships between rights holders created by cosine similarity.
 以上の構成を有する本実施形態によって、ベクトル特徴量という観点から技術俯瞰図を作成することができる。
<実施形態7>
According to the present embodiment having the above configuration, a technical bird's-eye view can be created from the viewpoint of the vector feature amount.
<Embodiment 7>
 実施形態7は、基本的に実施形態1と同様であるが、権利者どうしの関連付けに用いる値が確率分布の乖離度による値である点に特徴がある。具体的には、前記関連付ステップにおける前記類似度を示す値が、権利者に関連付けられている特許分類情報の出現頻度の分布を確率分布とした、権利者どうしの確率分布の乖離度から得られる値を使用する点に特徴がある。具体的な確率分布演算の方法として以下のものがあげられる。本実施形態のステップの概要は図1に示すとおりである(実施形態1に同じ)。以下、実施形態1と相違する点について説明する。 Embodiment 7 is basically the same as Embodiment 1, but is characterized in that the value used for associating rights holders is a value based on the deviation of the probability distribution. Specifically, the value indicating the degree of similarity in the association step is obtained from the degree of divergence of the probability distribution between right holders, where the distribution of the appearance frequency of the patent classification information associated with the right holder is set as a probability distribution. It is characterized by the use of values that can be obtained. Specific probability distribution calculation methods are as follows. The outline of the steps of this embodiment is as shown in FIG. 1 (same as Embodiment 1). Differences from the first embodiment will be described below.
 権利者どうしの確率分布の乖離度とは、例えばKLダイバージェンスがある。KLダイバージェンスの式は以下の通りである。なお、確率分布は例えば各権利者における特許分類の登場割合を使用すればよい。
Figure JPOXMLDOC01-appb-M000010
 また、KLダイバージェンスを使いやすくした指標としてJSダイバージェンスがある。
Figure JPOXMLDOC01-appb-M000011
The divergence of probability distributions between right holders is, for example, KL divergence. The formula for KL divergence is: For the probability distribution, for example, the appearance ratio of the patent classification for each right holder may be used.
Figure JPOXMLDOC01-appb-M000010
In addition, JS divergence is an index that makes KL divergence easier to use.
Figure JPOXMLDOC01-appb-M000011
 なお、上記の式で得られる値はいずれも両者が類似するほど値が小さくなるので、逆数をとるなどの調整が必要である。以上の構成を有する本実施形態によって、確率分布の乖離度という観点から技術俯瞰図を作成することができる。
<実施形態8>
Since the values obtained by the above equations become smaller as the two are more similar, it is necessary to make adjustments such as taking reciprocals. According to this embodiment having the above configuration, a technology bird's-eye view can be created from the viewpoint of the degree of divergence of the probability distribution.
<Embodiment 8>
 実施形態8は、基本的に実施形態1と同様であるが、各ノードどうしの関連付けに寄与した特許分類情報を識別するための特許分類寄与情報を前記ノード、前記エッジ又は前記クラスタリング結果に付与するラベル付与ステップをさらに有する点に特徴がある。さらに、各ノードどうしの関連付けに寄与した特許分類の中でも、エッジの結合の状態から作成されたクラスタの中での影響が大きい特許分類情報を識別するのが好ましい。以下、本実施形態のステップの概要は図5に示すとおりである。以下、実施形態1と相違する点について説明する。 Embodiment 8 is basically the same as Embodiment 1, but adds patent classification contribution information for identifying patent classification information that contributed to the association between nodes to the nodes, the edges, or the clustering results. It is characterized in that it further has a labeling step. Furthermore, among the patent classifications that contributed to the association between each node, it is preferable to identify the patent classification information that has a large influence in the cluster created from the state of edge coupling. Below, the outline of the steps of this embodiment is as shown in FIG. Differences from the first embodiment will be described below.
 「ラベル付与ステップ」における「各ノードどうしの関連付けに寄与した特許分類」とは、すなわち関連付ステップにおいて、関連付けに用いる値へ影響した特許分類であり、ノード間に共通する特許分類である。ノード間に共通する特許分類が複数ある場合は、よりコミュニティ形成に対する影響度が大きいと考えられる特許分類を選んでもよい。ここでいう影響度に採用できる値として、一例として、TF-IDFにおける単語をサブクラスに置き換え、文書をクラスタに置き換えて算出されるスコア(以下、SF-ICFという)がある。 The "patent classification that contributed to the association between each node" in the "labeling step" is the patent classification that influenced the value used for association in the association step, and is the patent classification that is common among the nodes. If there are multiple patent classifications that are common among nodes, a patent classification that is considered to have a greater influence on community formation may be selected. As an example of a value that can be used as the degree of influence here, there is a score (hereinafter referred to as SF-ICF) calculated by replacing words in TF-IDF with subclasses and documents with clusters.
 まず、TF-IDFについて概説する。TF-IDFとは、ある文書におけるある単語の重要度を評価する指標であり、TF(ある文書中においてある単語が出現する割合)とIDF(ある単語が登場する文書が全文書にしめる割合)から求められる。TFはある文書におけるある単語の重要度を示しており、IDFはその単語の一般的な出現頻度を示しているといえる。
Figure JPOXMLDOC01-appb-M000012
First, TF-IDF will be outlined. TF-IDF is an index for evaluating the importance of a word in a document. Desired. It can be said that TF indicates the degree of importance of a certain word in a certain document, and IDF indicates the general appearance frequency of that word.
Figure JPOXMLDOC01-appb-M000012
 すなわち、TF-IDFではより多く出現する単語ほどその文書にとって重要であり、また、一般的な出現頻度の低いにもかかわらず、その文書に出現している単語ほど重要であると評価される。  In other words, in TF-IDF, words that appear more often are more important to the document, and words that appear in the document are evaluated as more important, even though they generally appear less frequently.
 そして前述の通り、TF-IDFにおける単語をサブクラスに置き換え、文書をクラスタに置き換えて算出されるスコアがSF-ICFである。具体的には以下の式であらわすことができる。
Figure JPOXMLDOC01-appb-M000013
As described above, SF-ICF is a score calculated by replacing words in TF-IDF with subclasses and documents with clusters. Specifically, it can be expressed by the following formula.
