WO2022208112A1 - Water-based polymeric colorant inks - Google Patents
Water-based polymeric colorant inks Download PDFInfo
- Publication number
- WO2022208112A1 WO2022208112A1 PCT/GB2022/050834 GB2022050834W WO2022208112A1 WO 2022208112 A1 WO2022208112 A1 WO 2022208112A1 GB 2022050834 W GB2022050834 W GB 2022050834W WO 2022208112 A1 WO2022208112 A1 WO 2022208112A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ink
- substrate
- acid
- styrene
- group
- Prior art date
Links
- 239000003086 colorant Substances 0.000 title claims abstract description 117
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 80
- 239000000976 ink Substances 0.000 title claims description 277
- 239000000758 substrate Substances 0.000 claims abstract description 138
- 239000000203 mixture Substances 0.000 claims abstract description 122
- 239000002253 acid Substances 0.000 claims abstract description 68
- 229920001002 functional polymer Polymers 0.000 claims abstract description 48
- 239000004753 textile Substances 0.000 claims abstract description 37
- 238000007641 inkjet printing Methods 0.000 claims abstract description 13
- 229920000642 polymer Polymers 0.000 claims description 91
- -1 poly(styrene-maleic acid) copolymer Polymers 0.000 claims description 88
- 239000000975 dye Substances 0.000 claims description 87
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 63
- 239000000126 substance Substances 0.000 claims description 51
- 238000000034 method Methods 0.000 claims description 45
- 238000007639 printing Methods 0.000 claims description 42
- 239000000049 pigment Substances 0.000 claims description 41
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical group CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 claims description 36
- 229920001577 copolymer Polymers 0.000 claims description 27
- 239000008367 deionised water Substances 0.000 claims description 24
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 24
- 239000000123 paper Substances 0.000 claims description 20
- 238000002203 pretreatment Methods 0.000 claims description 19
- 239000011976 maleic acid Substances 0.000 claims description 18
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims description 17
- 229910052751 metal Inorganic materials 0.000 claims description 17
- 239000002184 metal Substances 0.000 claims description 17
- 239000004094 surface-active agent Substances 0.000 claims description 17
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 claims description 17
- 239000000463 material Substances 0.000 claims description 16
- 239000006184 cosolvent Substances 0.000 claims description 14
- 238000009472 formulation Methods 0.000 claims description 13
- 229920000728 polyester Polymers 0.000 claims description 13
- 150000003573 thiols Chemical class 0.000 claims description 13
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 claims description 12
- 239000003960 organic solvent Substances 0.000 claims description 12
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 12
- 239000000080 wetting agent Substances 0.000 claims description 12
- 150000003839 salts Chemical class 0.000 claims description 11
- IGGDKDTUCAWDAN-UHFFFAOYSA-N 1-vinylnaphthalene Chemical compound C1=CC=C2C(C=C)=CC=CC2=C1 IGGDKDTUCAWDAN-UHFFFAOYSA-N 0.000 claims description 10
- 229920002126 Acrylic acid copolymer Polymers 0.000 claims description 10
- 229920000800 acrylic rubber Polymers 0.000 claims description 10
- 150000001412 amines Chemical class 0.000 claims description 10
- 239000003139 biocide Substances 0.000 claims description 10
- 239000010985 leather Substances 0.000 claims description 10
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 claims description 10
- 229920003145 methacrylic acid copolymer Polymers 0.000 claims description 9
- 239000002023 wood Substances 0.000 claims description 9
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 claims description 8
- 239000003431 cross linking reagent Substances 0.000 claims description 7
- 238000000151 deposition Methods 0.000 claims description 7
- 229910000831 Steel Inorganic materials 0.000 claims description 6
- 239000011111 cardboard Substances 0.000 claims description 6
- 229920002635 polyurethane Polymers 0.000 claims description 6
- 239000004814 polyurethane Substances 0.000 claims description 6
- 239000010959 steel Substances 0.000 claims description 6
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 5
- 230000008021 deposition Effects 0.000 claims description 5
- 150000002739 metals Chemical class 0.000 claims description 5
- 150000003242 quaternary ammonium salts Chemical class 0.000 claims description 5
- 229910001220 stainless steel Inorganic materials 0.000 claims description 5
- 239000010935 stainless steel Substances 0.000 claims description 5
- 150000001718 carbodiimides Chemical group 0.000 claims description 4
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 4
- 239000012860 organic pigment Substances 0.000 claims description 4
- 125000005499 phosphonyl group Chemical group 0.000 claims description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 4
- 235000019422 polyvinyl alcohol Nutrition 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000001023 inorganic pigment Substances 0.000 claims description 3
- 230000003068 static effect Effects 0.000 claims description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 2
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical compound C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 claims description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 2
- 239000001257 hydrogen Substances 0.000 claims description 2
- 229910052739 hydrogen Inorganic materials 0.000 claims description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 2
- 229910052744 lithium Inorganic materials 0.000 claims description 2
- VPKDCDLSJZCGKE-UHFFFAOYSA-N methanediimine Chemical compound N=C=N VPKDCDLSJZCGKE-UHFFFAOYSA-N 0.000 claims description 2
- 150000001282 organosilanes Chemical class 0.000 claims description 2
- 229910052700 potassium Inorganic materials 0.000 claims description 2
- 239000011591 potassium Substances 0.000 claims description 2
- 150000003139 primary aliphatic amines Chemical class 0.000 claims description 2
- 150000005619 secondary aliphatic amines Chemical class 0.000 claims description 2
- 229910052708 sodium Inorganic materials 0.000 claims description 2
- 239000011734 sodium Substances 0.000 claims description 2
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 claims description 2
- 150000003510 tertiary aliphatic amines Chemical class 0.000 claims description 2
- BCJMVOVFCJGRAX-BTJKTKAUSA-N (z)-4-amino-4-oxobut-2-enoic acid;styrene Chemical compound C=CC1=CC=CC=C1.NC(=O)\C=C/C(O)=O BCJMVOVFCJGRAX-BTJKTKAUSA-N 0.000 claims 1
- 229910006069 SO3H Inorganic materials 0.000 claims 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 55
- 238000012360 testing method Methods 0.000 description 23
- 239000004744 fabric Substances 0.000 description 22
- 239000010408 film Substances 0.000 description 21
- 239000000243 solution Substances 0.000 description 18
- 239000000654 additive Substances 0.000 description 15
- 239000002904 solvent Substances 0.000 description 15
- 239000011230 binding agent Substances 0.000 description 13
- 229920000742 Cotton Polymers 0.000 description 12
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 12
- 239000010410 layer Substances 0.000 description 11
- 239000002245 particle Substances 0.000 description 11
- 235000013772 propylene glycol Nutrition 0.000 description 11
- 229920000147 Styrene maleic anhydride Polymers 0.000 description 10
- 230000000704 physical effect Effects 0.000 description 10
- 239000003795 chemical substances by application Substances 0.000 description 9
- 125000000524 functional group Chemical group 0.000 description 9
- 239000000985 reactive dye Substances 0.000 description 9
- 229920000297 Rayon Polymers 0.000 description 8
- 238000002835 absorbance Methods 0.000 description 8
- 125000003118 aryl group Chemical group 0.000 description 8
- 125000004432 carbon atom Chemical group C* 0.000 description 8
- 239000012530 fluid Substances 0.000 description 8
- 239000003365 glass fiber Substances 0.000 description 8
- 239000003906 humectant Substances 0.000 description 8
- 238000003860 storage Methods 0.000 description 8
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 7
- 239000002202 Polyethylene glycol Substances 0.000 description 7
- 125000000217 alkyl group Chemical group 0.000 description 7
- DMSMPAJRVJJAGA-UHFFFAOYSA-N benzo[d]isothiazol-3-one Chemical compound C1=CC=C2C(=O)NSC2=C1 DMSMPAJRVJJAGA-UHFFFAOYSA-N 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 238000004132 cross linking Methods 0.000 description 7
- 238000005034 decoration Methods 0.000 description 7
- 239000006185 dispersion Substances 0.000 description 7
- 229920003023 plastic Polymers 0.000 description 7
- 239000004033 plastic Substances 0.000 description 7
- 229920001223 polyethylene glycol Polymers 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 238000001723 curing Methods 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 239000003755 preservative agent Substances 0.000 description 6
- 239000002964 rayon Substances 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 239000000980 acid dye Substances 0.000 description 5
- CBTVGIZVANVGBH-UHFFFAOYSA-N aminomethyl propanol Chemical compound CC(C)(N)CO CBTVGIZVANVGBH-UHFFFAOYSA-N 0.000 description 5
- 239000002585 base Substances 0.000 description 5
- 230000003115 biocidal effect Effects 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 238000012423 maintenance Methods 0.000 description 5
- 239000003002 pH adjusting agent Substances 0.000 description 5
- 230000000149 penetrating effect Effects 0.000 description 5
- 229920001451 polypropylene glycol Polymers 0.000 description 5
- 239000004800 polyvinyl chloride Substances 0.000 description 5
- 229920000915 polyvinyl chloride Polymers 0.000 description 5
- 239000004034 viscosity adjusting agent Substances 0.000 description 5
- 210000002268 wool Anatomy 0.000 description 5
- 244000198134 Agave sisalana Species 0.000 description 4
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 4
- 235000017491 Bambusa tulda Nutrition 0.000 description 4
- 241001330002 Bambuseae Species 0.000 description 4
- 240000008564 Boehmeria nivea Species 0.000 description 4
- 244000025254 Cannabis sativa Species 0.000 description 4
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 4
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 4
- 239000004971 Cross linker Substances 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 241000208202 Linaceae Species 0.000 description 4
- 235000004431 Linum usitatissimum Nutrition 0.000 description 4
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000011425 bamboo Substances 0.000 description 4
- 235000009120 camo Nutrition 0.000 description 4
- 229920002301 cellulose acetate Polymers 0.000 description 4
- 235000005607 chanvre indien Nutrition 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 239000002270 dispersing agent Substances 0.000 description 4
- WOLATMHLPFJRGC-UHFFFAOYSA-N furan-2,5-dione;styrene Chemical compound O=C1OC(=O)C=C1.C=CC1=CC=CC=C1 WOLATMHLPFJRGC-UHFFFAOYSA-N 0.000 description 4
- 239000011487 hemp Substances 0.000 description 4
- 125000001072 heteroaryl group Chemical group 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- SJEYSFABYSGQBG-UHFFFAOYSA-M Patent blue Chemical compound [Na+].C1=CC(N(CC)CC)=CC=C1C(C=1C(=CC(=CC=1)S([O-])(=O)=O)S([O-])(=O)=O)=C1C=CC(=[N+](CC)CC)C=C1 SJEYSFABYSGQBG-UHFFFAOYSA-M 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical class CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 3
- 239000013043 chemical agent Substances 0.000 description 3
- 125000006165 cyclic alkyl group Chemical group 0.000 description 3
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Natural products CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 239000001041 dye based ink Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229940093476 ethylene glycol Drugs 0.000 description 3
- 235000011187 glycerol Nutrition 0.000 description 3
- FSQQTNAZHBEJLS-UPHRSURJSA-N maleamic acid Chemical compound NC(=O)\C=C/C(O)=O FSQQTNAZHBEJLS-UPHRSURJSA-N 0.000 description 3
- 239000001042 pigment based ink Substances 0.000 description 3
