WO2022208629A1 - Fluorescence observation device, photoimmunotherapy system, and fluorescence endoscope - Google Patents

Fluorescence observation device, photoimmunotherapy system, and fluorescence endoscope Download PDF

Info

Publication number
WO2022208629A1
WO2022208629A1 PCT/JP2021/013386 JP2021013386W WO2022208629A1 WO 2022208629 A1 WO2022208629 A1 WO 2022208629A1 JP 2021013386 W JP2021013386 W JP 2021013386W WO 2022208629 A1 WO2022208629 A1 WO 2022208629A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
image
fluorescence
observation
light
Prior art date
Application number
PCT/JP2021/013386
Other languages
French (fr)
Japanese (ja)
Inventor
周志 太田
武志 菅
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2021/013386 priority Critical patent/WO2022208629A1/en
Publication of WO2022208629A1 publication Critical patent/WO2022208629A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor

Definitions

  • the present invention relates to a fluorescence observation device, a photoimmunotherapy system, and a fluorescence endoscope.
  • PIT photoimmunotherapy
  • the antibody drug irradiated with near-infrared light absorbs light energy, causes molecular vibration, and generates heat. This heat destroys cancer cells.
  • the antibody drug emits fluorescence when excited. The intensity of this fluorescence is used as an index of therapeutic efficacy.
  • PIT may be performed using an endoscope.
  • treatment is performed by irradiating a treatment site with near-infrared light while illuminating and observing with white light.
  • the brightness of fluorescence fluctuates depending on the distance between the subject and the imaging device even when the subject (here, cancer cells containing an antibody drug) emits the same fluorescence intensity.
  • the subject here, cancer cells containing an antibody drug
  • reference light is emitted separately from excitation light, and the ratio between the fluorescence image and the reference light image is calculated to normalize the fluorescence intensity.
  • an excitation cut filter with a high OD value is required in order to detect fluorescence that is weaker than excitation light.
  • An excitation cut filter with a high OD value has a lower light transmittance near the red region than the light transmittance in other color regions, so there is a risk that color reproducibility will be impaired when observing with white light. .
  • the present invention has been made in view of the above.
  • the object is to provide a fluorescence endoscope.
  • a fluorescence observation apparatus provides a first optical system that forms an observation image in normal observation mode, and a a second optical system for forming an observation image in the fluorescence observation mode; an imaging element for photoelectrically converting the images formed by the first optical system and the second optical system; is a first observation image formed by the first optical system, which generates a first image based on the first observation image obtained by illumination with white light, and is formed by the second optical system during the fluorescence observation mode A second observation image that generates a second observation image based on the second observation image that is a fluorescence image obtained by illumination with excitation light, and a third observation image formed by the first optical system, An image processing unit that generates a third image based on a third observation image formed by excitation light and fluorescence, and the fluorescence intensity of the second image is normalized by dividing by the light intensity of the third image.
  • the first optical system has a first filter having a transmittance of the excitation light of 1% or more and 30% or less
  • the second optical system includes the It has a second filter with a transmittance of excitation light of 0.1% or less.
  • the F-number of the first optical system is larger than the F-number of the second optical system.
  • the excitation light has a center wavelength of 680 nm or more.
  • the excitation light is light in the same wavelength band as therapeutic light used in photoimmunotherapy.
  • a first optical system for forming an observation image in a normal observation mode and the first optical system are provided independently of the first optical system to form an observation image in a fluorescence observation mode.
  • a fluorescence endoscope comprising: a second optical system that forms an image; and an imaging device that photoelectrically converts the images formed by the first optical system and the second optical system; 1 optical system generates a first observation image based on the first observation image obtained by illumination with white light; generating a second image based on a second observation image, which is an observation image, which is a fluorescent image obtained by illumination with excitation light, and generating a third observation image formed by the first optical system, wherein the excitation light and an image processing unit that generates a third image based on a third observation image formed by fluorescence; and a normalized fluorescence intensity obtained by dividing the fluorescence intensity of the second image by the light intensity of the third image.
  • the first optical system has a transmittance of 1% or more for the excitation light. % or less
  • the second optical system has a second filter with a transmittance of the excitation light of 0.1% or less.
  • a fluorescence endoscope is a fluorescence endoscope through which a treatment instrument for emitting therapeutic light for photoimmunotherapy is inserted, wherein the first optical system forms an observation image in the normal observation mode.
  • a second optical system that is provided independently of the first optical system and that forms an observation image in a fluorescence observation mode; and an image formed by each of the first optical system and the second optical system.
  • the first optical system has a first filter having a transmittance of 1% or more and 30% or less for excitation light emitted in the fluorescence observation mode; and the second optical system The system has a second filter with a transmittance of 0.1% or less for said excitation light.
  • FIG. 1 is a diagram showing a schematic configuration of an endoscope system according to one embodiment of the present invention.
  • FIG. 2 is a block diagram showing a schematic configuration of an endoscope system according to one embodiment of the invention.
  • FIG. 3 is a diagram for explaining the configuration of the distal end of the endoscope according to one embodiment of the present invention.
  • FIG. 4 is a diagram illustrating the configuration of the imaging optical system of the endoscope according to one embodiment of the present invention.
  • FIG. 5 is a diagram illustrating an example of an optical filter in the imaging optical system of the endoscope according to one embodiment of the present invention.
  • FIG. 6 is a flow chart showing an example of processing of the processing device according to the embodiment of the present invention.
  • FIG. 1 is a diagram showing a schematic configuration of an endoscope system according to one embodiment of the present invention.
  • FIG. 2 is a block diagram showing a schematic configuration of the endoscope system according to this embodiment.
  • FIG. 3 is a diagram for explaining the configuration of the distal end of the endoscope according to one embodiment of the present invention.
  • An endoscope system 1 shown in FIGS. 1 and 2 includes an endoscope 2 that captures an in-vivo image of a subject by inserting its distal end into the subject, and illumination light emitted from the distal end of the endoscope 2.
  • a light source device 3 that generates a signal
  • a processing device 4 that performs predetermined signal processing on an imaging signal captured by the endoscope 2 and controls the overall operation of the endoscope system 1, and a signal from the processing device 4
  • a display device 5 for displaying an in-vivo image generated by processing and a treatment instrument device 6 are provided.
  • the endoscope 2 includes an insertion section 21 having a flexible and elongated shape, an operation section 22 connected to the proximal end side of the insertion section 21 and receiving input of various operation signals, and an operation section 22 to the insertion section. and a universal cord 23 extending in a direction different from the direction in which 21 extends and containing various cables connected to the light source device 3 and the processing device 4 .
  • the endoscope 2 corresponds to a fluorescence endoscope for observing fluorescence from the antibody drug within the subject.
  • the insertion section 21 is a flexible bendable body composed of a distal end section 24 containing an imaging device 244 in which pixels for generating signals by receiving and photoelectrically converting light are arranged two-dimensionally, and a plurality of bending pieces. It has a bending portion 25 and an elongated flexible tubular portion 26 connected to the base end side of the bending portion 25 and having flexibility.
  • the insertion section 21 is inserted into the body cavity of the subject, and the imaging element 244 captures an image of a subject such as living tissue at a position where external light cannot reach.
  • the operation unit 22 includes a bending knob 221 for bending the bending portion 25 in the vertical direction and the horizontal direction, and a treatment for inserting treatment tools such as a therapeutic light irradiation device, a biopsy forceps, an electric scalpel, and an examination probe into the body cavity of the subject. It has an instrument inserting portion 222 and a plurality of switches 223 as an operation input portion for inputting operation instruction signals for peripheral devices such as air supply means, water supply means, and screen display control in addition to the processing device 4 .
  • a treatment instrument inserted from the treatment instrument insertion portion 222 is exposed from the opening via a treatment instrument channel (not shown) of the distal end portion 24 (see FIG. 3).
  • the universal cord 23 incorporates at least a light guide 241 and a collective cable 245 that collects one or more signal lines.
  • the universal cord 23 is branched at the end opposite to the side connected to the operating portion 22 .
  • a connector 231 detachable from the light source device 3 and a connector 232 detachable from the processing device 4 are provided at the branch ends of the universal cord 23 .
  • a part of the light guide 241 extends from the end of the connector 231 .
  • the universal cord 23 propagates the illumination light emitted from the light source device 3 to the distal end portion 24 via the connector 231 (light guide 241 ), the operating portion 22 and the flexible tube portion 26 .
  • the universal cord 23 transmits an image signal captured by the imaging device 244 provided at the distal end portion 24 to the processing device 4 via the connector 232 .
  • the assembly cable 245 includes signal lines for transmitting imaging signals, signal lines for transmitting drive signals for driving the imaging element 244, and information including unique information about the endoscope 2 (imaging element 244). including signal lines for sending and receiving
  • an electric signal is transmitted using a signal line. It may transmit a signal between them.
  • the distal end portion 24 includes a light guide 241 made of glass fiber or the like and forming a light guide path for light emitted by the light source device 3, an illumination lens 242 provided at the distal end of the light guide 241, and an optical system for condensing light. It has a system 243 and an imaging device 244 (imaging unit) which is provided at an image forming position of the optical system 243 and receives light condensed by the optical system 243, photoelectrically converts it into an electric signal, and performs predetermined signal processing. .
  • imaging device 244 imaging unit
  • the optical system 243 is configured by two optical systems (first optical system 243A and second optical system 243B) configured using one or more lenses.
  • the first optical system 243A and the second optical system 243B form observation images at different positions of the imaging device 244 and at positions that do not overlap each other.
  • the hole in which the optical system 243 of the distal end portion 24 is arranged is made watertight by, for example, providing a cover glass or an objective lens in the opening.
  • the first optical system 243A and the second optical system 243B may have an optical zoom function that changes the angle of view and a focus function that changes the focus.
  • the imaging element 244 photoelectrically converts the light from the optical system 243 to generate an electric signal (image signal).
  • the image sensor 244 has a plurality of pixels arranged in a matrix, each having a photodiode that accumulates electric charge according to the amount of light, a capacitor that converts the electric charge transferred from the photodiode into a voltage level, and the like.
  • the imaging element 244 is implemented using, for example, a CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal Oxide Semiconductor) image sensor.
  • CCD Charge Coupled Device
  • CMOS Complementary Metal Oxide Semiconductor
  • FIG. 4 is a diagram explaining the configuration of the imaging optical system of the endoscope according to one embodiment of the present invention.
  • the first optical system 243A and the second optical system 243B are provided inside the distal end portion 24 .
  • the first optical system 243A has a first lens 251A consisting of one or more optical elements, a first cut filter 252A, a first diaphragm 253A, and a second lens 254A consisting of one or more optical elements.
  • the first cut filter 252A cuts light in the wavelength band of the excitation light.
  • the first diaphragm 253A passes at least part of the light that has passed through the first lens 251A and the first cut filter 252A, and narrows down the light entering the second lens 254A.
  • the excitation light here corresponds to light in the wavelength band for exciting the antibody drug in PIT.
  • the second optical system 243B has a third lens 251B made up of one or more optical elements, a second cut filter 252B, a second diaphragm 253B, and a fourth lens 254B made up of one or more optical elements.
  • the second cut filter 252B cuts light in a partial wavelength band of the excitation light.
  • the second diaphragm 253B passes at least part of the light that has passed through the third lens 251B and the second cut filter 252B, and narrows down the light entering the fourth lens 254B.
  • the light from the subject enters the first optical system 243A and the second optical system 243B, respectively.
  • the focal lengths of the first optical system 243A and the second optical system 243B are the same.
  • the focal points of the first optical system 243A and the second optical system 243B need only be on the same plane, and may be at the same position on the plane.
  • the first optical system 243A forms an observation image on the first optical image receiving region R 1 of the imaging device 244 .
  • the second optical system 243B forms an observation image on the second optical image receiving region R 2 of the imaging device 244 .
  • the transmittance of the excitation light of the first cut filter 252A is set to 1% or more and 30% or less.
  • the transmittance of the excitation light of the second cut filter 252B is set to 0.1% or less.
  • FIG. 5 is a diagram illustrating an example of an optical filter in the imaging optical system of the endoscope according to one embodiment of the present invention.
  • Curves Q 1 and Q 2 shown in FIG. 5 indicate the light transmittance of the first cut filter 252A.
  • a curve Q1 shows an example of a curve when the transmittance changes at a high level
  • a curve Q2 shows an example of a curve when the transmittance changes at a low level.
  • the excitation light transmittance of the first cut filter 252A is 6% or more and 23% or less.
  • the size of the aperture of the first diaphragm 253A is smaller than the size of the aperture of the second diaphragm 253B. That is, the F-number of the first optical system 243A is larger than the F-number of the second optical system 243B.
  • the F value here is a numerical value representing the amount of light incident on the image sensor 244 via the optical system, and the smaller the value, the greater the amount of incident light.
  • the OD value of the first optical system 243A is smaller than the OD value of the second optical system 243B. Therefore, the second optical system 243B is composed of optical elements having a higher OD value and a smaller F value than those of the first optical system 243A.
  • the endoscope 2 has a memory (not shown) that stores an execution program and a control program for the imaging element 244 to perform various operations, and data including identification information of the endoscope 2 .
  • the identification information includes unique information (ID) of the endoscope 2, model year, spec information, transmission method, and the like.
  • the memory may also temporarily store image data and the like generated by the imaging device 244 .
  • the configuration of the light source device 3 will be described.
  • the light source device 3 includes a light source section 31 , an illumination control section 32 and a light source driver 33 . Under the control of the illumination control unit 32, the light source unit 31 sequentially switches illumination light with different exposure amounts and emits the illumination light toward the object (subject).
  • the light source unit 31 is configured using a light source, one or more lenses, etc., and emits light (illumination light) by driving the light source.
  • the light generated by the light source section 31 is emitted from the tip of the tip section 24 toward the subject via the light guide 241 .
  • the light source unit 31 has a white light source 311 and an excitation light source 312 .
  • the white light source 311 emits light (white light) having a wide visible wavelength band.
