WO2022208805A1 - Deterioration detection device, deterioration detection system, deterioration detection method, weight measurement device, weight measurement method, and program - Google Patents

Deterioration detection device, deterioration detection system, deterioration detection method, weight measurement device, weight measurement method, and program Download PDF

Info

Publication number
WO2022208805A1
WO2022208805A1 PCT/JP2021/014021 JP2021014021W WO2022208805A1 WO 2022208805 A1 WO2022208805 A1 WO 2022208805A1 JP 2021014021 W JP2021014021 W JP 2021014021W WO 2022208805 A1 WO2022208805 A1 WO 2022208805A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
bridge
neural network
time
unit
Prior art date
Application number
PCT/JP2021/014021
Other languages
French (fr)
Japanese (ja)
Inventor
冬樹 宮澤
邦彦 中島
Original Assignee
太陽誘電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽誘電株式会社 filed Critical 太陽誘電株式会社
Priority to JP2023510082A priority Critical patent/JPWO2022208805A1/ja
Priority to PCT/JP2021/014021 priority patent/WO2022208805A1/en
Publication of WO2022208805A1 publication Critical patent/WO2022208805A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/32Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring the deformation in a solid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings

Definitions

  • the present invention relates to a deterioration detection device, a deterioration detection system, a deterioration detection method, a weight measurement device, a weight measurement method, and a program.
  • bridges are visually inspected about once every five years.
  • Patent Document 1 describes a technique for measuring the strain of a floor slab when a vehicle passes over a bridge using a strain gauge and detecting the characteristics of the passing vehicle based on the measured strain.
  • the center distance of the vehicle is calculated by calculating the center distance ratio of the vehicle from the waveform of the strain measured by the strain gauge, and comparing the calculated center distance ratio with the center distance ratio registered in the database. , vehicle speed and vehicle type.
  • a provisional axle weight value of the vehicle is calculated based on the strain of the longitudinal rib and the lateral rib when the vehicle passes, and the provisional axle weight value is corrected by the vehicle weight value calculated based on the strain of the lateral rib. technology is described.
  • Patent Literature 4 describes a technique for detecting the strain of a floor slab when a vehicle passes over a bridge and calculating the weight of the vehicle based on the detected strain.
  • Non-Patent Document 1 describes a technique for calculating the deflection characteristics of a bridge by installing an acceleration sensor under the rear wheel spring of a route bus.
  • the present invention has been made in view of the above, and provides a deterioration detection device, a deterioration detection system, a deterioration detection method, a weight measurement device, a weight measurement method, and a program for accurately detecting deterioration of a bridge over a long period of time. intended to
  • a deterioration detection device provides a parameter representing displacement in the running direction of a target portion of the bridge where the sensor is installed, from a sensor installed on the bridge. and a neural network that inputs the time-series data and outputs a determination result indicating whether or not a specific vehicle has passed.
  • an extracting unit for extracting specific portion data when a specific vehicle passes through the measured section of the bridge; and based on the specific portion data, calculating an amplitude value of the amount of expansion and contraction of the bridge in the running direction when the specific vehicle passes through.
  • a deterioration determining unit that determines that the bridge has deteriorated when the amplitude value exceeds a preset reference value; and a re-learning of the neural network based on a predetermined criterion. and a relearning instruction unit for outputting a relearning instruction for instructing relearning of the neural network based on the determination result of whether or not the neural network should be relearned.
  • deterioration of bridges can be accurately detected over a long period of time.
  • FIG. 1 is a diagram showing a deterioration detection system according to the first embodiment.
  • FIG. 2 is a diagram showing the arrangement of sensors when the bridge is viewed from the side.
  • FIG. 3 is a diagram showing the arrangement of sensors when the bridge is viewed from above.
  • FIG. 4 is a diagram showing a portion of the sensor and main girder of the bridge.
  • FIG. 5 is a diagram showing the displacement detection device together with the first member and the second member.
  • FIG. 6 is a diagram showing the functional configuration of the deterioration detection device.
  • FIG. 7 is a diagram showing an example of time-series data of the amount of expansion and contraction in the traveling direction when a route bus passes a bridge.
  • FIG. 8 is a diagram showing temporal changes in amplitude values and error ranges.
  • FIG. 8 is a diagram showing temporal changes in amplitude values and error ranges.
  • FIG. 9 is a diagram showing temporal changes in amplitude values and thresholds for re-learning the first neural network.
  • FIG. 10 is a diagram illustrating a functional configuration of a deterioration detection device according to a modification;
  • FIG. 11 is a flow chart showing the flow of processing of the deterioration detection device.
  • FIG. 12 is a diagram showing a weight measurement system according to the second embodiment.
  • FIG. 13 is a diagram showing the functional configuration of the weight measuring device.
  • FIG. 14 is a diagram showing the relationship between the weight of the test vehicle and the amplitude value.
  • FIG. 15 is a flow chart showing the flow of correction processing of relational information by the weight measuring device.
  • FIG. 16 is a diagram showing the hardware configuration of the deterioration detection device and the weight measurement device.
  • FIG. 1 is a diagram showing a deterioration detection system 10 according to the first embodiment.
  • the deterioration detection system 10 outputs alarm information when the bridge deteriorates.
  • the deterioration detection system 10 includes a sensor 20, a transmission device 22, and a deterioration detection device 30.
  • the sensor 20 is provided at a predetermined target portion of the bridge.
  • the sensor 20 detects a parameter representing displacement in the direction of travel at the target portion of the bridge where the sensor 20 is provided.
  • the sensor 20 measures the amount of expansion and contraction in the running direction of the target portion of the bridge.
  • the amount of expansion and contraction is, for example, a change in the distance of several nanometers to several hundreds of nanometers between two points separated by a distance of several tens of centimeters.
  • the senor 20 may detect a physical quantity other than the amount of expansion and contraction in the running direction, as long as it can detect a parameter representing displacement in the running direction.
  • sensor 20 may be a strain gauge that detects strain in the direction of travel in the target portion of the bridge.
  • the sensor 20 may be a vibrometer that detects the magnitude of the natural frequency in the running direction in the target portion of the bridge or the magnitude of the vertical natural frequency in the target portion of the bridge.
  • the sensor 20 continuously detects a parameter representing displacement in the running direction of the target portion of the bridge at predetermined time intervals. For example, the sensor 20 detects parameters every few milliseconds. The sensor 20 continuously detects parameters at predetermined time intervals, for example, while the power is on. The sensor 20 may continuously detect parameters at predetermined time intervals all the time, for example, 24 hours a day.
  • the transmission device 22 transmits the parameters detected by the sensor 20 to the deterioration detection device 30 via the network.
  • the network may be wired, wireless, or a mixture of wired and wireless.
  • the network is, for example, a LAN (Local Area Network), a VPN (Virtual Private Network), or a WAN (Wide Area Network) in which LANs are connected via routers.
  • the network may also include the Internet, telephone lines, or the like.
  • the deterioration detection device 30 receives time-series data of parameters representing the displacement in the running direction of the target portion of the bridge, transmitted from the transmission device 22 via the network. The deterioration detection device 30 determines whether or not the bridge has deteriorated based on the received time series data of the parameters. When the deterioration detection device 30 determines that the bridge has deteriorated, the deterioration detection device 30 outputs alarm information to, for example, an administrator or an information processing device held by the administrator.
  • the deterioration detection device 30 is a computer such as a server device that can be connected to a network.
  • the deterioration detection device 30 may be one computer, or may be composed of a plurality of computers like a cloud system.
  • the deterioration detection system 10 may be configured without the transmission device 22 .
  • the deterioration detection device 30 directly obtains from the sensor 20 the parameter representing the displacement in the running direction of the target portion of the bridge. Further, in this case, the deterioration detection device 30 may be provided near the sensor 20, that is, near the bridge.
  • FIG. 2 is a diagram showing the arrangement of the sensors 20 when viewing the bridge from the side.
  • FIG. 3 is a diagram showing the arrangement of sensors 20 when the bridge is viewed from above.
  • the sensor 20 is attached, for example, on the end side of the bridge with respect to the center in the running direction.
  • the sensor 20 is mounted, for example, on the lower surface of the bridge near the abutment. This allows workers to easily attach the sensor 20 to the bridge even after the bridge is completed.
  • the sensor 20 may be attached at any position in the running direction on the bridge.
  • the sensor 20 may be installed in the center of the bridge in the direction of travel, although this may be difficult for the operator to install.
  • FIG. 4 is a diagram showing the sensor 20 and a portion of the main girder 54 of the bridge.
  • the sensor 20 measures the amount of change in the distance between the first point 62 and the second point 64 on the lower surface 56 of the main girder 54 of the bridge as the amount of expansion and contraction in the direction of travel.
  • the first point 62 and the second point 64 are the same in the width direction of the bridge but different in the running direction.
  • the distance between the first point 62 and the second point 64 is, for example, several tens of centimeters. In the example of FIG. 4, the distance between the first point 62 and the second point 64 is 35 centimeters.
  • the sensor 20 measures the amount of change in distance in the direction of travel between the first point 62 and the second point 64 in units of, for example, several nanometers to several hundred nanometers.
  • the sensor 20 has a first member 66 , a second member 68 and a displacement detection device 70 .
  • the first member 66 is a cantilever beam having a support portion 66a and a beam portion 66b.
  • One end of the support portion 66 a is a fixed end 66 c fixed to the first point 62 .
  • the support portion 66 a extends vertically downward from the first point 62 with respect to the lower surface 56 of the main girder 54 by a predetermined distance.
  • the beam portion 66b extends a predetermined distance toward the second point 64 in the traveling direction from the end portion of the support portion 66a opposite to the fixed end 66c.
  • the end of the beam portion 66b that is not connected to the support portion 66a is a free end 66d that is not connected to any member.
  • the free end 66 d of the first member 66 is positioned near the approximate center of the line connecting the first point 62 and the second point 64 .
  • the second member 68 is a cantilever beam having a support portion 68a and a beam portion 68b.
  • One end of the support portion 68 a is a fixed end 68 c fixed to the second point 64 .
  • the support portion 68a extends vertically downward from the second point 64 to the lower surface 56 of the main girder 54 for a predetermined distance.
  • the beam portion 68b extends a predetermined distance toward the first point 62 in the running direction from the end portion of the support portion 68a opposite to the fixed end 68c.
  • the end of the beam portion 68b that is not connected to the support portion 68a is a free end 68d that is not connected to any member.
  • the free end 68 d of the second member 68 is positioned near the approximate center of the line connecting the first point 62 and the second point 64 .
  • the free end 66d of the first member 66 and the free end 68d of the second member 68 are arranged at overlapping positions in the running direction without mechanical interference.
  • the free end 66d of the first member 66 and the free end 68d of the second member 68 are arranged to face each other in the direction perpendicular to the lower surface 56 of the main girder 54 .
  • the relative positions of the free end 66d of the first member 66 and the free end 68d of the second member 68 shift in the running direction.
  • the sensor 20 shown in FIG. 4 has a configuration in which both the first member 66 and the second member 68 are cantilever beams.
  • the second member 68 may be cantilevered and the first member 66 may not be cantilevered.
  • the second member 68 is arranged such that the free end 68d overlaps at least a portion of the first member 66 in the running direction without mechanical interference.
  • the displacement detection device 70 is provided at a portion where the free end 66d of the first member 66 and the free end 68d of the second member 68 face each other.
  • the displacement detection device 70 detects the displacement of the relative position between the free end 66d of the first member 66 and the free end 68d of the second member 68. As shown in FIG. Then, the displacement detection device 70 outputs the detected displacement as the amount of expansion and contraction between two points in the running direction of the bridge.
  • FIG. 5 is a diagram showing the displacement detection device 70 together with the first member 66 and the second member 68.
  • Displacement detection device 70 includes an optical element 72 and a detector 74 .
  • the optical element 72 is attached to either the free end 66 d of the first member 66 or the free end 68 d of the second member 68 .
  • the detector 74 is attached to the other of the free end 66d of the first member 66 or the free end 68d of the second member 68 to which the optical element 72 is not attached.
  • the optical element 72 is an optical member whose reflected light amount or transmitted light amount changes according to the light irradiation position in the traveling direction.
  • the optical element 72 is a mirror whose surface is coated with a plurality of light absorbing materials spaced at predetermined intervals in the running direction.
  • the optical element 72 may be a diffraction grating in which a plurality of optical slits are formed at predetermined intervals in the running direction.
  • the detector 74 includes a half mirror 76 , a light emitter 78 , a light receiver 80 and a detection circuit 82 .
  • the half mirror 76 reflects part of the irradiated light and transmits the other part.
  • the light emitting unit 78 irradiates the optical element 72 with light through the half mirror 76 .
  • the light receiving section 80 receives the light reflected by the optical element 72 via the half mirror 76 .
  • the detection circuit 82 outputs a signal representing the displacement of the relative position between the first member 66 and the second member 68 based on the change in the amount of light detected by the light receiving section 80 as the amount of expansion and contraction.
  • the position of the light irradiated to the optical element 72 shifts in the running direction according to the positional deviation of the relative positions of the first member 66 and the second member 68 in the running direction. Since the optical element 72 is formed with a plurality of light absorbing materials or a plurality of optical slits arranged in the running direction, the amount of light reflected by the optical element 72 increases or decreases according to the displacement of the light irradiation position in the running direction. Specifically, the amount of light reflected by the optical element 72 increases or decreases for one cycle when the position of the light irradiated to the optical element 72 shifts by the distance between a plurality of light absorbing materials or a plurality of optical slits. Therefore, for example, the detection circuit 82 can obtain the amount of change in the relative position between the first member 66 and the second member 68 by counting the increase or decrease in the signal output from the light receiving section 80 .
  • the displacement detection device 70 includes two optical elements 72 shifted by 1/4 period from each other with respect to the pitch of the light absorbing material or the optical slit, and two light emitting units 78 and two light receiving units corresponding to the two optical elements 72. 80 may also be included.
  • the two light receiving sections 80 can output two periodic signals whose phases are shifted by 1/4 period with respect to the change in the relative positions of the first member 66 and the second member 68 . Therefore, for example, the detection circuit 82 detects the direction of change in the relative position of the first member 66 and the second member 68 based on the values of the two signals, and the direction of change in the relative positions of the first member 66 and the first member 66 at intervals shorter than the period of the stripes. The amount of change in relative position with the second member 68 can be detected.
  • the optical element 72 is configured to reflect light.
  • the optical element 72 may be configured to transmit light.
  • the optical element 72 changes the amount of transmitted light according to the irradiation position of the light with respect to the running direction.
  • the optical element 72 may be made of glass, plastic, or the like, on the surface of which a plurality of light absorbing materials are applied at predetermined intervals in the running direction. In such a case, the light receiving section 80 receives light that has passed through the optical element 72 .
  • the detector 74 may be configured without the half mirror 76 .
  • the detector 74 is assumed to be provided on the first member 66 .
  • the optical element 72 is provided on the second member 68 .
  • P be the position of the first member 66 facing the center of the optical element 72 in the width direction.
  • the light emitting portion 78 is arranged at a position shifted from P in the width direction by a predetermined distance in the first member 66 .
  • the light receiving section 80 is arranged at a position shifted by a predetermined distance from P on the side opposite to the light emitting section 78 in the width direction.
  • the light emitting section 78 emits light in a direction toward the center of the optical element 72 in the width direction.
  • the optical element 72 receives light from the light emitting section 78 at a predetermined angle and reflects the incident light toward the light receiving section 80 .
  • the light receiving section 80 receives the light reflected by the optical element 72 .
  • Such a detector 74 can have similar functionality as the configuration shown in FIG.
  • the displacement detection device 70 having such a configuration can be attached to the lower surface 56 of the main girder 54 in the bridge.
  • the displacement detection device 70 can be attached from the outside without embedding an expandable member in the bridge like a strain gauge. Thereby, the displacement detection device 70 can be attached to a completed bridge later.
  • the displacement detection device 70 can be installed without reducing the strength of the bridge. Also, the displacement detection device 70 can be easily maintained even after installation.
  • the displacement detection device 70 having such a configuration uses a cantilever beam to detect a change in the distance between two points with an optical sensor.
  • the displacement detection device 70 can accurately detect very small expansion and contraction of the bridge using members with a simple configuration and low cost.
  • FIG. 6 is a diagram showing the functional configuration of the deterioration detection device 30.
  • the deterioration detection device 30 includes an acquisition unit 112, a time series data storage unit 114, a cutout unit 116, an extraction unit 118, an amplitude calculation unit 120, a deterioration determination unit 122, an alarm output unit 124, and a collection unit. 132 , a relearning data storage unit 134 , a relearning instructing unit 136 , and a relearning unit 138 .
  • the acquisition unit 112 collects, from the sensors 20 provided on the bridge, time-series data of parameters representing the displacement in the traveling direction in the target portion of the bridge where the sensors 20 are provided.
  • the acquisition unit 112 acquires time-series data of parameters via a network.
  • the parameter is the amount of expansion and contraction in the running direction of the target portion.
  • detected times and parameters are associated with each other.
  • the time-series data storage unit 114 stores time-series data of parameters collected by the acquisition unit 112 .
  • the cutout unit 116 cuts out partial data by dividing the parameter time series data stored in the time series data storage unit 114 into units of a predetermined time length. Then, the extraction unit 116 sequentially supplies the extracted partial data to the extraction unit 118 one by one.
  • the length of time of the partial data is at least longer than the time from when the specific vehicle passes through the measurement section of the bridge and the change in the amount of expansion and contraction in the running direction starts to when the change ends.
  • the partial data is data of a predetermined number of samples. More specifically, the partial data is data of the number of samples to be input to the first neural network used in the extraction unit 118 .
  • the cutout unit 116 cuts out two pieces of partial data that are adjacent in the time direction while partially overlapping each other. That is, each partial data overlaps the latter half of the temporally previous partial data and the first half of the temporally immediately following partial data.
  • the first half data in each partial data may be the same as the second half data in the immediately preceding partial data.
  • the latter half data in each partial data may be the same as the first half data in the immediately following partial data.
  • the extracting unit 116 stores any of the plurality of partial data as , can include everything up to the point where the change ends.
  • the extraction unit 118 extracts specific partial data, which is partial data when the specific vehicle passes over the bridge, from the time-series data of the parameters stored in the time-series data storage unit 114 based on the determination result by the first neural network. .
  • the first neural network inputs target partial data and determines whether or not a specific vehicle passes through the target partial data in the measurement section.
  • the first neural network acquires in advance time-series data obtained when a specific vehicle passes over a bridge, and learns using the acquired time-series data as teacher data.
  • the first neural network is a convolutional neural network (CNN).
  • the extraction unit 118 uses a convolutional neural network to detect that the specific vehicle has passed the bridge even if data obtained when the specific vehicle has passed the bridge is included in any time part of the partial data. It can be detected with high accuracy. Then, the extraction unit 118 outputs the partial data input to the first neural network as the specific partial data in response to the determination result that the specific vehicle has passed the bridge by the first neural network. .
  • a specific vehicle is, for example, a vehicle that passes over a bridge on a regular basis, each time at approximately the same speed and approximately the same weight.
  • the specific vehicle is a route bus.
  • a route bus runs according to a predetermined timetable every day. Therefore, the route bus is scheduled to pass the bridge at a predetermined time every day.
  • the specific vehicle may be, for example, a garbage truck or the like. The garbage truck has a predetermined travel route and time. Therefore, the garbage truck is scheduled to pass the bridge at a predetermined time on the garbage collection day.
  • the amplitude calculation unit 120 calculates the amplitude value of the expansion and contraction amount in the running direction of the bridge when the specific vehicle passes, based on the extracted specific portion data. For example, when the parameter represents the amount of expansion/contraction of the target portion, the amplitude calculator 120 calculates the difference between the maximum value and the minimum value in the extracted specific portion data as the amplitude value.
  • the amplitude calculator 120 may output a value correlated with the amplitude value of the amount of expansion/contraction of the target portion as the amplitude value. For example, when the parameter is the magnitude of the natural frequency, the amplitude calculator 120 may calculate the difference between the maximum value and the minimum value in the extracted specific partial data as the amplitude value.
  • the deterioration determination unit 122 compares the calculated amplitude value with a preset reference value each time the amplitude calculation unit 120 calculates the amplitude value. Then, the deterioration determining unit 122 determines that the bridge has deteriorated when the amplitude value becomes larger than the reference value.
  • the deterioration determination unit 122 may calculate the moving average value of the most recent predetermined sample number of amplitude values, and determine that the bridge has deteriorated when the moving average value is greater than the reference value. Further, the deterioration determination unit 122 executes predetermined filtering processing such as noise removal processing on the amplitude values of a plurality of samples. You may judge that it deteriorated. A plurality of different reference values may be set in advance in the deterioration determination unit 122 . Then, the deterioration determination unit 122 may determine that the bridge has deteriorated each time the amplitude value becomes larger than each reference value.
  • the alarm output unit 124 When it is determined that the bridge has deteriorated, the alarm output unit 124 outputs alarm information indicating that the bridge has deteriorated. Note that when a plurality of different reference values are preset in the deterioration determination unit 122, the alarm output unit 124 includes level information indicating the magnitude of the reference value each time the amplitude value becomes greater than each reference value. Alarm information may be obtained. Thereby, the alarm output unit 124 can notify the administrator or the like of the level of deterioration of the bridge.
  • the collection unit 132 collects the extracted specific partial data each time the extraction unit 118 extracts the specific partial data.
  • the relearning data storage unit 134 stores the specific partial data collected by the collection unit 132 .
  • the relearning instruction unit 136 determines whether or not to relearn the first neural network based on predetermined determination criteria, and determines whether or not to relearn the first neural network based on the determination result of whether or not to relearn the first neural network. Outputs a relearning instruction to instruct the relearning of the network. For example, the relearning instruction unit 136 determines whether or not to relearn the first neural network based on a predetermined determination criterion each time the amplitude calculation unit 120 calculates an amplitude value.
  • the relearning unit 138 When a relearning instruction is output from the relearning instruction unit 136, the relearning unit 138 relearns the first neural network using the specific partial data collected by the collecting unit 132 as teacher data. That is, the re-learning unit 138 re-learns the already learned first neural network.
  • the re-learning unit 138 may perform re-learning by error backpropagation or the like using network parameters such as weights and biases set immediately before re-learning as initial values. After changing the existing network parameters to random values or predetermined values, re-learning may be performed by error backpropagation or the like.
  • the re-learning unit 138 re-learns the first neural network using specific partial data collected after the last re-learning as teacher data. If re-learning has not been performed since the start of deterioration determination, the re-learning unit 138 may re-learn the first neural network using specific partial data collected after the start as teacher data. Thereby, the re-learning unit 138 can re-learn the first neural network so as to perform appropriate determination processing according to the latest state of the bridge. Note that the relearning unit 138 may relearn the first neural network using time-series data collected in advance as teacher data in addition to the specific partial data collected by the collecting unit 132 .
  • FIG. 7 is a diagram showing an example of time-series data of the amount of expansion and contraction in the running direction when a route bus passes a bridge.
  • the bridge changes in the direction of travel, expanding, expanding to the maximum value, then contracting, contracting to the minimum value, and then returning to its original state. do.
  • FIG. 7 shows an example in which the sensor 20 is provided at the end of the bridge on the vehicle entry side.
  • the sensor 20 may be provided at the end of the bridge on the exit side of the vehicle.
  • the bridge changes opposite to that in FIG. That is, in this case, the bridge changes in the direction of contraction with respect to the running direction, contracts to the minimum value, changes in the direction of extension, expands to the maximum value, and then returns to its original state.
  • FIG. 8 is a diagram showing the time change of the amplitude value and the error range of the amplitude value.
  • Bridges deteriorate over time.
  • the amplitude value of the expansion/contraction amount increases even when the same type of vehicle passes over the bridge with substantially the same weight and substantially the same speed. That is, when vehicles of the same type pass through the bridge at substantially the same weight and at substantially the same speed, the amplitude value of the amount of expansion and contraction in the target portion of the bridge increases over time.
  • the surrounding environment and measurement conditions cause an error in the amplitude value of the amount of expansion and contraction.
  • the specific vehicle is a route bus, the number of passengers and the passing speed also differ depending on the day.
  • the amplitude value of the expansion/contraction amount calculated when the specific vehicle passes over the bridge includes errors due to weight and passing speed.
  • Non-Patent Document 1 referring to the experimental results of Non-Patent Document 1, for example, as shown in FIG. The quantity is expected to be sufficiently large. For this reason, when a specific vehicle such as a route bus passes through a bridge, if the amplitude value of the expansion/contraction amount of the target portion becomes larger than the preset reference value, the reference value will be the error of the amplitude value at the start of measurement. If it is set sufficiently larger than the distribution range, it can be said that the bridge has deteriorated since the start of the measurement.
  • the deterioration detection device 30 can determine that the bridge has deteriorated when the amplitude value of the amount of expansion and contraction in the running direction of the bridge when a specific vehicle passes is greater than the reference value.
  • FIG. 9 is a diagram showing changes in amplitude values over time and thresholds for re-learning the first neural network.
  • the neural network has the problem of deteriorating accuracy when operated for a long period of time. This is considered to be due to the divergence between the situation when the neural network was learned and the situation after a long period of time. Therefore, the neural network is re-learned when the prediction accuracy deteriorates. However, it is difficult to determine how much the prediction accuracy has deteriorated during operation.
  • the relearning instruction unit 136 outputs a relearning instruction when, for example, the amplitude value of the expansion/contraction amount in the running direction of the bridge becomes larger than a threshold value.
  • the deterioration detection device 30 can appropriately determine when to re-learn the first neural network without determining how much the prediction accuracy has deteriorated. Therefore, the deterioration detection device 30 can accurately detect the deterioration of the bridge over a long period of time.
  • the relearning instruction unit 136 is set with one or more thresholds different from each other.
  • One or more thresholds are values between the initial value, which is the amplitude value at the start of deterioration determination, and the reference value for determining that the bridge has deteriorated.
  • the relearning instruction section 136 outputs a relearning instruction each time the amplitude value calculated by the amplitude calculation section 120 becomes larger than one or more threshold values.
  • the relearning instruction unit 136 calculates a moving average value of the amplitude values of the most recent predetermined number of samples, and issues a relearning instruction each time the moving average value becomes greater than one or a plurality of threshold values. may be output.
  • the relearning instruction unit 136 sets a plurality of Each of the different reference values may match the threshold. In this case, the relearning instruction unit 136 may further set one or more thresholds between the reference values.
  • the relearning instruction unit 136 may determine to relearn the neural network and output a relearning instruction when the calculated amplitude value changes in a preset pattern. For example, the relearning instruction section 136 outputs a relearning instruction when the amplitude value calculated by the amplitude calculating section 120 changes beyond a preset range from the time of the last relearning. Note that if relearning has not been performed since the start of deterioration determination, the relearning instruction unit 136 causes the amplitude value calculated by the amplitude calculation unit 120 to change beyond a preset range from the start. If so, output a relearning instruction.
  • the relearning instruction unit 136 may output a relearning instruction when the amplitude value calculated by the amplitude calculating unit 120 changes by a predetermined rate from the time of start or the time of the last relearning.
  • the relearning instruction unit 136 may output a relearning instruction when the amplitude value changes by a predetermined rate or more in the direction of increasing, or may output a relearning instruction when the amplitude value changes by a predetermined rate or more in the direction of decreasing. , may output a re-learning instruction.
  • the relearning instruction unit 136 may output a relearning instruction when a predetermined time has passed since the last relearning. If relearning has not been performed since the start of deterioration determination, the relearning instruction unit 136 outputs a relearning instruction when a predetermined time has elapsed since the start of the deterioration determination.
  • FIG. 10 is a diagram showing the functional configuration of the deterioration detection device 30 according to the modification.
  • the deterioration detection device 30 includes one or more of the passage time acquisition unit 142, the passage detection information acquisition unit 144, the scheduled time estimation unit 146, the date acquisition unit 148, the passage speed acquisition unit 152, and the weight acquisition unit 154. You may have more.
  • the passage time acquisition unit 142 acquires information indicating the first time, which is the passage time of the specific vehicle, from an external device or the like. For example, when the specific vehicle is a route bus, the timetable information of the route bus or the like may be acquired, and the first time may be calculated based on the acquired timetable information. Then, when the passing time acquiring unit 142 acquires the first time, the extracting unit 118 extracts specific partial data in the parameter time-series data based on the acquired first time. For example, the extracting unit 118 cuts out a predetermined time range before and after the first time in the parameter time series data, and extracts specific partial data from the cut out range. As a result, the extracting unit 118 can extract the specific partial data with high precision with a small amount of processing, since the extracting unit 118 only needs to perform the extraction process on the partial data during a partial time period of the parameter time series data.
  • the passage detection information acquisition unit 144 acquires a detection signal detected by a passage detection device that detects that a specific vehicle is passing through a bridge.