- 229920000570 polyether Polymers 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 125000006413 ring segment Chemical group 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 238000010025 steaming Methods 0.000 description 3
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 239000002351 wastewater Substances 0.000 description 3
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 2
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229920003043 Cellulose fiber Polymers 0.000 description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- PMDCZENCAXMSOU-UHFFFAOYSA-N N-ethylacetamide Chemical compound CCNC(C)=O PMDCZENCAXMSOU-UHFFFAOYSA-N 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- 229920002334 Spandex Polymers 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 239000000981 basic dye Substances 0.000 description 2
- 238000006065 biodegradation reaction Methods 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 239000000986 disperse dye Substances 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 238000003912 environmental pollution Methods 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000011094 fiberboard Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- 150000002513 isocyanates Chemical class 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000005499 meniscus Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 125000001624 naphthyl group Chemical group 0.000 description 2
- 125000006353 oxyethylene group Chemical group 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- 239000004759 spandex Substances 0.000 description 2
- 125000000542 sulfonic acid group Chemical group 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- DTCCVIYSGXONHU-CJHDCQNGSA-N (z)-2-(2-phenylethenyl)but-2-enedioic acid Chemical compound OC(=O)\C=C(C(O)=O)\C=CC1=CC=CC=C1 DTCCVIYSGXONHU-CJHDCQNGSA-N 0.000 description 1
- CYSGHNMQYZDMIA-UHFFFAOYSA-N 1,3-Dimethyl-2-imidazolidinon Chemical compound CN1CCN(C)C1=O CYSGHNMQYZDMIA-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- GGYVTHJIUNGKFZ-UHFFFAOYSA-N 1-methylpiperidin-2-one Chemical compound CN1CCCCC1=O GGYVTHJIUNGKFZ-UHFFFAOYSA-N 0.000 description 1
- 125000003660 2,3-dimethylpentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(C([H])([H])[H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 1
- 229940100555 2-methyl-4-isothiazolin-3-one Drugs 0.000 description 1
- ROGIWVXWXZRRMZ-UHFFFAOYSA-N 2-methylbuta-1,3-diene;styrene Chemical compound CC(=C)C=C.C=CC1=CC=CC=C1 ROGIWVXWXZRRMZ-UHFFFAOYSA-N 0.000 description 1
- 125000005916 2-methylpentyl group Chemical group 0.000 description 1
- NECRQCBKTGZNMH-UHFFFAOYSA-N 3,5-dimethylhex-1-yn-3-ol Chemical class CC(C)CC(C)(O)C#C NECRQCBKTGZNMH-UHFFFAOYSA-N 0.000 description 1
- KQIGMPWTAHJUMN-UHFFFAOYSA-N 3-aminopropane-1,2-diol Chemical compound NCC(O)CO KQIGMPWTAHJUMN-UHFFFAOYSA-N 0.000 description 1
- 125000005917 3-methylpentyl group Chemical group 0.000 description 1
- OCKGFTQIICXDQW-ZEQRLZLVSA-N 5-[(1r)-1-hydroxy-2-[4-[(2r)-2-hydroxy-2-(4-methyl-1-oxo-3h-2-benzofuran-5-yl)ethyl]piperazin-1-yl]ethyl]-4-methyl-3h-2-benzofuran-1-one Chemical compound C1=C2C(=O)OCC2=C(C)C([C@@H](O)CN2CCN(CC2)C[C@H](O)C2=CC=C3C(=O)OCC3=C2C)=C1 OCKGFTQIICXDQW-ZEQRLZLVSA-N 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229920000298 Cellophane Polymers 0.000 description 1
- 229920008347 Cellulose acetate propionate Polymers 0.000 description 1
- DQEFEBPAPFSJLV-UHFFFAOYSA-N Cellulose propionate Chemical compound CCC(=O)OCC1OC(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C1OC1C(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C(COC(=O)CC)O1 DQEFEBPAPFSJLV-UHFFFAOYSA-N 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 241000219146 Gossypium Species 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 240000004533 Hesperis matronalis Species 0.000 description 1
- 235000015847 Hesperis matronalis Nutrition 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 229920000433 Lyocell Polymers 0.000 description 1
- 229920000134 Metallised film Polymers 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical class CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 108091092920 SmY RNA Proteins 0.000 description 1
- 241001237710 Smyrna Species 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical group [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 239000004288 Sodium dehydroacetate Substances 0.000 description 1
- 239000004283 Sodium sorbate Substances 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- 229920002359 Tetronic® Polymers 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical class OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- KGNFHZURJGHKHD-UHFFFAOYSA-N [Cl-].C1C(C2)CC3CC1C[NH+]2C3 Chemical compound [Cl-].C1C(C2)CC3CC1C[NH+]2C3 KGNFHZURJGHKHD-UHFFFAOYSA-N 0.000 description 1
- XDILZEPJCPEDLT-UHFFFAOYSA-N [Na].[O-][N+]1=CC=CC=C1S Chemical compound [Na].[O-][N+]1=CC=CC=C1S XDILZEPJCPEDLT-UHFFFAOYSA-N 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 229910001854 alkali hydroxide Inorganic materials 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 125000005233 alkylalcohol group Chemical group 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 239000010975 amethyst Substances 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 238000009954 braiding Methods 0.000 description 1
- NTXGQCSETZTARF-UHFFFAOYSA-N buta-1,3-diene;prop-2-enenitrile Chemical compound C=CC=C.C=CC#N NTXGQCSETZTARF-UHFFFAOYSA-N 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- 125000002837 carbocyclic group Chemical group 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- PFKFTWBEEFSNDU-UHFFFAOYSA-N carbonyldiimidazole Chemical compound C1=CN=CN1C(=O)N1C=CN=C1 PFKFTWBEEFSNDU-UHFFFAOYSA-N 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 210000000085 cashmere Anatomy 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 1
- 229920006218 cellulose propionate Polymers 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 238000010382 chemical cross-linking Methods 0.000 description 1
- DHNRXBZYEKSXIM-UHFFFAOYSA-N chloromethylisothiazolinone Chemical compound CN1SC(Cl)=CC1=O DHNRXBZYEKSXIM-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 238000009945 crocheting Methods 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 229960002887 deanol Drugs 0.000 description 1
- 239000013530 defoamer Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 229940105990 diglycerin Drugs 0.000 description 1
- GPLRAVKSCUXZTP-UHFFFAOYSA-N diglycerol Chemical compound OCC(O)COCC(O)CO GPLRAVKSCUXZTP-UHFFFAOYSA-N 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000012972 dimethylethanolamine Chemical class 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 239000000982 direct dye Substances 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- XXUJMEYKYHETBZ-UHFFFAOYSA-N ethyl 4-nitrophenyl ethylphosphonate Chemical class CCOP(=O)(CC)OC1=CC=C([N+]([O-])=O)C=C1 XXUJMEYKYHETBZ-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000009950 felting Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 210000004905 finger nail Anatomy 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- 238000005246 galvanizing Methods 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000004491 isohexyl group Chemical group C(CCC(C)C)* 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000009940 knitting Methods 0.000 description 1
- 150000003951 lactams Chemical class 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- BEGLCMHJXHIJLR-UHFFFAOYSA-N methylisothiazolinone Chemical compound CN1SC=CC1=O BEGLCMHJXHIJLR-UHFFFAOYSA-N 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000011707 mineral Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001228 polyisocyanate Polymers 0.000 description 1
- 239000005056 polyisocyanate Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- UKHVLWKBNNSRRR-UHFFFAOYSA-M quaternium-15 Chemical compound [Cl-].C1N(C2)CN3CN2C[N+]1(CC=CCl)C3 UKHVLWKBNNSRRR-UHFFFAOYSA-M 0.000 description 1
- 238000003847 radiation curing Methods 0.000 description 1
- 239000013643 reference control Substances 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- WXMKPNITSTVMEF-UHFFFAOYSA-M sodium benzoate Chemical compound [Na+].[O-]C(=O)C1=CC=CC=C1 WXMKPNITSTVMEF-UHFFFAOYSA-M 0.000 description 1
- 239000004299 sodium benzoate Substances 0.000 description 1
- 235000010234 sodium benzoate Nutrition 0.000 description 1
- 235000002639 sodium chloride Nutrition 0.000 description 1
- 235000019259 sodium dehydroacetate Nutrition 0.000 description 1
- 229940079839 sodium dehydroacetate Drugs 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- LROWVYNUWKVTCU-STWYSWDKSA-M sodium sorbate Chemical compound [Na+].C\C=C\C=C\C([O-])=O LROWVYNUWKVTCU-STWYSWDKSA-M 0.000 description 1
- 235000019250 sodium sorbate Nutrition 0.000 description 1
- DSOWAKKSGYUMTF-GZOLSCHFSA-M sodium;(1e)-1-(6-methyl-2,4-dioxopyran-3-ylidene)ethanolate Chemical compound [Na+].C\C([O-])=C1/C(=O)OC(C)=CC1=O DSOWAKKSGYUMTF-GZOLSCHFSA-M 0.000 description 1
- HCJLVWUMMKIQIM-UHFFFAOYSA-M sodium;2,3,4,5,6-pentachlorophenolate Chemical compound [Na+].[O-]C1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1Cl HCJLVWUMMKIQIM-UHFFFAOYSA-M 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000011115 styrene butadiene Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 229920001909 styrene-acrylic polymer Polymers 0.000 description 1
- 125000003011 styrenyl group Chemical group [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 238000009965 tatting Methods 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000001973 tert-pentyl group Chemical group [H]C([H])([H])C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 238000001029 thermal curing Methods 0.000 description 1
- YODZTKMDCQEPHD-UHFFFAOYSA-N thiodiglycol Chemical compound OCCSCCO YODZTKMDCQEPHD-UHFFFAOYSA-N 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical class [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/30—Inkjet printing inks
- C09D11/32—Inkjet printing inks characterised by colouring agents
Definitions
- the present invention relates to water-based ink compositions comprising one or more polymeric colorant(s) and one or more acid functional polymer(s) that are suitable for inkjet printing, particularly for inkjet printing of fibrous substrates such as textiles.
- the ink compositions of the present invention improve sustainability in the textile printing industry.
- the polymeric colorants that are present in the ink composition can be delivered from renewable (i.e. sustainable) sources and can also be designed and synthesized to have a high degree of biodegradation.
- the ink compositions of the present invention typically achieve 70% or greater fixation of the ink colorant to the substrate surface meaning that there is less discharge of ink colorant into wastewaters during and after printing, and also upon washing the printed substrate.
- Colorants such as water-soluble dyes (e.g. reactive or acid dyes), dispersions of water-insoluble dyes (e.g. disperse dyes), or pigments, which are insoluble in almost all solvents.
- Dyes exist as single molecules and each dye molecule is able to absorb light and reflect back the light of non-absorbed wavelengths.
- the particle sizes are typically in the range of 100-200nm. Only about 10% of the surface of the pigment particles contain active molecules so pigments tend to be much less vibrant in their tinctorial strength than dyes. This tends to be why dyes (rather than pigments) are still used in applications such as textiles for fashion and home furnishing.
- the colorant is required to bind to a substrate, for example a cellulosic textile, cellulosic paper, leather, wood or even digitally printed wall covering.
- a substrate for example a cellulosic textile, cellulosic paper, leather, wood or even digitally printed wall covering.
- dyes these are typically bound via either a steaming process or a heat transfer (sublimation) process for textiles and a reaction occurs at the dye-textile interface to form a chemical covalent bond.
- huge amounts of water and energy are required for this process.
- the reaction between the dye and the fabric is only about 70% effective, meaning that about 30% of the dye is washed off during the processing after printing and wasted.
