WO2022206822A1 - 胎心多普勒仪及检测方法 - Google Patents

胎心多普勒仪及检测方法 Download PDF

Info

Publication number
WO2022206822A1
WO2022206822A1 PCT/CN2022/083998 CN2022083998W WO2022206822A1 WO 2022206822 A1 WO2022206822 A1 WO 2022206822A1 CN 2022083998 W CN2022083998 W CN 2022083998W WO 2022206822 A1 WO2022206822 A1 WO 2022206822A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
fetal heart
ultrasonic
maternal
fetal
Prior art date
Application number
PCT/CN2022/083998
Other languages
English (en)
French (fr)
Inventor
陈德伟
廖为塔
刘锦群
余俊煜
王功华
吴勇
Original Assignee
深圳市理邦精密仪器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110362153.0A external-priority patent/CN115177245B/zh
Priority claimed from CN202110572668.3A external-priority patent/CN115381482A/zh
Priority claimed from CN202111467542.6A external-priority patent/CN116211345A/zh
Priority claimed from CN202220245322.2U external-priority patent/CN217659938U/zh
Priority claimed from CN202220225376.2U external-priority patent/CN217659937U/zh
Application filed by 深圳市理邦精密仪器股份有限公司 filed Critical 深圳市理邦精密仪器股份有限公司
Priority to EP22779004.5A priority Critical patent/EP4278980A4/en
Priority to US18/546,421 priority patent/US20240099637A1/en
Publication of WO2022206822A1 publication Critical patent/WO2022206822A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14552Details of sensors specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/1464Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters specially adapted for foetal tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/344Foetal cardiography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/43Detecting, measuring or recording for evaluating the reproductive systems
    • A61B5/4306Detecting, measuring or recording for evaluating the reproductive systems for evaluating the female reproductive systems, e.g. gynaecological evaluations
    • A61B5/4343Pregnancy and labour monitoring, e.g. for labour onset detection
    • A61B5/4362Assessing foetal parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7221Determining signal validity, reliability or quality
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/02Measuring pulse or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0866Detecting organic movements or changes, e.g. tumours, cysts, swellings involving foetal diagnosis; pre-natal or peri-natal diagnosis of the baby
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0883Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2503/00Evaluating a particular growth phase or type of persons or animals
    • A61B2503/02Foetus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0266Operational features for monitoring or limiting apparatus function
    • A61B2560/0276Determining malfunction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0462Apparatus with built-in sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0204Acoustic sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0233Special features of optical sensors or probes classified in A61B5/00
    • A61B2562/0238Optical sensor arrangements for performing transmission measurements on body tissue

Definitions

  • the present disclosure relates to the technical field of medical equipment, in particular to a fetal heart Doppler instrument and a detection method.
  • Imaging fetal heart rate instruments are usually used for detection.
  • Existing ultrasound fetal heart rate instruments such as fetal heart rate Doppler instruments, regard the physiological data collected by the sensor as fetal physiological data, and use the calculated heart rate value directly as the fetal heart rate, and use other instruments to measure it. Maternal parameters.
  • embodiments of the present disclosure provide a fetal heart rate Doppler instrument and a detection method to solve the problem of low detection efficiency of the existing maternal-fetal heart rate.
  • a fetal heart Doppler instrument including:
  • a controller is arranged in the inner cavity of the casing
  • the controller is configured to analyze the collected fetal physiological data and maternal physiological data to obtain fetal heart rate and maternal parameters.
  • an embodiment of the present disclosure also provides a method for detecting a fetal heart Doppler instrument, the fetal heart Doppler instrument includes a fetal detection unit and a maternal parameter detection unit, and the detection method includes:
  • the collected fetal physiological data and maternal physiological data are analyzed to obtain fetal heart rate and maternal parameters.
  • the fetal heart Doppler instrument uses the fetal heart detection unit and the maternal parameter detection unit to acquire fetal physiological data and maternal physiological data correspondingly, and the controller analyzes the fetal physiological data and the maternal physiological data respectively to obtain the fetal physiological data and the maternal physiological data. Heart rate and maternal parameters, so the same fetal heart Doppler instrument is used to obtain the maternal and fetal heart rate.
  • the use of the same fetal heart rate Doppler in this scheme can reduce the cost of the instrument, and directly use the same fetal heart rate Doppler to obtain the maternal and fetal parameters at the same time, which can simplify the instrument structure to improve the detection efficiency of maternal-fetal parameters.
  • FIG. 1 is a structural block diagram of a fetal heart Doppler instrument according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of the overall structure of the first side of the fetal heart Doppler instrument according to the embodiment of the present disclosure
  • FIG. 3 is a cross-sectional view of a fetal heart Doppler instrument according to an embodiment of the present disclosure
  • Fig. 4 is the enlarged view of A place in Fig. 3;
  • FIG. 5 is a schematic diagram of the overall structure of the second side of the fetal heart Doppler instrument according to the embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of an ultrasonic acquisition unit according to an embodiment of the present disclosure.
  • FIG. 7a-7b are schematic structural diagrams of a wafer assembly according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of the working principle of an ultrasonic acquisition unit according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of the principle of adjusting an angle according to an embodiment of the present disclosure.
  • FIG. 10 is a structural block diagram of an ultrasound acquisition unit according to an embodiment of the present disclosure.
  • FIG. 11 is a frequency schematic diagram of an existing broadband receiving scheme
  • FIG. 12 is a frequency schematic diagram of a narrowband frequency conversion receiving scheme according to an embodiment of the present disclosure
  • FIG. 13 is a structural block diagram of a frequency conversion circuit according to an embodiment of the present disclosure.
  • FIG. 14 is a structural block diagram of a frequency conversion circuit according to an embodiment of the present disclosure.
  • FIG. 15 is a structural block diagram of an ultrasound acquisition unit according to an embodiment of the present disclosure.
  • FIG. 16 is a structural block diagram of an ultrasound acquisition unit according to an embodiment of the present disclosure.
  • 17 is a schematic structural diagram of an existing ultrasonic acquisition unit
  • FIG. 18 is a schematic diagram of an ultrasound acquisition unit according to an embodiment of the present disclosure.
  • Figure 20 is a schematic diagram of a spectrum of the prior art
  • FIG. 21 is a schematic diagram corresponding to the spectrum that can be realized in FIG. 18;
  • Figure 22 is a schematic diagram corresponding to the spectrum of Figures 19a-19n achievable;
  • FIG. 23 is a flowchart of a method for detecting a fetal heart Doppler according to an embodiment of the present disclosure
  • 25 is a flowchart of noise reduction of fetal physiological data according to an embodiment of the present disclosure.
  • 26a-26c are effect diagrams of signals after gain control according to an embodiment of the present disclosure.
  • 27 is a flow chart of acquiring fetal physiological data according to an embodiment of the present disclosure.
  • FIG. 28 is a schematic diagram of a pulse signal according to an embodiment of the present disclosure.
  • the physiological data collected by the sensor on the abdomen may come from the fetus or the mother, and due to the principle of ultrasound, it is impossible to distinguish whether the collected physiological data is from the fetal heart beat. It is still from the pulse of the maternal abdominal aorta, umbilical blood flow, etc., so the calculated heart rate value cannot be distinguished from the fetal heart rate or the maternal heart rate. Therefore, a general fetal heart rate Doppler instrument will consider the collected physiological data as fetal physiological data, and use the calculated heart rate value directly as the fetal heart rate. Therefore, the existing ultrasound fetal heart rate Doppler instrument can only measure the fetal heart rate, and the maternal parameters need to be measured by other instruments.
  • the present disclosure provides a fetal heart Doppler instrument.
  • the fetal heart Doppler instrument 10 includes a controller 7 and a fetal heart detection unit 20 and a maternal parameter detection unit respectively connected to the controller 7 . unit 30.
  • the fetal heart detection unit 20 and the maternal parameter detection unit 30 are used to collect fetal physiological data and maternal physiological data, respectively.
  • the controller 7 is used for analyzing the collected fetal physiological data and maternal physiological data to obtain fetal heart rate and maternal parameters.
  • the controller described in the embodiment of the present disclosure may only include one controller, which is used to realize the control of the fetal heart detection unit and the maternal parameter detection unit, and to control the collected fetal physiological data and maternal physiological data analysis.
  • the controller includes two controllers, one controller is used to control the fetal heart rate detection unit and the maternal parameter detection unit, and the other is used to analyze the collected fetal physiological data and maternal physiological data.
  • the controller includes three controllers, one for controlling the fetal heart rate detection unit, another for controlling the maternal parameter detecting unit, and another for controlling the collected fetal physiological data and Maternal physiological data were analyzed.
  • the fetal physiological data may be data such as signal parameters representing the fetal heart rate
  • the maternal physiological data may be data such as signal parameters representing the maternal heart rate.
  • the fetal physiological data can be ultrasonic echo signals obtained by piezoelectric ceramic chips, or other data that characterize the fetal heart rate.
  • Maternal physiological data include, but are not limited to, the pulse wave signal obtained by the photoelectric sensor, the ultrasonic echo signal obtained by the piezoelectric ceramic chip, the ECG signal obtained by the ECG electrode and other single or multiple signals obtained after mutual verification results, or other characteristics of the mother. heart rate data.
  • the fetal heart Doppler instrument 10 of the present disclosure envelops the fetal heart detection unit 20 and the maternal parameter detection unit 30, and can use the fetal heart detection unit 20 respectively.
  • the maternal parameter detection unit 30 acquires fetal physiological data and maternal physiological data, so that the same fetal heart rate Doppler 10 can be used to simultaneously acquire the maternal and fetal heart rate, thereby simultaneously realizing fetal heart monitoring and maternal heart monitoring.
  • the maternal parameters include, but are not limited to, maternal heart rate, maternal blood oxygen, and the like.
  • the fetal heart detection unit 20 can be used to detect the object to be detected.
  • the fetal physiological data is obtained by collecting the first part of the object
  • the maternal physiological data is obtained by collecting the second part of the detection object by using the maternal parameter detection unit 30 .
  • the first part and the second part may be the same or different parts, as long as the physiological data can be collected, and the specific positions can be adjusted as required.
  • the first part and the second part are different parts, the first part is the abdomen, and the second part is the hand, so that fetal physiological data can be obtained by using the fetal heart detection unit 20 to collect the abdomen of the detection object , and use the maternal parameter detection unit 30 to collect the detection object's hand to obtain maternal physiological data.
  • the fetal heart detection unit 20 is used to collect fetal physiological data, and can be a piezoelectric ceramic wafer; and the maternal parameter detection unit 30 is used to collect maternal physiological data, and can be a photoelectric sensor or a piezoelectric ceramic wafer or an ECG electrode, or a photoelectric At least one of a sensor, a piezoelectric ceramic wafer and an electrocardiographic electrode.
  • the fetal heart Doppler instrument 10 may be an integrated fetal heart rate instrument, and the fetal heart rate detection unit 20 , the maternal parameter detection unit 30 and the controller including the controller 7 of the integrated fetal heart rate instrument are integrated.
  • the fetal heart Doppler instrument 10 is an integrated fetal heart rate instrument, and its ultrasonic acquisition unit includes a fetal heart detection unit 20 and a maternal parameter detection unit 30 arranged at different positions of the ultrasonic acquisition unit.
  • the unit 20 is used to collect fetal physiological data from the abdomen of the detection object, and the maternal parameter detection unit 30 is used to collect the maternal physiological data from the hand of the detection object.
  • the fetal heart detection unit 20 and the maternal parameter detection unit 30 are in the same fetal heart Doppler instrument, the fetal heart detection unit 20 acts on the abdomen of the detection object to collect fetal physiological data from the abdomen, and the maternal parameter detection unit 30 acts on the hand of the test subject to collect maternal physiological data from the hand.
  • the detection object is the detection object of the fetal heart Doppler 10 , such as a pregnant woman.
  • a pregnant woman in order to monitor the fetal heart rate, a pregnant woman can hold the ultrasound acquisition unit of the fetal heart rate Doppler 10 and apply it to the abdomen, so that the fetal physiological data can be acquired from the abdomen and the maternal body can be acquired from the hand.
  • Physiological data so that you can monitor fetal physiological data and maternal physiological data anytime, anywhere without being limited to special scenarios such as hospitals.
  • the maternal parameter detection unit 30 may be a photoelectric sensor, and the maternal physiological data is a pulse wave signal.
  • the pulse wave signal is a pulse wave signal representing the maternal heart rate received by the photoelectric sensor after the photoelectric sensor emits light of a preset wavelength to the second part of the finger pulp, palm, etc., which are rich in blood vessels of the pregnant woman.
  • the light of the preset wavelength of the photoelectric sensor may be infrared light with a wavelength of 905 nm and/or red light with a wavelength of 660 nm.
  • the maternal parameter detection unit 30 may be a photoelectric sensor, and the maternal physiological data may be the pulse wave signal and blood oxygen saturation, that is, the photoelectric sensor emits infrared light with a wavelength of 905 nm and a wavelength of 660 nm. of red light to obtain the maternal physiological data of the pulse wave signal and blood oxygen saturation.
  • the acquisition of maternal physiological data by photoelectric sensors will not cause short circuit between ECG electrodes due to the coupling agent when using ECG electrodes to collect physiological data, which will affect the effectiveness of maternal signal acquisition.
  • the maternal parameter detection unit 30 may be a piezoelectric ceramic wafer, and the maternal physiological data is an ultrasonic echo Signal.
  • the ultrasonic echo signal as the maternal physiological data is the ultrasonic echo signal representing the maternal heart rate received by the piezoelectric ceramic wafer after the piezoelectric ceramic wafer transmits the ultrasonic pulse of the first preset frequency to the second part such as the hand of the test object.
  • the maternal physiological data is collected by the piezoelectric ceramic chip, and the short circuit between the ECG electrodes will not be caused by the coupling agent when the ECG electrodes are used to collect the physiological data, which will affect the effectiveness of the maternal signal acquisition. Since the fetus is located in the abdomen of the pregnant woman, it cannot directly contact the fetus to collect fetal physiological data. Therefore, when using the fetal heart rate detection unit 20 of the fetal heart Doppler 10 to collect the fetal physiological data from the first part of the detection object, the principle of ultrasound is applied. , the fetal heart detection unit 20 may be a piezoelectric ceramic chip, and the fetal physiological data is an ultrasonic echo signal.
  • the ultrasonic echo signal as fetal physiological data is the ultrasonic echo signal representing the fetal heart rate received by the piezoelectric ceramic chip after the piezoelectric ceramic chip transmits ultrasonic pulses of the second preset frequency to the first part of the abdomen, for example, the detection object.
  • the piezoelectric ceramic wafer for collecting maternal physiological data and fetal physiological data may be the same or different. It can be understood that the sensor of the fetal heart Doppler 10 can directly act on the mother, but cannot directly act on the fetus. Therefore, compared with the collection of fetal physiological data, the frequency of piezoelectric ceramic chips is higher when collecting maternal physiological data.
  • both the fetal heart detection unit 20 and the maternal parameter detection unit 30 of the fetal heart Doppler 10 are piezoelectric ceramic wafers, and one piezoelectric ceramic wafer collects the detection object's hand to obtain the maternal Physiological data, the first preset frequency of the piezoelectric ceramic chip includes but is not limited to 3M, another piezoelectric ceramic chip collects the fetal physiological data from the abdomen of the test object, and the second preset frequency of the piezoelectric ceramic chip is 2M, 2.5M and so on.
  • the above-mentioned first preset frequency and second preset frequency can be customized to set the frequency according to needs, which is not specifically limited here.
  • the maternal parameter detection unit 30 can be an electrocardiographic electrode, and the maternal physiological data is an electrocardiographic signal.
  • the ECG signal used as the maternal physiological data may be the ECG signal obtained by the ECG electrode at the second part of the pregnant woman, such as between different fingers, between fingers and palm, between limbs and abdomen.
  • the ECG electrode may include a plurality of electrode pads, and the ECG signal is obtained by the potential difference between different electrode pads acting on different parts.
  • the ECG electrode including two electrode pads
  • the two electrode pads act on different fingers respectively
  • the One electrode pad acts on the fingers
  • the other electrode pad acts on the palm
  • the ECG electrode obtains the ECG signal between the limbs and the abdomen
  • one electrode pad acts on the limbs such as fingers and palms
  • the other electrode pad acts on the abdomen.
  • the couplant needs to be used during the use of the ultrasound acquisition unit, and the couplant is a conductor, which is likely to cause short circuits between different electrodes and affect the heart rate.
  • the use of electrical electrodes, and the disposable ECG electrodes will increase the cost of using the fetal heart Doppler instrument 10, and the metal electrodes are easily corroded by the coupling agent, which affects the effectiveness of the acquisition of maternal physiological data.
  • the maternal parameter detection unit 30 is an ECG electrode
  • the object of action when collecting maternal physiological data is the hand of the detection object, reducing the use of couplant and reducing the impact of short circuit between ECG electrodes caused by the couplant.
  • the same fetal heart Doppler instrument 10 can collect both fetal physiological data and maternal physiological data, and the same device can be used to obtain the maternal-fetal heart rate.
  • the fetal heart Doppler instrument 10 is used to simultaneously acquire fetal physiological data and maternal physiological data, using It is simple and convenient to operate.
  • using the same fetal heart Doppler instrument 10 can reduce the cost of the instrument and simplify the structure of the instrument.
  • the maternal parameter detection unit 30 is added to the uterine pressure ultrasound acquisition unit to obtain the maternal heart rate.
  • the parameter detection unit 30 also reduces the inconvenience of using multiple ultrasound acquisition units for pregnant women.
  • the maternal ECG electrode is externally connected outside the uterine contraction pressure ultrasound acquisition unit to obtain the maternal heart rate. Used to measure maternal heart rate.
  • the fetal heart rate Doppler instrument 10 is an integrated domestic fetal heart rate Doppler instrument, which is generally used to measure the fetal heart rate, but due to the limitation of the Doppler principle during the measurement process, it will be mixed with the maternal cardiac pulse.
  • the present disclosure sets the maternal parameter detection unit 30 on the fetal heart Doppler instrument. It is used to measure and process maternal physiological data, which is convenient for pregnant women and other testing objects to check the real fetal heart rate.
  • the detection object does not need to use the systolic pressure ultrasound acquisition unit and the ultrasound acquisition unit at the same time to complete the monitoring of the maternal heart rate, and the setting of the maternal parameter detection unit 30 on the same instrument will reduce the cost of the instrument.
  • the use of ultrasonic coupling agent is required for the ECG electrodes, which will cause the disposable ECG electrodes to be corroded by the coupling agent.
  • the maternal parameter detection unit for collecting maternal physiological data may be a photoelectric sensor or The electric ceramic chip will not cause short circuit between ECG electrodes due to couplant, etc., which will affect the effectiveness of the mother's signal acquisition.
  • the controller 7 of the fetal heart rate Doppler 10 can analyze the fetal physiological data and the maternal physiological data respectively to obtain the fetal heart rate and maternal parameters. Details are as follows:
  • the maternal-fetal heart rate may include a maternal heart rate characterizing a maternal pulse rate value and a fetal heart rate characterizing a fetal pulse rate value.
  • the fetal physiological data and the maternal physiological data are collected and obtained by the fetal heart detection unit 20 and the maternal parameter detection unit 30 of the fetal heart Doppler 10, the fetal physiological data can be analyzed to obtain the fetal heart rate, and the maternal physiological data can be analyzed. Analysis to get the maternal heart rate.
  • the analysis method for fetal physiological data and maternal physiological data may be any algorithm capable of realizing fetal physiological data analysis and maternal physiological data analysis, which is not specifically limited herein.
  • the controller 7 analyzes the maternal physiological data to obtain the maternal heart rate, according to the different ways in which the fetal heart rate detection unit 20 and the maternal parameter detection unit 30 of the fetal heart Doppler 10 collect the maternal physiological data, for example, according to the maternal parameter detection unit
  • the types of 30 are different, and different processing methods are used to analyze the maternal heart rate.
  • the maternal parameter detection unit 30 is a photoelectric sensor
  • the maternal physiological data is a pulse wave signal
  • the controller 7 analyzes the maternal physiological data to obtain the maternal heart rate, and the controller 7 is also used to determine the pulse wave signal. envelope and get the maternal heart rate based on the envelope.
  • the controller 7 is also used to obtain the maternal heart rate based on the envelope of the pulse wave signal and blood oxygen saturation.
  • the maternal parameter detection unit 30 is a piezoelectric ceramic wafer, and the maternal physiological data is an ultrasonic echo signal, so the controller 7 analyzes the maternal physiological data to obtain the maternal heart rate, and can obtain the ultrasonic echo signal.
  • the maximum frequency envelope signal of , and the maternal heart rate is obtained based on the maximum frequency envelope signal.
  • the maternal parameter detection unit 30 is an ECG electrode, and the maternal physiological data is an ECG signal, so the controller 7 analyzes the maternal physiological data to obtain the maternal heart rate, and can analyze the ECG signal to obtain Maternal heart rate.
  • the controller 7 analyzes the maternal physiological data to obtain the maternal heart rate, and the controller 7 can be used to obtain the ultrasonic echo signal.
  • the maximum frequency envelope signal, and the fetal heart rate is obtained based on the maximum frequency envelope signal.
  • the present disclosure adopts the same fetal heart Doppler instrument to reduce the instrument cost, and directly utilizes the fetal detection unit and the maternal parameter detection unit on the same fetal heart Doppler instrument Obtaining the maternal-fetal heart rate can simplify the structure of the instrument.
  • An embodiment of the present disclosure provides a fetal heart Doppler instrument.
  • the maternal parameter detection unit is a blood oxygen acquisition unit
  • the fetal heart detection unit is an ultrasonic acquisition unit.
  • the fetal heart Doppler instrument includes a housing 1.
  • the ultrasonic acquisition unit 2 is arranged on one end of the housing 1, and is used for detecting the fetal heart signal of the detection object; the blood oxygen detection unit is arranged in the housing 1, and is used for detecting the blood oxygen signal of the detection object.
  • This fetal heart Doppler instrument with blood oxygen collection function can realize the multi-purpose of the fetal heartbeat, and it is more convenient to carry; when the fetal heartbeat is used in a home environment, it can avoid the fetal heartbeat being abandoned after the fetus is born. waste of resources.
  • a light-transmitting window 111 is provided on the housing 1 , and a light-guiding structure installed on the light-transmitting window 111 is provided on the blood oxygen detection unit.
  • a controller 7 is installed in the inner cavity of the housing 1 , and both the blood oxygen detection unit 3 and the ultrasonic acquisition unit 2 are electrically connected to the controller 7 .
  • the blood oxygen detection unit includes a light-emitting element 31 for emitting light and a light-receiving element 32 for receiving light, which are arranged on the controller 7, and the light-guiding structure includes a first light-guiding member installed on the light-transmitting window 111;
  • the first light guide is located on the light transmission path between the light emitting element 31 and the light-transmitting window 111 , and is suitable for transmitting the light emitted by the light-emitting element 31 through the first light guide to be emitted from the light-transmitting window 111 .
  • the light emitted by the light emission element 31 can better pass through the light transmission window 111 after being propagated through the first light guide member. shoot out.
  • the light emitted by the light emitting element 31 can be transmitted to the surface of the measured object more effectively, and the blood oxygen parameter can be measured even when the measurement distance is long.
  • the light guide structure further includes a first blocking member disposed inside the housing 1 and located between the light-transmitting window 111 and the controller 7 , and a first optical path channel is disposed inside the first blocking member , the first light guide member is specifically the first light guide column 33 disposed in the first optical path channel.
  • the first light guide column 33 is a transparent cylindrical glass light guide column, and the first blocking member is made of a material with good light-shielding property and good inner surface reflection.
  • the first blocking member can prevent the emitted light from passing through, and reflects the emitted light that hits the inner surface of the first blocking member to the first light guide member for transmission, thereby reducing the leakage of the emitted light in the housing 1 and making more
  • the emitted light can be bundled out through the first light guide member, and the light intensity of the light emitted by the light-transmitting window 111 can be increased, which is beneficial to improve the blood oxygen measurement accuracy.
  • the shape of the first light guide member may not be limited to a cylindrical shape, and the first light guide member may be an integral structure or a combined structure composed of a plurality of light guide devices, as long as the first light guide member It is only necessary to concentrate the emitted light emitted by the light-emitting element 31 in one direction through the light-transmitting window 111 .
  • the light guide structure further includes a second light guide member disposed in the housing 1 and located on the light transmission path between the light receiving element 32 and the light transmission window 111 .
  • the second light guide member is suitable for The light entering from the light-transmitting window 111 is propagated through the second light guide member and then directed to the light receiving element 32 .
  • the second light guide can transmit the light emitted from the surface of the object to be measured to the light receiving element 32 more effectively, which is beneficial for the light receiving element 32 to collect effective signals and improves the accuracy of the blood oxygen measurement result.
  • the casing 1 is provided with a second blocking member located between the light-transmitting window 111 and the controller 7, the second blocking member is provided with a second optical path channel, and the second light guiding member is disposed on the second optical path.
  • the second light guide column 34 in the channel.
  • the structures, shapes and materials of the second light guide column 34 and the first light guide column 33 are the same; the materials of the second blocking member and the first blocking member are also the same.
  • the second blocking member can prevent the light from passing through, and reflects the light incident on the inner surface of the second blocking member to the second light guide member for transmission, thereby reducing the leakage of the incident light in the casing 1 and making more incident light
  • the light-receiving element 32 can be directed toward the light-receiving element 32 through the first light guide, which is beneficial to improve the light intensity of the incident light received by the light-receiving element 32 and improve the blood oxygen measurement accuracy.
