WO2022208614A1 - Noise determination device - Google Patents

Noise determination device Download PDF

Info

Publication number
WO2022208614A1
WO2022208614A1 PCT/JP2021/013309 JP2021013309W WO2022208614A1 WO 2022208614 A1 WO2022208614 A1 WO 2022208614A1 JP 2021013309 W JP2021013309 W JP 2021013309W WO 2022208614 A1 WO2022208614 A1 WO 2022208614A1
Authority
WO
WIPO (PCT)
Prior art keywords
noise
electric field
determination
detection circuit
power supply
Prior art date
Application number
PCT/JP2021/013309
Other languages
French (fr)
Japanese (ja)
Inventor
陽一 八田
久生 宮本
Original Assignee
日本ライフライン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ライフライン株式会社 filed Critical 日本ライフライン株式会社
Priority to JP2023509927A priority Critical patent/JP7492651B2/en
Priority to PCT/JP2021/013309 priority patent/WO2022208614A1/en
Publication of WO2022208614A1 publication Critical patent/WO2022208614A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]

Definitions

  • the present invention relates to a noise determiner that measures noise mixed in an electrocardiographic waveform and makes predetermined determinations.
  • Non-Patent Document 1 When using a catheter system equipped with an electrode catheter, power supply (high-frequency power supply), electrocardiogram display, etc., noise (e.g., radiated electric field noise propagating on the AC power line) may mix into the electrocardiogram waveform. There is a case where the data is lost (for example, see Non-Patent Document 1).
  • noise determiner a device that measures the noise situation and makes a predetermined determination in the environment where such a catheter system is used.
  • noise determiner is required to improve the determination accuracy during noise determination. Therefore, it is desirable to provide a noise determiner capable of improving the accuracy of noise determination.
  • a noise determiner detects radiated electric field noise that propagates on an AC power supply line electrically connected to another device different from this noise determination device and mixes in an electrocardiographic waveform. It is provided with a measuring section that performs measurement and a detection circuit that performs predetermined processing based on the radiated electric field noise measured by the measuring section.
  • the measurement unit measures the radiated electric field noise from the detection circuit.
  • the detection circuit includes a determination unit that determines whether or not the noise level of the radiated electric field noise measured by the measurement unit is equal to or greater than a threshold value, and a notification unit that notifies the outside of the noise determination result of the determination unit. and a power supply circuit that supplies operating power to the determination unit and the notification unit based on the power supplied from the other device through the AC power supply line.
  • the ground line electrically connected to the ground terminal of the other device and the ground in the detection circuit are not connected to each other.
  • the radiated electric field noise that propagates on the AC power supply line and mixes in the electrocardiographic waveform is measured by the measurement unit from the detection circuit. Then, noise determination is performed as to whether or not the noise level of the measured radiated electric field noise is equal to or higher than a threshold value, and the result of the noise determination is notified to the outside.
  • noise determination is performed as to whether or not the noise level of the measured radiated electric field noise is equal to or higher than a threshold value, and the result of the noise determination is notified to the outside.
  • the power supply from the other device As it operates, it becomes possible to measure the radiated electric field noise on the detection circuit. As a result, for example, it is not necessary to hold the noise determiner in hand each time the noise is measured.
  • the ground line electrically connected to the ground terminal of the other device and the ground in the detection circuit are disconnected from each other, so that the following occurs. That is, when measuring the radiated electric field noise on the detection circuit, for example, even if the ground terminal of the other device is ungrounded, common mode noise (common mode noise) to the ground of the detection circuit noise) is suppressed.
  • the measuring section may be arranged apart from the ground line. In this case, for example, even if the ground terminal of the other device is not grounded, the following will occur when measuring the radiated electric field noise on the detection circuit. That is, since the stray capacitance between the ground line and the measurement section is reduced, the mixing of common-mode noise components via such stray capacitance is suppressed. As a result, the accuracy of noise determination is further improved.
  • the measurement surface of the radiated electric field noise in the measurement unit may be arranged so as to be substantially perpendicular to the housing surface of the other device.
  • the following will occur when measuring the radiated electric field noise on the detection circuit. That is, since the stray capacitance between the housing surface of the housing of the other device as the frame ground and the measurement surface becomes small, the contamination of the common-mode noise component via such stray capacitance can be suppressed. be done. As a result, the accuracy of noise determination is further improved.
  • the measurement surface of the radiated electric field noise in the measurement unit may be arranged so as to be substantially parallel to the substrate surface of the circuit board on which the detection circuit is mounted.
  • the stray capacitance between the substrate surface and the measurement surface of the circuit board becomes large, so that when measuring the radiated electric field noise on the detection circuit, the measurement sensitivity of the radiated electric field noise is reduced. get higher As a result, the accuracy of noise determination is further improved.
  • examples of the above other devices include an isolation transformer electrically connected to a commercial AC power supply.
  • the ground line electrically connected to the ground terminal of the other device and the ground in the detection circuit are not connected to each other. I did it, so it looks like this: That is, when measuring the radiated electric field noise on the detection circuit, for example, even if the ground terminal of the other device is ungrounded, the influence of the common-mode noise on the ground of the detection circuit is minimized. , can be suppressed. Therefore, it is possible to improve the determination accuracy in noise determination.
  • FIG. 1 is a block diagram schematically showing a schematic configuration example of a catheter system to which a noise determiner according to an embodiment of the present invention is applied;
  • FIG. 2 is a block diagram showing a detailed configuration example of a noise determiner and the like shown in FIG. 1;
  • FIG. 3 is a block diagram showing an arrangement configuration example of each member in the noise determiner and the like shown in FIG. 2;
  • FIG. FIG. 3 is a timing chart schematically showing an example of a waveform of radiated electric field noise;
  • FIG. 3 is a schematic diagram showing an example of frequency characteristics of an electrocardiographic signal and radiation electric field noise;
  • 2 is a flow chart showing an operation example of the noise determiner shown in FIG. 1;
  • FIG. 4 is a block diagram for explaining common-mode noise in noise determination
  • 8 is a schematic diagram showing an example of a noise waveform in each line on the AC power supply line shown in FIG. 7
  • FIG. 10 is another block diagram for explaining common-mode noise in noise determination
  • FIG. 1 is a schematic block diagram showing an example of the schematic configuration of a catheter system to which a noise determiner (noise determiner 4 described later) according to an embodiment of the present invention is applied.
  • This catheter system is installed in a predetermined catheter chamber shown in FIG. Measurement and predetermined judgment, etc., which will be described later, are performed with respect to.
  • four wall outlets (commercial AC power supplies) 20a, 20b, 20c, and 20d are installed on the wall W in the catheterization room shown in FIG. 1 at positions separated from each other.
  • the catheter system shown in FIG. (high-frequency power supply), a pump 52, an esophageal thermometer 53, and a 3D mapping device 6.
  • the electrode catheter 1 is designed to be used on a predetermined catheter base 10, as shown in FIG.
  • the electrode catheter 1 is, for example, an ablation catheter for performing ablation of a treatment site of a patient, or performing predetermined measurements (for example, measurement of an electrocardiographic signal Sc described later) near the treatment site of a patient. It functions as a measurement catheter for Further, as shown in FIG. 1, the electrode catheter 1 performs cauterization based on AC power (high-frequency power) supplied from a power supply device 51, which will be described later, and exchanges various information ( For example, predetermined measurement data, control signals, etc.) are exchanged (see wiring path P31).
  • AC power high-frequency power
  • the isolation transformer 2a is arranged on an AC power supply line that connects the wall outlet 20a described above with the electrocardiogram display device 3 and the noise determiner 4, which will be described later.
  • the isolation transformer 2b is arranged on an AC power line connecting between the wall outlet 20b and a power strip 50 described later
  • the isolation transformer 2c is arranged between the wall outlet 20c and a 3D mapping device described later. It is placed on the AC power line that connects the
  • the isolation transformers 2a, 2b, 2c are individually electrically connected to the wall outlets 20a, 20b, 20c as commercial AC power supplies.
  • Each of these isolation transformers 2a, 2b, and 2c has a function of removing noise (radiation electric field noise Nre to be described later) propagating on such an AC power supply line. Specifically, as shown in FIG. 1, the isolation transformer 2a removes the above noise on the AC power supply line P1a on the side of the wall outlet 20a (primary side), (next side) to output AC power. Similarly, the isolation transformer 2b removes the above noise on the AC power line P1b on the side of the wall outlet 20b (primary side) and outputs AC power to the side of the AC power line P2b (secondary side).
  • the isolation transformer 2c removes the noise on the AC power line P1c on the side of the wall outlet 20c (primary side) and outputs AC power to the side of the AC power line P2c (secondary side).
  • the isolation transformers 2a, 2b and 2c are individually electrically connected to the AC power supply lines P2a1, P2a2, P2b and P2c, respectively.
  • the isolation transformers 2a, 2b, and 2c By arranging these isolation transformers 2a, 2b, and 2c as close as possible to the wall W side (see FIG. 1), the lengths of the AC power supply lines P1a, P1b, and P1c containing the above noise is minimized. That is, as shown in FIG. 1, the AC power lines P2a1, P2a2, P2b, and P2c from which the noise has been removed are basically used as the AC power lines routed in the catheter chamber. It's like
  • the electrocardiogram display device 3 is a device that displays the patient's electrocardiographic waveform (electrocardiogram) based on the patient's electrocardiographic signal Sc.
  • the electrocardiogram display device 3 is supplied with AC power from the AC power supply line P2a1, and also receives the electrocardiogram signal Sc from the electrode catheter 1 via the power supply device 51 and the wiring path P32, which will be described later. (See Figure 1).
  • the noise determiner 4 is supplied with AC power from the isolation transformer 2a via the AC power supply line P2a2 described above.
  • Two AC power supply lines P2a1 and P2a2 are arranged in parallel on the secondary side of the isolation transformer 2a.
  • the noise determiner 4 is configured to detect the radiation electric field noise Nre (noise signal Sn described later) propagating on the secondary side of the isolation transformer 2a (on the detection circuit 40 described later in the noise determiner 4). It is a device that performs measurement (detection) as well as predetermined noise determination, etc., which will be described later. Although details will be described later (see FIGS.
  • the power tap 50 is a device for distributing the AC power supplied from the AC power line P2b described above to a plurality of paths. Specifically, in the example shown in FIG. 1, such AC power is distributed in parallel from the power strip 50 to the power supply device 51, the pump 52, and the esophagus thermometer 53, respectively.
  • the power supply device 51 is a device that outputs predetermined AC power (high frequency power) and inputs and outputs various information (eg, predetermined data, control signals, etc.). Specifically, in the example shown in FIG. 1, the power supply device 51 exchanges various information (for example, predetermined measurement data, control signals, etc.) with the electrode catheter 1 (wiring path P31). reference). Further, the electrocardiographic signal Sc measured by the electrode catheter 1 is input to the power supply device 51 from the electrode catheter 1 (see wiring path P31). The electrocardiogram signal Sc input to the power supply device 51 in this manner is output to the electrocardiogram display device 3 as shown in FIG. 1 (see wiring path P32).
  • the pump 52 is a device (liquid supply device) for supplying the electrode catheter 1 with a liquid for irrigation (for example, physiological saline) when performing cauterization using the electrode catheter 1 .
  • a liquid for irrigation for example, physiological saline
  • the esophageal thermometer 53 is a thermometer that measures the temperature near the patient's esophagus when performing cauterization using the electrode catheter 1 .
  • the 3D mapping device 6 is, for example, a device that displays intracardiac potentials and the like measured in a patient in a 3D (three-dimensional) manner.
  • FIG. 2 is a block diagram showing an example of the detailed configuration of the noise determiner 4, etc.
  • FIG. 3 is a block diagram showing an example of the layout configuration of each member in the noise determiner 4, etc. is.
  • the noise determiner 4 includes an electric field sensor 42 for measuring radiation electric field noise Nre (noise signal Sn), which will be described later, and based on the radiation electric field noise Nre measured by the electric field sensor 42. and a detection circuit 40 that performs a predetermined process, which will be described later.
  • the detection circuit 40 also includes a power supply circuit (power supply unit) 41, a determination unit 43, and a notification unit 44, as shown in FIG.
  • the noise determiner 4 receives power from another device (isolation transformer 2a in this example) different from the noise determiner 4 through an AC power supply line P2a2. Based on the supply, it is a device that performs various operations described below.
  • the noise determiner 4 is a socket-type device that can be connected to other devices. Specifically, in this example, as shown in FIG. 2, from the isolation transformer 2a as another device, through the power plug 72 (AC power input section) and the AC power line P2a2, the noise determiner 4 is supplied with power.
  • such a power plug 72 (secondary side of the isolation transformer 2a) is a so-called three-terminal plug. That is, the power plug 72 is provided with a live (Live: L) terminal 72L, a neutral (Neutral: N) terminal 72N, and an earth (Earth: E) terminal 72E.
  • the power plug 71 provided on the primary side of the isolation transformer 2a (arranged between the aforementioned AC power line P1a and the wall outlet 20a as a commercial AC power supply) is also a so-called three-terminal plug. It has become. That is, the power plug 71 is also provided with a live terminal 71L, a neutral terminal 71N, and an earth terminal 71E.
  • the ground terminal 71E of the power plug 71 is generally electrically connected to the ground E and grounded, as indicated by P7 in FIG. Therefore, as shown in FIG. 2, the ground terminal 71E of the power plug 71, the AC power line P1a, the housing 20 (frame ground FG20) of the isolation transformer 2a, and the ground terminal 72E of the power plug 72 are connected.
  • An earth line LE is formed via this. That is, the ground line LE is electrically connected to the ground terminals 71E and 72E and is a connection line included on the AC power supply line P1a. On the other hand, as shown in FIG. 2, such a ground line LE is not included on the AC power supply line P2a2.
  • the power supply circuit 41 is a circuit that receives power supply from the isolation transformer 2a via the power plug 72 and the AC power supply line P2a2.
  • the power supply circuit 41 is configured to supply power for operations to a determination unit 43 and a notification unit 44, which will be described later, respectively, based on the power supply from the isolation transformer 2a. (See Figure 2).
  • the electric field sensor 42 is a sensor that measures (detects) the radiated electric field noise Nre (noise signal Sn) propagating on the detection circuit 40 from above the detection circuit 40 (see symbol P40 in FIG. 2). Specifically, since the radiation electric field noise Nre on the AC power supply line P2a2 propagates onto the detection circuit 40, the electric field sensor 42 detects the radiation electric field noise Nre propagating on the detection circuit 40. It is designed to be measured from above. The radiation electric field noise Nre thus measured is equivalent to the radiation electric field noise Nre propagating on the AC power supply lines P2a1 and P2a2. Further, such an electric field sensor 42 is arranged in the noise determiner 4 so as to be separated from the ground line LE as indicated by P42 in FIG. 2, although the details will be described later. there is The distance (separation distance) between the electric field sensor 42 and the earth line LE is, for example, 40 mm or more, and is 80 mm as an example.
  • an electric field sensor 42 corresponds to a specific example of the "measuring section" in the present invention.
  • a sensor or the like other than the electric field sensor 42 may be used to configure the "measuring section" in the present invention.
  • the determination unit 43 performs predetermined noise determination, which will be described later, on the radiation electric field noise Nre measured by the electric field sensor 42 . Specifically, the determination unit 43 determines whether or not the noise level Ln of the radiated electric field noise Nre (noise signal Sn) is equal to or greater than a predetermined threshold value Lth (Ln ⁇ Lth) described later (noise determination). ). Further, the determination unit 43 outputs the result of such noise determination to the notification unit 44 as the determination result Rj (see FIG. 2). The details of the determination method in the determination unit 43 will be described later (see FIG. 6).
  • Such a determination unit 43 includes, for example, a predetermined amplifier circuit (amplifier), a predetermined filter circuit (such as a band-pass filter, which will be described later), etc., in addition to the determination circuit that performs such various noise determinations. It is configured.
  • a predetermined amplifier circuit amplifier
  • a predetermined filter circuit such as a band-pass filter, which will be described later
  • the notification unit 44 notifies the noise determination result (determination result Rj described above) of the determination unit 43 to the outside of the noise determiner 4 (toward the user).
  • the notification unit 44 uses, for example, a display using a predetermined color (for example, a lighting display using an LED (Light Emitting Diode) or the like), a predetermined audio output, or the like. , a notification based on such determination result Rj.
  • noise determiner 4 of the present embodiment as indicated by the symbol P41 (see “x” mark) in FIG. are disconnected from each other. That is, these earth lines LE and the ground GND40 are not electrically connected.
  • the measurement plane Sm of the radiated electric field noise Nre in the electric field sensor 42 is substantially perpendicular (for example, vertical) (Sm ⁇ S20). Further, in the noise determiner 4, as shown in FIG. 3, the measurement surface Sm of the electric field sensor 42 is substantially parallel (for example, parallel) (Sm//S40). Note that this substantially parallel (parallel) includes the case where the measurement surface Sm and the substrate surface S40 are arranged on the same plane.
  • FIG. 4 is a schematic timing chart showing an example of the waveform of such radiated electric field noise Nre (noise signal Sn).
  • FIG. 5 schematically shows an example of frequency characteristics of the electrocardiographic signal Sc and the radiation electric field noise Nre, respectively.
  • the horizontal axis represents time t
  • the vertical axis represents signal amplitude Am (noise level Ln of radiation electric field noise Nre).
  • the horizontal axis indicates the frequency f
  • the vertical axis indicates the amplitude Am of the signal.
  • Such radiation electric field noise Nre is so-called "hum noise", and in the example shown in FIG. It has become. Therefore, even by suppressing the radiated electric field noise Nre alone, the appearance rate of noise due to the environment in the catheter chamber can be greatly reduced.
  • such radiated electric field noise Nre is generally picked up by conductors that make up distribution cables in many cases. Therefore, for example, it can be said that it is desirable to arrange conductors such as such distribution cables away from the noise source of the radiated electric field noise Nre.
  • wiring paths P31 and P32 indicated by broken lines are particularly affected by the radiation electric field noise Nre. The easy part. Therefore, it can be said that it is desirable to measure radiation electric field noise Nre, which will be described later, using the noise determiner 4, particularly for the peripheral portions of these wiring paths P31 and P32.
  • the frequency characteristics of the electrocardiographic signal Sc and the radiation electric field noise Nre are as follows. First, in the low-side frequency band ⁇ fL of the electrocardiographic signal Sc, the amplitude Am is reduced using, for example, a HPF (High Pass Filter). Similarly, in the high frequency band ⁇ fH of the electrocardiographic signal Sc, its amplitude Am is reduced using, for example, an LPF (Low Pass Filter).
  • HPF High Pass Filter
  • LPF Low Pass Filter
  • the middle frequency band ⁇ fM in the electrocardiographic signal Sc it is conceivable to reduce the amplitude Am by using, for example, a notch filter.
  • this frequency band ⁇ fM there are cases where the frequency (frequency fn) of the radiation electric field noise Nre is included within a predetermined frequency range ⁇ fn, as shown in FIG. 5, for example. That is, in the frequency band ⁇ fM, the frequency of the electrocardiographic signal Sc forming the electrocardiographic waveform overlaps with the frequency fn of the radiated electric field noise Nre. is undesirable.
  • the frequency range ⁇ fn is, for example, a range of about 50 Hz to 60 Hz
  • the frequency band of the electrocardiographic signal Sc is, for example, a band of about 30 Hz to 500 Hz.
  • such radiated electric field noise Nre should basically be removed on the secondary sides (AC power supply lines P2a1, P2a2, P2b and P2c) of the isolation transformers 2a, 2b and 2c. be.
  • AC power supply lines P2a1, P2a2, P2b and P2c AC power supply lines
  • the connection of a certain device causes the AC power line, which should be in a low noise state, to There are cases in which a high noise state occurs.
  • the noise determiner 4 shown in FIGS. 1 to 3 is used to measure such radiation electric field noise Nre and perform predetermined noise determination.
  • An operation example of the noise determiner 4 will be described in detail below.
  • FIG. 6 is a flowchart showing an example of operation of the noise determiner 4 (example of operation such as noise determination).
  • the electric field sensor 42 measures (detects) radiation electric field noise Nre (noise signal Sn) propagating on the AC power supply lines P2a1 and P2a2 (step S11). Specifically, for example, as shown in FIG. 2, the electric field sensor 42 measures the radiated electric field noise Nre propagating on the detection circuit 40 as described above in the present embodiment.
  • the determination unit 43 determines whether or not the frequency fn of the radiated electric field noise Nre (noise signal Sn) thus measured is within the aforementioned predetermined frequency range ⁇ fn (see FIG. 4). (step S12).
  • the notification unit 44 notifies the determination result Rj (determination result indicating the low noise state) in the determination unit 43 to the outside of the noise determiner 4 (step S13). Specifically, in this case, the notification unit 44 notifies the determination result of such a low-noise state, for example, by performing lighting display in green.
  • step S13 the process returns to step S11 described above.
  • step S12 when it is determined that the frequency fn of the radiation electric field noise Nre is within the frequency range ⁇ fn described above (step S12: Y), the following is the case. That is, in this case, if the radiated electric field noise Nre of such a frequency fn is mixed into the electrocardiographic waveform (cardiographic signal Sc), the influence on the electrocardiographic waveform increases depending on the noise level Ln. (See FIG. 5). Therefore, next, the determination unit 43 determines whether or not the noise level Ln of the radiated electric field noise Nre (noise signal Sn) is equal to or higher than a predetermined threshold value Lth (Ln ⁇ Lth) (step S14).
  • the threshold value Lth is, for example, a value within a range of 50 to 150 [V/m] (100 [V/m] as an example).
  • step S14: N when it is determined that the noise level Ln is less than the threshold value Lth (Ln ⁇ Lth) (step S14: N), the following is performed. That is, in this case, even if the radiated electric field noise Nre of such a noise level Ln is mixed into the electrocardiographic waveform (cardiographic signal Sc), it can be said that the influence on the electrocardiographic waveform is small (or almost non-existent). . Therefore, also in this case, the process proceeds to step S13 described above. In other words, in this case as well, the notification unit 44 uses, for example, the notification method described above to notify the outside of the determination result that the state is in the low-noise state.
  • step S13 the process returns to step S11 described above.
  • step S14: Y when it is determined that the noise level Ln is equal to or greater than the threshold Lth (Ln ⁇ Lth) (step S14: Y), the following is performed. That is, in this case, if the radiated electric field noise Nre of such a noise level Ln is mixed into the electrocardiographic waveform (cardiographic signal Sc), it can be said that the influence on the electrocardiographic waveform is increased. Therefore, next, the notification unit 44 notifies the determination result Rj (determination result of the high noise state) in the determination unit 43 to the outside of the noise determiner 4 (step S15). Specifically, in this case, the notification unit 44 performs, for example, lighting display in red, outputs a predetermined message sound, or uses such red lighting display and message sound output together. By doing so, the determination result of such a high noise state is notified.
  • the notification unit 44 performs, for example, lighting display in red, outputs a predetermined message sound, or uses such red lighting display and message sound output together.
  • step S15 the process returns to step S11 described above.
  • FIGS. 7 and 9 are block diagrams for explaining common-mode noise in such noise determination.
  • FIG. 7 shows a case where the ground terminal 71E of the power plug 71 described above is grounded (electrically connected to the ground E).
  • FIG. 9 shows a case where the ground terminal 71E is set in a non-grounded state (not electrically connected to the ground E: see "x" mark in FIG. 9).
  • FIG. 8 schematically shows an example of noise waveforms in each line on the AC power supply line P2a2 shown in FIG. Note that such lines include a live line LL electrically connected to the live terminals 71L and 72L, a neutral line LN electrically connected to the neutral terminals 71N and 72N, and the ground line LE described above. is mentioned.
  • the radiated electric field noise Nre propagating on the AC power supply line P2a2 is reduced to the live line LL and noise components on the neutral line LN are main components (see FIG. 8).
  • Each of these noise components propagates onto the detection circuit 40 , and the radiated electric field noise Nre on this detection circuit 40 is measured via the stray capacitance (capacitor component) between it and the electric field sensor 42 .
  • the noise level of the radiated electric field noise Nre in the detection circuit 40 is the noise level seen from the ground GND 40 in this detection circuit 40 .
  • the ground terminal 71E when the ground terminal 71E is in a non-grounded state, the following occurs. That is, in this case, regarding the radiated electric field noise Nre propagating on the AC power supply line P2a2, the noise component from the ground line LE is more dominant than the noise component from the live line LL and the neutral line LN among the above-described lines. become an ingredient. This is because when the grounding terminal 71E is in a non-grounded state, the grounding line LE is in a completely floating state and becomes electrically unstable, thereby radiating a large amount of noise. be.
  • the noise level of the radiated electric field noise Nre may be measured to be low, resulting in erroneous determination.
  • noise from the earth line LE is considered to be so-called common mode noise.
  • the ground terminal 71E on the primary side of the isolation transformer 2a as shown in FIGS. 7 and 9 is not necessarily grounded to the ground E.
  • the actual situation is that the construction status inside the wall outlet 20a cannot be known from the outside.
  • the noise determiner 4 is driven by an AC power source via an external source (isolation transformer 2a) instead of being driven by a battery itself. Therefore, since the isolation between the noise source (AC power supply line P2a2) and the detection circuit 40 is not perfect, the detection circuit 40 is susceptible to the above-described common-mode noise. From these, it can be said that it is important to reduce the influence of such common-mode noise in order to improve the measurement accuracy when measuring the radiated electric field noise Nre in the noise determiner 4 .
  • a common choke coil is used as a filter for common-mode noise. It is impractical to implement such a filter circuit in such a compact device housing. Furthermore, when such a coil is used as a filter, magnetic field noise is superimposed on the coil, so the coil cannot be used easily. In addition, even if a magnetic shield is used, it can be said that there is no shielding material that is effective against the ultra-low frequency as described above. Moreover, since the frequency to be measured is about 50 Hz/60 Hz, a filter for such frequencies of about 50 Hz/60 Hz cannot be applied.
  • the earth line LE and the ground GND 40 in the detection circuit 40 should not be electrically connected (disconnected). ) is desirable. From a general point of view, the operation of the detection circuit 40 is stabilized if the earth line LE and the ground GND 40 are electrically connected to each other. It can be said that it is preferable not to electrically connect them.
  • the noise determiner 4 of the present embodiment the radiated electric field noise Nre (noise signal Sn) propagated on the AC power supply lines P2a1 and P2a2 and mixed in the electrocardiographic waveform (electrocardiographic signal Sc) is , is measured from the detection circuit 40 at the electric field sensor 42 . Then, it is determined whether or not the noise level Ln of the measured radiation electric field noise Nre is equal to or greater than the threshold value Lth, and the determination result Rj is notified to the outside of the noise determiner 4 .
  • the present embodiment it is possible to instantly grasp the occurrence of radiation electric field noise Nre having a noise level Ln equal to or higher than the threshold Lth (reference value). That is, for example, it is not necessary to bring the measuring device closer to the source of the radiated electric field noise Nre each time noise measurement is performed, and visually read the measurement result (numerical value) of the radiated electric field noise Nre with the measuring device. As a result, convenience in using the noise determiner 4 is improved.
  • power for operation is supplied to each of the determination unit 43 and the notification unit 44 based on the power supply from another device different from the noise determiner 4 through the AC power supply line P2a2. Therefore, it becomes as follows. That is, it is possible to operate based on the power supply from the above-described other equipment and to measure the radiated electric field noise Nre on the detection circuit 40 . Therefore, for example, since there is no need to hold the noise determiner 4 in hand each time noise is measured, the convenience of using the noise determiner 4 is further improved.
  • the earth line LE electrically connected to the earth terminals 71E and 72E and included in the AC power supply line P1a and the ground in the detection circuit 40 GND 40 are disconnected from each other.
  • the noise determiner 4 of the present embodiment it is possible to improve the accuracy of determination during noise determination as described above.
  • the detection circuit In measuring the radiated electric field noise Nre on 40 That is, as described above, the stray capacitance between the ground line LE and the electric field sensor 42 is reduced, thereby suppressing the intrusion of the common-mode noise component through such stray capacitance. Therefore, it is possible to further improve the accuracy of noise determination.
  • the measurement surface Sm of the radiated electric field noise Nre in the electric field sensor 42 is arranged so as to be substantially perpendicular to the housing surface S20 of the isolation transformer 2a as the other device. Therefore, it is as follows. That is, for example, as described above, even if the ground terminal 71E is in a non-grounded state, when measuring the radiated electric field noise Nre on the detection circuit 40, The stray capacitance between the housing surface S20 and the measurement surface Sm is reduced. As a result, as described above, the inclusion of common-mode noise components via such stray capacitance can be suppressed, so that it is possible to further improve the accuracy of noise determination.
  • the measurement surface Sm of the electric field sensor 42 is arranged so as to be substantially parallel to the substrate surface S40 of the circuit substrate 45 on which the detection circuit 40 is mounted. It looks like this: That is, since the stray capacitance between the substrate surface S40 and the measurement surface Sm is increased, the measurement sensitivity of the radiated electric field noise Nre on the detection circuit 40 is increased. . Specifically, the weak radiated electric field noise Nre in the circuit board 45 can be positively detected (picked up). As a result, it is possible to further improve the accuracy of noise determination.
  • the isolation transformer 2a is arranged on the AC power supply lines P1a and P2a1 connecting the wall outlet 20a as the AC power supply and the electrocardiogram display device 3 to each other. Therefore, it is as follows. That is, on the path (AC power supply line P2a1) from the isolation transformer 2a to the electrocardiogram display device 3, the radiated electric field noise Nre that could not be removed by the isolation transformer 2a can be measured on the detection circuit 40. become. As a result, the convenience of using the noise determiner 4 can be further improved.
  • the noise level Ln is equal to or higher than the threshold Lth. is determined as follows. That is, for example, such determination is made for the radiation electric field noise Nre in the frequency band (within the frequency range ⁇ fn) that has a particularly large effect on the electrocardiogram waveform. Therefore, for the radiated electric field noise Nre, which has a particularly large effect, the generation of the noise level Ln equal to or higher than the threshold value Lth can be instantly grasped, so that the convenience of using the noise determiner 4 can be further improved. becomes.
  • the shape, arrangement position, size, number, material, etc. of each member described in the above embodiment are not limited, and other shapes, arrangement positions, sizes, numbers, materials, etc. may be used.
  • the measurement surface Sm of the radiated electric field noise Nre in the electric field sensor 42 is arranged so as to be substantially perpendicular to the housing surface S20 described above, and the substrate surface S40 described above is arranged.
  • the present invention is not limited to these examples. That is, such a measurement surface Sm may be arranged, for example, so as to be non-perpendicular to the housing surface S20 or non-parallel to the substrate surface S40.
  • the present invention is not limited to this example.
  • the power plug 72 may be arranged as Furthermore, in the above embodiment, an example in which the power plug 72 is a three-terminal plug has been described, but the present invention is not limited to this example. That is, for example, the power plug 72 may be a two-terminal type plug (a type plug without the ground terminal 72E). Further, in the above-described embodiment, an example in which the ground line LE is not included on the AC power supply line P2a2 has been described, but the present invention is not limited to this example. That is, for example, the earth line LE may be included on the AC power supply line P2a2.
  • step S12 in FIG. 6 determining whether or not the frequency fn of the noise signal Sn is within the predetermined frequency range ⁇ fn
  • the notification in the notification unit 44 may be performed using other methods, without being limited to the display using colors and the predetermined audio output described in the above embodiment.
  • the "other device” is an isolation transformer electrically connected to a commercial AC power supply
  • the present invention is not limited to this example, and the “other device” ” may be another device other than the isolation transformer.
  • the following processing may be performed on the measurement signal of the radiated electric field noise Nre. That is, for example, half-wave rectification and smoothing (or peak hold) using a diode or the like may be performed after converting such a measurement signal into an absolute value.
  • half-wave rectification and smoothing (or peak hold) using a diode or the like may be performed after converting such a measurement signal into an absolute value.
  • the noise determiner 4 applied in an environment where the catheter system shown in FIG. 1 is used has been described as an example, but the noise determiner of the present invention can It can also be applied to systems other than the system and other devices. In other words, depending on the circumstances, the noise determiner of the present invention may be applied to radiation electric field noise mixed in waveforms other than electrocardiographic waveforms.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