- the pigment can be either encapsulated with a dispersant polymer or surface modified (for example oxygenated or sulfonated) to form a reactive surface.
- a dispersant polymer for example oxygenated or sulfonated
- pigment inks require a binder to lock in the pigment particles.
- their application in, for example, industrial textile printing has been fraught with challenges. The most significant are the washfastness of the colorant which is loosely associated with the fabrics and typically physically trapped in a polymer matrix.
- pigment-based inks that can be used for fibrous substrates have demonstrated poor performance thus far due to inferior washfastness and lower tinctorial strength compared to dyes when printed.
- Pigments are the only colorant of choice thus far for substrates such as plastic, non- permeable, metal, etc.
- pigment inks tend to suffer from some instability and potential poor image quality as particles can aggregate and can be difficult to mill down to a size that imparts stability without severely reducing the coloristic qualities of the pigments.
- the problem to be solved when using dye-based inks is that there is a relatively low yield of fixation to the substrate - perhaps only about 70% in some applications.
- the problem to be solved when using pigments is that the colorant, which has a significantly lower tinctorial strength compared to a dye, is only generally loosely associated with the substrate by means of a complex network of binders meaning that the pigment particles can be washed out relatively easily.
- EP 1082396 B1 describes a polymeric colorant that can be dissolved in an organic solvent and printed using inkjet printing onto certain substrates.
- EP1082396 B1 discloses that the polymeric colorants used must be solvent soluble, whereas the polymeric colorants in the present invention are soluble in water and co- solvent- water mixtures such as glycol co solvent-water mixtures.
- US8153706 B2 relates to a complex dye, pigment and polymer colorant which can be used in inkjet inks.
- the colorant itself is the primary focus of this patent.
- the colorant is built up from a pigment, which has a polymer covalently attached to it, and a dye also covalently attached to the polymer.
- the pigment also has a dispersant covalently attached to it.
- EP1056703 B1 describes the synthesis of polymeric colorants incorporating an organic chromophore, a polyisocyanate and either a carboxylic acid or sulfonic acid into a polymeric colorant molecule which is water soluble.
- EP1056703 B1 specifically describes polymeric colorants containing urethane bonds that can be made into inkjet inks with water, a diluent and a binder. The type of binder used is not disclosed.
- the patent also describes that the isocyanate-containing polymer reactive groups are particularly good at binding to the -OH groups of paper and textile fabrics.
- the -OH groups of the polymeric colorant can be linked with either an ester linker or via a (optional) CDI cross-linker to a binder having acid functionality.
- the acid functionality of the binder can further react with more CDI cross-linkers (if present) or via an ester linker with the -OH groups of cellulosic substrates and indeed be cured on the surface of such substrates.
- the reactive functional groups are isocyanates which are not known for their long storage stabilities and also can decompose leading to incomplete fixation on the substrates.
- EP0604024 B 1 describes phase change inks (otherwise known as hot-melt inks) that can be ejected from thermal print heads using a colorant which is a disperse, acid or basic dye that contains a least one reactive group and this is printed onto a substrate containing a second reactive component.
- the colorant typically then undergoes a curing stage, usually radiation-based, to form a chemical bond between the dye and second reactive component.
- This patent does not use polymeric colorants as the ink component but forms a polymer which is covalently bound to the substrate via the second reactive group on curing.
- US7732509 B2 relates to the use of polymeric colorants containing carboxyl (-COOH) groups which can be used to print directly onto paper.
- This patent does not relate to industrial substrates such as textiles and there is no disclosure of any curing steps. This indicates that the mechanism of action is for the colorant particles to be simply printed onto paper and allowed to air dry in continuous inkjet small office, home office (soho) applications.
- the focus of this patent is to the use of a single polymeric colorant where the pigment is directly bound to the polymer instead of classically using a pigment and dispersant.
- EP0921166 B1 describes that a pigment can be covalently bound to a polymer and this resulting polymeric pigment used in an inkjet ink. This has been the approach of several companies who make dispersions of pigments where traditionally the pigment and dispersant are loosely associated with one another. In the case of this patent, there is a chemical bond between the pigment and the polymer but the resulting polymeric colorant is completely insoluble in aqueous inks and therefore can still be prone to settling and instability.
- EP 1245588 B1 describes a composite ink formulation containing a colorant phase and a polymer phase, which are immiscible, but the particles only survive for 20 minutes. Clearly this approach can be cited as being an unsuccessful solution to the complex problem which the inventors of this patent intend to address.
- EP1405884 B1 discloses that the short-lived particles generated in EP1245588 B1 can be used in an inkjet ink. Clearly, the combination of insoluble particles and short-lived stable particles does not address the current problems in the field that are addressed in the present invention. Citation or identification of any document in this application is not an admission that such represents prior art to the present invention.
- the present invention employs polymeric colorants comprising free hydroxyl (-OH), thiol (-SH) or free amino (-NH2 or -NHR) groups on the polymer chains in water-based inkjet ink formulations.
- the inventors have developed a series of ink formulations using water, one or more acid functional polymer(s) and one or more polymeric colourant(s) (e.g. one or more polymeric dye(s)), wherein the polymeric colorant comprises polymer chains having at least one hydroxyl (-OH), thiol (-SH) or primary or secondary amino (-NH2 or -NHR) group on the polymer chain, which can be used to bind to certain substrates (e.g. fibrous substrates), in some cases with other, optional, co-binders, in a variety of different applications.
- the inks according to the present invention work in such a way that the polymeric colorants (e.g.
- the polymeric dyes undergo a chemical reaction post-printing with other components of the ink (e.g. the acid functional polymer) to lock the colorant to the substrate via a series of covalent bonds. This means that the colorant is less susceptible to washing off and also demonstrates significantly superior colorant properties.
- the polymeric dyes in conjunction with the other ink ingredients can be delivered from sustainable sources and are also biodegradable.
- the polymeric dyes can also be used in combination with one or more pigment(s) to enhance the colour saturation.
- a polymeric colorant in the ink formulations which contains at least one of either free hydroxyl groups (-OH), thiol groups (-SH) or amine groups (-NH2 or -NHR) is advantageous as these colorants are able to crosslink with other components of the ink, for example the acid functional polymers (which typically function as co-binders), and furthermore they are able to bind to certain functional groups on the surface of the substrate - for example, cellulosic -OH groups, fixing the ink to the surface.
- the acid functional polymers which typically function as co-binders
- a dye or a pigment
- a polymer which can be deposited onto a substrate by inkjet printing and then covalently bound to the substrate
- the tinctorial properties of a dye are maintained, and preferably with 70% or greater fixation, more preferably with greater than 80% fixation, and even more preferably with 100% fixation to the substrate.
- the colorant is covalently bound to the substrate it does not suffer the wash off effects often experienced with pigment colorants. This improves the sustainability of the ink composition since the dye or pigment is not washed off during processing or after printing.
- Inkjet ink formulations which can be inkjet printed and display a trade-off with all the necessary parameters required from a high-performing ink in the industrial inkjet sector are not known in the art.
- the inventors have taken a set of polymeric dyes and prepared ink formulations which on curing lock the colorant to the surface of the substrate and display superior washfastness and resistance after curing compared to conventional dye or pigment inks. This makes the inks according to the invention particularly attractive for use in applications which require high tinctorial strength from the colorants used such as textiles.
- the inventive inks are mainly composed of water and can be printed onto a diverse number of different substrates directly. Indeed, it is unexpected that the water-based inks according to the present invention can be printed directly onto a non-treated textile substrate (for example, a non-treated plastic textile substrate such as woven (or non- woven) polyester), but the inks according to the present invention print well and give a good, durable image on these substates. Furthermore, reliability in the printing press is important.
- the inks according to the present invention display excellent re-solubility and open time, meaning the printing press can be used for longer periods without any need for preventative maintenance.
- the present invention also relates to the use of a polymeric dye as the colorant for a series of digital industrial inkjet inks for a variety of different applications.
- the inkjet inks comprise one or more polymeric dye(s) as the colorant, one or more acid functional polymer(s), water and at least one organic co-solvent.
- the inkjet inks perform in a manner which solves the modern day demands from industry for digital inks, including good jetting, sharp image quality, good adhesion, resolubility, ease of maintenance on press, long storage stability and low migratable content when cured, making them potentially useful for printing textiles and wall coverings and other industrial applications.
- the inks are usually radiation curable or solvent-based inks.
- This is especially important for applications such as indirect food contact packaging, printing onto pharmaceutical foils, and also non-woven but porous substrates such as food packaging cartons with cardboard or fiberboard as the substrate.
- the inks showed good wetting and excellent adhesion to a number of different substrates which are theoretically difficult for aqueous (water-based) inkjet inks.
- the inventive inks also help to address a serious issue which is increasing for digital textile decoration, namely sustainability.
- a reactive dye, acid dye, basic dye or direct dye is used to print onto a textile fabric
- the steaming and washing phase tend to release about 30% of the printed ink into the wastewater stream as the dyes in the inks do not have a high level of chemical fixation to the fibrous substrates.
- the colorant is covalently bound to the polymer, which itself contains free -OH (hydroxyl), thiol (-SH) or primary or secondary amino (- NH2 or -NHR) groups, preferably free -OH groups.
- the polymeric colorants themselves can be made using content from renewable (i.e. sustainable) sources and also can be designed and synthesized to have a high degree of biodegradation.
- Dyestuff printed in the normal manner onto fabrics is causing a major ecological issue as the fabrics are disposed of in landfill and the soil toxicity is large as the dyes take many years to degrade.
- the dyes By incorporating the dyes into biodegradable polymer chains, the colorants in the textiles can degrade much faster in the soil.
- inventive inks exhibit good resolubility, good film forming properties despite no cross-linker or further polymer type (i.e. in addition to the polymeric colorant and the acid functional polymer) being required in the ink.
- the inks must give excellent jetting performance from the print heads, long open times (in the event the printing heads are not capped appropriately) which have a quick start-up, good resolubility in the case that inks are left to dry out in the machine and the machine can be flushed and recovered, not settle during operation of the printer when ink re-circulating systems are being used.
- the inks In terms of the ink and the substrate interactions, the inks must bind well to the substrates, without preferably the need for chemical pre-treatments or chemical primers.
- the inkjet industry In the main, it is common practice in the inkjet industry for most substrates to be “de-greased” prior to printing using a corona treatment on-line or off-line.
- the color of the inks must be vibrant, and the inks when bind to the surface must be able to withstand a multitude of physical tests such as adhesion, scratch resistance, alcohol rub resistance, water resistance and crinkling / warping tests.
- the inks should be capable of printing on the top of base color coats, have top color coats printed on top of them and be able to withstand various lamination processes.
- inventive inks can preferably be printed digitally, or by other means (e.g. litho, flexo, gravure, screen, etc.) onto rigid and flexible substrates, including textiles, which have not been chemically or physically pre-treated.
- the pre-treatment of fibrous fabrics such as cotton with chemical agents to enable the surface groups to be more receptive to the reactive dyes is well documented and standard practice. It was found that the inks according to the present invention can be directly printed onto untreated, non- primed fabrics with excellent adhesion. Accordingly, the inventive inks do not require a chemical primer layer or chemical pre-treatment on the substrate. However, where a chemical primer layer or chemical pre-treatment are optionally used, then the inks demonstrate equally good printing performance.
- the inventors have developed the use of a polymeric colorant to generate a series of inks which solve the problems mentioned above.