  • the white light source 311 is realized using any light source such as a laser light source, a xenon lamp, a halogen lamp, etc., in addition to an LED light source.
  • the excitation light source 312 emits excitation light for exciting an excitation target (for example, an antibody drug in the case of PIT).
  • the excitation light source 312 is implemented using a light source such as an LED light source or a laser light source.
  • the lighting control unit 32 controls the amount of power supplied to the light source unit 31 based on the control signal (light control signal) from the processing device 4, and also controls the light source to emit light and the driving timing of the light source.
  • the light source driver 33 causes the light source unit 31 to emit light by supplying current to the light source to be emitted.
  • the processing device 4 includes an image processing section 41 , a synchronization signal generation section 42 , an input section 43 , a control section 44 and a storage section 45 .
  • the image processing unit 41 receives image data of illumination light of each color imaged by the imaging element 244 from the endoscope 2 .
  • the image processing unit 41 performs A/D conversion to generate a digital imaging signal.
  • image data is received as an optical signal from the endoscope 2, the image processing unit 41 performs photoelectric conversion to generate digital image data.
  • the image processing unit 41 performs predetermined image processing on the image data received from the endoscope 2 to generate an image and outputs the image to the display device 5, or calculates the normalized fluorescence intensity based on the image. or
  • the image processing section 41 has a first image generation section 411 , a second image generation section 412 and a normalization section 413 .
  • the first image generation unit 411 generates a first image based on an image formed by white light or excitation light, which is imaged by the first optical system 243A.
  • the first image includes a white light image generated based on white light and an excitation light image generated based on excitation light.
  • the second image generation unit 412 generates a second image based on the image formed by the fluorescence imaged by the second optical system 243B.
  • the first image generation unit 411 and the second image generation unit 412 generate images by performing predetermined image processing.
  • the predetermined image processing includes synchronization processing, gradation correction processing, color correction processing, and the like.
  • Synchronization processing is processing for synchronizing image data of each color component of RGB.
  • Gradation correction processing is processing for correcting the gradation of image data.
  • Color correction processing is processing for performing color tone correction on image data.
  • the first image generation unit 411 and the second image generation unit 412 may perform gain adjustment according to the brightness of the image.
  • the normalization unit 413 Based on the first image generated by the first image generation unit 411 and the second image generated by the second image generation unit 412, the normalization unit 413 standardizes the fluorescence intensity in the second image. Fluorescence intensity is calculated.
  • the image processing unit 41 is configured using a general-purpose processor such as a CPU (Central Processing Unit) or a dedicated processor such as various arithmetic circuits that execute specific functions such as an ASIC (Application Specific Integrated Circuit). Note that the image processing unit 41 may be configured to have a frame memory that holds the R image data, the G image data and the B image data.
  • a general-purpose processor such as a CPU (Central Processing Unit) or a dedicated processor such as various arithmetic circuits that execute specific functions such as an ASIC (Application Specific Integrated Circuit).
  • the image processing unit 41 may be configured to have a frame memory that holds the R image data, the G image data and the B image data.
  • the synchronization signal generation unit 42 generates a clock signal (synchronization signal) that serves as a reference for the operation of the processing device 4, and transmits the generated synchronization signal to the light source device 3, the image processing unit 41, the control unit 44, and the endoscope 2.
  • the synchronizing signal generated by the synchronizing signal generator 42 includes a horizontal synchronizing signal and a vertical synchronizing signal. Therefore, the light source device 3, the image processing section 41, the control section 44, and the endoscope 2 operate in synchronization with each other by the generated synchronization signal.
  • the input unit 43 is implemented using a keyboard, a mouse, a switch, and a touch panel, and receives inputs of various signals such as operation instruction signals for instructing the operation of the endoscope system 1 .
  • the input unit 43 may include a switch provided in the operation unit 22 or a portable terminal such as an external tablet computer.
  • the control unit 44 performs drive control of each component including the imaging element 244 and the light source device 3, input/output control of information to each component, and the like.
  • the control unit 44 refers to control information data (for example, readout timing) for imaging control stored in the storage unit 45, and performs imaging as a drive signal via a predetermined signal line included in the collective cable 245. It transmits to the element 244 and switches between a normal observation mode in which an image obtained by illumination with white light is observed and a fluorescence observation mode in which fluorescence intensity of an excitation target is calculated.
  • the control unit 44 is configured using a general-purpose processor such as a CPU or a dedicated processor such as various arithmetic circuits that execute specific functions such as an ASIC.
  • the storage unit 45 stores data including various programs for operating the endoscope system 1 and various parameters necessary for operating the endoscope system 1 .
  • the storage unit 45 also stores identification information of the processing device 4 .
  • the identification information includes unique information (ID) of the processing device 4, model year, specification information, and the like.
  • the storage unit 45 also stores various programs including an image acquisition processing program for executing the image acquisition processing method of the processing device 4 .
  • Various programs can be recorded on computer-readable recording media such as hard disks, flash memories, CD-ROMs, DVD-ROMs, flexible disks, etc., and can be widely distributed.
  • the various programs described above can also be obtained by downloading via a communication network.
  • the communication network here is realized by, for example, an existing public line network, LAN (Local Area Network), WAN (Wide Area Network), etc., and it does not matter whether it is wired or wireless.
  • the storage unit 45 having the above configuration is implemented using a ROM (Read Only Memory) in which various programs etc. are pre-installed, and a RAM, hard disk, etc. for storing calculation parameters, data, etc. for each process.
  • ROM Read Only Memory
  • the display device 5 displays a display image corresponding to the image signal received from the processing device 4 (image processing unit 41) via the video cable.
  • the display device 5 is configured using a monitor such as liquid crystal or organic EL (Electro Luminescence).
  • the treatment instrument device 6 has a treatment instrument operation section 61 and a flexible treatment instrument 62 extending from the treatment instrument operation section 61 .
  • the treatment instrument 62 used for PIT emits light for treatment (hereinafter referred to as treatment light).
  • the treatment instrument operation section 61 controls emission of therapeutic light from the treatment instrument 62 .
  • the treatment instrument operation section 61 has an operation input section 611 .
  • the operation input unit 611 is composed of, for example, switches.
  • the treatment instrument operating section 61 causes the treatment instrument 62 to emit therapeutic light in response to an input to the operation input section 611 (for example, pressing a switch).
  • the light source that emits the therapeutic light may be provided in the treatment instrument 62 or may be provided in the treatment instrument operation section 61 .
  • a light source is implemented using a semiconductor laser, an LED, or the like.
  • therapeutic light is light in a wavelength band of 680 nm or more, for example, light having a center wavelength of 690 nm.
  • FIG. 6 is a flow chart showing an example of processing of the processing device according to the embodiment of the present invention.
  • FIG. 6 shows that in PIT, white light is emitted to search for a subject (here, a region containing cancer cells bound to an antibody drug), the subject is irradiated with therapeutic light, and the therapeutic effect is estimated from the fluorescence intensity. Indicates the processing for confirmation.
  • the processing device 4 sets the observation mode to the normal observation mode (step S101).
  • the controller 44 causes the light source device 3 to emit white light (step S102). By emitting the white light, the endoscope 2 irradiates the subject with the white light.
  • the first image generator 411 generates a white light image (first image) based on the image formed by the first optical system 243A (step S103). Specifically, the first image generating section 411 generates a white light image based on the signal value of the first optical image receiving region R 1 of the imaging device 244 . The generated white light image is displayed on the display device 5 .
  • the control unit 44 determines whether or not the input unit 43 has received an input instructing to change the observation mode (step S104).
  • the observation mode change at this time is a change from normal observation mode to fluorescence observation mode. If there is no instruction to change the observation mode, that is, to change to the fluorescence observation mode (step S104: No), the controller 44 proceeds to step S102 and maintains the normal observation mode. On the other hand, when an instruction to change to the fluorescence observation mode is given (step S104: Yes), the control unit 44 proceeds to step S105.
  • an operator such as a doctor irradiates the subject with therapeutic light from the treatment tool 62 .
  • a treatment is performed in which an antibody drug is activated by irradiation with near-infrared light, which is therapeutic light, to destroy cancer cells.
  • the control unit 44 causes the light source device 3 to emit excitation light in the fluorescence observation mode (step S105).
  • the excitation light is emitted, the endoscope 2 irradiates the subject with the excitation light, and the antibody drug in the subject is excited to emit fluorescence.
  • the second optical system 243B forms an image of the fluorescence emitted by the subject on the imaging element 244.
  • the first optical system 243A forms an image of the excitation light reflected by the subject and the fluorescence on the imaging element 244.
  • FIG. The excitation light and fluorescence that pass through the first optical system 243A are referred to as reference light.
  • the second image generator 412 generates a fluorescence image (second image) based on the image formed by the second optical system 243B, and the first image generator 411 causes the first optical system 243A to A reference light image (third image) is generated based on the formed image.
  • the second image generating unit 412 generates a fluorescence image based on the signal value of the second optical image receiving region R 2 of the imaging device 244
  • the first image generating unit 411 generates the 1 A reference light image is generated based on the signal value of the optical image receiving region R1 .
  • the normalization unit 413 normalizes the fluorescence image based on the fluorescence image and the reference light image generated in step S106 (step S107).
  • the normalization unit 413 calculates the normalized fluorescence intensity (normalized fluorescence intensity) by dividing the fluorescence intensity in the fluorescence image by the light intensity of the reference light image.
  • the fluorescence intensity and light intensity at this time correspond to the luminance value of each pixel, and are calculated for each pixel. That is, normalized fluorescence intensity is generated for each pixel.
  • the operator can confirm the therapeutic effect at each position (pixel position) on the subject by confirming the normalized fluorescence intensity.
  • the fluorescence intensity is standardized, it is possible to confirm an accurate therapeutic effect by eliminating fluctuations in the fluorescence intensity caused by the distance between the optical system (eg, the first lens 251A or the third lens 251B) and the subject. It can be carried out.
  • control unit 44 determines whether or not to end the process (step S108).
  • the control unit 44 determines whether or not to end the process based on the presence or absence of an end instruction to the input unit 43 and the power on/off state of the endoscope 2 .
  • the control unit 44 determines to end the process (step S108: Yes)
  • the process ends.
  • the control unit 44 determines to continue the process (step S108: No)
  • the process proceeds to step S109.
  • step S109 the control unit 44 determines whether or not to reacquire the normalized fluorescence intensity.
  • the control unit 44 determines whether or not to end the process based on whether or not there is a reacquisition instruction to the input unit 43 .
  • the control unit 44 proceeds to step S105 and performs normalized fluorescence intensity calculation processing.
  • the control unit 44 determines not to acquire the normalized fluorescence intensity again (step S109: No)
  • the process proceeds to step S101 and switches to the normal observation mode.
  • the first optical system 243A that forms an optical image for generating a white light image in the normal observation mode has a first excitation light transmittance of 1% or more and 30% or less.
  • a reference image is generated based on the image formed by the first optical system 243A in the fluorescence observation mode, and the normalized fluorescence intensity is calculated using this reference image.
  • the transmittance of the excitation light of the first excitation cut filter 253A of the first optical system 243A is 1% or more and 30% or less, it is possible to suppress deterioration in color reproducibility of the white image due to the cut filter. .
  • the excitation light transmittance of the second excitation cut filter 253B of the second optical system 243B is set to 0.1% or less, it is possible to suppress saturation of the amount of light received by the imaging device 244 due to the excitation light. According to the present embodiment, it is possible to ensure the color reproducibility of the white light image by adjusting the transmittance of the excitation cut filter while accurately grasping the decrease in the fluorescence intensity by standardizing the fluorescence intensity. can.
  • the F-number of the first optical system 243A is larger than the F-number of the second optical system 243B.
  • the ratio of the fluorescence to the reference light can be accurately calculated by taking the order of the intensity of the light (reference light) as a close order.
  • the excitation light and the treatment light may be in the same wavelength band (same center wavelength) or different wavelength bands (center wavelength).
  • the wavelength band of the excitation light is set to 690 nm, which is the same as that of the therapeutic light, the light penetrates to the inside because the 690 nm is in the near-infrared region.
  • stable reference light can be obtained that does not depend on the fine uneven structure of the surface.
  • the therapeutic light excitation light
  • the excitation light may be emitted from the treatment tool 62, and the excitation light source 312 may not be provided.
  • the first optical system 243A has a therapeutic light (excitation light) transmittance of 1% or more and 30% or less in the therapeutic light (center wavelength 690 nm) in photoimmunotherapy.
  • the irradiation range of the therapeutic light can be confirmed in the image.
  • the irradiation range can be adjusted while checking the image, and the irradiation position of the therapeutic light can be set accurately.
  • the light source device 3 is separate from the processing device 4 in the above-described embodiment, the light source device 3 and the processing device 4 may be integrated. Further, in the embodiment, an example in which the therapeutic light is emitted by the treatment tool has been described, but the light source device 3 may be configured to emit the therapeutic light.
  • the light that has passed through the first optical system 243A and the light that has passed through the second optical system 243B are received by a single imaging element 244 in a divided light receiving area.
  • an image sensor that receives light that has passed through the first optical system 243A and an image sensor that receives light that has passed through the second optical system 243B may be provided separately.
  • the endoscope system according to the present invention is explained as being the endoscope system 1 using the flexible endoscope 2 whose observation target is the biological tissue in the subject.
  • endoscopes such as rigid endoscopes, industrial endoscopes for observing material properties, fiberscopes, optical viewing tubes, and other optical endoscopes with a camera head connected to the eyepiece. It can also be applied to a scope system.
  • the fluorescence observation device, photoimmunotherapy system, and fluorescence endoscope according to the present invention are useful for both ensuring the color reproducibility of white light images while accurately grasping the decrease in fluorescence intensity. is.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)