A noise determination device according to one embodiment of the present invention comprises: a measurement unit for measuring radiated emission noise which propagates on an alternating-current power line electrically connected to another device different from this noise determination device and is included in a cardiac potential waveform; and a detection circuit for performing predetermined processing on the basis of the radiated emission noise measured by the measurement unit. The measurement unit measures the radiated emission noise on the detection circuit. The detection circuit has: a determination unit for performing a noise determination as to whether or not the noise level of the radiated emission noise measured by the measurement unit is a threshold value or greater; a notification unit for notifying the outside of the result of the noise determination by the determination unit; and a power circuit for supplying electrical power for operation to each of the determination unit and the notification unit on the basis of electric power supply from the other device via the alternating-current power line. The grounding line electrically connected to the grounding terminal of the other device and the ground of the detection circuit are not connected with each other.

Description

ノイズ判定器noise detector
 本発明は、心電位波形に混入するノイズの測定や所定の判定等を行う、ノイズ判定器に関する。 The present invention relates to a noise determiner that measures noise mixed in an electrocardiographic waveform and makes predetermined determinations.
 電極カテーテルや電源装置(高周波電源装置)、心電図表示装置などを備えたカテーテルシステムを使用する際に、ノイズ(例えば、交流電源ライン上を伝播する放射電界ノイズなど)が、心電位波形に混入してしまうケースがある(例えば、非特許文献1参照)。 When using a catheter system equipped with an electrode catheter, power supply (high-frequency power supply), electrocardiogram display, etc., noise (e.g., radiated electric field noise propagating on the AC power line) may mix into the electrocardiogram waveform. There is a case where the data is lost (for example, see Non-Patent Document 1).
 そこで、このようなカテーテルシステムなどを使用する環境下での、ノイズの状況の測定や所定の判定等を行う機器(ノイズ判定器)を用いることが考えられる。また、このようなノイズ判定器では、ノイズ判定の際の判定精度を向上させることが求められると、考えられる。したがって、ノイズ判定の際の判定精度を向上させることが可能な、ノイズ判定器を提供することが望ましい。 Therefore, it is conceivable to use a device (noise determiner) that measures the noise situation and makes a predetermined determination in the environment where such a catheter system is used. In addition, it is considered that such a noise determiner is required to improve the determination accuracy during noise determination. Therefore, it is desirable to provide a noise determiner capable of improving the accuracy of noise determination.
 本発明の一実施の形態に係るノイズ判定器は、このノイズ判定機器とは異なる他の機器に電気的に接続された交流電源ライン上を伝播して心電位波形に混入する、放射電界ノイズを測定する測定部と、この測定部によって測定された放射電界ノイズに基づいて、所定の処理を行う検出回路と、を備えたものである。測定部は、放射電界ノイズを検出回路上から測定するようになっている。検出回路は、測定部によって測定された放射電界ノイズのノイズレベルが、閾値以上であるのか否かについてのノイズ判定を行う判定部と、この判定部におけるノイズ判定の結果を外部に通知する通知部と、上記他の機器からの交流電源ラインを介した電力供給に基づいて、判定部および通知部に対してそれぞれ、動作用の電力を供給する電源回路と、を有している。上記他の機器のアース端子と電気的に接続されているアースラインと、検出回路におけるグランドとが、互いに非接続となっている。 A noise determiner according to an embodiment of the present invention detects radiated electric field noise that propagates on an AC power supply line electrically connected to another device different from this noise determination device and mixes in an electrocardiographic waveform. It is provided with a measuring section that performs measurement and a detection circuit that performs predetermined processing based on the radiated electric field noise measured by the measuring section. The measurement unit measures the radiated electric field noise from the detection circuit. The detection circuit includes a determination unit that determines whether or not the noise level of the radiated electric field noise measured by the measurement unit is equal to or greater than a threshold value, and a notification unit that notifies the outside of the noise determination result of the determination unit. and a power supply circuit that supplies operating power to the determination unit and the notification unit based on the power supplied from the other device through the AC power supply line. The ground line electrically connected to the ground terminal of the other device and the ground in the detection circuit are not connected to each other.
 本発明の一実施の形態に係るノイズ判定器では、交流電源ライン上を伝播して心電位波形に混入する放射電界ノイズが、上記測定部において上記検出回路上から測定される。そして、その測定された放射電界ノイズのノイズレベルが、閾値以上であるのか否かについてのノイズ判定が行われ、そのノイズ判定の結果が外部に通知される。これにより、例えば、測定機器での放射電界ノイズの測定結果を目視で読み取る必要などがなくなり、閾値(基準値)以上のノイズレベルを有する放射電界ノイズの発生が、瞬時に把握できるようになる。また、上記他の機器からの交流電源ラインを介した電力供給に基づいて、判定部および通知部に対してそれぞれ動作用の電力が供給されるため、上記他の機器からの電源供給に基づいて動作を行うとともに、上記検出回路上の放射電界ノイズの測定ができるようになる。これにより、例えば、ノイズ測定の度ごとに、そのノイズ判定器を手に持って測定する必要がなくなる。ここで、上記他の機器のアース端子と電気的に接続されているアースラインと、上記検出回路におけるグランドとが、互いに非接続となっていることにより、以下のようになる。すなわち、上記検出回路上の放射電界ノイズを測定する際に、例えば、上記他の機器におけるアース端子が非接地状態になった場合であっても、上記検出回路のグランドへの同相ノイズ(コモンモードノイズ)の影響が、抑えられる。 In the noise determiner according to one embodiment of the present invention, the radiated electric field noise that propagates on the AC power supply line and mixes in the electrocardiographic waveform is measured by the measurement unit from the detection circuit. Then, noise determination is performed as to whether or not the noise level of the measured radiated electric field noise is equal to or higher than a threshold value, and the result of the noise determination is notified to the outside. As a result, for example, it is no longer necessary to visually read the measurement result of the radiated electric field noise with a measuring instrument, and the occurrence of radiated electric field noise having a noise level equal to or higher than a threshold (reference value) can be instantly grasped. In addition, since power for operation is supplied to the determination unit and the notification unit based on the power supply from the other device through the AC power supply line, the power supply from the other device As it operates, it becomes possible to measure the radiated electric field noise on the detection circuit. As a result, for example, it is not necessary to hold the noise determiner in hand each time the noise is measured. Here, the ground line electrically connected to the ground terminal of the other device and the ground in the detection circuit are disconnected from each other, so that the following occurs. That is, when measuring the radiated electric field noise on the detection circuit, for example, even if the ground terminal of the other device is ungrounded, common mode noise (common mode noise) to the ground of the detection circuit noise) is suppressed.
 本発明の一実施の形態に係るノイズ判定器では、上記測定部が、上記アースラインから離間配置されているようにしてもよい。このようにした場合、例えば、上記他の機器におけるアース端子が非接地状態になった場合であっても、上記検出回路上の放射電界ノイズを測定する際に、以下のようになる。すなわち、上記アースラインと上記測定部との間の浮遊容量が小さくなることから、そのような浮遊容量を介した同相ノイズ成分の混入が、抑えられる。その結果、ノイズ判定の際の判定精度が、更に向上することになる。 In the noise determiner according to one embodiment of the present invention, the measuring section may be arranged apart from the ground line. In this case, for example, even if the ground terminal of the other device is not grounded, the following will occur when measuring the radiated electric field noise on the detection circuit. That is, since the stray capacitance between the ground line and the measurement section is reduced, the mixing of common-mode noise components via such stray capacitance is suppressed. As a result, the accuracy of noise determination is further improved.
 ここで、上記測定部における放射電界ノイズの測定面が、上記他の機器の筐体面に対して、略垂直となるように配置されていてもよい。このようにした場合、例えば、上記他の機器におけるアース端子が非接地状態になった場合であっても、上記検出回路上の放射電界ノイズを測定する際に、以下のようになる。すなわち、フレームグランドとしての上記他の機器の筐体における筐体面と、上記測定面との間の浮遊容量が、小さくなることから、そのような浮遊容量を介した同相ノイズ成分の混入が、抑えられる。その結果、ノイズ判定の際の判定精度が、更に向上することになる。 Here, the measurement surface of the radiated electric field noise in the measurement unit may be arranged so as to be substantially perpendicular to the housing surface of the other device. In this case, for example, even if the ground terminal of the other device is not grounded, the following will occur when measuring the radiated electric field noise on the detection circuit. That is, since the stray capacitance between the housing surface of the housing of the other device as the frame ground and the measurement surface becomes small, the contamination of the common-mode noise component via such stray capacitance can be suppressed. be done. As a result, the accuracy of noise determination is further improved.
 また、上記測定部における放射電界ノイズの測定面が、上記検出回路を搭載する回路基板の基板面に対して、略平行となるように配置されていてもよい。このようにした場合、上記回路基板における基板面と上記測定面との間の浮遊容量が、大きくなることから、上記検出回路上の放射電界ノイズを測定する際に、放射電界ノイズの測定感度が高くなる。その結果、ノイズ判定の際の判定精度が、更に向上することになる。 Further, the measurement surface of the radiated electric field noise in the measurement unit may be arranged so as to be substantially parallel to the substrate surface of the circuit board on which the detection circuit is mounted. In this case, the stray capacitance between the substrate surface and the measurement surface of the circuit board becomes large, so that when measuring the radiated electric field noise on the detection circuit, the measurement sensitivity of the radiated electric field noise is reduced. get higher As a result, the accuracy of noise determination is further improved.
 なお、上記他の機器としては、例えば、商用の交流電源と電気的に接続されたアイソレーショントランスなどが、挙げられる。 It should be noted that examples of the above other devices include an isolation transformer electrically connected to a commercial AC power supply.
 本発明の一実施の形態に係るノイズ判定器によれば、上記他の機器のアース端子と電気的に接続されているアースラインと、上記検出回路におけるグランドとが、互いに非接続となっているようにしたので、以下のようになる。すなわち、上記検出回路上の放射電界ノイズを測定する際に、例えば、上記他の機器におけるアース端子が非接地状態になった場合であっても、上記検出回路のグランドへの同相ノイズの影響を、抑えることができる。よって、ノイズ判定の際の判定精度を、向上させることが可能となる。 According to the noise determiner according to one embodiment of the present invention, the ground line electrically connected to the ground terminal of the other device and the ground in the detection circuit are not connected to each other. I did it, so it looks like this: That is, when measuring the radiated electric field noise on the detection circuit, for example, even if the ground terminal of the other device is ungrounded, the influence of the common-mode noise on the ground of the detection circuit is minimized. , can be suppressed. Therefore, it is possible to improve the determination accuracy in noise determination.
本発明の一実施の形態に係るノイズ判定器が適用されるカテーテルシステムの概略構成例を模式的に表すブロック図である。1 is a block diagram schematically showing a schematic configuration example of a catheter system to which a noise determiner according to an embodiment of the present invention is applied; FIG. 図1に示したノイズ判定器等の詳細構成例を表すブロック図である。2 is a block diagram showing a detailed configuration example of a noise determiner and the like shown in FIG. 1; FIG. 図2に示したノイズ判定器等における各部材の配置構成例を表すブロック図である。3 is a block diagram showing an arrangement configuration example of each member in the noise determiner and the like shown in FIG. 2; FIG. 放射電界ノイズの波形例を模式的に表すタイミング図である。FIG. 3 is a timing chart schematically showing an example of a waveform of radiated electric field noise; 心電位信号および放射電界ノイズの周波数特性例を表す模式図である。FIG. 3 is a schematic diagram showing an example of frequency characteristics of an electrocardiographic signal and radiation electric field noise; 図1に示したノイズ判定器の動作例を表す流れ図である。2 is a flow chart showing an operation example of the noise determiner shown in FIG. 1; ノイズ判定の際における同相ノイズについて説明するためのブロック図である。FIG. 4 is a block diagram for explaining common-mode noise in noise determination; 図7に示した交流電源ライン上の各ラインにおけるノイズ波形例を表す模式図である。8 is a schematic diagram showing an example of a noise waveform in each line on the AC power supply line shown in FIG. 7; FIG. ノイズ判定の際における同相ノイズについて説明するための他のブロック図である。FIG. 10 is another block diagram for explaining common-mode noise in noise determination;
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
1.実施の形態(アイソレーショントランスから電力供給を受けるノイズ判定器の例)
2.変形例
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The description will be given in the following order.
1. Embodiment (an example of a noise determiner that receives power from an isolation transformer)
2. Modification
<1.実施の形態>
[概略構成]
 図1は、本発明の一実施の形態に係るノイズ判定器(後述するノイズ判定器4)が適用されるカテーテルシステムの概略構成例を、模式的にブロック図で表したものである。このカテーテルシステムは、図1に示した所定のカテーテル室内に設置されており、本実施の形態のノイズ判定器4は、このようなカテーテル室内の環境下でのノイズ(後述する放射電界ノイズNre)について、後述する測定や所定の判定等を行うようになっている。
<1. Embodiment>
[Outline configuration]
FIG. 1 is a schematic block diagram showing an example of the schematic configuration of a catheter system to which a noise determiner (noise determiner 4 described later) according to an embodiment of the present invention is applied. This catheter system is installed in a predetermined catheter chamber shown in FIG. Measurement and predetermined judgment, etc., which will be described later, are performed with respect to.
 なお、図1に示したカテーテル室における壁Wには、この例では、4つの壁コンセント(商用の交流電源)20a,20b,20c,20dがそれぞれ、互いに離れた位置にて設置されている。 In this example, four wall outlets (commercial AC power supplies) 20a, 20b, 20c, and 20d are installed on the wall W in the catheterization room shown in FIG. 1 at positions separated from each other.
 ここで、この図1に示したカテーテルシステムは、電極カテーテル1と、3つのアイソレーショントランス2a,2b,2cと、心電図表示装置3と、ノイズ判定器4と、電源タップ50と、電源装置51(高周波電源装置)と、ポンプ52と、食道温度計53と、3Dマッピング装置6と、を含んで構成されている。 Here, the catheter system shown in FIG. (high-frequency power supply), a pump 52, an esophageal thermometer 53, and a 3D mapping device 6.