- the present invention provides a printing ink composition
- a printing ink composition comprising one or more solution soluble polymeric colorant(s), one or more acid functional polymer(s), water and one or more organic co-solvent(s), wherein the polymeric colorant(s) comprises polymer chains having at least one hydroxyl (-OH), thiol (-SH) or primary or secondary amino (- NH2 or -NHR) group on the polymer chain; wherein the ink is suitable for inkjet deposition.
- the hydroxyl (-OH), thiol (-SH) or primary or secondary amino (-NH2 or -NHR) groups on the polymer chain are free, non-bound groups when they are on the polymer chain, i.e. they are available to form a covalent bond or other interaction, for instance with acid functional or other functional polymers contained in the ink, or to bond to functional groups on the surface of the substrate, for example, cellulosic -OH groups, fixing the ink to the surface.
- solution soluble polymer typically refers to polymers that comprise acidic functionality as part of the monomer blend that are capable of being neutralized with a base such that the polymers can then be dissolved in water to form an aqueous solution or to polymers that comprise hydrophilic groups on the polymer backbone or polymer side- chains that can render the polymers soluble in water to form an aqueous solution.
- Suitable hydrophilic groups include hydroxyl-functional groups, thiol-functional groups, amino-functional groups or polyether repeating units such as polyethylene glycol or polypropylene glycol.
- the water solubility may be achieved by the presence of said at least one hydroxyl (-OH), thiol (-SH) or primary or secondary amino (-NH2 or -NHR) group on the polymer chain.
- Said solution soluble polymers may further comprise polymer side-chains, such as the afore-mentioned hydrophilic repeating units such as polyethers (preferably polyethylene glycol or polypropylene glycol) to increase solubility in water.
- the solution soluble polymeric colorant comprises acidic groups (particularly sulfonic acid groups) which are capable of being neutralized with a base such that the polymeric colorant is converted to salt from that can be dissolved in water to form an aqueous solution.
- the solution soluble polymeric colorants comprise polyalkylene glycol (preferably PEG or PPG) repeating units intermittently linked to reactive or acid dyes, wherein said reactive or acid dyes comprise sulfonic acid groups which are capable of being neutralized with a base such that the polymeric colorant is converted to salt from that can be dissolved in water to form an aqueous solution.
- the present invention also provides a water-based polymeric colorant (preferably a polymeric dye) ink set comprising at least a polymeric colorant (preferably a polymeric dye) containing -OH functional groups, -NH2 functional groups, -NHR functional groups or -SH functional groups, an acid functional polymer, water, an organic solvent and optionally an additional surfactant, biocide, wetting agent and other low levels of specialty chemical additives.
- the acid functional polymer can function as a binder and preferably no additional binder (i.e. other than the acid functional polymer) is present in the ink formulations.
- the present invention also provides a method for the decoration of a substrate or film, typically a textile material (e.g. a fibrous textile fabric), by contacting a substrate with a water-based ink according to the invention and subsequently fixing said water-based ink onto said substrate, by NIR radiation for example.
- a substrate or film typically a textile material (e.g. a fibrous textile fabric)
- the present invention also provides a method for the decoration of textiles, paper, leather, wood, wall covering materials (e.g. wallpaper), cardboard, fibreboard and even metal or plastic, by contacting a substrate with a water-based ink according to the invention and subsequently fixing the said water-based ink onto said substrate using heat curing.
- the substrates do not contain a chemical primer or chemical pre-treatment layer, it will be understood that in an alternative aspect the substrates can be optionally pre-treated with a coating which contains a material having free carboxylic acid groups, or other groups which are capable of reacting with the -OH (or -NH or -SH) groups on the polymeric colorant.
- the present invention also provides a water-based polymeric colorant (preferably a polymeric dye) ink set comprising at least a polymeric colorant containing -OH functional groups, water, an organic solvent, a polymer having at least some carboxylic acid or other acid functionality, and optionally an additional surfactant, biocide, wetting agent and other low levels of specialty chemical additives.
- a water-based polymeric colorant preferably a polymeric dye
- ink set comprising at least a polymeric colorant containing -OH functional groups, water, an organic solvent, a polymer having at least some carboxylic acid or other acid functionality, and optionally an additional surfactant, biocide, wetting agent and other low levels of specialty chemical additives.
- the present invention also provides a water-based polymeric colorant (preferably a polymeric dye) ink set comprising at least a polymeric colorant containing -OH functional groups, water, an organic solvent, a polymer having at least some carboxylic acid or other acidic functionality, a carbodiimide (CDI) crosslinking agent, and optionally an additional surfactant, biocide, wetting agent and other low levels of specialty chemical additives.
- a water-based polymeric colorant preferably a polymeric dye
- a polymeric colorant containing -OH functional groups water, an organic solvent, a polymer having at least some carboxylic acid or other acidic functionality, a carbodiimide (CDI) crosslinking agent, and optionally an additional surfactant, biocide, wetting agent and other low levels of specialty chemical additives.
- CDI carbodiimide
- the present invention also provides a method for preparing a water-based ink according to the invention, comprising adding water, an organic solvent and optionally additional other chemical agents to the polymeric dyes and acid functional polymer, thereby obtaining water-based inks.
- the present invention also provides a method for printing a variety of different substrates, comprising the steps of: i. Applying a water-based ink according to the invention onto the substrate; and ii. Fixation of said water-based ink onto said substrate using air drying, forced convection, IR or NIR-radiation or thermal curing.
- the present invention also provides a decorated substrate which is formed from the deposition of an ink incorporating a polymeric dye, whereby said substrate can be printed with at least one or more inks and cured by either a serial arrangement of IR or NIR lamps, or air dried, or forced air dried or thermally cured using a thermal heating device.
- the present invention also provides a series of aqueous polymeric dye inks for use in printing onto rigid and flexible substrates enabling high line speed digital decoration of said substrates with superior print quality.
- the present invention also provides a method for the decoration of rigid and flexible substrates which do not require a pre-treatment or primer layer enabling faster production times and less environmental pollution from chemical pre-treatment agents such as urea and sodium alginate.
- the present invention also provides a method for the decoration of rigid and flexible substrates which can be fixed using dry heat. This also enables faster line speeds and greatly reduces the energy consumption required for traditional steaming processes.
- a polymeric colorant is a dye, an organic pigment, an inorganic pigment or lake pigment of a dye covalently linked to a polymer.
- a lake pigment of a dye is an organic pigment that has been made by precipitating a water-soluble dye with an inert binder such as a metallic salt.
- the polymeric colorant according to the present invention is a polymeric dye, i.e. a dye covalently linked to a polymer.
- the polymeric dyes used in the present invention are co-polymers or block co-polymers having hydrophilic and hydrophobic functionality incorporated within it.
- the polymeric dyes contain free hydroxyl (-OH), thiol (-SH), primary amino (-Nth) or secondary amino (-NHR) groups on the polymer, wherein “R” is an alkyl, aryl or heteroaryl group, preferably an alkyl or aryl group.
- an alkyl group is a saturated or unsaturated straight chain, branched or cyclic hydrocarbon having from 1 to 16 carbon atoms, preferably from 1 to 8 carbon atoms, more preferably from 1 to 6 carbon atoms.
- the alkyl group is a saturated non-cyclic alkyl group (i.e. a straight chain or branched alkyl group).
- Representative saturated non-cyclic alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, iso-pentyl, neopentyl, tert- pentyl, n-hexyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 2,3-dimethylpentyl groups and the like.
- Representative cyclic alkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and the like. As used herein, alkyl groups can be substituted or unsubstituted.
- an aryl group is an aromatic carbocyclic group of from 6 to 14 carbon atoms having a single ring (e.g. phenyl) or multiple condensed rings (e.g. naphthyl).
- the aryl group has 6 to 12 carbon atoms, more preferably 6 to 10 carbon atoms.
- Representative aryl groups include phenyl, biphenyl, naphthyl and the like. The aryl groups can be substituted or unsubstituted.
- a heteroaryl group is an aromatic ring system having one to four heteroatoms as ring atoms in a heteroaromatic ring system, wherein the remainder of the atoms are carbon atoms.
- the heteroaryl group has 3 to 12 ring atoms, more preferably 3 to 6 ring atoms. Suitable heteroatoms include oxygen, sulfur and nitrogen.
- the heteroaryl group can be substituted or unsubstituted.
- the polymeric dyes class is preferably water-soluble polyethylene glycol (PEG), polypropylene glycol (PPG), and other alkyl alkoxylate ether polymers containing a dye affixed covalently to the polymer.
- the polymeric dyes used in the present invention have one or more hydroxyl groups.
- the polymeric dyes used in the present invention have a hydroxyl value of 50 - 300 mg KOH/g, more preferably 80 - 200 mg KOH/g.
- the polymeric dyes used in the present invention have one or more primary or secondary amino groups.
- the polymeric dyes used in the present invention have an amine value of 30 - 280 mg KOH/g, more preferably 70 - 200 mg KOH/g.
- the polymeric dyes used in the present invention have one or more thiol (i.e. SH) group(s), more preferably the polymeric dyes used in the present invention have at least two thiol (i.e. SH) groups.
- suitable polymeric dyes include but are not limited to Evertint Yellow R-01, Evertint Orange R-01, Evertint Red R-01, Evertint Violet R-01, Evertint Blue R-01, Evertint Black R-01, from Everlight Chemical Industrial Corporation; Reactint Black X77, Reactint Yellow X15, Reactint Orange X96, Reactint Red X64, Reactint Violet X80LT, Reactint Blue X3LV from Milliken Corporation.
- the amount (by weight) of the polymeric colorant in the inkjet ink compositions is at least 0.1%, such as at least 0.5%, at least 1%, at least 1.5%, at least 2%, at least 3%, at least 4%, at least 5% by weight.
- the amount of the polymeric colorant is at most 15%, such as at most 12%, at most 10%, at most 8%, at most 7%, at most 6%, and at most 5% by weight.
- the amount of the polymeric colorant in the compositions is preferably 0.1 to 15% by weight, more preferably 1 to 12% by weight, most preferably 3 to 10% by weight.
- a polymeric colorant used in the inventive inkjet ink compositions can comprise one or more embodiments described herein.
- the ink composition according to the present invention includes one or more acid functional polymer(s) in addition to the polymeric colorant.
- the one or more acid functional polymer(s) is selected from the group consisting of styrene/acrylic acid copolymers, styrene/maleic acid copolymers, styrene/maleamic acid copolymers, styrene/maleic acid/alkyl acrylate copolymers, styrene/methacrylic acid copolymers, styrene/methacrylic acid/alkyl acrylate copolymers, styrene/maleic half ester copolymers, vinyl naphthalene/acrylic acid copolymers, vinyl naphthalene/maleic acid copolymers, polyacrylics, salts thereof and blends thereof.
- the acid functional polymer is a styrene/maleic acid copolymer (i.e. a poly(styrene-maleic acid) copolymer), a styrene/maleamic acid copolymer (i.e. a poly(styrene-maleamic acid) copolymer) or a combination thereof.
- the acid- functional polymer is a poly(styrene-maleamic acid) copolymer.
- poly(styrene-maleic acid) copolymers comprise styrenic and maleic acid repeating units.
- poly(styrene-maleamic acid) copolymers comprise styrenic and maleamic acid repeating units.
- the acidic groups in maleic acid and maleamic acid can form salts with an appropriate neutralizing agent.
- the maleic acid or maleamic acid repeating unit in the copolymer is a mono sodium salt, a di-sodium salt, a mono-ammonium salt, a di -ammonium salt, a mono quaternary ammonium salt or a di-quaternary ammonium salt.