Figure JPOXMLDOC01-appb-M000013
 すなわち、SF-ICFでは、より多く出現するサブクラスほどそのクラスタにとって重要であり、また、一般的な出現頻度が低いにもかかわらず、そのクラスタに出現しているサブクラスほど重要であると評価される。 That is, in SF-ICF, the more frequently appearing subclasses are more important to the cluster, and the more frequently appearing subclasses in the cluster are evaluated as more important, even though their general appearance frequency is low. .
 なお、SF-ICFでは、サブクラスを使用しているが、サブクラスより上位または下位の特許分類を用いても問題はない。また、クラスタを実施形態3にて作成したグループなどに置き換えて使用することもできる。 Although SF-ICF uses subclasses, there is no problem in using patent classifications that are higher or lower than subclasses. Also, clusters can be used by replacing them with groups created in the third embodiment.
 実際にラベルを付与したのが図27である。ただし、飲み物、調味料などと記載されているのがラベルだが、これはIPCをわかりやすく書き換えたラベルを使用している。 Fig. 27 shows the actual labeling. However, the label that describes drinks, seasonings, etc., uses a rewritten IPC label that is easy to understand.
 以上の構成を有する本実施形態によって、ノード間のエッジがどのような特許分類に起因して引かれているのか、また、クラスタの形成にどのような特許分類影響しているのか、を知ることができる。これにより、例えば同じクラスタに属する権利者Aと権利者Bとが、どのような技術を持っているのか知ることができ、より効果的に技術俯瞰図を分析できるようになる。特に、クラスタリングステップにてエッジの結合の状態から作成したクラスタと、実施形態3で説明したグループの比較を行うことなども可能となり、異なる視点からのグループ比較ができ、より高度な分析が可能となる。 With this embodiment having the above configuration, it is possible to know what kind of patent classification the edge between nodes is caused by, and what kind of patent classification influences the formation of clusters. can be done. As a result, for example, it is possible to know what kind of technology is possessed by right holder A and right holder B belonging to the same cluster, and it becomes possible to analyze the technology bird's-eye view more effectively. In particular, it is possible to compare the clusters created from the state of edge coupling in the clustering step with the groups described in the third embodiment, and group comparisons can be made from different viewpoints, enabling more advanced analysis. Become.
 最後に、本発明に係る方法をコンピュータに実行させる場合のハードウェア及びソフトウェア構成の一例を示す(図6)。本発明は、ハードウェア、ソフトウェア、又はハードウェア及びソフトウェアの両方として実現され得る。具体的にはハードウェアとしては、CPUやメインメモリ、GPU、画像メモリ、グラフィックボード、あるいは二次記憶装置(ハードディスクや不揮発性メモリ、CDやDVDなどの記憶媒体とそれらの媒体の読取ドライブなど)および各種の入出力装置などがあげられる。 Finally, an example of the hardware and software configuration for executing the method according to the present invention on a computer is shown (Fig. 6). The present invention can be implemented as hardware, software, or both hardware and software. Specifically, hardware includes CPU, main memory, GPU, image memory, graphic board, or secondary storage device (hard disk, non-volatile memory, storage media such as CD and DVD, and read drives for those media). and various input/output devices.
 また、ソフトウェアとしては、各種OS、リレーショナルデータベースやXMLデータベース、ファイルデータベースなどのデータベース、C#やPythonなどで実装したプログラムや描画コンポーネントなどを組み合わせて実現してよいものである。また、ステップの一部を既知のソフトウェアで実行してもよい。さらにはこれらのプログラムは、いずれもモジュール化された複数のプログラムとして実現してもよいし、2以上のプログラムを組み合わせて1のプログラムとして実現しても良い。 In addition, as software, various OSs, databases such as relational databases, XML databases, and file databases, programs and drawing components implemented in C#, Python, etc., may be combined. Also, some of the steps may be performed by known software. Furthermore, any of these programs may be realized as a plurality of modularized programs, or two or more programs may be combined to be realized as one program.
 図6では不揮発性メモリに記録された各プログラムおよび各データが、メインメモリに読み込まれて演算処理がなされること、およびメインメモリ上でなされた演算結果が不揮発性メモリに記録され得ることを示している(簡易化した図である)。ただし、これはあくまでも一例であり、具体的な実装方法は当業者が適宜選択しうるところである。本発明は図6のハードウェア図の構成に限定されるものではない。本発明は複数のシステムによって構成しもよいし、一部をプログラムで実行せず、手動で操作してもよいものである。 FIG. 6 shows that each program and each data recorded in the non-volatile memory are read into the main memory and arithmetic processing is performed, and that the arithmetic result performed on the main memory can be recorded in the non-volatile memory. (simplified diagram). However, this is only an example, and a specific implementation method can be appropriately selected by those skilled in the art. The present invention is not limited to the configuration of the hardware diagram of FIG. The present invention may consist of multiple systems, and some may be operated manually without being programmed.
 以上のような各種の構成を有する本発明によって、正確かつ客観的な企業間の分布および関連性を示す技術俯瞰図を作成できる。また、この俯瞰図によれば多数の企業間の技術的関連性を網羅的かつ俯瞰的に把握できる。さらに、直接的に関係する隣接企業だけでなく間接的に関係する隣接企業(隣接の隣接など)も適切にグループ分けし、産業界の全体像を体系的に把握できる。したがって、本俯瞰図によれば従来にない企業間の分布および関連性を発見できる可能性が高く、本発明は将来の経営戦略を策定するために極めて有用といえる。 With the present invention, which has the various configurations described above, it is possible to create a technology bird's-eye view that shows the accurate and objective distribution and relationship between companies. Moreover, according to this bird's-eye view, it is possible to comprehend the technical relationships between many companies comprehensively and from a bird's-eye view. Furthermore, not only directly related adjacent companies but also indirectly related adjacent companies (adjacent to adjacent, etc.) can be appropriately grouped, and the overall picture of the industrial world can be grasped systematically. Therefore, according to this bird's-eye view, there is a high possibility that unprecedented distributions and relationships between companies can be discovered, and the present invention can be said to be extremely useful for formulating future management strategies.

Claims (10)

  1.  技術俯瞰図を作成する方法であって、
     特定の特許(出願中特許、出願後登録前消滅特許、存続中特許、登録後消滅特許、出願中実用新案登録、出願後登録前消滅実用新案登録、存続中実用新案登録、登録後消滅実用新案登録のいずれか一以上を含むものをいう。日本国の権利に限定されない。以下同じ。)に付与されている特許分類情報と、その特定の特許の権利者(出願人、現在の権利者、過去の権利者のいずれか一以上を含むものをいう。以下同じ。)とを、関連付けたデータセットをデータセット保持部に記録するデータセット記録ステップと、
     前記データセットにて権利者に関連付けられている特許分類情報に基づいて、その権利者が保有する技術の分布を示す技術分布情報を取得する技術分布情報取得ステップと、
     各権利者どうしの技術分布情報の共通度を示す値又は類似度を示す値のいずれかを基準として権利者どうしを関連付ける関連付ステップと、
     各権利者をノードとし各権利者どうしの関連付けをエッジとし、エッジによる各ノードの結合の状態から、各ノードを相対的に関連度が高いと推定されるグループに分割するクラスタリングステップと、
     ノード、エッジ、クラスタリング結果をグラフ形式で表示する表示ステップと、
     からなる技術俯瞰図作成方法。
     
    A method for creating a technology bird's eye view, comprising:
    Specific patents (pending patents, patents that have expired after filing, patents that have expired after filing, patents that have expired after filing, utility model registrations that have been filed, utility model registrations that have expired after filing, utility model registrations that have expired, utility models that have expired after registration (including any one or more of the registrations. Not limited to rights in Japan. The same shall apply hereinafter.), and the right holders of the specific patent (applicant, current right holder, a data set recording step of recording the associated data set in the data set holding unit;
    a technology distribution information acquisition step of acquiring technology distribution information indicating the distribution of technologies owned by the right holder based on the patent classification information associated with the right holder in the data set;
    an associating step of associating rights holders based on either a value indicating the degree of commonality of technology distribution information or a value indicating the degree of similarity between the respective right holders;
    a clustering step of dividing each node into groups that are estimated to have a relatively high degree of relevance based on the state of the connection of each node by edges, with each rights holder being a node and the relationship between each rights holder being defined as an edge;
    a display step of displaying the nodes, edges and clustering results in graph form;
    A technology bird's-eye view creation method consisting of.
  2.  技術俯瞰図を作成する方法であって、
     特定の特許に付与された特許分類情報のうち、当該特許の一の特許分類情報を主軸特許分類情報とし、当該主軸特許分類情報と当該特許の特許分類情報とを関連付けたデータセットをデータセット保持部に記録する技術データセット記録ステップと、
     前記データセットにて主軸特許分類情報に関連付けられている特許分類情報に基づいて、前記主軸特許分類情報と同時に使用される技術の分布を示す特許技術分布情報を取得する特許技術分布情報取得ステップと、
     各主軸特許分類情報どうしの特許技術分布情報の共通度を示す値又は類似度を示す値のいずれかを基準として、主軸特許分類情報どうしを関連付ける関連付ステップと、
     各主軸特許分類情報をノードとし、各主軸特許分類情報どうしの関連付けをエッジとして、エッジによる各ノードの結合の状態から、各ノードを相対的に関連度が高いと推定されるグループに分割するクラスタリングステップと、
     ノード、エッジ、クラスタリング結果をグラフ形式で表示する表示ステップと、
     からなる技術俯瞰図作成方法。
    A method for creating a technology bird's eye view, comprising:
    Among the patent classification information assigned to a specific patent, one of the patent classification information is regarded as the main patent classification information, and a data set that associates the main patent classification information with the patent classification information of the relevant patent is retained. a technical data set recording step for recording in a section;
    a patent technology distribution information acquisition step of acquiring patent technology distribution information indicating the distribution of technologies used simultaneously with the main patent classification information based on the patent classification information associated with the main patent classification information in the data set; ,
    an associating step of associating the main patent classification information with each other based on either a value indicating the degree of commonality or the value indicating the similarity of the patent technology distribution information between the main patent classification information;
    Clustering in which each main axis patent classification information is treated as a node, and the relationship between each main axis patent classification information is treated as an edge, and each node is divided into groups that are estimated to have a relatively high degree of association from the state of connection of each node by the edge. a step;
    a display step of displaying the nodes, edges and clustering results in graph form;
    A technology bird's-eye view creation method consisting of.
  3.  各ノード間のエッジを引く基準としたノード間の前記共通度を示す値又は前記類似度を示す値が、任意の値以上である及び/又は相対的に大きい値であるノードどうしにノード類似関係を示すノード類似識別情報を関連付けるノード類似識別情報関連付けステップをさらに有し、
     前記表示ステップは、ノード、エッジ、クラスタリング結果に加え、関連付けられたノード類似識別情報を表示するノード類似表示サブステップをさらに有することを特徴とする、請求項1又は請求項2に記載の技術俯瞰図作成方法。
    A node similarity relationship between nodes for which the value indicating the degree of commonality or the value indicating the degree of similarity between nodes based on which edges are drawn between nodes is an arbitrary value or more and/or is a relatively large value further comprising a node-similar identification information associating step of associating node-similar identification information indicating
    The technical overview according to claim 1 or claim 2, wherein the display step further comprises a node similarity display substep of displaying associated node similarity identification information in addition to nodes, edges, and clustering results. Diagramming method.
  4.  同一又は/及び類似の前記ノード類似識別情報が関連付けられたノードを集約する集約ステップをさらに有することを特徴とする、請求項3に記載の技術俯瞰図作成方法。
    4. The technology bird's-eye view creation method according to claim 3, further comprising an aggregating step of aggregating nodes associated with the same or/and similar node similarity identification information.
  5.  前記関連付ステップにおける前記共通度を示す値が、権利者(または主軸特許情報)に関連付けられている特許分類情報のうち、その分布の数及び/又は分布の割合が任意の値以上である特許分類情報による権利者(または主軸特許情報)どうしの共通度であることを特徴とする請求項1ないし請求項4のいずれか一に記載の技術俯瞰図作成方法
    Patents for which the value indicating the degree of commonality in the association step is equal to or greater than an arbitrary value in the number of distributions and/or the ratio of distributions among the patent classification information associated with the right holder (or main patent information) 5. The technology bird's-eye view creation method according to any one of claims 1 to 4, wherein the degree of commonality between right holders (or main patent information) based on classification information.
  6.  前記関連付ステップにおける前記類似度を示す値が、権利者(または主軸特許情報)を集合とし、権利者(または主軸特許情報)に関連付けられている特許分類情報を集合の要素として集合演算で計算される権利者(または主軸特許情報)どうしの類似度であることを特徴とする請求項1ないし請求項4のいずれか一に記載の技術俯瞰図作成方法
     