 電極カテーテル1は、図1に示したように、所定のカテーテル台10上において使用されるようになっている。この電極カテーテル1は、例えば、患者の治療部位に対する焼灼(アブレーション)を行うためのアブレーションカテーテルや、患者の治療部位付近での所定の測定(例えば、後述する心電位信号Scの測定など)を行うための測定用カテーテルとして、機能するようになっている。また、この電極カテーテル1は、図1に示したように、後述する電源装置51から供給される交流電力(高周波電力)に基づいて焼灼を行ったり、この電源装置51との間で各種情報(例えば、所定の測定データや制御信号など)のやり取りを行うようになっている(配線経路P31参照)。 The electrode catheter 1 is designed to be used on a predetermined catheter base 10, as shown in FIG. The electrode catheter 1 is, for example, an ablation catheter for performing ablation of a treatment site of a patient, or performing predetermined measurements (for example, measurement of an electrocardiographic signal Sc described later) near the treatment site of a patient. It functions as a measurement catheter for Further, as shown in FIG. 1, the electrode catheter 1 performs cauterization based on AC power (high-frequency power) supplied from a power supply device 51, which will be described later, and exchanges various information ( For example, predetermined measurement data, control signals, etc.) are exchanged (see wiring path P31).
 アイソレーショントランス2aは、図1に示したように、上記した壁コンセント20aと、後述する心電図表示装置3およびノイズ判定器4との間を接続する、交流電源ライン上に配置されている。同様に、アイソレーショントランス2bは、壁コンセント20bと後述する電源タップ50との間を接続する交流電源ライン上に配置され、アイソレーショントランス2cは、壁コンセント20cと後述する3Dマッピング装置との間を接続する交流電源ライン上に配置されている。このように、アイソレーショントランス2a,2b,2cはそれぞれ、商用の交流電源としての壁コンセント20a,20b,20cに対して、個別に電気的接続されるようになっている。 As shown in FIG. 1, the isolation transformer 2a is arranged on an AC power supply line that connects the wall outlet 20a described above with the electrocardiogram display device 3 and the noise determiner 4, which will be described later. Similarly, the isolation transformer 2b is arranged on an AC power line connecting between the wall outlet 20b and a power strip 50 described later, and the isolation transformer 2c is arranged between the wall outlet 20c and a 3D mapping device described later. It is placed on the AC power line that connects the Thus, the isolation transformers 2a, 2b, 2c are individually electrically connected to the wall outlets 20a, 20b, 20c as commercial AC power supplies.
 これらのアイソレーショントランス2a,2b,2cはそれぞれ、このような交流電源ライン上を伝播するノイズ(後述する放射電界ノイズNre)を取り除く機能を有している。具体的には、図1に示したように、アイソレーショントランス2aは、壁コンセント20a側(1次側)の交流電源ラインP1a上での上記ノイズを取り除き、交流電源ラインP2a1,P2a2側(2次側)に交流電力を出力する。同様に、アイソレーショントランス2bは、壁コンセント20b側(1次側)の交流電源ラインP1b上での上記ノイズを取り除き、交流電源ラインP2b側(2次側)に交流電力を出力する。また、アイソレーショントランス2cは、壁コンセント20c側(1次側)の交流電源ラインP1c上での上記ノイズを取り除き、交流電源ラインP2c側(2次側)に交流電力を出力する。このように、アイソレーショントランス2a,2b,2cはそれぞれ、交流電源ラインP2a1,P2a2,P2b,P2cに対して、個別に電気的接続されるようになっている。 Each of these isolation transformers 2a, 2b, and 2c has a function of removing noise (radiation electric field noise Nre to be described later) propagating on such an AC power supply line. Specifically, as shown in FIG. 1, the isolation transformer 2a removes the above noise on the AC power supply line P1a on the side of the wall outlet 20a (primary side), (next side) to output AC power. Similarly, the isolation transformer 2b removes the above noise on the AC power line P1b on the side of the wall outlet 20b (primary side) and outputs AC power to the side of the AC power line P2b (secondary side). The isolation transformer 2c removes the noise on the AC power line P1c on the side of the wall outlet 20c (primary side) and outputs AC power to the side of the AC power line P2c (secondary side). Thus, the isolation transformers 2a, 2b and 2c are individually electrically connected to the AC power supply lines P2a1, P2a2, P2b and P2c, respectively.
 なお、これらのアイソレーショントランス2a,2b,2cはいずれも、壁W側のできるだけ近い位置に配置されることで(図1参照)、上記ノイズを含む交流電源ラインP1a,P1b,P1cの長さが、最小限に抑えられるようになっている。つまり、図1に示したように、カテーテル室内で引き回される交流電源ラインとしては、基本的には、上記ノイズが取り除かれた後の交流電源ラインP2a1,P2a2,P2b,P2cが、用いられるようになっている。 By arranging these isolation transformers 2a, 2b, and 2c as close as possible to the wall W side (see FIG. 1), the lengths of the AC power supply lines P1a, P1b, and P1c containing the above noise is minimized. That is, as shown in FIG. 1, the AC power lines P2a1, P2a2, P2b, and P2c from which the noise has been removed are basically used as the AC power lines routed in the catheter chamber. It's like
 心電図表示装置3は、患者の心電位信号Scに基づいて、その患者の心電位波形(心電図)を表示する装置である。この心電図表示装置3には、上記した交流電源ラインP2a1から交流電力が供給されると共に、電極カテーテル1から後述する電源装置51および配線経路P32を介して、上記した心電位信号Scが入力されるようになっている(図1参照)。 The electrocardiogram display device 3 is a device that displays the patient's electrocardiographic waveform (electrocardiogram) based on the patient's electrocardiographic signal Sc. The electrocardiogram display device 3 is supplied with AC power from the AC power supply line P2a1, and also receives the electrocardiogram signal Sc from the electrode catheter 1 via the power supply device 51 and the wiring path P32, which will be described later. (See Figure 1).
 ノイズ判定器4には、図1に示した例では、アイソレーショントランス2aから前述した交流電源ラインP2a2を介して、交流電力が供給されるようになっている。また、このアイソレーショントランス2aの2次側では、2つの交流電源ラインP2a1,P2a2が、互いに並列配置されている。このノイズ判定器4は、このようなアイソレーショントランス2aの2次側(ノイズ判定器4内の後述する検出回路40上)を伝播する、前述した放射電界ノイズNre(後述するノイズ信号Sn)の測定(検出)を行うと共に、後述する所定のノイズ判定等を行う機器である。これは、詳細は後述するが(図4,図5参照)、アイソレーショントランス2aの2次側においても、そのような放射電界ノイズNreが残存し、心電図表示装置3における心電位波形(心電位信号Sc)に混入してしまうおそれがあるためである。なお、このようなノイズ判定器4の詳細構成例については、後述する(図2,図3参照)。 In the example shown in FIG. 1, the noise determiner 4 is supplied with AC power from the isolation transformer 2a via the AC power supply line P2a2 described above. Two AC power supply lines P2a1 and P2a2 are arranged in parallel on the secondary side of the isolation transformer 2a. The noise determiner 4 is configured to detect the radiation electric field noise Nre (noise signal Sn described later) propagating on the secondary side of the isolation transformer 2a (on the detection circuit 40 described later in the noise determiner 4). It is a device that performs measurement (detection) as well as predetermined noise determination, etc., which will be described later. Although details will be described later (see FIGS. 4 and 5), such radiated electric field noise Nre remains on the secondary side of the isolation transformer 2a, and the electrocardiographic waveform (electrocardiographic potential) on the electrocardiogram display device 3 This is because there is a risk of mixing into the signal Sc). A detailed configuration example of such a noise determiner 4 will be described later (see FIGS. 2 and 3).
 電源タップ50は、前述した交流電源ラインP2bから供給される交流電力を、複数の経路に分配するための機器である。具体的には、図1に示した例では、この電源タップ50から、電源装置51、ポンプ52および食道温度計53にそれぞれ、そのような交流電力が並列的に分配されている。 The power tap 50 is a device for distributing the AC power supplied from the AC power line P2b described above to a plurality of paths. Specifically, in the example shown in FIG. 1, such AC power is distributed in parallel from the power strip 50 to the power supply device 51, the pump 52, and the esophagus thermometer 53, respectively.
 電源装置51は、所定の交流電力(高周波電力)を出力したり、各種情報(例えば、所定のデータや制御信号など)の入出力を行ったりする装置である。具体的には、図1に示した例では、この電源装置51は、電極カテーテル1との間で前述した各種情報(例えば、所定の測定データや制御信号など)のやり取りを行う(配線経路P31参照)。また、電源装置51には、電極カテーテル1において測定された心電位信号Scが、この電極カテーテル1から入力されるようになっている(配線経路P31参照)。なお、このようにして電源装置51に入力された心電位信号Scは、図1に示したように、心電図表示装置3へと出力されるようになっている(配線経路P32参照)。 The power supply device 51 is a device that outputs predetermined AC power (high frequency power) and inputs and outputs various information (eg, predetermined data, control signals, etc.). Specifically, in the example shown in FIG. 1, the power supply device 51 exchanges various information (for example, predetermined measurement data, control signals, etc.) with the electrode catheter 1 (wiring path P31). reference). Further, the electrocardiographic signal Sc measured by the electrode catheter 1 is input to the power supply device 51 from the electrode catheter 1 (see wiring path P31). The electrocardiogram signal Sc input to the power supply device 51 in this manner is output to the electrocardiogram display device 3 as shown in FIG. 1 (see wiring path P32).
 ポンプ52は、電極カテーテル1を用いて焼灼を行う際の灌注用の液体(例えば生理食塩水など)を、この電極カテーテル1に対して供給するための装置(液体供給装置)である。 The pump 52 is a device (liquid supply device) for supplying the electrode catheter 1 with a liquid for irrigation (for example, physiological saline) when performing cauterization using the electrode catheter 1 .
 食道温度計53は、電極カテーテル1を用いて焼灼を行う際の、患者の食道付近の温度を測定する温度計である。 The esophageal thermometer 53 is a thermometer that measures the temperature near the patient's esophagus when performing cauterization using the electrode catheter 1 .
 3Dマッピング装置6には、前述した交流電源ラインP2cから交流電力が供給されるようになっている。この3Dマッピング装置6は、例えば、患者において測定された心腔内電位等を、3D(3次元)表示する装置である。 AC power is supplied to the 3D mapping device 6 from the AC power line P2c described above. The 3D mapping device 6 is, for example, a device that displays intracardiac potentials and the like measured in a patient in a 3D (three-dimensional) manner.
[ノイズ判定器4の詳細構成]
 ここで、図2,図3を参照して、上記したノイズ判定器4の詳細構成例について説明する。図2は、このノイズ判定器4等の詳細構成例を、ブロック図で表したものであり、図3は、このノイズ判定器4等における各部材の配置構成例を、ブロック図で表したものである。ノイズ判定器4は、図2,図3に示したように、後述する放射電界ノイズNre(ノイズ信号Sn)を測定する電界センサ42と、この電界センサ42によって測定された放射電界ノイズNreに基づいて、後述する所定の処理を行う検出回路40と、を備えている。また、この検出回路40は、図2に示したように、電源回路(電源部)41と、判定部43と、通知部44とを備えている。
[Detailed configuration of noise determiner 4]
Here, a detailed configuration example of the noise determiner 4 will be described with reference to FIGS. 2 and 3. FIG. FIG. 2 is a block diagram showing an example of the detailed configuration of the noise determiner 4, etc. FIG. 3 is a block diagram showing an example of the layout configuration of each member in the noise determiner 4, etc. is. As shown in FIGS. 2 and 3, the noise determiner 4 includes an electric field sensor 42 for measuring radiation electric field noise Nre (noise signal Sn), which will be described later, and based on the radiation electric field noise Nre measured by the electric field sensor 42. and a detection circuit 40 that performs a predetermined process, which will be described later. The detection circuit 40 also includes a power supply circuit (power supply unit) 41, a determination unit 43, and a notification unit 44, as shown in FIG.
 また、ノイズ判定器4は、図2,図3に示したように、このノイズ判定器4とは異なる他の機器(この例では、アイソレーショントランス2a)からの交流電源ラインP2a2を介した電力供給に基づいて、以下説明する各種の動作を行う機器となっている。言い換えると、このノイズ判定器4は、他の機器に接続可能な、コンセント型の機器となっている。具体的には、この例では図2に示したように、他の機器としてのアイソレーショントランス2aから、電源プラグ72(交流電源入力部)と、交流電源ラインP2a2とを介して、ノイズ判定器4に対して電力供給がなされるようになっている。 Also, as shown in FIGS. 2 and 3, the noise determiner 4 receives power from another device (isolation transformer 2a in this example) different from the noise determiner 4 through an AC power supply line P2a2. Based on the supply, it is a device that performs various operations described below. In other words, the noise determiner 4 is a socket-type device that can be connected to other devices. Specifically, in this example, as shown in FIG. 2, from the isolation transformer 2a as another device, through the power plug 72 (AC power input section) and the AC power line P2a2, the noise determiner 4 is supplied with power.
 ここで、図2に示したように、このような電源プラグ72(アイソレーショントランス2aの2次側)は、いわゆる3端子型のプラグとなっている。つまり、この電源プラグ72には、ライブ(Live:L)端子72Lと、ニュートラル(Neutral:N)端子72Nと、アース(Earth:E)端子72Eとが、それぞれ設けられている。同様に、アイソレーショントランス2aの1次側に設けられた電源プラグ71(前述した交流電源ラインP1aと、商用の交流電源としての壁コンセント20aとの間に配置)も、いわゆる3端子型のプラグとなっている。つまり、この電源プラグ71にも、ライブ端子71Lと、ニュートラル端子71Nと、アース端子71Eとが、それぞれ設けられている。 Here, as shown in FIG. 2, such a power plug 72 (secondary side of the isolation transformer 2a) is a so-called three-terminal plug. That is, the power plug 72 is provided with a live (Live: L) terminal 72L, a neutral (Neutral: N) terminal 72N, and an earth (Earth: E) terminal 72E. Similarly, the power plug 71 provided on the primary side of the isolation transformer 2a (arranged between the aforementioned AC power line P1a and the wall outlet 20a as a commercial AC power supply) is also a so-called three-terminal plug. It has become. That is, the power plug 71 is also provided with a live terminal 71L, a neutral terminal 71N, and an earth terminal 71E.
 また、この電源プラグ71におけるアース端子71Eは、図2中の符号P7で示したように、一般には、アースEに電気的接続されており、接地状態となっている。したがって、図2に示したように、この電源プラグ71のアース端子71Eから、交流電源ラインP1a、アイソレーショントランス2aの筐体20(フレームグランドFG20)、および、電源プラグ72のアース端子72Eまでを経由して、アースラインLEが形成されることになる。つまり、このようなアースラインLEは、アース端子71E,72Eと電気的に接続されていると共に、交流電源ラインP1a上に含まれた接続ラインとなっている。一方、図2に示したように、交流電源ラインP2a2上には、このようなアースラインLEは含まれないようになっている。 In addition, the ground terminal 71E of the power plug 71 is generally electrically connected to the ground E and grounded, as indicated by P7 in FIG. Therefore, as shown in FIG. 2, the ground terminal 71E of the power plug 71, the AC power line P1a, the housing 20 (frame ground FG20) of the isolation transformer 2a, and the ground terminal 72E of the power plug 72 are connected. An earth line LE is formed via this. That is, the ground line LE is electrically connected to the ground terminals 71E and 72E and is a connection line included on the AC power supply line P1a. On the other hand, as shown in FIG. 2, such a ground line LE is not included on the AC power supply line P2a2.
 電源回路41は、図2に示したように、上記した電源プラグ72および交流電源ラインP2a2を介して、アイソレーショントランス2aから電力供給を受ける回路である。また、この電源回路41は、このようなアイソレーショントランス2aからの電力供給に基づき、後述する判定部43および通知部44に対してそれぞれ、これらの動作用の電力を供給するようになっている(図2参照)。 The power supply circuit 41, as shown in FIG. 2, is a circuit that receives power supply from the isolation transformer 2a via the power plug 72 and the AC power supply line P2a2. In addition, the power supply circuit 41 is configured to supply power for operations to a determination unit 43 and a notification unit 44, which will be described later, respectively, based on the power supply from the isolation transformer 2a. (See Figure 2).