- the poly(styrene-maleic acid) copolymer or poly(styrene-maleamic acid) copolymer is selected from a di-sodium salt of poly(styrene-maleic acid) copolymer, a di- ammonium salt of poly (styrene-maleic acid) copolymer, a mono-ammonium salt of poly(styrene-maleamic acid) copolymer, a mono-quaternary ammonium salt of poly(styrene-maleamic acid) copolymer or combinations thereof.
- poly(styrene-maleic acid) copolymers and poly(styrene-maleamic acid) copolymers include, but are not limited to, poly( styrene- alt-maleic acid) sodium salt solution from Merck; SMA 1000 H, SMA lOOOHNa, SMA 2000H, SMA 2000HNa, SMA 3000H, SMA 3000HNa, SMA 1000 AMP, SMA 2000 AMP and SMA 3000 AMP from Polyscope Polymers.
- suitable poly(styrene-maleic acid) copolymers and poly(styrene-maleamic acid) copolymers include Xiran 3000 HNa, Xiran 1000A, Xiran 2000A, Xiran 1550H and Xiran 3000H from Polyscope Polymers.
- the acid functional polymer has an acid number of > 225 mg KOH/g, more preferably > 300 mg KOH/g.
- the acid number of the acid functional polymer is 225-550mg KOH/g, preferably 255-550mg KOH/g.
- the acid functional polymers have a molecular weight of > 3,000 Daltons, preferable > 3,500 Daltons.
- the acid functional polymers have a molecular weight of 3,000-20,000 Daltons, preferably 3,500-15,000 Daltons.
- the acid functional polymer is present in an amount of from about 0.1 to about 15wt% of the composition, preferably from about 0.5 to about 12 wt% of the composition, more preferably from about 1 to about 8 wt% of the composition.
- the acid functional polymer is a poly(styrene-maleic acid) copolymer, a poly(styrene-maleamic acid) copolymer or a combination thereof and the acid functional polymer is present in an amount of from about 0.1 to about 15wt% of the composition, preferably from about 0.5 to about 12 wt% of the composition, more preferably from about 1 to about 8 wt% of the composition.
- the ink compositions may be, but are not limited to, inkjet ink compositions that can optionally include one or more additives that are compatible with the other components of the composition.
- Additives can be included in the composition to impart any number of desired properties, including, but not limited to, stability, smear resistance, viscosity, surface tension, coating penetration, optical density, color depth, adhesion, highlighter resistance, resolubility and crust resistance, among others. Suitable additives for such uses and the amounts of such additives used are known and conventionally used in the art.
- optional additives include, but are not limited to, defoamers, preservatives, surfactants, wetting agents, pH modifiers, viscosity modifiers, humectants, penetrating agents, and additional polymers (i.e. polymers in addition to the polymeric colorant and the acid functional polymer), among others.
- defoamers can be included in the ink composition, to inhibit the formation of foam.
- suitable defoamers include, but are not limited to, silicone -based or non-silicone defoamers.
- Commercially available defoamers include, but are not limited to, Dow Coming® 71 and Dow Coming® 74 (from Dow Corning), TegoAirex® 901W, 902W, 904W from Evonik Industries/ Tega, Tergitol® L-61, L-62, L-64 and L-101 (from Dow Chemical).
- a typical amount (by weight) of defoamer included in the composition is 0.1 to 3% by weight.
- preservatives such as biocides and fungicides
- preservatives can be included in the ink composition to inhibit the growth of microorganisms.
- suitable preservatives include, but are not limited to, sodium benzoate, pentachlorophenol sodium, 2- pyridinethiol- 1 -oxide sodium, sodium sorbate, sodium dehydroacetate, benzisothiazolinone, l,2-dibenzothiazolin-3-one, l-(3-chlorallyl)-3,5,7-triaza-l azoniaadamantane chloride (CTAC), methylisothiazolinone, and chloromethylisothiazolinone, among others.
- CAC methylisothiazolinone
- chloromethylisothiazolinone among others.
- biocides include UCARCIDE® 250 (available from Union Carbide Company), Proxel® CRL, Proxel® BDN, Proxel® GXL, Proxel®XL-2, Proxel® TN (available from Arch Chemicals, Smyrna, Ga.), Dowicil® (Dow Chemical, Midland, Mich.), Nuosept® (Huls America, Inc., Piscataway, N.J.), Omidines® (Olin Corp., Cheshire, Conn.), Nopcocides® (Henkel Corp., Ambler, Pa.), Troysans® (Troy Chemical Corp., Newark, N.J.), and XBINX® (PMC Specialties Group, Inc., Cincinnati, Ohio).
- the preservatives may be used alone or in combination.
- a typical amount (by weight) of preservative included in the composition is 0.1 to 1.5% by weight.
- the ink compositions according to the present invention can include a surfactant and/or a wetting agent.
- Suitable wetting agents include polyether siloxane co polymers such as Tego Wet KL 245 (Evonik).
- the wetting agent is present in the composition in 0.1 to 2% by weight. As will be understood in the art, wetting agents lower the interfacial tension of water allowing it to spread on a solid surface.
- surfactants can be included to reduce surface tension of the ink composition.
- the surfactant can be an anionic surfactant, non-ionic surfactant or cationic surfactant.
- Suitable surfactants can include, but are not limited to, those listed below and in US. Pat. No. 5,116,409, US. Pat. No. 5,861,447 and US. Pat. No. 6,849,111.
- Exemplary surfactants are commercially available under various trade names, such as the PLURONIC® series (BASF Corporation, Parsippany, N.J.), TETRONIC® series (BASF Corporation, Parsippany, N.J.), ARQUAD® series (Akzo Chemical Inc., Chicago, Ill.), TRITON® series (Union Carbide Corp., Danbury, Conn.), SURFONIC® series (Texaco Chemical Company, Houston, Tex.), ETHOQUAD® series (Akzo Chemical Inc., Chicago, Ill.), ARMEEN® series (Akzo Chemical Inc., Chicago, Ill.), ICONOL® series (BASF Corporation, Parsippany, N.J.), SURFYNOL® series (Air Products and Chemicals, Inc.
- PLURONIC® series BASF Corporation, Parsippany, N.J.
- TETRONIC® series BASF Corporation, Parsippany, N.J.
- ARQUAD® series Akzo
- ETHOMEEN® series (Akzo Chemical Inc., Chicago, Ill.), among others.
- the surfactants can be used alone or in combination.
- a typical amount (by weight) of surfactant included in the composition is 0.1 to 10% by weight.
- pH modifiers can be included to adjust or buffer the ink composition to a desired pH. Suitable pH modifiers include, but are not limited to, alkali hydroxides, alkali carbonates and bicarbonates, triethylamine, dimethylethanolamine, triethanolamine, aminomethyl propanol (AMP), mineral acids, hydrochloric acid, and sulfuric acid, among others.
- the pH modifiers can be used alone or in combination.
- a typical amount (by weight) of pH modifier in the composition is 0.1 to 2% by weight.
- the ink composition can include one or more viscosity modifiers.
- suitable viscosity modifiers include, but are not limited to resin compounds, alginic acid compounds, polyvinyl alcohol, hydroxypropyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, methyl cellulose, salts of polyacrylic acid, polyvinyl pyrrolidone, gum arabic and starch, hydrophobic ethoxylated urethanes (HEURs), hydrophobically modified alkali swellable emulsions (HASEs), alkali swellable emulsions (ASEs), among others.
- the viscosity modifiers can be used alone or in combination.
- a typical amount (by weight) of viscosity modifier in the composition is 0.5 to 10% by weight.
- one or more additional humectants can be included in the inkjet ink composition if required to reduce the rate of evaporation of the water component and prevent an ink composition from drying out in the nozzles of the printhead, which can occur during periods of latency, to minimize clogging of the nozzles.
- Humectants can be selected from materials having high hygroscopicity and water- solubility.
- humectants include, but are not limited to, polyols (e.g., glycerol, ethylene glycol, propylene glycol), alcohol ethers (e.g., diethylene glycol, triethylene glycol, dipropylene glycol), lactams (e.g., 2-pyrrolidone, urea compounds such as urea, 1,3- dimethylimidazolidinone), saccharides (e.g., sorbitol), 1,4-cyclohexanedimethanol, 1- methyl-2-piperidone, N-ethylacetamide, 3-amino- 1,2-propanediol, ethylene carbonate; butyrolacetone and Liponic EG-1, among others.
- polyols e.g., glycerol, ethylene glycol, propylene glycol
- alcohol ethers e.g., diethylene glycol, triethylene glycol, dipropylene glycol
- lactams e.g
- humectant there are no particular limitations on the amount used of the humectant.
- a typical amount (by weight) of humectant in the composition is 0.5 to 30% by weight.
- penetrating agents can be included to reduce bleeding of an ink composition when applied to a print substrate such as paper, among others.
- suitable penetrating agents include, but are not limited to, alkyl alcohols having 1 to 4 carbon atoms (e.g., ethanol), glycol ethers (e.g., ethylene glycol monomethyl ether), diols (e.g., 1,2-alkyl diols), formamide, acetamide, dimethylsulfoxide, sorbitol and sulfolane, among others.
- the penetrating agents may be used alone or in combination.
- a typical amount (by weight) of penetrating agents in the composition is 1 to 20% by weight.
- the ink composition can optionally include additional polymers (other than the polymeric dyes and acid functional polymers) to enhance waterfastness, rub and lightfastness of an ink image applied to and dried on a print substrate.
- additional polymers include, but are not limited to, polyvinyl alcohols, polyesters, polyestermelamines, styrene/acrylic acid copolymers, styrene/maleic acid/alkyl acrylate copolymers, styrene/methacrylic acid copolymers, styrene/methacrylic acid/alkyl acrylate copolymers, styrene/maleic half ester copolymers, vinyl naphthalene/acrylic acid copolymers, vinyl naphthalene/maleic acid copolymers, polyacrylics, polyurethanes, hydroxyl functional polymers and salts thereof, among others.
- additional polymer is included in the ink composition it can preferably be a polyacrylic or polyurethane (including a hydroxyl functional polyurethane).
- examples of other polymers capable of undergoing a cross linking reaction with the polymeric dye may also optionally be included and these include, but are not limited to, poly(ethyleneketone) and poly (propyleneke tone).
- Such additional polymers can be used alone or in combination.
- a typical amount (by weight) of such additional polymers that can be included in the composition is 0.1 to 20% by weight.
- the ink composition can optionally include a self-crosslinking polymer to improve the durability of an ink image applied to and dried on a print substrate.
- self-crosslinking polymers for use in the ink compositions include, but are not limited to, self cross-linking acrylic polymers, styrene-acrylic copolymers, styrene- butadiene latexes, styrene-isoprene latexes, acrylonitrile-butadiene latexes, alkyd dispersions, vinyl polymers, silicone dispersions, polyamide dispersions, chlorinated olefin dispersions, and polyester dispersions, among other self-crosslinking polymers.
- Such self-crosslinking polymers can be used alone or in combination.
- a typical amount (by weight) of such self-crosslinking polymers that can be included in the composition is 0.1 to 20% by weight.
- the ink compositions can optionally include a chemical cross-linker.