Abstract

A fluorescence observation device according to the present invention is provided with: a first optical system; a second optical system; an image capturing element that subjects images individually formed by the first optical system and the second optical system to photoelectric conversion; an image processing unit that generates a first image based on a first observation image when the fluorescence observation device is in a normal observation mode, the first observation image being formed by the first optical system and being acquired with white light illumination, and that generates a second image based on a second observation image and a third image based on a third observation image when the fluorescence observation device is in a fluorescence observation mode, the second observation image being formed by the second optical system and being a fluorescence image acquired with excitation light illumination, and the third observation image being formed by the first optical system and being formed with excitation light and fluorescence; and a normalization unit that calculates a normalized fluorescence intensity by dividing the fluorescence intensity of the second image by the light intensity of the third image. The first optical system has a first filter having an excitation-light transmittance of 1%-30%, and the second optical system has a second filter having an excitation-light transmittance less than or equal to 0.1%.

Description

蛍光観察装置、光免疫治療システムおよび蛍光内視鏡Fluorescence observation device, photoimmunotherapy system and fluorescence endoscope
 本発明は、蛍光観察装置、光免疫治療システムおよび蛍光内視鏡に関する。 The present invention relates to a fluorescence observation device, a photoimmunotherapy system, and a fluorescence endoscope.
 近年、抗体薬剤を癌細胞に結合させ、近赤外光の照射によって抗体薬剤を活性化させて癌細胞を破壊することによって癌の治療を行う光免疫療法(Photoimmunotherapy:PIT)の研究が進められている。近赤外光が照射された抗体薬剤は、光エネルギーを吸収して分子振動し、発熱する。この熱によって、癌細胞が破壊される。この際、抗体薬剤は、励起されることによって蛍光を発する。この蛍光の強度は、治療効果の指標として用いられる。 In recent years, research has progressed on photoimmunotherapy (PIT), which treats cancer by binding antibody drugs to cancer cells and activating the antibody drugs by irradiation with near-infrared light to destroy cancer cells. ing. The antibody drug irradiated with near-infrared light absorbs light energy, causes molecular vibration, and generates heat. This heat destroys cancer cells. At this time, the antibody drug emits fluorescence when excited. The intensity of this fluorescence is used as an index of therapeutic efficacy.
 PITは、内視鏡を用いて実施されることがある。内視鏡を用いたPITでは、白色光を照明して観察しながら、治療部位に近赤外光を照射して治療を行う。 PIT may be performed using an endoscope. In PIT using an endoscope, treatment is performed by irradiating a treatment site with near-infrared light while illuminating and observing with white light.
 また、蛍光の明るさは、被写体(ここでは抗体薬剤を含む癌細胞)が同じ蛍光強度を発している場合であっても、被写体と撮像装置との距離に依存して変動する。治療効果を正確に把握するためには、蛍光の明るさの変動によらず、正確な蛍光強度を測定する必要がある。これに対し、特許文献1では、励起光とは別に参照光を出射し、蛍光画像と参照光画像との比を算出して、蛍光強度を規格化している。 In addition, the brightness of fluorescence fluctuates depending on the distance between the subject and the imaging device even when the subject (here, cancer cells containing an antibody drug) emits the same fluorescence intensity. In order to accurately understand the therapeutic effect, it is necessary to measure the fluorescence intensity accurately regardless of the fluctuations in fluorescence brightness. On the other hand, in Patent Document 1, reference light is emitted separately from excitation light, and the ratio between the fluorescence image and the reference light image is calculated to normalize the fluorescence intensity.
特開2003-036436号公報JP-A-2003-036436
 ところで、励起光は蛍光に対して強度が高いため、励起光と比して微弱な蛍光を検出するためには、高いOD値の励起カットフィルタが必要となる。高いOD値の励起カットフィルタは赤色領域付近の光透過率が他の色の領域の光透過率と比して低いため、白色光によって観察する場合に、色再現性が損なわれるおそれがあった。 By the way, since excitation light has a high intensity with respect to fluorescence, an excitation cut filter with a high OD value is required in order to detect fluorescence that is weaker than excitation light. An excitation cut filter with a high OD value has a lower light transmittance near the red region than the light transmittance in other color regions, so there is a risk that color reproducibility will be impaired when observing with white light. .
 本発明は、上記に鑑みてなされたものであって、蛍光強度の低下を正確に把握しつつ、白色光画像の色再現性の確保を両立することができる蛍光観察装置、光免疫治療システムおよび蛍光内視鏡を提供することを目的とする。 The present invention has been made in view of the above. The object is to provide a fluorescence endoscope.
 上述した課題を解決し、目的を達成するために、本発明にかかる蛍光観察装置は、通常観察モード時の観察像を結像する第1光学系と、前記第1光学系とは独立して設けられ、蛍光観察モード時の観察像を結像する第2光学系と、前記第1光学系および前記第2光学系がそれぞれ結像した像を光電変換する撮像素子と、前記通常観察モード時は前記第1光学系が形成する第1観察像であって、白色光の照明によって得られる第1観察像に基づく第1画像を生成し、前記蛍光観察モード時は前記第2光学系が形成する第2観察像であって、励起光の照明によって得られる蛍光像である第2観察像に基づく第2画像を生成するとともに、前記第1光学系が形成する第3観察像であって、励起光および蛍光によって形成される第3観察像に基づく第3画像を生成する画像処理部と、前記第2画像の蛍光強度を、前記第3画像の光強度で除算することによって、規格化した蛍光強度を算出する規格化部と、を備え、前記第1光学系は、前記励起光の透過率が1%以上30%以下である第1フィルタを有し、前記第2光学系は、前記励起光の透過率が0.1%以下である第2フィルタを有する。 In order to solve the above-described problems and achieve the object, a fluorescence observation apparatus according to the present invention provides a first optical system that forms an observation image in normal observation mode, and a a second optical system for forming an observation image in the fluorescence observation mode; an imaging element for photoelectrically converting the images formed by the first optical system and the second optical system; is a first observation image formed by the first optical system, which generates a first image based on the first observation image obtained by illumination with white light, and is formed by the second optical system during the fluorescence observation mode A second observation image that generates a second observation image based on the second observation image that is a fluorescence image obtained by illumination with excitation light, and a third observation image formed by the first optical system, An image processing unit that generates a third image based on a third observation image formed by excitation light and fluorescence, and the fluorescence intensity of the second image is normalized by dividing by the light intensity of the third image. a normalization unit that calculates fluorescence intensity, the first optical system has a first filter having a transmittance of the excitation light of 1% or more and 30% or less, and the second optical system includes the It has a second filter with a transmittance of excitation light of 0.1% or less.
 また、本発明にかかる蛍光観察装置は、上記発明において、前記第1光学系のF値は、前記第2光学系のF値よりも大きい。 Further, in the fluorescence observation apparatus according to the present invention, in the above invention, the F-number of the first optical system is larger than the F-number of the second optical system.
 また、本発明にかかる蛍光観察装置は、上記発明において、前記励起光は、中心波長が680nm以上である。 Further, in the fluorescence observation apparatus according to the present invention, in the above invention, the excitation light has a center wavelength of 680 nm or more.
 また、本発明にかかる蛍光観察装置は、上記発明において、前記励起光は、光免疫療法において用いる治療光と同じ波長帯域の光である。 In the fluorescence observation apparatus according to the present invention, the excitation light is light in the same wavelength band as therapeutic light used in photoimmunotherapy.
 また、本発明にかかる光免疫治療システムは、通常観察モード時の観察像を結像する第1光学系と、前記第1光学系とは独立して設けられ、蛍光観察モード時の観察像を結像する第2光学系と、前記第1光学系および前記第2光学系がそれぞれ結像した像を光電変換する撮像素子と、を有する蛍光内視鏡と、前記通常観察モード時は前記第1光学系が形成する第1観察像であって、白色光の照明によって得られる第1観察像に基づく第1画像を生成し、前記蛍光観察モード時は前記第2光学系が形成する第2観察像であって、励起光の照明によって得られる蛍光像である第2観察像に基づく第2画像を生成するとともに、前記第1光学系が形成する第3観察像であって、励起光および蛍光によって形成される第3観察像に基づく第3画像を生成する画像処理部と、前記第2画像の蛍光強度を、前記第3画像の光強度で除算することによって、規格化した蛍光強度を算出する規格化部と、を有する処理装置と、光免疫療法のための治療光を出射する処置具装置と、を備え、前記第1光学系は、前記励起光の透過率が1%以上30%以下である第1フィルタを有し、前記第2光学系は、前記励起光の透過率が0.1%以下である第2フィルタを有する。 Further, in the photoimmunotherapy system according to the present invention, a first optical system for forming an observation image in a normal observation mode and the first optical system are provided independently of the first optical system to form an observation image in a fluorescence observation mode. a fluorescence endoscope comprising: a second optical system that forms an image; and an imaging device that photoelectrically converts the images formed by the first optical system and the second optical system; 1 optical system generates a first observation image based on the first observation image obtained by illumination with white light; generating a second image based on a second observation image, which is an observation image, which is a fluorescent image obtained by illumination with excitation light, and generating a third observation image formed by the first optical system, wherein the excitation light and an image processing unit that generates a third image based on a third observation image formed by fluorescence; and a normalized fluorescence intensity obtained by dividing the fluorescence intensity of the second image by the light intensity of the third image. and a treatment device for emitting therapeutic light for photoimmunotherapy, wherein the first optical system has a transmittance of 1% or more for the excitation light. % or less, and the second optical system has a second filter with a transmittance of the excitation light of 0.1% or less.
 また、本発明にかかる蛍光内視鏡は、光免疫療法のための治療光を出射する処置具を挿通する蛍光内視鏡であって、通常観察モード時の観察像を結像する第1光学系と、前記第1光学系とは独立して設けられ、蛍光観察モード時の観察像を結像する第2光学系と、前記第1光学系および前記第2光学系がそれぞれ結像した像を光電変換する撮像素子と、を備え、前記第1光学系は、前記蛍光観察モード時に出射する励起光の透過率が1%以上30%以下である第1フィルタを有し、前記第2光学系は、前記励起光の透過率が0.1%以下である第2フィルタを有する。 Further, a fluorescence endoscope according to the present invention is a fluorescence endoscope through which a treatment instrument for emitting therapeutic light for photoimmunotherapy is inserted, wherein the first optical system forms an observation image in the normal observation mode. a second optical system that is provided independently of the first optical system and that forms an observation image in a fluorescence observation mode; and an image formed by each of the first optical system and the second optical system. the first optical system has a first filter having a transmittance of 1% or more and 30% or less for excitation light emitted in the fluorescence observation mode; and the second optical system The system has a second filter with a transmittance of 0.1% or less for said excitation light.
 本発明によれば、蛍光強度の低下を正確に把握しつつ、白色光画像の色再現性の確保を両立することができるという効果を奏する。 According to the present invention, it is possible to accurately grasp the decrease in fluorescence intensity while simultaneously ensuring the color reproducibility of the white light image.
図1は、本発明の一実施の形態にかかる内視鏡システムの概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of an endoscope system according to one embodiment of the present invention. 図2は、本発明の一実施の形態にかかる内視鏡システムの概略構成を示すブロック図である。FIG. 2 is a block diagram showing a schematic configuration of an endoscope system according to one embodiment of the invention. 図3は、本発明の一実施の形態にかかる内視鏡の先端構成を説明する図である。FIG. 3 is a diagram for explaining the configuration of the distal end of the endoscope according to one embodiment of the present invention. 図4は、本発明の一実施の形態にかかる内視鏡の撮像光学系の構成を説明する図である。FIG. 4 is a diagram illustrating the configuration of the imaging optical system of the endoscope according to one embodiment of the present invention. 図5は、本発明の一実施の形態にかかる内視鏡の撮像光学系における光学フィルタの一例について説明する図である。FIG. 5 is a diagram illustrating an example of an optical filter in the imaging optical system of the endoscope according to one embodiment of the present invention. 図6は、本発明の一実施の形態にかかる処理装置の処理の一例を示すフローチャートである。FIG. 6 is a flow chart showing an example of processing of the processing device according to the embodiment of the present invention.
 以下、本発明を実施するための形態(以下、「実施の形態」という)を説明する。実施の形態では、本発明に係る蛍光観察装置、光免疫治療システムおよび蛍光内視鏡を含むシステムの一例として、患者等の被検体内の画像を撮像して表示する医療用の内視鏡システムについて説明する。また、この実施の形態によって、この発明が限定されるものではない。さらに、図面の記載において、同一部分には同一の符号を付して説明する。 Hereinafter, a form for carrying out the present invention (hereinafter referred to as "embodiment") will be described. In the embodiment, as an example of a system including a fluorescence observation device, a photoimmunotherapy system, and a fluorescence endoscope according to the present invention, a medical endoscope system that captures and displays an image inside a subject such as a patient. will be explained. Also, the present invention is not limited by this embodiment. Furthermore, in the description of the drawings, the same parts are denoted by the same reference numerals.
(実施の形態)
 図1は、本発明の一実施の形態に係る内視鏡システムの概略構成を示す図である。図2は、本実施の形態に係る内視鏡システムの概略構成を示すブロック図である。図3は、本発明の一実施の形態にかかる内視鏡の先端構成を説明する図である。
(Embodiment)
FIG. 1 is a diagram showing a schematic configuration of an endoscope system according to one embodiment of the present invention. FIG. 2 is a block diagram showing a schematic configuration of the endoscope system according to this embodiment. FIG. 3 is a diagram for explaining the configuration of the distal end of the endoscope according to one embodiment of the present invention.
 図1および図2に示す内視鏡システム1は、被検体内に先端部を挿入することによって被検体の体内画像を撮像する内視鏡2と、内視鏡2の先端から出射する照明光を発生する光源装置3と、内視鏡2が撮像した撮像信号に所定の信号処理を施すとともに、内視鏡システム1全体の動作を統括的に制御する処理装置4と、処理装置4の信号処理によって生成された体内画像を表示する表示装置5と、処置具装置6とを備える。 An endoscope system 1 shown in FIGS. 1 and 2 includes an endoscope 2 that captures an in-vivo image of a subject by inserting its distal end into the subject, and illumination light emitted from the distal end of the endoscope 2. a light source device 3 that generates a signal, a processing device 4 that performs predetermined signal processing on an imaging signal captured by the endoscope 2 and controls the overall operation of the endoscope system 1, and a signal from the processing device 4 A display device 5 for displaying an in-vivo image generated by processing and a treatment instrument device 6 are provided.