  • the passage detection device acquires image data from a camera that captures an image of a vehicle passing over a bridge, analyzes the acquired image data, and determines whether or not a specific vehicle is passing through the bridge.
  • the passage detection device determines that the specific vehicle is passing through the bridge, it gives the deterioration detection device 30 a detection signal indicating that the specific vehicle is passing through the bridge.
  • the passage detection device may be a receiving device that receives identification information for identifying the specific vehicle from a wireless communication device provided in the specific vehicle by a radio signal. In this case, the passage detection device is provided near the bridge, and upon receiving the identification information from the specific vehicle, gives the deterioration detection device 30 a detection signal indicating that the specific vehicle is passing through the bridge.
  • the passage detection information acquisition unit 144 receives detection information indicating that the specific vehicle is passing through the bridge from the passage detection device, it provides the extraction unit 118 with time information indicating the time at which the detection information was received.
  • the extraction unit 118 extracts specific partial data in the parameter time-series data based on the received time information. For example, the extraction unit 118 cuts out a predetermined time range before and after the time indicated in the time information received from the parameter time-series data, and extracts specific partial data from the cut out range. As a result, the extracting unit 118 can extract the specific partial data with high precision with a small amount of processing, since the extracting unit 118 only needs to perform the extraction process on the partial data during a partial time period of the parameter time series data.
  • the scheduled time estimation unit 146 acquires passage information indicating that the specific vehicle has passed a predetermined first position. For example, if the specific vehicle is a fixed-route bus, the first location is the bus stop immediately before the bridge on the bus route or the specific bus stop. When the specific vehicle is a route bus, the scheduled time estimation unit 146 receives passage information indicating that the vehicle has passed the first position.
  • the transit information is transmitted from, for example, a transmitter provided at a bus stop, a transmitter provided on a route bus, or a management device that manages route bus operation information.
  • the scheduled time estimating unit 146 estimates the scheduled time for the specific vehicle to pass the bridge based on the passage information and the predicted travel time of the specific vehicle from the first position to the bridge. For example, the scheduled time estimating unit 146 calculates the scheduled time by adding the estimated running time to the time when the passage information is received.
  • the scheduled time estimation unit 146 gives the estimated scheduled time to the extraction unit 118 .
  • the extraction unit 118 extracts specific partial data in the parameter time-series data based on the received scheduled time. For example, the extracting unit 118 cuts out a predetermined time range before and after the time indicated by the scheduled time from the time-series data of the parameter, and extracts specific partial data from the cut out range. As a result, the extracting unit 118 can extract the specific partial data with high precision with a small amount of processing, since the extracting unit 118 only needs to perform the extraction process on the partial data during a partial time period of the parameter time series data.
  • the date acquisition unit 148 acquires date information indicating a preset date.
  • the date acquisition unit 148 may acquire the day of the week as the date. In this case, the specific vehicle is a vehicle scheduled to pass the bridge at the same time every day.
  • the date acquisition unit 148 gives the acquired date information to the amplitude calculation unit 120 .
  • the amplitude calculation unit 120 calculates the amplitude value based on the specific partial data extracted from the time-series data on the date indicated in the acquired date information. For example, the amplitude calculation unit 120 calculates the amplitude value based on the specific partial data extracted from the time-series data on weekday dates, and calculates the amplitude value based on the specific partial data extracted from the time-series data on holidays. do not do. For example, if the specific vehicle is a route bus, the number of passengers on weekdays and holidays may differ greatly, resulting in a significant difference in weight. Further, when the specific vehicle is a route bus, the degree of traffic congestion differs between weekdays and holidays, and the passing speed over the bridge may differ greatly. Therefore, when the specific vehicle is a route bus, the amplitude value of the expansion/contraction amount may have greatly different waveform characteristics between weekdays and holidays.
  • the amplitude calculation unit 120 can detect that the same type of vehicle can move at substantially the same weight and at substantially the same speed. It is possible to output the amplitude value of the expansion/contraction amount when passing through. As a result, the deterioration detection device 30 can accurately determine whether or not the bridge has deteriorated.
  • the time period acquisition unit 150 acquires time period information indicating a preset time period within a day.
  • the time zone acquisition unit 150 may acquire information such as, for example, from 5:00 am to 7:00 am as the time zone.
  • the time period obtaining section 150 provides the obtained time period information to the amplitude calculating section 120 .
  • the amplitude calculation unit 120 calculates the amplitude value based on the specific partial data extracted from the time series data in the time period indicated by the acquired time period information. For example, the amplitude calculation unit 120 calculates the amplitude value based on the specific partial data extracted from the time series data in the designated time period, Amplitude value is not calculated based on For example, the degree of traffic congestion varies depending on the time of day, and the speed at which a particular vehicle passes over a bridge may vary greatly. Therefore, the amplitude value of the amount of expansion/contraction may vary greatly in waveform characteristics depending on the time period of the day.
  • the amplitude calculation unit 120 can detect that the same type of vehicle has substantially the same weight and substantially the same speed. It is possible to output the amplitude value of the expansion/contraction amount when passing through. As a result, the deterioration detection device 30 can accurately determine whether or not the bridge has deteriorated.
  • the passing speed acquisition unit 152 acquires the speed of a specific vehicle when it passes through a bridge.
  • the passing speed acquisition unit 152 may acquire log data measured by a speedometer provided in a specific vehicle. Then, the passing speed acquisition unit 152 may acquire the speed at the time when the specific vehicle passed through the bridge from the log data.
  • the passing speed acquisition unit 152 gives speed information indicating the acquired speed to the amplitude calculation unit 120 .
  • the amplitude calculation unit 120 calculates the amplitude value based on the specific partial data extracted from the time-series data in which the speed of the specific vehicle when passing over the bridge is within a preset range. As a result, the amplitude calculator 120 can output the amplitude value of the expansion/contraction amount when vehicles of the same type pass at substantially the same speed. Therefore, the deterioration detection device 30 can more accurately determine whether or not the bridge has deteriorated.
  • the weight acquisition unit 154 acquires the weight of the specific vehicle when it passes over the bridge.
  • garbage trucks are commonly equipped with scales that measure their own weight.
  • the weight acquisition unit 154 may acquire log data measured by a weight scale provided in a specific vehicle such as a garbage truck. Then, the weight acquisition unit 154 may acquire the weight at the time when the specific vehicle passed the bridge from the log data.
  • the weight acquisition unit 154 acquires the number of passengers at the bus stop immediately before the bridge on the bus route or at the specific bus stop, and estimates the weight based on the acquired number of passengers. good too.
  • Weight acquisition section 154 then provides weight information indicating the acquired weight to amplitude calculation section 120 .
  • the amplitude calculation unit 120 calculates the amplitude value based on the specific partial data extracted from the time-series data in which the weight of the specific vehicle when passing over the bridge is within a preset range. As a result, the amplitude calculator 120 can output the amplitude value of the expansion/contraction amount when vehicles of the same type pass with substantially the same weight. Therefore, the deterioration detection device 30 can more accurately determine whether or not the bridge has deteriorated.
  • FIG. 11 is a flowchart showing the processing flow of the deterioration detection device 30.
  • FIG. The deterioration detection device 30 executes processing according to the flow shown in FIG. 11, for example.
  • the deterioration detection device 30 determines whether or not a route bus, which is a specific vehicle, has passed the bus stop (or a specific bus stop) immediately before the bridge on the bus route. If the vehicle has not passed the last bus stop (No in S11), the deterioration detection device 30 waits in S11. When passing the last bus stop (Yes in S11), the deterioration detection device 30 advances the process to S12.
  • the deterioration detection device 30 estimates the scheduled time of passing through the bridge. Subsequently, in S13, the deterioration detection device 30 determines whether or not the time is a predetermined time before the scheduled time. If the time is not the predetermined time before the scheduled time (No in S13), the deterioration detection device 30 waits for the process in S13. If the time comes a predetermined time before the scheduled time (Yes in S13), the deterioration detection device 30 advances the process to S14.
  • the deterioration detection device 30 turns on the power of the sensor 20.
  • the deterioration detection device 30 gives an instruction signal to the sensor 20 through wireless communication or the like to turn on the power.
  • the deterioration detection device 30 receives and stores the time-series data of the parameters detected by the sensor 20.
  • the deterioration detection device 30 receives and stores time-series data of the amount of expansion and contraction of the target portion of the bridge.
  • the deterioration detection device 30 determines whether or not the time has come after a predetermined time from the scheduled time. If the time is not the predetermined time after the scheduled time (No in S16), the deterioration detection device 30 waits for the process in S16. If the predetermined time after the scheduled time comes (Yes in S16), the deterioration detection device 30 advances the process to S17.
  • the deterioration detection device 30 turns off the power of the sensor 20.
  • the deterioration detection device 30 gives an instruction signal to the sensor 20 through wireless communication or the like to turn off the power.
  • the deterioration detection device 30 extracts specific partial data, which is partial data when a route bus, which is a specific vehicle, passes through a bridge, from the stored time-series data of parameters. Subsequently, in S19, the deterioration detection device 30 calculates the amplitude value of the expansion/contraction amount in the traveling direction of the bridge when the route bus, which is the specific vehicle, passes through from the extracted specific portion data. For example, when the parameter represents the amount of expansion/contraction of the target portion, the deterioration detection device 30 calculates the difference between the maximum value and the minimum value in the extracted specific portion data as the amplitude value. Subsequently, in S20, the deterioration detection device 30 stores the calculated amplitude value.
  • the deterioration detection device 30 determines whether or not the calculated amplitude value is greater than the reference value. If the amplitude value is not greater than the reference value (No in S21), the deterioration detection device 30 returns the process to S11 and repeats the process from S11. If the amplitude value is greater than the reference value (Yes in S21), the deterioration detection device 30 advances the process to S22.
  • the deterioration detection device 30 outputs alarm information indicating that the bridge has deteriorated, for example, to an administrator or an information processing device held by the administrator. When S22 ends, the deterioration detection device 30 ends this flow. After S22, the deterioration detection device 30 may increase the reference value by a predetermined amount and return the process to S11.
  • the deterioration detection system 10 detects the amount of expansion and contraction of the bridge in the running direction when a specific vehicle such as a route bus passes through the bridge, based on the specific portion data. An amplitude value is calculated, and when the calculated amplitude value exceeds a preset reference value, it is determined that the bridge has deteriorated, and alarm information indicating that the bridge has deteriorated is output.
  • the deterioration detection system 10 according to the first embodiment the deterioration of the bridge can be detected easily and continuously for a long period of time. Therefore, according to the degradation detection system 10 according to the first embodiment, the state of the bridge can be constantly monitored at low cost, and the bridge can be systematically managed.
  • the deterioration detection system 10 re-learns the first neural network used to detect a specific vehicle at an appropriate timing, so that deterioration of a bridge can be accurately detected over a long period of time. can.
  • FIG. 12 is a diagram showing a weight measurement system 210 according to the second embodiment.
  • the weight measurement system 210 accurately measures the weight of vehicles passing over the bridge while correcting the relevant information according to the deterioration of the bridge.
  • the weight measurement system 210 includes a sensor 20 , a transmission device 22 and a weight measurement device 230 .
  • the weight measuring device 230 receives time-series data of parameters representing the displacement in the running direction of the target portion of the bridge, transmitted from the transmitting device 22 via the network.
  • the weight measuring device 230 calculates the vehicle amplitude value representing the amplitude value of the amount of expansion and contraction in the running direction of the bridge when the vehicle passes, based on the received time-series data of the parameters. Then, the weight measuring device 230 calculates the weight of the vehicle based on the relationship information representing the correspondence between the amplitude value and the weight and the calculated vehicle amplitude value. Furthermore, when the weight measuring device 230 determines that the bridge has deteriorated, it corrects the relational information representing the correspondence between the amplitude value and the weight.
  • the weight measuring device 230 is a computer such as a server device that can be connected to a network.
  • the weight measuring device 230 may be one computer, or may be composed of a plurality of computers like a cloud system.
  • the weight measurement system 210 may be configured without the transmission device 22 .
  • the weight measuring device 230 directly obtains from the sensor 20 the parameter representing the displacement in the running direction of the target portion of the bridge.
  • the weight measuring device 230 may be provided in the vicinity of the sensor 20, that is, in the vicinity of the bridge.
  • FIG. 13 is a diagram showing the functional configuration of the weight measuring device 230.
  • Weight measuring device 230 includes acquisition unit 112 , time-series data storage unit 114 , extraction unit 116 , vehicle extraction unit 242 , vehicle amplitude calculation unit 244 , relationship information storage unit 246 , and weight calculation unit 248 .
  • a unit 136 , a relearning unit 138 , and a vehicle relearning unit 266 are provided.
  • the acquisition unit 112, the time-series data storage unit 114, and the extraction unit 116 have the same functions and configurations as in the first embodiment.
  • the vehicle extraction unit 242 extracts vehicle partial data, which is partial data when the vehicle passes over the bridge, from the time-series data of the parameters stored in the time-series data storage unit 114, based on the determination result by the vehicle determination neural network. Extract.
  • the vehicle is not limited to a specific vehicle such as a route bus, and may be any kind of vehicle.
  • the neural network for vehicle judgment inputs target partial data and judges whether or not the vehicle has passed the bridge based on the target partial data.
  • the vehicle determination neural network acquires in advance time-series data obtained when a vehicle passes over a bridge, and learns using the acquired time-series data as teacher data.
  • the vehicle determination neural network is a convolutional neural network (CNN).
  • CNN convolutional neural network
  • the vehicle extraction unit 242 detects that the vehicle has passed over the bridge even if waveform data obtained when the vehicle has passed over the bridge is included in any time portion of the partial data. It can be detected with high accuracy.
  • the vehicle determination neural network determines that the vehicle has passed the bridge, the vehicle extraction unit 242 extracts the partial data input to the vehicle determination neural network as vehicle partial data.
  • the neural network for vehicle determination may be a neural network having the same configuration as the first neural network. However, in this case, the parameters included in the vehicle determination neural network have different values from the parameters included in the first neural network as a result of learning.
  • the vehicle amplitude calculation part 244 calculates a vehicle amplitude value representing the amplitude value of the amount of expansion and contraction of the bridge in the traveling direction when the vehicle passes, based on the extracted vehicle part data. calculate. For example, when the parameter represents the amount of expansion/contraction of the target portion, the vehicle amplitude calculator 244 calculates the difference between the maximum value and the minimum value in the extracted vehicle portion data as the vehicle amplitude value.
  • the vehicle amplitude calculator 244 may output a value correlated with the amplitude value of the amount of expansion/contraction of the target portion as the vehicle amplitude value. For example, when the parameter is the magnitude of the natural frequency, the vehicle amplitude calculator 244 may calculate the difference between the maximum value and the minimum value in the extracted vehicle partial data as the vehicle amplitude value.
  • the relationship information storage unit 246 stores relationship information representing the correspondence relationship between the amplitude value and the weight of the vehicle.
  • the amplitude value of the amount of expansion and contraction in the running direction of the bridge when the vehicle passes over the bridge is correlated with the weight of the vehicle. More specifically, the amplitude value of the amount of expansion and contraction of the bridge in the running direction when the vehicle passes over the bridge increases according to the weight of the vehicle. Therefore, the administrator or the like generates in advance relational information representing the correspondence between the amplitude value and the weight of the vehicle passing through the bridge, and causes the relational information storage unit 246 to store the relational information.
  • the administrator may generate relational information by running test vehicles of various weights on the bridge and measuring the correspondence between the weight of the vehicle and the amplitude value. Also, the administrator or the like may further use the simulation results to generate the relationship information. Also, the administrator or the like may use the relationship information or the like applied to other bridges to generate the relationship information of the bridge.
  • the relationship information storage unit 246 may store, as relationship information, a table that associates each of a plurality of amplitude values with the corresponding weight. Further, the relational information storage unit 246 may store, as the relational information, a function or an arithmetic expression for outputting a weight by inputting an amplitude value.
  • the weight calculator 248 calculates the weight of the vehicle each time the vehicle amplitude calculator 244 calculates the vehicle amplitude value. More specifically, the weight calculation unit 248 calculates the weight of the vehicle based on the calculated vehicle amplitude value and the relationship information indicating the correspondence relationship between the amplitude value and the weight stored in the relationship information storage unit 246. .
  • the weight calculator 248 outputs the calculated weight to, for example, an information processing device or a server held by an administrator. In this case, the weight calculator 248 may also output the time when the vehicle passed the bridge. As a result, the administrator or the like can associate the vehicle that has passed through the bridge with the weight.
  • the extraction unit 118 has the same function and configuration as those of the first embodiment, and based on the determination result of the first neural network, the time-series data of the parameters stored in the time-series data storage unit 114 is used to determine whether the specific vehicle has passed the bridge. Specific partial data, which is partial data at the time of passage, is extracted.
  • the amplitude calculator 120 has the same function and configuration as those of the first embodiment. A vehicle specific amplitude value representing the amplitude value of the quantity is calculated.
  • the correction unit 250 compares the calculated specific vehicle amplitude value with a preset reference value each time the amplitude calculation unit 120 calculates the specific vehicle amplitude value. Then, when the specific vehicle amplitude value becomes larger than the reference value, the correction unit 250 corrects the correspondence stored in the relationship information storage unit 246 .
  • the correction unit 250 may calculate the moving average value of the specific vehicle amplitude values of the most recent predetermined number of samples, and correct the related information when the moving average value becomes greater than the reference value. Further, the correction unit 250 executes predetermined filtering processing such as noise removal processing on the specific vehicle amplitude values of a plurality of samples, and when the result of the filtering processing becomes larger than the reference value, the relational You may correct the information.
  • predetermined filtering processing such as noise removal processing on the specific vehicle amplitude values of a plurality of samples
  • the vehicle collection unit 262 collects the extracted vehicle partial data each time the vehicle extraction unit 242 extracts the vehicle partial data.
  • the vehicle relearning data storage unit 264 stores vehicle partial data collected by the vehicle collection unit 262 .
  • the collection unit 132 has the same function and configuration as in the first embodiment, and collects the extracted specific partial data every time the extraction unit 118 extracts the specific partial data.
  • the relearning data storage unit 134 has the same function and configuration as those of the first embodiment, and stores the specific partial data collected by the collection unit 132 .
  • the re-learning instruction unit 136 determines whether or not to re-learn the first neural network and the vehicle determination neural network based on the same predetermined criteria as in the first embodiment. A re-learning instruction is output based on the determination result of whether or not to re-learn the judgment neural network. Re-learning instruction unit 136 supplies a relearning instruction to vehicle relearning unit 266 and relearning unit 138 .
  • the vehicle re-learning unit 266 When the re-learning instruction is output from the re-learning instruction unit 136, the vehicle re-learning unit 266 re-learns the vehicle determination neural network using the vehicle partial data collected by the vehicle collection unit 262 as teacher data. That is, the vehicle re-learning unit 266 re-learns the already learned neural network for vehicle determination.
  • the vehicle re-learning unit 266 may perform re-learning by error backpropagation or the like using network parameters such as weights and biases set immediately before re-learning as initial values. After changing the network parameter to a random value or a predetermined value, re-learning may be performed by error backpropagation method or the like.
  • the vehicle re-learning unit 266 re-learns the vehicle determination neural network using the vehicle part data collected after the last re-learning as teacher data. If re-learning has not been performed since the start of deterioration determination, the vehicle re-learning unit 266 may re-learn the vehicle determination neural network using the vehicle part data collected after the start as teacher data. good. As a result, the vehicle re-learning unit 266 can re-learn the vehicle determination neural network so as to perform appropriate determination processing in accordance with the latest state of the bridge. The vehicle re-learning unit 266 may re-learn the vehicle determination neural network using pre-collected time-series data as teacher data in addition to the vehicle part data collected by the vehicle collecting unit 262 .
  • the relearning unit 138 has the same configuration as that of the first embodiment, and when the relearning instruction is output from the relearning instruction unit 136, the specific partial data collected by the collecting unit 132 is used as teacher data, and the first neural Retrain the network.
  • the weight measuring device 230 includes the passage time acquisition unit 142, the passage detection information acquisition unit 144, the scheduled time estimation unit 146, the date acquisition unit 148, the time period acquisition unit 150, the passage speed acquisition unit 152, and the weight
  • the configuration may further include one or more of the acquisition units 154 .
  • FIG. 14 is a diagram showing the relationship between the weight of the test vehicle and the amplitude value of the amount of expansion and contraction of the bridge.
  • the graph with black circles represents the relationship when the deterioration of the bridge is small
  • the graph with white squares represents the relationship when the deterioration of the bridge exceeds a predetermined reference value.
  • the amplitude value of the amount of expansion and contraction in the running direction of the bridge when a vehicle passes increases. Therefore, as shown in FIG. 14, the weight of the vehicle and the amount of expansion and contraction of the bridge in the running direction when the vehicle is passing are determined when the deterioration of the bridge exceeds, for example, the reference value and when the deterioration is less than the reference value. has a different relationship with the amplitude value of Therefore, for example, the administrator generates first relational information when the deterioration of the bridge is equal to or less than the reference value and second relational information when the deterioration of the bridge is greater than the reference value. 246.
  • the correction unit 250 outputs the first relationship information from the relationship information storage unit 246 to the weight calculation unit 248 . Further, when the specific vehicle amplitude value is greater than the reference value, correction unit 250 outputs the second relationship information from relationship information storage unit 246 to weight calculation unit 248 . Accordingly, the correction unit 250 can accurately measure the weight of the vehicle regardless of the degree of deterioration of the bridge.
  • the correction unit 250 may adjust the correction amount of the related information according to the magnitude of the reference value each time the specific vehicle amplitude value becomes larger than each reference value. Thereby, the correcting unit 250 can appropriately correct the relationship information according to the level of deterioration of the bridge.
  • FIG. 15 is a flow chart showing the flow of related information correction processing by the weight measuring device 230 .
  • the weight measuring device 230 executes processing according to the flow shown in FIG. 15, for example.
  • the processing from S11 to S21 in FIG. 15 is the same processing as the deterioration detection device 30 in FIG.
  • the power of the sensor 20 is always on in order to measure the weight of the vehicle passing over the bridge. Therefore, when the sensor 20 used for weight measurement and the sensor 20 used when the specific vehicle passes are the same, the weight measuring device 230 does not execute the processes of S13, S14, S16 and S17. you can However, in this case, in S18, the weight measuring device 230 cuts out a range from a predetermined time before the scheduled time to a predetermined time after the scheduled time from the parameter time series data, and extracts specific partial data from the cut out range. .
  • the weight measuring device 230 determines whether or not the calculated amplitude value is greater than the reference value. If the amplitude value is greater than the reference value (Yes in S21), the weight measuring device 230 advances the process to S31.
  • the weight measuring device 230 corrects the correspondence stored in the relationship information storage unit 246 .
  • the weight measuring device 230 ends this flow.
  • the weight measuring device 230 may increase the reference value by a predetermined amount and return the process to S11.
  • the weight measurement system 210 calculates the vehicle amplitude value representing the amplitude value of the amount of expansion and contraction of the bridge in the running direction when the vehicle passes, and the correspondence relationship between the amplitude value and the weight of the vehicle. and the calculated vehicle amplitude value, the weight of the vehicle is calculated. Therefore, the weight measurement system 210 can accurately measure the weight of vehicles passing over the bridge.
  • the weight measurement system 210 corrects the related information when the specific vehicle amplitude value representing the amplitude value of the amount of expansion and contraction of the bridge in the running direction when the specific vehicle passes exceeds the reference value. Therefore, the weight measurement system 210 can correct the relevant information according to the deterioration of the bridge.
  • the weight measurement system 210 As described above, according to the weight measurement system 210 according to the second embodiment, it is possible to accurately measure the weight of a vehicle passing over a bridge while correcting the relevant information as the bridge deteriorates.
  • FIG. 16 is a diagram showing the hardware configuration of the deterioration detection device 30 and the weight measurement device 230.
  • the deterioration detection device 30 and the weight measurement device 230 are realized by, for example, a hardware configuration similar to that of a general computer.
  • the deterioration detection device 30 and the weight measurement device 230 include a CPU (Central Processing Unit) 301, an operation device 302, a display device 303, a ROM (Read Only Memory) 304, a RAM (Random Access Memory) 305, and a storage device. 306 , a communication device 307 and a bus 309 . Each unit is connected by a bus 309 .
  • the CPU 301 uses a predetermined area of the RAM 305 as a working area to execute various processes in cooperation with various programs pre-stored in the ROM 304 or the storage device 306, and controls the operation of each part constituting the deterioration detection device 30 or the weight measurement device 230. Overall control. In addition, the CPU 301 operates the operating device 302, the display device 303, the communication device 307, etc. in cooperation with programs pre-stored in the ROM 304 or the storage device 306. FIG.
  • the operation device 302 is an input device such as a touch panel, a mouse, a keyboard, or the like, receives information input by a user as an instruction signal, and outputs the instruction signal to the CPU 301 .
  • the display device 303 is a display unit such as an LCD (Liquid Crystal Display).
  • the display device 303 displays various information based on display signals from the CPU 301 .
  • the ROM 304 non-rewritably stores programs and various setting information used to control the deterioration detection device 30 or the weight measurement device 230 .
  • the RAM 305 is a volatile storage medium such as SDRAM (Synchronous Dynamic Random Access Memory).
  • SDRAM Serial Dynamic Random Access Memory
  • a RAM 305 functions as a work area for the CPU 301 .
  • the storage device 306 is a rewritable recording device such as a semiconductor storage medium such as a flash memory, or a magnetically or optically recordable storage medium.
  • Storage device 306 stores a program used to control deterioration detection device 30 or weight measurement device 230 .
  • the communication device 307 transmits and receives data to and from other devices. Also, the communication device 307 may transmit and receive data to and from a server or the like via a network.
  • the programs executed by the deterioration detection device 30 and the weight measurement device 230 are, for example, stored on a computer connected to a network such as the Internet, and provided by being downloaded via the network. Also, the programs executed by the deterioration detection device 30 and the weight measurement device 230 may be provided by being incorporated in advance in a portable storage medium or the like.
  • the programs executed by the deterioration detection device 30 include a collection module, an extraction module, an extraction module, an amplitude calculation module, a deterioration determination module, an alarm output module, a collection module, a re-learning instruction module, and a re-learning module. It has a module configuration including a learning module.
  • the CPU 301 reads out such a program from a storage medium or the like and loads each module into the RAM 305 .
  • the CPU 301 executes the acquisition unit 112, the extraction unit 116, the extraction unit 118, the amplitude calculation unit 120, the deterioration determination unit 122, the alarm output unit 124, the collection unit 132, and the It functions as a learning instruction section 136 and a re-learning section 138 .
  • the acquisition unit 112, the extraction unit 118, the amplitude calculation unit 120, the deterioration determination unit 122, the alarm output unit 124, the collection unit 132, the relearning instruction unit 136, and the relearning unit 138 are configured by hardware. may be
  • the program executed by the weight measuring device 230 includes a collection module, an extraction module, a vehicle extraction module, a vehicle amplitude calculation module, a weight calculation module, an extraction module, an amplitude calculation module, a correction module, a vehicle It has a module configuration including a collection module, a collection module, a relearning instruction module, a vehicle relearning module, and a relearning module.
  • the CPU 301 reads out such a program from a storage medium or the like and loads each module into the RAM 305 .
  • the CPU 301 executes the acquisition unit 112, the extraction unit 116, the vehicle extraction unit 242, the vehicle amplitude calculation unit 244, the weight calculation unit 248, the extraction unit 118, the amplitude calculation unit 120, the correction It functions as a unit 250 , a vehicle collection unit 262 , a collection unit 132 , a relearning instruction unit 136 , a vehicle relearning unit 266 and a relearning unit 138 .
  • Part or all of acquisition unit 112, vehicle extraction unit 242, vehicle amplitude calculation unit 244, weight calculation unit 248, extraction unit 118, amplitude calculation unit 120, and correction unit 250 may be configured by hardware.
  • deterioration detection system 20 sensor 22 transmission device 30 deterioration detection device 54 main girder 56 lower surface 62 first point 64 second point 66 first member 68 second member 70 displacement detection device 72 optical element 74 detector 76 half mirror 78 light emitting unit 80 Light receiving unit 82 Detection circuit 112 Acquisition unit 114 Time-series data storage unit 118 Extraction unit 120 Amplitude calculation unit 122 Deterioration determination unit 124 Alarm output unit 132 Collection unit 134 Re-learning data storage unit 136 Re-learning instruction unit 138 Re-learning unit 142 Passing time acquiring unit 144 Passing detection information acquiring unit 146 Scheduled time estimating unit 148 Date acquiring unit 150 Time period acquiring unit 152 Passing speed acquiring unit 154 Weight acquiring unit 210 Weight measuring system 230 Weight measuring device 242 Vehicle extracting unit 244 Vehicle amplitude calculating unit 246 Relationship information storage unit 248 Weight calculation unit 250 Correction unit 262 Vehicle collection unit 264 Vehicle relearning data storage unit 266 Vehicle relearning unit