- cross-linking agents include, but are not limited to Picassian XL-701, Picassian XL-702, Picassian XL-725, Picassian XL-732, Picassian XL-752, Picassian XL-755, Picassian XL-762 from Stahl; Carbodilite V-02, Carbodilite V-02-L2, Carbodilite SV-02, Carbodilite V-04, Carbodilite V-10, Carbodilite E-02, Carbodilite E- 05 from Nisshinbo Chemicals; Zoldine XL-29SE from Angus Chemicals.
- the ink compositions can include a catalyst which is capable of lowering the activation energy or temperature to enable chemical cross-linking to occur.
- a catalyst which is capable of lowering the activation energy or temperature to enable chemical cross-linking to occur.
- additives are various kaolins, colloidal silicas, etc.
- additives that can be included in the ink compositions include, but are not limited to, antioxidants, ultraviolet absorbers, chelating agents, electric conductivity adjusters, oxygen absorbers, anti-kogation agents, anti-curling agents, and fragrances, among others.
- antioxidants ultraviolet absorbers
- chelating agents chelating agents
- electric conductivity adjusters oxygen absorbers
- anti-kogation agents anti-curling agents
- fragrances fragrances
- the inkjet ink compositions comprise a fluid carrier which comprises water and one or more organic co-solvents, which can be water-soluble organic co-solvents, water- miscible organic co-solvents, or a combination thereof.
- the organic co-solvents can be added either alone or in combination.
- the organic co-solvents are humectants, which can reduce the rate of evaporation of the water component and prevent an ink composition from drying out or crusting in the nozzles of the printhead to minimize clogging of the nozzles.
- the organic co- solvents can enhance solubility of the components in the inkjet ink composition and facilitate penetration of a printed ink composition into a substrate.
- Suitable water-soluble and water-miscible organic solvents include, but are not limited to, alcohols (e.g., methanol, ethanol, propanol, isopropyl alcohol, butanol, polyols, ethylene glycol, propylene glycol, dipropylene glycol, glycerine, and polyethylene glycol (PEG), among others), ketones and ketone alcohols (e.g., acetone and diacetone alcohol, among others), ethers (e.g., tetrahydrofuran, dioxane, and alkylethers, among others), ethers of polyhydric alcohols (e.g., ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monoethyl ether acetate, di(ethyleneglycol) monomethyl ether), nitrogen-containing solvents (e.g., 2-pyrrolidone, and N-methyl2-pyrrolidone, among others), sulfur-containing
- the amount (by weight) of the organic co-solvent in the inkjet ink composition is at least 1, such as at least 5, and at least 10% by weight.
- the amount (by weight) of the organic co-solvent is at most 60, such as at most 50, at most 40, and at most 30% by weight.
- the amount of the organic co solvent in the composition is 1 to 80% by weight, such as 10 to 50% by weight.
- the amount of the organic co-solvent in the ink is 5 to 35% by weight.
- an organic co-solvent used in the inventive ink compositions can comprise one or more embodiments described herein.
- the inks according to the present invention are water-based. Unless stated otherwise, water-based inks comprise at least 20, at least 25, and at least 30% by weight.
- the amount (by weight) of water is at most 95, at most 85, at most 80, at most 75, at most 70, at most 65, and at most 60% by weight.
- the amount of water in the composition is 20 to 95% by weight, such as 20 to 80, and 20 to 70% by weight.
- the range of water in the composition is 30 to 75% by weight, and more preferably 30 to 60% by weight.
- the invention also provides methods of preparing the inkjet ink compositions disclosed herein.
- the inkjet ink compositions of the invention can be prepared by mixing a polymeric colorant (preferably a polymeric dye) and an acid functional polymer in water with at least an organic solvent, a wetting agent, and optionally further quantities of a biocide.
- the inkjet ink composition can also be prepared by mixing a polymeric colorant (preferably a polymeric dye) and an acid functional polymer in water with at least an organic solvent, a wetting agent, and optionally further quantities of a cross-linking agent, optionally further fluid carrier, a biocide and other optional additives.
- a polymeric colorant preferably a polymeric dye
- an acid functional polymer in water with at least an organic solvent, a wetting agent, and optionally further quantities of a cross-linking agent, optionally further fluid carrier, a biocide and other optional additives.
- the fluid carrier can be prepared by combining one or more water- soluble organic co-solvents, one or more water-miscible organic co-solvents or a mixture thereof, with water, which can be combined with the other components of the composition.
- the organic co-solvent(s) and water of the fluid carrier can be combined directly with the polymeric colorant(s), acid functional polymer(s), optional crosslinking agent and optional additives.
- An ink composition according to the invention can comprise a combination of two or more embodiments described herein.
- the water-based inks are prepared in the normal manner.
- the polymeric colorant can be obtained from several different sources.
- the polymeric colorant(s), which is typically a liquid, is then added slowly, and the other components of the ink are then added - this may be components such as biocides or preservatives, binders, polymers, resins, surfactants, wetting agents and small quantities of other co-solvents.
- the ink is pumped under positive pressure through a cartridge filter and packed.
- the invention further includes methods of printing an image on a substrate by applying an inkjet ink composition according to the invention onto the substrate.
- the inkjet ink compositions disclosed herein are adapted for use with an inkjet printing apparatus.
- droplets of an inkjet ink composition as disclosed herein are ejected from a small nozzle of a printhead and deposited onto a print substrate to generate an image thereon.
- Suitable inkjet ink printing apparatus can include, but are not limited to, Drop-on-Demand Valve (DoD Valve), MEMS technology and Drop-on-Demand PiezoElectric (DoD Piezo).
- Suitable print substrates to which this invention is particularly directed include, but are not limited to, transparency materials (e.g. cellulose acetate films such as those commonly used as packing films), textile materials, leather, metals, ceramics, glass, plastics, polymeric films and woods, among others.
- transparency materials e.g. cellulose acetate films such as those commonly used as packing films
- textile materials leather, metals, ceramics, glass, plastics, polymeric films and woods, among others.
- the substrates that are suitable for use in the present invention are fibrous.
- a fibrous substrate is a material that is composed from fibres, which may be natural fibres or synthetic fibres.
- the fibrous substrates that are suitable for use in the present invention are made from natural fibres such as cellulose or protein (e.g. collagen) fibres.
- the fibrous substrate is composed from natural fibres and is selected from wood (e.g. fiberboard), paper (e.g. wallpaper or cardboard), leather, silk, cotton, wool (e.g. merino wool or cashmere), hemp, ramie, sisal, bamboo, flax or blends of the same.
- wood, cotton, hemp, ramie, sisal, bamboo and flax comprise cellulose fibres and can therefore be referred to as cellulosic substrates.
- the present invention is not limited to natural cellulosic substrates and also includes synthetic cellulosic substrates such as rayon.
- rayon substrates include viscose rayon, modal rayon acetate rayon and lyocell rayon as well as cellulose acetate.
- fibrous used in connection with cellulosic substrates does not refer to polymeric cellulosic chains, but instead to the fibres formed by multiple polymeric cellulosic chains which are bound together by intermolecular forces between chains to form cellulose fibres comprising many tens of polymer chains as, for instance, found in naturally occurring cellulosic fibre such as cotton.
- the fibrous substrate is a textile.
- textiles are formed from weaving, knitting, crocheting, knotting, tatting, felting, bonding and/or braiding yarns, which themselves are formed from fibres.
- the textile substrates suitable for use in the present invention may be formed from or are any one or more of the fibres described herein.
- the textile substrate can preferably be formed from or is cotton, rayon, silk, polyester, PET, spandex, nylon, leather, wool, hemp, ramie, sisal, bamboo, flax, MET-OPP (Metalized Orientated Polypropylene), MET-PET (Metallized Polyethylene Terephthalate), PP (polypropylene), PVC (Polyvinyl Chloride) or blends thereof (such as a polyester-blend).
- MET-OPP Metalized Orientated Polypropylene
- MET-PET Metallized Polyethylene Terephthalate
- PP polypropylene
- PVC Polyvinyl Chloride
- the textile substrate is canvas, chenille, chiffon, crepe, damask, georgette, gingham, jersey, lace, linen, polyvinyl chloride, leather, merino wool, modal, muslin, organza, satin, spandex, suede, taffeta, toile, tweed, twill and velvet.
- the substrates that are suitable for use in the present invention are preferably metals, ceramics, glass, plastics or polymeric films.
- Exemplary metals include steel and copper, which may or may not be coated, e.g. with a white primer layer and/or a clearcoat covering.
- Exemplary polymeric films include non-fibrous cellulosic substrates such as cellophane, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, cellulose nitrate and cellulose propionate.
- the substrate used in the present invention does not contain a chemical primer or chemical pre-treatment layer on its surface, and so the ink is printed directly onto the substrate.
- a chemical primer layer is an intermediary layer between the substrate and the ink that facilitates adhesion between the substrate and the ink.
- chemical pre-treatment of a substrate involves applying a chemical substance to the substrate before printing which binds to the substrate and which facilitates adhesion between the substrate and the ink.
- a chemical primer or chemical pre-treatment is distinct from a physical pre-treatment of the substrate.
- the substrate suitable for use in the present invention may be subjected to a physical pre-treatment prior to being printed, for example a plasma pre-treatment.
- a chemical primer or chemical pre-treatment for adhesion promotion is distinct from a passivating protective layer on the substrate, for instance for the purpose of corrosion resistance.
- the substrate may comprise a passivating protective layer, for instance as is present in protected steel.
- metal substrates are typically protected to prevent corrosion and protection may involve galvanising the metal (e.g. steel) with a layer of a zinc before printing on the substrate.
- the inkjet ink compositions according to the present invention are formulated to have properties that allow for at least one of the following: 1) uniform, bleed- free print images with high resolution and high density on a print substrate; 2) inhibition or prevention of nozzle clogging which typically occurs due to drying of the ink at a distal end of a nozzle of the printing apparatus; 3) rapid drying on a print substrate (paper, fabric, film, etc.); 4) long-term storage stability; and 5) print characteristics that are independent of the print substrate quality.
- the inkjet ink compositions can also provide ink stability and robustness against fluctuating temperature conditions which can occur during transport and storage, to eliminate or inhibit nozzle clogging, banding, and poor print quality.
- the inkjet ink compositions disclosed herein can be adapted specifically for use in textile, leather, paper, wood and metal printing processes.
- the inkjet ink compositions adapted for textile printing can be formulated to have at least one of the following properties: 1) fastness to textile fabrics such as cotton, wool, hemp, linen, ramie, sisal, rayon, cellulose acetate, bamboo, flax, or blends of the same; and 2) ease of application and fixation to the fibrous substrate.
- the ink is then suitable for use in an industrial high-speed digital printing press for the decoration of textiles and other fibrous materials (for example, wood).
- the black ink and standard inks of other colours comprising, for example at least Cyan, Magenta and Yellow, and may also include, but not limited to spot colours such as Red, Orange, Violet and Green
- the sequence of printing by digital means the separate colours and drying the resulting deposited wet inks by Near Infra-Red lamps at full power, enables the printing press to run at full speed and results in no deformation of the printed films.
- the end result is a very high productivity and a very high final print quality.
- a textile fabric is typically pre-treated with a chemical agent containing free polymeric -COOH groups either in-line or off-line.
- the ink can then be printed by inkjet means onto the pre-treated substrate using the methods described previously and then the fabric can be either heated, steamed or cured thermally using a radiative method.
- the ink already contains a polymer (e.g. a co-polymer) containing an acid functional group, and optionally a cross linker, therefore the ink can be printed directly onto the fabric (i.e. without any pre treatment) and either heated, steamed or cured thermally using a radiative method.