 電界センサ42は、上記した検出回路40上を伝播する放射電界ノイズNre(ノイズ信号Sn)を、この検出回路40上から測定(検出)するセンサである(図2中の符号P40参照)。具体的には、検出回路40上には、交流電源ラインP2a2上の放射電界ノイズNreが伝播することから、電界センサ42は、この検出回路40上を伝播する放射電界ノイズNreを、検出回路40上から測定するようになっている。なお、このようにして測定された放射電界ノイズNreは、交流電源ラインP2a1,P2a2上を伝播する放射電界ノイズNreと、同等のものとなっている。また、このような電界センサ42は、図2中の符号P42で示したように、詳細は後述するが、上記したアースラインLEからは離間するようにして、ノイズ判定器4内に配置されている。なお、このような電界センサ42とアースラインLEとの間の距離(離間距離)は、例えば40mm以上であり、一例としては80mmである。 The electric field sensor 42 is a sensor that measures (detects) the radiated electric field noise Nre (noise signal Sn) propagating on the detection circuit 40 from above the detection circuit 40 (see symbol P40 in FIG. 2). Specifically, since the radiation electric field noise Nre on the AC power supply line P2a2 propagates onto the detection circuit 40, the electric field sensor 42 detects the radiation electric field noise Nre propagating on the detection circuit 40. It is designed to be measured from above. The radiation electric field noise Nre thus measured is equivalent to the radiation electric field noise Nre propagating on the AC power supply lines P2a1 and P2a2. Further, such an electric field sensor 42 is arranged in the noise determiner 4 so as to be separated from the ground line LE as indicated by P42 in FIG. 2, although the details will be described later. there is The distance (separation distance) between the electric field sensor 42 and the earth line LE is, for example, 40 mm or more, and is 80 mm as an example.
 なお、このような電界センサ42は、本発明における「測定部」の一具体例に対応している。ただし、電界センサ42以外の他のセンサ等を用いて、本発明における「測定部」を構成するようにしてもよい。 It should be noted that such an electric field sensor 42 corresponds to a specific example of the "measuring section" in the present invention. However, a sensor or the like other than the electric field sensor 42 may be used to configure the "measuring section" in the present invention.
 判定部43は、電界センサ42によって測定された放射電界ノイズNreについて、後述する所定のノイズ判定を行うものである。具体的には、判定部43は、この放射電界ノイズNre(ノイズ信号Sn)におけるノイズレベルLnが、後述する所定の閾値Lth以上(Ln≧Lth)であるのか否か等について、判定(ノイズ判定)を行うようになっている。また、判定部43は、このようなノイズ判定の結果を、判定結果Rjとして通知部44へと出力するようになっている(図2参照)。なお、このような判定部43における判定手法の詳細については、後述する(図6参照)。このような判定部43は、例えば、そのような各種のノイズ判定を行う判定回路の他、所定の増幅回路(アンプ)や、所定のフィルタ回路(後述するバンドパスフィルタなど)等を、含んで構成されている。 The determination unit 43 performs predetermined noise determination, which will be described later, on the radiation electric field noise Nre measured by the electric field sensor 42 . Specifically, the determination unit 43 determines whether or not the noise level Ln of the radiated electric field noise Nre (noise signal Sn) is equal to or greater than a predetermined threshold value Lth (Ln≧Lth) described later (noise determination). ). Further, the determination unit 43 outputs the result of such noise determination to the notification unit 44 as the determination result Rj (see FIG. 2). The details of the determination method in the determination unit 43 will be described later (see FIG. 6). Such a determination unit 43 includes, for example, a predetermined amplifier circuit (amplifier), a predetermined filter circuit (such as a band-pass filter, which will be described later), etc., in addition to the determination circuit that performs such various noise determinations. It is configured.
 通知部44は、判定部43におけるノイズ判定の結果(上記した判定結果Rj)を、ノイズ判定器4の外部へと(ユーザへ向けて)通知するものである。具体的には、詳細は後述するが、通知部44は、例えば、所定の色などを利用した表示(例えば、LED(Light Emitting Diode)等による点灯表示)や、所定の音声出力などを用いて、そのような判定結果Rjに基づく通知を行うようになっている。 The notification unit 44 notifies the noise determination result (determination result Rj described above) of the determination unit 43 to the outside of the noise determiner 4 (toward the user). Specifically, although the details will be described later, the notification unit 44 uses, for example, a display using a predetermined color (for example, a lighting display using an LED (Light Emitting Diode) or the like), a predetermined audio output, or the like. , a notification based on such determination result Rj.
 ここで、本実施の形態のノイズ判定器4では、図2中の符号P41(「×(バツ)」印参照)で示したように、前述したアースラインLEと、検出回路40におけるグランドGND40とが、互いに非接続となっている。つまり、これらのアースラインLEとグランドGND40とは、電気的に接続されないようになっている。 Here, in the noise determiner 4 of the present embodiment, as indicated by the symbol P41 (see "x" mark) in FIG. are disconnected from each other. That is, these earth lines LE and the ground GND40 are not electrically connected.
 また、このノイズ判定器4では、図3に示したように、電界センサ42における放射電界ノイズNreの測定面Smが、アイソレーショントランス2aの筐体20における筐体面S20に対して、略垂直(例えば垂直)となるように、配置されている(Sm⊥S20)。更に、このノイズ判定器4では、図3に示したように、このような電界センサ42の測定面Smが、検出回路40を搭載する回路基板45の基板面S40に対して、略平行(例えば平行)となるように、配置されている(Sm//S40)。なお、この略平行(平行)には、これらの測定面Smと基板面S40とが同一平面上に配置されている場合も、含まれている。 Further, in the noise determiner 4, as shown in FIG. 3, the measurement plane Sm of the radiated electric field noise Nre in the electric field sensor 42 is substantially perpendicular ( for example, vertical) (Sm⊥S20). Further, in the noise determiner 4, as shown in FIG. 3, the measurement surface Sm of the electric field sensor 42 is substantially parallel (for example, parallel) (Sm//S40). Note that this substantially parallel (parallel) includes the case where the measurement surface Sm and the substrate surface S40 are arranged on the same plane.
[動作および作用・効果]
(A.放射電界ノイズについて)
 最初に、心電位波形(心電位信号Sc)に混入する、前述した放射電界ノイズNreについて、詳細に説明する。
[Operation and action/effect]
(A. Radiation electric field noise)
First, the radiation electric field noise Nre, which is mixed in the electrocardiographic waveform (cardiographic signal Sc), will be described in detail.
 図4は、このような放射電界ノイズNre(ノイズ信号Sn)の波形例を、模式的にタイミング図で表したものである。また、図5は、前述した心電位信号Scおよび放射電界ノイズNreの周波数特性例をそれぞれ、模式的に表したものである。なお、図4において、横軸は時間tを示し、縦軸は、信号の振幅Am(放射電界ノイズNreのノイズレベルLn)を示している。また、図5において、横軸は周波数fを示し、縦軸は、信号の振幅Amを示している。 FIG. 4 is a schematic timing chart showing an example of the waveform of such radiated electric field noise Nre (noise signal Sn). FIG. 5 schematically shows an example of frequency characteristics of the electrocardiographic signal Sc and the radiation electric field noise Nre, respectively. In FIG. 4, the horizontal axis represents time t, and the vertical axis represents signal amplitude Am (noise level Ln of radiation electric field noise Nre). In FIG. 5, the horizontal axis indicates the frequency f, and the vertical axis indicates the amplitude Am of the signal.
 まず、例えば図4に示したように、放射電界ノイズNreのノイズ信号Snは、周期Δt(=約20ms程度)を有する波形となっており、交流電源(壁コンセント20a~20d)の帯域(50Hz,60Hz程度)の周波数fnを有している。このような放射電界ノイズNreは、いわゆる「ハムノイズ」と呼ばれるノイズであり、図1に示した例では、カテーテル室内での環境起因のノイズのほとんどが、このような交流電源由来の放射電界ノイズNreとなっている。したがって、この放射電界ノイズNreを抑えるだけでも、カテーテル室内での環境起因のノイズの出現率は、大幅に低下することになる。 First, for example, as shown in FIG. 4, the noise signal Sn of the radiated electric field noise Nre has a waveform having a period Δt (=about 20 ms), and is in the band (50 Hz) of the AC power supply (wall outlets 20a to 20d). , about 60 Hz). Such radiation electric field noise Nre is so-called "hum noise", and in the example shown in FIG. It has become. Therefore, even by suppressing the radiated electric field noise Nre alone, the appearance rate of noise due to the environment in the catheter chamber can be greatly reduced.
 また、このような放射電界ノイズNreは、一般に、配線ケーブル等を構成する導線が拾うケースが多い。したがって、例えば、そのような配線ケーブル等の導線は、放射電界ノイズNreのノイズ源から離して配置することが望ましいと言える。また、図1の例では、破線で示した配線経路P31,P32(電極カテーテル1から電源装置51を介して、心電図表示装置3まで至る配線経路)が、特に、放射電界ノイズNreの影響を受け易い部分となっている。したがって、特にこれらの配線経路P31,P32の周辺箇所について、ノイズ判定器4を用いて、後述する放射電界ノイズNreの測定等を行うのが望ましいと言える。 In addition, such radiated electric field noise Nre is generally picked up by conductors that make up distribution cables in many cases. Therefore, for example, it can be said that it is desirable to arrange conductors such as such distribution cables away from the noise source of the radiated electric field noise Nre. In the example of FIG. 1, wiring paths P31 and P32 indicated by broken lines (wiring paths from the electrode catheter 1 to the electrocardiogram display device 3 via the power supply device 51) are particularly affected by the radiation electric field noise Nre. The easy part. Therefore, it can be said that it is desirable to measure radiation electric field noise Nre, which will be described later, using the noise determiner 4, particularly for the peripheral portions of these wiring paths P31 and P32.
 また、例えば図5に示したように、心電位信号Scおよび放射電界ノイズNreの周波数特性は、以下のようになっている。まず、心電位信号Scにおける低域側の周波数帯域ΔfLでは、例えばHPF(High Pass Filter)を用いて、その振幅Amが低減されている。同様に、心電位信号Scにおける高域側の周波数帯域ΔfHでは、例えばLPF(Low Pass Filter)を用いて、その振幅Amが低減されている。 Further, for example, as shown in FIG. 5, the frequency characteristics of the electrocardiographic signal Sc and the radiation electric field noise Nre are as follows. First, in the low-side frequency band ΔfL of the electrocardiographic signal Sc, the amplitude Am is reduced using, for example, a HPF (High Pass Filter). Similarly, in the high frequency band ΔfH of the electrocardiographic signal Sc, its amplitude Am is reduced using, for example, an LPF (Low Pass Filter).
 一方、心電位信号Scにおける中域側の周波数帯域ΔfMについては、例えばノッチフィルタを用いることで、その振幅Amを低減させることが考えられる。しかしながら、この周波数帯域ΔfM内では、例えば図5に示したように、所定の周波数範囲Δfn内に、放射電界ノイズNreの周波数(周波数fn)が含まれるケースがある。つまり、この周波数帯域ΔfMにおいては、心電位波形を構成する心電位信号Scにおける周波数と、放射電界ノイズNreの周波数fnとが、重なってしまうことから、そのようなフィルタによって振幅Amを低減させるのは、望ましくないと言える。なお、上記した周波数範囲Δfnとしては、例えば、50Hz~60Hz程度の範囲が挙げられ、心電位信号Scの周波数帯域としては、例えば、30Hz~500Hz程度の帯域が挙げられる。 On the other hand, for the middle frequency band ΔfM in the electrocardiographic signal Sc, it is conceivable to reduce the amplitude Am by using, for example, a notch filter. However, within this frequency band ΔfM, there are cases where the frequency (frequency fn) of the radiation electric field noise Nre is included within a predetermined frequency range Δfn, as shown in FIG. 5, for example. That is, in the frequency band ΔfM, the frequency of the electrocardiographic signal Sc forming the electrocardiographic waveform overlaps with the frequency fn of the radiated electric field noise Nre. is undesirable. The frequency range Δfn is, for example, a range of about 50 Hz to 60 Hz, and the frequency band of the electrocardiographic signal Sc is, for example, a band of about 30 Hz to 500 Hz.
 ところで、このような放射電界ノイズNreは、前述したアイソレーショントランス2a,2b,2cの2次側(交流電源ラインP2a1,P2a2,P2b,P2c)においては、基本的には取り除かれているはずである。しかしながら、例えば、アイソレーショントランス2aの2次側のように、複数の機器が並列して接続されていると、ある機器が接続されることで、低ノイズ状態のはずの交流電源ラインが、一斉に高ノイズ状態になってしまうケースがある。また、これらのアイソレーショントランス2a,2b,2cを用いたとしても、放射電界ノイズNreを完全に取り除くことは難しく、実際には、ある程度の放射電界ノイズNreが取り除かれずに、2次側に残存してしまうケースがある。そして、これらの要因によって、心電位波形(心電位信号Sc)に放射電界ノイズNre(ノイズ信号Sn)が混入してしまうと、心電図表示装置3における心電位波形(心電図)の読み取りが、困難となってしまうおそれがある。 By the way, such radiated electric field noise Nre should basically be removed on the secondary sides (AC power supply lines P2a1, P2a2, P2b and P2c) of the isolation transformers 2a, 2b and 2c. be. However, for example, when a plurality of devices are connected in parallel, such as the secondary side of the isolation transformer 2a, the connection of a certain device causes the AC power line, which should be in a low noise state, to There are cases in which a high noise state occurs. Moreover, even if these isolation transformers 2a, 2b, and 2c are used, it is difficult to completely remove the radiated electric field noise Nre. There are cases where If radiation electric field noise Nre (noise signal Sn) is mixed in the electrocardiographic waveform (electrocardiographic signal Sc) due to these factors, it becomes difficult to read the electrocardiographic waveform (electrocardiogram) on the electrocardiogram display device 3. It may become
 そこで、本実施の形態では、図1~図3に示したノイズ判定器4を用いて、このような放射電界ノイズNreの測定や、所定のノイズ判定等を行うようにしている。以下、このノイズ判定器4における動作例について、詳細に説明する。 Therefore, in the present embodiment, the noise determiner 4 shown in FIGS. 1 to 3 is used to measure such radiation electric field noise Nre and perform predetermined noise determination. An operation example of the noise determiner 4 will be described in detail below.
(B.ノイズ判定器4の動作)
 図6は、このようなノイズ判定器4の動作例(ノイズ判定等の動作例)を、流れ図で表したものである。
(B. Operation of noise determiner 4)
FIG. 6 is a flowchart showing an example of operation of the noise determiner 4 (example of operation such as noise determination).
 この図6に示した動作例では、まず、電界センサ42が、交流電源ラインP2a1,P2a2上を伝播する放射電界ノイズNre(ノイズ信号Sn)を測定(検出)する(ステップS11)。具体的には、例えば図2に示したように、本実施の形態では前述したように、電界センサ42は、検出回路40上を伝播する放射電界ノイズNreを、測定する。 In the operation example shown in FIG. 6, first, the electric field sensor 42 measures (detects) radiation electric field noise Nre (noise signal Sn) propagating on the AC power supply lines P2a1 and P2a2 (step S11). Specifically, for example, as shown in FIG. 2, the electric field sensor 42 measures the radiated electric field noise Nre propagating on the detection circuit 40 as described above in the present embodiment.
 次いで、判定部43が、このようにして測定された放射電界ノイズNre(ノイズ信号Sn)の周波数fnが、前述した所定の周波数範囲Δfn内(図4参照)であるのか否かについて、判定を行う(ステップS12)。 Next, the determination unit 43 determines whether or not the frequency fn of the radiated electric field noise Nre (noise signal Sn) thus measured is within the aforementioned predetermined frequency range Δfn (see FIG. 4). (step S12).
 ここで、放射電界ノイズNreの周波数fnが、上記した周波数範囲Δfn内ではないと判定された場合には(ステップS12:N)、以下のようになる。すなわち、この場合には、そのような周波数fnの放射電界ノイズNreが心電位波形(心電位信号Sc)に混入したとしても、心電位波形への影響が小さい(もしくは、ほとんど無い)と言える(図5参照)。したがって、次に通知部44は、判定部43における判定結果Rj(低ノイズ状態であるとの判定結果)を、ノイズ判定器4の外部へと通知する(ステップS13)。具体的には、この場合には通知部44は、例えば、緑色による点灯表示を行うことで、そのような低ノイズ状態であるとの判定結果を通知する。 Here, when it is determined that the frequency fn of the radiated electric field noise Nre is not within the frequency range Δfn described above (step S12: N), the following occurs. That is, in this case, even if the radiated electric field noise Nre of such a frequency fn is mixed in the electrocardiographic waveform (cardiographic signal Sc), it can be said that the influence on the electrocardiographic waveform is small (or almost non-existent). See Figure 5). Therefore, next, the notification unit 44 notifies the determination result Rj (determination result indicating the low noise state) in the determination unit 43 to the outside of the noise determiner 4 (step S13). Specifically, in this case, the notification unit 44 notifies the determination result of such a low-noise state, for example, by performing lighting display in green.