  • the first blocking member and the second blocking member are a blocking seat 35 with an integrated structure
  • the first optical path channel is a first through hole provided on the blocking seat 35
  • the second optical path channel is a blocking seat 35 provided on the blocking seat 35.
  • the second through hole on the seat 35 The integrated design of the first blocking member and the second blocking member has the advantages of simple structure, few parts, easy assembly and low cost.
  • the first blocking member and the second blocking member may also be two independent columnar structures with through holes inside.
  • the controller 7 is provided with a notch between the light emitting element 31 and the light receiving element 32
  • the blocking seat 35 is provided with a plug board 36 inserted in the groove
  • the plug board 36 is located between the first through hole and the first through hole. between the two through holes.
  • the plug board 36 can not only prevent light from leaking from the gap between the blocking seat 35 and the controller 7, but also prevent cross-light phenomenon between the light emitting element 31 and the transmitting and receiving element, which is beneficial to improve the accuracy of blood oxygen measurement.
  • the light emitting element 31 and the first through hole of the blocking seat 35 are disposed facing each other, and the light receiving element 32 and the second through hole of the blocking seat 35 are facing each other, that is, the light emitting element 31 and the light The receiving elements 32 are all located directly below the light-transmitting window 111 .
  • the light-emitting element 31, the first light guide column 33 and the light-transmitting window 111 are arranged along the same straight line, and the emitted light emitted by the light-emitting element 31 can be emitted straightly through the light-transmitting window 111 to reduce the loss of the emitted light; the light-receiving element 32, The second light guide column 34 and the light-transmitting window 111 are arranged along the same straight line, and the reflected light incident through the light-transmitting window 111 can be received by the light-receiving element 32 through the second light-guiding column 34 in a straight line, which is beneficial to improve the incident light received by the light-receiving element 32 The light intensity of the light improves the accuracy of blood oxygen measurement.
  • the light-emitting element 31 and the light-receiving element 32 may not be disposed directly under the light-transmitting window 111 , and the emitted light emitted by the light-emitting element 31 is refracted and then emitted outward through the light-transmitting window 111 .
  • the reflected light entering the light-transmitting window 111 is received by the light-receiving element 32 after being refracted; this arrangement avoids the opening of the light-transmitting window 111 on the housing 1 by the positions of the light-emitting element 31 and the light-receiving element 32 on the controller 7
  • the light-transmitting window 111 can be set at any suitable position of the housing 1 to facilitate the operation.
  • a cover plate 11 located above the blocking seat 35 is connected to the casing 1 , and two through holes opened on the cover plate 11 form light-transmitting windows 111 ; the lower end surface of the cover plate 11 and the blocking seat 35
  • the upper end surfaces of the first light guide column 33 and the second light guide column 34 are both provided with a step limit surface at the same height as the upper end surface of the blocking seat 35.
  • the lower end surface of the cover plate 11 and the first light guide column 33 and the second The step limiting surfaces on the two light guide columns 34 are in contact with each other; this arrangement facilitates the installation of the blocking seat 35 , the first light guide column 33 and the second light guide column 34 in the casing 1 in sequence, and then the lower end of the cover plate 11 faces the blocking
  • the seat 35, the first light guide column 33 and the second light guide column 34 are limited, so that the first light guide column 33 and the second light guide column 34 can be stably fixed on the casing 1, preventing the first light guide column 33 and the second light guide column 34.
  • the light column 34 falls off.
  • the first light guide adopts a condensing lens capable of condensing light.
  • the condensing lens can make the focal point of the emitted light just fall on the surface of the object to be measured, and can emit a larger light intensity to the object to be measured. light detection signal.
  • the condenser lens includes a convex lens, and one side of the convex lens facing the light emitting element 31 is a convex surface.
  • the condensing lens may also be a condensing lens group composed of one or more convex lenses or plane lenses.
  • the first light guide column 33 is arranged in the first through hole of the isolation seat, and in the isolation seat
  • the second light guide column 34 is arranged in the second through hole of the seat, so that the emitted light emitted by the light emitting element 31 can be transmitted to the surface of the measured object more effectively, and the reflected light reflected by the surface of the measured object can also be more effectively received by the light.
  • the element 32 receives, and can achieve accurate measurement of blood oxygen parameters under the condition of lower cost and longer measurement distance.
  • the fetal heart rate detection unit includes an ultrasonic acquisition unit. As shown in FIGS. 2-5 , the fetal heart rate Doppler instrument further includes a display screen 4 , a speaker 9 and a battery 8 .
  • the ultrasonic collection unit 2 , the blood oxygen collection unit 3 , the speaker 9 , the controller 7 and the battery 8 are all arranged in the inner cavity of the housing 1 .
  • the housing 1 is in the shape of a long column.
  • the housing 1 includes an end surface housing 101 and a cylindrical surface housing.
  • the cylindrical surface housing is connected to one side of the end surface housing 101 .
  • the ultrasonic collection surface of the ultrasonic collection unit 2 is set corresponding to the position of the end surface housing 101 ; the blood oxygen collection surface of the blood oxygen collection unit 3 is located on the cylindrical housing and exposed from the cylindrical housing.
  • the ultrasonic acquisition surface of the ultrasonic acquisition unit 2 and the blood oxygen acquisition surface of the blood oxygen acquisition unit 3 are located on two different surfaces of the housing 1.
  • the ultrasonic acquisition unit 2 can detect the fetal heart rate signal of the test object;
  • the acquisition unit 3 can detect the blood oxygen signal of the detection object at the same time, so that the fetal heart signal and the blood oxygen signal of the detection object can be detected at the same time, which is different from the way in which the fetal heart rate instrument adopts the blood oxygen test clip to collect the blood oxygen signal in the prior art.
  • the oximeter it is not necessary to hold the finger with the blood oxygen test clip, and the operation is more convenient; and the wire required for the connection of the blood oxygen test clip and the fetal heart rate instrument is also omitted, which can reduce the product cost.
  • the housing 1 may also be in the shape of an ellipsoid, as long as the shape of the housing 1 is easy to hold by hand, and the ultrasound acquisition surface of the ultrasound acquisition unit 2 and the blood oxygen acquisition surface of the blood oxygen acquisition unit 3 are located at Two different surfaces of the housing 1 are sufficient.
  • the cylindrical shell includes a plane shell 104 and a curved shell; the curved shell has two pieces, namely, a first curved shell 102 and a second curved shell 103 .
  • the first curved shell 102 and the second curved shell 103 are connected to form the inner cavity of the shell 1, and the first curved shell 102 and the second curved shell 103 are connected on one side of the end surface shell 101; the second curved shell
  • the top of the body 103 is provided with an installation groove, the flat casing 104 is embedded in the installation groove, and the upper top surface of the flat casing 104 is flush with the notch of the installation groove.
  • the blood oxygen collecting surface of the blood oxygen collecting unit 3 is located on the plane casing 104 and is exposed outward from the plane casing 104 .
  • the cylindrical shell includes a curved shell and a flat shell 104.
  • the curved shell has better compatibility with the hand shape in the folded state, and has a better feel in use; the plane shell 104 is convenient for the blood oxygen collection unit 3 to be placed in the shell.
  • the installation on the body 1 is beneficial to the blood oxygen collection unit 3 to collect an effective blood oxygen signal.
  • the plane shell 104 does not specifically mean that the surface of the plane shell 104 is completely plane, and only a part of the plane shell 104 can be identified as the plane shell 104 described in this embodiment. ;
  • the curved shell does not specifically mean that the outer surface of the curved shell is completely curved, but only the partial shape of the curved shell needs to be adapted to the hand shape in the gripped state.
  • the boundary line between the plane shell 104 and the curved shell is an arc; the arc includes a convex arc segment 105 protruding outward and a concave arc segment 106 concave inward, and the plane shell 104 is enclosed by two concave arc segments 106
  • the part of the plane shell 104 enclosed by the convex arc segment 105 is the outward expansion region 1042.
  • the outward expansion region 1042 is located at the end of the inward contraction region 1041 away from the cylindrical shell.
  • the ultrasonic wave of the ultrasonic acquisition unit 2 The collection surface is set on the side of the indented region 1041 close to the outwardly expanded region 1042 .
  • the ultrasound acquisition surface is located at a narrow position in the middle of the plane housing 104.
  • the contact position between the thumb of the hand and the housing 1 can be just on the blood oxygen acquisition surface, which is beneficial to the blood oxygen signal. collection.
  • the boundary line between the flat casing 104 and the curved casing may also be a straight line, and the blood oxygen collecting surface of the blood oxygen collecting unit 3 is set at the middle position in the length direction of the flat casing 104 .
  • a display screen 4 is provided on the expanded area 1042 of the flat casing 104, and the display screen 4 is installed on the second curved casing 103.
  • the area corresponding to the flat casing 104 and the display screen 4 is provided with a square hole, and the display screen 4 protrudes
  • the part of the second curved shell 103 is embedded in the square hole of the plane shell 104 , and the upper end surface of the display screen 4 is flush with the upper end surface of the plane shell 104 .
  • the display screen 4 is arranged on the expanded area 1042 of the planar housing 104 , and the expanded area 1042 can provide a large enough display space, which is convenient for installing a display module with a larger size, and is beneficial to viewing the measurement results displayed by the display screen 4 .
  • the first curved casing 102 is provided with a horn hole 5 corresponding to the position of the horn 9 , and the first curved casing 102 is further provided with a battery cover 6 that is covered on the outside of the battery 8 .
  • the horn hole 5 and the battery cover 6 are located on the side of the second curved casing 103 facing away from the flat casing 104 .
  • the horn hole 5 and the battery cover 6 are arranged on the side of the second curved shell 103 facing away from the plane shell 104 , which can not occupy the installation space on one side of the plane shell 104 , and realize the miniaturization and compact design of the fetal heart rate instrument.
  • the blood oxygen collection unit 3 includes a blood oxygen measurement module for collecting blood oxygen signals, a control module electrically connected to the blood oxygen measurement module, and a blood oxygen collection surface provided on the blood oxygen collection surface and electrically connected to the control module. Trigger the sensor module. When the trigger sensing module senses that there is an obstruction on the blood oxygen collection surface, the trigger sensing module sends a control signal to the control module to control the activation of the blood oxygen measurement module; in this way, the automatic detection of the blood oxygen signal can be realized, and the fetal heart signal can be detected at the same time. The blood oxygen signal is detected to improve the competitiveness of the product.
  • the ultrasonic acquisition unit locates the sound source of the fetal position through the signal strength of each wafer, and realizes the target following in the case of fetal movement, so as to reduce the fetal movement, body position change and other factors during the interaction of the fetal heart rate.
  • the ultrasound acquisition unit cannot acquire valid fetal signals, and the acquisition of fetal heart rate signals is discontinuous, and the fetal heart rate cannot be calculated normally.
  • the ultrasonic acquisition unit includes a wafer assembly 21 and an angle adjustment assembly 22 .
  • the wafer assembly 21 and the angle adjustment assembly 22 are both connected to the controller.
  • the controller is used to control the action of the angle adjustment component 22 based on the signal strength corresponding to each wafer, so as to achieve target following.
  • the wafer assembly 21 includes a plurality of wafers, and the specific number and arrangement of the wafers are not limited, and can be set according to actual needs.
  • each chip can be a complete chip, which uses pulse wave to transmit ultrasonic signals; it can also use continuous wave to transmit ultrasonic signals, that is, at the position of one chip, half of the ultrasonic transmitter and half of the ultrasonic receiver are used. form a complete wafer.
  • the angle adjustment assembly 22 can be used to adjust the position of the wafer assembly 21, and can also adjust the ultrasonic emission direction of each wafer in the wafer assembly 21, and so on.
  • the controller determines the action parameters of the angle adjustment assembly 22 by using the signal strength corresponding to each wafer, and controls the action of the angle adjustment assembly 22 based on the action parameters.
  • the position of the wafer assembly can be adjusted.
  • the position of the wafer assembly is changed, the relative position between the wafer assembly and the target body is changed, so that the signal transmission direction between each wafer and the target body can be realized.
  • the angle adjustment assembly 22 can also adjust the ultrasonic emission direction of the wafer without changing the position of the wafer assembly.
  • the working principle of the mirror can be used to adjust the propagation direction of the ultrasonic signal, and then adjust the ultrasonic emission direction of the wafer; that is, without changing the position of the wafer assembly, the target tracking can be achieved by changing the ultrasonic propagation path.
  • the controller can be a single-chip microcomputer, FPGA or other programmable logic controllers, and can be set according to actual needs.
  • the controller receives the signal corresponding to each wafer, and after processing it, obtains the corresponding signal strength, and then determines the action of the angle adjustment component 22 based on the signal strength of each wafer, so as to achieve target following.
  • the signal transmission direction between the wafer and the target body is adjusted by the angle adjustment assembly, wherein the action of the angle adjustment assembly is controlled based on the signal strength corresponding to each wafer, that is, the wafer assembly can always follow the target by means of target positioning, to obtain an accurate fetal heart rate signal. That is, the ultrasonic acquisition unit can automatically follow the target, avoiding manual adjustment.
  • the plurality of wafers in the wafer assembly 21 can be divided into central wafers and outer wafers according to their arrangement positions. Wherein, the outer edge wafers are arranged around the outer side of the central wafer.
  • FIG. 7a shows an optional arrangement of the plurality of wafers in the wafer assembly 21.
  • the wafer at the center is called the center wafer 211
  • the other wafers around are called the outer wafers 212 .
  • FIG. 7b shows another optional ordering manner of the wafer assembly 21 .
  • the controller further includes an ultrasonic transceiver control module, which is responsible for transmitting ultrasonic signals of the wafer and receiving and processing ultrasonic echo signals. As shown in Fig. 7a or Fig. 7b, each wafer transmits ultrasonic signals and receives ultrasonic echo signals according to a certain time sequence.
  • the ultrasonic transceiver control module can control the wafer to transmit ultrasonic signals by means of pulse waves.
  • the chip consists of half an ultrasonic transmitter and half an ultrasonic receiver chip
  • the ultrasonic transceiver control module can control the chip to transmit ultrasonic signals by means of continuous waves.
  • the angle adjustment assembly 22 is connected to the wafer assembly 21 , and the target following is achieved by adjusting the angle of the wafer assembly 21 .
  • the angle adjustment assembly 22 may include adjustment pieces corresponding to the wafers in the wafer assembly, so as to realize the independent adjustment of the angle of each wafer; angle, and then realize the adjustment of the wafer angle.
  • the specific adjustment method is not limited here, and can be set according to actual needs.
  • the angle adjustment assembly 22 may include a rotating member and a connecting member connected with the rotating member.
  • the rotating part is fixed on the carrier to realize the rotation of the carrier; the connecting part connects the rotating part and the controller, and the rotation of the connecting part realizes the rotation control of the rotating part.
  • the rotating member may be a rotating shaft or a universal rotating member; the connecting member may be a transmission shaft, a connecting rod, and the like.
  • the angle adjustment assembly 22 may be implemented by a rotating mechanical arm, one end of the rotating mechanical arm is connected to the carrier 213 in the wafer assembly 21, and the other end is connected to the controller.
  • the wafer assembly 21 further includes a carrier 213 , and each wafer is fixedly arranged on the carrier 213 .
  • the angle adjustment assembly 22 is connected to the carrier 213 for adjusting the angle of the carrier, so as to realize the simultaneous adjustment of the angles of all the wafers on the carrier 213 .
  • a plurality of wafers are arranged on the same carrier, and the movement of the carrier is used to drive all the wafers to move at the same time, which reduces the adjustment time and improves the efficiency of target following.
  • the signal acquisition unit acquires the ultrasonic Doppler frequency shift signal after passing through the ultrasonic demodulation module and the filter processing module of the corresponding channel respectively.
  • each wafer corresponds to one signal processing channel, and the signal acquisition unit can distinguish the source of each echo signal through the signal processing channel.
  • the energy calculation module in the signal acquisition unit is responsible for calculating the energy of the ultrasonic Doppler frequency shift signal obtained by each wafer, obtaining the energy signal of the corresponding channel, and checking the validity of the fetal heart according to the energy signal.
  • the signal amplitude obtained in any one or more channels exceeds the minimum signal threshold, it is considered that a valid fetal heart signal is input.
  • the function of identifying and following the best position of the fetal heart is activated.
  • the chip channel with the strongest energy is judged in real time, and the positioning of the strongest signal channel is completed. Otherwise, continue to search for the effective fetal heart signal and the wafer channel with the strongest energy.
  • the controller further includes an adjustment angle identification unit, and its specific processing principle is shown in FIG. 9 . Specifically, an XYZ three-axis coordinate system is established, with the position of the center wafer as the origin, the carrier in the wafer assembly as the XY plane, and the ultrasonic emission direction as the positive direction of the Z axis.
  • the wafers in the wafer assembly 21 determine the coordinate positions of each wafer in the above-mentioned XYZ, and use the coordinate positions to determine the distance between the outer wafer and the center wafer. That is, the pitch is the distance between the coordinates of the center wafer and the coordinates of the outer wafers.
  • the positioning of the strongest signal channel is completed by the method described above, so as to determine the wafer channel with the strongest energy.
  • the strongest signal channel is the center wafer channel, it means that the ultrasonic acquisition unit is currently facing the fetal heart position, which means that the angle of the wafer assembly does not need to be adjusted at this time, that is, the adjustment angle is defined as 0.
  • FIG. 9 shows a schematic diagram of calculating the adjustment angle a when the signal strength of the outer wafer is higher than that of the central wafer.
  • Distance is the distance between the center wafer and the wafer corresponding to the strongest signal channel. In this way, the adjustment angle a of the wafer assembly 21 can be determined.
  • the controller uses the angle adjustment assembly 22 to adjust the wafer assembly 21 . specifically,
  • the rotation control of the wafer assembly 21 is performed using the coordinate position of the wafer corresponding to the strongest signal channel in the XYZ coordinate system, so that the signal intensity obtained by the central wafer gradually increases until it becomes the signal intensity in all wafers.
  • the strongest chip
  • the wafer in the first quadrant is moved to the negative direction of the Z axis by a certain rotation control method (for example, a rotation axis with a rotation angle control function).
  • a certain rotation control method for example, a rotation axis with a rotation angle control function.
  • the third quadrant wafer rotates to the positive direction of the Z axis, until the strongest signal acquisition channel is switched to the center wafer channel. That is, the controller adjusts the rotation angle a by controlling the angle adjustment component 22, so that the signal strength of the center wafer is the strongest.
  • the ultrasonic acquisition unit further includes a casing and a layer of deformable filling material.
  • a layer of deformable filling material such as a flexible material, is used to fill the space between the wafer assembly 21 and the casing, so as to ensure that there is no gap between the wafer and the casing, and at the same time, the rotation of the wafer assembly is not hindered.
  • the influence of the refractive indices of various materials on signal transmission can be avoided, and the adjustment accuracy of the angle adjustment component is improved.
  • the angle adjustment assembly may include at least one mirror assembly, each of which corresponds to at least one wafer, and is used to adjust the ultrasonic emission direction of the wafer.
  • the reflector assembly may be formed by a connector with an angular rotation function and the reflector. One end of the connector is used to fix the reflector and drive the reflector to rotate, and the other end is connected to the controller.
  • only one mirror assembly may be provided in the ultrasonic acquisition unit, or multiple mirror assemblies may be provided. For example, 2 or more can be set, and so on. The number of specific mirror assemblies can be set according to actual needs, which is not limited herein.
  • the purpose of adjusting the wafer assembly 21 is to make the center wafer in the wafer assembly 21 face the target. Therefore, when the reflection direction of the central wafer is not facing the target, the ultrasonic signal emitted by the wafer is reflected to the measured target by adding a reflection component. Specifically, the action of the reflection component is controlled by the angle adjustment component 22, so as to realize the change of the emission angle of the ultrasonic signal, so as to achieve the follow-up of the fetal heart signal.
  • whether the reflection direction of the central wafer is facing the target can be determined by comparing the signal intensities of the individual wafers. If the signal strength of the center wafer is not the strongest of all wafers, then it can be determined that the wafer assembly needs to be adjusted using the mirror assembly.
  • the specific adjustment method is similar to the angle adjustment method described above, and is determined by using the positional relationship between the wafer with the strongest signal and the center wafer and the difference in signal strength.
  • the target following is achieved by changing the ultrasonic emission direction of the wafer, which avoids direct contact between the angle adjustment component and the wafer component, and thus can avoid the influence of actions between them.
  • the controller may further include a signal acquisition unit 23 and a rotation angle identification unit 24 .
  • the signal acquisition unit 23 is used to receive the ultrasonic echo signal corresponding to each wafer, process the ultrasonic echo signal, and determine the signal intensity corresponding to each wafer; and then use the rotation angle identification unit 24 to determine the adjustment angle based on the signal intensity corresponding to each wafer the size of.
  • the ultrasonic acquisition unit in the embodiment of the present disclosure is also used to realize synchronous adjustment of the transmitting frequency of the ultrasonic transmitting unit and the receiving frequency of the ultrasonic receiving unit, so as to realize the matching of the frequency response characteristic of the ultrasonic receiving unit and the transmitting frequency, so as to obtain the best receiving frequency.
  • Signal-to-noise ratio is also used to realize synchronous adjustment of the transmitting frequency of the ultrasonic transmitting unit and the receiving frequency of the ultrasonic receiving unit, so as to realize the matching of the frequency response characteristic of the ultrasonic receiving unit and the transmitting frequency, so as to obtain the best receiving frequency.
  • the purpose of the ultrasonic acquisition unit is to ensure the synchronous adjustment of the ultrasonic transmitting frequency and the ultrasonic receiving frequency, so as to ensure the consistency of the ultrasonic transmitting frequency and the ultrasonic receiving frequency.
  • a controller is generally used to generate a transmission frequency signal, such as a frequency pulse. Based on this, it is equivalent to determine the receiving frequency of the ultrasonic receiving unit. If the receiving frequency of the ultrasonic receiving unit is adjusted based on the resonance principle, the resonance principle is to form a resonance circuit based on inductance, capacitance or resistance, and the resonance frequency can be adjusted by changing the size of the inductance, capacitance or resistance. Therefore, after determining the receiving frequency, the controller can use the composition of the resonant circuit to calculate the adjusted inductance, capacitance or resistance value, and then determine the control signal to switch the circuit parameters in the frequency conversion circuit.
  • the frequency conversion circuit can provide three resonant frequencies, and when the circuit is connected, connect the three resonant frequencies to the corresponding pins of the controller.
  • the controller can control the corresponding pins to output corresponding control signals to select the resonant frequency in the frequency conversion circuit.
  • control signal is not limited to the above, and can also be implemented in other manners, which are not limited here, as long as it is ensured that the control signal corresponds to the transmission frequency signal.
  • the ultrasonic receiving unit and the ultrasonic transmitting unit perform frequency conversion synchronously. Since a frequency conversion circuit is introduced into the ultrasonic receiving unit, the frequency response characteristic of the ultrasonic receiving unit can obtain a good quality factor at each operating frequency.
  • FIG. 11 shows the existing receiving bandwidth
  • FIG. 12 shows the receiving bandwidth in this embodiment.
  • the bandwidth in this embodiment is much narrower than that in the prior art, and the frequency of useful ultrasonic echo signals is selected. It has better characteristics and can filter out more out-of-band noise, so that the ultrasonic receiving unit can achieve the best signal-to-noise ratio at each operating frequency, thereby reducing the ultrasonic emission energy.
  • the ultrasonic acquisition unit includes an ultrasonic transmitting unit 25 and an ultrasonic receiving unit 26 , and the ultrasonic transmitting unit includes a frequency conversion circuit 261 .
  • the ultrasonic transmitting unit 25 is used for driving the ultrasonic transducer based on the transmission frequency signal to generate ultrasonic waves; the ultrasonic receiving unit 26 is used for receiving ultrasonic echoes to obtain the detection result.
  • the ultrasonic transducer is an acoustic-electrical and electro-acoustic conversion sensor. When the ultrasonic transmitting unit outputs an electrical signal to drive the ultrasonic transducer, the ultrasonic transducer converts the electrical signal into a sound wave signal.
  • the ultrasonic transducer When the acoustic wave signal is transmitted in the tissue of the test object, a part of the energy is reflected back to the ultrasonic transducer, and the ultrasonic transducer inversely converts this part of the acoustic energy into an electrical signal, and transmits it to the ultrasonic receiving unit 26 .
  • the ultrasonic transmitting unit 25 is connected to a controller, and the controller is used for generating a transmitting frequency signal of the ultrasonic transmitting unit 25 .
  • the ultrasonic receiving unit 26 receives the transmitting frequency signal, and drives the ultrasonic transducer after processing the transmitting frequency signal. Since the transmitting frequency signal generated by the controller is a digital signal, it cannot directly drive the ultrasonic transducer. Therefore, the ultrasonic transmitting unit 25 needs to perform power amplifying and other processing on the digital signal to output an analog signal, and use the analog signal to drive the ultrasonic transducer.
  • the controller in the ultrasonic acquisition unit may be the controller in the fetal heart Doppler instrument, or may be a separate controller, and so on.
  • the ultrasonic receiving unit 26 has a frequency conversion circuit connected to the controller, and the controller is also used for generating a control signal corresponding to the transmitting frequency signal for adjusting the circuit parameters of the frequency conversion circuit to adjust the receiving frequency of the ultrasonic receiving unit 26 .
  • the frequency conversion circuit may change the receiving frequency of the ultrasonic receiving unit based on the resonance principle, that is, by adjusting the circuit parameters of the frequency conversion circuit, the resonant frequency of the frequency conversion circuit is changed, thereby realizing the adjustment of the receiving frequency.
  • the frequency conversion circuit may change the receiving frequency based on the principle of active filtering, that is, by adjusting the circuit parameters of the frequency conversion circuit, the filter bandwidth of the frequency conversion circuit is changed, thereby realizing the adjustment of the receiving frequency.
  • the frequency conversion circuit and the ultrasonic transmitting unit are controlled by the controller at the same time.
  • the circuit parameters of the frequency conversion circuit are adjusted at the same time to realize the receiving frequency.
  • the synchronous adjustment of the ultrasonic receiving unit enables the frequency response characteristics of the ultrasonic receiving unit to obtain a good quality factor at each operating frequency point, which has better frequency selection characteristics for useful ultrasonic echo signals and can filter out more out-of-band noise. , so that the ultrasonic receiving unit can achieve the best signal-to-noise ratio at each operating frequency.
  • the frequency conversion circuit when the frequency conversion circuit changes the receiving frequency of the ultrasonic receiving unit based on the resonance principle, the frequency conversion circuit may be called a tuning circuit, and accordingly, the control signal output by the controller is used to adjust the resonance of the tuning circuit frequency.
  • the adjustment of the resonant frequency of the tuning circuit can be realized by adjusting the size of the capacitance, inductance or resistance in the tuning circuit. For example, including capacitance and inductance in the tuning circuit, the inductance remains unchanged, and the size of the capacitance is changed to realize the adjustment of the resonant frequency.
  • the frequency conversion circuit is an LC resonant circuit, including a capacitor and an adjustable capacitor module.
  • the adjustable capacitance module is connected in parallel with the inductor, and the adjustable capacitance module is connected with the controller. Wherein, the adjustable capacitance module changes the capacitance value in the frequency conversion circuit under the action of the control signal of the controller, so as to realize the adjustment of the resonance frequency.
  • the control signal is a voltage signal Vc
  • the adjustable capacitance module includes a varactor diode VD.
  • the control signal is the reverse voltage applied to the varactor diode VD. With the change of the reverse voltage, the capacitance value of the varactor diode VD can be changed.
  • the variable capacitance diode VD with variable capacitance value cooperates with the inductor L. It can form a frequency conversion circuit.
  • the adjustable capacitance module includes at least two capacitance branches connected in parallel, and the controller is connected to the at least two capacitance branches.
  • Each capacitor branch includes a first controllable switch and a first capacitor connected in series.
  • the capacitance value of the first capacitor in each capacitor branch is different or the same. There is no restriction on the specific size of the capacitor value, which can be determined according to actual needs. Set it up.
  • the capacitance values of the first capacitors in each capacitor branch are the same, the number of capacitor branches that are turned on at the same time can be controlled, and the size of the circuit capacitance can also be adjusted. For example, as shown in FIG. 14 , at least three capacitor branches are included, and the corresponding first capacitor values are C1 , C2 and C3 respectively.
  • the controller outputs voltage values of different magnitudes, and the conduction conditions of the first controllable switch in each capacitor branch are different, and different voltage values can be used for conduction Different first controllable switches are used to select different capacitor branches.
  • the frequency conversion circuit when the frequency conversion circuit changes the receiving frequency based on the principle of active filtering, the frequency conversion circuit is an active filtering and amplifying circuit, and the control signal is used to adjust the bandwidth and center frequency of the active filtering and amplifying circuit.
  • the active filtering and amplifying circuit is used to perform band-pass filtering on the received signal, and by changing the bandwidth of the band-pass filtering, the receiving frequency of the ultrasonic receiving unit can be adjusted.
  • the active filter amplifying circuit includes at least two bandwidth branches connected in parallel, the controller is connected to the at least two bandwidth branches, the bandwidth branch includes a second controllable switch and a target element connected in series, and the target element includes a second capacitor and/or resistance.
  • the first controllable switch and the second controllable switch may be analog switches, relays or triodes, etc., which are not limited herein.
  • the control signal output by the controller may be one or more, that is, at least two capacitor branches or bandwidth branches are controlled by the same control signal;
  • the capacitive branch or the bandwidth branch, that is, the control signal corresponds to the capacitive branch or the bandwidth branch on a one-to-one basis.
  • the ultrasonic receiving unit 26 is used for receiving the weak ultrasonic echo signal of the ultrasonic transducer, and performing frequency selective amplification on the echo signal.
  • frequency selection is performed by using a frequency conversion circuit, for example, a tuning circuit composed of inductors and capacitors, or an active filter amplifying circuit composed of op amps, resistors, and capacitors.
  • a frequency conversion circuit for example, a tuning circuit composed of inductors and capacitors, or an active filter amplifying circuit composed of op amps, resistors, and capacitors.
  • the frequency selection characteristics are changed, and the current ultrasonic transmission frequency is adapted.
  • the useful frequency in the echo signal will be amplified by the ultrasonic receiving unit, while the useless frequency will be amplified.
  • the components are filtered out by the ultrasonic receiving unit to obtain echo signals with lower noise.
  • the ultrasonic detection circuit further includes a controller. That is, a separate controller is set in the ultrasonic detection circuit to control the transmit and receive frequencies, so that it is independent of other controllers and ensures the reliability of the control.
  • the ultrasonic acquisition unit further includes a human-computer interaction unit 40, which is connected to the controller and used to display the detection result of the ultrasonic detection circuit.
  • the human-computer interaction unit may be a button, a display element, and the like.
  • the human-computer interaction unit includes a first adjusting member for adjusting the transmitting frequency of the ultrasonic transmitting unit.
  • a first adjustment member is provided on the casing, and the detection object adjusts the emission frequency by operating the first adjustment member.
  • the ultrasonic acquisition unit further includes a signal extraction unit 50, which is connected to the output of the ultrasonic receiving unit 26 and is used to demodulate, sample and hold, filter and amplify the signal output by the ultrasonic receiving unit 26, etc., Moves the high frequency signal spectrum to the audio signal.
  • a signal extraction unit 50 which is connected to the output of the ultrasonic receiving unit 26 and is used to demodulate, sample and hold, filter and amplify the signal output by the ultrasonic receiving unit 26, etc., Moves the high frequency signal spectrum to the audio signal.
  • the detection object adjusts the transmission frequency through the human-computer interaction unit 40 , and accordingly, the adjusted transmission frequency is output to the controller.
  • the controller generates a transmission frequency signal and a control signal based on the adjusted transmission frequency, sends the transmission frequency signal to the ultrasonic transmitting unit 25 , and sends the control signal to the frequency conversion circuit of the ultrasonic receiving unit 26 .
  • the ultrasonic transmitting unit 25 processes the transmitting frequency signal and drives the ultrasonic transducer to transmit ultrasonic waves.
  • the ultrasonic transducer also receives ultrasonic echoes and sends the ultrasonic echoes to the ultrasonic receiving unit 26 .
  • the frequency conversion circuit 261 adjusts the receiving frequency of the ultrasonic receiving unit 26 under the action of the control signal.
  • the ultrasonic receiving unit 26 performs frequency selection and other processing on the ultrasonic echo signal based on the received frequency, and sends the processed signal to the signal extracting unit 50 .
  • the signal extraction unit 50 is used to demodulate, sample and hold, filter and amplify the signal output by the ultrasonic receiving unit 26, and send the signal to the human-computer interaction unit 40 through the controller to output the detection result.
  • the existing ultrasonic acquisition unit generally includes an end face housing 101 , a wafer layer 214 and a potting compound 216 .
  • the end surface shell and the cylindrical surface shell are sealed and bonded by epoxy resin adhesive, and the wafer layer is bonded with the inner surface of the end surface shell through special glue.
  • the positive and negative electrodes of the wafer are respectively drawn out through lead wires.
  • a certain amount of potting glue is encapsulated on the backside of the wafer and the end face shell, which can protect the wafer layer.
  • this ultrasonic acquisition unit uses a fixed frequency output, which cannot adapt to pregnant women with different gestational weeks and different degrees of obesity, and it is difficult to obtain high-quality signals, which ultimately affects the actual clinical detection effect.
  • the existing ultrasonic acquisition units basically work under a single frequency. If different frequencies need to be used for different detection objects, it needs to be realized by configuring ultrasonic acquisition units with different frequencies, that is, through two or more different frequencies.
  • the ultrasonic acquisition unit can be realized by using a separate ultrasonic acquisition unit, or it can be realized by building multiple chips inside the ultrasonic acquisition unit, which will inevitably lead to the complexity and inconvenience of the inspection procedure and the increase of the inspection cost.
  • the ultrasonic acquisition unit in this embodiment is provided with a frequency conversion chip module, which is arranged in the end face housing of the housing and is used to adjust the operating frequency of the ultrasonic acquisition unit. Due to the existence of the frequency conversion chip module, the fetal heart Doppler only needs one ultrasonic acquisition unit when facing pregnant women with different gestational weeks and degrees of obesity, and the user can choose the appropriate operating frequency of the ultrasonic acquisition unit. In order to obtain the best signal quality and improve the measurement results, and reduce the difficulty of operation and detection and the cost of medical equipment, the fetal heart rate detection is more efficient and convenient.
  • the frequency conversion wafer module may be at least one layer of dielectric layer disposed between the wafer layer of the ultrasonic acquisition unit and the end face housing; it may also include at least two wafers, and the natural vibration frequencies of each wafer are not all the same.
  • a dielectric layer 215 is added between the wafer layer 214 and the end face housing 101 .
  • the setting of the dielectric layer 215 is used to change the natural vibration frequency of the wafer layer 214 , thereby contributing to more frequencies
  • the ultrasonic waves of the segment are received by the test object.
  • the setting of the dielectric layer improves the impedance characteristics of the propagation between the wafer layer, the end face housing and the detection object, so that the acoustic energy can be transmitted more effectively, thereby improving the sensitivity of the ultrasonic acquisition unit.
  • the ultrasonic acquisition unit can output multiple operating frequencies instead of being limited to one operating frequency.
  • the thickness of the dielectric layer 215 is a quarter wavelength, and its material can be solid materials such as glass, graphite, etc., or epoxy resin, plastic, or adding tungsten powder or alumina powder to epoxy resin according to a certain proportion It is more solid than the stirring configuration.
  • the dielectric layer it can be a single layer or a multi-layer, and the number of the dielectric layer is mainly determined by the material properties and thickness dimensions.
  • the ultrasonic acquisition unit further includes a backing layer 217 , and the backing layer 217 is disposed on the side of the frequency conversion wafer module away from the end face housing 101 .
  • the backing layer 217 is disposed on the side of the frequency conversion wafer module away from the end face housing 101 .
  • a backing layer is arranged on the back of the wafer, and the acoustic impedance of the backing layer material is much smaller than or much larger than that of the wafer.
  • a backing with a high attenuation coefficient is selected, which can absorb the ultrasonic waves of different frequency bands reflected by the rear surface of the wafer and enter the backing, so as to prevent these ultrasonic waves from being reflected and then returning to the front of the wafer, because the reflected ultrasonic waves Ultrasound will affect the fetal heart signal and affect the detection effect.
  • an embodiment of a method for detecting a fetal heart Doppler is provided. It should be noted that the steps shown in the flowchart of the accompanying drawings may be implemented in a computer system such as a set of computer-executable instructions. and, although a logical order is shown in the flowcharts, in some cases the steps shown or described may be performed in an order different from that herein.
  • FIG. 23 is a flowchart of a method for detecting a fetal heart Doppler instrument according to an embodiment of the present disclosure. As shown in FIG. 23 , the flowchart includes the following steps:
  • S11 Acquire fetal physiological data collected by the fetal detection unit and maternal physiological data collected by the maternal parameter detection unit.
  • S12 analyze the collected fetal physiological data and maternal physiological data to obtain fetal heart rate and maternal parameters.
  • the controller After acquiring fetal physiological data and maternal physiological data, it analyzes them to obtain fetal heart rate and maternal parameters. For the specific analysis process, please refer to the above description, which will not be repeated here.
  • the controller after obtaining the fetal heart rate and the maternal heart rate, it is also used to perform preset processing on the fetal heart rate and the maternal parameters.
  • the preset processing of the fetal heart rate and maternal parameters by the controller can be various processing methods such as display, processing, and analysis of the fetal heart rate and maternal parameters. Make specific restrictions.
  • the fetal heart rate when the controller performs preset processing on the fetal heart rate and the maternal parameters, can be displayed, for example, the fetal heart rate corresponding to different time points can be directly displayed; for example, the fetal heart rate corresponding to different time points can be displayed by using the fetal heart rate corresponding to different time points. Generate a fetal heart rate curve and display the fetal heart rate curve.
  • the controller when the controller performs preset processing on the fetal heart rate and maternal parameters, the maternal parameters may be displayed, for example, the maternal parameters corresponding to different time points may be directly displayed; for another example, the maternal heart rate corresponding to different time points may be displayed by the controller. Generate the parent-centre curve and display the parent-centre curve.
  • the controller when it performs preset processing on the fetal heart rate and the maternal parameter, it can determine the status information about the fetal heart rate and/or the maternal parameter, and display the status information.
  • the status information may be the result of analyzing and processing the fetal heart rate and the maternal heart rate.
  • the status information may include at least one of the following: quality information of fetal heart rate and quality information of maternal parameters.
  • the quality information is used to characterize the accuracy, reliability, etc. of the heart rate, and the acquisition method of the quality information is not specifically limited.
  • Maternal parameters include maternal heart rate.
  • the fetal heart Doppler instrument uses the fetal detection unit and the maternal parameter detection unit to collect and obtain fetal physiological data and maternal physiological data respectively.
  • the controller analyzes the fetal physiological data and the maternal physiological data respectively to obtain the fetal heart rate and the maternal heart rate.
  • the controller is also used to detect the coincident interval between the fetal heart rate and the maternal heart rate, and if the coincident interval is detected, a prompt is issued and/or the coincident interval is marked on the displayed heart rate curve.
  • the overlapping interval of the fetal heart rate and the maternal heart rate may be a part of the detected fetal heart rate and the maternal heart rate that are the same or close to each other after comparing and verifying the fetal heart rate and the maternal heart rate.
  • the overlapping interval of fetal heart rate and maternal heart rate indicates the possibility of mistaking the maternal heart rate for the fetal heart rate, or that the heart rate value may be wrong.
  • the overlapping interval of the fetal heart rate and the maternal heart rate can be detected, so that an alarm can be realized by means of prompts and other means when it is determined that the heart rate of the fetal heart rate and the maternal heart rate are coincident.
  • the controller when the controller detects the overlapping interval between the fetal heart rate and the maternal heart rate, the controller may acquire a first number of heart rate differences corresponding to different moments in the first time, wherein the heart rate difference corresponding to each moment is the moment The characterization value of the difference between the fetal heart rate and the maternal heart rate; count the second number of heart rate differences that meet the first condition within the first time; If both the heart rate differences satisfy the first condition, the first time is determined as the overlapping interval of the fetal heart rate and the maternal heart rate.
  • the sizes of the first time and the second time can be customized, and the second time may be less than or equal to the first time.
  • the controller If the controller detects the coincident interval, it will issue a prompt and/or mark the coincident interval on the displayed heart rate curve. An alert can be issued if a coincident interval between the fetal heart rate and the maternal heart rate is detected.
  • the prompting manner may be any prompting implementation manner, which is not specifically limited herein.
  • the prompting method includes at least one of the following: displaying prompting information, playing prompting sound, turning on prompting light, and so on.
  • the fetal heart Doppler instrument can include a display screen, a speaker, a prompt light, etc. connected to the controller, wherein the display screen can be used to display prompt information, the speaker can be used to play prompt sounds, and the prompt light can be used to detect objects through lights. , so that the controller detects the coincident interval and controls the display screen, speaker, prompt light and other equipment connected to the controller, and then alarms through the display screen display, sound, light and other means.
  • the controller can mark the overlapping interval on the displayed heart rate curve.
  • the heart rate curve includes at least one of the following: a fetal heart rate curve generated by fetal heart rate and a maternal heart rate curve generated by maternal heart rate.
  • the marking method can be any marking implementation method, which is not specifically limited here.
  • the controller can be used to generate a fetal heart rate curve by using the fetal heart rate corresponding to different time points, and after generating the maternal heart rate curve by using the maternal heart rate corresponding to different time points, if the coincidence of the fetal heart rate and the maternal heart rate is detected.
  • the alarm can also be implemented in other ways.
  • an alarm can be issued in time, so as to prompt the detection object of the fetal heart rate Doppler instrument to adjust the position of the fetal heart rate Doppler instrument and confirm the source of the signal , re-collect fetal physiological data and maternal physiological data, analyze and obtain fetal heart rate and maternal heart rate, and avoid taking the maternal heart rate falsely detected by the fetal heart rate Doppler as the fetal heart rate, thereby introducing unnecessary clinical intervention.
  • the fetal heart rate Doppler instrument may further include at least one functional component connected with the controller, the functional component including at least one of a display screen, a sound playback component and a prompt light.
  • the display screen is used to display in response to commands from the controller.
  • the display screen displays in response to the controller's instructions, it includes but is not limited to displaying fetal heart rate, displaying maternal heart rate, displaying status information, displaying fetal heart rate curve, displaying maternal heart rate curve, displaying heart rate curve marking overlapping interval, displaying prompt information, etc.
  • the fetal heart Doppler instrument may also include a sound playback component such as a speaker connected to the controller for playing a prompt sound, a prompt light and other alarm processing components for performing alarm processing, which are not specifically limited herein.
  • the detection object needs to pay attention to the fetal heart rate in real time during the fetal monitoring process.
  • the quality of the heart signal, and the position of the ultrasound acquisition unit is continuously adjusted according to the quality of the fetal heart signal. Based on this, in order to solve the problem that the effective fetal heart signal cannot be obtained due to the deviation of the fetal heart from the ultrasonic coverage of the ultrasonic acquisition unit, in this embodiment, the specific structure of the ultrasonic acquisition unit is shown in FIGS. 6-7 .
  • the ultrasonic acquisition unit includes a plurality of wafers and an angle adjustment assembly. By automatically adjusting the rotation angle of each wafer, the signal intensity of the center wafer is the strongest. Based on this, as shown in Figure 24, the above-mentioned acquisition of fetal physiological data collected by the fetal detection unit includes the following steps:
  • the controller controls each wafer to transmit ultrasonic signals at a certain time sequence, and receives ultrasonic echo signals corresponding to each wafer.
  • different channels are used to distinguish each wafer, then in the processing corresponding to each processing channel, the signal intensity corresponding to the corresponding wafer can be determined.
  • the angle adjustment assembly is used to adjust the signal transmission method between each of the wafers and the target body.
  • the follow-up is to use the signal corresponding to wafer A to calculate the fetal heart rate. Then, through the action of the angle adjustment component, the signal intensity corresponding to wafer A is the strongest, so as to ensure the reliability of subsequent fetal heart rate calculation.
  • the signal intensity corresponding to the center wafer is the strongest among all wafers.
  • the action of the angle adjustment assembly is controlled based on the corresponding signal strength of each wafer, that is, the wafer assembly can always follow the target by means of target positioning, so as to obtain an accurate fetal heart signal.
  • each chip After adjusting the signal transmission direction of the chips, each chip collects fetal physiological data based on the adjusted signal transmission direction, and sends the collected fetal physiological data to the controller, so that the controller can analyze and calculate the fetal heart rate.
  • the plurality of wafers are divided into a center wafer and an outer edge wafer, and the outer edge wafers are arranged around the outer side of the center wafer. Based on this, the above S22 may include the following steps:
  • S222 Calculate the signal intensity difference between the signal intensity of the central wafer and the strongest signal intensity.
  • the controller determines the wafer with the strongest signal strength (referred to as the target wafer)
  • the controller can determine the difference in signal strength between the center wafer and the target wafer.
  • S223 Determine the adjustment angle and direction of the angle adjustment component based on the signal intensity difference and the position of the wafer with the strongest signal intensity.
  • the controller can then determine the adjustment angle and direction of the angle adjustment component based on the calculation principle shown in FIG. 9 .
  • the purpose of the adjustment is to make the signal strength of the central wafer the strongest among all wafers.
  • the adjustment angle and direction of the angle adjustment component are determined by the signal strength of the central wafer and the outer wafers, so that the central wafer is always the wafer with the strongest signal strength among all the wafers, thereby ensuring the detection effect of the target.
  • the controller may first screen the received ultrasonic echo signals of each wafer to obtain valid signals; and then compare the signal strengths of the valid signals.
  • the specific screening may be to compare the ultrasonic echo signal of each wafer with a preset value, if the intensity of the ultrasonic echo signal is greater than the preset value, it means that it is a valid signal; otherwise, it is considered an invalid signal, and the subsequent signal This signal can be ignored during the intensity comparison.
  • the fetal heart beat signal will be unclear, and white noise will be amplified when the ultrasound acquisition unit does not acquire valid signals;
  • a relatively large Doppler frequency shift signal will be generated intermittently. After a large gain amplification again, the signal will be over-amplified and saturated and produce broken sound, which makes people feel Very harsh, affecting actual use.
  • the fetal heart rate is obtained by analyzing the collected fetal physiological data, the fetal physiological data is denoised first, and then the denoised data is used to calculate the fetal heart rate.
  • the acquired fetal physiological data is referred to as the original ultrasound signal
  • the denoised data is referred to as the target ultrasound signal.
  • the above-mentioned analysis of the collected fetal physiological data to obtain the fetal heart rate includes the following steps:
  • the ultrasonic acquisition unit After the ultrasonic acquisition unit is started, it transmits a fixed frequency ultrasonic signal, and when the ultrasonic signal hits the moving interface, it will return the ultrasonic signal. At this time, the ultrasonic acquisition unit converts the received ultrasonic echo signal into an electrical signal, and performs demodulation, filtering and The original ultrasonic signal can be obtained by amplifying processing.
  • the original ultrasonic signal obtained by the controller may be collected in real time by the ultrasonic acquisition unit, or stored in the controller, or obtained by the controller from other devices. Here, the source of the original ultrasonic signal does not matter. Make any restrictions, and set them according to actual needs.
  • the identification of valid signals can also be considered as validity detection, that is, to identify valid signals and invalid signals in the original ultrasound signal.
  • a valid signal recognition model can be trained, so that the valid signal recognition model learns the features of valid signals and invalid signals, so as to identify whether the input signal is a valid signal.
  • the envelope and baseline analysis can also be performed on the original ultrasound signal to obtain the envelope signal and the baseline signal, and then the relationship between the envelope signal and the baseline signal can be used to determine the valid signal and the invalid signal in the original ultrasound signal.
  • the controller After distinguishing the valid signal from the invalid signal, the controller processes the invalid signal in the original ultrasonic signal, that is, reduces the amplitude of the invalid signal to obtain the ultrasonic signal to be processed.
  • the ultrasonic signals to be processed include valid signals in the original ultrasonic signals and invalid signals after processing.
  • the sequence of the valid signals and the processed invalid signals is in one-to-one correspondence with the original ultrasound signals.
  • the peak feature extraction can be achieved by using a feature extraction model, or obtained by envelope analysis of the ultrasonic signal to be processed, etc.
  • the implementation manner is not limited herein.
  • the peak characteristics include, but are not limited to, the periodicity, peak trend, and signal-to-noise ratio of the ultrasonic signal to be processed.
  • the peak feature described in this embodiment does not specifically refer to one peak feature, but is a general term for all peak features.
  • the controller uses the extracted peak feature to calculate the target gain. For example, the controller has a built-in calculation formula for the target gain. After the controller obtains the peak feature, it can be substituted into the formula to obtain the corresponding target. gain.
  • the peak feature may correspond to each sampling point in the ultrasonic signal to be processed, or may also correspond to all sampling points within a fixed size range in the ultrasonic signal to be processed.
  • the target gain similarly corresponds to each sampling point.
  • the mean or other statistical value of the peak feature of the sampling points in the fixed range can be calculated, and then the corresponding target gain can be calculated based on the calculation result. For example, a sliding window is used to calculate the peak feature, and accordingly, the target gain corresponding to the sliding window is obtained.
  • the controller uses the target gain to perform gain processing on the corresponding original ultrasonic signal to obtain the final target ultrasonic signal after noise reduction.
  • the target gain may correspond to each sampling point, or may correspond to multiple sampling points.
  • the effective signal and the invalid signal are distinguished.
  • the ultrasonic signal to be processed is obtained, and then the corresponding target gain is determined by using the extracted peak feature, so that the obtained target
  • the gain corresponds to the peak characteristics of the ultrasonic signal to be processed, and adaptive gain processing can be performed. Since the invalid signal in the signal to be processed is processed first to suppress interference, and then adaptive gain processing is performed, it can suppress occasional mutation interference and improve Detect object experience and improve noise reduction.
  • the above S31 may include:
  • the acquisition of the envelope signal and the baseline signal can be obtained through a low-pass filter, or through a smoothing window, and so on.
  • two low-pass filters with different cutoff frequencies are used to perform low-pass filtering on the ultrasonic Doppler signal, one for extracting the baseline signal and the other for extracting the envelope signal;
  • Smoothing window for smoothing the ultrasonic Doppler signal, a larger window is used to obtain the baseline signal, and another smaller smoothing window is used to obtain the envelope signal.
  • S312 Acquire a weight corresponding to the baseline signal, and use the baseline signal and the corresponding weight to determine a threshold.
  • the weight corresponding to the baseline signal is set according to an empirical value, or may be obtained by analyzing the ultrasonic signal to be processed, and so on. After obtaining the weight, the controller calculates the product of the weight and the baseline signal to determine the corresponding threshold.
  • the controller uses the weighted value of the baseline signal as the threshold, and compares it with the envelope signal, so as to identify the effective signal.
  • the threshold uses the weighted value of the baseline signal as the threshold, and compares it with the envelope signal, so as to identify the effective signal.
  • the foregoing S313 may include:
  • the signal corresponding to the positive number represents the effective signal in the original ultrasound signal.
  • the signal corresponding to the non-positive number represents the original Invalid signal in ultrasound signal.
  • the foregoing S313 may include:
  • the controller can reduce the signal slope of the invalid signal, thereby reducing the signal variation of the invalid signal and making it smooth.
  • the processing method of the signal slope of the invalid signal is not limited here, and it only needs to ensure that the signal slope of the invalid signal is reduced.
  • the controller After the controller processes the signal slope of the invalid signal, correspondingly, the invalid signal in the original ultrasonic signal changes accordingly, so the ultrasonic signal to be processed can be obtained.
  • the foregoing S314 may include:
  • the controller After identifying the valid signal, the controller retains the position information of the valid signal in the original ultrasonic signal, and performs coordinate correspondence with the original ultrasonic signal.
  • the signal of the valid signal is marked as the peak signal segment with the first identifier, and the other parts are marked as the noise signal segment with the second identifier, and the signal slope value in the noise segment is set to 0 to obtain the ultrasonic signal to be processed S n (n ).
  • the signal slope of the invalid signal is set to zero, so that the invalid signal is a fixed value, which reduces the amount of data for subsequent gain processing; and the valid signal and the invalid signal are distinguished by using the corresponding identification mark, so as to be accurate from the ultrasonic signal to be processed. Distinguish between valid and invalid signals.
  • the threshold is determined based on the baseline signal and its corresponding weight, that is, the threshold is set corresponding to the original ultrasound signal, and then the envelope signal and the corresponding threshold are used to determine the valid signal and the invalid signal, which can ensure the reliability of valid signal identification. , thereby ensuring the accuracy of the obtained ultrasonic signal to be processed and improving the noise reduction effect.
  • the above S32 may include:
  • the peak position and the peak interval of the ultrasonic signal to be processed can be determined by using the envelope signal.
  • the periodicity of the ultrasonic signal to be processed is determined by analyzing the peak position and the peak interval. The periodicity is used to indicate that the ultrasonic signal to be processed is a periodic signal or a non-periodic signal.
  • the collected original ultrasonic signals are non-periodic signals.
  • the position of the target is scanned, and the obtained original ultrasonic signal is a periodic signal.
  • a temporary aperiodic signal may appear due to the existence of interference. Whether it is a periodic signal or a non-periodic signal, it can be obtained by analyzing the peak position and peak interval of the ultrasonic signal to be processed.
  • the periodic detection of the peak value is used to check whether the peak signal segment appears periodically.
  • the ultrasonic acquisition unit does not touch the skin, or does not move the ultrasonic acquisition unit or acquire other signals even though it touches the skin, when the signal acquired by the ultrasonic acquisition unit is processed in the above S31, it cannot be identified in the envelope signal Periodic peaks, will be identified as noise signals.
  • the ultrasonic acquisition unit When the ultrasonic acquisition unit encounters the motion interface, it will acquire the frequency offset signal, after the above S31, the peak position of the signal can be obtained by screening, and then the periodicity of the peak can be determined by the peak interval.
  • S322 Calculate the energy change in adjacent windows based on the sliding window of the ultrasonic signal to be processed, and determine the peak trend feature.
  • the peak trend feature can determine the steepness of the peak and the trend of the peak according to the change in the slope of the peak signal. Specifically, the change in the slope of the ultrasonic signal to be processed Sn ( n ) is calculated using the signal energy. That is, first, the signal is smoothed by a sliding window, then the average energy value of each sampling point in the sliding window is calculated, then the energy average value corresponding to the adjacent windows is calculated, and finally the energy changes corresponding to two adjacent sliding windows are calculated. Among them, the steeper the peak value, the larger the energy value.
  • S323 Determine the signal-to-noise ratio by using the relationship between the energy corresponding to each sliding window and the baseline signal of the original ultrasonic signal.
  • the ratio calculation of the energy mean value in the above sliding window and the baseline signal in S31 can be used to obtain the signal-to-noise ratio.
  • S324 Determine the target gain based on the periodicity, the peak trend feature, and the signal-to-noise ratio.
  • a calculation formula of the target gain is set in the controller. After the periodicity, peak trend characteristics and signal-to-noise ratio are calculated and substituted into the calculation formula, the target gain can be determined. Specifically, differentiated and continuous control is performed according to peak characteristics such as signal trend, amplitude, and signal-to-noise ratio to keep signal amplitude relatively stable, highlight periodic peaks, and suppress background noise and interference.
  • the target gain it can be corresponding to each sampling point or corresponding to the sliding window.
  • the controller calculates the mean value of the signal slope of all sampling points in the sliding window, the peak characteristics such as energy value, amplitude, and signal-to-noise ratio corresponding to the sliding window as gain control factors.
  • the dimension adaptively adjusts the target gain.
  • the target gain corresponding to the valid signal may be calculated, or the target gain corresponding to all the signals to be processed may be calculated.
  • the target gain is used to perform gain processing on the valid signal, and no gain processing or attenuation processing is performed for the invalid signal;
  • the target gain is based on The peak characteristic is calculated, and before the peak characteristic calculation, the signal slope of the invalid signal has been processed, that is, it is equivalent to performing attenuation processing on the invalid signal.
  • the corresponding target gain is used to perform gain processing on the ultrasonic signal to be processed to determine the target ultrasonic signal.
  • the upper image is the original ultrasonic signal before automatic gain control
  • the lower image is the target ultrasonic signal after noise reduction processing according to the noise reduction method of the ultrasonic signal provided by the embodiment of the present disclosure. It can be seen from Figure 26a that the signal amplitude and peak beat characteristics are significantly enhanced, while the noise signal is significantly suppressed.
  • the upper image is the original ultrasonic signal before automatic gain control
  • the lower image is the target ultrasonic signal after noise reduction processing according to the noise reduction method of the ultrasonic signal provided by the embodiment of the present disclosure. It can be seen from FIG. 26b that even though the amplitude change of the original ultrasonic signal is small, the signal amplitude and peak beat characteristics are significantly enhanced in the later stage of processing by the embodiment of the present disclosure, and the noise signal is obviously suppressed.
  • aperiodic signals and periodic signals can be identified, and differentiated and continuous control can be carried out in combination with peak trend characteristics and signal-to-noise ratio characteristics, keeping the signal amplitude relatively stable, highlighting the periodic peaks, suppressing Noise floor and interference.
  • the method further includes:
  • the target ultrasonic signal is output, and a corresponding prompt can be given when a continuous and stable periodic signal is not obtained.
  • the prompt information is determined to be that the valid signal is not recognized.
  • the ultrasonic acquisition unit does not touch the skin, or does not move the ultrasonic acquisition unit or acquire other signals although it touches the skin
  • the peak detection module cannot identify the effective period peak value, and will recognize the original ultrasonic signal as a noise signal, and the signal slope is 0, and the energy at this time is very small and tends to zero.
  • the noise will be suppressed directly, that is, the signal will not be amplified or attenuated, and it will prompt that no valid signal has been identified.
  • the prompt information is determined to be that interference is identified.
  • the ultrasonic acquisition unit obtains a valid signal but the peak value is irregular, the noise floor of the signal noise segment of the ultrasonic signal to be processed is suppressed (that is, the signal slope of the invalid signal is reduced), and the noise in the valid signal segment is suppressed.
  • the periodic peak is used for nonlinear gain amplification, and the aperiodic peak is used for nonlinear gain control. At this point, the prompt recognizes the interference.
  • the ultrasonic acquisition unit When the ultrasonic acquisition unit acquires a valid signal and identifies a periodic peak value, it performs gain processing on the ultrasonic signal to be processed according to the corresponding target gain to obtain a target ultrasonic signal.
  • Corresponding prompt information is displayed on the ultrasound interface, so that the detection object can intuitively perceive the situation of the currently acquired original ultrasound signal, so as to guide the subsequent acquisition of the original ultrasound signal.
  • the noise floor and the self-excited whistling interference of the ultrasonic acquisition unit when the ultrasonic acquisition unit is vacant are eliminated, and the ultrasonic acquisition is suppressed.
  • Intermittent aperiodic interference caused by occasional mutation interference such as unit movement, fetal movement, hiccups, etc., improves the experience of the detected object.
  • it can also perform nonlinear gain control on the original ultrasonic signal, highlighting the periodic characteristics of the signal and improving the signal-to-noise ratio.
  • the fetal heart rate detection unit in the fetal heart Doppler instrument includes an ultrasound acquisition unit and a blood oxygen acquisition unit. Based on this, the acquired fetal physiological data is fetal blood oxygen data. As shown in FIG. 27 , obtaining the fetal physiological data collected by the fetal detection unit in the above S11 includes the following steps:
  • the fetal heart signal refers to the mechanical movement signal formed by the diastole and contraction of the heart wall during the heartbeat, the opening and closing of the heart valve, and the movement of the cardiovascular system.
  • the fetal heart signal can be picked up by the ultrasonic acquisition unit, that is, by placing the ultrasonic acquisition unit equipped with the ultrasonic transmitter and the ultrasonic receiver on the surface of the maternal abdomen, aiming at the fetal heart, sending ultrasonic waves, and receiving the reflected ultrasonic echoes,
  • the frequency of the ultrasonic echo is modulated by the moving heart, that is, the angular frequency of the Doppler frequency shift is proportional to the speed of the heart or vascular wall diastolic and systolic motion, and the fetal heart signal can be obtained through demodulation.
  • the controller analyzes the effective signal of the fetal heart signal, and then performs limb access detection when it is confirmed that the acquired fetal heart signal is an effective fetal heart signal.
  • the energy of the fetal heart signal can be analyzed, and the energy value is compared with the energy threshold to determine whether the fetal heart signal is an effective fetal heart signal; or the fetal heart signal can be compared with the baseline.
  • the signals are compared and analyzed to determine whether the fetal heart signal is an effective fetal heart signal.
  • the acquired fetal heart rate signal is a valid fetal heart rate signal, which may include:
  • S421 Determine whether the fetal heart rate signal is greater than a set signal threshold.
  • the above S422 may include:
  • a line above (positive) and a line below (negative) can be obtained. These two lines are called envelope lines.
  • the network line is the curve reflecting the amplitude change of the fetal heart rate signal.
  • a low-pass digital filter is used to perform the first filtering process and the second filtering process on the absolute value signal of the fetal heart signal, and the cut-off frequency of the first filtering process is set to be greater than the cut-off frequency of the second filtering process.
  • the baseline fetal heart rate signal refers to the average fetal heart rate for 10 minutes in the absence of fetal movement and uterine contractions.
  • the normal fetal heart rate baseline is 110-160 bpm, and when the fetal heart rate baseline is greater than 160 bpm , it indicates fetal tachycardia. Fetal bradycardia is indicated when the baseline fetal heart rate is less than 110 bpm. It should be noted that the baseline fetal heart rate can be obtained by means of mean value or low-pass filtering.
  • the fetal heart signal received by the ultrasonic acquisition unit for detecting the fetal heart signal may contain a lot of noise signals
  • the fetal heart signal can be filtered (low-pass), so that a noise-free fetal heart can be obtained Signal.
  • the stable fetal heart rate calculation can be performed only when the ultrasonic acquisition unit obtains the effective fetal heart rate signal, in this embodiment, the validity of the current fetal heart rate signal can also be extrapolated through the stability of the fetal heart rate calculation value. sex.
  • the light-emitting diode will continue to work until the device is idle or the limbs are connected normally, the service life of the light-emitting diode is greatly shortened, and the power consumption of the device is increased. Light can also cause discomfort to the human eye.
  • the light-emitting diode is not started immediately, the light-emitting diode needs to be turned on by a second manual operation after the device is started, which increases the complexity of the operation.
  • performing limb access detection in the above S42 may include:
  • S421 controlling the infrared light pipe and/or the red light pipe to be turned on or off according to a first preset timing sequence. Among them, the infrared light pipe and the red light pipe are not turned on at the same time.
  • the first pulse control signal is output to the infrared light pipe and/or the red light pipe.
  • FIG. 28 is a schematic diagram of a pulse signal of an embodiment of the first pulse control signal in this embodiment.
  • a red light tube (not shown) is used for the first pulse control signal S1. Turn off at the beginning of the rising edge, and turn on after a delay of the first preset time period T1, and continue for the second preset time period T2, the sum of the first preset time period T1 and the second preset time period T2 is the first The high level duration TH of the pulse control signal S1.
  • the infrared light pipe (not shown) is used to turn off at the beginning of the falling edge of the first pulse control signal S1, and to turn on after a delay of the third preset time period T3, and last for the fourth preset time period T4, the third The sum of the preset time period T3 and the fourth preset time period T4 is the low level duration TL of the first pulse control signal S1.
  • S422 collecting infrared light and/or red light.
  • the above S423 may include:
  • S4231 Determine a first amplitude value of the infrared light collected during the time period when the infrared light pipe is turned on, and determine a second amplitude value of the infrared light collected during the time period when the infrared light pipe is turned off. And/or determining the third amplitude value of the red light collected during the time period when the red light tube is turned on, and determining the fourth amplitude value of the red light collected during the time period when the red light tube is turned off.
  • the receiving end since there is no limb access, the receiving end basically cannot receive the red light or infrared light emitted by the red light pipe or infrared light pipe, and can only receive Red or infrared light in the environment. Therefore, in this case, the first amplitude obtained during the opening period of the infrared light pipe is substantially equal to the second amplitude obtained during the closing period, so the difference between the first amplitude and the second amplitude is When it is less than the set first amplitude threshold, it is determined that there is no limb access.
  • the third amplitude obtained during the opening period of the red light tube is basically the same as the fourth amplitude obtained during the closing period, so the amplitude difference between the third amplitude and the fourth amplitude is smaller than the set second amplitude.
  • the amplitude threshold it is determined that there is no limb access.
  • the first amplitude threshold in this embodiment is related to the absorbing ability of red blood cells in the blood of the limb to be tested to infrared light.
  • the second amplitude threshold can also be determined in the above manner, which will not be described here.
  • the above S423 may include:
  • S4233 Determine the first energy of the infrared light emitted by the infrared light pipe and the second energy of the collected infrared light during the ON time period of the infrared light pipe. and/or determining the third energy of the red light emitted by the red light tube and the fourth energy of the collected red light during the period when the red light tube is turned on.
  • the receiving end in the case of no limb access, because there is no reflection of the limb, the receiving end basically cannot receive the red light or infrared light emitted by the red light pipe or infrared light pipe, and can only receive the light in the environment. red or infrared light. Therefore, in the case of no limb access, the second energy of the collected infrared light is the energy of the infrared light in the environment. It can be understood that under the condition that the first energy of the infrared light emitted by the infrared light pipe remains unchanged during the period when the infrared light pipe is turned on, the ratio of the second energy to the first energy when there is no limb access is higher than the ratio when the limb is connected. Small, that is to say, if the ratio of the second energy to the first energy is greater than the set first proportional threshold, it is determined that there is limb access.
  • the collected infrared light or red light is the energy of infrared light or red light in the environment. Therefore, during the period when the infrared light pipe is turned on, when the first energy of the infrared light emitted by the infrared light pipe remains unchanged, the infrared light energy in the ambient light with the second energy level is determined, which is related to the intensity of the ambient light.
  • the limb access detection is repeated, that is, the infrared light pipe and/or the red light pipe are controlled according to the first
  • the preset timing is turned on or off, and according to the received signal strength of red light and/or the change of the signal strength of infrared light, it continues to wait for limb access.
  • the blood oxygen detection function when it is detected that a limb is connected, the blood oxygen detection function is activated to perform blood oxygen detection, so as to obtain fetal physiological data.
  • the above S43 may include:
  • the dual-wavelength transmission photoelectric detection method is used to measure blood oxygen saturation, so no light, 660nm red light and 940nm infrared light can be alternately generated and collected to obtain signals of different light periods.
  • By subtracting the photoelectric signal in no light The influence of ambient light can be removed, and the ratio of the alternating components of red light and infrared light caused by light absorption through arterial blood after the removal of the influence of ambient light can be obtained.
  • the red light tube is used to turn off at the beginning of the rising edge of the second pulse control signal, and turn on after a delay of the fifth preset time period, and last for the sixth preset time period, the fifth The sum of the preset time period and the sixth preset time period is the high level duration of the second pulse control signal.
  • the infrared light pipe is used to turn off at the beginning of the falling edge of the second pulse control signal, and turn on after a delay of the seventh preset time period, and last for the eighth preset time period, the seventh preset time period and the eighth preset time period
  • the sum of the time periods is the low level duration of the second pulse control signal.
  • the switching frequency corresponding to the second preset timing can be set to be greater than the switching frequency corresponding to the first preset timing, which can correspondingly reduce the blood oxygen detection time, further enhance the detection accuracy and speed up the detection speed.
  • the switching frequency of the first preset timing sequence since the first preset timing sequence is used to detect whether there is a limb access, it is reasonable to set the switching frequency of the first preset timing sequence to be relatively lower in order to reduce power consumption.
  • the detection method can detect the fetal heart signal as an effective fetal heart rate. Signal, and when detecting a limb access, control the start point of the red light tube or infrared light tube to emit light, thereby reducing the power consumption, and at the same time, it can also reduce the light discomfort caused by turning on the blood oxygen detection for a long time.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Cardiology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physiology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Pediatric Medicine (AREA)
  • Psychiatry (AREA)
  • Artificial Intelligence (AREA)
  • Pregnancy & Childbirth (AREA)
  • Gynecology & Obstetrics (AREA)
  • Reproductive Health (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

胎心多普勒仪(10)及检测方法,涉及医疗设备技术领域,胎心多普勒仪(10)包括壳体(1);胎心检测单元(20)和母体参数检测单元(30),胎心检测单元(20)和母体参数检测单元(30)分别用于采集胎儿生理数据和母体生理数据;壳体(1)的内腔中设有控制器(7);控制器(7)用于对采集到的胎儿生理数据和母体生理数据进行分析,得到胎儿心率和母体参数。采用同一胎心多普勒仪(10)可减低仪器成本,且直接利用同一胎心多普勒仪(10)即可同时获取母胎参数,可简化仪器结构,提高母胎参数的检测效率。

Description

胎心多普勒仪及检测方法 技术领域
本公开涉及医疗设备技术领域,具体涉及胎心多普勒仪及检测方法。
背景技术
胎心监测是目前对产检的常规检查项目,通常会采用超声胎心仪器进行检测。现有的超声胎心仪器,例如胎心多普勒仪,会将通过该传感器采集到的生理数据认为是胎儿生理数据,并将计算得到的心率值直接作为胎儿心率,并利用其他仪器测得母体参数。
发明内容
有鉴于此,本公开实施例提供了一种胎心多普勒仪及检测方法,以解决现有母胎心率的检测效率低的问题。
根据第一方面,本公开实施例提供了一种胎心多普勒仪,包括:
壳体和设置在所述壳体上的胎心检测单元和母体参数检测单元,所述胎心检测单元和母体参数检测单元分别用于采集胎儿生理数据和母体生理数据;
所述壳体的内腔中设有控制器;
所述控制器用于对所述采集到的胎儿生理数据和母体生理数据进行分析,得到胎儿心率和母体参数。
根据第二方面,本公开实施例还提供了胎心多普勒仪的检测方法,所述胎心多普勒仪包括胎儿检测单元以及母体参数检测单元,所述检测方法包括:
获取胎儿检测单元采集到的胎儿生理数据以及母体参数检测单元采集的母体生理数据;
对所述采集到的胎儿生理数据和母体生理数据进行分析,得到胎儿心率和母体参数。
本公开实施例提供的胎心多普勒仪,利用胎心检测单元和母体参数检测单元对应采集得到胎儿生理数据和母体生理数据,控制器分别对胎儿生理数据和母体生理数据进行分析,得到胎儿心率和母体参数,故实现了利用同一胎心多普勒仪获取母胎心率。相比于采用两个仪器分别获取胎儿心率和母体参数,该方案采用同一胎心多普勒仪可减低仪器成本,且直接利用同一胎心多普勒仪即可同时获取母胎参数,可简化仪器结构,提高母胎参数的检测效率。
附图说明
为了更清楚地说明本公开具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例的胎心多普勒仪的结构框图;
图2是本公开实施例的胎心多普勒仪的第一面整体结构示意图;
图3是本公开实施例的胎心多普勒仪的剖视图;
图4是图3中A处的放大图;
图5是本公开实施例的胎心多普勒仪的第二面整体结构示意图;
图6是本公开实施例的超声采集单元的结构示意图;
图7a-图7b是本公开实施例的晶片组件的结构示意图;
图8是本公开实施例的超声采集单元的工作原理示意图;
图9是本公开实施例的调整角度的原理示意图;
图10是本公开实施例的超声采集单元的结构框图;
图11是现有宽频接收方案的频率示意图;
图12是本公开实施例的窄带变频接收方案的频率示意图;
图13是本公开实施例的变频电路的结构框图;
图14是本公开实施例的变频电路的结构框图;
图15是本公开实施例的超声采集单元的结构框图;
图16是本公开实施例的超声采集单元的结构框图。
图17是现有超声采集单元的结构示意图;
图18是本公开实施例的超声采集单元的示意图;
图19a-图19n是本公开实施例的晶片的示意图;
图20是现有技术的频谱示意图;
图21是对应于图18可实现的频谱示意图;
图22是对应于图19a-图19n可实现的频谱示意图;
图23是本公开实施例的胎心多普勒仪的检测方法的流程图;
图24是本公开实施例的超声采集单元的控制流程图;
图25是本公开实施例的胎儿生理数据的降噪流程图;
图26a-图26c是本公开实施例的增益控制后信号的效果图;
图27是本公开实施例的胎儿生理数据的获取流程图;
图28是本公开实施例的脉冲信号示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术 方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
现有的超声胎心多普勒仪,其通过传感器对腹部采集到的生理数据可能来自胎儿或者母体,而受限于超声原理性限制,无法区分该采集到的生理数据到底是来自胎儿心脏搏动还是来自于母体腹主动脉、脐血流等的脉搏搏动,故计算得到的心率值就无法区分是胎儿心率还是母体心率。因此,一般胎心多普勒仪会将采集到的生理数据认为是胎儿生理数据,并将计算得到的心率值直接作为胎儿心率。故现有的超声胎心多普勒仪只能测量得到胎儿心率,母体参数需要其他仪器测量。
基于此,本公开提供了一种胎心多普勒仪,如图1所示,胎心多普勒仪10包括控制器7以及分别与控制器7连接的胎心检测单元20和母体参数检测单元30。胎心检测单元20和母体参数检测单元30分别用于采集胎儿生理数据和母体生理数据。控制器7用于对采集到的胎儿生理数据和母体生理数据进行分析,得到胎儿心率和母体参数。
需要说明的是,本公开实施例中所述的控制器可以仅包括一个控制器,用于实现对胎心检测单元以及母体参数检测单元的控制,以及对采集到的胎儿生理数据和母体生理数据进行分析。或者,所述的控制器包括两个控制器,一个控制器用于实现对胎心检测单元以及母体参数检测单元的控制,另一个用于对采集到的胎儿生理数据和母体生理数据进行分析。或者,所述的控制器包括三个控制器,一个用于实现对胎心检测单元的控制,另一个用于实现对母体参数检测单元的控制,再一个用于对采集到的胎儿生理数据和母体生理数据进行分析。
胎儿生理数据可以是表征胎儿心率的信号参数等数据,母体生理数据可以是表征母体心率的信号参数等数据。胎儿生理数据可以是压电陶瓷晶片获取的超声回波信号,或者其他表征胎儿心率的数据。母体生理数据包括但不限于光电传感器获取的脉搏波信号、压电陶瓷晶片获取的超声回波信号、心电电极获取的心电信号等单一或者多种信号相互验证后的结果,或者其他表征母体心率的数据。
相较于仅用来做胎心监护的胎心多普勒仪,本公开的胎心多普勒仪10包络胎心检测单元20和母体参数检测单元30,可以分别利用胎心检测单元20和母体参数检测单元30对应采集得到胎儿生理数据和母体生理数据,实现利用同一胎心多普勒仪10同时获取母胎心率,进而可同时实现胎心监护和母心监护。相比于采用两个仪器分别获取胎儿心率和母体参数,采用同一胎心多普勒仪10可减低仪器成本。其中,母体参数包括但不限于母体心率以及母体血氧等等。
在一些可选实施方式中,胎心多普勒仪10分别利用胎心检测单元20和母体参数检测单元30对应采集得到胎儿生理数据和母体生理数据时,可以利用胎心检测单元20对检测对象的第一部位采集得到胎儿生理数据,以及利用母体参数检测单元30对检测对象的第二部位采集得到母体生理数据。第一部位和第二部位可以是相同或不同的部位,能够采集得到生理数据即可,具体位置可根据需要调整。例如一应用实施例中,第一部位和第二部位是不同的部位,第一部位为腹部,第二部位为手部,从而可以利用胎心检测单元20对检测对象的腹部采集得到胎儿生理数据,以及利用母体参数检测单元30对检测对象的手部采集得到母体生理数据。胎心检测单元20用于采集胎儿生理数据,可以是压电陶瓷晶片;而母体参数检测单元30用于采集母体生理数据,可以是光电传感器或压电陶瓷晶片或心电电极,也可以是光电传感器、压电陶瓷晶片和心电电极中的至少一种。胎心多普勒仪10可以是一体式胎心仪,该一体式胎心仪的胎心检测单元20、母体参数检测单元30和包括控制器7的控制器是一个整体。一应用实施例中,胎心多普勒仪10为一体式胎心仪,其超声采集单元包括设置在超声采集单元不同位置的胎心检测单元20和母体参数检测单元30,其中,胎心检测单元20用于对检测对象的腹部采集得到胎儿生理数据,母体参数检测单元30用于对检测对象的手部采集得到母体生理数据。胎心检测单元20和母体参数检测单元30虽然是在同一胎心多普勒仪中,但是胎心检测单元20作用于检测对象的腹部,以从腹部采集得到胎儿生理数据,而母体参数检测单元30作用于检测对象的手部,以从手部采集得到母体生理数据。检测对象为胎心多普勒仪10的检测的对象,例如孕妇。在一应用场景中,为了实现胎心监护,孕妇可以本人手持胎心多普勒仪10的超声采集单元应用于腹部,则既可以从腹部采集得到胎儿生理数据,又可以从手部采集得到母体生理数据,从而不用受限于医院等特殊场景,随时随地即可对胎儿生理数据和母体生理数据进行监护。
胎心多普勒仪10在利用母体参数检测单元30对检测对象或检测对象的第二部位采集得到母体生理数据时,母体参数检测单元30可以为光电传感器,母体生理数据为脉搏波信号。脉搏波信号是光电传感器发射预设波长的光至孕妇血管较丰富的手指指腹、手掌等第二部位后,光电传感器接收的表征母体心率的脉搏波信号。光电传感器的预设波长的光可以是905nm波长的红外光和/或660nm波长的红光。905nm波长的红外光或660nm波长的红光均可以获取脉搏波信号,而905nm波长的红外光和660nm波长的红光一起,则可以获取血氧饱和度。因此,为了提高获取母体生理数据的准确性,母体参数检测单元30可以为光电传感器,母体生理数据可以为脉搏波信号和血氧饱和度,也即是光电传感器发射905nm波长的红外光和660nm波长的红光,得到脉搏波信号和血氧饱和度的母体生理数据。通过光电传感器采集母体生理数据,不会因为利用心电电极采集生理数据时耦合剂导致心电电极间短路,影响母亲信号获取的有效性。
胎心多普勒仪10在利用母体参数检测单元30对检测对象或检测对象的第二部位采集得到母体生理数据时,母体参数检测单元30可以为压电陶瓷晶片,母体生理数据为超声回波信号。作为母体生理数据的超声回波信号是压电陶瓷晶片发射第一预设频率的超声波脉冲到检测对象的手部等第二部位后,压电陶瓷晶片接收的表征母体心率的超声回波信号。通过压电陶瓷晶片采集母体生理数据,不会因为利用心电电极采集生理数据时耦合剂导致心电电极间短路,影响母亲信号获取的有效性。由于胎儿位于孕妇的腹部,不能直接接触胎儿采集胎儿生理数据,因此,在利用胎心多普勒仪10的胎心检测单元20对检测对象的第一部位采集得到胎儿生理数据时,应用超声原理,胎心检测单元20可以是压电陶瓷晶片,则胎儿生理数据为超声回波信号。作为胎儿生理数据的超声回波信号是压电陶瓷晶片发射第二预设频率的超声波脉冲到检测对象的例如腹部的第一部位后,压电陶瓷晶片接收的表征胎儿心率的超声回波信号。采集母体生理数据和胎儿生理数据的压电陶瓷晶片可以是同一个,也可以是不同的多个。可以理解的,胎心多普勒仪10的传感器可以直接作用于母体,而不能直接作用于胎儿,因此,相较于采集胎儿生理数据,采集母体生理数据时的压电陶瓷晶片的频率较大,因此,在一应用场景中,胎心多普勒仪10的胎心检测单元20和母体参数检测单元30均为压电陶瓷晶片,其中一个压电陶瓷晶片对检测对象的手部采集得到母体生理数据,压电陶瓷晶片的第一预设频率包括但不限于为3M,另一个压电陶瓷晶片对检测对象的腹部采集得到胎儿生理数据,压电陶瓷晶片的第二预设频率为2M、2.5M等。上述第一预设频率和第二预设频率可以根据需要自定义设置频率大小,在此不做具体限定。
胎心多普勒仪10在利用母体参数检测单元30对检测对象或检测对象的第二部位采集得到母体生理数据时,母体参数 检测单元30可以为心电电极,母体生理数据为心电信号。作为母体生理数据的心电信号可以是心电电极获取孕妇不同手指间、手指与手掌间、肢体与腹部间等第二部位的心电信号。心电电极可以包括多个电极片,通过作用于不同部位的不同电极片之间的电势差得到心电信号。以心电电极包括两个电极片为例,心电电极获取不同手指间的心电信号时,两个电极片分别作用于不同手指;心电电极获取手指与手掌间的心电信号时,其中一个电极片作用于手指,另一个电极片作用于手掌;心电电极获取肢体与腹部间的心电信号时,其中一个电极片作用于例如手指、手掌等肢体,另一个电极片作用于腹部,此时由于两个电极片的作用部位距离较远,因此电势差较大,心电信号能够更加准确反映母体生理数据。相较于在超声采集单元外部增加一个心电电极,并在孕妇腹部获取母亲心率时,由于超声采集单元使用过程中需要使用耦合剂,而耦合剂属于导体,易引起不同电极间短路,影响心电电极的使用,且一次性心电电极又会增加胎心多普勒仪10的使用成本,而金属电极又易受到耦合剂的腐蚀作用,影响母体生理数据获取的有效性,本实施例中,母体参数检测单元30为心电电极时,采集母体生理数据时的作用对象是检测对象的手部,减少耦合剂使用,可降低因为耦合剂导致心电电极间短路所带来的影响。
本实施例中,仅需同一胎心多普勒仪10既可以采集得到胎儿生理数据,又可以采集得到母体生理数据,能够利用同一设备获取母胎心率。相较于需要同时使用超声采集单元和宫缩压超声采集单元分别获取胎儿生理数据和母体生理数据,本实施例中,利用胎心多普勒仪10同时获取胎儿生理数据和母体生理数据,使用简单,操作便捷,另外,采用同一胎心多普勒仪10可减低仪器成本,简化仪器结构。比起现有技术中,在宫缩压力超声采集单元内增加母体参数检测单元30获取母体心率,本公开中直接在同一设备上使用两种检测单元,并不需要额外的超声采集单元来增加母体参数检测单元30,也减轻了孕妇的使用多个超声采集单元的不便。同时,相比于现有技术中,在宫缩压力超声采集单元外面,外接母亲心电电极来获取母体心率,本公开的技术方案是在胎心多普勒仪上增加母体参数检测单元30,用于测量母体心率。胎心多普勒仪10是一种集成的家用式胎心多普勒仪,其一般用于测量胎儿心率,但是由于测量过程中,受限于多普勒原理的限制,会混入母亲心动脉搏或母亲腹主动脉或脐血流等信号,加上在家用中由于孕妇等经验缺乏,无法识别真正的胎心率,因此本公开通过在胎心多普勒仪上,设置母体参数检测单元30用于测量母亲生理数据,并进行处理,方便了孕妇等检测对象,查看真正胎心率。检测对象无需同时使用宫缩压超声采集单元和超声采集单元,便可以完成母亲心率监护,并且同一个仪器上设置母体参数检测单元30,会降低仪器的成本。比起现有技术中,心电电极需超声耦合剂的使用,会导致一次性心电电极收到耦合剂腐蚀的作用,本公开中采集母体生理数据的母体参数检测单元可以为光电传感器或压电陶瓷晶片,不会因为耦合剂等导致心电电极间短路,影响母亲信号获取的有效性。
胎心多普勒仪10的控制器7可以分别对胎儿生理数据和母体生理数据进行分析,得到胎儿心率和母体参数。具体情况如下:
母胎心率可以包括表征母体脉率值的母体心率和表征胎儿脉率值的胎儿心率。利用胎心多普勒仪10的胎心检测单元20和母体参数检测单元30采集得到胎儿生理数据和母体生理数据后,即可对胎儿生理数据进行分析,得到胎儿心率,以及对母体生理数据进行分析,得到母体心率。胎儿生理数据和母体生理数据的分析方法,可以是任意能够实现胎儿生理数据分析和母体生理数据分析的算法,在此不做具体限定。
控制器7对母体生理数据进行分析,得到母体心率时,根据胎心多普勒仪10的胎心检测单元20和母体参数检测单元30采集母体生理数据的方式不同,例如,根据母体参数检测单元30的类型不同,采用不同的处理方式分析得到母体心率。在一实施例中,母体参数检测单元30为光电传感器,母体生理数据为脉搏波信号,从而控制器7对母体生理数据进行分析,得到母体心率时,控制器7还用于确定脉搏波信号的包络,并基于包络得到母体心率。若母体参数检测单元30为光电传感器,母体生理数据为脉搏波信号和血氧饱和度,控制器7还用于基于脉搏波信号的包络和血氧饱和度得到母体心率。在另一实施例中,母体参数检测单元30为压电陶瓷晶片,母体生理数据为超声回波信号,从而控制器7对母体生理数据进行分析,得到母体心率时,可以获取超声回波信号中的最大频率包络信号,基于最大频率包络信号得到母体心率。在再一实施例中,母体参数检测单元30为心电电极,母体生理数据为心电信号,从而控制器7对母体生理数据进行分析,得到母体心率时,可以对心电信号进行分析,得到母体心率。
在胎心检测单元20为压电陶瓷晶片,胎儿生理数据为超声回波信号,从而控制器7对母体生理数据进行分析,得到母体心率时,控制器7可以用于获取超声回波信号中的最大频率包络信号,基于最大频率包络信号得到胎儿心率。
相比于采用两个仪器分别获取胎儿心率和母体心率,本公开采用同一胎心多普勒仪可减低仪器成本,且直接利用同一胎心多普勒仪上的胎儿检测单元以及母体参数检测单元获取母胎心率,可简化仪器结构。
本公开实施例提供一种胎心多普勒仪,所述母体参数检测单元为血氧采集单元,胎心检测单元为超声采集单元,如图2所示,胎心多普勒仪包括壳体1、超声采集单元2和血氧检测单元3;胎心多普勒仪具体为手持式的胎心多普勒仪。超声采集单元2设置在壳体1的一个端部上,用于检测检测对象的胎心信号;血氧检测单元设置在壳体1内,用于检测检测对象的血氧信号。这种具有血氧采集功能的胎心多普勒仪,可以实现胎心仪的一物多用,携带更加方便;当胎心仪使用在家庭环境中时,避免胎心仪在胎儿出生后被弃用造成的资源浪费。
如图1-3所示,壳体1上开设有透光窗口111,血氧检测单元上设有安装在透光窗口111上的导光结构。壳体1的内腔中安装有控制器7,血氧检测单元3和超声采集单元2均与控制器7电连接。血氧检测单元包括设置在控制器7上的用于发射光线的光发射元件31和用于接收光线的光接收元件32,导光结构包括安装在透光窗口111上的第一导光件;第一导光件位于光发射元件31和透光窗口111之间的光线传输路径上,适于将光发射元件31发出的光线经过第一导光件传播后从透光窗口111向外射出。
通过在光发射元件31和透光窗口111之间的光线传输路径上设置第一导光件,光发射元件31发出的光线经过第一导光件传播后从可以更好的从透光窗口111向外射出。与不设置第一导光件的血氧测量方案相比,可以使光发射元件31发出的光线更有效的传达到被测物表面,在测量距离较远的情况下也能实现血氧参数的精准测量;与通过线材外接血氧超声采集单元的血氧测量方案相比,可以减少线材成本,在较低成本下也可以采集到有效信号。
在一些可选实施方式中,导光结构还包括设于壳体1的内部且位于透光窗口111和控制器7之间的第一阻隔件,第一阻隔件的内部设有第一光路通道,第一导光件具体为设置在第一光路通道内的第一导光柱33。第一导光柱33为透明的圆柱状的玻璃导光柱,第一阻隔件选用遮光性好且内表面反射性好的材料制成。第一阻隔件可以阻止发射光线透过,并将射到第一阻隔件内表面的发射光线反射到第一导光件上进行传输,从而减少发射光线在壳体1内的泄漏,使更多的发射光线 可以通过第一导光件集束向外发出,提高透光窗口111发出光线的光强,有利于提高血氧测量精度。在另外的一些实施方式中,第一导光件的形状还可以不限于圆柱状,第一导光件可以为一体式结构或由多个导光器件组成的组合式结构,只要第一导光件有利于将光发射元件31发出的发射光线透过透光窗口111集中向一个方向射出即可。
在一些可选实施方式中,导光结构还包括设于壳体1内且位于光接收元件32和透光窗口111之间的光线传输路径上的第二导光件,第二导光件适于将自透光窗口111射入的光线经过第二导光件传播后射向光接收元件32。第二导光件可以将被测物体表面发射回来的光线更有效的传达到光接收元件32,有利于光接收元件32采集到有效信号,提高血氧测量结果的准确性。进一步的,壳体1内设有位于透光窗口111和控制器7之间的第二阻隔件,第二阻隔件的内部设有第二光路通道,第二导光件为设置在第二光路通道内的第二导光柱34。具体的,第二导光柱34和第一导光柱33的结构、形状以及材质相同;第二阻隔件和第一阻隔件的材质也相同。第二阻隔件可以阻止光线透过,并将射到第二阻隔件内表面的光线反射到第二导光件上进行传输,减少入射光线在壳体1内的泄漏,使更多的入射光线可以通过第一导光件射向光接收元件32,有利于提高光接收元件32接收到入射光线的光强,提高血氧测量精度。
在一些可选实施方式中,第一阻隔件和第二阻隔件为一体结构的阻隔座35,第一光路通道为设置在阻隔座35上的第一通孔,第二光路通道为设置在阻隔座35上的第二通孔。这种第一阻隔件和第二阻隔件一体式的设计,具有结构简单,零部件少,易于装配,成本低的优点。在可替代的实施方式中,第一阻隔件和第二阻隔件还可以为两个相互独立且内部均具有通孔的柱形结构。
进一步的,控制器7上开设有位于光发射元件31和光接收元件32之间的槽口,阻隔座35上设有插设在槽口上的插板36,插板36位于第一通孔和第二通孔之间。插板36不仅可以防止光线从阻隔座35和控制器7之间的间隙发生泄漏,还可以防止出现光发射元件31和发接收元件之间的串光现象,有利于提高血氧测量精度。
在一些可选实施方式中,光发射元件31和阻隔座35的第一通孔正对设置,光接收元件32和阻隔座35的第二通孔正对设置,也即是光发射元件31和光接收元件32均位于透光窗口111的正下方。光发射元件31、第一导光柱33和透光窗口111沿同一直线布置,光发射元件31发出的发射光线可以直线经过透光窗口111向外发射,减少发射光线的损失;光接收元件32、第二导光柱34和透光窗口111沿同一直线布置,通过透光窗口111射入的反射光线可以直线经过第二导光柱34被光接收元件32接收,有利于提高光接收元件32接收到入射光线的光强,提高血氧测量精度。在另外的一些实施方式中,光发射元件31和光接收元件32还可以不设置在透光窗口111的正下方,光发射元件31发出的发射光线经过折射后通过透光窗口111向外射出,从透光窗口111射入的反射光线经过折射后被光接收元件32接收;如此设置,避免了光发射元件31和光接收元件32在控制器7上的位置对壳体1上透光窗口111的开设位置的限定,可以将透光窗口111设置在壳体1任意合适的位置处,以便于操作。
在一些可选实施方式中,壳体1上连接有位于阻隔座35上方的盖板11,盖板11上开设的两个通孔形成透光窗口111;盖板11的下端面和阻隔座35的上端面相抵,第一导光柱33和第二导光柱34上均设有与阻隔座35的上端面处于同一高度的台阶限位面,盖板11的下端面和第一导光柱33和第二导光柱34上的台阶限位面相抵;如此设置,便于将阻隔座35、第一导光柱33和第二导光柱34依次安装在壳体1内,然后通过盖板11的下端面对阻隔座35、第一导光柱33和第二导光柱34进行限位,可以将第一导光柱33和第二导光柱34稳定的固定在壳体1上,防止第一导光柱33和第二导光柱34发生脱落。
在一些可选实施方式中,第一导光件采用能聚集光线的聚光透镜,聚光透镜可以使发射光线的焦点刚好落在被测物体表面,可以向被测物体发出光强更大的光检测信号。具体的,聚光透镜包括一个凸面透镜,凸面透镜朝向光发射元件31的一侧面为凸面。在可替代的实施方式中,聚光透镜还可以是一个或多个凸面透镜或平面透镜组成而成的聚光透镜组。
通过在透光窗口111和光发射元件31及光接收元件32之间设置具有第一通孔和第二通孔的隔离座,在隔离座的第一通孔内设置第一导光柱33,在隔离座的第二通孔内设置第二导光柱34,可以使光发射元件31发出的发射光线更有效的传达到被测物表面,被测物表面反射的反射光线也可以更有效的被光接收元件32接收,可以在较低成本、较长测量距离的情况下实现血氧参数的精准测量。
在一些可选实施方式中,胎心检测单元包括超声采集单元,如图2-图5所示,该胎心多普勒仪还包括有显示屏4、喇叭9和电池8。超声采集单元2、血氧采集单元3、喇叭9、控制器7和电池8均设置在壳体1的内腔中。
壳体1呈长柱状,壳体1包括端面壳体101和柱面壳体,柱面壳体连接在端面壳体101的一侧。超声采集单元2的超声采集面与端面壳体101的位置对应设置;血氧采集单元3的血氧采集面位于柱面壳体上且自柱面壳体向外露出。这种具有血氧测量功能的胎心仪,超声采集单元2的超声采集面和血氧采集单元3的血氧采集面位于壳体1的两个不同表面上,当检测对象用手握持胎心仪并将超声采集面指向检测对象自身时,超声采集单元2可以检测到检测对象的胎心信号;同时检测对象的手会握持到位于柱面壳体上的血氧采集面,血氧采集单元3可以同时检测到检测对象的血氧信号,如此可以同时检测到检测对象的胎心信号和血氧信号,与现有技术中胎心仪采用血氧测试夹采集血氧信号的方式相比,无需用血氧测试夹夹持手指,操作更加简便;而且也省去了血氧测试夹与胎心仪连接所需的线材,可以降低产品成本。在另外的一些实施方式中,壳体1还可以呈椭球状,只要壳体1的外形便于用手握持,且超声采集单元2的超声采集面和血氧采集单元3的血氧采集面位于壳体1的两个不同表面上即可。
在一些可选实施方式中,柱面壳体包括平面壳体104和曲面壳体;曲面壳体有两块,分别为第一曲面壳体102和第二曲面壳体103。第一曲面壳体102和第二曲面壳体103连接形成壳体1的内腔,且第一曲面壳体102和第二曲面壳体103连接在端面壳体101的一侧;第二曲面壳体103的顶部设有安装槽,平面壳体104嵌设在安装槽内,平面壳体104的上顶面与安装槽的槽口齐平。血氧采集单元3的血氧采集面位于平面壳体104上且自平面壳体104向外露出。柱面壳体包括曲面壳体和平面壳体104,曲面壳体与握持收拢状态下手型的适配性更好,使用起来的手感更好;平面壳体104便于血氧采集单元3在壳体1上的安装,并有利于血氧采集单元3采集到有效的血氧信号。此处需要说明的是,平面壳体104并不特指平面壳体104的表面完全是平面,只需要该平面壳体104的局部为平面即可认定为本实施例所述的平面壳体104;同理,曲面壳体并不特指曲面壳体的外面完全为曲面,只需要曲面壳体的局部外形为适应握持收拢状态下的手型即可。
平面壳体104和曲面壳体的分界线为弧线;弧线包括向外凸出的凸弧段105和向内凹陷的凹弧段106,平面壳体104被两条凹弧段106围合的部分为内缩区域1041,平面壳体104被凸弧段105围合的部分为外扩区域1042,外扩区域1042 位于内缩区域1041远离柱面壳体的一端,超声采集单元2的超声采集面设置在内缩区域1041靠近外扩区域1042的一侧。超声采集面位于平面壳体104中间的较窄位置处,当用手握持壳体1时,手的大拇指和壳体1的接触位置可以刚好位于血氧采集面上,有利于血氧信号的采集。在另外的一些实施方式中,平面壳体104和曲面壳体的分界线还可以为直线,血氧采集单元3的血氧采集面设置在平面壳体104长度方向上的中间位置处。
平面壳体104的外扩区域1042上设有显示屏4,显示屏4安装在第二曲面壳体103上,平面壳体104与显示屏4对应的区域设有方孔,显示屏4凸出于第二曲面壳体103的部分嵌设在平面壳体104的方孔上,且显示屏4的上端面与平面壳体104的上端面齐平。将显示屏4设置在平面壳体104的外扩区域1042上,外扩区域1042可以提供足够大的显示空间,便于安装尺寸较大的显示模块,有利于观看显示屏4显示的测量结果。
在一些可选实施方式中,第一曲面壳体102上设有与喇叭9位置对应设置的喇叭孔5,第一曲面壳体102上还设有盖设在电池8外侧的电池盖6。喇叭孔5和电池盖6位于第二曲面壳体103背向平面壳体104的一侧面上。喇叭孔5和电池盖6设置在第二曲面壳体103背向平面壳体104的一侧,可以不占用平面壳体104一侧的安装空间,实现胎心仪的小型化、紧凑化设计。
在一些实施方式中,血氧采集单元3包括用于采集血氧信号的血氧测量模块、与血氧测量模块电连接的控制模块、以及设置在血氧采集面上且与控制模块电连接的触发感应模块。当触发感应模块感应到血氧采集面存在遮挡物时,触发感应模块向控制模块发出控制血氧测量模块启动的控制信号;如此可以实现血氧信号的自动检测,达到检测胎心信号的同时可以检测到血氧信号,提高产品的竞争力。
在一些可选实施方式中,超声采集单元通过各个晶片的信号强度,对胎儿位置进行声源定位,并在胎动等情况下实现目标跟随,降低胎心交互过程中因胎动、体位改变等因素导致超声采集单元无法获取有效胎儿信号,出现胎心信号获取不连续、胎心率无法正常计算等情况。
如图6所示,该超声采集单元包括晶片组件21以及角度调节组件22。其中,晶片组件21以及角度调节组件22均与控制器连接。在超声采集单元的工作过程中,控制器用于基于各个晶片对应的信号强度控制角度调节组件22的动作,以实现目标跟随。
具体地,晶片组件21包括多个晶片,对于晶片的具体数量及排列方式并不做任何限制,具体可以根据实际需求进行相应的设置。其中,每个晶片可以是一颗完整的晶片,采用脉冲波方式发射超声信号;也可以采用连续波的方式发射超声信号,即在一颗晶片的位置由半颗超声发射和半颗超声接收晶片组成一颗完整晶片。
角度调节组件22可以用于调节晶片组件21的位置,也可以调节晶片组件21中各个晶片的超声发射方向,等等。当角度调节组件22用于调节晶片组件21的位置时,控制器利用各个晶片对应的信号强度确定角度调节组件22的动作参数,并基于该动作参数控制角度调节组件22的动作,相应地,就可以调整晶片组件的位置。在晶片组件的位置改变时,其与目标体之间的相对位置就发生改变,从而就可以实现各个晶片与目标体之间的信号传输方向。
当角度调节组件22也可以在不改变晶片组件的位置的情况下,调整晶片的超声发射方向。例如,可以利用反射镜的工作原理,调整超声信号的传播方向,进而调整晶片的超声发射方向;即,在不改变晶片组件的位置的情况下,通过对超声传播路径的改变,实现目标跟随。
控制器可以是单片机、FPGA或其他可编程逻辑控制器,具体可以依据实际需求进行相应的设置。控制器接收到各个晶片对应的信号,对其进行处理后,得到对应的信号强度,再基于各个晶片的信号强度确定角度调节组件22的动作,实现目标跟随。
通过角度调节组件调整晶片与目标体之间的信号传输方向,其中,角度调节组件的动作是基于各个晶片对应的信号强度进行控制的,即,通过目标定位的方式实现晶片组件始终能够跟随目标,以获得准确的胎心信号。即,所述的超声采集单元能够对目标实现自动跟随,避免了人为的调整。
在一些可选实施方式中,晶片组件21中的多个晶片按照其排列的位置,可以划分为中心晶片和外沿晶片。其中,外沿晶片围绕中心晶片的外侧设置。
将多个晶片分为中心晶片与外沿晶片,以实现多方向的检测,再利用中心晶片外沿晶片对应的信号强度控制角度调节组件的动作,即,在多方向检测的基础上控制角度调节组件的动作,保证了较好的目标跟随效果。
图7a示出了晶片组件21中多个晶片的一种可选的排列方式,在超声采集单元的中心位置有一个晶片,四周由其他晶片环绕。将中心位置的晶片称之为中心晶片211,四周的其他晶片称之为外沿晶片212。
在晶片数量进一步增加的情况下,还可以环形方式排布,最内层的环形为中心晶片211,外层的环形为外沿晶片212。其中,图7b示出了晶片组件21的另一种可选的排序方式。
基于此,在本实施例中对中心晶片211与外沿晶片212的数量并不做任何限制,具体可以根据实际情况进行相应的设置即可。
在一些可选实施方式中,所述的控制器中还包括有超声收发控制模块,其负责晶片的超声波信号的发射与超声回波信号的接收处理。如图7a或图7b所示,将各个晶片按照一定的时序发射超声波信号和接收超声回波信号。
具体地,当晶片为是一个完整的晶片,超声收发控制模块可以采用脉冲波方式控制晶片发射超声信号。当晶片由半颗超声发射和半颗超声接收晶片组成时,超声收发控制模块可以采用连续波的方式控制晶片发射超声信号。
在一些可选实施方式中,角度调节组件22与晶片组件21连接,通过调整晶片组件21的角度的方式实现目标跟随。
具体地,角度调节组件22可以包括与晶片组件中的晶片一一对应的调节件,以实现各个晶片角度的独立调整;或者,也可以将各个晶片固定在载体上,角度调节组件22通过调整载体的角度,进而实现对晶片角度的调整。在此对具体的调节方式并不做任何限制,具体可以根据实际需求进行相应的设置。
以各个晶片固定在载体上为例,所述的角度调节组件22可以是包括转动件以及与转动件连接的连接件。其中,转动件固定在载体上实现载体的转动,连接件连接转动件与控制器,通过连接件的转动实现对转动件的转动控制。所述的转动件可以是转轴,或者万向转动件;所述的连接件可以是传动轴,也可以是连杆等等。或者,角度调节组件22可以采用转动机械臂的方式实现,转动机械臂的一端与晶片组件21中的载体213连接,另一端与控制器连接。
如图7a或图7b所示,晶片组件21还包括有载体213,各个晶片固定设置在载体213上。角度调节组件22与载体213 连接,用于调整载体的角度,以实现对载体213上的所有晶片角度的同时调整。将多个晶片设置在同一个载体上,利用载体的动作带动所有晶片的同时动作,减少了调整时间,提高了目标跟随的效率。
如图8所示,目标跟随的原理如下:在控制器中还包括有信号获取单元,其主要是用于超声解调、滤波处理以及能量计算。
具体地,信号获取单元接收到各个晶片对应的回波信号之后,分别经过对应通道的超声解调模块和滤波处理模块后,获取到超声多普勒频移信号。例如,每个晶片对应于一个信号处理通道,信号获取单元可以通过信号处理通道区分各个回波信号的来源。
信号获取单元中的能量计算模块负责计算每个晶片获取到的超声多普勒频移信号的能量,得到对应通道的能量信号,并根据能量信号进行胎心有效性检查。当任意一个或多个通道内获取到的信号幅值超过最小信号阈值,则认为有效胎心信号输入。当检测到所有通道中任意一个或多个通道内存在有效胎心信号,则启动胎心最佳位置识别和跟随功能。
在胎心最佳位置和跟随功能启动的情况下,实时判断能量最强的晶片通道,完成最强信号通道定位。否则,持续搜索有效胎心信号及能量最强的晶片通道。
在一些可选实施方式中,在控制器中还包括有调整角度识别单元,其具体的处理原理如图9所示。具体地,建立一个XYZ三轴坐标系,以中心晶片位置作为原点,晶片组件中载体作为XY平面,超声发射方向作为Z轴正方向。
首先,根据晶片组件21中晶片的排列情况,确定各个晶片在上述的XYZ中的坐标位置,利用坐标位置可以确定外沿晶片与中心晶片的间距Distance。即,间距为中心晶片的坐标与外沿晶片的坐标之间的距离。
在目标跟随过程中,控制器获取到各个晶片的信号之后,采用上文所述的方式完成最强信号通道定位,以确定能量最强的晶片通道。具体地,当最强信号通道是中心晶片通道时,表示超声采集单元当前正对胎心位置,表示此时不需要晶片组件的角度进行调整,即调整角度定义为0。否则,图9示出了外沿晶片的信号强度高于中心晶片的信号强度时,调整角度a的计算示意图。在外沿晶片中查找最强信号通道,获取最强信号通道对应的晶片的坐标,并计算最强信号通道对应的晶片与中心晶片通道间的能量差△E。根据反三角函数公式:
Figure PCTCN2022083998-appb-000001
其中,Distance为中心晶片与最强信号通道对应的晶片的距离。如此,便可确定晶片组件21的调整角度a。
控制器在确定出晶片组件21的调整角度之后,利用角度调节组件22对晶片组件21进行调整。具体地,
当调整角度a为0时,表示晶片组件无需转动;
当调整角度非0时,利用最强信号通道对应的晶片在XYZ坐标系中的坐标位置进行晶片组件21的旋转控制,使得中心晶片获取到的信号强度逐渐增加,并直到成为所有晶片中信号强度最强的晶片。
例如,以图9为例,当最强信号通道对应的晶片处于XY平面的第一象限时,通过一定的旋转控制方式(例如,有转角控制功能的转轴)将第一象限晶片向Z轴负方向,第三象限晶片向Z轴正方向转动,知道最强信号获取通道切换为中心晶片通道。即,控制器通过控制角度调节组件22调整旋转角度a,使得中心晶片的信号强度最强。
在一些可选实施方式中,所述的超声采集单元还包括有壳体以及可形变填充材料层。具体地,晶片组件21与壳体之间采用可形变填充材料层填充,例如,柔性材料,以保证晶片与壳体之间无空隙,同时不阻碍晶片组件的旋转。进一步地,采用同一可形变填充材料层进行调整,可以避免多种材料的折射率对信号传输的影响,提高了角度调节组件调整的准确性。
在一些可选实施方式中,所述的角度调节组件可以包括至少一个反射镜组件,各个反射镜组件与至少一个晶片对应,用于调整晶片的超声发射方向。所述的反射镜组件可以是利用具有角度旋转功能的连接件与反射镜形成,连接件的一端用于固定反射镜并带动反射镜转动,另一端与控制器连接。
具体地,在超声采集单元中可以仅设置一个反射镜组件,也可以设置多个反射镜组件。例如,可以设置2个或多个,等等。具体反射镜组件的数量可以根据实际需求进行相应的设置,在此对其并不做任何限制。
如上文所述,对晶片组件21进行调整的目的在于,使得晶片组件21中的中心晶片正对目标。因此,当中心晶片的反射方向不正对目标时,通过增加反射组件的方式将晶片发出的超声信号反射到被测目标上。具体地,通过角度调节组件22控制反射组件的动作,实现超声信号发射角度的改变,达到胎心信号的跟随。
其中,中心晶片的反射方向是否正对目标,可以通过比较各个晶片的信号强度进行确定。若中心晶片的信号强度不是所有晶片中最强的,那么就可以确定需要利用反射镜组件对晶片组件进行调整。具体的调整方式与上文所述的角度调整方式类似,采用信号最强的晶片与中心晶片的位置关系以及信号强度的差值进行确定。
通过改变晶片超声发射方向的方式实现目标跟随,避免了角度调节组件与晶片组件的直接接触,从而可以避免相互之间动作的影响。
进一步地,控制器内按照软件程序的功能,还可以包括信号获取单元23以及旋转角识别单元24。信号获取单元23用于接收各个晶片对应的超声回波信号,对超声回波信号进行处理,确定各个晶片对应的信号强度;再利用旋转角识别单元24基于各个晶片对应的信号强度,确定调整角度的大小。
本公开实施例中的超声采集单元还用于实现超声发射单元的发射频率与超声接收单元的接收频率的同步调整,进而实现超声接收单元的频率响应特性和发射频率的匹配,得到最佳的接收信噪比。
超声采集单元的目的在于,保证超声发射频率与超声接收频率的同步调整,以保证超声发射频率与超声接收频率的一致。在现有的方案中,一般是利用控制器产生发射频率信号,例如,频率脉冲。基于此,就相当于确定出了超声接收单元的接收频率。若基于谐振原理对超声接收单元的接收频率进行调整,谐振原理是基于电感、电容或电阻组成谐振电路,通过改变电感、电容或电阻的大小,即可实现对谐振频率进行调整。因此,控制器可以是在确定出接收频率之后,利用谐振电路的组成,计算出调整后的电感、电容或电阻值,即可确定控制信号,用以切换变频电路中的电路参数。
例如,在变频电路可提供三种谐振频率,在电路连接时,将这三种谐振频率与控制器对应的引脚连接。相应地,在控制器记录着三种谐振频率,在确定出接收频率之后,控制器即可控制对应引脚输出相应的控制信号,以选择出变频电路中的谐振频率。
当然,控制器产生控制信号的方式并不限于上文所述,也可以采用其他方式实现,在此对其并不做任何限定,只需保证控制信号是与发射频率信号对应的。
具体地,超声接收单元与超声发射单元同步进行变频,由于在超声接收单元中引入了变频电路,使得超声接收单元的频率响应特性可以在每个工作频点下都得到很好的品质因数。图11示出了现有的接收带宽,图12示出了本实施例中的接收带宽,通过对比可知本实施例中的带宽比现有技术要窄很多,对有用的超声回波信号选频特性更好,能滤除更多的带外噪声,实现了每个工作频点下超声接收单元都能达到最佳信噪比的目的,进而降低超声发射能量。
如图10所示,该超声采集单元包括超声发射单元25以及超声接收单元26,且该超声发射单元包括变频电路261。其中,超声发射单元25用于基于发射频率信号驱动超声波换能器,以产生超声波;超声接收单元26用于接收超声回波,以得到检测结果。超声波换能器为声电、电声转换传感器,当超声发射单元输出电信号驱动超声波换能器时,该超声波换能器将电信号转换为声波信号。当声波信号在检测对象组织中传输时一部分能力被反射回超声波换能器,超声波换能器将这部分声能量逆转换为电信号,并传输到超声接收单元26。
具体地,超声发射单元25与控制器连接,该控制器用于产生超声发射单元25的发射频率信号。超声接收单元26接收该发射频率信号,并将该发射频率信号处理后驱动超声波换能器。由于控制器产生的发射频率信号是数字信号,其不能直接驱动超声波换能器,因此需要超声发射单元25对该数字信号进行功放等处理后输出模拟信号,并利用该模拟信号驱动超声波换能器。其中,该超声采集单元中的控制器可以是该胎心多普勒仪中的控制器,也可以是单独的控制器,等等。
超声接收单元26具有与控制器连接的变频电路,该控制器还用于产生与发射频率信号对应的控制信号,用于调整变频电路的电路参数,以调整超声接收单元26的接收频率。具体地,变频电路可以是基于谐振原理改变超声接收单元的接收频率,即,通过调整变频电路的电路参数,改变变频电路的谐振频率,从而实现对接收频率的调整。或者,变频电路可以是基于有源滤波原理改变接收频率的,即,通过调整变频电路的电路参数,改变变频电路的滤波带宽,从而实现对接收频率的调整。
通过在超声接收单元中设置变频电路,该变频电路与超声发射单元同时受控于控制器,在对超声发射单元的发射频进行调整时,同时利用对变频电路的电路参数进行调整,实现接收频率的同步调整,使得超声接收单元的频率响应特征可以在每个工作频点下都得到很好的品质因数,对有用的超声回波信号选频特性更好,能滤除更多的带外噪声,实现了每个工作频点下超声接收单元都能达到最佳信噪比的目的。
在一些可选实施方式中,当变频电路是基于谐振原理改变超声接收单元的接收频率时,该变频电路可以称之为调谐电路,相应地,控制器输出的控制信号用于调整调谐电路的谐振频率。调谐电路的谐振频率的调整,可以通过调整调谐电路中的电容、电感或电阻的大小实现的。例如,在调谐电路中包括电容和电感,电感保持不变,提供改变电容的大小,实现谐振频率的调整。
具体地,变频电路为LC谐振电路,包括电容和可调电容模块。该可调电容模块与电感并联,且可调电容模块与控制器连接。其中,可调电容模块在控制器的控制信号的作用下,改变该变频电路中的电容值,以实现对谐振频率的调整。
在一些可选实施方式中,如图13所示,控制信号为电压信号Vc,可调电容模块包括变容二极管VD。该控制信号为施加在变容二极管VD上的反向电压,随着该反向电压的变化,可以改变该变容二极管VD的容值,容值可以变的变容二极管VD与电感L配合,可以组成变频的变频电路。
在一些可选实施方式中,该可调电容模块包括并联的至少两个电容支路,控制器与至少两个电容支路连接。各个电容支路包括串联的第一可控开关与第一电容,各个电容支路中第一电容的电容值不同或相同,在此对电容值的具体大小不做任何限制,可以根据实际需求进行设置即可。当各个电容支路中第一电容的电容值相同时,可以控制同时导通的电容支路的数量,同样可以调整电路电容值的大小。例如,如图14所示,包括至少三个电容支路,对应的第一电容值分别为C1、C2以及C3。第一电容值的不同,那么通过不同的电容支路与电感L就可以得到不同的谐振频率,进而可以得到不同的接收频率。例如,对于控制器而言,针对不同的发射频率信号,控制器输出不同大小的电压值,且每个电容支路中第一可控开关的导通条件不同,可以利用不同的电压值导通不同的第一可控开关,进而选通不同的电容支路。
在一些可选实施方式中,当变频电路是基于有源滤波原理改变接收频率时,该变频电路为有源滤波放大电路,控制信号用于调整有源滤波放大电路的带宽及中心频率。有源滤波放大电路用于对接收到的信号进行带通滤波,通过改变带通滤波的带宽,即可实现对超声接收单元的接收频率的调整。
具体地,有源滤波放大电路包括并联的至少两个带宽支路,控制器与至少两个带宽支路连接,带宽支路包括串联的第二可控开关与目标元件,目标元件包括第二电容和/或电阻。
其中,关于第一可控开关与第二可控开关,可以是模拟开关、继电器或三极管,等等,在此对其并不做任何限制。需要说明的是,控制器输出的控制信号可以是一个或多个,即,利用同一个控制信号控制至少两个电容支路,或带宽支路;或者,利用多个控制信号分别控制至少两个电容支路或带宽支路,即,控制信号与电容支路或带宽支路一一对应。
该超声接收单元26用于接收超声波换能器的微弱超声回波信号,对回波信号进行选频放大。如上文所述,利用变频电路进行选频,例如,电感以及电容组成的调谐电路,或者运放、电阻、电容组成的有源滤波放大电路。对于变频电路的电路参数调整,包括电感、电容和电阻等等,导致选频特性发生改变,并且适配当前超声发射频率,回波信号中的有用频率会被超声接收单元放大,而无用的频率成分则被超声接收单元滤除,进而获得噪声更低的回波信号。
在一些可选实施方式中,该超声检测电路还包括控制器。即,在超声检测电路中设置单独的控制器进行发射与接收频率的控制,使其独立于其他控制器,保证控制的可靠性。
在一些可选实施方式中,如图15所示,该超声采集单元还包括人机交互单元40,与控制器连接,用于展示超声检测电路的检测结果。具体地,人机交互单元可以是按键、显示件等等。
在一些可选实施方式中,该人机交互单元包括第一调节件,用于调整超声发射单元的发射频率。例如,在壳体上设置有第一调节件,检测对象通过操作该第一调节件对发射频率进行调整。
其中,检测结果包括胎心音频。该人机交互单元还包括音频输出件以及第二调节件,音频输出件用于播放胎心音频;第二调节件与音频输出件连接,第二调节件用于调整胎心音频的音量。
如图16所示,该超声采集单元还包括有信号提取单元50,与超声接收单元26的输出连接,用于对超声接收单元26 输出的信号进行解调、采样保持、滤波以及放大等等,将高频信号频谱搬移到音频信号。
如图16所示,检测对象通过人机交互单元40对发射频率进行调整,相应地,调整后的发射频率输出至控制器。控制器基于该调整后的发射频率生成发射频率信号以及控制信号,将发射频率信号发送至超声发射单元25,将控制信号发送至超声接收单元26的变频电路。超声发射单元25对发射频率信号进行处理后驱动超声波换能器发射超声波,该超声波换能器还接收超声回波,并将超声回波发送至超声接收单元26。变频电路261在控制信号的作用下,调整超声接收单元26的接收频率。相应地,超声接收单元26基于该接收频率对超声回波信号进行选频等处理,并将处理后的信号发送给信号提取单元50。信号提取单元50用于对超声接收单元26输出的信号进行解调、采样保持、滤波以及放大等等,并经控制器发送至人机交互单元40输出检测结果。
如图17所示,现有的超声采集单元一般包括端面壳体101、晶片层214以及灌封胶216。端面壳体与柱面壳体通过环氧树脂粘接剂密封粘接,晶片层通过特殊胶水与端面壳体内表面粘接为一体。晶片的正负极通过引线分别引出。晶片背面与端面壳体灌封一定量的灌封胶,可起到保护晶片层的作用。然而,如图20所示,这种超声采集单元采用的是固定频率输出,无法适应不同孕周及肥胖程度不同的孕妇,难以获取高质量的信号,从而最终影响到临床的实际检测效果。现有的超声采集单元基本是单频率下工作,如需针对不同的检测对象,需要用到不同频率,则需要通过配置不同频率的超声采集单元来实现,也即通过两只或多只不同频率的超声采集单元实现,亦或者通过在超声采集单元内部内置多晶片的方式实现,这就必将导致检测程序的复杂与不便以及检测成本的增加。
基于此,在本实施例中的超声采集单元中设置有变频晶片模块,其设置在壳体的端面壳体内,用于调整超声采集单元的工作频率。由于变频晶片模块的存在,使得该胎心多普仪在面对不同孕周及肥胖程度的孕妇时,只需要一个超声采集单元就可以实现,可以由使用者选择合适的超声采集单元的工作频率以获取最佳的信号质量以及提高测量结果,并降低了操作检测难度和医疗设备的成本,使胎心检测更加高效和便利。
该变频晶片模块可以是设置在超声采集单元的晶片层与端面壳体之间的至少一层介质层;也可以是包括至少两个晶片,且各个晶片的固有振动频率不全相同。
其中,如图18所示,在晶片层214与端面壳体101之间增设有介质层215,该介质层215的设置,用于改变晶片层214的固有振动频率,从而有助于更多频率段的超声波被检测对象接收。另一方面,介质层的设置改善了晶片层、端面壳体与检测对象之间传播的阻抗特性,使得声能得到更有效的传播,进而提高了超声采集单元的灵敏度。如图21所示,通过增设介质层之后,该超声采集单元能够输出多种工作频率,而不局限于1种工作频率。
该介质层215的厚度为四分之一波长,其材料可以是玻璃、石墨等固体材料,也可以是环氧树脂、塑料或者在环氧树脂中添加钨粉或氧化铝粉等按一定的配比搅拌配置固化而成。对于介质层而言,其可以是单层,也可以是多层,对于介质层的数量主要由材质特性和厚度尺寸决定。
在一些可选实施方式中,如图18所示,该超声采集单元还包括有背衬层217,该背衬层217设置在变频晶片模块远离端面壳体101的一侧。具体地,由于在晶片产生振动过程中除了向前端发射超声波,也会向晶片后端发射,传播一定的能量,在晶片的后端产生的超声波会有一定程度的反射至前端。在实际的设计过程中,希望晶片后端面的超声波尽量不或者少的反射至前端面,因此,在晶片背面设置一背衬层,背衬层材料的声阻抗远小于或者远大于晶片的声阻抗。基于此,在本实施例中选择高衰减系数的背衬,可以吸收晶片后端面反射的不同频率段的超声波,进入背衬内部,避免这些超声波经反射后再重回晶片前端,因为反射回来的超声波将对胎心信号产生影响,影响检测的效果。
进一步地,该超声采集单元包括至少两个晶片,例如,2-5个晶片,每个晶片均有自身的固有振动频率。该超声采集单元的工作频率范围涵盖1.0MHZ~5MHZ。如图19a-图19n所示,晶片的形状包括圆形、矩形、椭圆以及扇形中的至少一种。对于超声采集单元而言,其包括的晶片的形状可以是上述形状中的一种,也可以是至少两种形状组合而成的几何形状,等等。例如,若超声采集单元中包括5种固有振动频率的晶片,那么,该超声采集单元可以在如图22所示的5种工作频率下工作。当然,图21以及图22仅仅是一种示例,该超声采集单元的工作频率具体根据实际需求进行设置即可。
上述至少两个晶片的排列方式包括点阵排布、环阵排布或等分所述超声采集单元的超声采集面排布。在具体使用时,检测对象可根据被测对象的特征进行选择核实的频率段晶片进行工作。由于各个晶片的固有振动频率不全相同,因此,满足针对不同孕周及肥胖程度的孕妇,由检测对象选择合适的胎心超声采集单元工作频率以获取最佳的信号质量以及提高测量结果。
根据本公开实施例,提供了一种胎心多普勒仪的检测方法实施例,需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
在本实施例中提供了一种胎心多普勒仪的检测方法,可用于上述控制器等。图23是根据本公开实施例的胎心多普勒仪的检测方法的流程图,如图23所示,该流程包括如下步骤:
S11,获取胎儿检测单元采集到的胎儿生理数据以及母体参数检测单元采集的母体生理数据。
S12,对采集到的胎儿生理数据和母体生理数据进行分析,得到胎儿心率和母体参数。
具体地,胎心多普勒仪中胎儿检测单元以及母体参数检测单元的结构细节请参见上文所述,在此不再赘述。对于控制器而言,其在获取到胎儿生理数据以及母体生理数据之后,对其进行分析从而得到胎儿心率和母体参数。其中具体的分析过程请参见上文所述,在此不再赘述。
在一些可选实施方式中,在得到胎儿心率和母体心率后还用于对胎儿心率和母体参数进行预设处理。胎心多普勒仪获取胎儿心率和母体心率后,控制器对胎儿心率和母体参数进行的预设处理可以是显示、处理、分析等对胎儿心率和母体参数的各种处理方式,在此不做具体限定。
在一些可选实施方式中,控制器对胎儿心率和母体参数进行预设处理时,可以显示胎儿心率,例如,直接显示不同时间点对应的胎儿心率;又例如,利用不同时间点对应的胎儿心率生成胎心曲线,并显示胎心曲线。
在一些可选实施方式中,控制器对胎儿心率和母体参数进行预设处理时,可以显示母体参数,例如,直接显示不同时间点对应的母体参数;又例如,利用不同时间点对应的母体心率生成母心曲线,并显示母心曲线。
在一些可选实施方式中,控制器对胎儿心率和母体参数进行预设处理时,可以确定关于胎儿心率和/或母体参数的状态 信息,并显示状态信息。状态信息可以是胎儿心率和母体心率进行分析处理后的结果,例如,状态信息可以包括以下至少一种:胎儿心率的质量信息和母体参数的质量信息。质量信息用于表征心率的准确性、可靠性等,且质量信息的获取方式不做具体限定。
母体参数包括母体心率,为了比对校验胎儿心率和母体心率,检测胎儿心率和母体心率的心率重合,从而实现报警提示,还可以检测胎儿心率和母体心率的重合区间,并进行后续报警处理。具体地:首先,胎心多普勒仪分别利用胎儿检测单元和母体参数检测单元对应采集得到胎儿生理数据和母体生理数据。然后,控制器分别对胎儿生理数据和母体生理数据进行分析,得到胎儿心率和母体心率。最后,控制器还用于检测胎儿心率和母体心率的重合区间,且若检测到重合区间,则发出提示和/或在显示的心率曲线上标记重合区间。
胎儿心率和母体心率的重合区间可以是比对校验胎儿心率和母体心率后,检测出的胎儿心率和母体心率相同或接近的部分。胎儿心率和母体心率的重合区间表明存在将母体心率当成胎儿心率的可能性,或者表明心率值可能有误。对胎儿心率和母体心率进行预设处理时,可以检测胎儿心率和母体心率的重合区间,以便在判定胎儿心率和母体心率的心率重合的情况下,通过提示等方式实现报警。
在一些可选实施方式中,控制器检测胎儿心率和母体心率的重合区间时,可以获取第一时间内分别对应不同时刻的第一数量个心率差异,其中,每个时刻对应的心率差异为时刻的胎儿心率和母体心率之间的差异表征值;统计第一时间内满足第一条件的心率差异的第二数量;若第二数量满足第二条件,且第一时间中的第二时间内的心率差异均满足第一条件,则确定第一时间为胎儿心率和母体心率的重合区间。第一时间和第二时间的大小可以自定义设置,第二时间小于或等于第一时间即可。心率差异是胎儿心率和母体心率之间的差异表征值,该差异表征值可以是胎儿心率和母体心率之间的差值或者标准差值,例如,计算胎儿心率和母体心率之间的标准差序列。第一条件可以是心率差异等于预设心率差异值;可以是心率差异小于预设阈值等,还可以是表征胎儿心率和母体心率接近或重合的其他条件。第二条件可以为第二数量在第一数量中的占比大于预设占比,可以是第二数量大于预设数量值等。
控制器若检测到重合区间,则发出提示和/或在显示的心率曲线上标记重合区间。若检测到胎儿心率和母体心率的重合区间,则可以发出提示。提示的方式可以是任意一种提示实现方式,在此不做具体限定。例如,提示的方式包括以下至少一种:显示提示信息、播放提示声音以及打开提示灯等等。胎心多普勒仪可以包括与控制器连接的显示屏、扬声器、提示灯等,其中,显示屏可以用于显示提示信息,扬声器可以用于播放提示声音,而提示灯可以通过灯光提示检测对象,从而控制器检测到重合区间控制与控制器连接的显示屏、扬声器、提示灯等设备,进而通过显示屏显示、声音、灯光等方式进行报警。
控制器若检测到胎儿心率和母体心率的重合区间,则可以在显示的心率曲线上标记重合区间。其中,心率曲线包括以下至少一种:胎儿心率生成的胎心曲线和母体心率生成的母心曲线。标记的方式可以是任意一种标记实现方式,在此不做具体限定。在一实施例中,控制器可以用于利用不同时间点对应的胎儿心率可以生成胎心曲线,并利用不同时间点对应的母体心率生成母心曲线后,若检测到胎儿心率和母体心率的重合区间,则可以将心率曲线中与重合区间对应的线段的颜色或线条类型进行更换,或者在心率曲线中与重合区间对应的线段上添加预设标记。当然,若检测到胎儿心率和母体心率的重合区间,还可以通过其他方式实现报警。
通过上述提示、标记等报警方式,可以在胎儿心率和母体心率之间存在心率重合情况时,及时报警,以便提示胎心多普勒仪的检测对象调整胎心多普勒仪位置,确认信号来源,重新采集胎儿生理数据和母体生理数据,分析得到胎儿心率和母体心率,避免将胎心多普勒仪误测到的母体心率当成胎儿心率,从而引入不必要的临床干预。
为了对胎儿心率和母体心率进行预设处理,胎心多普勒仪还可以包括与控制器连接的至少一个功能组件,该功能组件包括显示屏、声音播放组件和提示灯中的至少一种。显示屏用于响应于控制器的指令进行显示。显示屏响应于控制器的指令进行显示时包括但不限于显示胎儿心率,显示母体心率,显示状态信息,显示胎心曲线,显示母心曲线,显示标记重合区间的心率曲线,显示提示信息等等。胎心多普勒仪还可以包括与控制器连接的用于播放提示声音的扬声器等声音播放组件、提示灯等其他用于进行报警处理的报警处理组件,在此不做具体限定。
由于胎心监护过程中,胎儿会出现扭动,尤其在产程过程中,胎儿会随着产程的进行不断下移,为了获取连续稳定的胎心信号,检测对象需要在胎儿监护过程中实时关注胎心信号质量,并根据胎心信号质量不断的调整超声采集单元的位置。基于此,为了解决因胎心偏离超声采集单元的超声覆盖范围而导致无法获取到有效胎心信号的问题,在本实施例中,超声采集单元的具体结构如图6-图7所示,该超声采集单元包括多个晶片以及角度调节组件。通过自动调整各个晶片的旋转角度,使得中心晶片的信号强度最强。基于此,如图24所示,上述的获取胎儿检测单元采集到的胎儿生理数据,包括如下步骤:
S21,获取各个晶片对应的信号强度。
控制器控制各个晶片以一定的时序发射超声信号,并接收对应于各个晶片的超声回波信号。如上文所述,在控制器中,采用不同的通道区分各个晶片,那么在对应于各个处理通道的处理,就可以确定相应晶片对应的信号强度。
具体的处理过程可以参见上文所示实施例中对应的处理,在此不再赘述。
S22,基于各个晶片对应的信号强度,控制角度调节组件的动作,以实现目标跟随。
其中,所述角度调节组件用于调整各个所述晶片与目标体之间的信号传输方法。
控制器在确定出各个晶片的信号强度之后,就可以确定信号强度最强的晶片的位置,并通过控制角度调节组件的动作实现目标跟随,以保证对应于目标信号输出的晶片其具有最强的信号强度。
例如,后续是利用晶片A对应的信号进行胎心率的计算,那么,通过角度调节组件的动作,使得晶片A对应的信号强度最强,以保证后续胎心率计算可靠性。结合图7a或图7b所示,若晶片A为中心晶片,那么就通过角度调节组件的动作,使得中心晶片对应的信号强度为所有晶片中最强的。角度调节组件的动作是基于各个晶片对应的信号强度进行控制的,即,通过目标定位的方式实现晶片组件始终能够跟随目标,以获得准确的胎心信号。
S23,获取各个晶片基于调整后的信号传输方向采集到的胎儿生理数据。
在对晶片的信号传输方向进行调整之后,各个晶片基于调整后的信号传输方向采集胎儿生理数据,并将采集到的胎儿生理数据发送至控制器,以使得控制器进行胎儿心率的分析计算。
进一步地,如上文所述,多个晶片分为中心晶片和外沿晶片,外沿晶片围绕中心晶片的外侧设置。基于此,上述S22可以包括如下步骤:
S221,比较多个晶片的信号强度,判断信号强度最强的晶片是否为中心晶片。
当信号强度最强的晶片为外沿晶片时,执行S222;否则,确定角度调节组件不需要进行调整。
S222,计算中心晶片的信号强度与最强的信号强度之间的信号强度差值。
控制器在确定出信号强度最强的晶片(将其称之为目标晶片)之后,就可以确定出中心晶片与目标晶片之间的信号强度差值。
S223,基于信号强度差值以及信号强度最强的晶片的位置,确定角度调节组件的调整角度及方向。
如上文所述,由于各个晶片在XY平面中的坐标位置确定,那么,中心晶片与目标晶片之间的位置关系也就确定。控制器就可以基于图9所示的计算原理,确定角度调节组件的调整角度及方向,其调整的目的在于,使得中心晶片的信号强度为所有晶片中最强的。利用中心晶片与外沿晶片的信号强度确定角度调节组件的调整角度及方向,使得中心晶片始终为所有晶片中信号强度最强的晶片,从而保证了目标的检测效果。
在一些可选实施方式中,在进行信号强度比较之前,控制器可以先对接收到的各个晶片的超声回波信号进行筛选,得到有效信号;再对有效信号进行信号强度的比较。具体的筛选可以为,将各个晶片的超声回波信号与预设值进行比较,若超声回波信号的强度大于预设值,表示其为有效信号;否则,认为其为无效信号,后续在信号强度的比较过程中就可以忽略该信号。
采用胎心多普勒仪从孕妇腹部寻找隐藏在子宫内的微小胎儿心脏并不是一件容易的事,且孕妇孕周越小胎儿心脏也越小,由胎儿心脏反射回来的多普勒频移信号越微弱,因此,需要采用非常大的增益参数对多普勒频移进行放大才能听到胎心音和进行胎心率计算。但在增益放大过程中,不仅会将有用信号放大,也会将噪声信号放大。如果直接对所获取到的所有信号均进行统一的放大,会导致胎心节拍信号不清晰,且在超声采集单元未获取到有效信号时,会将白噪声放大;在胎儿间歇性的肢体运动、胎儿打嗝时,由于运动速度比较快,会间歇性产生比较大的多普勒频移信号,再次经过较大的增益放大,又会使信号被过分放大而出现饱和并产生破音,使人感觉很刺耳,影响实际使用。基于此,在本公开实施例中,在对采集到的胎儿生理数据进行分析得到胎儿心率时,先对胎儿生理数据进行降噪,再利用降噪后的数据进行胎儿心率的计算。为下文描述方便,将采集到的胎儿生理数据称之为原始超声信号,将降噪后的数据称之为目标超声信号。具体地,如图25所示,上述的对采集到的胎儿生理数据进行分析得到胎儿心率,包括以下步骤:
S31,对原始超声信号进行有效信号识别,并对原始超声信号中的无效信号进行处理,得到待处理超声信号。
超声采集单元启动后发射固定频率超声波信号,当超声波信号碰到运动界面时会将超声波信号返回,此时超声采集单元将接收到的超声回波信号转化为电信号,并进行解调、滤波和放大处理,便可得到原始超声信号。其中,控制器所获取到的原始超声信号可以是超声采集单元实时采集到的,也可以是存储在控制器中,或者控制器从其他设备中获得的,在此对原始超声信号的来源并不做任何限定,具体根据实际需求进行设置。
有效信号的识别,也可以认为是有效性检测,即,识别出原始超声信号中的有效信号以及无效信号。对于有效信号的识别,可以是实现训练有有效信号识别模型,使得该有效信号识别模型学习有效信号以及无效信号的特征,从而能够识别出输入的信号是否为有效信号。或者,也可以是对原始超声信号进行包络以及基线分析,得到包络信号以及基线信号,再利用包络信号与基线信号的关系,确定出原始超声信号中的有效信号以及无效信号。
控制器在区分出有效信号以及无效信号之后,对原始超声信号中的无效信号进行处理,即,减小无效信号的幅值,得到待处理超声信号。需要说明的是,待处理超声信号包括原始超声信号中的有效信号,以及处理后的无效信号。其中,有效信号以及处理后的无效信号的顺序是与其在原始超声信号一一对应的。
在本实施例的一些可选实施方式中,在对原始超声信号进行有效信号的识别之前,控制器还可以对该原始超声信号进行基线滤波。具体地,白噪声是一种无规律、零均值的随机信号,不存在明显的周期峰值特征。在超声波信号未遇到运动界面时,回波信号中频偏信号不会存在明显的频率变化,而是呈均匀的白噪声形态。超声波信号遇到运动界面时,才会产生存在明显的频率变化的频偏信号。因此,将获取到的原始超声信号通过基线滤波器,如果为白噪声,基线滤波后信号就非常的平坦,无明显的周期起伏峰值特性。基线滤波处理可以采用常规的高低通滤波器,也可以是中值滤波、中点滤波等非线性滤波,用于去除高斯白噪声的影响和有效信号频带外的干扰。
S32,基于待处理超声信号进行峰值特征提取,并确定峰值特征对应的目标增益。
对于峰值特征的提取,可以是利用特征提取模型实现,也可以是对待处理超声信号的包络分析得到,等等,在此对其实现方式并不做任何限定。其中,峰值特征包括但不限于待处理超声信号的周期性、峰值趋势以及信噪比等等。
在本实施例中所述的峰值特征并不是特指一个峰值特征,而是所有峰值特征的总称。控制器利用提取得到的峰值特征计算目标增益,例如,在控制器中内置有目标增益的计算公式,控制器在获取到峰值特征之后,就可以将其代入到该公式中即可得到相应的目标增益。
峰值特征可以是与待处理超声信号中的各个采样点对应的,或者,也可以是待处理超声信号中一个固定尺寸范围内的所有采样点对应的。
当峰值特征与待处理超声信号中的各个采样点对应时,目标增益同样地与各个采样点对应。
当峰值特征与待处理超声信号中一个固定尺寸范围内的所有采样点对应时,可以计算该固定范围内采样点的峰值特征的均值或其他统计值,再基于计算结果计算对应的目标增益。例如,利用滑动窗进行峰值特征的计算,相应地,得到该滑动窗对应的目标增益。
S33,基于目标增益对原始超声信号进行增益处理,确定目标超声信号。
控制器在确定出目标增益之后,利用目标增益对相应的原始超声信号进行增益处理,得到最终降噪处理后的目标超声信号。如上文所述,目标增益可以是与各个采样点对应的,也可以是与多个采样点对应的。
当目标增益与各个采样点对应时,则针对各个采样点分别进行增益处理;当目标增益与多个采样点时,则对这些多个采样点利用同一目标增益进行增益处理。
S34,对目标超声信号进行分析,确定胎儿心率。
具体分析过程请参见上文所述,在此不再赘述。
通过对原始超声信号进行有效信号的识别,区分出有效信号以及无效信号,先对无效信号进行处理后得到待处理超声信号,再利用提取得到的峰值特征确定对应的目标增益,使得所得到的目标增益是与待处理超声信号的峰值特征对应的,能够进行自适应增益处理,由于先对待处理信号中的无效信号进行处理,以抑制干扰,再进行自适应增益处理,可以抑制偶发突变干扰,改善检测对象体验,提高降噪效果。
在一些可选实施方式中,上述S31可以包括:
S311,对原始超声信号进行滤波,得到原始超声信号的包络信号以及基线信号。
对于包络信号以及基线信号的获取,可以是通过低通滤波器得到,也可以是利用平滑窗得到,等等。具体地,采用两个不同截止频率的低通滤波器,对超声多普勒信号进行低通滤波处理,一个用于提取基线信号,一个用于提取包络信号;也可以通过两个不同大小的平滑窗,对超声多普勒信号进行平滑处理,一个较大的窗用于获取基线信号,另一个较小的平滑窗用于获取包络信号。
S312,获取基线信号对应的权重,并利用基线信号以及对应的权重确定阈值。
基线信号对应的权重是根据经验值设置的,也可以是对待处理超声信号进行分析得到的等等。控制器在得到权重之后,计算权重与基线信号的乘积,确定出对应的阈值。
S313,基于包络信号与对应的阈值的大小关系,确定原始超声信号中的有效信号以及无效信号。
控制器采用基线信号的加权值作为阈值,与包络信号进行比较,从而进行有效信号的识别。其中,包络信号与对应的阈值的大小关系的比较方式有很多种,在下文中分别以差值以及比值的方式进行描述。
在本实施例的一些可选实施方式中,上述S313可以包括:
(1)计算包络信号与对应的阈值的差值。
(2)当差值为正数时,确定包络信号中正数对应的信号为有效信号。
采用包络信号E(n)与基线信号B(n)的权重W(n)逐点相减得到差值信号L(n),即:L(n)=E(n)-W(n)*B(n),此时L(n)序列中的各个数值项包含正数与非正数,正数对应的信号代表原始超声信号中的有效信号,相反,非正数对应的信号代表原始超声信号中的无效信号。
在本实施例的另一些可选实施方式中,上述S313可以包括:
(1)计算包络信号与对应的阈值的比值。
(2)当比值大于1时,确定包络信号中比值大于1对应的信号为有效信号。
采用包络信号E(n)与基线信号B(n)的权重W(n)的比值来得到信噪比信号R(n),即:R(n)=E(n)/(W(n)*B(n)),此时R(n)序列中的各个数值包含大于1与不大于1的数,大于1的数对应的信号代表原始超声信号中的有效信号,相反,不大于1的数对应的信号代表原始超声信号中的无效信号。
S314,对无效信号的信号斜率进行处理,得到待处理超声信号。
控制器在区分出原始超声信号中的无效信号之后,可以减小无效信号的信号斜率,从而减少无效信号的信号变化,使其趋于平缓。其中,对于无效信号的信号斜率的处理方式在此对其并不做任何限定,只需保证减小无效信号的信号斜率即可。
控制器在对无效信号的信号斜率进行处理后,相应地,原始超声信号中的无效信号发生相应的改变,因此,即可得到待处理超声信号。
作为本实施例的一种可选实施方式,上述S314可以包括:
(1)将无效信号的信号斜率设置为零。
(2)采用第一标识标记出有效信号,并采用第二标识标记出无效信号,得到待处理超声信号。
控制器在识别出有效信号之后,保留原始超声信号中有效信号的位置信息,并与原始超声信号进行坐标对应。并将有效信号的信号采用第一标识标记为峰值信号段,其他部分采用第二标识标记为噪声信号段,并将噪声段内的信号斜率值置为0,得到待处理超声信号S n(n)。
将无效信号的信号斜率设置为零,使得无效信号为一个定值,减少后续增益处理的数据量;且利用相应的标识对有效信号与无效信号进行区分标记,以便于从待处理超声信号中准确地区分出有效信号与无效信号。
基于基线信号及其对应的权重确定阈值,即,该阈值的设置是与原始超声信号对应的,再利用包络信号与对应的阈值确定出有效信号以及无效信号,能够保证有效信号识别的可靠性,从而保证了所得到的待处理超声信号的准确性,提高了降噪效果。
在另一些可选实施方式中,上述S32可以包括:
S321,基于待处理超声信号的峰值位置以及峰值间隔,确定待处理超声信号的周期性。
由于在上述S32的处理过程中,已经得到原始超声信号的包络信号,利用该包络信号即可确定出待处理超声信号的峰值位置以及峰值间隔。通过对峰值位置以及峰值间隔进行分析,确定待处理超声信号的周期性。该周期性用于表示该待处理超声信号为周期信号,或非周期信号。
例如,在超声扫查过程中,由于刚开始无法确定扫查目标的位置,所采集到的原始超声信号为非周期信号,随着扫查的进行,不断修正扫查位置,即可得到较为准确扫查目标的位置,进而所得到的原始超声信号为周期信号。其中,在扫查过程中,由于干扰的存在可能会出现暂时的非周期信号。不论是周期信号,还是非周期信号,均可以通过对待处理超声信号的峰值位置以及峰值间隔分析得到。
具体地,峰值的周期性检测,用于查看峰值信号段是否呈周期性出现。
当超声采集单元未接触到皮肤,或者虽然接触到皮肤,并未移动超声采集单元或者获取到其他信号时,超声采集单元获取到的信号经过上述S31的处理时,在包络信号中无法识别到周期性峰值,将会被识别为噪声信号。
当超声采集单元遇到运动界面时便会获取到频偏信号时,经过上述S31后,可筛选得到信号的峰值位置,再通过峰值间隔便可判断出峰值的周期性。
S322,基于滑动窗对待处理超声信号进行相邻窗内能量的变化的计算,确定峰值趋势特征。
峰值趋势特征,可根据峰值信号的斜率变化,确定峰值的陡峭程度及峰值的走势。具体地,采用信号能量计算待处理超声信号S n(n)的斜率变化。即,首先对信号采用滑动窗平滑处理,然后计算滑动窗内各采样点的能量均值,再计算相邻窗对应的能量均值,最后计算相邻两个滑动窗对应的能量变化。其中,峰值越陡峭,能量值越大。