- the substrates used are non-porous and the water-based inks can be printed directly onto the non-porous surfaces, for example, glass, plastic, foils, or metal in the same way as the methods described above.
- Hydroxyl value (or hydroxyl number) is defined as the number of milligrams of potassium hydroxide required to neutralize the acetic acid taken up on acetylation of one gram of a chemical substance that contains free hydroxyl groups.
- the hydroxyl value is suitably measured in accordance 5 with the ISO 4629-l:2016(E) standard.
- Amine value (or amine number) is defined as the mass equivalent of potassium hydroxide that is required when one gram of substance is neutralized with a suitable acid (typically hydrochloric acid).
- a suitable acid typically hydrochloric acid.
- the amine value is suitably measured in accordance with the DIN 53176:2002-11 standard.
- Acid value (or acid number) is defined as the mass of potassium hydroxide (KOH) in milligrams that is required to neutralize one gram of chemical substance.
- the acid value is suitably measured in accordance with the ISO 2114:2000(E)(method B) standard.
- molecular weight or “average molecular weight” is a reference to the weight average molecular weight (Mw).
- the molecular weight is suitably measured by techniques known in the art such as gel permeation chromatography.
- molecular weight is measured by comparison with a polystyrene standard. For instance, molecular weight determination may be conducted on a Hewlett-Packard 1050 Series HPLC system equipped with two GPC Ultrastyragel columns, 103 and 104 A (5 pm mixed, 300 mm x 19 mm, Waters Millipore Corporation, Milford, MA, USA) and THF as mobile phase.
- this definition of molecular weight applies to polymeric materials which typically have a molecular weight distribution.
- the viscosities of the inks were measured using a Brookfield DV-II+ Pro Viscometer equipped with an Enhanced Brookfield UL Adapter at 60 rpm and 32°C.
- pH and conductivity were measured at 25 °C using an Oakton 510 series pH/conductivity meter.
- dynamic surface tension is measured using a SITA bubble pressure tensiometer at 25 °C and 2.7 Hz and static surface temperature is measure using a SITA bubble pressure tensiometer at 25°C and a bubble frequency of 0.025 Hz.
- a printing ink comprising one or more solution soluble polymeric colorants, one or more acid functional polymers, water and one or more organic co-solvents; wherein the inks are suitable for inkjet deposition.
- the one or more acid functional polymers are selected from the group consisting of polyvinyl alcohols, polyesters, polyestermelamines, styrene/acrylic acid copolymers, styrene/maleic acid copolymers, styrene/maleic acid/alkyl acrylate copolymers, styrene/methacrylic acid copolymers, styrene/methacrylic acid/alkyl acrylate copolymers, styrene/maleic half ester copolymers, vinyl naphthalene/acrylic acid copolymers, vinyl naphthalene/maleic acid copolymers, polyacrylics, polyurethanes, salts thereof and blends thereof.
- the inks of any preceding paragraph further comprising a cross-linking agent selected from the group consisting of carbodimide, aziridine, organosilanes and blends thereof.
- a cross-linking agent selected from the group consisting of carbodimide, aziridine, organosilanes and blends thereof.
- the polymeric colorant may contain a dye, an organic pigment, an inorganic pigment or the lake pigment of a dye.
- inks of any preceding paragraph comprising a colorant selected from the group consisting of yellow, black, cyan, magenta, orange, red, blue, green, white, violet and blends thereof.
- a method of printing comprising depositing the inks of any one or more of paragraphs 1-18 onto a substrate.
- deionised water 5.60g, propylene glycol, 5.20g, dipropylene glycol, l.Og, Xiran 3000H (Polyscope Polymers Inc.; 25% (poly(styrene-maleamic acid) solution in water, acid number 255-305 mg KOH/g and molecular weight lOkD), 5.0g and finally Tego Wet KL 245, 0.2g. l.Og (5% w/w) of the blue polymeric colorant, Reactint Blue X3LV or Evertint Blue R-01, was then added, followed by a further addition of deionised water, 2.0g.
- deionised water 5.60g, propylene glycol, 5.20g, dipropylene glycol, l.Og, Xiran 3000H (Polyscope Polymers Inc.; 25% (poly(styrene-maleamic acid) solution in water, acid number 255-305 mg KOH/g and molecular weight lO
- Example 2A Violet Ink (One additional polymer, 5% polymeric dye)
- deionised water 5.60g, propylene glycol, 5.20g, dipropylene glycol, l.Og, Xiran 3000H (Polyscope Polymers Inc.; 25% (poly(styrene-maleamic acid) solution in water, acid number 255-305 mg KOH/g and molecular weight lOkD), 5.0g and finally Tego Wet KL 245, 0.2g. l.Og (5% w/w) of the violet polymeric colorant, Evertint Violet R-01, was then added, followed by a further addition of deionised water, 2.0g.
- the mixture was stirred for a further 1 hour at ambient temperature and then the mixture filtered through a 1 -micron absolute glass fiber GF/B Whatman filter paper using vacuum.
- the physical properties of the ink when using Evertint Violet R-01 as the polymeric dye, were measured to give a viscosity of 5.66cP (measured at 32°C at low shear (i.e.
- deionised water 5.60g, propylene glycol, 5.20g, dipropylene glycol, l.Og, Xiran 3000H (Polyscope Polymers Inc.; 25% (poly(styrene-maleamic acid) solution in water, acid number 255-305 mg KOH/g and molecular weight lOkD), 5.0g and finally Tego Wet KL 245, 0.2g. 2.0g (5% w/w) of the violet polymeric colorant, Evertint Violet R-01, was then added, followed by a further addition of deionised water, l.Og.
- the mixture was stirred for a further 1 hour at ambient temperature and then the mixture filtered through a 1 -micron absolute glass fiber GF/B Whatman filter paper using vacuum.
- the physical properties of the ink when using Evertint Violet R-01 as the polymeric dye, were measured to give a viscosity of 10.8cP (measured at 32°C at low shear (i.e.
- Example 3 Red Ink (One additional polymer, 5% polymeric dye)
- deionised water 5.60g, propylene glycol, 5.20g, dipropylene glycol, l.Og, Xiran 3000H (Polyscope Polymers Inc.; 25% (poly(styrene-maleamic acid) solution in water, acid number 255-305 mg KOH/g and molecular weight lOkD), 5.0g and finally Tego Wet KL 245, 0.2g. l.Og (5% w/w) of the red polymeric colorant, Evertint Red R-01, was then added, followed by a further addition of deionised water, 2.0g.
- the mixture was stirred for a further 1 hour at ambient temperature and then the mixture filtered through a 1 -micron absolute glass fiber GF/B Whatman filter paper using vacuum.
- the physical properties of the ink when using Evertint Red R-01 as the polymeric dye, were measured to give a viscosity of 5.1 lcP (measured at 32°C at low shear (i.e.
- Example 4 Orange Ink (One additional polymer, 5% polymeric dye)
- deionised water 5.60g, propylene glycol, 5.20g, dipropylene glycol, l.Og, Xiran 3000H (Polyscope Polymers Inc.; 25% (poly(styrene-maleamic acid) solution in water, acid number 255-305 mg KOH/g and molecular weight lOkD), 5.0g and finally Tego Wet KL 245, 0.2g. l.Og (5% w/w) of the orange polymeric colorant, Evertint Orange R-01, was then added, followed by a further addition of deionised water, 2.0g.
- the mixture was stirred for a further 1 hour at ambient temperature and then the mixture filtered through a 1 -micron absolute glass fiber GF/B Whatman filter paper using vacuum.
- the physical properties of the ink when using Evertint Orange R-01 as the polymeric dye, were measured to give a viscosity of 5.36cP (measured at 32°C at low shear (i.e.
- Example 5 Green Ink (One additional polymer, 5% polymeric dye)
- deionised water 5.60g, propylene glycol, 5.20g, dipropylene glycol, l.Og, Xiran 3000H (Polyscope Polymers Inc.; 25% (poly(styrene-maleamic acid) solution in water, acid number 255-305 mg KOH/g and molecular weight lOkD), 5.0g and finally Tego Wet KL 245, 0.2g. l.Og (5% w/w) of the green polymeric colorant, Reactint Green X8212 was then added, followed by a further addition of deionised water, 2.0g.
- Example 6 Yellow Ink (One additional polymer, 5% polymeric dye)
- deionised water 5.60g, propylene glycol, 5.20g, dipropylene glycol, l.Og, Xiran 3000H (Polyscope Polymers Inc.; 25% (poly(styrene-maleamic acid) solution in water, acid number 255-305 mg KOH/g and molecular weight lOkD), 5.0g and finally Tego Wet KL 245, 0.2g. l.Og (5% w/w) of the green polymeric colorant, Reactint Yellow XI 5 was then added, followed by a further addition of deionised water, 2.0g.
- Example 7 Black Ink (One additional polymer. 5% polymeric dye)
- deionised water 5.60g, propylene glycol, 5.20g, dipropylene glycol, l.Og, Xiran 3000H (Polyscope Polymers Inc.; 25% (poly(styrene-maleamic acid) solution in water, acid number 255-305 mg KOH/g and molecular weight lOkD), 5.0g and finally Tego Wet KL 245, 0.2g. l.Og (5% w/w) of the black polymeric colorant, Reactint Black X77 was then added, followed by a further addition of deionised water, 2.0g.
- deionised water 5.60g, propylene glycol, 5.20g, dipropylene glycol, l.Og, Xiran 3000H (Polyscope Polymers Inc.; 25% (poly(styrene-maleamic acid) solution in water, acid number 255-305 mg KOH/g and molecular weight lOkD), 5.0g and finally Tego
- Ink Examples 1, 3, 4, 5 and 6 were printed onto various substrates and fabrics using a Dimatix SMP2800 benchtop printer.
- the fabrics are as follows: untreated cotton; untreated polyester-cotton (65-35) blend material; untreated PVC-based wallpaper material; coated polyester fabric (Polyester Brook FKPD8 (PE), and protected stainless steel. Results for stainless steel (referred to as laminated metal) can be found in Table 1.
- the drop size used on the printer was 10 picolitres through a Dimatix DMC- 11610 print cartridge.
- the drop spacing’s used were 31 microns.
- the cartridge temperature was 32°C and the meniscus set point at 4 inches of water. All 16 nozzles were firing and the throw distance was fixed at 2-3mm.
- the inks were applied to the substrates using inkjet deposition from the Dimatix SMP2800 printer at a maximum jetting frequency of 2kHz.
- drawdowns using an industrial coater were also made.
- the drawdown samples were prepared by using a no. 2 K-bar, automatic coating machine and a speed setting “11”.
- the polyester fabric was heat treated in a heat press at 200°C for 120 seconds, the polyester-cotton blend and cotton were heat treated in a heat press at 160°C for 120 seconds, the PVC wallpaper material was heat treated for 12 minutes at 130°C in a fan oven and the laminated stainless steel was heat treated for 2 minutes at 130°C and then 10 minutes at 210°C in a fan oven.
- the color properties of the printed substrates were then measured demonstrating good adhesion to the substrates.
- cross hatch testing of the laminated metal (i.e. stainless steel) substrate indicated there was no peel off or flake off during the test, which demonstrates a robust coloured film had been produced.
- Cross hatch and crock test (adhesion and bend) on coated and printed samples Testing was performed on a coated steel substrate (white primer layer and clearcoat covering).
- the ink was applied to the substrate using either i) a 12-micron No. 2 K-bar (also known as a wire bar coater) or ii) inkjet printing.