 なお、このようなステップS13の後は、上記したステップS11へと再び戻ることになる。 After such step S13, the process returns to step S11 described above.
 一方、放射電界ノイズNreの周波数fnが、上記した周波数範囲Δfn内であると判定された場合には(ステップS12:Y)、以下のようになる。すなわち、この場合には、そのような周波数fnの放射電界ノイズNreが心電位波形(心電位信号Sc)に混入した場合、そのノイズレベルLnによっては、心電位波形への影響が大きくなってしまうと言える(図5参照)。したがって、次に判定部43は、その放射電界ノイズNre(ノイズ信号Sn)のノイズレベルLnが、所定の閾値Lth以上(Ln≧Lth)であるのか否かについて、判定を行う(ステップS14)。なお、この閾値Lthとしては、例えば、50~150[V/m]の範囲内の値(一例として、100[V/m])が挙げられる。
(ステップS14)
On the other hand, when it is determined that the frequency fn of the radiation electric field noise Nre is within the frequency range Δfn described above (step S12: Y), the following is the case. That is, in this case, if the radiated electric field noise Nre of such a frequency fn is mixed into the electrocardiographic waveform (cardiographic signal Sc), the influence on the electrocardiographic waveform increases depending on the noise level Ln. (See FIG. 5). Therefore, next, the determination unit 43 determines whether or not the noise level Ln of the radiated electric field noise Nre (noise signal Sn) is equal to or higher than a predetermined threshold value Lth (Ln≧Lth) (step S14). Note that the threshold value Lth is, for example, a value within a range of 50 to 150 [V/m] (100 [V/m] as an example).
(Step S14)
 ここで、ノイズレベルLnが閾値Lth未満(Ln<Lth)であると判定された場合には(ステップS14:N)、以下のようになる。すなわち、この場合には、そのようなノイズレベルLnの放射電界ノイズNreが心電位波形(心電位信号Sc)に混入したとしても、心電位波形への影響が小さい(もしくは、ほとんど無い)と言える。したがって、この場合にも、上記したステップS13へと進むことになる。つまり、この場合にも通知部44は、例えば上記した通知手法を用いて、低ノイズ状態であるとの判定結果を、外部へと通知する。 Here, when it is determined that the noise level Ln is less than the threshold value Lth (Ln<Lth) (step S14: N), the following is performed. That is, in this case, even if the radiated electric field noise Nre of such a noise level Ln is mixed into the electrocardiographic waveform (cardiographic signal Sc), it can be said that the influence on the electrocardiographic waveform is small (or almost non-existent). . Therefore, also in this case, the process proceeds to step S13 described above. In other words, in this case as well, the notification unit 44 uses, for example, the notification method described above to notify the outside of the determination result that the state is in the low-noise state.
 なお、この場合においても、このステップS13の後は、上記したステップS11へと再び戻ることになる。 Also in this case, after step S13, the process returns to step S11 described above.
 一方、ノイズレベルLnが閾値Lth以上(Ln≧Lth)であると判定された場合には(ステップS14:Y)、以下のようになる。すなわち、この場合には、そのようなノイズレベルLnの放射電界ノイズNreが心電位波形(心電位信号Sc)に混入した場合、心電位波形への影響が大きくなってしまうと言える。したがって、次に通知部44は、判定部43における判定結果Rj(高ノイズ状態であるとの判定結果)を、ノイズ判定器4の外部へと通知する(ステップS15)。具体的には、この場合には通知部44は、例えば、赤色による点灯表示を行ったり、所定のメッセージ音を出力したり、このような赤色の点灯表示とメッセージ音の出力とを併用したりすることで、そのような高ノイズ状態であるとの判定結果を通知する。 On the other hand, when it is determined that the noise level Ln is equal to or greater than the threshold Lth (Ln≧Lth) (step S14: Y), the following is performed. That is, in this case, if the radiated electric field noise Nre of such a noise level Ln is mixed into the electrocardiographic waveform (cardiographic signal Sc), it can be said that the influence on the electrocardiographic waveform is increased. Therefore, next, the notification unit 44 notifies the determination result Rj (determination result of the high noise state) in the determination unit 43 to the outside of the noise determiner 4 (step S15). Specifically, in this case, the notification unit 44 performs, for example, lighting display in red, outputs a predetermined message sound, or uses such red lighting display and message sound output together. By doing so, the determination result of such a high noise state is notified.
 なお、このようなステップS15の後は、上記したステップS11へと再び戻ることになる。 After such step S15, the process returns to step S11 described above.
 以上で、図6に示した一連の動作例が終了となる。 This completes the series of operation examples shown in FIG.
(C.同相ノイズの影響について)
 続いて、図7~図9を参照して、ノイズ判定器4での上記したようなノイズ判定の際における、同相ノイズ(コモンモードノイズ)の影響について、詳細に説明する。
(C. Influence of common-mode noise)
Next, with reference to FIGS. 7 to 9, the influence of in-phase noise (common mode noise) in the above noise determination by the noise determiner 4 will be described in detail.
 ここで、図7,図9はそれぞれ、そのようなノイズ判定の際における同相ノイズについて説明するための、ブロック図である。具体的には、図7は、前述した電源プラグ71におけるアース端子71Eが、接地状態に設定されている(アースEに対して電気的に接続されている)場合について、示している。一方、図9は、このアース端子71Eが、非接地状態に設定されている(アースEに対して電気的に接続されていない:図9中の「×」印参照)場合について、示している。また、図8は、図7に示した交流電源ラインP2a2上の各ラインにおけるノイズ波形例を、模式的に表したものである。なお、このような各ラインとしては、ライブ端子71L,72Lと電気的に接続されたライブラインLLと、ニュートラル端子71N,72Nと電気的に接続されたニュートラルラインLNと、前述したアースラインLEとが、挙げられる。 Here, FIGS. 7 and 9 are block diagrams for explaining common-mode noise in such noise determination. Specifically, FIG. 7 shows a case where the ground terminal 71E of the power plug 71 described above is grounded (electrically connected to the ground E). On the other hand, FIG. 9 shows a case where the ground terminal 71E is set in a non-grounded state (not electrically connected to the ground E: see "x" mark in FIG. 9). . FIG. 8 schematically shows an example of noise waveforms in each line on the AC power supply line P2a2 shown in FIG. Note that such lines include a live line LL electrically connected to the live terminals 71L and 72L, a neutral line LN electrically connected to the neutral terminals 71N and 72N, and the ground line LE described above. is mentioned.
 まず、例えば図7に示したように、アース端子71Eが接地状態となっている場合には、交流電源ラインP2a2上を伝播する放射電界ノイズNreについては、上記した各ラインのうち、ライブラインLLおよびニュートラルラインLNにおけるノイズ成分が、主要成分となる(図8参照)。これらのノイズ成分はそれぞれ、検出回路40上へと伝播し、この検出回路40上の放射電界ノイズNreが、電界センサ42との間の浮遊容量(コンデンサ成分)を介して、測定される。また、検出回路40における放射電界ノイズNreのノイズレベルは、この検出回路40におけるグランドGND40から見たノイズレベルとなる。これらのことから、図7に示したように、アース端子71Eが接地状態となっている場合には、ライブラインLLおよびニュートラルラインLNから放射されるノイズ成分が、放射電界ノイズNreとして正常に測定されることになる。 First, for example, as shown in FIG. 7, when the earth terminal 71E is in a grounded state, the radiated electric field noise Nre propagating on the AC power supply line P2a2 is reduced to the live line LL and noise components on the neutral line LN are main components (see FIG. 8). Each of these noise components propagates onto the detection circuit 40 , and the radiated electric field noise Nre on this detection circuit 40 is measured via the stray capacitance (capacitor component) between it and the electric field sensor 42 . Also, the noise level of the radiated electric field noise Nre in the detection circuit 40 is the noise level seen from the ground GND 40 in this detection circuit 40 . From these facts, as shown in FIG. 7, when the earth terminal 71E is grounded, the noise components radiated from the live line LL and the neutral line LN are normally measured as the radiated electric field noise Nre. will be
 一方、例えば図9に示したように、アース端子71Eが非接地状態となっている場合には、以下のようになる。すなわち、この場合、交流電源ラインP2a2上を伝播する放射電界ノイズNreについては、上記した各ラインのうち、ライブラインLLおよびニュートラルラインLNにおけるノイズ成分よりも、アースラインLEからのノイズ成分が、主要成分となる。これは、アース端子71Eが非接地状態となっている場合には、アースラインLEが完全に浮いた状態になり、電気的に不安定な状態になることから、強大なノイズを放射するためである。 On the other hand, as shown in FIG. 9, for example, when the ground terminal 71E is in a non-grounded state, the following occurs. That is, in this case, regarding the radiated electric field noise Nre propagating on the AC power supply line P2a2, the noise component from the ground line LE is more dominant than the noise component from the live line LL and the neutral line LN among the above-described lines. become an ingredient. This is because when the grounding terminal 71E is in a non-grounded state, the grounding line LE is in a completely floating state and becomes electrically unstable, thereby radiating a large amount of noise. be.
 また、このようにしてアース端子71Eが非接地状態となっている場合には、アイソレーショントランス2aの筐体20(フレームグランドFG20)からも、非常に高レベルのノイズが放射されることなる。これは、このフレームグランドFG20とアースラインLEとが、電気的に接続された状態であるためである。このようにして、アース端子71Eが非接地状態となっている場合、アイソレーショントランス2aの筐体20およびアースラインLEはそれぞれ、強大なノイズ源となる。また、アースラインLEから放射されるノイズが強大であるため、検出回路40におけるグランドGND40に対しても、大きなノイズが重畳されることになる。そして、このようにして、検出回路40のグランドGND40が、大きなノイズによって揺れることから、検出回路40におけるノイズレベル(アースラインLEからのノイズレベル)との差分が小さくなる。その結果、図8に示したように、アース端子71Eが非接地状態となっている場合には、放射電界ノイズNreのノイズレベルが低く測定され、誤判定されてしまうおそれがある。ちなみに、このようなアースラインLEからのノイズは、いわゆる同相ノイズ(コモンモードノイズ)と呼ばれるものと考えられる。 In addition, when the ground terminal 71E is in a non-grounded state in this manner, extremely high-level noise is radiated also from the housing 20 (frame ground FG20) of the isolation transformer 2a. This is because the frame ground FG20 and the earth line LE are electrically connected. In this way, when the ground terminal 71E is in a non-grounded state, the housing 20 of the isolation transformer 2a and the ground line LE each become powerful noise sources. Moreover, since the noise radiated from the earth line LE is strong, a large noise is superimposed on the ground GND40 in the detection circuit 40 as well. Since the ground GND 40 of the detection circuit 40 is thus shaken by large noise, the difference from the noise level in the detection circuit 40 (the noise level from the earth line LE) becomes small. As a result, as shown in FIG. 8, when the ground terminal 71E is in a non-grounded state, the noise level of the radiated electric field noise Nre may be measured to be low, resulting in erroneous determination. Incidentally, such noise from the earth line LE is considered to be so-called common mode noise.
 ここで、図7,図9に示したような、アイソレーショントランス2aの1次側のアース端子71Eは、必ずしもアースEに接地されているとは限らない。特に、壁コンセント20a内の工事状況は、外部からは分からないのが実情である。また、このノイズ判定器4は、前述したようにして、自身での電池駆動ではなく、外部(アイソレーショントランス2a)を介したAC電源駆動となっている。このため、ノイズ源(交流電源ラインP2a2)と検出回路40とのアイソレーションが完全ではないことから、検出回路40は、上記した同相ノイズの影響を受け易いことになる。これらのことから、ノイズ判定器4において放射電界ノイズNreを測定する際に、測定精度を向上させるためには、そのような同相ノイズの影響を低減させることが重要であると言える。 Here, the ground terminal 71E on the primary side of the isolation transformer 2a as shown in FIGS. 7 and 9 is not necessarily grounded to the ground E. In particular, the actual situation is that the construction status inside the wall outlet 20a cannot be known from the outside. Further, as described above, the noise determiner 4 is driven by an AC power source via an external source (isolation transformer 2a) instead of being driven by a battery itself. Therefore, since the isolation between the noise source (AC power supply line P2a2) and the detection circuit 40 is not perfect, the detection circuit 40 is susceptible to the above-described common-mode noise. From these, it can be said that it is important to reduce the influence of such common-mode noise in order to improve the measurement accuracy when measuring the radiated electric field noise Nre in the noise determiner 4 .
 なお、いわゆるノーマルモードノイズの周波数と、コモンモードノイズ(同相ノイズ)の周波数とは、同一であることから、同相ノイズのみをフィルタで除去することは、できない。また、一般に、同相ノイズ用のフィルタとしては、コモンドチョークコイルが使用されるが、対象となる周波数が、50Hz/60Hz程度の超低周波であるため、本実施の形態のノイズ判定器4のような小型機器の筐体に、そのようなフィルタの回路を実装することは、非現実的である。更に、そのようなコイルをフィルタとして使用した場合、そのコイルに磁界ノイズが重畳してしまうことから、安易にコイルを使用することはできない。加えて、磁気シールドするとしても、上記したような超低周波に有効なシールド材は、無いと言える。また、そもそも、測定対象の周波数が50Hz/60Hz程度であることから、そのような50Hz/60Hz程度の周波数に対するフィルタは、適用できないことになる。 Since the frequency of so-called normal mode noise and the frequency of common mode noise (in-phase noise) are the same, it is not possible to filter out only in-phase noise. Also, in general, a common choke coil is used as a filter for common-mode noise. It is impractical to implement such a filter circuit in such a compact device housing. Furthermore, when such a coil is used as a filter, magnetic field noise is superimposed on the coil, so the coil cannot be used easily. In addition, even if a magnetic shield is used, it can be said that there is no shielding material that is effective against the ultra-low frequency as described above. Moreover, since the frequency to be measured is about 50 Hz/60 Hz, a filter for such frequencies of about 50 Hz/60 Hz cannot be applied.
 このようにして、アース端子71Eが非接地状態となる場合も考慮すると、同相ノイズのノイズ源となるアースラインLEからは、電界センサ42をできるだけ離して配置したほうが、放射電界ノイズNreの測定精度の観点からは、望ましいと言える。 Considering the case where the ground terminal 71E is not grounded in this way, it is better to arrange the electric field sensor 42 as far away as possible from the ground line LE which is the noise source of the common-mode noise. From the point of view of
 また、このような同相ノイズの影響を考慮すると、放射電界ノイズNreの測定精度を向上させるには、アースラインLEと、検出回路40におけるグランドGND40とは、電気的に接続しない(非接続とする)のが望ましいと言える。一般的な観点からは、これらのアースラインLEとグランドGND40とを、互いに電気的に接続させたほうが、検出回路40の動作が安定するが、上記したような同相ノイズの影響を考慮すると、互いに電気的接続させないほうが望ましいと言える。 In addition, considering the influence of such common-mode noise, in order to improve the measurement accuracy of the radiated electric field noise Nre, the earth line LE and the ground GND 40 in the detection circuit 40 should not be electrically connected (disconnected). ) is desirable. From a general point of view, the operation of the detection circuit 40 is stabilized if the earth line LE and the ground GND 40 are electrically connected to each other. It can be said that it is preferable not to electrically connect them.
(D.作用・効果)
 以上のようにして、本実施の形態のノイズ判定器4では、交流電源ラインP2a1,P2a2上を伝播して心電位波形(心電位信号Sc)に混入する放射電界ノイズNre(ノイズ信号Sn)が、電界センサ42において検出回路40上から測定される。そして、その測定された放射電界ノイズNreのノイズレベルLnが、閾値Lth以上であるのか否かについての判定が行われ、その判定結果Rjが、ノイズ判定器4の外部に通知される。これにより本実施の形態では、閾値Lth(基準値)以上のノイズレベルLnを有する放射電界ノイズNreの発生が、瞬時に把握できるようになる。つまり、例えば、ノイズ測定を行う度に、測定機器を放射電界ノイズNreの発生源に近づけて、その測定機器での放射電界ノイズNreの測定結果(数値)を、目視で読み取る必要などがなくなる。その結果、ノイズ判定器4を使用する際の利便性が、向上することになる。
(D. action and effect)
As described above, in the noise determiner 4 of the present embodiment, the radiated electric field noise Nre (noise signal Sn) propagated on the AC power supply lines P2a1 and P2a2 and mixed in the electrocardiographic waveform (electrocardiographic signal Sc) is , is measured from the detection circuit 40 at the electric field sensor 42 . Then, it is determined whether or not the noise level Ln of the measured radiation electric field noise Nre is equal to or greater than the threshold value Lth, and the determination result Rj is notified to the outside of the noise determiner 4 . As a result, in the present embodiment, it is possible to instantly grasp the occurrence of radiation electric field noise Nre having a noise level Ln equal to or higher than the threshold Lth (reference value). That is, for example, it is not necessary to bring the measuring device closer to the source of the radiated electric field noise Nre each time noise measurement is performed, and visually read the measurement result (numerical value) of the radiated electric field noise Nre with the measuring device. As a result, convenience in using the noise determiner 4 is improved.
 また、本実施の形態では、ノイズ判定器4とは異なる他の機器からの交流電源ラインP2a2を介した電力供給に基づいて、判定部43および通知部44に対してそれぞれ動作用の電力が供給されることから、以下のようになる。すなわち、上記した他の機器からの電源供給に基づいて動作を行うとともに、検出回路40上の放射電界ノイズNreの測定ができるようになる。したがって、例えば、ノイズ測定の度ごとに、そのノイズ判定器4を手に持って測定する必要がなくなることから、ノイズ判定器4を使用する際の利便性が、更に向上することになる。 Further, in the present embodiment, power for operation is supplied to each of the determination unit 43 and the notification unit 44 based on the power supply from another device different from the noise determiner 4 through the AC power supply line P2a2. Therefore, it becomes as follows. That is, it is possible to operate based on the power supply from the above-described other equipment and to measure the radiated electric field noise Nre on the detection circuit 40 . Therefore, for example, since there is no need to hold the noise determiner 4 in hand each time noise is measured, the convenience of using the noise determiner 4 is further improved.
 ここで、特に本実施の形態は、上記した観点から、前述したアース端子71E,72Eと電気的に接続されていると共に交流電源ラインP1aに含まれているアースラインLEと、検出回路40におけるグランドGND40とが、互いに非接続となっている。これにより本実施の形態では、検出回路40上の放射電界ノイズNreを測定する際に、例えば上記したように、アース端子71Eが非接地状態になった場合であっても、上記したようにして、グランドGND40への同相ノイズの影響が、抑えられる。よって、本実施の形態のノイズ判定器4では、上記したようなノイズ判定の際の判定精度を、向上させることが可能となる。 Here, especially in the present embodiment, from the above-described viewpoint, the earth line LE electrically connected to the earth terminals 71E and 72E and included in the AC power supply line P1a and the ground in the detection circuit 40 GND 40 are disconnected from each other. As a result, in the present embodiment, when measuring the radiated electric field noise Nre on the detection circuit 40, even if the ground terminal 71E is in a non-grounded state, for example, as described above, , the influence of common-mode noise on the ground GND 40 is suppressed. Therefore, in the noise determiner 4 of the present embodiment, it is possible to improve the accuracy of determination during noise determination as described above.
 また、本実施の形態では、電界センサ42がアースラインLEから離間配置されているようにしたので、例えば上記したように、アース端子71Eが非接地状態になった場合であっても、検出回路40上の放射電界ノイズNreを測定する際に、以下のようになる。すなわち、上記したようにして、アースラインLEと電界センサ42との間の浮遊容量が小さくなることから、そのような浮遊容量を介した同相ノイズ成分の混入が、抑えられる。よって、ノイズ判定の際の判定精度を、更に向上させることが可能となる。 Further, in the present embodiment, since the electric field sensor 42 is arranged apart from the earth line LE, even if the earth terminal 71E becomes ungrounded as described above, the detection circuit In measuring the radiated electric field noise Nre on 40: That is, as described above, the stray capacitance between the ground line LE and the electric field sensor 42 is reduced, thereby suppressing the intrusion of the common-mode noise component through such stray capacitance. Therefore, it is possible to further improve the accuracy of noise determination.
 更に、本実施の形態では、電界センサ42における放射電界ノイズNreの測定面Smが、上記他の機器としてのアイソレーショントランス2aの筐体面S20に対して、略垂直となるように配置されていることから、以下のようになる。すなわち、例えば上記したように、アース端子71Eが非接地状態になった場合であっても、検出回路40上の放射電界ノイズNreを測定する際に、前述したフレームグランドFG20としての筐体20における筐体面S20と、測定面Smとの間の浮遊容量が、小さくなる。その結果、前述したようにして、そのような浮遊容量を介した同相ノイズ成分の混入が、抑えられることから、ノイズ判定の際の判定精度を、更に向上させることが可能となる。 Furthermore, in the present embodiment, the measurement surface Sm of the radiated electric field noise Nre in the electric field sensor 42 is arranged so as to be substantially perpendicular to the housing surface S20 of the isolation transformer 2a as the other device. Therefore, it is as follows. That is, for example, as described above, even if the ground terminal 71E is in a non-grounded state, when measuring the radiated electric field noise Nre on the detection circuit 40, The stray capacitance between the housing surface S20 and the measurement surface Sm is reduced. As a result, as described above, the inclusion of common-mode noise components via such stray capacitance can be suppressed, so that it is possible to further improve the accuracy of noise determination.
 加えて、本実施の形態では、上記した電界センサ42における測定面Smが、検出回路40を搭載する回路基板45の基板面S40に対して、略平行となるように配置されていることから、以下のようになる。すなわち、このような基板面S40と測定面Smとの間の浮遊容量が、大きくなることから、検出回路40上の放射電界ノイズNreを測定する際に、放射電界ノイズNreの測定感度が高くなる。具体的には、回路基板45内の微弱な放射電界ノイズNreを、積極的に検出する(拾う)ことができる。その結果、ノイズ判定の際の判定精度を、更に向上させることが可能となる。 In addition, in the present embodiment, the measurement surface Sm of the electric field sensor 42 is arranged so as to be substantially parallel to the substrate surface S40 of the circuit substrate 45 on which the detection circuit 40 is mounted. It looks like this: That is, since the stray capacitance between the substrate surface S40 and the measurement surface Sm is increased, the measurement sensitivity of the radiated electric field noise Nre on the detection circuit 40 is increased. . Specifically, the weak radiated electric field noise Nre in the circuit board 45 can be positively detected (picked up). As a result, it is possible to further improve the accuracy of noise determination.
 また、本実施の形態では、上記した他の機器が、交流電源としての壁コンセント20aと心電図表示装置3との間を接続する、交流電源ラインP1a,P2a1上に配置された、アイソレーショントランス2aであることから、以下のようになる。すなわち、このアイソレーショントランス2aから心電図表示装置3までに至る経路(交流電源ラインP2a1)上において、そのアイソレーショントランス2aによって取り除ききれなかった放射電界ノイズNreが、検出回路40上にて測定できるようになる。その結果、ノイズ判定器4を使用する際の利便性を、より一層向上させることが可能となる。 Further, in the present embodiment, the isolation transformer 2a is arranged on the AC power supply lines P1a and P2a1 connecting the wall outlet 20a as the AC power supply and the electrocardiogram display device 3 to each other. Therefore, it is as follows. That is, on the path (AC power supply line P2a1) from the isolation transformer 2a to the electrocardiogram display device 3, the radiated electric field noise Nre that could not be removed by the isolation transformer 2a can be measured on the detection circuit 40. become. As a result, the convenience of using the noise determiner 4 can be further improved.
 更に、本実施の形態では、放射電界ノイズNreの周波数fnが、心電位波形(心電位信号Sc)における所定の周波数範囲Δfn内である場合に、ノイズレベルLnが閾値Lth以上であるのか否かについての判定を行うようにしたので、以下のようになる。すなわち、例えば、心電位波形に対する影響が特に大きい周波数帯域(周波数範囲Δfn内)の放射電界ノイズNreについて、そのような判定が行われることになる。したがって、そのような影響が特に大きい放射電界ノイズNreについて、閾値Lth以上のノイズレベルLnの発生が瞬時に把握できることから、ノイズ判定器4を使用する際の利便性を、更に向上させることが可能となる。 Furthermore, in the present embodiment, when the frequency fn of the radiated electric field noise Nre is within a predetermined frequency range Δfn in the electrocardiographic waveform (electrocardiographic signal Sc), it is determined whether the noise level Ln is equal to or higher than the threshold Lth. is determined as follows. That is, for example, such determination is made for the radiation electric field noise Nre in the frequency band (within the frequency range Δfn) that has a particularly large effect on the electrocardiogram waveform. Therefore, for the radiated electric field noise Nre, which has a particularly large effect, the generation of the noise level Ln equal to or higher than the threshold value Lth can be instantly grasped, so that the convenience of using the noise determiner 4 can be further improved. becomes.
<2.変形例>
 以上、実施の形態を挙げて本発明を説明したが、本発明はこの実施の形態に限定されず、種々の変形が可能である。
<2. Variation>
Although the present invention has been described above with reference to the embodiments, the present invention is not limited to these embodiments, and various modifications are possible.
 例えば、上記実施の形態において説明した各部材の形状や配置位置、サイズ、個数、材料等は限定されるものではなく、他の形状や配置位置、サイズ、個数、材料等としてもよい。具体的には、上記実施の形態では、電界センサ42における放射電界ノイズNreの測定面Smが、前述した筐体面S20に対して略垂直となるように配置されていると共に、前述した基板面S40に対して略平行となるように配置されている場合の例について説明したが、これらの例には限られない。すなわち、そのような測定面Smが、例えば、筐体面S20に対して非垂直となるように配置されたり、基板面S40に対して非平行となるように配置されるようにしてもよい。また、上記実施の形態では、電界センサ42がアースラインLEから離間配置されている場合の例について説明したが、この例には限られず、場合によっては、電界センサ42がアースラインLEと近接するように配置されてもよい。更に、上記実施の形態では、電源プラグ72が3端子型のプラグである場合の例について説明したが、この例には限られない。すなわち、例えば、電源プラグ72を、2端子型のプラグ(アース端子72Eが設けられていないタイプのプラグ)としてもよい。また、上記実施の形態では、交流電源ラインP2a2上にアースラインLEは含まれない場合の例について説明したが、この例には限られない。すなわち、例えば、交流電源ラインP2a2上に、アースラインLEが含まれているようにしてもよい。 For example, the shape, arrangement position, size, number, material, etc. of each member described in the above embodiment are not limited, and other shapes, arrangement positions, sizes, numbers, materials, etc. may be used. Specifically, in the above-described embodiment, the measurement surface Sm of the radiated electric field noise Nre in the electric field sensor 42 is arranged so as to be substantially perpendicular to the housing surface S20 described above, and the substrate surface S40 described above is arranged. Although the example in the case of being arranged so as to be substantially parallel to the is described, the present invention is not limited to these examples. That is, such a measurement surface Sm may be arranged, for example, so as to be non-perpendicular to the housing surface S20 or non-parallel to the substrate surface S40. Further, in the above-described embodiment, an example in which the electric field sensor 42 is arranged apart from the earth line LE has been described, but the present invention is not limited to this example. may be arranged as Furthermore, in the above embodiment, an example in which the power plug 72 is a three-terminal plug has been described, but the present invention is not limited to this example. That is, for example, the power plug 72 may be a two-terminal type plug (a type plug without the ground terminal 72E). Further, in the above-described embodiment, an example in which the ground line LE is not included on the AC power supply line P2a2 has been described, but the present invention is not limited to this example. That is, for example, the earth line LE may be included on the AC power supply line P2a2.
 また、上記実施の形態では、ノイズ判定器4内の判定部43における判定手法や、通知部44における通知手法等について、具体例を挙げて詳細に説明したが、これらの判定手法や通知手法等には限られず、他の手法を用いるようにしてもよい。具体的には、例えば場合によっては、図6中のステップS12(ノイズ信号Snの周波数fnが所定の周波数範囲Δfn内であるのか否かの判定)を、行わないようにしてもよい。また、例えば、上記実施の形態で説明した、色などを利用した表示や、所定の音声出力などには限られず、他の手法を用いて、通知部44における通知を行うようにしてもよい。 Further, in the above-described embodiment, the determination method in the determination unit 43 in the noise determination unit 4 and the notification method in the notification unit 44 have been described in detail with specific examples. is not limited to, and other methods may be used. Specifically, for example, step S12 in FIG. 6 (determining whether or not the frequency fn of the noise signal Sn is within the predetermined frequency range Δfn) may not be performed depending on the case. Further, for example, the notification in the notification unit 44 may be performed using other methods, without being limited to the display using colors and the predetermined audio output described in the above embodiment.
 更に、上記実施の形態では、「他の機器」が、商用の交流電源と電気的に接続されたアイソレーショントランスである場合の例について説明したが、この例には限られず、「他の機器」が、アイソレーショントランス以外の別の機器であってもよい。 Furthermore, in the above-described embodiments, an example in which the "other device" is an isolation transformer electrically connected to a commercial AC power supply has been described, but the present invention is not limited to this example, and the "other device" ” may be another device other than the isolation transformer.
 加えて、上記実施の形態で説明した放射電界ノイズNreの測定の際に、例えば、放射電界ノイズNreの測定信号に対して、以下のような処理を施すようにしてもよい。すなわち、例えば、そのような測定信号を絶対値化した後に、ダイオード等を用いた半波整流および平滑化(あるいはピークホールド)を施すようにしてもよい。このような処理を施すことにより、半波整流のみでは利用できなかった部分の測定波形も利用することができ、放射電界ノイズNreの測定精度を向上させることが可能となる。 In addition, when measuring the radiated electric field noise Nre described in the above embodiment, for example, the following processing may be performed on the measurement signal of the radiated electric field noise Nre. That is, for example, half-wave rectification and smoothing (or peak hold) using a diode or the like may be performed after converting such a measurement signal into an absolute value. By performing such processing, it is possible to use the part of the measured waveform that cannot be used only by half-wave rectification, and it is possible to improve the measurement accuracy of the radiated electric field noise Nre.
 また、上記実施の形態では、図1に示したカテーテルシステムを使用する環境下で適用されるノイズ判定器4を、例に挙げて説明したが、本発明のノイズ判定器は、このようなカテーテルシステム以外の他のシステムや、他の機器についても、適用することが可能である。つまり、場合によっては、心電位波形以外の他の波形に混入する放射電界ノイズを対象としても、本発明のノイズ判定器を適用するようにしてもよい。 Further, in the above embodiment, the noise determiner 4 applied in an environment where the catheter system shown in FIG. 1 is used has been described as an example, but the noise determiner of the present invention can It can also be applied to systems other than the system and other devices. In other words, depending on the circumstances, the noise determiner of the present invention may be applied to radiation electric field noise mixed in waveforms other than electrocardiographic waveforms.