 内視鏡2は、可撓性を有する細長形状をなす挿入部21と、挿入部21の基端側に接続され、各種の操作信号の入力を受け付ける操作部22と、操作部22から挿入部21が延びる方向と異なる方向に延び、光源装置3および処理装置4に接続する各種ケーブルを内蔵するユニバーサルコード23と、を備える。内視鏡2は、PITにおいて、被検体内の抗体薬剤からの蛍光を観察するための蛍光内視鏡に相当する。 The endoscope 2 includes an insertion section 21 having a flexible and elongated shape, an operation section 22 connected to the proximal end side of the insertion section 21 and receiving input of various operation signals, and an operation section 22 to the insertion section. and a universal cord 23 extending in a direction different from the direction in which 21 extends and containing various cables connected to the light source device 3 and the processing device 4 . In PIT, the endoscope 2 corresponds to a fluorescence endoscope for observing fluorescence from the antibody drug within the subject.
 挿入部21は、光を受光して光電変換することによって信号を生成する画素が2次元状に配列された撮像素子244を内蔵した先端部24と、複数の湾曲駒によって構成された湾曲自在な湾曲部25と、湾曲部25の基端側に接続され、可撓性を有する長尺状の可撓管部26と、を有する。挿入部21は、被検体の体腔内に挿入され、外光の届かない位置にある生体組織などの被写体を撮像素子244によって撮像する。 The insertion section 21 is a flexible bendable body composed of a distal end section 24 containing an imaging device 244 in which pixels for generating signals by receiving and photoelectrically converting light are arranged two-dimensionally, and a plurality of bending pieces. It has a bending portion 25 and an elongated flexible tubular portion 26 connected to the base end side of the bending portion 25 and having flexibility. The insertion section 21 is inserted into the body cavity of the subject, and the imaging element 244 captures an image of a subject such as living tissue at a position where external light cannot reach.
 操作部22は、湾曲部25を上下方向および左右方向に湾曲させる湾曲ノブ221と、被検体の体腔内に治療光照射装置、生検鉗子、電気メスおよび検査プローブ等の処置具を挿入する処置具挿入部222と、処理装置4に加えて、送気手段、送水手段、画面表示制御等の周辺機器の操作指示信号を入力する操作入力部である複数のスイッチ223と、を有する。処置具挿入部222から挿入される処置具は、先端部24の処置具チャンネル(図示せず)を経由して開口部から表出する(図3参照)。 The operation unit 22 includes a bending knob 221 for bending the bending portion 25 in the vertical direction and the horizontal direction, and a treatment for inserting treatment tools such as a therapeutic light irradiation device, a biopsy forceps, an electric scalpel, and an examination probe into the body cavity of the subject. It has an instrument inserting portion 222 and a plurality of switches 223 as an operation input portion for inputting operation instruction signals for peripheral devices such as air supply means, water supply means, and screen display control in addition to the processing device 4 . A treatment instrument inserted from the treatment instrument insertion portion 222 is exposed from the opening via a treatment instrument channel (not shown) of the distal end portion 24 (see FIG. 3).
 ユニバーサルコード23は、ライトガイド241と、一または複数の信号線をまとめた集合ケーブル245と、を少なくとも内蔵している。ユニバーサルコード23は、操作部22に接続する側と反対側の端部において分岐している。ユニバーサルコード23の分岐端部には、光源装置3に着脱自在なコネクタ231と、処理装置4に着脱自在なコネクタ232とが設けられる。コネクタ231は、端部からライトガイド241の一部が延出している。ユニバーサルコード23は、光源装置3から出射された照明光を、コネクタ231(ライトガイド241)、操作部22および可撓管部26を経て先端部24に伝播する。また、ユニバーサルコード23は、先端部24に設けられた撮像素子244が撮像した画像信号を、コネクタ232を経由して、処理装置4に伝送する。集合ケーブル245は、撮像信号を伝送するための信号線や、撮像素子244を駆動するための駆動信号を伝送するための信号線、内視鏡2(撮像素子244)に関する固有情報などを含む情報を送受信するための信号線を含む。なお、本実施の形態では、信号線を用いて電気信号を伝送するものとして説明するが、光信号を伝送するものであってもよいし、無線通信によって内視鏡2と処理装置4との間で信号を伝送するものであってもよい。 The universal cord 23 incorporates at least a light guide 241 and a collective cable 245 that collects one or more signal lines. The universal cord 23 is branched at the end opposite to the side connected to the operating portion 22 . A connector 231 detachable from the light source device 3 and a connector 232 detachable from the processing device 4 are provided at the branch ends of the universal cord 23 . A part of the light guide 241 extends from the end of the connector 231 . The universal cord 23 propagates the illumination light emitted from the light source device 3 to the distal end portion 24 via the connector 231 (light guide 241 ), the operating portion 22 and the flexible tube portion 26 . In addition, the universal cord 23 transmits an image signal captured by the imaging device 244 provided at the distal end portion 24 to the processing device 4 via the connector 232 . The assembly cable 245 includes signal lines for transmitting imaging signals, signal lines for transmitting drive signals for driving the imaging element 244, and information including unique information about the endoscope 2 (imaging element 244). including signal lines for sending and receiving In this embodiment, an electric signal is transmitted using a signal line. It may transmit a signal between them.
 先端部24は、グラスファイバ等を用いて構成されて光源装置3が発光した光の導光路をなすライトガイド241と、ライトガイド241の先端に設けられた照明レンズ242と、集光用の光学系243と、光学系243の結像位置に設けられ、光学系243が集光した光を受光して電気信号に光電変換して所定の信号処理を施す撮像素子244(撮像部)とを有する。 The distal end portion 24 includes a light guide 241 made of glass fiber or the like and forming a light guide path for light emitted by the light source device 3, an illumination lens 242 provided at the distal end of the light guide 241, and an optical system for condensing light. It has a system 243 and an imaging device 244 (imaging unit) which is provided at an image forming position of the optical system 243 and receives light condensed by the optical system 243, photoelectrically converts it into an electric signal, and performs predetermined signal processing. .
 光学系243は、一または複数のレンズを用いて構成される二つの光学系(第1光学系243Aおよび第2光学系243B)によって構成される。第1光学系243Aおよび第2光学系243Bは、撮像素子244の互いに異なる位置、かつ互いに重ならない位置に観察像を結像させる。先端部24の光学系243が配設される孔部は、例えば、開口にカバーガラスや対物レンズが設けられて水密となっている。
 第1光学系243Aおよび第2光学系243Bは、画角を変化させる光学ズーム機能および焦点を変化させるフォーカス機能を有してもよい。
The optical system 243 is configured by two optical systems (first optical system 243A and second optical system 243B) configured using one or more lenses. The first optical system 243A and the second optical system 243B form observation images at different positions of the imaging device 244 and at positions that do not overlap each other. The hole in which the optical system 243 of the distal end portion 24 is arranged is made watertight by, for example, providing a cover glass or an objective lens in the opening.
The first optical system 243A and the second optical system 243B may have an optical zoom function that changes the angle of view and a focus function that changes the focus.
 撮像素子244は、光学系243からの光を光電変換して電気信号(画像信号)を生成する。具体的には、撮像素子244は、光量に応じた電荷を蓄積するフォトダイオードや、フォトダイオードから転送される電荷を電圧レベルに変換するコンデンサなどをそれぞれ有する複数の画素がマトリックス状に配列され、各画素が第1光学系243Aおよび第2光学系243Bからの光を光電変換して電気信号を生成する受光部244aと、受光部244aの複数の画素のうち読み出し対象として任意に設定された画素が生成した電気信号を順次読み出して、画像信号として出力する読み出し部244bとを有する。撮像素子244は、例えばCCD(Charge Coupled Device)イメージセンサや、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサを用いて実現される。 The imaging element 244 photoelectrically converts the light from the optical system 243 to generate an electric signal (image signal). Specifically, the image sensor 244 has a plurality of pixels arranged in a matrix, each having a photodiode that accumulates electric charge according to the amount of light, a capacitor that converts the electric charge transferred from the photodiode into a voltage level, and the like. A light receiving section 244a in which each pixel photoelectrically converts light from the first optical system 243A and the second optical system 243B to generate an electric signal, and a pixel arbitrarily set as a readout target among the plurality of pixels of the light receiving section 244a. and a reading unit 244b for sequentially reading the electrical signals generated by the and outputting them as image signals. The imaging element 244 is implemented using, for example, a CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal Oxide Semiconductor) image sensor.
 図4は、本発明の一実施の形態にかかる内視鏡の撮像光学系の構成を説明する図である。第1光学系243Aおよび第2光学系243Bは、先端部24の内部に設けられる。 FIG. 4 is a diagram explaining the configuration of the imaging optical system of the endoscope according to one embodiment of the present invention. The first optical system 243A and the second optical system 243B are provided inside the distal end portion 24 .
 第1光学系243Aは、一または複数の光学素子からなる第1レンズ251Aと、第1カットフィルタ252Aと、第1絞り253Aと、一または複数の光学素子からなる第2レンズ254Aとを有する。第1カットフィルタ252Aは、励起光の波長帯域の光をカットする。第1絞り253Aは、第1レンズ251Aおよび第1カットフィルタ252Aを通過した光の少なくとも一部を通過させ、第2レンズ254Aに入射する光を絞る。ここでの励起光は、PITにおける抗体薬剤を励起させるための波長帯域の光に相当する。 The first optical system 243A has a first lens 251A consisting of one or more optical elements, a first cut filter 252A, a first diaphragm 253A, and a second lens 254A consisting of one or more optical elements. The first cut filter 252A cuts light in the wavelength band of the excitation light. The first diaphragm 253A passes at least part of the light that has passed through the first lens 251A and the first cut filter 252A, and narrows down the light entering the second lens 254A. The excitation light here corresponds to light in the wavelength band for exciting the antibody drug in PIT.
 第2光学系243Bは、一または複数の光学素子からなる第3レンズ251Bと、第2カットフィルタ252Bと、第2絞り253Bと、一または複数の光学素子からなる第4レンズ254Bとを有する。第2カットフィルタ252Bは、励起光の一部の波長帯域の光をカットする。第2絞り253Bは、第3レンズ251Bおよび第2カットフィルタ252Bを通過した光の少なくとも一部を通過させ、第4レンズ254Bに入射する光を絞る。 The second optical system 243B has a third lens 251B made up of one or more optical elements, a second cut filter 252B, a second diaphragm 253B, and a fourth lens 254B made up of one or more optical elements. The second cut filter 252B cuts light in a partial wavelength band of the excitation light. The second diaphragm 253B passes at least part of the light that has passed through the third lens 251B and the second cut filter 252B, and narrows down the light entering the fourth lens 254B.
 被写体からの光は、第1光学系243Aおよび第2光学系243Bにそれぞれ入射する。ここで、第1光学系243Aおよび第2光学系243Bの焦点距離は同じである。第1光学系243Aおよび第2光学系243Bの焦点が、同じ平面上にあればよく、該平面上の同じ位置であってもよい。 The light from the subject enters the first optical system 243A and the second optical system 243B, respectively. Here, the focal lengths of the first optical system 243A and the second optical system 243B are the same. The focal points of the first optical system 243A and the second optical system 243B need only be on the same plane, and may be at the same position on the plane.
 第1光学系243Aは、撮像素子244の第1光学像受光領域R1に観察像を結像する。第2光学系243Bは、撮像素子244の第2光学像受光領域R2に観察像を結像する。 The first optical system 243A forms an observation image on the first optical image receiving region R 1 of the imaging device 244 . The second optical system 243B forms an observation image on the second optical image receiving region R 2 of the imaging device 244 .
 ここで、第1カットフィルタ252Aの励起光の透過率は、1%以上30%以下に設定される。また、第2カットフィルタ252Bの励起光の透過率は、0.1%以下に設定される。第1カットフィルタ252Aの励起光の透過率を30%以下とすることによって、撮像素子244の受光量が、励起光によって受光可能量の上限値を超えることを抑制する。第1カットフィルタ252Aの励起光の透過率を1%以上とすることによって、撮像素子244が励起光を受光できるため、白色光に基づく白色光画像の色再現性を確保することができる。また、第2カットフィルタ252Bの励起光の透過率を0.1%以下とすることによって、励起光照明時に、蛍光を選択的に取り込むことができる。 Here, the transmittance of the excitation light of the first cut filter 252A is set to 1% or more and 30% or less. Also, the transmittance of the excitation light of the second cut filter 252B is set to 0.1% or less. By setting the transmittance of the excitation light of the first cut filter 252A to 30% or less, the amount of light received by the imaging device 244 is suppressed from exceeding the upper limit of the amount of light that can be received due to the excitation light. By setting the excitation light transmittance of the first cut filter 252A to 1% or more, the imaging device 244 can receive the excitation light, so that the color reproducibility of the white light image based on the white light can be ensured. Further, by setting the excitation light transmittance of the second cut filter 252B to 0.1% or less, fluorescence can be selectively taken in during excitation light illumination.
 図5は、本発明の一実施の形態にかかる内視鏡の撮像光学系における光学フィルタの一例について説明する図である。図5に示す曲線Q1、Q2は、第1カットフィルタ252Aの光透過率を示す。曲線Q1は高い透過率で推移した場合の曲線の一例を示し、曲線Q2は低い透過率で推移した場合の曲線の一例を示す。例えば、図5に示す例では、励起光の中心波長が690nmである場合、第1カットフィルタ252Aの励起光の透過率は、6%以上23%以下の透過率となる。 FIG. 5 is a diagram illustrating an example of an optical filter in the imaging optical system of the endoscope according to one embodiment of the present invention. Curves Q 1 and Q 2 shown in FIG. 5 indicate the light transmittance of the first cut filter 252A. A curve Q1 shows an example of a curve when the transmittance changes at a high level, and a curve Q2 shows an example of a curve when the transmittance changes at a low level. For example, in the example shown in FIG. 5, when the center wavelength of the excitation light is 690 nm, the excitation light transmittance of the first cut filter 252A is 6% or more and 23% or less.
 また、第1絞り253Aの開口の大きさは、第2絞り253Bの開口の大きさよりも小さい。すなわち、第1光学系243AのF値は、第2光学系243BのF値よりも大きい。ここでのF値は、光学系を経て撮像素子244に入射する光の量を表す数値であり、値が小さいほど入射する光量は多くなる。なお、第1絞り253Aおよび第2絞り253Bは、図4では同じ部材に形成される例を示しているが、互いに異なる部材にそれぞれ形成されるものであってもよい。 Also, the size of the aperture of the first diaphragm 253A is smaller than the size of the aperture of the second diaphragm 253B. That is, the F-number of the first optical system 243A is larger than the F-number of the second optical system 243B. The F value here is a numerical value representing the amount of light incident on the image sensor 244 via the optical system, and the smaller the value, the greater the amount of incident light. Although the first diaphragm 253A and the second diaphragm 253B are formed in the same member in FIG. 4, they may be formed in different members.
 また、第1光学系243AのOD値は、第2光学系243BのOD値と比して小さい。このため、第2光学系243Bは、第1光学系243Aと比して、OD値が高く、F値が小さい光学素子によって構成される。 Also, the OD value of the first optical system 243A is smaller than the OD value of the second optical system 243B. Therefore, the second optical system 243B is composed of optical elements having a higher OD value and a smaller F value than those of the first optical system 243A.
 なお、内視鏡2は、撮像素子244が各種動作を実行するための実行プログラムおよび制御プログラムや、内視鏡2の識別情報を含むデータを記憶するメモリを有する(図示せず)。識別情報には、内視鏡2の固有情報(ID)、年式、スペック情報、および伝送方式等が含まれる。また、メモリは、撮像素子244が生成した画像データ等を一時的に記憶してもよい。 Note that the endoscope 2 has a memory (not shown) that stores an execution program and a control program for the imaging element 244 to perform various operations, and data including identification information of the endoscope 2 . The identification information includes unique information (ID) of the endoscope 2, model year, spec information, transmission method, and the like. The memory may also temporarily store image data and the like generated by the imaging device 244 .
 光源装置3の構成について説明する。光源装置3は、光源部31と、照明制御部32と、光源ドライバ33とを備える。光源部31は、照明制御部32の制御のもと、被写体(被検体)に対して、異なる露光量の照明光を順次切り替えて出射する。 The configuration of the light source device 3 will be described. The light source device 3 includes a light source section 31 , an illumination control section 32 and a light source driver 33 . Under the control of the illumination control unit 32, the light source unit 31 sequentially switches illumination light with different exposure amounts and emits the illumination light toward the object (subject).
 光源部31は、光源や、一または複数のレンズ等を用いて構成され、光源の駆動により光(照明光)を出射する。光源部31発生した光は、ライトガイド241を経由して先端部24の先端から被写体に向けて出射される。光源部31は、白色光源311と、励起光源312とを有する。 The light source unit 31 is configured using a light source, one or more lenses, etc., and emits light (illumination light) by driving the light source. The light generated by the light source section 31 is emitted from the tip of the tip section 24 toward the subject via the light guide 241 . The light source unit 31 has a white light source 311 and an excitation light source 312 .
 白色光源311は、可視広域の波長帯域を有する光(白色光)を出射する。白色光源311は、LED光源のほか、レーザー光源、キセノンランプ、ハロゲンランプなどのいずれかの光源を用いて実現される。 The white light source 311 emits light (white light) having a wide visible wavelength band. The white light source 311 is realized using any light source such as a laser light source, a xenon lamp, a halogen lamp, etc., in addition to an LED light source.
 励起光源312は、励起対象(例えばPITであれば抗体薬剤)を励起させるための励起光を出射する。励起光源312は、LED光源や、レーザー光源などの光源を用いて実現される。 The excitation light source 312 emits excitation light for exciting an excitation target (for example, an antibody drug in the case of PIT). The excitation light source 312 is implemented using a light source such as an LED light source or a laser light source.
 照明制御部32は、処理装置4からの制御信号(調光信号)に基づいて、光源部31に供給する電力量を制御するとともに、発光させる光源や、光源の駆動タイミングを制御する。 The lighting control unit 32 controls the amount of power supplied to the light source unit 31 based on the control signal (light control signal) from the processing device 4, and also controls the light source to emit light and the driving timing of the light source.
 光源ドライバ33は、照明制御部32の制御のもと、発光対象の光源に対して電流を供給することにより、光源部31に光を出射させる。 Under the control of the illumination control unit 32, the light source driver 33 causes the light source unit 31 to emit light by supplying current to the light source to be emitted.
 処理装置4の構成について説明する。処理装置4は、画像処理部41と、同期信号生成部42と、入力部43と、制御部44と、記憶部45と、を備える。 The configuration of the processing device 4 will be explained. The processing device 4 includes an image processing section 41 , a synchronization signal generation section 42 , an input section 43 , a control section 44 and a storage section 45 .
 画像処理部41は、内視鏡2から、撮像素子244が撮像した各色の照明光の画像データを受信する。画像処理部41は、内視鏡2からアナログの画像データを受信した場合はA/D変換を行ってデジタルの撮像信号を生成する。また、画像処理部41は、内視鏡2から光信号として画像データを受信した場合は光電変換を行ってデジタルの画像データを生成する。 The image processing unit 41 receives image data of illumination light of each color imaged by the imaging element 244 from the endoscope 2 . When receiving analog image data from the endoscope 2, the image processing unit 41 performs A/D conversion to generate a digital imaging signal. Further, when image data is received as an optical signal from the endoscope 2, the image processing unit 41 performs photoelectric conversion to generate digital image data.
 画像処理部41は、内視鏡2から受信した画像データに対して所定の画像処理を施して画像を生成して表示装置5へ出力したり、画像に基づいて規格化した蛍光強度を算出したりする。画像処理部41は、第1画像生成部411と、第2画像生成部412と、規格化部413とを有する。 The image processing unit 41 performs predetermined image processing on the image data received from the endoscope 2 to generate an image and outputs the image to the display device 5, or calculates the normalized fluorescence intensity based on the image. or The image processing section 41 has a first image generation section 411 , a second image generation section 412 and a normalization section 413 .
 第1画像生成部411は、第1光学系243Aによって結像された、白色光または励起光によって形成される像に基づく第1画像を生成する。第1画像は、白色光に基づいて生成される白色光画像と、励起光に基づいて生成される励起光画像とを含む。 The first image generation unit 411 generates a first image based on an image formed by white light or excitation light, which is imaged by the first optical system 243A. The first image includes a white light image generated based on white light and an excitation light image generated based on excitation light.
 第2画像生成部412は、第2光学系243Bによって結像された、蛍光によって形成される像に基づく第2画像を生成する。 The second image generation unit 412 generates a second image based on the image formed by the fluorescence imaged by the second optical system 243B.
 第1画像生成部411および第2画像生成部412は、所定の画像処理を施すことによって画像を生成する。ここで、所定の画像処理とは、同時化処理、階調補正処理および色補正処理等である。同時化処理は、RGBの各色成分の画像データを同時化する処理である。階調補正処理は、画像データに対して階調の補正を行う処理である。色補正処理は、画像データに対して色調補正を行う処理である。なお、第1画像生成部411および第2画像生成部412は、画像の明るさに応じてゲイン調整してもよい。 The first image generation unit 411 and the second image generation unit 412 generate images by performing predetermined image processing. Here, the predetermined image processing includes synchronization processing, gradation correction processing, color correction processing, and the like. Synchronization processing is processing for synchronizing image data of each color component of RGB. Gradation correction processing is processing for correcting the gradation of image data. Color correction processing is processing for performing color tone correction on image data. Note that the first image generation unit 411 and the second image generation unit 412 may perform gain adjustment according to the brightness of the image.
 規格化部413は、第1画像生成部411が生成した第1画像と、第2画像生成部412が生成した第2画像とをもとに、第2画像における蛍光の強度を規格化した規格化蛍光強度を算出する。 Based on the first image generated by the first image generation unit 411 and the second image generated by the second image generation unit 412, the normalization unit 413 standardizes the fluorescence intensity in the second image. Fluorescence intensity is calculated.
 画像処理部41は、CPU(Central Processing Unit)等の汎用プロセッサや、ASIC(Application Specific Integrated Circuit)等の特定の機能を実行する各種演算回路等の専用プロセッサを用いて構成される。なお、画像処理部41は、R画像データ、G画像データおよびB画像データを保持するフレームメモリを有する構成としてもよい。 The image processing unit 41 is configured using a general-purpose processor such as a CPU (Central Processing Unit) or a dedicated processor such as various arithmetic circuits that execute specific functions such as an ASIC (Application Specific Integrated Circuit). Note that the image processing unit 41 may be configured to have a frame memory that holds the R image data, the G image data and the B image data.
 同期信号生成部42は、処理装置4の動作の基準となるクロック信号(同期信号)を生成するとともに、生成した同期信号を光源装置3や、画像処理部41、制御部44、内視鏡2へ出力する。ここで、同期信号生成部42が生成する同期信号は、水平同期信号と垂直同期信号とを含む。
 このため、光源装置3、画像処理部41、制御部44、内視鏡2は、生成された同期信号によって、互いに同期をとって動作する。
The synchronization signal generation unit 42 generates a clock signal (synchronization signal) that serves as a reference for the operation of the processing device 4, and transmits the generated synchronization signal to the light source device 3, the image processing unit 41, the control unit 44, and the endoscope 2. Output to Here, the synchronizing signal generated by the synchronizing signal generator 42 includes a horizontal synchronizing signal and a vertical synchronizing signal.
Therefore, the light source device 3, the image processing section 41, the control section 44, and the endoscope 2 operate in synchronization with each other by the generated synchronization signal.
 入力部43は、キーボード、マウス、スイッチ、タッチパネルを用いて実現され、内視鏡システム1の動作を指示する動作指示信号等の各種信号の入力を受け付ける。なお、入力部43は、操作部22に設けられたスイッチや、外部のタブレット型のコンピュータなどの可搬型端末を含んでもよい。 The input unit 43 is implemented using a keyboard, a mouse, a switch, and a touch panel, and receives inputs of various signals such as operation instruction signals for instructing the operation of the endoscope system 1 . Note that the input unit 43 may include a switch provided in the operation unit 22 or a portable terminal such as an external tablet computer.
 制御部44は、撮像素子244および光源装置3を含む各構成部の駆動制御、および各構成部に対する情報の入出力制御などを行う。制御部44は、記憶部45に記憶されている撮像制御のための制御情報データ(例えば、読み出しタイミングなど)を参照し、集合ケーブル245に含まれる所定の信号線を経由して駆動信号として撮像素子244へ送信したり、白色光の照明によって得られる画像を観察する通常観察モードと、励起対象の蛍光強度を算出する蛍光観察モードとを切り替えたりする。制御部44は、CPU等の汎用プロセッサやASIC等の特定の機能を実行する各種演算回路等の専用プロセッサを用いて構成される。 The control unit 44 performs drive control of each component including the imaging element 244 and the light source device 3, input/output control of information to each component, and the like. The control unit 44 refers to control information data (for example, readout timing) for imaging control stored in the storage unit 45, and performs imaging as a drive signal via a predetermined signal line included in the collective cable 245. It transmits to the element 244 and switches between a normal observation mode in which an image obtained by illumination with white light is observed and a fluorescence observation mode in which fluorescence intensity of an excitation target is calculated. The control unit 44 is configured using a general-purpose processor such as a CPU or a dedicated processor such as various arithmetic circuits that execute specific functions such as an ASIC.
 記憶部45は、内視鏡システム1を動作させるための各種プログラム、および内視鏡システム1の動作に必要な各種パラメータ等を含むデータを記憶する。また、記憶部45は、処理装置4の識別情報を記憶する。ここで、識別情報には、処理装置4の固有情報(ID)、年式およびスペック情報等が含まれる。 The storage unit 45 stores data including various programs for operating the endoscope system 1 and various parameters necessary for operating the endoscope system 1 . The storage unit 45 also stores identification information of the processing device 4 . Here, the identification information includes unique information (ID) of the processing device 4, model year, specification information, and the like.
 また、記憶部45は、処理装置4の画像取得処理方法を実行するための画像取得処理プログラムを含む各種プログラムを記憶する。各種プログラムは、ハードディスク、フラッシュメモリ、CD-ROM、DVD-ROM、フレキシブルディスク等のコンピュータ読み取り可能な記録媒体に記録して広く流通させることも可能である。なお、上述した各種プログラムは、通信ネットワークを経由してダウンロードすることによって取得することも可能である。ここでいう通信ネットワークは、例えば既存の公衆回線網、LAN(Local Area Network)、WAN(Wide Area Network)などによって実現されるものであり、有線、無線を問わない。 The storage unit 45 also stores various programs including an image acquisition processing program for executing the image acquisition processing method of the processing device 4 . Various programs can be recorded on computer-readable recording media such as hard disks, flash memories, CD-ROMs, DVD-ROMs, flexible disks, etc., and can be widely distributed. The various programs described above can also be obtained by downloading via a communication network. The communication network here is realized by, for example, an existing public line network, LAN (Local Area Network), WAN (Wide Area Network), etc., and it does not matter whether it is wired or wireless.
 以上の構成を有する記憶部45は、各種プログラム等が予めインストールされたROM(Read Only Memory)、および各処理の演算パラメータやデータ等を記憶するRAMやハードディスク等を用いて実現される。 The storage unit 45 having the above configuration is implemented using a ROM (Read Only Memory) in which various programs etc. are pre-installed, and a RAM, hard disk, etc. for storing calculation parameters, data, etc. for each process.
 表示装置5は、映像ケーブルを経由して処理装置4(画像処理部41)から受信した画像信号に対応する表示画像を表示する。表示装置5は、液晶または有機EL(Electro Luminescence)等のモニタを用いて構成される。 The display device 5 displays a display image corresponding to the image signal received from the processing device 4 (image processing unit 41) via the video cable. The display device 5 is configured using a monitor such as liquid crystal or organic EL (Electro Luminescence).
 処置具装置6は、処置具操作部61と、処置具操作部61から延びる可撓性の処置具62とを有する。PITに使用される処置具62は、治療のための光(以下、治療光という)を出射する。処置具操作部61は、処置具62の治療光の出射を制御する。処置具操作部61は、操作入力部611を有する。操作入力部611は、例えば、スイッチ等によって構成される。処置具操作部61は、操作入力部611への入力(例えばスイッチの押下)によって、処置具62に治療光を出射させる。なお、処置具装置6において、治療光を発する光源は、処置具62に設けられてもよいし、処置具操作部61に設けられてもよい。光源は、半導体レーザーや、LED等を用いて実現される。治療光は、例えばPITの場合、680nm以上の波長帯域の光であり、例えば690nmを中心波長とする光である。 The treatment instrument device 6 has a treatment instrument operation section 61 and a flexible treatment instrument 62 extending from the treatment instrument operation section 61 . The treatment instrument 62 used for PIT emits light for treatment (hereinafter referred to as treatment light). The treatment instrument operation section 61 controls emission of therapeutic light from the treatment instrument 62 . The treatment instrument operation section 61 has an operation input section 611 . The operation input unit 611 is composed of, for example, switches. The treatment instrument operating section 61 causes the treatment instrument 62 to emit therapeutic light in response to an input to the operation input section 611 (for example, pressing a switch). In addition, in the treatment instrument device 6 , the light source that emits the therapeutic light may be provided in the treatment instrument 62 or may be provided in the treatment instrument operation section 61 . A light source is implemented using a semiconductor laser, an LED, or the like. For example, in the case of PIT, therapeutic light is light in a wavelength band of 680 nm or more, for example, light having a center wavelength of 690 nm.
 続いて、処理装置4における処理について、図6を参照して説明する。図6は、本発明の一実施の形態にかかる処理装置の処理の一例を示すフローチャートである。図6は、PITにおいて、白色光を照射して、被写体(ここでは抗体薬剤を結合させた癌細胞を含む領域)を探索し、該被写体に治療光を照射して、蛍光強度から治療効果を確認する際の処理を示す。 Next, processing in the processing device 4 will be described with reference to FIG. FIG. 6 is a flow chart showing an example of processing of the processing device according to the embodiment of the present invention. FIG. 6 shows that in PIT, white light is emitted to search for a subject (here, a region containing cancer cells bound to an antibody drug), the subject is irradiated with therapeutic light, and the therapeutic effect is estimated from the fluorescence intensity. Indicates the processing for confirmation.
 処理装置4では、例えば内視鏡2が起動されると、観察モードを通常観察モードに設定する(ステップS101)。通常観察モードにおいて、制御部44は、光源装置3に白色光を出射させる(ステップS102)。白色光の出射によって、内視鏡2から被写体に白色光が照射される。 For example, when the endoscope 2 is activated, the processing device 4 sets the observation mode to the normal observation mode (step S101). In the normal observation mode, the controller 44 causes the light source device 3 to emit white light (step S102). By emitting the white light, the endoscope 2 irradiates the subject with the white light.
 第1画像生成部411は、第1光学系243Aが結像した像に基づく白色光画像(第1画像)を生成する(ステップS103)。具体的には、第1画像生成部411は、撮像素子244の第1光学像受光領域R1の信号値に基づいて白色光画像を生成する。生成された白色光画像は、表示装置5に表示される。 The first image generator 411 generates a white light image (first image) based on the image formed by the first optical system 243A (step S103). Specifically, the first image generating section 411 generates a white light image based on the signal value of the first optical image receiving region R 1 of the imaging device 244 . The generated white light image is displayed on the display device 5 .
 その後、制御部44は、入力部43に観察モードの変更を指示する入力を受け付けたか否かを判断する(ステップS104)。この際の観察モードの変更は、通常観察モードから蛍光観察モードへの変更である。制御部44は、観察モードの変更、すなわち蛍光観察モードへの変更の指示がない場合(ステップS104:No)、ステップS102に移行して、通常観察モードを維持する。これに対し、制御部44は、蛍光観察モードへの変更の指示があった場合(ステップS104:Yes)、ステップS105に移行する。 After that, the control unit 44 determines whether or not the input unit 43 has received an input instructing to change the observation mode (step S104). The observation mode change at this time is a change from normal observation mode to fluorescence observation mode. If there is no instruction to change the observation mode, that is, to change to the fluorescence observation mode (step S104: No), the controller 44 proceeds to step S102 and maintains the normal observation mode. On the other hand, when an instruction to change to the fluorescence observation mode is given (step S104: Yes), the control unit 44 proceeds to step S105.
 蛍光観察モードでは、医師等の術者によって、処置具62から被写体に治療光が照射される。この際、PITでは、治療光である近赤外光の照射によって抗体薬剤を活性化させて癌細胞を破壊する治療が施される。 In the fluorescence observation mode, an operator such as a doctor irradiates the subject with therapeutic light from the treatment tool 62 . At this time, in PIT, a treatment is performed in which an antibody drug is activated by irradiation with near-infrared light, which is therapeutic light, to destroy cancer cells.
 制御部44は、蛍光観察モードにおいて、光源装置3に励起光を出射させる(ステップS105)。励起光の出射によって、内視鏡2から被写体に励起光が照射され、被写体の抗体薬剤が励起されて蛍光を発する。この際、第2光学系243Bは、被写体が発した蛍光を撮像素子244に結像する。また、第1光学系243Aは、被写体が反射した励起光、および蛍光を撮像素子244に結像する。この第1光学系243Aを通過する励起光および蛍光を参照光という。 The control unit 44 causes the light source device 3 to emit excitation light in the fluorescence observation mode (step S105). When the excitation light is emitted, the endoscope 2 irradiates the subject with the excitation light, and the antibody drug in the subject is excited to emit fluorescence. At this time, the second optical system 243B forms an image of the fluorescence emitted by the subject on the imaging element 244. FIG. In addition, the first optical system 243A forms an image of the excitation light reflected by the subject and the fluorescence on the imaging element 244. FIG. The excitation light and fluorescence that pass through the first optical system 243A are referred to as reference light.
 ステップS106において、第2画像生成部412は、第2光学系243Bが結像した像に基づく蛍光画像(第2画像)を生成するとともに、第1画像生成部411が、第1光学系243Aが結像した像に基づく参照光画像(第3画像)を生成する。具体的には、第2画像生成部412が、撮像素子244の第2光学像受光領域R2の信号値に基づいて蛍光画像を生成し、第1画像生成部411が、撮像素子244の第1光学像受光領域R1の信号値に基づいて参照光画像を生成する。 In step S106, the second image generator 412 generates a fluorescence image (second image) based on the image formed by the second optical system 243B, and the first image generator 411 causes the first optical system 243A to A reference light image (third image) is generated based on the formed image. Specifically, the second image generating unit 412 generates a fluorescence image based on the signal value of the second optical image receiving region R 2 of the imaging device 244 , and the first image generating unit 411 generates the 1 A reference light image is generated based on the signal value of the optical image receiving region R1 .
 規格化部413は、ステップS106において生成された蛍光画像および参照光画像に基づいて、蛍光画像を規格化する(ステップS107)。規格化部413は、蛍光画像における蛍光強度を、参照光画像の光強度で除することによって、規格化した蛍光強度(規格化蛍光強度)を算出する。この際の蛍光強度および光強度は、各画素の輝度値に相当し、画素ごとに算出される。すなわち、規格化蛍光強度は、画素ごとに生成される。 The normalization unit 413 normalizes the fluorescence image based on the fluorescence image and the reference light image generated in step S106 (step S107). The normalization unit 413 calculates the normalized fluorescence intensity (normalized fluorescence intensity) by dividing the fluorescence intensity in the fluorescence image by the light intensity of the reference light image. The fluorescence intensity and light intensity at this time correspond to the luminance value of each pixel, and are calculated for each pixel. That is, normalized fluorescence intensity is generated for each pixel.
 術者は、規格化蛍光強度を確認することによって、被写体の各位置(画素位置)における治療効果を確認することができる。この際、蛍光強度が規格化されているため、光学系(例えば第1レンズ251Aまたは第3レンズ251B)と被写体との距離に起因する蛍光強度のゆらぎを排除した、正確な治療効果の確認を行うことができる。 The operator can confirm the therapeutic effect at each position (pixel position) on the subject by confirming the normalized fluorescence intensity. At this time, since the fluorescence intensity is standardized, it is possible to confirm an accurate therapeutic effect by eliminating fluctuations in the fluorescence intensity caused by the distance between the optical system (eg, the first lens 251A or the third lens 251B) and the subject. It can be carried out.
 その後、制御部44は、処理を終了するか否かを判断する(ステップS108)。制御部44は、入力部43への終了指示の有無や、内視鏡2の電源のオンオフ状態に基づいて処理を終了するか否かを判断する。ここで、制御部44は、処理を終了すると判断した場合(ステップS108:Yes)、処理を終了する。これに対し、制御部44は、処理を継続すると判断した場合(ステップS108:No)、ステップS109に移行する。 After that, the control unit 44 determines whether or not to end the process (step S108). The control unit 44 determines whether or not to end the process based on the presence or absence of an end instruction to the input unit 43 and the power on/off state of the endoscope 2 . Here, when the control unit 44 determines to end the process (step S108: Yes), the process ends. On the other hand, when the control unit 44 determines to continue the process (step S108: No), the process proceeds to step S109.
 ステップS109において、制御部44は、規格化蛍光強度を再取得するか否かを判断する。制御部44は、入力部43への再取得指示の有無に基づいて処理を終了するか否かを判断する。ここで、制御部44は、規格化蛍光強度を再取得すると判断した場合(ステップS109:Yes)、ステップS105に移行して、規格化蛍光強度の算出処理行う。これに対し、制御部44は、規格化蛍光強度を再取得しないと判断した場合(ステップS109:No)、ステップS101に移行し、通常観察モードに切り替える。 In step S109, the control unit 44 determines whether or not to reacquire the normalized fluorescence intensity. The control unit 44 determines whether or not to end the process based on whether or not there is a reacquisition instruction to the input unit 43 . Here, if the control unit 44 determines to reacquire the normalized fluorescence intensity (step S109: Yes), the control unit 44 proceeds to step S105 and performs normalized fluorescence intensity calculation processing. On the other hand, when the control unit 44 determines not to acquire the normalized fluorescence intensity again (step S109: No), the process proceeds to step S101 and switches to the normal observation mode.
 以上説明した実施の形態では、通常観察モードにおける白色光画像を生成するための光学像を形成する第1光学系243Aであって、励起光の透過率が1%以上30%以下の第1励起カットフィルタ253Aを有する第1光学系243Aと、蛍光観察モードにおける蛍光画像を生成するための第2光学系243Bであって、励起光の透過率が0.1%以下の第2励起カットフィルタ253Bを有する第2光学系243Bとを備え、蛍光観察モード時に、第1光学系243Aによって形成される像に基づいて参照画像を生成し、この参照画像を用いて規格化蛍光強度を算出する。また、第1光学系243Aの第1励起カットフィルタ253Aの励起光の透過率を1%以上30%以下としているため、カットフィルタに起因する白色画像の色再現性の低下を抑制することができる。さらに、第2光学系243Bの第2励起カットフィルタ253Bの励起光の透過率を0.1%以下としているため、励起光によって撮像素子244が受光する光量が飽和するのを抑制できる。本実施の形態によれば、蛍光強度を規格化することによって蛍光強度の低下を正確に把握しつつ、励起カットフィルタの透過率の調整によって白色光画像の色再現性の確保を両立することができる。 In the embodiment described above, the first optical system 243A that forms an optical image for generating a white light image in the normal observation mode has a first excitation light transmittance of 1% or more and 30% or less. A first optical system 243A having a cut filter 253A and a second optical system 243B for generating a fluorescence image in the fluorescence observation mode, the second excitation cut filter 253B having an excitation light transmittance of 0.1% or less. A reference image is generated based on the image formed by the first optical system 243A in the fluorescence observation mode, and the normalized fluorescence intensity is calculated using this reference image. In addition, since the transmittance of the excitation light of the first excitation cut filter 253A of the first optical system 243A is 1% or more and 30% or less, it is possible to suppress deterioration in color reproducibility of the white image due to the cut filter. . Furthermore, since the excitation light transmittance of the second excitation cut filter 253B of the second optical system 243B is set to 0.1% or less, it is possible to suppress saturation of the amount of light received by the imaging device 244 due to the excitation light. According to the present embodiment, it is possible to ensure the color reproducibility of the white light image by adjusting the transmittance of the excitation cut filter while accurately grasping the decrease in the fluorescence intensity by standardizing the fluorescence intensity. can.
 また、上述した実施の形態では、第1光学系243AのF値を、第2光学系243BのF値よりも大きくしているため、強度が弱い蛍光の明るさを確保しつつ、蛍光と励起光(参照光)との強度のオーダーを近いオーダーとして、蛍光と参照光との比を正確に算出することができる。 Further, in the above-described embodiment, the F-number of the first optical system 243A is larger than the F-number of the second optical system 243B. The ratio of the fluorescence to the reference light can be accurately calculated by taking the order of the intensity of the light (reference light) as a close order.
 また、上述した実施の形態において、励起光と治療光とは、同じ波長帯域(中心波長が同じ)であってもよいし、互いに異なる波長帯域(中心波長)であってもよい。このうち、例えば励起光の波長帯域を、治療光と同じである690nmとした場合、例えば690nmは近赤外領域であるため、光が内部まで進入する。光が生体内部まで進入した場合、表面の微細な凹凸構造に依存しない安定した参照光を得ることができる。なお、励起光を治療光と共通で用いる場合、処置具62によって治療光(励起光)を照射すればよく、励起光源312を有しない構成としてもよい。 Further, in the above-described embodiment, the excitation light and the treatment light may be in the same wavelength band (same center wavelength) or different wavelength bands (center wavelength). Among them, for example, if the wavelength band of the excitation light is set to 690 nm, which is the same as that of the therapeutic light, the light penetrates to the inside because the 690 nm is in the near-infrared region. When the light penetrates into the living body, stable reference light can be obtained that does not depend on the fine uneven structure of the surface. When the excitation light and the therapeutic light are used in common, the therapeutic light (excitation light) may be emitted from the treatment tool 62, and the excitation light source 312 may not be provided.
 また、上述した実施の形態では、光免疫療法での治療光(中心波長690nm)において、第1光学系243Aは、治療光(励起光)の透過率を1%以上30%以下にしているため、治療光の照射範囲を画像で確認できる。本実施の形態によれば、画像を確認しながら照射範囲を調整でき、治療光の照射位置を正確に設定することができる。 Further, in the above-described embodiment, the first optical system 243A has a therapeutic light (excitation light) transmittance of 1% or more and 30% or less in the therapeutic light (center wavelength 690 nm) in photoimmunotherapy. , the irradiation range of the therapeutic light can be confirmed in the image. According to this embodiment, the irradiation range can be adjusted while checking the image, and the irradiation position of the therapeutic light can be set accurately.
 なお、上述した実施の形態では、光源装置3が、処理装置4とは別体である例を説明したが、光源装置3および処理装置4を一体化した構成としてもよい。また、実施の形態では、処置具によって治療光を照射する例について説明したが、光源装置3が治療光を出射する構成としてもよい。 Although the light source device 3 is separate from the processing device 4 in the above-described embodiment, the light source device 3 and the processing device 4 may be integrated. Further, in the embodiment, an example in which the therapeutic light is emitted by the treatment tool has been described, but the light source device 3 may be configured to emit the therapeutic light.
 また、上述した実施の形態では、第1光学系243Aを通過した光と、第2光学系243Bを通過した光とを、一枚の撮像素子244によって、受光領域を分割して受光する例について説明したが、第1光学系243Aを通過した光を受光する撮像素子、および、第2光学系243Bを通過した光を受光する撮像素子を、個別に設ける構成としてもよい。 Further, in the above-described embodiment, the light that has passed through the first optical system 243A and the light that has passed through the second optical system 243B are received by a single imaging element 244 in a divided light receiving area. As described above, an image sensor that receives light that has passed through the first optical system 243A and an image sensor that receives light that has passed through the second optical system 243B may be provided separately.
 また、上述した実施の形態では、本発明にかかる内視鏡システムが、観察対象が被検体内の生体組織などである軟性の内視鏡2を用いた内視鏡システム1であるものとして説明したが、硬性の内視鏡や、材料の特性を観測する工業用の内視鏡、ファイバースコープ、光学視管などの光学内視鏡の接眼部にカメラヘッドを接続したものを用いた内視鏡システムであっても適用できる。 Further, in the above-described embodiment, the endoscope system according to the present invention is explained as being the endoscope system 1 using the flexible endoscope 2 whose observation target is the biological tissue in the subject. However, there are many types of endoscopes, such as rigid endoscopes, industrial endoscopes for observing material properties, fiberscopes, optical viewing tubes, and other optical endoscopes with a camera head connected to the eyepiece. It can also be applied to a scope system.
 以上のように、本発明にかかる蛍光観察装置、光免疫治療システムおよび蛍光内視鏡は、蛍光強度の低下を正確に把握しつつ、白色光画像の色再現性の確保を両立するのに有用である。 INDUSTRIAL APPLICABILITY As described above, the fluorescence observation device, photoimmunotherapy system, and fluorescence endoscope according to the present invention are useful for both ensuring the color reproducibility of white light images while accurately grasping the decrease in fluorescence intensity. is.
 1 内視鏡システム
 2 内視鏡
 3 光源装置
 4 処理装置
 5 表示装置
 6 処置具装置
 21 挿入部
 22 操作部
 23 ユニバーサルコード
 24 先端部
 25 湾曲部
 26 可撓管部
 31 光源部
 32 照明制御部
 33 光源ドライバ
 41 画像処理部
 42 同期信号生成部
 43 入力部
 44 制御部
 45 記憶部
 61 処置具操作部
 62 処置具
 311 白色光源
 312 励起光源
 411 第1画像生成部
 412 第2画像生成部
 413 規格化部
Reference Signs List 1 endoscope system 2 endoscope 3 light source device 4 processing device 5 display device 6 treatment device device 21 insertion section 22 operation section 23 universal cord 24 distal end section 25 bending section 26 flexible tube section 31 light source section 32 illumination control section 33 Light source driver 41 Image processing unit 42 Synchronization signal generation unit 43 Input unit 44 Control unit 45 Storage unit 61 Treatment instrument operation unit 62 Treatment instrument 311 White light source 312 Excitation light source 411 First image generation unit 412 Second image generation unit 413 Normalization unit