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

The present invention continuously detects deterioration in a bridge. This deterioration detection device comprises: an acquisition unit for collecting time series data pertaining to a parameter that represents a travel-direction site on a subject portion of a bridge where a sensor is provided; an extraction unit for extracting, from the time series data, specific portion data from a time when a specific vehicle passes through a measured segment of the bridge on the basis of an assessment result indicating whether the specific vehicle has passed by, the assessment being made by a neural network that outputs the assessment result upon receiving input of the time series data; an amplitude calculation unit for calculating, on the basis of the specific portion data, an amplitude value pertaining to the amount of travel-direction expansion and contraction of the bridge at the time when the specific vehicle passes by; a deterioration assessment unit for assessing that the bridge has deteriorated when the amplitude value is greater than a preset criterion value; and a re-training command unit for determining whether to re-train the neural network on the basis of pre-established determination criteria, and outputting a re-training command that commands re-training of the neural network on the basis of the result of the determination as to whether to re-train the neural network.

Description

劣化検出装置、劣化検出システム、劣化検出方法、重量測定装置、重量測定方法およびプログラムDeterioration detection device, deterioration detection system, deterioration detection method, weight measurement device, weight measurement method and program
 本発明は、劣化検出装置、劣化検出システム、劣化検出方法、重量測定装置、重量測定方法およびプログラムに関する。 The present invention relates to a deterioration detection device, a deterioration detection system, a deterioration detection method, a weight measurement device, a weight measurement method, and a program.
 従来、橋梁は、5年に1回程度、目視により点検がされている。橋梁の安全性をより高めるためには、例えば橋梁を常時モニタリングし、モニタリングの結果に基づき橋梁の将来の状態等を予測して、橋梁を計画的に管理することが望ましい。 Conventionally, bridges are visually inspected about once every five years. In order to further improve the safety of bridges, it is desirable, for example, to constantly monitor bridges, predict the future state of bridges based on the monitoring results, and systematically manage bridges.
 特許文献1には、車両が橋梁を通過する際の床版のひずみを、歪計を用いて計測し、計測したひずみに基づき通過する車両の特性を検出する技術が記載されている。特許文献2には、歪計で計測したひずみの波形から車両の軸間比率を算出し、算出した軸間比率とデータベースに登録された軸間比率とを比較することにより、車両の軸間距離、車速および車種を特定する技術が記載されている。特許文献3には、車両通過時の縦リブおよび横リブのひずみに基づいて車両の仮軸重値を算出し、横リブのひずみに基づいて算出された車両重量値により仮軸重値を補正する技術が記載されている。特許文献4には、車両が橋梁を通過する際の床版のひずみを検出し、検出したひずみに基づき車両の重量を算出する技術が記載されている。非特許文献1には、路線バスの後輪バネの下に加速度センサを設置して、橋梁のたわみ特性を算出する技術が記載されている。 Patent Document 1 describes a technique for measuring the strain of a floor slab when a vehicle passes over a bridge using a strain gauge and detecting the characteristics of the passing vehicle based on the measured strain. In Patent Document 2, the center distance of the vehicle is calculated by calculating the center distance ratio of the vehicle from the waveform of the strain measured by the strain gauge, and comparing the calculated center distance ratio with the center distance ratio registered in the database. , vehicle speed and vehicle type. In Patent Document 3, a provisional axle weight value of the vehicle is calculated based on the strain of the longitudinal rib and the lateral rib when the vehicle passes, and the provisional axle weight value is corrected by the vehicle weight value calculated based on the strain of the lateral rib. technology is described. Patent Literature 4 describes a technique for detecting the strain of a floor slab when a vehicle passes over a bridge and calculating the weight of the vehicle based on the detected strain. Non-Patent Document 1 describes a technique for calculating the deflection characteristics of a bridge by installing an acceleration sensor under the rear wheel spring of a route bus.
特開2006-084404号公報JP 2006-084404 A 特開2009-237805号公報JP 2009-237805 A 特開2014-228480号公報JP 2014-228480 A 特開2017-106769号公報JP 2017-106769 A
 ところで、橋梁は劣化の進行に伴い、車両通過時のひずみが大きくなる。しかし、劣化の影響によりどの程度橋梁がひずんでいるのかを、人員によらずに簡単に継続的に測定することは困難である。 By the way, as the deterioration of bridges progresses, strain increases when vehicles pass over them. However, it is difficult to continuously measure how much the bridge is distorted by the influence of deterioration without relying on personnel.
 また、橋梁をモニタリングするために、複数の入力値に応じた出力値を出力するモデルを用いることが考えられる。しかし、橋梁の劣化の検出は、数年といった長期に亘るモニタリングがされる。このため、長期間の運用に橋梁の特性とモデルの特性との乖離が生じ、橋梁の劣化を精度良く検出すことができなくなってしまう。 Also, in order to monitor the bridge, it is conceivable to use a model that outputs output values according to multiple input values. However, detection of bridge deterioration is monitored over a long period of several years. For this reason, a deviation occurs between the characteristics of the bridge and the characteristics of the model during long-term operation, and deterioration of the bridge cannot be detected with high accuracy.
 本発明は、上記に鑑みてなされたものであって、橋梁の劣化を長期間に渡り精度良く検出する劣化検出装置、劣化検出システム、劣化検出方法、重量測定装置、重量測定方法およびプログラムを提供することを目的とする。 The present invention has been made in view of the above, and provides a deterioration detection device, a deterioration detection system, a deterioration detection method, a weight measurement device, a weight measurement method, and a program for accurately detecting deterioration of a bridge over a long period of time. intended to
 上述した課題を解決し、目的を達成するために、本発明に係る劣化検出装置は、橋梁に設けられたセンサから、前記橋梁の前記センサが設けられた対象部分における走行方向の変位を表すパラメータの時系列データを収集する取得部と、前記時系列データを入力して特定車両が通過したか否かを示す判定結果を出力するニューラルネットワークによる前記判定結果に基づき、前記時系列データから、前記特定車両が前記橋梁の測定区間を通過時の特定部分データを抽出する抽出部と、前記特定部分データに基づき、前記特定車両の通過時における前記橋梁の前記走行方向における伸縮量の振幅値を算出する振幅算出部と、前記振幅値が予め設定された基準値より大きくなった場合、前記橋梁が劣化したと判定する劣化判定部と、予め定められた判断基準に基づき前記ニューラルネットワークを再学習するか否かを判断し、前記ニューラルネットワークを再学習するか否かの判断結果に基づき前記ニューラルネットワークの再学習を指示する再学習指示を出力する再学習指示部と、を備える。 In order to solve the above-described problems and achieve the object, a deterioration detection device according to the present invention provides a parameter representing displacement in the running direction of a target portion of the bridge where the sensor is installed, from a sensor installed on the bridge. and a neural network that inputs the time-series data and outputs a determination result indicating whether or not a specific vehicle has passed. an extracting unit for extracting specific portion data when a specific vehicle passes through the measured section of the bridge; and based on the specific portion data, calculating an amplitude value of the amount of expansion and contraction of the bridge in the running direction when the specific vehicle passes through. a deterioration determining unit that determines that the bridge has deteriorated when the amplitude value exceeds a preset reference value; and a re-learning of the neural network based on a predetermined criterion. and a relearning instruction unit for outputting a relearning instruction for instructing relearning of the neural network based on the determination result of whether or not the neural network should be relearned.
 本発明によれば、橋梁の劣化を長期間に渡り精度良く検出することができる。 According to the present invention, deterioration of bridges can be accurately detected over a long period of time.
図1は、第1実施形態に係る劣化検出システムを示す図である。FIG. 1 is a diagram showing a deterioration detection system according to the first embodiment. 図2は、橋梁を横から見たときのセンサの配置を示す図である。FIG. 2 is a diagram showing the arrangement of sensors when the bridge is viewed from the side. 図3は、橋梁を上から見たときのセンサの配置を示す図である。FIG. 3 is a diagram showing the arrangement of sensors when the bridge is viewed from above. 図4は、センサおよび橋梁の主桁の一部分を示す図である。FIG. 4 is a diagram showing a portion of the sensor and main girder of the bridge. 図5は、変位検出装置を第1部材および第2部材とともに示す図である。FIG. 5 is a diagram showing the displacement detection device together with the first member and the second member. 図6は、劣化検出装置の機能構成を示す図である。FIG. 6 is a diagram showing the functional configuration of the deterioration detection device. 図7は、路線バスが橋梁を通過した時の走行方向における伸縮量の時系列データの一例を示す図である。FIG. 7 is a diagram showing an example of time-series data of the amount of expansion and contraction in the traveling direction when a route bus passes a bridge. 図8は、振幅値の時間変化および誤差範囲を示す図である。FIG. 8 is a diagram showing temporal changes in amplitude values and error ranges. 図9は、振幅値の時間変化および第1ニューラルネットワークを再学習する閾値を示す図である。FIG. 9 is a diagram showing temporal changes in amplitude values and thresholds for re-learning the first neural network. 図10は、変形例に係る劣化検出装置の機能構成を示す図である。FIG. 10 is a diagram illustrating a functional configuration of a deterioration detection device according to a modification; 図11は、劣化検出装置の処理の流れを示すフローチャートである。FIG. 11 is a flow chart showing the flow of processing of the deterioration detection device. 図12は、第2実施形態に係る重量測定システムを示す図である。FIG. 12 is a diagram showing a weight measurement system according to the second embodiment. 図13は、重量測定装置の機能構成を示す図である。FIG. 13 is a diagram showing the functional configuration of the weight measuring device. 図14は、試験車両の重量に対する振幅値の関係を表す図である。FIG. 14 is a diagram showing the relationship between the weight of the test vehicle and the amplitude value. 図15は、重量測定装置による関係情報の補正処理の流れを示すフローチャートである。FIG. 15 is a flow chart showing the flow of correction processing of relational information by the weight measuring device. 図16は、劣化検出装置および重量測定装置のハードウェア構成を示す図である。FIG. 16 is a diagram showing the hardware configuration of the deterioration detection device and the weight measurement device.
 以下、図面を参照しながら実施形態について説明する。 Embodiments will be described below with reference to the drawings.
 (第1実施形態)
 図1は、第1実施形態に係る劣化検出システム10を示す図である。劣化検出システム10は、橋梁が劣化した場合、アラーム情報を出力する。
(First embodiment)
FIG. 1 is a diagram showing a deterioration detection system 10 according to the first embodiment. The deterioration detection system 10 outputs alarm information when the bridge deteriorates.
 劣化検出システム10は、センサ20と、送信装置22と、劣化検出装置30とを備える。 The deterioration detection system 10 includes a sensor 20, a transmission device 22, and a deterioration detection device 30.
 センサ20は、橋梁における所定の対象部分に設けられる。センサ20は、橋梁のセンサ20が設けられた対象部分における走行方向の変位を表すパラメータを検出する。本実施形態においては、センサ20は、橋梁の対象部分における、走行方向の伸縮量を測定する。伸縮量は、例えば、数10センチメートル程度の距離の2点間における、数ナノメートルから数100ナノメートル程度の距離の変化である。 The sensor 20 is provided at a predetermined target portion of the bridge. The sensor 20 detects a parameter representing displacement in the direction of travel at the target portion of the bridge where the sensor 20 is provided. In this embodiment, the sensor 20 measures the amount of expansion and contraction in the running direction of the target portion of the bridge. The amount of expansion and contraction is, for example, a change in the distance of several nanometers to several hundreds of nanometers between two points separated by a distance of several tens of centimeters.
 なお、センサ20は、走行方向の変位を表すパラメータを検出することができれば、走行方向の伸縮量でなく、他の物理量を検出してもよい。例えば、センサ20は、橋梁の対象部分における走行方向のひずみを検出する歪計であってもよい。また、例えば、センサ20は、橋梁の対象部分における走行方向の固有振動数の大きさまたは橋梁の対象部分における垂直方向の固有振動数の大きさを検出する振動計であってもよい。 It should be noted that the sensor 20 may detect a physical quantity other than the amount of expansion and contraction in the running direction, as long as it can detect a parameter representing displacement in the running direction. For example, sensor 20 may be a strain gauge that detects strain in the direction of travel in the target portion of the bridge. Further, for example, the sensor 20 may be a vibrometer that detects the magnitude of the natural frequency in the running direction in the target portion of the bridge or the magnitude of the vertical natural frequency in the target portion of the bridge.
 センサ20は、橋梁の対象部分における走行方向の変位を表すパラメータを、所定の時間間隔毎に連続的に検出する。例えば、センサ20は、パラメータを数ミリ秒毎に検出する。センサ20は、例えば電源がオンされた期間において、パラメータを所定の時間間隔毎に連続的に検出する。センサ20は、常時、例えば、1日24時間連続して、パラメータを所定の時間間隔毎に連続的に検出してもよい。 The sensor 20 continuously detects a parameter representing displacement in the running direction of the target portion of the bridge at predetermined time intervals. For example, the sensor 20 detects parameters every few milliseconds. The sensor 20 continuously detects parameters at predetermined time intervals, for example, while the power is on. The sensor 20 may continuously detect parameters at predetermined time intervals all the time, for example, 24 hours a day.
 送信装置22は、センサ20により検出されたパラメータを、ネットワークを介して劣化検出装置30に送信する。ネットワークは、有線であっても、無線であっても、有線と無線とが混在していてもよい。ネットワークは、例えば、LAN(Local Area Network)、VPN(Virtual Private Network)またはLANがルータを介して接続されたWAN(Wide Area Network)である。また、ネットワークは、インターネットまたは電話通信回線等を含んでいてもよい。 The transmission device 22 transmits the parameters detected by the sensor 20 to the deterioration detection device 30 via the network. The network may be wired, wireless, or a mixture of wired and wireless. The network is, for example, a LAN (Local Area Network), a VPN (Virtual Private Network), or a WAN (Wide Area Network) in which LANs are connected via routers. The network may also include the Internet, telephone lines, or the like.
 劣化検出装置30は、送信装置22からネットワークを介して送信された、橋梁の対象部分における走行方向の変位を表すパラメータの時系列データを受信する。劣化検出装置30は、受信したパラメータの時系列データに基づき、橋梁が劣化したか否かを判定する。そして、劣化検出装置30は、橋梁が劣化したと判定した場合、アラーム情報を例えば管理者または管理者が保持する情報処理装置等に出力する。 The deterioration detection device 30 receives time-series data of parameters representing the displacement in the running direction of the target portion of the bridge, transmitted from the transmission device 22 via the network. The deterioration detection device 30 determines whether or not the bridge has deteriorated based on the received time series data of the parameters. When the deterioration detection device 30 determines that the bridge has deteriorated, the deterioration detection device 30 outputs alarm information to, for example, an administrator or an information processing device held by the administrator.
 劣化検出装置30は、ネットワークに接続可能なサーバ装置等のコンピュータである。劣化検出装置30は、1台のコンピュータであってもよいし、クラウドシステムのように複数台のコンピュータにより構成されていてもよい。 The deterioration detection device 30 is a computer such as a server device that can be connected to a network. The deterioration detection device 30 may be one computer, or may be composed of a plurality of computers like a cloud system.
 なお、劣化検出システム10は、送信装置22を備えない構成であってもよい。この場合、劣化検出装置30は、センサ20から、直接、橋梁の対象部分における走行方向の変位を表すパラメータを取得する。また、この場合、劣化検出装置30は、センサ20の近傍、すなわち、橋梁の近傍に設けられてもよい。 Note that the deterioration detection system 10 may be configured without the transmission device 22 . In this case, the deterioration detection device 30 directly obtains from the sensor 20 the parameter representing the displacement in the running direction of the target portion of the bridge. Further, in this case, the deterioration detection device 30 may be provided near the sensor 20, that is, near the bridge.
 図2は、橋梁を横から見たときのセンサ20の配置を示す図である。図3は、橋梁を上から見たときのセンサ20の配置を示す図である。センサ20は、例えば、橋梁における走行方向の中心よりも端部側に取り付けられる。センサ20は、例えば、橋梁における下側の面であって、橋台の近傍に取り付けられる。これにより、作業者は、橋梁が完成した後であっても、センサ20を橋梁に容易に取り付けることができる。なお、センサ20は、橋梁における走行方向の何れの位置に取り付けられてもよい。例えば、センサ20は、作業者により取り付けが難しくはなる場合もあるが、橋梁における走行方向の中央部に取り付けられてもよい。 FIG. 2 is a diagram showing the arrangement of the sensors 20 when viewing the bridge from the side. FIG. 3 is a diagram showing the arrangement of sensors 20 when the bridge is viewed from above. The sensor 20 is attached, for example, on the end side of the bridge with respect to the center in the running direction. The sensor 20 is mounted, for example, on the lower surface of the bridge near the abutment. This allows workers to easily attach the sensor 20 to the bridge even after the bridge is completed. In addition, the sensor 20 may be attached at any position in the running direction on the bridge. For example, the sensor 20 may be installed in the center of the bridge in the direction of travel, although this may be difficult for the operator to install.
 図4は、センサ20および橋梁の主桁54の一部分を示す図である。センサ20は、橋梁の主桁54の下面56における第1点62と第2点64との間の距離の変化量を、走行方向の伸縮量として測定する。 FIG. 4 is a diagram showing the sensor 20 and a portion of the main girder 54 of the bridge. The sensor 20 measures the amount of change in the distance between the first point 62 and the second point 64 on the lower surface 56 of the main girder 54 of the bridge as the amount of expansion and contraction in the direction of travel.
 第1点62および第2点64は、橋梁における幅員方向に対して同一、走行方向に対して異なる位置である。第1点62と第2点64との間は、例えば数10センチメートル程度である。図4の例では、第1点62と第2点64との間は、35センチメートルである。センサ20は、第1点62と第2点64との間における走行方向の距離の変化量を、例えば数ナノメートルから数百ナノメートルの単位で測定する。 The first point 62 and the second point 64 are the same in the width direction of the bridge but different in the running direction. The distance between the first point 62 and the second point 64 is, for example, several tens of centimeters. In the example of FIG. 4, the distance between the first point 62 and the second point 64 is 35 centimeters. The sensor 20 measures the amount of change in distance in the direction of travel between the first point 62 and the second point 64 in units of, for example, several nanometers to several hundred nanometers.
 センサ20は、第1部材66と、第2部材68と、変位検出装置70とを有する。 The sensor 20 has a first member 66 , a second member 68 and a displacement detection device 70 .
 第1部材66は、支持部66aと梁部66bとを有する片持梁である。支持部66aの一端は、第1点62に固定される固定端66cである。支持部66aは、第1点62から、主桁54の下面56に対して垂直方向の下側に所定距離伸びる。梁部66bは、支持部66aにおける固定端66cとは反対側の端部から、走行方向の第2点64側に所定距離伸びる。梁部66bにおける支持部66aに接続されていない側の端部は、何れの部材とも接続されない自由端66dである。本実施形態において、第1部材66の自由端66dは、第1点62と第2点64との間を結ぶ線の略中心の近傍に配置される。 The first member 66 is a cantilever beam having a support portion 66a and a beam portion 66b. One end of the support portion 66 a is a fixed end 66 c fixed to the first point 62 . The support portion 66 a extends vertically downward from the first point 62 with respect to the lower surface 56 of the main girder 54 by a predetermined distance. The beam portion 66b extends a predetermined distance toward the second point 64 in the traveling direction from the end portion of the support portion 66a opposite to the fixed end 66c. The end of the beam portion 66b that is not connected to the support portion 66a is a free end 66d that is not connected to any member. In this embodiment, the free end 66 d of the first member 66 is positioned near the approximate center of the line connecting the first point 62 and the second point 64 .
 第2部材68は、支持部68aと梁部68bとを有する片持梁である。支持部68aの一端は、第2点64に固定される固定端68cである。支持部68aは、第2点64から、主桁54の下面56に対して垂直方向の下側に所定距離伸びる。梁部68bは、支持部68aにおける固定端68cとは反対側の端部から、走行方向の第1点62側に所定距離伸びる。梁部68bにおける支持部68aに接続されていない側の端部は、何れの部材とも接続されない自由端68dである。本実施形態において、第2部材68の自由端68dは、第1点62と第2点64との間を結ぶ線の略中心の近傍に配置される。 The second member 68 is a cantilever beam having a support portion 68a and a beam portion 68b. One end of the support portion 68 a is a fixed end 68 c fixed to the second point 64 . The support portion 68a extends vertically downward from the second point 64 to the lower surface 56 of the main girder 54 for a predetermined distance. The beam portion 68b extends a predetermined distance toward the first point 62 in the running direction from the end portion of the support portion 68a opposite to the fixed end 68c. The end of the beam portion 68b that is not connected to the support portion 68a is a free end 68d that is not connected to any member. In this embodiment, the free end 68 d of the second member 68 is positioned near the approximate center of the line connecting the first point 62 and the second point 64 .
 ここで、第1部材66の自由端66dおよび第2部材68の自由端68dとは、機械的な干渉が生じず、走行方向に重複した位置に配置される。これにより、第1部材66の自由端66dおよび第2部材68の自由端68dは、主桁54の下面56に対して垂直する方向に対向した位置に配置される。そして、第1点62と第2点64との間の距離が変化した場合、第1部材66の自由端66dと第2部材68の自由端68dとの相対位置は、走行方向にずれる。 Here, the free end 66d of the first member 66 and the free end 68d of the second member 68 are arranged at overlapping positions in the running direction without mechanical interference. As a result, the free end 66d of the first member 66 and the free end 68d of the second member 68 are arranged to face each other in the direction perpendicular to the lower surface 56 of the main girder 54 . When the distance between the first point 62 and the second point 64 changes, the relative positions of the free end 66d of the first member 66 and the free end 68d of the second member 68 shift in the running direction.
 なお、図4に示したセンサ20は、第1部材66および第2部材68の両方が片持梁である構成であった。しかし、第2部材68が片持梁であって、第1部材66は片持梁でなくてもよい。この場合、第2部材68は、自由端68dが第1部材66の少なくとも一部と、機械的な干渉はせずに、走行方向に重なる位置に配置される。このような構成であっても、第1点62と第2点64との間の距離が変化した場合、第1部材66と第2部材68の自由端68dとの相対位置は、走行方向にずれる。 Note that the sensor 20 shown in FIG. 4 has a configuration in which both the first member 66 and the second member 68 are cantilever beams. However, the second member 68 may be cantilevered and the first member 66 may not be cantilevered. In this case, the second member 68 is arranged such that the free end 68d overlaps at least a portion of the first member 66 in the running direction without mechanical interference. Even with such a configuration, when the distance between the first point 62 and the second point 64 changes, the relative position between the first member 66 and the free end 68d of the second member 68 changes in the running direction. deviate.
 変位検出装置70は、第1部材66の自由端66dと第2部材68の自由端68dとが対向した部分に設けられる。変位検出装置70は、第1部材66の自由端66dと第2部材68の自由端68dとの相対位置の変位を検出する。そして、変位検出装置70は、検出した変位を、橋梁における走行方向の2点間の伸縮量として出力する。 The displacement detection device 70 is provided at a portion where the free end 66d of the first member 66 and the free end 68d of the second member 68 face each other. The displacement detection device 70 detects the displacement of the relative position between the free end 66d of the first member 66 and the free end 68d of the second member 68. As shown in FIG. Then, the displacement detection device 70 outputs the detected displacement as the amount of expansion and contraction between two points in the running direction of the bridge.
 図5は、変位検出装置70を第1部材66および第2部材68とともに示す図である。変位検出装置70は、光学素子72と、検出器74とを含む。 5 is a diagram showing the displacement detection device 70 together with the first member 66 and the second member 68. FIG. Displacement detection device 70 includes an optical element 72 and a detector 74 .
 光学素子72は、第1部材66の自由端66dまたは第2部材68の自由端68dの一方に取り付けられる。検出器74は、第1部材66の自由端66dまたは第2部材68の自由端68dのうち、光学素子72が取り付けられていない他方に取り付けられる。 The optical element 72 is attached to either the free end 66 d of the first member 66 or the free end 68 d of the second member 68 . The detector 74 is attached to the other of the free end 66d of the first member 66 or the free end 68d of the second member 68 to which the optical element 72 is not attached.
 光学素子72は、走行方向に対する光の照射位置に応じて、反射光量または透過光量が変化する光学部材である。例えば、光学素子72は、走行方向に所定間隔の複数の光吸収材が表面に塗布されたミラーである。また、光学素子72は、走行方向に所定間隔の複数の光学スリットが形成された回折格子であってもよい。 The optical element 72 is an optical member whose reflected light amount or transmitted light amount changes according to the light irradiation position in the traveling direction. For example, the optical element 72 is a mirror whose surface is coated with a plurality of light absorbing materials spaced at predetermined intervals in the running direction. Also, the optical element 72 may be a diffraction grating in which a plurality of optical slits are formed at predetermined intervals in the running direction.
 検出器74は、ハーフミラー76と、発光部78と、受光部80と、検出回路82とを含む。ハーフミラー76は、照射された光の一部を反射し、他の一部を透過する。 The detector 74 includes a half mirror 76 , a light emitter 78 , a light receiver 80 and a detection circuit 82 . The half mirror 76 reflects part of the irradiated light and transmits the other part.
 発光部78は、光学素子72に対してハーフミラー76を介して光を照射する。受光部80は、光学素子72により反射された光を、ハーフミラー76を介して受光する。検出回路82は、受光部80により検出された光の光量変化に基づき第1部材66と第2部材68との相対位置の変位を表す信号を、伸縮量として出力する。 The light emitting unit 78 irradiates the optical element 72 with light through the half mirror 76 . The light receiving section 80 receives the light reflected by the optical element 72 via the half mirror 76 . The detection circuit 82 outputs a signal representing the displacement of the relative position between the first member 66 and the second member 68 based on the change in the amount of light detected by the light receiving section 80 as the amount of expansion and contraction.
 光学素子72に照射される光の位置は、第1部材66と第2部材68との相対位置の走行方向における位置のずれに応じて、走行方向にずれる。光学素子72には走行方向に並んだ複数の光吸収材または複数の光学スリットが形成されているので、光学素子72の反射光量は、光の照射位置における走行方向のずれに応じて増減する。具体的には、光学素子72の反射光量は、光学素子72に照射される光の位置が並んだ複数の光吸収材または複数の光学スリットの間隔分ずれると、光量の増減が1周期する。従って、例えば、検出回路82は、受光部80から出力された信号の増減をカウントすることにより、第1部材66と第2部材68との相対位置の変化量を取得することができる。 The position of the light irradiated to the optical element 72 shifts in the running direction according to the positional deviation of the relative positions of the first member 66 and the second member 68 in the running direction. Since the optical element 72 is formed with a plurality of light absorbing materials or a plurality of optical slits arranged in the running direction, the amount of light reflected by the optical element 72 increases or decreases according to the displacement of the light irradiation position in the running direction. Specifically, the amount of light reflected by the optical element 72 increases or decreases for one cycle when the position of the light irradiated to the optical element 72 shifts by the distance between a plurality of light absorbing materials or a plurality of optical slits. Therefore, for example, the detection circuit 82 can obtain the amount of change in the relative position between the first member 66 and the second member 68 by counting the increase or decrease in the signal output from the light receiving section 80 .
 また、変位検出装置70は、光吸収材または光学スリットのピッチに対して互いに1/4周期ずれた2つの光学素子72と、2つの光学素子72に対応する2つの発光部78および2つの受光部80とを含んでもよい。これにより、2つの受光部80は、第1部材66と第2部材68との相対位置の変化に対して1/4周期位相のずれた2つの周期信号を出力することができる。従って、例えば、検出回路82は、2つの信号の値に基づき、第1部材66と第2部材68との相対位置の変化方向、および、ストライプの周期より短い間隔での、第1部材66と第2部材68との相対位置の変化量を検出することができる。 Further, the displacement detection device 70 includes two optical elements 72 shifted by 1/4 period from each other with respect to the pitch of the light absorbing material or the optical slit, and two light emitting units 78 and two light receiving units corresponding to the two optical elements 72. 80 may also be included. Thereby, the two light receiving sections 80 can output two periodic signals whose phases are shifted by 1/4 period with respect to the change in the relative positions of the first member 66 and the second member 68 . Therefore, for example, the detection circuit 82 detects the direction of change in the relative position of the first member 66 and the second member 68 based on the values of the two signals, and the direction of change in the relative positions of the first member 66 and the first member 66 at intervals shorter than the period of the stripes. The amount of change in relative position with the second member 68 can be detected.
 また、図5の例では、光学素子72は、光を反射する構成となっている。これに代えて、光学素子72は、光を透過する構成であってもよい。この場合、光学素子72は、走行方向に対する光の照射位置に応じて、透過光量が変化する。例えば、光学素子72は、走行方向に所定間隔の複数の光吸収材が表面に塗布されたガラスまたはプラスチック等であってもよい。このような場合、受光部80は、光学素子72を透過した光を受光する。 Also, in the example of FIG. 5, the optical element 72 is configured to reflect light. Alternatively, the optical element 72 may be configured to transmit light. In this case, the optical element 72 changes the amount of transmitted light according to the irradiation position of the light with respect to the running direction. For example, the optical element 72 may be made of glass, plastic, or the like, on the surface of which a plurality of light absorbing materials are applied at predetermined intervals in the running direction. In such a case, the light receiving section 80 receives light that has passed through the optical element 72 .
 また、検出器74は、ハーフミラー76を含まない構成であってもよい。ここで、検出器74は、第1部材66に設けられるとする。また、光学素子72は、第2部材68に設けられるとする。そして、第1部材66における、光学素子72の幅員方向の中心に対向する位置を、Pとする。このような場合、発光部78は、第1部材66における、Pから、幅員方向に所定距離ずれた位置に配置される。また、受光部80は、Pから、幅員方向に発光部78とは反対側に所定距離ずれた位置に配置される。発光部78は、光学素子72の幅員方向の中心へと向かう方向に、光を出射する。光学素子72は、発光部78からの光が所定の角度で入射され、入射された光を受光部80の方向に反射する。そして、受光部80は、光学素子72により反射された光を受光する。このような検出器74は、図5に示した構成と同様の機能を有することができる。 Also, the detector 74 may be configured without the half mirror 76 . Here, the detector 74 is assumed to be provided on the first member 66 . It is also assumed that the optical element 72 is provided on the second member 68 . Let P be the position of the first member 66 facing the center of the optical element 72 in the width direction. In such a case, the light emitting portion 78 is arranged at a position shifted from P in the width direction by a predetermined distance in the first member 66 . Further, the light receiving section 80 is arranged at a position shifted by a predetermined distance from P on the side opposite to the light emitting section 78 in the width direction. The light emitting section 78 emits light in a direction toward the center of the optical element 72 in the width direction. The optical element 72 receives light from the light emitting section 78 at a predetermined angle and reflects the incident light toward the light receiving section 80 . The light receiving section 80 receives the light reflected by the optical element 72 . Such a detector 74 can have similar functionality as the configuration shown in FIG.
 このような構成の変位検出装置70は、橋梁における主桁54の下面56に取り付けることができる。例えば、変位検出装置70は、歪計のように橋梁に伸縮部材を埋め込んだりせずに、外部から取り付けることができる。これにより、変位検出装置70は、完成済みの橋梁に対して後から取り付けることができる。また、変位検出装置70は、橋梁の強度を低下させずに、取り付けることができる。また、変位検出装置70は、取り付け後にも容易にメンテナンスをすることもできる。 The displacement detection device 70 having such a configuration can be attached to the lower surface 56 of the main girder 54 in the bridge. For example, the displacement detection device 70 can be attached from the outside without embedding an expandable member in the bridge like a strain gauge. Thereby, the displacement detection device 70 can be attached to a completed bridge later. Moreover, the displacement detection device 70 can be installed without reducing the strength of the bridge. Also, the displacement detection device 70 can be easily maintained even after installation.
 また、このような構成の変位検出装置70は、片持梁を用いて2点間の距離の変化を光センサにより検出する。これにより、変位検出装置70は、簡単な構成でコストの小さい部材を用いて、橋梁における非常に小さい伸縮を精度良く検出することができる。 In addition, the displacement detection device 70 having such a configuration uses a cantilever beam to detect a change in the distance between two points with an optical sensor. As a result, the displacement detection device 70 can accurately detect very small expansion and contraction of the bridge using members with a simple configuration and low cost.
 図6は、劣化検出装置30の機能構成を示す図である。劣化検出装置30は、取得部112と、時系列データ記憶部114と、切出部116と、抽出部118と、振幅算出部120と、劣化判定部122と、アラーム出力部124と、収集部132と、再学習用データ記憶部134と、再学習指示部136と、再学習部138とを備える。 FIG. 6 is a diagram showing the functional configuration of the deterioration detection device 30. As shown in FIG. The deterioration detection device 30 includes an acquisition unit 112, a time series data storage unit 114, a cutout unit 116, an extraction unit 118, an amplitude calculation unit 120, a deterioration determination unit 122, an alarm output unit 124, and a collection unit. 132 , a relearning data storage unit 134 , a relearning instructing unit 136 , and a relearning unit 138 .
 取得部112は、橋梁に設けられたセンサ20から、橋梁のセンサ20が設けられた対象部分における走行方向の変位を表すパラメータの時系列データを収集する。本実施形態においては、取得部112は、ネットワークを介してパラメータの時系列データを取得する。また、本実施形態においては、パラメータは、対象部分における走行方向の伸縮量である。パラメータの時系列データは、検出した時刻とパラメータとが対応付けられている。 The acquisition unit 112 collects, from the sensors 20 provided on the bridge, time-series data of parameters representing the displacement in the traveling direction in the target portion of the bridge where the sensors 20 are provided. In this embodiment, the acquisition unit 112 acquires time-series data of parameters via a network. Further, in the present embodiment, the parameter is the amount of expansion and contraction in the running direction of the target portion. In the time-series data of parameters, detected times and parameters are associated with each other.
 時系列データ記憶部114は、取得部112により収集されたパラメータの時系列データを記憶する。 The time-series data storage unit 114 stores time-series data of parameters collected by the acquisition unit 112 .
 切出部116は、時系列データ記憶部114に記憶されたパラメータの時系列データを予め定められた時間長の単位で分割して、部分データを切り出す。そして、切出部116は、切り出した部分データを、1つずつ順次に抽出部118に供給する。部分データの時間長は、少なくとも、特定車両が橋梁の測定区間を通過することによって走行方向の伸縮量の変化が開始する時点から、変化が終了する時点までの時間より長い。 The cutout unit 116 cuts out partial data by dividing the parameter time series data stored in the time series data storage unit 114 into units of a predetermined time length. Then, the extraction unit 116 sequentially supplies the extracted partial data to the extraction unit 118 one by one. The length of time of the partial data is at least longer than the time from when the specific vehicle passes through the measurement section of the bridge and the change in the amount of expansion and contraction in the running direction starts to when the change ends.
 部分データは、所定サンプル数のデータである。より具体的には、部分データは、抽出部118において用いられる第1ニューラルネットワークへと入力させるサンプル数のデータである。本実施形態において、切出部116は、時間方向に隣接する2つの部分データの一部分をオーバラップさせて切り出す。すなわち、それぞれの部分データは、時間的に直前の部分データにおける後半部分と、時間的に直後の部分データにおける前半部分とオーバラップする。例えば、それぞれの部分データにおける前半の1/2のデータは、直前の部分データにおける後半の1/2のデータと同一であってもよい。また、それぞれの部分データにおける後半の1/2のデータは、直後の部分データにおける前半の1/2のデータと同一であってもよい。これにより、切出部116は、特定車両が橋梁を通過した場合、複数の部分データの何れかに、特定車両が橋梁を通過することによって橋梁の走行方向における伸縮量の変化が開始した時点から、変化が終了する時点までの全てを含めることができる。 The partial data is data of a predetermined number of samples. More specifically, the partial data is data of the number of samples to be input to the first neural network used in the extraction unit 118 . In the present embodiment, the cutout unit 116 cuts out two pieces of partial data that are adjacent in the time direction while partially overlapping each other. That is, each partial data overlaps the latter half of the temporally previous partial data and the first half of the temporally immediately following partial data. For example, the first half data in each partial data may be the same as the second half data in the immediately preceding partial data. Also, the latter half data in each partial data may be the same as the first half data in the immediately following partial data. As a result, when the specific vehicle passes over the bridge, the extracting unit 116 stores any of the plurality of partial data as , can include everything up to the point where the change ends.
 抽出部118は、第1ニューラルネットワークによる判定結果に基づき、時系列データ記憶部114に記憶されたパラメータの時系列データから、特定車両が橋梁を通過時の部分データである特定部分データを抽出する。第1ニューラルネットワークは、対象となる部分データを入力し、対象となる部分データに特定車両が測定区間を通過したか否かを判定する。第1ニューラルネットワークは、特定車両が橋梁を通過した場合に得られた時系列データを予め取得しておき、予め取得した時系列データを教師データとして、学習されている。本実施形態において、第1ニューラルネットワークは、畳み込みニューラルネットワーク(CNN)である。抽出部118は、畳み込みニューラルネットワークを用いることにより、部分データにおける何れの時間部分に、特定車両が橋梁を通過した場合に得られるデータが含まれていても、特定車両が橋梁を通過したことを精度良く検出することができる。そして、抽出部118は、第1ニューラルネットワークにより特定車両が橋梁を通過したとの判定結果が得られたことに応じて、第1ニューラルネットワークに入力された部分データを、特定部分データとして出力する。 The extraction unit 118 extracts specific partial data, which is partial data when the specific vehicle passes over the bridge, from the time-series data of the parameters stored in the time-series data storage unit 114 based on the determination result by the first neural network. . The first neural network inputs target partial data and determines whether or not a specific vehicle passes through the target partial data in the measurement section. The first neural network acquires in advance time-series data obtained when a specific vehicle passes over a bridge, and learns using the acquired time-series data as teacher data. In this embodiment, the first neural network is a convolutional neural network (CNN). The extraction unit 118 uses a convolutional neural network to detect that the specific vehicle has passed the bridge even if data obtained when the specific vehicle has passed the bridge is included in any time part of the partial data. It can be detected with high accuracy. Then, the extraction unit 118 outputs the partial data input to the first neural network as the specific partial data in response to the determination result that the specific vehicle has passed the bridge by the first neural network. .
 特定車両は、例えば、定期的に橋梁を通過する車両であって、毎回、ほぼ同一の速度およびほぼ同一重量で橋梁を通過する車両である。例えば、特定車両は、路線バスである。路線バスは、日毎に、予め定められた時刻表に従って走行をする。従って、路線バスは、日毎に、予め定められた時刻に橋梁を通過すると予定される。また、特定車両は、例えば、ゴミ収集車等であってもよい。ゴミ収集車は、走行する経路および時刻が予め定められている。従って、ゴミ収集車は、ゴミ収集日において予め定められた時刻に橋梁を通過すると予定される。 A specific vehicle is, for example, a vehicle that passes over a bridge on a regular basis, each time at approximately the same speed and approximately the same weight. For example, the specific vehicle is a route bus. A route bus runs according to a predetermined timetable every day. Therefore, the route bus is scheduled to pass the bridge at a predetermined time every day. Also, the specific vehicle may be, for example, a garbage truck or the like. The garbage truck has a predetermined travel route and time. Therefore, the garbage truck is scheduled to pass the bridge at a predetermined time on the garbage collection day.
 振幅算出部120は、抽出部118が特定部分データを抽出する毎に、抽出した特定部分データに基づき、特定車両の通過時における橋梁の走行方向における伸縮量の振幅値を算出する。例えば、パラメータが対象部分の伸縮量を表す場合には、振幅算出部120は、抽出した特定部分データにおける最大値と最小値との差を振幅値として算出する。 Every time the extraction unit 118 extracts the specific portion data, the amplitude calculation unit 120 calculates the amplitude value of the expansion and contraction amount in the running direction of the bridge when the specific vehicle passes, based on the extracted specific portion data. For example, when the parameter represents the amount of expansion/contraction of the target portion, the amplitude calculator 120 calculates the difference between the maximum value and the minimum value in the extracted specific portion data as the amplitude value.
 パラメータが対象部分の伸縮量ではない場合には、振幅算出部120は、対象部分の伸縮量の振幅値に相関のある値を、振幅値として出力してもよい。例えば、パラメータが固有振動数の大きさである場合には、振幅算出部120は、抽出した特定部分データにおける最大値と最小値との差を、振幅値として算出してもよい。 When the parameter is not the amount of expansion/contraction of the target portion, the amplitude calculator 120 may output a value correlated with the amplitude value of the amount of expansion/contraction of the target portion as the amplitude value. For example, when the parameter is the magnitude of the natural frequency, the amplitude calculator 120 may calculate the difference between the maximum value and the minimum value in the extracted specific partial data as the amplitude value.
 劣化判定部122は、振幅算出部120が振幅値を算出する毎に、算出した振幅値と、予め設定された基準値とを比較する。そして、劣化判定部122は、振幅値が基準値より大きくなった場合、橋梁が劣化したと判定する。 The deterioration determination unit 122 compares the calculated amplitude value with a preset reference value each time the amplitude calculation unit 120 calculates the amplitude value. Then, the deterioration determining unit 122 determines that the bridge has deteriorated when the amplitude value becomes larger than the reference value.
 劣化判定部122は、直近の予め定められたサンプル数の振幅値の移動平均値を算出し、移動平均値が基準値より大きくなった場合に、橋梁が劣化したと判定してもよい。また、劣化判定部122は、複数のサンプル数の振幅値に対して、ノイズ除去処理等の予め定められたフィルタリング処理を実行し、フィルタリング処理の結果が基準値より大きくなった場合に、橋梁が劣化したと判定してもよい。なお、劣化判定部122は、複数の異なる基準値が予め設定されていてもよい。そして、劣化判定部122は、振幅値がそれぞれの基準値より大きくなる毎に、橋梁が劣化したと判定してもよい。 The deterioration determination unit 122 may calculate the moving average value of the most recent predetermined sample number of amplitude values, and determine that the bridge has deteriorated when the moving average value is greater than the reference value. Further, the deterioration determination unit 122 executes predetermined filtering processing such as noise removal processing on the amplitude values of a plurality of samples. You may judge that it deteriorated. A plurality of different reference values may be set in advance in the deterioration determination unit 122 . Then, the deterioration determination unit 122 may determine that the bridge has deteriorated each time the amplitude value becomes larger than each reference value.
 アラーム出力部124は、橋梁が劣化したと判定された場合、橋梁が劣化したことを示すアラーム情報を出力する。なお、アラーム出力部124は、劣化判定部122に複数の異なる基準値が予め設定されている場合、振幅値がそれぞれの基準値より大きくなる毎に、基準値の大きさを表すレベル情報を含むアラーム情報を取得してもよい。これにより、アラーム出力部124は、橋梁の劣化度のレベルを管理者等に知らせることができる。 When it is determined that the bridge has deteriorated, the alarm output unit 124 outputs alarm information indicating that the bridge has deteriorated. Note that when a plurality of different reference values are preset in the deterioration determination unit 122, the alarm output unit 124 includes level information indicating the magnitude of the reference value each time the amplitude value becomes greater than each reference value. Alarm information may be obtained. Thereby, the alarm output unit 124 can notify the administrator or the like of the level of deterioration of the bridge.
 収集部132は、抽出部118が特定部分データを抽出する毎に、抽出された特定部分データを収集する。再学習用データ記憶部134は、収集部132により収集された特定部分データを記憶する。 The collection unit 132 collects the extracted specific partial data each time the extraction unit 118 extracts the specific partial data. The relearning data storage unit 134 stores the specific partial data collected by the collection unit 132 .
 再学習指示部136は、予め定められた判断基準に基づき第1ニューラルネットワークを再学習するか否かを判断し、第1ニューラルネットワークを再学習するか否かの判断結果に基づき、第1ニューラルネットワークの再学習を指示する再学習指示を出力する。例えば、再学習指示部136は、振幅算出部120が振幅値を算出する毎に、予め定められた判断基準に基づき第1ニューラルネットワークを再学習するか否かを判断する。 The relearning instruction unit 136 determines whether or not to relearn the first neural network based on predetermined determination criteria, and determines whether or not to relearn the first neural network based on the determination result of whether or not to relearn the first neural network. Outputs a relearning instruction to instruct the relearning of the network. For example, the relearning instruction unit 136 determines whether or not to relearn the first neural network based on a predetermined determination criterion each time the amplitude calculation unit 120 calculates an amplitude value.
 再学習部138は、再学習指示部136から再学習指示が出力された場合、収集部132により収集された特定部分データを教師データとして、第1ニューラルネットワークを再学習する。すなわち、再学習部138は、既に学習されている第1ニューラルネットワークを、再度学習する。例えば、再学習部138は、再学習直前に設定されている重みおよびバイアス等のネットワークパラメータを初期値として、誤差逆伝播法等により再学習をしてもよいし、再学習直前に設定されているネットワークパラメータをランダム値または所定値等に変更した後、誤差逆伝播法等により再学習をしてもよい。 When a relearning instruction is output from the relearning instruction unit 136, the relearning unit 138 relearns the first neural network using the specific partial data collected by the collecting unit 132 as teacher data. That is, the re-learning unit 138 re-learns the already learned first neural network. For example, the re-learning unit 138 may perform re-learning by error backpropagation or the like using network parameters such as weights and biases set immediately before re-learning as initial values. After changing the existing network parameters to random values or predetermined values, re-learning may be performed by error backpropagation or the like.
 再学習部138は、最後の再学習時から後に収集された特定部分データを教師データとして第1ニューラルネットワークを再学習する。劣化の判定の開始時からまだ再学習をしていない場合には、再学習部138は、開始時から後に収集された特定部分データを教師データとして第1ニューラルネットワークを再学習してもよい。これにより、再学習部138は、直近の橋梁の状態に応じた適切な判定処理をするように第1ニューラルネットワークを再学習することができる。なお、再学習部138は、収集部132により収集された特定部分データに加えて、予め収集されている時系列データを教師データとして、第1ニューラルネットワークを再学習してもよい。 The re-learning unit 138 re-learns the first neural network using specific partial data collected after the last re-learning as teacher data. If re-learning has not been performed since the start of deterioration determination, the re-learning unit 138 may re-learn the first neural network using specific partial data collected after the start as teacher data. Thereby, the re-learning unit 138 can re-learn the first neural network so as to perform appropriate determination processing according to the latest state of the bridge. Note that the relearning unit 138 may relearn the first neural network using time-series data collected in advance as teacher data in addition to the specific partial data collected by the collecting unit 132 .
 図7は、路線バスが橋梁を通過した時の走行方向における伸縮量の時系列データの一例を示す図である。車両が橋梁を通過する場合、橋梁は、走行方向に対して、伸びる方向に変化し、最大値まで伸びた後、縮む方向に変化し、最小値まで縮んだ後に、元に戻るような変化をする。 FIG. 7 is a diagram showing an example of time-series data of the amount of expansion and contraction in the running direction when a route bus passes a bridge. When a vehicle passes over a bridge, the bridge changes in the direction of travel, expanding, expanding to the maximum value, then contracting, contracting to the minimum value, and then returning to its original state. do.
 同一の種類の車両が、ほぼ同一の重量およびほぼ同一の速度で橋梁を通過した場合、橋梁における対象部分の伸縮量の波形は、橋梁の劣化度が同一であれば、ほぼ同一となる。例えば、同一の種類の車両が、ほぼ同一の重量およびほぼ同一の速度で橋梁を通過した場合、伸縮量の波形における振幅値(最大値と最小値との差)、および、変化時間(変化開始時刻から、変化終了時刻までの期間)は、橋梁の劣化度が同一であれば、ほぼ同一となる。なお、図7は、センサ20が、橋梁における車両の進入側の端部に設けられている場合の例である。センサ20は、橋梁における車両の退出側の端部に設けられていてもよい。この場合、橋梁は、図7とは逆に変化する。すなわち、この場合、橋梁は、走行方向に対して、縮む方向に変化し、最小値まで縮んだ後、伸びる方向に変化し、最大値まで伸びた後に、元に戻るような変化をする。 When vehicles of the same type pass through a bridge with approximately the same weight and approximately the same speed, the waveforms of the amount of expansion and contraction of the target portion of the bridge will be approximately the same if the degree of deterioration of the bridge is the same. For example, when vehicles of the same type pass through a bridge with approximately the same weight and approximately the same speed, the amplitude value (difference between the maximum value and the minimum value) and the change time (change start The period from time to change end time) is almost the same if the degree of deterioration of the bridge is the same. Note that FIG. 7 shows an example in which the sensor 20 is provided at the end of the bridge on the vehicle entry side. The sensor 20 may be provided at the end of the bridge on the exit side of the vehicle. In this case, the bridge changes opposite to that in FIG. That is, in this case, the bridge changes in the direction of contraction with respect to the running direction, contracts to the minimum value, changes in the direction of extension, expands to the maximum value, and then returns to its original state.
 図8は、振幅値の時間変化および振幅値の誤差範囲を示す図である。 FIG. 8 is a diagram showing the time change of the amplitude value and the error range of the amplitude value.
 橋梁は、時間経過すると劣化する。橋梁の劣化が進行した場合、同一の種類の車両が、ほぼ同一の重量およびほぼ同一の速度で橋梁を通過した場合であっても、伸縮量の振幅値は、大きくなる。すなわち、同一の種類の車両が、ほぼ同一の重量およびほぼ同一の速度で橋梁を通過した場合における、橋梁の対象部分における伸縮量の振幅値は、時間経過に従って大きくなる。 Bridges deteriorate over time. When the deterioration of the bridge progresses, the amplitude value of the expansion/contraction amount increases even when the same type of vehicle passes over the bridge with substantially the same weight and substantially the same speed. That is, when vehicles of the same type pass through the bridge at substantially the same weight and at substantially the same speed, the amplitude value of the amount of expansion and contraction in the target portion of the bridge increases over time.
 また、同一の種類の車両が、ほぼ同一の重量およびほぼ同一の速度で橋梁を通過した場合であっても、周囲の環境および測定条件等によって、伸縮量の振幅値に誤差が生じる。また、特定車両が路線バスの場合、乗客数および通過速度も日によって異なる。特定車両が橋梁を通過した時に算出された伸縮量の振幅値には、重量および通過速度による誤差も含まれる。 Also, even if the same type of vehicle passes over the bridge with almost the same weight and almost the same speed, the surrounding environment and measurement conditions cause an error in the amplitude value of the amount of expansion and contraction. Moreover, when the specific vehicle is a route bus, the number of passengers and the passing speed also differ depending on the day. The amplitude value of the expansion/contraction amount calculated when the specific vehicle passes over the bridge includes errors due to weight and passing speed.
 しかし、例えば非特許文献1の実験結果を参照すると、図8に示すように、路線バスが橋梁を通過した時に算出される振幅値の誤差分布範囲よりも、橋梁の経年劣化による振幅値の変化量の方が、十分に大きいと予測される。このため、路線バス等の特定車両が橋梁を通過した場合において、対象部分の伸縮量の振幅値が予め設定された基準値より大きくなった場合、その基準値が測定開始時の振幅値の誤差分布範囲よりも十分に大きく設定されていれば、橋梁は、測定開始時より劣化したといえる。 However, referring to the experimental results of Non-Patent Document 1, for example, as shown in FIG. The quantity is expected to be sufficiently large. For this reason, when a specific vehicle such as a route bus passes through a bridge, if the amplitude value of the expansion/contraction amount of the target portion becomes larger than the preset reference value, the reference value will be the error of the amplitude value at the start of measurement. If it is set sufficiently larger than the distribution range, it can be said that the bridge has deteriorated since the start of the measurement.
 従って、劣化検出装置30は、特定車両の通過時における橋梁の走行方向における伸縮量の振幅値が基準値より大きくなった場合、橋梁が劣化したと判定することができる。 Therefore, the deterioration detection device 30 can determine that the bridge has deteriorated when the amplitude value of the amount of expansion and contraction in the running direction of the bridge when a specific vehicle passes is greater than the reference value.
 図9は、振幅値の時間変化および第1ニューラルネットワークを再学習する閾値を示す図である。 FIG. 9 is a diagram showing changes in amplitude values over time and thresholds for re-learning the first neural network.
 機械学習モデルに入力するデータが経時変化により変わる場合、ニューラルネットワークは、長期間運用した場合、精度が悪化するという問題が有る。これは、ニューラルネットワークを学習した時の状況と、長期間経過後の状況との乖離によるものであると考えられる。このため、ニューラルネットワークは、予測精度が悪化した場合、再学習がされる。しかし、運用中において、予測精度がどの程度悪化したかを判断することは困難である。 If the data input to the machine learning model changes over time, the neural network has the problem of deteriorating accuracy when operated for a long period of time. This is considered to be due to the divergence between the situation when the neural network was learned and the situation after a long period of time. Therefore, the neural network is re-learned when the prediction accuracy deteriorates. However, it is difficult to determine how much the prediction accuracy has deteriorated during operation.
 橋梁が劣化した場合、車両通過時における橋梁の走行方向における伸縮量の振幅値は、時間経過に従って大きくなる。従って、この伸縮量の振幅値の変化に従って、橋梁の走行方向の伸縮量が入力される第1ニューラルネットワークは、精度が悪化すると考えられる。そこで、再学習指示部136は、例えば橋梁の走行方向における伸縮量の振幅値が、閾値より大きくなった場合に、再学習指示を出力する。 When a bridge deteriorates, the amplitude value of the amount of expansion and contraction in the running direction of the bridge when a vehicle passes increases over time. Therefore, it is considered that the accuracy of the first neural network to which the amount of expansion/contraction in the running direction of the bridge is input deteriorates according to the change in the amplitude value of the amount of expansion/contraction. Therefore, the relearning instruction unit 136 outputs a relearning instruction when, for example, the amplitude value of the expansion/contraction amount in the running direction of the bridge becomes larger than a threshold value.
 これにより、劣化検出装置30は、予測精度がどの程度悪化したかを判断することなく、適切に第1ニューラルネットワークの再学習時を判断することができる。従って、劣化検出装置30は、橋梁の劣化を長期間に渡り精度良く検出することができる。 As a result, the deterioration detection device 30 can appropriately determine when to re-learn the first neural network without determining how much the prediction accuracy has deteriorated. Therefore, the deterioration detection device 30 can accurately detect the deterioration of the bridge over a long period of time.
 例えば、再学習指示部136は、互いに異なる1または複数の閾値が設定されている。1または複数の閾値は、劣化の判定の開始時における振幅値である初期値と、橋梁が劣化したと判定するための基準値との間の値である。この場合、再学習指示部136は、振幅算出部120が算出した振幅値が、1または複数の閾値のそれぞれより大きくなる毎に、再学習指示を出力する。また、再学習指示部136は、直近の予め定められたサンプル数の振幅値の移動平均値を算出し、移動平均値が、1または複数の閾値のそれぞれより大きくなる毎に、再学習指示を出力してもよい。 For example, the relearning instruction unit 136 is set with one or more thresholds different from each other. One or more thresholds are values between the initial value, which is the amplitude value at the start of deterioration determination, and the reference value for determining that the bridge has deteriorated. In this case, the relearning instruction section 136 outputs a relearning instruction each time the amplitude value calculated by the amplitude calculation section 120 becomes larger than one or more threshold values. In addition, the relearning instruction unit 136 calculates a moving average value of the amplitude values of the most recent predetermined number of samples, and issues a relearning instruction each time the moving average value becomes greater than one or a plurality of threshold values. may be output.
 また、複数の異なる基準値が予め設定されており、劣化判定部122が、振幅値がそれぞれの基準値より大きくなる毎に橋梁が劣化したと判定する場合、再学習指示部136は、複数の異なる基準値のそれぞれと、閾値とが一致していてもよい。また、この場合、再学習指示部136は、基準値と基準値との間に、さらに、1または複数の閾値が設定されていてもよい。 In addition, when a plurality of different reference values are set in advance and the deterioration determination unit 122 determines that the bridge has deteriorated each time the amplitude value becomes larger than each reference value, the relearning instruction unit 136 sets a plurality of Each of the different reference values may match the threshold. In this case, the relearning instruction unit 136 may further set one or more thresholds between the reference values.
 また、例えば、再学習指示部136は、算出した振幅値が、予め設定されたパターンの変化をした場合に、ニューラルネットワークを再学習すると判断して、再学習指示を出力してもよい。例えば、再学習指示部136は、振幅算出部120が算出した振幅値が、最後の再学習時から、予め設定された範囲を超える変化をした場合に、再学習指示を出力する。なお、劣化の判定の開始時からまだ再学習をしていない場合には、再学習指示部136は、振幅算出部120が算出した振幅値が、開始時から予め設定された範囲を超える変化をした場合に、再学習指示を出力する。 Further, for example, the relearning instruction unit 136 may determine to relearn the neural network and output a relearning instruction when the calculated amplitude value changes in a preset pattern. For example, the relearning instruction section 136 outputs a relearning instruction when the amplitude value calculated by the amplitude calculating section 120 changes beyond a preset range from the time of the last relearning. Note that if relearning has not been performed since the start of deterioration determination, the relearning instruction unit 136 causes the amplitude value calculated by the amplitude calculation unit 120 to change beyond a preset range from the start. If so, output a relearning instruction.
 例えば、再学習指示部136は、振幅算出部120が算出した振幅値が、開始時または最後の再学習時から、予め定められた割合変化した場合に、再学習指示を出力してもよい。この場合、再学習指示部136は、振幅値が大きくなる方向に所定割合以上変化した場合に再学習指示を出力してもよいし、振幅値が小さくなる方向に所定割合以上変化した場合にも、再学習指示を出力してもよい。 For example, the relearning instruction unit 136 may output a relearning instruction when the amplitude value calculated by the amplitude calculating unit 120 changes by a predetermined rate from the time of start or the time of the last relearning. In this case, the relearning instruction unit 136 may output a relearning instruction when the amplitude value changes by a predetermined rate or more in the direction of increasing, or may output a relearning instruction when the amplitude value changes by a predetermined rate or more in the direction of decreasing. , may output a re-learning instruction.
 なお、再学習指示部136は、最後の再学習時から、所定時間を経過した場合、再学習指示を出力してもよい。なお、劣化の判定の開始時からまだ再学習をしていない場合には、再学習指示部136は、開始時から所定時間を経過した場合、再学習指示を出力する。 Note that the relearning instruction unit 136 may output a relearning instruction when a predetermined time has passed since the last relearning. If relearning has not been performed since the start of deterioration determination, the relearning instruction unit 136 outputs a relearning instruction when a predetermined time has elapsed since the start of the deterioration determination.
 図10は、変形例に係る劣化検出装置30の機能構成を示す図である。 FIG. 10 is a diagram showing the functional configuration of the deterioration detection device 30 according to the modification.
 劣化検出装置30は、通過時刻取得部142、通過検出情報取得部144、予定時刻推定部146、日付取得部148、通過速度取得部152および重量取得部154のうちの何れか1つまた複数をさらに備えてもよい。 The deterioration detection device 30 includes one or more of the passage time acquisition unit 142, the passage detection information acquisition unit 144, the scheduled time estimation unit 146, the date acquisition unit 148, the passage speed acquisition unit 152, and the weight acquisition unit 154. You may have more.
 通過時刻取得部142は、特定車両が毎日同一の第1時刻に橋梁を通過する予定の車両である場合、特定車両の通過時刻である第1時刻を示す情報を外部装置等から取得する。例えば、特定車両が路線バスである場合、路線バスの時刻表情報等を取得し、取得した時刻表情報に基づき第1時刻を算出してもよい。そして、通過時刻取得部142が第1時刻を取得した場合、抽出部118は、取得した第1時刻に基づき、パラメータの時系列データにおける特定部分データを抽出する。例えば、抽出部118は、パラメータの時系列データにおける第1時刻の前後の予め定められた時間範囲を切り出し、切り出した範囲から特定部分データを抽出する。これにより、抽出部118は、パラメータの時系列データにおける一部分の時間帯に部分データに対して抽出処理を実行すればよいので、少ない処理量で、精度良く特定部分データを抽出することができる。 If the specific vehicle is scheduled to pass through the bridge at the same first time every day, the passage time acquisition unit 142 acquires information indicating the first time, which is the passage time of the specific vehicle, from an external device or the like. For example, when the specific vehicle is a route bus, the timetable information of the route bus or the like may be acquired, and the first time may be calculated based on the acquired timetable information. Then, when the passing time acquiring unit 142 acquires the first time, the extracting unit 118 extracts specific partial data in the parameter time-series data based on the acquired first time. For example, the extracting unit 118 cuts out a predetermined time range before and after the first time in the parameter time series data, and extracts specific partial data from the cut out range. As a result, the extracting unit 118 can extract the specific partial data with high precision with a small amount of processing, since the extracting unit 118 only needs to perform the extraction process on the partial data during a partial time period of the parameter time series data.
 通過検出情報取得部144は、特定車両が橋梁を通過していることを検出する通過検出装置により検出された検出信号を取得する。例えば、通過検出装置は、橋梁を通過する車両を撮像するカメラから画像データを取得し、取得した画像データを解析して特定車両が橋梁を通過しているか否かを判定する。通過検出装置は、特定車両が橋梁を通過していると判断した場合、特定車両が橋梁を通過していることを示す検出信号を劣化検出装置30に与える。また、例えば、通過検出装置は、特定車両に設けられた無線通信装置から、特定車両を識別する識別情報を無線信号により受信する受信装置であってもよい。この場合、通過検出装置は、橋梁の近傍に設けられており、特定車両から識別情報を受信した場合、特定車両が橋梁を通過していることを示す検出信号を劣化検出装置30に与える。 The passage detection information acquisition unit 144 acquires a detection signal detected by a passage detection device that detects that a specific vehicle is passing through a bridge. For example, the passage detection device acquires image data from a camera that captures an image of a vehicle passing over a bridge, analyzes the acquired image data, and determines whether or not a specific vehicle is passing through the bridge. When the passage detection device determines that the specific vehicle is passing through the bridge, it gives the deterioration detection device 30 a detection signal indicating that the specific vehicle is passing through the bridge. Further, for example, the passage detection device may be a receiving device that receives identification information for identifying the specific vehicle from a wireless communication device provided in the specific vehicle by a radio signal. In this case, the passage detection device is provided near the bridge, and upon receiving the identification information from the specific vehicle, gives the deterioration detection device 30 a detection signal indicating that the specific vehicle is passing through the bridge.
 そして、通過検出情報取得部144は、通過検出装置から特定車両が橋梁を通過していること示す検出情報を受け取った場合、検出情報を受け取った時刻を示す時刻情報を抽出部118に与える。抽出部118は、受け取った時刻情報に基づき、パラメータの時系列データにおける特定部分データを抽出する。例えば、抽出部118は、パラメータの時系列データから受け取った時刻情報に示された時刻の前後の予め定められた時間範囲を切り出し、切り出した範囲から特定部分データを抽出する。これにより、抽出部118は、パラメータの時系列データにおける一部分の時間帯に部分データに対して抽出処理を実行すればよいので、少ない処理量で、精度良く特定部分データを抽出することができる。 Then, when the passage detection information acquisition unit 144 receives detection information indicating that the specific vehicle is passing through the bridge from the passage detection device, it provides the extraction unit 118 with time information indicating the time at which the detection information was received. The extraction unit 118 extracts specific partial data in the parameter time-series data based on the received time information. For example, the extraction unit 118 cuts out a predetermined time range before and after the time indicated in the time information received from the parameter time-series data, and extracts specific partial data from the cut out range. As a result, the extracting unit 118 can extract the specific partial data with high precision with a small amount of processing, since the extracting unit 118 only needs to perform the extraction process on the partial data during a partial time period of the parameter time series data.
 予定時刻推定部146は、特定車両が予め定められた第1位置を通過したことを知らせる通過情報を取得する。例えば、特定車両が路線バスである場合、第1位置は、バス経路における橋梁の直前のバス停または特定のバス停である。特定車両が路線バスである場合、予定時刻推定部146は、第1位置を通過したことを示す通過情報を受信する。通過情報は、例えば、バス停に設けられた送信機、路線バスに設けられた送信機、または、路線バスの運行情報を管理する管理装置等から送信される。 The scheduled time estimation unit 146 acquires passage information indicating that the specific vehicle has passed a predetermined first position. For example, if the specific vehicle is a fixed-route bus, the first location is the bus stop immediately before the bridge on the bus route or the specific bus stop. When the specific vehicle is a route bus, the scheduled time estimation unit 146 receives passage information indicating that the vehicle has passed the first position. The transit information is transmitted from, for example, a transmitter provided at a bus stop, a transmitter provided on a route bus, or a management device that manages route bus operation information.
 予定時刻推定部146は、通過情報を受信した場合、通過情報と、第1位置から橋梁までの特定車両の予測走行時間とに基づき、特定車両が橋梁を通過する予定時刻を推定する。例えば、予定時刻推定部146は、通過情報を受信した時刻に、予測走行時間に加えた時刻を予定時刻として算出する。 Upon receiving the passage information, the scheduled time estimating unit 146 estimates the scheduled time for the specific vehicle to pass the bridge based on the passage information and the predicted travel time of the specific vehicle from the first position to the bridge. For example, the scheduled time estimating unit 146 calculates the scheduled time by adding the estimated running time to the time when the passage information is received.
 そして、予定時刻推定部146は、推定した予定時刻を抽出部118に与える。抽出部118は、受け取った予定時刻に基づき、パラメータの時系列データにおける特定部分データを抽出する。例えば、抽出部118は、パラメータの時系列データから予定時刻に示された時刻の前後の予め定められた時間範囲を切り出し、切り出した範囲から特定部分データを抽出する。これにより、抽出部118は、パラメータの時系列データにおける一部分の時間帯に部分データに対して抽出処理を実行すればよいので、少ない処理量で、精度良く特定部分データを抽出することができる。 Then, the scheduled time estimation unit 146 gives the estimated scheduled time to the extraction unit 118 . The extraction unit 118 extracts specific partial data in the parameter time-series data based on the received scheduled time. For example, the extracting unit 118 cuts out a predetermined time range before and after the time indicated by the scheduled time from the time-series data of the parameter, and extracts specific partial data from the cut out range. As a result, the extracting unit 118 can extract the specific partial data with high precision with a small amount of processing, since the extracting unit 118 only needs to perform the extraction process on the partial data during a partial time period of the parameter time series data.
 日付取得部148は、予め設定された日付を示す日付情報を取得する。日付取得部148は、日付として、曜日を取得してもよい。この場合、特定車両は、橋梁を日毎に同一時刻に通過する予定の車両である。日付取得部148は、取得した日付情報を振幅算出部120に与える。 The date acquisition unit 148 acquires date information indicating a preset date. The date acquisition unit 148 may acquire the day of the week as the date. In this case, the specific vehicle is a vehicle scheduled to pass the bridge at the same time every day. The date acquisition unit 148 gives the acquired date information to the amplitude calculation unit 120 .
 日付情報を取得した場合、振幅算出部120は、取得した日付情報に示された日付における時系列データから抽出された特定部分データに基づき、振幅値を算出する。例えば、振幅算出部120は、平日の日付における時系列データから抽出された特定部分データに基づき振幅値を算出し、休日の日付における時系列データから抽出された特定部分データに基づき振幅値を算出しない。例えば、特定車両が路線バスの場合、平日と、休日とで、乗客数が大きく異なり、この結果重量が大きく異なる場合がある。また、特定車両が路線バスの場合、平日と休日とで、交通の混雑度が異なり、橋梁を通過する通過速度が大きく異なる場合がある。従って、特定車両が路線バスの場合、伸縮量の振幅値は、平日と休日とで、波形の特徴が大きく異なってしまう場合がある。 When the date information is acquired, the amplitude calculation unit 120 calculates the amplitude value based on the specific partial data extracted from the time-series data on the date indicated in the acquired date information. For example, the amplitude calculation unit 120 calculates the amplitude value based on the specific partial data extracted from the time-series data on weekday dates, and calculates the amplitude value based on the specific partial data extracted from the time-series data on holidays. do not do. For example, if the specific vehicle is a route bus, the number of passengers on weekdays and holidays may differ greatly, resulting in a significant difference in weight. Further, when the specific vehicle is a route bus, the degree of traffic congestion differs between weekdays and holidays, and the passing speed over the bridge may differ greatly. Therefore, when the specific vehicle is a route bus, the amplitude value of the expansion/contraction amount may have greatly different waveform characteristics between weekdays and holidays.
 従って、予め設定された日付における時系列データから抽出された特定部分データに基づき振幅値を算出することにより、振幅算出部120は、同一の種類の車両がほぼ同一の重量およびほぼ同一の速度で通過した場合における伸縮量の振幅値を出力することができる。これにより、劣化検出装置30は、精度良く橋梁が劣化したか否かを判断することができる。 Therefore, by calculating the amplitude value based on the specific partial data extracted from the time-series data on a preset date, the amplitude calculation unit 120 can detect that the same type of vehicle can move at substantially the same weight and at substantially the same speed. It is possible to output the amplitude value of the expansion/contraction amount when passing through. As a result, the deterioration detection device 30 can accurately determine whether or not the bridge has deteriorated.
 時間帯取得部150は、1日の中の予め設定された時間帯を示す時間帯情報を取得する。時間帯取得部150は、時間帯として、例えば、午前5時0分から午前7時0分までといったような情報を取得してもよい。時間帯取得部150は、取得した時間帯情報を振幅算出部120に与える。 The time period acquisition unit 150 acquires time period information indicating a preset time period within a day. The time zone acquisition unit 150 may acquire information such as, for example, from 5:00 am to 7:00 am as the time zone. The time period obtaining section 150 provides the obtained time period information to the amplitude calculating section 120 .
 時間帯情報を取得した場合、振幅算出部120は、取得した時間帯情報に示された時間帯における時系列データから抽出された特定部分データに基づき、振幅値を算出する。例えば、振幅算出部120は、指定された時間帯における時系列データから抽出された特定部分データに基づき振幅値を算出し、指定された時間帯以外における時系列データから抽出された特定部分データに基づき振幅値を算出しない。例えば、1日の中の時間帯によって交通の混雑度が異なり、特定車両が橋梁を通過する通過速度が大きく異なる場合がある。従って、伸縮量の振幅値は、1日の中でも時間帯によって波形の特徴が大きく異なってしまう場合がある。 When the time period information is acquired, the amplitude calculation unit 120 calculates the amplitude value based on the specific partial data extracted from the time series data in the time period indicated by the acquired time period information. For example, the amplitude calculation unit 120 calculates the amplitude value based on the specific partial data extracted from the time series data in the designated time period, Amplitude value is not calculated based on For example, the degree of traffic congestion varies depending on the time of day, and the speed at which a particular vehicle passes over a bridge may vary greatly. Therefore, the amplitude value of the amount of expansion/contraction may vary greatly in waveform characteristics depending on the time period of the day.
 従って、予め設定された時間帯における時系列データから抽出された特定部分データに基づき振幅値を算出ことにより、振幅算出部120は、同一の種類の車両がほぼ同一の重量およびほぼ同一の速度で通過した場合における伸縮量の振幅値を出力することができる。これにより、劣化検出装置30は、精度良く橋梁が劣化したか否かを判断することができる。 Therefore, by calculating the amplitude value based on the specific partial data extracted from the time-series data in a preset time period, the amplitude calculation unit 120 can detect that the same type of vehicle has substantially the same weight and substantially the same speed. It is possible to output the amplitude value of the expansion/contraction amount when passing through. As a result, the deterioration detection device 30 can accurately determine whether or not the bridge has deteriorated.
 通過速度取得部152は、特定車両における橋梁の通過時の速度を取得する。例えば、通過速度取得部152は、特定車両に設けられた速度計により測定されたログデータを取得してもよい。そして、通過速度取得部152は、ログデータから、特定車両が橋梁を通過した時刻の速度を取得してもよい。通過速度取得部152は、取得した速度を示す速度情報を振幅算出部120に与える。 The passing speed acquisition unit 152 acquires the speed of a specific vehicle when it passes through a bridge. For example, the passing speed acquisition unit 152 may acquire log data measured by a speedometer provided in a specific vehicle. Then, the passing speed acquisition unit 152 may acquire the speed at the time when the specific vehicle passed through the bridge from the log data. The passing speed acquisition unit 152 gives speed information indicating the acquired speed to the amplitude calculation unit 120 .
 速度情報を取得した場合、振幅算出部120は、特定車両における橋梁の通過時の速度が予め設定された範囲内である時系列データから抽出された特定部分データに基づき、振幅値を算出する。これにより、振幅算出部120は、同一の種類の車両がほぼ同一の速度で通過した場合における伸縮量の振幅値を出力することができる。従って、劣化検出装置30は、より精度良く橋梁が劣化したか否かを判断することができる。 When the speed information is acquired, the amplitude calculation unit 120 calculates the amplitude value based on the specific partial data extracted from the time-series data in which the speed of the specific vehicle when passing over the bridge is within a preset range. As a result, the amplitude calculator 120 can output the amplitude value of the expansion/contraction amount when vehicles of the same type pass at substantially the same speed. Therefore, the deterioration detection device 30 can more accurately determine whether or not the bridge has deteriorated.
 重量取得部154は、特定車両における橋梁の通過時の重量を取得する。例えば、ゴミ収集車は、一般に、自重を測定する重量計を備える。重量取得部154は、ゴミ収集車等の特定車両に設けられた重量計により測定されたログデータを取得してもよい。そして、重量取得部154は、ログデータから、特定車両が橋梁を通過した時刻の重量を取得してもよい。また、特定車両が路線バスの場合、重量取得部154は、例えば、バス経路における橋梁の直前のバス停または特定のバス停での乗客数を取得し、取得した乗客数に基づき、重量を推定してもよい。そして、重量取得部154は、取得した重量を示す重量情報を振幅算出部120に与える。 The weight acquisition unit 154 acquires the weight of the specific vehicle when it passes over the bridge. For example, garbage trucks are commonly equipped with scales that measure their own weight. The weight acquisition unit 154 may acquire log data measured by a weight scale provided in a specific vehicle such as a garbage truck. Then, the weight acquisition unit 154 may acquire the weight at the time when the specific vehicle passed the bridge from the log data. When the specific vehicle is a route bus, the weight acquisition unit 154 acquires the number of passengers at the bus stop immediately before the bridge on the bus route or at the specific bus stop, and estimates the weight based on the acquired number of passengers. good too. Weight acquisition section 154 then provides weight information indicating the acquired weight to amplitude calculation section 120 .
 重量情報を取得した場合、振幅算出部120は、特定車両における橋梁の通過時の重量が予め設定された範囲内である時系列データから抽出された特定部分データに基づき、振幅値を算出する。これにより、振幅算出部120は、同一の種類の車両がほぼ同一の重量で通過した場合における伸縮量の振幅値を出力することができる。従って、劣化検出装置30は、より精度良く橋梁が劣化したか否かを判断することができる。 When the weight information is acquired, the amplitude calculation unit 120 calculates the amplitude value based on the specific partial data extracted from the time-series data in which the weight of the specific vehicle when passing over the bridge is within a preset range. As a result, the amplitude calculator 120 can output the amplitude value of the expansion/contraction amount when vehicles of the same type pass with substantially the same weight. Therefore, the deterioration detection device 30 can more accurately determine whether or not the bridge has deteriorated.
 図11は、劣化検出装置30の処理の流れを示すフローチャートである。劣化検出装置30は、一例として、図11に示すような流れで処理を実行する。 FIG. 11 is a flowchart showing the processing flow of the deterioration detection device 30. FIG. The deterioration detection device 30 executes processing according to the flow shown in FIG. 11, for example.
 まず、S11において、劣化検出装置30は、特定車両である路線バスが、バス経路における橋梁の直前のバス停(または特定のバス停)を通過したか否かを判断する。直前のバス停を通過していない場合(S11のNo)、劣化検出装置30は、処理をS11で待機する。直前のバス停を通過した場合(S11のYes)、劣化検出装置30は、処理をS12に進める。 First, in S11, the deterioration detection device 30 determines whether or not a route bus, which is a specific vehicle, has passed the bus stop (or a specific bus stop) immediately before the bridge on the bus route. If the vehicle has not passed the last bus stop (No in S11), the deterioration detection device 30 waits in S11. When passing the last bus stop (Yes in S11), the deterioration detection device 30 advances the process to S12.
 S12において、劣化検出装置30は、橋梁を通過する予定時刻を推定する。続いて、S13において、劣化検出装置30は、予定時刻の所定時間前の時刻となったか否かを判断する。予定時刻の所定時間前の時刻となっていない場合には(S13のNo)、劣化検出装置30は、処理をS13で待機する。予定時刻の所定時間前の時刻となった場合には(S13のYes)、劣化検出装置30は、処理をS14に進める。 At S12, the deterioration detection device 30 estimates the scheduled time of passing through the bridge. Subsequently, in S13, the deterioration detection device 30 determines whether or not the time is a predetermined time before the scheduled time. If the time is not the predetermined time before the scheduled time (No in S13), the deterioration detection device 30 waits for the process in S13. If the time comes a predetermined time before the scheduled time (Yes in S13), the deterioration detection device 30 advances the process to S14.
 S14において、劣化検出装置30は、センサ20の電源をオンとする。例えば、劣化検出装置30は、無線通信等により指示信号をセンサ20に与えて、電源をオンにさせる。 In S14, the deterioration detection device 30 turns on the power of the sensor 20. For example, the deterioration detection device 30 gives an instruction signal to the sensor 20 through wireless communication or the like to turn on the power.
 続いて、S15において、劣化検出装置30は、センサ20により検出されたパラメータの時系列データを受信して記憶する。例えば、劣化検出装置30は、橋梁における対象部分の伸縮量の時系列データを受信して記憶する。 Subsequently, in S15, the deterioration detection device 30 receives and stores the time-series data of the parameters detected by the sensor 20. For example, the deterioration detection device 30 receives and stores time-series data of the amount of expansion and contraction of the target portion of the bridge.
 続いて、S16において、劣化検出装置30は、予定時刻の所定時間後の時刻となったか否かを判断する。予定時刻の所定時間後の時刻となっていない場合には(S16のNo)、劣化検出装置30は、処理をS16で待機する。予定時刻の所定時間後の時刻となった場合には(S16のYes)、劣化検出装置30は、処理をS17に進める。 Subsequently, in S16, the deterioration detection device 30 determines whether or not the time has come after a predetermined time from the scheduled time. If the time is not the predetermined time after the scheduled time (No in S16), the deterioration detection device 30 waits for the process in S16. If the predetermined time after the scheduled time comes (Yes in S16), the deterioration detection device 30 advances the process to S17.
 S17において、劣化検出装置30は、センサ20の電源をオフとする。例えば、劣化検出装置30は、無線通信等により指示信号をセンサ20に与えて、電源をオフにさせる。 In S17, the deterioration detection device 30 turns off the power of the sensor 20. For example, the deterioration detection device 30 gives an instruction signal to the sensor 20 through wireless communication or the like to turn off the power.
 続いて、S18において、劣化検出装置30は、記憶したパラメータの時系列データから、特定車両である路線バスが橋梁を通過時の部分データである特定部分データを抽出する。続いて、S19において、劣化検出装置30は、抽出した特定部分データから、特定車両である路線バスの通過時における橋梁の走行方向における伸縮量の振幅値を算出する。例えば、パラメータが対象部分の伸縮量を表す場合には、劣化検出装置30は、抽出した特定部分データにおける最大値と最小値との差を振幅値として算出する。続いて、S20において、劣化検出装置30は、算出した振幅値を記憶する。 Subsequently, in S18, the deterioration detection device 30 extracts specific partial data, which is partial data when a route bus, which is a specific vehicle, passes through a bridge, from the stored time-series data of parameters. Subsequently, in S19, the deterioration detection device 30 calculates the amplitude value of the expansion/contraction amount in the traveling direction of the bridge when the route bus, which is the specific vehicle, passes through from the extracted specific portion data. For example, when the parameter represents the amount of expansion/contraction of the target portion, the deterioration detection device 30 calculates the difference between the maximum value and the minimum value in the extracted specific portion data as the amplitude value. Subsequently, in S20, the deterioration detection device 30 stores the calculated amplitude value.
 続いて、S21において、劣化検出装置30は、算出した振幅値が基準値より大きいか否かを判断する。振幅値が基準値より大きくない場合(S21のNo)、劣化検出装置30は、処理をS11に戻し、S11から処理を繰り返す。振幅値が基準値より大きい場合(S21のYes)、劣化検出装置30は、処理をS22に進める。 Subsequently, in S21, the deterioration detection device 30 determines whether or not the calculated amplitude value is greater than the reference value. If the amplitude value is not greater than the reference value (No in S21), the deterioration detection device 30 returns the process to S11 and repeats the process from S11. If the amplitude value is greater than the reference value (Yes in S21), the deterioration detection device 30 advances the process to S22.
 S22において、劣化検出装置30は、橋梁が劣化したことを示すアラーム情報を、例えば管理者または管理者が保持する情報処理装置等に出力する。S22が終了すると、劣化検出装置30は、本フローを終了する。なお、劣化検出装置30は、S22の後に、基準値を所定量増加させて、処理をS11に戻してもよい。 In S22, the deterioration detection device 30 outputs alarm information indicating that the bridge has deteriorated, for example, to an administrator or an information processing device held by the administrator. When S22 ends, the deterioration detection device 30 ends this flow. After S22, the deterioration detection device 30 may increase the reference value by a predetermined amount and return the process to S11.
 以上のように、第1実施形態に係る劣化検出システム10は、路線バス等の特定車両が橋梁を通過した時の特定部分データに基づき、特定車両の通過時における橋梁の走行方向における伸縮量の振幅値を算出し、算出した振幅値が予め設定された基準値より大きくなった場合、橋梁が劣化したと判定し、橋梁が劣化したことを示すアラーム情報を出力する。これにより、第1実施形態に係る劣化検出システム10によれば、橋梁の劣化を、簡単に且つ長期間継続的に検出することができる。従って、第1実施形態に係る劣化検出システム10によれば、橋梁の状態を低コストで常時モニタリングし、橋梁を計画的に管理することができる。 As described above, the deterioration detection system 10 according to the first embodiment detects the amount of expansion and contraction of the bridge in the running direction when a specific vehicle such as a route bus passes through the bridge, based on the specific portion data. An amplitude value is calculated, and when the calculated amplitude value exceeds a preset reference value, it is determined that the bridge has deteriorated, and alarm information indicating that the bridge has deteriorated is output. Thereby, according to the deterioration detection system 10 according to the first embodiment, the deterioration of the bridge can be detected easily and continuously for a long period of time. Therefore, according to the degradation detection system 10 according to the first embodiment, the state of the bridge can be constantly monitored at low cost, and the bridge can be systematically managed.
 さらに、第1実施形態に係る劣化検出システム10は、特定車両を検出するために用いる第1ニューラルネットワークを適切なタイミングで再学習するので、橋梁の劣化を長期間に渡り精度良く検出することができる。 Furthermore, the deterioration detection system 10 according to the first embodiment re-learns the first neural network used to detect a specific vehicle at an appropriate timing, so that deterioration of a bridge can be accurately detected over a long period of time. can.
 (第2実施形態)
 次に、第2実施形態に係る重量測定システム210について説明する。なお、第2実施形態の説明において、第1実施形態と略同一の構成を有する要素については同一の符号を付けて、相違点を除き詳細な説明を省略する。
(Second embodiment)
Next, a weight measuring system 210 according to the second embodiment will be described. In the description of the second embodiment, elements having substantially the same configuration as those of the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted except for differences.
 図12は、第2実施形態に係る重量測定システム210を示す図である。重量測定システム210は、橋梁の劣化に従って関係情報を補正しながら、橋梁を通過する車両の重量を精度良く測定する。 FIG. 12 is a diagram showing a weight measurement system 210 according to the second embodiment. The weight measurement system 210 accurately measures the weight of vehicles passing over the bridge while correcting the relevant information according to the deterioration of the bridge.
 重量測定システム210は、センサ20と、送信装置22と、重量測定装置230とを備える。 The weight measurement system 210 includes a sensor 20 , a transmission device 22 and a weight measurement device 230 .
 重量測定装置230は、送信装置22からネットワークを介して送信された、橋梁の対象部分における走行方向の変位を表すパラメータの時系列データを受信する。重量測定装置230は、受信したパラメータの時系列データに基づき、車両の通過時における橋梁の走行方向における伸縮量の振幅値を表す車両振幅値を算出する。そして、重量測定装置230は、振幅値と重量との対応関係を表す関係情報と、算出した車両振幅値とに基づき、車両の重量を算出する。さらに、重量測定装置230は、橋梁が劣化したと判断した場合には、振幅値と重量との対応関係を表す関係情報を補正する。 The weight measuring device 230 receives time-series data of parameters representing the displacement in the running direction of the target portion of the bridge, transmitted from the transmitting device 22 via the network. The weight measuring device 230 calculates the vehicle amplitude value representing the amplitude value of the amount of expansion and contraction in the running direction of the bridge when the vehicle passes, based on the received time-series data of the parameters. Then, the weight measuring device 230 calculates the weight of the vehicle based on the relationship information representing the correspondence between the amplitude value and the weight and the calculated vehicle amplitude value. Furthermore, when the weight measuring device 230 determines that the bridge has deteriorated, it corrects the relational information representing the correspondence between the amplitude value and the weight.
 重量測定装置230は、ネットワークに接続可能なサーバ装置等のコンピュータである。重量測定装置230は、1台のコンピュータであってもよいし、クラウドシステムのように複数台のコンピュータにより構成されていてもよい。 The weight measuring device 230 is a computer such as a server device that can be connected to a network. The weight measuring device 230 may be one computer, or may be composed of a plurality of computers like a cloud system.
 なお、重量測定システム210は、送信装置22を備えない構成であってもよい。この場合、重量測定装置230は、センサ20から、直接、橋梁の対象部分における走行方向の変位を表すパラメータを取得する。また、この場合、重量測定装置230は、センサ20の近傍、すなわち、橋梁の近傍に設けられてもよい。 Note that the weight measurement system 210 may be configured without the transmission device 22 . In this case, the weight measuring device 230 directly obtains from the sensor 20 the parameter representing the displacement in the running direction of the target portion of the bridge. Also, in this case, the weight measuring device 230 may be provided in the vicinity of the sensor 20, that is, in the vicinity of the bridge.
 図13は、重量測定装置230の機能構成を示す図である。重量測定装置230は、取得部112と、時系列データ記憶部114と、切出部116と、車両抽出部242と、車両振幅算出部244と、関係情報記憶部246と、重量算出部248と、抽出部118と、振幅算出部120と、補正部250と、車両収集部262と、車両再学習用データ記憶部264と、収集部132と、再学習用データ記憶部134と、再学習指示部136と、再学習部138と、車両再学習部266とを備える。 FIG. 13 is a diagram showing the functional configuration of the weight measuring device 230. As shown in FIG. Weight measuring device 230 includes acquisition unit 112 , time-series data storage unit 114 , extraction unit 116 , vehicle extraction unit 242 , vehicle amplitude calculation unit 244 , relationship information storage unit 246 , and weight calculation unit 248 . , an extraction unit 118, an amplitude calculation unit 120, a correction unit 250, a vehicle collection unit 262, a vehicle relearning data storage unit 264, a collection unit 132, a relearning data storage unit 134, and a relearning instruction. A unit 136 , a relearning unit 138 , and a vehicle relearning unit 266 are provided.
 取得部112、時系列データ記憶部114および切出部116は、第1実施形態と同様の機能および構成を有する。 The acquisition unit 112, the time-series data storage unit 114, and the extraction unit 116 have the same functions and configurations as in the first embodiment.
 車両抽出部242は、車両判定用ニューラルネットワークによる判定結果に基づき、時系列データ記憶部114に記憶されたパラメータの時系列データから、車両が橋梁を通過した時の部分データである車両部分データを抽出する。ここで、車両は、路線バス等の特定車両に限らず、あらゆる種類の車両であってよい。 The vehicle extraction unit 242 extracts vehicle partial data, which is partial data when the vehicle passes over the bridge, from the time-series data of the parameters stored in the time-series data storage unit 114, based on the determination result by the vehicle determination neural network. Extract. Here, the vehicle is not limited to a specific vehicle such as a route bus, and may be any kind of vehicle.
 車両判定用ニューラルネットワークは、対象となる部分データを入力し、対象となる部分データに、車両が橋梁を通過したか否かを判定する。車両判定用ニューラルネットワークは、車両が橋梁を通過した場合に得られた時系列データを予め取得しておき、予め取得した時系列データを教師データとして、学習されている。本実施形態において、車両判定用ニューラルネットワークは、畳み込みニューラルネットワーク(CNN)である。車両抽出部242は、畳み込みニューラルネットワークを用いることにより、部分データにおける何れの時間部分に、車両が橋梁を通過した場合に得られる波形データが含まれていても、車両が橋梁を通過したことを精度良く検出することができる。そして、車両抽出部242は、車両判定用ニューラルネットワークにより車両が橋梁を通過したとの判定結果が得られたことに応じて、車両判定用ニューラルネットワークに入力された部分データを、車両部分データとして出力する。なお、車両判定用ニューラルネットワークは、第1ニューラルネットワークと同一構成のニューラルネットワークであってもよい。ただし、この場合、車両判定用ニューラルネットワークに含まれるパラメータは、学習された結果、第1ニューラルネットワークに含まれるパラメータとは異なる値となる。 The neural network for vehicle judgment inputs target partial data and judges whether or not the vehicle has passed the bridge based on the target partial data. The vehicle determination neural network acquires in advance time-series data obtained when a vehicle passes over a bridge, and learns using the acquired time-series data as teacher data. In this embodiment, the vehicle determination neural network is a convolutional neural network (CNN). By using a convolutional neural network, the vehicle extraction unit 242 detects that the vehicle has passed over the bridge even if waveform data obtained when the vehicle has passed over the bridge is included in any time portion of the partial data. It can be detected with high accuracy. When the vehicle determination neural network determines that the vehicle has passed the bridge, the vehicle extraction unit 242 extracts the partial data input to the vehicle determination neural network as vehicle partial data. Output. The neural network for vehicle determination may be a neural network having the same configuration as the first neural network. However, in this case, the parameters included in the vehicle determination neural network have different values from the parameters included in the first neural network as a result of learning.
 車両振幅算出部244は、車両抽出部242が車両部分データを抽出する毎に、抽出した車両部分データに基づき、車両の通過時における橋梁の走行方向における伸縮量の振幅値を表す車両振幅値を算出する。例えば、パラメータが対象部分の伸縮量を表す場合には、車両振幅算出部244は、抽出した車両部分データにおける最大値と最小値との差を車両振幅値として算出する。 Each time the vehicle extraction unit 242 extracts the vehicle part data, the vehicle amplitude calculation part 244 calculates a vehicle amplitude value representing the amplitude value of the amount of expansion and contraction of the bridge in the traveling direction when the vehicle passes, based on the extracted vehicle part data. calculate. For example, when the parameter represents the amount of expansion/contraction of the target portion, the vehicle amplitude calculator 244 calculates the difference between the maximum value and the minimum value in the extracted vehicle portion data as the vehicle amplitude value.
 パラメータが対象部分の伸縮量ではない場合には、車両振幅算出部244は、対象部分の伸縮量の振幅値に相関のある値を、車両振幅値として出力してもよい。例えば、パラメータが固有振動数の大きさである場合には、車両振幅算出部244は、抽出した車両部分データにおける最大値と最小値との差を、車両振幅値として算出してもよい。 If the parameter is not the amount of expansion/contraction of the target portion, the vehicle amplitude calculator 244 may output a value correlated with the amplitude value of the amount of expansion/contraction of the target portion as the vehicle amplitude value. For example, when the parameter is the magnitude of the natural frequency, the vehicle amplitude calculator 244 may calculate the difference between the maximum value and the minimum value in the extracted vehicle partial data as the vehicle amplitude value.
 関係情報記憶部246は、振幅値と、車両の重量との対応関係を表す関係情報を記憶する。 The relationship information storage unit 246 stores relationship information representing the correspondence relationship between the amplitude value and the weight of the vehicle.
 車両が橋梁を通過した時における橋梁の走行方向における伸縮量の振幅値は、その車両の重量と相関性がある。より詳しくは、車両が橋梁を通過した時における橋梁の走行方向の伸縮量の振幅値は、その車両の重量に従って大きくなる。そこで、管理者等は、振幅値と、橋梁を通過する車両の重量との対応関係を表す関係情報を予め生成し、関係情報記憶部246に記憶させる。 The amplitude value of the amount of expansion and contraction in the running direction of the bridge when the vehicle passes over the bridge is correlated with the weight of the vehicle. More specifically, the amplitude value of the amount of expansion and contraction of the bridge in the running direction when the vehicle passes over the bridge increases according to the weight of the vehicle. Therefore, the administrator or the like generates in advance relational information representing the correspondence between the amplitude value and the weight of the vehicle passing through the bridge, and causes the relational information storage unit 246 to store the relational information.
 管理者等は、例えば、橋梁に様々な重量の試験車両を走行させて、車両の重量と振幅値との対応関係を測定することにより、関係情報を生成してもよい。また、管理者等は、シミュレーション結果をさらに利用して関係情報を生成してもよい。また、管理者等は、他の橋梁に適用された関係情報等を利用して、当該橋梁の関係情報を生成してもよい。 The administrator, for example, may generate relational information by running test vehicles of various weights on the bridge and measuring the correspondence between the weight of the vehicle and the amplitude value. Also, the administrator or the like may further use the simulation results to generate the relationship information. Also, the administrator or the like may use the relationship information or the like applied to other bridges to generate the relationship information of the bridge.
 関係情報記憶部246は、関係情報として、複数の振幅値のそれぞれと、対応する重量とを関連付けたテーブルを記憶してもよい。また、関係情報記憶部246は、関係情報として、振幅値を入力することにより、重量が出力される関数または演算式等を記憶してもよい。 The relationship information storage unit 246 may store, as relationship information, a table that associates each of a plurality of amplitude values with the corresponding weight. Further, the relational information storage unit 246 may store, as the relational information, a function or an arithmetic expression for outputting a weight by inputting an amplitude value.
 重量算出部248は、車両振幅算出部244が車両振幅値を算出する毎に、車両の重量を算出する。より具体的には、重量算出部248は、関係情報記憶部246に記憶された振幅値と重量との対応関係を表す関係情報と、算出した車両振幅値とに基づき、車両の重量を算出する。重量算出部248は、算出した重量を例えば管理者が保持する情報処理装置またはサーバ等に出力する。この場合、重量算出部248は、車両が橋梁を通過した時刻等を併せて出力してもよい。これにより、管理者等は、橋梁を通過した車両と、重量とを対応付けることができる。 The weight calculator 248 calculates the weight of the vehicle each time the vehicle amplitude calculator 244 calculates the vehicle amplitude value. More specifically, the weight calculation unit 248 calculates the weight of the vehicle based on the calculated vehicle amplitude value and the relationship information indicating the correspondence relationship between the amplitude value and the weight stored in the relationship information storage unit 246. . The weight calculator 248 outputs the calculated weight to, for example, an information processing device or a server held by an administrator. In this case, the weight calculator 248 may also output the time when the vehicle passed the bridge. As a result, the administrator or the like can associate the vehicle that has passed through the bridge with the weight.
 抽出部118は、第1実施形態と同様の機能および構成であり、第1ニューラルネットワークによる判定結果に基づき、時系列データ記憶部114に記憶されたパラメータの時系列データから、特定車両が橋梁を通過時の部分データである特定部分データを抽出する。 The extraction unit 118 has the same function and configuration as those of the first embodiment, and based on the determination result of the first neural network, the time-series data of the parameters stored in the time-series data storage unit 114 is used to determine whether the specific vehicle has passed the bridge. Specific partial data, which is partial data at the time of passage, is extracted.
 振幅算出部120は、第1実施形態と同様の機能および構成であり、抽出部118が特定部分データを抽出する毎に、特定部分データに基づき、特定車両の通過時における橋梁の走行方向における伸縮量の振幅値を表す特定車両振幅値を算出する。 The amplitude calculator 120 has the same function and configuration as those of the first embodiment. A vehicle specific amplitude value representing the amplitude value of the quantity is calculated.
 補正部250は、振幅算出部120が特定車両振幅値を算出する毎に、算出した特定車両振幅値と、予め設定された基準値とを比較する。そして、補正部250は、特定車両振幅値が基準値より大きくなった場合、関係情報記憶部246に記憶された対応関係を補正する。 The correction unit 250 compares the calculated specific vehicle amplitude value with a preset reference value each time the amplitude calculation unit 120 calculates the specific vehicle amplitude value. Then, when the specific vehicle amplitude value becomes larger than the reference value, the correction unit 250 corrects the correspondence stored in the relationship information storage unit 246 .
 補正部250は、直近の予め定められたサンプル数の特定車両振幅値の移動平均値を算出し、移動平均値が基準値より大きくなった場合に、関係情報を補正してもよい。また、補正部250は、複数のサンプル数の特定車両振幅値に対して、ノイズ除去処理等の予め定められたフィルタリング処理を実行し、フィルタリング処理の結果が基準値より大きくなった場合に、関係情報を補正してもよい。 The correction unit 250 may calculate the moving average value of the specific vehicle amplitude values of the most recent predetermined number of samples, and correct the related information when the moving average value becomes greater than the reference value. Further, the correction unit 250 executes predetermined filtering processing such as noise removal processing on the specific vehicle amplitude values of a plurality of samples, and when the result of the filtering processing becomes larger than the reference value, the relational You may correct the information.
 車両収集部262は、車両抽出部242が車両部分データを抽出する毎に、抽出された車両部分データを収集する。車両再学習用データ記憶部264は、車両収集部262により収集された車両部分データを記憶する。 The vehicle collection unit 262 collects the extracted vehicle partial data each time the vehicle extraction unit 242 extracts the vehicle partial data. The vehicle relearning data storage unit 264 stores vehicle partial data collected by the vehicle collection unit 262 .
 収集部132は、第1実施形態と同様の機能および構成であり、抽出部118が特定部分データを抽出する毎に、抽出された特定部分データを収集する。再学習用データ記憶部134は、第1実施形態と同様の機能および構成であり、収集部132により収集された特定部分データを記憶する。 The collection unit 132 has the same function and configuration as in the first embodiment, and collects the extracted specific partial data every time the extraction unit 118 extracts the specific partial data. The relearning data storage unit 134 has the same function and configuration as those of the first embodiment, and stores the specific partial data collected by the collection unit 132 .
 再学習指示部136は、第1実施形態と同一の予め定められた判断基準に基づき、第1ニューラルネットワークおよび車両判定用ニューラルネットワークを再学習するか否かを判断し、第1ニューラルネットワークおよび車両判定用ニューラルネットワークを再学習するか否かの判断結果に基づき再学習指示を出力する。再学習指示部136は、再学習指示を、車両再学習部266および再学習部138に供給する。 The re-learning instruction unit 136 determines whether or not to re-learn the first neural network and the vehicle determination neural network based on the same predetermined criteria as in the first embodiment. A re-learning instruction is output based on the determination result of whether or not to re-learn the judgment neural network. Re-learning instruction unit 136 supplies a relearning instruction to vehicle relearning unit 266 and relearning unit 138 .
 車両再学習部266は、再学習指示部136から再学習指示が出力された場合、車両収集部262により収集された車両部分データを教師データとして、車両判定用ニューラルネットワークを再学習する。すなわち、車両再学習部266は、既に学習されている車両判定用ニューラルネットワークを、再度学習する。例えば、車両再学習部266は、再学習直前に設定されている重みおよびバイアス等のネットワークパラメータを初期値として、誤差逆伝播法等により再学習をしてもよいし、再学習直前に設定されているネットワークパラメータをランダム値または所定値等に変更した後、誤差逆伝播法等により再学習をしてもよい。 When the re-learning instruction is output from the re-learning instruction unit 136, the vehicle re-learning unit 266 re-learns the vehicle determination neural network using the vehicle partial data collected by the vehicle collection unit 262 as teacher data. That is, the vehicle re-learning unit 266 re-learns the already learned neural network for vehicle determination. For example, the vehicle re-learning unit 266 may perform re-learning by error backpropagation or the like using network parameters such as weights and biases set immediately before re-learning as initial values. After changing the network parameter to a random value or a predetermined value, re-learning may be performed by error backpropagation method or the like.
 車両再学習部266は、最後の再学習時から後に収集された車両部分データを教師データとして車両判定用ニューラルネットワークを再学習する。劣化の判定の開始時からまだ再学習をしていない場合には、車両再学習部266は、開始時から後に収集された車両部分データを教師データとして車両判定用ニューラルネットワークを再学習してもよい。これにより、車両再学習部266は、直近の橋梁の状態に応じた適切な判定処理をするように車両判定用ニューラルネットワークを再学習することができる。なお、車両再学習部266は、車両収集部262により収集された車両部分データに加えて、予め収集されている時系列データを教師データとして、車両判定用ニューラルネットワークを再学習してもよい。 The vehicle re-learning unit 266 re-learns the vehicle determination neural network using the vehicle part data collected after the last re-learning as teacher data. If re-learning has not been performed since the start of deterioration determination, the vehicle re-learning unit 266 may re-learn the vehicle determination neural network using the vehicle part data collected after the start as teacher data. good. As a result, the vehicle re-learning unit 266 can re-learn the vehicle determination neural network so as to perform appropriate determination processing in accordance with the latest state of the bridge. The vehicle re-learning unit 266 may re-learn the vehicle determination neural network using pre-collected time-series data as teacher data in addition to the vehicle part data collected by the vehicle collecting unit 262 .
 再学習部138は、第1実施形態と同様の構成であり、再学習指示部136から再学習指示が出力された場合、収集部132により収集された特定部分データを教師データとして、第1ニューラルネットワークを再学習する。 The relearning unit 138 has the same configuration as that of the first embodiment, and when the relearning instruction is output from the relearning instruction unit 136, the specific partial data collected by the collecting unit 132 is used as teacher data, and the first neural Retrain the network.
 なお、重量測定装置230は、図10に示した通過時刻取得部142、通過検出情報取得部144、予定時刻推定部146、日付取得部148、時間帯取得部150、通過速度取得部152および重量取得部154のうちの何れか1つまた複数をさらに備える構成であってもよい。 The weight measuring device 230 includes the passage time acquisition unit 142, the passage detection information acquisition unit 144, the scheduled time estimation unit 146, the date acquisition unit 148, the time period acquisition unit 150, the passage speed acquisition unit 152, and the weight The configuration may further include one or more of the acquisition units 154 .
 図14は、試験車両の重量に対する、橋梁の伸縮量の振幅値との関係を表す図である。図14は、黒丸印のグラフが橋梁の劣化が小さい時点での関係を表し、白抜きの四角印のグラフが橋梁の劣化が予め定められた基準値より大きくなった場合の関係を表す。 FIG. 14 is a diagram showing the relationship between the weight of the test vehicle and the amplitude value of the amount of expansion and contraction of the bridge. In FIG. 14, the graph with black circles represents the relationship when the deterioration of the bridge is small, and the graph with white squares represents the relationship when the deterioration of the bridge exceeds a predetermined reference value.
 橋梁は、劣化が大きくなるに従って、車両の通過時における橋梁の走行方向における伸縮量の振幅値が大きくなる。従って、図14に示すように、橋梁の劣化が例えば基準値より大きくなった場合と、劣化が基準値より小さい場合とで、車両の重量と、車両の通過時における橋梁の走行方向における伸縮量の振幅値との関係が異なる。そこで、例えば、管理者は、橋梁の劣化が基準値以下である場合の第1の関係情報と、橋梁の劣化が基準値より大きい場合の第2の関係情報とを生成し、関係情報記憶部246に記憶させる。 As the deterioration of the bridge increases, the amplitude value of the amount of expansion and contraction in the running direction of the bridge when a vehicle passes increases. Therefore, as shown in FIG. 14, the weight of the vehicle and the amount of expansion and contraction of the bridge in the running direction when the vehicle is passing are determined when the deterioration of the bridge exceeds, for example, the reference value and when the deterioration is less than the reference value. has a different relationship with the amplitude value of Therefore, for example, the administrator generates first relational information when the deterioration of the bridge is equal to or less than the reference value and second relational information when the deterioration of the bridge is greater than the reference value. 246.
 そして、補正部250は、特定車両振幅値が基準値以下である場合には、第1の関係情報を関係情報記憶部246から重量算出部248に出力させる。また、補正部250は、特定車両振幅値が基準値より大きい場合には、第2の関係情報を関係情報記憶部246から重量算出部248に出力させる。これにより、補正部250は、橋梁の劣化の度合いに関わらず、車両の重量を精度良く測定させることができる。 Then, when the specific vehicle amplitude value is equal to or less than the reference value, the correction unit 250 outputs the first relationship information from the relationship information storage unit 246 to the weight calculation unit 248 . Further, when the specific vehicle amplitude value is greater than the reference value, correction unit 250 outputs the second relationship information from relationship information storage unit 246 to weight calculation unit 248 . Accordingly, the correction unit 250 can accurately measure the weight of the vehicle regardless of the degree of deterioration of the bridge.
 なお、補正部250は、複数の異なる基準値が予め設定されていてもよい。そして、補正部250は、特定車両振幅値がそれぞれの基準値より大きくなる毎に、基準値の大きさに応じて、関係情報の補正量を調整してもよい。これにより、補正部250は、橋梁の劣化のレベルに応じて関係情報を適切に補正することができる。 Note that a plurality of different reference values may be preset in the correction unit 250 . Then, the correction unit 250 may adjust the correction amount of the related information according to the magnitude of the reference value each time the specific vehicle amplitude value becomes larger than each reference value. Thereby, the correcting unit 250 can appropriately correct the relationship information according to the level of deterioration of the bridge.
 図15は、重量測定装置230による関係情報の補正処理の流れを示すフローチャートである。重量測定装置230は、一例として、図15に示すような流れで処理を実行する。 FIG. 15 is a flow chart showing the flow of related information correction processing by the weight measuring device 230 . The weight measuring device 230 executes processing according to the flow shown in FIG. 15, for example.
 なお、図15のS11からS21までの処理は、図11の劣化検出装置30と同一の処理を実行する。ただし、重量測定システム210では、橋梁を通過する車両の重量を測定するため、センサ20の電源が常時オンとなっている。従って、重量の測定に用いるセンサ20と、特定車両が通過した場合に用いられるセンサ20とが同一である場合には、重量測定装置230は、S13、S14、S16およびS17の処理を実行しなくてよい。ただし、この場合、重量測定装置230は、S18において、パラメータの時系列データから、予定時刻の所定時間前から予定時刻の所定時間後までの範囲を切り出し、切り出した範囲から特定部分データを抽出する。 It should be noted that the processing from S11 to S21 in FIG. 15 is the same processing as the deterioration detection device 30 in FIG. However, in the weight measurement system 210, the power of the sensor 20 is always on in order to measure the weight of the vehicle passing over the bridge. Therefore, when the sensor 20 used for weight measurement and the sensor 20 used when the specific vehicle passes are the same, the weight measuring device 230 does not execute the processes of S13, S14, S16 and S17. you can However, in this case, in S18, the weight measuring device 230 cuts out a range from a predetermined time before the scheduled time to a predetermined time after the scheduled time from the parameter time series data, and extracts specific partial data from the cut out range. .
 S21において、重量測定装置230は、算出した振幅値が基準値より大きいか否かを判断する。振幅値が基準値より大きい場合(S21のYes)、重量測定装置230は、処理をS31に進める。 In S21, the weight measuring device 230 determines whether or not the calculated amplitude value is greater than the reference value. If the amplitude value is greater than the reference value (Yes in S21), the weight measuring device 230 advances the process to S31.
 S31において、重量測定装置230は、関係情報記憶部246に記憶された対応関係を補正する。S31が終了すると、重量測定装置230は、本フローを終了する。なお、重量測定装置230は、S31の後に、基準値に所定量増加させて、処理をS11に戻してもよい。 At S<b>31 , the weight measuring device 230 corrects the correspondence stored in the relationship information storage unit 246 . When S31 ends, the weight measuring device 230 ends this flow. After S31, the weight measuring device 230 may increase the reference value by a predetermined amount and return the process to S11.
 以上のような第2実施形態に係る重量測定システム210は、車両の通過時における橋梁の走行方向における伸縮量の振幅値を表す車両振幅値を算出し、振幅値と車両の重量との対応関係を表す関係情報と、算出した車両振幅値とに基づき、車両の重量を算出する。従って、重量測定システム210は、橋梁を通過する車両の重量を精度良く測定することができる。 The weight measurement system 210 according to the second embodiment as described above calculates the vehicle amplitude value representing the amplitude value of the amount of expansion and contraction of the bridge in the running direction when the vehicle passes, and the correspondence relationship between the amplitude value and the weight of the vehicle. and the calculated vehicle amplitude value, the weight of the vehicle is calculated. Therefore, the weight measurement system 210 can accurately measure the weight of vehicles passing over the bridge.
 さらに、重量測定システム210は、特定車両の通過時における橋梁の走行方向における伸縮量の振幅値を表す特定車両振幅値が基準値より大きくなった場合、関係情報を補正する。従って、重量測定システム210は、橋梁の劣化に応じて関係情報を補正することができる。 Furthermore, the weight measurement system 210 corrects the related information when the specific vehicle amplitude value representing the amplitude value of the amount of expansion and contraction of the bridge in the running direction when the specific vehicle passes exceeds the reference value. Therefore, the weight measurement system 210 can correct the relevant information according to the deterioration of the bridge.
 以上により、第2実施形態に係る重量測定システム210によれば、橋梁の劣化に伴い関係情報を補正しながら、橋梁を通過する車両の重量を精度良く測定することができる。 As described above, according to the weight measurement system 210 according to the second embodiment, it is possible to accurately measure the weight of a vehicle passing over a bridge while correcting the relevant information as the bridge deteriorates.
 (劣化検出装置30および重量測定装置230のハードウェア構成)
 図16は、劣化検出装置30および重量測定装置230のハードウェア構成を示す図である。劣化検出装置30および重量測定装置230は、一例として、一般のコンピュータと同様のハードウェア構成により実現される。劣化検出装置30および重量測定装置230は、CPU(Central Processing Unit)301と、操作装置302と、表示装置303と、ROM(Read Only Memory)304と、RAM(Random Access Memory)305と、記憶装置306と、通信装置307と、バス309とを備える。各部は、バス309により接続される。
(Hardware configuration of deterioration detection device 30 and weight measurement device 230)
FIG. 16 is a diagram showing the hardware configuration of the deterioration detection device 30 and the weight measurement device 230. As shown in FIG. The deterioration detection device 30 and the weight measurement device 230 are realized by, for example, a hardware configuration similar to that of a general computer. The deterioration detection device 30 and the weight measurement device 230 include a CPU (Central Processing Unit) 301, an operation device 302, a display device 303, a ROM (Read Only Memory) 304, a RAM (Random Access Memory) 305, and a storage device. 306 , a communication device 307 and a bus 309 . Each unit is connected by a bus 309 .
 CPU301は、RAM305の所定領域を作業領域としてROM304または記憶装置306に予め記憶された各種プログラムとの協働により各種処理を実行し、劣化検出装置30または重量測定装置230を構成する各部の動作を統括的に制御する。また、CPU301は、ROM304または記憶装置306に予め記憶されたプログラムとの協働により、操作装置302、表示装置303および通信装置307等を動作させる。 The CPU 301 uses a predetermined area of the RAM 305 as a working area to execute various processes in cooperation with various programs pre-stored in the ROM 304 or the storage device 306, and controls the operation of each part constituting the deterioration detection device 30 or the weight measurement device 230. Overall control. In addition, the CPU 301 operates the operating device 302, the display device 303, the communication device 307, etc. in cooperation with programs pre-stored in the ROM 304 or the storage device 306. FIG.
 操作装置302は、タッチパネル、マウスやキーボード等の入力デバイスであって、ユーザから操作入力された情報を指示信号として受け付け、その指示信号をCPU301に出力する。 The operation device 302 is an input device such as a touch panel, a mouse, a keyboard, or the like, receives information input by a user as an instruction signal, and outputs the instruction signal to the CPU 301 .
 表示装置303は、LCD(Liquid Crystal Display)等の表示部である。表示装置303は、CPU301からの表示信号に基づいて、各種情報を表示する。 The display device 303 is a display unit such as an LCD (Liquid Crystal Display). The display device 303 displays various information based on display signals from the CPU 301 .
 ROM304は、劣化検出装置30または重量測定装置230の制御に用いられるプログラムおよび各種設定情報等を書き換え不可能に記憶する。RAM305は、SDRAM(Synchronous Dynamic Random Access Memory)等の揮発性の記憶媒体である。RAM305は、CPU301の作業領域として機能する。 The ROM 304 non-rewritably stores programs and various setting information used to control the deterioration detection device 30 or the weight measurement device 230 . The RAM 305 is a volatile storage medium such as SDRAM (Synchronous Dynamic Random Access Memory). A RAM 305 functions as a work area for the CPU 301 .
 記憶装置306は、フラッシュメモリ等の半導体による記憶媒体、磁気的または光学的に記録可能な記憶媒体等の書き換え可能な記録装置である。記憶装置306は、劣化検出装置30または重量測定装置230の制御に用いられるプログラムを記憶する。 The storage device 306 is a rewritable recording device such as a semiconductor storage medium such as a flash memory, or a magnetically or optically recordable storage medium. Storage device 306 stores a program used to control deterioration detection device 30 or weight measurement device 230 .
 通信装置307は、他の装置とデータの送受信をする。また、通信装置307は、ネットワークを介してサーバ等とデータの送受信をしてもよい。 The communication device 307 transmits and receives data to and from other devices. Also, the communication device 307 may transmit and receive data to and from a server or the like via a network.
 劣化検出装置30および重量測定装置230で実行されるプログラムは、例えば、インターネット等のネットワークに接続されたコンピュータ上に格納され、ネットワーク経由でダウンロードさせることにより提供される。また、劣化検出装置30および重量測定装置230で実行されるプログラムは、持ち運び可能な記憶媒体等に予め組み込んで提供されてもよい。 The programs executed by the deterioration detection device 30 and the weight measurement device 230 are, for example, stored on a computer connected to a network such as the Internet, and provided by being downloaded via the network. Also, the programs executed by the deterioration detection device 30 and the weight measurement device 230 may be provided by being incorporated in advance in a portable storage medium or the like.
 劣化検出装置30で実行されるプログラムは、収集モジュールと、切出モジュールと、抽出モジュールと、振幅算出モジュールと、劣化判定モジュールと、アラーム出力モジュールと、収集モジュールと、再学習指示モジュールと、再学習モジュールとを含むモジュール構成となっている。CPU301は、記憶媒体等からこのようなプログラムを読み出して、上記各モジュールをRAM305にロードする。そして、CPU301は、このようなプログラムを実行することにより、取得部112、切出部116、抽出部118、振幅算出部120、劣化判定部122、アラーム出力部124と、収集部132と、再学習指示部136と、再学習部138として機能する。なお、取得部112、抽出部118、振幅算出部120、劣化判定部122、アラーム出力部124、収集部132、再学習指示部136および再学習部138の一部または全部がハードウェアにより構成されていてもよい。 The programs executed by the deterioration detection device 30 include a collection module, an extraction module, an extraction module, an amplitude calculation module, a deterioration determination module, an alarm output module, a collection module, a re-learning instruction module, and a re-learning module. It has a module configuration including a learning module. The CPU 301 reads out such a program from a storage medium or the like and loads each module into the RAM 305 . By executing such a program, the CPU 301 executes the acquisition unit 112, the extraction unit 116, the extraction unit 118, the amplitude calculation unit 120, the deterioration determination unit 122, the alarm output unit 124, the collection unit 132, and the It functions as a learning instruction section 136 and a re-learning section 138 . Part or all of the acquisition unit 112, the extraction unit 118, the amplitude calculation unit 120, the deterioration determination unit 122, the alarm output unit 124, the collection unit 132, the relearning instruction unit 136, and the relearning unit 138 are configured by hardware. may be
 重量測定装置230で実行されるプログラムは、収集モジュールと、切出モジュールと、車両抽出モジュールと、車両振幅算出モジュールと、重量算出モジュールと、抽出モジュールと、振幅算出モジュールと、補正モジュールと、車両収集モジュールと、収集モジュールと、再学習指示モジュールと、車両再学習モジュールと、再学習モジュールとを含むモジュール構成となっている。CPU301は、記憶媒体等からこのようなプログラムを読み出して、上記各モジュールをRAM305にロードする。そして、CPU301は、このようなプログラムを実行することにより、取得部112、切出部116、車両抽出部242、車両振幅算出部244、重量算出部248、抽出部118、振幅算出部120、補正部250、車両収集部262、収集部132、再学習指示部136、車両再学習部266および再学習部138として機能する。なお、取得部112、車両抽出部242、車両振幅算出部244、重量算出部248、抽出部118、振幅算出部120および補正部250の一部または全部がハードウェアにより構成されていてもよい。 The program executed by the weight measuring device 230 includes a collection module, an extraction module, a vehicle extraction module, a vehicle amplitude calculation module, a weight calculation module, an extraction module, an amplitude calculation module, a correction module, a vehicle It has a module configuration including a collection module, a collection module, a relearning instruction module, a vehicle relearning module, and a relearning module. The CPU 301 reads out such a program from a storage medium or the like and loads each module into the RAM 305 . By executing such a program, the CPU 301 executes the acquisition unit 112, the extraction unit 116, the vehicle extraction unit 242, the vehicle amplitude calculation unit 244, the weight calculation unit 248, the extraction unit 118, the amplitude calculation unit 120, the correction It functions as a unit 250 , a vehicle collection unit 262 , a collection unit 132 , a relearning instruction unit 136 , a vehicle relearning unit 266 and a relearning unit 138 . Part or all of acquisition unit 112, vehicle extraction unit 242, vehicle amplitude calculation unit 244, weight calculation unit 248, extraction unit 118, amplitude calculation unit 120, and correction unit 250 may be configured by hardware.
 以上、本発明の実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。実施形態は、種々の変更を行うことができる。 Although the embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. Embodiments may undergo various modifications.
10 劣化検出システム
20 センサ
22 送信装置
30 劣化検出装置
54 主桁
56 下面
62 第1点
64 第2点
66 第1部材
68 第2部材
70 変位検出装置
72 光学素子
74 検出器
76 ハーフミラー
78 発光部
80 受光部
82 検出回路
112 取得部
114 時系列データ記憶部
118 抽出部
120 振幅算出部
122 劣化判定部
124 アラーム出力部
132 収集部
134 再学習用データ記憶部
136 再学習指示部
138 再学習部
142 通過時刻取得部
144 通過検出情報取得部
146 予定時刻推定部
148 日付取得部
150 時間帯取得部
152 通過速度取得部
154 重量取得部
210 重量測定システム
230 重量測定装置
242 車両抽出部
244 車両振幅算出部
246 関係情報記憶部
248 重量算出部
250 補正部
262 車両収集部
264 車両再学習用データ記憶部
266 車両再学習部
10 deterioration detection system 20 sensor 22 transmission device 30 deterioration detection device 54 main girder 56 lower surface 62 first point 64 second point 66 first member 68 second member 70 displacement detection device 72 optical element 74 detector 76 half mirror 78 light emitting unit 80 Light receiving unit 82 Detection circuit 112 Acquisition unit 114 Time-series data storage unit 118 Extraction unit 120 Amplitude calculation unit 122 Deterioration determination unit 124 Alarm output unit 132 Collection unit 134 Re-learning data storage unit 136 Re-learning instruction unit 138 Re-learning unit 142 Passing time acquiring unit 144 Passing detection information acquiring unit 146 Scheduled time estimating unit 148 Date acquiring unit 150 Time period acquiring unit 152 Passing speed acquiring unit 154 Weight acquiring unit 210 Weight measuring system 230 Weight measuring device 242 Vehicle extracting unit 244 Vehicle amplitude calculating unit 246 Relationship information storage unit 248 Weight calculation unit 250 Correction unit 262 Vehicle collection unit 264 Vehicle relearning data storage unit 266 Vehicle relearning unit

Claims (14)

  1.  橋梁に設けられたセンサから、前記橋梁の前記センサが設けられた対象部分における走行方向の変位を表すパラメータの時系列データを収集する取得部と、
     前記時系列データを入力して特定車両が通過したか否かを示す判定結果を出力するニューラルネットワークによる前記判定結果に基づき、前記時系列データから、前記特定車両が前記橋梁の測定区間を通過時の特定部分データを抽出する抽出部と、
     前記特定部分データに基づき、前記特定車両の通過時における前記橋梁の前記走行方向の伸縮量の振幅値を算出する振幅算出部と、
     前記振幅値が予め設定された基準値より大きくなった場合、前記橋梁が劣化したと判定する劣化判定部と、
     予め定められた判断基準に基づき前記ニューラルネットワークを再学習するか否かを判断し、前記ニューラルネットワークを再学習するか否かの判断結果に基づき前記ニューラルネットワークの再学習を指示する再学習指示を出力する再学習指示部と、
     を備える劣化検出装置。
    an acquisition unit that collects, from sensors provided on a bridge, time-series data of parameters representing displacement in a running direction in a target portion of the bridge where the sensor is provided;
    When the specific vehicle passes through the measured section of the bridge based on the determination result of a neural network that inputs the time-series data and outputs a determination result indicating whether the specific vehicle has passed or not, based on the time-series data an extraction unit for extracting specific partial data of
    an amplitude calculation unit that calculates an amplitude value of the amount of expansion and contraction of the bridge in the running direction when the specific vehicle passes, based on the specific part data;
    a deterioration determination unit that determines that the bridge has deteriorated when the amplitude value is greater than a preset reference value;
    Determining whether or not to relearn the neural network based on predetermined determination criteria, and issuing a relearning instruction to instruct relearning of the neural network based on the determination result of whether or not to relearn the neural network. a relearning instruction unit to output;
    A deterioration detection device comprising:
  2.  前記橋梁が劣化したと判定された場合、前記橋梁が劣化したことを示すアラーム情報を出力するアラーム出力部
     をさらに備える請求項1に記載の劣化検出装置。
    The deterioration detection device according to claim 1, further comprising an alarm output unit that outputs alarm information indicating that the bridge has deteriorated when it is determined that the bridge has deteriorated.
  3.  前記再学習指示部は、前記橋梁の劣化の判定の開始時における前記振幅値である初期値と、前記基準値との間の1または複数の閾値が設定されており、
     前記再学習指示部は、前記振幅値が前記1または複数の閾値のそれぞれより大きくなる毎に、前記再学習指示を出力する
     請求項1または2に記載の劣化検出装置。
    The relearning instruction unit is set with one or more threshold values between the initial value, which is the amplitude value at the start of the determination of the deterioration of the bridge, and the reference value,
    The deterioration detection device according to claim 1 or 2, wherein the relearning instruction section outputs the relearning instruction each time the amplitude value becomes greater than each of the one or more threshold values.
  4.  前記再学習指示部は、前記振幅値が、予め設定されたパターンの変化をした場合、前記再学習指示を出力する
     請求項1または2に記載の劣化検出装置。
    The deterioration detection device according to claim 1 or 2, wherein the relearning instruction unit outputs the relearning instruction when the amplitude value changes in a preset pattern.
  5.  前記再学習指示部は、劣化の判定の開始時または直前の再学習時から所定時間を経過した場合、前記再学習指示を出力する
     請求項1または2に記載の劣化検出装置。
    The deterioration detection device according to claim 1 or 2, wherein the re-learning instruction unit outputs the re-learning instruction when a predetermined time has elapsed from the start of deterioration determination or the previous re-learning.
  6.  前記特定部分データを収集する収集部と、
     前記再学習指示が出力された場合、収集された前記特定部分データを教師データとして前記ニューラルネットワークを再学習する再学習部と、
     をさらに備える請求項1から5の何れか1項に記載の劣化検出装置。
    a collection unit that collects the specific partial data;
    a re-learning unit for re-learning the neural network using the collected specific partial data as teacher data when the re-learning instruction is output;
    The deterioration detection device according to any one of claims 1 to 5, further comprising:
  7.  前記再学習部は、開始時または直前の再学習時から後に収集された前記特定部分データを前記教師データとして前記ニューラルネットワークを再学習する
     請求項6に記載の劣化検出装置。
    The deterioration detection device according to claim 6, wherein the re-learning unit re-learns the neural network using the specific partial data collected after the time of starting or immediately before re-learning as the teacher data.
  8.  前記ニューラルネットワークは、畳み込みニューラルネットワークである
     請求項1から7の何れか1項に記載の劣化検出装置。
    The deterioration detection device according to any one of claims 1 to 7, wherein the neural network is a convolutional neural network.
  9.  橋梁における対象部分に設けられ、前記橋梁の前記対象部分における走行方向の変位を表すパラメータを検出するセンサと、
     前記センサから、前記パラメータの時系列データを収集する取得部と、
     前記時系列データを入力して特定車両が通過したか否かを示す判定結果を出力するニューラルネットワークによる前記判定結果に基づき、前記時系列データから、前記特定車両が前記橋梁の測定区間を通過時の特定部分データを抽出する抽出部と、
     前記特定部分データに基づき、前記特定車両の通過時における前記橋梁の前記走行方向の伸縮量の振幅値を算出する振幅算出部と、
     前記振幅値が予め設定された基準値より大きくなった場合、前記橋梁が劣化したと判定する劣化判定部と、
     予め定められた判断基準に基づき前記ニューラルネットワークを再学習するか否かを判断し、前記ニューラルネットワークを再学習するか否かの判断結果に基づき前記ニューラルネットワークの再学習を指示する再学習指示を出力する再学習指示部と、
     を備える劣化検出システム。
    a sensor provided at a target portion of a bridge for detecting a parameter representing displacement in the running direction at the target portion of the bridge;
    an acquisition unit that collects time-series data of the parameter from the sensor;
    When the specific vehicle passes through the measured section of the bridge based on the determination result of a neural network that inputs the time-series data and outputs a determination result indicating whether the specific vehicle has passed or not, based on the time-series data an extraction unit for extracting specific partial data of
    an amplitude calculation unit that calculates an amplitude value of the amount of expansion and contraction of the bridge in the running direction when the specific vehicle passes, based on the specific part data;
    a deterioration determination unit that determines that the bridge has deteriorated when the amplitude value is greater than a preset reference value;
    Determining whether or not to relearn the neural network based on predetermined determination criteria, and issuing a relearning instruction to instruct relearning of the neural network based on the determination result of whether or not to relearn the neural network. a relearning instruction unit to output;
    A degradation detection system comprising:
  10.  橋梁に設けられたセンサから、前記橋梁の前記センサが設けられた対象部分における走行方向の変位を表すパラメータの時系列データを収集し、
     前記時系列データを入力して特定車両が通過したか否かを示す判定結果を出力するニューラルネットワークによる前記判定結果に基づき、前記時系列データから、前記特定車両が前記橋梁の測定区間を通過時の特定部分データを抽出し、
     前記特定部分データに基づき、前記特定車両の通過時における前記橋梁の前記走行方向の伸縮量の振幅値を算出し、
     前記振幅値が予め設定された基準値より大きくなった場合、前記橋梁が劣化したと判定し、
     予め定められた判断基準に基づき前記ニューラルネットワークを再学習するか否かを判断し、前記ニューラルネットワークを再学習するか否かの判断結果に基づき前記ニューラルネットワークの再学習を指示する再学習指示を出力する
     劣化検出方法。
    Collecting time-series data of parameters representing displacement in the running direction in a target portion of the bridge where the sensor is installed, from a sensor installed on the bridge;
    When the specific vehicle passes through the measured section of the bridge based on the determination result of a neural network that inputs the time-series data and outputs a determination result indicating whether the specific vehicle has passed or not, based on the time-series data Extract specific partial data of
    calculating an amplitude value of the amount of expansion and contraction of the bridge in the running direction when the specific vehicle passes, based on the specific portion data;
    If the amplitude value is greater than a preset reference value, it is determined that the bridge has deteriorated,
    Determining whether or not to relearn the neural network based on predetermined determination criteria, and issuing a relearning instruction to instruct relearning of the neural network based on the determination result of whether or not to relearn the neural network. Output deterioration detection method.
  11.  情報処理装置を劣化検出装置として機能させるためのプログラムであって、
     前記情報処理装置を、
     橋梁に設けられたセンサから、前記橋梁の前記センサが設けられた対象部分における走行方向の変位を表すパラメータの時系列データを収集する取得部と、
     前記時系列データを入力して特定車両が通過したか否かを示す判定結果を出力するニューラルネットワークによる前記判定結果に基づき、前記時系列データから、前記特定車両が前記橋梁の測定区間を通過時の特定部分データを抽出する抽出部と、
     前記特定部分データに基づき、前記特定車両の通過時における前記橋梁の前記走行方向の伸縮量の振幅値を算出する振幅算出部と、
     前記振幅値が予め設定された基準値より大きくなった場合、前記橋梁が劣化したと判定する劣化判定部と
     予め定められた判断基準に基づき前記ニューラルネットワークを再学習するか否かを判断し、前記ニューラルネットワークを再学習するか否かの判断結果に基づき前記ニューラルネットワークの再学習を指示する再学習指示を出力する再学習指示部と、
     して機能させるプログラム。
    A program for causing an information processing device to function as a deterioration detection device,
    the information processing device,
    an acquisition unit that collects, from sensors provided on a bridge, time-series data of parameters representing displacement in a running direction in a target portion of the bridge where the sensor is provided;
    When the specific vehicle passes through the measured section of the bridge based on the determination result of a neural network that inputs the time-series data and outputs a determination result indicating whether the specific vehicle has passed or not, based on the time-series data an extraction unit for extracting specific partial data of
    an amplitude calculation unit that calculates an amplitude value of the amount of expansion and contraction of the bridge in the running direction when the specific vehicle passes, based on the specific part data;
    a deterioration determination unit that determines that the bridge has deteriorated when the amplitude value exceeds a preset reference value, and determines whether or not to relearn the neural network based on a predetermined determination criterion, a relearning instruction unit that outputs a relearning instruction for instructing relearning of the neural network based on a determination result as to whether or not to relearn the neural network;
    A program that works as
  12.  橋梁に設けられたセンサから、前記橋梁の前記センサが設けられた対象部分における走行方向の変位を表すパラメータの時系列データを収集する取得部と、
     前記時系列データを入力して車両が通過したか否かを示す判定結果を出力する車両判定用ニューラルネットワークによる前記判定結果に基づき、前記時系列データから、前記車両が前記橋梁の測定区間を通過時の部分データである車両部分データを抽出する車両抽出部と、
     前記車両部分データに基づき、前記車両の通過時における前記橋梁の前記走行方向の伸縮量の振幅値を表す車両振幅値を算出する車両振幅算出部と、
     振幅値と車両の重量との対応関係を表す関係情報と、算出した前記車両振幅値とに基づき、前記車両の重量を算出する重量算出部と、
     前記時系列データを入力して特定車両が通過したか否かを示す判定結果を出力するニューラルネットワークによる前記判定結果に基づき、前記時系列データから、前記特定車両が前記橋梁の測定区間を通過時の部分データである特定部分データを抽出する抽出部と、
     前記特定部分データに基づき、前記特定車両の通過時における前記橋梁の前記走行方向の伸縮量の振幅値を表す特定車両振幅値を算出する振幅算出部と、
     前記特定車両振幅値が予め設定された基準値より大きくなった場合、前記関係情報を補正する補正部と、
     予め定められた判断基準に基づき前記車両判定用ニューラルネットワークおよび前記ニューラルネットワークを再学習するか否かを判断し、前記車両判定用ニューラルネットワークおよび前記ニューラルネットワークを再学習するか否かの判断結果に基づき前記車両判定用ニューラルネットワークおよび前記ニューラルネットワークの再学習を指示する再学習指示を出力する再学習指示部と、
     を備える重量測定装置。
    an acquisition unit that collects, from sensors provided on a bridge, time-series data of parameters representing displacement in a running direction in a target portion of the bridge where the sensor is provided;
    Based on the determination result of a neural network for vehicle determination that inputs the time-series data and outputs a determination result indicating whether or not the vehicle has passed, the vehicle passes through the measured section of the bridge based on the time-series data. a vehicle extraction unit that extracts vehicle partial data that is partial data of time;
    a vehicle amplitude calculation unit that calculates a vehicle amplitude value representing an amplitude value of the amount of expansion and contraction of the bridge in the traveling direction when the vehicle passes, based on the vehicle part data;
    a weight calculation unit that calculates the weight of the vehicle based on relationship information representing a correspondence relationship between the amplitude value and the weight of the vehicle and the calculated vehicle amplitude value;
    When the specific vehicle passes through the measured section of the bridge based on the determination result of a neural network that inputs the time-series data and outputs a determination result indicating whether the specific vehicle has passed or not, based on the time-series data an extraction unit for extracting specific partial data that is partial data of
    an amplitude calculation unit that calculates, based on the specific portion data, a specific vehicle amplitude value representing an amplitude value of the amount of expansion and contraction of the bridge in the running direction when the specific vehicle passes;
    a correcting unit that corrects the relevant information when the specific vehicle amplitude value exceeds a preset reference value;
    Determining whether or not to relearn the vehicle determination neural network and the neural network based on predetermined determination criteria, and determining whether or not to relearn the vehicle determination neural network and the neural network a re-learning instruction unit that outputs a re-learning instruction instructing re-learning of the neural network for vehicle determination and the neural network based on
    A weighing device comprising a
  13.  橋梁に設けられたセンサから、前記橋梁の前記センサが設けられた対象部分における走行方向の変位を表すパラメータの時系列データを収集し、
     前記時系列データを入力して車両が通過したか否かを示す判定結果を出力する車両判定用ニューラルネットワークによる前記判定結果に基づき、前記時系列データから、前記車両が前記橋梁の測定区間を通過時の部分データである車両部分データを抽出し、
     前記車両部分データに基づき、前記車両の通過時における前記橋梁の前記走行方向の伸縮量の振幅値を表す車両振幅値を算出し、
     振幅値と車両の重量との対応関係を表す関係情報と、算出した前記車両振幅値とに基づき、前記車両の重量を算出し、
     前記時系列データを入力して特定車両が通過したか否かを示す判定結果を出力するニューラルネットワークによる前記判定結果に基づき、前記時系列データから、前記特定車両が前記橋梁の測定区間を通過時の部分データである特定部分データを抽出する抽出部と、
     前記特定部分データに基づき、前記特定車両の通過時における前記橋梁の前記走行方向の伸縮量の振幅値を表す特定車両振幅値を算出し、
     前記特定車両振幅値が予め設定された基準値より大きくなった場合、前記関係情報を補正し、
     予め定められた判断基準に基づき前記車両判定用ニューラルネットワークおよび前記ニューラルネットワークを再学習するか否かを判断し、前記車両判定用ニューラルネットワークおよび前記ニューラルネットワークを再学習するか否かの判断結果に基づき前記車両判定用ニューラルネットワークおよび前記ニューラルネットワークの再学習を指示する再学習指示を出力する
     重量測定方法。
    Collecting time-series data of parameters representing displacement in the running direction in a target portion of the bridge where the sensor is installed, from a sensor installed on the bridge;
    Based on the determination result of a neural network for vehicle determination that inputs the time-series data and outputs a determination result indicating whether or not the vehicle has passed, the vehicle passes through the measured section of the bridge based on the time-series data. Extract the vehicle partial data, which is the hour partial data,
    calculating a vehicle amplitude value representing an amplitude value of the amount of expansion and contraction of the bridge in the running direction when the vehicle passes, based on the vehicle part data;
    calculating the weight of the vehicle based on the calculated vehicle amplitude value and relationship information representing the correspondence relationship between the amplitude value and the weight of the vehicle;
    When the specific vehicle passes through the measured section of the bridge based on the determination result of a neural network that inputs the time-series data and outputs a determination result indicating whether the specific vehicle has passed or not, based on the time-series data an extraction unit for extracting specific partial data that is partial data of
    calculating a specific vehicle amplitude value representing an amplitude value of the amount of expansion and contraction of the bridge in the running direction when the specific vehicle passes, based on the specific portion data;
    correcting the relevant information when the specific vehicle amplitude value is greater than a preset reference value;
    Determining whether or not to relearn the vehicle determination neural network and the neural network based on predetermined determination criteria, and determining whether or not to relearn the vehicle determination neural network and the neural network and outputting a re-learning instruction instructing re-learning of the neural network for vehicle determination and the neural network based on the weight measurement method.
  14.  情報処理装置を重量測定装置として機能させるためのプログラムであって、
     前記情報処理装置を、
     橋梁に設けられたセンサから、前記橋梁の前記センサが設けられた対象部分における走行方向の変位を表すパラメータの時系列データを収集する取得部と、
     前記時系列データを入力して車両が通過したか否かを示す判定結果を出力する車両判定用ニューラルネットワークによる前記判定結果に基づき、前記時系列データから、前記車両が前記橋梁の測定区間を通過時の部分データである車両部分データを抽出する車両抽出部と、
     前記車両部分データに基づき、前記車両の通過時における前記橋梁の前記走行方向の伸縮量の振幅値を表す車両振幅値を算出する車両振幅算出部と、
     振幅値と車両の重量との対応関係を表す関係情報と、算出した前記車両振幅値とに基づき、前記車両の重量を算出する重量算出部と、
     前記時系列データを入力して特定車両が通過したか否かを示す判定結果を出力するニューラルネットワークによる前記判定結果に基づき、前記時系列データから、前記特定車両が前記橋梁の測定区間を通過時の部分データである特定部分データを抽出する抽出部と、
     前記特定部分データに基づき、前記特定車両の通過時における前記橋梁の前記走行方向の伸縮量の振幅値を表す特定車両振幅値を算出する振幅算出部と、
     前記特定車両振幅値が予め設定された基準値より大きくなった場合、前記関係情報を補正する補正部と、
     予め定められた判断基準に基づき前記車両判定用ニューラルネットワークおよび前記ニューラルネットワークを再学習するか否かを判断し、前記車両判定用ニューラルネットワークおよび前記ニューラルネットワークを再学習するか否かの判断結果に基づき前記車両判定用ニューラルネットワークおよび前記ニューラルネットワークの再学習を指示する再学習指示を出力する再学習指示部と、
    して機能させるプログラム。
    A program for causing an information processing device to function as a weight measuring device,
    the information processing device,
    an acquisition unit that collects, from sensors provided on a bridge, time-series data of parameters representing displacement in a running direction in a target portion of the bridge where the sensor is provided;
    Based on the determination result of a neural network for vehicle determination that inputs the time-series data and outputs a determination result indicating whether or not the vehicle has passed, the vehicle passes through the measured section of the bridge based on the time-series data. a vehicle extraction unit that extracts vehicle partial data that is partial data of time;
    a vehicle amplitude calculation unit that calculates a vehicle amplitude value representing an amplitude value of the amount of expansion and contraction of the bridge in the traveling direction when the vehicle passes, based on the vehicle part data;
    a weight calculation unit that calculates the weight of the vehicle based on relationship information representing a correspondence relationship between the amplitude value and the weight of the vehicle and the calculated vehicle amplitude value;
    When the specific vehicle passes through the measured section of the bridge based on the determination result of a neural network that inputs the time-series data and outputs a determination result indicating whether the specific vehicle has passed or not, based on the time-series data an extraction unit for extracting specific partial data that is partial data of
    an amplitude calculation unit that calculates, based on the specific portion data, a specific vehicle amplitude value representing an amplitude value of the amount of expansion and contraction of the bridge in the running direction when the specific vehicle passes;
    a correcting unit that corrects the relevant information when the specific vehicle amplitude value exceeds a preset reference value;
    Determining whether or not to relearn the vehicle determination neural network and the neural network based on predetermined determination criteria, and determining whether or not to relearn the vehicle determination neural network and the neural network a re-learning instruction unit that outputs a re-learning instruction instructing re-learning of the neural network for vehicle determination and the neural network based on
    A program that works as
PCT/JP2021/014021 2021-03-31 2021-03-31 Deterioration detection device, deterioration detection system, deterioration detection method, weight measurement device, weight measurement method, and program WO2022208805A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023510082A JPWO2022208805A1 (en) 2021-03-31 2021-03-31
PCT/JP2021/014021 WO2022208805A1 (en) 2021-03-31 2021-03-31 Deterioration detection device, deterioration detection system, deterioration detection method, weight measurement device, weight measurement method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/014021 WO2022208805A1 (en) 2021-03-31 2021-03-31 Deterioration detection device, deterioration detection system, deterioration detection method, weight measurement device, weight measurement method, and program

Publications (1)

Publication Number Publication Date
WO2022208805A1 true WO2022208805A1 (en) 2022-10-06

Family

ID=83458248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014021 WO2022208805A1 (en) 2021-03-31 2021-03-31 Deterioration detection device, deterioration detection system, deterioration detection method, weight measurement device, weight measurement method, and program

Country Status (2)

Country Link
JP (1) JPWO2022208805A1 (en)
WO (1) WO2022208805A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101966666B1 (en) * 2017-12-27 2019-04-09 부산대학교 산학협력단 Apparatus and method for evaluating load carry capacity of bridge
WO2019111841A1 (en) * 2017-12-07 2019-06-13 日本電気株式会社 Damage diagnosis device, damage diagnosis method, and recording medium in which damage diagnosis program is stored
JP2019117201A (en) * 2017-01-25 2019-07-18 パナソニックIpマネジメント株式会社 Measuring apparatus and measuring method
JP2020046331A (en) * 2018-09-20 2020-03-26 株式会社Nttドコモ Bridge evaluation system and method for evaluating bridge

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019117201A (en) * 2017-01-25 2019-07-18 パナソニックIpマネジメント株式会社 Measuring apparatus and measuring method
WO2019111841A1 (en) * 2017-12-07 2019-06-13 日本電気株式会社 Damage diagnosis device, damage diagnosis method, and recording medium in which damage diagnosis program is stored
KR101966666B1 (en) * 2017-12-27 2019-04-09 부산대학교 산학협력단 Apparatus and method for evaluating load carry capacity of bridge
JP2020046331A (en) * 2018-09-20 2020-03-26 株式会社Nttドコモ Bridge evaluation system and method for evaluating bridge

Also Published As

Publication number Publication date
JPWO2022208805A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
EP3369085B1 (en) Monitoring traffic flow
US10641681B2 (en) Structure abnormality detection system, structure abnormality detection method, and storage medium
CN112834193B (en) Operation bridge vibration and health state abnormity early warning method based on three-dimensional graph
US20230083004A1 (en) Method of monitoring health status of bridges in normal traffic conditions
KR101328889B1 (en) Structural health monitoring system based on measured displacement
US20180306677A1 (en) Structure abnormality detection device, structure abnormality detection method, storage medium, and structure abnormality detection system
WO2022267613A1 (en) Passive excitation-based online calibration method for bridge structure strain monitoring system
Martinez et al. Bridge flexural rigidity calculation using measured drive-by deflections
JP7434030B2 (en) Deterioration detection device, deterioration detection system, deterioration detection method, weight measurement device, weight measurement method and program
CN103868492A (en) Vertical deformation performance degradation alarming method of cable-stayed bridge in operating state
EP3951344A1 (en) Methods and systems for damage evaluation of structural assets
WO2022208805A1 (en) Deterioration detection device, deterioration detection system, deterioration detection method, weight measurement device, weight measurement method, and program
US9778065B2 (en) Gradient information acquisition method, storage medium, gradient information acquisition device and program
KR101227776B1 (en) Designing method for displacement estimation on construction using ann and estimating method for displacement of construction
JP2006317413A (en) Preservation system of vehicle traffic structure, and preservation method of vehicle traffic structure
JP7404577B2 (en) Vehicle analysis system and vehicle analysis method
KR101734201B1 (en) Method and apparatus for automatically calibrating high speed weight-in-motion using weigh information measured in low speed weight-in-motion or track scale
KR102435166B1 (en) A method of determining the measurement location and location of a structure using a genetic algorithm and AI technology for precise strain-displacement prediction
JP7035488B2 (en) Analytical equipment, analysis system and analysis method
JP2021149957A (en) Method and system for determining control load by using statistical analysis
CN115943103A (en) Method for monitoring railway track and monitoring system for monitoring railway track
Yajima et al. Displacement-ratio-based Probabilistic Damage Detection of Bridges using FE Model Update
Haardt et al. Monitoring during life cycle of bridges to establish performance indicators
JP2022100156A (en) Vehicle detection device, vehicle detection system, vehicle detection method and program
JP7327688B2 (en) Event detection device, method and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934969

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023510082

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21934969

Country of ref document: EP

Kind code of ref document: A1