Claims (5)

  1.  所定のノイズ判定を行うノイズ判定機器であって、
     前記ノイズ判定機器とは異なる他の機器に電気的に接続された交流電源ライン上を伝播して心電位波形に混入する、放射電界ノイズを測定する測定部と、
     前記測定部によって測定された前記放射電界ノイズに基づいて、所定の処理を行う検出回路と
     を備え、
     前記測定部は、前記放射電界ノイズを前記検出回路上から測定するようになっており、
     前記検出回路は、
     前記測定部によって測定された前記放射電界ノイズのノイズレベルが、閾値以上であるのか否かについての前記ノイズ判定を行う判定部と、
     前記判定部における前記ノイズ判定の結果を、外部に通知する通知部と、
     前記他の機器からの前記交流電源ラインを介した電力供給に基づいて、前記判定部および前記通知部に対してそれぞれ、動作用の電力を供給する電源回路と
     を有しており、
     前記他の機器のアース端子と電気的に接続されているアースラインと、前記検出回路におけるグランドとが、互いに非接続となっている
     ノイズ判定器。
    A noise determination device that performs predetermined noise determination,
    a measurement unit that measures radiated electric field noise that propagates on an AC power supply line electrically connected to another device different from the noise determination device and mixes in the electrocardiographic waveform;
    a detection circuit that performs a predetermined process based on the radiated electric field noise measured by the measurement unit,
    The measurement unit measures the radiated electric field noise from the detection circuit,
    The detection circuit is
    a determination unit that performs the noise determination as to whether or not the noise level of the radiated electric field noise measured by the measurement unit is equal to or greater than a threshold;
    a notification unit that notifies the outside of the result of the noise determination in the determination unit;
    a power supply circuit that supplies operating power to each of the determination unit and the notification unit based on the power supply from the other device through the AC power supply line,
    The noise determiner, wherein the ground line electrically connected to the ground terminal of the other device and the ground of the detection circuit are not connected to each other.
  2.  前記測定部が、前記アースラインから離間配置されている
     請求項1に記載のノイズ判定器。
    2. The noise determiner according to claim 1, wherein said measurement unit is spaced apart from said ground line.
  3.  前記測定部における前記放射電界ノイズの測定面が、前記他の機器の筐体面に対して略垂直となるように、配置されている
     請求項1または請求項2に記載のノイズ判定器。
    3. The noise determiner according to claim 1, wherein the measurement surface of the radiated electric field noise in the measurement unit is arranged so as to be substantially perpendicular to the housing surface of the other device.
  4.  前記測定部における前記放射電界ノイズの測定面が、前記検出回路を搭載する回路基板の基板面に対して略平行となるように、配置されている
     請求項1ないし請求項3のいずれか1項に記載のノイズ判定器。
    4. A surface for measuring the radiated electric field noise of the measuring unit is arranged so as to be substantially parallel to a substrate surface of a circuit board on which the detection circuit is mounted. The noise determiner described in .
  5.  前記他の機器が、商用の交流電源と電気的に接続された、アイソレーショントランスである
     請求項1ないし請求項4のいずれか1項に記載のノイズ判定器。
    The noise determiner according to any one of claims 1 to 4, wherein the other device is an isolation transformer electrically connected to a commercial AC power supply.
PCT/JP2021/013309 2021-03-29 2021-03-29 Noise determination device WO2022208614A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023509927A JP7492651B2 (en) 2021-03-29 2021-03-29 Noise Detector
PCT/JP2021/013309 WO2022208614A1 (en) 2021-03-29 2021-03-29 Noise determination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/013309 WO2022208614A1 (en) 2021-03-29 2021-03-29 Noise determination device

Publications (1)

Publication Number Publication Date
WO2022208614A1 true WO2022208614A1 (en) 2022-10-06

Family

ID=83455768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013309 WO2022208614A1 (en) 2021-03-29 2021-03-29 Noise determination device

Country Status (2)

Country Link
JP (1) JP7492651B2 (en)
WO (1) WO2022208614A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04200533A (en) * 1990-11-30 1992-07-21 Shimadzu Corp Nuclear magnetic resonance inspection device
US5983127A (en) * 1997-05-21 1999-11-09 Quinton Instruments Company ECG noise detection system
JP2014507213A (en) * 2011-01-27 2014-03-27 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー System and method for observing the circulatory system
JP2014076117A (en) * 2012-10-09 2014-05-01 Nippon Koden Corp Electrocardiogram analyzer, and electrode set

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3166737B2 (en) 1998-11-25 2001-05-14 日本電気株式会社 Ham noise monitoring device and biological signal measuring device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04200533A (en) * 1990-11-30 1992-07-21 Shimadzu Corp Nuclear magnetic resonance inspection device
US5983127A (en) * 1997-05-21 1999-11-09 Quinton Instruments Company ECG noise detection system
JP2014507213A (en) * 2011-01-27 2014-03-27 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー System and method for observing the circulatory system
JP2014076117A (en) * 2012-10-09 2014-05-01 Nippon Koden Corp Electrocardiogram analyzer, and electrode set

Also Published As

Publication number Publication date
JP7492651B2 (en) 2024-05-29
JPWO2022208614A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
US6181961B1 (en) Method and apparatus for an automatic setup of a multi-channel nerve integrity monitoring system
JP5436383B2 (en) EKG wiring system
US6654634B1 (en) Method and apparatus for connection of stimulus and recording electrodes of a multi-channel nerve integrity monitoring system
JP6118272B2 (en) Current protection for electrode-based monitoring systems
CA2888130C (en) Medical amplifier isolation
AU2014393708A1 (en) A partial discharge acquisition system comprising a capacitive coupling electric field sensor
JP5542714B2 (en) High frequency surgical equipment
US7233086B2 (en) Power line conditioner
US10248828B2 (en) Wearable device having a fingerprint sensor
WO2022208614A1 (en) Noise determination device
US20200225294A1 (en) Cable and associated continuity monitoring system and method
JP6203480B2 (en) Connector with active shielding
JP2008042596A (en) Power cable and table tap
US20130134960A1 (en) Electrical hazard warning in audio signal probe
US20120215467A1 (en) Automatic detection of ground line in a video cable
JP2015516064A (en) Ultra-wideband measurement bridge
JP7024107B2 (en) Noise judge
AU2016101062A4 (en) A Neurological Detecting Terminal Box
US20220091187A1 (en) Arc fault circuit interrupt tester and method
US11350981B2 (en) Indication system for surgical device
JP6152082B2 (en) Instrument testing equipment
US20050206791A1 (en) Apparatus for injecting electrical signals into lines or cables for location purposes
EP4018932A1 (en) Generic box for electrophysiology system adapters
CN201569677U (en) Port protector of vector network analyzer
JP3206450U (en) Multifunction alarm system for detecting human nerves during surgery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934788

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023509927

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21934788

Country of ref document: EP

Kind code of ref document: A1