Claims (6)

  1.  通常観察モード時の観察像を結像する第1光学系と、
     前記第1光学系とは独立して設けられ、蛍光観察モード時の観察像を結像する第2光学系と、
     前記第1光学系および前記第2光学系がそれぞれ結像した像を光電変換する撮像素子と、
     前記通常観察モード時は前記第1光学系が形成する第1観察像であって、白色光の照明によって得られる第1観察像に基づく第1画像を生成し、前記蛍光観察モード時は前記第2光学系が形成する第2観察像であって、励起光の照明によって得られる蛍光像である第2観察像に基づく第2画像を生成するとともに、前記第1光学系が形成する第3観察像であって、励起光および蛍光によって形成される第3観察像に基づく第3画像を生成する画像処理部と、
     前記第2画像の蛍光強度を、前記第3画像の光強度で除算することによって、規格化した蛍光強度を算出する規格化部と、
     を備え、
     前記第1光学系は、前記励起光の透過率が1%以上30%以下である第1フィルタを有し、
     前記第2光学系は、前記励起光の透過率が0.1%以下である第2フィルタを有する、
     蛍光観察装置。
    a first optical system that forms an observation image in normal observation mode;
    a second optical system provided independently of the first optical system for forming an observation image in a fluorescence observation mode;
    an imaging device that photoelectrically converts images respectively formed by the first optical system and the second optical system;
    During the normal observation mode, the first observation image formed by the first optical system is generated based on the first observation image obtained by illumination with white light, and during the fluorescence observation mode, the first observation image is generated. generating a second image based on a second observation image formed by two optical systems, which is a fluorescent image obtained by illumination with excitation light, and a third observation formed by the first optical system; an image processing unit that generates a third image based on a third observation image formed by excitation light and fluorescence;
    a normalization unit that calculates a normalized fluorescence intensity by dividing the fluorescence intensity of the second image by the light intensity of the third image;
    with
    The first optical system has a first filter having a transmittance of the excitation light of 1% or more and 30% or less,
    The second optical system has a second filter with a transmittance of the excitation light of 0.1% or less,
    Fluorescence observation device.
  2.  前記第1光学系のF値は、前記第2光学系のF値よりも大きい、
     請求項1に記載の蛍光観察装置。
    The F-number of the first optical system is larger than the F-number of the second optical system,
    The fluorescence observation device according to claim 1.
  3.  前記励起光は、中心波長が680nm以上である、
     請求項1に記載の蛍光観察装置。
    The excitation light has a center wavelength of 680 nm or more,
    The fluorescence observation device according to claim 1.
  4.  前記励起光は、光免疫療法において用いる治療光と同じ波長帯域の光である、
     請求項1に記載の蛍光観察装置。
    The excitation light is light in the same wavelength band as the therapeutic light used in photoimmunotherapy,
    The fluorescence observation device according to claim 1.
  5.  通常観察モード時の観察像を結像する第1光学系と、
     前記第1光学系とは独立して設けられ、蛍光観察モード時の観察像を結像する第2光学系と、
     前記第1光学系および前記第2光学系がそれぞれ結像した像を光電変換する撮像素子と、
     を有する蛍光内視鏡と、
     前記通常観察モード時は前記第1光学系が形成する第1観察像であって、白色光の照明によって得られる第1観察像に基づく第1画像を生成し、前記蛍光観察モード時は前記第2光学系が形成する第2観察像であって、励起光の照明によって得られる蛍光像である第2観察像に基づく第2画像を生成するとともに、前記第1光学系が形成する第3観察像であって、励起光および蛍光によって形成される第3観察像に基づく第3画像を生成する画像処理部と、
     前記第2画像の蛍光強度を、前記第3画像の光強度で除算することによって、規格化した蛍光強度を算出する規格化部と、
     を有する処理装置と、
     光免疫療法のための治療光を出射する処置具装置と、
     を備え、
     前記第1光学系は、前記励起光の透過率が1%以上30%以下である第1フィルタを有し、
     前記第2光学系は、前記励起光の透過率が0.1%以下である第2フィルタを有する、
     光免疫治療システム。
    a first optical system that forms an observation image in normal observation mode;
    a second optical system provided independently of the first optical system for forming an observation image in a fluorescence observation mode;
    an imaging device that photoelectrically converts images respectively formed by the first optical system and the second optical system;
    a fluorescence endoscope having
    During the normal observation mode, the first observation image formed by the first optical system is generated based on the first observation image obtained by illumination with white light, and during the fluorescence observation mode, the first observation image is generated. generating a second image based on a second observation image formed by two optical systems, which is a fluorescence image obtained by illumination with excitation light, and a third observation formed by the first optical system; an image processing unit that generates a third image based on a third observation image formed by excitation light and fluorescence;
    a normalization unit that calculates a normalized fluorescence intensity by dividing the fluorescence intensity of the second image by the light intensity of the third image;
    a processing device having
    a treatment device for emitting therapeutic light for photoimmunotherapy;
    with
    The first optical system has a first filter having a transmittance of the excitation light of 1% or more and 30% or less,
    The second optical system has a second filter with a transmittance of the excitation light of 0.1% or less,
    Photoimmunotherapy system.
  6.  光免疫療法のための治療光を出射する処置具を挿通する蛍光内視鏡であって、
     通常観察モード時の観察像を結像する第1光学系と、
     前記第1光学系とは独立して設けられ、蛍光観察モード時の観察像を結像する第2光学系と、
     前記第1光学系および前記第2光学系がそれぞれ結像した像を光電変換する撮像素子と、
     を備え、
     前記第1光学系は、前記蛍光観察モード時に出射する励起光の透過率が1%以上30%以下である第1フィルタを有し、
     前記第2光学系は、前記励起光の透過率が0.1%以下である第2フィルタを有する、
     蛍光内視鏡。
    A fluorescence endoscope through which a treatment instrument for emitting therapeutic light for photoimmunotherapy is inserted,
    a first optical system that forms an observation image in normal observation mode;
    a second optical system provided independently of the first optical system for forming an observation image in a fluorescence observation mode;
    an imaging device that photoelectrically converts images respectively formed by the first optical system and the second optical system;
    with
    The first optical system has a first filter having a transmittance of 1% or more and 30% or less for excitation light emitted during the fluorescence observation mode,
    The second optical system has a second filter with a transmittance of the excitation light of 0.1% or less,
    fluorescence endoscopy.
PCT/JP2021/013386 2021-03-29 2021-03-29 Fluorescence observation device, photoimmunotherapy system, and fluorescence endoscope WO2022208629A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/013386 WO2022208629A1 (en) 2021-03-29 2021-03-29 Fluorescence observation device, photoimmunotherapy system, and fluorescence endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/013386 WO2022208629A1 (en) 2021-03-29 2021-03-29 Fluorescence observation device, photoimmunotherapy system, and fluorescence endoscope

Publications (1)

Publication Number Publication Date
WO2022208629A1 true WO2022208629A1 (en) 2022-10-06

Family

ID=83455803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013386 WO2022208629A1 (en) 2021-03-29 2021-03-29 Fluorescence observation device, photoimmunotherapy system, and fluorescence endoscope

Country Status (1)

Country Link
WO (1) WO2022208629A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002336196A (en) * 2001-05-16 2002-11-26 Olympus Optical Co Ltd Endoscopic equipment
JP2011194164A (en) * 2010-03-23 2011-10-06 Olympus Corp Fluorescence observation apparatus
WO2015080215A1 (en) * 2013-11-28 2015-06-04 オリンパス株式会社 Fluorescent observation device
WO2016151888A1 (en) * 2015-03-26 2016-09-29 オリンパス株式会社 Image processing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002336196A (en) * 2001-05-16 2002-11-26 Olympus Optical Co Ltd Endoscopic equipment
JP2011194164A (en) * 2010-03-23 2011-10-06 Olympus Corp Fluorescence observation apparatus
WO2015080215A1 (en) * 2013-11-28 2015-06-04 オリンパス株式会社 Fluorescent observation device
WO2016151888A1 (en) * 2015-03-26 2016-09-29 オリンパス株式会社 Image processing device

Similar Documents

Publication Publication Date Title
JP5669997B1 (en) Imaging device
JP5769892B2 (en) Endoscope
WO2017115442A1 (en) Image processing apparatus, image processing method, and image processing program
EP3085299A1 (en) Endoscopic device
JP5554288B2 (en) ENDOSCOPE SYSTEM, PROCESSOR DEVICE, AND IMAGE CORRECTION METHOD
EP3753470A1 (en) Medical observation system
JP5810016B2 (en) Endoscope system
WO2022208629A1 (en) Fluorescence observation device, photoimmunotherapy system, and fluorescence endoscope
WO2021166090A1 (en) Light source device for endoscope
JP7399151B2 (en) Light source device, medical observation system, adjustment device, lighting method, adjustment method and program
JP6937902B2 (en) Endoscope system
JP5815162B2 (en) Imaging device
JP7235540B2 (en) Medical image processing device and medical observation system
JP7224963B2 (en) Medical controller and medical observation system
WO2020217541A1 (en) Light source unit
WO2023127053A1 (en) Image processing device, photoimmunotherapy system, image processing method, and image processing program
WO2022219783A1 (en) Phototherapy device, phototherapy method, and phototherapy program
WO2023248306A1 (en) Image processing device, phototherapy system, image processing method, image processing program, and phototherapy method
US20230371817A1 (en) Endoscope system
US20240115874A1 (en) Endoscope system and phototherapy method
WO2022230040A1 (en) Phototherapy device, phototherapy method, and phototherapy program
JP7505120B2 (en) Phototherapy device, phototherapy device operation method, and phototherapy program
WO2021181484A1 (en) Medical image processing device, medical imaging device, medical observation system, image processing method, and program
US20210127946A1 (en) Light source device, control method of light source, and endoscope system
CN118302096A (en) Image processing device, photo-immune therapy system, image processing method, and image processing program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934802

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21934802

Country of ref document: EP

Kind code of ref document: A1