    The value indicating the degree of similarity in the association step is calculated by a set operation with the right holder (or main patent information) as a set and the patent classification information associated with the right holder (or main patent information) as elements of the set. The technology bird's-eye view creation method according to any one of claims 1 to 4, wherein the degree of similarity between right holders (or main patent information) to be acquired
  7.  前記関連付ステップにおける前記類似度を示す値が、権利者(または主軸特許情報)に関連付けられている特許分類情報に基づいた値をベクトル特徴量として計算される権利者(または主軸特許情報)どうしの類似度であることを特徴とする請求項1ないし請求項4のいずれか一に記載の技術俯瞰図作成方法
     
    Between right holders (or main patent information) in which the value indicating the degree of similarity in the association step is calculated as a vector feature value based on the patent classification information associated with the right holder (or main patent information) The technology bird's-eye view creation method according to any one of claims 1 to 4, wherein the similarity of
  8.  前記関連付ステップにおける前記類似度を示す値が、権利者(または主軸特許情報)に関連付けられている特許分類情報の出現頻度の分布を確率分布とした、権利者(または主軸特許情報)どうしの確率分布の乖離度から得られる値であることを特徴とする請求項1ないし請求項4のいずれか一に記載の技術俯瞰図作成方法
     
    The value indicating the degree of similarity in the association step is the distribution of the appearance frequency of the patent classification information associated with the right holder (or main patent information). 5. The technology bird's eye view creation method according to any one of claims 1 to 4, wherein the value is obtained from the degree of divergence of the probability distribution.
  9.  各ノードどうしの関連付けに寄与した特許分類情報を識別するための特許分類寄与情報を前記ノード、前記エッジ又は/及び前記クラスタリング結果に付与するラベル付与ステップをさらに有することを特徴とする、請求項1ないし請求項8のいずれか一に記載の技術俯瞰図作成方法
     
    Claim 1, characterized by further comprising a labeling step of giving patent classification contribution information for identifying patent classification information that contributed to the association between each node to the nodes, the edges and/or the clustering results. The technology bird's-eye view creation method according to any one of claims 1 to 8
  10.  請求項1ないし請求項9のいずれか一に記載の技術俯瞰図作成方法をコンピュータに実行させるプログラム。
     
    A program that causes a computer to execute the technique bird's-eye view creation method according to any one of claims 1 to 9.
PCT/JP2021/043529 2021-04-02 2021-11-29 Method for creating bird's-eye view using intellectual property information WO2022208998A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-063646 2021-04-02
JP2021063646A JP7317067B2 (en) 2021-04-02 2021-04-02 How to create bird's-eye view using intellectual property information

Publications (1)

Publication Number Publication Date
WO2022208998A1 true WO2022208998A1 (en) 2022-10-06

Family

ID=83458342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043529 WO2022208998A1 (en) 2021-04-02 2021-11-29 Method for creating bird's-eye view using intellectual property information