- the inkjet printed film was applied to the substrate using a Dimatix DMP 2800 inkjet printer, using the K15 waveform. Drop size on the printer was 10 picolitres, with a cartridge temperature of 32 °C, a meniscus setpoint of 4 inches of water, a drop spacing of 26 microns, from a DMC- 11610 Dimatix print cartridge.
- a solid block of ink was inkjet printed in a 45mm x 45mm block, with the cartridge aligned at 7 degrees to the direction of travel, a maximum jetting frequency of 2kHz and a throw distance of 2-3mm from the substrate.
- the resulting films were then dried at 110°C for 2 minutes in fan oven.
- the sample was tested for scratch resistance using a fingernail. If no ink coating is visually removed, then the coating is a pass.
- the film was then cured in a convection oven for 10 minutes at 210°C to ensure a full cure on a metal substrate.
- the bend test involves bending the substrate through 180 degrees and checking if there is any visible damage to the dried film by eye. If there is no damage, it is a pass.
- a cross-hatch test was then performed by using a scribe cross hatch (10 x 10 cross hatch).
- the print surface was wiped with a low friction contact brush and a strip of Elcometer 99 tape was applied to the crosshatch area and rubbed several times under pressure to ensure the tape is adhered to the surface.
- the tape end was bent over by 180 degrees and the tape end pulled to establish if any of the coating is removed. If any coating is removed, this is a fail.
- the films were also swabbed with deionized water up to 100 times by manual contact swabbing. A pass is at least 100 wipes. All of the Example 1, 3, 4, 5 and 6 inks passed all of these tests.
- Example 1 A sample of each of the Example 1, 3-6 inks were coated on to a glass microscope slide (Fisher Scientific) using a 50-micron No. 5 K-bar (also known as a wire bar coater) and the film dried at 40°C for 30 minutes in a fan convection oven. Subsequently, the printed substrate was partially immersed in a beaker containing flush (inkjet flush liquid) and the time taken for the ink to resolubilize from the substrate was recorded. For this test, the time to resolubilize is preferably ⁇ 2 hours, more preferably ⁇ 1 hour, more preferably ⁇ 30 min., most preferably ⁇ 10 min.
- the inks resolubilized in ⁇ 1 minute, which is an excellent result.
- This test is an accurate representation of what might happen to an inkjet print head if it is not capped correctly and is left for a long period of time with the end result being the ink drying in the print head or the machine. The expectation is that the ink should be resolubilized as quickly as possible with no visible or lasting damage to the print head or machine.
- the inventive inks containing polymeric dyes and acid functional binder polymers showed the expected level of performance compared to standard dye -based inks and superior performance to pigment-based inks.
- Example 1-6 inks were tested for storage stability by storing the ink samples in glass vials (30mL) for periods of time at 50°C.
- the physical properties listed in the examples were measured on a weekly basis. If one of the parameters from viscosity, surface tension, pH or conductivity has changed by more than +/-10% over the course of 2 weeks, then the ink is deemed to have failed.
- Examples 1-6 inks all showed acceptable stability (no change of +/-10% for the aforementioned properties) after two weeks at 50°C. This equates to a product shelf-life of approximately 16 weeks at normal storage conditions (15-30°C).
- control inks B were prepared by taking the respective color of reactive dye inkjet ink (SunTex-i- Xennia Amethyst range) and diluting the ink in a 1:2 ratio with deionized water giving an overall dye concentration of approximately 4%. These were labelled as control inks A.
- a second reference fluid was prepared by taking the polymeric dye (Everlight or Milliken) and preparing a 5% solution of the polymeric dye in deionized water. This has then an equivalent polymeric dye loading to the inks 1-6. These were labelled as control inks B.
- the inks and controls were applied to the substrates using either a 12-micron No. 2 K-bar (also known as a wire bar coater).
- the resulting drawdown samples were then allowed to air dry for about 10 minutes, and were then cured in a heat press for 120 seconds at a temperature of 160°C.
- the substrates were then immersed in a 1% solution of Tergitol TMN in deionized water and left to soak with gentle agitation for 10 minutes at room temperature. The resulting supernatant liquid was then decanted and the substrate washed in warm water until there is no more coloration evolving under the stream of water.
- the substrates were then allowed to dry at room temperature and a visual determination of the percentage level of fixation was made.
- inventive inks demonstrated superior fixation and coloration to both reactive dye inks (control inks A) at a similar colorant loading or the control liquids B.
- control inks A reactive dye inks
- control liquids B control liquids
- Good jetting and printed image quality is defined as adequate drop formation when ejected from a digital inkjet head at different drop volumes. There should be no satellites or drop break up which can be detrimental to the printed image quality, usually verified by jet testing on a drop watcher machine such as those from X-Rite. Good printed image quality is defined as the image being compliant with the end use application. Usually verified using a series of tests such as line straightness, wicking, feathering, dot gain, etc. on an ImageXpert from Xrite. Storage stability is the number of days, weeks or months that an ink can be stored without any significant settling or degradation which may lead to poorer performance of the inks.
- Open time is the time by which a print head can be left uncapped (hence open) and then when jetting is recommenced, a complete start-up of all nozzles. Normal open times are at least one hour.
- Resolubility is defined as the time taken to resolubilise ink which has air dried in a digital print head or press due to poor maintenance or downtime. The expectation is that when using a standard flush, cleaning or maintenance liquid, the ink is resolubilised in less than 10 minutes, thus enabling blocked nozzles to be recovered.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22715685.8A EP4284881A1 (en) | 2021-04-01 | 2022-04-01 | Water-based polymeric colorant inks |
US18/551,657 US20240166904A1 (en) | 2021-02-15 | 2022-04-01 | Water-based Polymeric Colorant Inks for Cellulosic Substrates |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202163169407P | 2021-04-01 | 2021-04-01 | |
US63/169,407 | 2021-04-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022208112A1 true WO2022208112A1 (en) | 2022-10-06 |
Family
ID=81326356
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2022/050834 WO2022208112A1 (en) | 2021-02-15 | 2022-04-01 | Water-based polymeric colorant inks |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP4284881A1 (en) |
WO (1) | WO2022208112A1 (en) |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5116409A (en) | 1991-04-17 | 1992-05-26 | Hewlett-Packard Company | Bleed alleviation in ink-jet inks |
US5861447A (en) | 1996-07-19 | 1999-01-19 | Orient Chemical Industries, Ltd. | Aqueous pigment ink composition |
EP0604024B1 (en) | 1992-11-25 | 1999-01-27 | Tektronix, Inc. | Reactive ink compositions and system |
US5879439A (en) * | 1996-08-01 | 1999-03-09 | Ricoh Company, Ltd. | Recording ink composition and recording method using the same |
WO1999061533A1 (en) * | 1998-05-28 | 1999-12-02 | Marconi Data Systems, Inc. | An ink suitable for ink jet printing |
WO2003006561A2 (en) * | 2001-07-13 | 2003-01-23 | Ucb, S.A. | Energy curable polymeric ink compositions |
EP0921166B1 (en) | 1997-12-08 | 2003-04-02 | E.I. Dupont De Nemours And Company | Polymer/dye complexes for improved chroma in pigment-based ink jet inks |
EP1056703B1 (en) | 1998-02-19 | 2003-04-16 | Milliken Research Corporation | Colorant having isocyanate substituent |
US6849111B2 (en) | 2002-06-03 | 2005-02-01 | Fuji Xerox Co., Ltd. | Black ink for ink-jet recording having dispersed particles with specific volume mean diameter, ink set and ink-jet recording method using the same |
EP1245588B1 (en) | 2001-03-30 | 2006-06-14 | Eastman Kodak Company | Composite colorant particles |
EP1405884B1 (en) | 2002-10-04 | 2007-11-14 | Eastman Kodak Company | Ink jet composition and printing method |
US7732509B2 (en) | 2006-08-24 | 2010-06-08 | Eastman Kodak Company | Polymeric colorant-based ink compositions |
US8153706B2 (en) | 2004-10-25 | 2012-04-10 | Hewlett-Packard Development Company, L.P. | Polymeric colorants having pigment and dye components and corresponding ink compositions |
-
2022
- 2022-04-01 EP EP22715685.8A patent/EP4284881A1/en active Pending
- 2022-04-01 WO PCT/GB2022/050834 patent/WO2022208112A1/en active Application Filing
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5116409A (en) | 1991-04-17 | 1992-05-26 | Hewlett-Packard Company | Bleed alleviation in ink-jet inks |
EP0604024B1 (en) | 1992-11-25 | 1999-01-27 | Tektronix, Inc. | Reactive ink compositions and system |
US5861447A (en) | 1996-07-19 | 1999-01-19 | Orient Chemical Industries, Ltd. | Aqueous pigment ink composition |
US5879439A (en) * | 1996-08-01 | 1999-03-09 | Ricoh Company, Ltd. | Recording ink composition and recording method using the same |
EP0921166B1 (en) | 1997-12-08 | 2003-04-02 | E.I. Dupont De Nemours And Company | Polymer/dye complexes for improved chroma in pigment-based ink jet inks |
EP1056703B1 (en) | 1998-02-19 | 2003-04-16 | Milliken Research Corporation | Colorant having isocyanate substituent |
WO1999061533A1 (en) * | 1998-05-28 | 1999-12-02 | Marconi Data Systems, Inc. | An ink suitable for ink jet printing |
EP1082396B1 (en) | 1998-05-28 | 2005-09-07 | Videojet Technologies Inc. | An ink suitable for ink jet printing |
EP1245588B1 (en) | 2001-03-30 | 2006-06-14 | Eastman Kodak Company | Composite colorant particles |
WO2003006561A2 (en) * | 2001-07-13 | 2003-01-23 | Ucb, S.A. | Energy curable polymeric ink compositions |
US6849111B2 (en) | 2002-06-03 | 2005-02-01 | Fuji Xerox Co., Ltd. | Black ink for ink-jet recording having dispersed particles with specific volume mean diameter, ink set and ink-jet recording method using the same |
EP1405884B1 (en) | 2002-10-04 | 2007-11-14 | Eastman Kodak Company | Ink jet composition and printing method |
US8153706B2 (en) | 2004-10-25 | 2012-04-10 | Hewlett-Packard Development Company, L.P. | Polymeric colorants having pigment and dye components and corresponding ink compositions |
US7732509B2 (en) | 2006-08-24 | 2010-06-08 | Eastman Kodak Company | Polymeric colorant-based ink compositions |
Also Published As
Publication number | Publication date |
---|---|
EP4284881A1 (en) | 2023-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3526293A1 (en) | Aqueous inkjet ink compositions | |
US11851814B2 (en) | Textile inks | |
US11124667B2 (en) | Inkjet ink compositions | |
CN110770305B (en) | Aqueous dispersions of polymer capsules | |
EP4143266B1 (en) | Stable inkjet dispersions and inks | |
US11945959B2 (en) | Water-based pigment inks for textiles | |
EP3856857B1 (en) | Aqueous dispersion of resin particles | |
WO2022208112A1 (en) | Water-based polymeric colorant inks | |
US20240166904A1 (en) | Water-based Polymeric Colorant Inks for Cellulosic Substrates | |
US12054621B2 (en) | Heat stable inkjet inks | |
CN116745372B (en) | Water-based pigment ink | |
CN113166570B (en) | Aqueous dispersion of resin particles | |
WO2024194442A1 (en) | Ink composition and ink jet printing process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22715685 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2022715685 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2022715685 Country of ref document: EP Effective date: 20230830 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18551657 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |