WO2022208737A1 - Endoscope overtube - Google Patents

Endoscope overtube Download PDF

Info

Publication number
WO2022208737A1
WO2022208737A1 PCT/JP2021/013865 JP2021013865W WO2022208737A1 WO 2022208737 A1 WO2022208737 A1 WO 2022208737A1 JP 2021013865 W JP2021013865 W JP 2021013865W WO 2022208737 A1 WO2022208737 A1 WO 2022208737A1
Authority
WO
WIPO (PCT)
Prior art keywords
endoscope
pressure
air supply
pipeline
overtube
Prior art date
Application number
PCT/JP2021/013865
Other languages
French (fr)
Japanese (ja)
Inventor
英幸 佐藤
有正 杉本
淳 若曽根
竜 久保
達矢 樋口
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2021/013865 priority Critical patent/WO2022208737A1/en
Publication of WO2022208737A1 publication Critical patent/WO2022208737A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/01Guiding arrangements therefore

Definitions

  • the present invention relates to an endoscope overtube.
  • An endoscope overtube which is used for treatment using an endoscope.
  • An endoscope overtube is used for the purpose of suppressing contact and sliding between living tissue and an endoscope when the endoscope is advanced, retracted, and rotated inside a patient's body. Since the inner peripheral surface of the endoscope overtube has a smaller sliding resistance with respect to the outer peripheral portion of the endoscope than the living tissue, the endoscope can be advanced/retracted and rotated more smoothly. As a result, the endoscope can be operated accurately and easily.
  • the endoscope overtube has a main tube through which the endoscope is inserted, a fixation balloon that expands and contracts outside the main tube at the distal end of the main tube, and an air supply device that supplies air to the fixation balloon.
  • the endoscope overtube is often inserted into the body using the endoscope as a guide after the endoscope has been previously inserted into the body.
  • the endoscope and the inner wall of the tube come into contact with each other at the bend of the tube.
  • the endoscope overtube is inserted using the endoscope as a guide, the distal end of the endoscope overtube is pushed into the contact portion between the endoscope and the inner wall of the tube, thus preventing the tube from A portion of the inner wall can get caught between the endoscopic overtube and the side of the endoscope.
  • the overtube described in Patent Document 1 has openings of uniform size in the longitudinal direction, and has uniform flexibility in the longitudinal direction. For this reason, the inner wall of the pipe is likely to be involved. Since the overtube described in Patent Document 1 cannot close the insertion port at the proximal end that is placed outside the body, liquid or gas in the body tends to flow backward from the insertion port to the outside of the body. Reflux of liquids or gases from the body can interfere with the procedure. In the overtube disclosed in Patent Document 1, when the pressure of the first balloon becomes equal to or higher than the second pressure, the second balloon is inflated, so the pressure of the first balloon is relieved. As a result, it is possible to some extent to prevent the outer diameter from becoming too large due to excessive pressure being applied to the first balloon. However, when the amount of air supply rises sharply, the pressure of the first balloon rises temporarily. Therefore, the air supply device in the medical equipment described in Patent Document 1 needs to be equipped with an expensive controller for controlling the amount of air supply.
  • the overtube described in Patent Literature 1 may impose a burden on the patient during treatment and may make smooth operation of the endoscope difficult.
  • an endoscope overtube includes a tube body having a main lumen through which an endoscope is inserted and an air supply lumen through which gas flows;
  • a fixation balloon provided on the outer peripheral surface of the distal end of the outer peripheral surface and expandable outward from the outer peripheral surface and contractible toward the outer peripheral surface, an air supply device for sending the gas to the air supply lumen, and the tube
  • An endoscope having a tubular portion communicating with the main lumen at a rear end portion of the main body, and an airtight seal closing a gap between an endoscope inserted into the main lumen through the tubular portion and an inner peripheral surface of the tubular portion. and a valve unit.
  • an endoscope overtube that reduces the burden on the patient and allows smooth operation of the endoscope.
  • FIG. 1 is a schematic perspective view showing an example of an endoscope overtube according to a first embodiment of the present invention
  • FIG. 1 is a schematic front view showing an example of an endoscope inserted through an endoscope overtube according to a first embodiment of the present invention
  • FIG. FIG. 3 is a side view seen from F3 in FIG. 2
  • 1 is a schematic cross-sectional view showing an example of an endoscope overtube according to a first embodiment of the present invention
  • FIG. FIG. 5 is a cross-sectional view taken along line F5-F5 in FIG. 4
  • FIG. 5 is a cross-sectional view taken along line F6-F6 in FIG. 4
  • 5 is an enlarged view of F7 in FIG. 4;
  • FIG. 3 is a schematic cross-sectional view showing an example of an airtight valve unit in the endoscope overtube according to the first embodiment of the present invention
  • FIG. 3 is a schematic perspective view showing an example of an airtight balloon of an airtight valve unit in the endoscope overtube according to the first embodiment of the present invention
  • FIG. 4 is an operation explanatory view of the airtight valve unit in the endoscope overtube according to the first embodiment of the present invention
  • FIG. 11 is a cross-sectional view taken along line F11-F11 in FIG. 10
  • 4 is a graph showing an example of the relationship between the amount of air supplied from the gas moving device and the internal pressure of the airtight balloon in the endoscope overtube according to the first embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing an example of how to use the endoscope overtube according to the first embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing an example of how to use the endoscope overtube according to the first embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view illustrating the action of the distal tip in the endoscope overtube according to the first embodiment of the present invention;
  • FIG. 4 is a schematic diagram showing an example of how to use the endoscope overtube according to the first embodiment of the present invention.
  • FIG. 6 is a schematic perspective view showing an example of an endoscope overtube according to a second embodiment of the present invention;
  • FIG. 18 is a cross-sectional view along line F19-F19 in FIG.
  • FIG. 17; 19 is an enlarged view of the F19 portion in FIG. 18;
  • FIG. FIG. 5 is a block diagram showing an example of an air supply device in an endoscope overtube according to a second embodiment of the present invention;
  • FIG. 10 is a block diagram showing the flow of the air supply device in the endoscope overtube according to the second embodiment of the present invention during inspiration.
  • FIG. 8 is a schematic perspective view showing a bent state of the endoscope overtube according to the second embodiment of the present invention;
  • FIG. 23 is a cross-sectional view taken along line F23-F23 in FIG. 22;
  • FIG. 10 is a schematic cross-sectional view showing the main part of a main tube that can be used for an endoscope overtube according to a second embodiment of the present invention;
  • FIG. 25 is a schematic cross-sectional view showing a state in which the main tube shown in FIG. 24 is bent;
  • FIG. 11 is a schematic front view showing an air supply device in an endoscope overtube according to a third embodiment of the present invention;
  • FIG. 10 is a schematic front view showing the arrangement of the air supply device in the endoscope overtube according to the third embodiment of the present invention during inspiration.
  • FIG. 11 is a block diagram showing an example of an air supply device in an endoscope overtube according to a third embodiment of the present invention;
  • FIG. 11 is a block diagram showing the flow of the air supply device in the endoscope overtube according to the third embodiment of the present invention during inspiration.
  • FIG. 11 is a block diagram showing an example of an air supply device in an endoscope overtube according to a third embodiment of the present invention. It is a schematic diagram explaining the effect
  • FIG. 10 is a schematic diagram showing a flow path shape of a modified example (first modified example) of the air supply device;
  • FIG. 11 is a schematic front view showing a modified example (second modified example) of the air supply device used in the endoscope overtube according to the third embodiment of the present invention.
  • FIG. 11 is a block diagram showing a modified example (second modified example) of the air supply device used in the endoscope overtube according to the third embodiment of the present invention;
  • FIG. 10 is a schematic diagram showing the shape of a flow path in a modified example (second modified example) of the air supply device;
  • FIG. 11 is a schematic diagram showing an example of a modified example (second modified example) of the air supply device.
  • FIG. 11 is a schematic diagram showing an example of a modified example (second modified example) of the air supply device.
  • FIG. 11 is an operation explanatory diagram of a modified example (second modified example) of the air supply device;
  • FIG. 11 is an operation explanatory diagram of a modified example (second modified example) of the air supply device;
  • FIG. 11 is an operation explanatory diagram of a modified example (second modified example) of the air supply device;
  • FIG. 11 is an operation explanatory diagram of a modified example (second modified example) of the air supply device;
  • FIG. 11 is a schematic front view showing a modification (third modification) of the air supply device used in the endoscope overtube according to the third embodiment of the present invention;
  • FIG. 11 is a schematic front view showing a modification (third modification) of the air supply device used in the endoscope overtube according to the third embodiment of the present invention;
  • FIG. 11 is a schematic front view showing a modification (third modification) of the air supply device used in the endoscope over
  • FIG. 11 is a block diagram showing a modified example (third modified example) of the air supply device used in the endoscope overtube according to the third embodiment of the present invention
  • FIG. 11 is a schematic front view showing an example of a pressure indicator in a modified example (third modified example) of the air supply device
  • 48 is a bottom view of F48 in FIG. 47
  • FIG. FIG. 48 is a cross-sectional view taken along line F49-F49 in FIG. 47
  • FIG. 11 is an exploded perspective view showing an example of a collar, a coil spring, and an airtight member in a modified example (third modified example) of the air supply device
  • FIG. 11 is a block diagram showing a modified example (third modified example) of the air supply device used in the endoscope overtube according to the third embodiment of the present invention
  • FIG. 11 is a schematic front view showing an example of a pressure indicator in a modified example (third modified example) of the air supply device
  • 48 is a bottom view of F48 in FIG. 47
  • FIG. 11 is a schematic diagram showing a fixing structure of an airtight member to a collar in a modified example (third modified example) of the air supply device.
  • FIG. 49 is a cross-sectional view taken along line F52-F52 in FIG. 48;
  • FIG. 50 is an enlarged view of a portion F53 in FIG. 49;
  • FIG. 11 is a schematic cross-sectional view showing the operation of a pressure indicator in a modified example (third modified example) of the air supply device;
  • 55 is a view from F55 in FIG. 54.
  • FIG. FIG. 3 is a schematic cross-sectional view showing a comparative example of an airtight member with a bellows structure deformed by pressure.
  • FIG. 11 is a schematic cross-sectional view for explaining reading errors in a pressure indicator in a modified example (third modified example) of the air supply device.
  • FIG. 11 is a schematic front view showing a modified example (fourth modified example) of the air supply device used in the endoscope overtube according to the third embodiment of the present invention;
  • FIG. 11 is a schematic cross-sectional view showing the internal structure of a modified example (fourth modified example) of the air supply device.
  • FIG. 11 is a schematic cross-sectional view showing an exploded state of a modified example (fourth modified example) of the air supply device.
  • FIG. 61 is a cross-sectional view taken along line F61-F61 in FIG. 59;
  • FIG. 62 is a cross-sectional view taken along line F62-F62 in FIG. 61;
  • FIG. 11 is a block diagram showing a modified example (fourth modified example) of the air supply device;
  • FIG. 11 is a schematic cross-sectional view showing an example of an airtight member used in a modified example (fifth modified example) of the air supply device used in the endoscope overtube according to the third embodiment of the present invention.
  • FIG. 11 is a schematic cross-sectional view showing an example of an airtight member used in a modified example (sixth modified example) of the air supply device used in the endoscope overtube according to the third embodiment of the present invention;
  • FIG. 66 is a cross-sectional view taken along line F66-F66 in FIG. 65;
  • FIG. 66 is a cross-sectional view taken along line F67-F67 in FIG. 65;
  • FIG. 11 is a schematic perspective view showing an example of an endoscope overtube according to a fourth embodiment of the present invention;
  • FIG. 69 is a cross-sectional view taken along line F69-F69 in FIG. 68;
  • FIG. 11 is a schematic cross-sectional view showing the main part of a pressure indicator used in an endoscope overtube according to a fourth embodiment of the present invention;
  • FIG. 14 is a schematic cross-sectional view showing the main part of a modified example (eighth modified example) of the pressure indicator used in the endoscope overtube according to the fourth embodiment of the present invention; It is a right side view of the collar in the 8th modification.
  • FIG. 11 is a schematic cross-sectional view showing the main part of a modified example (ninth modified example) of the pressure indicator used in the endoscope overtube according to the fourth embodiment of the present invention; It is a left view of the airtight member in the 9th modification.
  • FIG. 20 is a schematic cross-sectional view showing the main part of a modified example (tenth modified example) of the pressure indicator used in the endoscope overtube according to the fourth embodiment of the present invention.
  • FIG. 20 is a left side view of a fixed frame in a tenth modified example;
  • FIG. 20 is a schematic cross-sectional view showing the main part of a modified example (eleventh modified example) of the pressure indicator used in the endoscope overtube according to the fourth embodiment of the present invention;
  • FIG. 20 is a left side view of an airtight member in an eleventh modified example;
  • FIG. 20 is a schematic cross-sectional view showing the main part of a modified example (twelfth modified example) of the pressure indicator used in the endoscope overtube according to the fourth embodiment of the present invention;
  • FIG. 20 is a schematic cross-sectional view showing a main part of a modified example (a thirteenth modified example) of the pressure indicator used in the endoscope overtube according to the fourth embodiment of the present invention;
  • FIG. 21 is a schematic cross-sectional view showing the main part of a modified example (a fourteenth modified example) of the pressure indicator used in the endoscope overtube according to the fourth embodiment of the present invention;
  • FIG. 21 is a schematic cross-sectional view showing the main part of a modified example (a fifteenth modified example) of the pressure indicator used in the endoscope overtube according to the fourth embodiment of the present invention
  • FIG. 21 is a schematic perspective partial cross-sectional view showing a main part of a modified example (sixteenth modified example) of the pressure indicator used in the endoscope overtube according to the fourth embodiment of the present invention
  • FIG. 20 is a right side view of a collar used in a modified example (16th modified example) of the pressure indicator.
  • FIG. 85 is a cross-sectional view taken along line F85-F85 in FIG. 84;
  • FIG. 20 is a perspective view of an airtight member used in a modification (sixteenth modification) of the pressure indicator;
  • FIG. 87 is a sectional view taken along line F87-F87 in FIG. 86;
  • FIG. 87 is a cross-sectional view taken along line F88-F88 in FIG. 86;
  • FIG. 20 is a schematic perspective partial cross-sectional view showing a main part of a modified example (a seventeenth modified example) of the pressure indicator used in the endoscope overtube according to the fourth embodiment of the present invention; 89. It is an enlarged view of the F90 part in FIG.
  • FIG. 20 is a schematic cross-sectional view showing an example of a modification (eighteenth modification) of the limiter used in the endoscope overtube according to the fifth embodiment of the present invention
  • FIG. 94 is a schematic view of F94 in FIG. 93
  • FIG. 11 is a schematic cross-sectional view showing an example of an airtight valve unit used in an endoscope overtube according to a sixth embodiment of the present invention
  • FIG. 11 is an operation explanatory diagram of an airtight valve unit used in an endoscope overtube according to a sixth embodiment of the present invention
  • FIG. 21 is a schematic cross-sectional view showing a modification (a nineteenth modification) of the airtight valve unit used in the endoscope overtube according to the sixth embodiment of the present invention
  • FIG. 20 is an operation explanatory diagram of a modified example (a nineteenth modified example) of the airtight valve unit;
  • FIG. 20 is a schematic cross-sectional view showing a modification (twentieth modification) of the airtight valve unit used in the endoscope overtube according to the sixth embodiment of the present invention;
  • FIG. 21 is a schematic perspective view showing an example of an endoscope overtube according to a seventh embodiment of the present invention;
  • FIG. 101 is a cross-sectional view taken along line F101-F101 in FIG. 100;
  • FIG. 102 is a cross-sectional view taken along line F102-F102 in FIG. 101;
  • FIG. 104 is a cross-sectional view taken along line F103-F103 in FIG. 103;
  • FIG. 4 is a schematic diagram showing an example of performing endoscopic full-thickness resection using a conventional overtube.
  • FIG. 14 is a schematic diagram showing an example of how to use the endoscope overtube according to the seventh embodiment of the present invention.
  • 106 is an enlarged view of F106 part in FIG. 105;
  • FIG. 14 is a schematic diagram showing an example of how to use the endoscope overtube according to the seventh embodiment of the present invention.
  • 108 is an enlarged view of F108 part in FIG. 107;
  • FIG. FIG. 21 is a cross-sectional view showing an example of how to use the endoscope overtube according to the seventh embodiment of the present invention;
  • FIG. 21 is a cross-sectional view showing an example of how to use the endoscope overtube according to the seventh embodiment of the present invention
  • FIG. 21 is a cross-sectional view showing a modification (twenty-first modification) of the method of using the endoscope overtube according to the seventh embodiment of the present invention
  • FIG. 21 is a cross-sectional view showing a modification (twenty-first modification) of the method of using the endoscope overtube according to the seventh embodiment of the present invention
  • FIG. 21 is a cross-sectional view showing a modification (twenty-first modification) of the method of using the endoscope overtube according to the seventh embodiment of the present invention
  • FIG. 21 is a cross-sectional view showing a modification (twenty-first modification) of the method of using the endoscope overtube according to the seventh embodiment of the present invention
  • FIG. 21 is a cross-sectional view showing an example of how to use the endoscope overtube according to the seventh embodiment of the present invention
  • FIG. 21 is
  • FIG. 22 is a cross-sectional view showing a modified example (22nd modified example) of the distal end fixing portion used in the endoscope overtube of the seventh embodiment of the present invention
  • FIG. 11 is a cross-sectional view showing the operation of a modified example (22nd modified example) of the distal end fixing portion
  • FIG. 21 is a schematic cross-sectional view showing a modification (twenty-third modification) of the distal end fixing portion used in the endoscope overtube according to the seventh embodiment of the present invention
  • 117 is a cross-sectional view taken along line F117-F117 in FIG. 116; FIG. FIG.
  • FIG. 11 is a schematic cross-sectional view showing an example of a diameter-reduced state of a modified example (a twenty-third modified example) of the distal end fixing portion;
  • FIG. 21 is a schematic perspective view showing an example of an endoscope overtube according to an eighth embodiment of the present invention;
  • FIG. 120 is a cross-sectional view taken along line F120-F120 in FIG. 119;
  • FIG. 121 is a cross-sectional view taken along line F121-F121 in FIG. 120;
  • FIG. 121 is a cross-sectional view taken along line F122-F122 in FIG. 120;
  • FIG. 123 is a cross-sectional view along line F123-F123 in FIG. 121;
  • FIG. 20 is a cross-sectional view showing an example of how to use the endoscope overtube according to the eighth embodiment of the present invention
  • FIG. 20 is a cross-sectional view showing an example of how to use the endoscope overtube according to the eighth embodiment of the present invention
  • FIG. 20 is a cross-sectional view showing an example of how to use the endoscope overtube according to the eighth embodiment of the present invention
  • FIG. 20 is a cross-sectional view showing an example of how to use the endoscope overtube according to the eighth embodiment of the present invention
  • FIG. 20 is a cross-sectional view showing an example of how to use the endoscope overtube according to the eighth embodiment of the present invention
  • FIG. 1 is a schematic perspective view showing an example of an endoscope overtube according to a first embodiment of the present invention.
  • An overtube 1 shown in FIG. 1 is an example of an endoscope overtube according to the present embodiment.
  • the overtube 1 has a main tube 2 (tube body), a fixation balloon 3 , a distal tip 4 , a grip portion 5 , an airtight valve unit 6 , an airtight valve operating tube 7 , and an air supply device 10 .
  • the overtube 1 is an elongated member that is inserted into the patient's body and allows an endoscope to pass through it.
  • the distal tip 4 , the fixation balloon 3 , and the main tube 2 are arranged in this order from the distal end toward the proximal end in the insertion direction of the overtube 1 .
  • the distal end the end closer to the distal end of the overtube 1
  • the distal end the end closer to the rear end of the overtube 1
  • the distal end based on the arrangement in the longitudinal direction of the overtube 1 when assembled.
  • a portion near the front end of each component may be called a front end portion, and a portion near the rear end thereof may be called a rear end portion.
  • a tip may or may not include a tip.
  • the trailing edge may or may not include the trailing edge.
  • the distal tip 4, the fixation balloon 3, and the main tube 2 form an insertion portion I in the overtube 1, which is inserted into the body.
  • the fixation balloon 3 is operated by the operator to take a diameter-expanded state and a diameter-reduced state.
  • FIG. 1 depicts the fixation balloon 3 in a diameter-expanded state.
  • the fixation balloon 3 is reduced in diameter.
  • the fixation balloon 3 is folded and close to the main tube 2 .
  • the outer diameter of the fixation balloon 3 is reduced to approximately the same size as the outer diameter of the main tube 2 .
  • the rear end of the main tube 2, the airtight valve unit 6, the airtight valve operation tube 7, and the air supply device 10 are arranged outside the patient's body.
  • the insertion point of the overtube 1 is not particularly limited as long as it is inside the patient's body.
  • the overtube 1 is particularly suitable for use in inserting an endoscope into an organ with many bends, such as the intestine. An example in which the overtube 1 is inserted into the intestinal tract will be described below.
  • FIG. 2 is a schematic front view showing an example of an endoscope inserted through an endoscope overtube according to the first embodiment of the invention.
  • 3 is a side view of F3 in FIG. 2.
  • the endoscope 11 has a distal end portion 12 and an endoscopic treatment tool E.
  • the distal end portion 12 is provided at the distal end of an insertion portion of the endoscope 11 that is inserted into the patient's body.
  • the tip 12 is rigid and cylindrical.
  • the rear end of the distal end portion 12 is connected to the distal end of the bending portion 17 in the insertion portion.
  • the bending portion 17 has a plurality of articulation rings connected thereto, and can be bent vertically and horizontally by pulling an operation wire extending in the longitudinal direction of the insertion section along the articulation rings.
  • the rear end of the bending section 17 is connected to the distal end of the flexible tube section in the insertion section.
  • An operation section for performing various operations in the endoscope 11 is connected to the rear end of the flexible tube section.
  • the operation section can operate the bending direction and bending amount of the bending section 17 .
  • a tubular treatment instrument channel 12b through which a treatment instrument is inserted and a nozzle 12f through which a fluid can be passed are opened in a distal end face 12a of the distal end portion 12.
  • the treatment instrument channel 12b is inserted through the inside of the insertion section.
  • a rear end portion of the treatment instrument channel 12b is connected to a forceps opening into which a treatment instrument is inserted.
  • the nozzle 12f is inserted inside the insertion portion.
  • a rear end portion of the nozzle 12f is connected to a fluid supply port for supplying fluid.
  • a tip surface of an imaging lens 12c that acquires an image in front of the tip portion 12 and light exit surfaces of light guides 12d and 12e that illuminate the front portion of the tip portion 12 are arranged on the tip surface 12a.
  • the endoscope treatment instrument E has a grasping device 14 and an endoscope cap 13 that supports the grasping device 14 and is attached to the distal end portion 12 .
  • the grasping device 14 includes a long flexible elongated member 14a, a grasping portion 14b connected to the distal end of the elongated member 14a for grasping a living tissue, a connector 14c provided on the rear end side of the grasping portion 14b, have Elongated member 14a is, for example, a coil sheath.
  • the grasping part 14b has a pair of grasping pieces that can be opened and closed, and can grasp a biological tissue between the pair of grasping pieces.
  • the connector 14c is provided, for example, between the elongated member 14a and the grip portion 14b, and has a through hole 14d penetrating in a direction orthogonal to the longitudinal direction of the elongated member 14a.
  • the endoscope cap 13 has a hood portion 13b, a cap portion 13a, a channel tube 15, and a connecting member 16. As shown in FIG.
  • the up-down direction and the left-right direction may be used.
  • the vertical direction and the horizontal direction are the radial directions of the receptacle 13b.
  • the vertical direction is the direction in which the longitudinal axis of the receptacle 13b and the longitudinal axis of the channel tube 15 are aligned.
  • the left-right direction is orthogonal to the up-down direction and the axial direction of the distal end portion 12 .
  • the up-down direction and left-right direction of the endoscope cap 13 may correspond to the up-down direction and left-right direction in the operation of the bending portion 17 of the endoscope 11, respectively.
  • the hood portion 13 b is substantially cylindrical and is attached to the outer peripheral surface of the distal end portion 12 .
  • the abutment portion 13d forms a circular opening that opens outward from the treatment instrument channel 12b, the imaging lens 12c, and the light guides 12d and 12e.
  • the hood portion 13b is fitted to the outer peripheral surface of the distal end portion 12, and is fixed to the distal end portion 12 with the abutting portion 13d in contact with the distal end surface 12a.
  • the hood portion 13 b may be fixed to the tip portion 12 by friction between the inner peripheral surface of the hood portion 13 b and the outer peripheral surface of the tip portion 12 .
  • the hood portion 13 b may be fixed to the tip portion 12 by a fixing tape or adhesive interposed between the inner peripheral surface of the hood portion 13 b and the outer peripheral surface of the tip portion 12 .
  • Hood portion 13 b has a pair of support holes 13 c for supporting connecting member 16 .
  • the pair of support holes 13c are provided at positions that are spaced apart from each other in the circumferential direction of the receptacle 13b and face each other in the left-right direction.
  • Each support hole 13c extends radially through the hood portion 13b from the outer peripheral surface to the inner peripheral surface of the hood portion 13b.
  • Each support hole 13c is formed on the rear end side of the hood portion 13b relative to the abutment portion 13d, and is located on the distal end side of the hood portion 13b relative to the distal end of a channel tube 15, which will be described later.
  • a rear end portion of the hood portion 13b is formed with a convex portion 13e through which a fixing hole 13f penetrates in the longitudinal direction of the hood portion 13b.
  • the cap portion 13a is a substantially annular member coaxial with the hood portion 13b, and protrudes from the tip of the hood portion 13b in the longitudinal direction of the hood portion 13b.
  • the longitudinal dimension of the cap portion 13a is such that the focal length of the imaging lens 12c is also short, and the focal position of the imaging lens 12c is located near the tip of the cap portion 13a.
  • the focal length of the imaging lens 12c is 10 mm
  • the length of the cap portion 13a is 5 mm.
  • the channel tube 15 is an elongated member through which the elongated member 14a is inserted.
  • the channel tube 15 extends substantially parallel to the longitudinal direction of the receptacle 13b.
  • a channel 15a which is a through hole through which the elongated member 14a can advance and retreat, extends in the longitudinal direction.
  • the tip portion of the channel tube 15 is fixed to the abutment portion 13d while being inserted through a fixing hole 13f formed in the convex portion 13e.
  • a method for fixing the channel tube 15 may be adhesion using an adhesive or heat sealing.
  • the connecting member 16 is supported by the hood portion 13 b and connects the hood portion 13 b and the grip device 14 .
  • the connecting member 16 is an elongated linear member such as thread.
  • the connecting member 16 is preferably a member that is flexible and has little or no stretch in the longitudinal direction, such as a soft thread.
  • the connecting member 16 may be a wire instead of the thread.
  • the connecting member 16 is arranged outside the receptacle 13b and extends between the pair of support holes 13c via the through holes 14d of the connector 14c. Both ends of the connecting member 16 are inserted into the support holes 13c from the outside toward the inside.
  • Both ends of the connecting member 16 arranged in the hood portion 13b are engaged with the support holes 13c from the inside of the hood portion 13b in a state of being prevented from coming off, for example, by knots formed at both ends.
  • the connecting member 16 is supported swingably with respect to the receptacle 13b with the pair of support holes 13c as fulcrums.
  • the gripping portion 14b is moved between a fully retracted position indicated by solid lines in FIG.
  • the maximum retraction position is a position where the grip portion 14b or the connector 14c abuts against the tip of the channel tube 15 and is prevented from moving toward the rear end.
  • the connector 14c together with the connecting member 16 swings from the upper side to the lower side with the support hole 13c as a fulcrum.
  • the grip portion 14b moves to the lowered position in which the grip portion 14b is lowered from the upper side to the lower side in front of the cap portion 13a.
  • the lowered position changes in a vertical range in front of the distal end portion 12 according to the extrusion length of the elongated member 14a. Therefore, by appropriately changing the extrusion length of the elongated member 14a, the grasping portion 14b can be brought closer to the affected area requiring treatment.
  • the grasping portion 14b moves to a position where the living tissue can be grasped, the living tissue of the affected area can be grasped by opening and closing the grasping portion 14b.
  • the gripping portion 14b rises in the opposite direction and returns from the lowered position to the maximum retracted position.
  • the living tissue gripped by the gripping portion 14b is lifted upward. Further, when the grasping portion 14b approaches the maximum retraction position, the living tissue approaches the distal end portion 12. As shown in FIG. Since the cap portion 13a protrudes from the distal end portion 12, the living tissue does not come closer to the distal end surface 12a than the protruding amount of the cap portion 13a. Therefore, the living tissue that is lifted and approaches the distal end surface 12a while being separated from the distal end surface 12a can be observed within the visual field range of the imaging lens 12c.
  • a treatment tool such as a high-frequency knife can be drawn out from the treatment tool channel 12b to excise the raised living tissue in front of the distal end surface 12a.
  • a treatment tool such as a high-frequency knife
  • the living tissue is a diseased tissue
  • the diseased tissue can be exfoliated or completely excised with a treatment tool such as an electric scalpel.
  • the endoscope 11 has a convex portion 13e protruding radially outward from a substantially circular cap portion 13a.
  • the inner diameter When viewed from the direction, the inner diameter must be larger than the outer diameter of the endoscope cap 13 plus the height of the projection 13e.
  • FIG. 4 is a schematic cross-sectional view showing an example of the endoscope overtube according to the first embodiment of the present invention.
  • FIG. 5 is a cross-sectional view taken along line F5-F5 in FIG.
  • FIG. 6 is a cross-sectional view along line F6-F6 in FIG.
  • the main tube 2 has a distal tip 4 connected to its distal end and a grip portion 5 connected to its rear end.
  • a fixation balloon 3 is fixed to the outer circumference of the main tube 2 near the distal tip 4 .
  • FIG. 4 depicts a state in which the diameter of the fixation balloon 3 is expanded.
  • the length of the main tube 2 is the length required for the site into which the endoscope 11 is inserted.
  • the main tube 2 is a multi-lumen tube in which a first lumen 2c (main lumen) and a second lumen 2e (air supply lumen) are formed in the longitudinal direction.
  • the first lumen 2c is a circular hole having an inner diameter through which the endoscope 11 can be inserted.
  • the first lumen 2c extends through the main tube 2 in the longitudinal direction.
  • the first lumen 2c is surrounded by a tube wall 2a (constant thickness portion) having a constant thickness.
  • the second lumen 2 e is an air supply lumen for circulating air supplied from the air supply device 10 to the fixation balloon 3 .
  • the inner diameter of the second lumen 2e is smaller than the inner diameter of the first lumen 2c.
  • the inner diameter of the second lumen 2e depends on the material of the main tube 2, but may be, for example, 0.5 mm or more and 3.0 mm or less.
  • the second lumen 2e is radially adjacent to the first lumen 2c and extends parallel to the second lumen 2e in the longitudinal direction of the first lumen 2c. A portion of the tube wall 2a of the second lumen 2e extends in the longitudinal direction of the first lumen 2c at a thick portion 2b protruding radially outward.
  • the outer peripheral surface 2d of the main tube 2 is formed by the tube wall 2a surrounding the first lumen 2c and the thick portion 2b that protrudes radially outward from the tube wall 2a.
  • the cross-sectional shape of the outer peripheral surface 2d is substantially circular with the thick portion 2b protruding from the circular tube wall 2a.
  • 2 d of outer peripheral surfaces which form the top part of the protrusion direction in the thick part 2b are smooth curved surfaces convex outward.
  • the thickness of the thick portion 2b gradually approaches the thickness of the tube wall 2a as it moves away from the top in the circumferential direction.
  • 2 d of outer peripheral surfaces which form the connection part of the thick part 2b and the tube wall 2a are curved surfaces which connect smoothly with 2d of outer peripheral surfaces in the tube wall 2a.
  • the bending rigidity of the main tube 2 is minimized with respect to the axis Y passing through the center of the thick portion 2b and the center of the first lumen 2c, and the axis perpendicular to the axis Y at the center of the first lumen 2c. maximum with respect to X.
  • the second lumen 2e extends from the rear end of the main tube 2 (the left end in FIG. 4) to near the tip of the main tube 2 (the right end in FIG. 4).
  • the rear end of the second lumen 2e is open, while the tip is closed.
  • An opening 2f that communicates with the inside of the second lumen 2e penetrates an outer peripheral surface 2d of the thick portion 2b surrounded by the fixing balloon 3.
  • the number of openings 2f is not particularly limited as long as it is one or more. In the example shown in FIG. 3, they are formed at two locations separated in the longitudinal direction of the main tube 2 .
  • the material of the main tube 2 has flexibility.
  • the main tube 2 can bend according to the curvature of the body when inserted into the body.
  • the material of the main tube 2 may be silicone rubber with a rubber hardness (Shore A) of A70.
  • the tube wall 2a may have a thickness of 1.25 mm.
  • the maximum thickness of the thick portion 2b may be 1.5 mm or more and 5 mm or less.
  • the fixation balloon 3 is arranged on the outer peripheral surface 2d of the distal end portion of the main tube 2 so as to surround the opening 2f.
  • the fixation balloon 3 is made of elastic thin elastomer and can be expanded and contracted in the radial direction.
  • the fixation balloon 3 has a cylindrical shape as a whole in an expanded state.
  • the fixation balloon 3 can be folded in the circumferential direction in the contracted state.
  • the shape of the fixation balloon 3 in a diameter-expanded state in which tension is not generated will be described.
  • the fixation balloon 3 has a first cylindrical portion 3a, a first enlarged diameter portion 3b, a second cylindrical portion 3c, a second enlarged diameter portion 3d, and a third cylindrical portion 3e from the rear end to the tip of the fixation balloon 3. , in that order.
  • the first cylindrical portion 3a has an inner diameter that fits into the outer peripheral surface 2d of the main tube 2 from the outside, and is airtightly fixed to the outer peripheral surface 2d.
  • a fixing method of the first cylindrical portion 3a is not particularly limited as long as airtightness is maintained.
  • the first cylindrical portion 3a may be fixed to the outer peripheral surface 2d by adhesion, heat-sealing, or the like.
  • the first expanded-diameter portion 3b has a cylindrical shape that is connected to the tip of the first cylindrical portion 3a and extends from the tip of the first cylindrical portion 3a toward the tip of the overtube 1.
  • the diameter of the first enlarged diameter portion 3b gradually increases from the diameter of the first cylindrical portion 3a toward the tip from the rear end of the first enlarged diameter portion 3b.
  • the second cylindrical portion 3 c has a cylindrical shape that smoothly connects to the tip of the first enlarged diameter portion 3 b and extends from the tip of the first enlarged diameter portion 3 b toward the tip of the overtube 1 .
  • the outer diameter of the second cylindrical portion 3c is a constant value that is smaller than the inner diameter of an indwelling site in the body, such as the intestinal tract, in an enlarged diameter state in which tension is not generated. However, as will be described later, when it is inflated by supplying air, it can be expanded to a diameter larger than the inner diameter of the detention site.
  • the second cylindrical portion 3c is arranged substantially concentrically with the first lumen 2c at a position surrounding each opening 2f from the radial outside.
  • the second enlarged diameter portion 3d has a cylindrical shape that connects to the tip of the second cylindrical portion 3c and extends from the tip of the second cylindrical portion 3c toward the tip of the overtube 1. As shown in FIG. The diameter of the second enlarged diameter portion 3d gradually decreases from the diameter of the second enlarged diameter portion 3d toward the tip from the rear end of the first enlarged diameter portion 3b. Therefore, the diameter of the second enlarged diameter portion 3d is gradually increased from the front end to the rear end of the second enlarged diameter portion 3d.
  • the third cylindrical portion 3e is connected to the tip of the second enlarged diameter portion 3d.
  • the third cylindrical portion 3e has an inner diameter that fits on the outer peripheral surface 2d of the main tube 2 from the outside, and is airtightly fixed to the outer peripheral surface 2d.
  • the tip of the third cylindrical portion 3 e is fixed at a position close to the tip of the main tube 2 .
  • the material of the fixation balloon 3 is not particularly limited as long as it can be expanded or contracted to a required size by the pressure of air supplied between the main tube 2 and the fixation balloon 3 .
  • the material of the fixation balloon 3 may be silicone rubber having a rubber hardness (Shore A) of A15 or more and A30 or less.
  • the thickness of the fixation balloon 3 may be, for example, 0.15 mm or more and 0.3 mm or less.
  • the outer peripheral surface 2d of the main tube 2 and the inner peripheral surfaces of the first expanded diameter portion 3b, the second cylindrical portion 3c, and the second expanded diameter portion 3d of the fixation balloon 3. communicates with the second lumen 2e through each opening 2f. Since the space S3c is separated from the space S2c formed inside the first lumen 2c by the main tube 2, the space S3c does not communicate with the space S2c.
  • the distal tip 4 is connected to the distal end of the main tube 2 .
  • the distal tip 4 has flexibility.
  • the distal tip 4 is a cylindrical member coaxial with the first lumen 2c of the main tube 2 as a whole.
  • FIG. 7 is an enlarged view of F7 in FIG.
  • the distal tip 4 has a connecting portion 4c, a second tubular portion 4b, and a first tubular portion 4a in this order from the rear end of the distal tip 4 toward the distal end.
  • the connecting portion 4 c is a substantially circular ring that connects to the main tube 2 .
  • a rear end portion of the connecting portion 4 c is fitted to the outer peripheral surface 2 d of the main tube 2 from the outside and fixed to the front end of the main tube 2 . Therefore, the outer diameter of the connecting portion 4 c is slightly larger than the outer diameter of the outer peripheral surface 2 d of the main tube 2 .
  • a fixing method of the connecting portion 4c is not particularly limited.
  • the connecting portion 4c may be fixed to the main tube 2 by adhesion, heat welding, or the like.
  • the second lumen 2e at the distal end of the main tube 2 may be closed by fixing the connecting portion 4c.
  • the connecting portion 4c may be fixed to the main tube 2 in a state in which an adhesive or the like is injected into the distal end portion of the second lumen 2e to close the second lumen 2e.
  • the second pipe portion 4b is a cylindrical body with lower rigidity than the main tube 2.
  • the shape of the second tube portion 4b is not particularly limited as long as the endoscope 11 can be inserted through the inside thereof and the rigidity is lower than that of the connecting portion 4c.
  • the first pipe portion 4a extends from the tip of the second pipe portion 4b.
  • the first pipe portion 4a is a tubular body having higher rigidity than the second pipe portion 4b, and has a tip opening 4f penetrating through the tip thereof.
  • the diameter of the tip opening 4f is smaller than that of the second inner peripheral surface 4d and is large enough for the endoscope 11 to pass through.
  • the first tubular portion 4a has an annular shape whose diameter gradually decreases from the rear end toward the tip of the first tubular portion 4a.
  • the detailed shape and material of the distal tip 4 are not particularly limited as long as they simultaneously satisfy the following formulas (1a) and (1b).
  • K1 is the rigidity of the first pipe portion 4a
  • K2 is the rigidity of the second pipe portion 4b
  • K3 is the rigidity of the main tube 2.
  • the rigidity referred to here is bending rigidity.
  • the second tube portion 4 b has a cylindrical shape with an inner diameter substantially the same as that of the first lumen 2 c of the main tube 2 and an outer diameter smaller than the outer peripheral surface 2 d of the main tube 2 .
  • the first pipe portion 4a is formed thicker than the second pipe portion 4b.
  • a first inner peripheral surface 4e which is an inner peripheral surface of the first pipe portion 4a, is a curved surface whose diameter gradually decreases from the rear end toward the tip of the first pipe portion 4a.
  • the rigidity of the second pipe portion 4b is made lower than the rigidity of the first pipe portion 4a by changing the thickness.
  • the thicknesses of the second pipe portion 4b and the first pipe portion 4a are constant, but the second pipe portion 4b and the first pipe portion 4a have different geometrical moments of inertia.
  • at least one of the second pipe portion 4b and the first pipe portion 4a may have a longitudinally extending ridge, groove, or the like.
  • the second pipe portion 4b may be formed in a bellows shape with lower rigidity than the first pipe portion 4a.
  • the material of the tip 4 may be silicone resin.
  • the material of the tip 4 may be silicone rubber with a rubber hardness (Shore A) of A40.
  • the thickness of the second pipe portion 4b may be 1 mm
  • the thickness of the first pipe portion 4a may be 2 mm.
  • the grip portion 5 has a tubular portion 5a, a stopper 5b, a first luer connector 5c, a first conduit 5d, a second luer connector 5e, a second conduit 5f, and a cap 5g.
  • the stopper 5b can be used by the operator to support the rear end of the main tube 2 outside the patient's body and to operate the insertion and removal of the overtube 1 .
  • the tubular portion 5 a is substantially cylindrical and coaxial with the first lumen 2 c of the main tube 2 .
  • a fitting hole 5h for fitting the outer peripheral surface 2d of the main tube 2 from the outside is formed in the distal end of the tubular portion 5a.
  • the rear end of the main tube 2 is fixed in the fitting hole 5h with the rear end of the main tube 2 inserted therein.
  • the fixing method of the main tube 2 is not particularly limited as long as it is airtight.
  • the main tube 2 may be fixed to the fitting hole 5h by adhesion, heat sealing, or the like.
  • An inner peripheral surface 5i which is a cylindrical surface having the same diameter as the first lumen 2c, extends through the rear end portion of the tubular portion 5a in the longitudinal direction. The tip of the inner peripheral surface 5i is smoothly connected to the first lumen 2c.
  • a stopper 5b protrudes radially outward from the outer peripheral portion of the tubular portion 5a.
  • the projecting position of the stopper 5b is equal to the position of the rear end of the main tube 2 in the longitudinal direction.
  • the stopper 5b protrudes upward and downward in the drawing.
  • the outer shape of the stopper 5b when viewed in the longitudinal direction is, for example, a substantially elliptical plate elongated vertically in the drawing (see FIG. 1).
  • the stopper 5b is provided, for example, for the purpose of preventing the portion on the rear end side of the stopper 5b from entering the lumen when the overtube 1 is inserted into the patient's lumen. Therefore, the stopper 5b is formed in a size that cannot be inserted into the lumen.
  • the stopper 5b is formed larger than the size of the anus.
  • the size of the stopper 5b in the longitudinal direction does not fit into a circle with a diameter of 55 mm or less centered on the center of the tubular portion 5a.
  • the first luer connector 5c is a luer lock type connector.
  • the first luer connector 5c is attached to the outer peripheral portion of the tubular portion 5a on the rear side of the stopper 5b in the grip portion 5.
  • a first conduit 5d is formed inside the tubular portion 5a to communicate with the first luer connector 5c and the second lumen 2e of the main tube 2 fixed to the fitting hole 5h.
  • an airflow tube 9 air supply tube of an air supply device 10, which will be described later, is detachably connected to the first luer connector 5c.
  • the second luer connector 5e is a luer lock type connector.
  • the second luer connector 5e is attached to the outer peripheral portion of the tubular portion 5a on the side opposite to the first luer connector 5c across the tubular portion 5a.
  • a second conduit 5f is formed inside the tubular portion 5a that communicates with the first luer connector 5c and opens to the inner peripheral surface 5i.
  • the second luer connector 5e can detachably connect a syringe.
  • the friction between the endoscope and the main tube 2 can be reduced by injecting sterilized water or medical lubricant from a syringe through the second luer connector 5e into the first lumen 2c.
  • a cap 5g is attached to hermetically close the opening of the second luer connector 5e. Thereby, the second pipeline 5f is closed.
  • FIG. 8 is a schematic cross-sectional view showing an example of an airtight valve unit in the endoscope overtube according to the first embodiment of the present invention.
  • FIG. 9 is a schematic perspective view showing an example of an airtight balloon of an airtight valve unit in the endoscope overtube according to the first embodiment of the present invention.
  • the airtight valve unit 6 hermetically seals the outer peripheral portion of the endoscope 11 at the rear end portion of the insertion portion I in a state in which the endoscope 11 is inserted through the first lumen 2c of the main tube 2 .
  • the airtight valve unit 6 has a cylinder frame portion 21 (tubular portion) and an airtight balloon 22 .
  • the cylinder frame portion 21 is a substantially cylindrical cylinder.
  • a fitting hole 21c into which the rear end portion of the tubular portion 5a of the grip portion 5 is fitted from the outside is formed in the front end side of the tubular frame portion 21 .
  • An inner peripheral surface 21a forming a circular hole extending in the longitudinal direction of the grip portion 5 extends to the rear end of the cylindrical frame portion 21 at the bottom portion of the fitting hole 21c on the left side in the drawing.
  • the diameter of the inner peripheral surface 21a is slightly larger than the diameter of the inner peripheral surface 5i of the tubular portion 5a.
  • a rear end portion of the tubular portion 5a is inserted into the fitting hole 21c, and the rear end of the tubular portion 5a is joined to the fitting hole 21c while being in contact with the hole bottom portion of the fitting hole 21c.
  • a cylindrical connection port 21 b protrudes from the outer peripheral surface of the cylindrical frame portion 21 .
  • a connection port 21d and a through hole 21e are formed in this order from the outside in the radial direction of the cylindrical frame portion 21 toward the inside.
  • the connection port 21d is a recess for connecting an operation tube main body 25, which will be described later.
  • the through hole 21e allows communication between the opening of the operation tube body 25 connected to the connection port 21d and the space inside the inner peripheral surface 21a.
  • the material of the cylindrical frame portion 21 is not particularly limited.
  • the material of the cylindrical frame portion 21 can be resin, metal, silicone rubber, or the like.
  • the airtight balloon 22 is a cylindrical member made of the same material as the fixation balloon 3 .
  • the airtight balloon 22 has a first joint portion 22a, an intermediate portion 22b, and a second joint portion 22c.
  • the first joint portion 22a and the second joint portion 22c are formed at the leading end and the trailing end of the airtight balloon 22, respectively.
  • the first joint portion 22a and the second joint portion 22c are ring-shaped so that they can be joined to the inner peripheral surface 21a of the tubular frame portion 21 .
  • the first joint portion 22a and the second joint portion 22c are annular with the same outer diameter, corresponding to the fact that the inner peripheral surface 21a is a cylindrical surface.
  • the intermediate portion 22b is connected to the rear end of the first joint portion 22a and the front end of the second joint portion 22c, respectively, and connects the first joint portion 22a and the second joint portion 22c over the entire circumference.
  • the outer diameter of the intermediate portion 22b is at least partially smaller than the outer diameters of the first joint portion 22a and the second joint portion 22c.
  • the outer diameter of the intermediate portion 22b decreases from the rear end of the first joint portion 22a toward the rear, becomes minimum at the central portion in the axial direction, and extends from the central portion to the second joint portion 22c rearward. increasing as you go.
  • the central axes of the first joint portion 22a, the intermediate portion 22b, and the second joint portion 22c are coaxial with each other.
  • the airtight balloon 22 is inserted inside the inner peripheral surface 21a of the cylindrical frame portion 21 and is joined to the inner peripheral surface 21a at a first joint portion 22a and a second joint portion 22c.
  • the axial length of the airtight balloon 22 is not particularly limited, but in the example shown in FIG. 8, it is equivalent to the axial length of the inner peripheral surface 21a.
  • the bonding method of the airtight balloon 22 is not particularly limited.
  • the airtight balloon 22 may be joined to the inner peripheral surface 21a by gluing.
  • a space Sp is formed between the inner peripheral surface 21a and the intermediate portion 22b.
  • the intermediate portion 22b radially covers the through hole 21e. Therefore, the space Sp communicates with the connection port 21d of the connection port 21b through the through hole 21e.
  • an appropriate elastic elastomer is used as a material for the airtight balloon 22 .
  • a material similar to that of the fixation balloon 3 may be used as the material of the airtight balloon 22 .
  • the fluid supplied to the space Sp may be either gas or liquid as long as it can apply pressure that can change the shape of the intermediate portion 22b.
  • gas is supplied to the space Sp.
  • the type of gas is not particularly limited. For example, it is more preferable to use air as the gas in that the intermediate portion 22b can form a state in which the intermediate portion 22b protrudes inward by opening the space Sp to the atmosphere.
  • the intermediate portion 22b When the gas is supplied into the space Sp, the intermediate portion 22b forms a shape that bulges inward of the inner peripheral surface 21a according to the internal pressure of the space Sp. For example, if gas is supplied in a volume larger than the volume of the space Sp when the airtight balloon 22 is attached, the internal pressure of the space Sp rises and the intermediate portion 22b expands.This increases the volume of the space Sp.
  • the inflated intermediate portion 22 b reduces the space radially inside the airtight balloon 22 . Therefore, the inner diameter of the intermediate portion 22b is reduced as a whole while maintaining the smallest inner diameter at the center in the axial direction.
  • the intermediate portion 22b expands in diameter according to the decrease in the internal pressure of the space Sp.
  • FIG. 4 shows a state in which the gas in the space Sp is sucked.
  • the airtight valve operating tube 7 has an operating tube main body 25, a pressure adjusting balloon 26, and a cock 27.
  • the operation tube main body 25 circulates the gas entering and leaving the space Sp.
  • a first end portion 25a of the operation tube main body 25 is connected to the connection port 21b.
  • a pressure adjusting balloon 26 is connected to a second end 25b opposite to the first end 25a.
  • the pressure adjustment balloon 26 communicates with the space Sp through the operation tube main body 25.
  • the pressure regulation balloon 26 does not expand until the pressure in the space Sp reaches a predetermined value, and expands after reaching the predetermined value. This makes it possible to adjust the pressure in the space Sp. Details of the action of the pressure adjustment balloon 26 in this embodiment will be described together with the operation of the overtube 1 .
  • the shape and material of the pressure adjustment balloon 26 are not particularly limited as long as the pressure can be adjusted as described later.
  • the pressure regulation balloon 26 has a substantially cylindrical shape and is made of silicone rubber.
  • a cock 27 is connected to the pressure adjusting balloon 26 .
  • the cock 27 is a tubular member through which gas can flow.
  • the cock 27 has a connection port 27a, a valve 27b, and an opening 27c.
  • the connection port 27a detachably connects a gas moving device such as a syringe or a pump, for example.
  • the cock 27 is equipped with a syringe 28 as a gas moving device.
  • valve 27b opens to allow gas flow when the gas moving device is connected to port 27a, and closes to allow gas to flow from port 27a when the gas moving device is disconnected from port 27a. Prevent gas outflow.
  • the opening 27c is opened inside the pressure adjusting balloon 26 and allows the inside of the pressure adjusting balloon 26 and the flow path inside the cock 27 to communicate with each other.
  • the air supply device 10 mainly supplies air for expanding the diameter of the fixation balloon 3 .
  • the supplied air can also be sucked into the air supply device 10 by appropriately switching the flow path in the air supply device 10 .
  • the air supply device 10 has an airflow tube 9 that circulates air to the second lumen 2 e of the main tube 2 .
  • the airflow tube 9 communicates with the internal flow path of the air supply device 10 for supplying air and extends outward from the housing of the air supply device 10 .
  • the airflow tube 9 forms an air flow path between the second lumen 2 e and the internal flow path of the air supply device 10 .
  • a connector 9 a that is detachably connected to the first luer connector 5 c of the grip portion 5 is provided at the tip of the air flow tube 9 in the extending direction.
  • the second lumen 2e communicates with the internal flow path of the air supply device 10 through the airflow tube 9.
  • the inner diameter of the conduit of the airflow tube 9 may be, for example, 2.0 mm or more and 5 mm or less.
  • the air supply device 10 has a pump for supplying air.
  • the type of pump is not particularly limited.
  • the pump may be an electric pump or a manual pump. If the pump is an electric pump, it may have a pressure control circuit.
  • a pressure control method is not particularly limited.
  • the air supply device 10 has a relief valve that expands the air to the outside when the pressure of the supplied air exceeds a certain value so that the supply pressure of the air does not exceed the allowable value of the internal pressure of the fixation balloon 3 .
  • the air supply device 10 is capable of supplying air through the airflow tube 9 and sucking air from the airflow tube 9 .
  • the configuration for switching between supply and suction is not particularly limited.
  • the air supply device 10 includes a switching valve that selectively switches between the flow path between the air supply port of the pump and the airflow tube 9 and the flow path between the intake port of the pump and the airflow tube 9, and a switching valve control unit that controls the operation of the switching valve.
  • the air supply device 10 may have a pump that can switch between air supply and suction at an opening connected to the airflow tube 9 .
  • FIG. 10 is an operation explanatory view of the airtight valve unit in the endoscope overtube according to the first embodiment of the present invention.
  • 11 is a cross-sectional view taken along line F11-F11 in FIG. In FIG. 11, illustration of the internal structure of the endoscope 11 is omitted for simplification.
  • a syringe 28 is attached to the cock 27 .
  • the gas in the space Sp is sucked and moves inside the syringe 28 .
  • the inside of the space Sp becomes a negative pressure.
  • the intermediate portion 22b expands to a size equivalent to the inner diameter of the first lumen 2c of the mirror 11 . This state is called an open state of the airtight valve unit 6 .
  • the inner diameter of the inner portion of the intermediate portion 22b is larger than the outer diameter of the endoscope 11 to which the endoscope cap 13 is attached and which has the grasping device 14 and the channel tube 15. Therefore, when the airtight valve unit 6 is open, the endoscope 11 can be smoothly inserted inside the intermediate portion 22b.
  • the endoscope 11 is not in contact with the intermediate portion 22b, or even if it is in contact, only a part of the outer shape is in contact with it. Therefore, the endoscope 11 does not receive insertion resistance from the intermediate portion 22b, or even if it does, the insertion resistance is small.
  • the endoscope 11 can be inserted inside the inner peripheral surface 5i of the grip portion 5 and the first lumen 2c of the main tube 2 with low insertion resistance.
  • the endoscope 11 protrudes forward from the distal tip 4 through the distal opening 4f, as shown in FIG.
  • the distal opening 4 f is close along the outer peripheral portion of the endoscope 11 , it is difficult for living tissue, body fluid, etc. in front of the distal tip 4 to enter the distal tip 4 .
  • the operator or the like operates the plunger 28a to move the gas in the syringe 28 to the space Sp after the endoscope cap 13 has passed through the cylindrical frame portion 21 .
  • the negative pressure in the space Sp is released, and the intermediate portion 22b expands radially inward.
  • the operator or the like supplies gas to the space Sp until the intermediate portion 22b contacts the entire circumference of the outer peripheral portion of the endoscope 11 .
  • the gap between the outer peripheral portion of the endoscope 11 and the intermediate portion 22b is closed. This state is called the closed state of the airtight valve unit 6 .
  • the intermediate portion 22b In the closed state, the intermediate portion 22b is in close contact with the entire circumference of the outer peripheral portion of the endoscope 11, so the endoscope 11 is held substantially at the center of the inner peripheral surface 21a. Therefore, in the vicinity of the intermediate portion 22b, only the sliding resistance load with the intermediate portion 22b acts on the endoscope 11.
  • the operator may press the plunger 28a to form a closed state so that the gas is supplied until the internal pressure of the space Sp becomes higher than the atmospheric pressure. good. In this case, at least the intermediate portion 22b has a tension due to expansion from the natural state.
  • FIG. 12 is a graph showing the relationship between the amount of air supplied from the gas moving device and the internal pressure of the airtight balloon in the endoscope overtube of the first embodiment of the present invention.
  • the horizontal axis is the air supply amount [mL]
  • the vertical axis is the internal pressure [kPa] of the space Sp.
  • FIG. 12 is an example in which the gas supplied from the syringe 28 is air.
  • the airtight balloon 22 is inflated without inflating the pressure regulation balloon 26 until the internal pressure of the space Sp reaches a predetermined value P1.
  • a predetermined value P1 inflation of the pressure regulation balloon 26 begins.
  • the pressure adjustment balloon 26 is inflated by air supply from the syringe 28, and the increase in the internal pressure of the space Sp is suppressed.
  • the internal pressure value of the space Sp is maintained within a predetermined range around P1 and prevented from increasing excessively in a certain range of air supply amount until the pressure adjustment balloon 26 reaches the inflation limit.
  • the overtube 1 is easy to operate because the internal pressure value of the space Sp can be maintained within a predetermined range without the need for the operator to finely operate the syringe 28 .
  • the mechanism for adjusting the pressure inside the space Sp is not limited to the pressure adjustment balloon 26 .
  • a control valve that is opened at a predetermined internal pressure to release the air supplied from the syringe 28 may be provided.
  • the endoscope 11 is a colonoscope, and ESD (endoscopic submucosal dissection) is performed in the large intestine by an endoscope system that combines the overtube 1 and the endoscope 11.
  • ESD endoscopic submucosal dissection
  • the length of the insertion portion I of the overtube 1 is about the length from the anus to the treatment site and shorter than the insertion portion of the endoscope 11 .
  • the insertion portion of the endoscope 11 needs to be able to protrude from the distal end of the overtube 1 to some extent.
  • the length of the insertion section I is shorter than that of the insertion section of the endoscope 11 by 50 cm to 70 cm.
  • the overtube 1 is placed outside the patient's body and the treatment site is shortened. Only the endoscope 11 can be placed nearby.
  • the minimum inner diameter of the intermediate portion 22b of the airtight balloon 22 is preferably slightly smaller than the outer diameter of the insertion portion.
  • the minimum inner diameter of the intermediate portion 22b is the minimum inner diameter when the intermediate portion 22b protrudes most toward the center without tension.
  • FIGS. 13 and 14 are schematic diagrams showing an example of how to use the endoscope overtube according to the first embodiment of the present invention.
  • FIG. 15 is a schematic cross-sectional view illustrating the action of the distal tip in the endoscope overtube according to the first embodiment of the present invention.
  • FIG. 16 is a schematic diagram showing an example of how to use the endoscope overtube according to the first embodiment of the present invention.
  • the detailed shapes of the endoscope cap 13, the grasping device 14, the channel tube 15, etc. of the endoscope 11 are omitted for the sake of clarity.
  • the overtube 1 is prepared.
  • the gas in the space S3c inside the fixation balloon 3 is sucked out by the air supply device . Therefore, the fixation balloon 3 is folded and is close to the outer peripheral surface 2 d of the main tube 2 .
  • the outer diameter of the overtube 1 at the portion where the fixation balloon 3 is provided is reduced to substantially the same diameter as the outer diameter of the main tube 2 where the fixation balloon 3 is not provided. This state is hereinafter referred to as the diameter-reduced state of the fixation balloon 3 .
  • the prepared overtube 1 is made so that the insertion portion of the endoscope 11 can be inserted into the cylindrical frame portion 21 with low resistance.
  • the gas supplied to the space Sp is air
  • the air in the space Sp is sucked to form an open state, or the intermediate portion 22b is protruded in a state where no tension is generated.
  • a substantially cylindrical space is formed inside the cylindrical frame portion 21 in which the endoscope 11 can move forward and backward without substantially resistance.
  • the valve 27b is opened by attaching the syringe 28 with the plunger 28a removed to the cock 27 .
  • the space Sp communicates with the outside, and the inside of the space Sp becomes atmospheric pressure.
  • the valve 27b is closed and the space Sp is kept at atmospheric pressure.
  • the operator inserts the distal end of the endoscope 11 inside the cylindrical frame portion 21 of the overtube 1 .
  • the insertion portion of the endoscope 11 is passed through the inner peripheral surface 5i of the grip portion 5, the first lumen 2c of the main tube 2, and the inside of the distal tip 4, and the insertion portion of the endoscope 11 is inserted into the distal end. It extends from the tip opening 4 f of the tip 4 .
  • the operator places the overtube 1 outside the patient's body, and inserts the insertion portion of the endoscope 11 projecting from the overtube 1 into the large intestine C through the anus. Since the large intestine C is tortuous, the operator inserts the endoscope 11 while confirming the inside of the large intestine C based on the image obtained. After the treatment site Ts appears in the image acquired by the endoscope 11 , the operator stops inserting the endoscope 11 .
  • the operator inserts the overtube 1 into the large intestine C from the anus along the insertion portion of the endoscope 11 .
  • the intermediate portion 22 b of the airtight valve unit 6 (not shown) is brought into close contact with the outer peripheral portion of the endoscope 11 .
  • the endoscope cap 13 can be removed from the endoscope 11 together with the grasping device 14 and the channel tube 15. .
  • the intermediate portion 22b of the airtight balloon 22 may be partially displaced from the outer circumference of the main tube 2 simply by inserting the endoscope. It comes into contact with the surface over the entire circumference, closing the gap between the overtube 1 and the endoscope 11 . Furthermore, unless the difference between the minimum inner diameter of the intermediate portion 22b and the outer diameter of the main tube 2 becomes too large, the contact area between the intermediate portion 22b and the outer peripheral surface of the main tube 2 does not become too large. and the overtube 1 are reduced in relative movement. In this case, if the space Sp of the airtight balloon 22 is at atmospheric pressure, it is not necessary to supply more air into the space Sp.
  • ESD may be performed using the grasping device 14 in addition to the treatment tool inserted through the treatment tool channel 12b.
  • an endoscope cap 13 is attached to the distal end portion 12 of the endoscope 11 , and a grasping device 14 and a channel tube 15 are arranged along the longitudinal direction of the main tube 2 .
  • the outer diameter of the portion to which the endoscope cap 13 is attached becomes large, so there is a possibility that it will be difficult to insert it into the overtube 1 when the intermediate portion 22b protrudes.
  • the operator or the like attaches the syringe 28 to the cock 27 and sucks air out of the space Sp, thereby opening the intermediate portion 22b.
  • the portion to which the endoscope cap 13 is attached can be smoothly inserted into the cylindrical frame portion 21 .
  • the operator or the like operates the plunger 28a of the syringe 28 attached to the cock 27 to supply air to the space Sp, thereby increasing the internal pressure of the space Sp.
  • the intermediate portion 22b is in close contact with the side surface of the insertion portion of the endoscope 11 on which the channel tube 15 is arranged on the outer peripheral surface (see FIG. 11), and the inside of the cylindrical frame portion 21 and the endoscope 11 are inserted.
  • the gap between the side of the part and the part is closed.
  • the pressure adjusting balloon 26 is provided in the air flow path, even if the amount of air supplied by the plunger 28a increases to some extent, the internal pressure of the space Sp is close to the predetermined value P1 as shown in FIG. value is kept. As a result, the internal pressure of the space Sp is regulated, so even if the overtube 1 and the endoscope 11 move relative to each other, the sliding resistance does not exceed a certain value. As a result, the overtube 1 can be smoothly inserted while the airtightness of the airtight valve unit 6 is maintained.
  • the large intestine C is an organ with many bends.
  • the overtube which cannot follow the bend, tends to deviate from the central axis of the endoscope.
  • a large gap is formed between the opening of the overtube and the side surface of the endoscope, it is known that the inner wall of the large intestine C may be caught in the gap.
  • a distal tip 4 is provided at the distal end.
  • the front end of the front tip 4 is formed with a first tube portion 4a whose diameter is reduced from the rear end toward the front end. Therefore, since the tip opening 4f is close to the outer peripheral surface of the endoscope 11, the gap itself between the outer peripheral surface of the endoscope 11 is reduced.
  • a second pipe portion 4b having lower rigidity than the first pipe portion 4a extends to the rear end of the first pipe portion 4a. Therefore, when the distal tip 4 passes through the bent portion of the endoscope 11 that is bent following the shape of the large intestine C, the second tube portion 4b deforms before the first tube portion 4a.
  • the shape of the first tube portion 4 a is maintained in a shape close to the outer peripheral surface of the endoscope 11 . That is, by suppressing the deformation of the tip opening 4f, the gap between the tip opening 4f and the side surface of the endoscope 11 can be prevented from being excessively expanded outside the bend of the endoscope 11. FIG. Therefore, when the overtube 1 is inserted into the large intestine C, it is possible to prevent the inner wall of the large intestine C from being caught in the gap between the overtube 1 and the outer peripheral surface of the endoscope 11 .
  • the overtube 1 is positioned outside the body when the endoscope 11 is stopped. If the treatment site Ts is located far from the anus, the operator may insert the overtube 1 into the large intestine C before the distal end 12 of the endoscope 11 reaches the treatment site Ts. In this case, the operator alternately repeats advancing the endoscope 11 and advancing the overtube 1 while confirming the position of the distal end portion 12 on the image of the endoscope 11, so that the distal end portion 12 reaches the treatment site Ts. You can move closer to
  • the operator When the tip of the overtube 1 reaches the vicinity of the tip 12 of the endoscope 11 placed near the treatment site Ts, the operator operates the air supply device 10 to remove the airflow tube 9 and the second lumen 2e. Air is supplied to the fixation balloon 3 via to inflate the fixation balloon 3 . As shown in FIG. 16, when the fixation balloon 3 is sufficiently inflated, the fixation balloon 3 comes into contact with the inner wall of the large intestine C. As shown in FIG. As a result, the overtube 1 is fixed to the extent that it does not easily move relative to the large intestine C. As shown in FIG.
  • the operator uses a treatment tool protruding from the endoscope 11 to perform ESD on the treatment site Ts.
  • the grasping device 14 inserted through the channel tube 15 can lift and hold the mucous membrane at the treatment site Ts.
  • a high-frequency knife or the like protruding from the treatment instrument channel 12b of the endoscope 11 can be used to exfoliate the submucosal layer under the tumor at the treatment site Ts.
  • liquid, gas, etc. in the large intestine C may enter the overtube 1 from the distal end of the overtube 1 .
  • the airtight balloon 22 closes the gap between the outer peripheral surface of the endoscope 11 and the channel tube 15 and the cylindrical frame portion 21, so that airtightness is achieved. and liquid-tight. This prevents liquid, gas, etc. in the large intestine C from leaking from the cylinder frame portion 21 .
  • the operator After completing all necessary treatment in ESD, the operator operates the air supply device 10 to suck out the air from the fixation balloon 3 and reduce the diameter of the fixation balloon 3 . After that, the operator pulls out the endoscope 11 and the channel tube 15 from the anus. This completes the ESD using the overtube 1 .
  • the overtube 1 includes the airtight balloon 22 in which the intermediate portion 22b protrudes from the inner surface of the cylindrical frame portion 21. Therefore, the overtube 1 can be placed between the endoscope or the like inserted with a small gas supply amount. airtightness and liquidtightness can be ensured.
  • the insertion portion of the endoscope 11 for the large intestine described above is longer than that of the endoscope for the upper gastrointestinal tract. Furthermore, since the large intestine is meandering in a complicated manner, when the treatment site is located in the ascending colon, a plurality of strongly curved sites may occur before reaching the treatment site. In this case, the overtube 1 is also bent strongly like the endoscope 11, and the frictional resistance when the endoscope 11 is advanced and retracted with respect to the overtube 1 is much larger than that of the endoscope for the upper gastrointestinal tract.
  • the overtube 1 can ensure airtightness and liquidtightness with the inserted endoscope 11 with a small amount of gas supply, and by setting appropriate dimensions, it can ensure airtightness and liquidtightness without gas supply. is also possible.
  • the difficulty of ESD in colon C is higher than ESD in the stomach.
  • the above method of stabilizing the position of the endoscope 11 in the large intestine C using the overtube 1 and combining the endoscope cap 13 is effective in simplifying ESD in the large intestine C.
  • FIG. On the other hand, if the shape and dimensions of the airtight balloon 22 are set according to the outer diameter when the endoscope cap 13 is attached, the distance between the airtight balloon 22 and the insertion portion of the endoscope 11 after the distal end portion 12 passes through the base is reduced. the gap becomes larger. As a result, the amount of gas required to close the gap increases, the internal pressure of the airtight balloon 22 also increases, and the friction between the endoscope 11 and the airtight balloon 22 increases.
  • the airtight balloon 22 can bring the intermediate portion 22b into close contact with the inner surface of the cylindrical frame portion 21 by applying a negative pressure to the space Sp. Therefore, regardless of the initial shape of the intermediate portion 22b, the distal end portion 12 with the endoscope cap 13 attached can be easily passed through. Furthermore, by releasing the negative pressure after passing through the endoscope cap 13, even if the channel tube 15 is arranged on the outer peripheral portion and the non-circular cross-sectional shape is formed, airtightness and liquidtightness can be achieved with a small amount of gas supply. can be ensured.
  • the overtube 1 As described above, according to the overtube 1 according to the first embodiment, it is possible to provide an endoscope overtube that reduces the burden on a patient and allows smooth operation of the endoscope. .
  • the air supply device 10 insufflates air.
  • the air-supplying device 10 may be provided with a gas supply source different from air, so that instead of air, a gas different from air may be supplied to the fixation balloon 3 .
  • the airtight valve unit 6 is in the open state when the endoscope 11 with the endoscope cap 13 attached is inserted.
  • the inner diameter of the intermediate portion 22b may be appropriately adjusted according to the outer diameter and outer shape of the endoscope 11 through which the airtight valve unit 6 is inserted. For example, if the endoscope 11 can be inserted even when the airtight valve unit 6 is not in the open state and the intermediate portion 22b is swollen inward, the endoscope 11 can be inserted without opening the airtight valve unit 6. may be inserted.
  • the operation tube main body 25 is connected to the connection port 21b in the first embodiment, the operation tube main body 25 may be detachably connected to the connection port 21b.
  • the shape of the intermediate portion 22b of the airtight balloon 22 in the first embodiment is an example, and is not limited to the shape described above.
  • the intermediate portion 22b may have two or more protrusions that protrude radially inward in the axial direction.
  • the inner peripheral surface of the airtight balloon 22 may be coated with a hydrophilic coating.
  • the airtight valve unit 6 in the first embodiment has been described as an example in which the pressure regulation balloon 26 regulates the internal pressure of the space Sp.
  • the mechanism for adjusting the internal pressure of the space Sp is not limited to the pressure adjustment balloon 26.
  • a relief valve may be provided that releases air to the outside when the pressure exceeds a predetermined value.
  • the rigidity of the first tube portion 4a and the thickness of the second tube portion 4b are different.
  • the configuration is not limited to this as long as the configurations have different rigidity.
  • the rigidity of the thick portion 2b may be reduced from that of the first pipe portion 4a.
  • the rigidity can be made different by making the rigidity of each material of the first pipe portion 4a and the second pipe portion 4b different.
  • the tip 4 in the first embodiment may satisfy the following formula (1c) in addition to the formulas (1a) and (1b).
  • the main tube 2 since the rigidity K3 of the first tube portion 4a is greater than the rigidity K1 of the main tube 2, the main tube 2 does not buckle when the overtube 1 is pushed into the large intestine C using the endoscope 11 as a guide. can be suppressed.
  • the distal tip 4 is fixed to the distal end of the main tube 2.
  • tip 4 may be shaped from the same material as main tube 2 .
  • the pressure adjustment balloon 26 is provided at the second end 25b of the operation tube main body 25.
  • the pressure regulating balloon 26 may be provided between the first end 25a and the second end of the channel tube 15 .
  • the first lumen 2c is an example of a main lumen through which an endoscope is inserted.
  • the second lumen 2e is an example of an air supply lumen through which gas flows.
  • the main tube 2 is an example of a tube body.
  • the cylindrical frame portion 21 is an example of a tubular portion that communicates with the main lumen at the rear end portion of the tube body.
  • the fixation balloon 3 is an example of a fixation balloon that is provided on the outer peripheral surface of the distal end of the tube body, expandable outward from the outer peripheral surface, and contractible toward the outer peripheral surface.
  • Insufflation device 10 is an example of an insufflation device that delivers gas to an insufflation lumen.
  • the airtight valve unit 6 has a tubular portion that communicates with the main lumen at the rear end of the tube body, and the gap between the endoscope inserted into the main lumen through the tubular portion and the inner peripheral surface of the tubular portion. This is an example of an airtight valve unit that closes the
  • FIG. 17 is a schematic perspective view showing an example of the endoscope overtube according to the second embodiment of the present invention.
  • An overtube 101 shown in FIG. 17 is an example of an endoscope overtube according to this embodiment.
  • the overtube 101 has a main tube 102 (tube body) and an air supply device 110 instead of the main tube 2 and air supply device 10 of the overtube 1 according to the first embodiment.
  • the following description will focus on the differences from the first embodiment.
  • the main tube 102 in this embodiment further includes a third lumen 102g (dummy lumen).
  • the direction along the circular inner peripheral surface of the first lumen 2c is the circumferential direction
  • the direction along the circular inner peripheral surface is orthogonal to the circumferential direction.
  • a direction along the diameter of the peripheral surface is called a radial direction.
  • the direction toward the center of the first lumen 2c may be referred to as the radial inner side
  • the direction away from the center may be referred to as the radial outer side.
  • the third lumen 102g extends through the main tube 102 in the longitudinal direction.
  • the third lumen 102g is a dummy hole formed for the purpose of adjusting the rigidity of the thick portion 2b. Since no fluid flows inside the third lumen 102g, a tube for flowing fluid is not connected to the third lumen 102g.
  • the opening at the distal end of the third lumen 102g in the longitudinal direction is closed by the connecting portion with the distal tip 4.
  • the opening at the rear end in the longitudinal direction of the third lumen 102g is closed by a connecting portion with the grip portion 5. As shown in FIG.
  • the third lumen 102g is formed at a position close to the second lumen 2e in the thick portion 2b.
  • the third lumen 102g extends parallel to the second lumen 2e.
  • the number of third lumens 102g is not particularly limited. In the example shown in FIG. 18, they are formed at two locations facing each other in the circumferential direction with the second lumen 2e interposed therebetween. In this case, since the third lumens 102g are formed near both sides of the second lumen 2e in the circumferential direction, even if an external force acts on any end of the thick portion 2b in the circumferential direction, the external force is applied to the second lumen 2e. Since it becomes difficult to be transmitted to the lumen 2e, the cross-sectional shape of the second lumen 2e is easily maintained.
  • each third lumen 102g in the direction perpendicular to the longitudinal direction of the main tube 102 should be a shape that can reduce the rigidity of the thick portion 2b at a location away from the second lumen 2e. is not particularly limited.
  • the cross-sectional shape of each third lumen 102g may be different from each other. In the example shown in FIG. 18, each third lumen 102g is formed in a line-symmetrical position and shape with respect to the axis Y passing through the center of the second lumen 2e.
  • the cross-sectional shape of the third lumen 102g may be circular, elliptical, oval, polygonal, or the like. If the third lumen 102g is such a hole, the substantial thickness of the thick portion 2b in which the third lumen 102g is formed is reduced. 102g becomes easily crushed and its rigidity decreases.
  • each third lumen 102g is an oval that is elongated in the circumferential direction.
  • An example of the relative positional relationship between the second lumen 2e and each third lumen 102g will be described with reference to FIG.
  • Each third lumen 102g is formed at a position closer to the first lumen 2c in the radial direction.
  • the distance between the inner peripheral surface of the third lumen 102g closer to the first lumen 2c and the inner peripheral surface of the first lumen 2c is t2. Assuming that the thickness of the tube wall 2a is t0, t2 may be half or less of t0.
  • the distance between the radially outer inner peripheral surface of the third lumen 102g and the outer peripheral surface of the thick portion 2b is not particularly limited, but is longer than t2 in the example shown in FIG. Therefore, the third lumen 102g is formed closer to the first lumen 2c than the center of the thick portion 2b in the radial direction.
  • the distance between the inner peripheral surface of the second lumen 2e closer to the first lumen 2c and the inner peripheral surface of the first lumen 2c is t1, which is longer than t2.
  • the distance between the radially outer inner peripheral surface of the second lumen 2e and the outer peripheral surface of the thick portion 2b is t3, which is less than or equal to t1. Therefore, the second lumen 2e is formed radially at the center of the thick portion 2b or slightly radially outward.
  • the distance between the inner peripheral surface of the third lumen 102g and the inner peripheral surface of the second lumen 2e is d1.
  • d1 is more preferably longer than t2, and is t1 or more in the example shown in FIG.
  • the material of the main tube 102 is silicone rubber with a rubber hardness (Shore A) of A60 to A80
  • the inner diameter of the first lumen 2c is 13.8 mm
  • t0 is 1.2 mm
  • the maximum thickness of the thick portion 2b is In the case of 3.1 mm
  • the diameter of the second lumen 2e is 1.9 mm
  • t1 is 0.7 mm
  • t3 is 0.3 mm
  • t2 is 0.5 mm
  • the circumferential length of the third lumen 102g is 1.54 mm or more and 2 mm or less
  • the radial width of the third lumen 102g is 0.7 mm
  • d1 is 1.3 mm.
  • the first region R1 and the second region R2 are formed side by side in the circumferential direction in the thick portion 2b.
  • the first region R1 is a region including the second lumen 2e and sandwiched between the third lumens 102g in the circumferential direction.
  • the second region R2 is formed in the range of the length of the third lumen 102g in the circumferential direction, and is a region with reduced rigidity compared to the first region R1.
  • the second region R2 has a lower rigidity than the tube wall 2a.
  • FIG. 24 is a block diagram showing an example of an air supply device in the endoscope overtube according to the second embodiment of the present invention.
  • FIG. 21 is a block diagram showing the flow of the air supply device in the endoscope overtube according to the second embodiment of the present invention during inhalation.
  • the air supply device 110 has an air supply mechanism 111 , a pressure gauge 112 and a relief valve 113 .
  • the air supply device 110 has a connection tube 110a to which the airflow tube 9 is connected.
  • the connection pipe 110a allows the air flow path in the airflow tube 9 and the air flow path in the air supply device 110 to communicate with each other.
  • the air supply mechanism 111 has a pump 111a, a first check valve 111b, a second check valve 111c, a first channel switching portion 111d, a second channel switching portion 111e, and an opening 111f.
  • the pump 111 a forms an air flow in the conduit inside the air supply mechanism 111 .
  • the type of pump 111a is not particularly limited.
  • the pump 111a may be an electric pump or a manual pump. Examples of manual pumps include rubber bulb pumps, diaphragm pumps, corrugated tube pumps, syringe pumps, and the like.
  • the first check valve 111b and the second check valve 111c are provided at both ends of the air supply passage pa that is supplied by the pump 111a, and restrict the flow of air in one direction at both ends of the air supply passage pa. do. As a result, a flow from the second check valve 111c to the first check valve 111b is formed in the air supply path pa.
  • the first check valve 111b and the second check valve 111c are divided into a pipeline pb between which the first pipeline switching section 111d is arranged and a pipeline pc between which the second pipeline switching section 111e is arranged. and are connected to each other through .
  • the first check valve 111b allows the air in the air supply path pa to flow toward the pipelines pb and pc, and blocks the flow of air from the pipelines pb and pc to the air supply path pa.
  • the second check valve 111c allows the air flowing through the conduits pb and pc to pass toward the air conduit pa, and blocks the flow of air from the air conduit pa to the conduits pb and pc.
  • a pipeline pd communicating with the connection pipe 110a is connected to the first pipeline switching portion 111d.
  • the first duct switching unit 111d has a duct in which the duct pb communicates with the duct pd and does not communicate with the second check valve 111c, and a second check valve 111c in which the duct pb does not communicate with the duct pd.
  • a switching device such as a channel switching valve may be used as the first channel switching unit 111d. If the pipelines connected to each other can be manually switched, it is not necessary to use a switching device as the first pipeline switching unit 111d.
  • the second channel switching portion 111 e communicates with an opening portion 111 f that opens air to the outside of the air supply mechanism 111 .
  • the second duct switching unit 111e has a duct in which the duct pc communicates with the second check valve 111c and does not communicate with the first check valve 111b, and a duct in which the duct pc does not communicate with the second check valve 111c.
  • 1 check valve 111b and a conduit communicating with the check valve 111b are selectively switched.
  • a switching device such as a channel switching valve may be used as the second channel switching unit 111e. If the pipelines connected to each other can be manually switched, it is not necessary to use a switching device as the second pipeline switching unit 111e.
  • the pipeline pd communicates with the first check valve 111b through the first pipeline switching portion 111d, and the pipeline pc communicates with the second check valve 111c through the second pipeline switching portion 111e.
  • the pipeline pd communicates with the second check valve 111c through the first pipeline switching portion 111d, and the pipeline pc communicates with the first check valve 111b through the second pipeline switching portion 111e.
  • air is sucked from the pipeline pd via the connection tube 110a by the air supply of the pump 111a, and an air flow path is formed through which the air is supplied from the opening 111f (see the dashed arrow).
  • the pressure gauge 112 and the relief valve 113 are provided in this order in the pipeline pd from the first pipeline switching portion 111d to the connection pipe 110a.
  • a pressure gauge 112 measures the air pressure in the pipeline pd and displays the magnitude of the pressure.
  • the pressure gauge 112 may display the magnitude of the pressure numerically, but the display method is not limited to numerical display.
  • the pressure display on the pressure gauge 112 may visibly display the absolute value of the pressure or the amount of relative deviation from the reference value.
  • the relief valve 113 discharges the air flowing through the pipeline pd to the outside when the pressure of the air in the pipeline pd exceeds a predetermined allowable pressure value. As a result, the pressure of the air in the pipeline pd is kept below the allowable pressure value.
  • the allowable pressure value is set to a value that does not excessively inflate the fixation balloon 3 communicating with the duct pd via the airflow tube 9 and the second lumen 2e.
  • the allowable size of the fixation balloon 3 is predetermined according to the lumen into which the overtube 101 is inserted.
  • the pump 111a for supplying air in one direction is used to supply air to the airflow tube 9 and to the airflow tube. Intake from 9 can be selectively switched.
  • the opening 111f functions as an intake port for sucking air from the outside.
  • the opening 111f functions as an exhaust port for discharging the intake air to the outside.
  • Insufflation device 110 has pressure gauge 112 . As a result, the operator can expand and contract the fixation balloon 3 while confirming whether the pressure of the air supplied to the fixation balloon 3 is appropriate.
  • Insufflation device 110 has a relief valve 113 .
  • the main tube 102 is provided with an air supply device 110 so that the operator can perform treatment smoothly.
  • the overtube 101 According to the overtube 101 according to this embodiment, the air inside the fixation balloon 3 is supplied and sucked by the air supply device 110 instead of the air supply device 10 . Therefore, the overtube 101 can be used for various treatments and surgeries using the endoscope 11 by inserting and fixing it inside the patient's body in the same manner as the overtube 1 according to the first embodiment. Especially in this embodiment, a main tube 102 is used instead of the main tube 2 . The action of the present embodiment will be described below, centering on the action of the main tube 102 .
  • the overtube 101 may be used by being inserted into a lumen having a bend in the patient's body.
  • a bending load acts on the main tube 2 passing through the bent portion.
  • the tube wall 2a may undergo radial crushing deformation.
  • the endoscope 11 is inserted into the first lumen 2c, a cross-sectional area approximately equal to the outer diameter of the endoscope 11 is secured.
  • the second lumen 2e is collapsed, the supply of air to the fixation balloon 3 will be interrupted, which may hinder expansion and contraction of the fixation balloon 3 .
  • the present inventors have extensively studied how the main tube 2 collapses, and found that when the main tube 2 is bent, the main tube 2 rotates so that the axis Y shown in FIG. The inventors have found that it is easy to collapse toward the axis Y, and have arrived at the present invention.
  • the flexural rigidity of the main tube 102 is minimized with respect to the axis Y passing through the center of the thick portion 2b and the center of the first lumen 2c. with respect to the axis X perpendicular to the axis Y at .
  • the bending rigidity around the axis X is greater than the bending rigidity around the axis Y, so , the work required to bend about the axis X is also large.
  • the main tube 102 is long and is inserted in a state in which there is little restriction from the lumen and the endoscope 11 .
  • a portion of the main tube 102 is readily rotatable about its central longitudinal axis.
  • the main tube 102 rotates in a direction that is easier to bend, and the neutral plane of the bending gradually approaches the axis Y. As shown in FIG.
  • FIG. 22 is a schematic perspective view showing a bent state of the endoscope overtube according to the second embodiment of the present invention.
  • 23 is a cross-sectional view taken along line F23-F23 in FIG. 22.
  • FIG. FIG. 22 shows how the main tube 102 rotates and the thick portion 2b moves along the neutral plane of the bending when it is bent as indicated by the hollow arrow. Inside the bend, the tube wall 2a is kinked to produce a large dent. In this way, when the main tube 102 rotates, the rigidity of the thick portion 2b has little effect on bending deformation, so the main tube 102 can be easily bent with a low load.
  • the second lumen 2e should be made difficult to deform when collapsed in the direction of the arrow f1.
  • FIG. 23 shows an example of a cross section in the vicinity of the second lumen 2e when the tube wall 2a is thus collapsed.
  • third lumens 102g are formed on both circumferential sides of the second lumen 2e.
  • the third lumen 102g is radially crushed, and the tube wall 2a is bent around the third lumen 102g.
  • a bent groove Cr extending radially outward is formed in the inner peripheral surface of the first lumen 2c facing the third lumen 102g.
  • the strain due to the external bending force is absorbed by the deformation of the thick portion 2b around the third lumen 102g.
  • the stress around the second lumen 2e is alleviated compared to the case where the second region R2 having the third lumen 102g and the low rigidity is not present, so the deformation of the second lumen 2e is suppressed. be done. Therefore, even if the main tube 102 is bent inside the lumen, the second lumen 2e will not be crushed, making it difficult for the air to flow, and the duct will not be closed. As a result, even if the main tube 102 is inserted into a lumen having a bent portion, the operator can expand and contract the fixation balloon 3 without any trouble.
  • fixation position of the overtube 101 it is possible to prevent the fixation position of the overtube 101 from becoming unstable because the fixation balloon 3 cannot be expanded to an appropriate outer diameter. Thereby, surgery using the endoscope 11 can be performed smoothly. For example, it is possible to prevent the diameter of the fixation balloon 3 from being sufficiently reduced during insertion and withdrawal, thereby preventing the patient from being burdened during insertion and withdrawal.
  • the overtube 101 according to the second embodiment includes the main tube 102 and the air supply device 110 instead of the main tube 2 and the air supply device 10 of the overtube 1 according to the first embodiment. Similar to overtube 1, except that it has Therefore, as in the first embodiment, it is possible to provide an endoscope overtube that reduces the burden on the patient and allows smooth operation of the endoscope.
  • the main tube 102 since the main tube 102 is provided, even if the main tube 102 is inserted into a lumen having a bend, the operator can expand and contract the fixation balloon 3 without any trouble.
  • the tube wall 2 a is an example of a constant thickness portion having a constant thickness in the circumferential direction of the main tube 102 .
  • the thick portion 2b is an example of a thick portion in which an air supply lumen is formed and the thickness defined by the distance between the outer peripheral surface and the inner peripheral surface in the radial direction is larger than the thickness of the constant thickness portion.
  • the main tube 102 is an example of a tube body having a constant thickness portion and a thick portion.
  • the first region R1 is an example of a first region that is formed in the thick portion and includes an air supply lumen.
  • the second region R2 is an example of a second region that is adjacent to the first region in the circumferential direction and has lower rigidity than both the first region and the constant thickness portion.
  • the third lumen 102g is formed in the second region, extends in the axial direction along the extending direction of the air supply lumen, and is a dummy lumen that is a hole that cannot supply air to the fixation balloon and cannot inhale from the fixation balloon.
  • the minimum thickness in the radial direction of the portion sandwiched between the dummy lumen and the main lumen is greater than the minimum thickness in the radial direction of the portion sandwiched between the air supply lumen and the main lumen. too thin.
  • Airflow tube 9 is an example of an air supply tube extending from air supply device 110 .
  • the second lumen 2e communicates with the air supply tube, and the third lumen 102g does not communicate with the air supply tube.
  • the main tube used for the overtube 101 is not limited to the main tube 102 .
  • the second region R2 is formed by providing the third lumen 102g, but the method of forming the second region R2 is not limited to this.
  • FIG. 24 is a schematic cross-sectional view showing a main part of a main tube that can be used for the endoscope overtube according to the second embodiment of the present invention.
  • a main tube 102A (tube body) shown in FIG. 24 can be used in place of the main tube 102 in the overtube 101.
  • the main tube 102A is formed with a groove portion 102h instead of the third lumen 102g of the main tube 102.
  • FIG. In the following, the points different from the second embodiment will be mainly described.
  • the groove portion 102h is a V-shaped groove extending radially outward from the inner peripheral surface of the first lumen 2c.
  • the groove width in the circumferential direction of the groove portion 102h decreases radially outward from the inner peripheral surface of the first lumen 2c.
  • the groove portion 102h has a similar cross-sectional shape extending in the longitudinal direction of the main tube 102A.
  • the groove portion 102h forms a thickness change portion Tv in which the thickness of the thick portion 2b gradually decreases in the circumferential direction, passes through a minimum value, and then increases.
  • the minimum thickness of the thickness change portion Tv is the distance t4 from the groove bottom of the groove portion 102h to the outer peripheral surface 2d. t4 is shorter than t0.
  • the positions of the grooves 102h may differ in distance from the second lumen 2e, but are symmetrical about the axis Y in the example shown in FIG.
  • the length in the circumferential direction between the position of the groove portion 102h in the first lumen 2c and the inner peripheral surface of the second lumen 2e is d2.
  • d2 is more preferably greater than or equal to t1.
  • the second lumen 2e is sandwiched between the grooves 102h on both sides in the circumferential direction.
  • a first region R1A and a second region R2A are formed in the thick portion 2b.
  • the first region R1A is a region that includes the second lumen 2e and is sandwiched between two thickness change portions in the circumferential direction.
  • the second region R2A is formed in the range of the maximum groove width of the groove portion 102h in the circumferential direction, and is a region with reduced rigidity compared to the first region R1A.
  • the second region R2A has a lower rigidity than the tube wall 2a.
  • 25 is a schematic cross-sectional view showing a bent state of the main tube shown in FIG. 24.
  • FIG. 25 Similar to the main tube 102, the case where the main tube 102A receives bending and collapses toward the axis Y will be described.
  • the groove width of each groove 102h is reduced.
  • the inner surfaces of the grooves 102h are in contact with each other.
  • Each tube wall 2a adjacent to the groove 102h bends around the groove bottom of the groove 102h under a light load until the groove 102h is closed.
  • the groove portion 102h functions as a hinge for rotating the tube wall 2a.
  • the stress in the vicinity of each groove 102h hardly increases until the groove inner surfaces of the grooves 102h contact each other. Therefore, deformation in the vicinity of the second lumen 2e can be suppressed by appropriately setting the groove angle of the groove portion 102h according to the amount of collapse of the tube wall 2a.
  • the main tube 102A has the groove portion 102h instead of the third lumen 102g, thereby forming the second region R2A with low rigidity like the second region R2.
  • the stress around the second lumen 2e is alleviated compared to the case where the second region R2A having the groove portion 102h and the low rigidity is not present, so the deformation of the second lumen 2e is suppressed.
  • the main tube 102A has the same action as the main tube 102 does.
  • the third lumen 102g may be provided in the region spanning both the tube wall 2a and the thick portion 2b, or in the region of the tube wall 2a, provided that the rigidity in the second region R2 is not excessively reduced. .
  • the second regions R2 are formed on both sides of the first region R1 in the circumferential direction.
  • the number of the second regions R2 may be one if the deformation of the second lumen 2e is suppressed within a necessary range.
  • the second region R2A in the modification is also the same as the second region R2.
  • the main tube 102A has a constant-thickness portion that surrounds the main lumen and has a constant thickness in the circumferential direction, and an air supply lumen.
  • 1 is an example of a tube body having a thick-walled portion having a thickness greater than that of a constant-thickness portion;
  • the first region R1A is an example of a first region formed in a thick portion and including an air supply lumen.
  • the second region R2A is an example of a second region that is adjacent to the first region in the circumferential direction and has lower rigidity than both the first region and the constant thickness portion.
  • the thickness change portion Tv formed in the second region R2A is an example of a thickness change portion that is recessed radially outward from the inner peripheral surface of the main lumen and whose thickness changes.
  • An endoscope overtube according to a third embodiment of the present invention will be described.
  • An overtube 201 shown in FIG. 17 is an example of an endoscope overtube according to this embodiment.
  • the overtube 201 has an air supply device 210 instead of the air supply device 10 of the overtube 1 according to the first embodiment.
  • the points different from the first embodiment will be mainly described.
  • FIG. 26 is a schematic front view showing an air supply device in an endoscope overtube according to a third embodiment of the present invention
  • FIG. 27 is a schematic front view similarly showing the arrangement of the air supply device during inhalation.
  • the air supply device 210 has a manual air supply mechanism 211 , a body portion 212 and a connecting band 216 .
  • the manual air supply mechanism 211 has an appropriate configuration for manually supplying and inhaling air.
  • the manual air supply mechanism 211 includes a pump 211a (manual pump), a first check valve 211b, a second check valve 211c, a first connector 211d (pump-side connector, first connector), and a second connector. 211e (pump-side connector, second connector).
  • the pump 211a is not particularly limited as long as it is a manual pump that sends gas.
  • the pump 211a may be a rubber bulb pump, a diaphragm pump, a bellows tube pump, a syringe pump, or the like.
  • the pump 211a is a rubber bulb pump.
  • the pump 211a consists of an egg-shaped or rugby ball-shaped rubber ball. Tubular portions through which air flows are formed at both ends of the pump 211a in the longitudinal direction.
  • Each tubular portion is provided with a first check valve 211b and a second check valve 211c.
  • a first opening 211g (see FIG. 27) communicating with the inside of the pump 211a when the first check valve 211b is opened is provided outside the first check valve 211b. ) is formed.
  • a second opening 211f (see FIG. 26) that communicates with the inside of the pump 211a when the second check valve 211c is open is provided outside the second check valve 211c. )) are formed.
  • the first check valve 211b circulates the air inside the pump 211a to the outside through the opening of the tubular part in which the first check valve 211b is arranged, and prevents the outside air from entering the inside from the opening of the tubular part. prevent.
  • the second check valve 211c allows the air outside the pump 211a to flow inside through the opening of the tubular portion in which the second check valve 211c is arranged, and prevents the internal air from flowing out from the opening of the tubular portion. prevent.
  • the first connecting portion 211d is provided outside the first opening 211g (see FIG. 27) in the tubular portion where the first check valve 211b is arranged.
  • the first connection portion 211d is detachably connected to a connection pipe 212a in the body portion 212, which will be described later.
  • the connection structure between the first connection portion 211d and the connection pipe 212a is not particularly limited as long as it can be detachably connected.
  • a luer lock connector may be used as the first connecting portion 211d.
  • the connecting tube 212a is of the female luer lock type
  • the first connecting portion 211d is a male luer lock type connector.
  • the second connecting portion 211e is provided outside the second opening 211f (see FIG.
  • the second connecting portion 211e is detachably connected to the connecting pipe 212a.
  • a luer lock type connector similar to the first connection portion 211d may be used as the second connection portion 211e.
  • the body part 212 is a housing in which a flow path through which air flows is formed.
  • the body portion 212 has a connecting tube 212a (body-side connector), an air pipe 210a, a relief valve 213, and a grip 215 (holding portion).
  • the connecting pipe 212a protrudes outside the housing of the main body 212.
  • the connection tube 212a allows the manual air supply mechanism 211 to be detachable from the first connection portion 211d and the second connection portion 211e.
  • the inside of the connection pipe 212a communicates with the manual air supply mechanism 211 when either the first connection portion 211d or the second connection portion 211e is attached.
  • the air pipe 210 a protrudes outside the housing of the main body 212 . Inside the housing of the main body part 212, a flow path is formed between the air supply pipe 210a and the connection pipe 212a through which the air supplied from the manual air supply mechanism 211 flows.
  • the air pipe 210 a is connected to the air flow tube 9 and communicates with the flow path inside the air flow tube 9 .
  • the relief valve 213 is arranged on the outer peripheral portion of the housing of the main body portion 212 .
  • the relief valve 213 is the same as the relief valve 113 in the first embodiment except that it is provided on the flow path between the connecting pipe 212a and the air supply pipe 210a. Details of the flow path between the connecting tube 212a and the air supply tube 210a will be described later.
  • the grip 215 protrudes from the outer peripheral portion of the body portion 212 .
  • the shape of the grip 215 is not particularly limited as long as the user can grip the body portion 212 .
  • the connection state of the manual air supply mechanism 211 to the body portion 212 includes a first connection state in which the first connection portion 211d shown in FIG. and a second connection state connected to the .
  • the operator can manually switch between the first connection state and the second connection state. For example, to switch the first connection state to the second connection state, the operator unlocks the first connection portion 211d and removes the first connection portion 211d from the connection tube 212a.
  • the operator changes the orientation of the manual air supply mechanism 211, connects the second connection portion 211e to the connection tube 212a, and locks the second connection portion 211e. To switch from the second connected state to the first connected state, the opposite operation is performed.
  • connection tube 212a In the first connection state, air supplied from the first opening 211g by the operator's operation of the pump 211a flows into the connection tube 212a. In the second connection state, the air sucked by the operator's operation of the pump 211a flows from the connection tube 212a into the second opening 211f. Therefore, in the air supply pipe 210a communicating with the connection pipe 212a, the direction of air flow is changed depending on the connection state of the manual air supply mechanism 211.
  • the connecting band 216 connects the main body portion 212 and the manual air-supplying mechanism 211 so as not to interfere with the movement and posture change of the manual air-supplying mechanism 211 required for switching the connected state of the manual air-supplying mechanism 211 .
  • the connecting band 216 is made of flexible resin.
  • the mounting position of the connection band 216 on the main body 212 and the manual air supply mechanism 211 is not particularly limited as long as the movement and posture change of the manual air supply mechanism 211 are not hindered.
  • they are rotatably mounted on the outer peripheral portion of the connection pipe 212a of the main body portion 212 and the outside of the tubular portion between the first connection portion 211d and the pump 211a.
  • the length of the connecting band 216 is sufficiently longer than the length from the first connecting portion 211d to the second connecting portion 211e of the manual air supply mechanism 211.
  • FIG. 27 the length of the connecting band 216 is sufficiently longer than the length from the first connecting portion 211d to the second connecting portion 211e of the manual air
  • FIG. 28 is a block diagram showing an example of an air supply device in the endoscope overtube according to the third embodiment of the present invention.
  • FIG. 29 is a block diagram similarly showing the flow of the air supply device during inspiration.
  • the air supply device 210 includes the manual air supply mechanism 211 and the relief valve instead of the air supply mechanism 111, the relief valve 113, and the connection pipe 110a of the air supply mechanism 111 in the first embodiment. 213, with air line 210a.
  • the airflow tube 9 similar to that of the first embodiment is connected to the air pipe 210a (see FIG. 27).
  • the manual air supply mechanism 211 includes a pump 111a, a first check valve 111b, a second check valve 111c, a first channel switching portion 111d, a second channel switching portion 111e, and an opening.
  • 111f it has a pump 211a, a first check valve 211b, a second check valve 211c, a first pipeline switching section SW1, a second pipeline switching section SW2, and an opening O.
  • the first channel switching unit SW1 may use a channel switching valve or the like, but in the example shown in FIGS. do. Therefore, in the first connection state, as shown in FIG.
  • the first connection portion 211d and the second connection portion 211e correspond to the first channel switching portion SW1 and the second channel switching portion SW2, respectively.
  • the opening O corresponds to the second opening 211f.
  • the second connection portion 211e and the first connection portion 211d correspond to the first channel switching portion SW1 and the second channel switching portion SW2, respectively.
  • the opening O corresponds to the first opening 211g.
  • a first pipe P1, a constricted portion P2, and a second pipe P3 are arranged in this order from the connecting pipe 212a toward the air pipe 210a. are placed.
  • the first pipeline P1 circulates air between the connecting pipe 212a and the constricted portion P2.
  • the throttle portion P2 is provided for the purpose of reducing the pressure of the air supplied from the first pipeline P1.
  • the configuration of the narrowed portion P2 is not particularly limited as long as the pressure of the air after passing through the narrowed portion P2 can be reduced by reducing the flow passage cross-sectional area.
  • the narrowed portion P2 may be formed of a tubular portion extending from a pipe having a flow passage cross-sectional area smaller than that of the first pipe P1.
  • the constricted portion P2 protrudes inward from the pipe wall of the first pipe P1 into the pipe of the first pipe P1, and an orifice smaller than the pipe cross-sectional area of the first pipe P1 is formed. It may be formed by an orifice plate.
  • the constricted portion P2 may be formed of a porous body whose opening area as a whole is smaller than the duct cross-sectional area of the first duct P1.
  • the second pipe line P3 is formed by a pipe having a larger flow channel cross-sectional area than the flow channel cross-sectional area at the constricted portion P2.
  • the second conduit P3 is extended to the rear end of the second lumen 2e by the airflow tube 9 connected to the air supply pipe 210a.
  • a relief valve 213 is connected to the second pipeline P3 between the air supply pipe 210a and the throttle portion P2.
  • the relief valve 213 is the same as the relief valve 113 in the second embodiment except that it is provided in the second pipeline P3. Therefore, when the pressure of the air in the second pipeline P3 becomes higher than the allowable value, the air is discharged from the relief valve 213 to the outside of the main body 212 (see FIG. 27).
  • FIG. 30 is a block diagram showing an example of an air supply device in the endoscope overtube according to the third embodiment of the present invention.
  • the manual air supply mechanism 211 has a channel switching section 211h instead of the first channel switching section SW1 and the second channel switching section SW2.
  • the channel switching unit 211h forms the first connection state during air supply indicated by the black line.
  • the first connecting portion 211d is connected to the connecting pipe 212a, and the connecting pipe 212a communicates with the first opening 211g. At this time, external air is sucked through the second opening 211f.
  • the channel switching unit 211h forms the second connection state during intake indicated by the dashed line.
  • the second connecting portion 211e is connected to the connecting pipe 212a, the connecting pipe 212a is communicated with the second opening 211f, and the sucked air is discharged to the outside from the first opening 211g.
  • the function of the channel switching unit 211h is implemented manually.
  • the channel switching unit 211h may be replaced by a switching device such as a channel switching valve.
  • the air supply device 210 communicates with the fixation balloon 3 via the airflow tube 9 and the second lumen 2e, as in the first embodiment.
  • the operator can switch the manual air supply mechanism 211 between the first connection state and the second connection state as appropriate to supply air to the fixation balloon 3 and air from the fixation balloon 3 . can be inhaled. Therefore, as in the first embodiment, the operator can expand and contract the fixation balloon 3 .
  • FIG. 31 is a schematic diagram explaining the action of a relief valve in a manual pump.
  • illustration of the airflow tube 9 is omitted for simplification.
  • FIG. 32 is a graph showing an example of the relationship between the flow rate of air supplied by the manual pump and the amount of loss leaking from the relief valve.
  • the horizontal axis represents time
  • the vertical axis represents the flow rate of air supplied from the manual pump.
  • the overtube T shown in FIG. 31 has an overtube 201 from which the narrowed portion P2 is removed. Further, the overtube T has a pipeline P0 having a constant flow cross-sectional area instead of the first pipeline P1 and the second pipeline P3.
  • Q be the flow rate of air supplied to the conduit P0 by operating the pump 211a. As shown in FIG. 32, when the operator presses the pump 211a, the flow rate Q increases with time, reaches a maximum value Qx , and then gradually decreases, as indicated by a curve 50. FIG. The flow rate Q becomes zero when there is no change in the volume of the pump 211a.
  • the operator releases the pump 211a and inhales into the pump 211a, and then repeats the same operation.
  • the maximum value Qx of the flow rate Q and the time required for the flow rate Q to reach the maximum value Qx depend on the pressing force and pressing speed of the operator. The operator often presses the pump 211a to quickly increase the flow rate in order to quickly perform the treatment. As a result, for example, in the pipeline P0, it is assumed that the allowable pressure of the relief valve 213 is reached when the flow rate is equal to or higher than Q1 ( Q1 ⁇ Qx ).
  • the volume A1 of the air supplied to the fixation balloon 3 in one pressing operation is a value obtained by integrating the curve 50 in the range less than Q1 , as shown in FIG.
  • the loss volume A2 of the air discharged from the relief valve 213 is a value obtained by integrating the curve 50 in the range of Q1 or more. It means that the larger the loss volume A2 to the volume A1, the lower the air supply efficiency of the air supply device of the overtube T. If the air supply efficiency is low, the operator has to operate the pump 211a for a longer time in order to expand the fixation balloon 3 to the required outer diameter, which increases the work time for treatment. . As described above, with a manual pump, if the operator strongly or quickly operates the pump 211a, the operation time for expanding the diameter of the fixation balloon 3 may rather be lengthened.
  • the air supply device 210 is provided with the narrowed portion P2. This enables the operator to perform a more efficient air supply operation.
  • the throttle portion P2 is formed between the first pipeline P1 and the second pipeline P3, even if the operator strongly presses the pump 211a, the throttle portion P2 provided on the upstream side of the relief valve 213 will The flow rate of air flowing into the second pipeline P3 is reduced. As a result, the pressure inside the second pipeline P3 including the airflow tube 9 is reduced. As a result, the amount of air lost in the relief valve 213 is also reduced.
  • the operator since the channel resistance increases due to the constricted portion P2, the operator must press the pump 211a more strongly than when the constricted portion P2 does not exist to increase the flow rate.
  • the magnitude of the flow resistance is transmitted as a sense of resistance to the operating operator through the pump 211a. This sense of resistance also has the effect of making the operator relax the pressing force.
  • the provision of the constricted portion P2 enables the fixation balloon 3 to expand in diameter with less air loss than when the constricted portion P2 does not exist.
  • the time to operate the pump 211a is reduced.
  • FIG. 33 is a schematic diagram showing the flow channel shape of the air supply device in the endoscope overtube according to the third embodiment of the present invention.
  • the shape of the first conduit P1 is a cylinder with an inner diameter of D [mm].
  • the shape of the constricted portion P2 is a cylindrical flow path with an inner diameter of d [mm] and a length of L 1 [mm].
  • the constricted portion P2 is not cylindrical, the diameter of a circle having the same cross-sectional area is used as d.
  • the diaphragm portion P2 is a square with a side length of s, 2 ⁇ s/ ⁇ is used as d.
  • the constricted portion P2 is formed of a porous material
  • 2 ⁇ r ⁇ N is used, where r is the average radius of the holes in the cross section perpendicular to the flow path, and N is the number of holes.
  • the shape of the second pipeline P3 is a cylindrical flow path with an inner diameter of D [mm]. The same applies to the inner diameter of the airflow tube 9 connected to the air supply pipe 210a and forming part of the second pipeline P3.
  • the entire length of the second pipeline P3 including the airflow tube 9 is represented by L2 [mm].
  • P 1 and P 1 ′ are the input pressures of the pump 211a. P 1 and P 1 ′ are equal to each other.
  • the condition under which the pressure P 1 ' in the path P1 is less than 90% is the following formula (3d).
  • "less than 90%” is an example considering practicality. Setting the pressure P 3 ' to less than 90% of the pressure P 1 ' is preferable because the loss of air exhausted from the relief valve 213 can be reduced. However, if the pressure P 3 ′ is too low, the expansion speed of the fixation balloon 3 may become too slow. It is more preferable to determine the pressure P 3 ' so that the rate of diameter expansion of the fixation balloon 3 becomes an appropriate value within a range of less than 90%.
  • the pressure P 3 ′ may be 80% or more of P 1 ′, more preferably 50% or more.
  • the condition of the constricted portion P2 may be determined such that the pressure P 3 ′ is less than 80%, less than 70%, etc. of the pressure P 1 ′.
  • equation (3e) is obtained.
  • the second pipe line on the downstream side of the throttle portion P2 can be supplied when the pump 211a is operated to supply air.
  • the pressure in P3 can be less than 90% of the pressure upstream of restriction P2.
  • the loss amount of the air exhausted from the relief valve 213 communicating with the second pipe line P3 on the downstream side of the throttle portion P2 is reduced.
  • the coefficient "1/9" in the equation (3e) should be replaced with "1/(0.1 ⁇ X)".
  • the overtube 201 of this embodiment is the same as the overtube 1 except that it has an air supply device 210 instead of the air supply device 10 of the overtube 1 according to the first embodiment. Therefore, as in the first embodiment, it is possible to provide an endoscope overtube that reduces the burden on the patient and allows smooth operation of the endoscope.
  • the air supply device 210 has the manual air supply mechanism 211, and the air supply device 210 has the throttle portion P2. As a result, the diameter of the fixation balloon 3 can be expanded with a smaller amount of air loss than in the case where the constricted portion P2 does not exist, so the time required for the operator to operate the pump 211a is reduced.
  • a first pipeline P1 in the air supply device 210 is an example of a first pipeline through which gas sent from a pump 211a, which is an example of a manual pump, flows.
  • the constricted portion P2 in the air supply device 210 is an example of a constricted portion that is connected to the first pipeline and has a flow channel cross-sectional area smaller than the flow channel cross-sectional area of the first pipeline.
  • the second duct P3 in the air supply device 210 is an example of a second duct that has a channel cross-sectional area larger than the flow channel cross-sectional area of the constricted portion, and causes the gas flowing through the constricted portion to flow toward the fixation balloon. be.
  • the relief valve 213 is an example of a relief valve that is provided in the second pipeline and exhausts gas from the second pipeline when the pressure in the second pipeline exceeds a certain value.
  • FIG. 17 A modification (first modification) of the air supply device used in place of the air supply device 210 in the overtube 201 according to the third embodiment will be described.
  • an air supply device 210A of this modified example can be used in place of the air supply device 210 of the overtube 201.
  • the air supply device 210A has a body portion 212A instead of the body portion 212 of the air supply device 210.
  • the body portion 212A differs from the body portion 212 in the structure of the flow path from the connection tube 212a to the air supply tube 210a.
  • the points different from the third embodiment will be mainly described.
  • FIG. 34 is a block diagram showing a modified example (first modified example) of the air supply device used in the endoscope overtube according to the third embodiment of the present invention.
  • FIG. 35 is a schematic diagram showing a flow path shape of a modified example (first modified example) of the air supply device.
  • the air supply device 210A has an expanded diameter portion P4 instead of the constricted portion P2.
  • the relief valve 213 in this modified example is arranged in the enlarged diameter portion P4.
  • the enlarged diameter portion P4 is provided for the purpose of reducing the pressure of the air supplied from the first pipeline P1.
  • the enlarged diameter portion P4 is a housing having a flow channel cross-sectional area larger than each flow channel cross-sectional area of the first pipeline P1 and the second pipeline P3.
  • the channel cross-sectional area of the enlarged diameter portion P4 is the area of the cross section orthogonal to the air flow direction from the first pipeline P1 to the second pipeline P3.
  • the shape of the diameter-enlarged portion P4 is not particularly limited as long as the air pressure in the diameter-enlarged portion P4 can be reduced below the pressure of the first pipe line P1.
  • the enlarged diameter portion P4 may be formed of a tubular portion having a flow passage cross-sectional area larger than that of the first pipeline P1.
  • the enlarged diameter portion P4 may be box-shaped with a cross-sectional area larger than the inner diameter of the first pipeline P1.
  • the expanded diameter portion P4 in FIG. 35 is modeled in a box shape with a V volume.
  • the shape of the cross section of the flow path in the enlarged diameter portion P4 is not particularly limited.
  • the cross-sectional shape of the enlarged diameter portion P4 may be circular, elliptical, rectangular, polygonal, or the like.
  • the action of this modified example will be described with a focus on the action of the expanded diameter portion P4 in the air supply device 210A.
  • the air supply device 210A is provided with an enlarged diameter portion P4, and a relief valve 213 is arranged in the enlarged diameter portion P4, thereby allowing the operator to perform more efficient air supply operation. If the diameter-enlarged portion P4 is formed between the first pipeline P1 and the second pipeline P3, the cross-sectional area of the flow path is widened at the diameter-enlarged portion P4. becomes a lower pressure.
  • the unit system in the formulas of this modified example is not particularly limited.
  • the shape of the first pipeline P1 and the second pipeline P3 is a cylinder with an inner diameter D, as in the third embodiment.
  • the volume of the expanded diameter portion P4 is V.
  • P be the pressure before the expanded diameter portion P4 is increased in pressure by the air supply from the pump 211a.
  • P ' is the pressure when the volume QP of air flows from the pump 211a into the expanded diameter portion P4
  • the following equation (3f) is obtained from the Boyle-Charles law.
  • the volume QP may be the maximum air supply amount of the pump 211a in one operation.
  • the volume QP can be the maximum insufflation volume in the pump 211a.
  • P' is the pressure inside the enlarged diameter portion P4 at the time of maximum air supply in one operation.
  • the volume V' per unit length of the cylindrical tube when a cylindrical tube having an inner diameter similar to that of the second pipeline P3 is arranged instead of the enlarged diameter portion P4 is represented by the following formula (3g). .
  • the condition under which the pressure P′ of the enlarged diameter portion P4 is less than 90% of the pressure P′′ without the enlarged diameter portion P4 is the following formula (3i).
  • “less than 90%” is an example considering practicality. Setting the pressure P′ to less than 90% of the pressure P′′ is preferable because the amount of loss of air exhausted from the relief valve 213 can be reduced.
  • the pressure P' is too low, the expansion speed of the fixation balloon 3 may become too slow.
  • the pressure P′ is determined so that the speed of expanding the diameter of the fixation balloon 3 becomes an appropriate value within a range of less than 90%.
  • the pressure P' may be 80% or more of P'', more preferably 50% or more.
  • the expansion speed of the fixation balloon 3 can be maintained as much as possible.
  • the pressure P' may be set to less than 80%, less than 70%, etc. of the pressure P'' to determine the condition of the enlarged diameter portion P4.
  • equation (3f) By substituting equations (3f) and (3h) into equation (3i) and arranging them, the following equation (3j) is obtained.
  • An overtube 201 having an air supply device 210A of this modified example is the same as the overtube 201 except that it has an air supply device 210A instead of the air supply device 210 of the overtube 201 according to the third embodiment. is. Therefore, according to this modified example, as in the third embodiment, it is possible to provide an endoscope overtube that reduces the burden on the patient and allows smooth operation of the endoscope.
  • the air supply device 210A has the enlarged diameter portion P4 provided with the relief valve 213 .
  • the diameter of the fixation balloon 3 can be expanded with a smaller amount of air loss than when the expanded diameter portion P4 does not exist, thus reducing the time required for the operator to operate the pump 211a.
  • the enlarged diameter portion P4 in the air supply device 210A is an example of an enlarged diameter portion that is connected to the first conduit and has a channel cross-sectional area larger than that of the first conduit.
  • the relief valve 213 in the air supply device 210A is an example of a relief valve that is provided in the enlarged diameter portion and exhausts gas from the enlarged diameter portion when the pressure in the enlarged diameter portion exceeds a certain value.
  • the second pipeline P3 in the air supply device 210A has a flow channel cross-sectional area smaller than the flow channel cross-sectional area of the enlarged diameter portion, and allows the gas flowing through the enlarged diameter portion to flow toward the fixation balloon. is an example of
  • FIG. 17 is a schematic front view showing a modified example (second modified example) of the air supply device used in the endoscope overtube according to the third embodiment of the present invention.
  • the air supply device 210B has a body portion 212B instead of the body portion 212 of the air supply device 210.
  • the main body portion 212B has a pressure adjusting portion 217 and a housing portion 218 between the connecting pipe 212a and the air pipe 210a.
  • a grip 215 in this modified example is formed in a housing portion 218 .
  • the manual air supply mechanism 211 in this modification can switch between the first connection state and the second connection state with respect to the connecting pipe 212a of the main body 212B. is.
  • the points different from the third embodiment will be mainly described.
  • FIG. 37 is a block diagram showing a modified example (second modified example) of the air supply device used in the endoscope overtube according to the third embodiment of the present invention.
  • FIG. 38 is a schematic diagram showing a flow channel shape of a modified example (second modified example) of the air supply device.
  • the illustration of the airflow tube 9 is omitted in FIG. 38 for the sake of simplification (the same applies to FIGS. 39 to 40 below).
  • an air supply device 210B has a throttle portion P2 and a relief valve 213 similar to those of the third embodiment.
  • the diaphragm portion P2 in this modified example is arranged inside the housing portion 218 .
  • the relief valve 213 in this modified example communicates with the second pipe line P3 inside the housing portion 218 .
  • the pressure adjustment section 217 communicates with the first pipeline P1 through the third pipeline P5.
  • the pressure adjustment unit 217 branches the air supplied from the pump 211a through the first pipe line P1, and stores the air inside without discharging it to the outside. As a result, the pressure increase in the first pipeline P1 is alleviated, and the pressure of the air flowing through the throttle portion P2 to the second pipeline P3 is also alleviated.
  • the configuration of the pressure adjusting section 217 is not particularly limited as long as the pressure rise in the first pipeline P1 can be alleviated by storing air inside the pressure adjusting section 217 .
  • the pressure adjustment part 217 may be configured to form a storage space for storing the air to be supplied to the first pipeline P1.
  • the pressure adjusting part 217 may be formed of a box, a cylinder, etc. forming a storage space having a certain volume.
  • the internal pressure of the first pipe line P1 and the internal pressure of the pressure adjusting section 217 rise due to the air flowing into the pressure adjusting section 217 .
  • the volume into which air flows is as large as the pressure regulating portion 217, the pressure rise in the first pipeline P1 is reduced compared to the case where the pressure regulating portion 217 is not provided.
  • the larger the volume of the pressure adjusting portion 217 the more the pressure rise in the first pipeline P1 is mitigated.
  • the pressure adjustment part 217 may be configured to form a storage space whose volume changes according to the pressure in the first pipeline P1.
  • Examples of the pressure adjustment part 217 whose volume changes include a syringe, a bellows tube, a bag, etc., whose volume changes by deformation according to the internal pressure.
  • the volume-changing pressure adjustment part 217 may be formed of an elastic body that expands and contracts according to pressure.
  • the volume-changing pressure adjustment section 217 may have an elastic member that applies an elastic force that resists the volume change.
  • FIG. 39 is a schematic diagram showing an example of a modified example (second modified example) of the air supply device.
  • a pressure regulating portion 217A shown in FIG. 39 is an example of the pressure regulating portion 217 whose volume changes.
  • 217 A of pressure adjustment parts have the cylindrical part 217a, the piston 217b, and the spring 217c.
  • the tubular portion 217a is, for example, a cylinder elongated in one direction, a rectangular tube, or the like.
  • a third pipe line P5 communicates with a longitudinal end of the tubular portion 217a.
  • the piston 217b is movable in the longitudinal direction of the tubular portion 217a inside the tubular portion 217a.
  • the piston 217b divides the tubular portion 217a in the longitudinal direction into a first space Sa and a second space Sb.
  • the cylindrical portion 217a slides on the inner surface of the cylindrical portion 217a while maintaining airtightness, and is movable in the longitudinal direction.
  • the opening of the third pipeline P5 faces the first space Sa.
  • the spring 217c is arranged in the second space Sb and elastically connects the longitudinal end of the tubular portion 217a in the second space Sb and the piston 217b.
  • the spring 217c urges the piston 217b against the pressure in the first space Sa.
  • the pressure adjustment section 217A when the pump 211a is operated and air is supplied to the first pipeline P1, more air flows into the third pipeline P5, which has a smaller flow path resistance than the throttle section P2. flow.
  • the air that has flowed into the first space Sa from the third conduit P5 flows into the first space Sa until the pressure reaches a balance with the biasing force of the spring 217c.
  • the air that has flowed into the first space Sa passes through the piston 217b and is biased by the spring 217c.
  • the piston 217b moves toward the third pipeline P5 according to the biasing force from the spring 217c.
  • the first space Sa is an example of a volume-variable storage space in the pressure adjustment section 217A.
  • FIG. 40 is a schematic diagram showing an example of a modified example (second modified example) of the air supply device.
  • a pressure regulating portion 217B shown in FIG. 40 is an example of the pressure regulating portion 217 whose volume changes.
  • the pressure adjusting portion 217B has a balloon 217d instead of the tubular portion 217a, the piston 217b, and the spring 217c of the pressure adjusting portion 217A.
  • the balloon 217d is made of a bag-like elastomer having one opening that communicates with the third conduit P5.
  • an elastomer having appropriate elasticity that can be expanded and contracted according to the pressure of the air in the first pipeline P1 is used.
  • the pressure adjustment part 217B when the pump 211a is operated and air is supplied to the first pipeline P1, the air flowing toward the third pipeline P5 flows into the inside.
  • the internal space Sc of the pressure adjusting section 217B expands according to the air pressure.
  • the air that has flowed into the internal space Sc flows into the internal space Sc until it reaches a pressure that balances the tension of the balloon 217d.
  • the air that has flowed into the internal space Sc is urged from the balloon 217d.
  • the air supply by the pump 211a ends and the flow rate of the air flowing through the first pipeline P1 decreases, the air in the internal space Sc is pushed out from the third pipeline P5 according to the biasing force from the balloon 217d.
  • the internal space Sc is an example of a volume-variable storage space in the pressure adjustment section 217B.
  • the configuration of the pressure adjustment units 217A and 217B may be included in devices such as pressure gauges and pressure indicators that display pressure, for example.
  • a device such as a pressure gauge or a pressure indicator may be used as the pressure adjustment unit 217 .
  • FIG. 41 to 44 are explanatory diagrams of the operation of the modified example (second modified example) of the air supply device. However, in FIGS. 41 to 44, illustration of the airflow tube 9 is omitted for simplification.
  • the initial volume of the pressure adjustment part 217 is close to 0, and if the air pressure exceeds the atmospheric pressure outside the pressure adjustment part 217, can flow in easily.
  • the pressure adjusting unit 217 is formed of a box having a certain volume, the pressure increases in proportion to the amount of inflow.
  • the volume of the pressure adjusting portion 217 is sufficiently large, the gradient of the pressure rise can be reduced.
  • the throttle portion P2 in this modified example has the effect of alleviating the pressure rise in the second pipeline P3 on the downstream side, like the throttle portion P2 in the third embodiment.
  • the increase in pressure in the second pipeline P3 is further suppressed in combination with the pressure relaxation effect of the expanded diameter portion P4. This makes it difficult for the air in the second pipeline P3 to be exhausted from the relief valve 213 even if the operator presses the pump 211a sharply or strongly.
  • the pressure adjusting section 217 is formed of a pressure gauge or a pressure indicator
  • the operator can adjust the amount of air supply by observing the pressure displayed by the pressure adjusting section 217 during the air supply operation. In this respect as well, air is less likely to be discharged from the relief valve 213 . Air efficiently flows into the fixation balloon 3, and the fixation balloon 3 is inflated.
  • the increase in the amount of air in the air flow path inside the overtube 201 having the air supply device 210B stops. Since the internal pressure of the pressure regulating portion 217 rises to some extent at the time of stopping, the air inside the pressure regulating portion 217 flows into the fixation balloon 3 even after the stop according to the internal pressure at the time of stopping. Therefore, even if the fixation balloon 3 is stopped in a state where the diameter expansion amount of the fixation balloon 3 is small, insufficient air is supplied to the fixation balloon 3 within the range of the volume of the pressure adjusting portion 217 . If the pressure adjusting section 217 has a configuration capable of urging the internal air, for example, like the pressure adjusting sections 217A and 217B, the air in the pressure adjusting section 217 tends to move to the fixation balloon 3 more quickly.
  • the manual air-supplying mechanism 211 of this modified example is similar to the manual air-supplying mechanism 211 in the second embodiment, by switching the connection state of the manual air-supplying mechanism 211 to the second connection state and then operating the pump 211a. , rapid inspiration is possible.
  • the air in the pressure adjusting portion 217 is also inhaled together with the air in the fixation balloon 3 . If the pressure adjustment section 217 is energized with air like the pressure adjustment sections 217A and 217B, for example, the time required for intake can be further shortened. In this case, the operator can perform the inhalation operation more quickly and easily.
  • An overtube 201 having an air supply device 210B of this modified example is the same as the overtube 201 except that it has an air supply device 210B instead of the air supply device 210 of the overtube 201 according to the third embodiment. is. Therefore, according to this modified example, as in the third embodiment, it is possible to provide an endoscope overtube that reduces the burden on the patient and allows smooth operation of the endoscope.
  • the air supply device 210B further has a pressure adjustment section 217 in addition to the air supply device 210 .
  • the pressure rise on the downstream side of the constricted portion P2 can be further suppressed.
  • the diameter of the fixation balloon 3 can be expanded with a small amount of air loss, so the time required for the operator to operate the pump 211a is reduced.
  • the pressure adjusting units 217, 217A, and 217B in the air supply device 210B are connected to the first pipeline, have flow paths having a flow path cross-sectional area larger than the flow path cross-sectional area of the first pipeline, and are connected to the first pipeline.
  • 1 is an example of a pressure indicator that displays channel pressure.
  • the internal space in the pressure adjusting section 217, the first space Sa in the pressure adjusting section 217A, and the internal space Sc in the pressure adjusting section 217B form flow paths through which air flows. It has a road cross-sectional area.
  • FIG. 45 is a schematic front view showing a modified example (third modified example) of the air supply device used in the endoscope overtube according to the third embodiment of the present invention.
  • FIG. 46 is a block diagram showing a modified example (third modified example) of the air supply device used in the endoscope overtube according to the third embodiment of the present invention.
  • the air supply device 210C has a main body portion 212C instead of the main body portion 212 of the air supply device 210.
  • the body portion 212C has a pressure indicator 219 and a housing portion 218 similar to that of the second modification between the connection tube 212a and the air supply tube 210a.
  • the pressure indicator 219 communicates with the first conduit P1 through the third conduit P5, like the pressure adjusting section 217 in the second modified example.
  • a grip 215 in this modified example is formed on a housing portion 218 as in the second modified example.
  • FIG. 45 shows a standard arrangement when the operator holds and operates the air supply device 210C with the right hand HR and the left hand HL .
  • the operator holds the grip 215 with the left hand HL to support the air supply device 210C.
  • the operator holds the pump 211a with the right hand HR .
  • the operator pushes the pump 211a when performing air supply or suction operation.
  • the state in which the air supply device 210C is held in both hands and placed in front of the operator is referred to as a standard operating state.
  • the outer shape of the pressure indicator 219 is a columnar shape extending along the central axis Ai.
  • the cross-sectional shape in the direction perpendicular to the central axis Ai is not particularly limited.
  • the cross-sectional shape of pressure indicator 219 may be circular, elliptical, rectangular, polygonal, or the like.
  • the outer shape of the pressure indicator 219 is cylindrical extending along the central axis Ai.
  • the grip 215 and the manual air supply mechanism 211 are arranged so that the central axis Ai can easily take a posture extending in the lateral direction of the operator in the standard operating state.
  • the grip 215 in this modified example is arranged from the housing part 218 arranged on the left side of the pressure indicator 219 in FIG. Inclined.
  • the central axis AG of the grip 215 is inclined by an angle ⁇ L with respect to the central axis Ai counterclockwise in the figure.
  • the angle ⁇ L may be 15° or more and 90° or less.
  • the angle ⁇ L is more preferably in the range of 60° ⁇ 15°.
  • the manual air-supply mechanism 211 in this modified example moves toward the operator ( bottom in the drawing).
  • the central axis A P of the manual air supply mechanism 211 is inclined by an angle ⁇ R with respect to the central axis Ai in the clockwise direction.
  • the angle ⁇ R may be 15° or more and 90° or less.
  • the angle ⁇ R is more preferably in the range of 60° ⁇ 15°.
  • the central axis AP coincides with the central axis of the pump 211a, and is the axis connecting the center of the first connection portion 211d and the center of the second connection portion 211e.
  • the angle ⁇ R coincides with the inclination angle of the central axis of the connecting pipe 212a with respect to the central axis Ai.
  • the magnitudes of the angles ⁇ L and ⁇ R may be changed according to the gripping positions of the left hand HL and the right hand HR .
  • the angle ⁇ L may be 60° ⁇ 15° and the angle ⁇ R may be 45° ⁇ 15°.
  • the apex of the grip 215 and the manual air supply mechanism 211 is near the left end of the pressure indicator 219 as seen from the operator in the standard operating state. It extends in an inverted V shape. According to such an arrangement, in the standard operating state, it is easy to arrange the central axis Ai along the left-right direction of the operator or inclined at an acute angle with respect to the left-right direction.
  • the pressure display window display window 221a, which will be described later
  • the operator takes a posture in which the central axis Ai extends in the horizontal direction so that the display window can be easily seen. It is easy to be induced to
  • FIG. 47 is a front view showing an example of a pressure indicator in a modified example (third modified example) of the air supply device.
  • 48 is a bottom view of F48 in FIG. 47.
  • FIG. 49 is a cross-sectional view taken along line F49-F49 in FIG. 47.
  • the axial direction is the direction along the center axis Ai.
  • the circumferential direction is the direction of rotation around the center axis Ai.
  • a radial direction is a direction along a line intersecting the central axis Ai on a plane perpendicular to the central axis Ai.
  • a position closer to the central axis Ai than a specific position on a half line extending radially from the central axis Ai may be referred to as radially inward of the specific position.
  • a position farther from the central axis Ai than a specific position may be referred to as being radially outward of the specific position.
  • the side closer to the third conduit P5 (the left side in FIG. 47) is called the proximal side
  • the side farther from the third conduit P5 is called the distal side.
  • the portion on the proximal side may be referred to as the proximal portion, and the portion on the distal side may be referred to as the distal portion.
  • the most proximal portion is the proximal end and the most distal portion is the distal end.
  • the pressure indicator 219 has a case 220 (housing), a display window forming member 221, and a fixed frame 222.
  • FIGS. 47 shows the pressure indicator 219 placed in the same orientation as in FIG. Therefore, FIG. 47 shows the external shape seen by the operator in the standard operating state.
  • the pressure indicator 219 further has a collar 223 (moving member), an airtight member 225 (sealing member, pressing member), and a coil spring 224 (elastic member) therein.
  • Case 220 has a bottomed cylindrical shape that forms the axial side surface and base end of pressure indicator 219 .
  • a material for the case 220 is not particularly limited.
  • the material of case 220 may be resin, metal, glass, or a composite material in which two or more of these are combined.
  • Case 220 is more preferably a resin molded product.
  • the parts of the overtube 301, including the case 220, may be drafted as required for manufacturing if molded. In the following description, for the sake of simplification, a shape ignoring the draft angle will be described.
  • a "cylindrical surface” includes an exact cylindrical surface and an approximate cylindrical surface that is drafted and inclined from a cylindrical surface.
  • the color of the case 220 is not particularly limited, but the region overlapping with the display window 221a, which will be described later, needs to be light transmissive. Only a portion of the case 220 that overlaps the display window 221a may be light transmissive. However, as for case 220, it is more preferred that the whole has light transmittance.
  • the entire case 220 is made of a transparent resin material
  • FIG. 49 for the purpose of emphasizing that at least the region overlapping the display window 221a of the display window forming member 221, which will be described later, should have light transmittance when a part of the case 220 has light transmittance
  • Corresponding regions are indicated by alternating diagonal and dashed diagonal/dashed hatching. That is, in the following description, the portions hatched with diagonal lines in the illustration of the case 220 are also made of a transparent material like the portions marked with diagonal/broken lines. It represents that it may be used in the range of the portion hatched with oblique lines.
  • the kind of transparent resin material is not particularly limited.
  • resin materials suitable for the case 220 include polycarbonate, acrylic, and polysulfone.
  • the case 220 has a bottom portion 220a, a side portion 220b (moving pipeline), a distal end frame 220c, and a connecting pipe 220d.
  • the bottom portion 220 a is a circular plate-like portion arranged at the base end of the case 220 .
  • the side surface portion 220b has a cylindrical shape extending axially from the outer peripheral portion of the bottom surface portion 220a toward the distal end side. Both the outer peripheral surface 220e and the inner peripheral surface 220f of the side surface portion 220b are cylindrical surfaces.
  • An engaging portion 220g for engaging an engaging claw 222e of a fixed frame 222, which will be described later, is provided at the tip of the side surface portion 220b.
  • the shape of the locking portion 220g is not particularly limited as long as it can lock the locking claw 222e.
  • the engaging portion 220g is formed by the inner peripheral portion of a rectangular hole penetrating through the side portion 220b in the thickness direction.
  • the number and arrangement of the engaging portions 220g are appropriately determined according to the number and arrangement of the engaging claws 222e, which will be described later.
  • the locking portions 220g are provided one each around four positions that divide the side portion 220b into approximately equal quarters in the circumferential direction. Each locking portion 220g can lock one or more locking claws 222e.
  • the tip frame 220c is an annular frame formed coaxially with the side portion 220b at the tip of the side portion 220b.
  • the outer diameter of the tip frame 220c is slightly larger than the outer diameter of the tip frame 220c. For this reason, a stepped portion extending radially outward is formed at the connecting portion between the side portion 220b and the tip frame 220c. The same applies to the relationship between the inner diameter of the tip end frame 220c and the inner diameter of the side surface portion 220b.
  • connection pipe 220d protrudes outside the case 220 from the center of the bottom surface portion 220a along the central axis Ai.
  • the connection pipe 220d has an appropriate shape that can be connected to the end of the third pipeline P5.
  • the routes of the first pipeline P1 and the third pipeline P5 are not particularly limited, but in the example shown by the two-dot chain line in FIG. , to a first pipeline P1 extending from the lower side to the upper side in the drawing along the bottom surface portion 220a.
  • the first pipeline P1 is bent in a direction parallel to the central axis Ai at its lower end in the figure, and extends along the side portion 220b to substantially the center of the side portion 220b in the axial direction. Further, the first conduit P1 is bent along the angle of the connecting pipe 212a and connected to the connecting pipe 212a.
  • the display window forming member 221 is a film that is circumferentially wound along the outer peripheral surface 220e of the side portion 220b of the case 220 and fixed.
  • a film having no light transmittance or low light transmittance is used as a material of the display window forming member 221.
  • a means for reducing the light transmittance of the display window forming member 221 is not particularly limited.
  • a film made of a coloring material with low light transmittance may be used.
  • a multilayer film in which an opaque layered portion is formed on the surface of a transparent base material may be used.
  • the opaque layered portion may be formed by printing, vapor deposition, lamination, laser processing, sticker application, or the like.
  • the outer shape of the display window forming member 221 is a rectangle elongated in the axial direction. That is, the display window forming member 221 is wound around the side surface portion 220b such that the longitudinal direction of the elongated rectangular film is along the circumferential direction.
  • the display window forming member 221 may cover the entire side surface 220b of the case 220, but in the example shown in FIGS. 47 and 48, it covers a part of the side surface 220b.
  • the display window forming member 221 covers the side surface portion 220b from a position on the distal end side of the center in the axial direction to near the proximal end of the case 220 in the axial direction.
  • the display window forming member 221 covers an area longer than half of the entire circumference of the case 220 in the circumferential direction.
  • the display window forming member 221 is fixed to the side surface portion 220b by, for example, an adhesive or adhesive.
  • a display window 221a which is an axially long rectangular opening, extends in the thickness direction. penetrates.
  • the display window forming member 221 is formed of an opaque layered portion and a transparent base material, the hole passing through the opaque layered portion and the base material overlapping the hole also form the display window 221a. That is, the display window 221a may be optically opened.
  • the central axis of the display window 221a in the longitudinal direction overlaps with the central axis Ai in the front view shown in FIG.
  • a first scale line 221b (reference scale) and a second scale line 221c (reference scale) are formed inside the display window 221a and on the edge surrounding the display window 221a.
  • the first scale line 221b indicates, for example, the lower limit value of the proper internal pressure of the fixation balloon 3 .
  • the second scale line 221c indicates, for example, the upper limit value of the proper internal pressure of the fixation balloon 3 .
  • the first scale line 221b and the second scale line 221c may be formed integrally with the display window forming member 221, or may be formed after the display window forming member 221 is fixed to the side surface portion 220b.
  • the first scale line 221b and the second scale line 221c are formed by printing or the like after fixing the display window forming member 221 to the side surface portion 220b.
  • the positions of the first scale line 221b and the second scale line 221c can be formed based on the actually measured pressure display value by inspecting the assembled pressure indicator 219 or the like.
  • the fixing frame 222 holds the tip of the airtight member 225 to be described later and fixes the position of the tip of the airtight member 225 .
  • the fixed frame 222 is fitted inside a tip end frame 220 c that forms an opening at the tip of the case 220 .
  • the fixed frame 222 is formed in a cylindrical shape with a bottom and arranged coaxially with the center axis Ai.
  • the fixed frame 222 has a bottom portion 222a, a first tubular portion 222f, a second tubular portion 222b, a locking claw 222e, and a flange portion 222c.
  • the bottom surface portion 222a is a disk having a diameter smaller than that of the bottom surface portion 220a. 222 d of through-holes are penetrated in the thickness direction in the center part of the bottom face part 222a.
  • the first cylindrical portion 222f forms a side portion of the fixed frame 222 on the base end side.
  • the first tubular portion 222f extends axially from the outer periphery of the bottom surface portion 222a toward the distal end side.
  • An outer peripheral surface 222g of the first tubular portion 222f is tapered slightly outward from the proximal end to the distal end.
  • the outer diameter of the outer peripheral surface 222 g is smaller than the inner diameter of the inner peripheral surface 220 f of the side surface 220 b of the case 220 .
  • a gap is formed to sandwich the tip portion of the airtight member 225, which will be described later.
  • the second tubular portion 222b forms a side surface portion of the fixed frame 222 on the distal end side.
  • the shape of the second cylindrical portion 222b is an annular shape connected to the tip of the first cylindrical portion 222f.
  • the second tubular portion 222b fits inside the tip of the side surface portion 220b.
  • a locking claw 222e that locks onto the locking portion 220g of the case 220 is formed on the second tubular portion 222b.
  • the locking pawl 222e is elastically deformable in the radial direction and extends in the axial direction.
  • a locking protrusion protruding radially outward is formed at the tip in the extending direction of the locking claw 222e.
  • the locking claws 222e have one or two locking claws 222e centering on four positions that divide the second tubular portion 222b into approximately equal quarters in the circumferential direction, similarly to the locking portion 220g. are provided one by one.
  • the locking protrusion of the locking claw 222e penetrates into the hole of the locking claw 222e from the inner side of the side surface portion 220b and is locked to the inner surface of the locking portion 220g.
  • the fixed frame 222 fitted in the case 220 is axially retained.
  • the flange portion 222c extends radially outward from the tip of the side portion 220b.
  • the shape of the flange portion 222c viewed from the axial direction is an annular shape as shown in FIG.
  • the outer diameter of the flange portion 222 c is equal to the outer diameter of the tip end frame 220 c of the case 220 .
  • the collar 223 is provided so as to be axially movable inside the side surface portion 220b of the case 220 .
  • the proximal end of the collar 223 is in contact with the bottom surface portion 220a of the case 220, and the collar 223 is arranged at the most proximal position in the movement range.
  • the outer shape of the collar 223 is cylindrical with a slightly smaller diameter than the inner peripheral surface 220f of the side surface 220b.
  • a base end portion of an airtight member 225 which will be described later, is inserted. A proximal end of the airtight member 225 is fixed to the collar 223 .
  • the collar 223 has an outer cylinder portion 223a (tubular portion), a locking plate 223b, a circular hole portion 223h, an angular groove portion 223i, a guide 223e, a fitting claw 223f, and a pressing claw 223g.
  • the outer cylindrical portion 223a is a cylinder with a slightly smaller diameter than the inner peripheral surface 220f of the side surface portion 220b.
  • the tips of the outer cylindrical portions 223a are aligned on the same plane perpendicular to the central axis Ai.
  • the tip of the outer cylindrical portion 223a circumferentially crosses the display window 221a as viewed from the outside within the range in which the collar 223 moves in the axial direction.
  • a tip portion of the outer cylindrical portion 223a that crosses the display window 221a is referred to as a tip edge portion 223c.
  • the tip edge portion 223c may protrude to the tip side from the tip of the outer cylindrical portion 223a, or may be recessed to the base end side.
  • the vicinity of the tip edge portion 223c is colored with an appropriate color so that the operator can easily see it from the outside.
  • the collar 223 may be colored entirely including the leading edge portion 223c.
  • the locking plate 223b is a disk orthogonal to the central axis Ai.
  • the locking plate 223b locks the base end of the airtight member 225, which will be described later.
  • the airtight member 225 is locked to the locking plate 223b and is detachably fixed to the locking plate 223b.
  • the locking plate 223b is provided inside the outer cylinder portion 223a near the proximal end of the outer cylinder portion 223a.
  • FIG. 50 is an exploded perspective view showing an example of a collar, a coil spring, and an airtight member in a modified example (third modified example) of the air supply device.
  • FIG. 51 is a schematic diagram showing a fixing structure of an airtight member to a collar in a modified example (third modified example) of the air supply device.
  • 52 is a cross-sectional view taken along line F52-F52 in FIG. 48.
  • a circular hole 223h penetrates through the center of the locking plate 223b in the thickness direction.
  • the circular hole portion 223h is formed coaxially with the center axis Ai.
  • a pair of square grooves 223i are formed by partially cutting out the locking plate 223b along the circular hole 223h.
  • the square grooves 223i face each other in the radial direction of the circular hole 223h with the center of the circular hole 223h interposed therebetween.
  • An arc-shaped guide 223e extends toward the base end when viewed from the axial direction on the inner peripheral portion of the circular hole portion 223h excluding each square groove portion 223i. As shown in FIG. 49, each guide 223e has a height that does not protrude beyond the proximal end of the outer cylindrical portion 223a.
  • a locking surface 223d which is a surface on the front end side of the locking plate 223b, is provided with a pressing claw 223g having a hook-shaped cross section that protrudes toward the front end side and then bends toward the central axis Ai.
  • a certain gap is formed between the tip of the pressing claw 223g and the locking plate 223b.
  • the collar 223 is formed by resin molding, a hole 223k for avoiding undercut penetrates through the locking plate 223b facing the tip of the pressing claw 223g.
  • one presser claw 223g and one hole 223k are provided at each of four locations that divide the circumference around the center axis Ai into four equal parts.
  • a pair of fitting claws 223f are provided on the base end side of the locking plate 223b.
  • the fitting claw 223f has a hook-shaped cross section that protrudes toward the proximal end and then bends toward the central axis Ai.
  • a fitting projection 223m that protrudes toward the tip in the axial direction is formed at the tip of the hook.
  • a gap is formed between the fitting claw 223f and the locking plate 223b in which a fitting projection 225b of the airtight member 225, which will be described later, is fitted.
  • a hole 223j for avoiding undercut penetrates through the locking plate 223b facing the tip of the fitting claw 223f in the protruding direction.
  • the fitting claws 223f are provided one each at two locations facing each other in the radial direction across the center axis Ai.
  • Each fitting claw 223f is formed on an axis Av perpendicular to the central axis Ai.
  • a pair of pressing claws 223g facing each other in the radial direction are arranged on the axis Av with the fitting claws 223f interposed therebetween.
  • a central axis Ah extending in the facing direction of each square groove portion 223i is inclined 45° clockwise in the figure with respect to the axis Av.
  • the airtight member 225 is generally cup-shaped with an opening on the distal end side in the axial direction and an extendable length in the axial direction.
  • the airtight member 225 is sandwiched between the collar 223 and the fixed frame 222 inside the case 220 .
  • the airtight member 225 is formed of a soft elastomer molding. Examples of materials for the airtight member 225 include silicone rubber, urethane rubber, and nitrile rubber. As shown in FIG.
  • the airtight member 225 includes a bottom plate portion 225c (second fixed portion), a boss portion 225a (second fixed portion), a fitting protrusion 225b, a bellows tube portion 225d, a flange portion 225e, and a sealing portion.
  • 225f first fixing portion
  • the bottom plate portion 225 c is a flat plate perpendicular to the central axis Ai and provided at the base end portion of the airtight member 225 .
  • Engagement projections 225i protrude radially outward from four positions on the outer periphery of the bottom plate portion 225c as seen from the axial direction, which equally divide the outer periphery into quarters in the circumferential direction. As shown in FIGS. 49 and 52, each engaging projection 225i is inserted into the gap between the locking surface 223d of the collar 223 and the pressing claw 223g and engages with the collar 223 in the axial direction. As shown in FIG.
  • the boss portion 225a is formed such that the central portion of the bottom plate portion 225c protrudes toward the base end side in the axial direction.
  • the outer shape of the boss portion 225a seen from the axial direction is circular.
  • the boss portion 225a is fitted to the circular hole portion 223h of the collar 223 and the inner peripheral surface of the guide 223e so as to be rotatable around the central axis Ai.
  • the fitting protrusion 225b is a plate that protrudes parallel to the bottom plate portion 225c from the side surface of the boss portion 225a.
  • the projection amount and thickness of the fitting protrusion 225b are such that they fit into the gap between the locking plate 223b and the fitting claw 223f.
  • a fitting groove 225h into which the fitting projection 223m of the pressing claw 223g fits is formed on the surface of the fitting projection 225b on the base end side.
  • the fitting groove 225h extends in the circumferential direction along the track along which the fitting protrusion 223m rotates around the center axis Ai.
  • the fitting projections 225b are provided at two locations facing each other in the radial direction across the center axis Ai.
  • the bellows tube portion 225d extends from the outer peripheral portion of the bottom plate portion 225c, excluding the engaging projection 225i, toward the distal end side in the axial direction.
  • the radially outer diameter of the bellows tube portion 225d is smaller than the diameter of the circumference where the radial ends of the engaging projections 225i are located.
  • a bellows tube portion 225d shown in FIG. 53 has a shape in a natural state where no external force acts in the axial direction. Unless otherwise specified, the bellows tube portion 225d in its natural state will be described below.
  • the bellows tube portion 225d may be assembled to the pressure indicator 219 in a more compressed state than in its natural state, but will be described below with the collar 223 moved most proximally as shown in FIG. , an example in which the bellows tube portion 225d is in a natural state.
  • the bellows tube portion 225d has a tapered shape that is inclined with respect to a plane perpendicular to the central axis Ai, and has an annular thin portion 225t when viewed from the axial direction.
  • the thin portions 225t are arranged so that the inclination thereof alternates in the axial direction, and adjacent thin portions 225t are connected to each other at the inner peripheral portion and the outer peripheral portion.
  • the inner peripheral portion is connected by a bent portion 225s, and the outer peripheral portion is connected by a thick portion 225n.
  • the outer peripheral surface of the bellows tube portion 225d is an uneven surface in which a first outer slope 225k, a first outer surface 225j, a second outer slope 225m, and a second outer surface 225u repeat in the axial direction.
  • the first outer slope 225k is inclined radially outward from the base end side (left side in the figure) in the axial direction toward the tip end side (right side in the figure).
  • the first outer surface 225j is a cylindrical surface extending from the radially outer end of the first outer slope 225k toward the tip side in the axial direction.
  • the first outer surface 225j forms the outermost outer surface of the bellows tube portion 225d.
  • the second outer slope 225m inclines radially inward from the tip of the first outer side surface 225j toward the tip side.
  • the second outer surface 225u is a cylindrical surface extending from the radially inner end of the second outer slope 225m toward the tip side in the axial direction.
  • the inner peripheral surface of the bellows tube portion 225d is an uneven surface in which the first inner slope 225q, the first inner surface 225p, the second inner slope 225r, and the second inner surface 225v repeat in the axial direction.
  • the first inner slope 225q has a distance of tn from the first outer side surface 225j in the thin portion 225t.
  • the first inner slope 225q also forms a surface on the tip side in the axial direction of the bent portion 225s.
  • the first inner surface 225p forms the inner peripheral surface of the thick portion 225n.
  • the radial distance between the first inner surface 225p and the first outer surface 225j is Dk.
  • the second inner slope 225r inclines radially inward from the tip of the first inner side surface 225p toward the tip side.
  • the second inner surface 225v is a cylindrical surface in the axial direction from the radially inner end of the second inner slope 225r.
  • the thick portion 225n is a circle formed by rotating a trapezoidal cross section surrounded by the first outer slope 225k, the first outer side surface 225j, the second outer slope 225m, and the first inner side surface 225p around the central axis Ai. It is an annulus.
  • the first width (maximum thickness in the axial direction) of the thick portion 225n in the axial direction along the center axis Ai is Wk
  • the second width (first inner surface 225p and the first outer surface 225j) is Dk.
  • the angle formed by the adjacent thin portions 225t in a cross section including the central axis Ai is ⁇ .
  • the pitch of the bellows shape of the bellows tube portion 225d in the axial direction is defined by the pitch Pb of the center in the thickness direction of the thick portion 225n in the natural state where the bellows tube portion 225d is not deformed by an external force.
  • the thick portion 225n in this modified example is formed for the purpose of suppressing buckling of the thin portion 225t due to an external force directed radially inward from the outer peripheral portion. If the rigidity of the thick portion 225n is appropriate, the deformation of the thick portion 225n in the radial direction due to an external force is suppressed, so that the thin portion 225t is less likely to buckle.
  • the average thickness of the thin portion 225t may be 0.3 mm or more and 0.7 mm or less.
  • the first width Wk of the thick portion 225n in the axial direction is three times or more the thickness tn (average thickness) of the thin portion 225t and two-thirds or less of the pitch Pb of the bellows tube portion 225d.
  • the second width Dk of the thick portion 225n in the radial direction is more preferably three times or more the thickness tn of the thin portion 225t.
  • Dk the resistance to the external force in the radial direction is not improved so much, so it is more preferable to set Dk to about 3.1 mm or less, for example.
  • the angle ⁇ between the thin portions 225t be as small as possible within a range in which formability is not deteriorated.
  • the angle ⁇ is measured by the angle between the second outer slope 225m and the first outer slope 225k that form the V-shaped recess.
  • the angle ⁇ is the angle of the valley formed by the thin portion 225t. Since the rigidity of the bent portion 225s does not significantly affect the buckling of the thin portion 225t, the axial width of the bent portion 225s may be thinner than the thick portion 225n. For example, the axial width of the second outer surface 225u may be zero. The width of the second inner slope 225r may be zero if the formability does not deteriorate.
  • the first outer slope 225k and the second outer slope 225m are tapered surfaces having a common slope in both the thick portion 225n and the thin portion 225t.
  • the first inner slope 225q and the second inner slope 225r are tapered surfaces having a common slope at both the bent portion 225s and the thin portion 225t. Therefore, when the airtight member 225 is formed by resin molding, the outer peripheral surface of the airtight member 225 is transferred with the shape of the molding die Mo in which convex portions and concave portions having a trapezoidal cross section appear alternately in the axial direction.
  • the inner peripheral surface of the airtight member 225 has the shape of the mold Mi in which convex portions and concave portions having a trapezoidal cross-sectional shape appear alternately in the axial direction is transferred. In this way, no steps or discontinuous inclined surfaces are formed between the thick portion 225n and the thin portion 225t and between the bent portion 225s and the thin portion 225t, so that moldability is improved. . Furthermore, molding is facilitated in that the molded product is less likely to be removed from the molding dies Mo and Mi when demolded.
  • [Table 1] below shows shape examples 1 to 3 of the bellows tube portion 225d.
  • Dd represents the average diameter of the bellows tube portion 225d.
  • Dd is obtained from the average of the diameter of the first inner surface 225p and the diameter of the second inner surface 225v.
  • du is the depth of the valley formed by the thin portion 225t, that is, the radial distance from the first inner surface 225p to the second outer surface 225u.
  • shape examples 1 to 3 by changing the specifications according to the rubber hardness (Shore A), an appropriate shape of the thick portion 225n that suppresses the buckling of the thin portion 225t is realized.
  • Wk is 2.5 mm, 2.3 mm and 2.3 mm
  • tn is 0.5 mm, 0.7 mm and 0.7 mm. That is, Wk/tn is 5.0.3, 3, and 3.3, respectively, so Wk is more than three times tn.
  • 2 ⁇ 3 of the pitch Pb is 2.9, so Wk is 2 ⁇ 3 or more of Pb.
  • Dk is 3.0 mm, and three times tn is 1.5 mm, 2.1 mm, and 2.1 mm, respectively. Therefore, Dk is three times or more of tn and 3.1 mm or less.
  • the rigidity in the radial direction required to suppress buckling in the radial direction of the thin portion 225t increases.
  • radial stiffness and moldability are reduced. If the pitch Pb of the bellows tube portion 225d is large, the resistance increases and the rigidity in the radial direction decreases. On the other hand, moldability is improved. As the axial width Wk of the thick portion 225n increases, the drag increases. On the other hand, radial stiffness and moldability are improved.
  • the flange portion 225e extends radially outward from the tip of the bellows tube portion 225d in the axial direction.
  • the outer diameter of the flange portion 225e is smaller than the inner diameter of the side surface portion 220b of the case 220 and larger than the outer diameter of the coil spring 224 described later.
  • the sealing portion 225f has a cylindrical shape extending axially from the outer circumference of the flange portion 225e toward the distal end side.
  • the sealing portion 225f is sandwiched between the inner peripheral surface 220f of the side surface portion 220b and the outer peripheral surface 222g of the first cylindrical portion 222f of the fixed frame 222.
  • the inner peripheral surface of the sealing portion 225f is a cylindrical surface that can be in close contact with the outer peripheral surface 222g.
  • the outer peripheral surface of the sealing portion 225f is provided with a protrusion 225g that protrudes radially outward and extends along the entire circumference of the outer peripheral surface. In the example shown in FIG.
  • the ridges 225g are formed one by one at two locations separated in the axial direction.
  • the distance in the radial direction between the inner peripheral surface of the sealing portion 225f and the top of the protrusion 225g is greater than the gap between the inner peripheral surface 220f and the outer peripheral surface 222g.
  • the inner peripheral surface of the sealing portion 225f moves toward the first tubular portion 222f while the protrusion 225g is pressed in the radial direction. Closely with.
  • the gap between the tip of the side surface portion 220b and the fixed frame 222 is sealed in an airtight and liquid-tight manner.
  • the through hole 222d in the fixed frame 222 is open facing the inside of the bellows tube portion 225d. Therefore, the inside of the bellows tube portion 225d communicates with the outside through the through hole 222d.
  • coil spring 224 is a compression coil spring.
  • the coil spring 224 may be made of metal, or may be made of a highly elastic resin material.
  • the inner diameter of the coil spring 224 is larger than the outer diameter of the bellows tube portion 225d, and is large enough to surround the pressing claw 223g from the outside in the radial direction.
  • the outer diameter of the coil spring 224 is smaller than the inner diameter of the outer cylindrical portion 223a of the collar 223 and approximately the same as the outer diameter of the bottom surface portion 222a of the fixed frame 222.
  • each end of the coil spring 224 in the axial direction is locked to the locking surface 223d of the collar 223 and the flange portion 225e of the airtight member 225, respectively.
  • the flange portion 225e is axially held by the tip of the coil spring 224 and the bottom portion 222a.
  • the coil spring 224 Since the coil spring 224 is compressed when the collar 223 moves axially distally, it urges the collar 223 axially proximally.
  • the spring constant of the coil spring 224 is set so that the pressure inside the case 220 can be displayed in the display window 221a according to the amount of movement of the collar 223 .
  • the coil spring 224 is not limited to a coil spring as long as it can bias the collar 223 toward the base end. A suitable elastic member that generates a biasing force may be used as the coil spring 224 .
  • the airtight member 225 fixed to the collar 223 is radially positioned by inserting the boss 225a into the circular hole 223h and the guide 223e.
  • each engaging protrusion 225i is inserted between the locking surface 223d and the pressing claw 223g.
  • each fitting projection 225b is fitted between the proximal surface of the locking plate 223b and the fitting claw 223f.
  • the locking plate 223b is fixed to the tip portion of the airtight member 225 while being sandwiched between each engaging projection 225i and each fitting projection 225b.
  • the airtight member 225 is rotated 45 degrees in the direction of arrow K indicated by a two-dot chain line around the central axis Ai, and the inner side of the coil spring 224 and the outer side of the collar 223 are fixed. It is inserted inside the cylindrical portion 223a. At this time, when the bottom plate portion 225c abuts against the locking surface 223d, the fitting protrusion 225b passes through the inside of the square groove portion 223i. At this time, the front end side surface of the fitting projection 225b reaches substantially the same position as the base end side surface of the locking plate 223b.
  • Sealing member 225 is thus secured to collar 223 by member-to-member engagement formed by axial translational movement and circumferential rotational movement relative to collar 223 . Since the airtight member 225 is made of a soft elastomer, the engagement position is stabilized by friction with the collar 223 after engagement. According to this modification, for example, the airtight member 225 can be fixed without using screws, adhesives, or the like, thereby reducing the cost of parts and facilitating manufacturing.
  • FIG. 54 is a schematic cross-sectional view showing the operation of the pressure indicator in the modified example (third modified example) of the air supply device.
  • 55 is a view from F55 in FIG. 54.
  • the case 220 is airtightly sealed by an airtight member 225 fixed to the tip of the side portion 220b by a fixing frame 222.
  • the internal space of the case 220 sealed by the airtight member 225 is roughly divided into a first space S1 on the proximal side of the locking plate 223b of the collar 223 and a second space S2 on the distal end side. .
  • the first space S1 and the second space S2 communicate with each other through various gaps.
  • Examples of various gaps include a gap between the outer cylindrical portion 223a and the side portion 220b, and gaps in the holes 223j and 223k that are not blocked by the airtight member 225.
  • FIG. On the other hand, the third space S3 inside the airtight member 225 does not communicate with the first space S1 and the second space S2, but communicates with the outside through the through hole 222d. Therefore, the internal pressure pi of the air flowing into the first space S ⁇ b>1 and the second space S ⁇ b>2 acts on the inner peripheral surface of the case 220 and the outer peripheral surface of the airtight member 225 .
  • the airtight member 225 has a bellows tube portion 225d that is easily stretchable in the axial direction.
  • the stiffness in the axial direction of the bellows tube portion 225d is smaller than the stiffness in the radial direction.
  • the bellows tube portion 225d contracts in the axial direction according to the axial resultant force of the internal pressure pi acting through the boss portion 225a and the locking plate 223b.
  • the collar 223 moves axially toward the distal end.
  • the collar 223 moves in the axial direction so that the resultant force of the internal pressure pi in the axial direction and the resultant force of the biasing force of the coil spring 224 and the atmospheric pressure po acting in the axial direction are balanced.
  • the first space S1 expands and the second space S2 contracts.
  • the position of the collar 223 and the internal pressure pi within the case 220 can be associated one-to-one.
  • the tip edge portion 223c of the collar 223 can be seen through the display window 221a, so the operator can visually recognize the position of the collar 223 representing the internal pressure pi by the position of the tip edge portion 223c.
  • the operator knows that the internal pressure of the fixation balloon 3 is in a proper state. can know
  • the first space S1 and the second space S2 in this modified example have the same function as the first space Sa of the pressure adjusting section 217A in the second modified example.
  • the pressure indicator 219 is an example of an enlarged diameter portion that changes in volume in the second modification.
  • FIG. 56 is a schematic cross-sectional view showing a comparative example of an airtight member with a bellows structure deformed by pressure.
  • the bellows tube portion B of the comparative example shown in FIG. 56 is formed of an elastomer film having the same thickness tn as the thin portion 225t of the bellows tube portion 225d of this modified example.
  • the bellows tube portion B is bent in an inverted V shape at the mountain fold portion on the outer periphery.
  • the outer peripheral portion of the bellows tube portion B is not formed with a thick portion as in this modified example.
  • the mountain-folded portion in FIG. 56 is schematically drawn in an inverted V shape with no roundness in the bend.
  • the corners at the tips of the mountain folds are rounded so that the average thickness is maintained so as to improve moldability.
  • the bellows tube portion B Since the bellows tube portion B has a low rigidity in the radial direction at the outer peripheral portion, when the internal pressure of the second space S2 acts in the radial direction, the mountain-folded portion of the outer peripheral portion buckles inward to form a trough, as shown at F56. It will be folded. As a result, the radial rigidity of the bellows tube portion B is increased, and the collar 223 is less likely to move toward the distal end. Furthermore, the internal pressure pi is reduced in that the volume of the second space S2 is expanded by bending the bellows tube portion B inward. As a result, the amount of movement of the collar 223 does not accurately indicate the internal pressure pi. On the other hand, in this modified example, since the thick portion 225n is formed, the bellows tube portion 225d does not undergo buckling deformation inward, so the pressure indicator 219 can display an accurate pressure.
  • FIG. 57 is a schematic cross-sectional view explaining a reading error in a pressure indicator in a modified example (third modified example) of the air supply device.
  • FIG. 57 shows a cross section along the axial direction when the tip edge portion 223c has moved to the position of the first scale line 221b.
  • the viewing direction of the operator is represented by an arrow V0 that coincides with the radial direction, the operator can accurately read that the tip edge portion 223c has reached the first scale line 221b.
  • the distal edge portion 223c appears to be located on the proximal side by ⁇ 1 to the first scale line 221b.
  • the distal edge portion 223c appears to be positioned ⁇ 2 distal to the first scale line 221b.
  • the grip 215 and the manual air supply mechanism 211 are arranged in an inverted V shape.
  • the center axis Ai substantially coincides with the left-right direction of the operator.
  • the display window 221a is elongated in the axial direction along the center axis Ai, and the tip edge portion 223c in the display window 221a extends in the direction perpendicular to the center axis Ai. Therefore, the tip edge portion 223c extends in the vertical direction of the operator's visual field in front of the operator in the standard operation state. Therefore, when reading the pressure, the operator places the display window 221a in the center of the front of the body so that it can be easily seen.
  • the viewing direction of the operator becomes the direction of the arrow V0.
  • the viewing direction is only inclined in the direction in which the tip edge portion 223c extends. do not have.
  • An overtube 201 having an air supply device 210C of this modification is the same as the overtube 201 except that it has an air supply device 210C instead of the air supply device 210 of the overtube 201 according to the third embodiment. is. Therefore, according to this modified example, as in the third embodiment, it is possible to provide an endoscope overtube that reduces the burden on the patient and allows smooth operation of the endoscope.
  • a pressure indicator 219 instead of the pressure adjusting portion 217 in the second modified example, a pressure indicator 219, which is an example of an enlarged diameter portion whose volume changes like the pressure adjusting portion 217, is provided. Therefore, this modified example has the same effect as the second modified example.
  • the pressure indicator 219 displays the pressure inside the case 220 by the position of the tip edge portion 223c with respect to the first scale line 221b and the second scale line 221c.
  • the operator can determine when to stop the air supply operation by considering the resistance of the manual air supply mechanism 211 and the pressure display in the display window 221a. As a result, loss of air supply is further reduced.
  • the bellows tube portion 225d of the airtight member 225 has the thick portion 225n, the airtight member 225 smoothly expands and contracts in the axial direction without collapsing in the radial direction. As a result, the correspondence between the internal pressure pi and the position of the tip edge portion 223c seen through the display window 221a becomes accurate.
  • the tip edge portion 223c extends in the vertical direction of the field of view of the operator. Errors in reading pressure readings are reduced.
  • the pressure indicator 219 in the air supply device 210C is connected to the first conduit, has a flow path having a flow path cross-sectional area larger than that of the first conduit, and measures the pressure of the first conduit. It is an example of a pressure indicator to display.
  • the first space S1 in the pressure indicator 219 forms a channel through which air flows, and has a channel cross-sectional area larger than that of the first conduit P1.
  • the case 220 is an example of a housing at least partially provided with a display window 221a through which the inside can be seen.
  • the collar 223 is an example of a moving member that moves within the housing according to the pressure inside the housing and whose movement position can be observed through the display window.
  • the first scale line 221b and the second scale line 221c are formed around the display window or around the display window, and are examples of reference scales indicating the pressure according to the position of the moving member.
  • the airtight member 225 in the pressure indicator 219 is an example of a sealing member that airtightly seals an opening formed at the end of the housing in the moving direction of the moving member.
  • the sealing portion 225f of the airtight member 225 is an example of a first fixing portion airtightly fixed to the end of the housing.
  • the bellows tube portion 225d of the airtight member 225 is an example of a bellows tube portion that extends from the first fixed portion toward the moving member and has a bellows shape that can be expanded and contracted in the moving direction on the side surface.
  • the boss portion 225a and the bottom plate portion 225c of the airtight member 225 close the end of the bellows tube portion in the extending direction, and are an example of a second fixing portion fixed to the moving member.
  • the thin portion 225t of the airtight member 225 forms part of the side surface of the bellows tube portion, and is an example of an inclined surface portion arranged in an inverted V shape tapering radially outward in a cross section including the central axis of the bellows tube portion. is.
  • the thick portion 225n of the airtight member 225 is formed thicker than the average thickness of the inclined surface portions, and is an example of a thick portion that airtightly closes the outer peripheral portions of the inclined surface portions forming an inverted V shape.
  • a body portion 212 included in the air supply device 210C is an example of a body portion provided with a pressure indicator and connected to a manual pump.
  • the grip 215 is an example of a grip that extends in a direction that intersects the central axis of the manual pump connected to the main body and that is arranged to form an inverted V shape with the central axis.
  • the central axis of the manual pump and the extending direction of the gripping portion form an acute angle with respect to the moving direction of the moving member. located in
  • FIG. 58 is a schematic front view showing a modification (fourth modification) of the air supply device used in the endoscope overtube according to the third embodiment of the present invention.
  • FIG. 60 is a schematic cross-sectional view showing an exploded state of a modified example (fourth modified example) of the air supply device.
  • 61 is a cross-sectional view taken along line F61-F61 in FIG. 59.
  • FIG. 62 is a cross-sectional view taken along line F62-F62 in FIG. 61.
  • the air supply device 210D has a body portion 212D instead of the body portion 212 of the air supply device 210.
  • the body portion 212D has a pressure display portion 219D, a body case 230, and a display window forming member 221D.
  • differences from the third embodiment and the third modified example will be mainly described.
  • the pressure display portion 219D is the same as the portion of the pressure display 219 except for the case 220 in the third modification.
  • the main body case 230 has the same outer shape as the body part 218 and the side part 220b of the case 220 in the third modification.
  • the main body case 230 has a light transmissive property at least in a region overlapping a portion where a display window 221a is formed by a display window forming member 221D, which will be described later. For this reason, a part of the main body case 230 may have a portion that does not have optical transparency.
  • the main body case 230 is entirely made of a transparent resin material will be described.
  • the body case 230 has a grip 215, a relief valve 213, a connection pipe 212a, and an air pipe 210a similar to the third modification. Further, inside the main body case 230, there is provided an accommodating portion 230a and a buffer portion 230b.
  • the accommodation portion 230a accommodates the pressure display portion 219D.
  • the housing portion 230a has the same shape as the side portion 220b of the case 220 in the third modification, except that it protrudes outward from the connecting tube 212a like the housing portion 218 in the third modification.
  • the central axis of the cylindrical portion of the accommodating portion 230a is referred to as the central axis line Ai as in the third modification.
  • the connecting pipe 212a in this modified example opens inside the housing portion 230a at a position where it is not closed by the movement of the collar 223 in the pressure display portion 219D.
  • the opening at the tip of the housing portion 230a is formed by the tip frame 220c, similarly to the side portion 220b.
  • a locking portion 220g is formed at the tip of the housing portion 230a, similarly to the side portion 220b.
  • the outer peripheral surface of the housing portion 230a is an outer peripheral surface 220e similar to the side surface portion 220b.
  • a display window forming member 221D substantially similar to the display window forming member 221 is attached to the outer peripheral surface 220e of the housing portion 230a.
  • the display window forming member 221D is the same as the display window forming member 221 in the third modified example, except that it is provided in a shape that avoids the connection pipe 212a projecting from the accommodating portion 230a.
  • the shape that avoids the connecting pipe 212a is not particularly limited, but for example, in the example shown in FIG.
  • a buffer portion 230b having a channel cross-sectional area larger than the channel cross-sectional area of the connecting pipe 212a is provided at the base end portion of the housing portion 230a.
  • the buffer unit 230b holds a certain volume or more of the air that has flowed from the connecting tube 212a by the operator's air supply operation, with the pressure reduced.
  • the buffer portion 230b is formed with an opening 230c at the connection portion with the accommodating portion 230a.
  • the opening 230c opens axially.
  • the opening 230c has a cylindrical shape with a smaller diameter than the inner peripheral surface 220f of the housing portion 230a and a smaller diameter than the outer cylindrical portion 223a of the collar 223 .
  • a pressure display portion 219D is inserted into the accommodation portion 230a.
  • the fixing frame 222 in the pressure display portion 219D is locked to the locking portion 220g of the accommodating portion 230a by the locking claws 222e similar to the third modified example.
  • the axial and circumferential positions of the pressure display portion 219D with respect to the accommodating portion 230a are fixed.
  • the collar 223 can move in the axial direction inside the accommodating portion 230a as in the third modification.
  • the buffer portion 230b has an inner peripheral surface 230d whose channel cross-sectional area decreases with distance from the accommodating portion 230a in the axial direction. As shown in FIG. 60, the inner peripheral surface 230d extends inside the grip 215. As shown in FIG. An attachment portion 230e for the relief valve 213 and the air supply pipe 210a are opened at the upper portion of the inner peripheral surface 230d.
  • the locking plate 223b when looking at the collar 223 of the pressure display portion 219D from the inside of the buffer portion 230b, the locking plate 223b has an outer cylindrical portion 223a and a housing portion 230a, as in the third modification. A gap between them and a gap not covered by the engaging protrusion 225i are formed in each hole 223k. These gaps allow the space surrounded by the housing portion 230a and the outer peripheral portion of the airtight member 225 and the space inside the buffer portion 230b to communicate with each other.
  • the airtight member 225 in the pressure display portion 219D seals the internal space of the body case 230 on the tip side of the housing portion 230a.
  • the inside of the body case 230 is divided into a first space S A surrounded by the body case 230 and the bellows tube portion 225 d and a second space S B inside the airtight member 225 .
  • the second space SB communicates with the outside air through the through hole 222d and is kept at atmospheric pressure.
  • the volumes of the first space S A and the second space S B change due to the movement of the collar 223 and the expansion and contraction of the airtight member 225 due to the internal pressure of the first space S A .
  • the air flowing into the connection pipe 212a enters the first space SA outside the bellows tube portion 225d inside the accommodating portion 230a.
  • the air passes through the gap of the hole 223k or the gap outside the outer cylindrical portion 223a toward the first space SA within the buffer portion 230b.
  • the air that has flowed into the buffer portion 230b moves the collar 223 in the axial direction according to the internal pressure of the first space SA , and part of it flows out of the main body case 230 from one or both of the air supply pipe 210a and the relief valve 213. exhausted.
  • the tip edge portion 223c of the collar 223 displays the internal pressure of the first space SA in the display window 221a of the display window forming member 221D , as in the third modification. Therefore, the accommodation portion 230a, the buffer portion 230b, and the pressure display portion 219D form a pressure display PI (see FIG. 58) similar to that of the third modification.
  • FIG. 63 is a block diagram showing a modified example (fourth modified example) of the air supply device.
  • the first space SA forms an enlarged diameter portion P7 having a flow passage cross - sectional area larger than that of the first pipeline P6 formed by the connecting pipe 212a.
  • the volume of the enlarged diameter portion P7 changes according to the internal pressure.
  • a relief valve 213 and an air pipe 210a are connected to the enlarged diameter portion P7.
  • the air pipe 210a in this modified example forms a second pipe line P8 having a flow passage cross-sectional area smaller than that of the enlarged diameter portion P7.
  • the configuration of this modified example corresponds to replacing the enlarged diameter portion P4 in the first modified example with an enlarged diameter portion P7 whose volume changes.
  • An overtube 201 having an air supply device 210D of this modification is the same as the overtube 201 except that it has an air supply device 210D instead of the air supply device 210 of the overtube 201 according to the third embodiment. is. Therefore, according to this modified example, as in the third embodiment, it is possible to provide an endoscope overtube that reduces the burden on the patient and allows smooth operation of the endoscope.
  • this modification since the same pressure indicator PI as the pressure indicator 219 in the third modification is provided, pressure can be displayed in the same manner as in the third modification. Therefore, this modified example has the same effect as the third modified example.
  • the relief valve 213 is provided in the expanded diameter portion P7 whose volume changes, so that it has the same effect as the first modified example.
  • the main body case 230 is formed by integrating the side surface portion 220b and the housing portion 218 of the third modification. Therefore, compared to the third modification, the number of parts is reduced, so the part cost and assembly cost are reduced.
  • the structure is simpler than that of the third modified example because no pipe line for forming a flow path is provided inside main body case 230 .
  • FIG. 17 A modification (fifth modification) of the air supply device used in place of the air supply device 210 in the overtube 201 of the third embodiment will be described.
  • an air supply device 210E of this modified example can be used in place of the air supply device 210 of the overtube 201.
  • an air supply device 210E has a pressure indicator 219E instead of the pressure indicator 219 of the third modified example.
  • a pressure indicator 219E is the same as the pressure indicator 219 except that it has an airtight member 225E (sealing member, pressing member) instead of the airtight member 225 of the third modified example. be.
  • differences from the third embodiment and the third modified example will be mainly described.
  • FIG. 64 is a schematic cross-sectional view showing an example of an airtight member used in a modified example (fifth modified example) of the air supply device used in the endoscope overtube according to the third embodiment of the present invention.
  • FIG. 64(a) is a cross-sectional view showing the shape of the airtight member 225E in a natural state where no external force acts in the axial direction.
  • (b) is a cross-sectional view showing a state in which the airtight member 225E is attached to the pressure indicator 219E.
  • an airtight member 225E in this modified example has a configuration similar to that of the airtight member 225.
  • the length (outer dimension) Ln from the bottom plate portion 225c to the flange portion 225e in the axial direction is longer than the maximum distance (inner dimension) Ls from the locking plate 223b to the bottom surface portion 222a in the pressure indicator 219E. long.
  • the airtight member 225E is attached to the pressure indicator 219E, the airtight member 225E is axially compressed.
  • the angle formed by the thin portions 225t adjacent to each other is shallower than in the natural state.
  • the angle formed by the first outer slope 225k and the second outer slope 225m is ⁇ o
  • the first inner slope 225q and the second inner slope 225r is ⁇ i.
  • the angles .theta.o and .theta.i are appropriate angles that do not cause the mold to be removed during molding.
  • the angles ⁇ o and ⁇ i are more preferably equal to each other, but may be different from each other. The greater the angles ⁇ o and ⁇ i, the easier the molding.
  • the angles ⁇ o and ⁇ i are desirably 20° or more.
  • the angle formed by the first outer slope 225k and the second outer slope 225m is ⁇ o (where ⁇ o ⁇ o) and the first The angle between the inner slope 225q and the second inner slope 225r is ⁇ i (where ⁇ i ⁇ i).
  • the smaller the angle ⁇ corresponding to ⁇ o and ⁇ i the better the radial rigidity of the bellows tube portion 225d.
  • the airtight member 225E is formed in a shape in which the thin portions 225t form a large angle, so that the formability of the airtight member 225E is improved.
  • the airtight member 225E is axially compressed when the pressure indicator 219E is attached to the airtight member 225E.
  • the angle formed by the thin portions 225t becomes smaller than in the natural state, and the rigidity in the radial direction increases.
  • the pressure indicator 219E can display an accurate pressure like the 3rd modification.
  • the airtight member 225E is axially compressed, and the elastic restoring force due to deformation increases the resistance against the movement of the collar 223 to some extent.
  • the pressure indicator 319E can display the pressure accurately.
  • An overtube 201 having an air supply device 210E of this modified example is the same as the overtube 201 except that it has an air supply device 210E instead of the air supply device 210 of the overtube 201 according to the third embodiment. is. Therefore, according to this modified example, as in the third embodiment, it is possible to provide an endoscope overtube that reduces the burden on the patient and allows smooth operation of the endoscope.
  • accurate pressure display can be performed, and the formability of the airtight member 225E is significantly improved. Thereby, the airtight member 225E can be manufactured at low cost.
  • FIG. 17 A modification (sixth modification) of the air supply device used in place of the air supply device 210 in the overtube 201 of the third embodiment will be described.
  • an air supply device 210F of this modification can be used in place of the air supply device 210 of the overtube 201.
  • the air supply device 210F has a pressure indicator 219F instead of the pressure indicator 219 of the third modified example.
  • a pressure indicator 219F is the same as the pressure indicator 219 except that it has an airtight member 225F (sealing member, pressing member) and a reinforcing member 227F shown in FIG. 65 instead of the airtight member 225 of the third modified example. is.
  • FIG. 65 A pressure indicator 219F is the same as the pressure indicator 219 except that it has an airtight member 225F (sealing member, pressing member) and a reinforcing member 227F shown in FIG. 65 instead of the airtight member 225 of the third modified example.
  • 65 is a schematic cross-sectional view showing an example of an airtight member used in a modified example (sixth modified example) of the air supply device used in the endoscope overtube according to the third embodiment of the present invention.
  • 66 is a cross-sectional view taken along line F66-F66 in FIG. 65.
  • FIG. In the following, differences from the third embodiment and the third modified example will be mainly described.
  • the airtight member 225F is similar to the airtight member 225 except that it has a bellows tube portion 226 instead of the bellows tube portion 225d.
  • the bellows tube portion 226 is formed of an elastomer film having the same thickness tn as the thin portion 225t of the bellows tube portion 225d.
  • the bellows tube portion 226 is bent in an inverted V shape at the mountain fold portion on the outer periphery. Therefore, the thick portion 225n is not formed on the outer peripheral portion of the bellows tube portion 226. As shown in FIG.
  • the reinforcing member 227F reinforces the mountain fold f on the outer periphery of the bellows tube portion 226, which has low rigidity in the radial direction, from the inner surface side.
  • the reinforcing member 227 ⁇ /b>F is a linear body having a triangular cross section that is attached inside the mountain fold f of the bellows tube portion 226 .
  • the shape of the reinforcing member 227 ⁇ /b>F viewed from the axial direction is curved in a semicircular shape along half the inner circumference of the bellows tube portion 226 .
  • the thickness tr of the reinforcement member 227F in the radial direction is not particularly limited as long as it can obtain the same degree of rigidity as the thick portion 225n.
  • the thickness tr can be appropriately set according to the rigidity of the material of the reinforcing member 227F.
  • Two reinforcing members 227F are arranged inside each mountain fold f.
  • a pair of reinforcing members 227F in one mountain fold f has, for example, one circumferential end 227a in contact with the other circumferential end 227b, and forms an annular shape as a whole.
  • a material of the reinforcing member 227F for example, metal, resin, or the like may be used.
  • the airtight member 225F has a pair of reinforcing members 227F arranged inside the mountain folds f of the bellows tube portion 226, the rigidity in the radial direction is improved according to the rigidity of the reinforcing members 227F.
  • the radial rigidity of the airtight member 225F is determined by the rigidity of the bellows tube portion 226 excluding the portion where the reinforcing member 227F is arranged. Therefore, the axial rigidity of the airtight member 225 ⁇ /b>F is equivalent to the axial rigidity of the airtight member 225 .
  • An overtube 201 having an air supply device 210F of this modified example is the same as the overtube 201 except that it has an air supply device 210F instead of the air supply device 210 of the overtube 201 according to the third embodiment. is. Therefore, according to this modified example, as in the third embodiment, it is possible to provide an endoscope overtube that reduces the burden on the patient and allows smooth operation of the endoscope. In particular, according to this modified example, the radial rigidity of the bellows tube portion 226 can be improved without providing the bellows tube portion 226 with a thick portion.
  • the rigidity can be improved by using a highly rigid material for the reinforcing member 227F.
  • the size of the airtight member 225F can be reduced. Since the reinforcing member 227F has a semicircular shape, it can be easily inserted into the airtight member 225F. This facilitates assembly.
  • a modification (seventh modification) of the air supply device used in place of the air supply device 210 in the overtube 201 of the third embodiment will be described.
  • an air supply device 210G of this modified example can be used in place of the air supply device 210 of the overtube 201.
  • the air supply device 210G has a pressure indicator 219G instead of the pressure indicator 219 of the third modified example.
  • a pressure indicator 219G is the same as the pressure indicator 219 except that it has an airtight member 225F and a reinforcing member 227G shown in FIG. 65 instead of the airtight member 225 of the third modified example.
  • the airtight member 225F is the same member as in the sixth modification.
  • the reinforcement member 227G reinforces the mountain fold f on the outer periphery of the bellows tube portion 226, which has low rigidity in the radial direction, from the inner surface side, like the reinforcement member 227F in the sixth modification.
  • the reinforcement member 227G has the same shape as the reinforcement member 227F except that the shape when viewed from the axial direction is different.
  • 67 is a cross-sectional view taken along line F67-F67 in FIG. 65.
  • FIG. As shown in FIG. 67, the reinforcing member 227G has a C shape extending substantially all around the inside of the mountain fold f. Therefore, one reinforcing member 227G is arranged at each mountain fold f. As shown in FIG.
  • the ends 227c and 227d of the reinforcing member 227G in the circumferential direction face each other with a gap in the circumferential direction. Therefore, when the ends 227 c and 227 d are deformed so as to contact each other, the diameter is reduced, so that they can be easily arranged inside the bellows tube portion 226 .
  • the reinforcing member 227G inserted inside the mountain-folded portion f expands in diameter due to its elastic restoring force and comes into close contact with the inside of the mountain-folded portion f.
  • the reinforcing member 227G in this modified example can improve the radial rigidity of the bellows tube portion 226 in the same manner as the pair of reinforcing members 227F in the sixth modified example. While the pair of reinforcing members 227F reinforces each of the mountain folds f, the reinforcing member 227G has one member for each of the mountain folds f and can perform similar reinforcement. As a result, the number of assembly man-hours is reduced as compared with the sixth modification.
  • An overtube 201 having an air supply device 210F of this modified example is the same as the overtube 201 except that it has an air supply device 210G instead of the air supply device 210 of the overtube 201 according to the third embodiment. is. Therefore, according to this modified example, as in the third embodiment, it is possible to provide an endoscope overtube that reduces the burden on the patient and allows smooth operation of the endoscope.
  • the radial rigidity of the bellows tube portion 226 can be improved without providing the bellows tube portion 226 with a thick portion.
  • the display window forming member 221 is a film
  • the display window forming member 221 is not limited to a film.
  • the display window forming member 221 may be formed of a printed layer printed on the side surface portion 220b.
  • the display window 221a can be formed by forming the case 220 by two-color molding, the display window forming member 221 may be omitted.
  • the outer cylindrical portion 223a has a constant thickness, and that the distal end surface of the outer cylindrical portion 223a forms the distal edge portion 223c.
  • the shape of the tip edge portion 223c is not limited to this.
  • an inclined surface 223n may be formed at the distal end portion of the outer cylindrical portion 223a, which is inclined from the inner peripheral side to the outer peripheral side from the proximal side toward the distal end.
  • the tip edge portion 223c may be formed by a tapered tip at the tip of the outer cylinder portion 223a.
  • the radial width of the tip edge portion 223c is narrowed, so that the tip edge portion 223c is formed in a linear shape close to the inner peripheral surface 220f of the side surface portion 220b.
  • the inner peripheral surface 220f is located near the inner peripheral surface 220f in the radial direction.
  • FIG. 68 is a schematic perspective view showing an example of the endoscope overtube according to the fourth embodiment of the present invention.
  • 69 is a cross-sectional view along line F69-F69 in FIG. 68.
  • FIG. An overtube 301 shown in FIG. 68 is an example of an endoscope overtube according to this embodiment.
  • the overtube 301 has an air supply device 310 instead of the air supply device 10 of the overtube 1 according to the first embodiment.
  • the air supply device 310 has a pressure indicator 319 instead of the pressure indicator 219 of the air supply device 210C in the third modified example.
  • differences from the first embodiment and the third modification will be mainly described.
  • pressure indicator 319 has collar 323 (moving member) instead of collar 223 of pressure indicator 219 .
  • the collar 323 has a locking plate 323b (elastic member supporting portion) instead of the locking plate 223b of the collar 223 .
  • 69 shows a cross section passing through the center of the display window 221a in the circumferential direction and the central axis O 220 of the case 220, as in FIG.
  • FIG. 70 shows a section similar to that of FIG. 69 with the main members extracted.
  • the locking plate 323b is a wedge-shaped plate member whose thickness along one diameter gradually decreases from a maximum value to a minimum value.
  • a plane 323c forming the surface of the locking plate 323b on the base end side (left side in the drawing) in the axial direction is perpendicular to the central axis Oc of the locking plate 323b.
  • An inclined surface 323d forming the surface of the locking plate 323b on the tip side (right side in the drawing) in the axial direction rotates clockwise in the drawing by an angle ⁇ with respect to a plane perpendicular to the central axis Oc like the plane 323c. .
  • the proximal end of the coil spring 224 is locked to the inclined surface 323d, like the locking surface 223d of the collar 223.
  • the magnitude of the angle ⁇ is such that a biasing force that tilts the collar 323 in a certain direction acts on the collar 323 from the coil spring 224 in the range of the gap between the inner peripheral surface 220f and the outer peripheral surface of the outer cylindrical portion 223a of the collar 323. It is not particularly limited as long as it is small.
  • the collar 323 is arranged so that the maximum thickness of the locking plate 323b is located radially toward the display window 221a.
  • the side closer to the display window 221a in the radial direction will be referred to as the upper side
  • the side away from the display window 221a will be referred to as the lower side.
  • the central axis Oc of the collar 323 is arranged coaxially with the central axis O 220, the distance between the surface of the base end side of the flange portion 225e on the upper side in the radial direction and the inclined surface 323d is the lower side.
  • the collar 323 rotates counterclockwise as shown.
  • the gap between the outer cylindrical portion 223a and the inner peripheral surface 220f of the case 220 is large enough to allow the rotation of the angle ⁇ , the collar 323 rotates counterclockwise in the figure by the angle ⁇ . If the clearance is too narrow to rotate by the angle ⁇ , the collar 323 rotates by an angle smaller than ⁇ at which the outer peripheral portion of the outer cylindrical portion 223a contacts the inner peripheral surface 220f.
  • the distance between the base end side surface of the flange portion 225e to which the coil spring 224 engages and the inclined surface 323d is kept constant corresponding to the total length of the coil spring 224 when it expands and contracts.
  • the tip of the outer cylindrical portion 223a is close to the outer peripheral surface 220e on the upper side and separated from the outer peripheral surface 220e on the lower side.
  • the proximal end of the outer cylindrical portion 223a is separated from the outer peripheral surface 220e on the upper side and approaches the outer peripheral surface 220e on the lower side.
  • Collar 323 engages with sealing member 225 in the same manner as collar 223 in the third modification.
  • the collar 323 is restricted from rotating around the central axis O 220 .
  • the tilt of the collar 323 is similarly maintained during axial movement.
  • the third third Pressure can be displayed in the same manner as the pressure indicator 219 of the modified example.
  • the tilting of collar 323 brings leading edge 223c closer to viewing window 221a.
  • the reading error when the operator's viewing direction is tilted in the operator's lateral direction is reduced in the radial direction compared to the case where the leading edge portion 223c is located farther from the display window 221a. This allows the operator to read the pressure more accurately.
  • the inclined state of the collar 323 is formed by the elastic force of the coil spring 224 contacting the collar 323 and pressing the collar 323 toward the base end side.
  • the tilt angle and tilt direction are kept constant.
  • the rotation of the collar 323 around the central axis Oc is restrained by the torsional rigidity of the airtight member 225 and the frictional force at the proximal end of the coil spring 224 .
  • the overtube 301 according to this embodiment is the same as the overtube 101 except that it has an air supply device 310 instead of the air supply device 10 of the overtube 101 according to the first embodiment. Therefore, according to this modified example, as in the first embodiment, it is possible to provide an endoscope overtube that reduces the burden on a patient and allows smooth operation of the endoscope.
  • the air supply device 310 has the pressure indicator 319 instead of the pressure indicator 219 of the third modified example, so reading errors in the pressure display due to changes in the viewing direction can be reduced.
  • the case 220 is an example of a housing provided with a display window 221a through which the inside can be seen at least partially.
  • the collar 323 is an example of a moving member that moves within the housing according to the pressure inside the housing and whose movement position can be observed through the display window.
  • the first scale line 221b and the second scale line 221c are formed around the display window or the display window, and are examples of reference scales indicating the pressure according to the position of the moving member.
  • a side portion 220b of the case 220 is an example of a moving pipe inside which a moving member moves.
  • the outer tube portion 223a of the collar 323 is an example of a tubular portion that moves along the central axis of the transfer conduit.
  • Leading edge 223c is an example of the end of the tubular portion closer to the viewing window.
  • the tubular portion moves in a tilted attitude in a certain direction with respect to the central axis of the moving conduit, and the display window is positioned at the end of the tubular portion that is closer to the display window due to the inclination of the tubular portion. is formed in a position where you can see the
  • the coil spring 224 in the pressure indicator 319 is an example of an elastic member that urges the moving member against the pressure acting on the moving member and regulates the moving position of the moving member according to the pressure.
  • the airtight member 225 and the fixed frame 222 in the pressure indicator 319 are an example of a pressing member that is arranged to face the moving member in the moving direction of the moving member and presses the end of the elastic member opposite to the moving member.
  • a locking plate 323b having an inclined surface 323d in the collar 323 is included in the moving member, and is an inclined surface inclined in a certain direction with respect to the central axis when the tubular portion is arranged coaxially with the central axis.
  • the above is an example of the elastic member supporting portion that supports the elastic member.
  • the fourth embodiment described above may be implemented with the following modifications.
  • 323 d of inclined surfaces in this modification were demonstrated as being formed in the whole locking plate 323b.
  • the inclined surface 323d may be formed in a range that contacts the proximal end of the coil spring 224 .
  • the inclined surface 323d may be provided in an annular shape when viewed from the axial direction in a range that contacts the coil spring 224, for example, between the pressing claw 223g and the outer cylindrical portion 223a.
  • the portion of the locking plate 323b with which the bottom plate portion 225c of the airtight member 225 abuts is formed by a plane parallel to the plane 323c.
  • FIG. 71 is a schematic cross-sectional view showing a main part of a modified example (eighth modified example) of the pressure indicator used in the endoscope overtube according to the fourth embodiment of the present invention.
  • FIG. 72 is a right side view of the collar in the eighth modification.
  • the collar 323A has a locking plate 223b in the third modified example and a plurality of projecting portions 323f (elastic member supporting portions) instead of the locking plate 323b.
  • the locking plate 223b is orthogonal to the central axis Oc.
  • a tip surface 323e on the tip side of the locking plate 223b in the axial direction along the central axis Oc is also orthogonal to the central axis Oc.
  • the distal end surfaces of the plurality of protrusions 323f in the axial direction along the central axis Oc are on the same plane rotated clockwise in the figure by an angle ⁇ with respect to the distal end surface 323e of the locking plate 223b on the distal side of the distal end surface 323e. located above.
  • the proximal ends of the coil springs 224 are locked to the plurality of projections 323f, like the inclined surfaces 323d in the fourth embodiment.
  • the arrangement position and the number of the plurality of protrusions 323f in the circumferential direction are not particularly limited as long as the proximal ends of the coil springs 224 can be arranged on the same plane.
  • the plurality of protrusions 323f may be composed of a first protrusion 323f1, a second protrusion 323f2, and a third protrusion 323f3.
  • the first projecting portion 323f1 and the third projecting portion 323f3 face each other across the central axis Oc in the radial direction extending vertically in the figure.
  • the first protrusion 323f1 has the largest protrusion amount from the tip surface 323e.
  • the amount of protrusion from the tip surface 323e of the third protrusion 323f3 is the smallest.
  • the second protrusions 323f2 are provided one each in the circumferential direction between the first protrusions 323f1 and the third protrusions 323f3.
  • each second protrusion 323f2 from the tip surface 323e is equal to the average of the protrusion amounts of the first protrusion 323f1 and the third protrusion 323f3.
  • the outer shape of each protrusion 323f when viewed from the axial direction is not particularly limited.
  • the outer shape of each protrusion 323f may be rectangular, polygonal, circular, or the like.
  • each protrusion 323f has a rectangular outer shape.
  • the shape of the tip of each projection 323f is not particularly limited as long as it can stably abut on the coil spring 224 .
  • it may be a plane that forms part of the inclined surface 323d, or a convex curved surface that contacts the same plane as the inclined surface 323d at at least one point.
  • This modification has a plurality of protrusions 323f instead of the inclined surface 323d. Since the distal end faces of the plurality of projections 323f are positioned on the same plane with the same inclination as a whole, when the proximal ends of the coil springs 224 come into contact with each of them, the collars 323A and the side faces 220b are aligned in the same manner as the collars 323. Tilt in a certain direction inside. As a result, like the collar 323, the tip edge portion 223c is close to the display window 221a, so that the operator can read the pressure accurately.
  • the overtube 301 having the pressure indicator 319A of this modification has the same function as the overtube 301 according to the fourth embodiment.
  • the inclination of the collar 323A is defined by a plurality of protrusions 323f provided in a narrower range than in the fourth embodiment. For this reason, compared with the case of forming a wider inclined surface 323d, it is easier to obtain the accuracy of the inclination angle.
  • the proximal end of the coil spring 224 has been described as being in contact only with the plurality of projecting portions 323f. However, if the proximal end of the coil spring 224 can be aligned on the same plane, a portion of the coil spring 224 may abut on the distal end surface 323e. For example, the third projecting portion 323f3 may be removed, and the lower side of the proximal end of the coil spring 224 may be brought into contact with the distal end surface 323e.
  • a plurality of projecting portions 323f in the collar 323A are included in the moving member, and when the tubular portion is arranged coaxially with the central axis, it is elastic on an inclined surface inclined in a certain direction with respect to the central axis. It is an example of an elastic member supporting portion that supports a member.
  • FIG. 73 is a schematic cross-sectional view showing main parts of a modification (ninth modification) of the pressure indicator used in the endoscope overtube according to the fourth embodiment of the present invention.
  • the pressure indicator 319B has an airtight member 325B (sealing member, pressing member) and a collar 323B (moving member) instead of the airtight member 225 and collar 323.
  • the pressure indicator 319B has an airtight member 325B (sealing member, pressing member) and a collar 323B (moving member) instead of the airtight member 225 and collar 323.
  • FIG. 73 is a schematic cross-sectional view showing main parts of a modification (ninth modification) of the pressure indicator used in the endoscope overtube according to the fourth embodiment of the present invention.
  • the pressure indicator 319B has an airtight member 325B (sealing member, pressing member) and a collar 323B (moving member) instead of the airtight member 225 and collar 323.
  • an airtight member 325B has a bottom plate portion 325c instead of the bottom plate portion 225c of the airtight member 225 in the third modified example.
  • the bottom plate portion 325c is a wedge-shaped plate member whose thickness along one diameter gradually decreases from the maximum value to the minimum value.
  • a plane 325k that forms the surface of the bottom plate portion 325c on the tip side (right side in the drawing) in the axial direction is orthogonal to the central axis O 220 , like the surface of the bottom plate portion 225c of the airtight member 225 on the tip side.
  • An inclined surface 325j forming the surface of the bottom plate portion 325c on the base end side (left side in the drawing) in the axial direction rotates counterclockwise in the drawing by an angle ⁇ with respect to the plane 325k.
  • the boss portion 225a in this modified example protrudes from the inclined surface 325j in the normal direction of the inclined surface 325j.
  • engagement projections 325i protrude.
  • the thickness of each engaging projection 325i varies according to the change in the thickness of the bottom plate portion 325c.
  • each engaging protrusion 325i extends radially along the inclined surface 325j, and the distal end surface extends radially along the flat surface 325k.
  • the airtight member 325B is arranged such that the position of the portion of the bottom plate portion 325c where the thickness is the maximum is positioned toward the display window 221a in the radial direction.
  • the collar 323B is the same as the collar 223 in the third modification except that it has a pressing claw 323g instead of the pressing claw 223g.
  • the pressing claw 323g is the same as the pressing claw 223g except that the amount of protrusion toward the tip side differs according to the thickness of the mating engagement projection 325i.
  • the inclined surface 325j of the bottom plate portion 325c of the airtight member 325B engages with the engaging surface 223d of the collar 223.
  • the central axis Oc rotates counterclockwise in the figure with respect to the central axis O 220 by each angle ⁇ . Accordingly, as with the collar 323, the tip edge portion 223c of the collar 223 in this modified example comes close to the display window 221a, so that the operator can read the pressure accurately.
  • the overtube 301 having the pressure indicator 319B of this modification has the same function as the overtube 301 according to the fourth embodiment.
  • This modification is an example in which the collar 223 in this modification is rotated by providing an inclined surface 325j on the base end side of the airtight member 325B.
  • the above-described ninth modification may be implemented with the following modification added.
  • the inclined surface 325j in this modified example may be formed entirely in the circumferential direction, or may be formed apart in the circumferential direction. When formed over the entire circumferential direction, in the radial direction, it may be formed in an annular shape when viewed from the axial direction within a range in contact with the coil spring 224 .
  • 74 is a left side view of an airtight member in a ninth modification.
  • FIG. The example shown in FIG. 74 is an example in which the inclined surfaces 325j are respectively formed at the base ends in the axial direction of the plurality of protrusions 325p.
  • the plurality of protrusions 325p protrude toward the proximal end from a plane 325n parallel to the plane 325k.
  • the plurality of projections 325p may be composed of a first projection 325p1, a second projection 325p2, and a third projection 325p3, like the plurality of projections 323f in the eighth modified example.
  • the first protrusion 325p1, the second protrusion 325p2, and the third protrusion 325p3 project from the flat surface 325n toward the base end, and the slope surface 325j is formed on the surface of the base end.
  • the shape of the tip of each protrusion 325p is not particularly limited as long as it can stably contact the coil spring 224, like the protrusion 323f in the eighth modified example.
  • FIG. 75 is a schematic cross-sectional view showing a main part of a modified example (tenth modified example) of the pressure indicator used in the endoscope overtube according to the fourth embodiment of the present invention.
  • the pressure indicator 319C has a fixed frame 322C (holding member) and a collar 223 instead of the fixed frame 222 and collar 323.
  • the collar 223 is the same member as the collar 223 in the third modified example.
  • a fixed frame 322C has a bottom surface portion 322a instead of the bottom surface portion 222a of the fixed frame 222 in the third modified example.
  • the bottom portion 322a is a wedge-shaped plate member whose thickness along one diameter gradually decreases from the maximum value to the minimum value.
  • a plane 322 h that forms the surface of the bottom surface portion 322 a on the tip side (right side in the drawing) in the axial direction is orthogonal to the central axis O 220 .
  • An inclined surface 322i forming the surface of the bottom surface portion 322a on the base end side (left side in the drawing) in the axial direction rotates counterclockwise in the drawing by an angle ⁇ with respect to the flat surface 322h.
  • the tip side surface of the flange portion 225e contacts the inclined surface 322i.
  • the fixed frame 322C is fixed to the case 220 so that the maximum thickness of the bottom surface portion 322a is positioned toward the display window 221a in the radial direction.
  • the flange portion 225e of the airtight member 225 is engaged with the inclined surface 322i of the bottom surface portion 322a of the fixed frame 322C.
  • the upper tip of the coil spring 224 that engages with the proximal surface of the flange portion 225e is pushed out more to the proximal side than the lower tip.
  • the locking surface 223d of the collar 223 in this modified example is pressed more strongly on the upper side than on the lower side by the proximal end of the coil spring 224, the collar 223 is similar to the collar 323 of the fourth embodiment.
  • the center axis Oc rotates counterclockwise in the figure by an angle ⁇ with respect to the center axis O 220 . Accordingly, as with the collar 323, the tip edge portion 223c of the collar 223 in this modified example comes close to the display window 221a, so that the operator can read the pressure accurately.
  • the overtube 301 having the pressure indicator 319C of this modification has the same function as the overtube 301 according to the fourth embodiment.
  • This modification is an example in which the collar 223 in this modification is rotated by providing an inclined surface 322i on the base end side of the fixed frame 322C.
  • the tenth modified example described above may be implemented with the following modifications added.
  • the inclined surface 322i in this modified example may be formed entirely in the circumferential direction, or may be formed apart in the circumferential direction. When formed over the entire circumferential direction, in the radial direction, it may be formed in an annular shape when viewed from the axial direction in a range facing the coil spring 224 with the flange portion 225e interposed therebetween.
  • FIG. 76 is a left side view of a fixed frame in the tenth modification.
  • the example shown in FIG. 76 is an example in which inclined surfaces 322i are formed at proximal ends in the axial direction of a plurality of protrusions 322m (elastic member supporting portions).
  • the plurality of protrusions 322m protrude toward the proximal end from a plane 322k parallel to the plane 322h.
  • the plurality of projections 322m may be composed of a first projection 322m1, a second projection 322m2, and a third projection 322m3, like the plurality of projections 323f in the eighth modified example. Except that the first protrusion 322m1, the second protrusion 322m2, and the third protrusion 322m3 protrude from the flat surface 322k toward the base end side and the base end surface is formed by the inclined surface 322i, the first protrusion 322m1, the second protrusion 322m2, and the third protrusion 322m3 are the same as the eighth modified example.
  • each protrusion 322m is not particularly limited as long as it can stably contact the coil spring 224, like the protrusion 323f in the eighth modified example.
  • the airtight member 225 and the fixed frame 322C in the pressure indicator 319C are an example of a pressing member that is arranged to face the moving member in the moving direction of the moving member and presses the end of the elastic member opposite to the moving member.
  • a bottom surface portion 322a having an inclined surface 322i or a plurality of protrusions 323f in the fixed frame 322C are included in the pressing member, and when the tubular portion is arranged coaxially with the central axis, it is fixed to the central axis.
  • FIG. 77 is a schematic cross-sectional view showing a main part of a modified example (eleventh modified example) of the pressure indicator used in the endoscope overtube according to the fourth embodiment of the present invention.
  • the pressure indicator 319D has an airtight member 325D (sealing member, pressing member) and a collar 223 instead of the airtight member 225 and collar 323.
  • the collar 223 is the same member as the collar 223 in the third modified example.
  • the airtight member 325D has a flange portion 325e (elastic member supporting portion) instead of the flange portion 225e of the airtight member 225 in the third modified example.
  • the flange portion 325e is an annular plate member whose thickness along one diameter gradually decreases from the maximum value to the minimum value at least at the portion where the tip of the coil spring 224 abuts.
  • a plane 325 s that forms the surface of the flange portion 325 e on the distal end side (right side in the drawing) in the axial direction is perpendicular to the central axis O 220 .
  • the inclined surface 325t forming the surface of the flange portion 325e on the proximal side (left side in the drawing) in the axial direction rotates counterclockwise in the drawing by an angle ⁇ with respect to the flat surface 325s.
  • the plane 325 s abuts on the base end side surface of the bottom portion 222 a of the fixed frame 222 .
  • the tip of the coil spring 224 contacts the inclined surface 325t.
  • the airtight member 325D is fixed by the case 220 and the fixing frame 222 so that the maximum thickness of the flange portion 325e is positioned radially toward the display window 221a.
  • the inclined surface 325t is inclined at an angle ⁇ with respect to the plane perpendicular to the central axis O 220 . It inclines in the direction of counterclockwise rotation in the drawing. As a result, the upper tip of the coil spring 224 that engages with the inclined surface 325t of the flange portion 325e is pushed out more toward the base end than the lower tip.
  • the collar 223 is similar to the collar 323 of the fourth embodiment. Rotate.
  • the center axis Oc rotates counterclockwise in the figure with respect to the center axis O 220 by an angle ⁇ . Accordingly, as with the collar 323, the tip edge portion 223c of the collar 223 in this modified example comes close to the display window 221a, so that the operator can read the pressure accurately.
  • the overtube 301 having the pressure indicator 319D of this modification has the same function as the overtube 301 according to the fourth embodiment.
  • This modification is an example in which the collar 223 in this modification is rotated by providing an inclined surface 325t on the base end side of the flange portion 325e of the airtight member 325D.
  • FIG. 78 is a left side view of an airtight member in an eleventh modification.
  • the example shown in FIG. 78 is an example in which the inclined surface 325t is formed at the proximal ends in the axial direction of the plurality of protrusions 325r (elastic member supporting portions).
  • the plurality of projections 325r protrude toward the base end from a plane 325q parallel to the plane 325s.
  • the plurality of projections 325r may be composed of a first projection 325r1, a second projection 325r2, and a third projection 325r3, like the plurality of projections 323f in the eighth modified example.
  • the first protrusion 325r1, the second protrusion 325r2, and the third protrusion 325r3 project from the flat surface 325q toward the proximal side, and the slope surface 325t is formed on the surface of the proximal end.
  • the shape of the tip of each protrusion 325r is not particularly limited as long as it can stably contact the coil spring 224, like the protrusion 323f in the eighth modified example.
  • the airtight member 325D and the fixed frame 222 in the pressure indicator 319D are an example of a pressing member that is arranged to face the moving member in the moving direction of the moving member and presses the end of the elastic member opposite to the moving member.
  • a flange portion 325e having an inclined surface 325t or a plurality of protrusions 325r in the airtight member 325D is included in the pressing member, and when the tubular portion is arranged coaxially with the central axis, it is fixed to the central axis.
  • FIG. 79 is a schematic cross-sectional view showing a main part of a modified example (twelfth modified example) of the pressure indicator used in the endoscope overtube according to the fourth embodiment of the present invention.
  • a pressure indicator 319E has a case 320E (housing) and a collar 323E (moving member) instead of the case 220 and collar 323 in the fourth embodiment.
  • the case 320E has a convex portion 320f that protrudes radially inward from an inner peripheral surface 220f of the side surface portion 220b.
  • the cross-sectional shape of the convex portion 320f is the same in the axial direction.
  • the cross-sectional shape of the convex portion 320f is not particularly limited as long as it can restrict the circumferential rotation of the collar 323E by protruding from the inner peripheral surface 220f.
  • the convex portion 320f is a plane appearing as a chord of a circle along the inner peripheral surface 220f in a cross section perpendicular to the axial direction.
  • the inner surface of the case 320E viewed from the axial direction is D-shaped.
  • the position of the convex portion 320f in the circumferential direction is not particularly limited. However, when the convex portion 320f is provided at a position crossing the display window 221a, a surface parallel to the surface of the convex portion 320f is formed at a portion corresponding to the inner side of the display window 221a, as indicated by the two-dot chain line. A recess 320e may be formed. In this case, since the thickness of the convex portion 320f inside the display window 221a is constant, the tip edge portion 223c can be visually recognized without distortion.
  • the collar 323E is similar to the collar 323 except that it has a recessed portion 323i that is recessed radially inward from the outer peripheral surface 323p of the outer cylinder portion 223a.
  • the cross-sectional shape of the recess 323i is the same in the axial direction.
  • the cross-sectional shape of the recess 323i is recessed from the outer peripheral surface 323p, and is not particularly limited as long as it can restrict the circumferential rotation of the collar 323E when it slides close to the protrusion 320f.
  • the recess 323i is a plane that appears as a chord of a circle along the outer peripheral surface 323p in a cross section perpendicular to the axial direction.
  • the outer surface of the collar 323E viewed from the axial direction is a D-shape that is slidably fitted in the inner surface of the case 320E in the axial direction.
  • a gap is formed between the inner surface of the case 320E and the outer surface of the collar 323E so that the collar 323E can be tilted in the same manner as the collar 323E.
  • the collar 323E when the collar 323E is inserted into the side surface portion 220b of the case 320E, the convex portion 320f and the concave portion 323i face each other closely. This restricts the rotation of the collar 323E in the circumferential direction.
  • the collar 323 in the case of the fourth embodiment that does not have the convex portion 320f, the collar 323 is fixed to the airtight member 225 and is restricted from rotating in the circumferential direction by contacting the coil spring 224 .
  • the collar 323 may rotate in the circumferential direction.
  • the overtube 301 having the pressure indicator 319E of this modification has the same function as the overtube 301 according to the fourth embodiment.
  • the collar 323 rotates around the case 320E by fitting the D-shaped outer surface and the D-shaped inner surface respectively formed by the concave portion 323i of the collar 323E and the convex portion 320f of the case 320E. This is an example of stopping.
  • FIG. 80 is a schematic cross-sectional view showing a main part of a modified example (13th modified example) of the pressure indicator used in the endoscope overtube according to the fourth embodiment of the present invention.
  • a pressure indicator 319F has a case 320F (housing) and a collar 323F (moving member) instead of the case 220 and collar 323 in the fourth embodiment.
  • Case 320F is similar to case 220 except that it has ridges 320g.
  • the ridge 320g protrudes radially inward from the inner peripheral surface 220f of the side surface portion 220b and extends in the axial direction.
  • the cross-sectional shape of the ridge 320g is the same in the axial direction.
  • the cross-sectional shape of the ridge 320g is not particularly limited as long as it can restrict the circumferential rotation of the outer cylindrical portion 223a.
  • the cross-sectional shape of the ridge 320g may be rectangular, triangular, trapezoidal, semicircular, or the like. In the example shown in FIG.
  • the ridge 320g has a rectangular shape protruding radially inward from the inner peripheral surface 220f.
  • the position of the protrusion 320f in the circumferential direction is not particularly limited as long as it does not cross the display window 221a.
  • Collar 323F is similar to collar 323 except that it has a groove 323j.
  • the groove portion 323j is recessed radially inward from the outer peripheral surface 323p of the outer cylindrical portion 223a and extends in the axial direction.
  • the groove portion 323j is not particularly limited as long as it has a shape that fits the ridge 320g so as to be slidable in the axial direction.
  • the cross section of the groove 323j is also rectangular in correspondence with the rectangular projection 320g.
  • a gap is formed between the inner surface of the case 320F and the outer surface of the collar 323F so that the collar 323F can be tilted in the same manner as the collar 323F.
  • the projection 320g is axially movably fitted into the groove portion 323j. This restricts the rotation of the collar 323F in the circumferential direction.
  • the collar 323F can move axially along the ridge 320g.
  • the overtube 301 having the pressure indicator 319F of this modification has the same function as the overtube 301 according to the fourth embodiment.
  • This modification is an example in which the collar 323F and the case 320F are prevented from turning by fitting grooves 323j and ridges 320g formed in the respective parts. A similar fitting is performed by ridges similar to the ridges 320g except that they protrude radially outward from the outer peripheral surface 323p of the collar 323F, and that they are recessed radially outward from the inner peripheral surface 220f of the case 320F. and a groove similar to the groove 323j. In this case as well, the collar 323F and the case 320F can be prevented from rotating.
  • FIG. 81 is a schematic cross-sectional view showing a main part of a modified example (14th modified example) of the pressure indicator used in the endoscope overtube according to the fourth embodiment of the present invention.
  • a pressure indicator 319H has a case 320H (housing) and a collar 323H (moving member) instead of the case 220 and collar 323 in the fourth embodiment.
  • Case 320H is similar to case 220 except that it has a groove 320h.
  • the groove portion 320h is recessed radially outward from the inner peripheral surface 220f of the side surface portion 220b and extends in the axial direction.
  • the cross-sectional shape of the groove portion 320h can have various cross-sectional shapes, like the groove portion 323j in the thirteenth modification.
  • the position of the groove 320h in the circumferential direction is not particularly limited as long as it does not cross the display window 221a.
  • Collar 323H is similar to collar 323 except that it has ridges 323k and protrusions 323m.
  • the protrusion 323k protrudes radially outward from the outer peripheral surface 323p of the outer cylindrical portion 223a and extends in the axial direction.
  • the cross-sectional shape of the protrusion 323k is a shape that fits in the groove 320h and is relatively movable in the axial direction.
  • the cross-sectional shape of the ridge 323k various cross-sectional shapes are possible as long as the ridge 323k can be fitted into the groove 320h, similarly to the ridge 320g in the thirteenth modification.
  • the convex portion 323m protrudes radially outward from the outer peripheral surface 323p.
  • the convex portion 323m is provided at a position that is distant from the ridge 323k in the circumferential direction and that is not visible from the display window 221a indicated by the two-dot chain line.
  • the convex portion 323m may be provided at one location, but may be provided at a plurality of locations in the circumferential direction or the axial direction. In the example shown in FIG. 81, the convex portions 323m are provided at four positions in the circumferential direction.
  • the convex portion 323m As for the arrangement position of the convex portion 323m, a position that is likely to come into contact with the inner peripheral surface 220f may be selected in consideration of the inclination of the collar 323H.
  • the convex portion 323m is provided for the purpose of reducing sliding resistance with the inner peripheral surface 220f. Therefore, the shape, number, and formation position of the convex portion 323m are not particularly limited as long as the sliding resistance with the inner peripheral surface 220f can be reduced. More preferably, the convex portion 323m is formed by a convex curved surface that makes point contact with the inner peripheral surface 220f smoothly.
  • the protrusion 323m may be a ridge extending in the axial direction or the circumferential direction, or may be a spot-shaped protrusion when viewed from the radial direction.
  • a particularly preferable shape for the convex portion 323m is an axially extending ridge with a semicircular cross section or a hemispherical projection.
  • the protrusion 323k fits into the groove portion 320h. This restricts the rotation of the collar 323H in the circumferential direction.
  • the collar 323H can move axially along the ridge 323k as a track.
  • the convex portion 323m protrudes from the outer peripheral surface 323p, the sliding resistance of the collar 323H with respect to the inner peripheral surface 220f is reduced compared to the case where the convex portion 323m is not provided.
  • the pressure indicator 319H even if the change in internal pressure of the case 320H is small, the collar 323H can smoothly follow the change in pressure. Thereby, the internal pressure of the case 320H can be displayed more accurately.
  • the overtube 301 having the pressure indicator 319H of this modification has the same function as the overtube 301 according to the fourth embodiment.
  • This modification is an example in which the collar 323H and the case 320H are prevented from rotating by fitting the ridges 323k and the grooves 320h respectively formed on the collar 323H and the case 320H.
  • the fourteenth modification described above may be implemented with the following modification added.
  • the protrusion height of the protrusion 323m may be changed according to the arrangement position.
  • the convex portion 323m may be formed with a height that allows it to be positioned equidistant from the inner peripheral surface 220f when the collar 323H is tilted by the angle ⁇ .
  • the contact of the convex portion 323m against the inner peripheral surface 220f becomes substantially uniform in the axial direction. This reduces variations in the tilted attitude of the collar 323H.
  • Such a convex portion 323m has a function of keeping the inclination of the collar 323H substantially constant in addition to the function of reducing the sliding resistance.
  • FIG. 82 is a schematic cross-sectional view showing the main part of a modification (fifteenth modification) of the pressure indicator used in the endoscope overtube according to the fourth embodiment of the present invention.
  • a pressure indicator 319J has a case 320J (housing) and a collar 323F instead of the case 220 and collar 323 in the fourth embodiment.
  • the collar 323F is the same member as the collar 323F in the thirteenth modification. Differences from the fourth embodiment and the thirteenth modification will be mainly described below.
  • Case 320J is similar to case 220, except that it has protrusions 320i.
  • the convex portion 320i is the same as the convex portion 323m in the fourteenth modification, except that it protrudes radially inward from the inner peripheral surface 220f with a constant protrusion height.
  • the protrusion 320i is more preferably an axially continuous ridge.
  • the apex of the protrusion 320i in the projecting direction is located on the same cylindrical surface coaxial with and smaller in diameter than the inner peripheral surface 220f.
  • the projection 320g is axially movably fitted into the groove 323j as in the thirteenth modification.
  • the collar 323F is prevented from rotating, as in the thirteenth modification.
  • the collar 323F can move axially along the ridge 320g.
  • the convex portion 320i protrudes from the inner peripheral surface 220f, the sliding resistance of the collar 323F with respect to the case 320J is reduced as compared with the 13th modified example. Therefore, in the pressure indicator 319J, even if the change in the internal pressure of the case 320H is small, the collar 323F smoothly follows the change in pressure, and the internal pressure of the case 320J can be displayed more accurately.
  • the overtube 301 having the pressure indicator 319J of this modification has the same function as the overtube 301 according to the fourth embodiment.
  • This modification is an example in which the sliding resistance received by the collar 323F is reduced by providing the convex portion 320i on the inner peripheral surface 220f.
  • FIG. 83 is a schematic perspective partial cross-sectional view showing a main part of a modified example (sixteenth modified example) of the pressure indicator used in the endoscope overtube according to the fourth embodiment of the present invention.
  • FIG. 84 is a right side view of a collar used in a modified example (16th modified example) of the pressure indicator.
  • 85 is a cross-sectional view taken along line F85-F85 in FIG. 84.
  • the pressure indicator 319K has a collar 323K (moving member) and an airtight member 325K (sealing member, pressing member) instead of the collar 323 and airtight member 225.
  • the points different from the fourth embodiment will be mainly described.
  • the collar 323K has a fitting claw 223f, a pressing claw 223g, a hole 223j, and a hole 223k removed from the locking plate 223b, and a step portion 323q (elastic member supporting portion) is added. Except for this, it is the same as the collar 223 in the third modification.
  • the stepped portion 323q protrudes axially from the locking surface 223d of the locking plate 323b toward the distal end side and extends along the inner peripheral surface of the outer cylindrical portion 223a.
  • the stepped portion 323q is formed with recesses 323r that are recessed to the same height as the locking surface 223d at four locations that equally divide the inner circumference of the outer cylindrical portion 223a in the circumferential direction.
  • the width of each recess 323r in the circumferential direction is such that it can be engaged with an engaging projection 325f of an airtight member 325K, which will be described later.
  • An inner peripheral surface 323s of each stepped portion 323q in the radial direction is a curved surface along a cylindrical surface having a size that allows a bottom plate portion 225c of an airtight member 325K, which will be described later, to be inserted along the outer peripheral surface of the bottom plate portion 225c.
  • an inclined surface 323h is formed at the tip of each stepped portion 323q in the axial direction.
  • Each inclined surface 323h is located on the same plane having an inclination rotated clockwise by an angle ⁇ with respect to the locking surface 223d orthogonal to the central axis Oc.
  • the distance between the locking surface 223d and the inclined surface 323h is h1.
  • the distance between the locking surface 223d and the inclined surface 323h is h2, which is shorter than h1.
  • FIG. 86 is a perspective view of an airtight member used in a modification (sixteenth modification) of the pressure indicator.
  • 87 is a cross-sectional view taken along line F87-F87 in FIG. 86.
  • FIG. 88 is a cross-sectional view taken along line F88-F88 in FIG. 86.
  • the airtight member 325K is similar to the airtight member 225 except that the fitting projection 225b is eliminated and the engagement projection 225i is replaced with the engagement projection 325f.
  • the engaging projections 325f extend radially outward from four locations that equally divide the outer circumference of the bottom plate portion 225c into quarters in the circumferential direction.
  • Each engaging protrusion 325f extends close to the inner peripheral surface of the outer cylindrical portion 223a, as indicated by a two-dot chain line in FIG.
  • Each engagement projection 325f is inserted into each recess 323r of the collar 323K. As a result, the engaging projection 325f is restricted from moving in the circumferential direction, so that the airtight member 325K is prevented from rotating in the circumferential direction.
  • the engaging projection 325f is composed of, for example, a first engaging projection 325f1, a second engaging projection 325f2, and a third engaging projection 325f3.
  • the first engagement protrusion 325f1 is inserted into the upper recess 323r in the drawing near the display window 221a (see the two-dot chain line) and the tip edge portion 223c in the radial direction.
  • the third engaging projection 325f3 is arranged on the lower side in the drawing opposite to the first engaging projection 325f1 in the radial direction.
  • a pair of second engaging projections 325f2 are provided at positions facing each other in a radial direction perpendicular to the opposing direction of the first engaging projection 325f1 and the third engaging projection 325f3.
  • the proximal side (left side in the figure) surfaces of the first engaging projection 325f1 and the third engaging projection 325f3 extend along the proximal side first surface s1 of the bottom plate portion 225c. .
  • the first engaging projection 325f1 and the third engaging projection 325f3 protrude to the tip side (right side in the figure) from the second surface s2 on the tip side of the bottom plate portion 225c.
  • An inclined surface 325g located on the same plane and inclined at an angle ⁇ clockwise with respect to the first surface s1 is formed on the surfaces of the first engaging projection 325f1 and the third engaging projection 325f3 on the tip end side.
  • the maximum thickness t1 of the first engaging projection 325f1 is slightly thicker than the depth h1 of the upper recess 323r.
  • the minimum thickness t3 of the third engaging projection 325f3 is slightly thicker than the depth h2 of the lower recess 323r.
  • each second engaging projection 325f2 extends along the first surface s1.
  • a tip-side surface 325h that is a surface on the tip side (right side in the drawing) of each second engaging projection 325f2 may be an inclined surface similar to the inclined surface 325g, or a recess 323r into which each second engaging projection 325f2 is inserted.
  • a plane parallel to the second surface s2 may be used as long as it is equivalent to the depth of .
  • the coil spring 224 is arranged between each stepped portion 323q and the flange portion 225e of the airtight member 325K. Therefore, as shown in FIG. 83, the proximal end of the coil spring 224 is located on the distal end side of each engaging protrusion 325f. A portion of each engaging protrusion 325f protruding from the recess 323r is pressed by the proximal end of the coil spring 224 from the distal end side. As a result, the engaging projection 325f is prevented from slipping out of the recess 323r in the axial direction. Since each pushed engaging projection 325f is deformed in the thickness direction, the proximal end of the coil spring 224 abuts on the inclined surface 325g of each stepped portion 323q.
  • the inclined surface 325g with which the proximal end of the coil spring 224 abuts is inclined by the angle ⁇ .
  • the collar 323K is inclined by an angle ⁇ inside the side surface portion 220b, like the collar 323 in the fourth embodiment. Accordingly, like the collar 323, the tip edge portion 223c of the collar 323K is close to the display window 221a, so that the operator can accurately read the pressure.
  • the overtube 301 having the pressure indicator 319K of this modification has the same function as the overtube 301 according to the fourth embodiment. Especially in this modified example, by inserting each engagement projection 325f at the tip of the airtight member 325K into each recess 323r of the collar 323K, the airtight member 325K is prevented from turning and is axially prevented from coming off by the coil spring 224. . This improves the assemblability of the pressure indicator 319K.
  • This modification is an example in which the projection formed on the tip side of the locking plate 223b is formed by a stepped portion 323q projecting from the locking surface 223d to the tip side for the purpose of tilting the collar 323K.
  • a step 323q with a sloping surface 323h is included in the moving member and is constant with respect to the central axis when the tubular portion is arranged coaxially with the central axis. It is an example of an elastic member supporting portion that supports an elastic member on an inclined surface inclined in a direction.
  • FIG. 89 is a schematic perspective partial cross-sectional view showing a main part of a modification (seventeenth modification) of the pressure indicator used in the endoscope overtube according to the fourth embodiment of the present invention. 90 is an enlarged view of the F90 portion in FIG. 89.
  • the pressure indicator 319L has a collar 323L (moving member) and an airtight member 325L (sealing member, pressing member) instead of the collar 323 and the airtight member 225.
  • FIG. 89 the points different from the fourth embodiment and the sixteenth modification will be mainly described.
  • the collar 323L is the same as the collar 223 in the third modified example except that it has a pressing claw 323t (elastic member supporting portion) instead of the pressing claw 223g. All of the pressing claws 323t are provided radially outward from the pressing claws 223g.
  • the position of each presser claw 323 t in the radial direction is the position where the distal end of the presser claw 323 t contacts the proximal end of the coil spring 224 .
  • Each pressing claw 323t is similar to the pressing claw 223g except that an inclined surface 323v having the same inclination as the inclined surface 323h in the sixteenth modification is formed at the tip in the axial direction.
  • each presser claw 323t is different from the presser claw 223g in that instead of the engaging projection 325i, the engaging projection 325u of the airtight member 325L, which will be described later, is engaged in the axial direction.
  • the inclined surface 323v is formed on each pressing claw 323t and is located on the same plane inclined at an angle ⁇ with respect to the locking surface 223d.
  • the airtight member 325L has an engaging projection 325u instead of the engaging projection 225i of the airtight member 225 in the fourth embodiment.
  • the engaging projection 325u is the same as the engaging projection 225i except that it has a length that allows it to be inserted between the pressing claw 323t and the locking plate 223b.
  • the length of the engagement projection 325u is such that it can enter the axial gap between the pressing claw 323t and the locking surface 223d.
  • the surface of the engagement protrusion 325u on the distal end side in the axial direction is engaged with the proximal end surface of the pressing claw 323t.
  • the engaging projection 325u is sandwiched between the locking surface 223d and the pressing claw 323t and engages with them in the axial direction.
  • the fitting protrusion 225b of the airtight member 325L axially engages with the fitting claw 223f (not shown) of the collar 323L, like the collar 223 in the third modification.
  • a proximal end of the coil spring 224 is in contact with the inclined surface 323v. Since the inclined surface 323v is the same inclined surface as the inclined surface 323h in the sixteenth modification, the collar 323L is inclined by the angle ⁇ within the case 220 in the same manner as the collar 323K in the sixteenth modification.
  • the tip of the presser claw 323t with which the proximal end of the coil spring 224 abuts is inclined by the angle ⁇ .
  • the collar 323L is inclined at an angle ⁇ inside the side surface portion 220b, like the collar 323 in the fourth embodiment.
  • the tip edge portion 223c of the collar 323L is close to the display window 221a, so that the operator can accurately read the pressure.
  • the overtube 301 having the pressure indicator 319L of this modification has the same function as the overtube 301 according to the fourth embodiment.
  • This modification is an example in which a protrusion formed on the tip side of the locking plate 223b is formed by a pressing claw 323t for the purpose of tilting the collar 323L.
  • a pressing pawl 323t having an inclined surface 323v is included in the moving member and is constant with respect to the central axis when the tubular portion is arranged coaxially with the central axis. It is an example of an elastic member supporting portion that supports an elastic member on an inclined surface inclined in a direction.
  • each configuration of the 12th to 15th modifications may be used in combination as appropriate.
  • Each configuration of the 12th to 15th modifications is not limited to the case or collar in the fourth embodiment, and can be combined with the 8th to 11th modifications, the 16th modification, and the 17th modification. may
  • An endoscope overtube according to a fifth embodiment of the present invention will be described.
  • An overtube 401 shown in FIG. 17 is an example of an endoscope overtube according to this embodiment.
  • the overtube 401 has an air supply device 410 instead of the air supply device 310 of the overtube 301 according to the third embodiment.
  • the points different from the third embodiment will be mainly described.
  • FIG. 91 is a schematic front view showing an air supply device in an endoscope overtube according to a fifth embodiment of the present invention
  • 92 is an enlarged view of the F92 portion in FIG. 91.
  • FIG. 91 an air supply device 410 in this embodiment has a body portion 412 instead of the body portion 212 in the third embodiment.
  • the main body portion 412 has a housing portion 418 instead of the housing portion 218 of the main body portion 212 .
  • the housing part 418 is the same as the housing part 218 in the third embodiment except that a limiter 417 is provided near the connection pipe 212a.
  • a pump 211a in this embodiment has the same configuration as in the third embodiment.
  • the first connecting portion 211d is provided at the tip of the air pipe 211j.
  • a first check valve 211b is provided inside the air supply pipe 211j.
  • the first connection portion 211d is an example of a first connector that detachably connects the air supply tube 211j to the connection tube 212a.
  • the second connection portion 211e is provided at the tip of the intake pipe 211k.
  • a second check valve 211c is provided inside the intake pipe 211k. When the operator operates the pump 211a, gas is sucked into the suction pipe 211k from the outside.
  • the second connection portion 211e is an example of a second connector that detachably connects the intake pipe 211k to the connection pipe 212a.
  • the limiter 417 is used to manually remove the first connection portion 211d or the second connection portion 211e of the manual air supply mechanism 211 from the connection tube 212a when the first connection portion 211d or the second connection portion 211e is unlocked.
  • the position of the air supply mechanism 211 is regulated.
  • the direction along the center axis AC of the connection pipe 212a is referred to as the attachment/detachment direction.
  • the manual air supply mechanism 211 is a rubber ball pump
  • the central axis A 2 C is coaxial with the central axis A 2 P of the manual air supply mechanism 211 .
  • the limiter 417 is provided on the side portion 418a of the housing portion 418 to which the connecting pipe 212a is fixed.
  • the shape of the limiter 417 is not particularly limited as long as it can restrict the movement of the first connection portion 211d or the second connection portion 211e in the attachment/detachment direction when the first connection portion 211d or the second connection portion 211e is unlocked.
  • the outer shape of the first connection portion 211d or the second connection portion 211e is substantially cylindrical, and an end surface 211i that intersects the attachment/detachment direction is formed at the end opposite to the side portion 418a in the attachment/detachment direction.
  • the limiter 417 has a side plate portion 417a (locking member), an operating portion 417c, and a locking projection 417b (locking member).
  • the side plate portion 417a is an elastic plate extending in the attachment/detachment direction from the outside of the side portion 418a.
  • the side plate portions 417a face each other with the connection pipe 212a interposed therebetween.
  • the facing direction of each side plate portion 417a is a direction perpendicular to the attaching/detaching direction.
  • the facing distance between the side plate portions 417a is equal to or greater than the outer diameter of the first connection portion 211d.
  • the lateral width of the side plate portion 417a is narrower than the outer diameter of the first connection portion 211d.
  • a part of the side surface of the first connecting portion 211d sandwiched between the side plate portions 417a protrudes outward from the lateral direction of the side plate portion 417a.
  • the operator can operate the first connecting portion 211d sandwiched between the side plate portions 417a to mount, lock, unlock, and move the first connecting portion 211d with respect to the connecting tube 212a.
  • the side plate portion 417a can be made of elastic resin or metal.
  • the side plate portion 417a can be elastically deformed outward in the opposite direction from the state in which it extends in the attachment/detachment direction when an external force acts on the tip in the extension direction.
  • the operation portion 417c is provided for the operator to perform an operation to open the tip of each side plate portion 417a in the extending direction outward.
  • the shape of the operation portion 417c is not particularly limited as long as the operator can apply an operation force in the direction to increase the distance between the side plate portions 417a.
  • the operation portion 417c is formed of a bent plate that bends outward in the facing direction from the tip of each side plate portion 417a in the extending direction and extends away from the side portion 418a in the attachment/detachment direction.
  • An operating lever 417d extending parallel to the central axis AP is formed at the tip of each operating portion 417c in the extending direction.
  • the locking projection 417b protrudes inward in the opposite direction from the tip of each side plate portion 417a.
  • the distance between the tips of the locking protrusions 417b in the protruding direction is smaller than the outer diameter of the first connecting portion 211d.
  • a locking surface 417e is formed on each locking projection 417b toward the connection pipe 212a in the attachment/detachment direction.
  • the locking surface 417e is a plane extending in a direction substantially perpendicular to the center axis AC.
  • the operation of the overtube 401 is the same as that of the overtube 301 except for the operation of the limiter 417, the operation of the overtube 401 will be described below, focusing on the operation of the limiter 417.
  • FIG. According to the limiter 417, for example, when the locked state of the first connecting portion 211d of the connecting pipe 212a is released, the first connecting portion 211d moves from the locked position with the connecting pipe 212a to the end face 211i as indicated by the two-dot chain line. can move along the attachment/detachment direction up to the locking position where the locking surface 417e is locked.
  • the manual air supply mechanism 211 cannot be removed from the limiter 417 . Even if the operator releases the manual air supply mechanism 211 in the unlocked state, the manual air supply mechanism 211 will not fall. However, when the operator opens the operating lever 417d outward, the side plate portions 417a are deformed so as to open outward. The operator can remove the first connecting portion 211d from the limiter 417 by opening the operating lever 417d until the distance between the locking protrusions 417b facing each other becomes larger than the outer diameter of the first connecting portion 211d.
  • each side plate portion 417a receives an external force from each locking projection 417b that abuts on the side surface of the first connection portion 211d and bends outward.
  • the side plate portions 417a close inward.
  • connection portion 211e is connected to the connection pipe 212a instead of the first connection portion 211d.
  • the air supply device 410 since the air supply device 410 has the limiter 417, the first connection portion 211d can move within a certain distance from the connection tube 212a while the first connection portion 211d is unlocked. can be done. Furthermore, the manual air supply mechanism 211 does not come off from the limiter 417 unless the operator operates the operation part 417c.
  • the operator can exhaust the air inside the fixation balloon 3 without switching the manual air supply mechanism 211 from the first connection state to the second connection state. That is, when the lock of the first connection portion 211d is released and the first connection portion 211d is retracted in the direction away from the connection pipe 212a, the pipe line in the first connection portion 211d and the pipe line in the connection pipe 212a are separated. A radial gap is created at the joint. As a result, the air in the pipeline downstream of the connecting pipe 212a leaks to the outside of the connecting pipe 212a. The air leakage flow rate increases according to the distance separating the unlocked first connection portion 211d from the connection pipe 212a.
  • the operator can finely adjust the amount of exhausted air by finely adjusting the position of the first connecting portion 211d in the attachment/detachment direction. For example, when too much air is supplied and the pressure of the fixation balloon 3 becomes too large, the operator can quickly reduce the pressure of the fixation balloon 3 by performing such an exhaust operation. At this time, since the amount of movement of the first connection portion 211d is restricted by the locking projection 417b, it is possible to prevent a large amount of air from the fixation balloon 3 from being discharged.
  • the overtube 401 according to the present embodiment is the same as the overtube 301 according to the third embodiment except that it has a limiter 417, so it has the same function as the third embodiment. Therefore, as in the third embodiment, it is possible to provide an endoscope overtube that reduces the burden on the patient and allows smooth operation of the endoscope. Especially in this embodiment, since a small amount of air can be rapidly discharged from the fixation balloon 3 during the air supply operation, the expansion/contraction operation of the fixation balloon 3 can be performed quickly and efficiently.
  • Pump 211a in gas delivery device 410 is an example of a manual pump that delivers gas.
  • a body portion 412 in the air supply device 410 is an example of a body portion to which a manual pump is connected.
  • the connection pipe 212a in the body portion 412 is an example of a body side connector that protrudes from the body portion and detachably connects the manual pump in the first direction.
  • the first direction is the direction along the center axis AC .
  • the first connecting portion 211d and the second connecting portion 211e are examples of pump-side connectors that advance and retreat in the first direction in the manual pump, are airtightly connected to the body-side connector when advancing, and leak the gas when retreating.
  • the limiter 417 is an example of a limiter that regulates the retracted position of the pump-side connector by engaging with the pump-side connector when retracting the pump-side connector and prevents the pump-side connector from coming off.
  • the side plate portion 417a and the locking protrusion 417b of the limiter 417 are examples of locking members that can move between a locking position where the pump-side connector can be locked and a removal position where the pump-side connector can be removed from the body-side connector. is.
  • FIG. 17 is a schematic cross-sectional view showing an example of a modified example (eighteenth modified example) of the limiter used in the endoscope overtube according to the fifth embodiment of the present invention.
  • FIG. 94 is a schematic view of F94 in FIG. 93.
  • an air supply device 410A of this modification has a limiter 417A instead of the limiter 417 in the fifth embodiment.
  • the following description will focus on the differences from the fifth embodiment.
  • the limiter 417A has a first side plate portion 417f (locking member), a second side plate portion 417g (locking member), and a fastener 417h (fixing member).
  • the first side plate portion 417f and the second side plate portion 417g are the same as the side plate portion 417a in the fifth embodiment, except that they extend longer than the side plate portion 417a. For this reason, the first side plate portion 417f and the second side plate portion 417g are each provided with locking projections 417b as in the fifth embodiment.
  • the fastener 417h fixes the facing distance between the first side plate portion 417f and the second side plate portion 417g facing each other so as to be able to expand.
  • the configuration of the fastener 417h is not particularly limited as long as the space between the first side plate portion 417f and the second side plate portion 417g can be expanded and fixed. In the example shown in FIG. 94, it extends from the side end of the tip portion of the first side plate portion 417f toward the side end of the second side plate portion 417g, and detachably engages with the second side plate portion 417g at the tip portion in the extending direction. It is an elastic claw that An engaging protrusion 417i that detachably engages with the side end of the second side plate portion 417g protrudes from the tip of the fastener 417h.
  • the engaging protrusion 417i is a protrusion that engages from the outside of the second side plate portion 417g.
  • the engagement protrusion 417i may be a protrusion in which a groove that engages the second side plate portion 417g is locked.
  • the fastener 417h is disengaged from the second side plate portion 417g by rotating clockwise around the proximal end connected to the first side plate portion 417f.
  • the first side plate portion 417f and the second side plate portion 417g may be parallel to each other as in the fifth embodiment, or may be open in such a manner that the distance between them increases as the distance from the side portion 418a increases.
  • Manual air supply mechanism 211 can be removed by opening outward.
  • the gap between the first side plate portion 417f and the second side plate portion 417g before engagement have a shape that opens in the opposite direction
  • the gap between the first side plate portion 417f and the second side plate portion 417g is narrowed when engaging. , are engaged by fasteners 417h. This fixes the gap between the first side plate portion 417f and the second side plate portion 417g.
  • the fastener 417h When the operator operates the fastener 417h to release the engagement between the fastener 417h and the second side plate portion 417g, the first side plate portion 417f and the second side plate portion 417g return to the opened state due to the elastic force, so manual air supply is required. Removability of the mechanism 211 is possible.
  • the movement range of the first connecting portion 211d is restricted by the locking projection 417b, as in the fifth embodiment.
  • the manual air supply mechanism 211 can be removed from the limiter 417A as described above.
  • the air supply device 410A since the air supply device 410A has the limiter 417A, it has the same effect as the fifth embodiment.
  • the limiter 417A in the air supply device 410A is an example of a limiter that regulates the retracted position of the pump-side connector by engaging with the pump-side connector when retracting the pump-side connector and prevents the pump-side connector from coming off.
  • the first side plate portion 417f and the second side plate portion 417g of the limiter 417A, and the locking projections 417b provided on each of them, have a locking position where the pump side connector can be locked, and a pump side connector can be removed from the main body side connector. and a locking member movable to a removable position.
  • Fastener 417h in limiter 417A is an example of a securing member that can secure the locking member in one or both of the locked position and the removed position.
  • FIG. 1 An example of an endoscope overtube according to this embodiment.
  • the overtube 501 has an airtight valve unit 506 instead of the airtight valve unit 6 of the overtube 1 according to the first embodiment.
  • the following description will focus on the differences from the first embodiment.
  • FIG. 95 is a schematic cross-sectional view showing an example of an airtight valve unit used in the endoscope overtube according to the sixth embodiment of the present invention.
  • the airtight valve unit 506 in this embodiment is particularly suitable for inserting the endoscope 30 whose thickness changes in the longitudinal direction.
  • the airtight valve unit 506 provides good airtightness even with a non-circular cross section like the endoscope 11 .
  • the outer shape of the endoscope 30 is a cylindrical surface
  • the thickness of the endoscope 30 may vary at any number of locations, and the thickness may vary continuously. However, for the sake of simplification, an example in which the endoscope 30 has a large diameter portion 30a and a small diameter portion 30b will be described below.
  • the large diameter portion 30a is cylindrical with an outer diameter D1.
  • the small diameter portion 30b is cylindrical with an outer diameter D2.
  • D2 is smaller than D1.
  • the cause of the change in the outer diameter of the endoscope 30 is not particularly limited.
  • the fixation balloon 3 that is contracted outside the main tube 2 often has an outer diameter larger than the outer diameter of the main tube 2 even when contracted.
  • the fixation balloon 3 in a diameter-reduced state forms the large-diameter portion 30a.
  • an accessory such as the endoscope cap 13 in the first embodiment may be attached to the distal end portion of the endoscope 30 to form the large diameter portion 30a.
  • the inner diameter of the intermediate portion 22b is reduced by increasing the internal pressure of the space Sp, thereby reducing the outer diameter of the endoscope 30.
  • the airtightness of the airtight valve unit 6 is maintained even if there is some change.
  • the change in the outer diameter of the endoscope 30 becomes too large, the insertion resistance of the large-diameter portion 30a increases, and the endoscope 30 may not be smoothly inserted and removed. It is conceivable that the operator or the like manually adjusts the amount of air in the space Sp to reduce the insertion resistance at the large-diameter portion 30a.
  • the endoscope 30 needs to be inserted and removed quickly. Since the operator or the like cannot accurately know the diameter-changing portion of the endoscope 30 inserted through the overtube 1, the operator or the like cannot accurately determine the timing at which the diameter-changing portion passes through the airtight valve unit 6. I can't comprehend. This makes it quite difficult for the operator or the like to appropriately adjust the opening of the airtight valve unit 6 . There is a strong demand for an airtight valve with a simple structure that opens and closes in response to changes in the outer diameter of the endoscope 30 even when the outer diameter changes.
  • the airtight valve unit 506 includes a cylinder frame portion 521, an airtight balloon 522, and a connection port 521b (gas supply pipe) instead of the cylinder frame portion 21 (tubular portion), the airtight balloon 22, and the connection port 21b in the first embodiment. have. Furthermore, the airtight valve unit 506 has a guide member 532 , a probe 534 , a spring 535 (biasing member), and a variable volume portion 531 . In the following, the points different from the first embodiment will be mainly described.
  • the tubular frame portion 521 has an inner peripheral surface 21 a similar to that of the tubular frame portion 21 .
  • An airtight balloon 522 is fixed to the inner peripheral surface 21 a of the cylindrical frame portion 521 .
  • the airtight balloon 522 has an intermediate portion 522b instead of the intermediate portion 22b of the airtight balloon 22 in the first embodiment.
  • the intermediate portion 522b is a cylindrical surface that is in close contact with the inner peripheral surface 21a from the inside in a natural state in which no gas is supplied to the space Sp. When the gas is supplied to the space Sp, it expands radially inward according to the internal pressure of the space Sp.
  • the expanded intermediate portion 522b has an inner diameter that gradually decreases from the first joint portion 22a to the second joint portion 22c, becomes the minimum, and then expands. form a shape.
  • the minimum diameter of the intermediate portion 522b changes according to the pressure of the space Sp. If the amount of expansion of the intermediate portion 522b is adjusted according to the outer diameters of the large diameter portion 30a and the small diameter portion 30b, the sliding load between the large diameter portion 30a and the small diameter portion 30b does not change, and the respective outer peripheral portions can be hermetically covered.
  • the direction along the central axis of the inner peripheral surface 21a is referred to as the axial direction, and the direction perpendicular to the axial direction is referred to as the radial direction.
  • the leading end and the trailing end in the axial direction may be used based on the insertion direction of the overtube 501 .
  • a fixing portion 521d for fixing a guide member 532, which will be described later, is formed on the outer peripheral portion of the rear end portion of the cylindrical frame portion 521 in a range overlapping with the intermediate portion 522b when viewed in the radial direction.
  • a guide hole 521e through which a probe 534, which will be described later, is inserted penetrates in the radial direction on the distal end side of the fixing portion 521d.
  • connection port 521b is connected to the operation tube main body 25, like the connection port 21b in the first embodiment.
  • a check valve 521c is arranged inside the connection port 521b to prevent the backflow of the gas supplied to the space Sp.
  • the end of the connection port 521b near the space Sp is fixed to a guide member 532, which will be described later, penetrates a movable member 533, which will be described later, and opens inside the variable volume portion 531, which will be described later.
  • the portion penetrating through the movable member 533 is hermetically sealed so that the movement load of the movable member 533 does not increase.
  • the connection port 521b may be fixed to the movable member 533 if the movement load of the movable member 533 does not increase.
  • the movable member 533 is arranged so as to be radially movable at a position facing the fixed portion 521d in the radial direction.
  • the movable member 533 is radially movably supported by the guide member 532 and biased by the spring 535 in the radial direction toward the cylinder frame portion 521 .
  • the guide member 532 is fixed to the fixing portion 521d.
  • the guide member 532 is formed with a guide portion 532a that moves the movable member 533 in parallel along the radial direction.
  • the shape of the guide member 532 is not particularly limited.
  • the guide member 532 may be a housing, a frame, a columnar body, a cylinder, or the like.
  • An appropriate shape is used for the shape of the guide portion 532 a according to the shape of the guide member 532 .
  • the guide portion 532a formed in the guide member 532 may be a radially extending hole, groove, ridge, or the like.
  • the guide member 532 is a frame or housing having a rectangular parallelepiped outer shape.
  • the guide portion 532a is a through hole formed in the side surface of the guide member 532 and extending in the radial direction. In this case, the movable member 533 is translated in the radial direction by being inserted inside the guide portion 532a.
  • a probe 534 extending in the radial direction is fixed to a surface 533a of the movable member 533 that faces the outer peripheral portion of the cylindrical frame portion 521 in the radial direction.
  • the probe 534 is slidably inserted through the guide hole 521e.
  • a sliding contact portion 534a (tip portion) formed on the tip side of the probe 534 can come into contact with the outer peripheral surface of the endoscope 30 moving axially within the inner peripheral surface 21a within the movable range of the movable member 533. have a length.
  • the sliding contact portion 534a has a curved surface that smoothly slides on the outer peripheral surface of the endoscope 30 .
  • the sliding contact portion 534 a has a curvature that allows it to smoothly overcome a step on the outer diameter of the endoscope 30 .
  • the movable member 533 moves in the same direction as the probe 534 moving radially along the guide hole 521e.
  • the type and shape of the spring 535 are not particularly limited as long as they can urge the movable member 533 in the radial direction toward the tubular frame portion 521 .
  • the type of the spring 535 is not particularly limited as long as it is an elastic member that generates an elastic restoring force according to the radial displacement of the movable member 533 .
  • the spring 535 include a coil spring, a plate rubber, an elastic sheet, and the like.
  • spring 535 is a coil spring with probe 534 inserted therein. In this case, the spring 535 biases the movable member 533 with a tensile force.
  • the variable volume part 531 accommodates the gas supplied from the outside through the connection port 521b in the internal space Sv.
  • the variable volume part 531 changes its volume according to the pressure of the gas.
  • the variable volume part 531 in this embodiment is a member that changes the volume of the space Sv without elastically expanding and contracting.
  • the variable volume portion 531 is a corrugated tube in which a plurality of folds are arranged in a zigzag shape in the radial direction. Both ends of the variable volume portion 531 in the radial direction are airtightly fixed to the bottom surface portion 532b of the guide member 532 fixed to the fixed portion 521d and to the surface 533a of the movable member 533, respectively.
  • An opening 521 f of the connection port 521 b fixed to the movable member 533 opens inside the variable volume portion 531 .
  • the opening 521f allows communication between the space Sv and the interior of the connection port 521b.
  • the bottom surface portion 532b and the fixing portion 521d are provided with a pipe line 536 penetrating them in the radial direction.
  • the conduit 536 opens to the inside of the variable volume portion 531 and to the space Sp between the intermediate portion 522b and the inner peripheral surface 21a. Thereby, the conduit 536 allows the space Sp and the space Sv to communicate with each other.
  • the check valve 521c seals the gas in the spaces Sp and Sv. Since the movable member 533 is supported movably in the radial direction, the volume of the space Sv changes according to the position of the movable member 533 . For example, when the movable member 533 moves in the radial direction toward the cylindrical frame portion 521, the variable volume portion 531 contracts in the radial direction, thereby reducing the volume of the space Sv. The gas that cannot enter the space Sv moves to the space Sp through the conduit 536 and expands the intermediate portion 522b. At this time, the internal pressure in the spaces Sv and Sp increases, so the movable member 533 is urged in the direction opposite to the moving direction according to the internal pressure.
  • FIG. 96 is an operation explanatory view of the airtight valve unit used in the endoscope overtube according to the sixth embodiment of the present invention.
  • gas is injected into the variable volume portion 531 so that the sliding contact portion 534a of the probe 534 is kept in contact with the side surface of the endoscope 30. .
  • the intermediate portion 522b of the airtight balloon 522 is brought into close contact with the outer peripheral portion of the endoscope 30 so that airtightness can be maintained.
  • the airtight valve unit 506 satisfies the condition represented by the following formula (6a) using the pressures P 1 , P t , P s and P C shown in FIG.
  • P 1 is the internal pressure of the overtube 501 on the distal end side of the airtight balloon 522 .
  • P t is the pressure due to tension in the airtight balloon 522 .
  • P S is the internal pressure of the spaces Sp and Sv.
  • P C is the pressure corresponding to the biasing force of spring 535 .
  • intermediate portion 522b must be inflated to be airtight by airtight balloon 522, PS must be greater than the sum of P1 and Pt.
  • P1 is predetermined depending on the type of surgery using the overtube 501, the type of lumen into which it is inserted, and the like.
  • Pt is represented by the following formula (6b) based on the distortion of the airtight balloon 522 when inflated.
  • E S is the Young's modulus of the material of the airtight balloon 522
  • L BS is the perimeter length of the airtight balloon 522 when inflated
  • L S is the perimeter length of the airtight balloon 522 before inflation.
  • the “peripheral length” of the airtight balloon 522 is the length of the intermediate portion 522b in the axial cross-section including the central axis of the airtight balloon 522 .
  • PS is determined based on Boyle -Charles' law according to the volume of the gas injected into the variable volume part 531, and is represented by the following formula (6c).
  • V is the volume of the gas injected into the variable volume part 531
  • VS is the volume of the space Sp
  • rb is the inner diameter of the variable volume part 531
  • h is the height of the variable volume part 531
  • p is the atmospheric pressure.
  • the inner diameter of the variable volume portion 531 is an equivalent diameter converted to a cylinder.
  • the average value of the maximum inner diameter and the minimum inner diameter is used.
  • h changes according to the position of the movable member 533 .
  • the position of the movable member 533 is uniquely determined corresponding to the outer diameter of the endoscope 30 with which the probe 534 abuts.
  • the volume variable portion 531 does not elastically deform, so the volume of the space Sv is a function of h.
  • V S is a function of V and h.
  • the inner diameter of intermediate portion 522b is determined by numerical calculations or actual measurements of the expanded shape of the material of intermediate portion 522b. The inner diameter of the intermediate portion 522b is D1 or less when the probe 534 contacts the large diameter portion 30a, and D2 or less when the probe 534 contacts the small diameter portion 30b.
  • P C is represented by the following formula (6c).
  • k is the spring constant of spring 535
  • x is the length of change of spring 535
  • rC is the radius of spring 535.
  • the changed length of the spring 535 is the displacement of the spring 535 from its natural length.
  • the material and shape of the airtight balloon 522, and the volume V of the gas to be injected into the variable volume portion 531 are determined so as to satisfy the expression (6a), as shown in FIG.
  • the intermediate portion 522b of the airtight balloon 522 presses the large-diameter portion 30a, and the circumference of the large-diameter portion 30a is airtightly sealed.
  • the endoscope 30 moves in the axial direction, as shown in FIG. expands further.
  • the inner diameter of the airtight balloon 522 increases as the outer diameter of the outer peripheral portion of the endoscope 30 inserted through the cylindrical frame portion 521 increases, and decreases as the outer diameter decreases.
  • the intermediate portion 522b presses the small-diameter portion 30b, and the periphery of the small-diameter portion 30b is hermetically sealed.
  • the expression (6a) is satisfied in the airtight valve unit 506, so that when the endoscope 30 is inserted, the movable member 533 is positioned at a position where the probe 534 comes into contact with the side surface of the endoscope 30. keep Furthermore, in this state, gas is injected into the variable volume portion 531 so as to satisfy the expression (6a). As a result, the gas moves between the space Sv and the space Sp following changes in the outer diameter of the endoscope 30 detected by the probe 534 . As a result, even if the outer diameter of the endoscope 30 changes, the amount of expansion of the intermediate portion 522b automatically follows the change in the outer diameter of the endoscope 30.
  • the perimeter of mirror 30 is hermetically sealed. This facilitates the insertion and removal of the endoscope 30 and prevents gas and liquid in the body from flowing back to the outside from the airtight valve unit 506 during insertion and removal.
  • the outer diameter of the endoscope 30 is cylindrical.
  • the same airtightness as described above can be obtained by replacing the inflated inner diameter with an equivalent diameter in consideration of the amount of protrusion of the channel tube 15 .
  • the probe 534 is brought into contact with the outer peripheral portion of the endoscope 11 excluding the channel tube 15 .
  • the overtube 501 according to this embodiment is the same as the overtube 1 according to the first embodiment except that it has an airtight valve unit 506, and thus has the same effects as the first embodiment. Therefore, as in the first embodiment, it is possible to provide an endoscope overtube that reduces the burden on the patient and allows smooth operation of the endoscope.
  • the present embodiment when inserting and removing an endoscope having a non-uniform outer diameter, insertion and removal becomes easier, and backflow of gas and liquid in the body can be more reliably prevented during insertion and removal.
  • the cylindrical frame portion 521 in the airtight valve unit 506 is an example of a tubular portion that communicates with the main lumen at the rear end portion of the tube body.
  • Airtight balloon 522 is an example of an airtight balloon fixed to the inner peripheral surface of the tubular portion and expandable toward the inside of the tubular portion.
  • the variable volume part 531 is arranged outside the tubular part so as to communicate with the internal space of the airtight balloon formed between the airtight balloon and the inner peripheral surface, and is resistant to the pressure of the gas flowing from the outside or the internal space.
  • This is an example of a variable volume portion in which at least the height of the outer shape in the radial direction of the tubular portion changes as the volume changes accordingly.
  • the connection port 521b is an example of a gas supply pipe that communicates with the inside of the variable volume portion, allows external gas to flow into the variable volume portion, and has a check valve that prevents the gas from flowing out to the outside.
  • the movable member 533 is an example of a movable member that is supported outside the tubular portion so as to be movable in the radial direction of the tubular portion, and whose position in the radial direction changes according to changes in the height of the variable volume portion.
  • the probe 534 has a slidable contact portion 534a, which is the leading end portion in the extending direction.
  • the probe 534 is a rod-shaped probe that is fixed to a movable member, extends toward the inside of the tubular portion in the radial direction, and abuts on the outer peripheral portion of the endoscope inserted through the tubular portion at the distal end in the extending direction.
  • the spring 535 is an example of a biasing member that biases the movable member radially toward the tubular portion so that the probe and the outer peripheral portion of the endoscope do not separate when the endoscope is inserted through the tubular portion. is.
  • FIG. 97 is a schematic cross-sectional view showing a modification (nineteenth modification) of the airtight valve unit used in the endoscope overtube according to the sixth embodiment of the present invention.
  • FIG. 98 is an operation explanatory diagram of a modified example (19th modified example) of the airtight valve unit. As shown in FIG. 97, an airtight valve unit 506A of this modified example has a variable volume portion 531A instead of the variable volume portion 531 in the sixth embodiment.
  • the variable volume portion 531A is a member similar to the variable volume portion 531 except that the volume of the internal space changes by being elastically deformed by an external force.
  • variable volume portion 531A has rigidity that makes it difficult for the volume to change compared to the airtight balloon 522 .
  • the variable volume part 531A is a cylindrical container with a side wall 531b made of a soft elastomer having higher rigidity than the intermediate part 522b.
  • the variable volume portion 531A is fixed to the surface 533a of the movable member 533 and the bottom surface portion 532b of the guide member 532 with the side wall 531b extending along the radial direction of the tubular frame portion 521 .
  • the opening 521f of the connection port 521b and the pipe line 536 are opened, similarly to the variable volume portion 531.
  • the sidewall 531b is compressed as shown in FIG.
  • the volume of space Sv is reduced.
  • the volume of the space Sv increases.
  • the thickness of the side wall 531b changes as it expands and contracts.
  • side wall 531b is compressed to reduce the inner diameter and stretched to increase the inner diameter. That is, the increase/decrease in the inner diameter of the side wall 531b corresponds to the increase/decrease in length.
  • the airtight valve unit 506A satisfies the following formula (6e) in order to change the space Sp of the intermediate portion 522b following changes in the outer diameter of the endoscope 30.
  • equation (6e) description of variables common to the above equations (6a) to (6d) will be omitted.
  • Pb is the pressure in the radial direction (moving direction of the movable member 533) caused by the elastic deformation of the variable volume portion 531A .
  • Pb is represented by the following formula (6f) based on the distortion of the variable volume portion 531A during compression.
  • Eb is the Young's modulus of the material of the sidewall 531b in the variable volume portion 531A
  • Lb is the natural length of the sidewall 531b
  • ⁇ Lb is the changed length of the sidewall 531b.
  • P t , P S , and P C are represented by formulas (6b), (6c), and (6d), respectively.
  • r b in equation (6c) changes according to the deformation of the variable volume portion 531A.
  • the volume is changed by elastically deforming the volume variable portion 531A. Therefore, in equation (6e), the pressure Pb required for elastic deformation of the variable volume portion 531A is considered as a condition for bringing the probe 534 into contact with the side surface of the endoscope 30. FIG .
  • the overtube 501 having the airtight valve unit 506A of this modified example has the same effect as the overtube 501 according to the sixth embodiment even if the variable volume portion 531A is elastically deformed.
  • variable volume portion 531A is arranged outside the tubular portion so as to communicate with the internal space of the airtight balloon formed between the airtight balloon and the inner peripheral surface, and is resistant to the pressure of the gas flowing from the outside or the internal space.
  • This is an example of a variable volume portion in which at least the height of the outer shape in the radial direction of the tubular portion changes as the volume changes accordingly.
  • FIG. 99 is a schematic cross-sectional view showing a modification (twentieth modification) of the airtight valve unit used in the endoscope overtube according to the sixth embodiment of the present invention.
  • the airtight valve unit 506B of this modified example is the same as the airtight valve unit 506A of the nineteenth modified example except that the spring 535 is omitted. The following description will focus on the differences from the nineteenth modification.
  • variable volume portion 531A functions as an elastic member that urges the movable member 533 in the radial direction toward the cylindrical frame portion 521 .
  • Gas is injected into the variable volume portion 531A, and when the sliding contact portion 534a of the probe 534 comes into contact with the small diameter portion 30b, the intermediate portion 522b airtightly seals the periphery of the small diameter portion 30b and the variable volume portion 531A.
  • a tensile stress is applied to the side wall 531b of the .
  • the movable member 533 is radially biased toward the cylinder frame portion 521 .
  • the probe 534 is pressed radially outward by the large-diameter portion 30a, and the movable member 533 moves radially outward.
  • the variable volume portion 531A is stretched to increase the volume of the space Sv.
  • the gas in the space Sp moves to the space Sv, so that the intermediate portion 522b shrinks and the inner diameter of the intermediate portion 522b expands.
  • the inner diameter of the intermediate portion 522b is enlarged to a size that can hermetically seal the large diameter portion 30a with a small sliding load.
  • Such an airtight valve unit 506B satisfies the following formula (6f).
  • description of variables common to the above equations (6a) to (6d) will be omitted.
  • variable volume portion 531A also functions as a spring 535, and follows changes in the inner diameter of the intermediate portion 522b, the internal pressure of the space Sp, and the outer diameter of the endoscope 30, as in the 19th modification.
  • the overtube 501 having the airtight valve unit 506B of this modification has the same effect as the overtube 501 according to the sixth embodiment even if the variable volume portion 531A is elastically deformed.
  • FIG. 100 is a schematic perspective view showing an example of an endoscope overtube according to the seventh embodiment of the present invention.
  • 101 is a cross-sectional view taken along line F101-F101 in FIG. 100.
  • FIG. 102 is a cross-sectional view taken along line F102-F102 in FIG. 101.
  • FIG. 103 is a cross-sectional view taken along line F103-F103 in FIG. 101.
  • FIG. 101 is a schematic perspective view showing an example of an endoscope overtube according to the seventh embodiment of the present invention.
  • 101 is a cross-sectional view taken along line F101-F101 in FIG. 100.
  • FIG. 102 is a cross-sectional view taken along line F102-F102 in FIG. 101.
  • FIG. 103 is a cross-sectional view taken along line F103-F103 in FIG. 101.
  • An overtube 601 shown in FIG. 100 is an example of an endoscope overtube according to this embodiment.
  • the overtube 601 has the tip 4 removed from the overtube 1 according to the first embodiment, and instead of the fixation balloon 3, the main tube 2, the grip portion 5, the airflow tube 9, and the air supply device 10, It has a tip fixing portion 603 , a main tube 602 (tube body), a grip portion 605 , an airflow tube 609 and an air supply device 610 .
  • FIGS. 100 to 103 show the shape of the distal end fixing portion 603 in the expanded state, as in the first embodiment. The following description will focus on the differences from the first embodiment.
  • the distal end fixing portion 603 in this embodiment has a first fixing portion 617, a second fixing portion 618, a first supporting member 619, and a second supporting member 620.
  • the first fixing section 617 has a tube member 621 and a first balloon 622 (distal balloon).
  • the tube member 621 is a circular tube having an internal space through which the distal end portion of the endoscope that is inserted through the overtube 601 can be inserted.
  • the inner diameter of the inner peripheral surface 621a of the tube member 621 is equal to or larger than the inner diameter of the first lumen 2c in the main tube 602, which will be described later, and is smaller than the inner diameter of the lumen into which the overtube 601 is inserted.
  • the outer diameter of the outer peripheral surface 621b of the tube member 621 is smaller than the inner diameter of the lumen into which the overtube 601 is inserted, and is of a size that facilitates insertion into the lumen to be treated, similar to the main tube 602 described later. .
  • An example in which the outer diameter of the outer peripheral surface 621b is substantially equal to the outer diameter of the main tube 602 described later will be described below.
  • a first balloon 622 which will be described later, is fixed to the outer peripheral surface 621b.
  • the length of the pipe member 621 is not particularly limited as long as both ends in the axial direction of the first balloon 622 described below can be fixed.
  • the length of the tubular member 621 may be 20 mm or more and 70 mm or less.
  • the material of the pipe member 621 may be, for example, the same material as the main tube 2 in the first embodiment.
  • An opening 622f communicating with the internal space of the first support member 619 is formed in the second cylindrical portion 622c at the joint with the first support member 619, which will be described later.
  • the opening 622f is formed of a through hole penetrating through the second cylindrical portion 622c in the thickness direction.
  • the first balloon 622 airtightly covers the outer peripheral surface 621b of the tubular member 621 .
  • the first balloon 622 is formed in the same manner as the fixation balloon 3 in the first embodiment except that it has an axial length for airtightly covering the outer peripheral surface 621b.
  • the first balloon 622 has a second cylindrical portion 622c instead of the second cylindrical portion 3c of the fixation balloon 3. As shown in FIG.
  • the length of the second cylindrical portion 622c in the axial direction may be, for example, 10 mm or more and 60 mm or less.
  • the first cylindrical portion 3a and the third cylindrical portion 3e of the first balloon 622 are formed on the outer peripheral surface 621b in the same manner as the first cylindrical portion 3a and the third cylindrical portion 3e of the fixing balloon 3 in the first embodiment. Fixed. As a result, a space S61 through which gas can flow through the opening 622f is formed inside the first balloon 622 whose inner peripheral portion is closed by the outer peripheral surface 621b.
  • the gas is not particularly limited, but hereinafter, unless otherwise specified, an example in which the gas is air will be described. Similar to the fixing balloon 3, the first balloon 622 can be expanded in diameter as shown in FIG. take.
  • the second fixing portion 618 is formed by a second balloon 623 (fixing balloon) fixed to the distal end portion of the main tube 602, which will be described later.
  • the second balloon 623 hermetically covers the outer peripheral surface 2d of the main tube 602 .
  • the second balloon 623 is formed similarly to the fixation balloon 3 in the first embodiment, except that it may have a different axial length than the fixation balloon 3 .
  • the second balloon 623 has a second cylindrical portion 623c instead of the second cylindrical portion 3c of the fixation balloon 3 .
  • the length of the second cylindrical portion 623c in the axial direction may be, for example, 10 mm or more and 60 mm or less.
  • the first cylindrical portion 3a and the third cylindrical portion 3e of the second balloon 623 are formed on the main tube 602 in the same manner as the first cylindrical portion 3a and the third cylindrical portion 3e of the fixing balloon 3 in the first embodiment. It is fixed to the outer peripheral surface 2d.
  • a space S62 is formed inside the second balloon 623 closed by the outer peripheral surface 2d of the main tube 602.
  • the space S62 communicates with the second lumen 2e through an opening 2f formed in the main tube 602 similarly to the first embodiment so as to communicate with the second lumen 2e.
  • the second balloon 623 assumes a diameter-expanded state as shown in FIG. 101 and a diameter-reduced state (not shown) according to the internal pressure of the space S62.
  • the internal pressure of the space S62 is determined by the amount of air supplied from the second lumen 2e through the opening 2f.
  • the first support member 619 consists of a tube with a closed tip 619c. Inside the first support member 619, an air supply lumen 619a extending in the longitudinal direction of the first support member 619 is formed. The air supply lumen 619a distributes air for expanding and contracting the first balloon 622 to the space S61. An opening 619 b is formed in the air supply lumen 619 a at a position facing the opening 622 f of the first balloon 622 at the distal end of the first support member 619 . The opening 622f and the opening 619b allow the air supply lumen 619a and the space S61 to communicate with each other.
  • the first support member 619 has a front end portion 619A and a rear end portion 619B (air supply tube).
  • the distal end portion 619A of the first support member 619 connects the second cylindrical portion 622c of the first balloon 622 and the second cylindrical portion 623c of the second balloon 623 in the axial direction.
  • the tip portion 619A is joined to the outside of the second cylindrical portion 622c and the second cylindrical portion 623c.
  • the joining method of the tip portion 619A is not particularly limited.
  • the tip portion 619A may be joined to the second cylindrical portion 622c and the second cylindrical portion 623c by gluing, welding, or the like.
  • the tip portion 619A is joined to the second cylindrical portion 622c and the second cylindrical portion 623c across the entirety of the second cylindrical portion 622c and the second cylindrical portion 623c in the axial direction.
  • the tip portion 619A may be joined to a portion of the second cylindrical portion 622c and the second cylindrical portion 623c at one or more points in the axial direction.
  • a distal end portion 619A of the first support member 619 connects the first balloon 622 and the second balloon 623 such that the first balloon 622 and the second balloon 623 are separated from each other by a certain distance in the axial direction.
  • the distance in the axial direction between the first balloon 622 and the second balloon 623 is the distance between the first balloon 622 and the second balloon 623 necessary for surgery performed with an endoscope inserted through the overtube 601 . It is the distance that secures the size of the field.
  • the distance Lf in the axial direction from the rear end 621c of the tubular member 621 to the distal end 602g of the main tube 602 is longer than the length of the curved portion 17 .
  • the overtube 601 is used for endoscopic full-thickness resection of the intestinal wall of the large intestine, a necessary surgical field can be secured if the distance Lf is 70 mm or more and 120 mm or less.
  • the rear end portion 619B has a length extending from the rear end of the front end portion 619A fixed to the second balloon 623 to the rear end side of the overtube 601 beyond the second balloon 623 .
  • rear end portion 619B extends along main tube 602 to grip portion 605 .
  • the arrangement of the rear end portion 619B will be described later in the description of the main tube 602.
  • the rear end portion 619B does not need to extend to the grip portion 605 as long as an air supply channel for supplying air to the first balloon 622 can be formed.
  • an air supply tube extending along the main tube 602 to the grip portion 605 is connected to the rear end of the rear end portion 619B.
  • the insufflation tube has a longitudinally extending insufflation lumen.
  • the air supply tube is connected to the rear end of the rear end portion 619B so that its air supply lumen communicates with the air supply lumen 619a of the first support member 619.
  • the length of the rear end portion 619B is not particularly limited.
  • the rear end 619B may be long enough to form a connection with an insufflation tube.
  • An example in which the rear end portion 619B of the first support member 619 extends to the grip portion 605 as shown in FIG. 100 will be described below.
  • the outer diameter and inner diameter of the leading end portion 619A and the trailing end portion 619B may be equal to or different from each other.
  • the rear end portion 619B has an outer diameter smaller than the inner diameter of an insertion lumen provided in the main tube 602, which will be described later.
  • the outer diameter of the rear end portion 619B may be 1 mm or more and 4 mm or less.
  • the inner diameters of the front end portion 619A and the rear end portion 619B are not particularly limited as long as air can be supplied without any trouble.
  • the inner diameters of the leading end portion 619A and the trailing end portion 619B may be 0.5 mm or more and 2 mm or less.
  • the material of the first support member 619 is not particularly limited as long as it has flexibility to the extent that the flexibility of the main tube 602, which will be described later, is not impaired.
  • suitable materials for the first support member 619 include PTFE (polytetrafluoroethylene), polycarbonate, and the like.
  • the second support member 620 axially connects the second cylindrical portion 622c of the first balloon 622 and the second cylindrical portion 623c of the second balloon 623 at positions different in the circumferential direction from the first support member 619. .
  • three second support members 620 are provided at positions that equally divide the second cylindrical portion 622c and the second cylindrical portion 623c in the enlarged diameter state into quarters along with the first support member 619 in the circumferential direction. It is Each second support member 620 is joined to the second cylindrical portion 622c and the second cylindrical portion 623c from the outside in the same manner as the tip portion 619A of the first support member 619. As shown in FIG.
  • Each second support member 620 connects the first balloon 622 and the second balloon 623 to each other with a certain distance in the axial direction, similarly to the distal end portion 619A of the first support member 619 .
  • each second support member 620 does not have an air supply function.
  • Each second support member 620 may be, for example, a solid bar.
  • the length of each second support member 620 is not particularly limited as long as the first balloon 622 and the second balloon 623 can be connected in the same manner as the first support member 619 .
  • each second support member 620 is joined to the second cylindrical portion 622c and the second cylindrical portion 623c across the entirety of the second cylindrical portion 622c and the second cylindrical portion 623c in the axial direction. there is However, if the required joint strength is obtained, each second support member 620 may be joined to a portion of the second cylindrical portion 622c and the second cylindrical portion 623c at one or more points in the axial direction.
  • the main tube 602 is the same as the main tube 2 in the first embodiment, except that an insertion lumen 602e is formed in the thick portion 2b of the main tube 2 in the first embodiment.
  • the insertion lumen 602e allows the first support member 619 extending to the rear end side of the second balloon 623 to be inserted.
  • the insertion lumen 602e penetrates the main tube 602 in the axial direction.
  • the insertion lumen 602e is parallel to the second lumen 2e at the thick portion 2b of the main tube 602 .
  • an opening 602f for inserting the first support member 619 into the insertion lumen 602e is provided at the distal end of the insertion lumen 602e at a position away from the second balloon 623 on the rear end side. is formed.
  • the rear end portion 619B of the first support member 619 is inserted through the insertion lumen 602e through the opening 602f, and communicates with the internal conduit of the grip portion 605, which will be described later, at the rear end of the insertion lumen 602e.
  • the manufacturing method of the distal end fixing portion 603 is not particularly limited, but it can be manufactured as follows, for example.
  • a first balloon 622 is joined to the tubular member 621 and a second balloon 623 is joined to the distal end of the main tube 602 .
  • the rear end portion 619B of the first support member 619 is inserted from the opening 602f of the main tube 602 toward the rear end.
  • the front end portion 619A of the first support member 619 is aligned with the joint portion between the first balloon 622 and the second balloon 623. , respectively.
  • the first support member 619 is arranged such that the opening 619b and the opening 622f of the first balloon 622 face each other and the opening 619b and the opening 622f communicate airtightly.
  • Distal end 619A is joined to first balloon 622 around opening 619b and opening 622f.
  • each second support member 620 is connected to the second support member 620 and the second balloon 623 . 1 balloon 622 and second balloon 623 are joined.
  • the first support member 619 may be joined as described above.
  • the grip portion 605 has a connector 605c instead of the first luer connector 5c of the grip portion 5 in the first embodiment.
  • the connector 605c detachably connects a first connecting tube and a second connecting tube respectively communicating with the first flow path and the second flow path formed inside the grip portion 605 to an air flow tube 609 described later.
  • the first flow path allows the second lumen 2e (see FIG. 101) of the main tube 602 and the first connecting tube to communicate with each other.
  • the second channel communicates the air supply lumen 619a of the first support member 619 and the second connection pipe with each other.
  • the grip portion 605 and the rear end portion of the main tube 602 are connected to each other in the same manner as the grip portion 5 and the rear end portion of the main tube 2 in the first embodiment.
  • Airflow tube 609 extends from insufflation device 610 .
  • a connector 609 a is provided at the tip of the airflow tube 609 to detachably connect to the first connecting tube and the second connecting tube of the grip portion 605 .
  • the airflow tube 609 has two independent flow paths that communicate with the first connecting pipe and the second connecting pipe, respectively. Thereby, the airflow tube 609 connected to the connector 605c forms independent air flow paths between the second lumen 2e and the air supply lumen 619a and the air supply device 610, respectively.
  • the air supply device 610 supplies air for expanding the diameters of the first balloon 622 and the second balloon 623, and sucks the air inside the first balloon 622 and the second balloon 623 as necessary. , is the same as the insufflation device 10 in the first embodiment.
  • the air supply device 610 can independently change the amount of air flowing through the two channels of the airflow tube 609 based on the operator's operation.
  • a means for changing the amount of air is not particularly limited.
  • the air supply device 610 may have two systems of air supply units and a flow control unit that changes the flow rate of air in each of the air supply units according to the operator's operation.
  • the air supply device 610 includes a single air supply unit, a flow control unit that changes the air flow rate in the air supply/intake unit according to the operator's operation, and a channel switching valve for the two channels. may have In this case, air can be supplied to and sucked from the flow path of the airflow tube 609 that is communicated by switching the flow path switching valve.
  • the air supply/intake portion of the air supply device 610 may be an electric pump or a manual pump as in the first embodiment. In the case of a manual pump, the air supply device 610 may be any air supply device including the manual air supply mechanism 211 in each of the embodiments and modifications described above, for example.
  • the flow path switching valve is not limited to the configuration for switching the flow path of the airflow tube 609 .
  • a channel switching valve may be provided on an appropriate channel between the connector 605c and the air supply device 610. In this case, in the airflow tube 609, the channel closer to the air supply device 610 than the channel switching valve should have one channel.
  • FIG. 104 is a schematic diagram showing an example of endoscopic full-thickness resection using a conventional overtube.
  • ESD which uses an endoscope to resect the submucosa in a patient's lumen
  • ESD is inadequate, for example in the treatment of advanced cancer, and requires full-thickness resection of the lumen.
  • full-thickness resection under an endoscope enables less invasive surgery.
  • 104(a), (b), and (c) show treatment of the large intestine C by an endoscope 11 passing through a conventional overtube 40 having a fixing balloon 3 similar to that of the first embodiment at its tip.
  • the step of excising the site Ts in full thickness is schematically depicted.
  • an overtube 40 is inserted into the large intestine C near the treatment site Ts.
  • the overtube 40 is fixed to the large intestine C by expanding the fixation balloon 3 .
  • the operator inserts the endoscope 11 through the overtube 40 and places the distal end of the endoscope 11 in the vicinity of the treatment site Ts. In this state, the operator inflates the large intestine C by supplying air from the endoscope 11 . As a result, a surgical field is secured in front of the fixation balloon 3 .
  • the operator uses the treatment tool passed through the treatment tool channel of the endoscope 11 to perform full-thickness excision of the treatment site Ts together with the surrounding intestinal wall Cw. .
  • an opening Ch is formed in the intestinal wall Cw.
  • the air inside the large intestine C leaks out from the cut portion.
  • the large intestine C is crushed by body pressure from the outside as shown in (c).
  • (b) is a schematic diagram, and is depicted as if the operative field is secured when the opening Ch is formed. The surgical field then begins to shrink rapidly, making it difficult for the operator to continue the resection procedure. Even if the full-thickness excision can be completed, it becomes difficult to suture the opening Ch after the excision.
  • FIG. 105 is a schematic diagram showing an example of how to use the endoscope overtube according to the seventh embodiment of the present invention.
  • 106 is an enlarged view of the F106 portion in FIG. 105.
  • FIG. FIG. 107 is a schematic diagram showing an example of how to use the endoscope overtube according to the seventh embodiment of the present invention.
  • the detailed shapes of the endoscope cap 13, the grasping device 14, the channel tube 15, etc. of the endoscope 11 are omitted for the sake of clarity. The same applies to the endoscope 11 in other drawings in this embodiment.
  • the overtube 601 is prepared.
  • the prepared overtube 601 is the same as the overtube 1 used for ESD in the first embodiment, except that the distal end fixing portion 603 is reduced in diameter like the fixation balloon 3 .
  • the following description focuses on points that differ from the method of using the overtube 1 described in the first embodiment.
  • the air in the space S61 inside the first balloon 622 is sucked out by the air supply device 610 . Therefore, the first balloon 622 is folded in the same manner as the fixing balloon 3 in the reduced diameter state in the first embodiment, and is close to the outer peripheral surface 2 d of the main tube 602 . As a result, the outer diameter of the first fixing portion 617 is reduced to substantially the same diameter as the outer diameter of the main tube 602 on which the fixing balloon 3 is not provided. This state is hereinafter referred to as the diameter-reduced state of the first balloon 622 . Furthermore, in the overtube 601 , the air in the space S62 inside the second balloon 623 is sucked out by the air supply device 610 .
  • the second balloon 623 is folded like the first balloon 622 and is close to the outer peripheral surface 2 d of the main tube 602 .
  • the outer diameter of the second fixing portion 618 is reduced to approximately the same diameter as the outer diameter of the main tube 602 .
  • This state is hereinafter referred to as the diameter-reduced state of the second balloon 623 .
  • the airtight valve unit 6 is made so that the insertion portion of the endoscope 11 can be inserted with low resistance, as in the first embodiment.
  • the operator inserts the tip of the endoscope 11 inside the airtight valve unit 6 of the overtube 601 . Thereafter, the insertion portion of the endoscope 11 is passed through the grip portion 605, the first lumen 2c of the main tube 602, and the inner peripheral surface 621a of the pipe member 621, and the insertion portion of the endoscope 11 is passed through the pipe member. Extend from 621.
  • the operator places the overtube 601 outside the patient's body, and inserts the insertion portion of the endoscope 11 protruding from the overtube 601 into the large intestine C from the anus, as in the first embodiment. After the treatment site Ts appears in the image acquired by the endoscope 11, the operator stops inserting the endoscope 11 (see FIG. 105).
  • the operator inserts the overtube 601 into the large intestine C from the anus along the insertion portion of the endoscope 11 .
  • air can be supplied from the airtight valve operating tube 7 to the airtight valve unit 6 (not shown) to bring the intermediate portion 22b into close contact with the outer peripheral portion of the endoscope 11, as in the first embodiment.
  • the gap between the outer peripheral portion of the endoscope 11 and the airtight valve unit 6 is sealed airtight and liquidtight by the airtight valve unit 6 .
  • the intermediate portion 22b of the airtight valve unit 6 also moves distally together with the overtube 601 .
  • the airtight valve unit 6 (not shown) may be omitted.
  • the first fixing portion 617 in the distal end fixing portion 603 is connected to the second fixing portion 618 by the first supporting member 619 and the second supporting member 620 having flexibility. Therefore, by bending the first support member 619 and the second support member 620, the distal end fixing portion 603 can smoothly move along the bending portion and the bending portion of the endoscope 11 inserted in a bent state. .
  • the outer diameter of the distal end fixing portion 603 is approximately the same as the outer diameter of the main tube 602, and is equal to the inner diameter of the intestinal wall Cw. small enough for In the diameter-reduced state, the first support member 619 and the second support members 620 extend in the axial direction of the overtube 601 at the outermost peripheral portion of the distal end fixing portion 603 .
  • the first support member 619 and the second support members 620 of the distal end fixing portion 603 are is in linear contact with the intestinal wall Cw as a linear body extending in the moving direction, so the sliding resistance with the intestinal wall Cw is reduced. Further, the tip portion 619A of the first support member 619 and each of the second support members 620 protrude further to the outer peripheral side than the rear end 621c of the pipe member 621 and the tip 602g of the main tube 602.
  • the distal end portion 619A of the first support member 619 or the second support member 620 contacts the intestinal wall Cw first, so that the rear end 621c and the distal end 602g contact the intestinal wall Cw while the overtube 601 is moving. is suppressed. In this respect as well, the sliding resistance is reduced and the load on the patient is reduced.
  • the operator inserts the overtube 601 until the distal end fixing portion 603 is positioned near the rear end of the distal end portion 12 of the endoscope 11, as indicated by a two-dot chain line in FIG. After that, as shown in FIG. 107, the operator pushes the overtube 601 further distally so that the tip portion 12 is positioned between the first fixing portion 617 and the second fixing portion 618 .
  • FIG. 109 is an enlarged view of the F108 portion in FIG. 107.
  • FIG. 109 to 110 are cross-sectional views showing an example of how to use the endoscope overtube according to the seventh embodiment of the present invention.
  • the operator looks at the image from the endoscope 11, and when the first balloon 622 and the second balloon 623 are expanded in diameter, the distal end portion 619A of the first support member 619 and the second balloon 623 are expanded. It is confirmed whether any one of the two support members 620 is located across the treatment site Ts.
  • the operator must use the overtube 601 outside the body. is rotated in the circumferential direction to shift the positions of the tip portion 619A of the first support member 619 and the second support member 620 in the circumferential direction. At this time, the operator fixes the endoscope 11 and rotates the grip portion 605 of the overtube 601 around the endoscope 11 . At this time, the intermediate portion 22b of the airtight valve unit 6 (not shown) can rotate smoothly along the outer periphery of the endoscope 11 while maintaining airtightness and liquidtightness.
  • Rotation of the grip part 605 is transmitted to the distal end fixing part 603 according to the torsional rigidity of the main tube 602 .
  • the distal end portion 619A of the first support member 619 and the second support member 620 rotate in the same direction as the grip portion 605 rotates.
  • the circumferential position adjustment of the distal end fixing portion 603 may be performed after the diameters of the first balloon 622 and the second balloon 623 are expanded to near the inner diameter of the intestinal wall Cw. In this case, even if the distal end fixing portion 603 moves around during rotation, the outer peripheral portions of the first balloon 622 and the second balloon 623 slide smoothly on the inner surface of the intestinal wall Cw. Circumferential position adjustment can be performed in a state in which the center is substantially aligned with the center of the intestinal wall Cw.
  • the first support in the expanded diameter state is achieved. Displacement in the circumferential direction of the distal end portion 619A of the member 619 and the second support member 620 is unlikely to occur.
  • the operator After completing the circumferential position adjustment of the distal end fixing portion 603, the operator operates the air supply device 610 to supply air to the first balloon 622 and the second balloon 623 to inflate them. At this time, the air from the air supply device 610 is independently supplied to the first balloon 622 and the second balloon 623 according to the configuration of the air supply device 610 . When the first balloon 622 and the second balloon 623 are sufficiently inflated, each comes into contact with the inner surface of the intestinal wall Cw.
  • the distal end fixing portion 603 is fixed to the intestinal wall Cw to such an extent that it does not easily move relative to the large intestine C. As shown in FIG.
  • the first balloon 622 and the second balloon 623 may be inflated simultaneously, or may be inflated with a time lag.
  • inflating with a time lag it is more preferable to inflate the first balloon 622 on the distal side and then inflate the second balloon 623 on the proximal side.
  • the operator may pull the main tube 602 proximally and then inflate the second balloon 623.
  • the distance between the tip 602g of 602 becomes shorter than Lf, and the surgical field in the axial direction becomes narrower.
  • the distance between trailing edge 621c and leading edge 602g can be restored up to Lf.
  • the tip fixing part 603 When the tip fixing part 603 is fixed to the intestinal wall Cw, it is surrounded by the first supporting member 619 and the second supporting members 620 inside the intestinal wall Cw between the first fixing part 617 and the second fixing part 618.
  • a space Sf is formed.
  • the distal end portion 12 of the endoscope 11 and the treatment tool M extending from the treatment tool channel of the distal end portion 12 are movable inside the space Sf.
  • a high-frequency knife may be used as the treatment tool M.
  • the space Sf forms an operating field for performing full-thickness resection.
  • the intestinal walls Cw on the distal and proximal sides of the space Sf are radially supported by the first balloon 622 and the second balloon 623 .
  • the intestinal wall Cw expands to a size equal to the outer diameters of the first balloon 622 and the second balloon 623 .
  • the distal end portion 619A of the first support member 619 and the second support member 620 are stretched. Therefore, the intestinal wall Cw between the first balloon 622 and the second balloon 623 is radially supported by the distal end portion 619A of the first support member 619b and the second support members 620.
  • the space Sf can have a constant volume without being expanded by introducing air.
  • treatment can be performed without sending air into the large intestine C to inflate the large intestine C, so that the burden on the patient can be reduced.
  • the operator uses, for example, the treatment tool M projected from the endoscope 11 to resect the entire thickness of the intestinal wall Cw around the treatment site Ts.
  • the treatment tool M projected from the endoscope 11 uses, for example, the treatment tool M projected from the endoscope 11 to resect the entire thickness of the intestinal wall Cw around the treatment site Ts.
  • the gas and liquid in the large intestine C leak to the outside of the large intestine C, so the large intestine C is pressed from the outside.
  • the intestinal wall Cw is supported from the inside by the distal end fixing portion 603, it will not collapse. For example, even if the space Sf is reduced, a polygonal cross-sectional shape with the first support member 619 and each of the second support members 620 as vertices is ensured.
  • the operator After completing all necessary procedures for endoscopic full-thickness resection, the operator operates the air supply device 610 to suck out the air in the first balloon 622 and the second balloon 623 . As a result, the diameters of the first balloon 622 and the second balloon 623 are reduced. After that, the operator pulls out the endoscope 11 and the overtube 601 from the anus. Endoscopic full-thickness resection using the overtube 601 is thus completed.
  • the overtube 601 may be used for treatments other than endoscopic full-thickness resection as long as it is an endoscopic treatment that can be performed using the space Sf as an operating field.
  • it may be used for ESD, EMR (endoscopic mucosal resection), polypectomy, and the like.
  • An overtube 601 according to this embodiment is different from the overtube 1 according to the first embodiment mainly in that it has a distal end fixing portion 603 instead of the fixing balloon 3 .
  • the difference between the main tube 2, the grip portion 5, the airflow tube 9, and the air supply device 10 and the main tube 602, the grip portion 605, the airflow tube 609, and the air supply device 610 in this embodiment is that the distal end fixing portion 603 is It arises by having a first balloon 622 and a second balloon 623 . Therefore, the overtube 601 is similar to the overtube 1 except that it has a first balloon 622 , a second balloon 623 , a first support member 619 , and a second support member 620 instead of the fixation balloon 3 .
  • the distal end fixing portion 603 is provided, even if a through-hole is formed in the inner wall of the lumen to be treated in front of the main tube 602, the space Sf serving as the surgical field can be formed.
  • Various procedures are readily performed, including endoscopic full-thickness resection.
  • a modification (21st modification) in the method of using the overtube 601 will be described.
  • 111 to 113 are cross-sectional views showing a modification (21st modification) of the method of using the endoscope overtube according to the seventh embodiment of the present invention.
  • This modification is a modification relating to the method of inserting the overtube 601 .
  • the points different from the seventh embodiment will be mainly described.
  • the overtube 601 is such that the bending portion 17 and the distal end portion 12 of the endoscope 11 protrude distally from the tubular member 621 of the first fixing portion 617.
  • the endoscope 11 is inserted and prepared.
  • the distal end fixing portion 603 of the overtube 601 is in a diameter-reduced state similar to that of the seventh embodiment.
  • the overtube 601 is inserted into the large intestine C from the patient's anus together with the endoscope 11 while maintaining a constant amount of protrusion of the endoscope 11 from the tubular member 621 .
  • the operator stops inserting the endoscope 11 and the overtube 601 as shown in FIG.
  • This state is substantially the same as the state in which the overtube 601 is inserted close to the treatment site Ts in the seventh embodiment (see two-dot chain line in FIG. 105).
  • the operator moves the overtube 601 further distally so that the distal end portion 12 is positioned between the first fixing portion 617 and the second fixing portion 618. push in. After that, as shown in FIG.
  • the operator inflates the first balloon 622 and the second balloon 623 of the distal end fixing section 603 to move the distal end fixing section 603 to the large intestine in the same manner as in the seventh embodiment. Fix to the inner wall of C. Thereafter, the operator performs necessary treatment and removal of the endoscope 11 and overtube 601 after the treatment in the same manner as in the seventh embodiment.
  • this modified example only the method of inserting the overtube 601 is different, so the treatment after insertion is performed in the same manner as for the overtube 601 . Therefore, this modified example has the same effect as the seventh embodiment.
  • the overtube 601 is inserted into the lumen to be treated together with the endoscope 11, the lengths of both the endoscope 11 and the overtube 601 are adjusted from the insertion port to the position of the treatment target. It should be slightly longer than the length up to Therefore, compared to the case where the endoscope 11 is placed near the treatment target and then the overtube 601 is inserted using the endoscope 11 as a guide, the length of the endoscope 11 can be shortened.
  • FIG. 114 is a cross-sectional view showing a modification (22nd modification) of the distal end fixing portion used in the endoscope overtube of the seventh embodiment of the present invention.
  • FIG. 115 is a cross-sectional view showing the action of the modified example (22nd modified example) of the distal end fixing portion.
  • the distal end fixing portion 603A is similar to the distal end fixing portion 603 except that the first support member 619 and the second support members 620 are arranged differently in the circumferential direction.
  • the first support member 619 and each of the second support members 620 in the distal end fixing portion 603A are arranged at positions that do not equally divide the circumferential direction of the second cylindrical portion 622c of the first balloon 622 in the expanded diameter state.
  • the central angles of the circumferential arrangement of the first support member 619 and each of the second support members 620 measured clockwise from the first support member 619 are, for example, ⁇ 1, ⁇ 1, ⁇ 1, and ⁇ 2. where 3 ⁇ 1+ ⁇ 2 equals 360° and ⁇ 2 is an acute angle. This makes ⁇ 1 greater than ⁇ 2.
  • the distance between the distal end portion 619A of the first support member 619 and the second support member 620, which are adjacent to each other in the circumferential direction, and the second support members 620, which are adjacent to each other in the circumferential direction, is the center angle of each. proportional.
  • the circumferential distance between the distal end portion 619A and the second support member 620 and the second support members 620 is a circle because they are separated by the central angle ⁇ 1.
  • a wide opening Ow wider than a quarter of the circumference is formed respectively.
  • an opening On is formed with a narrower interval in the circumferential direction than the wide opening Ow.
  • the distal end fixing section 603A when rotating the distal end fixing section 603A to a position where the distal end portion 619A of the first support member 619 and the second support member 620 do not straddle the treatment site Ts, the treatment site Ts is moved by 3 degrees.
  • the distal end fixing portion 603A is rotated so as to face one of the two wide openings Ow.
  • the distal end fixing portion 603A can be arranged so as not to straddle the treatment site Ts and have a size exceeding a quarter of the inner peripheral surface of the intestinal wall Cw. Furthermore, as shown in FIG.
  • the treatment site Ts when the treatment site Ts has a size that does not exceed a quarter of the inner peripheral surface of the lumen, the treatment site Ts can be placed more freely in the wide opening Ow. Even if the rotation accuracy of the fixing part 603A is low, it is easy to arrange the treatment site Ts at a position not straddling it, for example, as indicated by the two-dot chain line. Therefore, redoing of the fixing operation of the distal end fixing portion 603A can be reduced. According to the distal end fixing portion 603A, the distal end fixing portion 603A can be quickly fixed so as not to straddle various treatment sites Ts, which facilitates operator's operation.
  • the distal end fixing portion 603A of this modified example is different from the distal end fixing portion 603 of the seventh embodiment except that the distal end portion 619A of the first support member 619 and the second support members 620 have different circumferential intervals. It is the same. Therefore, the overtube 601 having the distal end fixing portion 603A has the same function as in the seventh embodiment.
  • the distal end fixing portion 603A of this modified example is positioned so as to avoid the treatment site Ts so that the first support member 619 and each second support member 620 do not straddle various treatment sites Ts. Since it can be quickly fixed, it is easy for the operator to quickly perform the procedure.
  • FIG. 116 is a schematic cross-sectional view showing a modification (twenty-third modification) of the distal end fixing portion used in the endoscope overtube according to the seventh embodiment of the present invention.
  • 117 is a cross-sectional view taken along line F117-F117 in FIG. 116.
  • FIG. FIG. 118 is a schematic cross-sectional view showing an example of a diameter-reduced state of a modification (twenty-third modification) of the distal end fixing portion.
  • the distal end fixing portion 603B is similar to the distal end fixing portion 603 except that it has a first fixing portion 617B instead of the first fixing portion 617 of the distal end fixing portion 603 in the seventh embodiment. It is the same. In the following, the points different from the seventh embodiment will be mainly described.
  • the first fixing portion 617B has a first balloon 622B instead of the first balloon 622 and the tube member 621 in the first fixing portion 617.
  • the first balloon 622B has a first cylindrical surface portion 622g, a second cylindrical surface portion 622c, a front end surface portion 622b, and a rear end surface portion 622d.
  • the first balloon 622B indicated by solid lines in FIGS. 116 and 117 is in an enlarged diameter state in which the outer diameter of the first balloon 622B is enlarged to a state in which it can be fixed to the lumen to be treated (hereinafter referred to as expanded diameter when fixed). state).
  • the shape of the first balloon 622B indicated by two-dot chain lines in FIGS.
  • the first balloon 622B has an annular shape when viewed from the axial direction.
  • the shape of the first balloon 622B in the naturally expanded state will be described.
  • the first cylindrical surface portion 622g has a substantially cylindrical shape extending in the axial direction toward the center of the first balloon 622B.
  • the inner diameter of the first cylindrical surface portion 622g is the same as that of the inner peripheral surface 621a of the pipe member 621 . Therefore, the endoscope 11 can be inserted through the inside of the first cylindrical surface portion 622g.
  • the second cylindrical portion 622c has the same cylindrical shape as the first balloon 622 in the seventh embodiment, and is arranged coaxially with the first cylindrical surface portion 622g. An opening 622f similar to that of the first balloon 622 is engaged with the second cylindrical portion 622c.
  • the outer diameter of the second cylindrical portion 622c is larger than the outer diameter of the outer peripheral surface 621b, and is not particularly limited as long as it is a size that allows expansion beyond the outer diameter that can be fixed in the lumen to be treated.
  • the tip surface portion 622b extends radially and circumferentially between the tips of the first cylindrical surface portion 622g and the second cylindrical portion 622c.
  • the rear end surface portion 622d extends radially and circumferentially between the respective rear ends of the first cylindrical surface portion 622g and the second cylindrical portion 622c.
  • a ring-shaped space S63 is formed inside the first balloon 622B having such a configuration in a naturally expanded state.
  • the distal end portion 619A of the first support member 619 and the three second support members 620 are fixed.
  • the opening 622f of the first balloon 622B communicates with the opening 619b of the first support member 619 while keeping the surrounding airtight.
  • air can be supplied from the air supply device 610 and air can be inhaled using the air supply device 610 through the air supply lumen 619a of the first support member 619 inside the first balloon 622B.
  • a material similar to that of the first balloon 622 may be used as the material of the first balloon 622B.
  • the first balloon 622B expands and contracts according to the amount of air that is supplied to the inside of the first balloon 622B from the opening 622f. For example, when atmospheric pressure air having a volume equal to the volume of the first balloon 622B is supplied, the first balloon 622B is naturally expanded. When air is further supplied, the diameter of the first balloon 622B expands to a size that balances with the atmospheric pressure. For example, as shown in FIG. 117, the second cylindrical portion 622c expands from the cylinder indicated by the dashed line to a substantially cylindrical shape with a larger diameter. On the other hand, since the first cylindrical surface portion 622g expands radially inward, it deforms such that the inner diameter of the tip surface portion 622b is reduced.
  • the inner opening of the first cylindrical surface portion 622g is radially crushed according to the pressure balance during air supply.
  • the through-hole in the axial direction of the first balloon 622B is closed in the diameter-expanded state when fixed.
  • the first cylindrical surface portion 622g of the first balloon 622B is flattened in the vertical direction in the drawing in the diameter expanded state at the time of fixation, and is linearly closed.
  • the way the first cylindrical surface portion 622g is crushed is not limited to the horizontal line as shown in the drawing, and may be, for example, a vertical line, a cross, or a radial shape.
  • the folded second cylindrical portion 622c is in close contact with the outer circumference of the first cylindrical surface portion 622g.
  • the tip portion 619A fixed to the second cylindrical portion 622c and each of the second support members 620 are close to the outer peripheral portion of the first cylindrical surface portion 622g together with the second cylindrical portion 622c.
  • the first fixing portion 617B is contracted into a cylindrical shape having a slightly larger diameter than the inner diameter of the first cylindrical surface portion 622g in the naturally expanded state.
  • a through hole extending in the axial direction is formed inside the cylindrical first cylindrical surface portion 622g at the center portion of the first fixing portion 617B in a diameter-reduced state.
  • the inner diameter of the through-hole is equal to the inner diameter of the first cylindrical surface portion 622g in the naturally expanded state.
  • the distal end fixing portion 603B of this modified example is the same as the distal end fixing portion 603 except that it has a first fixing portion 617B instead of the first fixing portion 617, and thus has the same effects as in the seventh embodiment.
  • the distal end fixing portion 603B of this modified example has a cylindrical shape with a diameter slightly larger than the inner diameter of the first cylindrical surface portion 622g. Therefore, in the diameter-reduced state, it can be inserted into and removed from the lumen to be treated along or together with the endoscope 11 in the same manner as the overtube 601 having the distal end fixing portion 603 .
  • the first fixing portion 617B is formed by the first balloon 622B, the first cylindrical portion 3a and the third cylindrical portion 3e for fixing to the pipe member 621 are unnecessary. Furthermore, the pipe member 621 for fixing the first cylindrical portion 3a and the third cylindrical portion 3e is also unnecessary. Therefore, the first fixing portion 617B can have a smaller thickness in the axial direction than the first fixing portion 617 does. Thereby, even if the width of the second cylindrical portion 622c is the same, the axial thickness of the first fixing portion 617B is smaller than that of the first fixing portion 617. As shown in FIG. In this modified example, the thickness of the first fixing portion 617B in the axial direction can be made thinner than that of the first fixing portion 617.
  • the bending portion and the bending portion of the endoscope 11 are more flexible. can move along the endoscope 11 more smoothly when the radius of curvature of is small. Furthermore, since the pipe member 621 becomes unnecessary, the number of parts can be reduced. This makes it possible to reduce the weight of the distal end fixing portion 603B and the cost of parts.
  • the central through-hole of the first fixing portion 617 is closed in the expanded diameter state for fixing the distal end fixing portion 603B to the lumen to be treated.
  • the surgical field between the first fixing part 617B and the second fixing part 618 is isolated from the lumen on the more distal side, so that the distal lumen is less likely to be affected by the treatment. .
  • the overtube 601 having the distal end fixing portion 603B When the overtube 601 having the distal end fixing portion 603B is removed from the lumen, air is sucked from the space S63 to form a diameter-reduced state. As a result, if the overtube 601 is pulled toward the rear end side of the distal end portion 12 of the endoscope 11, and the endoscope 11 is inserted through the first cylindrical surface portion 622g, the endoscope 11 can be viewed in the same manner as during insertion. The overtube 601 is removed from the body together with the mirror 11 .
  • the number of the second support members 620 is such that the interval between the adjacent other second support members 620 or the distal end portions 619A of the first support members 619 in at least one location in the circumferential direction is a size necessary for treatment. If there is, it is not particularly limited. For example, four or more second support members 620 may be provided.
  • the second support member 620 is a solid rod.
  • the shape of the second support member 620 is not particularly limited as long as it has the necessary flexibility for the distal end fixing portions 603, 603A, 603B.
  • the second support member 620 may be a hollow tube closed at both ends.
  • the second support member 620 may be formed of a radially flat flat plate or a plate having a curved surface convex radially outward.
  • the airflow tube 609 includes two channels, but the airflow tube 609 may be formed of two independent tubes.
  • the connectors provided at the ends of the respective tubes are detachably connected to the first connecting tube and the second connecting tube of the connector 605c.
  • the endoscope 11 when the distal end portion 12 of the endoscope 11 is arranged between the first balloon 622 and the second balloon 623 in the vicinity of the treatment site Ts, the endoscope 11 is fixed and the overtube 601 is pushed distally.
  • the relative movement between the endoscope 11 and the overtube 601 is not limited to pushing the overtube 601 .
  • the position of the overtube 601 may be fixed and the endoscope 11 may be pulled proximally, or the endoscope 11 may be pulled while pushing the overtube 601 .
  • the endoscope 11 is inserted to the vicinity of the treatment site Ts in advance.
  • An example of inserting up to is explained.
  • these operations may be appropriately combined according to the lengths of the endoscope 11 and the overtube 601.
  • the endoscope 11 may be inserted into the lumen to a position remote from the treatment site Ts on the proximal side, and then the overtube 601 may be inserted near the distal end portion 12 along the endoscope 11. good. Thereafter, the overtube 601 may be inserted near the treatment site Ts after inserting only the endoscope 11 to the treatment site Ts, or the overtube 601 may be inserted near the treatment site Ts together with the endoscope 11. You may
  • the first balloon 622B in the 23rd modification may be used instead of the first balloon 622 in the 7th embodiment and the 22nd modification.
  • the first cylindrical surface portion 622g of the first balloon 622B is fixed to the outer peripheral surface 621b of the tube member 621.
  • the axial length of the pipe member 621 may be the same as the axial length of the first cylindrical surface portion 622g. Thereby, the axial length of the first fixing portion 617 can be shortened.
  • the first balloon 622B in the 23rd modification may be used instead of the second balloon 623 in the 7th embodiment, the 22nd modification, and the 23rd modification.
  • the opening 602f is formed in the first cylindrical surface portion 622g.
  • the first cylindrical surface portion 622g of such a first balloon 622B is fixed to the outer peripheral surface 2d of the main tube 602 with the opening 602f and the opening 2f communicating with each other.
  • the first balloons 622 and 622B are examples of distal balloons that are arranged distally of the tube body and that can expand and contract in the radial direction.
  • the second balloon 623 is an example of a fixing balloon that is provided on the outer peripheral surface of the distal end of the tube body and that can expand outward from the outer peripheral surface and contract toward the outer peripheral surface.
  • a distal portion 619A of a first support member 619 and a second support member 620 are disposed about the respective peripheries of the anchoring balloon and the distal balloon and extend between the anchoring balloon and the distal balloon to provide a lumen.
  • 4 is an example of a plurality of support members capable of supporting the inner wall of the .
  • the first support member 619 has a channel communicating with the interior of the distal balloon.
  • the first support member 619 is an example of a support member that forms an air delivery tube that forms a flow path for delivering gas to the distal balloon.
  • FIG. 119 is a schematic perspective view showing an example of an endoscope overtube according to the eighth embodiment of the present invention.
  • 120 is a cross-sectional view taken along line F120-F120 in FIG. 119.
  • FIG. 122 is a cross-sectional view taken along line F122-F122 in FIG. 120.
  • FIG. 123 is a cross-sectional view taken along line F123-F123 in FIG. 121.
  • FIG. 119 is a schematic perspective view showing an example of an endoscope overtube according to the eighth embodiment of the present invention.
  • 120 is a cross-sectional view taken along line F120-F120 in FIG. 119.
  • FIG. 122 is a cross-sectional view taken along line F122-F122 in FIG. 120.
  • FIG. 123 is a cross-sectional view taken along line F123-F123 in FIG. 121.
  • An overtube 701 shown in FIG. 119 is an example of an endoscope overtube according to this embodiment.
  • the overtube 701 has a distal end fixing portion 703, a first support member 619, a grip portion 605, an airflow tube 609, and an air supply device 610, respectively, of the overtube 601 according to the seventh embodiment. It has a grip portion 705 , a first connection tube 708 D, a second connection tube 708 P, an airflow tube 9 and an air supply device 710 .
  • the overtube 701 further has a channel switch 711 .
  • FIGS. 119 to 121 show the shape of the distal end fixing portion 703 in the expanded state, as in the sixth embodiment. In the following, the points different from the seventh embodiment will be mainly described.
  • the distal end fixing portion 703 in this embodiment includes a first supporting member 719, a It has a second support member 720 and a second fixing portion 718 .
  • the tip fixation part 703 has a first fixation part 617 similar to the tip fixation part 603 .
  • the first support member 719 has a front end portion 719A and a rear end portion 719B (air supply tube, operating rod) similar to the front end portion 619A and rear end portion 619B of the first support member 619 .
  • the distal end portion 719A of the first support member 719 is not joined to the second balloon 623, and the rearward end portion 619B passes through the inside of the grip portion 705 to be described later to reach the slider 715 (see FIG. 122) to be described later. held.
  • the first support member 719 is also used as an operating rod for advancing and retreating the first fixing part 617 in the axial direction. It has enough rigidity to prevent buckling deformation even if it is received. As shown in FIG.
  • the distal end region 719a of the distal end portion 719A of the first support member 719 is the same as the distal end portion 619A of the first support member 619 in the seventh embodiment. It is fixed to the portion 622c. However, unlike first support member 619 , first support member 719 is not fixed to second balloon 623 .
  • the second support member 720 is the same as the second support member 620 except that a retaining portion 720b is formed at the rear end.
  • the retainer portion 720b is a protrusion that protrudes from the outer shape of the second support member 720 in a direction orthogonal to the longitudinal direction of the second support member 720.
  • the second support member 720 has a rod shape with a uniform cross-sectional shape on the distal end side of the retaining portion 720b.
  • the second support member 720 on the distal end side of the retaining portion 720b has a cylindrical shape. As shown in FIG.
  • the distal end portion 720a of the second support member 720 is fixed to the second cylindrical portion 622c of the first balloon 622 in the same manner as the distal end portion of the second support member 620 in the seventh embodiment. ing.
  • the second support member 720 is provided in three positions along with the distal end portion 719A of the first support member 719, and equally divides the second cylindrical portion 622c in the enlarged diameter state into four in the circumferential direction.
  • the second fixed part 718 has a second balloon 623 fixed to the distal end of the main tube 602 and a guide tube 718a, as in the seventh embodiment.
  • the guide tube 718a has an insertion hole 718b extending longitudinally through the center.
  • the inner diameter of the insertion hole 718b has such a size that the retainer portion 720b cannot be inserted, and the first support member 719 and the second support member 720 excluding the retainer portion 720b can be inserted.
  • the shape of the inner peripheral surface forming the insertion hole 718b is not particularly limited as long as the second support member 720 excluding the first support member 719 and the retaining portion 720b can be smoothly inserted.
  • the inner peripheral surface forming the insertion hole 718b is a cylindrical surface corresponding to the cylindrical surface of the outer peripheral portion of the second support member 720 excluding the first support member 719 and the retaining portion 720b. is.
  • Each guide tube 718a is fixed to the outer peripheral portion of the second cylindrical portion 623c in the same manner as the first support member 619 and each second support member 620 in the seventh embodiment.
  • a distal end portion 719A of a first support member 719 and three second support members 720 are axially movably inserted through each guide tube 718a.
  • the retaining portion 720b of each second support member 720 protrudes further to the rear end side than the guide tube 718a, thereby preventing each second support member 720 from coming off to the front end side.
  • the first fixing portion 617 of the distal end fixing portion 703 is axially movable between the maximum advanced position indicated by the solid line in FIG. 120 and the retracted position indicated by the two-dot chain line in FIG. be.
  • the maximum advanced position is the position where each retainer portion 720b is engaged with the rear end of each guide tube 718a and is farthest from the second fixing portion 718 toward the tip side.
  • the retracted position is a position where the rear end 621c of the pipe member 621 and the front end 602g of the main tube 602 are in contact with each other.
  • the distance in the axial direction between the rear end 621c of the pipe member 621 and the front end 602g of the main tube 602 at the most advanced position is the same distance Lf as in the seventh embodiment.
  • the grip section 705 has a distal balloon movement mechanism 712 instead of the connector 605c in the grip section 605.
  • the distal balloon movement mechanism 712 axially moves the entire first fixing portion 617 including the first balloon 622 by moving the first support member 619 in the axial direction.
  • the configuration of the distal balloon movement mechanism 712 is not particularly limited as long as it can hold the rear end portion of the rear end portion 619B of the first support member 619 and move the first support member 619 in the axial direction.
  • the distal balloon movement mechanism 712 has a slide guide section 713 , a slider 715 and a slide operation section 714 .
  • the slide guide portion 713 has a substantially rectangular bar shape extending obliquely outward in the radial direction toward the rear end side from the outer peripheral surface of the grip portion 605 on the rear end side (right side in the figure) of the stopper 5b. Inside the slide guide portion 713, an insertion hole 713a and a guide groove 713b are aligned in this order and pass through from the front end side (left side in the drawing) surface of the stopper 5b toward the rear end of the slide guide portion 713.
  • the first support member 719 extending from the opening 602 h opened at the rear end of the main tube 602 is inserted in the extending direction of the slide guide portion 713 .
  • the cross-sectional shape of the insertion hole 713a orthogonal to the extending direction is circular with a diameter larger than the outer diameter of the first support member 719.
  • the insertion hole 713a passes through the tubular portion 5a and communicates with the opening 602h of the main tube 602 fixed to the tubular portion 5a.
  • the guide groove 713b has a substantially square groove shape that guides the rectangular parallelepiped slider 715 in the extending direction.
  • the cross-sectional area of the guide groove 713b in the cross section perpendicular to the extending direction of the slide guide portion 713 is larger than the cross-sectional area of the insertion hole 713a in the same cross section.
  • the insertion hole 713a opens inside a tip surface 713f formed on the tip side of the guide groove 713b.
  • the tip surface 713f locks the tip of the slider 715 when the slider 715 moves to the tip end side.
  • the tip surface 713f defines the movement position of the slider 715 on the most tip side.
  • a rear end surface 713g is formed at the rear end portion of the slide guide portion 713 to prevent the slider 715 from coming off at the rear end side.
  • the rear end surface 713g defines the movement limit of the slider 715 on the rearmost end side.
  • the rear end face 713g may be omitted.
  • the guide groove 713 b opens at the rear end of the slide guide portion 713 .
  • a slit 713c is formed in a side wall 713e, which is one side wall of the slide guide portion 713 surrounding the guide groove 713b.
  • the side wall 713e may be a side wall in any direction as long as it can be operated by the operator. In the example shown in FIG. 122, the side wall 713e extends along the slope of the slide guide portion 713 and is the side wall farther from the tubular portion 5a in the radial direction.
  • the slit 713c penetrates in the thickness direction of the side wall 713e and extends in the extending direction of the slide guide portion 713 .
  • the length of the slit 713c is longer than or equal to Lf. As shown in FIG.
  • the opening width of the slit 713c in the lateral direction is narrower than the groove width of the guide groove 713b in the same direction.
  • the guide groove 713b has a C-shaped groove shape with the slit 713c opening at the side wall 713e.
  • the slide guide portion 713 extends in the extension direction of the slide guide portion 713 next to the guide groove 713b.
  • the pipeline 713 d penetrates through the slide guide portion 713 .
  • the conduit 713d passes through the tubular portion 5a and communicates with the second lumen 2e of the main tube 602 fixed to the tubular portion 5a.
  • the conduit 713 d extends to the rear end of the slide guide portion 713 .
  • a rear end portion of the slide guide portion 713 is provided with a first luer connector 5c similar to that of the first embodiment.
  • the first luer connector 5c in this embodiment communicates with the interior of the conduit 713d.
  • the slide guide part 713 may be made of the same material as the tubular part 5a and the stopper 5b.
  • the slide guide portion 713, the tubular portion 5a, and the stopper 5b may be formed of resin moldings.
  • the slider 715 is fitted into the guide groove 713b so as to be slidable in the extending direction of the slide guide portion 713.
  • the outer shape of the slider 715 is a cuboid.
  • a holding hole 715 b having a diameter larger than the outer diameter of the first support member 719 penetrates in the extending direction of the slide guide portion 713 .
  • a rear end portion 719B of the first support member 719 is inserted through the holding hole 715b.
  • the rear end portion 719B is fixed to the slider 715 inside the holding hole 715b.
  • a fixing method of the rear end portion 719B is not particularly limited. In the example shown in FIG. 123, the rear end portion 719B is fixed to the holding hole 715b with an adhesive 716 interposed.
  • a female threaded portion 715c is formed at a portion overlapping the inside of the slit 713c when viewed from the outside.
  • the material of the slider 715 is not particularly limited as long as it can slide along the guide groove 713b.
  • the material of the slider 715 may be metal or resin.
  • the slide operation portion 714 has a knob portion 714a, a fixing portion 714b, and a male screw portion 714c.
  • the knob portion 714a has a size that can be gripped and rotated by the operator.
  • the knob portion 714a is a disc.
  • the fixing portion 714b is a stepped portion that straddles the slit 713c and engages with the edge portion of the slit 713c.
  • the fixing portion 714b is cylindrical and provided coaxially with the knob portion 714a.
  • the outer diameter of the fixed portion 714b is larger than the width of the slit 713c in the lateral direction.
  • the male threaded portion 714 c is screwed with the female threaded portion 715 c of the slider 715 .
  • the male screw portion 714c protrudes from the fixed portion 714b so as to be coaxial with the knob portion 714a.
  • the length of the male screw portion 714c is longer than the thickness of the side wall 713e.
  • the slide operation portion 714 is connected to the slider 715 by threading the male screw portion 714c into the female screw portion 715c through the slit 713c.
  • the operation of the distal balloon movement mechanism 712 will be described.
  • the fixed portion 714b contacts the surface of the side wall 713e, and the side wall 713e at the edge of the slit 713c moves between the slider 715 and the fixed portion 714b. sandwiched by Thereby, the slider 715 and the slide operation portion 714 are fixed to the slide guide portion 713 .
  • the slide operation portion 714 in the direction opposite to the screwing direction of the male screw portion 714c, the holding of the side wall 713e between the fixing portion 714b and the slider 715 is released.
  • the operator can slide the slider 715 by moving the knob portion 714a along the slit 713c.
  • the first support member 719 fixed to the slider 715 on the rear end side of the rear end portion 719B also moves in the same direction.
  • the first fixing portion 617 fixed to the distal end portion 719A of the first support member 719 can be similarly moved when the first balloon 622 is expanded to the fixed expanded state and is not fixed to the lumen.
  • the position of the first fixing part 617 in the lumen can be moved in the axial direction without moving the main tube 602. .
  • the position after movement can be fixed until the operator loosens the slide operation part 714 by screwing the slide operation part 714 .
  • the distance between the first fixing part 617 and the tip of the main tube 602 can also be changed.
  • the first support member 719 functions as an operating rod that transmits the operating force to the first fixing portion 617 .
  • the first connection tube 708D is located between a first end 708a, which is a connector detachably connected to the rear end of the first support member 719, and a second end 708b on the rear end side. Then, a flow path is formed for circulating air.
  • the second end portion 708b is provided with an appropriate connector that is detachably connected to a channel switching device 711, which will be described later.
  • the first connection tube 708D is detachably connected to the channel switch 711 by a connector provided at the second end 708b.
  • the second connection tube 708P is provided between a first end 708c, which is a connector detachably connected to the first luer connector 5c in the distal balloon moving mechanism 712, and a second end 708d on the rear end side. to form a flow path for circulating.
  • the first end 708c is provided with a luer connector that can be attached to and detached from the first luer connector 5c.
  • the second end portion 708d is provided with an appropriate connector that is detachably connected to the channel switching device 711 .
  • the second connection tube 708P is detachably connected to the channel switching device 711 at the second end 708d.
  • the flow path switch 711 divides the flow path formed by the airflow tube 9 similar to that of the first embodiment into the flow path formed by the first connection tube 708D and the flow path formed by the second connection tube 708P. and selectively switch to .
  • the channel switching device 711 incorporates a channel switching valve, and has a switching operation part 711a for operating the channel switching valve.
  • the switching operation unit 711a can be switched by the operator.
  • the air supply device 710 is the same as the air supply device 10 in the first embodiment except that the airflow tube 9 of the air supply device 710 is connected to the flow path switch 711 .
  • the air supply device 710 may be an electric pump or a manual pump as in the first embodiment. In the case of a manual pump, any air supply device including the manual air supply mechanism 211 in each of the embodiments and modifications described above may be used as the air supply device 710 .
  • 124 to 128 are cross-sectional views showing an example of how to use the endoscope overtube according to the eighth embodiment of the present invention.
  • the overtube 701 is prepared. As shown in FIG. 124, the distal end fixing portion 703 of the overtube 701 to be prepared is reduced in diameter like the distal end fixing portion 603 of the overtube 601 . Furthermore, in the present embodiment, the first support member 719 is pulled rearward, so that the first fixing portion 617 is retreated rearward from the maximum advanced position.
  • the distance between the trailing end 621c and the leading end 602g in the axial direction is Li.
  • the distance Li is 0 or more and less than Lf.
  • the size of Li is determined in consideration of the insertion resistance at the bent or curved portion of the endoscope 11 . For example, when Li is 0, the first fixed part 617 is in the retracted position.
  • the pipe member 621 and the tip of the main tube 602 are in contact with each other to form an integral cylinder. Therefore, depending on the rigidity of the tube member 621 and the main tube 602 , they can pass through the bend or curve of the endoscope 11 by deforming each. The lower the rigidity of the pipe member 621 and the main tube 602, the lower the insertion resistance.
  • the tubular member 621 can rotate within the range of the gap between the rear end 621c and the front end 602g. This reduces insertion resistance.
  • the first support member 719 and the second support member 720 between the first fixing portion 617 and the second fixing portion 718 tend to bend.
  • first support member 719 and the second support member 720 bend along the side surface of the endoscope 11, no particular problem occurs. However, when the radius of curvature of the endoscope 11 is small, or when the first fixing portion 617 is caught on the inner wall of the lumen, the external force acting on the first support member 719 or the second support member 720 increases, The first support member 719 or the second support member 720 may bend. The shorter Li is, the less likely the first support member 719 and the second support member 720 are to bend.
  • the operator inserts the distal end of the endoscope 11 inside the airtight valve unit 6 of the overtube 701 as in the seventh embodiment, as indicated by the two-dot chain line. can extend from the tubular member 621 .
  • the airtight valve unit 6 may not be provided.
  • the operator places the overtube 701 outside the patient's body, and inserts the insertion portion of the endoscope 11 projecting from the overtube 701 into the large intestine C from the anus in the same manner as in the seventh embodiment. Then, the distal end portion 12 of the endoscope 11 is moved to a position where the treatment site Ts can be seen (see FIG. 125).
  • the operator inserts the overtube 701 into the large intestine C from the anus along the insertion portion of the endoscope 11 in the same manner as in the seventh embodiment.
  • the operator inserts the overtube 701 until the distal end fixing portion 703 is positioned near the rear end of the distal end portion 12 of the endoscope 11 .
  • the operator operates the tip side balloon movement mechanism 712 to advance the first support member 719 to the distal side.
  • the first fixing portion 617 is pushed further to the distal side than the distal end portion 12 .
  • the operation of pushing out the first fixing portion 617 is performed by the operator only by sliding the unscrewed slide operation portion 714 in the extending direction of the slide guide portion 713 .
  • the operator does not need to move both the grip portion 705 of the overtube 701, the main tube 602 and the endoscope 11 outside the body during the sliding operation.
  • the overtube 601 slides on the intestinal wall Cw. Therefore, the operator needs to operate against the sliding resistance between the overtube 601 and the endoscope 11 and the sliding friction between the overtube 601 and the intestinal wall Cw.
  • sliding between the overtube 601 and the intestinal wall Cw may be a burden on the patient.
  • the first fixing portion 617 in a reduced diameter state is pushed out without the main tube 602 being pushed in.
  • the resistance received by the operator is the sliding resistance between the first support member 719 having a small diameter and the insertion lumen 602e, so the resistance received by the operator is reduced. This makes it easier for the operator to guide the first fixing portion 617 to the fixing position. Furthermore, since the first support member 719 does not come into contact with the intestinal wall Cw when pushed distally, no load is applied to the patient.
  • the operator moves the first fixing part 617 to the maximum advanced position.
  • the distal end portion 12 is sandwiched between the first fixing portion 617 and the second fixing portion 718 in the axial direction of the large intestine C. As shown in FIG.
  • the operator confirms whether either the first support member 719 or the second support member 720 is positioned to straddle the treatment site Ts in the same manner as in the seventh embodiment.
  • the operator rotates the overtube 701 outside the body in the circumferential direction as necessary to adjust the positions of the distal end portion 719A of the first support member 719 and the second support member 720. Shift in the circumferential direction. If necessary, after the circumferential position adjustment of the distal end fixing portion 703 is completed, the operator operates the air supply device 710 to separate the first balloon 622 and the second balloon 622 in the same manner as in the seventh embodiment. 623 is inflated to the enlarged diameter state when fixed.
  • the air supply device 710 since the air supply device 710 has a single channel, one of the first balloon 622 and the second balloon 623 is set in a diameter expanded state when fixed, and then the first balloon 622 and the second balloon 623 are expanded. The other of the balloons 623 is set in an enlarged diameter state when fixed.
  • the overtube 701 may be provided with an air supply device capable of independently supplying air to both the first connection tube 708D and the second connection tube 708P instead of the air supply device 710 . In this case, the first balloon 622 and the second balloon 623 can be brought into the enlarged diameter state at the time of fixation at the same time.
  • the distal end fixing part 703 is fixed inside the intestinal wall Cw.
  • the first support member 719 and each second support member 720 are pressed against the inner surface of the intestinal wall Cw and support the intestinal wall Cw from the inside.
  • a space Sf in which the endoscope 11 can move is formed between the first balloon 622 and the second balloon 623, as in the seventh embodiment.
  • the operator can perform endoscopic full-thickness resection within the space Sf in the same manner as in the seventh embodiment.
  • the intestinal wall Cw is stretched between the first balloon 622 and the second balloon 623, and the distal end portion 719A of the first support member 719 and the second balloons 623 and 719A. Since it is supported from the inside by the support member 720, the surgical field is secured as in the seventh embodiment.
  • the operator After completing all necessary procedures for endoscopic full-thickness resection, the operator operates the air supply device 710 and the flow path switch 711 to suck out the air in the first balloon 622 and the second balloon 623 . As a result, the diameters of the first balloon 622 and the second balloon 623 are reduced. After that, the operator pulls out the endoscope 11 and the overtube 701 from the anus. Endoscopic full-thickness resection using the overtube 701 is thus completed.
  • the overtube 701 has been described above with an example of endoscopic full-thickness resection. However, if it is an endoscopic treatment that can be performed using the space Sf as an operating field, the overtube 701 is used for treatments other than endoscopic full-thickness resection, like the overtube 601 of the seventh embodiment. may
  • the overtube 701 according to the present embodiment is configured in the same manner as the overtube 601 except that it has a distal end fixing portion 703 instead of the distal end fixing portion 603, so it is similar to the seventh embodiment. have an effect. Therefore, according to the present embodiment, as in the seventh embodiment, it is possible to provide an endoscope overtube that reduces the burden on a patient and allows smooth operation of the endoscope. Particularly in this embodiment, the distance between the first fixing part 617 and the second fixing part 618 can be changed by the operator's operation. As a result, the overtube 701 can be inserted into the lumen while the distal end fixing portion 703 is compact, thereby further reducing the burden on the patient. Furthermore, the operator can easily guide the first fixing part 617 to the fixing position without imposing a load on the patient.
  • the guide tube 718 a is not limited to a mode in which a separate member is fixed to the second balloon 623 .
  • a lumen similar to the guide tube 718a may be formed on the outer circumference of the second cylindrical portion 623c.
  • the guide tube 718a is not limited to an axially long tubular member, and may be formed of a ring having a short axial length. In this case, a plurality of rings may be provided spaced apart in the axial direction.
  • the operating rod may have a configuration in which the second support member 720 is extended to the rear end.
  • the main tube 602 is provided with an insertion lumen 602e through which the first support member 719 is inserted, and an insertion lumen through which the extended second support member is inserted.
  • the number of operating rods is not limited to one. The greater the number of operating rods, the easier the movement of the first fixing portion 617 becomes.
  • the operating rod is inserted through the insertion lumen 602e of the main tube 602 .
  • the operating rod may pass through a sheath fixed to the outer circumference of the overtube 701 .
  • the insertion lumen 602e can be omitted.
  • the distal end portion 719A of the first support member 719 and the second support member 720 are arranged on the respective outer peripheries of the fixation balloon and the distal balloon, and between the fixation balloon and the distal balloon.
  • Figure 10 is an example of a plurality of support members that can extend into and support the inner wall of a lumen;
  • the first support member 719 has a channel communicating with the interior of the distal balloon.
  • the first support member 719 is an example of a support member that forms an air delivery tube that forms a flow path for delivering gas to the distal balloon.
  • a rear end portion 719B of the first support member 719 extends along the tube main body to the rear end portion of the tube main body, and is provided so as to be interlockable with one of the plurality of support members. It is an example of an operating rod that drives the part in the axial direction of the tube body.
  • the operation rod in this embodiment is an example that is interlocked with the support member by being formed by the rear end portion of the support member.
  • the distal side balloon moving mechanism 712 is an example of a distal side balloon moving mechanism that is arranged on the rear end side of the rear end portion of the tube body and moves the operating rod along the axial direction.

Abstract

This endoscope overtube comprises a tube body, a fixing balloon, an air-supplying device, and an airtight valve unit. The tube body has: a main lumen through which an endoscope is inserted; and an air-supplying lumen through which a gas flows. The fixing balloon is disposed on an outer circumferential surface of an apical portion of the tube body and is configured to be capable of expanding outward of the outer circumferential surface and capable of contracting toward the outer circumferential surface. The air-supplying device delivers a gas into the air-supplying lumen. The airtight valve unit has a tubular portion that is in communication with the main lumen at a rear end of the tube body. The airtight valve unit blocks a gap between the inner circumferential surface of the tubular portion and the endoscope being inserted in the main lumen through the tubular portion.

Description

内視鏡用オーバーチューブovertube for endoscope
 本発明は、内視鏡用オーバーチューブに関する。 The present invention relates to an endoscope overtube.
 内視鏡を用いた処置時に用いる内視鏡用オーバーチューブが知られている。内視鏡用オーバーチューブは、患者の体内で内視鏡を進退および回転させる際に、生体組織と内視鏡との接触および摺動を抑制する目的で用いられる。内視鏡用オーバーチューブの内周面は、生体組織に比べると内視鏡の外周部との摺動抵抗が小さいので、内視鏡の進退および回転がより円滑に行える。これにより、内視鏡の操作を正確かつ容易に行うことができる。
 内視鏡用オーバーチューブは、内視鏡を挿通するメインチューブと、メインチューブの先端部においてメインチューブの外側に拡縮する固定用バルーンと、固定用バルーンに送気する送気デバイスと、を有する(特許文献1参照)。
BACKGROUND ART An endoscope overtube is known which is used for treatment using an endoscope. An endoscope overtube is used for the purpose of suppressing contact and sliding between living tissue and an endoscope when the endoscope is advanced, retracted, and rotated inside a patient's body. Since the inner peripheral surface of the endoscope overtube has a smaller sliding resistance with respect to the outer peripheral portion of the endoscope than the living tissue, the endoscope can be advanced/retracted and rotated more smoothly. As a result, the endoscope can be operated accurately and easily.
The endoscope overtube has a main tube through which the endoscope is inserted, a fixation balloon that expands and contracts outside the main tube at the distal end of the main tube, and an air supply device that supplies air to the fixation balloon. (See Patent Document 1).
日本国特開2007-268147号Japanese Patent Application Laid-Open No. 2007-268147
 内視鏡用オーバーチューブは、内視鏡を予め体内に挿入した後、内視鏡をガイドとして、体内に挿入されることが多い。この場合、例えば、腸管などの大きな屈曲部を有する管に内視鏡を挿入すると、管の屈曲部で内視鏡と管の内壁とが接触する。この状態で、内視鏡をガイドとして内視鏡用オーバーチューブが挿入されると、内視鏡と管の内壁との接触部に、内視鏡用オーバーチューブの先端が押し込まれるので、管の内壁の一部が内視鏡用オーバーチューブと内視鏡の側面との間に巻き込まれる可能性がある。
 特許文献1に記載のオーバーチューブは、長手方向に均等な大きさの開口が形成されており、可撓性も長手方向に均等になっている。このため、管の内壁の巻き込みが発生しやすい。
 特許文献1に記載のオーバーチューブは、体外に配置される近位端の挿入口を閉止することができないので、体内の液体または気体が挿入口から体外に逆流しやすい。体内からの液体または気体が逆流すると、処置を円滑に行えなくなる可能性がある。
 特許文献1に記載のオーバーチューブは、第1バルーンが第2圧力以上になると、第2バルーンが膨張するので、第1バルーンの圧力が緩和される。これにより、第1バルーンに過大な圧力が加わることによって、外径が大きくなりすぎることを、ある程度、抑制できる。
 しかし、送気量が急上昇すると、第1バルーンの圧力が一時的に急上昇する。このため、特許文献1に記載の医療機器における送気デバイスは、送気量を制御する高価な制御装置を備える必要がある。
The endoscope overtube is often inserted into the body using the endoscope as a guide after the endoscope has been previously inserted into the body. In this case, for example, when an endoscope is inserted into a tube having a large bend such as an intestinal tract, the endoscope and the inner wall of the tube come into contact with each other at the bend of the tube. In this state, when the endoscope overtube is inserted using the endoscope as a guide, the distal end of the endoscope overtube is pushed into the contact portion between the endoscope and the inner wall of the tube, thus preventing the tube from A portion of the inner wall can get caught between the endoscopic overtube and the side of the endoscope.
The overtube described in Patent Document 1 has openings of uniform size in the longitudinal direction, and has uniform flexibility in the longitudinal direction. For this reason, the inner wall of the pipe is likely to be involved.
Since the overtube described in Patent Document 1 cannot close the insertion port at the proximal end that is placed outside the body, liquid or gas in the body tends to flow backward from the insertion port to the outside of the body. Reflux of liquids or gases from the body can interfere with the procedure.
In the overtube disclosed in Patent Document 1, when the pressure of the first balloon becomes equal to or higher than the second pressure, the second balloon is inflated, so the pressure of the first balloon is relieved. As a result, it is possible to some extent to prevent the outer diameter from becoming too large due to excessive pressure being applied to the first balloon.
However, when the amount of air supply rises sharply, the pressure of the first balloon rises temporarily. Therefore, the air supply device in the medical equipment described in Patent Document 1 needs to be equipped with an expensive controller for controlling the amount of air supply.
 上述のように、特許文献1に記載のオーバーチューブは、処置時に患者の負荷をかけたり、内視鏡の円滑な操作が行いにくくなったりする可能性がある。
 内視鏡用オーバーチューブにおいて、患者の負荷を低減するとともに内視鏡を円滑な操作が行えるようにすることが強く求められている。
As described above, the overtube described in Patent Literature 1 may impose a burden on the patient during treatment and may make smooth operation of the endoscope difficult.
There is a strong demand for an endoscope overtube that reduces the burden on a patient and enables smooth operation of the endoscope.
 本発明は、上記のような課題に鑑みてなされたものであり、患者の負荷を低減するとともに内視鏡を円滑に操作することができる内視鏡用オーバーチューブを提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide an endoscope overtube that reduces the burden on a patient and allows smooth operation of the endoscope. .
 上記の課題を解決するために、本発明の態様に係る内視鏡用オーバーチューブは、内視鏡を挿通するメインルーメンと、気体が流れる送気ルーメンと、を有するチューブ本体と、前記チューブ本体の先端部の外周面に設けられ、前記外周面の外方に拡張可能かつ前記外周面に向かって収縮可能な固定用バルーンと、前記送気ルーメンに前記気体を送る送気デバイスと、前記チューブ本体の後端部において前記メインルーメンと連通する管状部を有し、前記管状部を通して前記メインルーメンに挿通された内視鏡と、前記管状部の内周面と、の間の隙間を塞ぐ気密弁ユニットと、を備える。 In order to solve the above problems, an endoscope overtube according to an aspect of the present invention includes a tube body having a main lumen through which an endoscope is inserted and an air supply lumen through which gas flows; A fixation balloon provided on the outer peripheral surface of the distal end of the outer peripheral surface and expandable outward from the outer peripheral surface and contractible toward the outer peripheral surface, an air supply device for sending the gas to the air supply lumen, and the tube An endoscope having a tubular portion communicating with the main lumen at a rear end portion of the main body, and an airtight seal closing a gap between an endoscope inserted into the main lumen through the tubular portion and an inner peripheral surface of the tubular portion. and a valve unit.
 上記態様によれば、患者の負荷を低減するとともに内視鏡を円滑に操作することができる内視鏡用オーバーチューブを提供することができる。 According to the above aspect, it is possible to provide an endoscope overtube that reduces the burden on the patient and allows smooth operation of the endoscope.
本発明の第1の実施形態に係る内視鏡用オーバーチューブの例を示す模式的な斜視図である。1 is a schematic perspective view showing an example of an endoscope overtube according to a first embodiment of the present invention; FIG. 本発明の第1の実施形態に係る内視鏡用オーバーチューブに挿通される内視鏡の例を示す模式的な正面図である。1 is a schematic front view showing an example of an endoscope inserted through an endoscope overtube according to a first embodiment of the present invention; FIG. 図2におけるF3視の側面図である。FIG. 3 is a side view seen from F3 in FIG. 2 ; 本発明の第1の実施形態に係る内視鏡用オーバーチューブの例を示す模式的な断面図である。1 is a schematic cross-sectional view showing an example of an endoscope overtube according to a first embodiment of the present invention; FIG. 図4におけるF5-F5線に沿う断面図である。FIG. 5 is a cross-sectional view taken along line F5-F5 in FIG. 4; 図4におけるF6-F6線に沿う断面図である。FIG. 5 is a cross-sectional view taken along line F6-F6 in FIG. 4; 図4におけるF7の拡大図である。5 is an enlarged view of F7 in FIG. 4; FIG. 本発明の第1の実施形態に係る内視鏡用オーバーチューブにおける気密弁ユニットの例を示す模式的な断面図である。FIG. 3 is a schematic cross-sectional view showing an example of an airtight valve unit in the endoscope overtube according to the first embodiment of the present invention; 本発明の第1の実施形態に係る内視鏡用オーバーチューブにおける気密弁ユニットの気密バルーンの例を示す模式的な斜視図である。FIG. 3 is a schematic perspective view showing an example of an airtight balloon of an airtight valve unit in the endoscope overtube according to the first embodiment of the present invention; 本発明の第1の実施形態に係る内視鏡用オーバーチューブにおける気密弁ユニットの動作説明図である。FIG. 4 is an operation explanatory view of the airtight valve unit in the endoscope overtube according to the first embodiment of the present invention; 図10におけるF11-F11線に沿う断面図である。FIG. 11 is a cross-sectional view taken along line F11-F11 in FIG. 10; 本発明の第1の実施形態に係る内視鏡用オーバーチューブにおける気体移動装置からの送気量と気密バルーンの内圧との関係の例を示すグラフである。4 is a graph showing an example of the relationship between the amount of air supplied from the gas moving device and the internal pressure of the airtight balloon in the endoscope overtube according to the first embodiment of the present invention. 本発明の第1の実施形態に係る内視鏡用オーバーチューブの使用方法の例を示す模式図である。FIG. 4 is a schematic diagram showing an example of how to use the endoscope overtube according to the first embodiment of the present invention. 本発明の第1の実施形態に係る内視鏡用オーバーチューブの使用方法の例を示す模式図である。FIG. 4 is a schematic diagram showing an example of how to use the endoscope overtube according to the first embodiment of the present invention. 本発明の第1の実施形態に係る内視鏡用オーバーチューブにおける先端チップの作用を説明する模式的な断面図である。FIG. 4 is a schematic cross-sectional view illustrating the action of the distal tip in the endoscope overtube according to the first embodiment of the present invention; 本発明の第1の実施形態に係る内視鏡用オーバーチューブの使用方法の例を示す模式図である。FIG. 4 is a schematic diagram showing an example of how to use the endoscope overtube according to the first embodiment of the present invention. 本発明の第2の実施形態に係る内視鏡用オーバーチューブの例を示す模式的な斜視図である。FIG. 6 is a schematic perspective view showing an example of an endoscope overtube according to a second embodiment of the present invention; 図17におけるF19-F19線に沿う断面図である。FIG. 18 is a cross-sectional view along line F19-F19 in FIG. 17; 図18におけるF19部の拡大図である。19 is an enlarged view of the F19 portion in FIG. 18; FIG. 本発明の第2の実施形態に係る内視鏡用オーバーチューブにおける送気デバイスの例を示すブロック図である。FIG. 5 is a block diagram showing an example of an air supply device in an endoscope overtube according to a second embodiment of the present invention; 本発明の第2の実施形態に係る内視鏡用オーバーチューブにおける送気デバイスの吸気時の流れを示すブロック図である。FIG. 10 is a block diagram showing the flow of the air supply device in the endoscope overtube according to the second embodiment of the present invention during inspiration. 本発明の第2の実施形態に係る内視鏡用オーバーチューブが屈曲した状態を示す模式的な斜視図である。FIG. 8 is a schematic perspective view showing a bent state of the endoscope overtube according to the second embodiment of the present invention; 図22におけるF23-F23線に沿う断面図である。FIG. 23 is a cross-sectional view taken along line F23-F23 in FIG. 22; 本発明の第2の実施形態に係る内視鏡用オーバーチューブに使用できるメインチューブの主要部を示す模式的な断面図である。FIG. 10 is a schematic cross-sectional view showing the main part of a main tube that can be used for an endoscope overtube according to a second embodiment of the present invention; 図24に示すメインチューブが屈曲した状態を示す模式的な断面図である。FIG. 25 is a schematic cross-sectional view showing a state in which the main tube shown in FIG. 24 is bent; 本発明の第3の実施形態に係る内視鏡用オーバーチューブにおける送気デバイスを示す模式的な正面図である。FIG. 11 is a schematic front view showing an air supply device in an endoscope overtube according to a third embodiment of the present invention; 本発明の第3の実施形態に係る内視鏡用オーバーチューブにおける送気デバイスの吸気時の配置を示す模式的な正面図である。FIG. 10 is a schematic front view showing the arrangement of the air supply device in the endoscope overtube according to the third embodiment of the present invention during inspiration. 本発明の第3の実施形態に係る内視鏡用オーバーチューブにおける送気デバイスの例を示すブロック図である。FIG. 11 is a block diagram showing an example of an air supply device in an endoscope overtube according to a third embodiment of the present invention; 本発明の第3の実施形態に係る内視鏡用オーバーチューブにおける送気デバイスの吸気時の流れを示すブロック図である。FIG. 11 is a block diagram showing the flow of the air supply device in the endoscope overtube according to the third embodiment of the present invention during inspiration. 本発明の第3の実施形態に係る内視鏡用オーバーチューブにおける送気デバイスの例を示すブロック図である。FIG. 11 is a block diagram showing an example of an air supply device in an endoscope overtube according to a third embodiment of the present invention; 手動ポンプにおけるリリーフ弁の作用を説明する模式図である。It is a schematic diagram explaining the effect|action of the relief valve in a manual pump. 手動ポンプで送気されるエアの流量とリリーフ弁から漏れる損失量との関係の例を示すグラフである。5 is a graph showing an example of the relationship between the flow rate of air supplied by a manual pump and the amount of loss leaking from a relief valve; 本発明の第3の実施形態に係る内視鏡用オーバーチューブにおける送気デバイスの流路形状を示す模式図である。FIG. 11 is a schematic diagram showing the shape of a flow path of an air supply device in an endoscope overtube according to a third embodiment of the present invention; 本発明の第3の実施形態に係る内視鏡用オーバーチューブに用いる送気デバイスの変形例(第1変形例)を示すブロック図である。FIG. 11 is a block diagram showing a modified example (first modified example) of the air supply device used in the endoscope overtube according to the third embodiment of the present invention; 送気デバイスの変形例(第1変形例)の流路形状を示す模式図である。FIG. 10 is a schematic diagram showing a flow path shape of a modified example (first modified example) of the air supply device; 本発明の第3の実施形態に係る内視鏡用オーバーチューブに用いる送気デバイスの変形例(第2変形例)を示す模式的な正面図である。FIG. 11 is a schematic front view showing a modified example (second modified example) of the air supply device used in the endoscope overtube according to the third embodiment of the present invention. 本発明の第3の実施形態に係る内視鏡用オーバーチューブに用いる送気デバイスの変形例(第2変形例)を示すブロック図である。FIG. 11 is a block diagram showing a modified example (second modified example) of the air supply device used in the endoscope overtube according to the third embodiment of the present invention; 送気デバイスの変形例(第2変形例)の流路形状を示す模式図である。FIG. 10 is a schematic diagram showing the shape of a flow path in a modified example (second modified example) of the air supply device; 送気デバイスの変形例(第2変形例)の例を示す模式図である。FIG. 11 is a schematic diagram showing an example of a modified example (second modified example) of the air supply device. 送気デバイスの変形例(第2変形例)の例を示す模式図である。FIG. 11 is a schematic diagram showing an example of a modified example (second modified example) of the air supply device. 送気デバイスの変形例(第2変形例)の動作説明図である。FIG. 11 is an operation explanatory diagram of a modified example (second modified example) of the air supply device; 送気デバイスの変形例(第2変形例)の動作説明図である。FIG. 11 is an operation explanatory diagram of a modified example (second modified example) of the air supply device; 送気デバイスの変形例(第2変形例)の動作説明図である。FIG. 11 is an operation explanatory diagram of a modified example (second modified example) of the air supply device; 送気デバイスの変形例(第2変形例)の動作説明図である。FIG. 11 is an operation explanatory diagram of a modified example (second modified example) of the air supply device; 本発明の第3の実施形態に係る内視鏡用オーバーチューブに用いる送気デバイスの変形例(第3変形例)を示す模式的な正面図である。FIG. 11 is a schematic front view showing a modification (third modification) of the air supply device used in the endoscope overtube according to the third embodiment of the present invention; 本発明の第3の実施形態に係る内視鏡用オーバーチューブに用いる送気デバイスの変形例(第3変形例)を示すブロック図である。FIG. 11 is a block diagram showing a modified example (third modified example) of the air supply device used in the endoscope overtube according to the third embodiment of the present invention; 送気デバイスの変形例(第3変形例)における圧力表示器の例を示す模式的な正面図である。FIG. 11 is a schematic front view showing an example of a pressure indicator in a modified example (third modified example) of the air supply device; 図47におけるF48視の下面図である。48 is a bottom view of F48 in FIG. 47; FIG. 図47におけるF49-F49線に沿う断面図である。FIG. 48 is a cross-sectional view taken along line F49-F49 in FIG. 47; 送気デバイスの変形例(第3変形例)におけるカラー、コイルバネ、および気密部材の例を示す分解斜視図である。FIG. 11 is an exploded perspective view showing an example of a collar, a coil spring, and an airtight member in a modified example (third modified example) of the air supply device; 送気デバイスの変形例(第3変形例)におけるカラーに対する気密部材の固定構造を示す模式図である。FIG. 11 is a schematic diagram showing a fixing structure of an airtight member to a collar in a modified example (third modified example) of the air supply device. 図48におけるF52-F52線に沿う断面図である。FIG. 49 is a cross-sectional view taken along line F52-F52 in FIG. 48; 図49におけるF53部の拡大図である。FIG. 50 is an enlarged view of a portion F53 in FIG. 49; 送気デバイスの変形例(第3変形例)における圧力表示器の動作を示す模式的な断面図である。FIG. 11 is a schematic cross-sectional view showing the operation of a pressure indicator in a modified example (third modified example) of the air supply device; 図54におけるF55視図である。55 is a view from F55 in FIG. 54. FIG. 圧力によって変形した蛇腹構造の気密部材の比較例を示す模式的な断面図である。FIG. 3 is a schematic cross-sectional view showing a comparative example of an airtight member with a bellows structure deformed by pressure. 送気デバイスの変形例(第3変形例)における圧力表示器における読み取り誤差を説明する模式的な断面図である。FIG. 11 is a schematic cross-sectional view for explaining reading errors in a pressure indicator in a modified example (third modified example) of the air supply device. 本発明の第3の実施形態に係る内視鏡用オーバーチューブに用いる送気デバイスの変形例(第4変形例)を示す模式的な正面図である。FIG. 11 is a schematic front view showing a modified example (fourth modified example) of the air supply device used in the endoscope overtube according to the third embodiment of the present invention; 送気デバイスの変形例(第4変形例)の内部構造を示す模式的な断面図である。FIG. 11 is a schematic cross-sectional view showing the internal structure of a modified example (fourth modified example) of the air supply device. 送気デバイスの変形例(第4変形例)の分解した状態を示す模式的な断面図である。FIG. 11 is a schematic cross-sectional view showing an exploded state of a modified example (fourth modified example) of the air supply device. 図59におけるF61-F61線に沿う断面図である。FIG. 61 is a cross-sectional view taken along line F61-F61 in FIG. 59; 図61におけるF62-F62線に沿う断面図である。FIG. 62 is a cross-sectional view taken along line F62-F62 in FIG. 61; 送気デバイスの変形例(第4変形例)を示すブロック図である。FIG. 11 is a block diagram showing a modified example (fourth modified example) of the air supply device; 本発明の第3の実施形態に係る内視鏡用オーバーチューブに用いる送気デバイスの変形例(第5変形例)に用いる気密部材の例を示す模式的な断面図である。FIG. 11 is a schematic cross-sectional view showing an example of an airtight member used in a modified example (fifth modified example) of the air supply device used in the endoscope overtube according to the third embodiment of the present invention. 本発明の第3の実施形態に係る内視鏡用オーバーチューブに用いる送気デバイスの変形例(第6変形例)に用いる気密部材の例を示す模式的な断面図である。FIG. 11 is a schematic cross-sectional view showing an example of an airtight member used in a modified example (sixth modified example) of the air supply device used in the endoscope overtube according to the third embodiment of the present invention; 図65におけるF66-F66線に沿う断面図である。FIG. 66 is a cross-sectional view taken along line F66-F66 in FIG. 65; 図65におけるF67-F67線に沿う断面図である。FIG. 66 is a cross-sectional view taken along line F67-F67 in FIG. 65; 本発明の第4の実施形態に係る内視鏡用オーバーチューブの例を示す模式的な斜視図である。FIG. 11 is a schematic perspective view showing an example of an endoscope overtube according to a fourth embodiment of the present invention; 図68におけるF69-F69線に沿う断面図である。FIG. 69 is a cross-sectional view taken along line F69-F69 in FIG. 68; 本発明の第4の実施形態に係る内視鏡用オーバーチューブに用いる圧力表示器の主要部を示す模式的な断面図である。FIG. 11 is a schematic cross-sectional view showing the main part of a pressure indicator used in an endoscope overtube according to a fourth embodiment of the present invention; 本発明の第4の実施形態に係る内視鏡用オーバーチューブに用いる圧力表示器の変形例(第8変形例)の主要部を示す模式的な断面図である。FIG. 14 is a schematic cross-sectional view showing the main part of a modified example (eighth modified example) of the pressure indicator used in the endoscope overtube according to the fourth embodiment of the present invention; 第8変形例におけるカラーの右側面図である。It is a right side view of the collar in the 8th modification. 本発明の第4の実施形態に係る内視鏡用オーバーチューブに用いる圧力表示器の変形例(第9変形例)の主要部を示す模式的な断面図である。FIG. 11 is a schematic cross-sectional view showing the main part of a modified example (ninth modified example) of the pressure indicator used in the endoscope overtube according to the fourth embodiment of the present invention; 第9変形例における気密部材の左側面図である。It is a left view of the airtight member in the 9th modification. 本発明の第4の実施形態に係る内視鏡用オーバーチューブに用いる圧力表示器の変形例(第10変形例)の主要部を示す模式的な断面図である。FIG. 20 is a schematic cross-sectional view showing the main part of a modified example (tenth modified example) of the pressure indicator used in the endoscope overtube according to the fourth embodiment of the present invention. 第10変形例における固定枠の左側面図である。FIG. 20 is a left side view of a fixed frame in a tenth modified example; 本発明の第4の実施形態に係る内視鏡用オーバーチューブに用いる圧力表示器の変形例(第11変形例)の主要部を示す模式的な断面図である。FIG. 20 is a schematic cross-sectional view showing the main part of a modified example (eleventh modified example) of the pressure indicator used in the endoscope overtube according to the fourth embodiment of the present invention; 第11変形例における気密部材の左側面図である。FIG. 20 is a left side view of an airtight member in an eleventh modified example; 本発明の第4の実施形態に係る内視鏡用オーバーチューブに用いる圧力表示器の変形例(第12変形例)の主要部を示す模式的な断面図である。FIG. 20 is a schematic cross-sectional view showing the main part of a modified example (twelfth modified example) of the pressure indicator used in the endoscope overtube according to the fourth embodiment of the present invention; 本発明の第4の実施形態に係る内視鏡用オーバーチューブに用いる圧力表示器の変形例(第13変形例)の主要部を示す模式的な断面図である。FIG. 20 is a schematic cross-sectional view showing a main part of a modified example (a thirteenth modified example) of the pressure indicator used in the endoscope overtube according to the fourth embodiment of the present invention; 本発明の第4の実施形態に係る内視鏡用オーバーチューブに用いる圧力表示器の変形例(第14変形例)の主要部を示す模式的な断面図である。FIG. 21 is a schematic cross-sectional view showing the main part of a modified example (a fourteenth modified example) of the pressure indicator used in the endoscope overtube according to the fourth embodiment of the present invention; 本発明の第4の実施形態に係る内視鏡用オーバーチューブに用いる圧力表示器の変形例(第15変形例)の主要部を示す模式的な断面図である。FIG. 21 is a schematic cross-sectional view showing the main part of a modified example (a fifteenth modified example) of the pressure indicator used in the endoscope overtube according to the fourth embodiment of the present invention; 本発明の第4の実施形態に係る内視鏡用オーバーチューブに用いる圧力表示器の変形例(第16変形例)の主要部を示す模式的な斜視の部分断面図である。FIG. 21 is a schematic perspective partial cross-sectional view showing a main part of a modified example (sixteenth modified example) of the pressure indicator used in the endoscope overtube according to the fourth embodiment of the present invention; 圧力表示器の変形例(第16変形例)に用いるカラーの右側面図である。FIG. 20 is a right side view of a collar used in a modified example (16th modified example) of the pressure indicator. 図84におけるF85-F85線に沿う断面図である。FIG. 85 is a cross-sectional view taken along line F85-F85 in FIG. 84; 圧力表示器の変形例(第16変形例)に用いる気密部材の斜視図である。FIG. 20 is a perspective view of an airtight member used in a modification (sixteenth modification) of the pressure indicator; 図86におけるF87-F87線に沿う断面図である。FIG. 87 is a sectional view taken along line F87-F87 in FIG. 86; 図86におけるF88-F88線に沿う断面図である。FIG. 87 is a cross-sectional view taken along line F88-F88 in FIG. 86; 本発明の第4の実施形態に係る内視鏡用オーバーチューブに用いる圧力表示器の変形例(第17変形例)の主要部を示す模式的な斜視の部分断面図である。FIG. 20 is a schematic perspective partial cross-sectional view showing a main part of a modified example (a seventeenth modified example) of the pressure indicator used in the endoscope overtube according to the fourth embodiment of the present invention; 図89におけるF90部の拡大図である。89. It is an enlarged view of the F90 part in FIG. 本発明の第5の実施形態に係る内視鏡用オーバーチューブに用いる送気デバイスの例を示す模式的な正面図である。FIG. 11 is a schematic front view showing an example of an air supply device used in an endoscope overtube according to a fifth embodiment of the present invention; 図91におけるF92部の拡大図である。92 is an enlarged view of the F92 portion in FIG. 91; FIG. 本発明の第5の実施形態に係る内視鏡用オーバーチューブに用いるリミッタの変形例(第18変形例)の例を示す模式的な断面図である。FIG. 20 is a schematic cross-sectional view showing an example of a modification (eighteenth modification) of the limiter used in the endoscope overtube according to the fifth embodiment of the present invention; 図93におけるF94視の模式図である。FIG. 94 is a schematic view of F94 in FIG. 93; 本発明の第6の実施形態に係る内視鏡用オーバーチューブに用いる気密弁ユニットの例を示す模式的な断面図である。FIG. 11 is a schematic cross-sectional view showing an example of an airtight valve unit used in an endoscope overtube according to a sixth embodiment of the present invention; 本発明の第6の実施形態に係る内視鏡用オーバーチューブに用いる気密弁ユニットの動作説明図である。FIG. 11 is an operation explanatory diagram of an airtight valve unit used in an endoscope overtube according to a sixth embodiment of the present invention; 本発明の第6の実施形態に係る内視鏡用オーバーチューブに用いる気密弁ユニットの変形例(第19変形例)を示す模式的な断面図である。FIG. 21 is a schematic cross-sectional view showing a modification (a nineteenth modification) of the airtight valve unit used in the endoscope overtube according to the sixth embodiment of the present invention; 気密弁ユニットの変形例(第19変形例)の動作説明図である。FIG. 20 is an operation explanatory diagram of a modified example (a nineteenth modified example) of the airtight valve unit; 本発明の第6の実施形態に係る内視鏡用オーバーチューブに用いる気密弁ユニットの変形例(第20変形例)を示す模式的な断面図である。FIG. 20 is a schematic cross-sectional view showing a modification (twentieth modification) of the airtight valve unit used in the endoscope overtube according to the sixth embodiment of the present invention; 本発明の第7の実施形態に係る内視鏡用オーバーチューブの例を示す模式的な斜視図である。FIG. 21 is a schematic perspective view showing an example of an endoscope overtube according to a seventh embodiment of the present invention; 図100におけるF101-F101線に沿う断面図である。FIG. 101 is a cross-sectional view taken along line F101-F101 in FIG. 100; 図101におけるF102-F102線に沿う断面図である。FIG. 102 is a cross-sectional view taken along line F102-F102 in FIG. 101; 図103におけるF103-F103線に沿う断面図である。FIG. 104 is a cross-sectional view taken along line F103-F103 in FIG. 103; 従来のオーバーチューブを用いて内視鏡的全層切除を行う場合の例を示す模式図である。FIG. 4 is a schematic diagram showing an example of performing endoscopic full-thickness resection using a conventional overtube. 本発明の第7の実施形態に係る内視鏡用オーバーチューブの使用方法の例を示す模式図である。FIG. 14 is a schematic diagram showing an example of how to use the endoscope overtube according to the seventh embodiment of the present invention. 図105におけるF106部の拡大図である。106 is an enlarged view of F106 part in FIG. 105; FIG. 本発明の第7の実施形態に係る内視鏡用オーバーチューブの使用方法の例を示す模式図である。FIG. 14 is a schematic diagram showing an example of how to use the endoscope overtube according to the seventh embodiment of the present invention. 図107におけるF108部の拡大図である。108 is an enlarged view of F108 part in FIG. 107; FIG. 本発明の第7の実施形態に係る内視鏡用オーバーチューブの使用方法の例を示す断面図である。FIG. 21 is a cross-sectional view showing an example of how to use the endoscope overtube according to the seventh embodiment of the present invention; 本発明の第7の実施形態に係る内視鏡用オーバーチューブの使用方法の例を示す断面図である。FIG. 21 is a cross-sectional view showing an example of how to use the endoscope overtube according to the seventh embodiment of the present invention; 本発明の第7の実施形態に係る内視鏡用オーバーチューブの使用方法の変形例(第21変形例)を示す断面図である。FIG. 21 is a cross-sectional view showing a modification (twenty-first modification) of the method of using the endoscope overtube according to the seventh embodiment of the present invention; 本発明の第7の実施形態に係る内視鏡用オーバーチューブの使用方法の変形例(第21変形例)を示す断面図である。FIG. 21 is a cross-sectional view showing a modification (twenty-first modification) of the method of using the endoscope overtube according to the seventh embodiment of the present invention; 本発明の第7の実施形態に係る内視鏡用オーバーチューブの使用方法の変形例(第21変形例)を示す断面図である。FIG. 21 is a cross-sectional view showing a modification (twenty-first modification) of the method of using the endoscope overtube according to the seventh embodiment of the present invention; 本発明の第7の実施形態の内視鏡用オーバーチューブに用いる先端固定部の変形例(第22変形例)を示す断面図である。FIG. 22 is a cross-sectional view showing a modified example (22nd modified example) of the distal end fixing portion used in the endoscope overtube of the seventh embodiment of the present invention; 先端固定部の変形例(第22変形例)の作用を示す断面図である。FIG. 11 is a cross-sectional view showing the operation of a modified example (22nd modified example) of the distal end fixing portion; 本発明の第7の実施形態に係る内視鏡用オーバーチューブに用いる先端固定部の変形例(第23変形例)を示す模式的な断面図である。FIG. 21 is a schematic cross-sectional view showing a modification (twenty-third modification) of the distal end fixing portion used in the endoscope overtube according to the seventh embodiment of the present invention; 図116におけるF117-F117線に沿う断面図である。117 is a cross-sectional view taken along line F117-F117 in FIG. 116; FIG. 先端固定部の変形例(第23変形例)の縮径状態の例を示す模式的な断面図である。FIG. 11 is a schematic cross-sectional view showing an example of a diameter-reduced state of a modified example (a twenty-third modified example) of the distal end fixing portion; 本発明の第8の実施形態に係る内視鏡用オーバーチューブの例を示す模式的な斜視図である。FIG. 21 is a schematic perspective view showing an example of an endoscope overtube according to an eighth embodiment of the present invention; 図119におけるF120-F120線に沿う断面図である。FIG. 120 is a cross-sectional view taken along line F120-F120 in FIG. 119; 図120におけるF121-F121線に沿う断面図である。FIG. 121 is a cross-sectional view taken along line F121-F121 in FIG. 120; 図120におけるF122-F122線に沿う断面図である。FIG. 121 is a cross-sectional view taken along line F122-F122 in FIG. 120; 図121におけるF123-F123線に沿う断面図である。FIG. 123 is a cross-sectional view along line F123-F123 in FIG. 121; 本発明の第8の実施形態に係る内視鏡用オーバーチューブの使用方法の例を示す断面図である。FIG. 20 is a cross-sectional view showing an example of how to use the endoscope overtube according to the eighth embodiment of the present invention; 本発明の第8の実施形態に係る内視鏡用オーバーチューブの使用方法の例を示す断面図である。FIG. 20 is a cross-sectional view showing an example of how to use the endoscope overtube according to the eighth embodiment of the present invention; 本発明の第8の実施形態に係る内視鏡用オーバーチューブの使用方法の例を示す断面図である。FIG. 20 is a cross-sectional view showing an example of how to use the endoscope overtube according to the eighth embodiment of the present invention; 本発明の第8の実施形態に係る内視鏡用オーバーチューブの使用方法の例を示す断面図である。FIG. 20 is a cross-sectional view showing an example of how to use the endoscope overtube according to the eighth embodiment of the present invention; 本発明の第8の実施形態に係る内視鏡用オーバーチューブの使用方法の例を示す断面図である。FIG. 20 is a cross-sectional view showing an example of how to use the endoscope overtube according to the eighth embodiment of the present invention;
 以下では、本発明の実施形態について添付図面を参照して説明する。すべての図面において、実施形態が異なる場合であっても、同一または相当する部材には同一の符号を付し、共通する説明は省略する。 Embodiments of the present invention will be described below with reference to the accompanying drawings. In all the drawings, even when the embodiments are different, the same or corresponding members are denoted by the same reference numerals, and common explanations are omitted.
[第1の実施形態]
 本発明の第1の実施形態に係る内視鏡用オーバーチューブを説明する。
 図1は、本発明の第1の実施形態に係る内視鏡用オーバーチューブの例を示す模式的な斜視図である。
[First embodiment]
An endoscope overtube according to a first embodiment of the present invention will be described.
FIG. 1 is a schematic perspective view showing an example of an endoscope overtube according to a first embodiment of the present invention.
 図1に示すオーバーチューブ1は、本実施形態に係る内視鏡用オーバーチューブの例である。
 オーバーチューブ1は、メインチューブ2(チューブ本体)、固定用バルーン3、先端チップ4、グリップ部5、気密弁ユニット6、気密弁操作チューブ7、および送気デバイス10を有する。
 オーバーチューブ1は、患者の体内に挿入され、内部に内視鏡を挿通させる長尺部材である。先端チップ4、固定用バルーン3、およびメインチューブ2は、オーバーチューブ1の挿入方向における先端(distal end)から後端(proximal end)に向かってこの順に配置されている。
An overtube 1 shown in FIG. 1 is an example of an endoscope overtube according to the present embodiment.
The overtube 1 has a main tube 2 (tube body), a fixation balloon 3 , a distal tip 4 , a grip portion 5 , an airtight valve unit 6 , an airtight valve operating tube 7 , and an air supply device 10 .
The overtube 1 is an elongated member that is inserted into the patient's body and allows an endoscope to pass through it. The distal tip 4 , the fixation balloon 3 , and the main tube 2 are arranged in this order from the distal end toward the proximal end in the insertion direction of the overtube 1 .
 以下では、オーバーチューブ1の各構成部品においても、オーバーチューブ1に組み立てられた状態の長手方向における配置に基づいて、オーバーチューブ1の先端寄りの端を先端と称し、オーバーチューブ1の後端寄りの端を後端と称する場合がある。各構成部材の先端寄りの部分を先端部と称し、後端寄りの部分を後端部と称する場合がある。特に断らない限り、先端部には先端が含まれてもよいし、含まれなくてもよい。同様に後端部には後端が含まれてもよいし、含まれなくてもよい。 Hereinafter, regarding each component of the overtube 1 as well, the end closer to the distal end of the overtube 1 will be referred to as the distal end, and the end closer to the rear end of the overtube 1 will be referred to as the distal end based on the arrangement in the longitudinal direction of the overtube 1 when assembled. may be referred to as the trailing edge. A portion near the front end of each component may be called a front end portion, and a portion near the rear end thereof may be called a rear end portion. Unless otherwise specified, a tip may or may not include a tip. Similarly, the trailing edge may or may not include the trailing edge.
 先端チップ4、固定用バルーン3、およびメインチューブ2は、オーバーチューブ1において、体内に挿入される挿入部Iを形成している。固定用バルーン3は術者の操作によって、拡径状態と、縮径状態と、を取る。図1には、拡径状態の固定用バルーン3が描かれている。挿入部Iが体内に挿入される際には、固定用バルーン3は、縮径状態とされる。縮径状態では、固定用バルーン3は折り畳まれた状態で、メインチューブ2に近接している。これにより、固定用バルーン3の外径は、メインチューブ2の外径と略等しい大きさに縮径される。
 オーバーチューブ1においてメインチューブ2の後端部と、気密弁ユニット6、気密弁操作チューブ7、および送気デバイス10は、患者の体外に配置される。
 オーバーチューブ1の挿入箇所は患者の体内であれば特に限定されない。オーバーチューブ1は、例えば腸など、屈曲する箇所が多い臓器に挿入する内視鏡を挿通させる用途に特に好適である。以下では、オーバーチューブ1が腸管に挿入される例で説明する。
The distal tip 4, the fixation balloon 3, and the main tube 2 form an insertion portion I in the overtube 1, which is inserted into the body. The fixation balloon 3 is operated by the operator to take a diameter-expanded state and a diameter-reduced state. FIG. 1 depicts the fixation balloon 3 in a diameter-expanded state. When the insertion portion I is inserted into the body, the fixation balloon 3 is reduced in diameter. In the contracted state, the fixation balloon 3 is folded and close to the main tube 2 . As a result, the outer diameter of the fixation balloon 3 is reduced to approximately the same size as the outer diameter of the main tube 2 .
In the overtube 1, the rear end of the main tube 2, the airtight valve unit 6, the airtight valve operation tube 7, and the air supply device 10 are arranged outside the patient's body.
The insertion point of the overtube 1 is not particularly limited as long as it is inside the patient's body. The overtube 1 is particularly suitable for use in inserting an endoscope into an organ with many bends, such as the intestine. An example in which the overtube 1 is inserted into the intestinal tract will be described below.
 オーバーチューブ1に挿通される内視鏡の例を説明する。
 図2は、発明の第1の実施形態に係る内視鏡用オーバーチューブに挿通される内視鏡の例を示す模式的な正面図である。図3は、図2におけるF3視の側面図である。
An example of an endoscope inserted through the overtube 1 will be described.
FIG. 2 is a schematic front view showing an example of an endoscope inserted through an endoscope overtube according to the first embodiment of the invention. 3 is a side view of F3 in FIG. 2. FIG.
 図2に先端部分における構成を示すように、内視鏡11は、先端部12と、内視鏡用処置具Eと、を有する。
 先端部12は、内視鏡11において患者の体内に挿入される挿入部の先端に設けられている。先端部12は、硬質の円筒形である。先端部12の後端は、挿入部における湾曲部17の先端に連結されている。例えば、湾曲部17は、複数の節輪が連結されており、節輪に沿って挿入部の長手方向に延びる操作ワイヤを牽引することによって、上下方向および左右方向に湾曲可能である。湾曲部17の後端は、挿入部における可撓管部の先端に連結されている。可撓管部の後端には、内視鏡11における種々の操作を行う操作部が接続されている。例えば、操作部は、湾曲部17の湾曲方向および湾曲量を操作することができる。
 図3に示すように、先端部12の先端面12aには、処置具を挿通する管状の処置具チャンネル12bと、流体の挿通が可能なノズル12fと、が開口している。
 処置具チャンネル12bは挿入部の内部に挿通されている。処置具チャンネル12bの後端部は処置具を挿入する鉗子口に接続されている。
 ノズル12fは、挿入部の内部に挿通されている。ノズル12fの後端部は流体を供給する流体供給口に接続されている。
 先端面12aには、先端部12の前方の画像を取得する撮像レンズ12cの先端面と、先端部12の前方を照明するライトガイド12d、12eの各光出射面と、が配置されている。
As shown in FIG. 2, the endoscope 11 has a distal end portion 12 and an endoscopic treatment tool E. As shown in FIG.
The distal end portion 12 is provided at the distal end of an insertion portion of the endoscope 11 that is inserted into the patient's body. The tip 12 is rigid and cylindrical. The rear end of the distal end portion 12 is connected to the distal end of the bending portion 17 in the insertion portion. For example, the bending portion 17 has a plurality of articulation rings connected thereto, and can be bent vertically and horizontally by pulling an operation wire extending in the longitudinal direction of the insertion section along the articulation rings. The rear end of the bending section 17 is connected to the distal end of the flexible tube section in the insertion section. An operation section for performing various operations in the endoscope 11 is connected to the rear end of the flexible tube section. For example, the operation section can operate the bending direction and bending amount of the bending section 17 .
As shown in FIG. 3, a tubular treatment instrument channel 12b through which a treatment instrument is inserted and a nozzle 12f through which a fluid can be passed are opened in a distal end face 12a of the distal end portion 12. As shown in FIG.
The treatment instrument channel 12b is inserted through the inside of the insertion section. A rear end portion of the treatment instrument channel 12b is connected to a forceps opening into which a treatment instrument is inserted.
The nozzle 12f is inserted inside the insertion portion. A rear end portion of the nozzle 12f is connected to a fluid supply port for supplying fluid.
A tip surface of an imaging lens 12c that acquires an image in front of the tip portion 12 and light exit surfaces of light guides 12d and 12e that illuminate the front portion of the tip portion 12 are arranged on the tip surface 12a.
 図2に示すように、内視鏡用処置具Eは、把持デバイス14と、把持デバイス14を支持し先端部12に装着される内視鏡用キャップ13と、を有する。
 把持デバイス14は、長尺の可撓性の細長部材14aと、細長部材14aの先端に接続され生体組織を把持する把持部14bと、把持部14bの後端側に設けられたコネクタ14cと、を有する。
 細長部材14aは、例えば、コイルシースである。把持部14bは、開閉可能な一対の把持片を有し、一対の把持片間に生体組織を把持することができる。コネクタ14cは、例えば、細長部材14aと把持部14bとの間に設けられ、細長部材14aの長手方向に直交する方向に貫通する貫通孔14dを有する。
As shown in FIG. 2 , the endoscope treatment instrument E has a grasping device 14 and an endoscope cap 13 that supports the grasping device 14 and is attached to the distal end portion 12 .
The grasping device 14 includes a long flexible elongated member 14a, a grasping portion 14b connected to the distal end of the elongated member 14a for grasping a living tissue, a connector 14c provided on the rear end side of the grasping portion 14b, have
Elongated member 14a is, for example, a coil sheath. The grasping part 14b has a pair of grasping pieces that can be opened and closed, and can grasp a biological tissue between the pair of grasping pieces. The connector 14c is provided, for example, between the elongated member 14a and the grip portion 14b, and has a through hole 14d penetrating in a direction orthogonal to the longitudinal direction of the elongated member 14a.
 内視鏡用キャップ13は、フード部13b、キャップ部13a、チャンネルチューブ15、および連結部材16を有する。
 以下、内視鏡用キャップ13の説明において、上下方向および左右方向を用いる場合がある。上下方向および左右方向はそれぞれフード部13bの径方向である。フード部13bの長手軸とチャンネルチューブ15の長手軸とが並ぶ方向が上下方向である。左右方向は、上下方向および先端部12の軸方向と直交する。内視鏡用キャップ13の上下方向および左右方向は、内視鏡11の湾曲部17の操作における上下方向および左右方向にそれぞれ対応していてもよい。
The endoscope cap 13 has a hood portion 13b, a cap portion 13a, a channel tube 15, and a connecting member 16. As shown in FIG.
Hereinafter, in the description of the endoscope cap 13, the up-down direction and the left-right direction may be used. The vertical direction and the horizontal direction are the radial directions of the receptacle 13b. The vertical direction is the direction in which the longitudinal axis of the receptacle 13b and the longitudinal axis of the channel tube 15 are aligned. The left-right direction is orthogonal to the up-down direction and the axial direction of the distal end portion 12 . The up-down direction and left-right direction of the endoscope cap 13 may correspond to the up-down direction and left-right direction in the operation of the bending portion 17 of the endoscope 11, respectively.
 フード部13bは、略円筒形であり、先端部12の外周面に装着される。フード部13bの先端側の内周部には、先端部12の先端面12aを突き当てる突き当て部13dが中心に向かって突出している。図3に示すように、先端部12の先端側から見ると、突き当て部13dは、処置具チャンネル12b、撮像レンズ12c、ライトガイド12d、12eよりも外側に開口する円形の開口を形成している。
 フード部13bは、先端部12の外周面に嵌合し、突き当て部13dが先端面12aに当接した状態で、先端部12に固定されている。フード部13bは、フード部13bの内周面と先端部12の外周面との間の摩擦によって先端部12に固定されてもよい。フード部13bは、フード部13bの内周面と先端部12の外周面との間の介在する固定テープまたは接着剤によって、先端部12に固定されてもよい。
The hood portion 13 b is substantially cylindrical and is attached to the outer peripheral surface of the distal end portion 12 . An abutment portion 13d against which the tip surface 12a of the tip portion 12 is abutted protrudes toward the center from the inner peripheral portion on the tip side of the receptacle portion 13b. As shown in FIG. 3, when viewed from the distal end side of the distal end portion 12, the abutment portion 13d forms a circular opening that opens outward from the treatment instrument channel 12b, the imaging lens 12c, and the light guides 12d and 12e. there is
The hood portion 13b is fitted to the outer peripheral surface of the distal end portion 12, and is fixed to the distal end portion 12 with the abutting portion 13d in contact with the distal end surface 12a. The hood portion 13 b may be fixed to the tip portion 12 by friction between the inner peripheral surface of the hood portion 13 b and the outer peripheral surface of the tip portion 12 . The hood portion 13 b may be fixed to the tip portion 12 by a fixing tape or adhesive interposed between the inner peripheral surface of the hood portion 13 b and the outer peripheral surface of the tip portion 12 .
 フード部13bは、連結部材16を支持するための一対の支持孔13cを有する。一対の支持孔13cは、フード部13bの周方向に相互に離間し左右方向に相互に対向する位置に設けられている。各支持孔13cは、フード部13bの外周面から内周面までフード部13bの径方向に貫通している。
 各支持孔13cは、突き当て部13dよりもフード部13bの後端側に形成され、かつ、後述するチャンネルチューブ15の先端よりもフード部13bの先端側に位置している。
 フード部13bの後端部には、フード部13bの長手方向に固定孔13fが貫通する凸部13eが形成されている。
Hood portion 13 b has a pair of support holes 13 c for supporting connecting member 16 . The pair of support holes 13c are provided at positions that are spaced apart from each other in the circumferential direction of the receptacle 13b and face each other in the left-right direction. Each support hole 13c extends radially through the hood portion 13b from the outer peripheral surface to the inner peripheral surface of the hood portion 13b.
Each support hole 13c is formed on the rear end side of the hood portion 13b relative to the abutment portion 13d, and is located on the distal end side of the hood portion 13b relative to the distal end of a channel tube 15, which will be described later.
A rear end portion of the hood portion 13b is formed with a convex portion 13e through which a fixing hole 13f penetrates in the longitudinal direction of the hood portion 13b.
 キャップ部13aは、フード部13bと同軸の略円環形の部材であり、フード部13bの先端からフード部13bの長手方向に突出している。キャップ部13aの長手方向の寸法は、撮像レンズ12cの焦点距離も短く、キャップ部13aの先端の近傍に撮像レンズ12cの焦点位置が配置される。内視鏡11の設計の一例において、撮像レンズ12cの焦点距離は10mm、キャップ部13aの長さは5mmである。 The cap portion 13a is a substantially annular member coaxial with the hood portion 13b, and protrudes from the tip of the hood portion 13b in the longitudinal direction of the hood portion 13b. The longitudinal dimension of the cap portion 13a is such that the focal length of the imaging lens 12c is also short, and the focal position of the imaging lens 12c is located near the tip of the cap portion 13a. In one design example of the endoscope 11, the focal length of the imaging lens 12c is 10 mm, and the length of the cap portion 13a is 5 mm.
 チャンネルチューブ15は、細長部材14aを挿通する長尺部材である。チャンネルチューブ15は、フード部13bの長手方向と略平行に延びている。チャンネルチューブ15の内部には、細長部材14aが進退可能な貫通孔であるチャンネル15aが長手方向に延びている。
 チャンネルチューブ15の先端部は、凸部13eに形成された固定孔13fに挿通された状態で突き当て部13dに固定されている。チャンネルチューブ15を固定する方法は、接着剤による接着であってもよいし、熱融着であってもよい。
The channel tube 15 is an elongated member through which the elongated member 14a is inserted. The channel tube 15 extends substantially parallel to the longitudinal direction of the receptacle 13b. Inside the channel tube 15, a channel 15a, which is a through hole through which the elongated member 14a can advance and retreat, extends in the longitudinal direction.
The tip portion of the channel tube 15 is fixed to the abutment portion 13d while being inserted through a fixing hole 13f formed in the convex portion 13e. A method for fixing the channel tube 15 may be adhesion using an adhesive or heat sealing.
 連結部材16は、フード部13bに支持されフード部13bと把持デバイス14とを連結する。連結部材16は、糸等の細長い線状の部材である。連結部材16は、柔軟性を有し、かつ、長手方向にほとんどまたは全く伸縮しない部材であることが好ましく、例えば、軟性の糸であることが好ましい。連結部材16は、糸に代えて、ワイヤであってもよい。
 連結部材16は、フード部13bの外側に配置され、コネクタ14cの貫通孔14dを経由して一対の支持孔13c間で延びている。
 連結部材16の両端部は、支持孔13c内に外側から内側に向かって挿入されている。フード部13b内に配置された連結部材16の両端は、例えば両端に形成された結び目によって抜け止めされた状態で、フード部13bの内側から支持孔13cに係止している。
 これにより、連結部材16は、一対の支持孔13cを支点にしてフード部13bに対して揺動可能に支持されている。
The connecting member 16 is supported by the hood portion 13 b and connects the hood portion 13 b and the grip device 14 . The connecting member 16 is an elongated linear member such as thread. The connecting member 16 is preferably a member that is flexible and has little or no stretch in the longitudinal direction, such as a soft thread. The connecting member 16 may be a wire instead of the thread.
The connecting member 16 is arranged outside the receptacle 13b and extends between the pair of support holes 13c via the through holes 14d of the connector 14c.
Both ends of the connecting member 16 are inserted into the support holes 13c from the outside toward the inside. Both ends of the connecting member 16 arranged in the hood portion 13b are engaged with the support holes 13c from the inside of the hood portion 13b in a state of being prevented from coming off, for example, by knots formed at both ends.
Thereby, the connecting member 16 is supported swingably with respect to the receptacle 13b with the pair of support holes 13c as fulcrums.
 把持部14bは、細長部材14aを長手方向の押し引き操作することによって、図1に実線で示された最大引込位置から、二点鎖線で示された下降位置との間で移動する。
 最大引込位置は、把持部14bまたはコネクタ14cがチャンネルチューブ15の先端に突き当たり、後端側への移動が阻止される位置である。
 最大引込位置から細長部材14aが長手方向の前方に押し出されると、連結部材16と共にコネクタ14cが支持孔13cを支点にして上側から下側へ揺動する。これにより、把持部14bが、キャップ部13aの前方において上側から下側に向かって下降した状態の下降位置に移動する。
The gripping portion 14b is moved between a fully retracted position indicated by solid lines in FIG.
The maximum retraction position is a position where the grip portion 14b or the connector 14c abuts against the tip of the channel tube 15 and is prevented from moving toward the rear end.
When the elongated member 14a is pushed forward in the longitudinal direction from the maximum retracted position, the connector 14c together with the connecting member 16 swings from the upper side to the lower side with the support hole 13c as a fulcrum. As a result, the grip portion 14b moves to the lowered position in which the grip portion 14b is lowered from the upper side to the lower side in front of the cap portion 13a.
 下降位置は、細長部材14aの押出長さに応じて、先端部12の前方における上下方向の範囲で変化する。このため、細長部材14aの押出長さを適宜変更することによって、把持部14bを、処置が必要な患部に近づけることができる。
 把持部14bが生体組織を把持可能な位置に移動すると、把持部14bを開閉操作することによって、患部の生体組織を把持できる。
 細長部材14aが長手方向後方に牽引されると、把持部14bが上述と反対に上昇し、下降位置から最大引込位置に戻る。
 把持部14bが生体組織を把持した状態で、把持部14bが最大引込位置に向かって移動すると、把持部14bで把持された生体組織が上方に挙上される。
 さらに把持部14bが最大引込位置に近づくと、生体組織が先端部12に近づく。先端部12からキャップ部13aが突出しているので、生体組織は、キャップ部13aの突出量よりも先端面12aに近づくことはない。このため、挙上され、先端面12aから離れた状態で先端面12aに近づいた生体組織は、撮像レンズ12cの視野範囲で観察可能である。
 この状態で、処置具チャンネル12bから、例えば、高周波ナイフなど処置具を繰り出すことによって、挙上された生体組織を先端面12aの前方で切除することができる。例えば、生体組織が患部組織の場合、電気メスなどの処置具によって患部組織を剥離あるいは全切除することが可能である。
The lowered position changes in a vertical range in front of the distal end portion 12 according to the extrusion length of the elongated member 14a. Therefore, by appropriately changing the extrusion length of the elongated member 14a, the grasping portion 14b can be brought closer to the affected area requiring treatment.
When the grasping portion 14b moves to a position where the living tissue can be grasped, the living tissue of the affected area can be grasped by opening and closing the grasping portion 14b.
When the elongated member 14a is pulled longitudinally rearward, the gripping portion 14b rises in the opposite direction and returns from the lowered position to the maximum retracted position.
When the gripping portion 14b moves toward the maximum retraction position while gripping the living tissue, the living tissue gripped by the gripping portion 14b is lifted upward.
Further, when the grasping portion 14b approaches the maximum retraction position, the living tissue approaches the distal end portion 12. As shown in FIG. Since the cap portion 13a protrudes from the distal end portion 12, the living tissue does not come closer to the distal end surface 12a than the protruding amount of the cap portion 13a. Therefore, the living tissue that is lifted and approaches the distal end surface 12a while being separated from the distal end surface 12a can be observed within the visual field range of the imaging lens 12c.
In this state, for example, a treatment tool such as a high-frequency knife can be drawn out from the treatment tool channel 12b to excise the raised living tissue in front of the distal end surface 12a. For example, when the living tissue is a diseased tissue, the diseased tissue can be exfoliated or completely excised with a treatment tool such as an electric scalpel.
 図3に示すように、内視鏡11は、略円形のキャップ部13aから凸部13eが径方向外側に突出しているので、内視鏡11を挿通するオーバーチューブ1は、先端部12の軸方向から見ると、内視鏡用キャップ13の外径に凸部13eの高さを加えた長さよりも大きい内径を有する必要がある。 As shown in FIG. 3, the endoscope 11 has a convex portion 13e protruding radially outward from a substantially circular cap portion 13a. When viewed from the direction, the inner diameter must be larger than the outer diameter of the endoscope cap 13 plus the height of the projection 13e.
 ここで、オーバーチューブ1の説明に戻る。
 図4は、本発明の第1の実施形態に係る内視鏡用オーバーチューブの例を示す模式的な断面図である。図5は、図4におけるF5-F5線に沿う断面図である。図6は、図4におけるF6-F6線に沿う断面図である。
Now, let us return to the description of the overtube 1 .
FIG. 4 is a schematic cross-sectional view showing an example of the endoscope overtube according to the first embodiment of the present invention. FIG. 5 is a cross-sectional view taken along line F5-F5 in FIG. FIG. 6 is a cross-sectional view along line F6-F6 in FIG.
 図4に示すように、メインチューブ2には、先端に先端チップ4が接続され、後端にグリップ部5が接続されている。先端チップ4の近くのメインチューブ2の外周部には、固定用バルーン3が固定されている。ただし、図4では、固定用バルーン3が拡径した状態が描かれている。
 メインチューブ2の長さは、内視鏡11を挿入する部位の必要に応じた長さである。
 図5に示すように、メインチューブ2は、第1ルーメン2c(メインルーメン)と、第2ルーメン2e(送気ルーメン)と、が長手方向に形成されたマルチルーメンチューブである。
 第1ルーメン2cは、内視鏡11を挿通可能な内径を有する円孔である。第1ルーメン2cはメインチューブ2の長手方向に貫通している。第1ルーメン2cは、一定の肉厚を有するチューブ壁2a(定厚部)によって囲まれている。
As shown in FIG. 4, the main tube 2 has a distal tip 4 connected to its distal end and a grip portion 5 connected to its rear end. A fixation balloon 3 is fixed to the outer circumference of the main tube 2 near the distal tip 4 . However, FIG. 4 depicts a state in which the diameter of the fixation balloon 3 is expanded.
The length of the main tube 2 is the length required for the site into which the endoscope 11 is inserted.
As shown in FIG. 5, the main tube 2 is a multi-lumen tube in which a first lumen 2c (main lumen) and a second lumen 2e (air supply lumen) are formed in the longitudinal direction.
The first lumen 2c is a circular hole having an inner diameter through which the endoscope 11 can be inserted. The first lumen 2c extends through the main tube 2 in the longitudinal direction. The first lumen 2c is surrounded by a tube wall 2a (constant thickness portion) having a constant thickness.
 第2ルーメン2eは、固定用バルーン3に対して送気デバイス10から供給されるエアを流通させる送気ルーメンである。第2ルーメン2eの内径は、第1ルーメン2cと内径よりも小さい。第2ルーメン2eの内径は、メインチューブ2の材料にもよるが、例えば、0.5mm以上3.0mm以下であってもよい。
 第2ルーメン2eは、第1ルーメン2cの径方向に隣り合い、第1ルーメン2cの長手方向において、第2ルーメン2eと並行に延びている。
 第2ルーメン2eは、チューブ壁2aの一部が、径方向外側に突出した厚肉部2bにおいて第1ルーメン2cの長手方向に延びている。
 このため、メインチューブ2の外周面2dは、第1ルーメン2cを囲むチューブ壁2aと、チューブ壁2aから径方向外側に膨出した厚肉部2bと、で形成される。外周面2dの断面形状は、円形のチューブ壁2aから厚肉部2bが突出した略円形である。
 厚肉部2bにおける突出方向の頂部を形成する外周面2dは、外側に凸の滑らかな曲面である。厚肉部2bの厚さは、頂部から周方向に離れるにつれて、チューブ壁2aの厚さに漸次近づく。厚肉部2bとチューブ壁2aとの接続部を形成する外周面2dは、チューブ壁2aにおける外周面2dと滑らかに接続する曲面である。
The second lumen 2 e is an air supply lumen for circulating air supplied from the air supply device 10 to the fixation balloon 3 . The inner diameter of the second lumen 2e is smaller than the inner diameter of the first lumen 2c. The inner diameter of the second lumen 2e depends on the material of the main tube 2, but may be, for example, 0.5 mm or more and 3.0 mm or less.
The second lumen 2e is radially adjacent to the first lumen 2c and extends parallel to the second lumen 2e in the longitudinal direction of the first lumen 2c.
A portion of the tube wall 2a of the second lumen 2e extends in the longitudinal direction of the first lumen 2c at a thick portion 2b protruding radially outward.
Therefore, the outer peripheral surface 2d of the main tube 2 is formed by the tube wall 2a surrounding the first lumen 2c and the thick portion 2b that protrudes radially outward from the tube wall 2a. The cross-sectional shape of the outer peripheral surface 2d is substantially circular with the thick portion 2b protruding from the circular tube wall 2a.
2 d of outer peripheral surfaces which form the top part of the protrusion direction in the thick part 2b are smooth curved surfaces convex outward. The thickness of the thick portion 2b gradually approaches the thickness of the tube wall 2a as it moves away from the top in the circumferential direction. 2 d of outer peripheral surfaces which form the connection part of the thick part 2b and the tube wall 2a are curved surfaces which connect smoothly with 2d of outer peripheral surfaces in the tube wall 2a.
 このような構成により、メインチューブ2の曲げ剛性は、厚肉部2bの中央と第1ルーメン2cの中心とを通る軸線Yに関して最小になり、第1ルーメン2cの中心において軸線Yと直交する軸線Xに関して最大になる。 With such a configuration, the bending rigidity of the main tube 2 is minimized with respect to the axis Y passing through the center of the thick portion 2b and the center of the first lumen 2c, and the axis perpendicular to the axis Y at the center of the first lumen 2c. maximum with respect to X.
 図4に示すように、第2ルーメン2eは、メインチューブ2の後端(図4における左端)からメインチューブ2の先端(図4における右端)の近傍まで延びている。第2ルーメン2eの後端は開口しているのに対して、先端は閉止されている。
 固定用バルーン3で囲まれた厚肉部2bの外周面2dには、第2ルーメン2eの内部と連通する開口部2fが貫通している。
 開口部2fの個数は、1以上であれば特に限定されない。図3に示す例では、メインチューブ2の長手方向に離れた2箇所に形成されている。
As shown in FIG. 4, the second lumen 2e extends from the rear end of the main tube 2 (the left end in FIG. 4) to near the tip of the main tube 2 (the right end in FIG. 4). The rear end of the second lumen 2e is open, while the tip is closed.
An opening 2f that communicates with the inside of the second lumen 2e penetrates an outer peripheral surface 2d of the thick portion 2b surrounded by the fixing balloon 3. As shown in FIG.
The number of openings 2f is not particularly limited as long as it is one or more. In the example shown in FIG. 3, they are formed at two locations separated in the longitudinal direction of the main tube 2 .
 メインチューブ2の材料は可撓性を有している。メインチューブ2は、体内に挿入する場合に、体内の湾曲に応じて湾曲できる。
 例えば、メインチューブ2の材料は、ゴム硬度(ショアA)がA70のシリコーンゴムであってもよい。この場合、チューブ壁2aの厚さは、1.25mmであってもよい。
 この場合、第2ルーメン2eの内径を17.5mmとすると、厚肉部2bの最大の厚さは、1.5mm以上5mm以下であってもよい。
The material of the main tube 2 has flexibility. The main tube 2 can bend according to the curvature of the body when inserted into the body.
For example, the material of the main tube 2 may be silicone rubber with a rubber hardness (Shore A) of A70. In this case, the tube wall 2a may have a thickness of 1.25 mm.
In this case, if the inner diameter of the second lumen 2e is 17.5 mm, the maximum thickness of the thick portion 2b may be 1.5 mm or more and 5 mm or less.
 図4に示すように、固定用バルーン3は、メインチューブ2の先端部における外周面2dにおいて、開口部2fを囲むように配置されている。
 固定用バルーン3は、伸縮性を有する薄肉のエラストマーで形成されており、径方向に拡縮可能である。固定用バルーン3は拡径状態では、全体として筒形の形状を有する。固定用バルーン3は縮径状態では、周方向において折り畳み可能である。
 以下、特に断らない限り、固定用バルーン3に張力が発生しない拡径状態における形状を説明する。
As shown in FIG. 4, the fixation balloon 3 is arranged on the outer peripheral surface 2d of the distal end portion of the main tube 2 so as to surround the opening 2f.
The fixation balloon 3 is made of elastic thin elastomer and can be expanded and contracted in the radial direction. The fixation balloon 3 has a cylindrical shape as a whole in an expanded state. The fixation balloon 3 can be folded in the circumferential direction in the contracted state.
Hereinafter, unless otherwise specified, the shape of the fixation balloon 3 in a diameter-expanded state in which tension is not generated will be described.
 固定用バルーン3は固定用バルーン3の後端から先端に向かって、第1円筒部3a、第1拡径部3b、第2円筒部3c、第2拡径部3d、および第3円筒部3eを、この順に有する。 The fixation balloon 3 has a first cylindrical portion 3a, a first enlarged diameter portion 3b, a second cylindrical portion 3c, a second enlarged diameter portion 3d, and a third cylindrical portion 3e from the rear end to the tip of the fixation balloon 3. , in that order.
 第1円筒部3aは、メインチューブ2の外周面2dに外側から嵌まる内径を有し、外周面2dに気密に固定されている。第1円筒部3aの固定方法は、気密が保たれれば特に限定されない。例えば、第1円筒部3aは、接着、熱融着などによって外周面2dに固定されてもよい。 The first cylindrical portion 3a has an inner diameter that fits into the outer peripheral surface 2d of the main tube 2 from the outside, and is airtightly fixed to the outer peripheral surface 2d. A fixing method of the first cylindrical portion 3a is not particularly limited as long as airtightness is maintained. For example, the first cylindrical portion 3a may be fixed to the outer peripheral surface 2d by adhesion, heat-sealing, or the like.
 第1拡径部3bは、第1円筒部3aの先端に接続し、第1円筒部3aの先端からオーバーチューブ1の先端に向かって延びる筒形である。第1拡径部3bの直径は、第1拡径部3bの後端から先端に向かうにつれて、第1円筒部3aの径から漸次拡径している。 The first expanded-diameter portion 3b has a cylindrical shape that is connected to the tip of the first cylindrical portion 3a and extends from the tip of the first cylindrical portion 3a toward the tip of the overtube 1. The diameter of the first enlarged diameter portion 3b gradually increases from the diameter of the first cylindrical portion 3a toward the tip from the rear end of the first enlarged diameter portion 3b.
 第2円筒部3cは、第1拡径部3bの先端に滑らかに接続し、第1拡径部3bの先端からオーバーチューブ1の先端に向かって延びる円筒形である。第2円筒部3cの外径は、張力が発生しない拡径状態では、例えば、腸管などの体内の留置場所の内径よりも小さい一定値である。ただし、後述するようにエアの供給によって膨張する際には、留置場所の内径よりも大径に拡張可能である。
 図4、6に示すように、第2円筒部3cは、各開口部2fを径方向外側から囲む位置において、第1ルーメン2cと略同心に配置されている。
The second cylindrical portion 3 c has a cylindrical shape that smoothly connects to the tip of the first enlarged diameter portion 3 b and extends from the tip of the first enlarged diameter portion 3 b toward the tip of the overtube 1 . The outer diameter of the second cylindrical portion 3c is a constant value that is smaller than the inner diameter of an indwelling site in the body, such as the intestinal tract, in an enlarged diameter state in which tension is not generated. However, as will be described later, when it is inflated by supplying air, it can be expanded to a diameter larger than the inner diameter of the detention site.
As shown in FIGS. 4 and 6, the second cylindrical portion 3c is arranged substantially concentrically with the first lumen 2c at a position surrounding each opening 2f from the radial outside.
 図4に示すように、第2拡径部3dは、第2円筒部3cの先端に接続し、第2円筒部3cの先端からオーバーチューブ1の先端に向かって延びる筒形である。第2拡径部3dの直径は、第1拡径部3bの後端から先端に向かうにつれて、第2拡径部3dの径から漸次縮径している。このため、第2拡径部3dは、第2拡径部3dの先端から後端に向かうにつれて漸次拡径している。 As shown in FIG. 4, the second enlarged diameter portion 3d has a cylindrical shape that connects to the tip of the second cylindrical portion 3c and extends from the tip of the second cylindrical portion 3c toward the tip of the overtube 1. As shown in FIG. The diameter of the second enlarged diameter portion 3d gradually decreases from the diameter of the second enlarged diameter portion 3d toward the tip from the rear end of the first enlarged diameter portion 3b. Therefore, the diameter of the second enlarged diameter portion 3d is gradually increased from the front end to the rear end of the second enlarged diameter portion 3d.
 第3円筒部3eは、第2拡径部3dの先端に接続している。第3円筒部3eは、第1円筒部3aと同様、メインチューブ2の外周面2dに外側から嵌まる内径を有し、外周面2dに気密に固定されている。
 図4に示す例では、第3円筒部3eは、第3円筒部3eの先端が、メインチューブ2の先端に近接する位置に固定されている。
The third cylindrical portion 3e is connected to the tip of the second enlarged diameter portion 3d. Like the first cylindrical portion 3a, the third cylindrical portion 3e has an inner diameter that fits on the outer peripheral surface 2d of the main tube 2 from the outside, and is airtightly fixed to the outer peripheral surface 2d.
In the example shown in FIG. 4 , the tip of the third cylindrical portion 3 e is fixed at a position close to the tip of the main tube 2 .
 固定用バルーン3の材料は、メインチューブ2と固定用バルーン3との間に供給されるエアの圧力によって、必要な大きさに拡縮できれば特に限定されない。
 例えば、固定用バルーン3の材料は、例えば、ゴム硬度(ショアA)がA15以上A30以下のシリコーンゴムであってもよい。この場合、固定用バルーン3の厚さは、例えば、0.15mm以上0.3mm以下であってもよい。
The material of the fixation balloon 3 is not particularly limited as long as it can be expanded or contracted to a required size by the pressure of air supplied between the main tube 2 and the fixation balloon 3 .
For example, the material of the fixation balloon 3 may be silicone rubber having a rubber hardness (Shore A) of A15 or more and A30 or less. In this case, the thickness of the fixation balloon 3 may be, for example, 0.15 mm or more and 0.3 mm or less.
 固定用バルーン3の拡径状態では、メインチューブ2の外周面2dと、固定用バルーン3における第1拡径部3b、第2円筒部3c、および第2拡径部3dの各内周面と、に囲まれた空間S3cは、各開口部2fを通して、第2ルーメン2eと連通している。空間S3cは、第1ルーメン2cの内側に形成された空間S2cとはメインチューブ2によって隔てられているので、空間S2cとは連通していない。 In the expanded diameter state of the fixation balloon 3, the outer peripheral surface 2d of the main tube 2 and the inner peripheral surfaces of the first expanded diameter portion 3b, the second cylindrical portion 3c, and the second expanded diameter portion 3d of the fixation balloon 3. , communicates with the second lumen 2e through each opening 2f. Since the space S3c is separated from the space S2c formed inside the first lumen 2c by the main tube 2, the space S3c does not communicate with the space S2c.
 先端チップ4は、メインチューブ2の先端に接続されている。先端チップ4は、可撓性を有している。先端チップ4は、全体として、メインチューブ2の第1ルーメン2cと同軸の筒部材である。
 図7を参照して、先端チップ4の詳細形状を説明する。
 図7は、図4におけるF7の拡大図である。
 先端チップ4は、先端チップ4の後端から先端に向かって、連結部4c、第2管部4b、および第1管部4aをこの順に有する。
The distal tip 4 is connected to the distal end of the main tube 2 . The distal tip 4 has flexibility. The distal tip 4 is a cylindrical member coaxial with the first lumen 2c of the main tube 2 as a whole.
The detailed shape of the distal tip 4 will be described with reference to FIG.
FIG. 7 is an enlarged view of F7 in FIG.
The distal tip 4 has a connecting portion 4c, a second tubular portion 4b, and a first tubular portion 4a in this order from the rear end of the distal tip 4 toward the distal end.
 連結部4cは、メインチューブ2に連結する略円環である。連結部4cの後端部は、メインチューブ2の外周面2dに外側から嵌合し、メインチューブ2の先端に固定されている。このため、連結部4cの外径は、メインチューブ2の外周面2dの外径よりもわずかに大きい。
 連結部4cの固定方法は特に限定されない。例えば、連結部4cは、例えば、接着、熱溶着などによってメインチューブ2に固定されてもよい。
 連結部4cが固定されることによって、メインチューブ2の先端部における第2ルーメン2eは閉止されてもよい。ただし、第2ルーメン2eの先端部に接着剤などを注入して、第2ルーメン2eを閉止した状態で、連結部4cがメインチューブ2に固定されてもよい。
The connecting portion 4 c is a substantially circular ring that connects to the main tube 2 . A rear end portion of the connecting portion 4 c is fitted to the outer peripheral surface 2 d of the main tube 2 from the outside and fixed to the front end of the main tube 2 . Therefore, the outer diameter of the connecting portion 4 c is slightly larger than the outer diameter of the outer peripheral surface 2 d of the main tube 2 .
A fixing method of the connecting portion 4c is not particularly limited. For example, the connecting portion 4c may be fixed to the main tube 2 by adhesion, heat welding, or the like.
The second lumen 2e at the distal end of the main tube 2 may be closed by fixing the connecting portion 4c. However, the connecting portion 4c may be fixed to the main tube 2 in a state in which an adhesive or the like is injected into the distal end portion of the second lumen 2e to close the second lumen 2e.
 第2管部4bは、メインチューブ2よりも剛性が低い筒体である。第2管部4bの形状は、内側に内視鏡11を挿通させることができ、連結部4cよりも剛性が低ければ特に限定されない。 The second pipe portion 4b is a cylindrical body with lower rigidity than the main tube 2. The shape of the second tube portion 4b is not particularly limited as long as the endoscope 11 can be inserted through the inside thereof and the rigidity is lower than that of the connecting portion 4c.
 第1管部4aは、第2管部4bの先端から延びている。第1管部4aは、第2管部4bよりも剛性が高い筒体であり、先端に先端開口4fが貫通している。
 先端開口4fの直径は、第2内周面4dよりも小さく、かつ内視鏡11が挿通可能な大きさである。例えば、第1管部4aは、第1管部4aの後端から先端に向かって漸次縮径する円環形である。
The first pipe portion 4a extends from the tip of the second pipe portion 4b. The first pipe portion 4a is a tubular body having higher rigidity than the second pipe portion 4b, and has a tip opening 4f penetrating through the tip thereof.
The diameter of the tip opening 4f is smaller than that of the second inner peripheral surface 4d and is large enough for the endoscope 11 to pass through. For example, the first tubular portion 4a has an annular shape whose diameter gradually decreases from the rear end toward the tip of the first tubular portion 4a.
 先端チップ4の詳細形状および材料は、下記式(1a)、(1b)を同時に満足すれば特に限定されない。 The detailed shape and material of the distal tip 4 are not particularly limited as long as they simultaneously satisfy the following formulas (1a) and (1b).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここで、K1は第1管部4aの剛性、K2は第2管部4bの剛性、K3はメインチューブ2の剛性である。なお、ここでいう剛性は、曲げ剛性である。 Here, K1 is the rigidity of the first pipe portion 4a, K2 is the rigidity of the second pipe portion 4b, and K3 is the rigidity of the main tube 2. The rigidity referred to here is bending rigidity.
 図7に示す例では、第2管部4bは、メインチューブ2の第1ルーメン2cと略同じ内径を有し、メインチューブ2の外周面2dよりも小径の外径を有する円筒形である。
 図7に示す例では、第1管部4aは、第2管部4bの厚さよりも厚く形成されている。第1管部4aの内周面である第1内周面4eは、第1管部4aの後端から先端に向かって漸次縮径する湾曲面である。
 図7に示す例では、厚さを変えることによって、第2管部4bの剛性を第1管部4aの剛性よりも低くしている。
In the example shown in FIG. 7 , the second tube portion 4 b has a cylindrical shape with an inner diameter substantially the same as that of the first lumen 2 c of the main tube 2 and an outer diameter smaller than the outer peripheral surface 2 d of the main tube 2 .
In the example shown in FIG. 7, the first pipe portion 4a is formed thicker than the second pipe portion 4b. A first inner peripheral surface 4e, which is an inner peripheral surface of the first pipe portion 4a, is a curved surface whose diameter gradually decreases from the rear end toward the tip of the first pipe portion 4a.
In the example shown in FIG. 7, the rigidity of the second pipe portion 4b is made lower than the rigidity of the first pipe portion 4a by changing the thickness.
 図7に示す例では、第2管部4bおよび第1管部4aの厚さがそれぞれ一定であるが、第2管部4bおよび第1管部4aは、互いの断面二次モーメントが異なる適宜の断面形状とされてもよい。例えば、第2管部4bおよび第1管部4aの少なくとも一方に長手方向に延びる突条、凹溝などが形成されてもよい。
 例えば、第2管部4bは、第1管部4aよりも剛性が低くなる蛇腹形状に形成されてもよい。
In the example shown in FIG. 7, the thicknesses of the second pipe portion 4b and the first pipe portion 4a are constant, but the second pipe portion 4b and the first pipe portion 4a have different geometrical moments of inertia. may have a cross-sectional shape of For example, at least one of the second pipe portion 4b and the first pipe portion 4a may have a longitudinally extending ridge, groove, or the like.
For example, the second pipe portion 4b may be formed in a bellows shape with lower rigidity than the first pipe portion 4a.
 先端チップ4の材料は、シリコーン樹脂であってもよい。例えば、先端チップ4の材料は、ゴム硬度(ショアA)がA40のシリコーンゴムであってもよい。この場合、例えば、第2管部4bの厚さは1mm、第1管部4aの厚さは2mmであってもよい。 The material of the tip 4 may be silicone resin. For example, the material of the tip 4 may be silicone rubber with a rubber hardness (Shore A) of A40. In this case, for example, the thickness of the second pipe portion 4b may be 1 mm, and the thickness of the first pipe portion 4a may be 2 mm.
 図4に示すように、グリップ部5は、管状部5a、ストッパー5b、第1ルアーコネクタ5c、第1管路5d、第2ルアーコネクタ5e、第2管路5f、およびキャップ5gを有する。
 ストッパー5bは、術者が患者の体外においてメインチューブ2の後端を支えたり、オーバーチューブ1を挿抜を操作したりするために用いることができる。
As shown in FIG. 4, the grip portion 5 has a tubular portion 5a, a stopper 5b, a first luer connector 5c, a first conduit 5d, a second luer connector 5e, a second conduit 5f, and a cap 5g.
The stopper 5b can be used by the operator to support the rear end of the main tube 2 outside the patient's body and to operate the insertion and removal of the overtube 1 .
 管状部5aは、メインチューブ2の第1ルーメン2cと同軸の略円筒形である。管状部5aの先端部には、メインチューブ2の外周面2dを外側から嵌合する嵌合穴5hが形成されている。嵌合穴5hには、メインチューブ2の後端部が挿入された状態で、メインチューブ2の後端部が固定されている。
 メインチューブ2の固定方法は気密がとれていれば特に限定されない。例えば、メインチューブ2は、接着、熱融着等によって嵌合穴5hに固定されてもよい。
 管状部5aの後端部には、第1ルーメン2cと同径の円筒面である内周面5iが長手方向に貫通している。内周面5iの先端は、第1ルーメン2cと滑らかに接続している。
The tubular portion 5 a is substantially cylindrical and coaxial with the first lumen 2 c of the main tube 2 . A fitting hole 5h for fitting the outer peripheral surface 2d of the main tube 2 from the outside is formed in the distal end of the tubular portion 5a. The rear end of the main tube 2 is fixed in the fitting hole 5h with the rear end of the main tube 2 inserted therein.
The fixing method of the main tube 2 is not particularly limited as long as it is airtight. For example, the main tube 2 may be fixed to the fitting hole 5h by adhesion, heat sealing, or the like.
An inner peripheral surface 5i, which is a cylindrical surface having the same diameter as the first lumen 2c, extends through the rear end portion of the tubular portion 5a in the longitudinal direction. The tip of the inner peripheral surface 5i is smoothly connected to the first lumen 2c.
 管状部5aの外周部には、径方向外側にストッパー5bが突出している。ストッパー5bの突出位置は、長手方向においてメインチューブ2の後端の位置に等しい。ストッパー5bは、図示上方向および下方向にそれぞれ突出している。長手方向から見たストッパー5bの外形は、例えば、図示上下方向に長い略楕円形の板である(図1参照)。
 ストッパー5bは、例えば、オーバーチューブ1を患者の管腔に挿入する際に、ストッパー5bよりも後端側の部位が管腔に入るのを防止する目的で設けられている。このため、ストッパー5bは、管腔に挿入できない大きさに形成される。例えば、オーバーチューブ1を大腸に挿入して使用する場合には、ストッパー5bは、肛門の大きさよりも大きく形成される。この場合、ストッパー5bの長手方向の大きさは、管状部5aの中心を中心として、直径55mm以下の円に入らない大きさであることがより好ましい。
A stopper 5b protrudes radially outward from the outer peripheral portion of the tubular portion 5a. The projecting position of the stopper 5b is equal to the position of the rear end of the main tube 2 in the longitudinal direction. The stopper 5b protrudes upward and downward in the drawing. The outer shape of the stopper 5b when viewed in the longitudinal direction is, for example, a substantially elliptical plate elongated vertically in the drawing (see FIG. 1).
The stopper 5b is provided, for example, for the purpose of preventing the portion on the rear end side of the stopper 5b from entering the lumen when the overtube 1 is inserted into the patient's lumen. Therefore, the stopper 5b is formed in a size that cannot be inserted into the lumen. For example, when the overtube 1 is used by inserting it into the large intestine, the stopper 5b is formed larger than the size of the anus. In this case, it is more preferable that the size of the stopper 5b in the longitudinal direction does not fit into a circle with a diameter of 55 mm or less centered on the center of the tubular portion 5a.
 第1ルアーコネクタ5cは、ルアーロック型のコネクタである。第1ルアーコネクタ5cは、グリップ部5において、ストッパー5bよりも後側の管状部5aの外周部に装着されている。管状部5aの内部には、第1ルアーコネクタ5cと嵌合穴5hに固定されたメインチューブ2の第2ルーメン2eとに連通する第1管路5dが形成されている。
 図1に示すように、第1ルアーコネクタ5cには、後述する送気デバイス10のエアフローチューブ9(送気チューブ)が着脱可能に接続される。
The first luer connector 5c is a luer lock type connector. The first luer connector 5c is attached to the outer peripheral portion of the tubular portion 5a on the rear side of the stopper 5b in the grip portion 5. As shown in FIG. A first conduit 5d is formed inside the tubular portion 5a to communicate with the first luer connector 5c and the second lumen 2e of the main tube 2 fixed to the fitting hole 5h.
As shown in FIG. 1, an airflow tube 9 (air supply tube) of an air supply device 10, which will be described later, is detachably connected to the first luer connector 5c.
 図4に示すように、第2ルアーコネクタ5eは、ルアーロック型のコネクタである。第2ルアーコネクタ5eは、管状部5aを挟んで第1ルアーコネクタ5cと反対側の管状部5aの外周部に装着されている。管状部5aの内部には、第1ルアーコネクタ5cと連通し、内周面5iに開口する第2管路5fが形成されている。
 例えば、第2ルアーコネクタ5eは、シリンジを着脱可能に接続することができる。例えば、シリンジから第2ルアーコネクタ5eを通して、滅菌水や医療用潤滑剤を第1ルーメン2cに注入することで、内視鏡とメインチューブ2の摩擦を低減することが可能である。
 図4に示す例では、シリンジが接続されていないので、第2ルアーコネクタ5eの開口を気密に閉じるキャップ5gが装着されている。これにより、第2管路5fは閉止されている。
As shown in FIG. 4, the second luer connector 5e is a luer lock type connector. The second luer connector 5e is attached to the outer peripheral portion of the tubular portion 5a on the side opposite to the first luer connector 5c across the tubular portion 5a. Inside the tubular portion 5a, a second conduit 5f is formed that communicates with the first luer connector 5c and opens to the inner peripheral surface 5i.
For example, the second luer connector 5e can detachably connect a syringe. For example, the friction between the endoscope and the main tube 2 can be reduced by injecting sterilized water or medical lubricant from a syringe through the second luer connector 5e into the first lumen 2c.
In the example shown in FIG. 4, since no syringe is connected, a cap 5g is attached to hermetically close the opening of the second luer connector 5e. Thereby, the second pipeline 5f is closed.
 次に、気密弁ユニット6を説明する。
 図8は、本発明の第1の実施形態に係る内視鏡用オーバーチューブにおける気密弁ユニットの例を示す模式的な断面図である。図9は、本発明の第1の実施形態に係る内視鏡用オーバーチューブにおける気密弁ユニットの気密バルーンの例を示す模式的な斜視図である。
Next, the airtight valve unit 6 will be explained.
FIG. 8 is a schematic cross-sectional view showing an example of an airtight valve unit in the endoscope overtube according to the first embodiment of the present invention. FIG. 9 is a schematic perspective view showing an example of an airtight balloon of an airtight valve unit in the endoscope overtube according to the first embodiment of the present invention.
 気密弁ユニット6は、メインチューブ2における第1ルーメン2cに内視鏡11が挿通された状態で、挿入部Iの後端部において内視鏡11の外周部を気密に封止する。
 図8に示すように、気密弁ユニット6は、筒枠部21(管状部)と、気密バルーン22と、を有する。
The airtight valve unit 6 hermetically seals the outer peripheral portion of the endoscope 11 at the rear end portion of the insertion portion I in a state in which the endoscope 11 is inserted through the first lumen 2c of the main tube 2 .
As shown in FIG. 8 , the airtight valve unit 6 has a cylinder frame portion 21 (tubular portion) and an airtight balloon 22 .
 筒枠部21は、略円筒形の筒体である。
 筒枠部21の先端側には、グリップ部5の管状部5aの後端部を外側から嵌合する嵌合穴21cが形成されている。
 嵌合穴21cにおける図示左側の穴底部には、グリップ部5の長手方向に延びる円孔を形成する内周面21aが筒枠部21の後端まで延びている。内周面21aの直径は、管状部5aの内周面5iの直径よりもわずかに大きい。
 嵌合穴21cには、管状部5aの後端部が挿入され、管状部5aの後端が嵌合穴21cの穴底部と当接した状態で、嵌合穴21cに接合されている。
The cylinder frame portion 21 is a substantially cylindrical cylinder.
A fitting hole 21c into which the rear end portion of the tubular portion 5a of the grip portion 5 is fitted from the outside is formed in the front end side of the tubular frame portion 21 .
An inner peripheral surface 21a forming a circular hole extending in the longitudinal direction of the grip portion 5 extends to the rear end of the cylindrical frame portion 21 at the bottom portion of the fitting hole 21c on the left side in the drawing. The diameter of the inner peripheral surface 21a is slightly larger than the diameter of the inner peripheral surface 5i of the tubular portion 5a.
A rear end portion of the tubular portion 5a is inserted into the fitting hole 21c, and the rear end of the tubular portion 5a is joined to the fitting hole 21c while being in contact with the hole bottom portion of the fitting hole 21c.
 筒枠部21の外周面には、筒状の接続ポート21bが突出している。
 接続ポート21bの内部には、筒枠部21の径方向外側から内側に向かって、接続口21dと、貫通孔21eとが、この順に形成されている。
 接続口21dは、後述する操作チューブ本体25を接続する凹部である。
 貫通孔21eは、接続口21dに接続された操作チューブ本体25の開口と内周面21aの内側の空間とを連通させる。
A cylindrical connection port 21 b protrudes from the outer peripheral surface of the cylindrical frame portion 21 .
Inside the connection port 21b, a connection port 21d and a through hole 21e are formed in this order from the outside in the radial direction of the cylindrical frame portion 21 toward the inside.
The connection port 21d is a recess for connecting an operation tube main body 25, which will be described later.
The through hole 21e allows communication between the opening of the operation tube body 25 connected to the connection port 21d and the space inside the inner peripheral surface 21a.
 筒枠部21の材料は特に限定されない。例えば、筒枠部21の材料としては、樹脂、金属、シリコーンゴム等を挙げることできる。 The material of the cylindrical frame portion 21 is not particularly limited. For example, the material of the cylindrical frame portion 21 can be resin, metal, silicone rubber, or the like.
 気密バルーン22は、固定用バルーン3と同様の材料で形成された筒状の部材である。
 気密バルーン22は、第1接合部22a、中間部22b、および第2接合部22cを有する。
 第1接合部22aおよび第2接合部22cは、それぞれ気密バルーン22の先端および後端に形成されている。第1接合部22aおよび第2接合部22cは、筒枠部21の内周面21aに接合可能な円環形である。図8に示す例では、内周面21aが円筒面であることに対応して、第1接合部22aおよび第2接合部22cは互いに等しい外径を有する円環形である。
The airtight balloon 22 is a cylindrical member made of the same material as the fixation balloon 3 .
The airtight balloon 22 has a first joint portion 22a, an intermediate portion 22b, and a second joint portion 22c.
The first joint portion 22a and the second joint portion 22c are formed at the leading end and the trailing end of the airtight balloon 22, respectively. The first joint portion 22a and the second joint portion 22c are ring-shaped so that they can be joined to the inner peripheral surface 21a of the tubular frame portion 21 . In the example shown in FIG. 8, the first joint portion 22a and the second joint portion 22c are annular with the same outer diameter, corresponding to the fact that the inner peripheral surface 21a is a cylindrical surface.
 中間部22bは、第1接合部22aの後端と第2接合部22cの先端とにそれぞれ接続され、第1接合部22aと第2接合部22cとを全周にわたって接続している。
 中間部22bの外径は、少なくとも一部において、第1接合部22aおよび第2接合部22cの外径よりも小さい。本実施形態において、中間部22bの外径は、第1接合部22aの後端から後方に向かうにつれて減少し、軸方向における中央部で最小になり、中央部から後方の第2接合部22cに向かうにつれて増大している。図9に示すように、第1接合部22a、中間部22b、および第2接合部22cの中心軸線は互いに同軸である。
The intermediate portion 22b is connected to the rear end of the first joint portion 22a and the front end of the second joint portion 22c, respectively, and connects the first joint portion 22a and the second joint portion 22c over the entire circumference.
The outer diameter of the intermediate portion 22b is at least partially smaller than the outer diameters of the first joint portion 22a and the second joint portion 22c. In this embodiment, the outer diameter of the intermediate portion 22b decreases from the rear end of the first joint portion 22a toward the rear, becomes minimum at the central portion in the axial direction, and extends from the central portion to the second joint portion 22c rearward. increasing as you go. As shown in FIG. 9, the central axes of the first joint portion 22a, the intermediate portion 22b, and the second joint portion 22c are coaxial with each other.
 図8に示すように、気密バルーン22は、筒枠部21の内周面21aの内側に挿入され、第1接合部22aと第2接合部22cとにおいて内周面21aに接合されている。気密バルーン22の軸方向の長さは、特に限定されないが、図8に示す例では、内周面21aの軸方向の長さと同等である。
 気密バルーン22の接合方法は特に限定されない。例えば、気密バルーン22は接着によって内周面21aに接合されてもよい。
As shown in FIG. 8, the airtight balloon 22 is inserted inside the inner peripheral surface 21a of the cylindrical frame portion 21 and is joined to the inner peripheral surface 21a at a first joint portion 22a and a second joint portion 22c. The axial length of the airtight balloon 22 is not particularly limited, but in the example shown in FIG. 8, it is equivalent to the axial length of the inner peripheral surface 21a.
The bonding method of the airtight balloon 22 is not particularly limited. For example, the airtight balloon 22 may be joined to the inner peripheral surface 21a by gluing.
 気密バルーン22が内周面21aに接合された状態では、内周面21aと中間部22bとの間に空間Spが形成されている。中間部22bは、貫通孔21eを径方向から覆っている。このため、空間Spは、貫通孔21eを通して接続ポート21bの接続口21dと連通している。 When the airtight balloon 22 is joined to the inner peripheral surface 21a, a space Sp is formed between the inner peripheral surface 21a and the intermediate portion 22b. The intermediate portion 22b radially covers the through hole 21e. Therefore, the space Sp communicates with the connection port 21d of the connection port 21b through the through hole 21e.
 気密バルーン22の材料としては、伸縮性を有する適宜のエラストマーが用いられる。例えば、気密バルーン22の材料として、固定用バルーン3と同様の材料が用いられてもよい。
 接続ポート21bを通して、空間Sp内に流体が供給されたり、空間Spから流体が吸い出されたりずると、空間Spの内圧に応じて中間部22bの形状が変化する。空間Spに供給される流体は、中間部22bの形状を変化させることができる圧力をかけることができれば、気体、液体のいずれでもよい。
 本実施形態では、空間Spには気体が供給される。気体の種類は特に限定されない。例えば、空間Spを大気に開放することで、中間部22bが内側に張り出す状態が形成できる点では、気体としてエアが用いられることがより好ましい。
As a material for the airtight balloon 22, an appropriate elastic elastomer is used. For example, a material similar to that of the fixation balloon 3 may be used as the material of the airtight balloon 22 .
When fluid is supplied into the space Sp or sucked out from the space Sp through the connection port 21b, the shape of the intermediate portion 22b changes according to the internal pressure of the space Sp. The fluid supplied to the space Sp may be either gas or liquid as long as it can apply pressure that can change the shape of the intermediate portion 22b.
In this embodiment, gas is supplied to the space Sp. The type of gas is not particularly limited. For example, it is more preferable to use air as the gas in that the intermediate portion 22b can form a state in which the intermediate portion 22b protrudes inward by opening the space Sp to the atmosphere.
 空間Sp内に気体が供給されると、中間部22bは空間Spの内圧に応じて、内周面21aの内側に膨出する形状を形成する。例えば、気体が気密バルーン22の取り付け時の空間Spの容積より多く供給されると、空間Spの内圧が上昇し、中間部22bが膨張する・これにより、空間Spの容積が増大する。膨張した中間部22bは気密バルーン22の径方向内側の空間を減少させる。このため、中間部22bの内径は、軸方向の中央が最小の状態を保って、全体的に減少する。
 空間Spから気体が吸い出されると、空間Spの内圧の減少に応じて中間部22bが拡径する。気体が気密バルーン22の取り付け時の空間Spの容積未満になると、中間部22bは、内周面21aに向かって押し付けられる。気体が空間Sp内からすべて吸い出されると、中間部22bは気密バルーン22の内側から大気圧を受けて拡径し、中間部22bは内周面21aに貼り付く。これにより、気密バルーン22の内側には、内周面21aと略同じ内径を有する管路が形成される。図4は、空間Spの気体が吸い出された状態を示す。
When the gas is supplied into the space Sp, the intermediate portion 22b forms a shape that bulges inward of the inner peripheral surface 21a according to the internal pressure of the space Sp. For example, if gas is supplied in a volume larger than the volume of the space Sp when the airtight balloon 22 is attached, the internal pressure of the space Sp rises and the intermediate portion 22b expands.This increases the volume of the space Sp. The inflated intermediate portion 22 b reduces the space radially inside the airtight balloon 22 . Therefore, the inner diameter of the intermediate portion 22b is reduced as a whole while maintaining the smallest inner diameter at the center in the axial direction.
When the gas is sucked out from the space Sp, the intermediate portion 22b expands in diameter according to the decrease in the internal pressure of the space Sp. When the gas becomes less than the volume of the space Sp when the airtight balloon 22 is attached, the intermediate portion 22b is pressed toward the inner peripheral surface 21a. When all the gas is sucked out from the space Sp, the intermediate portion 22b receives atmospheric pressure from the inside of the airtight balloon 22 and expands in diameter, and the intermediate portion 22b sticks to the inner peripheral surface 21a. As a result, inside the airtight balloon 22, a conduit having an inner diameter substantially the same as that of the inner peripheral surface 21a is formed. FIG. 4 shows a state in which the gas in the space Sp is sucked.
 図4に示すように、気密弁操作チューブ7は、操作チューブ本体25、圧力調整バルーン26、およびコック27を有する。 As shown in FIG. 4, the airtight valve operating tube 7 has an operating tube main body 25, a pressure adjusting balloon 26, and a cock 27.
 操作チューブ本体25は、空間Spに出し入れする気体を流通させる。操作チューブ本体25の第1端部25aは接続ポート21bに接続されている。第1端部25aと反対側の第2端部25bには、圧力調整バルーン26が接続されている。 The operation tube main body 25 circulates the gas entering and leaving the space Sp. A first end portion 25a of the operation tube main body 25 is connected to the connection port 21b. A pressure adjusting balloon 26 is connected to a second end 25b opposite to the first end 25a.
 圧力調整バルーン26は、操作チューブ本体25を通して空間Spと連通している。圧力調整バルーン26は、空間Sp内の圧力が所定値に達するまでは膨張せず、所定値に達した後、膨張する。これにより、空間Sp内の圧力の調整が可能である。本実施形態における圧力調整バルーン26の作用の詳細は、オーバーチューブ1の動作とともに説明する。 The pressure adjustment balloon 26 communicates with the space Sp through the operation tube main body 25. The pressure regulation balloon 26 does not expand until the pressure in the space Sp reaches a predetermined value, and expands after reaching the predetermined value. This makes it possible to adjust the pressure in the space Sp. Details of the action of the pressure adjustment balloon 26 in this embodiment will be described together with the operation of the overtube 1 .
 圧力調整バルーン26の形状および材料は、後述する圧力調整ができれば特に限定されない。図4に示す例では、圧力調整バルーン26は略円柱形であり、シリコーンゴムで形成されている。 The shape and material of the pressure adjustment balloon 26 are not particularly limited as long as the pressure can be adjusted as described later. In the example shown in FIG. 4, the pressure regulation balloon 26 has a substantially cylindrical shape and is made of silicone rubber.
 圧力調整バルーン26には、コック27が接続されている。
 コック27は、気体が流通可能な管部材である。コック27は、接続口27a、弁27b、および開口部27cを有する。
 接続口27aは、例えば、シリンジ、ポンプなどの気体移動装置を着脱可能に接続する。図1に示す例では、コック27に、気体移動装置としてシリンジ28が装着されている。
 図4に示すように、弁27bは、気体移動装置が接続口27aに接続されたとき開いて気体が流通可能となり、気体移動装置が接続口27aから外されると閉じて接続口27aからの気体の流出を阻止する。
 開口部27cは、圧力調整バルーン26の内部に開口し、圧力調整バルーン26の内部とコック27の内部の流路とを連通させる。
A cock 27 is connected to the pressure adjusting balloon 26 .
The cock 27 is a tubular member through which gas can flow. The cock 27 has a connection port 27a, a valve 27b, and an opening 27c.
The connection port 27a detachably connects a gas moving device such as a syringe or a pump, for example. In the example shown in FIG. 1, the cock 27 is equipped with a syringe 28 as a gas moving device.
As shown in FIG. 4, valve 27b opens to allow gas flow when the gas moving device is connected to port 27a, and closes to allow gas to flow from port 27a when the gas moving device is disconnected from port 27a. Prevent gas outflow.
The opening 27c is opened inside the pressure adjusting balloon 26 and allows the inside of the pressure adjusting balloon 26 and the flow path inside the cock 27 to communicate with each other.
 図1に示すように、送気デバイス10は、主として固定用バルーン3を拡径させるためのエアを供給する。本実施形態では、送気デバイス10内の流路を適宜切り替えることによって、供給したエアを送気デバイス10に吸引することもできる。
 送気デバイス10は、エアをメインチューブ2の第2ルーメン2eに流通させるエアフローチューブ9を有する。
 エアフローチューブ9は、エアを送吸気する送気デバイス10の内部流路と連通しており、送気デバイス10の筐体から外側に延出している。エアフローチューブ9は、第2ルーメン2eと送気デバイス10の内部流路との間におけるエアの流路を形成する。
 エアフローチューブ9の延出方向における先端部には、グリップ部5の第1ルアーコネクタ5cと着脱可能に接続するコネクタ9aが設けられている。
 コネクタ9aが第1ルアーコネクタ5cに接続されると、エアフローチューブ9を通して、第2ルーメン2eと送気デバイス10の内部流路とが連通する。
 エアフローチューブ9の管路の内径は、例えば、2.0mm以上5mm以下であってもよい。
As shown in FIG. 1, the air supply device 10 mainly supplies air for expanding the diameter of the fixation balloon 3 . In this embodiment, the supplied air can also be sucked into the air supply device 10 by appropriately switching the flow path in the air supply device 10 .
The air supply device 10 has an airflow tube 9 that circulates air to the second lumen 2 e of the main tube 2 .
The airflow tube 9 communicates with the internal flow path of the air supply device 10 for supplying air and extends outward from the housing of the air supply device 10 . The airflow tube 9 forms an air flow path between the second lumen 2 e and the internal flow path of the air supply device 10 .
A connector 9 a that is detachably connected to the first luer connector 5 c of the grip portion 5 is provided at the tip of the air flow tube 9 in the extending direction.
When the connector 9a is connected to the first luer connector 5c, the second lumen 2e communicates with the internal flow path of the air supply device 10 through the airflow tube 9.
The inner diameter of the conduit of the airflow tube 9 may be, for example, 2.0 mm or more and 5 mm or less.
 送気デバイス10は、エアを供給するためのポンプを有する。ポンプの種類は特に限定されない。例えば、ポンプは、電動ポンプでもよいし、手動ポンプでもよい。
 ポンプが電動ポンプの場合、圧力制御回路を備えていてもよい。圧力制御方式は特に限定されない。
 送気デバイス10は、エアの供給圧が固定用バルーン3の内圧の許容値を超えないように、供給するエアの圧力が一定値を超えるとエアを外部に延ばすリリーフ弁を有している。
The air supply device 10 has a pump for supplying air. The type of pump is not particularly limited. For example, the pump may be an electric pump or a manual pump.
If the pump is an electric pump, it may have a pressure control circuit. A pressure control method is not particularly limited.
The air supply device 10 has a relief valve that expands the air to the outside when the pressure of the supplied air exceeds a certain value so that the supply pressure of the air does not exceed the allowable value of the internal pressure of the fixation balloon 3 .
 送気デバイス10は、エアフローチューブ9を通してエアを供給することと、エアフローチューブ9からエアを吸引することと、が可能である。供給と吸引とを切り替える構成は特に限定されない。
 例えば、送気デバイス10は、ポンプにおける送気口とエアフローチューブ9との間の流路と、ポンプにおける吸気口とエアフローチューブ9との間の流路と、を選択的に切り替える切替弁と、切替弁の動作を制御する切替弁制御部と、を有していてもよい。
 例えば、送気デバイス10は、エアフローチューブ9に接続する開口部における送気と吸気とが切り替え可能なポンプを有していてもよい。
The air supply device 10 is capable of supplying air through the airflow tube 9 and sucking air from the airflow tube 9 . The configuration for switching between supply and suction is not particularly limited.
For example, the air supply device 10 includes a switching valve that selectively switches between the flow path between the air supply port of the pump and the airflow tube 9 and the flow path between the intake port of the pump and the airflow tube 9, and a switching valve control unit that controls the operation of the switching valve.
For example, the air supply device 10 may have a pump that can switch between air supply and suction at an opening connected to the airflow tube 9 .
 次に、気密弁ユニット6の動作を説明する。オーバーチューブ1および内視鏡11の操作において、操作主体が術者に限定されない場合、操作主体を「術者または補助者」と表記する。以下では「術者または補助者」を「術者等」と表記する場合がある。
 図10は、本発明の第1の実施形態に係る内視鏡用オーバーチューブにおける気密弁ユニットの動作説明図である。図11は、図10におけるF11-F11線に沿う断面図である。図11では、簡素化のため、内視鏡11の内部構造の図示は省略している。
Next, operation of the airtight valve unit 6 will be described. In the operation of the overtube 1 and the endoscope 11, when the subject of operation is not limited to the operator, the subject of operation is described as "operator or assistant". Below, "operator or assistant" may be written as "operator, etc.".
FIG. 10 is an operation explanatory view of the airtight valve unit in the endoscope overtube according to the first embodiment of the present invention. 11 is a cross-sectional view taken along line F11-F11 in FIG. In FIG. 11, illustration of the internal structure of the endoscope 11 is omitted for simplification.
 図10に示すように、コック27にはシリンジ28が装着されている。
 術者等がシリンジ28のプランジャ28aを引くと、空間Sp内の気体が吸引されてシリンジ28の内部に移動する。空間Sp内は陰圧となる。この結果、中間部22bは、図4に示すように、筒枠部21の内面に沿って密着し、中間部22bが配置された部位の内径が、グリップ部5の内周面5iおよび内視鏡11の第1ルーメン2cの内径と同等の大きさに拡大する。この状態を、気密弁ユニット6の開放状態と称する。
As shown in FIG. 10, a syringe 28 is attached to the cock 27 .
When the operator or the like pulls the plunger 28 a of the syringe 28 , the gas in the space Sp is sucked and moves inside the syringe 28 . The inside of the space Sp becomes a negative pressure. As a result, the intermediate portion 22b, as shown in FIG. It expands to a size equivalent to the inner diameter of the first lumen 2c of the mirror 11 . This state is called an open state of the airtight valve unit 6 .
 気密弁ユニット6の開放状態では中間部22bの内側の部位の内径は、内視鏡用キャップ13が装着され、把持デバイス14およびチャンネルチューブ15を有する内視鏡11の外径よりも大きい。このため、気密弁ユニット6の開放状態では、内視鏡11は中間部22bの内側に円滑に挿入できる。挿入時には、内視鏡11は、中間部22bと非接触であるか、接触するとしても外形の一部のみが接触している。このため、内視鏡11は中間部22bからの挿入抵抗を受けないか、受ける場合でも挿入抵抗は小さい。 In the open state of the airtight valve unit 6, the inner diameter of the inner portion of the intermediate portion 22b is larger than the outer diameter of the endoscope 11 to which the endoscope cap 13 is attached and which has the grasping device 14 and the channel tube 15. Therefore, when the airtight valve unit 6 is open, the endoscope 11 can be smoothly inserted inside the intermediate portion 22b. When the endoscope 11 is inserted, the endoscope 11 is not in contact with the intermediate portion 22b, or even if it is in contact, only a part of the outer shape is in contact with it. Therefore, the endoscope 11 does not receive insertion resistance from the intermediate portion 22b, or even if it does, the insertion resistance is small.
 同様に、内視鏡11は、グリップ部5の内周面5iと、メインチューブ2の第1ルーメン2cと、の内側にも、挿入抵抗が小さい状態で挿入できる。
 内視鏡11の先端が、先端チップ4における先端開口4fに達すると、図7に示すように、内視鏡11は先端開口4fを通って先端チップ4の前方に突出する。
 このとき、先端開口4fは、内視鏡11の外周部に沿って近接するので、先端チップ4の前方における生体組織、体液などが先端チップ4の内部に進入しにくくなっている。
Similarly, the endoscope 11 can be inserted inside the inner peripheral surface 5i of the grip portion 5 and the first lumen 2c of the main tube 2 with low insertion resistance.
When the distal end of the endoscope 11 reaches the distal opening 4f of the distal tip 4, the endoscope 11 protrudes forward from the distal tip 4 through the distal opening 4f, as shown in FIG.
At this time, since the distal opening 4 f is close along the outer peripheral portion of the endoscope 11 , it is difficult for living tissue, body fluid, etc. in front of the distal tip 4 to enter the distal tip 4 .
 図10に示すように、術者等は、内視鏡用キャップ13が筒枠部21の内部を通過した後、プランジャ28aを操作して、シリンジ28内の気体を空間Spに移動させる。これにより、空間Spの陰圧が解除され、中間部22bが径方向内側に膨出する。
 図11に示すように、術者等は、内視鏡11の外周部の全周にわたって中間部22bが接触するまで、空間Spに気体を供給する。これにより、内視鏡11の外周部と中間部22bとの間の隙間が閉止される。この状態を気密弁ユニット6の閉止状態と称する。
 閉止状態では中間部22bが内視鏡11の外周部の全周に密着するので、内視鏡11が内周面21aの略中央に保持される。このため、中間部22bの近傍では、内視鏡11には、中間部22bとの摺動抵抗負荷のみが作用する。
 術者等は、内視鏡11の挿入抵抗が大きくなりすぎなければ、空間Spの内圧が大気圧より高くなるまで気体が供給されるように、プランジャ28aを押して、閉止状態を形成してもよい。この場合、少なくとも中間部22bには自然状態よりも膨張したことによる張力が発生している。
As shown in FIG. 10, the operator or the like operates the plunger 28a to move the gas in the syringe 28 to the space Sp after the endoscope cap 13 has passed through the cylindrical frame portion 21 . As a result, the negative pressure in the space Sp is released, and the intermediate portion 22b expands radially inward.
As shown in FIG. 11 , the operator or the like supplies gas to the space Sp until the intermediate portion 22b contacts the entire circumference of the outer peripheral portion of the endoscope 11 . As a result, the gap between the outer peripheral portion of the endoscope 11 and the intermediate portion 22b is closed. This state is called the closed state of the airtight valve unit 6 .
In the closed state, the intermediate portion 22b is in close contact with the entire circumference of the outer peripheral portion of the endoscope 11, so the endoscope 11 is held substantially at the center of the inner peripheral surface 21a. Therefore, in the vicinity of the intermediate portion 22b, only the sliding resistance load with the intermediate portion 22b acts on the endoscope 11. FIG.
If the insertion resistance of the endoscope 11 does not become too large, the operator may press the plunger 28a to form a closed state so that the gas is supplied until the internal pressure of the space Sp becomes higher than the atmospheric pressure. good. In this case, at least the intermediate portion 22b has a tension due to expansion from the natural state.
 ここで、シリンジ28からの送気量(送気体積)と空間Spの内圧との関係の例を説明する。
 図12は、本発明の第1の実施形態の内視鏡用オーバーチューブにおける気体移動装置からの送気量と気密バルーンの内圧との関係を示すグラフである。図12において、横軸は送気量[mL]、縦軸は空間Spの内圧[kPa]である。
 ただし、図12は、シリンジ28から供給される気体がエアの場合の例である。
Here, an example of the relationship between the air supply amount (air supply volume) from the syringe 28 and the internal pressure of the space Sp will be described.
FIG. 12 is a graph showing the relationship between the amount of air supplied from the gas moving device and the internal pressure of the airtight balloon in the endoscope overtube of the first embodiment of the present invention. In FIG. 12, the horizontal axis is the air supply amount [mL], and the vertical axis is the internal pressure [kPa] of the space Sp.
However, FIG. 12 is an example in which the gas supplied from the syringe 28 is air.
 図12に示すように、空間Spの内圧が所定値P1に達するまでは、圧力調整バルーン26は膨張せずに気密バルーン22が膨張する。内圧が所定値P1に達すると、圧力調整バルーン26の膨張が始まる。その後、シリンジ28からの送気により圧力調整バルーン26が膨張し、空間Spの内圧上昇が抑制される。その結果、圧力調整バルーン26の膨張限界に達するまでの一定範囲の送気量において、空間Spの内圧値はP1前後の所定範囲内に維持され、過剰に増大することが防止される。
 オーバーチューブ1においては、術者等はシリンジ28の細かい操作を行わなくても、空間Spの内圧値は所定範囲内に維持できるため、操作が簡便である。
 ただし、空間Sp内の圧力を調節する機構は、圧力調整バルーン26には限られない。例えば、圧力調整バルーン26の代わりに、所定の内圧で開放されてシリンジ28からの送気を逃がす調整弁が設けられてもよい。
As shown in FIG. 12, the airtight balloon 22 is inflated without inflating the pressure regulation balloon 26 until the internal pressure of the space Sp reaches a predetermined value P1. When the internal pressure reaches a predetermined value P1, inflation of the pressure regulation balloon 26 begins. After that, the pressure adjustment balloon 26 is inflated by air supply from the syringe 28, and the increase in the internal pressure of the space Sp is suppressed. As a result, the internal pressure value of the space Sp is maintained within a predetermined range around P1 and prevented from increasing excessively in a certain range of air supply amount until the pressure adjustment balloon 26 reaches the inflation limit.
The overtube 1 is easy to operate because the internal pressure value of the space Sp can be maintained within a predetermined range without the need for the operator to finely operate the syringe 28 .
However, the mechanism for adjusting the pressure inside the space Sp is not limited to the pressure adjustment balloon 26 . For example, instead of the pressure control balloon 26, a control valve that is opened at a predetermined internal pressure to release the air supplied from the syringe 28 may be provided.
 次に、本実施形態に係るオーバーチューブ1の使用時の動作について説明する。
 以下では、内視鏡11が大腸内視鏡であり、オーバーチューブ1と内視鏡11とを組み合わせた内視鏡システムによって、大腸内でESD(内視鏡的粘膜下層剥離術)を行う場合の例で説明する。
 オーバーチューブ1の挿入部Iの長さは、肛門から処置部位までの長さ程度であって、かつ内視鏡11の挿入部よりも短い。
 例えば、オーバーチューブ1を内視鏡11の挿入後に挿入する場合には、オーバーチューブ1を体内に挿入する前に、内視鏡11を処置部位の近くまで挿入しておくことがより好ましい。この場合、内視鏡11の挿入部は、オーバーチューブ1の先端からある程度、突出できるようにしておく必要がある。
 例えば、挿入部Iの長さは、内視鏡11の挿入部よりも50cm~70cm短いことがより好ましい。
 例えば、挿入部Iが内視鏡11の挿入部よりも70cm短い場合、肛門から処置部位までの長さが70cm未満であれば、オーバーチューブ1を患者の体外に配置した状態で、処置部位の近くに内視鏡11のみを配置することができる。
Next, the operation of using the overtube 1 according to the present embodiment will be described.
In the following, the endoscope 11 is a colonoscope, and ESD (endoscopic submucosal dissection) is performed in the large intestine by an endoscope system that combines the overtube 1 and the endoscope 11. will be explained with an example.
The length of the insertion portion I of the overtube 1 is about the length from the anus to the treatment site and shorter than the insertion portion of the endoscope 11 .
For example, when inserting the overtube 1 after inserting the endoscope 11, it is more preferable to insert the endoscope 11 close to the treatment site before inserting the overtube 1 into the body. In this case, the insertion portion of the endoscope 11 needs to be able to protrude from the distal end of the overtube 1 to some extent.
For example, it is more preferable that the length of the insertion section I is shorter than that of the insertion section of the endoscope 11 by 50 cm to 70 cm.
For example, if the insertion portion I is 70 cm shorter than the insertion portion of the endoscope 11, and the length from the anus to the treatment site is less than 70 cm, the overtube 1 is placed outside the patient's body and the treatment site is shortened. Only the endoscope 11 can be placed nearby.
 気密バルーン22の中間部22bの最小内径は、挿入部の外径よりもわずかに小さいことが好ましい。ここで、中間部22bの最小内径は、中間部22bに張力が生じない状態で最も中心に向かって張り出している場合の最小内径である。 The minimum inner diameter of the intermediate portion 22b of the airtight balloon 22 is preferably slightly smaller than the outer diameter of the insertion portion. Here, the minimum inner diameter of the intermediate portion 22b is the minimum inner diameter when the intermediate portion 22b protrudes most toward the center without tension.
 図13、図14は、本発明の第1の実施形態に係る内視鏡用オーバーチューブの使用方法の例を示す模式図である。図15は、本発明の第1の実施形態に係る内視鏡用オーバーチューブにおける先端チップの作用を説明する模式的な断面図である。
図16は、本発明の第1の実施形態に係る内視鏡用オーバーチューブの使用方法の例を示す模式図である。
 ただし、図13~図16では、見易さのため、内視鏡11における内視鏡用キャップ13、把持デバイス14、およびチャンネルチューブ15等の詳細形状の図示は省略されている。
13 and 14 are schematic diagrams showing an example of how to use the endoscope overtube according to the first embodiment of the present invention. FIG. 15 is a schematic cross-sectional view illustrating the action of the distal tip in the endoscope overtube according to the first embodiment of the present invention.
FIG. 16 is a schematic diagram showing an example of how to use the endoscope overtube according to the first embodiment of the present invention.
However, in FIGS. 13 to 16, the detailed shapes of the endoscope cap 13, the grasping device 14, the channel tube 15, etc. of the endoscope 11 are omitted for the sake of clarity.
 まず、オーバーチューブ1を準備する。
 準備されるオーバーチューブ1では、固定用バルーン3の内側の空間S3cにおける気体が送気デバイス10によって吸い出されている。このため、固定用バルーン3は、折り畳まれて、メインチューブ2の外周面2dに近接している。これにより、固定用バルーン3が設けられた部位のオーバーチューブ1の外径は、固定用バルーン3が設けられていないメインチューブ2の外径と略同じ径に縮径している。この状態を、以下では、固定用バルーン3の縮径状態と称する。
 準備されるオーバーチューブ1では、筒枠部21に内視鏡11の挿入部が低抵抗で挿入できるようにしておく。以下では、空間Spに供給される気体がエアの例で説明する。
 例えば、空間Spに供給される気体がエアである場合、空間Sp内のエアを吸引して開放状態を形成しておくか、または中間部22bが張力が生じない状態で張り出しているようにする。
 これにより、筒枠部21の内部に、内視鏡11が略抵抗なく進退できる略円柱形の空間が形成される。
 例えば、空間Spを大気圧にするには、コック27にプランジャ28aを外したシリンジ28を装着することによって、弁27bを開放する。これにより、空間Spが外部と連通し、空間Sp内が大気圧になる。この後、シリンジ28をコック27から外すと、弁27bが閉じて、空間Spが大気圧に保たれる。
First, the overtube 1 is prepared.
In the prepared overtube 1, the gas in the space S3c inside the fixation balloon 3 is sucked out by the air supply device . Therefore, the fixation balloon 3 is folded and is close to the outer peripheral surface 2 d of the main tube 2 . As a result, the outer diameter of the overtube 1 at the portion where the fixation balloon 3 is provided is reduced to substantially the same diameter as the outer diameter of the main tube 2 where the fixation balloon 3 is not provided. This state is hereinafter referred to as the diameter-reduced state of the fixation balloon 3 .
The prepared overtube 1 is made so that the insertion portion of the endoscope 11 can be inserted into the cylindrical frame portion 21 with low resistance. An example in which the gas supplied to the space Sp is air will be described below.
For example, when the gas supplied to the space Sp is air, the air in the space Sp is sucked to form an open state, or the intermediate portion 22b is protruded in a state where no tension is generated. .
As a result, a substantially cylindrical space is formed inside the cylindrical frame portion 21 in which the endoscope 11 can move forward and backward without substantially resistance.
For example, to set the space Sp to the atmospheric pressure, the valve 27b is opened by attaching the syringe 28 with the plunger 28a removed to the cock 27 . As a result, the space Sp communicates with the outside, and the inside of the space Sp becomes atmospheric pressure. After that, when the syringe 28 is removed from the cock 27, the valve 27b is closed and the space Sp is kept at atmospheric pressure.
 この後、術者は、内視鏡11の先端をオーバーチューブ1の筒枠部21の内側に挿入する。この後、内視鏡11の挿入部を、グリップ部5の内周面5i、メインチューブ2の第1ルーメン2c、および先端チップ4の内側に通して、内視鏡11の挿入部を、先端チップ4の先端開口4fから延出させる。 After that, the operator inserts the distal end of the endoscope 11 inside the cylindrical frame portion 21 of the overtube 1 . After that, the insertion portion of the endoscope 11 is passed through the inner peripheral surface 5i of the grip portion 5, the first lumen 2c of the main tube 2, and the inside of the distal tip 4, and the insertion portion of the endoscope 11 is inserted into the distal end. It extends from the tip opening 4 f of the tip 4 .
 この後、図13に示すように、術者は、オーバーチューブ1を患者の体外に配置し、オーバーチューブ1から突出した内視鏡11の挿入部を、肛門から大腸C内に挿入する。大腸Cは曲がりくねっているので、術者は内視鏡11によって取得した画像によって大腸C内部を確認しながら挿入する。内視鏡11で取得した画像に処置部位Tsが現れた後、術者は内視鏡11の挿入を停止する。 After that, as shown in FIG. 13, the operator places the overtube 1 outside the patient's body, and inserts the insertion portion of the endoscope 11 projecting from the overtube 1 into the large intestine C through the anus. Since the large intestine C is tortuous, the operator inserts the endoscope 11 while confirming the inside of the large intestine C based on the image obtained. After the treatment site Ts appears in the image acquired by the endoscope 11 , the operator stops inserting the endoscope 11 .
 この後、図14に示すように、術者は、内視鏡11の挿入部に沿って、オーバーチューブ1を肛門から大腸C内に挿入する。このとき、図示略の気密弁ユニット6における中間部22bを内視鏡11の外周部に密着させる。
 例えば、ESDを内視鏡11の処置具チャンネル12bに挿通する処置具のみで行う場合、内視鏡11から、把持デバイス14およびチャンネルチューブ15とともに内視鏡用キャップ13を取り外すことが可能である。
 この場合、気密バルーン22の中間部22bの最小内径が内視鏡11のメインチューブ2の外径以下であると、内視鏡を挿入するだけで中間部22bの一部がメインチューブ2の外周面と全周にわたり接触し、オーバーチューブ1と内視鏡11との隙間が塞がれる。さらに、中間部22bの最小内径とメインチューブ2の外径との差が大きくなりすぎなければ、中間部22bとメインチューブ2の外周面との接触面積が大きくなりすぎないので、内視鏡11とオーバーチューブ1との相対移動における摺動抵抗が低減される。
 この場合、気密バルーン22の空間Spが大気圧になっていれば、空間Sp内にそれ以上のエアを供給しなくてもよい。
Thereafter, as shown in FIG. 14 , the operator inserts the overtube 1 into the large intestine C from the anus along the insertion portion of the endoscope 11 . At this time, the intermediate portion 22 b of the airtight valve unit 6 (not shown) is brought into close contact with the outer peripheral portion of the endoscope 11 .
For example, when ESD is performed using only a treatment tool that is inserted into the treatment tool channel 12b of the endoscope 11, the endoscope cap 13 can be removed from the endoscope 11 together with the grasping device 14 and the channel tube 15. .
In this case, if the minimum inner diameter of the intermediate portion 22b of the airtight balloon 22 is equal to or smaller than the outer diameter of the main tube 2 of the endoscope 11, the intermediate portion 22b may be partially displaced from the outer circumference of the main tube 2 simply by inserting the endoscope. It comes into contact with the surface over the entire circumference, closing the gap between the overtube 1 and the endoscope 11 . Furthermore, unless the difference between the minimum inner diameter of the intermediate portion 22b and the outer diameter of the main tube 2 becomes too large, the contact area between the intermediate portion 22b and the outer peripheral surface of the main tube 2 does not become too large. and the overtube 1 are reduced in relative movement.
In this case, if the space Sp of the airtight balloon 22 is at atmospheric pressure, it is not necessary to supply more air into the space Sp.
 ただし、ESDは、処置具チャンネル12bに挿通する処置具の他に、把持デバイス14を使用して行われてもよい。例えば、内視鏡11の先端部12には、内視鏡用キャップ13が装着され、メインチューブ2の長手方向に沿って、把持デバイス14およびチャンネルチューブ15が配置される。
 この場合、内視鏡11において、内視鏡用キャップ13を取り付けた部分の外径が大きくなるので、中間部22bが突出した状態ではオーバーチューブ1内に挿入しにくくなる可能性がある。
 本実施形態によれば、術者等は、コック27にシリンジ28を装着し、空間Spからエアを吸い出すことで、中間部22bを開放状態にすることができる。これにより、内視鏡用キャップ13を取り付けた部分を円滑に筒枠部21の内部に挿通できる。
 内視鏡用キャップ13が挿通した後、術者等は、コック27に装着したシリンジ28のプランジャ28aを操作して、空間Spにエアを供給することによって空間Spの内圧を上げることができる。
 これにより、チャンネルチューブ15が外周面に配置された内視鏡11の挿入部にの側面に中間部22bが密着し(図11参照)、筒枠部21の内側と、内視鏡11の挿入部の側面と、の隙間が閉じられる。
 その際、エアの流路には圧力調整バルーン26が設けられているので、プランジャ28aによる送気量がある程度大きくなっても、図12に示すように空間Spの内圧は、所定値P1に近い値に保たれる。これにより、空間Spの内圧が規制されるので、オーバーチューブ1と内視鏡11との相対移動が生じても摺動抵抗が一定値を超えない。この結果、気密弁ユニット6の気密性が保たれた状態で、オーバーチューブ1を円滑に挿入することが可能である。
However, ESD may be performed using the grasping device 14 in addition to the treatment tool inserted through the treatment tool channel 12b. For example, an endoscope cap 13 is attached to the distal end portion 12 of the endoscope 11 , and a grasping device 14 and a channel tube 15 are arranged along the longitudinal direction of the main tube 2 .
In this case, in the endoscope 11, the outer diameter of the portion to which the endoscope cap 13 is attached becomes large, so there is a possibility that it will be difficult to insert it into the overtube 1 when the intermediate portion 22b protrudes.
According to the present embodiment, the operator or the like attaches the syringe 28 to the cock 27 and sucks air out of the space Sp, thereby opening the intermediate portion 22b. As a result, the portion to which the endoscope cap 13 is attached can be smoothly inserted into the cylindrical frame portion 21 .
After the endoscope cap 13 is inserted, the operator or the like operates the plunger 28a of the syringe 28 attached to the cock 27 to supply air to the space Sp, thereby increasing the internal pressure of the space Sp.
As a result, the intermediate portion 22b is in close contact with the side surface of the insertion portion of the endoscope 11 on which the channel tube 15 is arranged on the outer peripheral surface (see FIG. 11), and the inside of the cylindrical frame portion 21 and the endoscope 11 are inserted. The gap between the side of the part and the part is closed.
At this time, since the pressure adjusting balloon 26 is provided in the air flow path, even if the amount of air supplied by the plunger 28a increases to some extent, the internal pressure of the space Sp is close to the predetermined value P1 as shown in FIG. value is kept. As a result, the internal pressure of the space Sp is regulated, so even if the overtube 1 and the endoscope 11 move relative to each other, the sliding resistance does not exceed a certain value. As a result, the overtube 1 can be smoothly inserted while the airtightness of the airtight valve unit 6 is maintained.
 図14に示すように、大腸Cは屈曲部の多い臓器である。従来技術のオーバーチューブが屈曲した内視鏡に沿って移動する際、曲がりに追従仕切れないオーバーチューブは内視鏡の中心軸線からずれやすい。この場合オーバーチューブの開口と内視鏡の側面との間に大きな隙間ができるので、隙間に、大腸Cの内壁が挟み込まれてしまう可能性があることが知られている。 As shown in FIG. 14, the large intestine C is an organ with many bends. When a conventional overtube moves along a bent endoscope, the overtube, which cannot follow the bend, tends to deviate from the central axis of the endoscope. In this case, since a large gap is formed between the opening of the overtube and the side surface of the endoscope, it is known that the inner wall of the large intestine C may be caught in the gap.
 図15に示すように、本実施形態に係るオーバーチューブ1によれば、先端に先端チップ4が設けられている。
 先端チップ4の先端は、後端から先端に向かって縮径する第1管部4aが形成されている。このため、先端開口4fが内視鏡11の外周面に近接するので、内視鏡11の外周面との間の隙間自体が低減されている。
 さらに、第1管部4aの後端には、第1管部4aよりも剛性が低い第2管部4bが延びている。
 このため、先端チップ4が、大腸Cの形状に倣って屈曲している内視鏡11の屈曲部分を通過する際に、第2管部4bが第1管部4aよりも先に変形する。これにより、第1管部4a、特に先端開口4fの形状が、内視鏡11の外周面に近接する形状に維持される。すなわち、先端開口4fの変形が抑えられることにより、先端開口4fと内視鏡11の側面との隙間を、内視鏡11の屈曲の外側において過度に拡大させずに済む。したがって、オーバーチューブ1の大腸C内への挿入時に、オーバーチューブ1と内視鏡11の外周面との隙間に大腸Cの内壁が巻き込まれることを防止することができる。
As shown in FIG. 15, according to the overtube 1 according to this embodiment, a distal tip 4 is provided at the distal end.
The front end of the front tip 4 is formed with a first tube portion 4a whose diameter is reduced from the rear end toward the front end. Therefore, since the tip opening 4f is close to the outer peripheral surface of the endoscope 11, the gap itself between the outer peripheral surface of the endoscope 11 is reduced.
Furthermore, a second pipe portion 4b having lower rigidity than the first pipe portion 4a extends to the rear end of the first pipe portion 4a.
Therefore, when the distal tip 4 passes through the bent portion of the endoscope 11 that is bent following the shape of the large intestine C, the second tube portion 4b deforms before the first tube portion 4a. As a result, the shape of the first tube portion 4 a , particularly the tip opening 4 f , is maintained in a shape close to the outer peripheral surface of the endoscope 11 . That is, by suppressing the deformation of the tip opening 4f, the gap between the tip opening 4f and the side surface of the endoscope 11 can be prevented from being excessively expanded outside the bend of the endoscope 11. FIG. Therefore, when the overtube 1 is inserted into the large intestine C, it is possible to prevent the inner wall of the large intestine C from being caught in the gap between the overtube 1 and the outer peripheral surface of the endoscope 11 .
 図13に示す例では、処置部位Tsが肛門から近い位置にあるので、内視鏡11の停止時に、オーバーチューブ1は体外に位置している。
 処置部位Tsが肛門から遠い位置にある等の場合は、術者は、内視鏡11の先端部12が処置部位Tsに到達する前にオーバーチューブ1を大腸C内に挿入してもよい。この場合、術者は、先端部12の位置を内視鏡11の画像で確認しながら、内視鏡11の前進とオーバーチューブ1の前進とを交互に繰り返して、先端部12が処置部位Tsの近くに移動してもよい。
In the example shown in FIG. 13, since the treatment site Ts is located near the anus, the overtube 1 is positioned outside the body when the endoscope 11 is stopped.
If the treatment site Ts is located far from the anus, the operator may insert the overtube 1 into the large intestine C before the distal end 12 of the endoscope 11 reaches the treatment site Ts. In this case, the operator alternately repeats advancing the endoscope 11 and advancing the overtube 1 while confirming the position of the distal end portion 12 on the image of the endoscope 11, so that the distal end portion 12 reaches the treatment site Ts. You can move closer to
 オーバーチューブ1の先端が、処置部位Tsの近傍に配置された内視鏡11の先端部12付近まで到達したら、術者は、送気デバイス10を操作して、エアフローチューブ9および第2ルーメン2eを経由して、固定用バルーン3にエアを供給し、固定用バルーン3を膨張させる。
 図16に示すように、固定用バルーン3が十分膨張すると、固定用バルーン3が大腸Cの内壁と接触する。これにより、オーバーチューブ1は、大腸Cに対して容易に相対移動しない程度に固定される。
When the tip of the overtube 1 reaches the vicinity of the tip 12 of the endoscope 11 placed near the treatment site Ts, the operator operates the air supply device 10 to remove the airflow tube 9 and the second lumen 2e. Air is supplied to the fixation balloon 3 via to inflate the fixation balloon 3 .
As shown in FIG. 16, when the fixation balloon 3 is sufficiently inflated, the fixation balloon 3 comes into contact with the inner wall of the large intestine C. As shown in FIG. As a result, the overtube 1 is fixed to the extent that it does not easily move relative to the large intestine C. As shown in FIG.
 術者は、内視鏡11から突出させた処置具を使って、処置部位TsのESDを行う。内視鏡用キャップ13を装着している場合には、チャンネルチューブ15に挿通した把持デバイス14で処置部位Tsにおける粘膜を挙上して保持できる。
 この後、内視鏡11の処置具チャンネル12bから突出させた高周波ナイフなどによって、処置部位Tsにおける腫瘍の下側の粘膜下層を剥離できる。
 このようなESDの施術中、大腸C内の液体や気体等がオーバーチューブ1の先端からオーバーチューブ1内に進入することがある。
 本実施形態では、図10に示すように、筒枠部21内において、気密バルーン22が内視鏡11およびチャンネルチューブ15の外周面と、筒枠部21との隙間を塞いでいるので、気密および液密が保持されている。これにより、大腸C内の液体や気体等が筒枠部21から漏れることが防止される。
The operator uses a treatment tool protruding from the endoscope 11 to perform ESD on the treatment site Ts. When the endoscope cap 13 is attached, the grasping device 14 inserted through the channel tube 15 can lift and hold the mucous membrane at the treatment site Ts.
Thereafter, a high-frequency knife or the like protruding from the treatment instrument channel 12b of the endoscope 11 can be used to exfoliate the submucosal layer under the tumor at the treatment site Ts.
During such ESD treatment, liquid, gas, etc. in the large intestine C may enter the overtube 1 from the distal end of the overtube 1 .
In this embodiment, as shown in FIG. 10, in the cylindrical frame portion 21, the airtight balloon 22 closes the gap between the outer peripheral surface of the endoscope 11 and the channel tube 15 and the cylindrical frame portion 21, so that airtightness is achieved. and liquid-tight. This prevents liquid, gas, etc. in the large intestine C from leaking from the cylinder frame portion 21 .
 ESDにおいて必要なすべての処置が終了したら、術者は、送気デバイス10を操作して、固定用バルーン3のエアを吸い出して、固定用バルーン3を縮径状態にする。この後、術者は、内視鏡11とチャンネルチューブ15とを、肛門から引き抜く。
 以上で、オーバーチューブ1を用いたESDが終了する。
After completing all necessary treatment in ESD, the operator operates the air supply device 10 to suck out the air from the fixation balloon 3 and reduce the diameter of the fixation balloon 3 . After that, the operator pulls out the endoscope 11 and the channel tube 15 from the anus.
This completes the ESD using the overtube 1 .
 以上説明したように、本実施形態に係るオーバーチューブ1は、中間部22bが筒枠部21の内面に突出した気密バルーン22を備えるため、少ない気体供給量で挿入した内視鏡等との間の気密および液密を確保できる。
 上述した大腸用の内視鏡11の挿入部は、上部消化管用の内視鏡よりも長い。
さらに、大腸は複雑に蛇行しているため、処置部位が上行結腸に存在する等の場合、処置部位に到達するまでに、強く湾曲する部位が複数生じることもある。この場合、オーバーチューブ1も内視鏡11同様に強く湾曲し、内視鏡11をオーバーチューブ1に対して進退させる際の摩擦抵抗は、上部消化管用内視鏡に比べてはるかに大きくなる。
As described above, the overtube 1 according to the present embodiment includes the airtight balloon 22 in which the intermediate portion 22b protrudes from the inner surface of the cylindrical frame portion 21. Therefore, the overtube 1 can be placed between the endoscope or the like inserted with a small gas supply amount. airtightness and liquidtightness can be ensured.
The insertion portion of the endoscope 11 for the large intestine described above is longer than that of the endoscope for the upper gastrointestinal tract.
Furthermore, since the large intestine is meandering in a complicated manner, when the treatment site is located in the ascending colon, a plurality of strongly curved sites may occur before reaching the treatment site. In this case, the overtube 1 is also bent strongly like the endoscope 11, and the frictional resistance when the endoscope 11 is advanced and retracted with respect to the overtube 1 is much larger than that of the endoscope for the upper gastrointestinal tract.
 このような状況で、気密及び液密を確保するための気密バルーン22と内視鏡11との摩擦が大きくなると、内視鏡11の進退操作を円滑に行いにくくなる。
 本実施形態に係るオーバーチューブ1は、少ない気体供給量で挿入した内視鏡11との間の気密及び液密を確保でき、適切な寸法設定により、気体供給なしで気密および液密を確保することも可能である。
In such a situation, if the friction between the airtight balloon 22 for ensuring airtightness and liquidtightness and the endoscope 11 increases, it becomes difficult to smoothly advance and retract the endoscope 11 .
The overtube 1 according to the present embodiment can ensure airtightness and liquidtightness with the inserted endoscope 11 with a small amount of gas supply, and by setting appropriate dimensions, it can ensure airtightness and liquidtightness without gas supply. is also possible.
 大腸CにおけるESDの難度は、胃におけるESDよりも高い。オーバーチューブ1を用いて大腸C内における内視鏡11の位置を安定させることや、内視鏡用キャップ13を組み合わせた上述の方法は、大腸CにおけるESDの簡便化に有効である。
 一方、内視鏡用キャップ13装着時の外径に合わせて気密バルーン22の形状や寸法を設定すると、先端部12がベースを通過した後の気密バルーン22と内視鏡11の挿入部との隙間が大きくなる。この結果、隙間を塞ぐために必要な気体量が大きくなるとともに、気密バルーン22の内圧も高くなり、内視鏡11と気密バルーン22の摩擦が大きくなる。
 本実施形態における気密バルーン22は、空間Sp内を陰圧にすることにより、中間部22bを筒枠部21の内面に密着させることができる。したがって、中間部22bの初期形状に関係なく、内視鏡用キャップ13が装着された先端部12を容易に通過させることができる。さらに、内視鏡用キャップ13の通過後に陰圧を解除することによって、外周部にチャンネルチューブ15が配置されて非円形の断面形状が形成されていても、少ない気体供給量で気密及び液密を確保できる。
The difficulty of ESD in colon C is higher than ESD in the stomach. The above method of stabilizing the position of the endoscope 11 in the large intestine C using the overtube 1 and combining the endoscope cap 13 is effective in simplifying ESD in the large intestine C. FIG.
On the other hand, if the shape and dimensions of the airtight balloon 22 are set according to the outer diameter when the endoscope cap 13 is attached, the distance between the airtight balloon 22 and the insertion portion of the endoscope 11 after the distal end portion 12 passes through the base is reduced. the gap becomes larger. As a result, the amount of gas required to close the gap increases, the internal pressure of the airtight balloon 22 also increases, and the friction between the endoscope 11 and the airtight balloon 22 increases.
The airtight balloon 22 according to the present embodiment can bring the intermediate portion 22b into close contact with the inner surface of the cylindrical frame portion 21 by applying a negative pressure to the space Sp. Therefore, regardless of the initial shape of the intermediate portion 22b, the distal end portion 12 with the endoscope cap 13 attached can be easily passed through. Furthermore, by releasing the negative pressure after passing through the endoscope cap 13, even if the channel tube 15 is arranged on the outer peripheral portion and the non-circular cross-sectional shape is formed, airtightness and liquidtightness can be achieved with a small amount of gas supply. can be ensured.
 以上説明したように、第1の実施形態に係るオーバーチューブ1によれば、患者の負荷を低減するとともに内視鏡を円滑に操作することができる内視鏡用オーバーチューブを提供することができる。 As described above, according to the overtube 1 according to the first embodiment, it is possible to provide an endoscope overtube that reduces the burden on a patient and allows smooth operation of the endoscope. .
 上述した第1の実施形態は、種々の変形を加えて実施されてもよい。
 第1の実施形態では、送気デバイス10がエアを送気するとして説明した。しかし、送気デバイス10は、エアとは異なる気体供給源を備えることにより、エアに代えて、エアと異なる気体を固定用バルーン3に供給してもよい。
The first embodiment described above may be implemented with various modifications.
1st Embodiment demonstrated that the air supply device 10 insufflates air. However, the air-supplying device 10 may be provided with a gas supply source different from air, so that instead of air, a gas different from air may be supplied to the fixation balloon 3 .
 第1の実施形態では、内視鏡用キャップ13を装着した内視鏡11を挿通する際、気密弁ユニット6を開放状態とするとして説明した。しかし、中間部22bの内径は、気密弁ユニット6を挿通する内視鏡11の外径および外形状に応じて適宜調整されてもよい。例えば、気密弁ユニット6が開放状態でなく、中間部22bが内側に膨らんだ状態でも、内視鏡11を挿入可能であれば、気密弁ユニット6を開放状態とすることなく、内視鏡11を挿入してもよい。 In the first embodiment, the airtight valve unit 6 is in the open state when the endoscope 11 with the endoscope cap 13 attached is inserted. However, the inner diameter of the intermediate portion 22b may be appropriately adjusted according to the outer diameter and outer shape of the endoscope 11 through which the airtight valve unit 6 is inserted. For example, if the endoscope 11 can be inserted even when the airtight valve unit 6 is not in the open state and the intermediate portion 22b is swollen inward, the endoscope 11 can be inserted without opening the airtight valve unit 6. may be inserted.
 第1の実施形態では、操作チューブ本体25は、接続ポート21bに接続されているとして説明したが、操作チューブ本体25は、接続ポート21bと着脱可能に接続されてもよい。 Although the operation tube main body 25 is connected to the connection port 21b in the first embodiment, the operation tube main body 25 may be detachably connected to the connection port 21b.
 第1の実施形態における気密バルーン22の中間部22bの形状は、一例で有り、上述の形状には限定されない。例えば、中間部22bは、軸方向において径方向内側に突出する2以上の突出部を有してもよい。
 例えば、気密バルーン22の内周面には、親水性コーティングが施されてもよい。
The shape of the intermediate portion 22b of the airtight balloon 22 in the first embodiment is an example, and is not limited to the shape described above. For example, the intermediate portion 22b may have two or more protrusions that protrude radially inward in the axial direction.
For example, the inner peripheral surface of the airtight balloon 22 may be coated with a hydrophilic coating.
 第1の実施形態における気密弁ユニット6は、圧力調整バルーン26によって、空間Spの内圧が調節する例で説明した。しかし、空間Spの内圧が調節する機構は、圧力調整バルーン26には限定されない。例えば、圧力調整バルーン26に代えて、圧力が所定値を超えた場合にエアを外部に放出するリリーフ弁が設けられてもよい。 The airtight valve unit 6 in the first embodiment has been described as an example in which the pressure regulation balloon 26 regulates the internal pressure of the space Sp. However, the mechanism for adjusting the internal pressure of the space Sp is not limited to the pressure adjustment balloon 26. For example, instead of the pressure regulation balloon 26, a relief valve may be provided that releases air to the outside when the pressure exceeds a predetermined value.
 第1の実施形態では、先端チップ4における、第1管部4aと、第2管部4bとの、厚さが、互いに異なることによって、第1管部4aの剛性と第2管部4bの剛性とを異ならせた例で説明した。剛性が異なる構成であれば、これには限定されない。
 例えば、第2管部4bとして蛇腹構造を採用することにより、第1管部4aより厚肉部2bの剛性を低下させてもよい。
 例えば、第1管部4aおよび第2管部4bの厚さが同じであっても、第1管部4aおよび第2管部4bの各材料の剛性を互いに異ならせることによって、剛性を異ならせてもよい。
In the first embodiment, since the thicknesses of the first tube portion 4a and the second tube portion 4b in the tip 4 are different from each other, the rigidity of the first tube portion 4a and the thickness of the second tube portion 4b are different. An example in which the stiffness is different has been described. The configuration is not limited to this as long as the configurations have different rigidity.
For example, by adopting a bellows structure as the second pipe portion 4b, the rigidity of the thick portion 2b may be reduced from that of the first pipe portion 4a.
For example, even if the thicknesses of the first pipe portion 4a and the second pipe portion 4b are the same, the rigidity can be made different by making the rigidity of each material of the first pipe portion 4a and the second pipe portion 4b different. may
 第1の実施形態における先端チップ4では、式(1a)、(1b)に加えて、以下の式(1c)を満足していてもよい。 The tip 4 in the first embodiment may satisfy the following formula (1c) in addition to the formulas (1a) and (1b).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 この場合、メインチューブ2の剛性K1よりも第1管部4aの剛性K3の方が大きいので、内視鏡11をガイドとしてオーバーチューブ1を大腸C内に押し込む際にメインチューブ2が座屈すること抑制できる。 In this case, since the rigidity K3 of the first tube portion 4a is greater than the rigidity K1 of the main tube 2, the main tube 2 does not buckle when the overtube 1 is pushed into the large intestine C using the endoscope 11 as a guide. can be suppressed.
 第1の実施形態では、先端チップ4は、メインチューブ2の先端に固定されているとして説明した。しかし、先端チップ4は、メインチューブ2と同じ材料で整形されてもよい。 In the first embodiment, the distal tip 4 is fixed to the distal end of the main tube 2. However, tip 4 may be shaped from the same material as main tube 2 .
 第1の実施形態では、圧力調整バルーン26は、操作チューブ本体25の第2端部25bに設けられているとして説明した。しかし、圧力調整バルーン26は、チャンネルチューブ15の第1端部25aと第2端部との間に設けられてもよい。 In the first embodiment, the pressure adjustment balloon 26 is provided at the second end 25b of the operation tube main body 25. However, the pressure regulating balloon 26 may be provided between the first end 25a and the second end of the channel tube 15 .
 第1の実施形態では、送気デバイス10のエアフローチューブ9が第1ルアーコネクタ5cに接続される例で説明した。しかし、第1ルアーコネクタ5cとエアフローチューブ9との間に、適宜の接続チューブを介在させてもよい。 In the first embodiment, an example in which the airflow tube 9 of the air supply device 10 is connected to the first luer connector 5c has been described. However, an appropriate connecting tube may be interposed between the first luer connector 5c and the airflow tube 9.
 以上説明したように、第1ルーメン2cは、内視鏡を挿通するメインルーメンの例である。第2ルーメン2eは、気体が流れる送気ルーメンの例である。メインチューブ2は、チューブ本体の例である。筒枠部21は、チューブ本体の後端部においてメインルーメンと連通する管状部の例である。
 固定用バルーン3は、チューブ本体の先端部の外周面に設けられ、外周面の外方に拡張可能かつ外周面に向かって収縮可能な固定用バルーンの例である。
 送気デバイス10は、送気ルーメンに気体を送る送気デバイスの例である。
 気密弁ユニット6は、チューブ本体の後端部においてメインルーメンと連通する管状部を有し、管状部を通してメインルーメンに挿通された内視鏡と、管状部の内周面と、の間の隙間を塞ぐ気密弁ユニットの例である。
As described above, the first lumen 2c is an example of a main lumen through which an endoscope is inserted. The second lumen 2e is an example of an air supply lumen through which gas flows. The main tube 2 is an example of a tube body. The cylindrical frame portion 21 is an example of a tubular portion that communicates with the main lumen at the rear end portion of the tube body.
The fixation balloon 3 is an example of a fixation balloon that is provided on the outer peripheral surface of the distal end of the tube body, expandable outward from the outer peripheral surface, and contractible toward the outer peripheral surface.
Insufflation device 10 is an example of an insufflation device that delivers gas to an insufflation lumen.
The airtight valve unit 6 has a tubular portion that communicates with the main lumen at the rear end of the tube body, and the gap between the endoscope inserted into the main lumen through the tubular portion and the inner peripheral surface of the tubular portion. This is an example of an airtight valve unit that closes the
[第2の実施形態]
 本発明の第2の実施形態に係る内視鏡用オーバーチューブを説明する。
 図17は、本発明の第2の実施形態に係る内視鏡用オーバーチューブの例を示す模式的な斜視図である。
[Second embodiment]
An endoscope overtube according to a second embodiment of the present invention will be described.
FIG. 17 is a schematic perspective view showing an example of the endoscope overtube according to the second embodiment of the present invention.
 図17に示すオーバーチューブ101は、本実施形態に係る内視鏡用オーバーチューブの例である。
 オーバーチューブ101は、第1の実施形態に係るオーバーチューブ1のメインチューブ2、送気デバイス10に代えて、メインチューブ102(チューブ本体)、送気デバイス110を有する。以下、第1の実施形態と異なる点を中心に説明する。
An overtube 101 shown in FIG. 17 is an example of an endoscope overtube according to this embodiment.
The overtube 101 has a main tube 102 (tube body) and an air supply device 110 instead of the main tube 2 and air supply device 10 of the overtube 1 according to the first embodiment. The following description will focus on the differences from the first embodiment.
 図18は、図17におけるF19-F19線に沿う断面図である。図19は、図18におけるF19部の拡大図である。
 図18に示すように、本実施形態におけるメインチューブ102は、メインチューブ2においてさらに第3ルーメン102g(ダミールーメン)が形成されている。
 以下、メインチューブ102に関する説明では、メインチューブ2の長手方向に直交する断面において、第1ルーメン2cの円形の内周面に沿う方向を周方向、周方向に直交し、第1ルーメン2cの内周面の直径に沿う方向を径方向と称する。径方向において、第1ルーメン2cの中心に向かう方向を径方向内側、中心から離れる方向を径方向外側と称する場合がある。
18 is a cross-sectional view taken along line F19-F19 in FIG. 17. FIG. 19 is an enlarged view of the F19 portion in FIG. 18. FIG.
As shown in FIG. 18, the main tube 102 in this embodiment further includes a third lumen 102g (dummy lumen).
Hereinafter, in the description of the main tube 102, in the cross section orthogonal to the longitudinal direction of the main tube 2, the direction along the circular inner peripheral surface of the first lumen 2c is the circumferential direction, and the direction along the circular inner peripheral surface is orthogonal to the circumferential direction. A direction along the diameter of the peripheral surface is called a radial direction. In the radial direction, the direction toward the center of the first lumen 2c may be referred to as the radial inner side, and the direction away from the center may be referred to as the radial outer side.
 第3ルーメン102gは、メインチューブ102の長手方向に貫通している。ただし、第3ルーメン102gは厚肉部2bの剛性を調整する目的で形成されるダミー孔である。第3ルーメン102gの内部に流体が流されることはないので、第3ルーメン102gには、流体を流すためのチューブは接続されない。
 本実施形態では、第3ルーメン102gの長手方向における先端の開口は、先端チップ4との接続部によって閉じられている。第3ルーメン102gの長手方向における後端の開口は、グリップ部5との接続部によって閉じられている。
The third lumen 102g extends through the main tube 102 in the longitudinal direction. However, the third lumen 102g is a dummy hole formed for the purpose of adjusting the rigidity of the thick portion 2b. Since no fluid flows inside the third lumen 102g, a tube for flowing fluid is not connected to the third lumen 102g.
In the present embodiment, the opening at the distal end of the third lumen 102g in the longitudinal direction is closed by the connecting portion with the distal tip 4. As shown in FIG. The opening at the rear end in the longitudinal direction of the third lumen 102g is closed by a connecting portion with the grip portion 5. As shown in FIG.
 第3ルーメン102gは、厚肉部2bにおいて第2ルーメン2eと近い位置に形成されている。第3ルーメン102gは、第2ルーメン2eと平行に延びている。
 第3ルーメン102gの個数は特に限定されない。図18に示す例では、第2ルーメン2eを挟んで周方向に対向する2箇所に形成されている。
 この場合、周方向において第2ルーメン2eの両側の近くに第3ルーメン102gが形成されていることによって、厚肉部2bに周方向のいずれ端部に外力が作用しても、外力が第2ルーメン2eに伝わりにくくなるので、第2ルーメン2eの断面形状が維持されやすくなる。
The third lumen 102g is formed at a position close to the second lumen 2e in the thick portion 2b. The third lumen 102g extends parallel to the second lumen 2e.
The number of third lumens 102g is not particularly limited. In the example shown in FIG. 18, they are formed at two locations facing each other in the circumferential direction with the second lumen 2e interposed therebetween.
In this case, since the third lumens 102g are formed near both sides of the second lumen 2e in the circumferential direction, even if an external force acts on any end of the thick portion 2b in the circumferential direction, the external force is applied to the second lumen 2e. Since it becomes difficult to be transmitted to the lumen 2e, the cross-sectional shape of the second lumen 2e is easily maintained.
 各第3ルーメン102gにおけるメインチューブ102の長手方向と直交する方向の断面形状(以下、単に、断面形状)は、第2ルーメン2eから離れた部位における厚肉部2bの剛性を低減できる形状であれば特に限定されない。
 各第3ルーメン102gの断面形状は、互いに異なっていてもよい。
 図18に示す例では、各第3ルーメン102gは、第2ルーメン2eの中心を通る軸線Yに関して、線対称となる位置および形状に形成されている。
The cross-sectional shape of each third lumen 102g in the direction perpendicular to the longitudinal direction of the main tube 102 (hereinafter simply referred to as the cross-sectional shape) should be a shape that can reduce the rigidity of the thick portion 2b at a location away from the second lumen 2e. is not particularly limited.
The cross-sectional shape of each third lumen 102g may be different from each other.
In the example shown in FIG. 18, each third lumen 102g is formed in a line-symmetrical position and shape with respect to the axis Y passing through the center of the second lumen 2e.
 例えば、第3ルーメン102gの断面形状としては、円、楕円、長円、多角形などが用いられてもよい。第3ルーメン102gがこのような空孔であると、第3ルーメン102gが形成された厚肉部2bの実質的な厚さが減少するので、圧縮力などの外力が作用したとき、第3ルーメン102gがつぶれやすくなり、剛性が低下する。 For example, the cross-sectional shape of the third lumen 102g may be circular, elliptical, oval, polygonal, or the like. If the third lumen 102g is such a hole, the substantial thickness of the thick portion 2b in which the third lumen 102g is formed is reduced. 102g becomes easily crushed and its rigidity decreases.
 例えば、図18に示す例では、各第3ルーメン102gの断面形状は、周方向に長い長円形である。
 図19を参照して、第2ルーメン2eと各第3ルーメン102gとの相対的な位置関係の例を説明する。
 各第3ルーメン102gは、径方向において、第1ルーメン2c寄りの位置に形成されている。第3ルーメン102gにおける第1ルーメン2c寄りの内周面と、第1ルーメン2cの内周面との距離はt2である。チューブ壁2aの厚さをt0とすると、t2は、t0の半分以下であってもよい。
 第3ルーメン102gにおける径方向外側の内周面と厚肉部2bの外周面との距離は、特に限定されないが、図19に示す例では、t2よりも長い。このため、第3ルーメン102gは、径方向において厚肉部2bの中心よりも第1ルーメン2c寄りに形成されている。
For example, in the example shown in FIG. 18, the cross-sectional shape of each third lumen 102g is an oval that is elongated in the circumferential direction.
An example of the relative positional relationship between the second lumen 2e and each third lumen 102g will be described with reference to FIG.
Each third lumen 102g is formed at a position closer to the first lumen 2c in the radial direction. The distance between the inner peripheral surface of the third lumen 102g closer to the first lumen 2c and the inner peripheral surface of the first lumen 2c is t2. Assuming that the thickness of the tube wall 2a is t0, t2 may be half or less of t0.
The distance between the radially outer inner peripheral surface of the third lumen 102g and the outer peripheral surface of the thick portion 2b is not particularly limited, but is longer than t2 in the example shown in FIG. Therefore, the third lumen 102g is formed closer to the first lumen 2c than the center of the thick portion 2b in the radial direction.
 これに対して、第2ルーメン2eにおける第1ルーメン2c寄りの内周面と第1ルーメン2cの内周面との距離は、t2より長いt1である。
 第2ルーメン2eにおける径方向外側の内周面と、厚肉部2bの外周面との距離は、t1以下のt3である。このため、第2ルーメン2eは、径方向において厚肉部2bの中心もしくはわずかに径方向外側寄りに形成されている。
On the other hand, the distance between the inner peripheral surface of the second lumen 2e closer to the first lumen 2c and the inner peripheral surface of the first lumen 2c is t1, which is longer than t2.
The distance between the radially outer inner peripheral surface of the second lumen 2e and the outer peripheral surface of the thick portion 2b is t3, which is less than or equal to t1. Therefore, the second lumen 2e is formed radially at the center of the thick portion 2b or slightly radially outward.
 第3ルーメン102gの内周面と第2ルーメン2eの内周面との距離は、d1である。d1は、t2よりも長いことがより好ましく、図19に示す例では、t1以上である。 The distance between the inner peripheral surface of the third lumen 102g and the inner peripheral surface of the second lumen 2e is d1. d1 is more preferably longer than t2, and is t1 or more in the example shown in FIG.
 例えば、メインチューブ102の材料がゴム硬度(ショアA)がA60~A80のシリコーンゴムであり、第1ルーメン2cの内径が13.8mm、t0が1.2mm、厚肉部2bにおける最大厚さが3.1mmの場合、第2ルーメン2eの直径が1.9mm、t1が0.7mm、t3が0.3mmの場合、第3ルーメン102gに関する好適な寸法は、以下の寸法を例示できる。
 t2は0.5mm、第3ルーメン102gの周方向の長さは1.54mm以上2mm以下、第3ルーメン102gの径方向の幅は0.7mm、d1は1.3mmである。
For example, the material of the main tube 102 is silicone rubber with a rubber hardness (Shore A) of A60 to A80, the inner diameter of the first lumen 2c is 13.8 mm, t0 is 1.2 mm, and the maximum thickness of the thick portion 2b is In the case of 3.1 mm, the diameter of the second lumen 2e is 1.9 mm, t1 is 0.7 mm, and t3 is 0.3 mm.
t2 is 0.5 mm, the circumferential length of the third lumen 102g is 1.54 mm or more and 2 mm or less, the radial width of the third lumen 102g is 0.7 mm, and d1 is 1.3 mm.
 このような構成によれば、厚肉部2bには、第1領域R1と第2領域R2とが周方向に並んで形成されている。
 第1領域R1は、第2ルーメン2eを含み、周方向において各第3ルーメン102gに挟まれた領域である。
 第2領域R2は、周方向において第3ルーメン102gの長さの範囲に形成され、第1領域R1に比べると剛性が低下した領域である。第2領域R2は、チューブ壁2aに比べても剛性が低い。
According to such a configuration, the first region R1 and the second region R2 are formed side by side in the circumferential direction in the thick portion 2b.
The first region R1 is a region including the second lumen 2e and sandwiched between the third lumens 102g in the circumferential direction.
The second region R2 is formed in the range of the length of the third lumen 102g in the circumferential direction, and is a region with reduced rigidity compared to the first region R1. The second region R2 has a lower rigidity than the tube wall 2a.
 次に、送気デバイス110を説明する。
 図24は、本発明の第2の実施形態に係る内視鏡用オーバーチューブにおける送気デバイスの例を示すブロック図である。図21は、本発明の第2の実施形態に係る内視鏡用オーバーチューブにおける送気デバイスの吸気時の流れを示すブロック図である。
Next, the air supply device 110 will be described.
FIG. 24 is a block diagram showing an example of an air supply device in the endoscope overtube according to the second embodiment of the present invention. FIG. 21 is a block diagram showing the flow of the air supply device in the endoscope overtube according to the second embodiment of the present invention during inhalation.
 図24に示すように、送気デバイス110は、送気機構111、圧力計112、およびリリーフ弁113を有する。
 送気デバイス110は、エアフローチューブ9が接続する接続管110aを有している。接続管110aは、エアフローチューブ9におけるエアの流路と、送気デバイス110内のエアの流路と、を連通させる。
As shown in FIG. 24 , the air supply device 110 has an air supply mechanism 111 , a pressure gauge 112 and a relief valve 113 .
The air supply device 110 has a connection tube 110a to which the airflow tube 9 is connected. The connection pipe 110a allows the air flow path in the airflow tube 9 and the air flow path in the air supply device 110 to communicate with each other.
 送気機構111は、ポンプ111a、第1逆止弁111b、第2逆止弁111c、第1管路切替部111d、第2管路切替部111e、および開口部111fを有する。
 ポンプ111aは、送気機構111内の管路にエアの流れを形成する。ポンプ111aの種類は特に限定されない。例えば、ポンプ111aは電動ポンプでもよいし、手動ポンプでもよい。手動ポンプの例としては,ゴム球ポンプ、ダイヤフラムポンプ、蛇腹管ポンプ、シリンジポンプなどが挙げられる。
The air supply mechanism 111 has a pump 111a, a first check valve 111b, a second check valve 111c, a first channel switching portion 111d, a second channel switching portion 111e, and an opening 111f.
The pump 111 a forms an air flow in the conduit inside the air supply mechanism 111 . The type of pump 111a is not particularly limited. For example, the pump 111a may be an electric pump or a manual pump. Examples of manual pumps include rubber bulb pumps, diaphragm pumps, corrugated tube pumps, syringe pumps, and the like.
 第1逆止弁111bおよび第2逆止弁111cは、ポンプ111aが送気する送気路paの両端部に設けられており、送気路paの両端部におけるエアの流れを一方向に規制する。これにより、送気路paには、第2逆止弁111cから第1逆止弁111bに向かう流れが形成される。
 第1逆止弁111bと第2逆止弁111cとは、それぞれの間に第1管路切替部111dが配置された管路pbと、第2管路切替部111eが配置された管路pcと、を介在して互いに接続している。
 第1逆止弁111bは、送気路paのエアを管路pb、pcに向けて通し、管路pb、pcから送気路paに向かうエアの流れを阻止する。
 第2逆止弁111cは、管路pb、pcを流れるエアを送気路paに向けて通し、送気路paから管路pb、pcに向かうエアの流れを阻止する。
The first check valve 111b and the second check valve 111c are provided at both ends of the air supply passage pa that is supplied by the pump 111a, and restrict the flow of air in one direction at both ends of the air supply passage pa. do. As a result, a flow from the second check valve 111c to the first check valve 111b is formed in the air supply path pa.
The first check valve 111b and the second check valve 111c are divided into a pipeline pb between which the first pipeline switching section 111d is arranged and a pipeline pc between which the second pipeline switching section 111e is arranged. and are connected to each other through .
The first check valve 111b allows the air in the air supply path pa to flow toward the pipelines pb and pc, and blocks the flow of air from the pipelines pb and pc to the air supply path pa.
The second check valve 111c allows the air flowing through the conduits pb and pc to pass toward the air conduit pa, and blocks the flow of air from the air conduit pa to the conduits pb and pc.
 第1管路切替部111dは、接続管110aと連通する管路pdが接続されている。第1管路切替部111dは、管路pbが管路pdと連通し第2逆止弁111cと連通しない管路と、管路pbが管路pdと連通せず第2逆止弁111cと連通する管路と、を選択的に切り替える。
 例えば、第1管路切替部111dとしては、流路切替弁などの切替装置が用いられてもよい。互いに接続する管路が手動切替できる場合には、第1管路切替部111dとして、特に切替装置を用いなくてもよい。
 第2管路切替部111eは、エアを送気機構111の外部に開口する開口部111fと連通している。第2管路切替部111eは、管路pcが第2逆止弁111cと連通し第1逆止弁111bと連通しない管路と、管路pcが第2逆止弁111cと連通せず第1逆止弁111bと連通する管路と、を選択的に切り替える。
 例えば、第2管路切替部111eとしては、流路切替弁などの切替装置が用いられてもよい。互いに接続する管路が手動切替できる場合には、第2管路切替部111eとして、特に切替装置を用いなくてもよい。
A pipeline pd communicating with the connection pipe 110a is connected to the first pipeline switching portion 111d. The first duct switching unit 111d has a duct in which the duct pb communicates with the duct pd and does not communicate with the second check valve 111c, and a second check valve 111c in which the duct pb does not communicate with the duct pd. To selectively switch between a communicating conduit and a duct.
For example, a switching device such as a channel switching valve may be used as the first channel switching unit 111d. If the pipelines connected to each other can be manually switched, it is not necessary to use a switching device as the first pipeline switching unit 111d.
The second channel switching portion 111 e communicates with an opening portion 111 f that opens air to the outside of the air supply mechanism 111 . The second duct switching unit 111e has a duct in which the duct pc communicates with the second check valve 111c and does not communicate with the first check valve 111b, and a duct in which the duct pc does not communicate with the second check valve 111c. 1 check valve 111b and a conduit communicating with the check valve 111b are selectively switched.
For example, a switching device such as a channel switching valve may be used as the second channel switching unit 111e. If the pipelines connected to each other can be manually switched, it is not necessary to use a switching device as the second pipeline switching unit 111e.
 図24に示すように、第1管路切替部111dによって管路pdと第1逆止弁111bと連通し、第2管路切替部111eによって管路pcが第2逆止弁111cと連通する状態とが形成される場合、ポンプ111aの送気によって、開口部111fからエアを吸引し、管路pdから接続管110aを通してエアが送気されるエア流路が形成される(実線矢印参照)。
 図21に示すように、第1管路切替部111dによって管路pdと第2逆止弁111cと連通し、第2管路切替部111eによって管路pcが第1逆止弁111bと連通する状態の場合、ポンプ111aの送気によって、接続管110aを経由して管路pdからエアを吸引し、開口部111fからエアが送気されるエア流路が形成される(破線矢印参照)。
As shown in FIG. 24, the pipeline pd communicates with the first check valve 111b through the first pipeline switching portion 111d, and the pipeline pc communicates with the second check valve 111c through the second pipeline switching portion 111e. When the state is formed, air is sucked from the opening 111f by the air supply of the pump 111a, and an air flow path is formed in which the air is supplied from the conduit pd through the connecting tube 110a (see the solid line arrow). .
As shown in FIG. 21, the pipeline pd communicates with the second check valve 111c through the first pipeline switching portion 111d, and the pipeline pc communicates with the first check valve 111b through the second pipeline switching portion 111e. In the state, air is sucked from the pipeline pd via the connection tube 110a by the air supply of the pump 111a, and an air flow path is formed through which the air is supplied from the opening 111f (see the dashed arrow).
 圧力計112と、リリーフ弁113と、は、第1管路切替部111dから接続管110aに向かう管路pdにおいて、この順に設けられている。
 圧力計112は、管路pdにおけるエアの圧力を計測し、圧力の大きさを表示する。圧力計112は、圧力の大きさを数値で表示できてもよいが、表示方法は数値表示には限定されない。例えば、圧力計112における圧力表示は、圧力の絶対値または基準値からの相対的なずれ量を視認可能に表示できればよい。
The pressure gauge 112 and the relief valve 113 are provided in this order in the pipeline pd from the first pipeline switching portion 111d to the connection pipe 110a.
A pressure gauge 112 measures the air pressure in the pipeline pd and displays the magnitude of the pressure. The pressure gauge 112 may display the magnitude of the pressure numerically, but the display method is not limited to numerical display. For example, the pressure display on the pressure gauge 112 may visibly display the absolute value of the pressure or the amount of relative deviation from the reference value.
 リリーフ弁113は、管路pdにおけるエアの圧力が予め決められた許容圧力値を超えると、管路pdを流れるエアを外部に排出する。これにより、管路pd内のエアの圧力は許容圧力値以下に保たれる。
 許容圧力値は、エアフローチューブ9および第2ルーメン2eを経由して、管路pdと連通する固定用バルーン3が過大に膨張しない大きさに設定される。固定用バルーン3において許容される大きさは、オーバーチューブ101が挿入される管腔に応じて予め決められている。
The relief valve 113 discharges the air flowing through the pipeline pd to the outside when the pressure of the air in the pipeline pd exceeds a predetermined allowable pressure value. As a result, the pressure of the air in the pipeline pd is kept below the allowable pressure value.
The allowable pressure value is set to a value that does not excessively inflate the fixation balloon 3 communicating with the duct pd via the airflow tube 9 and the second lumen 2e. The allowable size of the fixation balloon 3 is predetermined according to the lumen into which the overtube 101 is inserted.
 送気デバイス110によれば、第1管路切替部111dおよび第2管路切替部111eを有するので、一方向に送気するポンプ111aを用いて、エアフローチューブ9への送気と、エアフローチューブ9からの吸気と、を選択的に切り替えることができる。送気の場合には、開口部111fは、外部からエアを吸気する吸気口として機能する。吸気の場合には、開口部111fは、吸気したエアを外部に排気する排気口として機能する。
 送気デバイス110は圧力計112を有する。これにより、術者は固定用バルーン3に供給されるエアの圧力が適正かどうか、確認しながら、固定用バルーン3の拡縮操作を行える。
 送気デバイス110は、リリーフ弁113を有する。これにより、万一、術者が圧力の許容値を超える送気操作を行っても、固定用バルーン3の圧力上昇を許容値以下に抑制できる。
メインチューブ102には、送気デバイス110が設けられることによって、術者が円滑に処置を行える。
According to the air supply device 110, since it has the first channel switching portion 111d and the second channel switching portion 111e, the pump 111a for supplying air in one direction is used to supply air to the airflow tube 9 and to the airflow tube. Intake from 9 can be selectively switched. In the case of air supply, the opening 111f functions as an intake port for sucking air from the outside. In the case of intake, the opening 111f functions as an exhaust port for discharging the intake air to the outside.
Insufflation device 110 has pressure gauge 112 . As a result, the operator can expand and contract the fixation balloon 3 while confirming whether the pressure of the air supplied to the fixation balloon 3 is appropriate.
Insufflation device 110 has a relief valve 113 . As a result, even if the operator performs an air supply operation that exceeds the permissible pressure value, the increase in pressure of the fixation balloon 3 can be suppressed to the permissible value or less.
The main tube 102 is provided with an air supply device 110 so that the operator can perform treatment smoothly.
 次に、オーバーチューブ101の動作を、第1の実施形態と異なる点を中心に説明する。
 本実施形態に係るオーバーチューブ101によれば、固定用バルーン3の内部のエアが、送気デバイス10に代えて送気デバイス110によって供給および吸引される。このため、オーバーチューブ101は、第1の実施形態に係るオーバーチューブ1と同様にして、患者に体内に挿入および固定することによって、内視鏡11を使用した種々の処置および手術に使用できる。
 特に本実施形態では、メインチューブ2に代えてメインチューブ102が用いられる。以下、本実施形態の作用を、メインチューブ102の作用を中心として説明する。
Next, the operation of the overtube 101 will be described, focusing on the differences from the first embodiment.
According to the overtube 101 according to this embodiment, the air inside the fixation balloon 3 is supplied and sucked by the air supply device 110 instead of the air supply device 10 . Therefore, the overtube 101 can be used for various treatments and surgeries using the endoscope 11 by inserting and fixing it inside the patient's body in the same manner as the overtube 1 according to the first embodiment.
Especially in this embodiment, a main tube 102 is used instead of the main tube 2 . The action of the present embodiment will be described below, centering on the action of the main tube 102 .
 オーバーチューブ101は、オーバーチューブ1と同様、患者の体内において屈曲部を有する管腔に挿入して用いられる場合がある。
 例えば、図5に示すメインチューブ2のように厚肉部2bを有し、厚肉部2bに第2ルーメン2eが形成されている場合、屈曲部を通過するオーバーチューブ1は、管腔の屈曲形状に応じて屈曲するので、屈曲部を通過するメインチューブ2には、曲げ荷重が作用する。
 メインチューブ2は、屈曲角度が大きい曲げを受けると、図5に示すような断面形状を維持することができない可能性がある。例えば、チューブ壁2aは、径方向につぶれる変形が生じる可能性がある。この場合、第1ルーメン2cには内視鏡11が挿入されるので、内視鏡11の外径程度の断面積は確保される。
 しかし、第2ルーメン2eがつぶれると、固定用バルーン3へのエア供給が滞るので、固定用バルーン3の拡縮操作に支障が生じる可能性がある。
As with the overtube 1, the overtube 101 may be used by being inserted into a lumen having a bend in the patient's body.
For example, when the main tube 2 shown in FIG. Since it bends according to its shape, a bending load acts on the main tube 2 passing through the bent portion.
When the main tube 2 is bent at a large bending angle, it may not be possible to maintain the cross-sectional shape as shown in FIG. For example, the tube wall 2a may undergo radial crushing deformation. In this case, since the endoscope 11 is inserted into the first lumen 2c, a cross-sectional area approximately equal to the outer diameter of the endoscope 11 is secured.
However, if the second lumen 2e is collapsed, the supply of air to the fixation balloon 3 will be interrupted, which may hinder expansion and contraction of the fixation balloon 3 .
 本発明者は、メインチューブ2のつぶれ方を鋭意研究したところ、メインチューブ2が曲げを受けるとき、図5に示す軸線Yが曲げの中立面に近づくように、メインチューブ2が回転し、軸線Yに向かってつぶれやすいことを見出し、本発明に到った。 The present inventors have extensively studied how the main tube 2 collapses, and found that when the main tube 2 is bent, the main tube 2 rotates so that the axis Y shown in FIG. The inventors have found that it is easy to collapse toward the axis Y, and have arrived at the present invention.
 図18に示すように、メインチューブ102の曲げ剛性は、メインチューブ2と同様、厚肉部2bの中央と第1ルーメン2cの中心とを通る軸線Yに関して最小になり、第1ルーメン2cの中心において軸線Yと直交する軸線Xに関して最大になる。
 この場合、軸線Xを曲げの中立面とするような曲げを受けると、矢印f2の方向につぶれるはずであるが、軸線Y回りの曲げ剛性よりも軸線X回りの曲げ剛性の方が大きいので、軸線X回りの曲げに必要な仕事も大きい。一方、メインチューブ102は長尺で、管腔および内視鏡11からの拘束も少ない状態で挿入されている。メインチューブ102の一部分は、長手方向の中心軸線回りに容易に回転できる。これにより、軸線X回りの曲げを受けると、より曲がりやすい方にメインチューブ102が回転し、曲げの中立面は、次第に軸線Yに近づく。
As shown in FIG. 18, the flexural rigidity of the main tube 102, like the main tube 2, is minimized with respect to the axis Y passing through the center of the thick portion 2b and the center of the first lumen 2c. with respect to the axis X perpendicular to the axis Y at .
In this case, when subjected to bending with the axis X as the neutral plane of bending, it should collapse in the direction of arrow f2, but the bending rigidity around the axis X is greater than the bending rigidity around the axis Y, so , the work required to bend about the axis X is also large. On the other hand, the main tube 102 is long and is inserted in a state in which there is little restriction from the lumen and the endoscope 11 . A portion of the main tube 102 is readily rotatable about its central longitudinal axis. As a result, when subjected to bending about the axis X, the main tube 102 rotates in a direction that is easier to bend, and the neutral plane of the bending gradually approaches the axis Y. As shown in FIG.
 図22は、本発明の第2の実施形態に係る内視鏡用オーバーチューブが屈曲した状態を示す模式的な斜視図である。図23は、図22におけるF23-F23線に沿う断面図である。
 図22には、白抜き矢印で示す曲げを受けたとき、メインチューブ102が回転して厚肉部2bが曲げの中立面に沿うように移動している様子が示されている。
 曲げ内では、チューブ壁2aがキンクして大きなへこみが生じている。
 このように、メインチューブ102が回転すると、厚肉部2bの剛性は曲げ変形にほとんど影響しないので、メインチューブ102は低荷重で容易に曲げられる。
 このように曲げられるメインチューブ102において第2ルーメン2eの断面形状の変形を抑制するには、矢印f1の方向につぶれる場合に第2ルーメン2eが変形しにくいようにすればよい。
FIG. 22 is a schematic perspective view showing a bent state of the endoscope overtube according to the second embodiment of the present invention. 23 is a cross-sectional view taken along line F23-F23 in FIG. 22. FIG.
FIG. 22 shows how the main tube 102 rotates and the thick portion 2b moves along the neutral plane of the bending when it is bent as indicated by the hollow arrow.
Inside the bend, the tube wall 2a is kinked to produce a large dent.
In this way, when the main tube 102 rotates, the rigidity of the thick portion 2b has little effect on bending deformation, so the main tube 102 can be easily bent with a low load.
In order to suppress the deformation of the cross-sectional shape of the second lumen 2e in the main tube 102 that can be bent in this way, the second lumen 2e should be made difficult to deform when collapsed in the direction of the arrow f1.
 図23には、このように、チューブ壁2aがつぶれた場合の第2ルーメン2eの近傍の断面の例を示している。
 本実施形態では、第2ルーメン2eを挟んで、周方向の両側に第3ルーメン102gが形成されている。チューブ壁2aが軸線Yに近づく方向につぶれると、第3ルーメン102gによって剛性が低下した部位に応力が集中する。これにより、第3ルーメン102gが径方向につぶれて、チューブ壁2aが第3ルーメン102gを中心にして屈曲する。例えば、第3ルーメン102gに対向する第1ルーメン2cの内周面には、径方向外側に延びる折れ溝Crが形成される。
 このようにして、曲げの外力による歪みは、第3ルーメン102gの周辺の厚肉部2bの変形で吸収される。この結果、第3ルーメン102gが形成されて低剛性とされた第2領域R2が存在しない場合に比べると、第2ルーメン2eの周囲の応力が緩和されるので、第2ルーメン2eの変形が抑制される。
 このため、メインチューブ102が管腔内部で屈曲しても、第2ルーメン2eがつぶれてエアが流通しにくくなったり、管路が閉止したりすることがない。
 これにより、屈曲部がある管腔にメインチューブ102を挿入しても、術者が固定用バルーン3の拡縮を支障なく操作することができる。
 例えば、固定用バルーン3を適正な外径に拡径することができなくなって、オーバーチューブ101の固定位置が不安定になることを防止できる。これにより、内視鏡11を用いた手術を円滑に実行できる。
 例えば、挿抜時に固定用バルーン3を十分に縮径できず、挿抜時に患者に負荷を掛けることを防止できる。
FIG. 23 shows an example of a cross section in the vicinity of the second lumen 2e when the tube wall 2a is thus collapsed.
In this embodiment, third lumens 102g are formed on both circumferential sides of the second lumen 2e. When the tube wall 2a collapses in a direction approaching the axis Y, stress concentrates on the portion where the stiffness is lowered by the third lumen 102g. As a result, the third lumen 102g is radially crushed, and the tube wall 2a is bent around the third lumen 102g. For example, a bent groove Cr extending radially outward is formed in the inner peripheral surface of the first lumen 2c facing the third lumen 102g.
In this way, the strain due to the external bending force is absorbed by the deformation of the thick portion 2b around the third lumen 102g. As a result, the stress around the second lumen 2e is alleviated compared to the case where the second region R2 having the third lumen 102g and the low rigidity is not present, so the deformation of the second lumen 2e is suppressed. be done.
Therefore, even if the main tube 102 is bent inside the lumen, the second lumen 2e will not be crushed, making it difficult for the air to flow, and the duct will not be closed.
As a result, even if the main tube 102 is inserted into a lumen having a bent portion, the operator can expand and contract the fixation balloon 3 without any trouble.
For example, it is possible to prevent the fixation position of the overtube 101 from becoming unstable because the fixation balloon 3 cannot be expanded to an appropriate outer diameter. Thereby, surgery using the endoscope 11 can be performed smoothly.
For example, it is possible to prevent the diameter of the fixation balloon 3 from being sufficiently reduced during insertion and withdrawal, thereby preventing the patient from being burdened during insertion and withdrawal.
 以上説明したように、第2の実施形態に係るオーバーチューブ101は、第1の実施形態に係るオーバーチューブ1のメインチューブ2、送気デバイス10に代えて、メインチューブ102、送気デバイス110を有することを除いて、オーバーチューブ1と同様である。このため、第1の実施形態と同様、患者の負荷を低減するとともに内視鏡を円滑に操作することができる内視鏡用オーバーチューブを提供することができる。
 特に本実施形態によれば、メインチューブ102を有するので、屈曲部がある管腔にメインチューブ102を挿入しても、術者が固定用バルーン3の拡縮を支障なく操作することができる。
As described above, the overtube 101 according to the second embodiment includes the main tube 102 and the air supply device 110 instead of the main tube 2 and the air supply device 10 of the overtube 1 according to the first embodiment. Similar to overtube 1, except that it has Therefore, as in the first embodiment, it is possible to provide an endoscope overtube that reduces the burden on the patient and allows smooth operation of the endoscope.
In particular, according to this embodiment, since the main tube 102 is provided, even if the main tube 102 is inserted into a lumen having a bend, the operator can expand and contract the fixation balloon 3 without any trouble.
 チューブ壁2aは、メインチューブ102の周方向において、一定の厚さを有する定厚部の例である。
 厚肉部2bは、送気ルーメンが形成されており径方向における外周面と内周面との間の距離で規定される厚さが定厚部の厚さよりも大きい厚肉部の例である。
 メインチューブ102は、定厚部と厚肉部とを有するチューブ本体の例である。
 第1領域R1は、厚肉部に形成され、送気ルーメンを含む第1領域の例である。第2領域R2は、周方向において、第1領域に隣接し、第1領域および定厚部のいずれよりも剛性が低い第2領域の例である。
 第3ルーメン102gは、第2領域に形成され、送気ルーメンの延在方向に沿って軸方向に延び、固定用バルーンに送気不能かつ固定用バルーンから吸気不能な空孔であるダミールーメンの例である。
 メインチューブ102の厚肉部2bにおいて、ダミールーメンとメインルーメンとに挟まれた部位の径方向における最小の厚さは、送気ルーメンとメインルーメンとに挟まれた部位の径方向における最小厚さよりも薄い。
 エアフローチューブ9は、送気デバイス110から延出された送気チューブの例である。
 第2ルーメン2eは、送気チューブと連通しており、第3ルーメン102gは、送気チューブと連通していない。
The tube wall 2 a is an example of a constant thickness portion having a constant thickness in the circumferential direction of the main tube 102 .
The thick portion 2b is an example of a thick portion in which an air supply lumen is formed and the thickness defined by the distance between the outer peripheral surface and the inner peripheral surface in the radial direction is larger than the thickness of the constant thickness portion. .
The main tube 102 is an example of a tube body having a constant thickness portion and a thick portion.
The first region R1 is an example of a first region that is formed in the thick portion and includes an air supply lumen. The second region R2 is an example of a second region that is adjacent to the first region in the circumferential direction and has lower rigidity than both the first region and the constant thickness portion.
The third lumen 102g is formed in the second region, extends in the axial direction along the extending direction of the air supply lumen, and is a dummy lumen that is a hole that cannot supply air to the fixation balloon and cannot inhale from the fixation balloon. For example.
In the thick portion 2b of the main tube 102, the minimum thickness in the radial direction of the portion sandwiched between the dummy lumen and the main lumen is greater than the minimum thickness in the radial direction of the portion sandwiched between the air supply lumen and the main lumen. too thin.
Airflow tube 9 is an example of an air supply tube extending from air supply device 110 .
The second lumen 2e communicates with the air supply tube, and the third lumen 102g does not communicate with the air supply tube.
 上述した第2の実施形態は、種々の変形を加えて実施されてもよい。
 例えば、オーバーチューブ101に用いるメインチューブは、メインチューブ102には限定されない。例えば、メインチューブ102では、第3ルーメン102gを設けることによって第2領域R2を形成しているが、第2領域R2の形成方法はこれには限定されない。
 図24は、本発明の第2の実施形態に係る内視鏡用オーバーチューブに使用できるメインチューブの主要部を示す模式的な断面図である。
The second embodiment described above may be implemented with various modifications.
For example, the main tube used for the overtube 101 is not limited to the main tube 102 . For example, in the main tube 102, the second region R2 is formed by providing the third lumen 102g, but the method of forming the second region R2 is not limited to this.
FIG. 24 is a schematic cross-sectional view showing a main part of a main tube that can be used for the endoscope overtube according to the second embodiment of the present invention.
 図24に示すメインチューブ102A(チューブ本体)は、オーバーチューブ101において、メインチューブ102に代えて用いることができる。
 メインチューブ102Aは、メインチューブ102における第3ルーメン102gに代えて、溝部102hが形成されている。
 以下、第2の実施形態と異なる点を中心に説明する。
A main tube 102A (tube body) shown in FIG. 24 can be used in place of the main tube 102 in the overtube 101. As shown in FIG.
The main tube 102A is formed with a groove portion 102h instead of the third lumen 102g of the main tube 102. As shown in FIG.
In the following, the points different from the second embodiment will be mainly described.
 溝部102hは、第1ルーメン2cの内周面から径方向外側に延びるV字形の溝である。溝部102hにおける周方向の溝幅は、第1ルーメン2cの内周面から径方向外側に進むにつれて縮小している。溝部102hは、同様の断面形状が、メインチューブ102Aの長手方向に延びている。
 溝部102hは、周方向において、厚肉部2bの厚さが漸次減少した後、最小値を経て、増加する厚さ変化部Tvを形成している。厚さ変化部Tvにおける最小の厚さは、溝部102hの溝底から外周面2dまでの距離t4である。t4は、t0よりも短い。
 各溝部102hの位置は、第2ルーメン2eからの距離が異なっていてもよいが、図24に示す例では、軸線Yに関して線対称である。
 第1ルーメン2cにおける溝部102hの位置と、第2ルーメン2eの内周面と、の間の周方向における長さは、d2である。d2は、t1以上であることがより好ましい。
The groove portion 102h is a V-shaped groove extending radially outward from the inner peripheral surface of the first lumen 2c. The groove width in the circumferential direction of the groove portion 102h decreases radially outward from the inner peripheral surface of the first lumen 2c. The groove portion 102h has a similar cross-sectional shape extending in the longitudinal direction of the main tube 102A.
The groove portion 102h forms a thickness change portion Tv in which the thickness of the thick portion 2b gradually decreases in the circumferential direction, passes through a minimum value, and then increases. The minimum thickness of the thickness change portion Tv is the distance t4 from the groove bottom of the groove portion 102h to the outer peripheral surface 2d. t4 is shorter than t0.
The positions of the grooves 102h may differ in distance from the second lumen 2e, but are symmetrical about the axis Y in the example shown in FIG.
The length in the circumferential direction between the position of the groove portion 102h in the first lumen 2c and the inner peripheral surface of the second lumen 2e is d2. d2 is more preferably greater than or equal to t1.
 このような構成によれば、第2ルーメン2eは、周方向の両側において、溝部102hで挟まれている。これにより、厚肉部2bには、第1領域R1Aと、第2領域R2Aとが形成されている。
 第1領域R1Aは、第2ルーメン2eを含み、周方向における2つの厚さ変化部に挟まれた領域である。
 第2領域R2Aは、周方向において溝部102hの最大の溝幅の範囲に形成され、第1領域R1Aに比べると剛性が低下した領域である。第2領域R2Aは、チューブ壁2aに比べても剛性が低い。
According to such a configuration, the second lumen 2e is sandwiched between the grooves 102h on both sides in the circumferential direction. Thereby, a first region R1A and a second region R2A are formed in the thick portion 2b.
The first region R1A is a region that includes the second lumen 2e and is sandwiched between two thickness change portions in the circumferential direction.
The second region R2A is formed in the range of the maximum groove width of the groove portion 102h in the circumferential direction, and is a region with reduced rigidity compared to the first region R1A. The second region R2A has a lower rigidity than the tube wall 2a.
 メインチューブ102Aの作用を説明する。
 図25は、図24に示すメインチューブが屈曲した状態を示す模式的な断面図である。
 メインチューブ102と同様、メインチューブ102Aが曲げを受けて、軸線Yに向かって、つぶれる場合で説明する。
 図25に示すように、チューブ壁2aが軸線Yに向かってつぶれると、各溝部102hの溝幅が縮小する。図25に示す例では、各溝部102hの内面が互いに当接している。
 溝部102hに隣接する各チューブ壁2aは、溝部102hが閉じるまでは、溝部102hの溝底を中心として、軽荷重で折れ曲がる。このため、溝部102hは、チューブ壁2aが回転移動するヒンジの機能を有している。
 各溝部102hの溝内面同士が当接し合うまでは、各溝部102hの近傍の応力はほとんど上昇しない。
 このため、溝部102hの溝角度をチューブ壁2aのつぶれ量に応じた適宜の大きさにすることによって、第2ルーメン2eの近傍の変形を抑制できる。
The action of the main tube 102A will be described.
25 is a schematic cross-sectional view showing a bent state of the main tube shown in FIG. 24. FIG.
Similar to the main tube 102, the case where the main tube 102A receives bending and collapses toward the axis Y will be described.
As shown in FIG. 25, when the tube wall 2a collapses toward the axis Y, the groove width of each groove 102h is reduced. In the example shown in FIG. 25, the inner surfaces of the grooves 102h are in contact with each other.
Each tube wall 2a adjacent to the groove 102h bends around the groove bottom of the groove 102h under a light load until the groove 102h is closed. Therefore, the groove portion 102h functions as a hinge for rotating the tube wall 2a.
The stress in the vicinity of each groove 102h hardly increases until the groove inner surfaces of the grooves 102h contact each other.
Therefore, deformation in the vicinity of the second lumen 2e can be suppressed by appropriately setting the groove angle of the groove portion 102h according to the amount of collapse of the tube wall 2a.
 以上説明したように、メインチューブ102Aは、第3ルーメン102gに代えて溝部102hを有することによって、第2領域R2と同様に低剛性の第2領域R2Aが形成される。これにより、溝部102hが形成されて低剛性とされた第2領域R2Aが存在しない場合に比べると、第2ルーメン2eの周囲の応力が緩和されるので、第2ルーメン2eの変形が抑制される。
 この結果、メインチューブ102Aは、メインチューブ102と同様の作用を備える。
As described above, the main tube 102A has the groove portion 102h instead of the third lumen 102g, thereby forming the second region R2A with low rigidity like the second region R2. As a result, the stress around the second lumen 2e is alleviated compared to the case where the second region R2A having the groove portion 102h and the low rigidity is not present, so the deformation of the second lumen 2e is suppressed. .
As a result, the main tube 102A has the same action as the main tube 102 does.
 第2の実施形態の説明では、第3ルーメン102gが厚肉部2bに設けられる例で説明した。しかし、第2領域R2における剛性が低下しすぎなければ、第3ルーメン102gは、チューブ壁2aと厚肉部2bとの両方にわる領域に、またはチューブ壁2aの領域に、設けられてもよい。変形例の溝部102hも同様である。 In the description of the second embodiment, an example in which the third lumen 102g is provided in the thick portion 2b has been described. However, the third lumen 102g may be provided in the region spanning both the tube wall 2a and the thick portion 2b, or in the region of the tube wall 2a, provided that the rigidity in the second region R2 is not excessively reduced. . The same applies to the groove portion 102h of the modified example.
 第2の実施形態の説明では、周方向において第1領域R1の両側に第2領域R2が形成された例で説明した。しかし、第2領域R2が1つであっても、第2ルーメン2eの変形が必要な範囲に抑制される場合には、第2領域R2は1箇所でもよい。
 変形例における第2領域R2Aも、第2領域R2と同様である。
In the description of the second embodiment, an example in which the second regions R2 are formed on both sides of the first region R1 in the circumferential direction has been described. However, even if the number of the second regions R2 is one, the number of the second regions R2 may be one if the deformation of the second lumen 2e is suppressed within a necessary range.
The second region R2A in the modification is also the same as the second region R2.
 メインチューブ102Aは、メインルーメンを囲む周方向において一定の厚さを有する定厚部と、送気ルーメンが形成されており、径方向における外周面と内周面との間の距離で規定される厚さが定厚部の厚さよりも大きい厚肉部と、を有するチューブ本体の例である。
 第1領域R1Aは、厚肉部に形成され送気ルーメンを含む第1領域の例である。
 第2領域R2Aは、周方向において、第1領域に隣接し、第1領域および定厚部のいずれよりも剛性が低い第2領域の例である。
 第2領域R2Aに形成された厚さ変化部Tvは、メインルーメンの内周面から径方向外側に凹んで、厚さが変化する厚さ変化部の例である。
The main tube 102A has a constant-thickness portion that surrounds the main lumen and has a constant thickness in the circumferential direction, and an air supply lumen. 1 is an example of a tube body having a thick-walled portion having a thickness greater than that of a constant-thickness portion;
The first region R1A is an example of a first region formed in a thick portion and including an air supply lumen.
The second region R2A is an example of a second region that is adjacent to the first region in the circumferential direction and has lower rigidity than both the first region and the constant thickness portion.
The thickness change portion Tv formed in the second region R2A is an example of a thickness change portion that is recessed radially outward from the inner peripheral surface of the main lumen and whose thickness changes.
[第3の実施形態]
 本発明の第3の実施形態に係る内視鏡用オーバーチューブを説明する。
 図17に示すオーバーチューブ201は、本実施形態に係る内視鏡用オーバーチューブの例である。
 オーバーチューブ201は、第1の実施形態に係るオーバーチューブ1の送気デバイス10に代えて、送気デバイス210を有する。
 以下、第1の実施形態と異なる点を中心に説明する。
[Third embodiment]
An endoscope overtube according to a third embodiment of the present invention will be described.
An overtube 201 shown in FIG. 17 is an example of an endoscope overtube according to this embodiment.
The overtube 201 has an air supply device 210 instead of the air supply device 10 of the overtube 1 according to the first embodiment.
In the following, the points different from the first embodiment will be mainly described.
 図26は、本発明の第3の実施形態に係る内視鏡用オーバーチューブにおける送気デバイスを示す模式的な正面図である。図27は、同じく送気デバイスの吸気時の配置を示す模式的な正面図である。
 図26に示すように、送気デバイス210は、手動送気機構211、本体部212、および連結バンド216を有する。
FIG. 26 is a schematic front view showing an air supply device in an endoscope overtube according to a third embodiment of the present invention; FIG. 27 is a schematic front view similarly showing the arrangement of the air supply device during inhalation.
As shown in FIG. 26 , the air supply device 210 has a manual air supply mechanism 211 , a body portion 212 and a connecting band 216 .
 手動送気機構211は、エアを手動によって送気および吸気する適宜の構成が用いられる。例えば、手動送気機構211は、ポンプ211a(手動ポンプ)、第1逆止弁211b、第2逆止弁211c、第1接続部211d(ポンプ側コネクタ、第1コネクタ)、および第2接続部211e(ポンプ側コネクタ、第2コネクタ)を有する。 The manual air supply mechanism 211 has an appropriate configuration for manually supplying and inhaling air. For example, the manual air supply mechanism 211 includes a pump 211a (manual pump), a first check valve 211b, a second check valve 211c, a first connector 211d (pump-side connector, first connector), and a second connector. 211e (pump-side connector, second connector).
 ポンプ211aは、気体を送る手動ポンプであれば特に限定されない。例えば、ポンプ211aは、ゴム球ポンプ、ダイヤフラムポンプ、蛇腹管ポンプ、シリンジポンプなどが挙げられる。図26に示す例では、ポンプ211aは、ゴム球ポンプである。この場合、ポンプ211aは、卵型またはラグビー球型のゴム球からなる。ポンプ211aの長軸方向の両端部には、エアが流通する管状部が形成されている。 The pump 211a is not particularly limited as long as it is a manual pump that sends gas. For example, the pump 211a may be a rubber bulb pump, a diaphragm pump, a bellows tube pump, a syringe pump, or the like. In the example shown in FIG. 26, the pump 211a is a rubber bulb pump. In this case, the pump 211a consists of an egg-shaped or rugby ball-shaped rubber ball. Tubular portions through which air flows are formed at both ends of the pump 211a in the longitudinal direction.
 各管状部には、第1逆止弁211bと、第2逆止弁211cとがそれぞれ配置されている。
 第1逆止弁211bが配置された管状部において、第1逆止弁211bよりも外側には第1逆止弁211bの開時にポンプ211aの内部と連通する第1開口部211g(図27参照)が形成されている。
 第2逆止弁211cが配置された管状部において、第2逆止弁211cよりも外側には第2逆止弁211cの開時にポンプ211aの内部と連通する第2開口部211f(図26参照))が形成されている。
Each tubular portion is provided with a first check valve 211b and a second check valve 211c.
In the tubular portion where the first check valve 211b is arranged, a first opening 211g (see FIG. 27) communicating with the inside of the pump 211a when the first check valve 211b is opened is provided outside the first check valve 211b. ) is formed.
In the tubular portion where the second check valve 211c is arranged, a second opening 211f (see FIG. 26) that communicates with the inside of the pump 211a when the second check valve 211c is open is provided outside the second check valve 211c. )) are formed.
 第1逆止弁211bは、ポンプ211aの内部のエアを第1逆止弁211bが配置された管状部の開口を通して外部に流通させ、外部のエアが管状部の開口から内部に進入することを阻止する。
 第2逆止弁211cは、ポンプ211aの外部のエアを第2逆止弁211cが配置された管状部の開口を通して内部に流通させ、内部のエアが管状部の開口から外部に流出することを阻止する。
The first check valve 211b circulates the air inside the pump 211a to the outside through the opening of the tubular part in which the first check valve 211b is arranged, and prevents the outside air from entering the inside from the opening of the tubular part. prevent.
The second check valve 211c allows the air outside the pump 211a to flow inside through the opening of the tubular portion in which the second check valve 211c is arranged, and prevents the internal air from flowing out from the opening of the tubular portion. prevent.
 第1接続部211dは、第1逆止弁211bが配置された管状部において第1開口部211g(図27参照)の外側に設けられている。第1接続部211dは、後述する本体部212における接続管212aと着脱可能に接続する。
 第1接続部211dと接続管212aとの接続構造は、着脱可能に接続できれば特に限定されない。例えば、第1接続部211dとして、ルアーロック型のコネクタが用いられてもよい。例えば、接続管212aがメスルアーロック型の場合、第1接続部211dは、オスルアーロック型のコネクタが用いられる。
 第2接続部211eは、第2逆止弁211cが配置された管状部において第2開口部211f(図27参照)の外側に設けられている。第2接続部211eは、接続管212aと着脱可能に接続する。例えば、第2接続部211eとして、第1接続部211dと同様のルアーロック型のコネクタが用いられてもよい。
The first connecting portion 211d is provided outside the first opening 211g (see FIG. 27) in the tubular portion where the first check valve 211b is arranged. The first connection portion 211d is detachably connected to a connection pipe 212a in the body portion 212, which will be described later.
The connection structure between the first connection portion 211d and the connection pipe 212a is not particularly limited as long as it can be detachably connected. For example, a luer lock connector may be used as the first connecting portion 211d. For example, when the connecting tube 212a is of the female luer lock type, the first connecting portion 211d is a male luer lock type connector.
The second connecting portion 211e is provided outside the second opening 211f (see FIG. 27) in the tubular portion where the second check valve 211c is arranged. The second connecting portion 211e is detachably connected to the connecting pipe 212a. For example, a luer lock type connector similar to the first connection portion 211d may be used as the second connection portion 211e.
 本体部212は、エアが流通する流路が内部に形成された筐体である。
 本体部212は、接続管212a(本体側コネクタ)、送気管210a、リリーフ弁213、およびグリップ215(把持部)を有する。
The body part 212 is a housing in which a flow path through which air flows is formed.
The body portion 212 has a connecting tube 212a (body-side connector), an air pipe 210a, a relief valve 213, and a grip 215 (holding portion).
 接続管212aは、本体部212の筐体の外側に突出している。接続管212aは、手動送気機構211を第1接続部211dおよび第2接続部211eと着脱可能である。接続管212aの内部は、第1接続部211dおよび第2接続部211eのいずれかの装着時に手動送気機構211と連通する。 The connecting pipe 212a protrudes outside the housing of the main body 212. The connection tube 212a allows the manual air supply mechanism 211 to be detachable from the first connection portion 211d and the second connection portion 211e. The inside of the connection pipe 212a communicates with the manual air supply mechanism 211 when either the first connection portion 211d or the second connection portion 211e is attached.
 送気管210aは、本体部212の筐体の外側に突出している。本体部212の筐体の内部において、送気管210aと接続管212aとの間には、手動送気機構211から送気されるエアが流通する流路が形成されている。
 送気管210aは、エアフローチューブ9と連結されており、エアフローチューブ9の内部の流路と連通している。
The air pipe 210 a protrudes outside the housing of the main body 212 . Inside the housing of the main body part 212, a flow path is formed between the air supply pipe 210a and the connection pipe 212a through which the air supplied from the manual air supply mechanism 211 flows.
The air pipe 210 a is connected to the air flow tube 9 and communicates with the flow path inside the air flow tube 9 .
 リリーフ弁213は、本体部212の筐体の外周部に配置されている。リリーフ弁213は、接続管212aと送気管210aとの間の流路上に設けられていることを除いて、第1の実施形態におけるリリーフ弁113と同様である。接続管212aと送気管210aとの間の流路の詳細は後述する。 The relief valve 213 is arranged on the outer peripheral portion of the housing of the main body portion 212 . The relief valve 213 is the same as the relief valve 113 in the first embodiment except that it is provided on the flow path between the connecting pipe 212a and the air supply pipe 210a. Details of the flow path between the connecting tube 212a and the air supply tube 210a will be described later.
 グリップ215は、本体部212の外周部から突出している。グリップ215の形状は、使用者が本体部212を把持することができれば特に限定されない。 The grip 215 protrudes from the outer peripheral portion of the body portion 212 . The shape of the grip 215 is not particularly limited as long as the user can grip the body portion 212 .
 本体部212に対する手動送気機構211の接続状態は、図26に示す第1接続部211dが接続管212aに接続された第1接続状態と、図27に示す第2接続部211eが接続管212aに接続された第2接続状態と、である。
 第1接続状態と第2接続状態とは、術者が手動で切り替えることができる。例えば、第1接続状態を第2接続状態に切り替えるには、術者は第1接続部211dのロックを解除して、第1接続部211dを接続管212aから外す。術者は、手動送気機構211の向きを変えて、第2接続部211eを接続管212aに接続し、第2接続部211eをロック状態にする。第2接続状態から第1接続状態への切替は、この逆の操作が行われる。
 第1接続状態では、術者によるポンプ211aの操作によって第1開口部211gから送気されるエアが接続管212aに流入する。
 第2接続状態では、術者によるポンプ211aの操作によって吸気されるエアが接続管212aから第2開口部211fに流入する。
 このため、接続管212aと連通する送気管210aにおいても、手動送気機構211の接続状態によって、エアの流通する向きが変更される。
The connection state of the manual air supply mechanism 211 to the body portion 212 includes a first connection state in which the first connection portion 211d shown in FIG. and a second connection state connected to the .
The operator can manually switch between the first connection state and the second connection state. For example, to switch the first connection state to the second connection state, the operator unlocks the first connection portion 211d and removes the first connection portion 211d from the connection tube 212a. The operator changes the orientation of the manual air supply mechanism 211, connects the second connection portion 211e to the connection tube 212a, and locks the second connection portion 211e. To switch from the second connected state to the first connected state, the opposite operation is performed.
In the first connection state, air supplied from the first opening 211g by the operator's operation of the pump 211a flows into the connection tube 212a.
In the second connection state, the air sucked by the operator's operation of the pump 211a flows from the connection tube 212a into the second opening 211f.
Therefore, in the air supply pipe 210a communicating with the connection pipe 212a, the direction of air flow is changed depending on the connection state of the manual air supply mechanism 211. FIG.
 連結バンド216は、手動送気機構211の接続状態の切り替えに必要な手動送気機構211の移動および姿勢転換を妨げないように、本体部212と、手動送気機構211と、を連結する。
 例えば、連結バンド216は、柔軟性を有する樹脂で形成されている。本体部212および手動送気機構211における連結バンド216の装着位置は、手動送気機構211の移動および姿勢転換に支障がなければ特に限定されない。図26に示す例では、本体部212の接続管212aの外周部と、第1接続部211dとポンプ211aとの間の管状部の外側と、において、それぞれ回転可能に装着されている。
 図27に示すように、連結バンド216の長さは、手動送気機構211の第1接続部211dから第2接続部211eまでの長さよりも十分に長い。
The connecting band 216 connects the main body portion 212 and the manual air-supplying mechanism 211 so as not to interfere with the movement and posture change of the manual air-supplying mechanism 211 required for switching the connected state of the manual air-supplying mechanism 211 .
For example, the connecting band 216 is made of flexible resin. The mounting position of the connection band 216 on the main body 212 and the manual air supply mechanism 211 is not particularly limited as long as the movement and posture change of the manual air supply mechanism 211 are not hindered. In the example shown in FIG. 26, they are rotatably mounted on the outer peripheral portion of the connection pipe 212a of the main body portion 212 and the outside of the tubular portion between the first connection portion 211d and the pump 211a.
As shown in FIG. 27, the length of the connecting band 216 is sufficiently longer than the length from the first connecting portion 211d to the second connecting portion 211e of the manual air supply mechanism 211. As shown in FIG.
 送気デバイス210の機能構成について、図28、図29を参照して説明する。
 図28は、本発明の第3の実施形態に係る内視鏡用オーバーチューブにおける送気デバイスの例を示すブロック図である。図29は、同じく送気デバイスの吸気時の流れを示すブロック図である。
A functional configuration of the air supply device 210 will be described with reference to FIGS. 28 and 29. FIG.
FIG. 28 is a block diagram showing an example of an air supply device in the endoscope overtube according to the third embodiment of the present invention. FIG. 29 is a block diagram similarly showing the flow of the air supply device during inspiration.
 図28に示すように、送気デバイス210は、第1の実施形態における送気機構111の送気機構111、リリーフ弁113、接続管110aに代えて、上述の手動送気機構211、リリーフ弁213、送気管210aを有する。送気管210aには、第1の実施形態と同様のエアフローチューブ9が連結されている(図27参照)。 As shown in FIG. 28, the air supply device 210 includes the manual air supply mechanism 211 and the relief valve instead of the air supply mechanism 111, the relief valve 113, and the connection pipe 110a of the air supply mechanism 111 in the first embodiment. 213, with air line 210a. The airflow tube 9 similar to that of the first embodiment is connected to the air pipe 210a (see FIG. 27).
 図28に示すように、手動送気機構211は、ポンプ111a、第1逆止弁111b、第2逆止弁111c、第1管路切替部111d、第2管路切替部111e、および開口部111fに代えて、ポンプ211a、第1逆止弁211b、第2逆止弁211c、第1管路切替部SW1、第2管路切替部SW2、および開口部Oを有する。
 第1管路切替部SW1は、第1管路切替部111dと同様、流路切替弁などが用いられてもよいが、図26、図27に示す例では、切り替える管路同士を手動で着脱する。
 このため第1接続状態では、図28に示すように、第1管路切替部SW1および第2管路切替部SW2には、それぞれ第1接続部211dおよび第2接続部211eが対応する。この場合、開口部Oに対応するのは、第2開口部211fである。
 同様に第2接続状態では、図29に示すように、第1管路切替部SW1および第2管路切替部SW2には、それぞれ第2接続部211eおよび第1接続部211dが対応する。この場合、開口部Oに対応するのは、第1開口部211gである。
As shown in FIG. 28, the manual air supply mechanism 211 includes a pump 111a, a first check valve 111b, a second check valve 111c, a first channel switching portion 111d, a second channel switching portion 111e, and an opening. Instead of 111f, it has a pump 211a, a first check valve 211b, a second check valve 211c, a first pipeline switching section SW1, a second pipeline switching section SW2, and an opening O.
As with the first channel switching unit 111d, the first channel switching unit SW1 may use a channel switching valve or the like, but in the example shown in FIGS. do.
Therefore, in the first connection state, as shown in FIG. 28, the first connection portion 211d and the second connection portion 211e correspond to the first channel switching portion SW1 and the second channel switching portion SW2, respectively. In this case, the opening O corresponds to the second opening 211f.
Similarly, in the second connection state, as shown in FIG. 29, the second connection portion 211e and the first connection portion 211d correspond to the first channel switching portion SW1 and the second channel switching portion SW2, respectively. In this case, the opening O corresponds to the first opening 211g.
 第1接続状態における手動送気機構211では、図28に実線で示すように、第1の実施形態の送気デバイス10と同様のエアフローが形成され、接続管212aへの送気が行われる。
 第2接続状態における手動送気機構211では、図29に破線で示すように、第1の実施形態の送気デバイス10と同様のエアフローが形成され、接続管212aを通した吸気が行われる。
In the manual air supply mechanism 211 in the first connected state, as indicated by the solid line in FIG. 28, an air flow similar to that of the air supply device 10 of the first embodiment is formed, and air is supplied to the connecting tube 212a.
In the manual air supply mechanism 211 in the second connected state, as indicated by the dashed line in FIG. 29, an airflow similar to that of the air supply device 10 of the first embodiment is formed, and air is sucked through the connecting tube 212a.
 図28に示すように、接続管212aと送気管210aとの間には、接続管212aから送気管210aに向かって、第1管路P1、絞り部P2、および第2管路P3がこの順に配置されている。
 第1管路P1は、接続管212aと絞り部P2との間でエアを流通させる。
 絞り部P2は、第1管路P1から送気されるエアの圧力を低減する目的で設けられている。絞り部P2の構成は、流路断面積を低減することによって絞り部P2を通過後のエアの圧力が低減できれば特に限定されない。例えば、絞り部P2は、第1管路P1よりも流路断面積が小さい管が延びる管状部で形成されてもよい。例えば、絞り部P2は、第1管路P1の管路内に第1管路P1の管壁から内側に向かって突出し、第1管路P1の管路断面積よりも小さいオリフィスが形成されたオリフィス板で形成されてもよい。例えば、絞り部P2は、全体として第1管路P1の管路断面積よりも開口面積が縮小する多孔質体で形成されてもよい。
 第2管路P3は、絞り部P2における流路断面積よりも流路断面積が大きい管によって形成される。本実施形態では、第2管路P3は、送気管210aに接続されるエアフローチューブ9によって、第2ルーメン2eの後端まで延長されている。
 送気管210aと絞り部P2との間の第2管路P3上には、リリーフ弁213が接続されている。
 リリーフ弁213は、第2管路P3に設けられていることを除いて、第2の実施形態におけるリリーフ弁113と同様である。このため、第2管路P3におけるエアの圧力が許容値よりも大きくなると、エアがリリーフ弁213から本体部212(図27参照)の外部に排気される。
As shown in FIG. 28, between the connecting pipe 212a and the air pipe 210a, a first pipe P1, a constricted portion P2, and a second pipe P3 are arranged in this order from the connecting pipe 212a toward the air pipe 210a. are placed.
The first pipeline P1 circulates air between the connecting pipe 212a and the constricted portion P2.
The throttle portion P2 is provided for the purpose of reducing the pressure of the air supplied from the first pipeline P1. The configuration of the narrowed portion P2 is not particularly limited as long as the pressure of the air after passing through the narrowed portion P2 can be reduced by reducing the flow passage cross-sectional area. For example, the narrowed portion P2 may be formed of a tubular portion extending from a pipe having a flow passage cross-sectional area smaller than that of the first pipe P1. For example, the constricted portion P2 protrudes inward from the pipe wall of the first pipe P1 into the pipe of the first pipe P1, and an orifice smaller than the pipe cross-sectional area of the first pipe P1 is formed. It may be formed by an orifice plate. For example, the constricted portion P2 may be formed of a porous body whose opening area as a whole is smaller than the duct cross-sectional area of the first duct P1.
The second pipe line P3 is formed by a pipe having a larger flow channel cross-sectional area than the flow channel cross-sectional area at the constricted portion P2. In this embodiment, the second conduit P3 is extended to the rear end of the second lumen 2e by the airflow tube 9 connected to the air supply pipe 210a.
A relief valve 213 is connected to the second pipeline P3 between the air supply pipe 210a and the throttle portion P2.
The relief valve 213 is the same as the relief valve 113 in the second embodiment except that it is provided in the second pipeline P3. Therefore, when the pressure of the air in the second pipeline P3 becomes higher than the allowable value, the air is discharged from the relief valve 213 to the outside of the main body 212 (see FIG. 27).
 図26、図27に示す送気デバイス210の機能構成は、図30のようなブロック図で表すこともできる。
 図30は、本発明の第3の実施形態に係る内視鏡用オーバーチューブにおける送気デバイスの例を示すブロック図である。
 図30に示すように、手動送気機構211は、第1管路切替部SW1および第2管路切替部SW2に代えて、管路切替部211hを有する。
 管路切替部211hは、黒線で示す送気時には、第1接続状態を形成する。これにより、第1接続部211dが接続管212aと接続して、接続管212aが第1開口部211gと連通する。このとき、第2開口部211fからは外部のエアが吸い込まれる。
 管路切替部211hは、破線で示す吸気時には、第2接続状態を形成する。これにより、第2接続部211eが接続管212aと接続して、接続管212aが第2開口部211fと連通し、第1開口部211gからは吸気したエアが外部に排気される。
 本実施形態では、管路切替部211hの機能を手動作業で実現している。しかし、管路切替部211hは流路切替弁などの切替装置で置き換えられてもよい。
The functional configuration of the air supply device 210 shown in FIGS. 26 and 27 can also be represented by a block diagram as shown in FIG.
FIG. 30 is a block diagram showing an example of an air supply device in the endoscope overtube according to the third embodiment of the present invention.
As shown in FIG. 30, the manual air supply mechanism 211 has a channel switching section 211h instead of the first channel switching section SW1 and the second channel switching section SW2.
The channel switching unit 211h forms the first connection state during air supply indicated by the black line. As a result, the first connecting portion 211d is connected to the connecting pipe 212a, and the connecting pipe 212a communicates with the first opening 211g. At this time, external air is sucked through the second opening 211f.
The channel switching unit 211h forms the second connection state during intake indicated by the dashed line. As a result, the second connecting portion 211e is connected to the connecting pipe 212a, the connecting pipe 212a is communicated with the second opening 211f, and the sucked air is discharged to the outside from the first opening 211g.
In this embodiment, the function of the channel switching unit 211h is implemented manually. However, the channel switching unit 211h may be replaced by a switching device such as a channel switching valve.
 送気デバイス210は、第1の実施形態と同様、エアフローチューブ9および第2ルーメン2eを介在して、固定用バルーン3と連通している。これにより、術者は、手動送気機構211を第1接続状態と、第2接続状態と、に適宜切り替えることで、固定用バルーン3へのエアの送気と、固定用バルーン3からのエアの吸気を行える。このため、第1の実施形態と同様、術者は、固定用バルーン3の拡縮の操作を行える。 The air supply device 210 communicates with the fixation balloon 3 via the airflow tube 9 and the second lumen 2e, as in the first embodiment. As a result, the operator can switch the manual air supply mechanism 211 between the first connection state and the second connection state as appropriate to supply air to the fixation balloon 3 and air from the fixation balloon 3 . can be inhaled. Therefore, as in the first embodiment, the operator can expand and contract the fixation balloon 3 .
 本実施形態の作用について、送気デバイス210における絞り部P2の作用を中心として説明する。
 まず、手動ポンプにおける送気の課題について図31、図32を参照して説明する。
 図31は、手動ポンプにおけるリリーフ弁の作用を説明する模式図である。ただし、図31では、簡素化のため、エアフローチューブ9の図示は省略されている。
図32は、手動ポンプで送気されるエアの流量とリリーフ弁から漏れる損失量との関係の例を示すグラフである。図32において、横軸は時間、縦軸は手動ポンプから送気されるエアの流量を表す。
The operation of the present embodiment will be described with a focus on the operation of the constricted portion P2 in the air supply device 210. FIG.
First, the problem of air supply in a manual pump will be described with reference to FIGS. 31 and 32. FIG.
FIG. 31 is a schematic diagram explaining the action of a relief valve in a manual pump. However, in FIG. 31, illustration of the airflow tube 9 is omitted for simplification.
FIG. 32 is a graph showing an example of the relationship between the flow rate of air supplied by the manual pump and the amount of loss leaking from the relief valve. In FIG. 32, the horizontal axis represents time, and the vertical axis represents the flow rate of air supplied from the manual pump.
 図31に示すオーバーチューブTは、オーバーチューブ201において、絞り部P2が削除されている。さらに、オーバーチューブTは、第1管路P1、第2管路P3に代えて、一定の流路断面積を有する管路P0を有する。
 ポンプ211aを操作することによって管路P0に送気される流量をQとする。図32に示すように、術者がポンプ211aを押すと、曲線50に示すように、流量Qは、時間とともに増大して最大値Qに達した後、漸次減少する。ポンプ211aの容積変化がなくなると、流量Qは0になる。この操作で固定用バルーン3が必要な大きさに拡径しない場合には、術者はポンプ211aから手を離してポンプ211a内に吸気した後、同様の操作を繰り返す。
 流量Qの最大値Qと、流量Qが最大値Qに達するまでの時間と、は、操作者の押圧力と、押圧速度と、に依存する。術者は、処置を迅速に遂行するために、素早く流量が増大するようにポンプ211aを押す場合が多い。これにより、例えば、管路P0では、流量がQ(ただし、Q<Q)以上でリリーフ弁213の許容圧力に達するとする。この場合、流量QにおいてQを超える流量Q(=Q-Q)がリリーフ弁213から外部に排気される。
 この場合、管路P0がエアフローチューブ9およびメインチューブ2における第2ルーメン2e(図示略)を通して連通する固定用バルーン3の内部には、流量Qのエアが供給される。
The overtube T shown in FIG. 31 has an overtube 201 from which the narrowed portion P2 is removed. Further, the overtube T has a pipeline P0 having a constant flow cross-sectional area instead of the first pipeline P1 and the second pipeline P3.
Let Q be the flow rate of air supplied to the conduit P0 by operating the pump 211a. As shown in FIG. 32, when the operator presses the pump 211a, the flow rate Q increases with time, reaches a maximum value Qx , and then gradually decreases, as indicated by a curve 50. FIG. The flow rate Q becomes zero when there is no change in the volume of the pump 211a. If the diameter of the fixation balloon 3 is not expanded to the required size by this operation, the operator releases the pump 211a and inhales into the pump 211a, and then repeats the same operation.
The maximum value Qx of the flow rate Q and the time required for the flow rate Q to reach the maximum value Qx depend on the pressing force and pressing speed of the operator. The operator often presses the pump 211a to quickly increase the flow rate in order to quickly perform the treatment. As a result, for example, in the pipeline P0, it is assumed that the allowable pressure of the relief valve 213 is reached when the flow rate is equal to or higher than Q1 ( Q1 < Qx ). In this case, the flow rate Q 2 (=Q−Q 1 ) exceeding Q 1 in the flow rate Q is exhausted from the relief valve 213 to the outside.
In this case, air at a flow rate of Q1 is supplied to the interior of the fixation balloon 3 to which the conduit P0 communicates through the airflow tube 9 and the second lumen 2e (not shown) of the main tube 2. FIG.
 このため、1回の押圧操作で、固定用バルーン3に供給されるエアの体積Aは、図32に示すように、曲線50をQ未満の範囲で積分した値になる。同様に、リリーフ弁213から排気されるエアの損失体積Aは、曲線50をQ以上の範囲で積分した値になる。
 体積Aに対する損失体積Aが大きいほど、オーバーチューブTの送気デバイスの送気効率が低いことを意味する。送気効率が低いと、術者は、固定用バルーン3を必要な外径に拡径するために、より長時間、ポンプ211aを操作しなければならないので、処置を行う作業時間が増えてしまう。
 このように、手動ポンプでは、術者が、強力にまたは迅速に、ポンプ211aを操作すると、かえって、固定用バルーン3を拡径するための操作時間が長引く可能性がある。
Therefore, the volume A1 of the air supplied to the fixation balloon 3 in one pressing operation is a value obtained by integrating the curve 50 in the range less than Q1 , as shown in FIG. Similarly, the loss volume A2 of the air discharged from the relief valve 213 is a value obtained by integrating the curve 50 in the range of Q1 or more.
It means that the larger the loss volume A2 to the volume A1, the lower the air supply efficiency of the air supply device of the overtube T. If the air supply efficiency is low, the operator has to operate the pump 211a for a longer time in order to expand the fixation balloon 3 to the required outer diameter, which increases the work time for treatment. .
As described above, with a manual pump, if the operator strongly or quickly operates the pump 211a, the operation time for expanding the diameter of the fixation balloon 3 may rather be lengthened.
 本実施形態では、こうした課題に鑑み、送気デバイス210に絞り部P2を設ける。これにより、術者がより効率的な送気操作を行えるようにする。
 第1管路P1と第2管路P3との間に絞り部P2が形成されていると、術者がポンプ211aを強く押しても、リリーフ弁213の上流側に設けられた絞り部P2によって、第2管路P3に流入するエアの流量が低減される。これにより、エアフローチューブ9を含む第2管路P3内の圧力が低下する。この結果、リリーフ弁213におけるエアの損失量も低下する。
 さらに、絞り部P2によって流路抵抗が増大するので、術者は、絞り部P2が存在しない場合に比べて、より強くポンプ211aを押さないと、流量が増えない。流量抵抗の大きさは、ポンプ211aを通して操作する術者に抵抗感覚として伝わる。この抵抗感覚は、術者に押圧力を緩めさせる効果も持つ。
In the present embodiment, in view of such problems, the air supply device 210 is provided with the narrowed portion P2. This enables the operator to perform a more efficient air supply operation.
When the throttle portion P2 is formed between the first pipeline P1 and the second pipeline P3, even if the operator strongly presses the pump 211a, the throttle portion P2 provided on the upstream side of the relief valve 213 will The flow rate of air flowing into the second pipeline P3 is reduced. As a result, the pressure inside the second pipeline P3 including the airflow tube 9 is reduced. As a result, the amount of air lost in the relief valve 213 is also reduced.
Furthermore, since the channel resistance increases due to the constricted portion P2, the operator must press the pump 211a more strongly than when the constricted portion P2 does not exist to increase the flow rate. The magnitude of the flow resistance is transmitted as a sense of resistance to the operating operator through the pump 211a. This sense of resistance also has the effect of making the operator relax the pressing force.
 本実施形態によれば、絞り部P2が設けられることによって、絞り部P2が存在しない場合に比べて、少ないエアの損失量で、固定用バルーン3を拡径することができるので、術者がポンプ211aを操作する時間が低減される。 According to the present embodiment, the provision of the constricted portion P2 enables the fixation balloon 3 to expand in diameter with less air loss than when the constricted portion P2 does not exist. The time to operate the pump 211a is reduced.
 次に、絞り部P2に好適な形状の条件を説明する。
 図33は、本発明の第3の実施形態に係る内視鏡用オーバーチューブにおける送気デバイスの流路形状を示す模式図である。
 第1管路P1の形状は、内径がD[mm]の円筒とする。
 絞り部P2の形状は、内径がd[mm]、長さがL[mm]の円筒流路である。例えば、絞り部P2が円筒でない場合は、dとして、断面積が等しい円の直径を用いる。例えば、絞り部P2が一辺の長さがsの正方形の場合、dとして、2×s/√πを用いる。例えば、絞り部P2が多孔質体で形成される場合には、dとして、流路に直交する断面における孔の平均半径をr、孔の個数をNとして、2×r×√Nを用いる。
 第2管路P3の形状は、内径がD[mm]の円筒流路である。送気管210aに接続し、第2管路P3の一部を形成するエアフローチューブ9の内径も同様である。以下、エアフローチューブ9を含む第2管路P3の全体の長さをL[mm]で表す。
 絞り部P2がなく第1管路P1と第2管路P3とが直接接続している場合(以下、絞り部無しの場合と称する)の流量をq[L/min]、絞り部P2が存在する場合の流量をq’[L/min]とする。
Next, conditions for a shape suitable for the constricted portion P2 will be described.
FIG. 33 is a schematic diagram showing the flow channel shape of the air supply device in the endoscope overtube according to the third embodiment of the present invention.
The shape of the first conduit P1 is a cylinder with an inner diameter of D [mm].
The shape of the constricted portion P2 is a cylindrical flow path with an inner diameter of d [mm] and a length of L 1 [mm]. For example, if the constricted portion P2 is not cylindrical, the diameter of a circle having the same cross-sectional area is used as d. For example, if the diaphragm portion P2 is a square with a side length of s, 2×s/√π is used as d. For example, when the constricted portion P2 is formed of a porous material, 2×r×√N is used, where r is the average radius of the holes in the cross section perpendicular to the flow path, and N is the number of holes.
The shape of the second pipeline P3 is a cylindrical flow path with an inner diameter of D [mm]. The same applies to the inner diameter of the airflow tube 9 connected to the air supply pipe 210a and forming part of the second pipeline P3. Hereinafter, the entire length of the second pipeline P3 including the airflow tube 9 is represented by L2 [mm].
When the first pipeline P1 and the second pipeline P3 are directly connected without the throttle part P2 (hereinafter referred to as the case without the throttle part), the flow rate is q [L / min], and the throttle part P2 exists. Let q' [L/min] be the flow rate in the case of
 絞り部P2が無い場合、第1管路P1における圧力Pと、第2管路P3における圧力Pと、は、ダルシー・ワイズバッハの式に従うことが実験的に分かっている。P、Pは互いに等しく、下記式(3a)で表される。 It is empirically known that the pressure P1 in the first pipeline P1 and the pressure P3 in the second pipeline P3 follow the Darcy-Weisbach equation when the restrictor P2 is absent. P 1 and P 3 are equal to each other and represented by the following formula (3a).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 絞り部P2が存在する場合の流量をq’とすると、第1管路P1における圧力P’と、第2管路P3における圧力P’と、は、それぞれ、下記式(3b)、(3c)で表される。 Assuming that the flow rate when the throttle portion P2 exists is q', the pressure P 1 ' in the first pipeline P1 and the pressure P 3 ' in the second pipeline P3 are expressed by the following equations (3b), ( 3c).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 P、P’は、ポンプ211aによる入力圧力である、P、P’は互いに等しいとすると、絞り部P2を通過後の第2管路P3における圧力P’が、第1管路P1の圧力P’の90%未満になる条件は、下記式(3d)である。
 ここで、「90%未満」としているのは、実用性を考慮した一例である。圧力P’を圧力P’の90%未満にすると、リリーフ弁213から排気されるエアの損失量を低減できるため好ましい。
 ただし、圧力P’が低すぎると、固定用バルーン3の拡径の速度が遅くなりすぎる可能性がある。圧力P’は、90%未満の範囲で固定用バルーン3の拡径の速度が適正値になるように決めることがより好ましい。例えば、圧力P’は、P’の80%以上であってもよく、50%以上であることがより好ましい。
 例えば、圧力P’は圧力P’の80%未満、70%未満などになるようにして、絞り部P2の条件を決めてもよい。
P 1 and P 1are the input pressures of the pump 211a. P 1 and P 1 ′ are equal to each other. The condition under which the pressure P 1 ' in the path P1 is less than 90% is the following formula (3d).
Here, "less than 90%" is an example considering practicality. Setting the pressure P 3 ' to less than 90% of the pressure P 1 ' is preferable because the loss of air exhausted from the relief valve 213 can be reduced.
However, if the pressure P 3 ′ is too low, the expansion speed of the fixation balloon 3 may become too slow. It is more preferable to determine the pressure P 3 ' so that the rate of diameter expansion of the fixation balloon 3 becomes an appropriate value within a range of less than 90%. For example, the pressure P 3 ′ may be 80% or more of P 1 ′, more preferably 50% or more.
For example, the condition of the constricted portion P2 may be determined such that the pressure P 3 ′ is less than 80%, less than 70%, etc. of the pressure P 1 ′.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 式(3b)、(3c)を式(3d)に代入して整理すると、下記式(3e)が得られる。 By substituting equations (3b) and (3c) into equation (3d) and arranging them, the following equation (3e) is obtained.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 本実施形態において、絞り部P2および第2管路P3の形状が式(3e)の条件を満たすと、ポンプ211aを操作して送気する際に、絞り部P2の下流側の第2管路P3内の圧力を、絞り部P2よりも上流側の圧力の90%未満にすることができる。これにより、絞り部P2の下流側の第2管路P3に連通するリリーフ弁213から排気されるエアの損失量が低減される。
 式(3e)を、圧力がX%未満の条件に書き換えるには、式(3e)における係数「1/9」を、「1/(0.1×X)」に置き換えればよい。
In the present embodiment, if the shapes of the throttle portion P2 and the second pipe line P3 satisfy the condition of expression (3e), the second pipe line on the downstream side of the throttle portion P2 can be supplied when the pump 211a is operated to supply air. The pressure in P3 can be less than 90% of the pressure upstream of restriction P2. As a result, the loss amount of the air exhausted from the relief valve 213 communicating with the second pipe line P3 on the downstream side of the throttle portion P2 is reduced.
In order to rewrite the equation (3e) under the condition that the pressure is less than X%, the coefficient "1/9" in the equation (3e) should be replaced with "1/(0.1×X)".
 本実施形態のオーバーチューブ201は、第1の実施形態に係るオーバーチューブ1の送気デバイス10に代えて、送気デバイス210を有することを除いて、オーバーチューブ1と同様である。このため、第1の実施形態と同様、患者の負荷を低減するとともに内視鏡を円滑に操作することができる内視鏡用オーバーチューブを提供することができる。
 特に本実施形態によれば、送気デバイス210が手動送気機構211を有し、送気デバイス210が絞り部P2を有する。これにより、絞り部P2が存在しない場合に比べて、少ないエアの損失量で、固定用バルーン3を拡径することができるので、術者がポンプ211aを操作する時間が低減される。
The overtube 201 of this embodiment is the same as the overtube 1 except that it has an air supply device 210 instead of the air supply device 10 of the overtube 1 according to the first embodiment. Therefore, as in the first embodiment, it is possible to provide an endoscope overtube that reduces the burden on the patient and allows smooth operation of the endoscope.
In particular, according to this embodiment, the air supply device 210 has the manual air supply mechanism 211, and the air supply device 210 has the throttle portion P2. As a result, the diameter of the fixation balloon 3 can be expanded with a smaller amount of air loss than in the case where the constricted portion P2 does not exist, so the time required for the operator to operate the pump 211a is reduced.
 送気デバイス210における第1管路P1は、手動ポンプの例であるポンプ211aから送られた気体が流れる第1管路の例である。
 送気デバイス210における絞り部P2は、第1管路に接続され、第1管路の流路断面積よりも小さい流路断面積を有する絞り部の例である。
 送気デバイス210における第2管路P3は、絞り部の流路断面積よりも大きい流路断面積を有し、絞り部を通して流れる気体を固定用バルーンに向けて流す第2管路の例である。
 リリーフ弁213は、第2管路に設けられ、第2管路の圧力が一定値を超えると第2管路から気体を排気するリリーフ弁の例である。
A first pipeline P1 in the air supply device 210 is an example of a first pipeline through which gas sent from a pump 211a, which is an example of a manual pump, flows.
The constricted portion P2 in the air supply device 210 is an example of a constricted portion that is connected to the first pipeline and has a flow channel cross-sectional area smaller than the flow channel cross-sectional area of the first pipeline.
The second duct P3 in the air supply device 210 is an example of a second duct that has a channel cross-sectional area larger than the flow channel cross-sectional area of the constricted portion, and causes the gas flowing through the constricted portion to flow toward the fixation balloon. be.
The relief valve 213 is an example of a relief valve that is provided in the second pipeline and exhausts gas from the second pipeline when the pressure in the second pipeline exceeds a certain value.
[第1変形例]
 第3の実施形態に係るオーバーチューブ201において、送気デバイス210に代えて用いる送気デバイスの変形例(第1変形例)を説明する。
 図17に示すように、本変形例の送気デバイス210Aは、オーバーチューブ201の送気デバイス210に代えて用いることができる。
 図26に示すように、送気デバイス210Aは、送気デバイス210の本体部212に代えて本体部212Aを有する。
 本体部212Aは、接続管212aから送気管210aまでの流路の構成が本体部212と異なる。以下、第3の実施形態と異なる点を中心に説明する。
[First modification]
A modification (first modification) of the air supply device used in place of the air supply device 210 in the overtube 201 according to the third embodiment will be described.
As shown in FIG. 17, an air supply device 210A of this modified example can be used in place of the air supply device 210 of the overtube 201. As shown in FIG.
As shown in FIG. 26, the air supply device 210A has a body portion 212A instead of the body portion 212 of the air supply device 210. As shown in FIG.
The body portion 212A differs from the body portion 212 in the structure of the flow path from the connection tube 212a to the air supply tube 210a. In the following, the points different from the third embodiment will be mainly described.
 図34は、本発明の第3の実施形態に係る内視鏡用オーバーチューブに用いる送気デバイスの変形例(第1変形例)を示すブロック図である。図35は、送気デバイスの変形例(第1変形例)の流路形状を示す模式図である。
 図34に示すように、送気デバイス210Aは、絞り部P2に代えて拡径部P4を有する。ただし、本変形例におけるリリーフ弁213は、拡径部P4に配置されている。
 拡径部P4は、第1管路P1から送気されるエアの圧力を低減する目的で設けられている。拡径部P4は、第1管路P1および第2管路P3の各流路断面積よりも大きな流路断面積を有する筐体である。拡径部P4の流路断面積とは、第1管路P1から第2管路P3に向かうエアの流れ方向に直交する断面の面積である。
 拡径部P4の形状は、拡径部P4においてエアの圧力を第1管路P1の圧力よりも低減できれば特に限定されない。
 例えば、拡径部P4は、第1管路P1よりも流路断面積が大きい管状部で形成されてもよい。例えば、拡径部P4は、第1管路P1の内径よりも断面積が大きい箱形でもよい。
 図35に示すにおける拡径部P4は、体積がVの箱形に模式化されている。拡径部P4における流路断面の形状はとくに限定されない。拡径部P4の流路断面の形状は、円形、楕円径、矩形、多角形などであってもよい。
FIG. 34 is a block diagram showing a modified example (first modified example) of the air supply device used in the endoscope overtube according to the third embodiment of the present invention. FIG. 35 is a schematic diagram showing a flow path shape of a modified example (first modified example) of the air supply device.
As shown in FIG. 34, the air supply device 210A has an expanded diameter portion P4 instead of the constricted portion P2. However, the relief valve 213 in this modified example is arranged in the enlarged diameter portion P4.
The enlarged diameter portion P4 is provided for the purpose of reducing the pressure of the air supplied from the first pipeline P1. The enlarged diameter portion P4 is a housing having a flow channel cross-sectional area larger than each flow channel cross-sectional area of the first pipeline P1 and the second pipeline P3. The channel cross-sectional area of the enlarged diameter portion P4 is the area of the cross section orthogonal to the air flow direction from the first pipeline P1 to the second pipeline P3.
The shape of the diameter-enlarged portion P4 is not particularly limited as long as the air pressure in the diameter-enlarged portion P4 can be reduced below the pressure of the first pipe line P1.
For example, the enlarged diameter portion P4 may be formed of a tubular portion having a flow passage cross-sectional area larger than that of the first pipeline P1. For example, the enlarged diameter portion P4 may be box-shaped with a cross-sectional area larger than the inner diameter of the first pipeline P1.
The expanded diameter portion P4 in FIG. 35 is modeled in a box shape with a V volume. The shape of the cross section of the flow path in the enlarged diameter portion P4 is not particularly limited. The cross-sectional shape of the enlarged diameter portion P4 may be circular, elliptical, rectangular, polygonal, or the like.
 本変形例の作用について、送気デバイス210Aにおける拡径部P4の作用を中心として説明する。
 本変形例では、送気デバイス210Aに拡径部P4を設け、拡径部P4にリリーフ弁213を配置することによって、術者がより効率的な送気操作を行えるようにしている。
 第1管路P1と第2管路P3との間に拡径部P4が形成されていると、拡径部P4において流路断面積が広がるので第1管路P1に比べて拡径部P4の方が低圧になる。これにより、術者の操作による流量が同じ場合に、拡径部P4の圧力が、拡径部P4に配置されたリリーフ弁213から排気される許容圧力に達するまでの時間が延びる。
 このため、エアが排気されることなく、拡径部P4の内圧が上昇し、この間にエアは、ある程度、第1管路P1に流れ続ける。
 これにより、リリーフ弁213から排気されるエアの損失量が低減される。
The action of this modified example will be described with a focus on the action of the expanded diameter portion P4 in the air supply device 210A.
In this modification, the air supply device 210A is provided with an enlarged diameter portion P4, and a relief valve 213 is arranged in the enlarged diameter portion P4, thereby allowing the operator to perform more efficient air supply operation.
If the diameter-enlarged portion P4 is formed between the first pipeline P1 and the second pipeline P3, the cross-sectional area of the flow path is widened at the diameter-enlarged portion P4. becomes a lower pressure. As a result, when the flow rate by the operation by the operator is the same, the time required for the pressure in the enlarged diameter portion P4 to reach the allowable pressure exhausted from the relief valve 213 arranged in the enlarged diameter portion P4 is extended.
Therefore, the internal pressure of the enlarged diameter portion P4 increases without air being exhausted, and during this time air continues to flow to the first pipeline P1 to some extent.
As a result, the loss of air exhausted from the relief valve 213 is reduced.
 次に、拡径部P4に好適な形状の条件を説明する。本変形例の数式における単位系は特に限定されない。
 第1管路P1および第2管路P3の形状は、第3の実施形態と同様、内径がDの円筒とする。
 拡径部P4の容積はVである。拡径部P4にポンプ211aからのエア供給によって拡径部P4が圧力上昇する前の圧力をPとする。拡径部P4にポンプ211aから体積Qのエアが流入したときの圧力をP’とすると、ボイル・シャルルの法則から、下記式(3f)が得られる。ここで、エアの流入時にエアが拡径部P4から流出しないことを仮定している。
 例えば、体積Qは、1回の操作におけるポンプ211aの最大送気量としてもよい。例えば、体積Qは、ポンプ211aにおける最大の送気容積とすることができる。この場合、P’は、1回の操作における最大の送気時の拡径部P4の内部の圧力になる。
Next, conditions for a shape suitable for the enlarged diameter portion P4 will be described. The unit system in the formulas of this modified example is not particularly limited.
The shape of the first pipeline P1 and the second pipeline P3 is a cylinder with an inner diameter D, as in the third embodiment.
The volume of the expanded diameter portion P4 is V. Let P be the pressure before the expanded diameter portion P4 is increased in pressure by the air supply from the pump 211a. Assuming that P ' is the pressure when the volume QP of air flows from the pump 211a into the expanded diameter portion P4, the following equation (3f) is obtained from the Boyle-Charles law. Here, it is assumed that air does not flow out from the enlarged diameter portion P4 when air flows in. FIG.
For example, the volume QP may be the maximum air supply amount of the pump 211a in one operation. For example, the volume QP can be the maximum insufflation volume in the pump 211a. In this case, P' is the pressure inside the enlarged diameter portion P4 at the time of maximum air supply in one operation.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 拡径部P4の代わりに、第2管路P3と同様な内径を有する円筒チューブが配置されている場合の円筒チューブにおける単位長さ当たりの容積V’は、下記式(3g)で表される。 The volume V' per unit length of the cylindrical tube when a cylindrical tube having an inner diameter similar to that of the second pipeline P3 is arranged instead of the enlarged diameter portion P4 is represented by the following formula (3g). .
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 このような円筒チューブにポンプ211aから体積Qのエアが流入したときの圧力をP’’とすると、P’の計算と同様な仮定に基づいて、下記式(3h)が得られる。 Assuming that the pressure when air having a volume QP flows into such a cylindrical tube from the pump 211a is P '', the following equation (3h) is obtained based on the same assumption as the calculation of P'.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 拡径部P4の圧力P’が拡径部P4無しの場合の圧力P’’の90%未満になる条件は、下記式(3i)である。
 ここで、「90%未満」としているのは、実用性を考慮した一例である。圧力P’を圧力P’’の90%未満にすると、リリーフ弁213から排気されるエアの損失量を低減できるため好ましい。
 ただし、圧力P’が低すぎると、固定用バルーン3の拡径の速度が遅くなりすぎる可能性がある。圧力P’は、90%未満の範囲で固定用バルーン3の拡径の速度が適正値になるように決めることがより好ましい。例えば、圧力P’は、P’’の80%以上であってもよく、50%以上であることがより好ましい。
しながら、固定用バルーン3拡径の速度を極力保つことができる。
 例えば、圧力P’は圧力P’’の80%未満、70%未満などになるようにして、拡径部P4の条件を決めてもよい。
The condition under which the pressure P′ of the enlarged diameter portion P4 is less than 90% of the pressure P″ without the enlarged diameter portion P4 is the following formula (3i).
Here, "less than 90%" is an example considering practicality. Setting the pressure P′ to less than 90% of the pressure P″ is preferable because the amount of loss of air exhausted from the relief valve 213 can be reduced.
However, if the pressure P' is too low, the expansion speed of the fixation balloon 3 may become too slow. More preferably, the pressure P′ is determined so that the speed of expanding the diameter of the fixation balloon 3 becomes an appropriate value within a range of less than 90%. For example, the pressure P' may be 80% or more of P'', more preferably 50% or more.
At the same time, the expansion speed of the fixation balloon 3 can be maintained as much as possible.
For example, the pressure P' may be set to less than 80%, less than 70%, etc. of the pressure P'' to determine the condition of the enlarged diameter portion P4.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 式(3f)、(3h)を式(3i)に代入して整理すると、下記式(3j)が得られる。 By substituting equations (3f) and (3h) into equation (3i) and arranging them, the following equation (3j) is obtained.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 本変形例において、拡径部P4および第1管路P1の形状が式(3e)の条件を満たすと、ポンプ211aを操作して送気する際に、拡径部P4の内部の圧力を、第1管路P1の内部の圧力の90%未満にすることができる。これにより、リリーフ弁213から排気されるエアの損失量が低減でされる。 In this modified example, if the shapes of the enlarged diameter portion P4 and the first pipeline P1 satisfy the condition of expression (3e), when the pump 211a is operated to supply air, the pressure inside the enlarged diameter portion P4 is changed to It can be less than 90% of the pressure inside the first conduit P1. As a result, the loss of air exhausted from the relief valve 213 is reduced.
 本変形例の送気デバイス210Aを有するオーバーチューブ201は、第3の実施形態に係るオーバーチューブ201の送気デバイス210に代えて、送気デバイス210Aを有することを除いて、オーバーチューブ201と同様である。このため、本変形例によれば、第3の実施形態と同様、患者の負荷を低減するとともに内視鏡を円滑に操作することができる内視鏡用オーバーチューブを提供することができる。
 特に本変形例によれば、送気デバイス210Aがリリーフ弁213が設けられた拡径部P4を有する。
 これにより、拡径部P4が存在しない場合に比べて、少ないエアの損失量で、固定用バルーン3を拡径することができるので、術者がポンプ211aを操作する時間が低減される。
An overtube 201 having an air supply device 210A of this modified example is the same as the overtube 201 except that it has an air supply device 210A instead of the air supply device 210 of the overtube 201 according to the third embodiment. is. Therefore, according to this modified example, as in the third embodiment, it is possible to provide an endoscope overtube that reduces the burden on the patient and allows smooth operation of the endoscope.
In particular, according to this modified example, the air supply device 210A has the enlarged diameter portion P4 provided with the relief valve 213 .
As a result, the diameter of the fixation balloon 3 can be expanded with a smaller amount of air loss than when the expanded diameter portion P4 does not exist, thus reducing the time required for the operator to operate the pump 211a.
 送気デバイス210Aにおける拡径部P4は、第1管路に接続され、第1管路の流路断面積よりも大きい流路断面積を有する拡径部の例である。
 送気デバイス210Aにおけるリリーフ弁213は、拡径部に設けられ、拡径部の圧力が一定値を超えると拡径部から気体を排気するリリーフ弁の例である。
 送気デバイス210Aにおける第2管路P3は、拡径部の流路断面積よりも小さい流路断面積を有し、拡径部を通して流れる気体を前記固定用バルーンに向けて流す第2管路の例である。
The enlarged diameter portion P4 in the air supply device 210A is an example of an enlarged diameter portion that is connected to the first conduit and has a channel cross-sectional area larger than that of the first conduit.
The relief valve 213 in the air supply device 210A is an example of a relief valve that is provided in the enlarged diameter portion and exhausts gas from the enlarged diameter portion when the pressure in the enlarged diameter portion exceeds a certain value.
The second pipeline P3 in the air supply device 210A has a flow channel cross-sectional area smaller than the flow channel cross-sectional area of the enlarged diameter portion, and allows the gas flowing through the enlarged diameter portion to flow toward the fixation balloon. is an example of
[第2変形例]
 第3の実施形態のオーバーチューブ201において、送気デバイス210に代えて用いる送気デバイスの変形例(第2変形例)を説明する。
 図17に示すように、本変形例の送気デバイス210Bは、オーバーチューブ201の送気デバイス210に代えて用いることができる。
 図36は、本発明の第3の実施形態に係る内視鏡用オーバーチューブに用いる送気デバイスの変形例(第2変形例)を示す模式的な正面図である。
[Second modification]
A modification (second modification) of the air supply device used in place of the air supply device 210 in the overtube 201 of the third embodiment will be described.
As shown in FIG. 17, an air supply device 210B of this modification can be used in place of the air supply device 210 of the overtube 201. As shown in FIG.
FIG. 36 is a schematic front view showing a modified example (second modified example) of the air supply device used in the endoscope overtube according to the third embodiment of the present invention.
 図36に示すように、送気デバイス210Bは、送気デバイス210の本体部212に代えて本体部212Bを有する。
 本体部212Bは、接続管212aから送気管210aまでの間に、圧力調整部217と、筐体部218と、を有する。
 本変形例におけるグリップ215は、筐体部218に形成されている。
 本変形例における手動送気機構211は、第2の実施形態における手動送気機構211と同様、本体部212Bの接続管212aに対する、第1接続状態と、第2接続状態と、の切替が可能である。
 以下、第3の実施形態と異なる点を中心に説明する。
As shown in FIG. 36, the air supply device 210B has a body portion 212B instead of the body portion 212 of the air supply device 210. As shown in FIG.
The main body portion 212B has a pressure adjusting portion 217 and a housing portion 218 between the connecting pipe 212a and the air pipe 210a.
A grip 215 in this modified example is formed in a housing portion 218 .
As with the manual air supply mechanism 211 in the second embodiment, the manual air supply mechanism 211 in this modification can switch between the first connection state and the second connection state with respect to the connecting pipe 212a of the main body 212B. is.
In the following, the points different from the third embodiment will be mainly described.
 図37は、本発明の第3の実施形態に係る内視鏡用オーバーチューブに用いる送気デバイスの変形例(第2変形例)を示すブロック図である。図38は、送気デバイスの変形例(第2変形例)の流路形状を示す模式図である。ただし、図38では、簡素化のため、エアフローチューブ9の図示は省略されている(以下の図39~図40も同様)。 FIG. 37 is a block diagram showing a modified example (second modified example) of the air supply device used in the endoscope overtube according to the third embodiment of the present invention. FIG. 38 is a schematic diagram showing a flow channel shape of a modified example (second modified example) of the air supply device. However, the illustration of the airflow tube 9 is omitted in FIG. 38 for the sake of simplification (the same applies to FIGS. 39 to 40 below).
 図37に示すように、送気デバイス210Bは、第3の実施形態と同様の絞り部P2とリリーフ弁213とを有する。
 本変形例における絞り部P2は、筐体部218の内部に配置されている。
 本変形例におけるリリーフ弁213は、筐体部218内の第2管路P3に連通している。
 図38に模式的に示すように、圧力調整部217は、第3管路P5を通して第1管路P1と連通している。
As shown in FIG. 37, an air supply device 210B has a throttle portion P2 and a relief valve 213 similar to those of the third embodiment.
The diaphragm portion P2 in this modified example is arranged inside the housing portion 218 .
The relief valve 213 in this modified example communicates with the second pipe line P3 inside the housing portion 218 .
As schematically shown in FIG. 38, the pressure adjustment section 217 communicates with the first pipeline P1 through the third pipeline P5.
 圧力調整部217は、第1管路P1を通してポンプ211aから送気されたエアを分岐し、外部に排出することなく内部に貯蔵する。これにより、第1管路P1内の圧力上昇を緩和され、絞り部P2を通して第2管路P3に流れるエアの圧力も緩和される。
 圧力調整部217の構成は、圧力調整部217の内部にエアを貯蔵することによって、第1管路P1内の圧力上昇を緩和できれば特に限定されない。
The pressure adjustment unit 217 branches the air supplied from the pump 211a through the first pipe line P1, and stores the air inside without discharging it to the outside. As a result, the pressure increase in the first pipeline P1 is alleviated, and the pressure of the air flowing through the throttle portion P2 to the second pipeline P3 is also alleviated.
The configuration of the pressure adjusting section 217 is not particularly limited as long as the pressure rise in the first pipeline P1 can be alleviated by storing air inside the pressure adjusting section 217 .
 例えば、圧力調整部217は第1管路P1に送気されるエアを蓄える貯蔵空間を形成する構成であってもよい。
 例えば、圧力調整部217は一定の容積を有する貯蔵空間を形成する箱、筒などで形成されてもよい。この場合、エアが圧力調整部217に流入することによって、第1管路P1の内圧と圧力調整部217の内圧とが上昇する。ただし、エアが流入する容積は圧力調整部217の分だけ大きいので、圧力調整部217を有しない場合に比べると、第1管路P1の圧力上昇は低減される。
 圧力調整部217の容積が大きいほど、第1管路P1の圧力上昇がより緩和される。
 圧力調整部217の内圧がある程度高くなり、絞り部P2の流路抵抗を上回ると、圧力調整部217に貯蔵されたエアは第3管路P5を通して第1管路P1に戻り、絞り部P2を通して固定用バルーン3の方に押し出される。
For example, the pressure adjustment part 217 may be configured to form a storage space for storing the air to be supplied to the first pipeline P1.
For example, the pressure adjusting part 217 may be formed of a box, a cylinder, etc. forming a storage space having a certain volume. In this case, the internal pressure of the first pipe line P1 and the internal pressure of the pressure adjusting section 217 rise due to the air flowing into the pressure adjusting section 217 . However, since the volume into which air flows is as large as the pressure regulating portion 217, the pressure rise in the first pipeline P1 is reduced compared to the case where the pressure regulating portion 217 is not provided.
The larger the volume of the pressure adjusting portion 217, the more the pressure rise in the first pipeline P1 is mitigated.
When the internal pressure of the pressure regulating portion 217 increases to some extent and exceeds the flow path resistance of the constricted portion P2, the air stored in the pressure regulating portion 217 returns to the first duct P1 through the third duct P5 and flows through the constricted portion P2. It is pushed out towards the fixation balloon 3 .
 例えば、圧力調整部217は、第1管路P1における圧力に応じて、容積が変化する貯蔵空間を形成する構成であってもよい。容積変化する圧力調整部217の例としては、内圧に応じて変形によって容積が変化する、シリンジ、蛇腹管、袋などを挙げることができる。
 容積変化する圧力調整部217は、圧力に応じて伸縮する弾性体で形成されてもよい。
 容積変化する圧力調整部217は、容積変化に抗する弾性力を付勢する弾性部材を有していてもよい。
For example, the pressure adjustment part 217 may be configured to form a storage space whose volume changes according to the pressure in the first pipeline P1. Examples of the pressure adjustment part 217 whose volume changes include a syringe, a bellows tube, a bag, etc., whose volume changes by deformation according to the internal pressure.
The volume-changing pressure adjustment part 217 may be formed of an elastic body that expands and contracts according to pressure.
The volume-changing pressure adjustment section 217 may have an elastic member that applies an elastic force that resists the volume change.
 図39は、送気デバイスの変形例(第2変形例)の例を示す模式図である。
 図39に示す圧力調整部217Aは、容積変化する圧力調整部217の例である。
 圧力調整部217Aは、筒状部217a、ピストン217b、およびスプリング217cを有する。
FIG. 39 is a schematic diagram showing an example of a modified example (second modified example) of the air supply device.
A pressure regulating portion 217A shown in FIG. 39 is an example of the pressure regulating portion 217 whose volume changes.
217 A of pressure adjustment parts have the cylindrical part 217a, the piston 217b, and the spring 217c.
 筒状部217aは、例えば、一方向に長い円筒、角筒などからなる。筒状部217aの長手方向の端部には、第3管路P5が連通している。
 ピストン217bは、筒状部217aの内部において筒状部217aの長手方向に移動可能である。ピストン217bは、筒状部217aを長手方向において第1空間Saと、第2空間Sbとに、二分割している。筒状部217aは、筒状部217aの内面と気密を保って摺動し、長手方向に移動可能である。
 第1空間Saには、第3管路P5の開口が臨んでいる。
 スプリング217cは、第2空間Sbに配置され、第2空間Sbにおける筒状部217aの長手方向の端部と、ピストン217bと、を弾性的に連結する。
 スプリング217cは、第1空間Saの圧力に抗してピストン217bを付勢する。
The tubular portion 217a is, for example, a cylinder elongated in one direction, a rectangular tube, or the like. A third pipe line P5 communicates with a longitudinal end of the tubular portion 217a.
The piston 217b is movable in the longitudinal direction of the tubular portion 217a inside the tubular portion 217a. The piston 217b divides the tubular portion 217a in the longitudinal direction into a first space Sa and a second space Sb. The cylindrical portion 217a slides on the inner surface of the cylindrical portion 217a while maintaining airtightness, and is movable in the longitudinal direction.
The opening of the third pipeline P5 faces the first space Sa.
The spring 217c is arranged in the second space Sb and elastically connects the longitudinal end of the tubular portion 217a in the second space Sb and the piston 217b.
The spring 217c urges the piston 217b against the pressure in the first space Sa.
 圧力調整部217Aによれば、ポンプ211aが操作されてエアが第1管路P1に送気されると、絞り部P2に比べて流路抵抗が小さい第3管路P5の方に多くエアが流れる。
 第3管路P5から第1空間Saに流入したエアは、スプリング217cの付勢力と釣り合う圧力に達するまで第1空間Saに流入する。第1空間Saに流入したエアは、ピストン217bを通して、スプリング217cから付勢される。
 ポンプ211aによる送気が終了し、第1管路P1に流れるエアの流量が低下すると、スプリング217cからの付勢力に応じて、ピストン217bが第3管路P5側に移動する。これにより第1空間Saのエアが第3管路P5から押し出される。このため、第1空間Saに貯蔵されるエアは、第3管路P5を通して第1管路P1に戻る。これにより、貯蔵されるエアが損失することなく、固定用バルーン3に供給される。
 第1空間Saは、圧力調整部217Aにおける容積変化可能な貯蔵空間の例になっている。
According to the pressure adjustment section 217A, when the pump 211a is operated and air is supplied to the first pipeline P1, more air flows into the third pipeline P5, which has a smaller flow path resistance than the throttle section P2. flow.
The air that has flowed into the first space Sa from the third conduit P5 flows into the first space Sa until the pressure reaches a balance with the biasing force of the spring 217c. The air that has flowed into the first space Sa passes through the piston 217b and is biased by the spring 217c.
When the air supply by the pump 211a ends and the flow rate of the air flowing through the first pipeline P1 decreases, the piston 217b moves toward the third pipeline P5 according to the biasing force from the spring 217c. As a result, the air in the first space Sa is pushed out from the third pipeline P5. Therefore, the air stored in the first space Sa returns to the first pipeline P1 through the third pipeline P5. This supplies the fixation balloon 3 with no loss of stored air.
The first space Sa is an example of a volume-variable storage space in the pressure adjustment section 217A.
 図40は、送気デバイスの変形例(第2変形例)の例を示す模式図である。
 図40に示す圧力調整部217Bは、容積変化する圧力調整部217の例である。
 圧力調整部217Bは、圧力調整部217Aの筒状部217a、ピストン217b、およびスプリング217cに代えて、バルーン217dを有する。
 バルーン217dは、第3管路P5と連通する1つの開口を有する袋状のエラストマーで形成される。バルーン217dの材料としては、第1管路P1内のエアの圧力に応じて拡縮できる適宜の弾性を有するエラストマーが用いられる。
FIG. 40 is a schematic diagram showing an example of a modified example (second modified example) of the air supply device.
A pressure regulating portion 217B shown in FIG. 40 is an example of the pressure regulating portion 217 whose volume changes.
The pressure adjusting portion 217B has a balloon 217d instead of the tubular portion 217a, the piston 217b, and the spring 217c of the pressure adjusting portion 217A.
The balloon 217d is made of a bag-like elastomer having one opening that communicates with the third conduit P5. As the material of the balloon 217d, an elastomer having appropriate elasticity that can be expanded and contracted according to the pressure of the air in the first pipeline P1 is used.
 圧力調整部217Bによれば、ポンプ211aが操作されてエアが第1管路P1に送気されると、第3管路P5の方に流れるエアが内部に流入する。圧力調整部217Bの内部空間Scは、エアの圧力に応じて膨張する。
 内部空間Scに流入したエアは、バルーン217dの張力と釣り合う圧力に達するまで内部空間Scに流入する。内部空間Scに流入したエアは、バルーン217dから付勢される。
 ポンプ211aによる送気が終了し、第1管路P1に流れるエアの流量が低下すると、バルーン217dからの付勢力に応じて、内部空間Scのエアが第3管路P5から押し出される。このため、圧力調整部217Aと同様、内部空間Scに貯蔵されるエアは、第3管路P5を通して第1管路P1に戻る。これにより、貯蔵されるエアが損失することなく、固定用バルーン3に供給される。
 内部空間Scは、圧力調整部217Bにおける容積変化可能な貯蔵空間の例になっている。
According to the pressure adjustment part 217B, when the pump 211a is operated and air is supplied to the first pipeline P1, the air flowing toward the third pipeline P5 flows into the inside. The internal space Sc of the pressure adjusting section 217B expands according to the air pressure.
The air that has flowed into the internal space Sc flows into the internal space Sc until it reaches a pressure that balances the tension of the balloon 217d. The air that has flowed into the internal space Sc is urged from the balloon 217d.
When the air supply by the pump 211a ends and the flow rate of the air flowing through the first pipeline P1 decreases, the air in the internal space Sc is pushed out from the third pipeline P5 according to the biasing force from the balloon 217d. Therefore, the air stored in the internal space Sc returns to the first pipeline P1 through the third pipeline P5, similarly to the pressure adjustment section 217A. This supplies the fixation balloon 3 with no loss of stored air.
The internal space Sc is an example of a volume-variable storage space in the pressure adjustment section 217B.
 圧力調整部217A、217Bの構成は、例えば、圧力が表示される圧力計、圧力表示器などの機器に含まれる場合がある。この場合、圧力調整部217として、圧力計、圧力表示器などの機器が用いられてもよい。 The configuration of the pressure adjustment units 217A and 217B may be included in devices such as pressure gauges and pressure indicators that display pressure, for example. In this case, a device such as a pressure gauge or a pressure indicator may be used as the pressure adjustment unit 217 .
 次に送気デバイス210Bを用いた送気動作の例を、圧力調整部217の作用を中心として説明する。
 図41~図44は、送気デバイスの変形例(第2変形例)の動作説明図である。
 ただし、図41~図44では、簡素化のため、エアフローチューブ9の図示は省略されている。
Next, an example of an air supply operation using the air supply device 210B will be described with a focus on the action of the pressure adjustment section 217. FIG.
41 to 44 are explanatory diagrams of the operation of the modified example (second modified example) of the air supply device.
However, in FIGS. 41 to 44, illustration of the airflow tube 9 is omitted for simplification.
 図41に示すように、術者がポンプ211aを押し始めると、第1管路P1に送気されたエアの一部は、絞り部P2および第2管路P3と、図示略のエアフローチューブ9、およびメインチューブ2における第2ルーメン2eと、を経由して、固定用バルーン3の内部に供給される。
 送気されたエアの他は、第3管路P5を通して圧力調整部217に分岐する。このため、術者がポンプ211aを、急峻にまたは強く、押しても、絞り部P2に過大なエアが流入しない。図41では、エアの流入量を網掛け部で模式的に示している。図示の白抜き部は真空を意味しているのではなく、エアが容易に流入しやすい状態を模式的に示している。
 例えば、圧力調整部217が袋あるいはバルーンで形成される場合、圧力調整部217の初期容積は0に近くなっており、エアは、圧力調整部217の外部の大気圧を超える圧力であれば、容易に流入できる。
 例えば、圧力調整部217が一定の容積を有する箱で形成される場合、流入量に比例して圧力が上昇する。しかし、圧力調整部217の体積を十分大きくとると、圧力上昇の勾配を低減できる。
As shown in FIG. 41, when the operator starts to push the pump 211a, part of the air supplied to the first conduit P1 flows through the narrowed portion P2, the second conduit P3, and the airflow tube 9 (not shown). , and the second lumen 2 e in the main tube 2 , into the fixation balloon 3 .
Other than the supplied air, it branches to the pressure adjustment section 217 through the third conduit P5. Therefore, even if the operator presses the pump 211a sharply or strongly, an excessive amount of air does not flow into the constricted portion P2. In FIG. 41, the amount of inflow of air is schematically shown by hatching. The white portion shown in the figure does not mean a vacuum, but schematically shows a state in which air can easily flow.
For example, when the pressure adjustment part 217 is formed of a bag or a balloon, the initial volume of the pressure adjustment part 217 is close to 0, and if the air pressure exceeds the atmospheric pressure outside the pressure adjustment part 217, can flow in easily.
For example, if the pressure adjusting unit 217 is formed of a box having a certain volume, the pressure increases in proportion to the amount of inflow. However, if the volume of the pressure adjusting portion 217 is sufficiently large, the gradient of the pressure rise can be reduced.
 本変形例における絞り部P2は、第3の実施形態における絞り部P2と同様、下流側の第2管路P3の圧力上昇を緩和する作用を有する。本変形例では、拡径部P4による圧力緩和効果と相俟って、第2管路P3の圧力上昇がさらに抑制される。
 これにより、術者がポンプ211aを急峻にまたは強く押しても、第2管路P3のエアはリリーフ弁213から排気されにくい。
The throttle portion P2 in this modified example has the effect of alleviating the pressure rise in the second pipeline P3 on the downstream side, like the throttle portion P2 in the third embodiment. In this modification, the increase in pressure in the second pipeline P3 is further suppressed in combination with the pressure relaxation effect of the expanded diameter portion P4.
This makes it difficult for the air in the second pipeline P3 to be exhausted from the relief valve 213 even if the operator presses the pump 211a sharply or strongly.
 圧力調整部217が圧力計または圧力表示器で形成された場合、術者は、送気操作時に圧力調整部217が表示する圧力を見て送気量を調整できる。この点でも、リリーフ弁213からエアが排気されにくい。
 固定用バルーン3には効率的にエアが流入し、固定用バルーン3が膨張していく。
When the pressure adjusting section 217 is formed of a pressure gauge or a pressure indicator, the operator can adjust the amount of air supply by observing the pressure displayed by the pressure adjusting section 217 during the air supply operation. In this respect as well, air is less likely to be discharged from the relief valve 213 .
Air efficiently flows into the fixation balloon 3, and the fixation balloon 3 is inflated.
 図42に網掛け部で示すように、圧力調整部217内にエアが、ある程度流入すると、圧力調整部217の内圧が次第に上昇する。これにより、術者がポンプ211aから受ける抵抗が次第に大きくなる。
 術者は、ある程度時間をかけて送気した後、大きな抵抗を受けるので、固定用バルーン3にエアを十分に送気できたと認識できる。
 これにより、術者は、ポンプ211aから手を離して送気を停止する(図43参照)。術者が送気を停止しなくても、第2管路P3の圧力が許容圧力を超えると、リリーフ弁213から排気されるので、固定用バルーン3が膨張しすぎることはない。この場合、一定の高い送気抵抗が持続するので、術者は、あまり間を置かずに送気を停止する。
As shown by the shaded area in FIG. 42, when air flows into the pressure adjustment section 217 to some extent, the internal pressure of the pressure adjustment section 217 gradually increases. As a result, the resistance that the operator receives from the pump 211a gradually increases.
The operator can recognize that sufficient air has been supplied to the fixation balloon 3 because the operator receives a large amount of resistance after the air supply takes a certain amount of time.
As a result, the operator releases the pump 211a to stop the air supply (see FIG. 43). Even if the operator does not stop the air supply, if the pressure in the second conduit P3 exceeds the allowable pressure, the pressure is exhausted from the relief valve 213, so the fixation balloon 3 is not overinflated. In this case, the air supply resistance is maintained at a constant high level, so the operator stops the air supply without too much time.
 送気が停止されると、送気デバイス210Bを有するオーバーチューブ201内のエアの流路におけるエア量の増加が停止する。
 停止時に圧力調整部217の内圧がある程度上昇しているので、圧力調整部217内のエアは、停止時の内圧に応じて、停止後も固定用バルーン3に流入する。このため、固定用バルーン3の拡径量が少ない状態で停止しても、圧力調整部217の容積の範囲で、不足したエアが固定用バルーン3に供給される。
 圧力調整部217として、例えば、圧力調整部217A、217Bのように、内部のエアを付勢できる構成であると、圧力調整部217内のエアがより速く固定用バルーン3に移動しやすい。
When the air supply is stopped, the increase in the amount of air in the air flow path inside the overtube 201 having the air supply device 210B stops.
Since the internal pressure of the pressure regulating portion 217 rises to some extent at the time of stopping, the air inside the pressure regulating portion 217 flows into the fixation balloon 3 even after the stop according to the internal pressure at the time of stopping. Therefore, even if the fixation balloon 3 is stopped in a state where the diameter expansion amount of the fixation balloon 3 is small, insufficient air is supplied to the fixation balloon 3 within the range of the volume of the pressure adjusting portion 217 .
If the pressure adjusting section 217 has a configuration capable of urging the internal air, for example, like the pressure adjusting sections 217A and 217B, the air in the pressure adjusting section 217 tends to move to the fixation balloon 3 more quickly.
 図44に示すように、固定用バルーン3内の圧力Pと、圧力調整部217内の圧力Pとが、釣り合うまでエアが移動すると、オーバーチューブ201内に圧力平衡状態が形成される。
 以上で、固定用バルーン3の拡径操作が終了する。
As shown in FIG. 44, when the air moves until the pressure PB inside the fixation balloon 3 and the pressure PG inside the pressure adjusting portion 217 are balanced, a pressure equilibrium state is formed inside the overtube 201 .
This completes the operation for expanding the diameter of the fixation balloon 3 .
 固定用バルーン3を縮径する場合に、固定用バルーン3のエアを手動送気機構211によって吸気する。
 本変形例の手動送気機構211は、第2の実施形態における手動送気機構211と同様、手動送気機構211の接続状態を第2接続状態に切り替えた後、ポンプ211aを操作することによって、迅速な吸気が可能である。
 吸気の際、圧力調整部217にエアが残っている場合には、固定用バルーン3内のエアとともに、圧力調整部217内のエアも吸気される。
 圧力調整部217は、例えば、圧力調整部217A、217Bのようにエアが付勢されていると、吸気に要する時間がさらに短縮される。この場合、術者は、より迅速かつ容易な吸気操作を行える。
When the diameter of the fixation balloon 3 is reduced, the air in the fixation balloon 3 is sucked by the manual air supply mechanism 211 .
The manual air-supplying mechanism 211 of this modified example is similar to the manual air-supplying mechanism 211 in the second embodiment, by switching the connection state of the manual air-supplying mechanism 211 to the second connection state and then operating the pump 211a. , rapid inspiration is possible.
When air remains in the pressure adjusting portion 217 at the time of inhalation, the air in the pressure adjusting portion 217 is also inhaled together with the air in the fixation balloon 3 .
If the pressure adjustment section 217 is energized with air like the pressure adjustment sections 217A and 217B, for example, the time required for intake can be further shortened. In this case, the operator can perform the inhalation operation more quickly and easily.
 本変形例の送気デバイス210Bを有するオーバーチューブ201は、第3の実施形態に係るオーバーチューブ201の送気デバイス210に代えて、送気デバイス210Bを有することを除いて、オーバーチューブ201と同様である。このため、本変形例によれば、第3の実施形態と同様、患者の負荷を低減するとともに内視鏡を円滑に操作することができる内視鏡用オーバーチューブを提供することができる。
 特に本変形例によれば、送気デバイス210Bが、送気デバイス210にさらに圧力調整部217を有する。
 これにより、送気デバイス210に比べて、絞り部P2の下流側の圧力上昇をさらに抑制できる。これにより、少ないエアの損失量で、固定用バルーン3を拡径することができるので、術者がポンプ211aを操作する時間が低減される。
An overtube 201 having an air supply device 210B of this modified example is the same as the overtube 201 except that it has an air supply device 210B instead of the air supply device 210 of the overtube 201 according to the third embodiment. is. Therefore, according to this modified example, as in the third embodiment, it is possible to provide an endoscope overtube that reduces the burden on the patient and allows smooth operation of the endoscope.
In particular, according to this modification, the air supply device 210B further has a pressure adjustment section 217 in addition to the air supply device 210 .
As a result, compared to the air supply device 210, the pressure rise on the downstream side of the constricted portion P2 can be further suppressed. As a result, the diameter of the fixation balloon 3 can be expanded with a small amount of air loss, so the time required for the operator to operate the pump 211a is reduced.
 送気デバイス210Bにおける圧力調整部217、217A、217Bは、第1管路に接続され、第1管路の流路断面積よりも大きい流路断面積を有する流路を有し、第1管路の圧力を表示する圧力表示器の例である。
 圧力調整部217における内部空間、圧力調整部217Aにおける第1空間Sa、および圧力調整部217Bにおける内部空間Scは、エアが流れる流路を形成しており、それぞれ第1管路P1よりも大きい流路断面積を有している。
The pressure adjusting units 217, 217A, and 217B in the air supply device 210B are connected to the first pipeline, have flow paths having a flow path cross-sectional area larger than the flow path cross-sectional area of the first pipeline, and are connected to the first pipeline. 1 is an example of a pressure indicator that displays channel pressure.
The internal space in the pressure adjusting section 217, the first space Sa in the pressure adjusting section 217A, and the internal space Sc in the pressure adjusting section 217B form flow paths through which air flows. It has a road cross-sectional area.
[第3変形例]
 第3の実施形態のオーバーチューブ201において、送気デバイス210に代えて用いる送気デバイスの変形例(第3変形例)を説明する。
 図17に示すように、本変形例の送気デバイス210Cは、オーバーチューブ201の送気デバイス210に代えて用いることができる。
 図45は、本発明の第3の実施形態に係る内視鏡用オーバーチューブに用いる送気デバイスの変形例(第3変形例)を示す模式的な正面図である。図46は、本発明の第3の実施形態に係る内視鏡用オーバーチューブに用いる送気デバイスの変形例(第3変形例)を示すブロック図である。
[Third modification]
A modification (third modification) of the air supply device used in place of the air supply device 210 in the overtube 201 of the third embodiment will be described.
As shown in FIG. 17, an air supply device 210C of this modified example can be used in place of the air supply device 210 of the overtube 201. As shown in FIG.
FIG. 45 is a schematic front view showing a modified example (third modified example) of the air supply device used in the endoscope overtube according to the third embodiment of the present invention. FIG. 46 is a block diagram showing a modified example (third modified example) of the air supply device used in the endoscope overtube according to the third embodiment of the present invention.
 図45に示すように、送気デバイス210Cは、送気デバイス210の本体部212に代えて本体部212Cを有する。
 本体部212Cは、接続管212aから送気管210aまでの間に、圧力表示器219と、第2変形例と同様の筐体部218と、を有する。
 図46に示すように、圧力表示器219は、第2変形例における圧力調整部217と同様、第3管路P5を介在して第1管路P1に連通している。
 本変形例におけるグリップ215は、第2変形例と同様、筐体部218に形成されている。
 以下、第3の実施形態と異なる点を中心に説明する。
As shown in FIG. 45, the air supply device 210C has a main body portion 212C instead of the main body portion 212 of the air supply device 210. As shown in FIG.
The body portion 212C has a pressure indicator 219 and a housing portion 218 similar to that of the second modification between the connection tube 212a and the air supply tube 210a.
As shown in FIG. 46, the pressure indicator 219 communicates with the first conduit P1 through the third conduit P5, like the pressure adjusting section 217 in the second modified example.
A grip 215 in this modified example is formed on a housing portion 218 as in the second modified example.
In the following, the points different from the third embodiment will be mainly described.
 図45には、術者が送気デバイス210Cを右手Hおよび左手Hで把持して操作する場合の標準的な配置が示されている。術者は、左手Hで、グリップ215を把持して、送気デバイス210Cを支える。術者は、右手Hによってポンプ211aを把持している。術者は、送気または吸気の操作を行う場合には、ポンプ211aを押す。このように、送気デバイス210Cが両手で把持されて術者の前方に配置された状態を、標準操作状態と称する。
 圧力表示器219の外形は、中心軸線Aiに沿って延びる柱形である。中心軸線Aiに直交する方向の断面形状は特に限定されない。例えば、圧力表示器219の断面形状は、円、楕円、矩形、多角形などであってもよい。図45に示す例では、圧力表示器219の外形は、中心軸線Aiに沿って延びる円柱形である。
 送気デバイス210Cでは、標準操作状態において、中心軸線Aiが術者の左右方向に延びる姿勢を取りやすいように、グリップ215と手動送気機構211とが配置されている。
FIG. 45 shows a standard arrangement when the operator holds and operates the air supply device 210C with the right hand HR and the left hand HL . The operator holds the grip 215 with the left hand HL to support the air supply device 210C. The operator holds the pump 211a with the right hand HR . The operator pushes the pump 211a when performing air supply or suction operation. The state in which the air supply device 210C is held in both hands and placed in front of the operator is referred to as a standard operating state.
The outer shape of the pressure indicator 219 is a columnar shape extending along the central axis Ai. The cross-sectional shape in the direction perpendicular to the central axis Ai is not particularly limited. For example, the cross-sectional shape of pressure indicator 219 may be circular, elliptical, rectangular, polygonal, or the like. In the example shown in FIG. 45, the outer shape of the pressure indicator 219 is cylindrical extending along the central axis Ai.
In the air supply device 210C, the grip 215 and the manual air supply mechanism 211 are arranged so that the central axis Ai can easily take a posture extending in the lateral direction of the operator in the standard operating state.
 本変形例におけるグリップ215は、図45において圧力表示器219の左側に配置された筐体部218から、中心軸線Aiに沿って図示左側に進むにつれて術者の方(図示下側)に向かうよう傾斜している。中心軸線Aiに対してグリップ215の中心軸線Aは、図示反時計回りに角度θだけ傾斜している。例えば、角度θは15°以上90°以下であってもよい。例えば、角度θは60°±15°の範囲であることがより好ましい。 The grip 215 in this modified example is arranged from the housing part 218 arranged on the left side of the pressure indicator 219 in FIG. Inclined. The central axis AG of the grip 215 is inclined by an angle θL with respect to the central axis Ai counterclockwise in the figure. For example, the angle θ L may be 15° or more and 90° or less. For example, the angle θ L is more preferably in the range of 60°±15°.
 本変形例における手動送気機構211は、図45において送気デバイス210の下側に隣接する筐体部218の接続管212aから、中心軸線Aiに沿って図示右側に進むにつれて術者の方(図示下側)に向かって傾斜している。中心軸線Aiに対して手動送気機構211の中心軸線Aは、図示時計回りに角度θだけ傾斜している。例えば、角度θは15°以上90°以下であってもよい。例えば、角度θは60°±15°の範囲であることがより好ましい。
 中心軸線Aは、ポンプ211aがゴム球ポンプの場合、ポンプ211aの中心軸線と一致しており、第1接続部211dの中心と第2接続部211eの中心とを結ぶ軸線である。
 この場合、角度θは、中心軸線Aiに対する接続管212aの中心軸線の傾斜角と一致する。
The manual air-supply mechanism 211 in this modified example moves toward the operator ( bottom in the drawing). The central axis A P of the manual air supply mechanism 211 is inclined by an angle θ R with respect to the central axis Ai in the clockwise direction. For example, the angle θ R may be 15° or more and 90° or less. For example, the angle θ R is more preferably in the range of 60°±15°.
When the pump 211a is a rubber ball pump, the central axis AP coincides with the central axis of the pump 211a, and is the axis connecting the center of the first connection portion 211d and the center of the second connection portion 211e.
In this case, the angle θ R coincides with the inclination angle of the central axis of the connecting pipe 212a with respect to the central axis Ai.
 角度θ、θの大きさは、左手Hおよび右手Hの把持位置によって変えてもよい。例えば、図45に示すように、標準操作状態において、グリップ215の把持位置に比べて、手動送気機構211の把持位置が術者側(図示下側)に偏っている場合、術者の操作しやすさを考慮すると、角度θは60°±15°、角度θは45°±15°であってもよい。 The magnitudes of the angles θ L and θ R may be changed according to the gripping positions of the left hand HL and the right hand HR . For example, as shown in FIG. 45, when the holding position of the manual air supply mechanism 211 is biased toward the operator side (lower side in the drawing) compared to the holding position of the grip 215 in the standard operation state, the operator's operation Considering ease of operation, the angle θ L may be 60°±15° and the angle θ R may be 45°±15°.
 このように、グリップ215および手動送気機構211の配置されることで、グリップ215および手動送気機構211は、標準操作状態における術者から見て圧力表示器219の左端部付近を頂点とする逆V字形に延びている。
 このような配置によれば、標準操作状態では、中心軸線Aiが術者の左右方向に沿うかまたは左右方向と鋭角で傾斜する姿勢に配置しやすい。
 特に、圧力表示器219における圧力の表示窓(後述する表示窓221a)を中心軸線Aiに沿って長く形成すると、術者は、表示窓が見やすくなるように、中心軸線Aiが左右方向に延びる姿勢に誘導されやすい。
By arranging the grip 215 and the manual air supply mechanism 211 in this way, the apex of the grip 215 and the manual air supply mechanism 211 is near the left end of the pressure indicator 219 as seen from the operator in the standard operating state. It extends in an inverted V shape.
According to such an arrangement, in the standard operating state, it is easy to arrange the central axis Ai along the left-right direction of the operator or inclined at an acute angle with respect to the left-right direction.
In particular, if the pressure display window (display window 221a, which will be described later) in the pressure indicator 219 is formed long along the central axis Ai, the operator takes a posture in which the central axis Ai extends in the horizontal direction so that the display window can be easily seen. It is easy to be induced to
 次に、圧力表示器219の詳細形状を説明する。
 図47は、送気デバイスの変形例(第3変形例)における圧力表示器の例を示す正面図である。図48は、図47におけるF48視の下面図である。図49は、図47におけるF49-F49線に沿う断面図である。
Next, the detailed shape of the pressure indicator 219 will be described.
FIG. 47 is a front view showing an example of a pressure indicator in a modified example (third modified example) of the air supply device. 48 is a bottom view of F48 in FIG. 47. FIG. 49 is a cross-sectional view taken along line F49-F49 in FIG. 47. FIG.
 以下では、圧力表示器219の外形が円柱形の例で説明する。
 圧力表示器219の形状と、圧力表示器219に含まれる構成部材と、に関して、圧力表示器219の組立状態の配置に基づいて、軸方向、周方向、および径方向を用いる場合がある。
 軸方向は、中心軸線Aiに沿う方向である。周方向は、中心軸線Ai回りに周回する方向である。径方向は、中心軸線Aiに直交する平面において中心軸線Aiに交差する線に沿う方向である。
 中心軸線Aiから径方向に延びる半直線上で、特定の位置より中心軸線Aiに近い位置は、特定の位置よりも径方向内側にあると称する場合がある。同様に、特定の位置より中心軸線Aiから遠い位置は、特定の位置よりも径方向外側にあると称する場合がある。
 圧力表示器219に関する軸方向の位置関係について、第3管路P5に近い方(図47における左側)を基端側と称し、第3管路P5から遠い方(図47における右側)を先端側と称する場合がある。基端側の部分を基端部、先端側の部分を先端部と称する場合がある。最も基端側の部位は基端、最も先端側の部位は先端である。
An example in which the outer shape of the pressure indicator 219 is cylindrical will be described below.
Regarding the shape of the pressure indicator 219 and the components included in the pressure indicator 219, axial, circumferential, and radial directions may be used based on the assembled configuration of the pressure indicator 219. FIG.
The axial direction is the direction along the center axis Ai. The circumferential direction is the direction of rotation around the center axis Ai. A radial direction is a direction along a line intersecting the central axis Ai on a plane perpendicular to the central axis Ai.
A position closer to the central axis Ai than a specific position on a half line extending radially from the central axis Ai may be referred to as radially inward of the specific position. Similarly, a position farther from the central axis Ai than a specific position may be referred to as being radially outward of the specific position.
Regarding the axial positional relationship with respect to the pressure indicator 219, the side closer to the third conduit P5 (the left side in FIG. 47) is called the proximal side, and the side farther from the third conduit P5 (the right side in FIG. 47) is called the distal side. sometimes referred to as The portion on the proximal side may be referred to as the proximal portion, and the portion on the distal side may be referred to as the distal portion. The most proximal portion is the proximal end and the most distal portion is the distal end.
 図47、図48に示すように、圧力表示器219は、ケース220(筐体)、表示窓形成部材221、および固定枠222を有する。
 図47は、圧力表示器219が図45と同じ姿勢で配置された状態を示す。このため、図47には、標準操作状態において術者から見える外面形状が示されている。
 図49に示すように、圧力表示器219は、その内部に、カラー223(移動部材)、気密部材225(封止部材、押え部材)、およびコイルバネ224(弾性部材)を、さらに有する。
As shown in FIGS. 47 and 48, the pressure indicator 219 has a case 220 (housing), a display window forming member 221, and a fixed frame 222. As shown in FIGS.
FIG. 47 shows the pressure indicator 219 placed in the same orientation as in FIG. Therefore, FIG. 47 shows the external shape seen by the operator in the standard operating state.
As shown in FIG. 49, the pressure indicator 219 further has a collar 223 (moving member), an airtight member 225 (sealing member, pressing member), and a coil spring 224 (elastic member) therein.
 ケース220は、圧力表示器219の軸方向に関する側面および基端部を形成する有底円筒形である。ケース220の材料は特に限定されない。例えば、ケース220の材料は、樹脂、金属、ガラス、およびこれらが2以上複合した複合材料であってもよい。ケース220は、樹脂成形品であることがより好ましい。
 ケース220を含むオーバーチューブ301の部品は、成形品の場合、製造上必要な抜き勾配がついていてもよい。以下の説明では、簡単のため、抜き勾配を無視した形状で説明する。例えば、「円筒面」は、厳密な円筒面と、抜き勾配がついて円筒面から傾斜した近似的な円筒面と、を含む。
 ケース220の色は特に限定されないが、後述する表示窓221aと重なる領域は、光透過性を有することが必要である。ケース220は表示窓221aと重なる部位のみが光透過性を有していてもよい。ただし、ケース220は、全体が光透過性を有することがより好ましい。
Case 220 has a bottomed cylindrical shape that forms the axial side surface and base end of pressure indicator 219 . A material for the case 220 is not particularly limited. For example, the material of case 220 may be resin, metal, glass, or a composite material in which two or more of these are combined. Case 220 is more preferably a resin molded product.
The parts of the overtube 301, including the case 220, may be drafted as required for manufacturing if molded. In the following description, for the sake of simplification, a shape ignoring the draft angle will be described. For example, a "cylindrical surface" includes an exact cylindrical surface and an approximate cylindrical surface that is drafted and inclined from a cylindrical surface.
The color of the case 220 is not particularly limited, but the region overlapping with the display window 221a, which will be described later, needs to be light transmissive. Only a portion of the case 220 that overlaps the display window 221a may be light transmissive. However, as for case 220, it is more preferred that the whole has light transmittance.
 以下では、特に断らない限り、ケース220全体が透明な樹脂材料で形成されている例で説明する。ただし、図49では、ケース220の一部が光透過性を有する場合に、少なくとも後述する表示窓形成部材221の表示窓221aと重なる領域が光透過性を有すべきことを強調する目的で、対応する領域を斜線と破線とが交互に施された斜線/破線ハッチングで示している。すなわち、以下の説明では、ケース220の図示において斜線ハッチングが施された部位も、斜線/破線ハンチングが施された部位と同様、透明材料からなるが、ケース220において不透明材料を用いる場合には、斜線ハッチングの部位の範囲に用いてもよいことを表している。
 透明な樹脂材料の種類は特に限定されない。例えば、ケース220に好適な樹脂材料としては、ポリカーボネート、アクリル、ポリサルフォンなどが挙げられる。
In the following, unless otherwise specified, an example in which the entire case 220 is made of a transparent resin material will be described. However, in FIG. 49, for the purpose of emphasizing that at least the region overlapping the display window 221a of the display window forming member 221, which will be described later, should have light transmittance when a part of the case 220 has light transmittance, Corresponding regions are indicated by alternating diagonal and dashed diagonal/dashed hatching. That is, in the following description, the portions hatched with diagonal lines in the illustration of the case 220 are also made of a transparent material like the portions marked with diagonal/broken lines. It represents that it may be used in the range of the portion hatched with oblique lines.
The kind of transparent resin material is not particularly limited. For example, resin materials suitable for the case 220 include polycarbonate, acrylic, and polysulfone.
 図49に示すように、ケース220は、底面部220a、側面部220b(移動管路)、先端枠220c、および接続管220dを有する。
 底面部220aはケース220の基端に配置された円形の板状部である。
 側面部220bは、底面部220aの外周部から軸方向における先端側に延びる円筒形である。側面部220bの外周面220eおよび内周面220fはいずれも円筒面である。
 側面部220bの先端部には、後述する固定枠222の係止爪222eを係止する係止部220gが設けられている。
As shown in FIG. 49, the case 220 has a bottom portion 220a, a side portion 220b (moving pipeline), a distal end frame 220c, and a connecting pipe 220d.
The bottom portion 220 a is a circular plate-like portion arranged at the base end of the case 220 .
The side surface portion 220b has a cylindrical shape extending axially from the outer peripheral portion of the bottom surface portion 220a toward the distal end side. Both the outer peripheral surface 220e and the inner peripheral surface 220f of the side surface portion 220b are cylindrical surfaces.
An engaging portion 220g for engaging an engaging claw 222e of a fixed frame 222, which will be described later, is provided at the tip of the side surface portion 220b.
 係止部220gの形状は、係止爪222eを係止できれば特に限定されない。図49に示す例では、係止部220gは、側面部220bの厚さ方向に貫通する矩形孔の内周部によって形成されている。
 係止部220gの個数および配置は、後述する係止爪222eの個数および配置に応じた適宜な個数および配置とされる。例えば、図47、図48に示す例では、係止部220gは、側面部220bを周方向に略4等分する4位置を中心としてそれぞれ一つずつ設けられている。各係止部220gは、1以上の係止爪222eを係止できる。
The shape of the locking portion 220g is not particularly limited as long as it can lock the locking claw 222e. In the example shown in FIG. 49, the engaging portion 220g is formed by the inner peripheral portion of a rectangular hole penetrating through the side portion 220b in the thickness direction.
The number and arrangement of the engaging portions 220g are appropriately determined according to the number and arrangement of the engaging claws 222e, which will be described later. For example, in the examples shown in FIGS. 47 and 48, the locking portions 220g are provided one each around four positions that divide the side portion 220b into approximately equal quarters in the circumferential direction. Each locking portion 220g can lock one or more locking claws 222e.
 先端枠220cは、側面部220bの先端において側面部220bと同軸に形成された円環形の枠である。先端枠220cの外径は、先端枠220cの外径よりもわずかに大きい。このため、側面部220bと先端枠220cとの接続部には、径方向外側に延びる段部が形成されている。
 先端枠220cの内径と側面部220bの内径との関係も同様である。
The tip frame 220c is an annular frame formed coaxially with the side portion 220b at the tip of the side portion 220b. The outer diameter of the tip frame 220c is slightly larger than the outer diameter of the tip frame 220c. For this reason, a stepped portion extending radially outward is formed at the connecting portion between the side portion 220b and the tip frame 220c.
The same applies to the relationship between the inner diameter of the tip end frame 220c and the inner diameter of the side surface portion 220b.
 接続管220dは、底面部220aの中心部から中心軸線Aiに沿ってケース220の外側に突出している。接続管220dは、第3管路P5の端部と接続可能な適宜の形状を有している。
 本体部212Cにおいて、第1管路P1および第3管路P5の経路は特に限定されないが、図47において二点鎖線で示す例では、第3管路P5は中心軸線Aiに沿って延びており、底面部220aに沿って図示下側から上側に延びる第1管路P1に接続している。
 第1管路P1は、図示下端部において中心軸線Aiと平行な方向に屈曲し、側面部220bに沿って側面部220bの軸方向の略中央まで延びている。さらに第1管路P1は、接続管212aの角度に沿うように屈曲して、接続管212aと接続している。
The connection pipe 220d protrudes outside the case 220 from the center of the bottom surface portion 220a along the central axis Ai. The connection pipe 220d has an appropriate shape that can be connected to the end of the third pipeline P5.
In the main body portion 212C, the routes of the first pipeline P1 and the third pipeline P5 are not particularly limited, but in the example shown by the two-dot chain line in FIG. , to a first pipeline P1 extending from the lower side to the upper side in the drawing along the bottom surface portion 220a.
The first pipeline P1 is bent in a direction parallel to the central axis Ai at its lower end in the figure, and extends along the side portion 220b to substantially the center of the side portion 220b in the axial direction. Further, the first conduit P1 is bent along the angle of the connecting pipe 212a and connected to the connecting pipe 212a.
 図47、図48に示すように、表示窓形成部材221は、ケース220の側面部220bの外周面220eに沿って周方向に巻き付けて固定されたフィルムである。
 表示窓形成部材221の材料としては、光透過性を有しないか、または光透過性が低いフィルムが用いられている。
 表示窓形成部材221の光透過性を低減する手段は特に限定されない。例えば、表示窓形成部材221として、光透過性が低い着色材料で形成されたフィルムが用いられてもよい。例えば、表示窓形成部材221として、透明なベース材料の表面に不透明な層状部が形成された多層フィルムが用いられてもよい。例えば、不透明な層状部は、印刷、蒸着、ラミネート加工、レーザー加工、シールの貼り付けなどによって形成されてもよい。
As shown in FIGS. 47 and 48, the display window forming member 221 is a film that is circumferentially wound along the outer peripheral surface 220e of the side portion 220b of the case 220 and fixed.
As a material of the display window forming member 221, a film having no light transmittance or low light transmittance is used.
A means for reducing the light transmittance of the display window forming member 221 is not particularly limited. For example, as the display window forming member 221, a film made of a coloring material with low light transmittance may be used. For example, as the display window forming member 221, a multilayer film in which an opaque layered portion is formed on the surface of a transparent base material may be used. For example, the opaque layered portion may be formed by printing, vapor deposition, lamination, laser processing, sticker application, or the like.
 表示窓形成部材221の外形は軸方向に長い矩形である。すなわち、表示窓形成部材221は、細長い矩形フィルムの長手方向が周方向に沿うように、側面部220bに巻き付けられている。
 表示窓形成部材221は、ケース220の側面部220bの全体を覆っていてもよいが、図47、図48に示す例では、側面部220bの一部を覆っている。
 表示窓形成部材221は、軸方向において、軸方向の中央よりも先端側の位置からケース220の基端の近くまで側面部220bを覆っている。表示窓形成部材221は、周方向においてケース220の全周のうち半分より長い範囲を覆っている。
 表示窓形成部材221は、例えば、接着剤、粘着材などによって側面部220bに固定されている。
The outer shape of the display window forming member 221 is a rectangle elongated in the axial direction. That is, the display window forming member 221 is wound around the side surface portion 220b such that the longitudinal direction of the elongated rectangular film is along the circumferential direction.
The display window forming member 221 may cover the entire side surface 220b of the case 220, but in the example shown in FIGS. 47 and 48, it covers a part of the side surface 220b.
The display window forming member 221 covers the side surface portion 220b from a position on the distal end side of the center in the axial direction to near the proximal end of the case 220 in the axial direction. The display window forming member 221 covers an area longer than half of the entire circumference of the case 220 in the circumferential direction.
The display window forming member 221 is fixed to the side surface portion 220b by, for example, an adhesive or adhesive.
 表示窓形成部材221の周方向(長手方向)の中央であって、軸方向(短手方向)における先端寄りには、軸方向に長い矩形状の開口部である表示窓221aが厚さ方向に貫通している。
 ただし、表示窓形成部材221が不透明な層状部と透明なベース材料とによって形成される場合には、不透明な層状部に貫通する孔とともに、孔に重なるベース材料も表示窓221aを構成する。すなわち、表示窓221aは光学的に開口していればよい。
 表示窓221aの長手方向の中心軸線は、図47に示す正面視では、中心軸線Aiと重なっている。
At the center of the display window forming member 221 in the circumferential direction (longitudinal direction) and near the tip in the axial direction (lateral direction), a display window 221a, which is an axially long rectangular opening, extends in the thickness direction. penetrates.
However, when the display window forming member 221 is formed of an opaque layered portion and a transparent base material, the hole passing through the opaque layered portion and the base material overlapping the hole also form the display window 221a. That is, the display window 221a may be optically opened.
The central axis of the display window 221a in the longitudinal direction overlaps with the central axis Ai in the front view shown in FIG.
 表示窓221aの内側および表示窓221aを囲む縁部には、第1目盛線221b(参照目盛)と、第2目盛線221c(参照目盛)とが形成されている。
 第1目盛線221bは、例えば、固定用バルーン3の適正な内圧の下限値を示す。
 第2目盛線221cは、例えば、固定用バルーン3の適正な内圧の上限値を示す。
 第1目盛線221bおよび第2目盛線221cは、表示窓形成部材221と一体に形成されてもよいし、表示窓形成部材221が側面部220bに固定された後に、形成されてもよい。
 本変形例では、第1目盛線221bおよび第2目盛線221cは、表示窓形成部材221を側面部220bに固定した後、印刷などによって形成されている。この場合、第1目盛線221bおよび第2目盛線221cの位置は、組み立てられた圧力表示器219を検査するなどして、実測された圧力表示値に基づく位置に形成できる。
A first scale line 221b (reference scale) and a second scale line 221c (reference scale) are formed inside the display window 221a and on the edge surrounding the display window 221a.
The first scale line 221b indicates, for example, the lower limit value of the proper internal pressure of the fixation balloon 3 .
The second scale line 221c indicates, for example, the upper limit value of the proper internal pressure of the fixation balloon 3 .
The first scale line 221b and the second scale line 221c may be formed integrally with the display window forming member 221, or may be formed after the display window forming member 221 is fixed to the side surface portion 220b.
In this modification, the first scale line 221b and the second scale line 221c are formed by printing or the like after fixing the display window forming member 221 to the side surface portion 220b. In this case, the positions of the first scale line 221b and the second scale line 221c can be formed based on the actually measured pressure display value by inspecting the assembled pressure indicator 219 or the like.
 図49に示すように、固定枠222は、後述する気密部材225の先端部を押さえて気密部材225の先端部の位置を固定する。固定枠222は、ケース220の先端部の開口を形成する先端枠220cの内側に嵌め込まれている。固定枠222は、有底筒状に形成されており、中心軸線Aiと同軸に配置されている。
 固定枠222は、底面部222a、第1筒状部222f、第2筒状部222b、係止爪222e、およびフランジ部222cを有する。
As shown in FIG. 49, the fixing frame 222 holds the tip of the airtight member 225 to be described later and fixes the position of the tip of the airtight member 225 . The fixed frame 222 is fitted inside a tip end frame 220 c that forms an opening at the tip of the case 220 . The fixed frame 222 is formed in a cylindrical shape with a bottom and arranged coaxially with the center axis Ai.
The fixed frame 222 has a bottom portion 222a, a first tubular portion 222f, a second tubular portion 222b, a locking claw 222e, and a flange portion 222c.
 底面部222aは、底面部220aよりも小径の円板である。底面部222aの中央部には、貫通孔222dが厚さ方向に貫通している。
 第1筒状部222fは、固定枠222の基端側の側面部を形成する。第1筒状部222fは、底面部222aの外周から軸方向における先端側に延びる。第1筒状部222fの外周面222gには、基端から先端に向かうにつれてわずかに外側に向かうテーパが付けられている。
 外周面222gの外径は、ケース220の側面部220bの内周面220fの内径よりも小さい。外周面222gと側面部220bの内周面220fとの間には、後述する気密部材225の先端部を挟む隙間が形成されている。
The bottom surface portion 222a is a disk having a diameter smaller than that of the bottom surface portion 220a. 222 d of through-holes are penetrated in the thickness direction in the center part of the bottom face part 222a.
The first cylindrical portion 222f forms a side portion of the fixed frame 222 on the base end side. The first tubular portion 222f extends axially from the outer periphery of the bottom surface portion 222a toward the distal end side. An outer peripheral surface 222g of the first tubular portion 222f is tapered slightly outward from the proximal end to the distal end.
The outer diameter of the outer peripheral surface 222 g is smaller than the inner diameter of the inner peripheral surface 220 f of the side surface 220 b of the case 220 . Between the outer peripheral surface 222g and the inner peripheral surface 220f of the side surface portion 220b, a gap is formed to sandwich the tip portion of the airtight member 225, which will be described later.
 第2筒状部222bは、固定枠222の先端側の側面部を形成する。第2筒状部222bの形状は、第1筒状部222fの先端に接続する円環形である。第2筒状部222bは、側面部220bの先端部の内側に嵌合する。
 第2筒状部222bには、ケース220の係止部220gに係止する係止爪222eが形成されている。例えば、係止爪222eは、径方向に弾性変形可能であり軸方向に延びている。係止爪222eの延在方向に先端には、径方向外側に突出する係止突起が形成されている。
 例えば、図47、図48に示す例では、係止爪222eは、係止部220gと同様、第2筒状部222bを周方向に略4等分する4位置を中心としてそれぞれ一つまたは二つずつ設けられている。
 係止爪222eの係止突起は、側面部220bの内側から係止爪222eの孔内に貫入し、係止部220gの内面に係止する。これにより、ケース220に嵌め込まれた固定枠222は、軸方向に抜け止めされる。
The second tubular portion 222b forms a side surface portion of the fixed frame 222 on the distal end side. The shape of the second cylindrical portion 222b is an annular shape connected to the tip of the first cylindrical portion 222f. The second tubular portion 222b fits inside the tip of the side surface portion 220b.
A locking claw 222e that locks onto the locking portion 220g of the case 220 is formed on the second tubular portion 222b. For example, the locking pawl 222e is elastically deformable in the radial direction and extends in the axial direction. A locking protrusion protruding radially outward is formed at the tip in the extending direction of the locking claw 222e.
For example, in the example shown in FIGS. 47 and 48, the locking claws 222e have one or two locking claws 222e centering on four positions that divide the second tubular portion 222b into approximately equal quarters in the circumferential direction, similarly to the locking portion 220g. are provided one by one.
The locking protrusion of the locking claw 222e penetrates into the hole of the locking claw 222e from the inner side of the side surface portion 220b and is locked to the inner surface of the locking portion 220g. As a result, the fixed frame 222 fitted in the case 220 is axially retained.
 図49に示すように、フランジ部222cは、側面部220bの先端から径方向外側に延びている。軸方向から見たフランジ部222cの形状は、図49に示すように円環形である。フランジ部222cの外径は、ケース220の先端枠220cの外径に等しい。
 固定枠222がケース220に嵌め込まれ、各係止爪222eが係止部220gに係止した状態では、フランジ部222cは先端枠220cの先端に当接している。
 このようにして、固定枠222は、ケース220に嵌め込まれた状態で、ケース220に対する軸方向および周方向の位置が固定される。
As shown in FIG. 49, the flange portion 222c extends radially outward from the tip of the side portion 220b. The shape of the flange portion 222c viewed from the axial direction is an annular shape as shown in FIG. The outer diameter of the flange portion 222 c is equal to the outer diameter of the tip end frame 220 c of the case 220 .
When the fixed frame 222 is fitted into the case 220 and the locking claws 222e are locked to the locking portions 220g, the flange portion 222c is in contact with the tip of the tip end frame 220c.
In this manner, the fixed frame 222 is fixed in axial and circumferential positions with respect to the case 220 while being fitted into the case 220 .
 カラー223は、ケース220の側面部220bの内側で軸方向に移動可能に設けられている。図49には、カラー223の基端がケース220の底面部220aに当接しており、カラー223は移動範囲における最も基端側の位置に配置されている。
 カラー223の外形は、側面部220bの内周面220fよりわずかに小径の円筒形である。カラー223の内側には、後述する気密部材225の基端部が挿入される。気密部材225の基端部は、カラー223に固定される。
 カラー223は、外筒部223a(管状部)、係止板223b、円孔部223h、角溝部223i、ガイド223e、嵌合爪223f、および押さえ爪223gを有する。
The collar 223 is provided so as to be axially movable inside the side surface portion 220b of the case 220 . In FIG. 49, the proximal end of the collar 223 is in contact with the bottom surface portion 220a of the case 220, and the collar 223 is arranged at the most proximal position in the movement range.
The outer shape of the collar 223 is cylindrical with a slightly smaller diameter than the inner peripheral surface 220f of the side surface 220b. Inside the collar 223, a base end portion of an airtight member 225, which will be described later, is inserted. A proximal end of the airtight member 225 is fixed to the collar 223 .
The collar 223 has an outer cylinder portion 223a (tubular portion), a locking plate 223b, a circular hole portion 223h, an angular groove portion 223i, a guide 223e, a fitting claw 223f, and a pressing claw 223g.
 外筒部223aは、側面部220bの内周面220fよりわずかに小径の円筒である。図49に示す例では、外筒部223aの先端は、中心軸線Aiに直交する同一平面上に整列している。
 外筒部223aの先端は、軸方向におけるカラー223が移動する範囲では、外側から見て表示窓221aを周方向に横断している。表示窓221aを横断する外筒部223aの先端の部位を先端エッジ部223cと称する。ただし、先端エッジ部223cは、外筒部223aの先端より先端側に突出していてもよいし、基端側に引っ込んでいてもよい。
 カラー223において、先端エッジ部223cの近傍は、術者が外から視認しやすいように、適宜の色に着色されている。例えば、カラー223は、先端エッジ部223cを含む全体が着色されてもよい。
The outer cylindrical portion 223a is a cylinder with a slightly smaller diameter than the inner peripheral surface 220f of the side surface portion 220b. In the example shown in FIG. 49, the tips of the outer cylindrical portions 223a are aligned on the same plane perpendicular to the central axis Ai.
The tip of the outer cylindrical portion 223a circumferentially crosses the display window 221a as viewed from the outside within the range in which the collar 223 moves in the axial direction. A tip portion of the outer cylindrical portion 223a that crosses the display window 221a is referred to as a tip edge portion 223c. However, the tip edge portion 223c may protrude to the tip side from the tip of the outer cylindrical portion 223a, or may be recessed to the base end side.
In the collar 223, the vicinity of the tip edge portion 223c is colored with an appropriate color so that the operator can easily see it from the outside. For example, the collar 223 may be colored entirely including the leading edge portion 223c.
 係止板223bは、中心軸線Aiに直交する円板である。係止板223bは、後述する気密部材225の基端部を係止する。特に本変形例では、気密部材225は係止板223bに係止されるとともに、係止板223bに着脱可能に固定される。
 係止板223bは、外筒部223aの基端寄りの外筒部223aの内側に設けられている。
The locking plate 223b is a disk orthogonal to the central axis Ai. The locking plate 223b locks the base end of the airtight member 225, which will be described later. Especially in this modified example, the airtight member 225 is locked to the locking plate 223b and is detachably fixed to the locking plate 223b.
The locking plate 223b is provided inside the outer cylinder portion 223a near the proximal end of the outer cylinder portion 223a.
 図50は、送気デバイスの変形例(第3変形例)におけるカラー、コイルバネ、および気密部材の例を示す分解斜視図である。図51は、送気デバイスの変形例(第3変形例)におけるカラーに対する気密部材の固定構造を示す模式図である。図52は、図48におけるF52-F52線に沿う断面図である。
 図50に示すように、係止板223bの中心には、円孔部223hが厚さ方向に貫通している。円孔部223hは中心軸線Aiと同軸に形成されている。
 円孔部223hに沿う係止板223bには、一部が外側に切り欠かれることによって、一対の角溝部223iが形成されている。各角溝部223iは、円孔部223hの中心を挟んで円孔部223hの径方向において互いに対向している。
 各角溝部223iを除く円孔部223hの内周部には、軸方向から見て円弧状のガイド223eが基端側に延びている。
 図49に示すように、各ガイド223eは、外筒部223aの基端よりも基端側に飛び出さない高さを有する。
FIG. 50 is an exploded perspective view showing an example of a collar, a coil spring, and an airtight member in a modified example (third modified example) of the air supply device. FIG. 51 is a schematic diagram showing a fixing structure of an airtight member to a collar in a modified example (third modified example) of the air supply device. 52 is a cross-sectional view taken along line F52-F52 in FIG. 48. FIG.
As shown in FIG. 50, a circular hole 223h penetrates through the center of the locking plate 223b in the thickness direction. The circular hole portion 223h is formed coaxially with the center axis Ai.
A pair of square grooves 223i are formed by partially cutting out the locking plate 223b along the circular hole 223h. The square grooves 223i face each other in the radial direction of the circular hole 223h with the center of the circular hole 223h interposed therebetween.
An arc-shaped guide 223e extends toward the base end when viewed from the axial direction on the inner peripheral portion of the circular hole portion 223h excluding each square groove portion 223i.
As shown in FIG. 49, each guide 223e has a height that does not protrude beyond the proximal end of the outer cylindrical portion 223a.
 係止板223bの先端側の表面である係止面223dには、先端側に突出した後、中心軸線Aiに向かって屈曲する鉤状断面を有する押さえ爪223gが設けられている。押さえ爪223gの先端部と係止板223bの間には、一定の隙間が形成されている。
 本変形例では、カラー223を樹脂成形で形成しているので、押さえ爪223gの先端部と対向する係止板223bには、アンダーカットを避けるための孔223kが貫通している。
 図51に示すように、押さえ爪223gおよび孔223kは、中心軸線Ai周りの円周を4等分する4箇所にそれぞれ一つずつ設けられている。
A locking surface 223d, which is a surface on the front end side of the locking plate 223b, is provided with a pressing claw 223g having a hook-shaped cross section that protrudes toward the front end side and then bends toward the central axis Ai. A certain gap is formed between the tip of the pressing claw 223g and the locking plate 223b.
In this modification, since the collar 223 is formed by resin molding, a hole 223k for avoiding undercut penetrates through the locking plate 223b facing the tip of the pressing claw 223g.
As shown in FIG. 51, one presser claw 223g and one hole 223k are provided at each of four locations that divide the circumference around the center axis Ai into four equal parts.
 図50に示すように、係止板223bの基端側には、一対の嵌合爪223fが設けられている。
 図52に示すように、嵌合爪223fは、基端側に突出した後、中心軸線Aiに向かって屈曲する鉤状断面を有する。嵌合爪223fにおいて、鈎の先端部には、軸方向における先端側に突出する嵌合突起223mが形成されている。嵌合爪223fと、係止板223bとの間には、後述する気密部材225の嵌合突起225bが嵌合する隙間が形成されている。
 本変形例では、カラー223を樹脂成形で形成しているので、嵌合爪223fの突出方向における先端部と対向する係止板223bには、アンダーカットを避けるための孔223jが貫通している。
 図51に示すように、嵌合爪223fは、中心軸線Aiを挟んで径方向に対向する2箇所にそれぞれ一つずつ設けられている。各嵌合爪223fは、中心軸線Aiに直交する軸線Av上に形成されている。径方向において互いに対向する押さえ爪223gの一対は、各嵌合爪223fを挟んで、軸線Av上に配置されている。
 各角溝部223iの対向方向に延びる中心軸線Ahは、軸線Avに対して図示時計回りに45°傾斜している。
As shown in FIG. 50, a pair of fitting claws 223f are provided on the base end side of the locking plate 223b.
As shown in FIG. 52, the fitting claw 223f has a hook-shaped cross section that protrudes toward the proximal end and then bends toward the central axis Ai. In the fitting claw 223f, a fitting projection 223m that protrudes toward the tip in the axial direction is formed at the tip of the hook. Between the fitting claw 223f and the locking plate 223b, a gap is formed in which a fitting projection 225b of the airtight member 225, which will be described later, is fitted.
In this modification, since the collar 223 is formed by resin molding, a hole 223j for avoiding undercut penetrates through the locking plate 223b facing the tip of the fitting claw 223f in the protruding direction. .
As shown in FIG. 51, the fitting claws 223f are provided one each at two locations facing each other in the radial direction across the center axis Ai. Each fitting claw 223f is formed on an axis Av perpendicular to the central axis Ai. A pair of pressing claws 223g facing each other in the radial direction are arranged on the axis Av with the fitting claws 223f interposed therebetween.
A central axis Ah extending in the facing direction of each square groove portion 223i is inclined 45° clockwise in the figure with respect to the axis Av.
 図49に示すように、気密部材225は、全体として、軸方向における先端側に開口し、軸方向における長さが伸縮可能なカップ形である。気密部材225は、ケース220の内部において、カラー223と固定枠222との間に挟まれている。
 気密部材225は、軟性のエラストマーの成形品によって形成されている。
 例えば、気密部材225の材料としては、シリコーンゴム、ウレタンゴム、ニトリルゴムなどが挙げられる。
 図50に示すように、気密部材225は、底板部225c(第2固定部)、ボス部225a(第2固定部)、嵌合突起225b、蛇腹管部225d、フランジ部225e、および封止部225f(第1固定部)を有する。
As shown in FIG. 49 , the airtight member 225 is generally cup-shaped with an opening on the distal end side in the axial direction and an extendable length in the axial direction. The airtight member 225 is sandwiched between the collar 223 and the fixed frame 222 inside the case 220 .
The airtight member 225 is formed of a soft elastomer molding.
Examples of materials for the airtight member 225 include silicone rubber, urethane rubber, and nitrile rubber.
As shown in FIG. 50, the airtight member 225 includes a bottom plate portion 225c (second fixed portion), a boss portion 225a (second fixed portion), a fitting protrusion 225b, a bellows tube portion 225d, a flange portion 225e, and a sealing portion. 225f (first fixing portion).
 底板部225cは、中心軸線Aiに直交する平板であり、気密部材225の基端部に設けられている。軸方向から見た底板部225cの外周部には、外周を周方向に4等分する位置の4箇所から径方向外側に係合突起225iが突出している。
 図49、図52に示すように、各係合突起225iは、カラー223の係止面223dと押さえ爪223gとの間の隙間に挿入されて、カラー223と軸方向に係合している。
 図50に示すように、ボス部225aは、底板部225cの中心部が、軸方向における基端側に向かって膨出して形成されている。軸方向から見たボス部225aの外形は円形である。ボス部225aは、カラー223の円孔部223hおよびガイド223eの内周面に、中心軸線Ai回りに回転可能に嵌合する。
The bottom plate portion 225 c is a flat plate perpendicular to the central axis Ai and provided at the base end portion of the airtight member 225 . Engagement projections 225i protrude radially outward from four positions on the outer periphery of the bottom plate portion 225c as seen from the axial direction, which equally divide the outer periphery into quarters in the circumferential direction.
As shown in FIGS. 49 and 52, each engaging projection 225i is inserted into the gap between the locking surface 223d of the collar 223 and the pressing claw 223g and engages with the collar 223 in the axial direction.
As shown in FIG. 50, the boss portion 225a is formed such that the central portion of the bottom plate portion 225c protrudes toward the base end side in the axial direction. The outer shape of the boss portion 225a seen from the axial direction is circular. The boss portion 225a is fitted to the circular hole portion 223h of the collar 223 and the inner peripheral surface of the guide 223e so as to be rotatable around the central axis Ai.
 図52に示すように、嵌合突起225bは、ボス部225aの側面から、底板部225cに平行に突出する板である。嵌合突起225bの突出量および厚さは、係止板223bと嵌合爪223fとの間の隙間に嵌合する大きさである。
 嵌合突起225bの基端側の表面には、押さえ爪223gの嵌合突起223mが嵌合する嵌合溝225hが形成されている。
 嵌合溝225hは、中心軸線Ai周りに嵌合突起223mが回転する軌道に沿って周方向に延びている。
 嵌合突起225bは、中心軸線Aiを挟んで径方向に対向する2箇所にそれぞれ設けられている。
As shown in FIG. 52, the fitting protrusion 225b is a plate that protrudes parallel to the bottom plate portion 225c from the side surface of the boss portion 225a. The projection amount and thickness of the fitting protrusion 225b are such that they fit into the gap between the locking plate 223b and the fitting claw 223f.
A fitting groove 225h into which the fitting projection 223m of the pressing claw 223g fits is formed on the surface of the fitting projection 225b on the base end side.
The fitting groove 225h extends in the circumferential direction along the track along which the fitting protrusion 223m rotates around the center axis Ai.
The fitting projections 225b are provided at two locations facing each other in the radial direction across the center axis Ai.
 蛇腹管部225dは、係合突起225iを除く底板部225cの外周部から軸方向における先端側に延びている。蛇腹管部225dの径方向外側の外径は係合突起225iの径方向の端が位置する円周の直径よりも小さい。
 ここで、図53を参照して、蛇腹管部225dの詳細な断面形状を説明する。
 図53は、図52におけるF53部の拡大図である。
The bellows tube portion 225d extends from the outer peripheral portion of the bottom plate portion 225c, excluding the engaging projection 225i, toward the distal end side in the axial direction. The radially outer diameter of the bellows tube portion 225d is smaller than the diameter of the circumference where the radial ends of the engaging projections 225i are located.
Now, with reference to FIG. 53, a detailed cross-sectional shape of the bellows tube portion 225d will be described.
53 is an enlarged view of the F53 portion in FIG. 52. FIG.
 図53に示す蛇腹管部225dは、軸方向に外力が作用しない自然状態の形状を示す。以下特に断らない限り、自然状態の蛇腹管部225dを説明する。蛇腹管部225dは、自然状態よりも圧縮された状態で圧力表示器219に組み立てられてもよいが、以下では、図49に示すようにカラー223が最も基端側に移動している状態で、蛇腹管部225dが自然状態になっている例で説明する。 A bellows tube portion 225d shown in FIG. 53 has a shape in a natural state where no external force acts in the axial direction. Unless otherwise specified, the bellows tube portion 225d in its natural state will be described below. The bellows tube portion 225d may be assembled to the pressure indicator 219 in a more compressed state than in its natural state, but will be described below with the collar 223 moved most proximally as shown in FIG. , an example in which the bellows tube portion 225d is in a natural state.
 蛇腹管部225dは、中心軸線Aiに直交する平面に対して傾斜するテーパ形状を有し、軸方向から見ると円環形の薄肉部225tを有する。薄肉部225tは、軸方向において交互に傾斜が変わるように配置されて、内周部および外周部で隣り合う薄肉部225t同士が互いに連結されている。
 内周部では屈曲部225sによって、外周部では厚肉部225nによって、それぞれ連結されている。
The bellows tube portion 225d has a tapered shape that is inclined with respect to a plane perpendicular to the central axis Ai, and has an annular thin portion 225t when viewed from the axial direction. The thin portions 225t are arranged so that the inclination thereof alternates in the axial direction, and adjacent thin portions 225t are connected to each other at the inner peripheral portion and the outer peripheral portion.
The inner peripheral portion is connected by a bent portion 225s, and the outer peripheral portion is connected by a thick portion 225n.
 蛇腹管部225dの外周面は、第1外斜面225k、第1外側面225j、第2外斜面225m、および第2外側面225uが軸方向に反復する凹凸面である。
 第1外斜面225kは、軸方向における基端側(図示左側)から先端側(図示右側に向かって進むにつれて径方向外側に傾斜する。
 第1外側面225jは、第1外斜面225kの径方向外側の端から軸方向における先端側に延びる円筒面である。第1外側面225jは、蛇腹管部225dの最外の外周面を形成する。
 第2外斜面225mは、第1外側面225jの先端から先端側に進むにつれて径方向内側に向かって傾斜する。
 第2外側面225uは、第2外斜面225mの径方向内側の端から軸方向における先端側に延びる円筒面である。
The outer peripheral surface of the bellows tube portion 225d is an uneven surface in which a first outer slope 225k, a first outer surface 225j, a second outer slope 225m, and a second outer surface 225u repeat in the axial direction.
The first outer slope 225k is inclined radially outward from the base end side (left side in the figure) in the axial direction toward the tip end side (right side in the figure).
The first outer surface 225j is a cylindrical surface extending from the radially outer end of the first outer slope 225k toward the tip side in the axial direction. The first outer surface 225j forms the outermost outer surface of the bellows tube portion 225d.
The second outer slope 225m inclines radially inward from the tip of the first outer side surface 225j toward the tip side.
The second outer surface 225u is a cylindrical surface extending from the radially inner end of the second outer slope 225m toward the tip side in the axial direction.
 蛇腹管部225dの内周面は、第1内斜面225q、第1内側面225p、第2内斜面225r、および第2内側面225vが軸方向に反復する凹凸面である。
 第1内斜面225qは、薄肉部225tにおいては第1外側面225jと距離がtnである。第1内斜面225qは、屈曲部225sの軸方向における先端側の表面も形成している。
 第1内側面225pは、厚肉部225nの内周面を形成する。第1内側面225pと第1外側面225jとの径方向の間隔はDkである。
 第2内斜面225rは、第1内側面225pの先端から先端側に進むにつれて径方向内側に向かって傾斜する。
 第2内側面225vは、第2内斜面225rの径方向内側の端から軸方向における円筒面である。
The inner peripheral surface of the bellows tube portion 225d is an uneven surface in which the first inner slope 225q, the first inner surface 225p, the second inner slope 225r, and the second inner surface 225v repeat in the axial direction.
The first inner slope 225q has a distance of tn from the first outer side surface 225j in the thin portion 225t. The first inner slope 225q also forms a surface on the tip side in the axial direction of the bent portion 225s.
The first inner surface 225p forms the inner peripheral surface of the thick portion 225n. The radial distance between the first inner surface 225p and the first outer surface 225j is Dk.
The second inner slope 225r inclines radially inward from the tip of the first inner side surface 225p toward the tip side.
The second inner surface 225v is a cylindrical surface in the axial direction from the radially inner end of the second inner slope 225r.
 厚肉部225nは、第1外斜面225k、第1外側面225j、第2外斜面225m、および第1内側面225pで囲まれた台形断面が、中心軸線Ai周りに回転して形成される円環形である。
 中心軸線Aiに沿う軸方向における厚肉部225nの第1幅(軸方向における最大の厚さ)はWk、中心軸線Aiに直交する径方向における厚肉部225nの第2幅(第1内側面225pと第1外側面225jとの距離)はDkである。
 中心軸線Aiを含む断面における隣り合う薄肉部225tのなす角は、φである。軸方向における蛇腹管部225dの蛇腹形状のピッチは、蛇腹管部225dが外力によって変形していない自然状態における厚肉部225nの厚さ方向の中心のピッチPbで定義される。
The thick portion 225n is a circle formed by rotating a trapezoidal cross section surrounded by the first outer slope 225k, the first outer side surface 225j, the second outer slope 225m, and the first inner side surface 225p around the central axis Ai. It is an annulus.
The first width (maximum thickness in the axial direction) of the thick portion 225n in the axial direction along the center axis Ai is Wk, and the second width (first inner surface 225p and the first outer surface 225j) is Dk.
The angle formed by the adjacent thin portions 225t in a cross section including the central axis Ai is φ. The pitch of the bellows shape of the bellows tube portion 225d in the axial direction is defined by the pitch Pb of the center in the thickness direction of the thick portion 225n in the natural state where the bellows tube portion 225d is not deformed by an external force.
 本変形例における厚肉部225nは、外周部から径方向内側に向かう外力による薄肉部225tの座屈を抑制する目的で形成されている。厚肉部225nの剛性が適正であると、外力によって厚肉部225nが径方向につぶれる変形が抑制されるので、薄肉部225tが座屈しにくくなる。例えば、薄肉部225tの平均肉厚は、0.3mm以上0.7mm以下であってもよい。
 例えば、軸方向における厚肉部225nの第1幅Wkは、薄肉部225tの厚さtn(平均肉厚)の3倍以上であって、かつ蛇腹管部225dのピッチPbの2/3以下とすることがより好ましい。
 例えば、径方向における厚肉部225nの第2幅Dkは、薄肉部225tの厚さtnの3倍以上であることがより好ましい。ただし、Dkをあまり大きくしても径方向の外力に対する抵抗はそれほど向上しないので、例えば、Dkは、3.1mm以下程度にすることがより好ましい。
 薄肉部225t同士の間の角度φは、成形性が低下しない範囲でなるべく小さいことが好ましい。例えば、角度φは、V字形の凹部を形成する第2外斜面225mと第1外斜面225kとのなす角度で測定する。このため、角度φは、薄肉部225tが形成する谷部の角度である。
 屈曲部225sの剛性は、薄肉部225tの座屈にあまり影響しないので、屈曲部225sの軸方向の幅は、厚肉部225nよりも薄くてもよい。例えば、第2外側面225uの軸方向の幅は0であってもよい。成形性が低下しない場合には、第2内斜面225rの幅は0でもよい。
The thick portion 225n in this modified example is formed for the purpose of suppressing buckling of the thin portion 225t due to an external force directed radially inward from the outer peripheral portion. If the rigidity of the thick portion 225n is appropriate, the deformation of the thick portion 225n in the radial direction due to an external force is suppressed, so that the thin portion 225t is less likely to buckle. For example, the average thickness of the thin portion 225t may be 0.3 mm or more and 0.7 mm or less.
For example, the first width Wk of the thick portion 225n in the axial direction is three times or more the thickness tn (average thickness) of the thin portion 225t and two-thirds or less of the pitch Pb of the bellows tube portion 225d. is more preferable.
For example, the second width Dk of the thick portion 225n in the radial direction is more preferably three times or more the thickness tn of the thin portion 225t. However, even if Dk is made too large, the resistance to the external force in the radial direction is not improved so much, so it is more preferable to set Dk to about 3.1 mm or less, for example.
It is preferable that the angle φ between the thin portions 225t be as small as possible within a range in which formability is not deteriorated. For example, the angle φ is measured by the angle between the second outer slope 225m and the first outer slope 225k that form the V-shaped recess. Therefore, the angle φ is the angle of the valley formed by the thin portion 225t.
Since the rigidity of the bent portion 225s does not significantly affect the buckling of the thin portion 225t, the axial width of the bent portion 225s may be thinner than the thick portion 225n. For example, the axial width of the second outer surface 225u may be zero. The width of the second inner slope 225r may be zero if the formability does not deteriorate.
 本変形例では、気密部材225の自然状態において、第1外斜面225kおよび第2外斜面225mは、厚肉部225nおよび薄肉部225tの両方において共通の傾斜を有するテーパ面である。
 同様に、第1内斜面225qおよび第2内斜面225rは、屈曲部225sおよび薄肉部225tの両方において共通の傾斜を有するテーパ面である。
 このため、気密部材225を樹脂成形によって形成する際に、気密部材225の外周面は、断面形状が台形の凸部と凹部とが軸方向において交替に現れる成形型Moの形状が転写される。気密部材225の内周面は、断面形状が台形の凸部と凹部とが軸方向において交替に現れる成形型Miの形状が転写される。
 このように、厚肉部225nと薄肉部225tとの間と、屈曲部225sと薄肉部225tとの間と、に段差または不連続な傾斜面が形成されていないので、成形性が良好になる。さらに脱型時に、成形型Mo、Miに対する成形品の取られが低減される点でも成形が容易になる。
In this modification, in the natural state of the airtight member 225, the first outer slope 225k and the second outer slope 225m are tapered surfaces having a common slope in both the thick portion 225n and the thin portion 225t.
Similarly, the first inner slope 225q and the second inner slope 225r are tapered surfaces having a common slope at both the bent portion 225s and the thin portion 225t.
Therefore, when the airtight member 225 is formed by resin molding, the outer peripheral surface of the airtight member 225 is transferred with the shape of the molding die Mo in which convex portions and concave portions having a trapezoidal cross section appear alternately in the axial direction. The inner peripheral surface of the airtight member 225 has the shape of the mold Mi in which convex portions and concave portions having a trapezoidal cross-sectional shape appear alternately in the axial direction is transferred.
In this way, no steps or discontinuous inclined surfaces are formed between the thick portion 225n and the thin portion 225t and between the bent portion 225s and the thin portion 225t, so that moldability is improved. . Furthermore, molding is facilitated in that the molded product is less likely to be removed from the molding dies Mo and Mi when demolded.
 下記[表1]に、蛇腹管部225dの形状例1~3を示す。
 [表1]において、上述した以外の寸法は、以下の通りである。
 Ddは、蛇腹管部225dの平均径を表す。Ddは、第1内側面225pの径と第2内側面225vの径との平均から求められる。
 duは、薄肉部225tが形成する谷部の深さ、すなわち第1内側面225pから第2外側面225uまでの径方向の距離である。
[Table 1] below shows shape examples 1 to 3 of the bellows tube portion 225d.
In [Table 1], dimensions other than those described above are as follows.
Dd represents the average diameter of the bellows tube portion 225d. Dd is obtained from the average of the diameter of the first inner surface 225p and the diameter of the second inner surface 225v.
du is the depth of the valley formed by the thin portion 225t, that is, the radial distance from the first inner surface 225p to the second outer surface 225u.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 形状例1~3では、ゴム硬度(ショアA)に応じて、諸元を変えることによって、薄肉部225tの座屈を抑制する適正な厚肉部225nの形状を実現している。
 形状例1~3において、Wkは、それぞれ2.5mm、2.3mm、2.3mm、tnは、0,5mm、0.7mm、0.7mmである。すなわち、Wk/tnは、それぞれ、5.0.3、3、3.3なので、Wkは、tnの3倍以上である。
 形状例1~3において、ピッチPbの2/3は、いずれも2.9なので、Wkは、いずれもPbの2/3以上である。
 形状例1~3において、Dkはいずれも3.0mmであり、tnの3倍は、それぞれ1.5mm、2.1mm、2.1mmである。このため、Dkは、tnの3倍以上であって、3.1mm以下である。
In shape examples 1 to 3, by changing the specifications according to the rubber hardness (Shore A), an appropriate shape of the thick portion 225n that suppresses the buckling of the thin portion 225t is realized.
In shape examples 1 to 3, Wk is 2.5 mm, 2.3 mm and 2.3 mm, and tn is 0.5 mm, 0.7 mm and 0.7 mm. That is, Wk/tn is 5.0.3, 3, and 3.3, respectively, so Wk is more than three times tn.
In Shape Examples 1 to 3, ⅔ of the pitch Pb is 2.9, so Wk is ⅔ or more of Pb.
In shape examples 1 to 3, Dk is 3.0 mm, and three times tn is 1.5 mm, 2.1 mm, and 2.1 mm, respectively. Therefore, Dk is three times or more of tn and 3.1 mm or less.
 平均径Ddは、大きいほど、蛇腹管部225dを軸方向に収縮させる際の抗力が減少し、成形性も向上する。一方、薄肉部225tの径方向における座屈を抑制するために必要な径方向における剛性は大きくなる。
 角度φは、成形性の観点では大きい方がよい。一方、φが大きくなると、抗力が増加し、必要な径方向の剛性は減少する。
 谷深さduは、深いほど抗力が減少する。一方で径方向の剛性および成形性は低下する。
 蛇腹管部225dのピッチPbは、大きいと抗力が増加し、径方向の剛性が低下する。一方、成形性は向上する。
 厚肉部225nの軸方向の幅Wkは、大きいほど抗力が増加する。一方、径方向の剛性および成形性は向上する。
The larger the average diameter Dd, the smaller the resistance when contracting the bellows tube portion 225d in the axial direction, and the better the moldability. On the other hand, the rigidity in the radial direction required to suppress buckling in the radial direction of the thin portion 225t increases.
The larger the angle φ, the better from the standpoint of formability. On the other hand, as φ increases, the drag increases and the required radial stiffness decreases.
The deeper the valley depth du, the more the drag decreases. On the other hand, radial stiffness and moldability are reduced.
If the pitch Pb of the bellows tube portion 225d is large, the resistance increases and the rigidity in the radial direction decreases. On the other hand, moldability is improved.
As the axial width Wk of the thick portion 225n increases, the drag increases. On the other hand, radial stiffness and moldability are improved.
 図49に示すように、フランジ部225eは、軸方向における蛇腹管部225dの先端から径方向外側に延びている。フランジ部225eの外径は、ケース220における側面部220bの内径よりも小さく、後述するコイルバネ224の外径よりも大きい。 As shown in FIG. 49, the flange portion 225e extends radially outward from the tip of the bellows tube portion 225d in the axial direction. The outer diameter of the flange portion 225e is smaller than the inner diameter of the side surface portion 220b of the case 220 and larger than the outer diameter of the coil spring 224 described later.
 封止部225fは、フランジ部225eの外周から軸方向における先端側に延びる円筒形である。封止部225fは、側面部220bの内周面220fと固定枠222における第1筒状部222fの外周面222gとの間に挟持される。
 封止部225fの内周面は、外周面222gに密着可能な円筒面である。
 封止部225fの外周面には、径方向外側に突出し、外周面の全周に延びる突条225gが設けられている。図49に示す例では、突条225gは、軸方向に離れた2箇所に一本ずつ形成されている。
 径方向における封止部225fの内周面と突条225gの頂部との距離は、内周面220fと外周面222gとの間の隙間よりも大きい。このため、封止部225fが内周面220fと外周面222gとに挟まれると、突条225gが径方向に押圧された状態で、封止部225fの内周面が第1筒状部222fと密着する。これにより、側面部220bの先端部と固定枠222との間の隙間が気密および液密に封止される。
The sealing portion 225f has a cylindrical shape extending axially from the outer circumference of the flange portion 225e toward the distal end side. The sealing portion 225f is sandwiched between the inner peripheral surface 220f of the side surface portion 220b and the outer peripheral surface 222g of the first cylindrical portion 222f of the fixed frame 222. As shown in FIG.
The inner peripheral surface of the sealing portion 225f is a cylindrical surface that can be in close contact with the outer peripheral surface 222g.
The outer peripheral surface of the sealing portion 225f is provided with a protrusion 225g that protrudes radially outward and extends along the entire circumference of the outer peripheral surface. In the example shown in FIG. 49, the ridges 225g are formed one by one at two locations separated in the axial direction.
The distance in the radial direction between the inner peripheral surface of the sealing portion 225f and the top of the protrusion 225g is greater than the gap between the inner peripheral surface 220f and the outer peripheral surface 222g. For this reason, when the sealing portion 225f is sandwiched between the inner peripheral surface 220f and the outer peripheral surface 222g, the inner peripheral surface of the sealing portion 225f moves toward the first tubular portion 222f while the protrusion 225g is pressed in the radial direction. Closely with. As a result, the gap between the tip of the side surface portion 220b and the fixed frame 222 is sealed in an airtight and liquid-tight manner.
 固定枠222における貫通孔222dは、蛇腹管部225dの内側に臨んで開口している。このため、蛇腹管部225dの内側は、貫通孔222dを通して外部と連通している。 The through hole 222d in the fixed frame 222 is open facing the inside of the bellows tube portion 225d. Therefore, the inside of the bellows tube portion 225d communicates with the outside through the through hole 222d.
 図50に示すように、コイルバネ224は、圧縮コイルバネである。コイルバネ224は、金属で形成されてもよいし、弾性に優れる樹脂材料で形成されてもよい。
 図49に示すように、コイルバネ224の内径は、蛇腹管部225dの外径より大きく、押さえ爪223gを径方向外側から囲むことができる大きさである。さらにコイルバネ224の外径は、カラー223の外筒部223aの内径よりも小さく、固定枠222の底面部222aの外径と同程度である。
 このため、軸方向におけるコイルバネ224の各端部は、カラー223の係止面223dと、気密部材225のフランジ部225eと、にそれぞれ係止している。本変形例では、フランジ部225eは、コイルバネ224の先端と底面部222aとによって軸方向に把持されている。
As shown in FIG. 50, coil spring 224 is a compression coil spring. The coil spring 224 may be made of metal, or may be made of a highly elastic resin material.
As shown in FIG. 49, the inner diameter of the coil spring 224 is larger than the outer diameter of the bellows tube portion 225d, and is large enough to surround the pressing claw 223g from the outside in the radial direction. Furthermore, the outer diameter of the coil spring 224 is smaller than the inner diameter of the outer cylindrical portion 223a of the collar 223 and approximately the same as the outer diameter of the bottom surface portion 222a of the fixed frame 222.
Therefore, each end of the coil spring 224 in the axial direction is locked to the locking surface 223d of the collar 223 and the flange portion 225e of the airtight member 225, respectively. In this modification, the flange portion 225e is axially held by the tip of the coil spring 224 and the bottom portion 222a.
 コイルバネ224は、カラー223が軸方向の先端側に移動すると、圧縮されるので、カラー223を軸方向における基端側に付勢する。
 コイルバネ224のバネ定数は、カラー223の移動量によって、ケース220内の圧力を表示窓221aに表示できるように設定される。
 コイルバネ224は、カラー223を基端側に付勢できれば、コイルバネには限定されない。コイルバネ224として、付勢力を発生する適宜の弾性部材が用いられてもよい。
Since the coil spring 224 is compressed when the collar 223 moves axially distally, it urges the collar 223 axially proximally.
The spring constant of the coil spring 224 is set so that the pressure inside the case 220 can be displayed in the display window 221a according to the amount of movement of the collar 223 .
The coil spring 224 is not limited to a coil spring as long as it can bias the collar 223 toward the base end. A suitable elastic member that generates a biasing force may be used as the coil spring 224 .
 ここで、気密部材225の先端部とカラー223との固定構造を説明する。
 カラー223に固定された気密部材225は、図49および図51に示すように、ボス部225aが、円孔部223hおよびガイド223eの内部に挿入され、径方向において位置決めされている。
 図52に示すように、各係合突起225iは、係止面223dと押さえ爪223gとの間に挿入されている。さらに、各嵌合突起225bは、係止板223bにおける基端側の表面と嵌合爪223fとの間に嵌合している。これにより、係止板223bは、各係合突起225iと、各嵌合突起225bとの間に挟まれた状態で、気密部材225の先端部と固定されている。
Here, the fixing structure between the tip portion of the airtight member 225 and the collar 223 will be described.
As shown in FIGS. 49 and 51, the airtight member 225 fixed to the collar 223 is radially positioned by inserting the boss 225a into the circular hole 223h and the guide 223e.
As shown in FIG. 52, each engaging protrusion 225i is inserted between the locking surface 223d and the pressing claw 223g. Further, each fitting projection 225b is fitted between the proximal surface of the locking plate 223b and the fitting claw 223f. Thereby, the locking plate 223b is fixed to the tip portion of the airtight member 225 while being sandwiched between each engaging projection 225i and each fitting projection 225b.
 このような固定構造を形成するには、図50において、気密部材225を中心軸線Ai周りに二点鎖線で示す矢印Kの方向に45°回転した状態で、コイルバネ224の内側およびカラー223の外筒部223aの内側に挿入する。このとき、底板部225cが係止面223dに当接すると、嵌合突起225bは角溝部223iの内側を通り抜ける。このとき、嵌合突起225bの先端側の表面は、係止板223bの基端側の表面と略同位置に達する。
 この状態で、気密部材225を矢印Kと反対方向に45°回転すると、ボス部225aが、円孔部223hおよびガイド223eに沿って案内される。
 回転が進むと、各係合突起225iが押さえ爪223gに係合するとともに、各嵌合突起225bが嵌合爪223fに係合する。特に、嵌合突起225bには、嵌合突起223mが嵌合する嵌合溝225hが形成されているので、気密部材225の回転時における気密部材225の回転中心が中心軸線Aiに位置合わせされやすい。
 このように気密部材225は、カラー223に対する軸方向における平行移動と、周方向における回転移動によって形成される、部材同士の係合によって、カラー223に固定される。気密部材225は軟性のエラストマーで形成されるので、係合後はカラー223との摩擦によって係合位置が安定する。
 本変形例によれば、例えば、ネジ、接着剤などを使用することなく、気密部材225を固定できるので、部品費が低減されるとともに、製造が容易になる。
In order to form such a fixed structure, in FIG. 50, the airtight member 225 is rotated 45 degrees in the direction of arrow K indicated by a two-dot chain line around the central axis Ai, and the inner side of the coil spring 224 and the outer side of the collar 223 are fixed. It is inserted inside the cylindrical portion 223a. At this time, when the bottom plate portion 225c abuts against the locking surface 223d, the fitting protrusion 225b passes through the inside of the square groove portion 223i. At this time, the front end side surface of the fitting projection 225b reaches substantially the same position as the base end side surface of the locking plate 223b.
In this state, when the airtight member 225 is rotated 45 degrees in the direction opposite to the arrow K, the boss 225a is guided along the circular hole 223h and the guide 223e.
As the rotation progresses, each engaging projection 225i engages with the pressing claw 223g and each fitting projection 225b engages with the fitting claw 223f. In particular, since the fitting groove 225h into which the fitting projection 223m is fitted is formed in the fitting projection 225b, the rotation center of the airtight member 225 during rotation of the airtight member 225 is easily aligned with the center axis Ai. .
Sealing member 225 is thus secured to collar 223 by member-to-member engagement formed by axial translational movement and circumferential rotational movement relative to collar 223 . Since the airtight member 225 is made of a soft elastomer, the engagement position is stabilized by friction with the collar 223 after engagement.
According to this modification, for example, the airtight member 225 can be fixed without using screws, adhesives, or the like, thereby reducing the cost of parts and facilitating manufacturing.
 次に、本変形例の動作を、圧力表示器219の動作および作用を中心として説明する。
 図54は、送気デバイスの変形例(第3変形例)における圧力表示器の動作を示す模式的な断面図である。図55は、図54におけるF55視図である。
Next, the operation of this modified example will be described with a focus on the operation and action of the pressure indicator 219. FIG.
FIG. 54 is a schematic cross-sectional view showing the operation of the pressure indicator in the modified example (third modified example) of the air supply device. 55 is a view from F55 in FIG. 54. FIG.
 術者によって手動送気機構211の送気操作が行われると、図54に示す矢印のように、第3管路P5を通して、エアがケース220内に流入する。ケース220は、固定枠222によって側面部220bの先端部に固定された気密部材225によって、気密に封止されている。
 気密部材225によって封止されたケース220の内部空間は、大きくは、カラー223の係止板223bよりも基端側の第1空間S1と、先端側の第2空間S2と、に区分される。ただし、第1空間S1と、第2空間S2とは、種々の隙間によって、互いに連通している。種々の隙間の例としては、例えば、外筒部223aと側面部220bとの隙間、気密部材225によって塞がれていない孔223j、223kにおける隙間が挙げられる。
 これに対して、気密部材225の内側における第3空間S3は、第1空間S1および第2空間S2とは連通しておらず、貫通孔222dを通して外部と連通している。
 このため、第1空間S1および第2空間S2に流入したエアの内圧piは、ケース220の内周面と、気密部材225の外周面とに作用する。
When the operator operates the manual air supply mechanism 211 to supply air, air flows into the case 220 through the third conduit P5 as indicated by the arrow shown in FIG. The case 220 is airtightly sealed by an airtight member 225 fixed to the tip of the side portion 220b by a fixing frame 222. As shown in FIG.
The internal space of the case 220 sealed by the airtight member 225 is roughly divided into a first space S1 on the proximal side of the locking plate 223b of the collar 223 and a second space S2 on the distal end side. . However, the first space S1 and the second space S2 communicate with each other through various gaps. Examples of various gaps include a gap between the outer cylindrical portion 223a and the side portion 220b, and gaps in the holes 223j and 223k that are not blocked by the airtight member 225. FIG.
On the other hand, the third space S3 inside the airtight member 225 does not communicate with the first space S1 and the second space S2, but communicates with the outside through the through hole 222d.
Therefore, the internal pressure pi of the air flowing into the first space S<b>1 and the second space S<b>2 acts on the inner peripheral surface of the case 220 and the outer peripheral surface of the airtight member 225 .
 気密部材225は、軸方向に伸縮容易な蛇腹管部225dを有している。蛇腹管部225dは径方向の剛性よりも、軸方向における剛性の方が小さい。蛇腹管部225dは、ボス部225aおよび係止板223bを通して作用する内圧piの軸方向の合力に応じて、軸方向に収縮する。これにより、カラー223が軸方向における先端側に移動する。
 カラー223は、軸方向における内圧piの合力と、コイルバネ224の付勢力および軸方向に作用する大気圧poの合力と、が釣り合うように、軸方向に移動する。これにより、第1空間S1が拡張し、第2空間S2が縮小していく。
 コイルバネ224のバネ定数と、ケース220の内圧との関係を予め調べておくことによって、カラー223の位置と、ケース220内の内圧piと、を一対一に対応づけることができる。
The airtight member 225 has a bellows tube portion 225d that is easily stretchable in the axial direction. The stiffness in the axial direction of the bellows tube portion 225d is smaller than the stiffness in the radial direction. The bellows tube portion 225d contracts in the axial direction according to the axial resultant force of the internal pressure pi acting through the boss portion 225a and the locking plate 223b. As a result, the collar 223 moves axially toward the distal end.
The collar 223 moves in the axial direction so that the resultant force of the internal pressure pi in the axial direction and the resultant force of the biasing force of the coil spring 224 and the atmospheric pressure po acting in the axial direction are balanced. As a result, the first space S1 expands and the second space S2 contracts.
By investigating the relationship between the spring constant of the coil spring 224 and the internal pressure of the case 220 in advance, the position of the collar 223 and the internal pressure pi within the case 220 can be associated one-to-one.
 本変形例では、カラー223の先端エッジ部223cが表示窓221aから見えるので、術者は、内圧piを表すカラー223の位置を先端エッジ部223cの位置によって視認できる。
 例えば、図55に示すように、先端エッジ部223cが第1目盛線221bと第2目盛線221cとの間にあると、術者は、固定用バルーン3の内圧が適正な状態であることを知ることができる。
In this modification, the tip edge portion 223c of the collar 223 can be seen through the display window 221a, so the operator can visually recognize the position of the collar 223 representing the internal pressure pi by the position of the tip edge portion 223c.
For example, as shown in FIG. 55, when the tip edge portion 223c is between the first scale line 221b and the second scale line 221c, the operator knows that the internal pressure of the fixation balloon 3 is in a proper state. can know
 本変形例における第1空間S1と第2空間S2とは、第2変形例における圧力調整部217Aの第1空間Saと同様の機能を有する。このため、圧力表示器219は、第2変形例における容積変化する拡径部の例になっている。 The first space S1 and the second space S2 in this modified example have the same function as the first space Sa of the pressure adjusting section 217A in the second modified example. For this reason, the pressure indicator 219 is an example of an enlarged diameter portion that changes in volume in the second modification.
 本変形例では、蛇腹管部225dに厚肉部225nを設けることによって、気密部材225における軸方向の剛性よりも、径方向の剛性が大きくなっている。
 厚肉部225nの作用について比較例を参照して説明する。
 図56は、圧力によって変形した蛇腹構造の気密部材の比較例を示す模式的な断面図である。
In this modification, by providing the thick portion 225n in the bellows tube portion 225d, the radial rigidity of the airtight member 225 is greater than the axial rigidity thereof.
The action of the thick portion 225n will be described with reference to a comparative example.
FIG. 56 is a schematic cross-sectional view showing a comparative example of an airtight member with a bellows structure deformed by pressure.
 図56に示す比較例の蛇腹管部Bは、本変形例の蛇腹管部225dにおける薄肉部225tと同一の厚さtnのエラストマーフィルムで形成されている。蛇腹管部Bは、外周における山折り部において逆V字形に屈曲している。ただし、蛇腹管部Bは均一肉厚で形成されているので、蛇腹管部Bの外周部には、本変形例のような厚肉部は形成されていない。
 図56における山折り部は、模式的に、曲げ内に丸みのない逆V字形に描かれている。しかし、蛇腹管部Bは、成形性が良好になるように、山折り部の先端の角部には、丸みが付いており、平均肉厚が保たれている。
The bellows tube portion B of the comparative example shown in FIG. 56 is formed of an elastomer film having the same thickness tn as the thin portion 225t of the bellows tube portion 225d of this modified example. The bellows tube portion B is bent in an inverted V shape at the mountain fold portion on the outer periphery. However, since the bellows tube portion B is formed with a uniform thickness, the outer peripheral portion of the bellows tube portion B is not formed with a thick portion as in this modified example.
The mountain-folded portion in FIG. 56 is schematically drawn in an inverted V shape with no roundness in the bend. However, in the bellows tube portion B, the corners at the tips of the mountain folds are rounded so that the average thickness is maintained so as to improve moldability.
 蛇腹管部Bは、外周部において径方向の剛性が低いので、第2空間S2の内圧が径方向に作用すると、F56部に示すように、外周部の山折り部が内側に座屈して谷折りされてしまう。これにより、蛇腹管部Bの径方向の剛性が高くなって、カラー223が先端側に移動しにくくなる。さらに、蛇腹管部Bが内側に折り曲げられることによって、第2空間S2の容積が拡大する点でも、内圧piが低下する。
 この結果、カラー223の移動量が正確な内圧piを示さなくなる。
 これに対して、本変形例では、厚肉部225nが形成されることで、蛇腹管部225dが内側に座屈変形することがないので、圧力表示器219が正確な圧力を表示できる。
Since the bellows tube portion B has a low rigidity in the radial direction at the outer peripheral portion, when the internal pressure of the second space S2 acts in the radial direction, the mountain-folded portion of the outer peripheral portion buckles inward to form a trough, as shown at F56. It will be folded. As a result, the radial rigidity of the bellows tube portion B is increased, and the collar 223 is less likely to move toward the distal end. Furthermore, the internal pressure pi is reduced in that the volume of the second space S2 is expanded by bending the bellows tube portion B inward.
As a result, the amount of movement of the collar 223 does not accurately indicate the internal pressure pi.
On the other hand, in this modified example, since the thick portion 225n is formed, the bellows tube portion 225d does not undergo buckling deformation inward, so the pressure indicator 219 can display an accurate pressure.
 圧力表示器219が正確に圧力を表示できる場合でも、術者の視認方向によっては、圧力表示を正確に読み取れない場合がある。
 図57は、送気デバイスの変形例(第3変形例)における圧力表示器における読み取り誤差を説明する模式的な断面図である。
 図57は、先端エッジ部223cが第1目盛線221bの位置に移動した状態における軸方向に沿う断面を示す。
 術者の視認方向が、径方向に一致する矢印V0で表される場合、術者は、先端エッジ部223cが第1目盛線221bに達したことが正確に読み取れる。
 例えば、術者の視認方向が径方向に対して基端側に傾斜する矢印V1で示される場合、先端エッジ部223cが、第1目盛線221bまでΔ1だけ基端側に位置するように見える。同様に、術者の視認方向が径方向に対して先端側に傾斜する矢印V2で示される場合、先端エッジ部223cが、第1目盛線221bをΔ2だけ先端側に位置するように見える。
Even if the pressure indicator 219 can accurately display the pressure, the pressure display may not be read accurately depending on the viewing direction of the operator.
FIG. 57 is a schematic cross-sectional view explaining a reading error in a pressure indicator in a modified example (third modified example) of the air supply device.
FIG. 57 shows a cross section along the axial direction when the tip edge portion 223c has moved to the position of the first scale line 221b.
When the viewing direction of the operator is represented by an arrow V0 that coincides with the radial direction, the operator can accurately read that the tip edge portion 223c has reached the first scale line 221b.
For example, when the viewing direction of the operator is indicated by an arrow V1 inclined toward the proximal side with respect to the radial direction, the distal edge portion 223c appears to be located on the proximal side by Δ1 to the first scale line 221b. Similarly, when the viewing direction of the operator is indicated by an arrow V2 inclined toward the distal side with respect to the radial direction, the distal edge portion 223c appears to be positioned Δ2 distal to the first scale line 221b.
 本変形例では、図45に示すように、グリップ215と手動送気機構211との配置が逆V字型になっている。これにより、標準操作状態では、中心軸線Aiが術者の左右方向に略一致する。表示窓221aは、中心軸線Aiに沿う軸方向に長くなっており、表示窓221a内の先端エッジ部223cは、中心軸線Aiに直交する方向に延びている。このため、先端エッジ部223cは、標準操作状態における術者の正面において、術者の視野の上下方向に延びている。
 このため、術者は、圧力を読み取る際に、表示窓221aが見やすいように体の前の中央に配置する。これにより、術者の視認方向が矢印V0の方向になる。
 このとき、矢印V0は、側面部220bの法線方向に対して周方向に傾いていたとしても、視認方向は先端エッジ部223cの延びる方向に傾くだけなので、先端エッジ部223cの読み取り誤差は生じない。
In this modified example, as shown in FIG. 45, the grip 215 and the manual air supply mechanism 211 are arranged in an inverted V shape. As a result, in the standard operating state, the center axis Ai substantially coincides with the left-right direction of the operator. The display window 221a is elongated in the axial direction along the center axis Ai, and the tip edge portion 223c in the display window 221a extends in the direction perpendicular to the center axis Ai. Therefore, the tip edge portion 223c extends in the vertical direction of the operator's visual field in front of the operator in the standard operation state.
Therefore, when reading the pressure, the operator places the display window 221a in the center of the front of the body so that it can be easily seen. As a result, the viewing direction of the operator becomes the direction of the arrow V0.
At this time, even if the arrow V0 is inclined in the circumferential direction with respect to the normal direction of the side surface portion 220b, the viewing direction is only inclined in the direction in which the tip edge portion 223c extends. do not have.
 これに対して、圧力表示器219の軸方向が、術者の視野の上下方向に設置されたり、先端エッジ部223cが上下方向に移動したりする構成を考える。
 この場合、標準操作状態において、表示窓を術者の正面に配置しても、術者は、表示窓を真上から見ないと、矢印V0の視認方向にならない。一般に標準操作状態では、左手Hおよび右手Hは、術者の顔よりもかなり下方に配置されるので、術者の視認方向は、例えば、矢印V1、V2の方向に誘導される。
 この結果、術者による読み取り誤差が大きくなり、本変形例のような作用が得られまい。
On the other hand, consider a configuration in which the axial direction of the pressure indicator 219 is installed in the vertical direction of the visual field of the operator, or the tip edge portion 223c is moved in the vertical direction.
In this case, even if the display window is placed in front of the operator in the standard operation state, the operator must look at the display window from directly above to see the direction of arrow V0. Generally, in the standard operating state, the left hand HL and the right hand HR are positioned considerably below the operator's face, so the operator's viewing direction is guided in the directions of arrows V1 and V2, for example.
As a result, the operator's reading error increases, and the effects of this modified example cannot be obtained.
 本変形例の送気デバイス210Cを有するオーバーチューブ201は、第3の実施形態に係るオーバーチューブ201の送気デバイス210に代えて、送気デバイス210Cを有することを除いて、オーバーチューブ201と同様である。このため、本変形例によれば、第3の実施形態と同様、患者の負荷を低減するとともに内視鏡を円滑に操作することができる内視鏡用オーバーチューブを提供することができる。
 特に本変形例によれば、第2変形例における圧力調整部217に代えて、圧力調整部217のような、容積変化する拡径部の例である圧力表示器219を有する。このため、本変形例は、第2変形例と同様の作用を有する。
 さらに、本変形例によれば、圧力表示器219が、第1目盛線221bおよび第2目盛線221cに対する先端エッジ部223cの位置によって、ケース220内の圧力が表示される。これにより、術者は、手動送気機構211の抵抗感覚に表示窓221aにおける圧力表示を加味して、送気操作の停止時期を決めることができる。この結果、送気量の損失がさらに低減される。
An overtube 201 having an air supply device 210C of this modification is the same as the overtube 201 except that it has an air supply device 210C instead of the air supply device 210 of the overtube 201 according to the third embodiment. is. Therefore, according to this modified example, as in the third embodiment, it is possible to provide an endoscope overtube that reduces the burden on the patient and allows smooth operation of the endoscope.
In particular, according to this modified example, instead of the pressure adjusting portion 217 in the second modified example, a pressure indicator 219, which is an example of an enlarged diameter portion whose volume changes like the pressure adjusting portion 217, is provided. Therefore, this modified example has the same effect as the second modified example.
Furthermore, according to this modification, the pressure indicator 219 displays the pressure inside the case 220 by the position of the tip edge portion 223c with respect to the first scale line 221b and the second scale line 221c. As a result, the operator can determine when to stop the air supply operation by considering the resistance of the manual air supply mechanism 211 and the pressure display in the display window 221a. As a result, loss of air supply is further reduced.
 本変形例によれば、気密部材225における蛇腹管部225dが厚肉部225nを有することによって、径方向につぶれないで軸方向に円滑に伸縮する。これにより、内圧piと、表示窓221aから見える先端エッジ部223cの位置と、の対応が正確になる。 According to this modification, since the bellows tube portion 225d of the airtight member 225 has the thick portion 225n, the airtight member 225 smoothly expands and contracts in the axial direction without collapsing in the radial direction. As a result, the correspondence between the internal pressure pi and the position of the tip edge portion 223c seen through the display window 221a becomes accurate.
 本変形例によれば、標準操作状態において、先端エッジ部223cが術者の視野の上下方向に延びているので、術者の視線が表示窓221aの真上方向から周方向に傾いても、圧力表示の読み取り誤差が低減される。 According to this modification, in the standard operation state, the tip edge portion 223c extends in the vertical direction of the field of view of the operator. Errors in reading pressure readings are reduced.
 送気デバイス210Cにおける圧力表示器219は、第1管路に接続され、第1管路の流路断面積よりも大きい流路断面積を有する流路を有し、第1管路の圧力を表示する圧力表示器の例である。
 圧力表示器219における第1空間S1は、エアが流れる流路を形成しており、第1管路P1よりも大きい流路断面積を有している。
 圧力表示器219において、ケース220は、少なくとも一部に内部が見える表示窓221aが設けられた筐体の例である。圧力表示器219において、カラー223は、筐体の内部の圧力に応じて筐体内を移動し、移動位置が表示窓から観察可能な移動部材の例である。
 圧力表示器219において、第1目盛線221bおよび第2目盛線221cは、表示窓または表示窓の周囲に形成されており、移動部材の位置に応じた圧力を示す参照目盛の例である。
The pressure indicator 219 in the air supply device 210C is connected to the first conduit, has a flow path having a flow path cross-sectional area larger than that of the first conduit, and measures the pressure of the first conduit. It is an example of a pressure indicator to display.
The first space S1 in the pressure indicator 219 forms a channel through which air flows, and has a channel cross-sectional area larger than that of the first conduit P1.
In the pressure indicator 219, the case 220 is an example of a housing at least partially provided with a display window 221a through which the inside can be seen. In the pressure indicator 219, the collar 223 is an example of a moving member that moves within the housing according to the pressure inside the housing and whose movement position can be observed through the display window.
In the pressure indicator 219, the first scale line 221b and the second scale line 221c are formed around the display window or around the display window, and are examples of reference scales indicating the pressure according to the position of the moving member.
 圧力表示器219における気密部材225は、移動部材の移動方向における筐体の端部に形成された開口部を気密に封止する封止部材の例である。
 気密部材225における封止部225fは、筐体の端部に気密に固定された第1固定部の例である。気密部材225における蛇腹管部225dは、第1固定部から移動部材に向かって延びており、側面に移動方向において伸縮可能な蛇腹形状が形成された蛇腹管部の例である。
 気密部材225におけるボス部225aおよび底板部225cは、蛇腹管部の延在方向の先端を塞いでおり、移動部材に固定された第2固定部の例である。
 気密部材225における薄肉部225tは、蛇腹管部の側面の一部を形成し、蛇腹管部の中心軸線を含む断面において、径方向外側に向かって細る逆V字形に配置された傾斜面部の例である。
 気密部材225における厚肉部225nは、傾斜面部の平均肉厚よりも厚肉に形成されており、逆V字形を形成する傾斜面部同士の外周部を気密に閉じる厚肉部の例である。
The airtight member 225 in the pressure indicator 219 is an example of a sealing member that airtightly seals an opening formed at the end of the housing in the moving direction of the moving member.
The sealing portion 225f of the airtight member 225 is an example of a first fixing portion airtightly fixed to the end of the housing. The bellows tube portion 225d of the airtight member 225 is an example of a bellows tube portion that extends from the first fixed portion toward the moving member and has a bellows shape that can be expanded and contracted in the moving direction on the side surface.
The boss portion 225a and the bottom plate portion 225c of the airtight member 225 close the end of the bellows tube portion in the extending direction, and are an example of a second fixing portion fixed to the moving member.
The thin portion 225t of the airtight member 225 forms part of the side surface of the bellows tube portion, and is an example of an inclined surface portion arranged in an inverted V shape tapering radially outward in a cross section including the central axis of the bellows tube portion. is.
The thick portion 225n of the airtight member 225 is formed thicker than the average thickness of the inclined surface portions, and is an example of a thick portion that airtightly closes the outer peripheral portions of the inclined surface portions forming an inverted V shape.
 送気デバイス210Cに含まれる本体部212は、圧力表示器が設けられ、手動ポンプが接続される本体部の例である。
 グリップ215は、本体部に接続された手動ポンプの中心軸線と交差する方向に延びており、中心軸線と逆V字形を形成するように配置された把持部の例である。
 本体部212において、移動部材の移動方向に対して、手動ポンプの中心軸線と把持部の延在方向とはそれぞれ鋭角であり、移動方向において、表示窓は手動ポンプおよび把持部の把持位置の間に位置している。
A body portion 212 included in the air supply device 210C is an example of a body portion provided with a pressure indicator and connected to a manual pump.
The grip 215 is an example of a grip that extends in a direction that intersects the central axis of the manual pump connected to the main body and that is arranged to form an inverted V shape with the central axis.
In the body portion 212, the central axis of the manual pump and the extending direction of the gripping portion form an acute angle with respect to the moving direction of the moving member. located in
[第4変形例]
 第3の実施形態のオーバーチューブ201において、送気デバイス210に代えて用いる送気デバイスの変形例(第4変形例)を説明する。
 図17に示すように、本変形例の送気デバイス210Dは、オーバーチューブ201の送気デバイス210に代えて用いることができる。
 図58は、本発明の第3の実施形態に係る内視鏡用オーバーチューブに用いる送気デバイスの変形例(第4変形例)を示す模式的な正面図である。図60は、送気デバイスの変形例(第4変形例)の分解した状態を示す模式的な断面図である。図61は、図59におけるF61-F61線に沿う断面図である。図62は、図61におけるF62-F62線に沿う断面図である。
[Fourth Modification]
A modification (fourth modification) of the air supply device used in place of the air supply device 210 in the overtube 201 of the third embodiment will be described.
As shown in FIG. 17, an air supply device 210D of this modification can be used in place of the air supply device 210 of the overtube 201. As shown in FIG.
FIG. 58 is a schematic front view showing a modification (fourth modification) of the air supply device used in the endoscope overtube according to the third embodiment of the present invention. FIG. 60 is a schematic cross-sectional view showing an exploded state of a modified example (fourth modified example) of the air supply device. 61 is a cross-sectional view taken along line F61-F61 in FIG. 59. FIG. 62 is a cross-sectional view taken along line F62-F62 in FIG. 61. FIG.
 図58に示すように、送気デバイス210Dは、送気デバイス210の本体部212に代えて本体部212Dを有する。
 本体部212Dは、圧力表示部219Dと、本体ケース230と、表示窓形成部材221Dと、を有する。
 以下、第3の実施形態および第3変形例と異なる点を中心に説明する。
As shown in FIG. 58, the air supply device 210D has a body portion 212D instead of the body portion 212 of the air supply device 210. As shown in FIG.
The body portion 212D has a pressure display portion 219D, a body case 230, and a display window forming member 221D.
In the following, differences from the third embodiment and the third modified example will be mainly described.
 図59に示すように、圧力表示部219Dは、第3変形例における圧力表示器219のケース220を除いた部分と同様である。
 本体ケース230は、第3変形例における筐体部218と、ケース220の側面部220bとを一体化したのと同様の外形を有する。
 第3変形例におけるケース220と同様、本体ケース230は、少なくとも後述する表示窓形成部材221Dによって表示窓221aが形成される部位と重なる範囲に光透過性を有している。このため、本体ケース230の一部には光透過性を有しない部位があってもよい。以下では、本体ケース230の全体が透明材料な樹脂材料で成形された例で説明する。
 本体ケース230は、第3変形例と同様の、グリップ215、リリーフ弁213、接続管212a、および送気管210aを有する。
 さらに、本体ケース230の内部には、収容部230aと、バッファ部230bと、を有する。
As shown in FIG. 59, the pressure display portion 219D is the same as the portion of the pressure display 219 except for the case 220 in the third modification.
The main body case 230 has the same outer shape as the body part 218 and the side part 220b of the case 220 in the third modification.
Like the case 220 in the third modified example, the main body case 230 has a light transmissive property at least in a region overlapping a portion where a display window 221a is formed by a display window forming member 221D, which will be described later. For this reason, a part of the main body case 230 may have a portion that does not have optical transparency. In the following, an example in which the main body case 230 is entirely made of a transparent resin material will be described.
The body case 230 has a grip 215, a relief valve 213, a connection pipe 212a, and an air pipe 210a similar to the third modification.
Further, inside the main body case 230, there is provided an accommodating portion 230a and a buffer portion 230b.
 収容部230aは、圧力表示部219Dを収容する。収容部230aは、第3変形例における筐体部218と同様の接続管212a外側に突出していることを除いて、第3変形例におけるケース220の側面部220bと同様の形状を有する。
 以下では、収容部230aの円筒部分の中心軸を第3変形例と同様、中心軸線Aiと称する。中心軸線Aiに関する軸方向、径方向、および周方向の用法も同様である。
 本変形例における接続管212aは、圧力表示部219Dにおけるカラー223の移動によって閉止されない位置において、収容部230aの内側に開口している。
 収容部230aの先端部の開口は、側面部220bと同様に先端枠220cによって形成されている。収容部230aの先端部には、側面部220bと同様に、係止部220gが形成されている。
The accommodation portion 230a accommodates the pressure display portion 219D. The housing portion 230a has the same shape as the side portion 220b of the case 220 in the third modification, except that it protrudes outward from the connecting tube 212a like the housing portion 218 in the third modification.
Below, the central axis of the cylindrical portion of the accommodating portion 230a is referred to as the central axis line Ai as in the third modification. The usage of axial, radial, and circumferential directions with respect to the central axis Ai is similar.
The connecting pipe 212a in this modified example opens inside the housing portion 230a at a position where it is not closed by the movement of the collar 223 in the pressure display portion 219D.
The opening at the tip of the housing portion 230a is formed by the tip frame 220c, similarly to the side portion 220b. A locking portion 220g is formed at the tip of the housing portion 230a, similarly to the side portion 220b.
 収容部230aの外周面は、側面部220bと同様の外周面220eである。収容部230aの外周面220eには、表示窓形成部材221と略同様の表示窓形成部材221Dが貼り付けられている。
 表示窓形成部材221Dは、収容部230aから突出する接続管212aを避ける形状に設けられていることを除いて、第3変形例における表示窓形成部材221と同様である。接続管212aを避ける形状は、特に限定されないが、例えば、図58に示す例では、表示窓221aから接続管212aに向かう方の長さが、表示窓形成部材221よりも短い。
The outer peripheral surface of the housing portion 230a is an outer peripheral surface 220e similar to the side surface portion 220b. A display window forming member 221D substantially similar to the display window forming member 221 is attached to the outer peripheral surface 220e of the housing portion 230a.
The display window forming member 221D is the same as the display window forming member 221 in the third modified example, except that it is provided in a shape that avoids the connection pipe 212a projecting from the accommodating portion 230a. The shape that avoids the connecting pipe 212a is not particularly limited, but for example, in the example shown in FIG.
 収容部230aの基端部には、接続管212aの流路断面積よりも広い流路断面積が形成されたバッファ部230bが設けられている。
 バッファ部230bは、術者の送気操作によって接続管212aから流入したエアを、圧力が低下した状態で一定体積以上保持する。
 バッファ部230bは、収容部230aとの接続部には開口部230cが形成されている。開口部230cは軸方向に開口している。開口部230cは、収容部230aの内周面220fよりも小径、かつカラー223の外筒部223aよりも小径の円筒形である。
A buffer portion 230b having a channel cross-sectional area larger than the channel cross-sectional area of the connecting pipe 212a is provided at the base end portion of the housing portion 230a.
The buffer unit 230b holds a certain volume or more of the air that has flowed from the connecting tube 212a by the operator's air supply operation, with the pressure reduced.
The buffer portion 230b is formed with an opening 230c at the connection portion with the accommodating portion 230a. The opening 230c opens axially. The opening 230c has a cylindrical shape with a smaller diameter than the inner peripheral surface 220f of the housing portion 230a and a smaller diameter than the outer cylindrical portion 223a of the collar 223 .
 収容部230aには、圧力表示部219Dが挿入される。図59、図61に示すように、圧力表示部219Dにおける固定枠222は、第3変形例と同様の係止爪222eによって収容部230aの係止部220gに係止されている。これにより、収容部230aに対する圧力表示部219Dの軸方向および周方向の位置が固定されている。
 このような組立状態において、カラー223は、収容部230aの内部を、第3変形例と同様に、軸方向に移動できる。
A pressure display portion 219D is inserted into the accommodation portion 230a. As shown in FIGS. 59 and 61, the fixing frame 222 in the pressure display portion 219D is locked to the locking portion 220g of the accommodating portion 230a by the locking claws 222e similar to the third modified example. Thereby, the axial and circumferential positions of the pressure display portion 219D with respect to the accommodating portion 230a are fixed.
In such an assembled state, the collar 223 can move in the axial direction inside the accommodating portion 230a as in the third modification.
 図61に示すように、バッファ部230bは、軸方向において収容部230aから離れるにつれて流路断面積が縮小する内周面230dを有する。
 図60に示すように、内周面230dは、グリップ215の内部に延びている。内周面230dにおける図示上部には、リリーフ弁213の取付部230eと、送気管210aと、が開口している。
As shown in FIG. 61, the buffer portion 230b has an inner peripheral surface 230d whose channel cross-sectional area decreases with distance from the accommodating portion 230a in the axial direction.
As shown in FIG. 60, the inner peripheral surface 230d extends inside the grip 215. As shown in FIG. An attachment portion 230e for the relief valve 213 and the air supply pipe 210a are opened at the upper portion of the inner peripheral surface 230d.
 図62-4に示すように、バッファ部230bの内側から圧力表示部219Dのカラー223を見ると、係止板223bには、第3変形例と同様、外筒部223aと収容部230aとの間の隙間と、各孔223kにおいて係合突起225iに覆われていない隙間と、が形成されている。これらの隙間によって、収容部230aと気密部材225の外周部とで囲まれる空間と、バッファ部230bの内部の空間とは、互いに連通している。 As shown in FIG. 62-4, when looking at the collar 223 of the pressure display portion 219D from the inside of the buffer portion 230b, the locking plate 223b has an outer cylindrical portion 223a and a housing portion 230a, as in the third modification. A gap between them and a gap not covered by the engaging protrusion 225i are formed in each hole 223k. These gaps allow the space surrounded by the housing portion 230a and the outer peripheral portion of the airtight member 225 and the space inside the buffer portion 230b to communicate with each other.
 圧力表示部219Dにおける気密部材225は、本体ケース230の内部空間を収容部230aの先端側で封止している。これにより、本体ケース230の内側に、本体ケース230と蛇腹管部225dとで囲まれた第1空間Sと、気密部材225の内側の第2空間Sとに区分される。
 第1空間Sには、術者の送気操作によって接続管212aからエアが流入する。
 第2空間Sは、貫通孔222dを通して外気と連通しており大気圧に保たれる。
 第1空間Sおよび第2空間Sの各容積は、第1空間Sの内圧によってカラー223が移動し、気密部材225が伸縮することによって、それぞれ変化する。
The airtight member 225 in the pressure display portion 219D seals the internal space of the body case 230 on the tip side of the housing portion 230a. As a result, the inside of the body case 230 is divided into a first space S A surrounded by the body case 230 and the bellows tube portion 225 d and a second space S B inside the airtight member 225 .
Air flows into the first space SA from the connection tube 212a by the operator's air supply operation.
The second space SB communicates with the outside air through the through hole 222d and is kept at atmospheric pressure.
The volumes of the first space S A and the second space S B change due to the movement of the collar 223 and the expansion and contraction of the airtight member 225 due to the internal pressure of the first space S A .
 このような構成により、図59に矢印で示すように、接続管212aに流入するエアは、収容部230aの内側において蛇腹管部225dの外側の第1空間Sに入る。エアは、孔223kの隙間または外筒部223aの外側の隙間を通って、バッファ部230b内の第1空間Sに向かう。バッファ部230bに流入したエアは、第1空間Sの内圧に応じて、カラー223を軸方向に移動させ、一部は送気管210aおよびリリーフ弁213の一方または両方から本体ケース230の外部に排気される。
 カラー223の先端エッジ部223cは、第3変形例と同様にして、表示窓形成部材221Dにおける表示窓221aに第1空間Sの内圧を表示する。
 このため、収容部230a、バッファ部230b、および圧力表示部219Dは、第3変形例と同様な圧力表示器PI(図58参照)を形成する。
With such a configuration, as indicated by an arrow in FIG. 59, the air flowing into the connection pipe 212a enters the first space SA outside the bellows tube portion 225d inside the accommodating portion 230a. The air passes through the gap of the hole 223k or the gap outside the outer cylindrical portion 223a toward the first space SA within the buffer portion 230b. The air that has flowed into the buffer portion 230b moves the collar 223 in the axial direction according to the internal pressure of the first space SA , and part of it flows out of the main body case 230 from one or both of the air supply pipe 210a and the relief valve 213. exhausted.
The tip edge portion 223c of the collar 223 displays the internal pressure of the first space SA in the display window 221a of the display window forming member 221D , as in the third modification.
Therefore, the accommodation portion 230a, the buffer portion 230b, and the pressure display portion 219D form a pressure display PI (see FIG. 58) similar to that of the third modification.
 このような本体ケース230における内部流路は、図63のブロック図のように模式的に表せる。
 図63は、送気デバイスの変形例(第4変形例)を示すブロック図である。
 図63に示すように、第1空間Sは、接続管212aが形成する第1管路P6よりも流路断面積が大きい拡径部P7を形成している。拡径部P7は、内圧に応じて容積が変化する。
 拡径部P7には、リリーフ弁213と、送気管210aと、が接続している。本変形例における送気管210aは、拡径部P7よりも流路断面積が小さい第2管路P8を形成している。
The internal flow path in such main body case 230 can be represented schematically as shown in the block diagram of FIG.
FIG. 63 is a block diagram showing a modified example (fourth modified example) of the air supply device.
As shown in FIG. 63, the first space SA forms an enlarged diameter portion P7 having a flow passage cross - sectional area larger than that of the first pipeline P6 formed by the connecting pipe 212a. The volume of the enlarged diameter portion P7 changes according to the internal pressure.
A relief valve 213 and an air pipe 210a are connected to the enlarged diameter portion P7. The air pipe 210a in this modified example forms a second pipe line P8 having a flow passage cross-sectional area smaller than that of the enlarged diameter portion P7.
 本変形例の構成は、第1変形例における拡径部P4を、容積変化する拡径部P7で置き換えたことに相当する。 The configuration of this modified example corresponds to replacing the enlarged diameter portion P4 in the first modified example with an enlarged diameter portion P7 whose volume changes.
 本変形例の送気デバイス210Dを有するオーバーチューブ201は、第3の実施形態に係るオーバーチューブ201の送気デバイス210に代えて、送気デバイス210Dを有することを除いて、オーバーチューブ201と同様である。このため、本変形例によれば、第3の実施形態と同様、患者の負荷を低減するとともに内視鏡を円滑に操作することができる内視鏡用オーバーチューブを提供することができる。
 特に本変形例によれば、第3変形例における圧力表示器219と同様の圧力表示器PIを備えるので、第3変形例と同様に、圧力表示が行える。このため、本変形例は、第3変形例と同様の作用を有する。
 本変形例によれば、第1変形例と同様に、容積変化する拡径部P7にリリーフ弁213が設けられているので、第1変形例と同様の作用を有する。
An overtube 201 having an air supply device 210D of this modification is the same as the overtube 201 except that it has an air supply device 210D instead of the air supply device 210 of the overtube 201 according to the third embodiment. is. Therefore, according to this modified example, as in the third embodiment, it is possible to provide an endoscope overtube that reduces the burden on the patient and allows smooth operation of the endoscope.
In particular, according to this modification, since the same pressure indicator PI as the pressure indicator 219 in the third modification is provided, pressure can be displayed in the same manner as in the third modification. Therefore, this modified example has the same effect as the third modified example.
According to this modified example, as in the first modified example, the relief valve 213 is provided in the expanded diameter portion P7 whose volume changes, so that it has the same effect as the first modified example.
 さらに、本変形例によれば、本体ケース230が、第3変形例における側面部220bと筐体部218とが一体化されている。このため、第3変形例に比べて、部品点数が削減されるので、部品コストおよび組立コストが低減される。
 本体ケース230の内部には、特に流路を形成するための管路が設けられていないので、第3変形例に比べて構成が簡素である。
Furthermore, according to this modification, the main body case 230 is formed by integrating the side surface portion 220b and the housing portion 218 of the third modification. Therefore, compared to the third modification, the number of parts is reduced, so the part cost and assembly cost are reduced.
The structure is simpler than that of the third modified example because no pipe line for forming a flow path is provided inside main body case 230 .
[第5変形例]
 第3の実施形態のオーバーチューブ201において、送気デバイス210に代えて用いる送気デバイスの変形例(第5変形例)を説明する。
 図17に示すように、本変形例の送気デバイス210Eは、オーバーチューブ201の送気デバイス210に代えて用いることができる。
 図45に示すように、送気デバイス210Eは第3変形例の圧力表示器219に代えて、圧力表示器219Eを有する。
 図49に示すように、圧力表示器219Eは、第3変形例の気密部材225に代えて、気密部材225E(封止部材、押え部材)を有することを除いて、圧力表示器219と同様である。
 以下、第3の実施形態および第3変形例と異なる点を中心に説明する。
[Fifth Modification]
A modification (fifth modification) of the air supply device used in place of the air supply device 210 in the overtube 201 of the third embodiment will be described.
As shown in FIG. 17, an air supply device 210E of this modified example can be used in place of the air supply device 210 of the overtube 201. As shown in FIG.
As shown in FIG. 45, an air supply device 210E has a pressure indicator 219E instead of the pressure indicator 219 of the third modified example.
As shown in FIG. 49, a pressure indicator 219E is the same as the pressure indicator 219 except that it has an airtight member 225E (sealing member, pressing member) instead of the airtight member 225 of the third modified example. be.
In the following, differences from the third embodiment and the third modified example will be mainly described.
 図64は、本発明の第3の実施形態に係る内視鏡用オーバーチューブに用いる送気デバイスの変形例(第5変形例)に用いる気密部材の例を示す模式的な断面図である。図64における(a)は、軸方向に外力が作用しない自然状態における気密部材225Eの形状を示す断面図である。同じく(b)は、気密部材225Eが圧力表示器219Eに装着された状態を示す断面図である。 FIG. 64 is a schematic cross-sectional view showing an example of an airtight member used in a modified example (fifth modified example) of the air supply device used in the endoscope overtube according to the third embodiment of the present invention. FIG. 64(a) is a cross-sectional view showing the shape of the airtight member 225E in a natural state where no external force acts in the axial direction. Similarly, (b) is a cross-sectional view showing a state in which the airtight member 225E is attached to the pressure indicator 219E.
 図64に示すように、本変形例における気密部材225Eは、気密部材225と同様な構成を有している。ただし自然状態において、軸方向における底板部225cからフランジ部225eまで長さ(外寸)Lnは、圧力表示器219Eにおける係止板223bから底面部222aまでの最大の距離(内寸)Lsよりも長い。
 これにより、気密部材225Eが圧力表示器219Eに装着された状態では、気密部材225Eには軸方向に圧縮されている。
As shown in FIG. 64, an airtight member 225E in this modified example has a configuration similar to that of the airtight member 225. As shown in FIG. However, in the natural state, the length (outer dimension) Ln from the bottom plate portion 225c to the flange portion 225e in the axial direction is longer than the maximum distance (inner dimension) Ls from the locking plate 223b to the bottom surface portion 222a in the pressure indicator 219E. long.
As a result, when the airtight member 225E is attached to the pressure indicator 219E, the airtight member 225E is axially compressed.
 気密部材225Eは、軸方向に圧縮されることによって、互いに隣り合う薄肉部225tのなす角度が自然状態に比べて浅くなっている。
 例えば、図64の(a)に示すように、外周側に突出する山形を形成する薄肉部225tにおいて、第1外斜面225kと第2外斜面225mとのなす角がθo、第1内斜面225qと第2内斜面225rとのなす角がθiであるとする。
 角度θo、θiは、成形時に成形型への取られが発生しない適宜の角度とされる。例えば、角度θo、θiは互いに等しいことがより好ましいが、互いに異なっていてもよい。
 角度θo、θiは大きいほど成形が容易になる。例えば、角度θo、θiは20°以上が望ましい。
By compressing the airtight member 225E in the axial direction, the angle formed by the thin portions 225t adjacent to each other is shallower than in the natural state.
For example, as shown in (a) of FIG. 64, in a thin portion 225t forming a mountain shape protruding outward, the angle formed by the first outer slope 225k and the second outer slope 225m is θo, and the first inner slope 225q and the second inner slope 225r is θi.
The angles .theta.o and .theta.i are appropriate angles that do not cause the mold to be removed during molding. For example, the angles θo and θi are more preferably equal to each other, but may be different from each other.
The greater the angles θo and θi, the easier the molding. For example, the angles θo and θi are desirably 20° or more.
 図64の(b)に示すように、気密部材225Eの装着時における同様の角度は、第1外斜面225kと第2外斜面225mとのなす角がφo(ただし、φo<θo)、第1内斜面225qと第2内斜面225rとのなす角がφi(ただし、φi<θi)である。
 第3変形例で説明したように、φo、φiに相当する角度φは小さい方が蛇腹管部225dの径方向の剛性が向上する。
As shown in FIG. 64(b), when the airtight member 225E is attached, the angle formed by the first outer slope 225k and the second outer slope 225m is φo (where φo<θo) and the first The angle between the inner slope 225q and the second inner slope 225r is φi (where φi<θi).
As described in the third modified example, the smaller the angle φ corresponding to φo and φi, the better the radial rigidity of the bellows tube portion 225d.
 本変形例では、気密部材225Eを、薄肉部225t同士のなす角度が大きい形状で成形するので、気密部材225Eの成形性が向上する。
 本変形例では、気密部材225Eが圧力表示器219Eに装着された状態では、気密部材225Eが軸方向に圧縮される。薄肉部225t同士のなす角度は、自然状態よりも小さくなり、径方向の剛性が大きくなる。これにより、第3変形例と同様、圧力表示器219Eが正確な圧力を表示することができる。
 気密部材225Eは軸方向に圧縮され、変形による弾性復元力によってカラー223の移動に抗する抗力は多少増える。しかし、ケース220の内圧とカラー223の移動位置との関係は、気密部材225Eが変形した状態で対応づけられるので、圧力表示器319Eは正確に圧力表示することができる。
In this modified example, the airtight member 225E is formed in a shape in which the thin portions 225t form a large angle, so that the formability of the airtight member 225E is improved.
In this modification, the airtight member 225E is axially compressed when the pressure indicator 219E is attached to the airtight member 225E. The angle formed by the thin portions 225t becomes smaller than in the natural state, and the rigidity in the radial direction increases. Thereby, the pressure indicator 219E can display an accurate pressure like the 3rd modification.
The airtight member 225E is axially compressed, and the elastic restoring force due to deformation increases the resistance against the movement of the collar 223 to some extent. However, since the relationship between the internal pressure of the case 220 and the movement position of the collar 223 is associated with the deformed state of the airtight member 225E, the pressure indicator 319E can display the pressure accurately.
 本変形例の送気デバイス210Eを有するオーバーチューブ201は、第3の実施形態に係るオーバーチューブ201の送気デバイス210に代えて、送気デバイス210Eを有することを除いて、オーバーチューブ201と同様である。このため、本変形例によれば、第3の実施形態と同様、患者の負荷を低減するとともに内視鏡を円滑に操作することができる内視鏡用オーバーチューブを提供することができる。
 特に本変形例によれば、第3変形例と同様に、正確な圧力表示が行えるとともに、気密部材225Eの成形性が格段に向上する。これにより、気密部材225Eを安価に製造できる。
An overtube 201 having an air supply device 210E of this modified example is the same as the overtube 201 except that it has an air supply device 210E instead of the air supply device 210 of the overtube 201 according to the third embodiment. is. Therefore, according to this modified example, as in the third embodiment, it is possible to provide an endoscope overtube that reduces the burden on the patient and allows smooth operation of the endoscope.
In particular, according to this modified example, similarly to the third modified example, accurate pressure display can be performed, and the formability of the airtight member 225E is significantly improved. Thereby, the airtight member 225E can be manufactured at low cost.
[第6変形例]
 第3の実施形態のオーバーチューブ201において、送気デバイス210に代えて用いる送気デバイスの変形例(第6変形例)を説明する。
 図17に示すように、本変形例の送気デバイス210Fは、オーバーチューブ201の送気デバイス210に代えて用いることができる。
 図45に示すように、送気デバイス210Fは第3変形例の圧力表示器219に代えて、圧力表示器219Fを有する。
 圧力表示器219Fは、第3変形例の気密部材225に代えて、図65に示す気密部材225F(封止部材、押え部材)および補強部材227Fを有することを除いて、圧力表示器219と同様である。
 図65は、本発明の第3の実施形態に係る内視鏡用オーバーチューブに用いる送気デバイスの変形例(第6変形例)に用いる気密部材の例を示す模式的な断面図である。図66は、図65におけるF66-F66線に沿う断面図である。
 以下、第3の実施形態および第3変形例と異なる点を中心に説明する。
[Sixth Modification]
A modification (sixth modification) of the air supply device used in place of the air supply device 210 in the overtube 201 of the third embodiment will be described.
As shown in FIG. 17, an air supply device 210F of this modification can be used in place of the air supply device 210 of the overtube 201. As shown in FIG.
As shown in FIG. 45, the air supply device 210F has a pressure indicator 219F instead of the pressure indicator 219 of the third modified example.
A pressure indicator 219F is the same as the pressure indicator 219 except that it has an airtight member 225F (sealing member, pressing member) and a reinforcing member 227F shown in FIG. 65 instead of the airtight member 225 of the third modified example. is.
FIG. 65 is a schematic cross-sectional view showing an example of an airtight member used in a modified example (sixth modified example) of the air supply device used in the endoscope overtube according to the third embodiment of the present invention. 66 is a cross-sectional view taken along line F66-F66 in FIG. 65. FIG.
In the following, differences from the third embodiment and the third modified example will be mainly described.
 図65に示すように、気密部材225Fは、蛇腹管部225dに代えて蛇腹管部226を有することを除いて、気密部材225と同様である。
 蛇腹管部226は、蛇腹管部225dにおける薄肉部225tと同一の厚さtnのエラストマーフィルムで形成されている。蛇腹管部226は、外周における山折り部において逆V字形に屈曲している。このため、蛇腹管部226の外周部には、厚肉部225nは形成されていない。
As shown in FIG. 65, the airtight member 225F is similar to the airtight member 225 except that it has a bellows tube portion 226 instead of the bellows tube portion 225d.
The bellows tube portion 226 is formed of an elastomer film having the same thickness tn as the thin portion 225t of the bellows tube portion 225d. The bellows tube portion 226 is bent in an inverted V shape at the mountain fold portion on the outer periphery. Therefore, the thick portion 225n is not formed on the outer peripheral portion of the bellows tube portion 226. As shown in FIG.
 補強部材227Fは、径方向における剛性が低い蛇腹管部226の外周における山折り部fを内面側から補強する。補強部材227Fは、蛇腹管部226の山折り部fの内側に装着される三角形断面を有する線状体である。
 図66に示すように、軸方向から見た補強部材227Fの形状は、蛇腹管部226の内周の半周分に沿う半円形に湾曲している。
 径方向における補強部材227Fの厚さtrは、厚肉部225nと同程度の剛性が得られれば特に限定されない。厚さtrは、補強部材227Fの材料の剛性に応じて適宜設定できる。
 補強部材227Fは、各山折り部fの内側に2つずつ配置されている。1つの山折り部fにおける一対の補強部材227Fは、例えば、一方の周方向の端部227aが他方の周方向の端部227bと当接し、全体として円環形状を形成している。
 補強部材227Fの材料としては、例えば、金属、樹脂などが用いられてもよい。
The reinforcing member 227F reinforces the mountain fold f on the outer periphery of the bellows tube portion 226, which has low rigidity in the radial direction, from the inner surface side. The reinforcing member 227</b>F is a linear body having a triangular cross section that is attached inside the mountain fold f of the bellows tube portion 226 .
As shown in FIG. 66 , the shape of the reinforcing member 227</b>F viewed from the axial direction is curved in a semicircular shape along half the inner circumference of the bellows tube portion 226 .
The thickness tr of the reinforcement member 227F in the radial direction is not particularly limited as long as it can obtain the same degree of rigidity as the thick portion 225n. The thickness tr can be appropriately set according to the rigidity of the material of the reinforcing member 227F.
Two reinforcing members 227F are arranged inside each mountain fold f. A pair of reinforcing members 227F in one mountain fold f has, for example, one circumferential end 227a in contact with the other circumferential end 227b, and forms an annular shape as a whole.
As a material of the reinforcing member 227F, for example, metal, resin, or the like may be used.
 気密部材225Fは、蛇腹管部226における山折り部fの内側にそれぞれ一対の補強部材227Fが配置されているので、径方向の剛性が、補強部材227Fの剛性に応じて向上する。
 気密部材225Fの径方向における剛性は、補強部材227Fが配置された部位を除く蛇腹管部226の剛性で決まる。このため、気密部材225Fにおける軸方向の剛性は、気密部材225における軸方向の剛性と同等である。
Since the airtight member 225F has a pair of reinforcing members 227F arranged inside the mountain folds f of the bellows tube portion 226, the rigidity in the radial direction is improved according to the rigidity of the reinforcing members 227F.
The radial rigidity of the airtight member 225F is determined by the rigidity of the bellows tube portion 226 excluding the portion where the reinforcing member 227F is arranged. Therefore, the axial rigidity of the airtight member 225</b>F is equivalent to the axial rigidity of the airtight member 225 .
 本変形例の送気デバイス210Fを有するオーバーチューブ201は、第3の実施形態に係るオーバーチューブ201の送気デバイス210に代えて、送気デバイス210Fを有することを除いて、オーバーチューブ201と同様である。このため、本変形例によれば、第3の実施形態と同様、患者の負荷を低減するとともに内視鏡を円滑に操作することができる内視鏡用オーバーチューブを提供することができる。
 特に本変形例によれば、蛇腹管部226に厚肉部を設けることなく、蛇腹管部226における径方向の剛性を向上できる。このため、必要な径方向の剛性を形成すると厚肉部の幅が大きくなりすぎる場合にも、補強部材227Fとして高剛性の材料を用いることによって、剛性を向上できる。これにより、気密部材225Fを小型化できる。
 補強部材227Fは、半円形なので、気密部材225Fの内部に挿入しやすい。これにより、組立が容易になる。
An overtube 201 having an air supply device 210F of this modified example is the same as the overtube 201 except that it has an air supply device 210F instead of the air supply device 210 of the overtube 201 according to the third embodiment. is. Therefore, according to this modified example, as in the third embodiment, it is possible to provide an endoscope overtube that reduces the burden on the patient and allows smooth operation of the endoscope.
In particular, according to this modified example, the radial rigidity of the bellows tube portion 226 can be improved without providing the bellows tube portion 226 with a thick portion. Therefore, even if the width of the thick portion becomes too large when the required radial rigidity is provided, the rigidity can be improved by using a highly rigid material for the reinforcing member 227F. Thereby, the size of the airtight member 225F can be reduced.
Since the reinforcing member 227F has a semicircular shape, it can be easily inserted into the airtight member 225F. This facilitates assembly.
[第7変形例]
 第3の実施形態のオーバーチューブ201において、送気デバイス210に代えて用いる送気デバイスの変形例(第7変形例)を説明する。
 図17に示すように、本変形例の送気デバイス210Gは、オーバーチューブ201の送気デバイス210に代えて用いることができる。
 図45に示すように、送気デバイス210Gは第3変形例の圧力表示器219に代えて、圧力表示器219Gを有する。
 圧力表示器219Gは、第3変形例の気密部材225に代えて、図65に示す気密部材225Fおよび補強部材227Gを有することを除いて、圧力表示器219と同様である。気密部材225Fは、第6変形例と同様の部材である。
 以下、第3の実施形態、第3変形例、および第6変形例と異なる点を中心に説明する。
[Seventh Modification]
A modification (seventh modification) of the air supply device used in place of the air supply device 210 in the overtube 201 of the third embodiment will be described.
As shown in FIG. 17, an air supply device 210G of this modified example can be used in place of the air supply device 210 of the overtube 201. As shown in FIG.
As shown in FIG. 45, the air supply device 210G has a pressure indicator 219G instead of the pressure indicator 219 of the third modified example.
A pressure indicator 219G is the same as the pressure indicator 219 except that it has an airtight member 225F and a reinforcing member 227G shown in FIG. 65 instead of the airtight member 225 of the third modified example. The airtight member 225F is the same member as in the sixth modification.
Hereinafter, the points different from the third embodiment, the third modified example, and the sixth modified example will be mainly described.
 補強部材227Gは、第6変形例における補強部材227Fと同様、径方向における剛性が低い蛇腹管部226の外周における山折り部fを内面側から補強する。
 補強部材227Gは、軸方向から見た形状が異なることを除いて、補強部材227Fと同様の形状を有する。
 図67は、図65におけるF67-F67線に沿う断面図である。
 図67に示すように、補強部材227Gは、山折り部fの内側の略全周に延びるC字形である。このため、補強部材227Gは、各山折り部fに1個ずつ配置されている。
 図67に示すように、例では、補強部材227Gの周方向における端部227c、227dは、周方向に隙間を空けて対向している。このため、端部227c、227dが互いに当接するように変形させると、縮径するので、蛇腹管部226の内部に配置しやすい。山折り部fの内側に挿入された補強部材227Gは、弾性復元力で拡径し、山折り部fの内側に密着する。
The reinforcement member 227G reinforces the mountain fold f on the outer periphery of the bellows tube portion 226, which has low rigidity in the radial direction, from the inner surface side, like the reinforcement member 227F in the sixth modification.
The reinforcement member 227G has the same shape as the reinforcement member 227F except that the shape when viewed from the axial direction is different.
67 is a cross-sectional view taken along line F67-F67 in FIG. 65. FIG.
As shown in FIG. 67, the reinforcing member 227G has a C shape extending substantially all around the inside of the mountain fold f. Therefore, one reinforcing member 227G is arranged at each mountain fold f.
As shown in FIG. 67, in the example, the ends 227c and 227d of the reinforcing member 227G in the circumferential direction face each other with a gap in the circumferential direction. Therefore, when the ends 227 c and 227 d are deformed so as to contact each other, the diameter is reduced, so that they can be easily arranged inside the bellows tube portion 226 . The reinforcing member 227G inserted inside the mountain-folded portion f expands in diameter due to its elastic restoring force and comes into close contact with the inside of the mountain-folded portion f.
 本変形例における補強部材227Gは、第6変形例における一対の補強部材227Fと同様にして、蛇腹管部226の径方向の剛性を向上できる。
 補強部材227Gは、補強部材227Fが一対で各山折り部fを補強するのに対して、各山折り部fに1個ずつで、同様な補強が行える。これにより、第6変形例に比べて、組立工数が低減される。
The reinforcing member 227G in this modified example can improve the radial rigidity of the bellows tube portion 226 in the same manner as the pair of reinforcing members 227F in the sixth modified example.
While the pair of reinforcing members 227F reinforces each of the mountain folds f, the reinforcing member 227G has one member for each of the mountain folds f and can perform similar reinforcement. As a result, the number of assembly man-hours is reduced as compared with the sixth modification.
 本変形例の送気デバイス210Fを有するオーバーチューブ201は、第3の実施形態に係るオーバーチューブ201の送気デバイス210に代えて、送気デバイス210Gを有することを除いて、オーバーチューブ201と同様である。このため、本変形例によれば、第3の実施形態と同様、患者の負荷を低減するとともに内視鏡を円滑に操作することができる内視鏡用オーバーチューブを提供することができる。
 特に本変形例によれば、第6変形例と同様に、蛇腹管部226に厚肉部を設けることなく、蛇腹管部226における径方向の剛性を向上できる。
An overtube 201 having an air supply device 210F of this modified example is the same as the overtube 201 except that it has an air supply device 210G instead of the air supply device 210 of the overtube 201 according to the third embodiment. is. Therefore, according to this modified example, as in the third embodiment, it is possible to provide an endoscope overtube that reduces the burden on the patient and allows smooth operation of the endoscope.
In particular, according to this modification, similarly to the sixth modification, the radial rigidity of the bellows tube portion 226 can be improved without providing the bellows tube portion 226 with a thick portion.
 上述した第3の実施形態、各変形例は、種々の変形を加えて実施されてもよい。
 第3変形例では、表示窓形成部材221がフィルムである例で説明した。しかし、表示窓形成部材221はフィルムには限定されない。
 例えば、表示窓形成部材221は、側面部220bに印刷された印刷層で形成されてもよい。
 例えば、ケース220を二色成形で形成するなどして、表示窓221aを形成できれば、表示窓形成部材221は省略されてもよい。
The above-described third embodiment and modifications may be implemented with various modifications.
In the third modified example, an example in which the display window forming member 221 is a film has been described. However, the display window forming member 221 is not limited to a film.
For example, the display window forming member 221 may be formed of a printed layer printed on the side surface portion 220b.
For example, if the display window 221a can be formed by forming the case 220 by two-color molding, the display window forming member 221 may be omitted.
 第3変形例では、外筒部223aが一定の厚さを有しており、外筒部223aの先端面によって先端エッジ部223cが形成されるとして説明した。しかし、先端エッジ部223cの形状はこれに限定されない。例えば、図57に二点鎖線で示すように、外筒部223aの先端部において、基端側から先端に向かうにつれて内周側から外周側に向かって傾斜する傾斜面223nが形成されてもよい。すなわち、先端エッジ部223cは、外筒部223aの先端部における先細部の先端によって形成されてもよい。この場合、先端エッジ部223cの径方向の幅が狭まるので、先端エッジ部223cが側面部220bの内周面220fに近接する線状に形成される。内周面220fは、径方向において、内周面220fの近くに位置する。
 これにより、術者は、先端エッジ部223cの位置をより第1目盛線221bおよび第2目盛線221cに近い内周面220fの近傍で視認できる。これにより、術者による読み取り誤差がより低減される。
In the third modified example, it has been described that the outer cylindrical portion 223a has a constant thickness, and that the distal end surface of the outer cylindrical portion 223a forms the distal edge portion 223c. However, the shape of the tip edge portion 223c is not limited to this. For example, as indicated by a chain double-dashed line in FIG. 57, an inclined surface 223n may be formed at the distal end portion of the outer cylindrical portion 223a, which is inclined from the inner peripheral side to the outer peripheral side from the proximal side toward the distal end. . That is, the tip edge portion 223c may be formed by a tapered tip at the tip of the outer cylinder portion 223a. In this case, the radial width of the tip edge portion 223c is narrowed, so that the tip edge portion 223c is formed in a linear shape close to the inner peripheral surface 220f of the side surface portion 220b. The inner peripheral surface 220f is located near the inner peripheral surface 220f in the radial direction.
Thereby, the operator can visually recognize the position of the tip edge portion 223c near the inner peripheral surface 220f closer to the first scale line 221b and the second scale line 221c. This further reduces reading errors by the operator.
[第4の実施形態]
 本発明の第4の実施形態に係る内視鏡用オーバーチューブを説明する。
 図68は、本発明の第4の実施形態に係る内視鏡用オーバーチューブの例を示す模式的な斜視図である。図69は、図68におけるF69-F69線に沿う断面図である。
 図68に示すオーバーチューブ301は、本実施形態に係る内視鏡用オーバーチューブの例である。
 オーバーチューブ301は、第1の実施形態に係るオーバーチューブ1の送気デバイス10に代えて、送気デバイス310を有する。
 送気デバイス310は、第3変形例における送気デバイス210Cの圧力表示器219に代えて、圧力表示器319を有する。
 以下、第1の実施形態および第3変形例と異なる点を中心に説明する。
[Fourth embodiment]
An endoscope overtube according to a fourth embodiment of the present invention will be described.
FIG. 68 is a schematic perspective view showing an example of the endoscope overtube according to the fourth embodiment of the present invention. 69 is a cross-sectional view along line F69-F69 in FIG. 68. FIG.
An overtube 301 shown in FIG. 68 is an example of an endoscope overtube according to this embodiment.
The overtube 301 has an air supply device 310 instead of the air supply device 10 of the overtube 1 according to the first embodiment.
The air supply device 310 has a pressure indicator 319 instead of the pressure indicator 219 of the air supply device 210C in the third modified example.
In the following, differences from the first embodiment and the third modification will be mainly described.
 図69に示すように、圧力表示器319は、圧力表示器219のカラー223に代えて、カラー323(移動部材)を有する。カラー323は、カラー223の係止板223bに代えて、係止板323b(弾性部材支持部)を有する。
 図69は、図49と同様、周方向における表示窓221aの中心と、ケース220の中心軸線O220と、を通る断面を示している。
 図70は、図69と同様の断面において、主要部材を抜き出して配置している。
As shown in FIG. 69, pressure indicator 319 has collar 323 (moving member) instead of collar 223 of pressure indicator 219 . The collar 323 has a locking plate 323b (elastic member supporting portion) instead of the locking plate 223b of the collar 223 .
69 shows a cross section passing through the center of the display window 221a in the circumferential direction and the central axis O 220 of the case 220, as in FIG.
FIG. 70 shows a section similar to that of FIG. 69 with the main members extracted.
 図70に示すように、係止板323bは、1つの直径に沿う厚さが最大値から最小値に向かって漸次減少するくさび型の板部材である。
 軸方向における基端側(図示左側)の係止板323bの表面を形成する平面323cは、係止板323bの中心軸線Ocと直交している。
 軸方向における先端側(図示右側)の係止板323bの表面を形成する傾斜面323dは、平面323cのように中心軸線Ocに直交する平面に対して角度αだけ図示時計回りに回転している。
 傾斜面323dには、カラー223における係止面223dと同様、コイルバネ224の基端が係止する。
 角度αの大きさは、内周面220fとカラー323の外筒部223aの外周面との隙間の範囲で、コイルバネ224からカラー323に、カラー323を一定方向に傾斜させる付勢力が作用する大きさであれば特に限定されない。
As shown in FIG. 70, the locking plate 323b is a wedge-shaped plate member whose thickness along one diameter gradually decreases from a maximum value to a minimum value.
A plane 323c forming the surface of the locking plate 323b on the base end side (left side in the drawing) in the axial direction is perpendicular to the central axis Oc of the locking plate 323b.
An inclined surface 323d forming the surface of the locking plate 323b on the tip side (right side in the drawing) in the axial direction rotates clockwise in the drawing by an angle α with respect to a plane perpendicular to the central axis Oc like the plane 323c. .
The proximal end of the coil spring 224 is locked to the inclined surface 323d, like the locking surface 223d of the collar 223. As shown in FIG.
The magnitude of the angle α is such that a biasing force that tilts the collar 323 in a certain direction acts on the collar 323 from the coil spring 224 in the range of the gap between the inner peripheral surface 220f and the outer peripheral surface of the outer cylindrical portion 223a of the collar 323. It is not particularly limited as long as it is small.
 図69に示すように、カラー323は、係止板323bの最大厚さになる部位の位置が、径方向において表示窓221a寄りに位置するように配置される。
 以下、図69および図70の図示の向きに合わせて、径方向における表示窓221a寄りの方を上側、表示窓221aから遠ざかる方を下側と称する。
 本変形例によれば、カラー323の中心軸線Ocが中心軸線O220と同軸に配置された場合、径方向の上側におけるフランジ部225eの基端側の表面と傾斜面323dとの距離が下側におけるフランジ部225eの基端側の表面と傾斜面323dとの距離よりも短い。これにより、コイルバネ224の押圧力が下側よりも上側の方が大きくなる。
 この結果、図70に示すように、カラー323は、図示反時計回りに回転する。特に外筒部223aとケース220の内周面220fとの隙間が角度αの回転を許容する大きさであれば、カラー323は、角度αだけ図示反時計回りに回転する。隙間が狭いために角度αだけ回転できない場合には、カラー323は、外筒部223aの外周部が内周面220fと当接するα未満の角度だけ回転する。
 以下では、カラー323が角度αだけ回転できる例で説明する。
 コイルバネ224が係止するフランジ部225eの基端側の表面と傾斜面323dとの距離は、コイルバネ224の伸縮時の全長に対応して一定に保たれる。
As shown in FIG. 69, the collar 323 is arranged so that the maximum thickness of the locking plate 323b is located radially toward the display window 221a.
69 and 70, the side closer to the display window 221a in the radial direction will be referred to as the upper side, and the side away from the display window 221a will be referred to as the lower side.
According to this modification, when the central axis Oc of the collar 323 is arranged coaxially with the central axis O 220, the distance between the surface of the base end side of the flange portion 225e on the upper side in the radial direction and the inclined surface 323d is the lower side. is shorter than the distance between the base end side surface of the flange portion 225e and the inclined surface 323d. As a result, the pressing force of the coil spring 224 is greater on the upper side than on the lower side.
As a result, as shown in FIG. 70, the collar 323 rotates counterclockwise as shown. In particular, if the gap between the outer cylindrical portion 223a and the inner peripheral surface 220f of the case 220 is large enough to allow the rotation of the angle α, the collar 323 rotates counterclockwise in the figure by the angle α. If the clearance is too narrow to rotate by the angle α, the collar 323 rotates by an angle smaller than α at which the outer peripheral portion of the outer cylindrical portion 223a contacts the inner peripheral surface 220f.
An example in which the collar 323 can be rotated by an angle α will be described below.
The distance between the base end side surface of the flange portion 225e to which the coil spring 224 engages and the inclined surface 323d is kept constant corresponding to the total length of the coil spring 224 when it expands and contracts.
 これにより、外筒部223aの先端は、上側では外周面220eに近接し、下側では、外周面220eから離れる。同様に外筒部223aの基端は、上側では外周面220eから離れ、下側では、外周面220eに近接する。
 カラー323は、第3変形例におけるカラー223と同様にして、気密部材225と係合している。これにより、カラー323は、中心軸線O220回りの回転が規制されている。この結果、カラー323の傾斜は、軸方向に移動する際にも同様に保たれる。
As a result, the tip of the outer cylindrical portion 223a is close to the outer peripheral surface 220e on the upper side and separated from the outer peripheral surface 220e on the lower side. Similarly, the proximal end of the outer cylindrical portion 223a is separated from the outer peripheral surface 220e on the upper side and approaches the outer peripheral surface 220e on the lower side.
Collar 323 engages with sealing member 225 in the same manner as collar 223 in the third modification. As a result, the collar 323 is restricted from rotating around the central axis O 220 . As a result, the tilt of the collar 323 is similarly maintained during axial movement.
 本実施形態では、圧力表示器319のケース220の内部において、カラー323が中心軸線O220に沿って移動する際、表示窓221aに向かって傾斜した状態を保って移動することを除いて、第3変形例の圧力表示器219と同様にして、圧力を表示できる。
 カラー323の傾斜することによって、先端エッジ部223cが表示窓221aに近接する。術者の視認方向が術者の左右方向に傾いた場合の読み取り誤差は径方向において、先端エッジ部223cが表示窓221aからより遠くに位置する場合に比べて低減される。これにより、術者がより正確な圧力を読み取ることができる。
 カラー323が傾斜した状態は、カラー323に当接するコイルバネ224が弾性力によってカラー323を基端側に押圧することによって形成されるので、コイルバネ224の押圧力が作用するカラー323の移動範囲において、傾斜角および傾斜方向は一定に保たれる。
 カラー323の中心軸線Oc回りの回転は、気密部材225のねじり剛性と、コイルバネ224の基端における摩擦力と、によって抑制される。
In this embodiment, inside the case 220 of the pressure indicator 319, when the collar 323 moves along the central axis O220, the third third Pressure can be displayed in the same manner as the pressure indicator 219 of the modified example.
The tilting of collar 323 brings leading edge 223c closer to viewing window 221a. The reading error when the operator's viewing direction is tilted in the operator's lateral direction is reduced in the radial direction compared to the case where the leading edge portion 223c is located farther from the display window 221a. This allows the operator to read the pressure more accurately.
The inclined state of the collar 323 is formed by the elastic force of the coil spring 224 contacting the collar 323 and pressing the collar 323 toward the base end side. The tilt angle and tilt direction are kept constant.
The rotation of the collar 323 around the central axis Oc is restrained by the torsional rigidity of the airtight member 225 and the frictional force at the proximal end of the coil spring 224 .
 本実施形態に係るオーバーチューブ301は、第1の実施形態に係るオーバーチューブ101の送気デバイス10に代えて、送気デバイス310を有することを除いて、オーバーチューブ101と同様である。このため、本変形例によれば、第1の実施形態と同様、患者の負荷を低減するとともに内視鏡を円滑に操作することができる内視鏡用オーバーチューブを提供することができる。
 特に本実施形態によれば、送気デバイス310は、第3変形例の圧力表示器219に代えて、圧力表示器319を有するので、視認方向の変化による圧力表示の読み取り誤差を低減できる。
The overtube 301 according to this embodiment is the same as the overtube 101 except that it has an air supply device 310 instead of the air supply device 10 of the overtube 101 according to the first embodiment. Therefore, according to this modified example, as in the first embodiment, it is possible to provide an endoscope overtube that reduces the burden on a patient and allows smooth operation of the endoscope.
In particular, according to this embodiment, the air supply device 310 has the pressure indicator 319 instead of the pressure indicator 219 of the third modified example, so reading errors in the pressure display due to changes in the viewing direction can be reduced.
 送気デバイス310における圧力表示器319において、ケース220は、少なくとも一部に内部が見える表示窓221aが設けられた筐体の例である。
 圧力表示器319において、カラー323は、筐体の内部の圧力に応じて筐体内を移動し、移動位置が表示窓から観察可能な移動部材の例である。
 圧力表示器319において、第1目盛線221bおよび第2目盛線221cは、表示窓または表示窓の周囲に形成されており、移動部材の位置に応じた圧力を示す参照目盛の例である。
 ケース220の側面部220bは、移動部材が内部を移動する移動管路の例である。
 カラー323における外筒部223aは、移動管路の中心軸線に沿って移動する管状部の例である。先端エッジ部223cは、表示窓に近づいた管状部の端部の例である。
 圧力表示器319において、管状部は、移動管路の中心軸線に対して、一定方向に傾斜した姿勢で移動し、表示窓は、管状部の傾斜によって、表示窓に近づいた管状部の端部が見える位置に形成されている、
In the pressure indicator 319 of the air supply device 310, the case 220 is an example of a housing provided with a display window 221a through which the inside can be seen at least partially.
In the pressure indicator 319, the collar 323 is an example of a moving member that moves within the housing according to the pressure inside the housing and whose movement position can be observed through the display window.
In the pressure indicator 319, the first scale line 221b and the second scale line 221c are formed around the display window or the display window, and are examples of reference scales indicating the pressure according to the position of the moving member.
A side portion 220b of the case 220 is an example of a moving pipe inside which a moving member moves.
The outer tube portion 223a of the collar 323 is an example of a tubular portion that moves along the central axis of the transfer conduit. Leading edge 223c is an example of the end of the tubular portion closer to the viewing window.
In the pressure indicator 319, the tubular portion moves in a tilted attitude in a certain direction with respect to the central axis of the moving conduit, and the display window is positioned at the end of the tubular portion that is closer to the display window due to the inclination of the tubular portion. is formed in a position where you can see the
 圧力表示器319におけるコイルバネ224は、移動部材に作用する圧力に抗して移動部材を付勢し、圧力に応じて移動部材の移動位置を規制する弾性部材の例である。
 圧力表示器319における気密部材225および固定枠222は、移動部材の移動方向において移動部材と対向して配置され、弾性部材における移動部材と反対側の端部を押さえる押え部材の例である。
 カラー323において傾斜面323dを有する係止板323bは、移動部材に含まれており、管状部が、中心軸線と同軸に配置されたときに、中心軸線に対して、一定方向に傾斜した傾斜面上で、弾性部材を支持する弾性部材支持部の例である。
The coil spring 224 in the pressure indicator 319 is an example of an elastic member that urges the moving member against the pressure acting on the moving member and regulates the moving position of the moving member according to the pressure.
The airtight member 225 and the fixed frame 222 in the pressure indicator 319 are an example of a pressing member that is arranged to face the moving member in the moving direction of the moving member and presses the end of the elastic member opposite to the moving member.
A locking plate 323b having an inclined surface 323d in the collar 323 is included in the moving member, and is an inclined surface inclined in a certain direction with respect to the central axis when the tubular portion is arranged coaxially with the central axis. The above is an example of the elastic member supporting portion that supports the elastic member.
 上述した第4の実施形態は、以下の変形を加えて実施されてもよい。
 本変形例における傾斜面323dは、係止板323bの全体に形成されるとして説明した。しかし、傾斜面323dは、コイルバネ224の基端と当接する範囲に形成されればよい。傾斜面323dは、コイルバネ224と当接する範囲、例えば押さえ爪223gと外筒部223aとの間において、軸方向から見て円環形に設けられてもよい。この場合、気密部材225の底板部225cが当接する係止板323bの部位は、平面323cと平行な平面で形成される。
The fourth embodiment described above may be implemented with the following modifications.
323 d of inclined surfaces in this modification were demonstrated as being formed in the whole locking plate 323b. However, the inclined surface 323d may be formed in a range that contacts the proximal end of the coil spring 224 . The inclined surface 323d may be provided in an annular shape when viewed from the axial direction in a range that contacts the coil spring 224, for example, between the pressing claw 223g and the outer cylindrical portion 223a. In this case, the portion of the locking plate 323b with which the bottom plate portion 225c of the airtight member 225 abuts is formed by a plane parallel to the plane 323c.
[第8変形例]
 第4の実施形態のオーバーチューブ301において、圧力表示器319に代えて用いる圧力表示器の変形例(第8変形例)を説明する。
 図68に示すように、本変形例の圧力表示器319Aは、オーバーチューブ301において、圧力表示器319に代えて用いることができる。
 図69に示すように、圧力表示器319Aは、カラー323に代えて、カラー323A(移動部材)を有する。
 以下、第4の実施形態と異なる点を中心に説明する。
[Eighth modification]
A modification (eighth modification) of the pressure indicator used instead of the pressure indicator 319 in the overtube 301 of the fourth embodiment will be described.
As shown in FIG. 68, a pressure indicator 319A of this modification can be used in place of the pressure indicator 319 in the overtube 301. As shown in FIG.
As shown in FIG. 69, the pressure indicator 319A has a collar 323A (moving member) instead of the collar 323. As shown in FIG.
In the following, the points different from the fourth embodiment will be mainly described.
 図71は、本発明の第4の実施形態に係る内視鏡用オーバーチューブに用いる圧力表示器の変形例(第8変形例)の主要部を示す模式的な断面図である。図72は、第8変形例におけるカラーの右側面図である。
 図71に示すように、カラー323Aは、係止板323bに代えて、第3変形例における係止板223bと、複数の突起部323f(弾性部材支持部)と、を有する。
 係止板223bは、中心軸線Ocに直交している。中心軸線Ocに沿う軸方向における係止板223bの先端側の先端面323eも中心軸線Ocに直交している。
FIG. 71 is a schematic cross-sectional view showing a main part of a modified example (eighth modified example) of the pressure indicator used in the endoscope overtube according to the fourth embodiment of the present invention. FIG. 72 is a right side view of the collar in the eighth modification.
As shown in FIG. 71, the collar 323A has a locking plate 223b in the third modified example and a plurality of projecting portions 323f (elastic member supporting portions) instead of the locking plate 323b.
The locking plate 223b is orthogonal to the central axis Oc. A tip surface 323e on the tip side of the locking plate 223b in the axial direction along the central axis Oc is also orthogonal to the central axis Oc.
 中心軸線Ocに沿う軸方向における複数の突起部323fの各先端面は、係止板223bの先端面323eよりも先端側において、先端面323eに対して角度αだけ図示時計回りに回転した同一平面上に位置する。
 複数の突起部323fには、第4の実施形態における傾斜面323dと同様に、コイルバネ224の基端が係止する。
 複数の突起部323fの周方向における配置位置および個数は、コイルバネ224の基端を同一平面上に配置できれば、特に限定されない。
 例えば、図72に示すように、複数の突起部323fは、第1突起部323f1、第2突起部323f2、および第3突起部323f3で構成されてもよい。
The distal end surfaces of the plurality of protrusions 323f in the axial direction along the central axis Oc are on the same plane rotated clockwise in the figure by an angle α with respect to the distal end surface 323e of the locking plate 223b on the distal side of the distal end surface 323e. located above.
The proximal ends of the coil springs 224 are locked to the plurality of projections 323f, like the inclined surfaces 323d in the fourth embodiment.
The arrangement position and the number of the plurality of protrusions 323f in the circumferential direction are not particularly limited as long as the proximal ends of the coil springs 224 can be arranged on the same plane.
For example, as shown in FIG. 72, the plurality of protrusions 323f may be composed of a first protrusion 323f1, a second protrusion 323f2, and a third protrusion 323f3.
 第1突起部323f1および第3突起部323f3は、図示上下方向に延びる径方向において、中心軸線Ocを挟んで対向している。複数の突起部323fにおいて、第1突起部323f1における先端面323eからの突出量は最も大きい。同様に第3突起部323f3における先端面323eからの突出量は最も小さい。
 第2突起部323f2は、周方向において第1突起部323f1および第3突起部323f3の中間にそれぞれ1つずつ設けられている。各第2突起部323f2における先端面323eからの突出量は、第1突起部323f1および第3突起部323f3の突出量の平均に等しい。
 軸方向から見た各突起部323fの外形は特に限定されない。例えば、各突起部323fの外形は、矩形、多角形、円形などでもよい。図72に示す例では、各突起部323fの外形は矩形である。
 各突起部323fの先端の形状は、コイルバネ224と安定して当接できれば、特に限定されない。例えば、傾斜面323dの一部を形成する平面でもよいし、傾斜面323dと同一平面に少なくとも1箇所で接する凸湾曲面でもよい。
The first projecting portion 323f1 and the third projecting portion 323f3 face each other across the central axis Oc in the radial direction extending vertically in the figure. Among the plurality of protrusions 323f, the first protrusion 323f1 has the largest protrusion amount from the tip surface 323e. Similarly, the amount of protrusion from the tip surface 323e of the third protrusion 323f3 is the smallest.
The second protrusions 323f2 are provided one each in the circumferential direction between the first protrusions 323f1 and the third protrusions 323f3. The amount of protrusion of each second protrusion 323f2 from the tip surface 323e is equal to the average of the protrusion amounts of the first protrusion 323f1 and the third protrusion 323f3.
The outer shape of each protrusion 323f when viewed from the axial direction is not particularly limited. For example, the outer shape of each protrusion 323f may be rectangular, polygonal, circular, or the like. In the example shown in FIG. 72, each protrusion 323f has a rectangular outer shape.
The shape of the tip of each projection 323f is not particularly limited as long as it can stably abut on the coil spring 224 . For example, it may be a plane that forms part of the inclined surface 323d, or a convex curved surface that contacts the same plane as the inclined surface 323d at at least one point.
 本変形例は、傾斜面323dに代えて、複数の突起部323fを有する。複数の突起部323fの各先端面は、全体として同様な傾斜を有する同一平面に位置するので、それぞれにコイルバネ224の基端が当接すると、カラー323Aは、カラー323と同様に側面部220bの内部で一定方向に傾斜する。
 これにより、カラー323と同様に、先端エッジ部223cが表示窓221aに近接するので、術者が正確な圧力を読み取ることができる。
This modification has a plurality of protrusions 323f instead of the inclined surface 323d. Since the distal end faces of the plurality of projections 323f are positioned on the same plane with the same inclination as a whole, when the proximal ends of the coil springs 224 come into contact with each of them, the collars 323A and the side faces 220b are aligned in the same manner as the collars 323. Tilt in a certain direction inside.
As a result, like the collar 323, the tip edge portion 223c is close to the display window 221a, so that the operator can read the pressure accurately.
 本変形例の圧力表示器319Aを有するオーバーチューブ301は、第4の実施形態に係るオーバーチューブ301と同様な作用を有する。
 特に本変形例では、第4の実施形態に比べて、狭い範囲に設けられた複数の突起部323fによって、カラー323Aの傾斜が規定される。このため、より広い傾斜面323dを形成する場合に比べて、傾斜角の精度が出しやすい。
The overtube 301 having the pressure indicator 319A of this modification has the same function as the overtube 301 according to the fourth embodiment.
In particular, in this modified example, the inclination of the collar 323A is defined by a plurality of protrusions 323f provided in a narrower range than in the fourth embodiment. For this reason, compared with the case of forming a wider inclined surface 323d, it is easier to obtain the accuracy of the inclination angle.
 本変形例では、コイルバネ224の基端が複数の突起部323fのみに当接するとして説明した。しかし、コイルバネ224の基端を同一平面上に位置合わせできれば、コイルバネ224の一部は、先端面323eと当接してもよい。例えば、第3突起部323f3を削除し、コイルバネ224の基端の下側が、先端面323eと当接するようにしてもよい。 In this modified example, the proximal end of the coil spring 224 has been described as being in contact only with the plurality of projecting portions 323f. However, if the proximal end of the coil spring 224 can be aligned on the same plane, a portion of the coil spring 224 may abut on the distal end surface 323e. For example, the third projecting portion 323f3 may be removed, and the lower side of the proximal end of the coil spring 224 may be brought into contact with the distal end surface 323e.
 カラー323Aにおいて複数の突起部323fは、移動部材に含まれており、管状部が、中心軸線と同軸に配置されたときに、中心軸線に対して、一定方向に傾斜した傾斜面上で、弾性部材を支持する弾性部材支持部の例である。 A plurality of projecting portions 323f in the collar 323A are included in the moving member, and when the tubular portion is arranged coaxially with the central axis, it is elastic on an inclined surface inclined in a certain direction with respect to the central axis. It is an example of an elastic member supporting portion that supports a member.
[第9変形例]
 第4の実施形態のオーバーチューブ301において、圧力表示器319に代えて用いる圧力表示器の変形例(第9変形例)を説明する。
 図68に示すように、本変形例の圧力表示器319Bは、オーバーチューブ301において、圧力表示器319に代えて用いることができる。
 以下、第4の実施形態と異なる点を中心に説明する。
[Ninth Modification]
A modification (ninth modification) of the pressure indicator used instead of the pressure indicator 319 in the overtube 301 of the fourth embodiment will be described.
As shown in FIG. 68, the pressure indicator 319B of this modification can be used in place of the pressure indicator 319 in the overtube 301. As shown in FIG.
In the following, the points different from the fourth embodiment will be mainly described.
 図73は、本発明の第4の実施形態に係る内視鏡用オーバーチューブに用いる圧力表示器の変形例(第9変形例)の主要部を示す模式的な断面図である。
 図73に示すように、圧力表示器319Bは、気密部材225、カラー323に代えて、気密部材325B(封止部材、押え部材)、カラー323B(移動部材)を有する。
FIG. 73 is a schematic cross-sectional view showing main parts of a modification (ninth modification) of the pressure indicator used in the endoscope overtube according to the fourth embodiment of the present invention.
As shown in FIG. 73, the pressure indicator 319B has an airtight member 325B (sealing member, pressing member) and a collar 323B (moving member) instead of the airtight member 225 and collar 323. As shown in FIG.
 図73に示すように、気密部材325Bは、第3変形例における気密部材225の底板部225cに代えて、底板部325cを有する。
 底板部325cは、1つの直径に沿う厚さが最大値から最小値に向かって漸次減少するくさび型の板部材である。
 軸方向における先端側(図示右側)の底板部325cの表面を形成する平面325kは、気密部材225の底板部225cにおける先端側の面と同様、中心軸線O220に直交している。
 軸方向における基端側(図示左側)の底板部325cの表面を形成する傾斜面325jは、平面325kに対して、角度αだけ図示反時計回りに回転している。
 本変形例におけるボス部225aは、傾斜面325jから傾斜面325jの法線方向に突出している。
 本変形例では、第3変形例の各係合突起225iに代えて、それぞれ係合突起325iが突出している。ただし、各係合突起325iの厚さは、底板部325cの厚さの変化に応じて異なる。すなわち、各係合突起325iの基端面は傾斜面325jに沿って径方向に延びており、先端面は平面325kに沿って径方向に延びている。
 気密部材325Bは、底板部325cの最大厚さになる部位の位置が、径方向において表示窓221a寄りに位置するように配置される。
As shown in FIG. 73, an airtight member 325B has a bottom plate portion 325c instead of the bottom plate portion 225c of the airtight member 225 in the third modified example.
The bottom plate portion 325c is a wedge-shaped plate member whose thickness along one diameter gradually decreases from the maximum value to the minimum value.
A plane 325k that forms the surface of the bottom plate portion 325c on the tip side (right side in the drawing) in the axial direction is orthogonal to the central axis O 220 , like the surface of the bottom plate portion 225c of the airtight member 225 on the tip side.
An inclined surface 325j forming the surface of the bottom plate portion 325c on the base end side (left side in the drawing) in the axial direction rotates counterclockwise in the drawing by an angle α with respect to the plane 325k.
The boss portion 225a in this modified example protrudes from the inclined surface 325j in the normal direction of the inclined surface 325j.
In this modification, instead of the engagement projections 225i of the third modification, engagement projections 325i protrude. However, the thickness of each engaging projection 325i varies according to the change in the thickness of the bottom plate portion 325c. That is, the base end surface of each engaging protrusion 325i extends radially along the inclined surface 325j, and the distal end surface extends radially along the flat surface 325k.
The airtight member 325B is arranged such that the position of the portion of the bottom plate portion 325c where the thickness is the maximum is positioned toward the display window 221a in the radial direction.
 カラー323Bは、押さえ爪223gに代えて、押さえ爪323gを有することを除いて、第3変形例におけるカラー223と同様である。
 押さえ爪323gは、係合相手の係合突起325iの厚さに応じて、先端側への突出量が異なることを除いて、押さえ爪223gと同様である。
The collar 323B is the same as the collar 223 in the third modification except that it has a pressing claw 323g instead of the pressing claw 223g.
The pressing claw 323g is the same as the pressing claw 223g except that the amount of protrusion toward the tip side differs according to the thickness of the mating engagement projection 325i.
 本変形例によれば、気密部材325Bにおける底板部325cの傾斜面325jが、カラー223の係止面223dに係止する。これにより、カラー223は、第4の実施形態のカラー323と同様に回転する。中心軸線Ocは、中心軸線O220に対して、各角度αだけ図示反時計回りに回転する。
 これにより、カラー323と同様に、本変形例におけるカラー223の先端エッジ部223cが表示窓221aに近接するので、術者が正確な圧力を読み取ることができる。
According to this modification, the inclined surface 325j of the bottom plate portion 325c of the airtight member 325B engages with the engaging surface 223d of the collar 223. As shown in FIG. This causes the collar 223 to rotate in the same manner as the collar 323 of the fourth embodiment. The central axis Oc rotates counterclockwise in the figure with respect to the central axis O 220 by each angle α.
Accordingly, as with the collar 323, the tip edge portion 223c of the collar 223 in this modified example comes close to the display window 221a, so that the operator can read the pressure accurately.
 本変形例の圧力表示器319Bを有するオーバーチューブ301は、第4の実施形態に係るオーバーチューブ301と同様な作用を有する。
 本変形例は、気密部材325Bにおける基端側に傾斜面325jを設けることによって、本変形例におけるカラー223を回転させた例である。
The overtube 301 having the pressure indicator 319B of this modification has the same function as the overtube 301 according to the fourth embodiment.
This modification is an example in which the collar 223 in this modification is rotated by providing an inclined surface 325j on the base end side of the airtight member 325B.
 上述した第9変形例は、以下の変形を加えて実施されてもよい。
 本変形例における傾斜面325jは、周方向の全体に形成されてもよいし、周方向に離れて形成されてもよい。周方向の全体に形成される場合、径方向においては、コイルバネ224と当接する範囲に軸方向から見て円環形に設けられてもよい。
 図74は、第9変形例における気密部材の左側面図である。
 図74に示す例は、傾斜面325jが、複数の突起部325pの軸方向における基端にそれぞれ形成されている例である。複数の突起部325pは、平面325kと平行な平面325nから、基端側に突出している。
 例えば、複数の突起部325pは、第8変形例における複数の突起部323fと同様、第1突起部325p1、第2突起部325p2、および第3突起部325p3で構成されてもよい。
 第1突起部325p1、第2突起部325p2、および第3突起部325p3は、平面325nから基端側に突出し基端の表面に傾斜面325jが形成されていることを除いて、第8変形例における第1突起部323f1、第2突起部323f2、および第3突起部323f3と同様の位置および形状に形成されてもよい。
 さらに、各突起部325pの先端の形状は、第8変形例における突起部323fと同様、コイルバネ224と安定して当接できれば、特に限定されない。
The above-described ninth modification may be implemented with the following modification added.
The inclined surface 325j in this modified example may be formed entirely in the circumferential direction, or may be formed apart in the circumferential direction. When formed over the entire circumferential direction, in the radial direction, it may be formed in an annular shape when viewed from the axial direction within a range in contact with the coil spring 224 .
74 is a left side view of an airtight member in a ninth modification. FIG.
The example shown in FIG. 74 is an example in which the inclined surfaces 325j are respectively formed at the base ends in the axial direction of the plurality of protrusions 325p. The plurality of protrusions 325p protrude toward the proximal end from a plane 325n parallel to the plane 325k.
For example, the plurality of projections 325p may be composed of a first projection 325p1, a second projection 325p2, and a third projection 325p3, like the plurality of projections 323f in the eighth modified example.
The first protrusion 325p1, the second protrusion 325p2, and the third protrusion 325p3 project from the flat surface 325n toward the base end, and the slope surface 325j is formed on the surface of the base end. may be formed in the same position and shape as the first protrusion 323f1, the second protrusion 323f2, and the third protrusion 323f3 in .
Furthermore, the shape of the tip of each protrusion 325p is not particularly limited as long as it can stably contact the coil spring 224, like the protrusion 323f in the eighth modified example.
[第10変形例]
 第4の実施形態のオーバーチューブ301において、圧力表示器319に代えて用いる圧力表示器の変形例(第10変形例)を説明する。
 図68に示すように、本変形例の圧力表示器319Cは、オーバーチューブ301において、圧力表示器319に代えて用いることができる。
 以下、第4の実施形態と異なる点を中心に説明する。
[Tenth Modification]
A modification (tenth modification) of the pressure indicator used instead of the pressure indicator 319 in the overtube 301 of the fourth embodiment will be described.
As shown in FIG. 68, a pressure indicator 319C of this modification can be used in place of the pressure indicator 319 in the overtube 301. As shown in FIG.
In the following, the points different from the fourth embodiment will be mainly described.
 図75は、本発明の第4の実施形態に係る内視鏡用オーバーチューブに用いる圧力表示器の変形例(第10変形例)の主要部を示す模式的な断面図である。
 図75に示すように、圧力表示器319Cは、固定枠222、カラー323に代えて、固定枠322C(押え部材)、カラー223を有する。カラー223は、第3変形例におけるカラー223と同様な部材である。
FIG. 75 is a schematic cross-sectional view showing a main part of a modified example (tenth modified example) of the pressure indicator used in the endoscope overtube according to the fourth embodiment of the present invention.
As shown in FIG. 75, the pressure indicator 319C has a fixed frame 322C (holding member) and a collar 223 instead of the fixed frame 222 and collar 323. As shown in FIG. The collar 223 is the same member as the collar 223 in the third modified example.
 図75に示すように、固定枠322Cは、第3変形例における固定枠222の底面部222aに代えて、底面部322aを有する。
 底面部322aは、1つの直径に沿う厚さが最大値から最小値に向かって漸次減少するくさび型の板部材である。
 軸方向における先端側(図示右側)の底面部322aの表面を形成する平面322hは、中心軸線O220に直交している。
 軸方向における基端側(図示左側)の底面部322aの表面を形成する傾斜面322iは、平面322hに対して、角度αだけ図示反時計回りに回転している。
 傾斜面322iには、フランジ部225eの先端側の面が当接する。
 固定枠322Cは、底面部322aの最大厚さになる部位の位置が、径方向において表示窓221a寄りに位置するように、ケース220に固定される。
As shown in FIG. 75, a fixed frame 322C has a bottom surface portion 322a instead of the bottom surface portion 222a of the fixed frame 222 in the third modified example.
The bottom portion 322a is a wedge-shaped plate member whose thickness along one diameter gradually decreases from the maximum value to the minimum value.
A plane 322 h that forms the surface of the bottom surface portion 322 a on the tip side (right side in the drawing) in the axial direction is orthogonal to the central axis O 220 .
An inclined surface 322i forming the surface of the bottom surface portion 322a on the base end side (left side in the drawing) in the axial direction rotates counterclockwise in the drawing by an angle α with respect to the flat surface 322h.
The tip side surface of the flange portion 225e contacts the inclined surface 322i.
The fixed frame 322C is fixed to the case 220 so that the maximum thickness of the bottom surface portion 322a is positioned toward the display window 221a in the radial direction.
 本変形例によれば、固定枠322Cの底面部322aの傾斜面322iに、気密部材225のフランジ部225eが係止する。これにより、フランジ部225eの基端側の表面に係止するコイルバネ224の上側の先端が、下側の先端よりも基端側に押し出される。本変形例におけるカラー223の係止面223dは、コイルバネ224の基端によって、下側に比べて上側の方が強く押圧されるので、カラー223は、第4の実施形態のカラー323と同様に回転する。中心軸線Ocは、中心軸線O220に対して、角度αだけ図示反時計回りに回転する。
 これにより、カラー323と同様に、本変形例におけるカラー223の先端エッジ部223cが表示窓221aに近接するので、術者が正確な圧力を読み取ることができる。
According to this modification, the flange portion 225e of the airtight member 225 is engaged with the inclined surface 322i of the bottom surface portion 322a of the fixed frame 322C. As a result, the upper tip of the coil spring 224 that engages with the proximal surface of the flange portion 225e is pushed out more to the proximal side than the lower tip. Since the locking surface 223d of the collar 223 in this modified example is pressed more strongly on the upper side than on the lower side by the proximal end of the coil spring 224, the collar 223 is similar to the collar 323 of the fourth embodiment. Rotate. The center axis Oc rotates counterclockwise in the figure by an angle α with respect to the center axis O 220 .
Accordingly, as with the collar 323, the tip edge portion 223c of the collar 223 in this modified example comes close to the display window 221a, so that the operator can read the pressure accurately.
 本変形例の圧力表示器319Cを有するオーバーチューブ301は、第4の実施形態に係るオーバーチューブ301と同様な作用を有する。
 本変形例は、固定枠322Cにおける基端側に傾斜面322iを設けることによって、本変形例におけるカラー223を回転させた例である。
The overtube 301 having the pressure indicator 319C of this modification has the same function as the overtube 301 according to the fourth embodiment.
This modification is an example in which the collar 223 in this modification is rotated by providing an inclined surface 322i on the base end side of the fixed frame 322C.
 上述した第10変形例は、以下の変形を加えて実施されてもよい。
 本変形例における傾斜面322iは、周方向の全体に形成されてもよいし、周方向に離れて形成されてもよい。周方向の全体に形成される場合、径方向においては、フランジ部225eを挟んでコイルバネ224と対向する範囲に軸方向から見て円環形に設けられてもよい。
 図76は、第10変形例における固定枠の左側面図である。
 図76に示す例は、傾斜面322iが、複数の突起部322m(弾性部材支持部)の軸方向における基端に形成されている例である。複数の突起部322mは、平面322hと平行な平面322kから、基端側に突出している。
 例えば、複数の突起部322mは、第8変形例における複数の突起部323fと同様、第1突起部322m1、第2突起部322m2、および第3突起部322m3で構成されてもよい。
 第1突起部322m1、第2突起部322m2、および第3突起部322m3は、平面322kから基端側に突出し基端面が傾斜面322iで形成されていることを除いて、第8変形例における第1突起部323f1、第2突起部323f2、および第3突起部323f3と同様の位置および形状に形成されてもよい。
 さらに、各突起部322mの先端の形状は、第8変形例における突起部323fと同様、コイルバネ224と安定して当接できれば、特に限定されない。
The tenth modified example described above may be implemented with the following modifications added.
The inclined surface 322i in this modified example may be formed entirely in the circumferential direction, or may be formed apart in the circumferential direction. When formed over the entire circumferential direction, in the radial direction, it may be formed in an annular shape when viewed from the axial direction in a range facing the coil spring 224 with the flange portion 225e interposed therebetween.
FIG. 76 is a left side view of a fixed frame in the tenth modification.
The example shown in FIG. 76 is an example in which inclined surfaces 322i are formed at proximal ends in the axial direction of a plurality of protrusions 322m (elastic member supporting portions). The plurality of protrusions 322m protrude toward the proximal end from a plane 322k parallel to the plane 322h.
For example, the plurality of projections 322m may be composed of a first projection 322m1, a second projection 322m2, and a third projection 322m3, like the plurality of projections 323f in the eighth modified example.
Except that the first protrusion 322m1, the second protrusion 322m2, and the third protrusion 322m3 protrude from the flat surface 322k toward the base end side and the base end surface is formed by the inclined surface 322i, the first protrusion 322m1, the second protrusion 322m2, and the third protrusion 322m3 are the same as the eighth modified example. It may be formed in the same position and shape as the first protrusion 323f1, the second protrusion 323f2, and the third protrusion 323f3.
Furthermore, the shape of the tip of each protrusion 322m is not particularly limited as long as it can stably contact the coil spring 224, like the protrusion 323f in the eighth modified example.
 圧力表示器319Cにおける気密部材225および固定枠322Cは、移動部材の移動方向において移動部材と対向して配置され、弾性部材における移動部材と反対側の端部を押さえる押え部材の例である。
 固定枠322Cにおいて傾斜面322iを有する底面部322aまたは複数の突起部323fは、押え部材に含まれており、管状部が、中心軸線と同軸に配置されたときに、中心軸線に対して、一定方向に傾斜した傾斜面上で、弾性部材を支持する弾性部材支持部の例である。
The airtight member 225 and the fixed frame 322C in the pressure indicator 319C are an example of a pressing member that is arranged to face the moving member in the moving direction of the moving member and presses the end of the elastic member opposite to the moving member.
A bottom surface portion 322a having an inclined surface 322i or a plurality of protrusions 323f in the fixed frame 322C are included in the pressing member, and when the tubular portion is arranged coaxially with the central axis, it is fixed to the central axis. It is an example of an elastic member supporting portion that supports an elastic member on an inclined surface inclined in a direction.
[第11変形例]
 第4の実施形態のオーバーチューブ301において、圧力表示器319に代えて用いる圧力表示器の変形例(第11変形例)を説明する。
 図68に示すように、本変形例の圧力表示器319Dは、オーバーチューブ301において、圧力表示器319に代えて用いることができる。
 以下、第4の実施形態と異なる点を中心に説明する。
[11th Modification]
A modification (eleventh modification) of the pressure indicator used instead of the pressure indicator 319 in the overtube 301 of the fourth embodiment will be described.
As shown in FIG. 68, a pressure indicator 319D of this modification can be used in place of the pressure indicator 319 in the overtube 301. As shown in FIG.
In the following, the points different from the fourth embodiment will be mainly described.
 図77は、本発明の第4の実施形態に係る内視鏡用オーバーチューブに用いる圧力表示器の変形例(第11変形例)の主要部を示す模式的な断面図である。
 図77に示すように、圧力表示器319Dは、気密部材225、カラー323に代えて、気密部材325D(封止部材、押え部材)、カラー223を有する。カラー223は、第3変形例におけるカラー223と同様な部材である。
FIG. 77 is a schematic cross-sectional view showing a main part of a modified example (eleventh modified example) of the pressure indicator used in the endoscope overtube according to the fourth embodiment of the present invention.
As shown in FIG. 77, the pressure indicator 319D has an airtight member 325D (sealing member, pressing member) and a collar 223 instead of the airtight member 225 and collar 323. As shown in FIG. The collar 223 is the same member as the collar 223 in the third modified example.
 図77に示すように、気密部材325Dは、第3変形例における気密部材225のフランジ部225eに代えて、フランジ部325e(弾性部材支持部)を有する。
 フランジ部325eは、少なくともコイルバネ224の先端が当接する部位において、1つの直径に沿う厚さが最大値から最小値に向かって漸次減少しており、軸方向から見ると円環形の板部材である。
 軸方向における先端側(図示右側)のフランジ部325eの表面を形成する平面325sは、中心軸線O220に直交している。
 軸方向における基端側(図示左側)のフランジ部325eの表面を形成する傾斜面325tは、平面325sに対して、角度αだけ図示反時計回りに回転している。
 平面325sは、固定枠222の底面部222aの基端側の表面に当接する。
 傾斜面325tには、コイルバネ224の先端が当接する。
 気密部材325Dは、フランジ部325eの最大厚さになる部位の位置が、径方向において表示窓221a寄りに位置するように、ケース220および固定枠222によって固定される。
As shown in FIG. 77, the airtight member 325D has a flange portion 325e (elastic member supporting portion) instead of the flange portion 225e of the airtight member 225 in the third modified example.
The flange portion 325e is an annular plate member whose thickness along one diameter gradually decreases from the maximum value to the minimum value at least at the portion where the tip of the coil spring 224 abuts. .
A plane 325 s that forms the surface of the flange portion 325 e on the distal end side (right side in the drawing) in the axial direction is perpendicular to the central axis O 220 .
The inclined surface 325t forming the surface of the flange portion 325e on the proximal side (left side in the drawing) in the axial direction rotates counterclockwise in the drawing by an angle α with respect to the flat surface 325s.
The plane 325 s abuts on the base end side surface of the bottom portion 222 a of the fixed frame 222 .
The tip of the coil spring 224 contacts the inclined surface 325t.
The airtight member 325D is fixed by the case 220 and the fixing frame 222 so that the maximum thickness of the flange portion 325e is positioned radially toward the display window 221a.
 本変形例によれば、気密部材325Dのフランジ部325eの平面325sが固定枠222の底面部222aに係止すると、傾斜面325tが、中心軸線O220に直交する平面に対して、角度αだけ図示反時計回り回転する方向に傾斜する。
 これにより、フランジ部325eの傾斜面325tに係止するコイルバネ224の上側の先端が、下側の先端よりも基端に押し出される。本変形例におけるカラー223の係止面223dは、コイルバネ224の基端によって、下側に比べて上側の方が強く押圧されるので、カラー223は、第4の実施形態のカラー323と同様に回転する。中心軸線Ocは、中心軸線O220に対して、角度αだけ図示反時計回りに回転する。
 これにより、カラー323と同様に、本変形例におけるカラー223の先端エッジ部223cが表示窓221aに近接するので、術者が正確な圧力を読み取ることができる。
According to this modification, when the flat surface 325s of the flange portion 325e of the airtight member 325D is engaged with the bottom surface portion 222a of the fixed frame 222, the inclined surface 325t is inclined at an angle α with respect to the plane perpendicular to the central axis O 220 . It inclines in the direction of counterclockwise rotation in the drawing.
As a result, the upper tip of the coil spring 224 that engages with the inclined surface 325t of the flange portion 325e is pushed out more toward the base end than the lower tip. Since the locking surface 223d of the collar 223 in this modified example is pressed more strongly on the upper side than on the lower side by the proximal end of the coil spring 224, the collar 223 is similar to the collar 323 of the fourth embodiment. Rotate. The center axis Oc rotates counterclockwise in the figure with respect to the center axis O 220 by an angle α.
Accordingly, as with the collar 323, the tip edge portion 223c of the collar 223 in this modified example comes close to the display window 221a, so that the operator can read the pressure accurately.
 本変形例の圧力表示器319Dを有するオーバーチューブ301は、第4の実施形態に係るオーバーチューブ301と同様な作用を有する。
 本変形例は、気密部材325Dにおけるフランジ部325eの基端側に傾斜面325tを設けることによって、本変形例におけるカラー223を回転させた例である。
The overtube 301 having the pressure indicator 319D of this modification has the same function as the overtube 301 according to the fourth embodiment.
This modification is an example in which the collar 223 in this modification is rotated by providing an inclined surface 325t on the base end side of the flange portion 325e of the airtight member 325D.
 上述した第11変形例は、以下の変形を加えて実施されてもよい。
 本変形例における傾斜面325tは、周方向の全体に形成されてもよいし、周方向に離れて形成されてもよい。周方向の全体に形成される場合、径方向においては、コイルバネ224と対向する範囲に軸方向から見て円環形に設けられてもよい。
 図78は、第11変形例における気密部材の左側面図である。
 図78に示す例は、傾斜面325tが、複数の突起部325r(弾性部材支持部)の軸方向における基端に形成されている例である。複数の突起部325rは、平面325sと平行な平面325qから、基端側に突出している。
 例えば、複数の突起部325rは、第8変形例における複数の突起部323fと同様、第1突起部325r1、第2突起部325r2、および第3突起部325r3で構成されてもよい。
 第1突起部325r1、第2突起部325r2、および第3突起部325r3は、平面325qから基端側に突出し基端の表面に傾斜面325tが形成されていることを除いて、第8変形例における第1突起部323f1、第2突起部323f2、および第3突起部323f3と同様に形成されてもよい。
 さらに、各突起部325rの先端の形状は、第8変形例における突起部323fと同様、コイルバネ224と安定して当接できれば、特に限定されない。
The eleventh modified example described above may be implemented with the following modifications added.
325 t of inclined surfaces in this modification may be formed all over the circumferential direction, and may be formed apart in the circumferential direction. When formed over the entire circumference, in the radial direction, it may be provided in an annular shape when viewed from the axial direction in a range facing the coil spring 224 .
FIG. 78 is a left side view of an airtight member in an eleventh modification.
The example shown in FIG. 78 is an example in which the inclined surface 325t is formed at the proximal ends in the axial direction of the plurality of protrusions 325r (elastic member supporting portions). The plurality of projections 325r protrude toward the base end from a plane 325q parallel to the plane 325s.
For example, the plurality of projections 325r may be composed of a first projection 325r1, a second projection 325r2, and a third projection 325r3, like the plurality of projections 323f in the eighth modified example.
The first protrusion 325r1, the second protrusion 325r2, and the third protrusion 325r3 project from the flat surface 325q toward the proximal side, and the slope surface 325t is formed on the surface of the proximal end. may be formed in the same manner as the first protrusion 323f1, the second protrusion 323f2, and the third protrusion 323f3 in .
Further, the shape of the tip of each protrusion 325r is not particularly limited as long as it can stably contact the coil spring 224, like the protrusion 323f in the eighth modified example.
 圧力表示器319Dにおける気密部材325Dおよび固定枠222は、移動部材の移動方向において移動部材と対向して配置され、弾性部材における移動部材と反対側の端部を押さえる押え部材の例である。
 気密部材325Dにおいて傾斜面325tを有するフランジ部325eまたは複数の突起部325rは、押え部材に含まれており、管状部が、中心軸線と同軸に配置されたときに、中心軸線に対して、一定方向に傾斜した傾斜面上で、弾性部材を支持する弾性部材支持部の例である。
The airtight member 325D and the fixed frame 222 in the pressure indicator 319D are an example of a pressing member that is arranged to face the moving member in the moving direction of the moving member and presses the end of the elastic member opposite to the moving member.
A flange portion 325e having an inclined surface 325t or a plurality of protrusions 325r in the airtight member 325D is included in the pressing member, and when the tubular portion is arranged coaxially with the central axis, it is fixed to the central axis. It is an example of an elastic member supporting portion that supports an elastic member on an inclined surface inclined in a direction.
[第12変形例]
 第4の実施形態のオーバーチューブ301において、圧力表示器319に代えて用いる圧力表示器の変形例(第12変形例)を説明する。
 図68に示すように、本変形例の圧力表示器319Eは、オーバーチューブ301において、圧力表示器319に代えて用いることができる。
 以下、第4の実施形態と異なる点を中心に説明する。
[Twelfth Modification]
A modification (twelfth modification) of the pressure indicator used instead of the pressure indicator 319 in the overtube 301 of the fourth embodiment will be described.
As shown in FIG. 68, the pressure indicator 319E of this modification can be used in place of the pressure indicator 319 in the overtube 301. As shown in FIG.
In the following, the points different from the fourth embodiment will be mainly described.
 図79は、本発明の第4の実施形態に係る内視鏡用オーバーチューブに用いる圧力表示器の変形例(第12変形例)の主要部を示す模式的な断面図である。
 図79に示すように、圧力表示器319Eは、第4の実施形態におけるケース220、カラー323に代えて、ケース320E(筐体)、カラー323E(移動部材)を有する。
FIG. 79 is a schematic cross-sectional view showing a main part of a modified example (twelfth modified example) of the pressure indicator used in the endoscope overtube according to the fourth embodiment of the present invention.
As shown in FIG. 79, a pressure indicator 319E has a case 320E (housing) and a collar 323E (moving member) instead of the case 220 and collar 323 in the fourth embodiment.
 ケース320Eは、側面部220bの内周面220fから径方向内側に膨出した凸部320fを有する。凸部320fの断面形状は軸方向において同一である。
 凸部320fの断面形状は、内周面220fから突出することによって、カラー323Eの周方向の回転を規制できれば特に限定されない。図79に示す例では、凸部320fは、軸方向に直交する断面において内周面220fに沿う円の弦をとして現れる平面である。これにより、軸方向から見たケース320Eの内面はD字形である。
 周方向における凸部320fの位置は、特に限定されない。ただし、凸部320fが表示窓221aを横切る位置に設けられる場合には、二点鎖線で示すように、表示窓221aの内側に対応する部位に、凸部320fの表面と平行な表面を形成する凹部320eが形成されてもよい。この場合、表示窓221aの内側の凸部320fの厚さが一定になるので、先端エッジ部223cが歪みなく視認される。
The case 320E has a convex portion 320f that protrudes radially inward from an inner peripheral surface 220f of the side surface portion 220b. The cross-sectional shape of the convex portion 320f is the same in the axial direction.
The cross-sectional shape of the convex portion 320f is not particularly limited as long as it can restrict the circumferential rotation of the collar 323E by protruding from the inner peripheral surface 220f. In the example shown in FIG. 79, the convex portion 320f is a plane appearing as a chord of a circle along the inner peripheral surface 220f in a cross section perpendicular to the axial direction. As a result, the inner surface of the case 320E viewed from the axial direction is D-shaped.
The position of the convex portion 320f in the circumferential direction is not particularly limited. However, when the convex portion 320f is provided at a position crossing the display window 221a, a surface parallel to the surface of the convex portion 320f is formed at a portion corresponding to the inner side of the display window 221a, as indicated by the two-dot chain line. A recess 320e may be formed. In this case, since the thickness of the convex portion 320f inside the display window 221a is constant, the tip edge portion 223c can be visually recognized without distortion.
 カラー323Eは、外筒部223aの外周面323pよりも径方向内側に凹んだ凹部323iを有することを除いて、カラー323と同様である。凹部323iの断面形状は、軸方向において同一である。
 凹部323iの断面形状は、外周面323pより凹んでおり、凸部320fと近接して摺動する際に、カラー323Eの周方向の回転を規制できれば特に限定されない。図79に示す例では、凹部323iは、軸方向に直交する断面において外周面323pに沿う円の弦として現れる平面である。これにより、軸方向から見たカラー323Eの外面は、ケース320Eの内面に軸方向において摺動可能に嵌合するD字形である。
 ただし、ケース320Eの内面とカラー323Eの外面との間には、カラー323Eがカラー323と同様に傾斜できる隙間が形成されている。
The collar 323E is similar to the collar 323 except that it has a recessed portion 323i that is recessed radially inward from the outer peripheral surface 323p of the outer cylinder portion 223a. The cross-sectional shape of the recess 323i is the same in the axial direction.
The cross-sectional shape of the recess 323i is recessed from the outer peripheral surface 323p, and is not particularly limited as long as it can restrict the circumferential rotation of the collar 323E when it slides close to the protrusion 320f. In the example shown in FIG. 79, the recess 323i is a plane that appears as a chord of a circle along the outer peripheral surface 323p in a cross section perpendicular to the axial direction. As a result, the outer surface of the collar 323E viewed from the axial direction is a D-shape that is slidably fitted in the inner surface of the case 320E in the axial direction.
However, a gap is formed between the inner surface of the case 320E and the outer surface of the collar 323E so that the collar 323E can be tilted in the same manner as the collar 323E.
 本変形例によれば、カラー323Eがケース320Eの側面部220bの内部に挿入された状態では、凸部320fと凹部323iとが、互いに近接して対向する。これにより、カラー323Eの周方向における回転が規制される。
 例えば、凸部320fを有しない第4の実施形態の場合、カラー323は、気密部材225に固定され、コイルバネ224と当接することによって、周方向の回転が規制されている。しかし、気密部材225のねじり剛性が低い場合、またはコイルバネ224と係止板323bとの摩擦力が低下した場合には、カラー323が周方向に回転する可能性がある。この場合、表示窓221aに現れる先端エッジ部223cの位置が一定しないので、圧力の表示精度が低下するおそれがある。
 これに対して、本変形例では、カラー323Eは、凸部320fによってより確実に回転が規制される。本変形例によれば、表示窓221aに現れる先端エッジ部223cの位置が一定するので、ケース220の内圧を精度よく表示できる。
According to this modification, when the collar 323E is inserted into the side surface portion 220b of the case 320E, the convex portion 320f and the concave portion 323i face each other closely. This restricts the rotation of the collar 323E in the circumferential direction.
For example, in the case of the fourth embodiment that does not have the convex portion 320f, the collar 323 is fixed to the airtight member 225 and is restricted from rotating in the circumferential direction by contacting the coil spring 224 . However, if the torsional rigidity of the airtight member 225 is low, or if the frictional force between the coil spring 224 and the locking plate 323b is reduced, the collar 323 may rotate in the circumferential direction. In this case, since the position of the tip edge portion 223c appearing in the display window 221a is not constant, there is a possibility that the display accuracy of the pressure is lowered.
In contrast, in this modified example, the rotation of the collar 323E is more reliably restricted by the projection 320f. According to this modification, the position of the tip edge portion 223c appearing in the display window 221a is constant, so the internal pressure of the case 220 can be displayed with high accuracy.
 本変形例の圧力表示器319Eを有するオーバーチューブ301は、第4の実施形態に係るオーバーチューブ301と同様な作用を有する。
 本変形例は、カラー323Eの凹部323iとケース320Eの凸部320fとによって、それぞれに形成されたD形の外面とD形の内面と、の嵌合によって、ケース320Eに対してカラー323を回り止めした例である。
The overtube 301 having the pressure indicator 319E of this modification has the same function as the overtube 301 according to the fourth embodiment.
In this modification, the collar 323 rotates around the case 320E by fitting the D-shaped outer surface and the D-shaped inner surface respectively formed by the concave portion 323i of the collar 323E and the convex portion 320f of the case 320E. This is an example of stopping.
[第13変形例]
 第4の実施形態のオーバーチューブ301において、圧力表示器319に代えて用いる圧力表示器の変形例(第13変形例)を説明する。
 図68に示すように、本変形例の圧力表示器319Fは、オーバーチューブ301において、圧力表示器319に代えて用いることができる。
 以下、第4の実施形態と異なる点を中心に説明する。
[Thirteenth Modification]
A modification (13th modification) of the pressure indicator used instead of the pressure indicator 319 in the overtube 301 of the fourth embodiment will be described.
As shown in FIG. 68, the pressure indicator 319F of this modification can be used in place of the pressure indicator 319 in the overtube 301. As shown in FIG.
In the following, the points different from the fourth embodiment will be mainly described.
 図80は、本発明の第4の実施形態に係る内視鏡用オーバーチューブに用いる圧力表示器の変形例(第13変形例)の主要部を示す模式的な断面図である。
 図80に示すように、圧力表示器319Fは、第4の実施形態におけるケース220、カラー323に代えて、ケース320F(筐体)、カラー323F(移動部材)を有する。
FIG. 80 is a schematic cross-sectional view showing a main part of a modified example (13th modified example) of the pressure indicator used in the endoscope overtube according to the fourth embodiment of the present invention.
As shown in FIG. 80, a pressure indicator 319F has a case 320F (housing) and a collar 323F (moving member) instead of the case 220 and collar 323 in the fourth embodiment.
 ケース320Fは、凸条320gを有することを除いてケース220と同様である。凸条320gは、側面部220bの内周面220fから径方向内側に突出しており、軸方向に延びている。凸条320gの断面形状は軸方向において同一である。
 凸条320gの断面形状は、外筒部223aの周方向の回転を規制できれば特に限定されない。例えば、凸条320gの断面形状は、矩形、三角形、台形、半円形などであってもよい。図80に示す例では、凸条320gは、内周面220fから径方向内側に突出する矩形である。
 周方向における凸部320fの位置は、表示窓221aを横切らない位置であれば、特に限定されない。
Case 320F is similar to case 220 except that it has ridges 320g. The ridge 320g protrudes radially inward from the inner peripheral surface 220f of the side surface portion 220b and extends in the axial direction. The cross-sectional shape of the ridge 320g is the same in the axial direction.
The cross-sectional shape of the ridge 320g is not particularly limited as long as it can restrict the circumferential rotation of the outer cylindrical portion 223a. For example, the cross-sectional shape of the ridge 320g may be rectangular, triangular, trapezoidal, semicircular, or the like. In the example shown in FIG. 80, the ridge 320g has a rectangular shape protruding radially inward from the inner peripheral surface 220f.
The position of the protrusion 320f in the circumferential direction is not particularly limited as long as it does not cross the display window 221a.
 カラー323Fは、溝部323jを有することを除いて、カラー323と同様である。溝部323jは、外筒部223aの外周面323pから径方向内側に凹んでおり、軸方向に延びている。
 溝部323jは、凸条320gを軸方向において摺動可能に嵌合する形状であれば特に限定されない。図80に示す例では、凸条320gが矩形であることに対応して、溝部323jの断面も矩形である。
 ただし、第12変形例と同様、ケース320Fの内面とカラー323Fの外面との間には、カラー323Fがカラー323と同様に傾斜できる隙間が形成されている。
Collar 323F is similar to collar 323 except that it has a groove 323j. The groove portion 323j is recessed radially inward from the outer peripheral surface 323p of the outer cylindrical portion 223a and extends in the axial direction.
The groove portion 323j is not particularly limited as long as it has a shape that fits the ridge 320g so as to be slidable in the axial direction. In the example shown in FIG. 80, the cross section of the groove 323j is also rectangular in correspondence with the rectangular projection 320g.
However, as in the twelfth modification, a gap is formed between the inner surface of the case 320F and the outer surface of the collar 323F so that the collar 323F can be tilted in the same manner as the collar 323F.
 本変形例によればカラー323Fがケース320Fの側面部220bの内部に挿入された状態では、凸条320gが溝部323jと軸方向に移動可能に嵌合する。これにより、カラー323Fの周方向における回転が規制される。カラー323Fは、凸条320gを軌道として、軸方向に移動できる。 According to this modification, when the collar 323F is inserted into the side surface portion 220b of the case 320F, the projection 320g is axially movably fitted into the groove portion 323j. This restricts the rotation of the collar 323F in the circumferential direction. The collar 323F can move axially along the ridge 320g.
 本変形例の圧力表示器319Fを有するオーバーチューブ301は、第4の実施形態に係るオーバーチューブ301と同様な作用を有する。
 本変形例は、カラー323Fとケース320Fとを、それぞれに形成された溝部323jと凸条320gとの嵌合によって回り止めした例である。
 同様な嵌合は、カラー323Fの外周面323pから径方向外側に突出することを除いて凸条320gと同様の突条と、ケース320Fの内周面220fから径方向外側に凹むことを除いて溝部323jと同様の溝部と、によって形成されてもよい。この場合にも、カラー323Fとケース320Fとを、回り止めできる。
The overtube 301 having the pressure indicator 319F of this modification has the same function as the overtube 301 according to the fourth embodiment.
This modification is an example in which the collar 323F and the case 320F are prevented from turning by fitting grooves 323j and ridges 320g formed in the respective parts.
A similar fitting is performed by ridges similar to the ridges 320g except that they protrude radially outward from the outer peripheral surface 323p of the collar 323F, and that they are recessed radially outward from the inner peripheral surface 220f of the case 320F. and a groove similar to the groove 323j. In this case as well, the collar 323F and the case 320F can be prevented from rotating.
[第14変形例]
 第4の実施形態のオーバーチューブ301において、圧力表示器319に代えて用いる圧力表示器の変形例(第14変形例)を説明する。
 図68に示すように、本変形例の圧力表示器319Hは、オーバーチューブ301において、圧力表示器319に代えて用いることができる。
 以下、第4の実施形態と異なる点を中心に説明する。
[14th Modification]
A modification (14th modification) of the pressure indicator used instead of the pressure indicator 319 in the overtube 301 of the fourth embodiment will be described.
As shown in FIG. 68, the pressure indicator 319H of this modification can be used in place of the pressure indicator 319 in the overtube 301. As shown in FIG.
In the following, the points different from the fourth embodiment will be mainly described.
 図81は、本発明の第4の実施形態に係る内視鏡用オーバーチューブに用いる圧力表示器の変形例(第14変形例)の主要部を示す模式的な断面図である。
 図81に示すように、圧力表示器319Hは、第4の実施形態におけるケース220、カラー323に代えて、ケース320H(筐体)、カラー323H(移動部材)を有する。
FIG. 81 is a schematic cross-sectional view showing a main part of a modified example (14th modified example) of the pressure indicator used in the endoscope overtube according to the fourth embodiment of the present invention.
As shown in FIG. 81, a pressure indicator 319H has a case 320H (housing) and a collar 323H (moving member) instead of the case 220 and collar 323 in the fourth embodiment.
 ケース320Hは、溝部320hを有することを除いて、ケース220と同様である。溝部320hは、側面部220bの内周面220fから径方向外側に凹んでおり、軸方向に延びている。溝部320hの断面形状は、第13変形例における溝部323jと同様、種々の断面形状が可能である。
 周方向における溝部320hの位置は、表示窓221aを横切らない位置であれば、特に限定されない。
Case 320H is similar to case 220 except that it has a groove 320h. The groove portion 320h is recessed radially outward from the inner peripheral surface 220f of the side surface portion 220b and extends in the axial direction. The cross-sectional shape of the groove portion 320h can have various cross-sectional shapes, like the groove portion 323j in the thirteenth modification.
The position of the groove 320h in the circumferential direction is not particularly limited as long as it does not cross the display window 221a.
 カラー323Hは、突条323kと、凸部323mと、を有することを除いて、カラー323と同様である。
 突条323kは、外筒部223aの外周面323pから径方向外側に突出し、軸方向に延びている。突条323kの断面形状は、溝部320hと嵌合し、軸方向に相対移動可能な形状である。突条323kの断面形状は、溝部320hと嵌合できれば、第13変形例における凸条320gと同様、種々の断面形状が可能である。
Collar 323H is similar to collar 323 except that it has ridges 323k and protrusions 323m.
The protrusion 323k protrudes radially outward from the outer peripheral surface 323p of the outer cylindrical portion 223a and extends in the axial direction. The cross-sectional shape of the protrusion 323k is a shape that fits in the groove 320h and is relatively movable in the axial direction. As for the cross-sectional shape of the ridge 323k, various cross-sectional shapes are possible as long as the ridge 323k can be fitted into the groove 320h, similarly to the ridge 320g in the thirteenth modification.
 凸部323mは、外周面323pから径方向外側に突出している。凸部323mは、周方向において突条323kから離れており、かつ二点鎖線で示す表示窓221aから見えない位置に設けられている。凸部323mは、1箇所に設けられていてよいが、周方向または軸方向において複数設けられていてもよい。図81に示す例では、凸部323mは、周方向において4箇所に設けられている。
 凸部323mの配置位置は、カラー323Hの傾斜を考慮して、内周面220fに当接しやすい位置が選定されてもよい。
 凸部323mは、内周面220fとの摺動抵抗を低減する目的で設けられている。このため、凸部323mの形状、個数、および形成位置は、内周面220fとの摺動抵抗を低減できれば特に限定されない。凸部323mは、内周面220fと滑らかに点接触する凸湾曲面で形成されることがより好ましい。
 例えば、凸部323mは、軸方向または周方向に延びる突条でもよいし、径方向から見てスポット状の突起部であってもよい。凸部323mとして特に好ましい形状は、軸方向に延びる半円断面の突条または半球状の突起である。
The convex portion 323m protrudes radially outward from the outer peripheral surface 323p. The convex portion 323m is provided at a position that is distant from the ridge 323k in the circumferential direction and that is not visible from the display window 221a indicated by the two-dot chain line. The convex portion 323m may be provided at one location, but may be provided at a plurality of locations in the circumferential direction or the axial direction. In the example shown in FIG. 81, the convex portions 323m are provided at four positions in the circumferential direction.
As for the arrangement position of the convex portion 323m, a position that is likely to come into contact with the inner peripheral surface 220f may be selected in consideration of the inclination of the collar 323H.
The convex portion 323m is provided for the purpose of reducing sliding resistance with the inner peripheral surface 220f. Therefore, the shape, number, and formation position of the convex portion 323m are not particularly limited as long as the sliding resistance with the inner peripheral surface 220f can be reduced. More preferably, the convex portion 323m is formed by a convex curved surface that makes point contact with the inner peripheral surface 220f smoothly.
For example, the protrusion 323m may be a ridge extending in the axial direction or the circumferential direction, or may be a spot-shaped protrusion when viewed from the radial direction. A particularly preferable shape for the convex portion 323m is an axially extending ridge with a semicircular cross section or a hemispherical projection.
 本変形例によればカラー323Hがケース320Hの側面部220bの内部に挿入された状態では、突条323kが溝部320hと嵌合する。これにより、カラー323Hの周方向における回転が規制される。カラー323Hは、突条323kを軌道として、軸方向に移動できる。
 本変形例では、外周面323pから凸部323mが突出しているので、凸部323mを有しない場合に比べると、内周面220fに対するカラー323Hの摺動抵抗が低減される。圧力表示器319Hにおいては、ケース320Hの内圧の変化が小さくても、カラー323Hが圧力変化に円滑に追従できる。これにより、ケース320Hの内圧をより正確に表示できる。
According to this modified example, when the collar 323H is inserted into the side surface portion 220b of the case 320H, the protrusion 323k fits into the groove portion 320h. This restricts the rotation of the collar 323H in the circumferential direction. The collar 323H can move axially along the ridge 323k as a track.
In this modification, since the convex portion 323m protrudes from the outer peripheral surface 323p, the sliding resistance of the collar 323H with respect to the inner peripheral surface 220f is reduced compared to the case where the convex portion 323m is not provided. In the pressure indicator 319H, even if the change in internal pressure of the case 320H is small, the collar 323H can smoothly follow the change in pressure. Thereby, the internal pressure of the case 320H can be displayed more accurately.
 本変形例の圧力表示器319Hを有するオーバーチューブ301は、第4の実施形態に係るオーバーチューブ301と同様な作用を有する。
 本変形例は、カラー323Hとケース320Hとを、それぞれに形成された突条323kと溝部320hとの嵌合によって回り止めした例である。
The overtube 301 having the pressure indicator 319H of this modification has the same function as the overtube 301 according to the fourth embodiment.
This modification is an example in which the collar 323H and the case 320H are prevented from rotating by fitting the ridges 323k and the grooves 320h respectively formed on the collar 323H and the case 320H.
 上述した第14変形例は、以下の変形を加えて実施されてもよい。
 凸部323mの突出高さは、配置位置に応じて代えられてもよい。例えば、凸部323mは、カラー323Hが角度αだけ傾斜したときに、内周面220fから等距離に位置することができる高さに形成されてもよい。この場合、カラー323Hが傾斜した状態において、内周面220fに対する凸部323mの当たり方が軸方向において略均等になる。これにより、カラー323Hの傾斜姿勢のバラツキが低減される。このような凸部323mは、摺動抵抗を低減する機能の他に、カラー323Hの傾斜を略一定に保つ機能も有する。
The fourteenth modification described above may be implemented with the following modification added.
The protrusion height of the protrusion 323m may be changed according to the arrangement position. For example, the convex portion 323m may be formed with a height that allows it to be positioned equidistant from the inner peripheral surface 220f when the collar 323H is tilted by the angle α. In this case, in the state where the collar 323H is inclined, the contact of the convex portion 323m against the inner peripheral surface 220f becomes substantially uniform in the axial direction. This reduces variations in the tilted attitude of the collar 323H. Such a convex portion 323m has a function of keeping the inclination of the collar 323H substantially constant in addition to the function of reducing the sliding resistance.
[第15変形例]
 第4の実施形態のオーバーチューブ301において、圧力表示器319に代えて用いる圧力表示器の変形例(第15変形例)を説明する。
 図68に示すように、本変形例の圧力表示器319Jは、オーバーチューブ301において、圧力表示器319に代えて用いることができる。
 図82は、本発明の第4の実施形態に係る内視鏡用オーバーチューブに用いる圧力表示器の変形例(第15変形例)の主要部を示す模式的な断面図である。
 図82に示すように、圧力表示器319Jは、第4の実施形態におけるケース220、カラー323に代えて、ケース320J(筐体)、カラー323Fを有する。カラー323Fは、第13変形例におけるカラー323Fと同様の部材である。
 以下、第4の実施形態および第13変形例と異なる点を中心に説明する。
[Fifteenth Modification]
A modification (a fifteenth modification) of the pressure indicator used instead of the pressure indicator 319 in the overtube 301 of the fourth embodiment will be described.
As shown in FIG. 68, the pressure indicator 319J of this modification can be used in place of the pressure indicator 319 in the overtube 301. As shown in FIG.
FIG. 82 is a schematic cross-sectional view showing the main part of a modification (fifteenth modification) of the pressure indicator used in the endoscope overtube according to the fourth embodiment of the present invention.
As shown in FIG. 82, a pressure indicator 319J has a case 320J (housing) and a collar 323F instead of the case 220 and collar 323 in the fourth embodiment. The collar 323F is the same member as the collar 323F in the thirteenth modification.
Differences from the fourth embodiment and the thirteenth modification will be mainly described below.
 ケース320Jは、凸部320iを有することを除いて、ケース220と同様である。
 凸部320iは、内周面220fから径方向内側に一定の突出高さで突出することを除いて、第14変形例における凸部323mと同様である。ただし、カラー323Fの移動時に、凸部320iが先端および基端に引っ掛かりにくいようにするために、凸部320iは、軸方向に連続する突条であることがより好ましい。
 凸部320iの突出方向の頂部は、内周面220fよりも小径で同軸の同一円筒面上に位置している。
Case 320J is similar to case 220, except that it has protrusions 320i.
The convex portion 320i is the same as the convex portion 323m in the fourteenth modification, except that it protrudes radially inward from the inner peripheral surface 220f with a constant protrusion height. However, in order to prevent the protrusion 320i from being caught by the distal end and the proximal end when the collar 323F is moved, the protrusion 320i is more preferably an axially continuous ridge.
The apex of the protrusion 320i in the projecting direction is located on the same cylindrical surface coaxial with and smaller in diameter than the inner peripheral surface 220f.
 本変形例によればカラー323Fがケース320Jの側面部220bの内部に挿入された状態では、第13変形例と同様、凸条320gが溝部323jと、軸方向に移動可能に嵌合する。これにより、第13変形例と同様に、カラー323Fが回り止めされる。カラー323Fは、凸条320gを軌道として、軸方向に移動できる。
 さらに本変形例では、内周面220fから凸部320iが突出しているので、第13変形例に比べると、ケース320Jに対するカラー323Fの摺動抵抗が低減される。このため、圧力表示器319Jにおいては、ケース320Hの内圧の変化が小さくても、カラー323Fが圧力変化に円滑に追従して、ケース320Jの内圧をより正確に表示できる。
According to this modification, when the collar 323F is inserted into the side surface 220b of the case 320J, the projection 320g is axially movably fitted into the groove 323j as in the thirteenth modification. As a result, the collar 323F is prevented from rotating, as in the thirteenth modification. The collar 323F can move axially along the ridge 320g.
Furthermore, in this modified example, since the convex portion 320i protrudes from the inner peripheral surface 220f, the sliding resistance of the collar 323F with respect to the case 320J is reduced as compared with the 13th modified example. Therefore, in the pressure indicator 319J, even if the change in the internal pressure of the case 320H is small, the collar 323F smoothly follows the change in pressure, and the internal pressure of the case 320J can be displayed more accurately.
 本変形例の圧力表示器319Jを有するオーバーチューブ301は、第4の実施形態に係るオーバーチューブ301と同様な作用を有する。
 本変形例は、内周面220fに凸部320iを設けることによって、カラー323Fが受ける摺動抵抗を低減した例である。
The overtube 301 having the pressure indicator 319J of this modification has the same function as the overtube 301 according to the fourth embodiment.
This modification is an example in which the sliding resistance received by the collar 323F is reduced by providing the convex portion 320i on the inner peripheral surface 220f.
[第16変形例]
 第4の実施形態のオーバーチューブ301において、圧力表示器319に代えて用いる圧力表示器の変形例(第16変形例)を説明する。
 図68に示すように、本変形例の圧力表示器319Kは、オーバーチューブ301において、圧力表示器319に代えて用いることができる。
 図83は、本発明の第4の実施形態に係る内視鏡用オーバーチューブに用いる圧力表示器の変形例(第16変形例)の主要部を示す模式的な斜視の部分断面図である。図84は、圧力表示器の変形例(第16変形例)に用いるカラーの右側面図である。図85は、図84におけるF85-F85線に沿う断面図である。
[16th Modification]
A modification (sixteenth modification) of the pressure indicator used instead of the pressure indicator 319 in the overtube 301 of the fourth embodiment will be described.
As shown in FIG. 68, a pressure indicator 319K of this modified example can be used in place of the pressure indicator 319 in the overtube 301. As shown in FIG.
FIG. 83 is a schematic perspective partial cross-sectional view showing a main part of a modified example (sixteenth modified example) of the pressure indicator used in the endoscope overtube according to the fourth embodiment of the present invention. FIG. 84 is a right side view of a collar used in a modified example (16th modified example) of the pressure indicator. 85 is a cross-sectional view taken along line F85-F85 in FIG. 84. FIG.
 図83に示すように、圧力表示器319Kは、カラー323、気密部材225に代えて、カラー323K(移動部材)、気密部材325K(封止部材、押え部材)を有する。
 以下、第4の実施形態と異なる点を中心に説明する。
As shown in FIG. 83, the pressure indicator 319K has a collar 323K (moving member) and an airtight member 325K (sealing member, pressing member) instead of the collar 323 and airtight member 225. As shown in FIG.
In the following, the points different from the fourth embodiment will be mainly described.
 図84に示すように、カラー323Kは、係止板223bから嵌合爪223f、押さえ爪223g、孔223j、および孔223kが削除され、段部323q(弾性部材支持部)が追加されたことを除いて、第3変形例におけるカラー223と同様である。
 段部323qは、係止板323bの係止面223dから軸方向における先端側に突出し、外筒部223aの内周面に沿って延びている。
 段部323qには、周方向において外筒部223aの内周を4等分する4箇所に、係止面223dと同じ高さまで凹んだ凹所323rが形成されている。
 各凹所323rの周方向の幅は、後述する気密部材325Kの係合突起325fを係合可能な幅である。
 各段部323qの径方向における内周面323sは、後述する気密部材325Kの底板部225cを、底板部225cの外周面に沿って挿入できる大きさの円筒面に沿う湾曲面である。
As shown in FIG. 84, the collar 323K has a fitting claw 223f, a pressing claw 223g, a hole 223j, and a hole 223k removed from the locking plate 223b, and a step portion 323q (elastic member supporting portion) is added. Except for this, it is the same as the collar 223 in the third modification.
The stepped portion 323q protrudes axially from the locking surface 223d of the locking plate 323b toward the distal end side and extends along the inner peripheral surface of the outer cylindrical portion 223a.
The stepped portion 323q is formed with recesses 323r that are recessed to the same height as the locking surface 223d at four locations that equally divide the inner circumference of the outer cylindrical portion 223a in the circumferential direction.
The width of each recess 323r in the circumferential direction is such that it can be engaged with an engaging projection 325f of an airtight member 325K, which will be described later.
An inner peripheral surface 323s of each stepped portion 323q in the radial direction is a curved surface along a cylindrical surface having a size that allows a bottom plate portion 225c of an airtight member 325K, which will be described later, to be inserted along the outer peripheral surface of the bottom plate portion 225c.
 図85に示すように、軸方向における各段部323qの先端には、それぞれ傾斜面323hが形成されている。
 各傾斜面323hは、中心軸線Ocに直交する係止面223dに対して図示時計回りに角度αだけ回転した傾斜を有する同一平面上に位置する。
 先端エッジ部223cが表示窓221aに近接する上側では、係止面223dと傾斜面323hとの距離はh1である。径方向において反対の下側では、係止面223dと傾斜面323hとの距離は、h1よりも短いh2である。
As shown in FIG. 85, an inclined surface 323h is formed at the tip of each stepped portion 323q in the axial direction.
Each inclined surface 323h is located on the same plane having an inclination rotated clockwise by an angle α with respect to the locking surface 223d orthogonal to the central axis Oc.
On the upper side where the tip edge portion 223c is close to the display window 221a, the distance between the locking surface 223d and the inclined surface 323h is h1. On the radially opposite lower side, the distance between the locking surface 223d and the inclined surface 323h is h2, which is shorter than h1.
 図86は、圧力表示器の変形例(第16変形例)に用いる気密部材の斜視図である。図87は、図86におけるF87-F87線に沿う断面図である。図88は、図86におけるF88-F88線に沿う断面図である。
 図86に示すように、気密部材325Kは、嵌合突起225bが削除され、係合突起225iに代えて係合突起325fを有することを除いて、気密部材225と同様である。
 係合突起325fは、係合突起225iと同様、底板部225cの外周を周方向に4等分する4箇所から径方向外側に延びている。各係合突起325fは、図84に二点鎖線で示すように、外筒部223aの内周面の近くまで延びている。各係合突起325fは、カラー323Kの各凹所323rにそれぞれ挿入される。これにより、係合突起325fの周方向の移動が規制されるので、気密部材325Kは、周方向において回り止めされている。
FIG. 86 is a perspective view of an airtight member used in a modification (sixteenth modification) of the pressure indicator. 87 is a cross-sectional view taken along line F87-F87 in FIG. 86. FIG. 88 is a cross-sectional view taken along line F88-F88 in FIG. 86. FIG.
As shown in FIG. 86, the airtight member 325K is similar to the airtight member 225 except that the fitting projection 225b is eliminated and the engagement projection 225i is replaced with the engagement projection 325f.
Like the engaging projections 225i, the engaging projections 325f extend radially outward from four locations that equally divide the outer circumference of the bottom plate portion 225c into quarters in the circumferential direction. Each engaging protrusion 325f extends close to the inner peripheral surface of the outer cylindrical portion 223a, as indicated by a two-dot chain line in FIG. Each engagement projection 325f is inserted into each recess 323r of the collar 323K. As a result, the engaging projection 325f is restricted from moving in the circumferential direction, so that the airtight member 325K is prevented from rotating in the circumferential direction.
 係合突起325fは、例えば、第1係合突起325f1、第2係合突起325f2、および第3係合突起325f3からなる。
 第1係合突起325f1は、径方向において表示窓221a(二点鎖線参照)および先端エッジ部223cに近い図示上側の凹所323rに挿入される。
 第3係合突起325f3は、径方向において、第1係合突起325f1と反対側の図示下側に配置されている。
 第2係合突起325f2は、第1係合突起325f1および第3係合突起325f3の対向方向と直交する径方向において、互いに対向する位置に一対設けられている。
The engaging projection 325f is composed of, for example, a first engaging projection 325f1, a second engaging projection 325f2, and a third engaging projection 325f3.
The first engagement protrusion 325f1 is inserted into the upper recess 323r in the drawing near the display window 221a (see the two-dot chain line) and the tip edge portion 223c in the radial direction.
The third engaging projection 325f3 is arranged on the lower side in the drawing opposite to the first engaging projection 325f1 in the radial direction.
A pair of second engaging projections 325f2 are provided at positions facing each other in a radial direction perpendicular to the opposing direction of the first engaging projection 325f1 and the third engaging projection 325f3.
 図87に示すように、第1係合突起325f1および第3係合突起325f3における基端側(図示左側)の表面は、底板部225cにおける基端側の第1表面s1に沿って延びている。
 第1係合突起325f1および第3係合突起325f3は、底板部225cにおける先端側の第2表面s2よりも先端側(図示右側)に突出している。
 第1係合突起325f1および第3係合突起325f3における先端側の表面には、第1表面s1に対して図示時計回りに角度αだけ傾斜した同一平面上に位置する傾斜面325gが形成されている。
 第1係合突起325f1の最大の厚さt1は、上側の凹所323rの深さh1よりもわずかに厚い。
 第3係合突起325f3の最小の厚さt3は、下側の凹所323rの深さh2よりもわずかに厚い。
As shown in FIG. 87, the proximal side (left side in the figure) surfaces of the first engaging projection 325f1 and the third engaging projection 325f3 extend along the proximal side first surface s1 of the bottom plate portion 225c. .
The first engaging projection 325f1 and the third engaging projection 325f3 protrude to the tip side (right side in the figure) from the second surface s2 on the tip side of the bottom plate portion 225c.
An inclined surface 325g located on the same plane and inclined at an angle α clockwise with respect to the first surface s1 is formed on the surfaces of the first engaging projection 325f1 and the third engaging projection 325f3 on the tip end side. there is
The maximum thickness t1 of the first engaging projection 325f1 is slightly thicker than the depth h1 of the upper recess 323r.
The minimum thickness t3 of the third engaging projection 325f3 is slightly thicker than the depth h2 of the lower recess 323r.
 図88に示すように、各第2係合突起325f2における基端側(図示左側)の表面は、第1表面s1に沿って延びている。
 各第2係合突起325f2における先端側(図示右側)の表面である先端側表面325hは、傾斜面325gと同様な傾斜面でもよいし、各第2係合突起325f2が挿入される凹所323rの深さと同等であれば、第2表面s2平行な平面でもよい。先端側表面325hが傾斜面325gと同様な傾斜を有する場合、先端側表面325hは、第1係合突起325f1および第3係合突起325f3はの各傾斜面325gと同一平面上に位置する。
As shown in FIG. 88, the base end side (left side in the figure) surface of each second engaging projection 325f2 extends along the first surface s1.
A tip-side surface 325h that is a surface on the tip side (right side in the drawing) of each second engaging projection 325f2 may be an inclined surface similar to the inclined surface 325g, or a recess 323r into which each second engaging projection 325f2 is inserted. A plane parallel to the second surface s2 may be used as long as it is equivalent to the depth of . When the tip side surface 325h has the same inclination as the sloped surface 325g, the tip side surface 325h is positioned on the same plane as the sloped surfaces 325g of the first engaging projection 325f1 and the third engaging projection 325f3.
 本変形例では、コイルバネ224は、各段部323qと気密部材325Kのフランジ部225eとの間に配置される。このため、図83に示すように、各係合突起325fの先端側には、コイルバネ224の基端が位置する。各係合突起325fにおいて、凹所323rから突出した部位は、コイルバネ224の基端によって先端側から押さえられる。これにより、係合突起325fは、軸方向において凹所323rから抜け止めされる。
 押されられた各係合突起325fは、厚さ方向に変形するので、コイルバネ224の基端は、各段部323qの傾斜面325gと当接する。
In this modification, the coil spring 224 is arranged between each stepped portion 323q and the flange portion 225e of the airtight member 325K. Therefore, as shown in FIG. 83, the proximal end of the coil spring 224 is located on the distal end side of each engaging protrusion 325f. A portion of each engaging protrusion 325f protruding from the recess 323r is pressed by the proximal end of the coil spring 224 from the distal end side. As a result, the engaging projection 325f is prevented from slipping out of the recess 323r in the axial direction.
Since each pushed engaging projection 325f is deformed in the thickness direction, the proximal end of the coil spring 224 abuts on the inclined surface 325g of each stepped portion 323q.
 本変形例によれば、コイルバネ224の基端が当接する傾斜面325gが、角度αだけ傾斜している。各傾斜面325gにコイルバネ224の基端が当接すると、カラー323Kは、第4の実施形態におけるカラー323と同様に側面部220bの内部で角度αだけ傾斜する。
 これにより、カラー323と同様に、カラー323Kの先端エッジ部223cが表示窓221aに近接するので、術者が正確な圧力を読み取ることができる。
According to this modification, the inclined surface 325g with which the proximal end of the coil spring 224 abuts is inclined by the angle α. When the proximal end of the coil spring 224 abuts against each inclined surface 325g, the collar 323K is inclined by an angle α inside the side surface portion 220b, like the collar 323 in the fourth embodiment.
Accordingly, like the collar 323, the tip edge portion 223c of the collar 323K is close to the display window 221a, so that the operator can accurately read the pressure.
 本変形例の圧力表示器319Kを有するオーバーチューブ301は、第4の実施形態に係るオーバーチューブ301と同様な作用を有する。
 特に本変形例では、気密部材325Kの先端部における各係合突起325fをカラー323Kの各凹所323rに挿入することによって、気密部材325Kが回り止めされ、コイルバネ224によって軸方向に抜け止めされる。
 これにより、圧力表示器319Kの組立性が向上する。
 本変形例は、カラー323Kを傾斜させる目的で、係止板223bの先端側に形成する凸部が、係止面223dから先端側に突出する段部323qで形成された例である。
The overtube 301 having the pressure indicator 319K of this modification has the same function as the overtube 301 according to the fourth embodiment.
Especially in this modified example, by inserting each engagement projection 325f at the tip of the airtight member 325K into each recess 323r of the collar 323K, the airtight member 325K is prevented from turning and is axially prevented from coming off by the coil spring 224. .
This improves the assemblability of the pressure indicator 319K.
This modification is an example in which the projection formed on the tip side of the locking plate 223b is formed by a stepped portion 323q projecting from the locking surface 223d to the tip side for the purpose of tilting the collar 323K.
 圧力表示器319Kにおいて、カラー323Kにおいて、傾斜面323hを有する段部323qは、移動部材に含まれており、管状部が、中心軸線と同軸に配置されたときに、中心軸線に対して、一定方向に傾斜した傾斜面上で、弾性部材を支持する弾性部材支持部の例である。 In the pressure indicator 319K, at the collar 323K, a step 323q with a sloping surface 323h is included in the moving member and is constant with respect to the central axis when the tubular portion is arranged coaxially with the central axis. It is an example of an elastic member supporting portion that supports an elastic member on an inclined surface inclined in a direction.
[第17変形例]
 第4の実施形態のオーバーチューブ301において、圧力表示器319に代えて用いる圧力表示器の変形例(第17変形例)を説明する。
 図68に示すように、本変形例の圧力表示器319Lは、オーバーチューブ301において、圧力表示器319に代えて用いることができる。
 図89は、本発明の第4の実施形態に係る内視鏡用オーバーチューブに用いる圧力表示器の変形例(第17変形例)の主要部を示す模式的な斜視の部分断面図である。図90は、図89におけるF90部の拡大図である。
[17th Modification]
A modification (17th modification) of the pressure indicator used instead of the pressure indicator 319 in the overtube 301 of the fourth embodiment will be described.
As shown in FIG. 68, a pressure indicator 319L of this modification can be used in place of the pressure indicator 319 in the overtube 301. As shown in FIG.
FIG. 89 is a schematic perspective partial cross-sectional view showing a main part of a modification (seventeenth modification) of the pressure indicator used in the endoscope overtube according to the fourth embodiment of the present invention. 90 is an enlarged view of the F90 portion in FIG. 89. FIG.
 図89に示すように、圧力表示器319Lは、カラー323、気密部材225に代えて、カラー323L(移動部材)、気密部材325L(封止部材、押え部材)を有する。
 以下、第4の実施形態および第16変形例と異なる点を中心に説明する。
As shown in FIG. 89, the pressure indicator 319L has a collar 323L (moving member) and an airtight member 325L (sealing member, pressing member) instead of the collar 323 and the airtight member 225. FIG.
Hereinafter, the points different from the fourth embodiment and the sixteenth modification will be mainly described.
 カラー323Lは、押さえ爪223gに代えて、押さえ爪323t(弾性部材支持部)を有することを除いて、第3変形例におけるカラー223と同様である。
 押さえ爪323tは、いずれも押さえ爪223gより径方向外側に設けられている。径方向における各押さえ爪323tの位置は、押さえ爪323tの先端部にがコイルバネ224の基端と当接する位置である。
 各押さえ爪323tは、軸方向の先端部に第16変形例における傾斜面323hと同様な傾斜を有する傾斜面323vが形成されていることを除いて、押さえ爪223gと同様である。ただし、各押さえ爪323tは、係合突起325iに代えて後述する気密部材325Lにおける係合突起325uを軸方向に係合する点が押さえ爪223gと異なる。
The collar 323L is the same as the collar 223 in the third modified example except that it has a pressing claw 323t (elastic member supporting portion) instead of the pressing claw 223g.
All of the pressing claws 323t are provided radially outward from the pressing claws 223g. The position of each presser claw 323 t in the radial direction is the position where the distal end of the presser claw 323 t contacts the proximal end of the coil spring 224 .
Each pressing claw 323t is similar to the pressing claw 223g except that an inclined surface 323v having the same inclination as the inclined surface 323h in the sixteenth modification is formed at the tip in the axial direction. However, each presser claw 323t is different from the presser claw 223g in that instead of the engaging projection 325i, the engaging projection 325u of the airtight member 325L, which will be described later, is engaged in the axial direction.
 傾斜面323vは、各押さえ爪323tに形成されており、係止面223dに対して角度αだけ傾斜した同一平面上に位置する。
 これにより、径方向において表示窓221aに近い上側の押さえ爪323t1の係止面223dからの最大高さh3は、径方向において反対側の押さえ爪323t2の最小高さh4よりも高い。
The inclined surface 323v is formed on each pressing claw 323t and is located on the same plane inclined at an angle α with respect to the locking surface 223d.
As a result, the maximum height h3 from the locking surface 223d of the upper presser claw 323t1 closer to the display window 221a in the radial direction is higher than the minimum height h4 of the radially opposite presser claw 323t2.
 図89に示すように、気密部材325Lは、第4の実施形態における気密部材225の係合突起225iに代えて、係合突起325uを有する。
 係合突起325uは、押さえ爪323tと係止板223bとの間に挿入できる長さを有することを除いて、係合突起225iと同様である。
 係合突起325uの長さは、押さえ爪323tと係止面223dとの間の軸方向の隙間に進入可能な長さである。
As shown in FIG. 89, the airtight member 325L has an engaging projection 325u instead of the engaging projection 225i of the airtight member 225 in the fourth embodiment.
The engaging projection 325u is the same as the engaging projection 225i except that it has a length that allows it to be inserted between the pressing claw 323t and the locking plate 223b.
The length of the engagement projection 325u is such that it can enter the axial gap between the pressing claw 323t and the locking surface 223d.
 図90に示すように、圧力表示器319Lの組立状態では、係合突起325uは、軸方向における先端側の表面が押さえ爪323tの基端面に係止する。これにより、係合突起325uは、係止面223dと押さえ爪323tとに挟まれて、それぞれと軸方向に係合する。図90には図示されないが、気密部材325Lの嵌合突起225bは、第3変形例におけるカラー223と同様、カラー323Lにおける図示略の嵌合爪223fと軸方向において係合する。
 コイルバネ224の基端は、傾斜面323vに当接している。傾斜面323vは第16変形例における傾斜面323hと同様の傾斜面なので、カラー323Lは、第16変形例におけるカラー323Kと同様にして、ケース220内で角度αだけ傾斜する。
As shown in FIG. 90, in the assembled state of the pressure indicator 319L, the surface of the engagement protrusion 325u on the distal end side in the axial direction is engaged with the proximal end surface of the pressing claw 323t. As a result, the engaging projection 325u is sandwiched between the locking surface 223d and the pressing claw 323t and engages with them in the axial direction. Although not shown in FIG. 90, the fitting protrusion 225b of the airtight member 325L axially engages with the fitting claw 223f (not shown) of the collar 323L, like the collar 223 in the third modification.
A proximal end of the coil spring 224 is in contact with the inclined surface 323v. Since the inclined surface 323v is the same inclined surface as the inclined surface 323h in the sixteenth modification, the collar 323L is inclined by the angle α within the case 220 in the same manner as the collar 323K in the sixteenth modification.
 本変形例によれば、コイルバネ224の基端が当接する押さえ爪323tの先端が角度αだけ傾斜している。各押さえ爪323tにコイルバネ224の基端が当接すると、カラー323Lは、第4の実施形態におけるカラー323と同様に側面部220bの内部で角度αだけ傾斜する。
 これにより、カラー323と同様に、カラー323Lの先端エッジ部223cが表示窓221aに近接するので、術者が正確な圧力を読み取ることができる。
According to this modification, the tip of the presser claw 323t with which the proximal end of the coil spring 224 abuts is inclined by the angle α. When the proximal end of the coil spring 224 abuts on each presser claw 323t, the collar 323L is inclined at an angle α inside the side surface portion 220b, like the collar 323 in the fourth embodiment.
As a result, like the collar 323, the tip edge portion 223c of the collar 323L is close to the display window 221a, so that the operator can accurately read the pressure.
 本変形例の圧力表示器319Lを有するオーバーチューブ301は、第4の実施形態に係るオーバーチューブ301と同様な作用を有する。
 本変形例は、カラー323Lを傾斜させる目的で、係止板223bの先端側に形成する凸部が、押さえ爪323tによって形成された例である。
The overtube 301 having the pressure indicator 319L of this modification has the same function as the overtube 301 according to the fourth embodiment.
This modification is an example in which a protrusion formed on the tip side of the locking plate 223b is formed by a pressing claw 323t for the purpose of tilting the collar 323L.
 圧力表示器319Lにおいて、カラー323Lにおいて、傾斜面323vを有する押さえ爪323tは、移動部材に含まれており、管状部が、中心軸線と同軸に配置されたときに、中心軸線に対して、一定方向に傾斜した傾斜面上で、弾性部材を支持する弾性部材支持部の例である。 In the pressure indicator 319L, in the collar 323L, a pressing pawl 323t having an inclined surface 323v is included in the moving member and is constant with respect to the central axis when the tubular portion is arranged coaxially with the central axis. It is an example of an elastic member supporting portion that supports an elastic member on an inclined surface inclined in a direction.
 上述した第4の実施形態、各変形例は、種々の変形を加えて実施されてもよい。
 例えば、第12変形例から第15変形例の各構成は、適宜組み合わせて用いられてもよい。第12変形例から第15変形例の各構成は、第4の実施形態におけるケースまたはカラーに限らず、第8変形例から第11変形例、第16変形例、および第17変形例と組み合わされてもよい。
The above-described fourth embodiment and modifications may be implemented with various modifications.
For example, each configuration of the 12th to 15th modifications may be used in combination as appropriate. Each configuration of the 12th to 15th modifications is not limited to the case or collar in the fourth embodiment, and can be combined with the 8th to 11th modifications, the 16th modification, and the 17th modification. may
[第5の実施形態]
 本発明の第5の実施形態に係る内視鏡用オーバーチューブを説明する。
 図17に示すオーバーチューブ401は、本実施形態に係る内視鏡用オーバーチューブの例である。
 オーバーチューブ401は、第3の実施形態に係るオーバーチューブ301の送気デバイス310に代えて、送気デバイス410を有する。
 以下、第3の実施形態と異なる点を中心に説明する。
[Fifth embodiment]
An endoscope overtube according to a fifth embodiment of the present invention will be described.
An overtube 401 shown in FIG. 17 is an example of an endoscope overtube according to this embodiment.
The overtube 401 has an air supply device 410 instead of the air supply device 310 of the overtube 301 according to the third embodiment.
In the following, the points different from the third embodiment will be mainly described.
 図91は、本発明の第5の実施形態に係る内視鏡用オーバーチューブにおける送気デバイスを示す模式的な正面図である。図92は、図91におけるF92部の拡大図である。
 図91に示すように、本実施形態における送気デバイス410は、第3の実施形態における本体部212に代えて本体部412を有する。本体部412は、本体部212の筐体部218に代えて筐体部418を有する。
 筐体部418は、接続管212aの近傍にリミッタ417が設けられたことを除いて、第3の実施形態における筐体部218と同様である。
 本実施形態におけるポンプ211aは、第3の実施形態と同様の構成を有する。
 第1接続部211dは、送気管211jの先端に設けられている。送気管211jの内部には第1逆止弁211bが設けられている。術者がポンプ211aを操作すると、送気管211jから外部に気体が送り出される。
 第1接続部211dは、送気管211jを接続管212aに着脱可能に接続する第1コネクタの例である。
 第2接続部211eは、吸気管211kの先端に設けられている。吸気管211kの内部には第2逆止弁211cが設けられている。術者がポンプ211aを操作すると、外部から吸気管211kに気体が吸い込まれる。
 第2接続部211eは、吸気管211kを接続管212aに着脱可能に接続する第2コネクタの例である。
 以下、第3の実施形態と異なる点を中心に説明する。
FIG. 91 is a schematic front view showing an air supply device in an endoscope overtube according to a fifth embodiment of the present invention; 92 is an enlarged view of the F92 portion in FIG. 91. FIG.
As shown in FIG. 91, an air supply device 410 in this embodiment has a body portion 412 instead of the body portion 212 in the third embodiment. The main body portion 412 has a housing portion 418 instead of the housing portion 218 of the main body portion 212 .
The housing part 418 is the same as the housing part 218 in the third embodiment except that a limiter 417 is provided near the connection pipe 212a.
A pump 211a in this embodiment has the same configuration as in the third embodiment.
The first connecting portion 211d is provided at the tip of the air pipe 211j. A first check valve 211b is provided inside the air supply pipe 211j. When the operator operates the pump 211a, the gas is sent out from the air pipe 211j.
The first connection portion 211d is an example of a first connector that detachably connects the air supply tube 211j to the connection tube 212a.
The second connection portion 211e is provided at the tip of the intake pipe 211k. A second check valve 211c is provided inside the intake pipe 211k. When the operator operates the pump 211a, gas is sucked into the suction pipe 211k from the outside.
The second connection portion 211e is an example of a second connector that detachably connects the intake pipe 211k to the connection pipe 212a.
In the following, the points different from the third embodiment will be mainly described.
 リミッタ417は、手動送気機構211の第1接続部211dまたは第2接続部211eを、接続管212aから取り外す際に、第1接続部211dまたは第2接続部211eのロックを解除した状態における手動送気機構211の位置を規制する。
 以下では、接続管212aの中心軸線Aに沿う方向を着脱方向と称する。手動送気機構211がゴム球ポンプの場合、中心軸線Aは、手動送気機構211の中心軸線Aと同軸である。
 図92に示すように、リミッタ417は、接続管212aが固定された筐体部418における側部418aに設けられている。
 リミッタ417の形状は、第1接続部211dまたは第2接続部211eのロック解除時に、第1接続部211dまたは第2接続部211eの着脱方向における移動を規制できれば、特に限定されない。以下では、第1接続部211dまたは第2接続部211eの外形が略円柱形であり、着脱方向において側部418aと反対側の端部に着脱方向に交差する端面211iが形成されている例の場合の例で説明する。
 リミッタ417は、側板部417a(係止部材)、操作部417c、および係止突起417b(係止部材)を有する。
The limiter 417 is used to manually remove the first connection portion 211d or the second connection portion 211e of the manual air supply mechanism 211 from the connection tube 212a when the first connection portion 211d or the second connection portion 211e is unlocked. The position of the air supply mechanism 211 is regulated.
Hereinafter, the direction along the center axis AC of the connection pipe 212a is referred to as the attachment/detachment direction. When the manual air supply mechanism 211 is a rubber ball pump, the central axis A 2 C is coaxial with the central axis A 2 P of the manual air supply mechanism 211 .
As shown in FIG. 92, the limiter 417 is provided on the side portion 418a of the housing portion 418 to which the connecting pipe 212a is fixed.
The shape of the limiter 417 is not particularly limited as long as it can restrict the movement of the first connection portion 211d or the second connection portion 211e in the attachment/detachment direction when the first connection portion 211d or the second connection portion 211e is unlocked. Below, an example in which the outer shape of the first connection portion 211d or the second connection portion 211e is substantially cylindrical, and an end surface 211i that intersects the attachment/detachment direction is formed at the end opposite to the side portion 418a in the attachment/detachment direction. An example of the case will be described.
The limiter 417 has a side plate portion 417a (locking member), an operating portion 417c, and a locking projection 417b (locking member).
 側板部417aは、側部418aの外側から着脱方向に延びる弾性板である。側板部417aは、接続管212aを挟んで互いに対向している。各側板部417aの対向方向は着脱方向に直交する方向である。
 側板部417a同士の対向間隔は、第1接続部211dの外径以上である。
 側板部417aの短手方向の幅は第1接続部211dの外径よりも狭い。これにより、各側板部417aに挟まれた第1接続部211dの一部の側面は、側板部417aの短手方向から外側に突出している。これにより、術者は、側板部417aに挟まれた第1接続部211dに対し、接続管212aに対する装着、ロック、ロック解除、および着脱方向における移動などの操作が可能である。
The side plate portion 417a is an elastic plate extending in the attachment/detachment direction from the outside of the side portion 418a. The side plate portions 417a face each other with the connection pipe 212a interposed therebetween. The facing direction of each side plate portion 417a is a direction perpendicular to the attaching/detaching direction.
The facing distance between the side plate portions 417a is equal to or greater than the outer diameter of the first connection portion 211d.
The lateral width of the side plate portion 417a is narrower than the outer diameter of the first connection portion 211d. As a result, a part of the side surface of the first connecting portion 211d sandwiched between the side plate portions 417a protrudes outward from the lateral direction of the side plate portion 417a. As a result, the operator can operate the first connecting portion 211d sandwiched between the side plate portions 417a to mount, lock, unlock, and move the first connecting portion 211d with respect to the connecting tube 212a.
 側板部417aは、弾性を有する樹脂または金属によって形成できる。側板部417aは、延在方向の先端に外力が作用することによって、着脱方向に延びる状態から対抗方向における外側に向かって弾性変形することができる。 The side plate portion 417a can be made of elastic resin or metal. The side plate portion 417a can be elastically deformed outward in the opposite direction from the state in which it extends in the attachment/detachment direction when an external force acts on the tip in the extension direction.
 操作部417cは、術者が各側板部417aの延在方向の先端を外側に開く操作を行うために設けられている。
 操作部417cの形状は、側板部417a同士の対向間隔を広げる方向に術者が操作力を加えることができれば特に限定されない。図92に示す例では、操作部417cは、各側板部417aの延在方向の先端から対向方向の外側に屈曲しさらに、着脱方向において側部418aから離れる方向に延びる屈曲板からなる。
 延在方向における各操作部417cの先端部には、中心軸線Aに平行に延びる操作レバー417dが形成されている。
The operation portion 417c is provided for the operator to perform an operation to open the tip of each side plate portion 417a in the extending direction outward.
The shape of the operation portion 417c is not particularly limited as long as the operator can apply an operation force in the direction to increase the distance between the side plate portions 417a. In the example shown in FIG. 92, the operation portion 417c is formed of a bent plate that bends outward in the facing direction from the tip of each side plate portion 417a in the extending direction and extends away from the side portion 418a in the attachment/detachment direction.
An operating lever 417d extending parallel to the central axis AP is formed at the tip of each operating portion 417c in the extending direction.
 係止突起417bは、各側板部417aの先端部から対向方向における内側に突出している。各係止突起417bの突出方向における先端同士の距離は、第1接続部211dの外径よりも小さい。
 各係止突起417bには、着脱方向において接続管212aの方に、係止面417eがそれぞれ形成されている。
 係止面417eは、中心軸線Aに略直交する方向に延びる平面である。
The locking projection 417b protrudes inward in the opposite direction from the tip of each side plate portion 417a. The distance between the tips of the locking protrusions 417b in the protruding direction is smaller than the outer diameter of the first connecting portion 211d.
A locking surface 417e is formed on each locking projection 417b toward the connection pipe 212a in the attachment/detachment direction.
The locking surface 417e is a plane extending in a direction substantially perpendicular to the center axis AC.
 オーバーチューブ401の動作は、リミッタ417の動作以外は、オーバーチューブ301の動作と同様なので、以下、リミッタ417の動作を中心としてオーバーチューブ401の動作を説明する。
 リミッタ417によれば、例えば、接続管212aにおける第1接続部211dのロック状態を解除すると、二点鎖線で示すように、第1接続部211dは、接続管212aとのロック位置から、端面211iが係止面417eに係止する係止位置までの間で着脱方向に沿って移動できる。
 ただし、手動送気機構211を着脱方向において引き抜こうとしても、第1接続部211dは、係止面417eで止まる。このため、手動送気機構211はリミッタ417から外せない。ロック解除状態において術者が手動送気機構211から手を離しても、手動送気機構211が落下することもない。
 ただし、術者が操作レバー417dを外側に開くと、各側板部417aが外側に開くように変形する。術者は、各係止突起417bの対向間隔が第1接続部211dの外径より大きくなるまで、操作レバー417dを開くことによって、第1接続部211dをリミッタ417から取り外すことができる。
Since the operation of the overtube 401 is the same as that of the overtube 301 except for the operation of the limiter 417, the operation of the overtube 401 will be described below, focusing on the operation of the limiter 417. FIG.
According to the limiter 417, for example, when the locked state of the first connecting portion 211d of the connecting pipe 212a is released, the first connecting portion 211d moves from the locked position with the connecting pipe 212a to the end face 211i as indicated by the two-dot chain line. can move along the attachment/detachment direction up to the locking position where the locking surface 417e is locked.
However, even if the manual air supply mechanism 211 is pulled out in the attaching/detaching direction, the first connecting portion 211d stops at the locking surface 417e. Therefore, the manual air supply mechanism 211 cannot be removed from the limiter 417 . Even if the operator releases the manual air supply mechanism 211 in the unlocked state, the manual air supply mechanism 211 will not fall.
However, when the operator opens the operating lever 417d outward, the side plate portions 417a are deformed so as to open outward. The operator can remove the first connecting portion 211d from the limiter 417 by opening the operating lever 417d until the distance between the locking protrusions 417b facing each other becomes larger than the outer diameter of the first connecting portion 211d.
 これに対して、第1接続部211dを接続管212aに接続する場合には、第1接続部211dを操作レバー417dの間に挿入し、各係止突起417bの間の第1接続部211dを押し込めばよい。この場合、各側板部417aは、第1接続部211dの側面に当接する各係止突起417bから外力を受けて、外側に撓む。第1接続部211dの端面211iが各係止突起417bの間を通過すると、各側板部417aが内側に閉じる。 On the other hand, when connecting the first connection portion 211d to the connection pipe 212a, the first connection portion 211d is inserted between the operation levers 417d, and the first connection portion 211d between the locking projections 417b is closed. just push it in. In this case, each side plate portion 417a receives an external force from each locking projection 417b that abuts on the side surface of the first connection portion 211d and bends outward. When the end surface 211i of the first connecting portion 211d passes between the locking projections 417b, the side plate portions 417a close inward.
 第1接続部211dに代えて、接続管212aに第2接続部211eが接続された場合も同様である。 The same applies when the second connection portion 211e is connected to the connection pipe 212a instead of the first connection portion 211d.
 本実施形態によれば、送気デバイス410がリミッタ417を有するので、第1接続部211dのロックを解除した状態で、第1接続部211dが接続管212aから一定の距離の範囲に移動することができる。さらに、術者が操作部417cを操作しない限り、手動送気機構211がリミッタ417から外れることがない。 According to the present embodiment, since the air supply device 410 has the limiter 417, the first connection portion 211d can move within a certain distance from the connection tube 212a while the first connection portion 211d is unlocked. can be done. Furthermore, the manual air supply mechanism 211 does not come off from the limiter 417 unless the operator operates the operation part 417c.
 このようなリミッタ417によれば、術者は、手動送気機構211を第1接続状態から第2接続状態に切り替えることなく、固定用バルーン3内のエアの排気操作を行うことができる。
 すなわち、第1接続部211dのロックを解除し、第1接続部211dを接続管212aから離れる方向に後退させると、第1接続部211d内の管路と、接続管212a内の管路との接続部において径方向の隙間ができる。これにより、接続管212aよりも下流側の管路内のエアが、接続管212aの外部に漏れる。
 エアの漏れ流量は、ロック解除された第1接続部211dを接続管212aから離す距離に応じて増大する。このため、術者は、着脱方向における第1接続部211dの位置を微調整することによって、エアの排気量を微調整することができる。
 例えば、エアを送気しすぎて、固定用バルーン3の圧力が大きくなりすぎたとき、術者がこのような排気操作を行うことによって、素早く固定用バルーン3の圧力を低減できる。
 その際、係止突起417bによって、第1接続部211dの移動量が規制されるので、固定用バルーン3のエアが大量に排気されることを防止できる。
With such a limiter 417 , the operator can exhaust the air inside the fixation balloon 3 without switching the manual air supply mechanism 211 from the first connection state to the second connection state.
That is, when the lock of the first connection portion 211d is released and the first connection portion 211d is retracted in the direction away from the connection pipe 212a, the pipe line in the first connection portion 211d and the pipe line in the connection pipe 212a are separated. A radial gap is created at the joint. As a result, the air in the pipeline downstream of the connecting pipe 212a leaks to the outside of the connecting pipe 212a.
The air leakage flow rate increases according to the distance separating the unlocked first connection portion 211d from the connection pipe 212a. Therefore, the operator can finely adjust the amount of exhausted air by finely adjusting the position of the first connecting portion 211d in the attachment/detachment direction.
For example, when too much air is supplied and the pressure of the fixation balloon 3 becomes too large, the operator can quickly reduce the pressure of the fixation balloon 3 by performing such an exhaust operation.
At this time, since the amount of movement of the first connection portion 211d is restricted by the locking projection 417b, it is possible to prevent a large amount of air from the fixation balloon 3 from being discharged.
 手動送気機構211を第2接続状態に切り替えることによって、固定用バルーン3から吸気することもできるが、この場合、接続状態を切り替える間に多くのエアが漏れるので、固定用バルーン3を縮径した後に送気をやりなおす動作になり、本実施形態に比べると効率がよくない。 By switching the manual air supply mechanism 211 to the second connection state, it is possible to inhale air from the fixation balloon 3, but in this case, since a large amount of air leaks while switching the connection state, the diameter of the fixation balloon 3 is reduced. After that, the air is supplied again, which is less efficient than the present embodiment.
 本実施形態に係るオーバーチューブ401は、リミッタ417を有することを除いて第3の実施形態に係るオーバーチューブ301と同様なので、第3の実施形態と同様な作用を有する。このため、第3の実施形態と同様、患者の負荷を低減するとともに内視鏡を円滑に操作することができる内視鏡用オーバーチューブを提供することができる。
 特に本実施形態では、送気操作中に、固定用バルーン3から少量の排気を迅速に行うことができるので、固定用バルーン3の拡縮操作を迅速かつ効率的に行うことができる。
The overtube 401 according to the present embodiment is the same as the overtube 301 according to the third embodiment except that it has a limiter 417, so it has the same function as the third embodiment. Therefore, as in the third embodiment, it is possible to provide an endoscope overtube that reduces the burden on the patient and allows smooth operation of the endoscope.
Especially in this embodiment, since a small amount of air can be rapidly discharged from the fixation balloon 3 during the air supply operation, the expansion/contraction operation of the fixation balloon 3 can be performed quickly and efficiently.
 送気デバイス410におけるポンプ211aは、気体を送る手動ポンプの例である。送気デバイス410における本体部412は、手動ポンプが接続される本体部の例である。
 本体部412における接続管212aは、本体部から突出し、手動ポンプを第1方向において着脱可能に接続する本体側コネクタの例である。ここで第1方向は、中心軸線Aに沿う方向である。
 第1接続部211dおよび第2接続部211eは、手動ポンプにおいて第1方向において進退し、進出時に本体側コネクタと気密に接続し、後退時に前記気体の漏洩が生じるポンプ側コネクタの例である。
 リミッタ417は、ポンプ側コネクタの後退時にポンプ側コネクタに係止することによってポンプ側コネクタの後退位置を規制し、ポンプ側コネクタを抜け止めするリミッタの例である。
 リミッタ417における側板部417aおよび係止突起417bは、ポンプ側コネクタに係止可能な係止位置と、ポンプ側コネクタを本体側コネクタから取り外し可能な取り外し位置と、に移動可能な係止部材の例である。
Pump 211a in gas delivery device 410 is an example of a manual pump that delivers gas. A body portion 412 in the air supply device 410 is an example of a body portion to which a manual pump is connected.
The connection pipe 212a in the body portion 412 is an example of a body side connector that protrudes from the body portion and detachably connects the manual pump in the first direction. Here, the first direction is the direction along the center axis AC .
The first connecting portion 211d and the second connecting portion 211e are examples of pump-side connectors that advance and retreat in the first direction in the manual pump, are airtightly connected to the body-side connector when advancing, and leak the gas when retreating.
The limiter 417 is an example of a limiter that regulates the retracted position of the pump-side connector by engaging with the pump-side connector when retracting the pump-side connector and prevents the pump-side connector from coming off.
The side plate portion 417a and the locking protrusion 417b of the limiter 417 are examples of locking members that can move between a locking position where the pump-side connector can be locked and a removal position where the pump-side connector can be removed from the body-side connector. is.
[第18変形例]
 第5の実施形態に係るオーバーチューブ401において、送気デバイス410に代えて用いる送気デバイスの変形例(第18変形例)を説明する。
 図17に示すように、本変形例の送気デバイス410Aは、オーバーチューブ301の送気デバイス210に代えて用いることができる。
 図93は、本発明の第5の実施形態に係る内視鏡用オーバーチューブに用いるリミッタの変形例(第18変形例)の例を示す模式的な断面図である。図94は、図93におけるF94視の模式図である。
[18th Modification]
A modification (eighteenth modification) of the air supply device used instead of the air supply device 410 in the overtube 401 according to the fifth embodiment will be described.
As shown in FIG. 17, an air supply device 410A of this modified example can be used in place of the air supply device 210 of the overtube 301. As shown in FIG.
FIG. 93 is a schematic cross-sectional view showing an example of a modified example (eighteenth modified example) of the limiter used in the endoscope overtube according to the fifth embodiment of the present invention. FIG. 94 is a schematic view of F94 in FIG. 93. FIG.
 図93に示すように、本変形例の送気デバイス410Aは、第5の実施形態におけるリミッタ417に代えてリミッタ417Aを有する。
 以下、第5の実施形態と異なる点を中心に説明する。
As shown in FIG. 93, an air supply device 410A of this modification has a limiter 417A instead of the limiter 417 in the fifth embodiment.
The following description will focus on the differences from the fifth embodiment.
 リミッタ417Aは、第1側板部417f(係止部材)、第2側板部417g(係止部材)、およびファスナ417h(固定部材)を有する。
 第1側板部417fおよび第2側板部417gは、側板部417aよりも長く延びていることを除いて、第5の実施形態における側板部417aと同様である。このため、第1側板部417fおよび第2側板部417gには、それぞれ、第5の実施形態と同様に係止突起417bが設けられている。
 ファスナ417hは、互いに対向する第1側板部417fおよび第2側板部417gの対向間隔を拡大可能に固定する。
 ファスナ417hの構成は、第1側板部417fおよび第2側板部417gの対向間隔を拡大可能に固定できれば、特に限定されない。図94に示す例では、第1側板部417fの先端部の側端から第2側板部417gの側端に向かって延び、延在方向の先端部で第2側板部417gと着脱可能に係合する弾性爪である。
 ファスナ417hの先端部には、第2側板部417gの側端と着脱可能に係合する係合突起417iが突出している。
The limiter 417A has a first side plate portion 417f (locking member), a second side plate portion 417g (locking member), and a fastener 417h (fixing member).
The first side plate portion 417f and the second side plate portion 417g are the same as the side plate portion 417a in the fifth embodiment, except that they extend longer than the side plate portion 417a. For this reason, the first side plate portion 417f and the second side plate portion 417g are each provided with locking projections 417b as in the fifth embodiment.
The fastener 417h fixes the facing distance between the first side plate portion 417f and the second side plate portion 417g facing each other so as to be able to expand.
The configuration of the fastener 417h is not particularly limited as long as the space between the first side plate portion 417f and the second side plate portion 417g can be expanded and fixed. In the example shown in FIG. 94, it extends from the side end of the tip portion of the first side plate portion 417f toward the side end of the second side plate portion 417g, and detachably engages with the second side plate portion 417g at the tip portion in the extending direction. It is an elastic claw that
An engaging protrusion 417i that detachably engages with the side end of the second side plate portion 417g protrudes from the tip of the fastener 417h.
 図94では、係合突起417iは第2側板部417gの外側から係合する突起である。ただし、係合突起417iは、第2側板部417gを係合する溝が係止された突起であってもよい。
 ファスナ417hは、第1側板部417fに接続する基端部を中心として図示時計回りに回転することによって、第2側板部417gとの係合が解除される。
 第1側板部417fおよび第2側板部417gは、第5の実施形態と同様に互いに平行ででもよいし、側部418aから離れるにつれて対向間隔が広がる形状に開いていてもよい。
 互いに平行な場合には、術者は、ファスナ417hを図示時計回りに回転して第2側板部417gとの係合を解除した状態で、第1側板部417fおよび第2側板部417gを対向方向の外側に開くことによって、手動送気機構211の取り外しが可能である。
In FIG. 94, the engaging protrusion 417i is a protrusion that engages from the outside of the second side plate portion 417g. However, the engagement protrusion 417i may be a protrusion in which a groove that engages the second side plate portion 417g is locked.
The fastener 417h is disengaged from the second side plate portion 417g by rotating clockwise around the proximal end connected to the first side plate portion 417f.
The first side plate portion 417f and the second side plate portion 417g may be parallel to each other as in the fifth embodiment, or may be open in such a manner that the distance between them increases as the distance from the side portion 418a increases.
When they are parallel to each other, the operator rotates the fastener 417h clockwise in the figure to release the engagement with the second side plate portion 417g, and moves the first side plate portion 417f and the second side plate portion 417g in the opposite direction. Manual air supply mechanism 211 can be removed by opening outward.
 係合前の第1側板部417fおよび第2側板部417gが対向方向に開く形状を有する場合には、係合させるときに、第1側板部417fおよび第2側板部417gの間隔を狭めた後、ファスナ417hで係合する。これにより、第1側板部417fおよび第2側板部417gの間隔が固定される。
 術者がファスナ417hを操作してファスナ417hと第2側板部417gとの係合を解除すると、第1側板部417fおよび第2側板部417gが弾性力によって開いた状態に戻るので、手動送気機構211の取り外しが可能である。
If the first side plate portion 417f and the second side plate portion 417g before engagement have a shape that opens in the opposite direction, the gap between the first side plate portion 417f and the second side plate portion 417g is narrowed when engaging. , are engaged by fasteners 417h. This fixes the gap between the first side plate portion 417f and the second side plate portion 417g.
When the operator operates the fastener 417h to release the engagement between the fastener 417h and the second side plate portion 417g, the first side plate portion 417f and the second side plate portion 417g return to the opened state due to the elastic force, so manual air supply is required. Removability of the mechanism 211 is possible.
 リミッタ417Aによれば、ファスナ417hの係合状態では、第5実施形態と同様、係止突起417bによって、第1接続部211dの移動範囲が規制される。
 術者は、ファスナ417hの係合を解除すると、上述したように、リミッタ417Aから手動送気機構211を取り外すことができる。
According to the limiter 417A, when the fastener 417h is engaged, the movement range of the first connecting portion 211d is restricted by the locking projection 417b, as in the fifth embodiment.
When the operator disengages the fastener 417h, the manual air supply mechanism 211 can be removed from the limiter 417A as described above.
 本変形例によれば、送気デバイス410Aがリミッタ417Aを有するので、第5の実施形態と同様の作用を有する。 According to this modification, since the air supply device 410A has the limiter 417A, it has the same effect as the fifth embodiment.
 送気デバイス410Aにおけるリミッタ417Aは、ポンプ側コネクタの後退時にポンプ側コネクタに係止することによってポンプ側コネクタの後退位置を規制し、ポンプ側コネクタを抜け止めするリミッタの例である。
 リミッタ417Aにおける第1側板部417f、第2側板部417g、およびそれぞれに設けられた係止突起417bは、ポンプ側コネクタに係止可能な係止位置と、ポンプ側コネクタを本体側コネクタから取り外し可能な取り外し位置と、に移動可能な係止部材の例である。
 リミッタ417Aにおけるファスナ417hは、係止部材を、係止位置および取り外し位置の一方または両方に固定できる固定部材の例である。
The limiter 417A in the air supply device 410A is an example of a limiter that regulates the retracted position of the pump-side connector by engaging with the pump-side connector when retracting the pump-side connector and prevents the pump-side connector from coming off.
The first side plate portion 417f and the second side plate portion 417g of the limiter 417A, and the locking projections 417b provided on each of them, have a locking position where the pump side connector can be locked, and a pump side connector can be removed from the main body side connector. and a locking member movable to a removable position.
Fastener 417h in limiter 417A is an example of a securing member that can secure the locking member in one or both of the locked position and the removed position.
[第6の実施形態]
 本発明の第6の実施形態に係る内視鏡用オーバーチューブを説明する。
 図1に示すオーバーチューブ501は、本実施形態に係る内視鏡用オーバーチューブの例である。
 オーバーチューブ501は、第1の実施形態に係るオーバーチューブ1の気密弁ユニット6に代えて、気密弁ユニット506を有する。
 以下、第1の実施形態と異なる点を中心に説明する。
[Sixth embodiment]
An endoscope overtube according to a sixth embodiment of the present invention will be described.
An overtube 501 shown in FIG. 1 is an example of an endoscope overtube according to this embodiment.
The overtube 501 has an airtight valve unit 506 instead of the airtight valve unit 6 of the overtube 1 according to the first embodiment.
The following description will focus on the differences from the first embodiment.
 図95は、本発明の第6の実施形態に係る内視鏡用オーバーチューブに用いる気密弁ユニットの例を示す模式的な断面図である。
 図95に示すように、本実施形態における気密弁ユニット506は、長手方向において太さが変化する内視鏡30の挿通に特に好適である。
 気密弁ユニット506は、第1の実施形態における気密弁ユニット6と同様、内視鏡11のように非円形断面でも良好な気密性が得られる。しかし、以下では、本実施形態の特徴がより分かりやすいように、内視鏡30の外形が円筒面の例で説明する。
FIG. 95 is a schematic cross-sectional view showing an example of an airtight valve unit used in the endoscope overtube according to the sixth embodiment of the present invention.
As shown in FIG. 95, the airtight valve unit 506 in this embodiment is particularly suitable for inserting the endoscope 30 whose thickness changes in the longitudinal direction.
Like the airtight valve unit 6 in the first embodiment, the airtight valve unit 506 provides good airtightness even with a non-circular cross section like the endoscope 11 . However, in the following description, an example in which the outer shape of the endoscope 30 is a cylindrical surface will be described so that the features of the present embodiment can be more easily understood.
 内視鏡30の太さは場所により何箇所で太さが変化してもよく、太さは連続的に変化してもよい。しかし、以下では、簡素化のため、内視鏡30が大径部30aと小径部30bとを有する例で説明する。 The thickness of the endoscope 30 may vary at any number of locations, and the thickness may vary continuously. However, for the sake of simplification, an example in which the endoscope 30 has a large diameter portion 30a and a small diameter portion 30b will be described below.
 大径部30aは、外径D1の円筒形である。
 小径部30bは、外径D2の円筒形である。ただし、D2はD1よりも小さい。
 内視鏡30における外径が変化する原因は特に限定されない。例えば、メインチューブ2の外側で縮径される固定用バルーン3は、縮径時であっても、メインチューブ2の外径より大きな外径を有することが多い。この場合、縮径状態の固定用バルーン3は、大径部30aを形成する。例えば、何らかの原因によって、固定用バルーン3の縮径が不完全な状態で、内視鏡30を体内から引き抜く場合にも、固定用バルーン3が大径部30aを形成する。
 例えば、内視鏡30の先端部には、第1の実施形態における内視鏡用キャップ13のような付属物が装着されて、大径部30aが形成される場合がある。
The large diameter portion 30a is cylindrical with an outer diameter D1.
The small diameter portion 30b is cylindrical with an outer diameter D2. However, D2 is smaller than D1.
The cause of the change in the outer diameter of the endoscope 30 is not particularly limited. For example, the fixation balloon 3 that is contracted outside the main tube 2 often has an outer diameter larger than the outer diameter of the main tube 2 even when contracted. In this case, the fixation balloon 3 in a diameter-reduced state forms the large-diameter portion 30a. For example, even when the endoscope 30 is withdrawn from the body while the diameter of the fixation balloon 3 is incompletely reduced for some reason, the fixation balloon 3 forms the large diameter portion 30a.
For example, an accessory such as the endoscope cap 13 in the first embodiment may be attached to the distal end portion of the endoscope 30 to form the large diameter portion 30a.
 例えば、第1の実施形態におけるオーバーチューブ1に内視鏡30が挿入される場合、空間Spの内圧を高めて中間部22bの内径を縮小しておくことによって、内視鏡30の外径が多少変化しても、気密弁ユニット6における気密性が保たれる。
 しかし、内視鏡30の外径の変化が大きくなりすぎると、大径部30aの挿通抵抗が大きくなるので、内視鏡30を円滑に挿抜できない可能性がある。
 術者等が、空間Sp内のエア量を手動で調整して、大径部30aでの挿通抵抗を低減することも考えられる。しかし、患者の負荷低減および手術の効率向上の観点では、内視鏡30をの挿抜操作の迅速さが求められる。術者等は、オーバーチューブ1に挿通されている内視鏡30における径変化部を正確に知ることができないので、術者等は、径変化部が気密弁ユニット6を通過するタイミングも正確に把握できない。これにより、術者等が気密弁ユニット6の開度を適切に調整することはかなり難しい。
 内視鏡30の外径の変化が変化しても径の変化に追従して弁が開閉する簡素な構成の気密弁が強く求められている。
For example, when the endoscope 30 is inserted into the overtube 1 of the first embodiment, the inner diameter of the intermediate portion 22b is reduced by increasing the internal pressure of the space Sp, thereby reducing the outer diameter of the endoscope 30. The airtightness of the airtight valve unit 6 is maintained even if there is some change.
However, if the change in the outer diameter of the endoscope 30 becomes too large, the insertion resistance of the large-diameter portion 30a increases, and the endoscope 30 may not be smoothly inserted and removed.
It is conceivable that the operator or the like manually adjusts the amount of air in the space Sp to reduce the insertion resistance at the large-diameter portion 30a. However, from the viewpoint of reducing the burden on the patient and improving the efficiency of the operation, the endoscope 30 needs to be inserted and removed quickly. Since the operator or the like cannot accurately know the diameter-changing portion of the endoscope 30 inserted through the overtube 1, the operator or the like cannot accurately determine the timing at which the diameter-changing portion passes through the airtight valve unit 6. I can't comprehend. This makes it quite difficult for the operator or the like to appropriately adjust the opening of the airtight valve unit 6 .
There is a strong demand for an airtight valve with a simple structure that opens and closes in response to changes in the outer diameter of the endoscope 30 even when the outer diameter changes.
 気密弁ユニット506は、第1の実施形態における筒枠部21(管状部)、気密バルーン22、接続ポート21bに代えて、筒枠部521、気密バルーン522、接続ポート521b(気体供給管)を有する。
 さらに、気密弁ユニット506は、ガイド部材532、プローブ534、バネ535(付勢部材)、および容積可変部531を有する。
 以下、第1の実施形態と異なる点を中心に説明する。
The airtight valve unit 506 includes a cylinder frame portion 521, an airtight balloon 522, and a connection port 521b (gas supply pipe) instead of the cylinder frame portion 21 (tubular portion), the airtight balloon 22, and the connection port 21b in the first embodiment. have.
Furthermore, the airtight valve unit 506 has a guide member 532 , a probe 534 , a spring 535 (biasing member), and a variable volume portion 531 .
In the following, the points different from the first embodiment will be mainly described.
 筒枠部521は、筒枠部21と同様の内周面21aを有する。
 筒枠部521における内周面21aには、気密バルーン522が固定されている。
 気密バルーン522は、第1の実施形態における気密バルーン22の中間部22bに代えて、中間部522bを有する。
 中間部522bは、空間Spに気体が供給されない自然状態では、内周面21aに内側から密接する円筒面である。空間Spに気体が供給されると、空間Spの内圧に応じて径方向内側に膨張する。膨張した中間部522bは、第1の実施形態における中間部22bと同様に、第1接合部22aから第2接合部22cに向かって内径が漸次縮径し最小になった後、拡径する湾曲形状を形成する。中間部522bの最小径は、空間Spの圧力に応じて変化する。
 中間部522bの膨張量が、大径部30aおよび小径部30bの外径に応じて調整されれば、大径部30aおよび小径部30bとの摺動負荷が変化することなく、それぞれの外周部を気密に覆うことができる。
 以下では、特に断らない限り、内周面21aの中心軸線に沿う方向を軸方向、軸方向に直交する方向を径方向と称する。第1の実施形態と同様、オーバーチューブ501の挿入方向に基づいて、軸方向における先端部および後端部を用いる場合がある。
The tubular frame portion 521 has an inner peripheral surface 21 a similar to that of the tubular frame portion 21 .
An airtight balloon 522 is fixed to the inner peripheral surface 21 a of the cylindrical frame portion 521 .
The airtight balloon 522 has an intermediate portion 522b instead of the intermediate portion 22b of the airtight balloon 22 in the first embodiment.
The intermediate portion 522b is a cylindrical surface that is in close contact with the inner peripheral surface 21a from the inside in a natural state in which no gas is supplied to the space Sp. When the gas is supplied to the space Sp, it expands radially inward according to the internal pressure of the space Sp. Similarly to the intermediate portion 22b in the first embodiment, the expanded intermediate portion 522b has an inner diameter that gradually decreases from the first joint portion 22a to the second joint portion 22c, becomes the minimum, and then expands. form a shape. The minimum diameter of the intermediate portion 522b changes according to the pressure of the space Sp.
If the amount of expansion of the intermediate portion 522b is adjusted according to the outer diameters of the large diameter portion 30a and the small diameter portion 30b, the sliding load between the large diameter portion 30a and the small diameter portion 30b does not change, and the respective outer peripheral portions can be hermetically covered.
Hereinafter, unless otherwise specified, the direction along the central axis of the inner peripheral surface 21a is referred to as the axial direction, and the direction perpendicular to the axial direction is referred to as the radial direction. As in the first embodiment, the leading end and the trailing end in the axial direction may be used based on the insertion direction of the overtube 501 .
 筒枠部521の後端部の外周部には、径方向からみて中間部522bと重なる範囲に、後述するガイド部材532を固定する固定部521dが形成されている。固定部521dよりも先端側には、後述するプローブ534が挿通されるガイド孔521eが径方向に貫通している。 A fixing portion 521d for fixing a guide member 532, which will be described later, is formed on the outer peripheral portion of the rear end portion of the cylindrical frame portion 521 in a range overlapping with the intermediate portion 522b when viewed in the radial direction. A guide hole 521e through which a probe 534, which will be described later, is inserted penetrates in the radial direction on the distal end side of the fixing portion 521d.
 図1に示すように、接続ポート521bは、第1の実施形態における接続ポート21bと同様、操作チューブ本体25が接続される。
 図95に示すように、接続ポート521bの内部には、空間Spに供給された気体を逆流させない逆止弁521cが配置されている。
 空間Spに近い接続ポート521bの端部は、後述するガイド部材532に固定されており、後述する可動部材533を貫通し、後述する容積可変部531の内部に開口している。可動部材533を貫通する部分は、可動部材533の移動の負荷が大きくならないように、気密に封止されている。
 ただし、接続ポート521bは、可動部材533の移動の負荷が大きくならない場合には、可動部材533に固定されていてもよい。
As shown in FIG. 1, the connection port 521b is connected to the operation tube main body 25, like the connection port 21b in the first embodiment.
As shown in FIG. 95, a check valve 521c is arranged inside the connection port 521b to prevent the backflow of the gas supplied to the space Sp.
The end of the connection port 521b near the space Sp is fixed to a guide member 532, which will be described later, penetrates a movable member 533, which will be described later, and opens inside the variable volume portion 531, which will be described later. The portion penetrating through the movable member 533 is hermetically sealed so that the movement load of the movable member 533 does not increase.
However, the connection port 521b may be fixed to the movable member 533 if the movement load of the movable member 533 does not increase.
 可動部材533は、径方向において、固定部521dとに対向する位置にて径方向に移動可能に配置されている。図95に示す例では、可動部材533は、ガイド部材532によって径方向に移動可能に支持されており、バネ535によって筒枠部521に向かう径方向に付勢されている。 The movable member 533 is arranged so as to be radially movable at a position facing the fixed portion 521d in the radial direction. In the example shown in FIG. 95 , the movable member 533 is radially movably supported by the guide member 532 and biased by the spring 535 in the radial direction toward the cylinder frame portion 521 .
 ガイド部材532は、固定部521dに固定されている。ガイド部材532には、可動部材533を径方向に沿って平行移動するガイド部532aが形成されている。
 ガイド部材532の形状は特に限定されない。例えば、ガイド部材532は、筐体、枠体、柱状体、筒体などであってもよい。
 ガイド部532aの形状は、ガイド部材532の形状に応じて適宜の形状が用いられる。例えば、ガイド部材532に形成されたガイド部532aは、径方向に延びる孔部、溝、突条などであってもよい。
 図95に模式的に示す例では、ガイド部材532は、直方体形の外形を有する枠体または筐体である。ガイド部532aは、ガイド部材532の側面に形成された径方向に延びる貫通孔である。この場合、可動部材533は、ガイド部532aの内側に挿入されることによって、径方向に平行移動する。
The guide member 532 is fixed to the fixing portion 521d. The guide member 532 is formed with a guide portion 532a that moves the movable member 533 in parallel along the radial direction.
The shape of the guide member 532 is not particularly limited. For example, the guide member 532 may be a housing, a frame, a columnar body, a cylinder, or the like.
An appropriate shape is used for the shape of the guide portion 532 a according to the shape of the guide member 532 . For example, the guide portion 532a formed in the guide member 532 may be a radially extending hole, groove, ridge, or the like.
In the example schematically shown in FIG. 95, the guide member 532 is a frame or housing having a rectangular parallelepiped outer shape. The guide portion 532a is a through hole formed in the side surface of the guide member 532 and extending in the radial direction. In this case, the movable member 533 is translated in the radial direction by being inserted inside the guide portion 532a.
 可動部材533において、径方向において筒枠部521の外周部と対向する表面533aには、径方向に延びるプローブ534が固定されている。
 プローブ534は、ガイド孔521eに摺動可能に挿通されている。プローブ534の先端側に形成された摺接部534a(先端部)は、可動部材533の移動可能範囲において、内周面21a内を軸方向に移動する内視鏡30の外周面と接触可能な長さを有する。
 摺接部534aは、内視鏡30の外周面と滑らかに摺動する湾曲面からなる。摺接部534aは、内視鏡30の外径における段差を円滑に乗り越えることができる曲率を有している。
 可動部材533は、ガイド孔521eに沿って径方向に移動するプローブ534と同方向に移動する。
A probe 534 extending in the radial direction is fixed to a surface 533a of the movable member 533 that faces the outer peripheral portion of the cylindrical frame portion 521 in the radial direction.
The probe 534 is slidably inserted through the guide hole 521e. A sliding contact portion 534a (tip portion) formed on the tip side of the probe 534 can come into contact with the outer peripheral surface of the endoscope 30 moving axially within the inner peripheral surface 21a within the movable range of the movable member 533. have a length.
The sliding contact portion 534a has a curved surface that smoothly slides on the outer peripheral surface of the endoscope 30 . The sliding contact portion 534 a has a curvature that allows it to smoothly overcome a step on the outer diameter of the endoscope 30 .
The movable member 533 moves in the same direction as the probe 534 moving radially along the guide hole 521e.
 バネ535の種類および形状は、可動部材533を筒枠部521に向かう径方向に付勢できれば特に限定されない。
 例えば、バネ535の種類は、可動部材533の径方向の変位に応じて弾性復元力を発生する弾性部材であれば、特に限定されない。バネ535の例としては、コイルバネ、板ゴム、伸縮シートなどが挙げられる。図95に示す例では、バネ535は、プローブ534が内部に挿入されたコイルバネである。この場合、バネ535は、引張力によって、可動部材533を付勢する。
 内周面21a内に内視鏡30が挿入されている場合には、可動部材533は、プローブ534の摺接部534aが内視鏡30の側面に当接する位置まで移動できる。
The type and shape of the spring 535 are not particularly limited as long as they can urge the movable member 533 in the radial direction toward the tubular frame portion 521 .
For example, the type of the spring 535 is not particularly limited as long as it is an elastic member that generates an elastic restoring force according to the radial displacement of the movable member 533 . Examples of the spring 535 include a coil spring, a plate rubber, an elastic sheet, and the like. In the example shown in FIG. 95, spring 535 is a coil spring with probe 534 inserted therein. In this case, the spring 535 biases the movable member 533 with a tensile force.
When the endoscope 30 is inserted into the inner peripheral surface 21 a , the movable member 533 can move to a position where the sliding contact portion 534 a of the probe 534 contacts the side surface of the endoscope 30 .
 容積可変部531は、接続ポート521bを通して外部から供給される気体を内部の空間Svに収容する。容積可変部531は、気体の圧力に応じて容積が変化する。
 本実施形態における容積可変部531は、弾性的に伸縮することなく空間Svの容積が変化する部材である。例えば、図95に示す例では、容積可変部531は径方向に複数の折り目がジグザク状に並ぶ蛇腹管である。
 径方向における容積可変部531の両端部は、固定部521dに固定されたガイド部材532の底面部532bと、可動部材533の表面533aとに、それぞれ気密に固定されている。
The variable volume part 531 accommodates the gas supplied from the outside through the connection port 521b in the internal space Sv. The variable volume part 531 changes its volume according to the pressure of the gas.
The variable volume part 531 in this embodiment is a member that changes the volume of the space Sv without elastically expanding and contracting. For example, in the example shown in FIG. 95, the variable volume portion 531 is a corrugated tube in which a plurality of folds are arranged in a zigzag shape in the radial direction.
Both ends of the variable volume portion 531 in the radial direction are airtightly fixed to the bottom surface portion 532b of the guide member 532 fixed to the fixed portion 521d and to the surface 533a of the movable member 533, respectively.
 可動部材533に固定された接続ポート521bの開口521fは、容積可変部531の内部に開口している。開口521fは、空間Svと接続ポート521bの内部とを連通させる。
 底面部532bおよび固定部521dには、径方向においてそれぞれを貫通する管路536が設けられている。
 管路536は、容積可変部531の内側と、中間部522bと内周面21aとの間の空間Spと、に開口している。これにより、管路536は、空間Spと空間Svとを互いに連通させる。
An opening 521 f of the connection port 521 b fixed to the movable member 533 opens inside the variable volume portion 531 . The opening 521f allows communication between the space Sv and the interior of the connection port 521b.
The bottom surface portion 532b and the fixing portion 521d are provided with a pipe line 536 penetrating them in the radial direction.
The conduit 536 opens to the inside of the variable volume portion 531 and to the space Sp between the intermediate portion 522b and the inner peripheral surface 21a. Thereby, the conduit 536 allows the space Sp and the space Sv to communicate with each other.
 気密弁ユニット506では、接続ポート521bを通して一定の体積の気体が送気されると、逆止弁521cによって気体が空間Sp、Svに封止される。
 可動部材533は、径方向に移動可能に支持されているので、可動部材533の位置に応じて、空間Svの容積が変化する。例えば、可動部材533が筒枠部521に向かう径方向に移動すると、容積可変部531が径方向に縮むため、空間Svの容積が低下する。空間Svに入りきらない気体は、管路536を通して空間Spに移動して、中間部522bを膨張させる。
 このとき、空間Sv、Sp内の内圧が上昇するので、内圧に応じて可動部材533が移動方向と反対側に付勢される。
In the airtight valve unit 506, when a certain volume of gas is supplied through the connection port 521b, the check valve 521c seals the gas in the spaces Sp and Sv.
Since the movable member 533 is supported movably in the radial direction, the volume of the space Sv changes according to the position of the movable member 533 . For example, when the movable member 533 moves in the radial direction toward the cylindrical frame portion 521, the variable volume portion 531 contracts in the radial direction, thereby reducing the volume of the space Sv. The gas that cannot enter the space Sv moves to the space Sp through the conduit 536 and expands the intermediate portion 522b.
At this time, the internal pressure in the spaces Sv and Sp increases, so the movable member 533 is urged in the direction opposite to the moving direction according to the internal pressure.
 図96は、本発明の第6の実施形態に係る内視鏡用オーバーチューブに用いる気密弁ユニットの動作説明図である。
 本実施形態では、図95、図96に示すように、プローブ534の摺接部534aが、内視鏡30の側面に当接した状態を保つように、容積可変部531内に気体を注入する。
 この状態で、接続ポート521bから導入する気体の体積を適正化することによって、気密バルーン522の中間部522bが内視鏡30の外周部と密着して気密を保つことができるようにする。
 例えば、気密弁ユニット506は、図96に示す圧力P、P、P、Pを用いて下記式(6a)で表される条件を満足する。
FIG. 96 is an operation explanatory view of the airtight valve unit used in the endoscope overtube according to the sixth embodiment of the present invention.
In this embodiment, as shown in FIGS. 95 and 96, gas is injected into the variable volume portion 531 so that the sliding contact portion 534a of the probe 534 is kept in contact with the side surface of the endoscope 30. .
In this state, by optimizing the volume of the gas introduced from the connection port 521b, the intermediate portion 522b of the airtight balloon 522 is brought into close contact with the outer peripheral portion of the endoscope 30 so that airtightness can be maintained.
For example, the airtight valve unit 506 satisfies the condition represented by the following formula (6a) using the pressures P 1 , P t , P s and P C shown in FIG.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 ここで、Pは、オーバーチューブ501において、気密バルーン522よりも先端側の内圧である。Pは、気密バルーン522に生じる張力に起因する圧力である。Pは、空間Sp、Svの内圧である。Pは、バネ535の付勢力に対応する圧力である。 Here, P 1 is the internal pressure of the overtube 501 on the distal end side of the airtight balloon 522 . P t is the pressure due to tension in the airtight balloon 522 . P S is the internal pressure of the spaces Sp and Sv. P C is the pressure corresponding to the biasing force of spring 535 .
 気密バルーン522によって気密を保つには、中間部522bが膨張する必要があるので、Pは、PとPtとの和よりも大きい必要がある。
 Pは、オーバーチューブ501を使用する手術の種類および挿入する管腔の種類などによって、予め決まっている。
 Pは、気密バルーン522の膨張時の歪みに基づいて下記式(6b)で表される。
Since intermediate portion 522b must be inflated to be airtight by airtight balloon 522, PS must be greater than the sum of P1 and Pt.
P1 is predetermined depending on the type of surgery using the overtube 501, the type of lumen into which it is inserted, and the like.
Pt is represented by the following formula (6b) based on the distortion of the airtight balloon 522 when inflated.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 ここで、Eは、気密バルーン522の材料のヤング率、LBSは、気密バルーン522の膨張時の外周長、Lは、気密バルーン522の膨張前の外周長である。ただし、気密バルーン522の「外周長」とは、気密バルーン522の中心軸を含む軸方向断面における中間部522bの長さである。 Here, E S is the Young's modulus of the material of the airtight balloon 522 , L BS is the perimeter length of the airtight balloon 522 when inflated, and L S is the perimeter length of the airtight balloon 522 before inflation. However, the “peripheral length” of the airtight balloon 522 is the length of the intermediate portion 522b in the axial cross-section including the central axis of the airtight balloon 522 .
 Pは、容積可変部531に注入する気体の体積に応じて、ボイルシャルルの法則に基づいて決まり、下記式(6c)で表される。 PS is determined based on Boyle -Charles' law according to the volume of the gas injected into the variable volume part 531, and is represented by the following formula (6c).
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 ここで、Vは容積可変部531に注入された気体の体積、Vは空間Spの体積、rは容積可変部531の内径、hは容積可変部531の高さ、pは大気圧である。ただし、容積可変部531の内径は、円筒換算した相当直径である。例えば、蛇腹管の場合は、最大内径と最小内径との平均値が用いられる。
 hは、可動部材533の位置に応じて変化する。ただし、可動部材533の位置は、本実施形態では、hは、プローブ534が当接する内視鏡30の外径に対応して一意的に決まる。
 本実施形態では、容積可変部531は弾性変形しないので、空間Svの容積は、hの関数である。このため、Vは、Vとhとの関数である。
 Vが決まると、中間部522bの材料の膨張形状を数値計算または実測することによって、中間部522bの内径が決まる。中間部522bの内径は、プローブ534が大径部30aと当接する場合は、D1以下、小径部30bと当接する場合は、D2以下とする。
Here, V is the volume of the gas injected into the variable volume part 531, VS is the volume of the space Sp, rb is the inner diameter of the variable volume part 531, h is the height of the variable volume part 531, and p is the atmospheric pressure. be. However, the inner diameter of the variable volume portion 531 is an equivalent diameter converted to a cylinder. For example, in the case of corrugated tubes, the average value of the maximum inner diameter and the minimum inner diameter is used.
h changes according to the position of the movable member 533 . However, in this embodiment, the position of the movable member 533 is uniquely determined corresponding to the outer diameter of the endoscope 30 with which the probe 534 abuts.
In this embodiment, the volume variable portion 531 does not elastically deform, so the volume of the space Sv is a function of h. Thus V S is a function of V and h.
Once V S is determined, the inner diameter of intermediate portion 522b is determined by numerical calculations or actual measurements of the expanded shape of the material of intermediate portion 522b. The inner diameter of the intermediate portion 522b is D1 or less when the probe 534 contacts the large diameter portion 30a, and D2 or less when the probe 534 contacts the small diameter portion 30b.
 PがPを超えると、摺接部534aが内視鏡30の側面から離れてしまうので、PはP以下にする必要がある。Pは、下記式(6c)で表される。 If P S exceeds P C , the sliding contact portion 534 a separates from the side surface of the endoscope 30 , so P S must be less than or equal to P C. P C is represented by the following formula (6c).
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 ここで、kはバネ535のバネ定数、xはバネ535の変化長、rはバネ535の半径である。ただし、バネ535の変化長は、バネ535の自然長さからの変位である。 where k is the spring constant of spring 535, x is the length of change of spring 535, and rC is the radius of spring 535. However, the changed length of the spring 535 is the displacement of the spring 535 from its natural length.
 式(6a)を満足するように、バネ535の弾性および変形量と、気密バルーン522の材料および形状と、容積可変部531に注入する気体の体積Vを決めると、図95に示すように、摺接部534aが大径部30aに当接した状態で、気密バルーン522の中間部522bが大径部30aを押圧し、大径部30aの周囲が気密に封止される。
 内視鏡30が軸方向に移動することによって、図96に示すように、中間部522bおよび摺接部534aに、小径部30bが対向すると、可動部材533の移動量に応じて、中間部522bがさらに膨張する。すなわち、気密バルーン522の内径は、筒枠部521に挿通された内視鏡30の外周部の外径が増大すると増大し、外径が減少すると減少する。
 これにより、中間部522bが小径部30bを押圧し、小径部30bの周囲が気密に封止される。
When the elasticity and deformation amount of the spring 535, the material and shape of the airtight balloon 522, and the volume V of the gas to be injected into the variable volume portion 531 are determined so as to satisfy the expression (6a), as shown in FIG. With the sliding contact portion 534a in contact with the large-diameter portion 30a, the intermediate portion 522b of the airtight balloon 522 presses the large-diameter portion 30a, and the circumference of the large-diameter portion 30a is airtightly sealed.
As the endoscope 30 moves in the axial direction, as shown in FIG. expands further. That is, the inner diameter of the airtight balloon 522 increases as the outer diameter of the outer peripheral portion of the endoscope 30 inserted through the cylindrical frame portion 521 increases, and decreases as the outer diameter decreases.
As a result, the intermediate portion 522b presses the small-diameter portion 30b, and the periphery of the small-diameter portion 30b is hermetically sealed.
 本実施形態によれば、気密弁ユニット506において、式(6a)が満足されるので、内視鏡30の挿入時に、プローブ534が内視鏡30の側面に当接する位置に可動部材533の位置を保つ。さらにこの状態で、式(6a)を満足するように、容積可変部531に気体を注入する。これにより、プローブ534が検知する内視鏡30の外径の変化に追従して、空間Svと空間Spとの間で気体が移動する。この結果、内視鏡30の外径が変化しても、中間部522bの膨張量が自動的に内視鏡30の外径変化に追従するので、摺動抵抗がほとんど変化することなく内視鏡30の周囲が気密に封止される。
 これにより、内視鏡30の挿抜が容易になり、挿抜中に体内の気体および液体が、気密弁ユニット506から外に逆流することを防止できる。
According to the present embodiment, the expression (6a) is satisfied in the airtight valve unit 506, so that when the endoscope 30 is inserted, the movable member 533 is positioned at a position where the probe 534 comes into contact with the side surface of the endoscope 30. keep Furthermore, in this state, gas is injected into the variable volume portion 531 so as to satisfy the expression (6a). As a result, the gas moves between the space Sv and the space Sp following changes in the outer diameter of the endoscope 30 detected by the probe 534 . As a result, even if the outer diameter of the endoscope 30 changes, the amount of expansion of the intermediate portion 522b automatically follows the change in the outer diameter of the endoscope 30. Therefore, the sliding resistance hardly changes and the endoscope can be operated. The perimeter of mirror 30 is hermetically sealed.
This facilitates the insertion and removal of the endoscope 30 and prevents gas and liquid in the body from flowing back to the outside from the airtight valve unit 506 during insertion and removal.
 以上、内視鏡30の外径が円筒形の例で説明したが、例えば、内視鏡11のように、径方向の一部にチャンネルチューブ15が配置されている場合には、中間部522bの膨張時の内径をチャンネルチューブ15の突出量を考慮した相当径で置き換えれば、上述と同様の気密性が得られる。この場合、プローブ534はチャンネルチューブ15を除く内視鏡11の外周部に当接させる。 In the above, an example in which the outer diameter of the endoscope 30 is cylindrical has been described. The same airtightness as described above can be obtained by replacing the inflated inner diameter with an equivalent diameter in consideration of the amount of protrusion of the channel tube 15 . In this case, the probe 534 is brought into contact with the outer peripheral portion of the endoscope 11 excluding the channel tube 15 .
 本実施形態に係るオーバーチューブ501は、気密弁ユニット506を有することを除いて第1の実施形態に係るオーバーチューブ1と同様なので、第1の実施形態と同様な作用を有する。このため、第1の実施形態と同様、患者の負荷を低減するとともに内視鏡を円滑に操作することができる内視鏡用オーバーチューブを提供することができる。
 特に本実施形態では、外径が一定でない内視鏡を挿抜する場合に、挿抜が容易になり、挿抜中に体内の気体および液体の逆流をより確実に防止できる。
The overtube 501 according to this embodiment is the same as the overtube 1 according to the first embodiment except that it has an airtight valve unit 506, and thus has the same effects as the first embodiment. Therefore, as in the first embodiment, it is possible to provide an endoscope overtube that reduces the burden on the patient and allows smooth operation of the endoscope.
In particular, in the present embodiment, when inserting and removing an endoscope having a non-uniform outer diameter, insertion and removal becomes easier, and backflow of gas and liquid in the body can be more reliably prevented during insertion and removal.
 気密弁ユニット506における筒枠部521は、チューブ本体の後端部においてメインルーメンと連通する管状部の例である。
 気密バルーン522は、管状部の内周面に固定され、管状部の内側に向かって拡張可能な気密バルーンの例である。
 容積可変部531は、気密バルーンと内周面との間に形成される気密バルーンの内部空間と連通するように管状部の外側に配置されており、外部または内部空間から流入する気体の圧力に応じて容積が変化することによって少なくとも管状部の径方向における外形の高さが変化する容積可変部の例である。
 接続ポート521bは、容積可変部の内部に連通し、外部の気体が容積可変部に流入可能かつ外部への気体の流出を阻止する逆止弁を有する気体供給管の例である。
 可動部材533は、管状部の外側において管状部の径方向に移動可能に支持されており、容積可変部における高さの変化に応じて、径方向の位置が変化する可動部材の例である。
 プローブ534は、延出方向の先端部である摺接部534aを有している。プローブ534は、可動部材に固定されており、径方向において管状部の内部に向かって延び、延出方向の先端部が管状部に挿通された内視鏡の外周部に当接する棒状のプローブの例である。
 バネ535は、管状部に内視鏡が挿通するときに、プローブと内視鏡の外周部とが離れないように、可動部材を径方向において管状部に向かって付勢する付勢部材の例である。
The cylindrical frame portion 521 in the airtight valve unit 506 is an example of a tubular portion that communicates with the main lumen at the rear end portion of the tube body.
Airtight balloon 522 is an example of an airtight balloon fixed to the inner peripheral surface of the tubular portion and expandable toward the inside of the tubular portion.
The variable volume part 531 is arranged outside the tubular part so as to communicate with the internal space of the airtight balloon formed between the airtight balloon and the inner peripheral surface, and is resistant to the pressure of the gas flowing from the outside or the internal space. This is an example of a variable volume portion in which at least the height of the outer shape in the radial direction of the tubular portion changes as the volume changes accordingly.
The connection port 521b is an example of a gas supply pipe that communicates with the inside of the variable volume portion, allows external gas to flow into the variable volume portion, and has a check valve that prevents the gas from flowing out to the outside.
The movable member 533 is an example of a movable member that is supported outside the tubular portion so as to be movable in the radial direction of the tubular portion, and whose position in the radial direction changes according to changes in the height of the variable volume portion.
The probe 534 has a slidable contact portion 534a, which is the leading end portion in the extending direction. The probe 534 is a rod-shaped probe that is fixed to a movable member, extends toward the inside of the tubular portion in the radial direction, and abuts on the outer peripheral portion of the endoscope inserted through the tubular portion at the distal end in the extending direction. For example.
The spring 535 is an example of a biasing member that biases the movable member radially toward the tubular portion so that the probe and the outer peripheral portion of the endoscope do not separate when the endoscope is inserted through the tubular portion. is.
[第19変形例]
 第6の実施形態に係るオーバーチューブ501において、気密弁ユニット506に代えて用いる気密弁ユニットの変形例(第19変形例)を説明する。
 図1に示すように、本変形例の気密弁ユニット506Aは、オーバーチューブ501の気密弁ユニット506に代えて用いることができる。
 以下、第6の実施形態と異なる点を中心に説明する。
[19th Modification]
In the overtube 501 according to the sixth embodiment, a modification (19th modification) of the airtight valve unit used in place of the airtight valve unit 506 will be described.
As shown in FIG. 1, the airtight valve unit 506A of this modified example can be used in place of the airtight valve unit 506 of the overtube 501. As shown in FIG.
Hereinafter, the points different from the sixth embodiment will be mainly described.
 図97は、本発明の第6の実施形態に係る内視鏡用オーバーチューブに用いる気密弁ユニットの変形例(第19変形例)を示す模式的な断面図である。図98は、気密弁ユニットの変形例(第19変形例)の動作説明図である。
 図97に示すように、本変形例の気密弁ユニット506Aは、第6の実施形態における容積可変部531に代えて容積可変部531Aを有する。
 容積可変部531Aは、外力によって弾性変形することによって内部空間の容積が変化する以外は、容積可変部531と同様の部材である。ただし、容積可変部531Aは、気密バルーン522に比べて容積変化しにくい剛性を有する。
 例えば、容積可変部531Aは、側壁531bが中間部522bよりも剛性が高い軟性のエラストマーで形成され、外形が円柱形の容器である。
 容積可変部531Aは、側壁531bが筒枠部521の径方向に沿って延びる姿勢で、可動部材533の表面533aとガイド部材532の底面部532bとに固定されている。径方向における容積可変部531Aの両端部には、容積可変部531と同様、接続ポート521bの開口521fと、管路536と、が開口している。
 例えば、可動部材533が径方向に移動して、容積可変部531Aに圧縮力が作用すると、図98に示すように、側壁531bが圧縮されて、空間Svにおける高さhが縮小することによって、空間Svの容積が減少する。
 反対に、可動部材533が径方向に移動して、容積可変部531Aに引張力が作用すると、図98に示すように、側壁531bが伸長して、空間Svにおける高さhが縮小することによって、空間Svの容積が増大する。
 側壁531bの材料によっては、側壁531bの伸縮によって厚さも変化する。この場合は、側壁531bが、圧縮されると内径が縮小し、伸長されると内径が増大する。すなわち、側壁531bの内径の増減と、長さの増減とはそれぞれ対応する。
FIG. 97 is a schematic cross-sectional view showing a modification (nineteenth modification) of the airtight valve unit used in the endoscope overtube according to the sixth embodiment of the present invention. FIG. 98 is an operation explanatory diagram of a modified example (19th modified example) of the airtight valve unit.
As shown in FIG. 97, an airtight valve unit 506A of this modified example has a variable volume portion 531A instead of the variable volume portion 531 in the sixth embodiment.
The variable volume portion 531A is a member similar to the variable volume portion 531 except that the volume of the internal space changes by being elastically deformed by an external force. However, the variable volume portion 531A has rigidity that makes it difficult for the volume to change compared to the airtight balloon 522 .
For example, the variable volume part 531A is a cylindrical container with a side wall 531b made of a soft elastomer having higher rigidity than the intermediate part 522b.
The variable volume portion 531A is fixed to the surface 533a of the movable member 533 and the bottom surface portion 532b of the guide member 532 with the side wall 531b extending along the radial direction of the tubular frame portion 521 . At both ends of the variable volume portion 531A in the radial direction, the opening 521f of the connection port 521b and the pipe line 536 are opened, similarly to the variable volume portion 531. As shown in FIG.
For example, when the movable member 533 moves in the radial direction and compressive force acts on the variable volume portion 531A, the sidewall 531b is compressed as shown in FIG. The volume of space Sv is reduced.
Conversely, when the movable member 533 moves in the radial direction and a tensile force acts on the variable volume portion 531A, as shown in FIG. , the volume of the space Sv increases.
Depending on the material of the side wall 531b, the thickness of the side wall 531b changes as it expands and contracts. In this case, side wall 531b is compressed to reduce the inner diameter and stretched to increase the inner diameter. That is, the increase/decrease in the inner diameter of the side wall 531b corresponds to the increase/decrease in length.
 第6の実施形態と同様に、内視鏡30の外径の変化に追従して、中間部522bの空間Spを変化させるため、気密弁ユニット506Aは、下記式(6e)を満足する。以下、上記式(6a)~(6d)と共通する変数の説明は省略する。 As in the sixth embodiment, the airtight valve unit 506A satisfies the following formula (6e) in order to change the space Sp of the intermediate portion 522b following changes in the outer diameter of the endoscope 30. Hereinafter, description of variables common to the above equations (6a) to (6d) will be omitted.
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
 ここで、Pは、容積可変部531Aの弾性変形によって生じる径方向(可動部材533の移動方向)の圧力である。
 Pは、容積可変部531Aの圧縮時における歪みに基づいて下記式(6f)で表される。
Here, Pb is the pressure in the radial direction (moving direction of the movable member 533) caused by the elastic deformation of the variable volume portion 531A .
Pb is represented by the following formula (6f) based on the distortion of the variable volume portion 531A during compression.
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
 ここで、Eは容積可変部531Aにおける側壁531bの材料のヤング率、Lは側壁531bの自然長、ΔLは側壁531bの変化長である。 Here, Eb is the Young's modulus of the material of the sidewall 531b in the variable volume portion 531A, Lb is the natural length of the sidewall 531b , and ΔLb is the changed length of the sidewall 531b.
 P、P、Pは、それぞれ、式(6b)、(6c)、(6d)で表される。
 ただし、側壁531bの内径が変化する場合には、式(6c)におけるrは、容積可変部531Aの変形によって変化する。
P t , P S , and P C are represented by formulas (6b), (6c), and (6d), respectively.
However, when the inner diameter of the side wall 531b changes, r b in equation (6c) changes according to the deformation of the variable volume portion 531A.
 本変形例は、容積可変部531Aが弾性変形して容積が変化する。このため、式(6e)では、プローブ534を内視鏡30の側面に当接させる条件として、容積可変部531Aの弾性変形に必要な圧力Pを考慮している。
 これにより本変形例の気密弁ユニット506Aを有するオーバーチューブ501は、容積可変部531Aが弾性変形しても、第6の実施形態に係るオーバーチューブ501と同様の作用を有する。
In this modification, the volume is changed by elastically deforming the volume variable portion 531A. Therefore, in equation (6e), the pressure Pb required for elastic deformation of the variable volume portion 531A is considered as a condition for bringing the probe 534 into contact with the side surface of the endoscope 30. FIG .
Thus, the overtube 501 having the airtight valve unit 506A of this modified example has the same effect as the overtube 501 according to the sixth embodiment even if the variable volume portion 531A is elastically deformed.
 容積可変部531Aは、気密バルーンと内周面との間に形成される気密バルーンの内部空間と連通するように管状部の外側に配置されており、外部または内部空間から流入する気体の圧力に応じて容積が変化することによって少なくとも管状部の径方向における外形の高さが変化する容積可変部の例である。 The variable volume portion 531A is arranged outside the tubular portion so as to communicate with the internal space of the airtight balloon formed between the airtight balloon and the inner peripheral surface, and is resistant to the pressure of the gas flowing from the outside or the internal space. This is an example of a variable volume portion in which at least the height of the outer shape in the radial direction of the tubular portion changes as the volume changes accordingly.
[第20変形例]
 第6の実施形態に係るオーバーチューブ501において、気密弁ユニット506に代えて用いる気密弁ユニットの変形例(第20変形例)を説明する。
 図1に示すように、本変形例の気密弁ユニット506Bは、オーバーチューブ501の気密弁ユニット506に代えて用いることができる。
 図99は、本発明の第6の実施形態に係る内視鏡用オーバーチューブに用いる気密弁ユニットの変形例(第20変形例)を示す模式的な断面図である。
 図99に示すように、本変形例の気密弁ユニット506Bは、第19変形例の気密弁ユニット506Aにおけるバネ535を削除したことを除いて、気密弁ユニット506Aと同様である。
 以下、第19変形例と異なる点を中心に説明する。
[Twentieth Modification]
A modification (twentieth modification) of the airtight valve unit used in place of the airtight valve unit 506 in the overtube 501 according to the sixth embodiment will be described.
As shown in FIG. 1, the airtight valve unit 506B of this modified example can be used in place of the airtight valve unit 506 of the overtube 501. As shown in FIG.
FIG. 99 is a schematic cross-sectional view showing a modification (twentieth modification) of the airtight valve unit used in the endoscope overtube according to the sixth embodiment of the present invention.
As shown in FIG. 99, the airtight valve unit 506B of this modified example is the same as the airtight valve unit 506A of the nineteenth modified example except that the spring 535 is omitted.
The following description will focus on the differences from the nineteenth modification.
 本変形例では、バネ535を有しないので、容積可変部531Aは、可動部材533を筒枠部521に向かう径方向に付勢する弾性部材の機能を持たせる。
 容積可変部531A内に気体を注入し、プローブ534の摺接部534aが、小径部30bに当接したとき、中間部522bが小径部30bの周囲を気密に封止し、かつ容積可変部531Aの側壁531bに引張応力が生じる状態とする。これにより、可動部材533は、筒枠部521に向かう径方向に付勢されている。
In this modified example, since the spring 535 is not provided, the variable volume portion 531A functions as an elastic member that urges the movable member 533 in the radial direction toward the cylindrical frame portion 521 .
Gas is injected into the variable volume portion 531A, and when the sliding contact portion 534a of the probe 534 comes into contact with the small diameter portion 30b, the intermediate portion 522b airtightly seals the periphery of the small diameter portion 30b and the variable volume portion 531A. A tensile stress is applied to the side wall 531b of the . As a result, the movable member 533 is radially biased toward the cylinder frame portion 521 .
 この状態から、例えば、大径部30aが後端側に移動すると、大径部30aによってプローブ534が径方向外側に押圧されて、可動部材533が径方向外側に移動する。これにより、容積可変部531Aが引き伸ばされて、空間Svの容積が拡大する。これにより、空間Sp内の気体が空間Svに移動するので、中間部522bが縮小して、中間部522bの内径が拡大する。
 この結果、中間部522bの内径は、大径部30aを摺動負荷が少ない状態で気密に封止できる大きさに拡大する。
From this state, for example, when the large-diameter portion 30a moves to the rear end side, the probe 534 is pressed radially outward by the large-diameter portion 30a, and the movable member 533 moves radially outward. As a result, the variable volume portion 531A is stretched to increase the volume of the space Sv. As a result, the gas in the space Sp moves to the space Sv, so that the intermediate portion 522b shrinks and the inner diameter of the intermediate portion 522b expands.
As a result, the inner diameter of the intermediate portion 522b is enlarged to a size that can hermetically seal the large diameter portion 30a with a small sliding load.
 このような気密弁ユニット506Bは、下記式(6f)を満足する。以下、上記式(6a)~(6d)と共通する変数の説明は省略する。 Such an airtight valve unit 506B satisfies the following formula (6f). Hereinafter, description of variables common to the above equations (6a) to (6d) will be omitted.
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
 ここで、Pは、第19変形例における式(6f)によって求められる。 Here, Pb is obtained by equation ( 6f ) in the nineteenth modification.
 本変形例は、容積可変部531Aがバネ535の機能を兼ねて、第19変形例と同様に、中間部522bの内径と、空間Spの内圧と、内視鏡30の外径の変化に追従して変化するようにした例である。
 これにより本変形例の気密弁ユニット506Bを有するオーバーチューブ501は、容積可変部531Aが弾性変形しても、第6の実施形態に係るオーバーチューブ501と同様の作用を有する。
In this modification, the variable volume portion 531A also functions as a spring 535, and follows changes in the inner diameter of the intermediate portion 522b, the internal pressure of the space Sp, and the outer diameter of the endoscope 30, as in the 19th modification. This is an example of changing by
As a result, the overtube 501 having the airtight valve unit 506B of this modification has the same effect as the overtube 501 according to the sixth embodiment even if the variable volume portion 531A is elastically deformed.
[第7の実施形態]
 本発明の第7の実施形態に係る内視鏡用オーバーチューブを説明する。
 図100は、本発明の第7の実施形態に係る内視鏡用オーバーチューブの例を示す模式的な斜視図である。図101は、図100におけるF101-F101線に沿う断面図である。図102は、図101におけるF102-F102線に沿う断面図である。図103は、図101におけるF103-F103線に沿う断面図である。
[Seventh Embodiment]
An endoscope overtube according to a seventh embodiment of the present invention will be described.
FIG. 100 is a schematic perspective view showing an example of an endoscope overtube according to the seventh embodiment of the present invention. 101 is a cross-sectional view taken along line F101-F101 in FIG. 100. FIG. 102 is a cross-sectional view taken along line F102-F102 in FIG. 101. FIG. 103 is a cross-sectional view taken along line F103-F103 in FIG. 101. FIG.
 図100に示すオーバーチューブ601は、本実施形態に係る内視鏡用オーバーチューブの例である。
 オーバーチューブ601は、第1の実施形態に係るオーバーチューブ1の先端チップ4が削除され、固定用バルーン3、メインチューブ2、グリップ部5、エアフローチューブ9、送気デバイス10に代えて、それぞれ、先端固定部603、メインチューブ602(チューブ本体)、グリップ部605、エアフローチューブ609、送気デバイス610を有する。
 ただし、図100~図103は、第1の実施形態と同様、先端固定部603の拡径状態の形状を示す。
 以下、第1の実施形態と異なる点を中心に説明する。
An overtube 601 shown in FIG. 100 is an example of an endoscope overtube according to this embodiment.
The overtube 601 has the tip 4 removed from the overtube 1 according to the first embodiment, and instead of the fixation balloon 3, the main tube 2, the grip portion 5, the airflow tube 9, and the air supply device 10, It has a tip fixing portion 603 , a main tube 602 (tube body), a grip portion 605 , an airflow tube 609 and an air supply device 610 .
However, FIGS. 100 to 103 show the shape of the distal end fixing portion 603 in the expanded state, as in the first embodiment.
The following description will focus on the differences from the first embodiment.
 図101に示すように、本実施形態における先端固定部603は、第1固定部617、第2固定部618、第1支持部材619、および第2支持部材620を有する。 As shown in FIG. 101, the distal end fixing portion 603 in this embodiment has a first fixing portion 617, a second fixing portion 618, a first supporting member 619, and a second supporting member 620.
 第1固定部617は、管部材621と、第1バルーン622(先端側バルーン)と、を有する。
 管部材621は、オーバーチューブ601に挿通する内視鏡の先端部を挿通可能な内部空間を有する円管である。管部材621の内周面621aの内径は、後述するメインチューブ602における第1ルーメン2cの内径以上であって、オーバーチューブ601が挿入される管腔の内径よりも小径である。
 管部材621の外周面621bの外径は、オーバーチューブ601が挿入される管腔の内径よりも小径であり、後述するメインチューブ602と同様、処置対象の管腔に挿入しやすい大きさである。以下では、外周面621bの外径が後述するメインチューブ602の外径に略等しい例で説明する。外周面621bには、後述する第1バルーン622が固定される。
 管部材621の長さは、後述する第1バルーン622の軸方向における両端部を固定できれば特に限定されない。例えば、管部材621の長さは、20mm以上70mm以下であってもよい。
The first fixing section 617 has a tube member 621 and a first balloon 622 (distal balloon).
The tube member 621 is a circular tube having an internal space through which the distal end portion of the endoscope that is inserted through the overtube 601 can be inserted. The inner diameter of the inner peripheral surface 621a of the tube member 621 is equal to or larger than the inner diameter of the first lumen 2c in the main tube 602, which will be described later, and is smaller than the inner diameter of the lumen into which the overtube 601 is inserted.
The outer diameter of the outer peripheral surface 621b of the tube member 621 is smaller than the inner diameter of the lumen into which the overtube 601 is inserted, and is of a size that facilitates insertion into the lumen to be treated, similar to the main tube 602 described later. . An example in which the outer diameter of the outer peripheral surface 621b is substantially equal to the outer diameter of the main tube 602 described later will be described below. A first balloon 622, which will be described later, is fixed to the outer peripheral surface 621b.
The length of the pipe member 621 is not particularly limited as long as both ends in the axial direction of the first balloon 622 described below can be fixed. For example, the length of the tubular member 621 may be 20 mm or more and 70 mm or less.
 管部材621の材料としては、例えば、第1の実施形態におけるメインチューブ2と同様な材料であってもよい。 The material of the pipe member 621 may be, for example, the same material as the main tube 2 in the first embodiment.
 第2円筒部622cには、後述する第1支持部材619との接合部において、第1支持部材619の内部空間と連通する開口部622fが形成されている。開口部622fは、第2円筒部622cの厚さ方向に貫通する貫通孔で形成される。 An opening 622f communicating with the internal space of the first support member 619 is formed in the second cylindrical portion 622c at the joint with the first support member 619, which will be described later. The opening 622f is formed of a through hole penetrating through the second cylindrical portion 622c in the thickness direction.
 第1バルーン622は、管部材621の外周面621bを気密に覆う。第1バルーン622は、外周面621bを気密に覆うための軸方向の長さを有することを除くと、第1の実施形態における固定用バルーン3と同様に形成される。
 第1バルーン622は、固定用バルーン3の第2円筒部3cに代えて、第2円筒部622cを有する。軸方向における第2円筒部622cの長さは、例えば、10mm以上60mm以下であってもよい。
The first balloon 622 airtightly covers the outer peripheral surface 621b of the tubular member 621 . The first balloon 622 is formed in the same manner as the fixation balloon 3 in the first embodiment except that it has an axial length for airtightly covering the outer peripheral surface 621b.
The first balloon 622 has a second cylindrical portion 622c instead of the second cylindrical portion 3c of the fixation balloon 3. As shown in FIG. The length of the second cylindrical portion 622c in the axial direction may be, for example, 10 mm or more and 60 mm or less.
 第1バルーン622における第1円筒部3aと第3円筒部3eとは、第1の実施形態における固定用バルーン3の第1円筒部3aと第3円筒部3eと同様にして、外周面621bに固定される。これにより、外周面621bで内周部を塞がれた第1バルーン622の内部に、開口部622fを通して気体が流通可能な空間S61が形成される。
 第1の実施形態と同様、気体は、特に限定されないが、以下では、特に断らない限り、気体がエアの例で説明する。
 第1バルーン622は、固定用バルーン3と同様、空間S61に供給されるエア量によって決まる空間S61の内圧に応じて、図101に示すような拡径状態と、図示略の縮径状態と、をとる。
The first cylindrical portion 3a and the third cylindrical portion 3e of the first balloon 622 are formed on the outer peripheral surface 621b in the same manner as the first cylindrical portion 3a and the third cylindrical portion 3e of the fixing balloon 3 in the first embodiment. Fixed. As a result, a space S61 through which gas can flow through the opening 622f is formed inside the first balloon 622 whose inner peripheral portion is closed by the outer peripheral surface 621b.
As in the first embodiment, the gas is not particularly limited, but hereinafter, unless otherwise specified, an example in which the gas is air will be described.
Similar to the fixing balloon 3, the first balloon 622 can be expanded in diameter as shown in FIG. take.
 第2固定部618は、後述するメインチューブ602の先端部に固定された第2バルーン623(固定用バルーン)によって形成される。
 第2バルーン623は、メインチューブ602の外周面2dを気密に覆う。第2バルーン623は、軸方向の長さが固定用バルーン3と異なっていてもよいことを除くと、第1の実施形態における固定用バルーン3と同様に形成される。
 第2バルーン623は、固定用バルーン3の第2円筒部3cに代えて、第2円筒部623cを有する。軸方向における第2円筒部623cの長さは、例えば、10mm以上60mm以下であってもよい。
The second fixing portion 618 is formed by a second balloon 623 (fixing balloon) fixed to the distal end portion of the main tube 602, which will be described later.
The second balloon 623 hermetically covers the outer peripheral surface 2d of the main tube 602 . The second balloon 623 is formed similarly to the fixation balloon 3 in the first embodiment, except that it may have a different axial length than the fixation balloon 3 .
The second balloon 623 has a second cylindrical portion 623c instead of the second cylindrical portion 3c of the fixation balloon 3 . The length of the second cylindrical portion 623c in the axial direction may be, for example, 10 mm or more and 60 mm or less.
 第2バルーン623における第1円筒部3aと第3円筒部3eとは、第1の実施形態における固定用バルーン3の第1円筒部3aと第3円筒部3eと同様にして、メインチューブ602の外周面2dに固定される。これにより、メインチューブ602の外周面2dで塞がれた第2バルーン623の内部に空間S62が形成される。空間S62は、メインチューブ602における第2ルーメン2eに連通するように第1の実施形態と同様に形成された開口部2fを通して、第2ルーメン2eに連通している。
 第2バルーン623は、空間S62の内圧に応じて、図101に示すような拡径状態と、図示略の縮径状態と、をとる。空間S62の内圧は、開口部2fを通して第2ルーメン2eから供給されるエア量によって決まる。
The first cylindrical portion 3a and the third cylindrical portion 3e of the second balloon 623 are formed on the main tube 602 in the same manner as the first cylindrical portion 3a and the third cylindrical portion 3e of the fixing balloon 3 in the first embodiment. It is fixed to the outer peripheral surface 2d. As a result, a space S62 is formed inside the second balloon 623 closed by the outer peripheral surface 2d of the main tube 602. As shown in FIG. The space S62 communicates with the second lumen 2e through an opening 2f formed in the main tube 602 similarly to the first embodiment so as to communicate with the second lumen 2e.
The second balloon 623 assumes a diameter-expanded state as shown in FIG. 101 and a diameter-reduced state (not shown) according to the internal pressure of the space S62. The internal pressure of the space S62 is determined by the amount of air supplied from the second lumen 2e through the opening 2f.
 第1支持部材619は、先端619cが閉じられたチューブからなる。第1支持部材619の内部には、第1支持部材619の長手方向に延びる送気ルーメン619aが形成されている。
 送気ルーメン619aは、空間S61に、第1バルーン622を拡縮するためのエアを流通させる。送気ルーメン619aには、第1支持部材619の先端部において第1バルーン622の開口部622fと対向する位置に、開口部619bが形成されている。開口部622fと開口部619bとは、送気ルーメン619aのと空間S61とを互いに連通させる。
The first support member 619 consists of a tube with a closed tip 619c. Inside the first support member 619, an air supply lumen 619a extending in the longitudinal direction of the first support member 619 is formed.
The air supply lumen 619a distributes air for expanding and contracting the first balloon 622 to the space S61. An opening 619 b is formed in the air supply lumen 619 a at a position facing the opening 622 f of the first balloon 622 at the distal end of the first support member 619 . The opening 622f and the opening 619b allow the air supply lumen 619a and the space S61 to communicate with each other.
 第1支持部材619は、先端部619Aと、後端部619B(送気チューブ)と、を有する。
 先端部619Aは、第1支持部材619は、第1バルーン622の第2円筒部622cと、第2バルーン623の第2円筒部623cとを、軸方向において連結する。図101、図102に示す例では、先端部619Aは、第2円筒部622cおよび第2円筒部623cに外側に接合されている。先端部619Aの接合方法は特に限定されない。例えば、先端部619Aは、接着、溶着などによって、第2円筒部622cおよび第2円筒部623cに接合されてもよい。
 図101に示す例では、先端部619Aは、第2円筒部622cおよび第2円筒部623cの全体を軸方向に横断して第2円筒部622cおよび第2円筒部623cに接合されている。必要な接合強度が得られる場合には、先端部619Aは、軸方向において第2円筒部622cおよび第2円筒部623cの一部と1箇所以上で接合されていればよい。
The first support member 619 has a front end portion 619A and a rear end portion 619B (air supply tube).
The distal end portion 619A of the first support member 619 connects the second cylindrical portion 622c of the first balloon 622 and the second cylindrical portion 623c of the second balloon 623 in the axial direction. In the example shown in FIGS. 101 and 102, the tip portion 619A is joined to the outside of the second cylindrical portion 622c and the second cylindrical portion 623c. The joining method of the tip portion 619A is not particularly limited. For example, the tip portion 619A may be joined to the second cylindrical portion 622c and the second cylindrical portion 623c by gluing, welding, or the like.
In the example shown in FIG. 101, the tip portion 619A is joined to the second cylindrical portion 622c and the second cylindrical portion 623c across the entirety of the second cylindrical portion 622c and the second cylindrical portion 623c in the axial direction. In the case where the required joint strength is obtained, the tip portion 619A may be joined to a portion of the second cylindrical portion 622c and the second cylindrical portion 623c at one or more points in the axial direction.
 第1支持部材619における先端部619Aは、第1バルーン622と第2バルーン623とが軸方向において一定距離だけ離れるように、第1バルーン622と第2バルーン623とを連結する。第1バルーン622と第2バルーン623との間の軸方向における距離は、第1バルーン622と第2バルーン623との間に、オーバーチューブ601に挿通した内視鏡で行われる手術に必要な術場の広さが確保される距離である。
 例えば、内視鏡11の先端部12が湾曲部17の操作によって、広範囲に移動できるようにするには、管部材621の後端621cからメインチューブ602の先端602gまでの軸方向における距離Lfが、湾曲部17の長さよりも長いことがより好ましい。
 例えば、オーバーチューブ601が大腸における腸壁を全層切除する内視鏡的全層切除に用いられる場合、距離Lfが、70mm以上120mm以下であれば、必要な術場が確保できる。
 例えば、オーバーチューブ601が大腸におけるESDに用いられる場合も同様である。
A distal end portion 619A of the first support member 619 connects the first balloon 622 and the second balloon 623 such that the first balloon 622 and the second balloon 623 are separated from each other by a certain distance in the axial direction. The distance in the axial direction between the first balloon 622 and the second balloon 623 is the distance between the first balloon 622 and the second balloon 623 necessary for surgery performed with an endoscope inserted through the overtube 601 . It is the distance that secures the size of the field.
For example, in order to allow the distal end portion 12 of the endoscope 11 to move over a wide range by operating the bending portion 17, the distance Lf in the axial direction from the rear end 621c of the tubular member 621 to the distal end 602g of the main tube 602 is , is longer than the length of the curved portion 17 .
For example, when the overtube 601 is used for endoscopic full-thickness resection of the intestinal wall of the large intestine, a necessary surgical field can be secured if the distance Lf is 70 mm or more and 120 mm or less.
For example, the same applies when the overtube 601 is used for ESD in the large intestine.
 後端部619Bは、第2バルーン623に固定された先端部619Aの後端から、第2バルーン623よりもオーバーチューブ601の後端側に延びる長さを有する。
 図100に示す例では、後端部619Bは、メインチューブ602に沿ってグリップ部605まで延びている。後端部619Bの配置は、メインチューブ602の説明において後述する。
The rear end portion 619B has a length extending from the rear end of the front end portion 619A fixed to the second balloon 623 to the rear end side of the overtube 601 beyond the second balloon 623 .
In the example shown in FIG. 100, rear end portion 619B extends along main tube 602 to grip portion 605 . The arrangement of the rear end portion 619B will be described later in the description of the main tube 602. FIG.
 ただし、第1バルーン622に送気する送気流路が形成できれば、後端部619Bは、グリップ部605まで延ばされなくてもよい。この場合には、後端部619Bの後端には、メインチューブ602に沿ってグリップ部605まで延びる送気チューブが連結される。送気チューブは、長手方向に延びる送気ルーメンを有している。送気チューブは、その送気ルーメンが第1支持部材619の送気ルーメン619aと連通するように、後端部619Bの後端に連結される。
 この場合、後端部619Bの長さは特に限定されない。例えば、後端部619Bは、送気チューブとの連結部を形成するだけの長さであってもよい。
 以下では、図100に示すように、第1支持部材619の後端部619Bがグリップ部605まで延ばされた例で説明する。
However, the rear end portion 619B does not need to extend to the grip portion 605 as long as an air supply channel for supplying air to the first balloon 622 can be formed. In this case, an air supply tube extending along the main tube 602 to the grip portion 605 is connected to the rear end of the rear end portion 619B. The insufflation tube has a longitudinally extending insufflation lumen. The air supply tube is connected to the rear end of the rear end portion 619B so that its air supply lumen communicates with the air supply lumen 619a of the first support member 619. As shown in FIG.
In this case, the length of the rear end portion 619B is not particularly limited. For example, the rear end 619B may be long enough to form a connection with an insufflation tube.
An example in which the rear end portion 619B of the first support member 619 extends to the grip portion 605 as shown in FIG. 100 will be described below.
 先端部619Aと後端部619Bとの外径および内径は、互いに等しくてもよいし、互いに異なっていてもよい。後端部619Bの外径は、後述するメインチューブ602に設けられた挿通ルーメンの内径よりも小径の外径を有する。
 例えば、後端部619Bの外径は、1mm以上4mm以下であってもよい。
 先端部619Aおよび後端部619Bの内径は、支障なく送気できれば特に限定されない。例えば、先端部619Aおよび後端部619Bの内径は、0.5mm以上2mm以下であってもよい。
 以下では、特に断らない限り、先端部619Aおよび後端部619Bの外径および内径は、互いに等しい例で説明する。
 第1支持部材619の材料は、後述するメインチューブ602の可撓性を損なわない程度の可撓性を有していれば、特に限定されない。
 例えば、第1支持部材619の外径および内径が上述した範囲の場合、第1支持部材619に好適な材料としては、PTFE(ポリテトラフルオロエチレン)、ポリカーボネートなどが挙げられる。
The outer diameter and inner diameter of the leading end portion 619A and the trailing end portion 619B may be equal to or different from each other. The rear end portion 619B has an outer diameter smaller than the inner diameter of an insertion lumen provided in the main tube 602, which will be described later.
For example, the outer diameter of the rear end portion 619B may be 1 mm or more and 4 mm or less.
The inner diameters of the front end portion 619A and the rear end portion 619B are not particularly limited as long as air can be supplied without any trouble. For example, the inner diameters of the leading end portion 619A and the trailing end portion 619B may be 0.5 mm or more and 2 mm or less.
Hereinafter, an example in which the outer diameter and the inner diameter of the front end portion 619A and the rear end portion 619B are equal to each other will be described unless otherwise specified.
The material of the first support member 619 is not particularly limited as long as it has flexibility to the extent that the flexibility of the main tube 602, which will be described later, is not impaired.
For example, when the outer diameter and inner diameter of the first support member 619 are within the ranges described above, suitable materials for the first support member 619 include PTFE (polytetrafluoroethylene), polycarbonate, and the like.
 第2支持部材620は、第1バルーン622の第2円筒部622cと、第2バルーン623の第2円筒部623cと、を、第1支持部材619と周方向において異なる位置において軸方向に連結する。図102に示す例では、第2支持部材620は、拡径状態における第2円筒部622cおよび第2円筒部623cを、第1支持部材619とともに周方向に4等分する位置に、3つ設けられている。
 各第2支持部材620は、第1支持部材619の先端部619Aと同様にして、第2円筒部622cおよび第2円筒部623cに外側から接合されている。
The second support member 620 axially connects the second cylindrical portion 622c of the first balloon 622 and the second cylindrical portion 623c of the second balloon 623 at positions different in the circumferential direction from the first support member 619. . In the example shown in FIG. 102, three second support members 620 are provided at positions that equally divide the second cylindrical portion 622c and the second cylindrical portion 623c in the enlarged diameter state into quarters along with the first support member 619 in the circumferential direction. It is
Each second support member 620 is joined to the second cylindrical portion 622c and the second cylindrical portion 623c from the outside in the same manner as the tip portion 619A of the first support member 619. As shown in FIG.
 各第2支持部材620は、第1支持部材619の先端部619Aと同様に、第1バルーン622と第2バルーン623とを軸方向において一定距離だけ離して互いに連結する。ただし、各第2支持部材620は送気機能は有しない。各第2支持部材620は、例えば、中実の棒であってもよい。
 各第2支持部材620の長さは、第1支持部材619と同様にして第1バルーン622と第2バルーン623とを連結できれば、特に限定されない。図101に示す例では、各第2支持部材620は、第2円筒部622cおよび第2円筒部623cの全体を軸方向に横断して第2円筒部622cおよび第2円筒部623cに接合されている。しかし、必要な接合強度が得られる場合には、各第2支持部材620は、軸方向において第2円筒部622cおよび第2円筒部623cの一部と1箇所以上で接合されていればよい。
Each second support member 620 connects the first balloon 622 and the second balloon 623 to each other with a certain distance in the axial direction, similarly to the distal end portion 619A of the first support member 619 . However, each second support member 620 does not have an air supply function. Each second support member 620 may be, for example, a solid bar.
The length of each second support member 620 is not particularly limited as long as the first balloon 622 and the second balloon 623 can be connected in the same manner as the first support member 619 . In the example shown in FIG. 101, each second support member 620 is joined to the second cylindrical portion 622c and the second cylindrical portion 623c across the entirety of the second cylindrical portion 622c and the second cylindrical portion 623c in the axial direction. there is However, if the required joint strength is obtained, each second support member 620 may be joined to a portion of the second cylindrical portion 622c and the second cylindrical portion 623c at one or more points in the axial direction.
 図103に示すように、メインチューブ602は、第1の実施形態におけるメインチューブ2の厚肉部2bに挿通ルーメン602eが形成されていることを除くと、メインチューブ2と同様である。
 挿通ルーメン602eは、第2バルーン623よりも後端側に延出された第1支持部材619を挿通させる。挿通ルーメン602eは、メインチューブ602の軸方向に貫通している。挿通ルーメン602eは、メインチューブ602における厚肉部2bにおいて第2ルーメン2eと並行している。
 図101に破線で示すように、挿通ルーメン602eの先端部には、第2バルーン623よりも後端側に離れた位置に、第1支持部材619を挿通ルーメン602eの内部に挿入する開口部602fが形成されている。
 第1支持部材619の後端部619Bは、開口部602fを通して、挿通ルーメン602eの内部に挿通されて、挿通ルーメン602eの後端において、後述するグリップ部605の内部管路に連通する。
As shown in FIG. 103, the main tube 602 is the same as the main tube 2 in the first embodiment, except that an insertion lumen 602e is formed in the thick portion 2b of the main tube 2 in the first embodiment.
The insertion lumen 602e allows the first support member 619 extending to the rear end side of the second balloon 623 to be inserted. The insertion lumen 602e penetrates the main tube 602 in the axial direction. The insertion lumen 602e is parallel to the second lumen 2e at the thick portion 2b of the main tube 602 .
101, an opening 602f for inserting the first support member 619 into the insertion lumen 602e is provided at the distal end of the insertion lumen 602e at a position away from the second balloon 623 on the rear end side. is formed.
The rear end portion 619B of the first support member 619 is inserted through the insertion lumen 602e through the opening 602f, and communicates with the internal conduit of the grip portion 605, which will be described later, at the rear end of the insertion lumen 602e.
 先端固定部603の製造方法は特に限定されないが、例えば、以下のようにして製造することができる。
 管部材621に第1バルーン622を接合し、メインチューブ602の先端部に第2バルーン623を接合する。この後、メインチューブ602における開口部602fから後端に向かって、第1支持部材619の後端部619Bを挿入する。後端部619Bの後端がグリップ部605との接合される位置まで達した後、第1支持部材619の先端部619Aを、第1バルーン622と第2バルーン623との接合部に位置合わせし、それぞれと接合する。このとき、第1支持部材619は、開口部619bと第1バルーン622の開口部622fとが対向し、かつ、開口部619bと開口部622fとが気密に連通するように配置される。先端部619Aは、開口部619bおよび開口部622fの周囲で第1バルーン622と接合される。
 第1支持部材619と、第1バルーン622および第2バルーン623と、を接合した後、または第1支持部材619の接合時と同時に、各第2支持部材620を第2支持部材620と、第1バルーン622および第2バルーン623と、を接合する。ただし、第1バルーン622および第2バルーン623に各第2支持部材620を接合した後、上述のようにして、第1支持部材619を接合してもよい。
The manufacturing method of the distal end fixing portion 603 is not particularly limited, but it can be manufactured as follows, for example.
A first balloon 622 is joined to the tubular member 621 and a second balloon 623 is joined to the distal end of the main tube 602 . After that, the rear end portion 619B of the first support member 619 is inserted from the opening 602f of the main tube 602 toward the rear end. After the rear end of the rear end portion 619B reaches the position where it is joined to the grip portion 605, the front end portion 619A of the first support member 619 is aligned with the joint portion between the first balloon 622 and the second balloon 623. , respectively. At this time, the first support member 619 is arranged such that the opening 619b and the opening 622f of the first balloon 622 face each other and the opening 619b and the opening 622f communicate airtightly. Distal end 619A is joined to first balloon 622 around opening 619b and opening 622f.
After bonding the first support member 619 and the first balloon 622 and the second balloon 623 or at the same time when the first support member 619 is bonded, each second support member 620 is connected to the second support member 620 and the second balloon 623 . 1 balloon 622 and second balloon 623 are joined. However, after each second support member 620 is joined to the first balloon 622 and the second balloon 623, the first support member 619 may be joined as described above.
 図100に示すように、グリップ部605は、第1の実施形態におけるグリップ部5の第1ルアーコネクタ5cに代えて、コネクタ605cを有する。
 コネクタ605cは、グリップ部605の内部に形成された第1流路と第2流路とにそれぞれ連通する第1接続管と第2接続管とを後述するエアフローチューブ609と着脱可能に連結する。
 第1流路は、メインチューブ602の第2ルーメン2e(図101参照)と第1接続管とを互いに連通させる。
 第2流路は、第1支持部材619の送気ルーメン619aと第2接続管とを互いに連通させる。
As shown in FIG. 100, the grip portion 605 has a connector 605c instead of the first luer connector 5c of the grip portion 5 in the first embodiment.
The connector 605c detachably connects a first connecting tube and a second connecting tube respectively communicating with the first flow path and the second flow path formed inside the grip portion 605 to an air flow tube 609 described later.
The first flow path allows the second lumen 2e (see FIG. 101) of the main tube 602 and the first connecting tube to communicate with each other.
The second channel communicates the air supply lumen 619a of the first support member 619 and the second connection pipe with each other.
 グリップ部605とメインチューブ602の後端部とは、第1の実施形態におけるグリップ部5とメインチューブ2の後端部と同様にして、互いに連結されている。 The grip portion 605 and the rear end portion of the main tube 602 are connected to each other in the same manner as the grip portion 5 and the rear end portion of the main tube 2 in the first embodiment.
 エアフローチューブ609は、送気デバイス610から延出している。エアフローチューブ609の先端部には、グリップ部605の第1接続管および第2接続管とそれぞれ着脱可能に接続するコネクタ609aが設けられている。エアフローチューブ609は、第1接続管および第2接続管とそれぞれ連通する2系統の独立した流路を有する。
 これにより、コネクタ605cに接続されたエアフローチューブ609は、第2ルーメン2eおよび送気ルーメン619aと、送気デバイス610との間にそれぞれ独立したエアの流路を形成する。
Airflow tube 609 extends from insufflation device 610 . A connector 609 a is provided at the tip of the airflow tube 609 to detachably connect to the first connecting tube and the second connecting tube of the grip portion 605 . The airflow tube 609 has two independent flow paths that communicate with the first connecting pipe and the second connecting pipe, respectively.
Thereby, the airflow tube 609 connected to the connector 605c forms independent air flow paths between the second lumen 2e and the air supply lumen 619a and the air supply device 610, respectively.
 送気デバイス610は、第1バルーン622と第2バルーン623とを拡径させるためのエアを供給し、必要に応じて第1バルーン622と第2バルーン623内のエアを吸引することを除くと、第1の実施形態における送気デバイス10と同様である。
 本実施形態では、送気デバイス610は、術者の操作に基づいて、エアフローチューブ609における2系統の流路に流れるエア量をそれぞれ独立に変更できる。エア量の変更手段は特に限定されない。
 例えば、送気デバイス610は、2系統の送吸気部と、各送吸気部におけるエアの流量を術者の操作に応じて変更する流量操作部と、を有していてもよい。
 例えば、送気デバイス610は、1系統の送吸気部と、送吸気部におけるエアの流量を術者の操作に応じて変更する流量操作部と、2系統の流路に対する流路切替弁と、を有していてもよい。この場合、流路切替弁の切替によって連通したエアフローチューブ609の流路に対して、エアの送吸気を行うことができる。
 送気デバイス610の送吸気部は、第1の実施形態と同様、電動ポンプでもよいし、手動ポンプでもよい。手動ポンプの場合、送気デバイス610は、例えば、上述した各実施形態および各変形例において手動送気機構211を含むいずれの送気デバイスが用いられてもよい。
The air supply device 610 supplies air for expanding the diameters of the first balloon 622 and the second balloon 623, and sucks the air inside the first balloon 622 and the second balloon 623 as necessary. , is the same as the insufflation device 10 in the first embodiment.
In this embodiment, the air supply device 610 can independently change the amount of air flowing through the two channels of the airflow tube 609 based on the operator's operation. A means for changing the amount of air is not particularly limited.
For example, the air supply device 610 may have two systems of air supply units and a flow control unit that changes the flow rate of air in each of the air supply units according to the operator's operation.
For example, the air supply device 610 includes a single air supply unit, a flow control unit that changes the air flow rate in the air supply/intake unit according to the operator's operation, and a channel switching valve for the two channels. may have In this case, air can be supplied to and sucked from the flow path of the airflow tube 609 that is communicated by switching the flow path switching valve.
The air supply/intake portion of the air supply device 610 may be an electric pump or a manual pump as in the first embodiment. In the case of a manual pump, the air supply device 610 may be any air supply device including the manual air supply mechanism 211 in each of the embodiments and modifications described above, for example.
 送吸気の対象となる流路を流路切替弁で切り替える場合、流路切替弁は、エアフローチューブ609の流路に対して切り替える構成には限定されない。例えば、流路切替弁は、コネクタ605cと送気デバイス610との間の適宜の流路上に設けられてもよい。この場合、エアフローチューブ609において、流路切替弁よりも送気デバイス610寄りの流路は、1系統の流路を有していればよい。 When switching the flow path to which the air is supplied and inhaled by the flow path switching valve, the flow path switching valve is not limited to the configuration for switching the flow path of the airflow tube 609 . For example, a channel switching valve may be provided on an appropriate channel between the connector 605c and the air supply device 610. In this case, in the airflow tube 609, the channel closer to the air supply device 610 than the channel switching valve should have one channel.
 ここで、従来のオーバーチューブを内視鏡的全層切除の処置に用いる場合の課題について説明する。
 図104は、従来のオーバーチューブを用いて内視鏡的全層切除の例を示す模式図である。
Here, problems in using a conventional overtube for endoscopic full-thickness resection will be described.
FIG. 104 is a schematic diagram showing an example of endoscopic full-thickness resection using a conventional overtube.
 内視鏡を用いて患者の管腔における粘膜下層を切除するESDが普及し始めている。
 しかし、例えば、進行したがんの処置などはESDでは不充分であり、管腔の全層切除が必要になる。この場合、内視鏡下で全層切除することによって、より低侵襲の手術が可能になる。
 図104の(a)、(b)、(c)には、先端に第1の実施形態と同様の固定用バルーン3を有する従来のオーバーチューブ40を通した内視鏡11によって大腸Cの処置部位Tsを全層切除する工程が模式的に描かれている。
 図104の(a)に示すように、処置部位Tsの近傍の大腸C内には、オーバーチューブ40が挿入される。オーバーチューブ40は、固定用バルーン3を拡張状態とすることで、大腸Cに固定される。術者は、オーバーチューブ40に内視鏡11を挿通し、内視鏡11の先端部を処置部位Tsの近傍に配置する。
 この状態で、術者は、内視鏡11からエアを送気し、大腸Cを膨らませる。これにより、固定用バルーン3の前方に術場が確保される。
ESD, which uses an endoscope to resect the submucosa in a patient's lumen, is becoming popular.
However, ESD is inadequate, for example in the treatment of advanced cancer, and requires full-thickness resection of the lumen. In this case, full-thickness resection under an endoscope enables less invasive surgery.
104(a), (b), and (c) show treatment of the large intestine C by an endoscope 11 passing through a conventional overtube 40 having a fixing balloon 3 similar to that of the first embodiment at its tip. The step of excising the site Ts in full thickness is schematically depicted.
As shown in FIG. 104(a), an overtube 40 is inserted into the large intestine C near the treatment site Ts. The overtube 40 is fixed to the large intestine C by expanding the fixation balloon 3 . The operator inserts the endoscope 11 through the overtube 40 and places the distal end of the endoscope 11 in the vicinity of the treatment site Ts.
In this state, the operator inflates the large intestine C by supplying air from the endoscope 11 . As a result, a surgical field is secured in front of the fixation balloon 3 .
 この後、図104の(b)に示すように、術者は、内視鏡11の処置具チャンネルを通した処置具を用いて、処置部位Tsをその周囲の腸壁Cwごと全層切除する。これにより、腸壁Cwには、開口部Chが形成される。
 開口部Chの形成過程で、大腸C内のエアは、切断部から外部に漏れ出す。これにより、大腸Cは、外側からの体圧によって、(c)に示すように押しつぶされる。(b)は、模式図のため、開口部Chが形成された時に術場が確保されているように描かれているが、実際には、腸壁Cwの厚さ方向に貫通口が形成されると術場が速やかに縮小し始めるので、術者が切除の手技を続行することが困難になる可能性がある。全層切除を完了できたとしても、切除後の開口部Chの縫合などが処置が困難になる。
After that, as shown in FIG. 104(b), the operator uses the treatment tool passed through the treatment tool channel of the endoscope 11 to perform full-thickness excision of the treatment site Ts together with the surrounding intestinal wall Cw. . Thereby, an opening Ch is formed in the intestinal wall Cw.
In the process of forming the opening Ch, the air inside the large intestine C leaks out from the cut portion. As a result, the large intestine C is crushed by body pressure from the outside as shown in (c). (b) is a schematic diagram, and is depicted as if the operative field is secured when the opening Ch is formed. The surgical field then begins to shrink rapidly, making it difficult for the operator to continue the resection procedure. Even if the full-thickness excision can be completed, it becomes difficult to suture the opening Ch after the excision.
 このように、内視鏡的全層切除の手技においては、切除中および切除後に処置部位Tsの周囲に十分な術場を確保することが課題になっている。 Thus, in the endoscopic full-thickness resection technique, securing a sufficient surgical field around the treatment site Ts during and after resection is a problem.
 オーバーチューブ601の使用方法を、オーバーチューブ601を内視鏡的全層切除に用いる例で説明する。
 図105は、本発明の第7の実施形態に係る内視鏡用オーバーチューブの使用方法の例を示す模式図である。図106は、図105におけるF106部の拡大図である。図107は、本発明の第7の実施形態に係る内視鏡用オーバーチューブの使用方法の例を示す模式図である。
 ただし、図105~図107では、見易さのため、内視鏡11における内視鏡用キャップ13、把持デバイス14、およびチャンネルチューブ15等の詳細形状の図示は省略されている。本実施形態における他の図面の内視鏡11も同様である。
A method of using the overtube 601 will be described with an example of using the overtube 601 for an endoscopic full-thickness resection.
FIG. 105 is a schematic diagram showing an example of how to use the endoscope overtube according to the seventh embodiment of the present invention. 106 is an enlarged view of the F106 portion in FIG. 105. FIG. FIG. 107 is a schematic diagram showing an example of how to use the endoscope overtube according to the seventh embodiment of the present invention.
However, in FIGS. 105 to 107, the detailed shapes of the endoscope cap 13, the grasping device 14, the channel tube 15, etc. of the endoscope 11 are omitted for the sake of clarity. The same applies to the endoscope 11 in other drawings in this embodiment.
 まず、オーバーチューブ601を準備する。
 準備されるオーバーチューブ601は、固定用バルーン3と同様に先端固定部603を縮径状態にすることを除いて、第1の実施形態においてESDに用いるオーバーチューブ1と同様である。
 以下、第1の実施形態で説明したオーバーチューブ1の使用方法と異なる点を中心に説明する。
First, the overtube 601 is prepared.
The prepared overtube 601 is the same as the overtube 1 used for ESD in the first embodiment, except that the distal end fixing portion 603 is reduced in diameter like the fixation balloon 3 .
The following description focuses on points that differ from the method of using the overtube 1 described in the first embodiment.
 準備されたオーバーチューブ601では、第1バルーン622の内側の空間S61におけるエアが送気デバイス610によって吸い出されている。このため、第1バルーン622は、第1の実施形態における縮径状態の固定用バルーン3と同様に折り畳まれて、メインチューブ602の外周面2dに近接している。これにより、第1固定部617の外径は、固定用バルーン3が設けられていないメインチューブ602の外径と略同じ径に縮径している。この状態を、以下では、第1バルーン622の縮径状態と称する。
 さらに、オーバーチューブ601では、第2バルーン623の内側の空間S62におけるエアが送気デバイス610によって吸い出されている。このため、第2バルーン623は、第1バルーン622と同様に折り畳まれて、メインチューブ602の外周面2dに近接している。これにより、第2固定部618の外径は、メインチューブ602の外径と略同じ径に縮径している。この状態を、以下では、第2バルーン623の縮径状態と称する。
 準備されたオーバーチューブ601では、気密弁ユニット6は、第1の実施形態と同様に、内視鏡11の挿入部が低抵抗で挿入できるようにしておく。
In the prepared overtube 601 , the air in the space S61 inside the first balloon 622 is sucked out by the air supply device 610 . Therefore, the first balloon 622 is folded in the same manner as the fixing balloon 3 in the reduced diameter state in the first embodiment, and is close to the outer peripheral surface 2 d of the main tube 602 . As a result, the outer diameter of the first fixing portion 617 is reduced to substantially the same diameter as the outer diameter of the main tube 602 on which the fixing balloon 3 is not provided. This state is hereinafter referred to as the diameter-reduced state of the first balloon 622 .
Furthermore, in the overtube 601 , the air in the space S62 inside the second balloon 623 is sucked out by the air supply device 610 . Therefore, the second balloon 623 is folded like the first balloon 622 and is close to the outer peripheral surface 2 d of the main tube 602 . As a result, the outer diameter of the second fixing portion 618 is reduced to approximately the same diameter as the outer diameter of the main tube 602 . This state is hereinafter referred to as the diameter-reduced state of the second balloon 623 .
In the prepared overtube 601, the airtight valve unit 6 is made so that the insertion portion of the endoscope 11 can be inserted with low resistance, as in the first embodiment.
 この後、術者は、内視鏡11の先端をオーバーチューブ601の気密弁ユニット6の内側に挿入する。この後、内視鏡11の挿入部を、グリップ部605、メインチューブ602の第1ルーメン2c、および管部材621の内周面621aの内側に通して、内視鏡11の挿入部を管部材621から延出させる。 After that, the operator inserts the tip of the endoscope 11 inside the airtight valve unit 6 of the overtube 601 . Thereafter, the insertion portion of the endoscope 11 is passed through the grip portion 605, the first lumen 2c of the main tube 602, and the inner peripheral surface 621a of the pipe member 621, and the insertion portion of the endoscope 11 is passed through the pipe member. Extend from 621.
 この後、術者は、オーバーチューブ601を患者の体外に配置し、オーバーチューブ601から突出した内視鏡11の挿入部を、第1の実施形態と同様、肛門から大腸C内に挿入する。内視鏡11で取得した画像に処置部位Tsが現れた後、術者は内視鏡11の挿入を停止する(図105参照)。 After that, the operator places the overtube 601 outside the patient's body, and inserts the insertion portion of the endoscope 11 protruding from the overtube 601 into the large intestine C from the anus, as in the first embodiment. After the treatment site Ts appears in the image acquired by the endoscope 11, the operator stops inserting the endoscope 11 (see FIG. 105).
 この後、術者は、内視鏡11の挿入部に沿って、オーバーチューブ601を肛門から大腸C内に挿入する。このとき、第1の実施形態と同様、図示略の気密弁ユニット6に気密弁操作チューブ7からエアを供給して中間部22bを内視鏡11の外周部に密着させることができる。これにより、気密弁ユニット6によって内視鏡11の外周部と気密弁ユニット6との間が気密および液密に封止される。
 オーバーチューブ601の挿入を続けると、気密弁ユニット6の中間部22bもオーバーチューブ601とともに遠位側に移動する。このとき、内視鏡11の外周部に凹凸があっても、中間部22bが凹凸にならって変形するので、気密および液密の状態が保たれる。
 なお、本実施形態では、第1の実施形態とは異なり、図示略の気密弁ユニット6を設けないこともできる。
After that, the operator inserts the overtube 601 into the large intestine C from the anus along the insertion portion of the endoscope 11 . At this time, air can be supplied from the airtight valve operating tube 7 to the airtight valve unit 6 (not shown) to bring the intermediate portion 22b into close contact with the outer peripheral portion of the endoscope 11, as in the first embodiment. As a result, the gap between the outer peripheral portion of the endoscope 11 and the airtight valve unit 6 is sealed airtight and liquidtight by the airtight valve unit 6 .
As the overtube 601 continues to be inserted, the intermediate portion 22b of the airtight valve unit 6 also moves distally together with the overtube 601 . At this time, even if the outer peripheral portion of the endoscope 11 has unevenness, the intermediate portion 22b is deformed according to the unevenness, so that the airtight and liquid-tight states are maintained.
In this embodiment, unlike the first embodiment, the airtight valve unit 6 (not shown) may be omitted.
 先端固定部603における第1固定部617は、第2固定部618と、可撓性を有する第1支持部材619および第2支持部材620によって連結されている。このため、先端固定部603は、第1支持部材619および第2支持部材620が湾曲することによって、屈曲した状態で挿通された内視鏡11の屈曲部および湾曲部に沿って円滑に移動できる。 The first fixing portion 617 in the distal end fixing portion 603 is connected to the second fixing portion 618 by the first supporting member 619 and the second supporting member 620 having flexibility. Therefore, by bending the first support member 619 and the second support member 620, the distal end fixing portion 603 can smoothly move along the bending portion and the bending portion of the endoscope 11 inserted in a bent state. .
 図106に示すように、第1バルーン622および第2バルーン623が縮径状態の場合、先端固定部603の外径は、メインチューブ602の外径と同程度であり、腸壁Cwの内径に対して十分に小さい。
 縮径状態において、第1支持部材619と各第2支持部材620とは、先端固定部603の最外周部においてオーバーチューブ601の軸方向に延びている。このため、オーバーチューブ601が内視鏡11に沿って移動する際、先端固定部603が腸壁Cwと接触する場合に、先端固定部603における第1支持部材619と各第2支持部材620とが移動方向に延びる線状体として腸壁Cwに線接触するので、腸壁Cwとの摺動抵抗が低減される。さらに、第1支持部材619の先端部619Aと、各第2支持部材620と、は、管部材621の後端621cとメインチューブ602の先端602gよりも外周側に突出している。これにより、腸壁Cwには第1支持部材619の先端部619Aまたは第2支持部材620の方が先に当接するので、オーバーチューブ601の移動中に後端621cと先端602gとが腸壁Cwに引っ掛かることが抑制される。この点でも、摺動抵抗が低減され、患者への負荷が低減される。
As shown in FIG. 106, when the first balloon 622 and the second balloon 623 are in a contracted state, the outer diameter of the distal end fixing portion 603 is approximately the same as the outer diameter of the main tube 602, and is equal to the inner diameter of the intestinal wall Cw. small enough for
In the diameter-reduced state, the first support member 619 and the second support members 620 extend in the axial direction of the overtube 601 at the outermost peripheral portion of the distal end fixing portion 603 . Therefore, when the overtube 601 moves along the endoscope 11 and the distal end fixing portion 603 contacts the intestinal wall Cw, the first support member 619 and the second support members 620 of the distal end fixing portion 603 are is in linear contact with the intestinal wall Cw as a linear body extending in the moving direction, so the sliding resistance with the intestinal wall Cw is reduced. Further, the tip portion 619A of the first support member 619 and each of the second support members 620 protrude further to the outer peripheral side than the rear end 621c of the pipe member 621 and the tip 602g of the main tube 602. As a result, the distal end portion 619A of the first support member 619 or the second support member 620 contacts the intestinal wall Cw first, so that the rear end 621c and the distal end 602g contact the intestinal wall Cw while the overtube 601 is moving. is suppressed. In this respect as well, the sliding resistance is reduced and the load on the patient is reduced.
 図105に二点鎖線で示すように、術者は、先端固定部603が内視鏡11の先端部12の後端の近傍に位置するまで、オーバーチューブ601を挿入する。
 この後、図107に示すように、術者は、先端部12が第1固定部617と第2固定部618との間に位置するように、オーバーチューブ601をさらに遠位側に押し込む。
The operator inserts the overtube 601 until the distal end fixing portion 603 is positioned near the rear end of the distal end portion 12 of the endoscope 11, as indicated by a two-dot chain line in FIG.
After that, as shown in FIG. 107, the operator pushes the overtube 601 further distally so that the tip portion 12 is positioned between the first fixing portion 617 and the second fixing portion 618 .
 図108は、図107におけるF108部の拡大図である。図109~図110は、本発明の第7の実施形態に係る内視鏡用オーバーチューブの使用方法の例を示す断面図である。
 図108に示す状態で、術者は内視鏡11による画像を見て、第1バルーン622および第2バルーン623を拡径状態にした場合に、第1支持部材619の先端部619A、および第2支持部材620のいずれかが処置部位Tsを跨ぐ位置にあるか確認する。
 拡径状態を形成されたとき、第1支持部材619の先端部619A、および第2支持部材620のいずれかが処置部位Tsを跨ぐ可能性がある場合には、術者は体外におけるオーバーチューブ601を周方向に回転して、第1支持部材619の先端部619A、および第2支持部材620の位置を周方向にずらす。このとき、術者は、内視鏡11を固定して、オーバーチューブ601のグリップ部605を内視鏡11回りに回転する。このとき、図示略の気密弁ユニット6の中間部22bは内視鏡11の外周に沿って気密および液密を保って円滑に回転できる。
 グリップ部605の回転は、メインチューブ602のねじり剛性に応じて、先端固定部603に伝達される。これにより、第1支持部材619の先端部619A、および第2支持部材620がグリップ部605の回転方向と同方向に回転移動する。
 ただし、第1支持部材619の先端部619A、および第2支持部材620のいずれかが処置部位Tsを跨ぐ可能性がない場合には、オーバーチューブ601を周方向に回転する必要はない。
 以上で、先端固定部603の周方向の位置調整が終了する。
108 is an enlarged view of the F108 portion in FIG. 107. FIG. 109 to 110 are cross-sectional views showing an example of how to use the endoscope overtube according to the seventh embodiment of the present invention.
In the state shown in FIG. 108, the operator looks at the image from the endoscope 11, and when the first balloon 622 and the second balloon 623 are expanded in diameter, the distal end portion 619A of the first support member 619 and the second balloon 623 are expanded. It is confirmed whether any one of the two support members 620 is located across the treatment site Ts.
If there is a possibility that either the distal end portion 619A of the first support member 619 or the second support member 620 straddles the treatment site Ts when the diameter-expanded state is formed, the operator must use the overtube 601 outside the body. is rotated in the circumferential direction to shift the positions of the tip portion 619A of the first support member 619 and the second support member 620 in the circumferential direction. At this time, the operator fixes the endoscope 11 and rotates the grip portion 605 of the overtube 601 around the endoscope 11 . At this time, the intermediate portion 22b of the airtight valve unit 6 (not shown) can rotate smoothly along the outer periphery of the endoscope 11 while maintaining airtightness and liquidtightness.
Rotation of the grip part 605 is transmitted to the distal end fixing part 603 according to the torsional rigidity of the main tube 602 . As a result, the distal end portion 619A of the first support member 619 and the second support member 620 rotate in the same direction as the grip portion 605 rotates.
However, if there is no possibility that either the distal end portion 619A of the first support member 619 or the second support member 620 straddles the treatment site Ts, it is not necessary to rotate the overtube 601 in the circumferential direction.
This completes the position adjustment of the distal end fixing portion 603 in the circumferential direction.
 先端固定部603の周方向の位置調整は、第1バルーン622および第2バルーン623を腸壁Cwの内径近くまで拡径してから行われてもよい。この場合、回転時に、先端固定部603が触れ回りを起こしても、第1バルーン622および第2バルーン623の外周部が、腸壁Cwの内面と滑らかに摺動するので、先端固定部603の中心が腸壁Cwの中心に略一致した状態で周方向の位置調整が行える。
 さらに、第1支持部材619の先端部619A、および第2支持部材620の径方向の位置が、腸壁Cwへの先端固定部603の固定時の位置に近いので、拡径状態における第1支持部材619の先端部619A、および第2支持部材620の周方向の位置ずれが起こりにくい。
The circumferential position adjustment of the distal end fixing portion 603 may be performed after the diameters of the first balloon 622 and the second balloon 623 are expanded to near the inner diameter of the intestinal wall Cw. In this case, even if the distal end fixing portion 603 moves around during rotation, the outer peripheral portions of the first balloon 622 and the second balloon 623 slide smoothly on the inner surface of the intestinal wall Cw. Circumferential position adjustment can be performed in a state in which the center is substantially aligned with the center of the intestinal wall Cw.
Furthermore, since the radial positions of the distal end portion 619A of the first support member 619 and the second support member 620 are close to the positions when the distal end fixing portion 603 is fixed to the intestinal wall Cw, the first support in the expanded diameter state is achieved. Displacement in the circumferential direction of the distal end portion 619A of the member 619 and the second support member 620 is unlikely to occur.
 先端固定部603の周方向の位置調整が終了した後、術者は、送気デバイス610を操作して、第1バルーン622と第2バルーン623とにそれぞれエアを供給し、それぞれを膨張させる。
 このとき、送気デバイス610からのエアは、送気デバイス610の構成に応じて第1バルーン622および第2バルーン623に独立に供給される。
 第1バルーン622および第2バルーン623が十分膨張すると、それぞれがが腸壁Cwの内面と接触する。第1バルーン622の第2円筒部622cと、第2バルーン623の第2円筒部623cと、それぞれの外周側に固定された第1支持部材619の先端部619A、および各第2支持部材620とは、腸壁Cwの内壁を押圧する。
 これにより、先端固定部603は、大腸Cに対して容易に相対移動しない程度に腸壁Cwに固定される。
After completing the circumferential position adjustment of the distal end fixing portion 603, the operator operates the air supply device 610 to supply air to the first balloon 622 and the second balloon 623 to inflate them.
At this time, the air from the air supply device 610 is independently supplied to the first balloon 622 and the second balloon 623 according to the configuration of the air supply device 610 .
When the first balloon 622 and the second balloon 623 are sufficiently inflated, each comes into contact with the inner surface of the intestinal wall Cw. The second cylindrical portion 622c of the first balloon 622, the second cylindrical portion 623c of the second balloon 623, the distal end portion 619A of the first support member 619 fixed to the outer peripheral side of each, and each of the second support members 620 presses the inner wall of the intestinal wall Cw.
As a result, the distal end fixing portion 603 is fixed to the intestinal wall Cw to such an extent that it does not easily move relative to the large intestine C. As shown in FIG.
 第1バルーン622および第2バルーン623は同時に膨張されてもよいし、時間差を設けて膨張されてもよい。
 時間差を設けて膨張される場合、遠位側の第1バルーン622の膨張をさせた後、近位側の第2バルーン623を膨張させることがより好ましい。
 この場合、術者は、第1バルーン622を膨張させて第1固定部617を腸壁Cwに固定した後、メインチューブ602を近位側に引っ張ってから第2バルーン623を膨張させてもよい。この手順によれば、第1支持部材619の先端部619A、および第2支持部材620にたわみまたは湾曲が生じていても、第1支持部材619の先端部619A、および第2支持部材620が軸方向に延ばされる。これにより、第1支持部材619の先端部619A、および第2支持部材620のたわみまたは湾曲が矯正される。
 第1支持部材619の先端部619A、および第2支持部材620がたわんだり、湾曲した状態で、軸方向における第2バルーン623の位置が固定されると、管部材621の後端621cとメインチューブ602の先端602gとの間の距離がLfよりも短くなり、軸方向における術場が狭くなってしまう。
 これに対して、たわみまたは湾曲が矯正されると、後端621cと先端602gとの間の距離を最大Lfまで戻すことができる。
 術者は、後端621cと先端602gとの間の距離を拡げた後、第2バルーン623を膨張させて、第2固定部618を腸壁Cwに固定する。
The first balloon 622 and the second balloon 623 may be inflated simultaneously, or may be inflated with a time lag.
When inflating with a time lag, it is more preferable to inflate the first balloon 622 on the distal side and then inflate the second balloon 623 on the proximal side.
In this case, after inflating the first balloon 622 to fix the first fixing part 617 to the intestinal wall Cw, the operator may pull the main tube 602 proximally and then inflate the second balloon 623. . According to this procedure, even if the distal end portion 619A of the first supporting member 619 and the second supporting member 620 are flexed or curved, the distal end portion 619A of the first supporting member 619 and the second supporting member 620 are axially aligned. stretched in the direction As a result, the bending or bending of the distal end portion 619A of the first support member 619 and the second support member 620 is corrected.
When the position of the second balloon 623 in the axial direction is fixed while the distal end portion 619A of the first support member 619 and the second support member 620 are bent or curved, the rear end 621c of the tube member 621 and the main tube are aligned. The distance between the tip 602g of 602 becomes shorter than Lf, and the surgical field in the axial direction becomes narrower.
On the other hand, when the deflection or curvature is corrected, the distance between trailing edge 621c and leading edge 602g can be restored up to Lf.
After increasing the distance between the rear end 621c and the distal end 602g, the operator inflates the second balloon 623 to fix the second fixing portion 618 to the intestinal wall Cw.
 先端固定部603が腸壁Cwに固定されると、第1固定部617と第2固定部618との間の腸壁Cwの内側に、第1支持部材619および各第2支持部材620で囲まれた空間Sfが形成される。
 内視鏡11の先端部12および先端部12の処置具チャンネルから延出される処置具Mは、空間Sfの内部で移動可能である。処置具Mとしては、例えば、高周波ナイフが用いられてもよい。
 空間Sfは、全層切除を実施するための術場を形成している。
 空間Sfの遠位側および近位側における腸壁Cwは、第1バルーン622および第2バルーン623によって径方向に支持されている。これにより、腸壁Cwは第1バルーン622および第2バルーン623の各外径に等しい大きさに拡張している。第1バルーン622と第2バルーン623との間には、第1支持部材619の先端部619A、および第2支持部材620が張架されている。
 このため、第1バルーン622および第2バルーン623の間の腸壁Cwは、第1支持部材619bの先端部619A、および各第2支持部材620によって、径方向に支持されている。
 このため、空間Sfは、特にエアを導入して膨張させなくても、一定の容積が確保される。これにより、大腸Cにエアを送り込んで大腸Cを膨張させなくても処置が行えるので、患者の負荷を低減できる。
When the tip fixing part 603 is fixed to the intestinal wall Cw, it is surrounded by the first supporting member 619 and the second supporting members 620 inside the intestinal wall Cw between the first fixing part 617 and the second fixing part 618. A space Sf is formed.
The distal end portion 12 of the endoscope 11 and the treatment tool M extending from the treatment tool channel of the distal end portion 12 are movable inside the space Sf. As the treatment tool M, for example, a high-frequency knife may be used.
The space Sf forms an operating field for performing full-thickness resection.
The intestinal walls Cw on the distal and proximal sides of the space Sf are radially supported by the first balloon 622 and the second balloon 623 . As a result, the intestinal wall Cw expands to a size equal to the outer diameters of the first balloon 622 and the second balloon 623 . Between the first balloon 622 and the second balloon 623, the distal end portion 619A of the first support member 619 and the second support member 620 are stretched.
Therefore, the intestinal wall Cw between the first balloon 622 and the second balloon 623 is radially supported by the distal end portion 619A of the first support member 619b and the second support members 620. As shown in FIG.
Therefore, the space Sf can have a constant volume without being expanded by introducing air. As a result, treatment can be performed without sending air into the large intestine C to inflate the large intestine C, so that the burden on the patient can be reduced.
 術者は、例えば、内視鏡11から突出させた処置具Mを使って、処置部位Tsのの周囲の腸壁Cwを全層切除する。
 このとき、腸壁Cwに貫通口が形成されると、図110に示すように、大腸C内の気体および液体が大腸Cの外側に漏れるので、大腸Cが外側から圧迫される。しかし、腸壁Cwは、先端固定部603によって、内側から支持されているので、つぶれることはない。例えば、空間Sfが縮小したとしても、第1支持部材619および各第2支持部材620を頂点とする多角形状の断面形状が確保される。
 これにより、腸壁Cwに貫通口が形成されても、貫通口が形成される前に近い大きさの術場が確保される。
 術者は、先端固定部603によって確保された空間Sf内で、適宜の処置具を用いて、例えば、開口部Chの縫合などの全層切除後の処置を続行することができる。
The operator uses, for example, the treatment tool M projected from the endoscope 11 to resect the entire thickness of the intestinal wall Cw around the treatment site Ts.
At this time, if a through-hole is formed in the intestinal wall Cw, as shown in FIG. 110, the gas and liquid in the large intestine C leak to the outside of the large intestine C, so the large intestine C is pressed from the outside. However, since the intestinal wall Cw is supported from the inside by the distal end fixing portion 603, it will not collapse. For example, even if the space Sf is reduced, a polygonal cross-sectional shape with the first support member 619 and each of the second support members 620 as vertices is ensured.
As a result, even if a through-hole is formed in the intestinal wall Cw, an operation field of a size similar to that before the through-hole is formed is secured.
In the space Sf secured by the distal end fixing portion 603, the operator can continue treatment after full-thickness excision, such as suturing the opening Ch, using an appropriate treatment tool.
 内視鏡的全層切除において必要なすべての処置が終了したら、術者は、送気デバイス610を操作して、第1バルーン622および第2バルーン623のエアを吸い出す。これにより、第1バルーン622および第2バルーン623が縮径状態とされる。
 この後、術者は、内視鏡11とオーバーチューブ601とを、肛門から引き抜く。
 以上で、オーバーチューブ601を用いた内視鏡的全層切除が終了する。
After completing all necessary procedures for endoscopic full-thickness resection, the operator operates the air supply device 610 to suck out the air in the first balloon 622 and the second balloon 623 . As a result, the diameters of the first balloon 622 and the second balloon 623 are reduced.
After that, the operator pulls out the endoscope 11 and the overtube 601 from the anus.
Endoscopic full-thickness resection using the overtube 601 is thus completed.
 以上、オーバーチューブ601の使用方法を、内視鏡的全層切除の例で説明した。しかし、空間Sfを術場として実施可能な内視鏡的処置であれば、オーバーチューブ601は、内視鏡的全層切除以外の処置に用いられてもよい。例えば、ESD、EMR(内視鏡的粘膜切除術),ポリペクトミーなどに用いられてもよい。 The method of using the overtube 601 has been described above with an example of endoscopic full-thickness resection. However, the overtube 601 may be used for treatments other than endoscopic full-thickness resection as long as it is an endoscopic treatment that can be performed using the space Sf as an operating field. For example, it may be used for ESD, EMR (endoscopic mucosal resection), polypectomy, and the like.
 本実施形態に係るオーバーチューブ601は、主に固定用バルーン3に代えて先端固定部603を有する点が、第1の実施形態におけるオーバーチューブ1と相違している。メインチューブ2、グリップ部5、エアフローチューブ9、および送気デバイス10と、本実施形態におけるメインチューブ602、グリップ部605、エアフローチューブ609、送気デバイス610との相違点は、先端固定部603が第1バルーン622と第2バルーン623を有することによって生じている。
 このため、オーバーチューブ601は、固定用バルーン3に代えて、第1バルーン622、第2バルーン623、第1支持部材619、および第2支持部材620とを有することを除くと、オーバーチューブ1と同様に構成されているので、第1の実施形態と同様な作用を有する。このため、本実施形態によれば、第1の実施形態と同様、患者の負荷を低減するとともに内視鏡を円滑に操作することができる内視鏡用オーバーチューブを提供することができる。
 特に本実施形態では、先端固定部603を有するので、メインチューブ602の前方に、処置対象の管腔の内壁に貫通口が形成されても、術場となる空間Sfを形成できるので、例えば、内視鏡的全層切除を含む種々の処置が容易に行える。
An overtube 601 according to this embodiment is different from the overtube 1 according to the first embodiment mainly in that it has a distal end fixing portion 603 instead of the fixing balloon 3 . The difference between the main tube 2, the grip portion 5, the airflow tube 9, and the air supply device 10 and the main tube 602, the grip portion 605, the airflow tube 609, and the air supply device 610 in this embodiment is that the distal end fixing portion 603 is It arises by having a first balloon 622 and a second balloon 623 .
Therefore, the overtube 601 is similar to the overtube 1 except that it has a first balloon 622 , a second balloon 623 , a first support member 619 , and a second support member 620 instead of the fixation balloon 3 . Since it is configured similarly, it has the same function as the first embodiment. Therefore, according to the present embodiment, as in the first embodiment, it is possible to provide an endoscope overtube that reduces the burden on the patient and allows smooth operation of the endoscope.
In particular, in this embodiment, since the distal end fixing portion 603 is provided, even if a through-hole is formed in the inner wall of the lumen to be treated in front of the main tube 602, the space Sf serving as the surgical field can be formed. Various procedures are readily performed, including endoscopic full-thickness resection.
[第21変形例]
 オーバーチューブ601の使用方法における変形例(第21変形例)を説明する。
 図111~図113は、本発明の第7の実施形態に係る内視鏡用オーバーチューブの使用方法の変形例(第21変形例)を示す断面図である。
 本変形例は、オーバーチューブ601の挿入方法に関する変形例である。
 以下、第7の実施形態と異なる点を中心に説明する。
[21st Modification]
A modification (21st modification) in the method of using the overtube 601 will be described.
111 to 113 are cross-sectional views showing a modification (21st modification) of the method of using the endoscope overtube according to the seventh embodiment of the present invention.
This modification is a modification relating to the method of inserting the overtube 601 .
In the following, the points different from the seventh embodiment will be mainly described.
 図111に示すように、本変形例の使用方法では、オーバーチューブ601は、内視鏡11の湾曲部17と先端部12とが、第1固定部617の管部材621から遠位側に突出した状態で、内視鏡11が挿通された状態で準備される。オーバーチューブ601の先端固定部603は、第7の実施形態と同様の縮径状態とされる。
 オーバーチューブ601は、管部材621からの内視鏡11の突出量を一定量に維持された状態で、内視鏡11とともに、患者の肛門から大腸Cに挿入される。
As shown in FIG. 111, in the method of use of this modified example, the overtube 601 is such that the bending portion 17 and the distal end portion 12 of the endoscope 11 protrude distally from the tubular member 621 of the first fixing portion 617. In this state, the endoscope 11 is inserted and prepared. The distal end fixing portion 603 of the overtube 601 is in a diameter-reduced state similar to that of the seventh embodiment.
The overtube 601 is inserted into the large intestine C from the patient's anus together with the endoscope 11 while maintaining a constant amount of protrusion of the endoscope 11 from the tubular member 621 .
 内視鏡11で取得した画像に処置部位Tsが現れた後、図112に示すように、術者は内視鏡11およびオーバーチューブ601の挿入を停止する。この状態は、第7の実施形態において、オーバーチューブ601を処置部位Tsの近くまで挿入した状態と略同様である(図105における二点鎖線参照)。
 この後、術者は、第7の実施形態と同様にして、先端部12が第1固定部617と第2固定部618との間に位置するように、オーバーチューブ601をさらに遠位側に押し込む。
 この後、図113に示すように、術者は、第7の実施形態と同様にして、先端固定部603の第1バルーン622および第2バルーン623をそれぞれ膨張させて、先端固定部603を大腸Cの内壁に固定する。
 この後、術者は、必要な処置と、処置後の内視鏡11およびオーバーチューブ601の抜去と、を第7の実施形態と同様にして行う。
After the treatment site Ts appears in the image acquired by the endoscope 11, the operator stops inserting the endoscope 11 and the overtube 601 as shown in FIG. This state is substantially the same as the state in which the overtube 601 is inserted close to the treatment site Ts in the seventh embodiment (see two-dot chain line in FIG. 105).
After that, as in the seventh embodiment, the operator moves the overtube 601 further distally so that the distal end portion 12 is positioned between the first fixing portion 617 and the second fixing portion 618. push in.
After that, as shown in FIG. 113, the operator inflates the first balloon 622 and the second balloon 623 of the distal end fixing section 603 to move the distal end fixing section 603 to the large intestine in the same manner as in the seventh embodiment. Fix to the inner wall of C.
Thereafter, the operator performs necessary treatment and removal of the endoscope 11 and overtube 601 after the treatment in the same manner as in the seventh embodiment.
 本変形例によれば、オーバーチューブ601の挿入方法が異なるのみなので、挿入後の処置は、オーバーチューブ601と同様に行われる。このため、本変形例は、第7の実施形態と同様の作用を有する。
 特に、本変形例によれば、オーバーチューブ601を内視鏡11とともに処置対象の管腔に挿入するので、内視鏡11およびオーバーチューブ601の長さは、いずれも挿入口から処置対象の位置までの長さより少し長い程度でよい。このため、内視鏡11を処置対象の近くに配置した後、オーバーチューブ601を内視鏡11をガイドとして挿入する場合に比べると、内視鏡11の長さが短くて済む。
According to this modified example, only the method of inserting the overtube 601 is different, so the treatment after insertion is performed in the same manner as for the overtube 601 . Therefore, this modified example has the same effect as the seventh embodiment.
In particular, according to this modification, since the overtube 601 is inserted into the lumen to be treated together with the endoscope 11, the lengths of both the endoscope 11 and the overtube 601 are adjusted from the insertion port to the position of the treatment target. It should be slightly longer than the length up to Therefore, compared to the case where the endoscope 11 is placed near the treatment target and then the overtube 601 is inserted using the endoscope 11 as a guide, the length of the endoscope 11 can be shortened.
[第22変形例]
 第7の実施形態に係るオーバーチューブ601において、先端固定部603に代えて用いる先端固定部の変形例(第22変形例)を説明する。
 図100に示すように、本変形例の先端固定部603Aは、オーバーチューブ601の先端固定部603に代えて用いることができる。
 以下、第7の実施形態と異なる点を中心に説明する。
[22nd Modification]
In the overtube 601 according to the seventh embodiment, a modified example (22nd modified example) of the distal end fixing portion used in place of the distal end fixing portion 603 will be described.
As shown in FIG. 100, the distal end fixing portion 603A of this modified example can be used in place of the distal end fixing portion 603 of the overtube 601. As shown in FIG.
In the following, the points different from the seventh embodiment will be mainly described.
 図114は、本発明の第7の実施形態の内視鏡用オーバーチューブに用いる先端固定部の変形例(第22変形例)を示す断面図である。図115は、先端固定部の変形例(第22変形例)の作用を示す断面図である。
 図114に示すように、先端固定部603Aは、第1支持部材619および各第2支持部材620の周方向における配置が異なることを除いて、先端固定部603と同様である。
 先端固定部603Aにおける第1支持部材619および各第2支持部材620は、拡径状態における第1バルーン622の第2円筒部622cの周方向を等分しない位置に配置されている。図114に示す例では、第1支持部材619と各第2支持部材620の周方向における配置の中心角は、第1支持部材619から時計回りに測って、例えば、β1、β1、β1、およびβ2である。ただし、3×β1+β2は360°に等しく、β2は鋭角である。これにより、β1はβ2よりも大きい。
FIG. 114 is a cross-sectional view showing a modification (22nd modification) of the distal end fixing portion used in the endoscope overtube of the seventh embodiment of the present invention. FIG. 115 is a cross-sectional view showing the action of the modified example (22nd modified example) of the distal end fixing portion.
As shown in FIG. 114, the distal end fixing portion 603A is similar to the distal end fixing portion 603 except that the first support member 619 and the second support members 620 are arranged differently in the circumferential direction.
The first support member 619 and each of the second support members 620 in the distal end fixing portion 603A are arranged at positions that do not equally divide the circumferential direction of the second cylindrical portion 622c of the first balloon 622 in the expanded diameter state. In the example shown in FIG. 114, the central angles of the circumferential arrangement of the first support member 619 and each of the second support members 620 measured clockwise from the first support member 619 are, for example, β1, β1, β1, and β2. where 3×β1+β2 equals 360° and β2 is an acute angle. This makes β1 greater than β2.
 周方向において互いに隣り合う第1支持部材619の先端部619A、および第2支持部材620と、周方向において互いに隣り合う第2支持部材620同士と、の周方向の間隔は、それぞれの中心角に比例している。これにより、先端固定部603Aの拡径状態では、中心角β1だけ離れることで、先端部619Aおよび第2支持部材620と、第2支持部材620同士と、の間に、周方向の間隔が円周の四半分よりも広い広開口部Owがそれぞれ形成されている。これに対して、中心角β2だけ離れた先端部619Aおよび第2支持部材620の間には、広開口部Owよりも周方向の間隔が狭開口部Onが形成されている。 The distance between the distal end portion 619A of the first support member 619 and the second support member 620, which are adjacent to each other in the circumferential direction, and the second support members 620, which are adjacent to each other in the circumferential direction, is the center angle of each. proportional. As a result, when the diameter of the distal end fixing portion 603A is expanded, the circumferential distance between the distal end portion 619A and the second support member 620 and the second support members 620 is a circle because they are separated by the central angle β1. A wide opening Ow wider than a quarter of the circumference is formed respectively. On the other hand, between the tip portion 619A and the second support member 620 separated by the central angle β2, an opening On is formed with a narrower interval in the circumferential direction than the wide opening Ow.
 先端固定部603Aによれば、第1支持部材619の先端部619A、および第2支持部材620が処置部位Tsを跨がない位置に先端固定部603Aを回転調整する際に、処置部位Tsを3つの広開口部Owのいずれかに対向するように、先端固定部603Aを回転させる。これにより、腸壁Cwの内周面の四半分を超えるような大きさも処置部位Tsも跨がないように、先端固定部603Aを配置できる。
 さらに図115に示すように、処置部位Tsが管腔の内周面の四半分を超えない大きさの場合には、広開口部Ow内における処置部位Tsの配置自由度が高くなるので、先端固定部603Aの回転精度が低くても、例えば、二点鎖線で示すような、処置部位Tsを跨がない位置に配置しやすい。このため、先端固定部603Aの固定操作のやり直しを低減できる。
 先端固定部603Aによれば、種々の処置部位Tsを跨がないように、先端固定部603Aを迅速に固定することができるので、術者の操作が容易になる。
According to the distal end fixing section 603A, when rotating the distal end fixing section 603A to a position where the distal end portion 619A of the first support member 619 and the second support member 620 do not straddle the treatment site Ts, the treatment site Ts is moved by 3 degrees. The distal end fixing portion 603A is rotated so as to face one of the two wide openings Ow. As a result, the distal end fixing portion 603A can be arranged so as not to straddle the treatment site Ts and have a size exceeding a quarter of the inner peripheral surface of the intestinal wall Cw.
Furthermore, as shown in FIG. 115, when the treatment site Ts has a size that does not exceed a quarter of the inner peripheral surface of the lumen, the treatment site Ts can be placed more freely in the wide opening Ow. Even if the rotation accuracy of the fixing part 603A is low, it is easy to arrange the treatment site Ts at a position not straddling it, for example, as indicated by the two-dot chain line. Therefore, redoing of the fixing operation of the distal end fixing portion 603A can be reduced.
According to the distal end fixing portion 603A, the distal end fixing portion 603A can be quickly fixed so as not to straddle various treatment sites Ts, which facilitates operator's operation.
 本変形例の先端固定部603Aは、第1支持部材619の先端部619A、および各第2支持部材620の周方向の間隔が異なることを除いて、第7の実施形態における先端固定部603と同様である。このため、先端固定部603Aを有するオーバーチューブ601は、第7の実施形態と同様の作用を有する。
 特に本変形例の先端固定部603Aによれば、第1支持部材619および各第2支持部材620が種々の処置部位Tsを跨がないように、処置部位Tsを避けて、先端固定部603Aを迅速に固定することができるので、術者が迅速に手技を行いやすい。
The distal end fixing portion 603A of this modified example is different from the distal end fixing portion 603 of the seventh embodiment except that the distal end portion 619A of the first support member 619 and the second support members 620 have different circumferential intervals. It is the same. Therefore, the overtube 601 having the distal end fixing portion 603A has the same function as in the seventh embodiment.
In particular, according to the distal end fixing portion 603A of this modified example, the distal end fixing portion 603A is positioned so as to avoid the treatment site Ts so that the first support member 619 and each second support member 620 do not straddle various treatment sites Ts. Since it can be quickly fixed, it is easy for the operator to quickly perform the procedure.
[第23変形例]
 第7の実施形態に係るオーバーチューブ601において、先端固定部603に代えて用いる先端固定部の変形例(第22変形例)を説明する。
 図100に示すように、本変形例の先端固定部603Bは、オーバーチューブ61の先端固定部603に代えて用いることができる。
 以下、第7の実施形態と異なる点を中心に説明する。
[23rd Modification]
In the overtube 601 according to the seventh embodiment, a modified example (22nd modified example) of the distal end fixing portion used in place of the distal end fixing portion 603 will be described.
As shown in FIG. 100, the distal end fixing portion 603B of this modified example can be used in place of the distal end fixing portion 603 of the overtube 61. As shown in FIG.
In the following, the points different from the seventh embodiment will be mainly described.
 図116は、本発明の第7の実施形態に係る内視鏡用オーバーチューブに用いる先端固定部の変形例(第23変形例)を示す模式的な断面図である。図117は、図116におけるF117-F117線に沿う断面図である。図118は、先端固定部の変形例(第23変形例)の縮径状態の例を示す模式的な断面図である。 FIG. 116 is a schematic cross-sectional view showing a modification (twenty-third modification) of the distal end fixing portion used in the endoscope overtube according to the seventh embodiment of the present invention. 117 is a cross-sectional view taken along line F117-F117 in FIG. 116. FIG. FIG. 118 is a schematic cross-sectional view showing an example of a diameter-reduced state of a modification (twenty-third modification) of the distal end fixing portion.
 図116に示すように、先端固定部603Bは、第7の実施形態における先端固定部603の第1固定部617に代えて、第1固定部617Bを有することを除いて、先端固定部603と同様である。
 以下、第7の実施形態と異なる点を中心に説明する。
As shown in FIG. 116, the distal end fixing portion 603B is similar to the distal end fixing portion 603 except that it has a first fixing portion 617B instead of the first fixing portion 617 of the distal end fixing portion 603 in the seventh embodiment. It is the same.
In the following, the points different from the seventh embodiment will be mainly described.
 第1固定部617Bは、第1固定部617における第1バルーン622および管部材621に代えて、第1バルーン622Bを有する。
 第1バルーン622Bは、第1円筒面部622g、第2円筒部622c、先端面部622b、および後端面部622dを有する。ただし、図116および図117の実線で示す第1バルーン622Bは、第1バルーン622Bの外径が処置を行う管腔に固定可能な状態まで拡径された拡径状態(以下、固定時拡径状態)を示す。
 これに対して、図116および図117の二点鎖線で示す第1バルーン622Bの形状は、張力が生じない自然状態において、拡径した状態(以下、自然拡径状態)を示す。
 自然拡径状態では、第1バルーン622Bは、軸方向から見て円環形である。
 以下、特に断らない場合には、自然拡径状態における第1バルーン622Bの形状を説明する。
The first fixing portion 617B has a first balloon 622B instead of the first balloon 622 and the tube member 621 in the first fixing portion 617. As shown in FIG.
The first balloon 622B has a first cylindrical surface portion 622g, a second cylindrical surface portion 622c, a front end surface portion 622b, and a rear end surface portion 622d. However, the first balloon 622B indicated by solid lines in FIGS. 116 and 117 is in an enlarged diameter state in which the outer diameter of the first balloon 622B is enlarged to a state in which it can be fixed to the lumen to be treated (hereinafter referred to as expanded diameter when fixed). state).
On the other hand, the shape of the first balloon 622B indicated by two-dot chain lines in FIGS. 116 and 117 shows a state in which the diameter is expanded in a natural state in which no tension is generated (hereinafter referred to as a "natural diameter expansion state").
In the naturally expanded state, the first balloon 622B has an annular shape when viewed from the axial direction.
Hereinafter, unless otherwise specified, the shape of the first balloon 622B in the naturally expanded state will be described.
 図116に二点鎖線で示すように、第1円筒面部622gは、軸方向において第1バルーン622Bの中心部に延びる略円筒形である。第1円筒面部622gの内径は、管部材621の内周面621aと同様である。このため、第1円筒面部622gの内側には、内視鏡11が挿通できる。
 第2円筒部622cは、第7の実施形態における第1バルーン622と同様の円筒形であり、第1円筒面部622gと同軸に配置されている。第2円筒部622cには、第1バルーン622と同様の開口部622fが係止されている。
 第2円筒部622cの外径は、外周面621bの外径よりも大きく、処置を行う管腔に固定可能な外径以上に膨張できる大きさであれば特に限定されない。
As indicated by a two-dot chain line in FIG. 116, the first cylindrical surface portion 622g has a substantially cylindrical shape extending in the axial direction toward the center of the first balloon 622B. The inner diameter of the first cylindrical surface portion 622g is the same as that of the inner peripheral surface 621a of the pipe member 621 . Therefore, the endoscope 11 can be inserted through the inside of the first cylindrical surface portion 622g.
The second cylindrical portion 622c has the same cylindrical shape as the first balloon 622 in the seventh embodiment, and is arranged coaxially with the first cylindrical surface portion 622g. An opening 622f similar to that of the first balloon 622 is engaged with the second cylindrical portion 622c.
The outer diameter of the second cylindrical portion 622c is larger than the outer diameter of the outer peripheral surface 621b, and is not particularly limited as long as it is a size that allows expansion beyond the outer diameter that can be fixed in the lumen to be treated.
 図116に示すように、先端面部622bは、第1円筒面部622gおよび第2円筒部622cの各先端の間において径方向および周方向に延びる。
 後端面部622dは、第1円筒面部622gおよび第2円筒部622cの各後端の間において径方向および周方向に延びる。
 このような構成の第1バルーン622Bの内部には、自然拡径状態において円環形の空間S63が形成される。
As shown in FIG. 116, the tip surface portion 622b extends radially and circumferentially between the tips of the first cylindrical surface portion 622g and the second cylindrical portion 622c.
The rear end surface portion 622d extends radially and circumferentially between the respective rear ends of the first cylindrical surface portion 622g and the second cylindrical portion 622c.
A ring-shaped space S63 is formed inside the first balloon 622B having such a configuration in a naturally expanded state.
 第1バルーン622Bの第2円筒部622c上には、第1バルーン622と同様にして、第1支持部材619の先端部619Aと3つの第2支持部材620とが固定されている。
 第1バルーン622Bにおける開口部622fは、第1バルーン622と同様、第1支持部材619の開口部619bと周囲の気密を保って連通している。
 これにより、第1バルーン622Bの内部には、第1支持部材619の送気ルーメン619aを通して、送気デバイス610からエアの送気と、送気デバイス610を用いたエアの吸気とが可能である。
On the second cylindrical portion 622c of the first balloon 622B, similarly to the first balloon 622, the distal end portion 619A of the first support member 619 and the three second support members 620 are fixed.
Similarly to the first balloon 622, the opening 622f of the first balloon 622B communicates with the opening 619b of the first support member 619 while keeping the surrounding airtight.
As a result, air can be supplied from the air supply device 610 and air can be inhaled using the air supply device 610 through the air supply lumen 619a of the first support member 619 inside the first balloon 622B. .
 第1バルーン622Bの材料は、第1バルーン622と同様の材料が用いられてもよい。 A material similar to that of the first balloon 622 may be used as the material of the first balloon 622B.
 第1バルーン622Bは、開口部622fから第1バルーン622Bの内部に送吸気されるエア量に応じて、拡縮する。例えば、第1バルーン622Bの容積に等しい体積の大気圧のエアが送気されると、第1バルーン622Bは、自然拡径状態になる。
 さらにエアが供給されると、第1バルーン622Bは、大気圧と釣り合う大きさに拡径する。例えば、図117に示すように、第2円筒部622cは、一点鎖線で示す円筒から、より大径の略円筒形に拡径する。
 これに対して、第1円筒面部622gは、径方向内側に膨張するので、先端面部622bの内径が縮小するように変形する。第1円筒面部622gは、ある程度、縮径すると、送気時の圧力バランスに応じて第1円筒面部622gの内側の開口が径方向につぶれる。これにより、固定時拡径状態では、第1バルーン622Bの軸方向の貫通口が閉止される。
 図117に実線で示す例では、第1バルーン622Bの第1円筒面部622gは、固定時拡径状態において図示上下方向につぶれて、線状に閉じている。ただし、第1円筒面部622gのつぶれ方は、図示のような横一線とは限定されず、例えば、縦一線、十字形、放射状などであってもよい。
The first balloon 622B expands and contracts according to the amount of air that is supplied to the inside of the first balloon 622B from the opening 622f. For example, when atmospheric pressure air having a volume equal to the volume of the first balloon 622B is supplied, the first balloon 622B is naturally expanded.
When air is further supplied, the diameter of the first balloon 622B expands to a size that balances with the atmospheric pressure. For example, as shown in FIG. 117, the second cylindrical portion 622c expands from the cylinder indicated by the dashed line to a substantially cylindrical shape with a larger diameter.
On the other hand, since the first cylindrical surface portion 622g expands radially inward, it deforms such that the inner diameter of the tip surface portion 622b is reduced. When the diameter of the first cylindrical surface portion 622g is reduced to some extent, the inner opening of the first cylindrical surface portion 622g is radially crushed according to the pressure balance during air supply. As a result, the through-hole in the axial direction of the first balloon 622B is closed in the diameter-expanded state when fixed.
In the example shown by the solid line in FIG. 117, the first cylindrical surface portion 622g of the first balloon 622B is flattened in the vertical direction in the drawing in the diameter expanded state at the time of fixation, and is linearly closed. However, the way the first cylindrical surface portion 622g is crushed is not limited to the horizontal line as shown in the drawing, and may be, for example, a vertical line, a cross, or a radial shape.
 空間S63からエアが吸気されると、図118に示すように、第1円筒面部622gの外周に、折り畳まれた第2円筒部622cが密着する。第2円筒部622cに固定された先端部619Aおよび各第2支持部材620は、第2円筒部622cとともに第1円筒面部622gの外周部に近接する。
 これにより、第1固定部617Bは、自然拡径状態における第1円筒面部622gの内径よりもわずかに大径の円筒形に縮径する。縮径状態の第1固定部617Bの中心部には、円筒形の第1円筒面部622gの内側に、軸方向に延びる貫通口が形成される。貫通口の内径は、自然拡径状態の第1円筒面部622gの内径に等しい。
When air is sucked from the space S63, as shown in FIG. 118, the folded second cylindrical portion 622c is in close contact with the outer circumference of the first cylindrical surface portion 622g. The tip portion 619A fixed to the second cylindrical portion 622c and each of the second support members 620 are close to the outer peripheral portion of the first cylindrical surface portion 622g together with the second cylindrical portion 622c.
As a result, the first fixing portion 617B is contracted into a cylindrical shape having a slightly larger diameter than the inner diameter of the first cylindrical surface portion 622g in the naturally expanded state. A through hole extending in the axial direction is formed inside the cylindrical first cylindrical surface portion 622g at the center portion of the first fixing portion 617B in a diameter-reduced state. The inner diameter of the through-hole is equal to the inner diameter of the first cylindrical surface portion 622g in the naturally expanded state.
 本変形例の先端固定部603Bは、第1固定部617に代えて第1固定部617Bを有する以外は、先端固定部603と同様なので、第7の実施形態と同様の作用を有する。
 特に本変形例の先端固定部603Bは、第1バルーン622Bおよび第2バルーン623の縮径状態では、第1円筒面部622gの内径よりわずかに大径の円筒形である。このため、縮径状態において、先端固定部603を有するオーバーチューブ601と同様にして、内視鏡11に沿ってあるいは内視鏡11とともに、処置対象の管腔に挿抜可能である。
 このとき、第1固定部617Bは、第1バルーン622Bによって形成されるので、管部材621に固定するための第1円筒部3aおよび第3円筒部3eが不要である。さらに、第1円筒部3aおよび第3円筒部3eを固定するための管部材621も不要である。
 このため、第1固定部617Bは、軸方向の厚さを第1固定部617よりも低減することができる。これにより、第2円筒部622cの幅が同じでも、第1固定部617よりも第1固定部617Bの方が軸方向の厚さが低減される。
 本変形例では、軸方向における第1固定部617Bの厚さを第1固定部617よりも薄くすることができるので、第1固定部617に比べると、内視鏡11の屈曲部および湾曲部の曲率半径が小さい場合に、より円滑に内視鏡11に沿って移動できる。
 さらに、管部材621が不要になるので、部品点数が削減される。これにより、先端固定部603Bの軽量化および部品コストの低減が可能になる。
The distal end fixing portion 603B of this modified example is the same as the distal end fixing portion 603 except that it has a first fixing portion 617B instead of the first fixing portion 617, and thus has the same effects as in the seventh embodiment.
In particular, when the first balloon 622B and the second balloon 623 are contracted, the distal end fixing portion 603B of this modified example has a cylindrical shape with a diameter slightly larger than the inner diameter of the first cylindrical surface portion 622g. Therefore, in the diameter-reduced state, it can be inserted into and removed from the lumen to be treated along or together with the endoscope 11 in the same manner as the overtube 601 having the distal end fixing portion 603 .
At this time, since the first fixing portion 617B is formed by the first balloon 622B, the first cylindrical portion 3a and the third cylindrical portion 3e for fixing to the pipe member 621 are unnecessary. Furthermore, the pipe member 621 for fixing the first cylindrical portion 3a and the third cylindrical portion 3e is also unnecessary.
Therefore, the first fixing portion 617B can have a smaller thickness in the axial direction than the first fixing portion 617 does. Thereby, even if the width of the second cylindrical portion 622c is the same, the axial thickness of the first fixing portion 617B is smaller than that of the first fixing portion 617. As shown in FIG.
In this modified example, the thickness of the first fixing portion 617B in the axial direction can be made thinner than that of the first fixing portion 617. Therefore, compared to the first fixing portion 617, the bending portion and the bending portion of the endoscope 11 are more flexible. can move along the endoscope 11 more smoothly when the radius of curvature of is small.
Furthermore, since the pipe member 621 becomes unnecessary, the number of parts can be reduced. This makes it possible to reduce the weight of the distal end fixing portion 603B and the cost of parts.
 本変形例では、先端固定部603Bを処置対象の管腔に固定する固定時拡径状態において、第1固定部617における中心部の貫通口が閉じられる。
 これにより、第1固定部617Bよりも遠位側の管腔の内部空間と、第1固定部617Bよりも近位側の管腔の内部空間との、気体および液体の流通が抑制される。この結果、第1固定部617Bと第2固定部618との間の術場が、より遠位側の管腔と隔離されるので、処置による影響が遠位側の管腔内に及びにくくなる。
 先端固定部603Bを有するオーバーチューブ601を管腔から抜去する場合には、空間S63からエア吸気することで、縮径状態が形成される。これにより、内視鏡11の先端部12よりもオーバーチューブ601を後端側に引いて、第1円筒面部622gの内部に内視鏡11を挿通させれば、挿入時と同様に、内視鏡11とともに、オーバーチューブ601が体外に抜去される。
In this modified example, the central through-hole of the first fixing portion 617 is closed in the expanded diameter state for fixing the distal end fixing portion 603B to the lumen to be treated.
This suppresses the flow of gas and liquid between the inner space of the lumen on the distal side of the first fixing portion 617B and the inner space of the lumen on the proximal side of the first fixing portion 617B. As a result, the surgical field between the first fixing part 617B and the second fixing part 618 is isolated from the lumen on the more distal side, so that the distal lumen is less likely to be affected by the treatment. .
When the overtube 601 having the distal end fixing portion 603B is removed from the lumen, air is sucked from the space S63 to form a diameter-reduced state. As a result, if the overtube 601 is pulled toward the rear end side of the distal end portion 12 of the endoscope 11, and the endoscope 11 is inserted through the first cylindrical surface portion 622g, the endoscope 11 can be viewed in the same manner as during insertion. The overtube 601 is removed from the body together with the mirror 11 .
 上述した第7の実施形態および各変形例は、種々の変形を加えて実施されてもよい。
 例えば、第2支持部材620の個数は、周方向における少なくとも1箇所において、隣り合う他の第2支持部材620または第1支持部材619の先端部619Aとの間隔が、処置に必要な大きさであれば、特に限定されない。例えば、第2支持部材620は、4個以上設けられてもよい。
 例えば、第7の実施形態および各変形例では、第2支持部材620は中実の棒からなる例で説明した。しかし、第2支持部材620の形状は、先端固定部603、603A、603Bに必要な可撓性を有していれば、特に限定されない。例えば、第2支持部材620は、両端が閉じられた中空管でもよい。例えば、第2支持部材620は、径方向に扁平な平板または径方向外側に凸の湾曲面を有する板で形成されてもよい。
 例えば、第7の実施形態および各変形例では、エアフローチューブ609が2系統の流路を含む例で説明したが、エアフローチューブ609は、2本の独立したチューブで形成されてもよい。この場合、コネクタ605cの第1接続管と、第2接続管と、には、各チューブの先端に設けられたコネクタがそれぞれ着脱可能に接続される。
The seventh embodiment and each modified example described above may be implemented with various modifications.
For example, the number of the second support members 620 is such that the interval between the adjacent other second support members 620 or the distal end portions 619A of the first support members 619 in at least one location in the circumferential direction is a size necessary for treatment. If there is, it is not particularly limited. For example, four or more second support members 620 may be provided.
For example, in the seventh embodiment and each modified example, the second support member 620 is a solid rod. However, the shape of the second support member 620 is not particularly limited as long as it has the necessary flexibility for the distal end fixing portions 603, 603A, 603B. For example, the second support member 620 may be a hollow tube closed at both ends. For example, the second support member 620 may be formed of a radially flat flat plate or a plate having a curved surface convex radially outward.
For example, in the seventh embodiment and each modified example, the airflow tube 609 includes two channels, but the airflow tube 609 may be formed of two independent tubes. In this case, the connectors provided at the ends of the respective tubes are detachably connected to the first connecting tube and the second connecting tube of the connector 605c.
 第7の実施形態および第21変形例では、処置部位Tsの近傍において、内視鏡11の先端部12を第1バルーン622と第2バルーン623との間に配置する際に、内視鏡11の位置を固定して、オーバーチューブ601を遠位側に押し込む例で説明した。しかし、内視鏡11とオーバーチューブ601の相対移動は、オーバーチューブ601を押し込むことには限定されない。例えば、オーバーチューブ601の位置を固定し、内視鏡11を近位側に引いてもよいし、オーバーチューブ601を押しながら内視鏡11を引いてもよい。 In the seventh embodiment and the twenty-first modification, when the distal end portion 12 of the endoscope 11 is arranged between the first balloon 622 and the second balloon 623 in the vicinity of the treatment site Ts, the endoscope 11 is fixed and the overtube 601 is pushed distally. However, the relative movement between the endoscope 11 and the overtube 601 is not limited to pushing the overtube 601 . For example, the position of the overtube 601 may be fixed and the endoscope 11 may be pulled proximally, or the endoscope 11 may be pulled while pushing the overtube 601 .
 第7の実施形態では、予め処置部位Tsの近傍まで内視鏡11を挿入しておく例で説明され、第21変形例では、内視鏡11とオーバーチューブ601とをともに処置部位Tsの近傍まで挿入する例で説明した。しかし、これらの動作は、内視鏡11およびオーバーチューブ601の長さに応じて適宜組み合わされてもよい。
 例えば、内視鏡11を処置部位Tsから近位側の離れた位置まで管腔に挿入し、この後、内視鏡11に沿って、オーバーチューブ601を先端部12の近くまで挿入してもよい。
 この後は、内視鏡11のみを処置部位Tsまで挿入した後にオーバーチューブ601を処置部位Tsの近くまで挿入してもよいし、内視鏡11とともにオーバーチューブ601を処置部位Tsの近くまで挿入してもよい。
In the seventh embodiment, an example in which the endoscope 11 is inserted to the vicinity of the treatment site Ts in advance will be described. An example of inserting up to is explained. However, these operations may be appropriately combined according to the lengths of the endoscope 11 and the overtube 601.
For example, the endoscope 11 may be inserted into the lumen to a position remote from the treatment site Ts on the proximal side, and then the overtube 601 may be inserted near the distal end portion 12 along the endoscope 11. good.
Thereafter, the overtube 601 may be inserted near the treatment site Ts after inserting only the endoscope 11 to the treatment site Ts, or the overtube 601 may be inserted near the treatment site Ts together with the endoscope 11. You may
 第23変形例における第1バルーン622Bは、第7の実施形態および第22変形例における第1バルーン622に代えて用いられてもよい。この場合、第1バルーン622Bの第1円筒面部622gは、管部材621の外周面621bに固定される。この場合、管部材621の軸方向における長さは、第1円筒面部622gの軸方向における長さと同様とされてもよい。これにより、第1固定部617の軸方向の長さを短縮できる。 The first balloon 622B in the 23rd modification may be used instead of the first balloon 622 in the 7th embodiment and the 22nd modification. In this case, the first cylindrical surface portion 622g of the first balloon 622B is fixed to the outer peripheral surface 621b of the tube member 621. As shown in FIG. In this case, the axial length of the pipe member 621 may be the same as the axial length of the first cylindrical surface portion 622g. Thereby, the axial length of the first fixing portion 617 can be shortened.
 第23変形例における第1バルーン622Bは、第7の実施形態、第22変形例、および第23変形例における第2バルーン623に代えて用いられてもよい。ただし、この場合、開口部602fは、第1円筒面部622gに形成される。このような第1バルーン622Bの第1円筒面部622gは、開口部602fと開口部2fとが互いに連通する状態で、メインチューブ602の外周面2dに固定される。 The first balloon 622B in the 23rd modification may be used instead of the second balloon 623 in the 7th embodiment, the 22nd modification, and the 23rd modification. However, in this case, the opening 602f is formed in the first cylindrical surface portion 622g. The first cylindrical surface portion 622g of such a first balloon 622B is fixed to the outer peripheral surface 2d of the main tube 602 with the opening 602f and the opening 2f communicating with each other.
 第22変形例では、第1支持部材619の先端部619A、および各第2支持部材620における周方向の間隔が、2種類の中心角β1、β2に対応する例で説明した。しかし、第1支持部材619の先端部619A、および各第2支持部材620における周方向の間隔は、非等分であれば、これには限定されない。 In the 22nd modification, an example has been described in which the circumferential intervals of the tip portion 619A of the first support member 619 and each of the second support members 620 correspond to two types of central angles β1 and β2. However, if the intervals in the circumferential direction between the distal end portion 619A of the first support member 619 and the second support members 620 are unequal, they are not limited to this.
 以上説明したように、第1バルーン622、622Bは、チューブ本体よりも先端側に配置され、径方向に拡縮可能な先端側バルーンの例である。
 第2バルーン623は、チューブ本体の先端部の外周面に設けられ、外周面の外方に拡張可能かつ外周面に向かって収縮可能な固定用バルーンの例である。
 第1支持部材619の先端部619Aと、第2支持部材620と、は、固定用バルーンおよび先端側バルーンの各外周部に配置され、固定用バルーンおよび先端側バルーンの間に延びて、管腔の内壁を支持可能な複数の支持部材の例である。
 第1支持部材619は、先端側バルーンの内部と連通する流路を有している。第1支持部材619は、先端側バルーンに気体を送る流路を形成する送気チューブを形成する支持部材の例である。
As described above, the first balloons 622 and 622B are examples of distal balloons that are arranged distally of the tube body and that can expand and contract in the radial direction.
The second balloon 623 is an example of a fixing balloon that is provided on the outer peripheral surface of the distal end of the tube body and that can expand outward from the outer peripheral surface and contract toward the outer peripheral surface.
A distal portion 619A of a first support member 619 and a second support member 620 are disposed about the respective peripheries of the anchoring balloon and the distal balloon and extend between the anchoring balloon and the distal balloon to provide a lumen. 4 is an example of a plurality of support members capable of supporting the inner wall of the .
The first support member 619 has a channel communicating with the interior of the distal balloon. The first support member 619 is an example of a support member that forms an air delivery tube that forms a flow path for delivering gas to the distal balloon.
[第8の実施形態]
 本発明の第8の実施形態に係る内視鏡用オーバーチューブを説明する。
 図119は、本発明の第8の実施形態に係る内視鏡用オーバーチューブの例を示す模式的な斜視図である。図120は、図119におけるF120-F120線に沿う断面図である。図122は、図120におけるF122-F122線に沿う断面図である。図123は、図121におけるF123-F123線に沿う断面図である。
[Eighth Embodiment]
An endoscope overtube according to an eighth embodiment of the present invention will be described.
FIG. 119 is a schematic perspective view showing an example of an endoscope overtube according to the eighth embodiment of the present invention. 120 is a cross-sectional view taken along line F120-F120 in FIG. 119. FIG. 122 is a cross-sectional view taken along line F122-F122 in FIG. 120. FIG. 123 is a cross-sectional view taken along line F123-F123 in FIG. 121. FIG.
 図119に示すオーバーチューブ701は、本実施形態に係る内視鏡用オーバーチューブの例である。
 オーバーチューブ701は、第7の実施形態に係るオーバーチューブ601の先端固定部603、第1支持部材619、グリップ部605、エアフローチューブ609、送気デバイス610に代えて、それぞれ、先端固定部703、グリップ部705、第1接続チューブ708D、第2接続チューブ708P、エアフローチューブ9、送気デバイス710を有する。オーバーチューブ701は、流路切替器711をさらに有する。
 ただし、図119~図121は、第6の実施形態と同様、先端固定部703の拡径状態の形状を示す。
 以下、第7の実施形態と異なる点を中心に説明する。
An overtube 701 shown in FIG. 119 is an example of an endoscope overtube according to this embodiment.
The overtube 701 has a distal end fixing portion 703, a first support member 619, a grip portion 605, an airflow tube 609, and an air supply device 610, respectively, of the overtube 601 according to the seventh embodiment. It has a grip portion 705 , a first connection tube 708 D, a second connection tube 708 P, an airflow tube 9 and an air supply device 710 . The overtube 701 further has a channel switch 711 .
However, FIGS. 119 to 121 show the shape of the distal end fixing portion 703 in the expanded state, as in the sixth embodiment.
In the following, the points different from the seventh embodiment will be mainly described.
 図120に示すように、本実施形態における先端固定部703は、第7の実施形態における第1支持部材619、第2支持部材620、第2固定部618に代えて、第1支持部材719、第2支持部材720、第2固定部718を有する。先端固定部703は、先端固定部603と同様の第1固定部617を有する。 As shown in FIG. 120, the distal end fixing portion 703 in this embodiment includes a first supporting member 719, a It has a second support member 720 and a second fixing portion 718 . The tip fixation part 703 has a first fixation part 617 similar to the tip fixation part 603 .
 第1支持部材719は、第1支持部材619における先端部619A、後端部619Bと同様の、先端部719A、後端部719B(送気チューブ、操作ロッド)を有する。
 ただし、第1支持部材719の先端部719Aは、第2バルーン623と接合されておらず、後端部619Bは、後述するグリップ部705の内部を通って後述するスライダ715(図122参照)に保持されている。
 第1支持部材719は、後述するように、第1固定部617を軸方向に進退させる操作ロッドとしても用いられるので、第1固定部617を遠位側に押し出す際に、管腔から抵抗を受けても、座屈変形しない程度の剛性を有する。
 図120に示すように、第1支持部材719の先端部719Aの先端領域719aは、第7の実施形態における第1支持部材619の先端部619Aと同様にして、第1バルーン622の第2円筒部622cに固定されている。ただし、第1支持部材619とは異なり、第1支持部材719は、第2バルーン623には固定されていない。
The first support member 719 has a front end portion 719A and a rear end portion 719B (air supply tube, operating rod) similar to the front end portion 619A and rear end portion 619B of the first support member 619 .
However, the distal end portion 719A of the first support member 719 is not joined to the second balloon 623, and the rearward end portion 619B passes through the inside of the grip portion 705 to be described later to reach the slider 715 (see FIG. 122) to be described later. held.
As will be described later, the first support member 719 is also used as an operating rod for advancing and retreating the first fixing part 617 in the axial direction. It has enough rigidity to prevent buckling deformation even if it is received.
As shown in FIG. 120, the distal end region 719a of the distal end portion 719A of the first support member 719 is the same as the distal end portion 619A of the first support member 619 in the seventh embodiment. It is fixed to the portion 622c. However, unlike first support member 619 , first support member 719 is not fixed to second balloon 623 .
 第2支持部材720は、後端に抜け止め部720bが形成されたことを除くと、第2支持部材620と同様である。抜け止め部720bは、第2支持部材720の外形よりも第2支持部材720の長手方向に直交する方向に突出している突起部である。
 第2支持部材720において、抜け止め部720bよりも先端側は、断面形状が均一な棒状である。図121に示す例では、抜け止め部720bよりも先端側の第2支持部材720は円柱形である。
 図120に示すように、第2支持部材720における先端部720aは、第7の実施形態における第2支持部材620の先端部と同様にして、第1バルーン622の第2円筒部622cに固定されている。
 第2支持部材720は、第2支持部材620と同様、第1支持部材719の先端部719Aとともに、拡径状態の第2円筒部622cを周方向に4等分する位置に3個設けられている。
The second support member 720 is the same as the second support member 620 except that a retaining portion 720b is formed at the rear end. The retainer portion 720b is a protrusion that protrudes from the outer shape of the second support member 720 in a direction orthogonal to the longitudinal direction of the second support member 720. As shown in FIG.
The second support member 720 has a rod shape with a uniform cross-sectional shape on the distal end side of the retaining portion 720b. In the example shown in FIG. 121, the second support member 720 on the distal end side of the retaining portion 720b has a cylindrical shape.
As shown in FIG. 120, the distal end portion 720a of the second support member 720 is fixed to the second cylindrical portion 622c of the first balloon 622 in the same manner as the distal end portion of the second support member 620 in the seventh embodiment. ing.
Like the second support member 620, the second support member 720 is provided in three positions along with the distal end portion 719A of the first support member 719, and equally divides the second cylindrical portion 622c in the enlarged diameter state into four in the circumferential direction. there is
 第2固定部718は、第7の実施形態と同様にして、メインチューブ602の先端部に固定された第2バルーン623と、ガイド管718aと、を有する。
 ガイド管718aは、中心部に長手方向に貫通する挿通孔718bを有する。
 挿通孔718bの内径は、抜け止め部720bが挿通不能、かつ第1支持部材719と、抜け止め部720bを除く第2支持部材720と、が挿通可能な大きさを有する。
 挿通孔718bを形成する内周面の形状は、第1支持部材719および抜け止め部720bを除く第2支持部材720を円滑に挿通できれば特に限定されない。
 図121に示す例では、挿通孔718bを形成する内周面は、第1支持部材719および抜け止め部720bを除く第2支持部材720の外周部が円筒面であることに対応して円筒面である。
The second fixed part 718 has a second balloon 623 fixed to the distal end of the main tube 602 and a guide tube 718a, as in the seventh embodiment.
The guide tube 718a has an insertion hole 718b extending longitudinally through the center.
The inner diameter of the insertion hole 718b has such a size that the retainer portion 720b cannot be inserted, and the first support member 719 and the second support member 720 excluding the retainer portion 720b can be inserted.
The shape of the inner peripheral surface forming the insertion hole 718b is not particularly limited as long as the second support member 720 excluding the first support member 719 and the retaining portion 720b can be smoothly inserted.
In the example shown in FIG. 121, the inner peripheral surface forming the insertion hole 718b is a cylindrical surface corresponding to the cylindrical surface of the outer peripheral portion of the second support member 720 excluding the first support member 719 and the retaining portion 720b. is.
 ガイド管718aは、第2バルーン623の第2円筒部623cを周方向に4等分する位置に4個設けられている。各ガイド管718aは、第2円筒部623cの外周部に、第7の実施形態における第1支持部材619と各第2支持部材620と同様にして固定されている。
 各ガイド管718aには、第1支持部材719の先端部719Aと、3本の第2支持部材720とが、それぞれ軸方向に移動可能に挿通されている。
 各第2支持部材720の抜け止め部720bは、ガイド管718aよりも後端側に突出しており、各第2支持部材720が先端側に抜けることを防止している。
Four guide tubes 718a are provided at positions that equally divide the second cylindrical portion 623c of the second balloon 623 into four in the circumferential direction. Each guide tube 718a is fixed to the outer peripheral portion of the second cylindrical portion 623c in the same manner as the first support member 619 and each second support member 620 in the seventh embodiment.
A distal end portion 719A of a first support member 719 and three second support members 720 are axially movably inserted through each guide tube 718a.
The retaining portion 720b of each second support member 720 protrudes further to the rear end side than the guide tube 718a, thereby preventing each second support member 720 from coming off to the front end side.
 このような構成により、先端固定部703における第1固定部617は、図120に実線で示す最大進出位置と、図120に二点鎖線で示す後退位置と、の間で軸方向に移動可能である。
 ここで、最大進出位置は、各抜け止め部720bが、各ガイド管718aの後端に係止しており、第2固定部718から先端側に最も離れる位置である。後退位置は、管部材621の後端621cとメインチューブ602の先端602gとが互いに当接する位置である。
 最進出位置における管部材621の後端621cとメインチューブ602の先端602gとの軸方向における距離は、第7の実施形態と同様の距離Lfである。
With such a configuration, the first fixing portion 617 of the distal end fixing portion 703 is axially movable between the maximum advanced position indicated by the solid line in FIG. 120 and the retracted position indicated by the two-dot chain line in FIG. be.
Here, the maximum advanced position is the position where each retainer portion 720b is engaged with the rear end of each guide tube 718a and is farthest from the second fixing portion 718 toward the tip side. The retracted position is a position where the rear end 621c of the pipe member 621 and the front end 602g of the main tube 602 are in contact with each other.
The distance in the axial direction between the rear end 621c of the pipe member 621 and the front end 602g of the main tube 602 at the most advanced position is the same distance Lf as in the seventh embodiment.
 図122に示すように、グリップ部705は、グリップ部605におけるコネクタ605cに代えて、先端側バルーン移動機構712を有する。
 先端側バルーン移動機構712は、第1支持部材619を軸方向に移動させることによって、第1バルーン622を含む第1固定部617全体を軸方向に移動させる。
 先端側バルーン移動機構712の構成は、第1支持部材619の後端部619Bにおける後端側の端部を保持して、第1支持部材619を軸方向に移動させることができれば特に限定されない。
 図122に示す例では、先端側バルーン移動機構712は、スライドガイド部713、スライダ715、およびスライド操作部714を有する。
As shown in FIG. 122, the grip section 705 has a distal balloon movement mechanism 712 instead of the connector 605c in the grip section 605. As shown in FIG.
The distal balloon movement mechanism 712 axially moves the entire first fixing portion 617 including the first balloon 622 by moving the first support member 619 in the axial direction.
The configuration of the distal balloon movement mechanism 712 is not particularly limited as long as it can hold the rear end portion of the rear end portion 619B of the first support member 619 and move the first support member 619 in the axial direction.
In the example shown in FIG. 122 , the distal balloon movement mechanism 712 has a slide guide section 713 , a slider 715 and a slide operation section 714 .
 スライドガイド部713は、ストッパー5bの後端側(図示右側)におけるグリップ部605の外周面から、後端側に向かうにつれて径方向外側に向かう斜め方向に延びる略角棒形である。
 スライドガイド部713の内部には、ストッパー5bの先端側(図示左側)の表面からスライドガイド部713の後端に向かって、挿通孔713aと、ガイド溝713bと、がこの順に並んで貫通している。
The slide guide portion 713 has a substantially rectangular bar shape extending obliquely outward in the radial direction toward the rear end side from the outer peripheral surface of the grip portion 605 on the rear end side (right side in the figure) of the stopper 5b.
Inside the slide guide portion 713, an insertion hole 713a and a guide groove 713b are aligned in this order and pass through from the front end side (left side in the drawing) surface of the stopper 5b toward the rear end of the slide guide portion 713. there is
 挿通孔713aは、メインチューブ602の後端に開口する開口部602hから延出する第1支持部材719をスライドガイド部713の延在方向に挿通する。図122に示す例では、延在方向に直交する挿通孔713aの断面形状は、第1支持部材719の外径よりも大径の円形である。
 挿通孔713aは、管状部5aの内部を通って、管状部5aに固定されたメインチューブ602の開口部602hと連通している。
Through the insertion hole 713 a , the first support member 719 extending from the opening 602 h opened at the rear end of the main tube 602 is inserted in the extending direction of the slide guide portion 713 . In the example shown in FIG. 122, the cross-sectional shape of the insertion hole 713a orthogonal to the extending direction is circular with a diameter larger than the outer diameter of the first support member 719. In the example shown in FIG.
The insertion hole 713a passes through the tubular portion 5a and communicates with the opening 602h of the main tube 602 fixed to the tubular portion 5a.
 ガイド溝713bは、図123に示すように、直方体形のスライダ715を延在方向に案内する略角形の溝形状を有する。スライドガイド部713の延在方向に直交する断面におけるガイド溝713bの断面積は、同断面における挿通孔713aの断面積よりも大きい。図122に示すように、挿通孔713aは、ガイド溝713bにおける先端側に形成された先端面713fの内側に開口している。
 先端面713fは、スライダ715が最も先端側に移動した時にスライダ715の先端を係止する。先端面713fは、スライダ715の最も先端側の移動位置を規定している。
 スライドガイド部713の後端部には、スライダ715を後端側で抜け止めする後端面713gが形成されている。後端面713gは、スライダ715の最も後端側の移動限界を規定している。ただし、第1支持部材719が接続する第1固定部617は、後退位置よりも後端側には後退できないので、後端面713gは省略されてもよい。この場合、ガイド溝713bは、スライドガイド部713の後端に開口する。
As shown in FIG. 123, the guide groove 713b has a substantially square groove shape that guides the rectangular parallelepiped slider 715 in the extending direction. The cross-sectional area of the guide groove 713b in the cross section perpendicular to the extending direction of the slide guide portion 713 is larger than the cross-sectional area of the insertion hole 713a in the same cross section. As shown in FIG. 122, the insertion hole 713a opens inside a tip surface 713f formed on the tip side of the guide groove 713b.
The tip surface 713f locks the tip of the slider 715 when the slider 715 moves to the tip end side. The tip surface 713f defines the movement position of the slider 715 on the most tip side.
A rear end surface 713g is formed at the rear end portion of the slide guide portion 713 to prevent the slider 715 from coming off at the rear end side. The rear end surface 713g defines the movement limit of the slider 715 on the rearmost end side. However, since the first fixing portion 617 to which the first support member 719 is connected cannot be retracted to the rear end side of the retracted position, the rear end face 713g may be omitted. In this case, the guide groove 713 b opens at the rear end of the slide guide portion 713 .
 図123に示すように、ガイド溝713bを囲むスライドガイド部713の一側壁である側壁713eには、スリット713cが形成されている。
 側壁713eは、術者が操作できれば、どの方向の側壁であってもよい。図122に示す例では、側壁713eは、スライドガイド部713の傾斜に沿って延び、径方向において管状部5aから遠い方の側壁である。
 スリット713cは、側壁713eの厚さ方向に貫通し、スライドガイド部713の延在方向に延びている。スリット713cの長さは、Lf以上である。
 図122に示すように、スリット713cの短手方向(図示左右方向)の開口幅は、同方向のガイド溝713bの溝幅よりも狭い。
 このような構成により、ガイド溝713bは、側壁713eにおいてスリット713cが開口するC字形の溝形状を有する。
As shown in FIG. 123, a slit 713c is formed in a side wall 713e, which is one side wall of the slide guide portion 713 surrounding the guide groove 713b.
The side wall 713e may be a side wall in any direction as long as it can be operated by the operator. In the example shown in FIG. 122, the side wall 713e extends along the slope of the slide guide portion 713 and is the side wall farther from the tubular portion 5a in the radial direction.
The slit 713c penetrates in the thickness direction of the side wall 713e and extends in the extending direction of the slide guide portion 713 . The length of the slit 713c is longer than or equal to Lf.
As shown in FIG. 122, the opening width of the slit 713c in the lateral direction (horizontal direction in the drawing) is narrower than the groove width of the guide groove 713b in the same direction.
With such a configuration, the guide groove 713b has a C-shaped groove shape with the slit 713c opening at the side wall 713e.
 図123に示すように、スライドガイド部713においてガイド溝713bの隣には、スライドガイド部713の延在方向に延びている。管路713dは、スライドガイド部713を貫通している。
 図示は省略するが、管路713dは、管状部5aの内部を通って、管状部5aに固定されたメインチューブ602の第2ルーメン2eと連通している。
 管路713dは、スライドガイド部713の後端端まで延びている。スライドガイド部713の後端部には、第1の実施形態と同様の第1ルアーコネクタ5cが設けられている。本実施形態における第1ルアーコネクタ5cは、管路713dの内部と連通している。
As shown in FIG. 123, the slide guide portion 713 extends in the extension direction of the slide guide portion 713 next to the guide groove 713b. The pipeline 713 d penetrates through the slide guide portion 713 .
Although not shown, the conduit 713d passes through the tubular portion 5a and communicates with the second lumen 2e of the main tube 602 fixed to the tubular portion 5a.
The conduit 713 d extends to the rear end of the slide guide portion 713 . A rear end portion of the slide guide portion 713 is provided with a first luer connector 5c similar to that of the first embodiment. The first luer connector 5c in this embodiment communicates with the interior of the conduit 713d.
 スライドガイド部713は、管状部5aおよびストッパー5bと同様の材料によって形成されてもよい。例えば、スライドガイド部713、管状部5a、およびストッパー5bは、樹脂の成形品によって形成されてもよい。 The slide guide part 713 may be made of the same material as the tubular part 5a and the stopper 5b. For example, the slide guide portion 713, the tubular portion 5a, and the stopper 5b may be formed of resin moldings.
 図122および図123に示すように、スライダ715は、スライドガイド部713の延在方向においてスライド移動可能にガイド溝713bと嵌合する。図示の例では、スライダ715の外形は、直方体である。
 図123に示すように、スライダ715の内部には、第1支持部材719の外径よりも大径の保持孔715bがスライドガイド部713の延在方向に貫通している。保持孔715bには、第1支持部材719の後端部719Bが挿通されている。後端部719Bは、保持孔715bの内部でスライダ715と固定されている。後端部719Bの固定方法は特に限定されない。図123に示す例では、後端部719Bは、接着剤716が介在して保持孔715bに固定されている。
As shown in FIGS. 122 and 123, the slider 715 is fitted into the guide groove 713b so as to be slidable in the extending direction of the slide guide portion 713. As shown in FIGS. In the illustrated example, the outer shape of the slider 715 is a cuboid.
As shown in FIG. 123 , inside the slider 715 , a holding hole 715 b having a diameter larger than the outer diameter of the first support member 719 penetrates in the extending direction of the slide guide portion 713 . A rear end portion 719B of the first support member 719 is inserted through the holding hole 715b. The rear end portion 719B is fixed to the slider 715 inside the holding hole 715b. A fixing method of the rear end portion 719B is not particularly limited. In the example shown in FIG. 123, the rear end portion 719B is fixed to the holding hole 715b with an adhesive 716 interposed.
 スリット713cに臨むスライダ715の側面には、外側から見てスリット713cの内側に重なる部位に、雌ネジ部715cが形成されている。 On the side surface of the slider 715 facing the slit 713c, a female threaded portion 715c is formed at a portion overlapping the inside of the slit 713c when viewed from the outside.
 スライダ715の材料は、ガイド溝713bに沿ってスライドできれば特に限定されない。例えば、スライダ715の材料は金属でもよいし、樹脂でもよい。 The material of the slider 715 is not particularly limited as long as it can slide along the guide groove 713b. For example, the material of the slider 715 may be metal or resin.
 スライド操作部714は、つまみ部714a、固定部714b、および雄ネジ部714cを有する。
 つまみ部714aは、術者が把持して回転操作できる大きさを有する。例えば、つまみ部714aは円板である。
 固定部714bは、スリット713cを跨いでスリット713cの縁部に係止する段部である。例えば、固定部714bは、つまみ部714aと同軸に設けられた円柱形である。固定部714bの外径は、スリット713cの短手方向の幅よりも大きい。
 雄ネジ部714cは、スライダ715の雌ネジ部715cと螺合する。雄ネジ部714cは、つまみ部714aと同軸となるように、固定部714bから突出している。雄ネジ部714cの長さは、側壁713eの厚さよりも長い。
The slide operation portion 714 has a knob portion 714a, a fixing portion 714b, and a male screw portion 714c.
The knob portion 714a has a size that can be gripped and rotated by the operator. For example, the knob portion 714a is a disc.
The fixing portion 714b is a stepped portion that straddles the slit 713c and engages with the edge portion of the slit 713c. For example, the fixing portion 714b is cylindrical and provided coaxially with the knob portion 714a. The outer diameter of the fixed portion 714b is larger than the width of the slit 713c in the lateral direction.
The male threaded portion 714 c is screwed with the female threaded portion 715 c of the slider 715 . The male screw portion 714c protrudes from the fixed portion 714b so as to be coaxial with the knob portion 714a. The length of the male screw portion 714c is longer than the thickness of the side wall 713e.
 スライド操作部714は、スリット713cを通して雄ネジ部714cを雌ネジ部715cに螺合させることによってスライダ715と連結される。 The slide operation portion 714 is connected to the slider 715 by threading the male screw portion 714c into the female screw portion 715c through the slit 713c.
 先端側バルーン移動機構712の動作を説明する。
 術者が、雄ネジ部714cがねじ込まれる方向にスライド操作部714を回転すると、固定部714bが側壁713eの表面に当接し、スリット713cの縁部における側壁713eが、スライダ715と固定部714bとによって挟持される。これにより、スライダ715およびスライド操作部714は、スライドガイド部713に固定される。
 術者が、雄ネジ部714cがねじ込み方向と反対方向にスライド操作部714を回転すると、固定部714bとスライダ715とによる側壁713eの挟持が解除される。これにより、術者は、つまみ部714aをスリット713cに沿って移動することによって、スライダ715をスライドさせることができる。
 このとき、後端部719Bの後端側でスライダ715に固定された第1支持部材719も、同方向に移動する。第1支持部材719の先端部719Aに固定された第1固定部617は、第1バルーン622が固定時拡径状態まで拡径して管腔に固定されていない場合には、同様に移動できる。
 このように、本実施形態によれば、スライド操作部714を操作することによって、メインチューブ602を移動することなく、管腔内における第1固定部617の位置を軸方向に移動することができる。移動後の位置は、術者がスライド操作部714をねじ込むことによって、スライド操作部714を緩めるまで、固定することができる。
 さらに、スライド操作部714の移動位置を、変更することによって、第1固定部617とメインチューブ602の先端との距離も変更できる。
 第1固定部617の移動操作において、第1支持部材719は、操作力を第1固定部617に伝達する操作ロッドとして機能している。
The operation of the distal balloon movement mechanism 712 will be described.
When the operator rotates the slide operation portion 714 in the direction in which the male threaded portion 714c is screwed, the fixed portion 714b contacts the surface of the side wall 713e, and the side wall 713e at the edge of the slit 713c moves between the slider 715 and the fixed portion 714b. sandwiched by Thereby, the slider 715 and the slide operation portion 714 are fixed to the slide guide portion 713 .
When the operator rotates the slide operation portion 714 in the direction opposite to the screwing direction of the male screw portion 714c, the holding of the side wall 713e between the fixing portion 714b and the slider 715 is released. Accordingly, the operator can slide the slider 715 by moving the knob portion 714a along the slit 713c.
At this time, the first support member 719 fixed to the slider 715 on the rear end side of the rear end portion 719B also moves in the same direction. The first fixing portion 617 fixed to the distal end portion 719A of the first support member 719 can be similarly moved when the first balloon 622 is expanded to the fixed expanded state and is not fixed to the lumen. .
Thus, according to this embodiment, by operating the slide operation part 714, the position of the first fixing part 617 in the lumen can be moved in the axial direction without moving the main tube 602. . The position after movement can be fixed until the operator loosens the slide operation part 714 by screwing the slide operation part 714 .
Furthermore, by changing the movement position of the slide operation part 714, the distance between the first fixing part 617 and the tip of the main tube 602 can also be changed.
In the moving operation of the first fixing portion 617 , the first support member 719 functions as an operating rod that transmits the operating force to the first fixing portion 617 .
 図119に示すように、第1接続チューブ708Dは、第1支持部材719の後端と着脱可能に接続するコネクタからなる第1端部708aと、後端側の第2端部708bとの間に、エアを流通する流路を形成する。
 第2端部708bには、後述する流路切替器711に着脱可能に接続する適宜のコネクタが設けられている。第1接続チューブ708Dは、第2端部708bに設けられたコネクタによって、流路切替器711と着脱可能に接続されている。
As shown in FIG. 119, the first connection tube 708D is located between a first end 708a, which is a connector detachably connected to the rear end of the first support member 719, and a second end 708b on the rear end side. Then, a flow path is formed for circulating air.
The second end portion 708b is provided with an appropriate connector that is detachably connected to a channel switching device 711, which will be described later. The first connection tube 708D is detachably connected to the channel switch 711 by a connector provided at the second end 708b.
 第2接続チューブ708Pは、先端側バルーン移動機構712における第1ルアーコネクタ5cと着脱可能に接続するコネクタからなる第1端部708cと、後端側の第2端部708dとの間に、エアを流通する流路を形成する。
 第1端部708cには、第1ルアーコネクタ5cに着脱するルアーコネクタが設けられている。第2端部708dには、流路切替器711に着脱可能に接続する適宜のコネクタが設けられている。第2接続チューブ708Pは第2端部708dにおいて、流路切替器711に着脱可能に接続されている。
The second connection tube 708P is provided between a first end 708c, which is a connector detachably connected to the first luer connector 5c in the distal balloon moving mechanism 712, and a second end 708d on the rear end side. to form a flow path for circulating.
The first end 708c is provided with a luer connector that can be attached to and detached from the first luer connector 5c. The second end portion 708d is provided with an appropriate connector that is detachably connected to the channel switching device 711 . The second connection tube 708P is detachably connected to the channel switching device 711 at the second end 708d.
 流路切替器711は、第1の実施形態と同様のエアフローチューブ9によって形成される流路を、第1接続チューブ708Dによって形成される流路と、第2接続チューブ708Pによって形成される流路と、に選択的に切り替える。
 流路切替器711は、流路切替弁を内蔵しており、流路切替弁を操作する切替操作部711aを有する。切替操作部711aは術者による切替操作が可能である。
The flow path switch 711 divides the flow path formed by the airflow tube 9 similar to that of the first embodiment into the flow path formed by the first connection tube 708D and the flow path formed by the second connection tube 708P. and selectively switch to .
The channel switching device 711 incorporates a channel switching valve, and has a switching operation part 711a for operating the channel switching valve. The switching operation unit 711a can be switched by the operator.
 送気デバイス710は、送気デバイス710のエアフローチューブ9が、流路切替器711に接続されていることを除くと、第1の実施形態における送気デバイス10と同様である。
 送気デバイス710は、第1の実施形態と同様、電動ポンプでもよいし、手動ポンプでもよい。手動ポンプの場合、送気デバイス710として、例えば、上述した各実施形態および各変形例において手動送気機構211を含むいずれの送気デバイスが用いられてもよい。
The air supply device 710 is the same as the air supply device 10 in the first embodiment except that the airflow tube 9 of the air supply device 710 is connected to the flow path switch 711 .
The air supply device 710 may be an electric pump or a manual pump as in the first embodiment. In the case of a manual pump, any air supply device including the manual air supply mechanism 211 in each of the embodiments and modifications described above may be used as the air supply device 710 .
 次に、オーバーチューブ701の使用方法を、第7の実施形態と異なる点を中心として説明する。処置としては、第7の実施形態と同様、大腸Cにおける内視鏡的全層切除を行う場合の例で説明する。
 図124~図128は、本発明の第8の実施形態に係る内視鏡用オーバーチューブの使用方法の例を示す断面図である。
Next, a method of using the overtube 701 will be described, focusing on points different from the seventh embodiment. As a treatment, an example of performing endoscopic full-thickness resection of the large intestine C will be described as in the seventh embodiment.
124 to 128 are cross-sectional views showing an example of how to use the endoscope overtube according to the eighth embodiment of the present invention.
 まず、オーバーチューブ701を準備する。
 図124に示すように、準備されるオーバーチューブ701の先端固定部703は、オーバーチューブ601における先端固定部603と同様、縮径状態とされる。さらに、本実施形態では、第1支持部材719が後端側に引かれていることによって、第1固定部617が最大進出位置よりも後端側に後退している。軸方向における後端621cと先端602gとの距離は、Liである。距離Liは、0以上Lf未満である。Liの大きさは、内視鏡11の屈曲部または湾曲部における挿通抵抗を考慮して決められる。
 例えば、Liが0の場合、第1固定部617は後退位置にある。この場合、管部材621とメインチューブ602の先端部とは、互いに当接して一体的な筒体を構成する。このため、管部材621およびメインチューブ602の剛性に応じて、それぞれが変形することによって、内視鏡11の屈曲部または湾曲部を通過することができる。挿通抵抗は、管部材621およびメインチューブ602の剛性が低いほど低減される。
 これに対して、Liが0よりも大きいと、後端621cと先端602gとの間の隙間の範囲で、管部材621が回転することができる。これにより、挿通抵抗が低減される。
 ただし、LiがLfに近づくにつれて、第1固定部617と第2固定部718との間の第1支持部材719と第2支持部材720とが曲がりやすくなる。第1支持部材719と第2支持部材720と内視鏡11の側面に沿って曲がる場合には、特に問題は生じない。しかし、内視鏡11の曲率半径が小さい場合、または第1固定部617が管腔の内壁に引っ掛かった場合に、第1支持部材719または第2支持部材720に作用する外力が増大して、第1支持部材719または第2支持部材720が折れ曲がる可能性がある。
 Liが短いほど、第1支持部材719および第2支持部材720は折れ曲がりにくくなる。
First, the overtube 701 is prepared.
As shown in FIG. 124, the distal end fixing portion 703 of the overtube 701 to be prepared is reduced in diameter like the distal end fixing portion 603 of the overtube 601 . Furthermore, in the present embodiment, the first support member 719 is pulled rearward, so that the first fixing portion 617 is retreated rearward from the maximum advanced position. The distance between the trailing end 621c and the leading end 602g in the axial direction is Li. The distance Li is 0 or more and less than Lf. The size of Li is determined in consideration of the insertion resistance at the bent or curved portion of the endoscope 11 .
For example, when Li is 0, the first fixed part 617 is in the retracted position. In this case, the pipe member 621 and the tip of the main tube 602 are in contact with each other to form an integral cylinder. Therefore, depending on the rigidity of the tube member 621 and the main tube 602 , they can pass through the bend or curve of the endoscope 11 by deforming each. The lower the rigidity of the pipe member 621 and the main tube 602, the lower the insertion resistance.
On the other hand, when Li is greater than 0, the tubular member 621 can rotate within the range of the gap between the rear end 621c and the front end 602g. This reduces insertion resistance.
However, as Li approaches Lf, the first support member 719 and the second support member 720 between the first fixing portion 617 and the second fixing portion 718 tend to bend. If the first support member 719 and the second support member 720 bend along the side surface of the endoscope 11, no particular problem occurs. However, when the radius of curvature of the endoscope 11 is small, or when the first fixing portion 617 is caught on the inner wall of the lumen, the external force acting on the first support member 719 or the second support member 720 increases, The first support member 719 or the second support member 720 may bend.
The shorter Li is, the less likely the first support member 719 and the second support member 720 are to bend.
 この後、術者は、二点鎖線で示すように、第7の実施形態と同様にして、内視鏡11の先端をオーバーチューブ701の気密弁ユニット6の内側に挿入し、内視鏡11の挿入部を管部材621から延出させることができる。
 なお、本実施形態では、気密弁ユニット6を設けないこともできる。
Thereafter, the operator inserts the distal end of the endoscope 11 inside the airtight valve unit 6 of the overtube 701 as in the seventh embodiment, as indicated by the two-dot chain line. can extend from the tubular member 621 .
In addition, in this embodiment, the airtight valve unit 6 may not be provided.
 この後、術者は、オーバーチューブ701を患者の体外に配置し、オーバーチューブ701から突出した内視鏡11の挿入部を、第7の実施形態と同様にして、肛門から大腸C内に挿入し、内視鏡11の先端部12を処置部位Tsが見える位置まで移動する(図125参照)。 Thereafter, the operator places the overtube 701 outside the patient's body, and inserts the insertion portion of the endoscope 11 projecting from the overtube 701 into the large intestine C from the anus in the same manner as in the seventh embodiment. Then, the distal end portion 12 of the endoscope 11 is moved to a position where the treatment site Ts can be seen (see FIG. 125).
 この後、術者は、図125に示すように、内視鏡11の挿入部に沿って、第7の実施形態と同様にして、オーバーチューブ701を肛門から大腸C内に挿入する。
 図126に示すように、術者は、先端固定部703が内視鏡11の先端部12の後端の近傍に位置するまで、オーバーチューブ701を挿入する。
 この後、術者は、先端側バルーン移動機構712を操作して、第1支持部材719を遠位側に進出させる。これにより、図127に示すように、第1固定部617が先端部12よりも遠位側に押し出される。
Thereafter, as shown in FIG. 125, the operator inserts the overtube 701 into the large intestine C from the anus along the insertion portion of the endoscope 11 in the same manner as in the seventh embodiment.
As shown in FIG. 126 , the operator inserts the overtube 701 until the distal end fixing portion 703 is positioned near the rear end of the distal end portion 12 of the endoscope 11 .
After that, the operator operates the tip side balloon movement mechanism 712 to advance the first support member 719 to the distal side. As a result, as shown in FIG. 127, the first fixing portion 617 is pushed further to the distal side than the distal end portion 12 .
 第1固定部617を押し出す操作は、術者が、螺合を緩めたスライド操作部714をスライドガイド部713の延在方向にスライドさせるだけで行われる。術者は、スライド操作の間、オーバーチューブ701のグリップ部705およびメインチューブ602および内視鏡11の両方とも体外で動かす必要がない。
 例えば、第7の実施形態のように、オーバーチューブ601を押し込んで、第1固定部617を遠位側に移動する場合、オーバーチューブ601の長手方向において腸壁Cwと接する各部位で、オーバーチューブ601が腸壁Cwと摺動する。このため、術者は、オーバーチューブ601と内視鏡11との間の摺動抵抗と、オーバーチューブ601と腸壁Cwとの間の摺動摩擦と、に抗して操作する必要がある。特にオーバーチューブ601と腸壁Cwとが摺動すると、患者の負荷にもなる可能性もある。
 しかし、本実施形態では、メインチューブ602が押し込まれることなく、縮径状態の第1固定部617が押し出される。このため、術者が受ける抵抗は、小径の第1支持部材719と挿通ルーメン602eとの摺動抵抗なので、術者の受ける抵抗がより少なくなる。これにより、術者は、第1固定部617を固定する位置に導く操作をより容易に行える。さらに、第1支持部材719は、遠位側に押し出される際に腸壁Cwに接しないので、患者への負荷が生じない。
The operation of pushing out the first fixing portion 617 is performed by the operator only by sliding the unscrewed slide operation portion 714 in the extending direction of the slide guide portion 713 . The operator does not need to move both the grip portion 705 of the overtube 701, the main tube 602 and the endoscope 11 outside the body during the sliding operation.
For example, when the overtube 601 is pushed in to move the first fixing portion 617 distally as in the seventh embodiment, the overtube 601 slides on the intestinal wall Cw. Therefore, the operator needs to operate against the sliding resistance between the overtube 601 and the endoscope 11 and the sliding friction between the overtube 601 and the intestinal wall Cw. In particular, sliding between the overtube 601 and the intestinal wall Cw may be a burden on the patient.
However, in this embodiment, the first fixing portion 617 in a reduced diameter state is pushed out without the main tube 602 being pushed in. As shown in FIG. For this reason, the resistance received by the operator is the sliding resistance between the first support member 719 having a small diameter and the insertion lumen 602e, so the resistance received by the operator is reduced. This makes it easier for the operator to guide the first fixing portion 617 to the fixing position. Furthermore, since the first support member 719 does not come into contact with the intestinal wall Cw when pushed distally, no load is applied to the patient.
 術者は、第1固定部617を最大進出位置まで移動させる。これにより、先端部12は、大腸Cの軸方向において、第1固定部617と第2固定部718との間に挟まれる。 The operator moves the first fixing part 617 to the maximum advanced position. As a result, the distal end portion 12 is sandwiched between the first fixing portion 617 and the second fixing portion 718 in the axial direction of the large intestine C. As shown in FIG.
 この後、術者は、第7の実施形態と同様にして、第1支持部材719および第2支持部材720のいずれかが処置部位Tsを跨ぐ位置にあるか確認する。術者は、第7の実施形態と同様にして、必要に応じて、体外におけるオーバーチューブ701を周方向に回転し、第1支持部材719の先端部719A、および第2支持部材720の位置を周方向にずらす。
 必要に応じて、先端固定部703の周方向の位置調整が終了した後、術者は、送気デバイス710を操作して、第7の実施形態と同様に、第1バルーン622と第2バルーン623とを固定時拡径状態に膨張させる。
 ただし、本実施形態では、送気デバイス710が1系統の流路を有するので、第1バルーン622および第2バルーン623の一方を、固定時拡径状態とし、その後、第1バルーン622および第2バルーン623の他方を固定時拡径状態とする。
 オーバーチューブ701は、送気デバイス710に代えて、第1接続チューブ708Dおよび第2接続チューブ708Pの両方に独立にエアを送気できる送気デバイスを備えてもよい。この場合には、第1バルーン622と第2バルーン623とを同時に固定時拡径状態とすることができる。
After that, the operator confirms whether either the first support member 719 or the second support member 720 is positioned to straddle the treatment site Ts in the same manner as in the seventh embodiment. As in the seventh embodiment, the operator rotates the overtube 701 outside the body in the circumferential direction as necessary to adjust the positions of the distal end portion 719A of the first support member 719 and the second support member 720. Shift in the circumferential direction.
If necessary, after the circumferential position adjustment of the distal end fixing portion 703 is completed, the operator operates the air supply device 710 to separate the first balloon 622 and the second balloon 622 in the same manner as in the seventh embodiment. 623 is inflated to the enlarged diameter state when fixed.
However, in the present embodiment, since the air supply device 710 has a single channel, one of the first balloon 622 and the second balloon 623 is set in a diameter expanded state when fixed, and then the first balloon 622 and the second balloon 623 are expanded. The other of the balloons 623 is set in an enlarged diameter state when fixed.
The overtube 701 may be provided with an air supply device capable of independently supplying air to both the first connection tube 708D and the second connection tube 708P instead of the air supply device 710 . In this case, the first balloon 622 and the second balloon 623 can be brought into the enlarged diameter state at the time of fixation at the same time.
 図128に示すように、第1バルーン622と第2バルーン623とがそれぞれ固定時拡径状態とされると、先端固定部703が腸壁Cwの内側に固定される。第1支持部材719と各第2支持部材720とは、腸壁Cwの内面に押圧され、腸壁Cwを内側から支持する。
 これにより、第1バルーン622と第2バルーン623との間には、第7の実施形態と同様に、内視鏡11が移動可能な空間Sfが形成される。
As shown in FIG. 128, when the first balloon 622 and the second balloon 623 are respectively expanded in diameter when fixed, the distal end fixing part 703 is fixed inside the intestinal wall Cw. The first support member 719 and each second support member 720 are pressed against the inner surface of the intestinal wall Cw and support the intestinal wall Cw from the inside.
As a result, a space Sf in which the endoscope 11 can move is formed between the first balloon 622 and the second balloon 623, as in the seventh embodiment.
 この後、術者は、空間Sfの内部で、第7の実施形態と同様にして、内視鏡的全層切除の処置を行うことができる。その際、腸壁Cwに貫通孔が形成されても、腸壁Cwが第1バルーン622と第2バルーン623との間に張架された第1支持部材719の先端部719Aと、各第2支持部材720と、によって内側から支持されているので、第7の実施形態と同様に、術場が確保される。 After this, the operator can perform endoscopic full-thickness resection within the space Sf in the same manner as in the seventh embodiment. At that time, even if a through hole is formed in the intestinal wall Cw, the intestinal wall Cw is stretched between the first balloon 622 and the second balloon 623, and the distal end portion 719A of the first support member 719 and the second balloons 623 and 719A. Since it is supported from the inside by the support member 720, the surgical field is secured as in the seventh embodiment.
 内視鏡的全層切除において必要なすべての処置が終了したら、術者は、送気デバイス710および流路切替器711を操作して、第1バルーン622および第2バルーン623のエアを吸い出す。これにより、第1バルーン622および第2バルーン623が縮径状態とされる。
 この後、術者は、内視鏡11とオーバーチューブ701とを、肛門から引き抜く。
 以上で、オーバーチューブ701を用いた内視鏡的全層切除が終了する。
After completing all necessary procedures for endoscopic full-thickness resection, the operator operates the air supply device 710 and the flow path switch 711 to suck out the air in the first balloon 622 and the second balloon 623 . As a result, the diameters of the first balloon 622 and the second balloon 623 are reduced.
After that, the operator pulls out the endoscope 11 and the overtube 701 from the anus.
Endoscopic full-thickness resection using the overtube 701 is thus completed.
 以上、オーバーチューブ701の使用方法を、内視鏡的全層切除の例で説明した。しかし、空間Sfを術場として実施可能な内視鏡的処置であれば、オーバーチューブ701は、第7の実施形態のオーバーチューブ601と同様、内視鏡的全層切除以外の処置に用いられてもよい。 The method of using the overtube 701 has been described above with an example of endoscopic full-thickness resection. However, if it is an endoscopic treatment that can be performed using the space Sf as an operating field, the overtube 701 is used for treatments other than endoscopic full-thickness resection, like the overtube 601 of the seventh embodiment. may
 本実施形態に係るオーバーチューブ701は、主に先端固定部603に代えて先端固定部703を有することを除くと、オーバーチューブ601と同様に構成されているので、第7の実施形態と同様な作用を有する。このため、本実施形態によれば、第7の実施形態と同様、患者の負荷を低減するとともに内視鏡を円滑に操作することができる内視鏡用オーバーチューブを提供することができる。
 特に本実施形態では、第1固定部617と第2固定部618との距離を術者が操作して変更することができる。これにより、先端固定部703がコンパクトな状態で、オーバーチューブ701を管腔の挿入できるので、患者の負荷をさらに低減できる。
 さらに術者は、患者に負荷を与えることなく、容易に第1固定部617を固定位置に導くことができる。
The overtube 701 according to the present embodiment is configured in the same manner as the overtube 601 except that it has a distal end fixing portion 703 instead of the distal end fixing portion 603, so it is similar to the seventh embodiment. have an effect. Therefore, according to the present embodiment, as in the seventh embodiment, it is possible to provide an endoscope overtube that reduces the burden on a patient and allows smooth operation of the endoscope.
Particularly in this embodiment, the distance between the first fixing part 617 and the second fixing part 618 can be changed by the operator's operation. As a result, the overtube 701 can be inserted into the lumen while the distal end fixing portion 703 is compact, thereby further reducing the burden on the patient.
Furthermore, the operator can easily guide the first fixing part 617 to the fixing position without imposing a load on the patient.
 上述した第8の実施形態は、種々の変形を加えて実施されてもよい。
 例えば、ガイド管718aは、第2バルーン623に別部材を固定する態様には限定されない。例えば、第2バルーン623の成形時に、ガイド管718aと同様な管腔が第2円筒部623cの外周部に形成されてもよい。
 例えば、ガイド管718aは軸方向に長い管部材には限定されず、軸方向の長さが短いリングで形成されてもよい。この場合、リングは、軸方向に間を空けて複数個設けられてもよい。
The eighth embodiment described above may be implemented with various modifications.
For example, the guide tube 718 a is not limited to a mode in which a separate member is fixed to the second balloon 623 . For example, when molding the second balloon 623, a lumen similar to the guide tube 718a may be formed on the outer circumference of the second cylindrical portion 623c.
For example, the guide tube 718a is not limited to an axially long tubular member, and may be formed of a ring having a short axial length. In this case, a plurality of rings may be provided spaced apart in the axial direction.
 上述した第8の実施形態では、第1支持部材719の後端部719Bが、第1固定部617を進退させる操作ロッドを兼ねる例で説明した。しかし、操作ロッドは、第2支持部材720を後端まで延長した構成でもよい。この場合、メインチューブ602には、第1支持部材719を挿通する挿通ルーメン602eの他に、延長した第2支持部材を挿通する挿通ルーメンが設けられる。
 操作ロッドの本数は、1本には限定されない。操作ロッドの本数が多いほど、第1固定部617の移動が容易になる。
In the eighth embodiment described above, the example in which the rear end portion 719B of the first support member 719 also serves as the operation rod for advancing and retracting the first fixing portion 617 has been described. However, the operating rod may have a configuration in which the second support member 720 is extended to the rear end. In this case, the main tube 602 is provided with an insertion lumen 602e through which the first support member 719 is inserted, and an insertion lumen through which the extended second support member is inserted.
The number of operating rods is not limited to one. The greater the number of operating rods, the easier the movement of the first fixing portion 617 becomes.
 上述した第8の実施形態では、メインチューブ602の挿通ルーメン602eに操作ロッドを挿通する例で説明した。しかし、操作ロッドは、オーバーチューブ701の外周部に固定されたシースに挿通されてもよい。この場合、挿通ルーメン602eは削除することができる。 In the eighth embodiment described above, an example in which the operating rod is inserted through the insertion lumen 602e of the main tube 602 has been described. However, the operating rod may pass through a sheath fixed to the outer circumference of the overtube 701 . In this case, the insertion lumen 602e can be omitted.
 以上説明したように、第1支持部材719の先端部719Aと、第2支持部材720と、は、固定用バルーンおよび先端側バルーンの各外周部に配置され、固定用バルーンおよび先端側バルーンの間に延びて、管腔の内壁を支持可能な複数の支持部材の例である。
 第1支持部材719は、先端側バルーンの内部と連通する流路を有している。第1支持部材719は、先端側バルーンに気体を送る流路を形成する送気チューブを形成する支持部材の例である。
As described above, the distal end portion 719A of the first support member 719 and the second support member 720 are arranged on the respective outer peripheries of the fixation balloon and the distal balloon, and between the fixation balloon and the distal balloon. Figure 10 is an example of a plurality of support members that can extend into and support the inner wall of a lumen;
The first support member 719 has a channel communicating with the interior of the distal balloon. The first support member 719 is an example of a support member that forms an air delivery tube that forms a flow path for delivering gas to the distal balloon.
 第1支持部材719の後端部719Bは、チューブ本体に沿って、チューブ本体の後端部に延びており、複数の支持部材の1つと連動可能に設けられ、複数の支持部材の1つの先端部を、チューブ本体の軸方向に駆動する操作ロッドの例である。本実施形態における操作ロッドは、支持部材の後端部によって形成されていることにより、支持部材と連動している例である。
 先端側バルーン移動機構712は、チューブ本体の後端部よりも後端側に配置され、操作ロッドを、軸方向に沿って移動させる先端側バルーン移動機構の例である。
A rear end portion 719B of the first support member 719 extends along the tube main body to the rear end portion of the tube main body, and is provided so as to be interlockable with one of the plurality of support members. It is an example of an operating rod that drives the part in the axial direction of the tube body. The operation rod in this embodiment is an example that is interlocked with the support member by being formed by the rear end portion of the support member.
The distal side balloon moving mechanism 712 is an example of a distal side balloon moving mechanism that is arranged on the rear end side of the rear end portion of the tube body and moves the operating rod along the axial direction.
 以上、本発明の好ましい各実施形態および各変形例を説明したが、本発明はこのような各実施形態および各変形例に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。
 また、本発明は前述した説明によって限定されることはなく、添付の請求の範囲によってのみ限定される。
Although preferred embodiments and modifications of the present invention have been described above, the present invention is not limited to such embodiments and modifications. Configuration additions, omissions, substitutions, and other changes are possible without departing from the scope of the present invention.
Moreover, the present invention is not limited by the foregoing description, but only by the scope of the appended claims.
 上述の各実施形態および各変形例によれば、患者の負荷を低減するとともに内視鏡を円滑に操作することができる内視鏡用オーバーチューブを提供することができる。 According to each of the above-described embodiments and modifications, it is possible to provide an endoscope overtube that reduces the burden on the patient and allows smooth operation of the endoscope.
1、101、201、301、401、501、601、701 オーバーチューブ(内視鏡用オーバーチューブ)
2、102、102A、602 メインチューブ(チューブ本体)
2a チューブ壁(定厚部)
2b 厚肉部
2c 第1ルーメン(メインルーメン)
2d 外周面
2e 第2ルーメン(送気ルーメン)
2f 開口部
3 固定用バルーン
6、506、506A、506B 気密弁ユニット
9、609 エアフローチューブ(送気チューブ)
10、110、210、210A、210B、210C、210D、210E、210F、210G、310、410、410A、610、710 送気デバイス
11、30 内視鏡
21、521 筒枠部(管状部)
21a 内周面
22、522 気密バルーン
22b、522b 中間部
102g 第3ルーメン(ダミールーメン)
111a ポンプ(手動ポンプ)
112 圧力計
113 リリーフ弁
211 手動送気機構
211a ポンプ(手動ポンプ)
211d 第1接続部(ポンプ側コネクタ、第1コネクタ)
211e 第2接続部(ポンプ側コネクタ、第2コネクタ)
211j 送気管
211k 吸気管
212、212A、212B、212C、212D、412 本体部
212a 接続管(本体側コネクタ)
213 リリーフ弁
215 グリップ(把持部)
217、217A、217B 圧力調整部
219、219E、219F、219G、319、319A、319B、319C、319D、319E、319F、319H、319J、319K、319L、PI 圧力表示器
219D 圧力表示部
220、320E、320F、320H、320J ケース(筐体)
220b 側面部(移動管路)
220h 開口部
221a 表示窓
221b 第1目盛線(参照目盛)
221c 第2目盛線(参照目盛)
221D 表示窓形成部材
222 固定枠(押え部材)
223、323、323A、323B、323E、323F、323H、323K、323L カラー(移動部材)
223a 外筒部(管状部)
223b、323b 係止板(弾性部材支持部)
223c 先端エッジ部
224 コイルバネ(弾性部材)
225、225E、225F、325B、325D、325K、325L 気密部材(封止部材、押え部材)
225a ボス部(第2固定部)
225c 底板部(第2固定部)
225d、226 蛇腹管部
225f 封止部(第1固定部)
225n 厚肉部
225t 薄肉部
230 本体ケース(筐体)
323d、323h、323v、325t 傾斜面
323f、322m、325r 複数の突起部(弾性部材支持部)
323q 段部(弾性部材支持部)
323t 押さえ爪(弾性部材支持部)
325f 係合突起
417、417A リミッタ
417a 側板部(係止部材)
417b 係止突起(係止部材)
417f 第1側板部(係止部材)
417g 第2側板部(係止部材)
417h ファスナ(固定部材)
521b 接続ポート(気体供給管)
531、531A 容積可変部
533 可動部材
534 プローブ
534a 摺接部(先端部)
535 バネ(付勢部材)
602e 挿通ルーメン
603、703 先端固定部
619、719 第1支持部材(複数の支持部材)
619A、719A 先端部
619B 後端部(送気チューブ)
719B 後端部(送気チューブ、操作ロッド)
619a 送気ルーメン
620、720 第2支持部材(複数の支持部材)
622、622B 第1バルーン(先端側バルーン)
623 第2バルーン(固定用バルーン)
712 先端側バルーン移動機構
AC、AG、Ah、Ai、AP、O220、Oc 中心軸線
Av 軸線
C 大腸
On 狭開口部
Ow 広開口部
P1、P6 第1管路
P2 絞り部
P3、P8 第2管路
P4、P7 拡径部
R1、R1A 第1領域
R2、R2A 第2領域
Tv 厚さ変化部
1, 101, 201, 301, 401, 501, 601, 701 Overtube (overtube for endoscope)
2, 102, 102A, 602 Main tube (tube body)
2a Tube wall (constant thickness part)
2b Thick portion 2c First lumen (main lumen)
2d outer peripheral surface 2e second lumen (air supply lumen)
2f opening 3 fixation balloons 6, 506, 506A, 506B airtight valve units 9, 609 airflow tube (air supply tube)
10, 110, 210, 210A, 210B, 210C, 210D, 210E, 210F, 210G, 310, 410, 410A, 610, 710 Air supply devices 11, 30 Endoscopes 21, 521 Cylindrical frame portion (tubular portion)
21a inner peripheral surface 22, 522 airtight balloons 22b, 522b intermediate portion 102g third lumen (dummy lumen)
111a pump (manual pump)
112 pressure gauge 113 relief valve 211 manual air supply mechanism 211a pump (manual pump)
211d first connection part (pump side connector, first connector)
211e Second connection part (pump side connector, second connector)
211j air supply pipe 211k intake pipe 212, 212A, 212B, 212C, 212D, 412 body portion 212a connection pipe (body side connector)
213 relief valve 215 grip (holding portion)
217, 217A, 217B pressure adjustment units 219, 219E, 219F, 219G, 319, 319A, 319B, 319C, 319D, 319E, 319F, 319H, 319J, 319K, 319L, PI pressure indicator 219D pressure display units 220, 320E, 320F, 320H, 320J case (enclosure)
220b side part (moving pipeline)
220h Opening 221a Display window 221b First scale line (reference scale)
221c second scale line (reference scale)
221D display window forming member 222 fixed frame (holding member)
223, 323, 323A, 323B, 323E, 323F, 323H, 323K, 323L collar (moving member)
223a outer cylindrical portion (tubular portion)
223b, 323b locking plate (elastic member supporting portion)
223c tip edge portion 224 coil spring (elastic member)
225, 225E, 225F, 325B, 325D, 325K, 325L Airtight member (sealing member, pressing member)
225a boss portion (second fixing portion)
225c bottom plate portion (second fixing portion)
225d, 226 bellows tube portion 225f sealing portion (first fixing portion)
225n thick portion 225t thin portion 230 body case (housing)
323d, 323h, 323v, 325t Inclined surfaces 323f, 322m, 325r Plural protrusions (elastic member support portions)
323q stepped portion (elastic member supporting portion)
323t presser claw (elastic member support)
325f Engagement projections 417, 417A Limiter 417a Side plate portion (locking member)
417b locking projection (locking member)
417f first side plate portion (locking member)
417g second side plate portion (locking member)
417h fastener (fixing member)
521b connection port (gas supply pipe)
531, 531A Variable volume part 533 Movable member 534 Probe 534a Sliding contact part (tip part)
535 spring (biasing member)
602e insertion lumens 603, 703 distal end fixing portions 619, 719 first support member (plurality of support members)
619A, 719A Front end 619B Rear end (air supply tube)
719B rear end (air supply tube, operation rod)
619a Air supply lumens 620, 720 Second support member (plurality of support members)
622, 622B first balloon (tip side balloon)
623 second balloon (fixation balloon)
712 Distal side balloon movement mechanism AC, AG, Ah, Ai, AP, O 220 , Oc Central axis Av Axis C Large intestine On Narrow opening Ow Wide opening P1, P6 First pipe P2 Constriction P3, P8 Second pipe Paths P4, P7 Expanded diameter portions R1, R1A First regions R2, R2A Second regions Tv Thickness change portions

Claims (15)

  1.  内視鏡用オーバーチューブであって、
     内視鏡を挿通するメインルーメンと、気体が流れる送気ルーメンと、を有するチューブ本体と、
     前記チューブ本体の先端部の外周面に設けられ、前記外周面の外方に拡張可能かつ前記外周面に向かって収縮可能な固定用バルーンと、
     前記送気ルーメンに前記気体を送る送気デバイスと、
     前記チューブ本体の後端部において前記メインルーメンと連通する管状部を有し、前記管状部を通して前記メインルーメンに挿通された内視鏡と、前記管状部の内周面と、の間の隙間を塞ぐ気密弁ユニットと、
    を備える、
    内視鏡用オーバーチューブ。
    An endoscope overtube,
    a tube body having a main lumen through which an endoscope is inserted and an air supply lumen through which gas flows;
    a fixing balloon provided on the outer peripheral surface of the distal end portion of the tube body, expandable outward from the outer peripheral surface and contractible toward the outer peripheral surface;
    an insufflation device that delivers the gas to the insufflation lumen;
    A gap between an endoscope having a tubular portion communicating with the main lumen at the rear end portion of the tube body, and inserted into the main lumen through the tubular portion, and the inner peripheral surface of the tubular portion. a sealing airtight valve unit;
    comprising
    Overtube for endoscope.
  2.  前記送気デバイスは、
      前記気体を送る手動ポンプと、
      前記手動ポンプから送られた前記気体が流れる第1管路と、
      前記第1管路に接続され、前記第1管路の流路断面積よりも小さい流路断面積を有する絞り部と、
      前記絞り部の前記流路断面積よりも大きい流路断面積を有し、前記絞り部を通して流れる前記気体を前記固定用バルーンに向けて流す第2管路と、
     前記第2管路に設けられ、前記第2管路の圧力が一定値を超えると前記第2管路から前記気体を排気するリリーフ弁と、
    を備える、
    請求項1に記載の内視鏡用オーバーチューブ。
    The air supply device is
    a manual pump for delivering the gas;
    a first conduit through which the gas sent from the manual pump flows;
    a constricted portion connected to the first pipeline and having a flow channel cross-sectional area smaller than the flow channel cross-sectional area of the first pipeline;
    a second conduit having a flow channel cross-sectional area larger than the flow channel cross-sectional area of the narrowed portion and allowing the gas flowing through the narrowed portion to flow toward the fixation balloon;
    a relief valve provided in the second pipeline for exhausting the gas from the second pipeline when the pressure in the second pipeline exceeds a certain value;
    comprising a
    The endoscope overtube according to claim 1.
  3.  前記第1管路および前記第2管路の内径がD[mm]であり、
     前記絞り部の内径がd[mm]、長さがL[mm]であり、
     前記第2管路の長さがL[mm]である場合に、下記式(3e)が満足される、
    請求項2に記載の内視鏡用オーバーチューブ。
    Figure JPOXMLDOC01-appb-M000001
    The inner diameters of the first pipeline and the second pipeline are D [mm],
    The narrowed portion has an inner diameter of d [mm] and a length of L 1 [mm],
    When the length of the second pipeline is L 2 [mm], the following formula (3e) is satisfied,
    The endoscope overtube according to claim 2.
    Figure JPOXMLDOC01-appb-M000001
  4.  前記送気デバイスは、
      前記気体を送る手動ポンプと、
      前記手動ポンプから送られた前記気体が流れる第1管路と、
      前記第1管路に接続され、前記第1管路の流路断面積よりも大きい流路断面積を有する拡径部と、
     前記拡径部に設けられ、前記拡径部の圧力が一定値を超えると前記拡径部から前記気体を排気するリリーフ弁と、
      前記拡径部の前記流路断面積よりも小さい流路断面積を有し、前記拡径部を通して流れる前記気体を前記固定用バルーンに向けて流す第2管路と、
    を備える、
    請求項1に記載の内視鏡用オーバーチューブ。
    The air supply device is
    a manual pump for delivering the gas;
    a first conduit through which the gas sent from the manual pump flows;
    an enlarged diameter portion connected to the first pipeline and having a flow channel cross-sectional area larger than the flow channel cross-sectional area of the first pipeline;
    a relief valve provided in the enlarged diameter portion for exhausting the gas from the enlarged diameter portion when pressure in the enlarged diameter portion exceeds a predetermined value;
    a second pipeline having a flow channel cross-sectional area smaller than the flow channel cross-sectional area of the diameter-enlarged portion and allowing the gas flowing through the diameter-enlarged portion to flow toward the fixation balloon;
    comprising
    The endoscope overtube according to claim 1.
  5.  前記第1管路の内径がDであり、
     前記拡径部の容積がVであり
     前記手動ポンプにおける1回の操作によって送気可能な前記気体の最大の体積がQであるとき、下記式(3j)が満足される、
    請求項4に記載の内視鏡用オーバーチューブ。
    Figure JPOXMLDOC01-appb-M000002
    The inner diameter of the first conduit is D,
    When the volume of the expanded diameter portion is V and the maximum volume of the gas that can be supplied by one operation of the manual pump is QP , the following formula (3j) is satisfied.
    The endoscope overtube according to claim 4.
    Figure JPOXMLDOC01-appb-M000002
  6.  前記送気デバイスは、
      前記気体を送る手動ポンプと、
      前記手動ポンプから送られた前記気体が流れる第1管路と、
      前記第1管路に接続され、前記第1管路の流路断面積よりも大きい流路断面積を有する流路を有し、前記第1管路の圧力を表示する圧力表示器と、
      前記第1管路に接続され、前記第1管路の流路断面積よりも小さい流路断面積を有する絞り部と、
      前記絞り部の前記流路断面積よりも大きい流路断面積を有し、前記絞り部を通して流れる前記気体を前記固定用バルーンに向けて流す第2管路と、
     前記第2管路に設けられ、前記第2管路の圧力が一定値を超えると前記第2管路から前記気体を排気するリリーフ弁と、
    を備える、
    請求項1に記載の内視鏡用オーバーチューブ。
    The air supply device is
    a manual pump for delivering the gas;
    a first conduit through which the gas sent from the manual pump flows;
    a pressure indicator that is connected to the first conduit, has a channel that has a channel cross-sectional area that is larger than the channel cross-sectional area of the first conduit, and displays the pressure of the first conduit;
    a constricted portion connected to the first pipeline and having a flow channel cross-sectional area smaller than the flow channel cross-sectional area of the first pipeline;
    a second conduit having a flow channel cross-sectional area larger than the flow channel cross-sectional area of the narrowed portion and allowing the gas flowing through the narrowed portion to flow toward the fixation balloon;
    a relief valve provided in the second pipeline for exhausting the gas from the second pipeline when the pressure in the second pipeline exceeds a certain value;
    comprising a
    The endoscope overtube according to claim 1.
  7.  前記圧力表示器は、
      少なくとも一部に内部が見える表示窓が設けられた筐体と、
      前記筐体の内部の圧力に応じて前記筐体内を移動し、移動位置が前記表示窓から観察可能な移動部材と、を有し、
     前記表示窓または前記表示窓の周囲には、前記移動部材の位置に応じた圧力を示す参照目盛が形成されている、
    を有する。
    請求項6に記載の内視鏡用オーバーチューブ。
    The pressure indicator is
    a housing at least partially provided with a display window through which the inside can be seen;
    a moving member that moves within the housing according to the pressure inside the housing and whose movement position is observable from the display window;
    A reference scale indicating the pressure according to the position of the moving member is formed on the display window or around the display window.
    have
    The endoscope overtube according to claim 6.
  8.  前記筐体は、前記移動部材が内部を移動する移動管路を有し、
     前記移動部材は、前記移動管路の中心軸線に沿って移動する管状部を有し、
     前記移動部材の前記管状部は、前記移動管路の前記中心軸線に対して、一定方向に傾斜した姿勢で移動し、
     前記表示窓は、前記移動部材の前記管状部の傾斜によって、前記表示窓に近づいた前記移動部材の前記管状部の端部が見える位置に形成されている、
    請求項7に記載の内視鏡用オーバーチューブ。
    The housing has a moving conduit in which the moving member moves,
    The moving member has a tubular portion that moves along the central axis of the moving conduit,
    the tubular portion of the moving member moves in a posture inclined in a certain direction with respect to the central axis of the moving pipe;
    The display window is formed at a position where an end of the tubular portion of the moving member that is closer to the display window can be seen due to the inclination of the tubular portion of the moving member.
    The endoscope overtube according to claim 7.
  9.  前記圧力表示器は、
      前記移動部材に作用する前記圧力に抗して前記移動部材を付勢し、前記圧力に応じて前記移動部材の移動位置を規制する弾性部材と、
      前記移動部材の移動方向において前記移動部材と対向して配置され、前記弾性部材における前記移動部材と反対側の端部を押さえる押え部材と、をさらに備え、
     前記移動部材および前記押え部材の一方または両方は、前記管状部が、前記中心軸線と同軸に配置されたときに、前記中心軸線に対して、前記一定方向に傾斜した傾斜面上で、前記弾性部材を支持する弾性部材支持部を備える、
    請求項8に記載の内視鏡用オーバーチューブ。
    The pressure indicator is
    an elastic member that biases the moving member against the pressure acting on the moving member and regulates the moving position of the moving member according to the pressure;
    a pressing member disposed opposite to the moving member in the moving direction of the moving member and pressing an end of the elastic member opposite to the moving member;
    One or both of the moving member and the pressing member are arranged on the inclined surface inclined in the certain direction with respect to the central axis when the tubular portion is arranged coaxially with the central axis. comprising an elastic member support that supports the member;
    The endoscope overtube according to claim 8.
  10.  前記圧力表示器は、
      前記移動部材の移動方向における前記筐体の端部に形成された開口部を気密に封止する封止部材をさらに備え、
     前記封止部材は、
      前記端部に気密に固定された第1固定部と、
      前記第1固定部から前記移動部材に向かって延びており、側面に前記移動方向において伸縮可能な蛇腹形状が側面に形成された蛇腹管部と、
      前記蛇腹管部の延在方向の先端を塞いでおり、前記移動部材に固定された第2固定部と、
    を有し、
     前記蛇腹管部は、
     前記蛇腹管部の側面の一部を形成し、前記蛇腹管部の中心軸線を含む断面において、径方向外側に向かって細る逆V字形に配置された傾斜面部と、
     前記傾斜面部の平均肉厚よりも厚肉に形成されており、前記逆V字形を形成する前記傾斜面部同士の外周部を気密に閉じる厚肉部と、
    を有する、
    請求項7に記載の内視鏡用オーバーチューブ。
    The pressure indicator is
    further comprising a sealing member that hermetically seals an opening formed at an end of the housing in the moving direction of the moving member;
    The sealing member is
    a first fixing portion airtightly fixed to the end;
    a bellows tube portion extending from the first fixing portion toward the moving member and having a bellows shape on the side surface thereof which can be expanded and contracted in the moving direction;
    a second fixing portion that closes the end of the bellows tube portion in the extending direction and is fixed to the moving member;
    has
    The bellows tube portion
    an inclined surface portion forming a part of a side surface of the bellows tube portion and arranged in an inverted V shape tapering radially outward in a cross section including the central axis of the bellows tube portion;
    a thick portion which is formed to be thicker than the average thickness of the inclined surface portion and airtightly closes the outer peripheral portion of the inclined surface portions forming the inverted V shape;
    has a
    The endoscope overtube according to claim 7.
  11.  前記厚肉部において、
     前記蛇腹管部の前記中心軸線に沿う軸方向における第1幅は、前記平均肉厚の3倍以上、かつ前記蛇腹管部が外力によって変形していない自然状態における前記蛇腹形状のピッチの2/3以下であり、
     前記蛇腹管部の前記中心軸線に直交する径方向における第2幅は、前記平均肉厚の3倍以上である、
    請求項10記載の内視鏡用オーバーチューブ。
    In the thick portion,
    The first width of the bellows tube portion in the axial direction along the central axis is three times or more the average wall thickness and 2/2 of the pitch of the bellows shape in the natural state where the bellows tube portion is not deformed by an external force. is 3 or less,
    A second width of the bellows tube portion in a radial direction orthogonal to the central axis is three times or more the average thickness,
    The endoscope overtube according to claim 10.
  12.  前記平均肉厚が0.3mm以上0.7mm以下であり、
     前記第2幅が3.1mm以下である、
    請求項11に記載の内視鏡用オーバーチューブ。
    The average thickness is 0.3 mm or more and 0.7 mm or less,
    The second width is 3.1 mm or less,
    The endoscope overtube according to claim 11.
  13.  前記送気デバイスは、
      前記気体を送る手動ポンプと、
      前記手動ポンプから送られた前記気体が流れる第1管路と、
      前記手動ポンプが接続される本体部と、を備え、
      前記本体部は、
      前記第1管路に接続され、前記第1管路の流路断面積よりも大きい流路断面積を有する流路を有し、前記第1管路の圧力を表示する圧力表示器と、
      前記本体部に接続された前記手動ポンプの中心軸線と交差する方向に延びており、前記中心軸線と逆V字形を形成するように配置された把持部と、
     を備え、
     前記圧力表示器は、
      少なくとも一部に内部が見える表示窓が設けられた筐体と、
      前記筐体の内部の圧力に応じて前記筐体内を移動し、移動位置が前記表示窓から観察可能な移動部材と、
     を有し、
     前記表示窓または前記表示窓の周囲には、前記移動部材の位置に応じた圧力を示す参照目盛が形成されており、
     前記移動部材の移動方向に対して、前記手動ポンプの前記中心軸線と前記把持部の延在方向とはそれぞれ鋭角であり、
     前記移動方向において前記表示窓は前記手動ポンプおよび前記把持部の把持位置の間に位置する、
    請求項1に記載の内視鏡用オーバーチューブ。
    The air supply device is
    a manual pump for delivering the gas;
    a first conduit through which the gas sent from the manual pump flows;
    a main body to which the manual pump is connected,
    The main body is
    a pressure indicator that is connected to the first conduit, has a channel that has a channel cross-sectional area that is larger than the channel cross-sectional area of the first conduit, and displays the pressure of the first conduit;
    a gripping portion extending in a direction intersecting the central axis of the manual pump connected to the main body and arranged to form an inverted V shape with the central axis;
    with
    The pressure indicator is
    a housing at least partially provided with a display window through which the inside can be seen;
    a moving member that moves within the housing according to the pressure inside the housing and whose movement position is observable through the display window;
    has
    a reference scale indicating a pressure corresponding to the position of the moving member is formed on the display window or around the display window;
    the central axis of the manual pump and the extending direction of the gripping portion form an acute angle with respect to the moving direction of the moving member;
    the display window is positioned between the grip position of the manual pump and the grip in the direction of movement;
    The endoscope overtube according to claim 1.
  14.  前記送気デバイスは、
      前記気体を送る手動ポンプと、
      前記手動ポンプが接続される本体部と、
      前記本体部から突出し、前記手動ポンプを第1方向において着脱可能に接続する本体側コネクタと、
    を備え、
     前記手動ポンプは、
      前記第1方向において進退し、進出時に前記本体側コネクタと気密に接続し、後退時に前記気体の漏洩が生じるポンプ側コネクタを有し、
     前記本体部は、
      前記ポンプ側コネクタの後退時に前記ポンプ側コネクタに係止することによって前記ポンプ側コネクタの後退位置を規制し、前記ポンプ側コネクタを抜け止めするリミッタを有する、
    請求項1に記載の内視鏡用オーバーチューブ。
    The air supply device is
    a manual pump for delivering the gas;
    a main body to which the manual pump is connected;
    a body-side connector that protrudes from the body and detachably connects the manual pump in a first direction;
    with
    The manual pump is
    a pump-side connector that advances and retreats in the first direction, is airtightly connected to the main body-side connector when advancing, and causes the gas to leak when retreating;
    The main body is
    a limiter that regulates the retracted position of the pump-side connector by engaging with the pump-side connector when retracting the pump-side connector and prevents the pump-side connector from coming off;
    The endoscope overtube according to claim 1.
  15.  前記手動ポンプは、気体を送り出す送気管と、
      気体を吸い込む吸気管と、
    を有し、
     前記ポンプ側コネクタは、
      前記送気管を前記本体側コネクタに着脱可能に接続する第1コネクタと、
      前記吸気管を前記本体側コネクタに着脱可能に接続する第2コネクタと、
    を有し、
     前記リミッタは、
      前記ポンプ側コネクタに係止可能な係止位置と、前記ポンプ側コネクタを前記本体側コネクタから取り外し可能な取り外し位置と、に移動可能な係止部材と、
      前記係止部材を、前記係止位置および前記取り外し位置の一方に固定できる固定部材と、
    を有する、
    請求項14に記載の内視鏡用オーバーチューブ。
    The manual pump includes an air pipe that delivers gas,
    an intake pipe for sucking gas;
    has
    The pump-side connector is
    a first connector that detachably connects the air pipe to the body-side connector;
    a second connector that detachably connects the intake pipe to the body-side connector;
    has
    The limiter is
    a locking member movable between a locking position where the pump-side connector can be locked and a removal position where the pump-side connector can be removed from the body-side connector;
    a fixing member capable of fixing the locking member to one of the locking position and the removal position;
    has a
    The endoscope overtube according to claim 14.
PCT/JP2021/013865 2021-03-31 2021-03-31 Endoscope overtube WO2022208737A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/013865 WO2022208737A1 (en) 2021-03-31 2021-03-31 Endoscope overtube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/013865 WO2022208737A1 (en) 2021-03-31 2021-03-31 Endoscope overtube

Publications (1)

Publication Number Publication Date
WO2022208737A1 true WO2022208737A1 (en) 2022-10-06

Family

ID=83458174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013865 WO2022208737A1 (en) 2021-03-31 2021-03-31 Endoscope overtube

Country Status (1)

Country Link
WO (1) WO2022208737A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005261857A (en) * 2004-03-22 2005-09-29 Yamamoto Hironori Ultrasonic endoscope apparatus
JP2005296619A (en) * 2004-03-19 2005-10-27 Olympus Corp Endoscope balloon controlling apparatus
JP2008200127A (en) * 2007-02-16 2008-09-04 Olympus Medical Systems Corp Medical apparatus
JP2008253780A (en) * 2007-04-04 2008-10-23 Olympus Medical Systems Corp Overtube and therapeutic system
US20090287045A1 (en) * 2008-05-15 2009-11-19 Vladimir Mitelberg Access Systems and Methods of Intra-Abdominal Surgery
JP2012000270A (en) * 2010-06-17 2012-01-05 Sumitomo Bakelite Co Ltd Overtube
JP2015012878A (en) * 2011-10-31 2015-01-22 オリンパスメディカルシステムズ株式会社 Overtube for endoscope
JP2015524297A (en) * 2012-07-18 2015-08-24 アポロ エンドサージェリー,インコーポレイティド Endoscope overtube for natural body opening insertion

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005296619A (en) * 2004-03-19 2005-10-27 Olympus Corp Endoscope balloon controlling apparatus
JP2005261857A (en) * 2004-03-22 2005-09-29 Yamamoto Hironori Ultrasonic endoscope apparatus
JP2008200127A (en) * 2007-02-16 2008-09-04 Olympus Medical Systems Corp Medical apparatus
JP2008253780A (en) * 2007-04-04 2008-10-23 Olympus Medical Systems Corp Overtube and therapeutic system
US20090287045A1 (en) * 2008-05-15 2009-11-19 Vladimir Mitelberg Access Systems and Methods of Intra-Abdominal Surgery
JP2012000270A (en) * 2010-06-17 2012-01-05 Sumitomo Bakelite Co Ltd Overtube
JP2015012878A (en) * 2011-10-31 2015-01-22 オリンパスメディカルシステムズ株式会社 Overtube for endoscope
JP2015524297A (en) * 2012-07-18 2015-08-24 アポロ エンドサージェリー,インコーポレイティド Endoscope overtube for natural body opening insertion

Similar Documents

Publication Publication Date Title
US20220175221A1 (en) Method and apparatus for manipulating the side wall of a body lumen or body cavity so as to provide increased visualization of the same and/or increased access to the same, and/or for stabilizing instruments relative to the same
US9408524B2 (en) Inflatable member for an endoscope sheath
CN108882829B (en) Bidirectional adjustable trachea cannula capable of imaging
US20160174829A1 (en) Balloon access device for endoscope
US7955318B1 (en) Multipurpose large bore medical suction systems
EP3533377B1 (en) Apparatus for manipulating the side wall of a body lumen or body cavity so as to provide increased visualization of the same and/or increased access to the same, and/or for stabilizing instruments relative to the same
US9833126B2 (en) Balloon access device with features for engaging an endoscope
US20140316207A1 (en) Platform for Laryngeal Microsurgery
US20140200402A1 (en) Medical Device Introduction Systems and Methods
EP2451337B1 (en) Accessory clip for an endoscope
US20110092770A1 (en) Endoscopic insertion aid, endoscopic system, and method of inserting insertion portion of endoscope into body cavity by use of endoscopic insertion aid
US20050171400A1 (en) Endoscope applicator and endoscope apparatus
JP5647780B2 (en) Treatment overtube and treatment system
JPH06197900A (en) Intratubal manipulator
US20200015660A1 (en) Gastrointestinal endoscopy with attachable intestine pleating structures
US10617291B2 (en) Medical device with an airway insertion member
US20190133419A1 (en) Bending operation mechanism of endoscope
WO2022208737A1 (en) Endoscope overtube
WO2022208755A1 (en) Overtube for endoscope
WO2007122605A2 (en) Endoscope sleeve dispenser
US20080146880A1 (en) Dilating Laryngoscope
JP5542109B2 (en) Endoscope fluid conduit connection structure and endoscope system
US20220304564A1 (en) A robot for endoscopy
JP2022514701A (en) Methods and devices for manipulating and visualizing body cavities or side walls of body cavities
US9295819B2 (en) Fluid supply body and balloon catheter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934903

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21934903

Country of ref document: EP

Kind code of ref document: A1