Country Status (2)

Country Link
JP (1) JP7317067B2 (en)
WO (1) WO2022208998A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007206771A (en) * 2006-01-31 2007-08-16 Fujitsu Ltd Information element processing program, information element processing method, and information element processor
JP2015018529A (en) * 2013-07-15 2015-01-29 剛一 尾和 Patent map analytic method
JP2015026388A (en) * 2014-10-01 2015-02-05 株式会社帝国データバンク Business relation map generation system and program
US20150269693A1 (en) * 2014-03-21 2015-09-24 Arturo Geigel Method and System of querying patent information based on image interface
KR20160050729A (en) * 2014-10-30 2016-05-11 동국대학교 산학협력단 System and method for developing patent roadmap based on patent information
WO2019102533A1 (en) * 2017-11-22 2019-05-31 花王株式会社 Document classification device
US20200104322A1 (en) * 2018-10-01 2020-04-02 Eta Sa Manufacture Horlogere Suisse Communication method for database
JP2020095669A (en) * 2019-05-28 2020-06-18 株式会社AI Samurai Patent map display device and patent map display method, as well as patent map display program

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007206771A (en) * 2006-01-31 2007-08-16 Fujitsu Ltd Information element processing program, information element processing method, and information element processor
JP2015018529A (en) * 2013-07-15 2015-01-29 剛一 尾和 Patent map analytic method
US20150269693A1 (en) * 2014-03-21 2015-09-24 Arturo Geigel Method and System of querying patent information based on image interface
JP2015026388A (en) * 2014-10-01 2015-02-05 株式会社帝国データバンク Business relation map generation system and program
KR20160050729A (en) * 2014-10-30 2016-05-11 동국대학교 산학협력단 System and method for developing patent roadmap based on patent information
WO2019102533A1 (en) * 2017-11-22 2019-05-31 花王株式会社 Document classification device
US20200104322A1 (en) * 2018-10-01 2020-04-02 Eta Sa Manufacture Horlogere Suisse Communication method for database
JP2020095669A (en) * 2019-05-28 2020-06-18 株式会社AI Samurai Patent map display device and patent map display method, as well as patent map display program

Also Published As

Publication number Publication date
JP2022158621A (en) 2022-10-17
JP7317067B2 (en) 2023-07-28

Similar Documents

Publication Publication Date Title
Newman Communities, modules and large-scale structure in networks
Leydesdorff Visualization of the citation impact environments of scientific journals: An online mapping exercise
Liu et al. Computational and statistical methods for analysing big data with applications
Tang et al. Scalable learning of collective behavior
US20190005114A1 (en) Consensus sequence identification
Galbrun et al. What is redescription mining
JP6481794B1 (en) Learning data generation method, learning data generation program
Garreta et al. Scikit-learn: machine learning simplified: implement scikit-learn into every step of the data science pipeline
US20170124455A1 (en) Generating business intelligence analytics data visualizations with genomically defined genetic selection
CN107980146A (en) Human assessment&#39;s apparatus and method centered on position
KR20090069874A (en) Method of selecting keyword and similarity coefficient for knowledge map analysis, and system thereof and media that can record computer program sources for method therof
Tarekegn et al. Application of data mining techniques to predict students placement in to Departments
WO2022208998A1 (en) Method for creating bird&#39;s-eye view using intellectual property information
Mohseni et al. SAVis: A Learning Analytics Dashboard with Interactive Visualization and Machine Learning
Andersen et al. Improving the search of learning classifier systems through interpretable feature clustering
Dryden et al. Journeys in big data statistics
Nguyen et al. An efficient multi-objective optimization approach for online test paper generation
Lane et al. Eyeing the patterns: Data visualization using doubly-seriated color heatmaps
Zhang et al. Model‐based clustering of time‐dependent categorical sequences with application to the analysis of major life event patterns
Shin et al. Analysis of evolution of movies using massive movie-tag meme network data
Abascal et al. Data mining in a bicriteria clustering problem
Reisner et al. biclustermd: An R Package for Biclustering with Missing Values.
Gogoglou et al. The fractal dimension of a citation curve: quantifying an individual’s scientific output using the geometry of the entire curve
Nanayakkara et al. An Anonymiser Tool for Sensitive Graph Data.
He et al. Design of Multi-level Teaching System Based on Association Rule Mining.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935151

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21935151

Country of ref document: EP

Kind code of ref document: A1