S323,利用各个滑动窗对应的能量与原始超声信号的基线信号的关系,确定信噪比。
信噪比特征识别,可采用上述滑动窗内的能量均值与S31中基线信号进行比值计算,得到信噪比。
S324,基于周期性、峰值趋势特征以及信噪比,确定目标增益。
如上文所述,在控制器中设置有目标增益的计算公式,在计算得到周期性、峰值趋势特征以及信噪比之后,将其代入到该计算公式中,即可确定出目标增益。具体地,根据信号趋势、幅值、信噪比等峰值特征进行差异化连续控制,保持信号幅值相对平稳,突显周期峰值,抑制底噪和干扰。
对于目标增益的计算,可以是与各个采样点对应的,也可以是与滑动窗对应的。以滑动窗为例,控制器计算滑动窗内所有采样点的信号斜率均值、滑动窗对应的能量值、幅值、以及信噪比等峰值特征作为增益控制因子,利用上述的计算公式,从而多维度自适应调整目标增益。
需要说明的是,可以仅仅计算有效信号对应的目标增益,也可以计算所有待处理信号对应的目标增益。当仅仅计算有效信号对应的目标增益时,利用目标增益对有效信号进行增益处理,对于无效信号不进行增益处理或进行衰减处理;当计算所有待处理信号对应的目标增益时,由于目标增益是基于峰值特征计算得到的,而在峰值特征计算之前,已经对于无效信号的信号斜率进行了处理,即,相当于对无效信号进行了衰减处理。此时再利用对应的目标增益对待处理超声信号进行增益处理,确定出目标超声信号。
如图26a所示,上图为自动增益控制前的原始超声信号,下图为根据本公开实施例提供的超声信号的降噪方法降噪处理后的目标超声信号。由图26a可见,信号幅值和峰值节拍特征得到明显增强,同时噪声信号被明显抑制。
如图26b所示,上图为自动增益控制前的原始超声信号,下图为根据本公开实施例提供的超声信号的降噪方法降噪处理后的目标超声信号。由图26b可见,即使原始超声信号的幅值变化较小,但是经过本公开实施例的处理后期信号幅值和峰值节拍特征得到明显增强,同时噪声信号被明显抑制。
如图26c所示,上图为自动增益控制前的原始超声信号,下图为根据本公开实施例提供的超声信号的降噪方法降噪处理后的目标超声信号,由图26c可见,噪声信号被明显抑制。
通过对待处理超声信号进行周期性的识别,能够识别出非周期信号以及周期信号,且结合峰值趋势特征以及信噪比等特征进行差异化连续控制,保持信号幅值相对平稳,突显周期峰值,抑制底噪和干扰。
作为本实施例的一种可选实施方式,该方法还包括:
(1)基于周期性以及原始超声信号中的有效信号,确定提示信息。
(2)在超声界面上显示目标超声信号以及提示信息。
根据原始超声信号的有效性和周期性,进行不同的增益控制处理,输出目标超声信号,并在未获取到连续稳定的周期信号时可进行相应的提示。
例如,当未识别出有效信号时,确定提示信息为未识别到有效信号。当超声采集单元未接触到皮肤,或者虽然接触到皮肤,并未移动超声采集单元或者获取到其他信号时,峰值检测模块无法识别到有效周期峰值,会将原始超声信号识别为噪声信号,信号斜率为0,且此时的能量非常小,趋于零,在增益控制过程中会被直接进行噪声抑制,即对信号不放大或者衰减处理,并提示未识别到有效信号。
再例如,当识别出有效信号且周期性为不呈规律的周期特征时,确定提示信息为识别到干扰。当超声采集单元获取到有效信号但峰值不呈规律的周期特征时,则待处理超声信号的信号噪声段进行底噪抑制(即,减小无效信号的信号斜率),同时对有效信号段内的周期峰值进行非线性增益放大,非周期峰值进行非线性增益控制。此时,提示识别到干扰。
当超声采集单元获取到有效信号并识别到周期峰值时,则根据对应的目标增益对待处理超声信号进行增益处理,得到目标超声信号。
在超声界面上显示相应的提示信息以便于检测对象能够直观地感知当前所获取到的原始超声信号的情况,以指引后续原始超声信号的获取。
在不需要额外增加传感器的情况下,通过对所获取到的原始超声信号进行形态识别和非线性增益控制,消除超声采集单元空置时的底噪和超声采集单元自激啸叫干扰,抑制超声采集单元移动、胎动、打嗝等偶发突变干扰的产生的间隙性非周期干扰,改善检测对象体验,同时还可以对原始超声信号进行非线性增益控制,凸显信号周期特征,提高信噪比。
在一些可选实施方式中,胎心多普勒仪中的胎心检测单元包括超声采集单元以及血氧采集单元。基于此,所获取到的胎儿生理数据为胎儿血氧数据,如图27所示,上述S11中的获取胎儿检测单元采集到的胎儿生理数据,包括如下步骤:
S41,获取胎心信号。
胎心信号是指心脏壁在心跳时发生的舒缩、心脏瓣膜的启闭、心血管的运动所形成的机械运动信号。胎心信号可通过超声采集单元拾取,即通过将装有超声发射器和超声接收器的超声采集单元置于母腹体表,对准胎儿心脏,发送超声波,并接收反射回的超声回波,超声回波的频率受到运动心脏的调制,即多普勒频移的角频率和心脏或血管壁舒缩运动的速度成正比,通过解调便可以得到胎儿的胎心信号。
S42,在确认获取的胎心信号为有效胎心信号时,进行肢体接入检测。
控制器通过对胎心信号进行有效信号的分析,在确认出获取到的胎心信号为有效胎心信号时,再进行肢体接入检测。对于有效胎心信号的分析,可以是通过对胎心信号的能量进行分析,并将能量值与能量阈值进行比较,确定胎心信号是否为有效胎心信号;也可以是将胎心信号与基线信号进行对比分析,确定胎心信号是否为有效胎心信号。
在一些可选实施方式中,上述S42中确认获取的胎心信号为有效胎心信号,可以包括:
S421,判断胎心信号是否大于设定信号阈值。
S422,当胎心信号大于设定信号阈值时,判断胎心信号是否满足预设条件。
S423,在胎心信号满足预设条件时,确定获取的胎心信号为有效胎心信号。
在一个具体实施方式中,可以判断胎心信号是否满足预设条件,在胎心信号满足预设条件时,确定获取的胎心信号为有效胎心信号。
进一步可选地,上述S422可以包括:
(1)对胎心信号的绝对值信号进行第一滤波处理,得到第一信号,并提取第一信号的包络信号。
在本实施例中,将一段时间长度的胎心信号的峰值点连线,就可以得到上方(正的)一条线和下方(负的)一条线,这两条线就叫包络线,包络线就是反映胎心信号幅度变化的曲线。
(2)对胎心信号的绝对值信号进行第二滤波处理,得到第二信号,并提取第二信号的基线信号。
可选地,利用低通数字滤波器对胎心信号的绝对值信号进行第一滤波处理和第二滤波处理,并设置第一滤波处理的截止频率大于第二滤波处理的截止频率。
胎心率基线信号,是指没有胎动和宫缩的情况下,历时10分钟的胎心率平均值,本实施例中,正常胎心率基线为110~160bpm,当胎心率基线大于160bpm时,则表示胎儿心动过速。当胎心率基线小于110bpm时,则表示胎儿心动过缓。需要说明的是,胎心率基线可以通过均值方式或者低通滤波方式获取。
(3)在预设时间范围内,包络信号和基线信号的比值大于设定信号质量阈值,则确定胎心信号满足预设条件。
在本实施例中,由于检测胎心信号的超声采集单元接收的胎心信号可能包含有很多的噪声信号,因此,可以对胎心信号进行滤波(低通),从而能得到无噪声的胎心信号。
由于只有在超声采集单元获取到有效胎心信号时,才能进行稳定的胎心率计算,因此,在本实施例中,也可以通过胎心率计算值的稳定性外推当前胎心信号的有效性。
进一步地,如果在反射式血氧设备启动后立即开启发光二极管,在设备闲置或肢体正常接入前,发光二极管一直工作,发光二极管使用寿命大大缩短,增大设备功耗,同时发光二极管发出的光线也会对人眼带来不适。而如果不立即启动发光二极管,需要在设备启动后通过二次手动操作开启发光二极管,增加操作的复杂性。
基于此,在一些可选实施方式中,上述S42中的进行肢体接入检测,可以包括:
S421,控制红外光管和/或红光管按照第一预设时序开启或关闭。其中,红外光管和红光管不同时开启。
具体地,输出第一脉冲控制信号至红外光管和/或红光管。
其中,参阅图28,图28是本实施例中第一脉冲控制信号一实施例的脉冲信号示意图,如图28所示,红光管(图未示)用于在第一脉冲控制信号S1的上升沿开始时关闭,以及在延时第一预设时间段T1后开启,并持续第二预设时间段T2,第一预设时间段T1和第二预设时间段T2之和为第一脉冲控制信号S1的高电平持续时间TH。
红外光管(图未示)用于在第一脉冲控制信号S1的下降沿开始时关闭,以及在延时第三预设时间段T3后开启,并持续第四预设时间段T4,第三预设时间段T3和第四预设时间段T4之和为第一脉冲控制信号S1的低电平持续时间TL。
S422,采集红外光和/或红光。
S423,根据红外光的信号强度和/或红光的信号强度,判断是否有肢体接入。
具体地,上述S423可以包括:
S4231,确定红外光管开启时间段采集的红外光的第一幅值,以及确定红外光管关闭时间段采集的红外光的第二幅值。和/或确定红光管开启时间段采集的红光的第三幅值,以及确定红光管关闭时间段采集的红光的第四幅值。
S4232,在第一幅值和第二幅值的幅值差大于设定第一幅度阈值,和/或第三幅值和第四幅值的幅值差大于设定第二幅度阈值时,确定有肢体接入。
在这一具体实施方式中,由于在没有肢体接入的情况下,由于没有肢体的反射,接收端基本上无法接收到红光管或红外光管发射的红光或红外光,只能接收到环境中的红光或红外光。因此,在这种情况下,红外光管开启时间段所获取的第一幅值与其关闭时间段所获取的第二幅值基本相等,因此在第一幅值和第二幅值的幅值差小于设定第一幅度阈值时,确定没有肢体接入。同理,红光管开启时间段所获取的第三幅值与其关闭时间段所获取的第四幅值基本相等,因此在第三幅值和第四幅值的幅值差小于设定第二幅度阈值时,确定没有肢体接入。
可以理解的是,本实施方式中的第一幅度阈值与待测肢体血液中的血红细胞对红外光的吸收能力有关,更具体来说,若血红细胞对红外光的吸收能力越强,则接收端接收到的红外光信号越弱,则与环境光中的红外光信号越接近,进一步设置第一幅度阈值越小即可,反之,则设置第一幅度阈值越大。同理,通过上述方式也可以确定第二幅度阈值,在此不做过多叙述。
在另一具体实施方式中,上述S423可以包括:
S4233,确定红外光管开启时间段红外光管发射的红外光的第一能量、以及采集的红外光的第二能量。和/或确定红光管开启时间段红光管发射的红光的第三能量、以及采集的红光的第四能量。
S4234,在第二能量与第一能量的比值大于设定第一比例阈值,和/或第三能量与第四能量的比值大于设定第二比例阈值时,确定有肢体接入。
在本实施例中,在没有肢体接入的情况下,由于没有肢体的反射,接收端基本上无法接收到红光管或红外光管发射的红光或红外光,只能接收到环境中的红光或红外光。因此,在没有肢体接入的情况下,采集的红外光的第二能量为环境中的红外光的能量。可以理解,在红外光管开启时间段红外光管发射的红外光的第一能量不变的情况下,没有肢体接入时第二能量与第一能量的比值,比有肢体接入时的比值小,也就是说,第二能量与第一能量的比值若大于设定第一比例阈值,则确定有肢体接入。
同理,在红光管开启时间段,也可以通过计算采集到的红光的第四能量,与红光管发射的红光的第三能量的比值,判定是否有肢体接入。
在本实施例中,由于在强光环境下和弱光环境下,环境光中的红外光或红光的能量不同,如上所述,在没有肢体接入的情况下,采集的红外光或红光的能量为环境中的红外光或红光的能量。因此,在红外光管开启时间段,在红外光管发射的红外光的第一能量不变的情况下,决定第二能量大小的环境光中的红外光能量,与环境光的强弱有关。
因此,在本实施例中,第一比例阈值由红外光管关闭时间段,采集的红外光强度确定。第二比例阈值由红光管关闭时间段,采集的红光强度确定。更具体地,若红外光强度/红光强度越强,则可以设置第一比例阈值/第二比例阈值越大,反 之,可以设置第一比例阈值/第二比例阈值越小。
可选地,在本实施例中,若仅仅检测到有效胎心信号,而未检测到肢体接入时,重复进行肢体接入检测,即,控制红外光管和/或红光管按照第一预设时序开启或关闭,并根据接收到的红光的信号强度和/或红外光的信号强度的变化,继续等待肢体接入。
S43,在检测到有肢体接入时,启动血氧检测功能进行血氧检测,以获得胎儿生理数据。
具体地,上述S43可以包括:
S431,控制红外光管和/或红光管按照第二预设时序开启或关闭。其中,红外光管和红光管不同时开启。
一般采用双波长透射光电检测方法来测量血氧饱和度,所以可以使无光、660nm的红光和940nm的红外光交替产生并采集得到各不同光时段的信号,通过减去无光时光电信号可以去除环境光的影响,并得到红光与红外光去除环境光影响后通过动脉血的光吸收引起的交变成分之比。
具体地,在本实施例中,红光管用于在第二脉冲控制信号的上升沿开始时关闭,以及在延时第五预设时间段后开启,并持续第六预设时间段,第五预设时间段和第六预设时间段之和为第二脉冲控制信号的高电平持续时间。
红外光管用于在第二脉冲控制信号的下降沿开始时关闭,以及在延时第七预设时间段后开启,并持续第八预设时间段,第七预设时间段和第八预设时间段之和为第二脉冲控制信号的低电平持续时间。
在本实施例中,可以将第二预设时序对应的开关频率设置为大于第一预设时序对应的开关频率,能够相应减少血氧检测时间,进一步增强检测精度和加快检测速度。另外,由于,第一预设时序用于检测是否有肢体接入,因此,为了减小耗电量,将第一预设时序开关频率设置得相对降低是合理的。
S432,基于接收到的红外光和/或红光,进行血氧检测。
在本实施例中,在采集到包含血氧饱和度的信号之后,由于获取的信号较为微弱且含有一定的噪声,因此,需要对获取的信号进行放大和滤波处理,根据处理后的信号,得到肢体的血氧饱和度。
可选地,在本实施例中,在检测到的胎心信号为无效胎心信号时,或者在检测到的胎心信号为有效胎心信号,但是没有检测到有肢体接入时,不进行S43,即不控制红外光管和/或红光管按照第二预设时序开启或关闭,不进行血氧检测。
在该方法中,若获取的胎心信号有效,且检测到有肢体接入,则对肢体进行血氧检测,否则不进行血氧检测。进行血氧检测,首先需开启红光管或红外光管,以对肢体发送红光或红外光,因此,实际上在本实施例提供的检测方法能够通过在检测到胎心信号为有效胎心信号,以及检测到有肢体接入时,控制红光管或红外光管发光的开始时点,进而降低功耗,同时还可以减少长时间开启血氧检测带来的光线不适感。
虽然结合附图描述了本公开的实施例,但是本领域技术人员可以在不脱离本公开的精神和范围的情况下做出各种修改和变型,这样的修改和变型均落入由所附权利要求所限定的范围之内。

Claims (70)

  1. 一种胎心多普勒仪,其特征在于,包括:
    壳体(1);
    胎心检测单元(20)和母体参数检测单元(30),所述胎心检测单元(20)和母体参数检测单元(30)分别用于采集胎儿生理数据和母体生理数据;
    所述壳体(1)的内腔中设有控制器(7);
    所述控制器(7)用于对所述采集到的胎儿生理数据和母体生理数据进行分析,得到胎儿心率和母体参数。
  2. 根据权利要求1所述的胎心多普勒仪,其特征在于,所述母体参数检测单元(30)为血氧采集单元或压电陶瓷晶片或心电电极。
  3. 根据权利要求2所述的胎心多普勒仪,其特征在于,
    当所述母体参数检测单元(30)为所述血氧采集单元,所述母体生理数据为血氧信号;所述控制器(7)用于对所述采集到的母体生理数据进行分析,得到母体参数时,所述控制器(7)还用于:确定所述血氧信号的包络,并基于所述包络得到所述母体参数;
    或者,
    当所述母体参数检测单元(30)为所述压电陶瓷晶片时,所述母体生理数据为超声回波信号,所述控制器(7)用于对所述采集到的母体生理数据进行分析,得到母体参数时,所述控制器(7)还用于:获取所述超声回波信号中的最大频率包络信号,基于所述最大频率包络信号得到所述母体参数;
    或者,
    当所述母体参数检测单元(30)为所述心电电极时,所述母体生理数据为心电信号,所述控制器(7)用于对所述采集到的母体生理数据进行分析,得到母体参数时,所述控制器(7)还用于:对所述心电信号进行分析,得到所述母体参数。
  4. 根据权利要求1所述的胎心多普勒仪,其特征在于,所述母体参数检测单元(30)包括血氧采集单元(3),所述血氧采集单元(3)上设有安装在所述壳体(1)上的导光结构。
  5. 根据权利要求4所述的胎心多普勒仪,其特征在于,所述壳体(1)上开设有透光窗口(111);所述血氧采集单元包括设置在所述控制器(7)上的光发射元件(31)和光接收元件(32),所述导光结构包括安装在所述壳体(1)上、且位于所述光发射元件(31)和所述透光窗口(111)之间的光线传输路径上的第一导光件,所述第一导光件适于将所述光发射元件(31)发出的光线经过所述第一导光件传播后从所述透光窗口(111)向外射出。
  6. 根据权利要求5所述的胎心多普勒仪,其特征在于,所述导光结构还包括设于所述壳体(1)内且位于所述透光窗口(111)和所述控制器(7)之间的第一阻隔件,所述第一阻隔件的内部设有第一光路通道,所述第一导光件为设置在所述第一光路通道内的第一导光柱(33)。
  7. 根据权利要求6所述的胎心多普勒仪,其特征在于,所述导光结构还包括设于所述壳体(1)内且位于所述光接收元件(32)和所述透光窗口(111)之间的光线传输路径上的第二导光件,所述第二导光件适于将自所述透光窗口(111)射入的光线经过所述第二导光件传播后射向所述光接收元件(32)。
  8. 根据权利要求7所述的胎心多普勒仪,其特征在于,所述导光结构还包括设于所述壳体(1)内且位于所述透光窗口(111)和所述控制器(7)之间的第二阻隔件,所述第二阻隔件的内部设有第二光路通道,所述第二导光件为设置在所述第二光路通道内的第二导光柱(34)。
  9. 根据权利要求8所述的胎心多普勒仪,其特征在于,所述第一阻隔件和所述第二阻隔件为一体结构的阻隔座(35),所述第一光路通道为设置在所述阻隔座(35)上的第一通孔,所述第二光路通道为设置在所述阻隔座(35)上的第二通孔。
  10. 根据权利要求9所述的胎心多普勒仪,其特征在于,所述光发射元件(31)和所述第一通孔正对设置;所述光接收元件(32)和所述第二通孔正对设置。
  11. 根据权利要求9所述的胎心多普勒仪,其特征在于,所述控制器(7)上开设有位于所述光发射元件(31)和所述光接收元件(32)之间的槽口,所述阻隔座(35)上设有插设在所述槽口上的插板(36)。
  12. 根据权利要求11所述的胎心多普勒仪,其特征在于,所述阻隔座(35)未设有所述插板(36)的部分的下端面与所述控制器(7)设有所述光发射元件(31)和所述光接收元件(32)的上表面贴合;所述阻隔座(35)远离所述控制器(7)的上端面和所述壳体(1)的内壁面紧密贴合。
  13. 根据权利要求9所述的胎心多普勒仪,其特征在于,所述壳体(1)上连接有位于所述阻隔座(35)上方的盖板(11),所述透光窗口(111)开设在所述盖板(11)上,所述盖板(11)的下端面与所述阻隔座(35)的上端面相抵,所述第一导光柱(33)和所述第二导光柱(34)上均设有与所述盖板(11)的下端面限位配合的台阶限位面。
  14. 根据权利要求5所述的胎心多普勒仪,其特征在于,所述第一导光件为能将光线聚成光束的聚光透镜。
  15. 根据权利要求14所述的胎心多普勒仪,其特征在于,所述聚光透镜包括至少一个凸面透镜,所述凸面透镜朝向所述光发射元件(31)的一侧面为凸面。
  16. 根据权利要求4-15中任一项所述的胎心多普勒仪,其特征在于,所述胎心检测单元(20)包括超声采集单元,所述超声采集单元的胎心采集面和所述血氧采集单元的血氧采集面位于所述壳体(1)的两个不同表面上。
  17. 根据权利要求16所述的胎心多普勒仪,其特征在于,所述壳体(1)包括端面壳体(101)和柱面壳体,所述超声采集单元(2)的超声采集面与所述端面壳体(101)位置对应设置,所述血氧采集单元(3)的血氧采集面位于所述柱面壳体上且自所述柱面壳体向外露出。
  18. 根据权利要求17所述的胎心多普勒仪,其特征在于,所述壳体(1)的柱面壳体包括曲面壳体和平面壳体(104),所述血氧采集单元(3)的血氧采集面位于所述平面壳体(104)上。
  19. 根据权利要求18所述的胎心多普勒仪,其特征在于,所述平面壳体(104)上设有显示屏(4)。
  20. 根据权利要求18所述的胎心多普勒仪,其特征在于,所述曲面壳体上设有喇叭孔(5)。
  21. 根据权利要求20所述的胎心多普勒仪,其特征在于,所述曲面壳体上还设有电池盖(6)。
  22. 根据权利要求21所述的胎心多普勒仪,其特征在于,所述喇叭孔(5)和所述电池盖(6)设置在所述曲面壳体背 向所述平面壳体(104)的一侧。
  23. 根据权利要求16-22中任一项所述的胎心多普勒仪,其特征在于,所述血氧采集单元(3)包括用于采集血氧信号的血氧测量模块以及设置在所述血氧采集面上且与所述控制器电连接的触发感应模块;当所述触发感应模块感应到所述血氧采集面存在遮挡物时向所述控制器发出控制所述血氧测量模块启动的控制信号。
  24. 根据权利要求1所述的胎心多普勒仪,其特征在于,所述胎心检测单元包括超声采集单元,所述超声采集单元包括:
    晶片组件(21),具有多个晶片;
    角度调节组件(22),用于调整各个所述晶片与目标体之间的信号传输方向;
    其中,所述控制器(7)与所述角度调节组件(22)连接,所述控制器(7)用于基于各个所述晶片对应的信号强度控制所述角度调节组件(22)的动作,以实现目标跟随。
  25. 根据权利要求24所述的胎心多普勒仪,其特征在于,所述多个晶片分为中心晶片(211)和外沿晶片(212),所述外沿晶片(212)围绕所述中心晶片(211)的外侧设置,所述控制器(7)用于基于所述中心晶片(211)对应的信号强度与所述外沿晶片(212)对应的信号强度,控制所述角度调节组件(22)的动作。
  26. 根据权利要求25所述的胎心多普勒仪,其特征在于,所述角度调节组件(22)与所述晶片组件(21)连接,所述角度调节组件(22)用于调整所述晶片组件(21)的角度。
  27. 根据权利要求26所述的胎心多普勒仪,其特征在于,所述晶片组件(21)包括:
    载体(213),所述多个晶片设置在同一所述载体(213)上;
    所述角度调节组件(22)与所述载体(213)连接,用于调整所述载体(213)的角度。
  28. 根据权利要求26或27所述的胎心多普勒仪,其特征在于,还包括:
    可形变填充材料层,设置在所述晶片组件与所述壳体的端面壳体之间。
  29. 根据权利要求24所述的胎心多普勒仪,其特征在于,所述角度调节组件(22)包括:
    至少一个反射镜组件,各个所述反射镜组件与至少一个所述晶片对应,用于调整所述晶片的超声发射方向。
  30. 根据权利要求1所述的胎心多普勒仪,其特征在于,所述胎心检测单元包括超声采集单元,所述超声采集单元包括:
    超声发射单元(25),与控制器(7)连接,所述控制器(7)用于产生所述超声发射单元(25)的发射频率信号;
    超声接收单元(26),具有与所述控制器(7)连接的变频电路(261),所述控制器(7)还用于产生与所述发射频率信号对应的控制信号,所述控制信号用于调整所述变频电路(261)的电路参数,以调整所述超声接收单元(26)的接收频率。
  31. 根据权利要求30所述的胎心多普勒仪,其特征在于,所述变频电路(261)为调谐电路,所述控制信号用于调整所述调谐电路的谐振频率。
  32. 根据权利要求31所述的胎心多普勒仪,其特征在于,所述变频电路包括:
    电感;
    可调电容模块,与所述电感并联,所述可调电容模块与所述控制器(7)连接。
  33. 根据权利要求32所述的胎心多普勒仪,其特征在于,所述控制信号为电压信号,所述可调电容模块包括变容二极管。
  34. 根据权利要求33所述的胎心多普勒仪,其特征在于,所述可调电容模块包括:
    并联的至少两个电容支路,所述控制器与所述至少两个电容支路连接,所述电容支路包括串联的第一可控开关与第一电容。
  35. 根据权利要求30所述的胎心多普勒仪,其特征在于,所述变频电路为有源滤波放大电路,所述控制信号用于调整所述有源滤波放大电路的带宽及中心频率。
  36. 根据权利要求35所述的胎心多普勒仪,其特征在于,所述有源滤波放大电路,包括:
    并联的至少两个带宽支路,所述控制器与所述至少两个带宽支路连接,所述带宽支路包括串联的第二可控开关与目标元件,所述目标元件包括第二电容和/或电阻。
  37. 根据权利要求30-36中任一项所述的胎心多普勒仪,其特征在于,所述超声采集单元还包括:
    人机交互单元(40),与所述控制器(7)连接,用于展示所述超声采集单元(2)的检测结果。
  38. 根据权利要求37所述的胎心多普勒仪,其特征在于,所述人机交互单元(40)包括第一调节件,所述调节件用于调整所述超声发射单元(25)的发射频率。
  39. 根据权利要求37所述的胎心多普勒仪,其特征在于,所述检测结果包括胎心音频,所述人机交互单元(40)还包括:
    音频输出件,用于播放所述胎心音频;
    第二调节件,与所述音频输出件连接,所述第二调节件用于调整所述胎心音频的音量。
  40. 根据权利要求1所述的胎心多普勒仪,其特征在于,所述胎心检测单元包括超声采集单元,所述超声采集单元包括:
    变频晶片模块,设置在所述壳体的端面壳体(101)内,所述变频晶片模块用于调整所述超声采集单元(2)的工作频率。
  41. 根据权利要求40所述的胎心多普勒仪,其特征在于,所述变频晶片模块包括:
    依次设置的至少一层介质层(215)以及晶片层(214);
    其中,所述至少一层介质层(215)设置在所述晶片层(214)与所述端面壳体(101)之间。
  42. 根据权利要求40所述的胎心多普勒仪,其特征在于,所述变频晶片模块包括:
    至少两个晶片,各个所述晶片的固有振动频率不全相同。
  43. 根据权利要求42所述的胎心多普勒仪,其特征在于,所述晶片的形状包括圆形、矩形、椭圆以及扇形中的至少一种。
  44. 根据权利要求42所述的胎心多普勒仪,其特征在于,各个所述晶片的排列方式包括点阵排布、环阵排布或等分所述超声采集单元的超声采集面排布。
  45. 根据权利要求40-44中任一项所述的胎心多普勒仪,其特征在于,所述超声采集单元包括:
    背衬层(217),设置在所述变频晶片模块远离所述端面壳体(101)的一侧。
  46. 一种胎心多普勒仪的检测方法,其特征在于,所述胎心多普勒仪包括胎儿检测单元以及母体参数检测单元,所述检测方法包括:
    获取胎儿检测单元采集到的胎儿生理数据以及母体参数检测单元采集的母体生理数据;
    对所述采集到的胎儿生理数据和母体生理数据进行分析,得到胎儿心率和母体参数。
  47. 根据权利要求46所述的检测方法,其特征在于,所述检测方法还包括以下至少一个步骤:
    显示所述胎儿心率;
    显示所述母体参数;
    确定关于所述胎儿心率和/或母体参数的状态信息,并显示所述状态信息。
  48. 根据权利要求46所述的检测方法,其特征在于,所述母体参数包括母体心率,所述检测方法还包括:
    检测所述胎儿心率和所述母体心率的重合区间;
    若检测到所述重合区间,则发出提示和/或在显示的心率曲线上标记所述重合区间,其中,所述心率曲线包括以下至少一种:所述胎儿心率生成的胎心曲线和所述母体心率生成的母心曲线。
  49. 根据权利要求48所述的检测方法,其特征在于,所述检测所述胎儿心率和所述母体心率的重合区间,包括:
    获取第一时间内分别对应不同时刻的第一数量个心率差异,其中,每个时刻对应的所述心率差异为所述时刻的胎儿心率和所述母体心率之间的差异表征值;
    统计所述第一时间内满足第一条件的所述心率差异的第二数量;
    若所述第二数量满足第二条件,且所述第一时间中的第二时间内的心率差异均满足所述第一条件,则确定所述第一时间为所述胎儿心率和所述母体心率的重合区间。
  50. 根据权利要求49所述的检测方法,其特征在于,所述差异表征值为所述胎儿心率和所述母体心率之间的差值或者标准差值;
    所述第一条件为所述心率差异小于预设阈值;
    所述第二条件为所述第二数量在所述第一数量中的占比大于预设占比。
  51. 根据权利要求48所述的检测方法,其特征在于,
    所述提示的方式包括以下至少一种:显示提示信息、播放提示声音以及打开提示灯;
    所述标记的方式包括将所述心率曲线中与所述重合区间对应的线段的颜色或线条类型进行更换,或者在所述心率曲线中与所述重合区间对应的线段上添加预设标记。
  52. 根据权利要求46所述的检测方法,其特征在于,所述胎儿检测单元包括超声采集单元,所述超声采集单元包括多个晶片以及角度调节组件;所述获取胎儿检测单元采集到的胎儿生理数据,包括:
    获取各个晶片对应的信号强度;
    基于各个所述晶片对应的信号强度,控制角度调节组件的动作,以实现目标跟随,所述角度调节组件用于调整各个所述晶片与目标体之间的信号传输方向;
    获取各个所述晶片基于调整后的信号传输方向采集到的胎儿生理数据。
  53. 根据权利要求52所述的检测方法,其特征在于,所述多个晶片分为中心晶片和外沿晶片,所述外沿晶片围绕所述中心晶片的外侧设置,所述基于各个所述晶片对应的信号强度,控制角度调节组件的动作,以实现目标跟随,包括:
    比较所述多个晶片的信号强度,判断所述信号强度最强的晶片是否为所述中心晶片;
    当所述信号强度最强的晶片为所述外沿晶片时,计算所述中心晶片的信号强度与最强的信号强度之间的信号强度差值;
    基于所述信号强度差值以及所述信号强度最强的晶片的位置,确定所述角度调节组件的调整角度及方向。
  54. 根据权利要求46-53中任一项所述的检测方法,其特征在于,所述胎儿检测单元包括超声采集单元,所述胎儿生理数据为原始超声信号时,对所述采集到的胎儿生理数据进行分析,得到胎儿心率,包括:
    对所述原始超声信号进行有效信号识别,并对所述原始超声信号中的无效信号进行处理,得到待处理超声信号;
    基于所述待处理超声信号进行峰值特征提取,并确定所述峰值特征对应的目标增益;
    基于所述目标增益对所述原始超声信号进行增益处理,确定目标超声信号;
    对所述目标超声信号进行分析,确定所述胎儿心率。
  55. 根据权利要求54所述的检测方法,其特征在于,所述对所述原始超声信号进行有效信号识别,并对所述原始超声信号中的无效信号进行处理,得到待处理超声信号,包括:
    对所述原始超声信号进行滤波,得到所述原始超声信号的包络信号以及基线信号;
    获取所述基线信号对应的权重,并利用所述基线信号以及对应的权重确定阈值;
    基于所述包络信号与对应的阈值的大小关系,确定所述原始超声信号中的有效信号以及无效信号;
    对所述无效信号的信号斜率进行处理,得到所述待处理超声信号。
  56. 根据权利要求55所述的检测方法,其特征在于,所述基于所述包络信号与对应的阈值的大小关系,确定所述原始超声信号中的有效信号以及无效信号,包括:
    计算所述包络信号与对应的阈值的差值;
    当所述差值为正数时,确定所述包络信号中所述正数对应的信号为所述有效信号。
  57. 根据权利要求55所述的检测方法,其特征在于,所述基于所述包络信号与对应的阈值的大小关系,确定所述原始超声信号中的有效信号以及无效信号,包括:
    计算所述包络信号与对应的阈值的比值;
    当所述比值大于1时,确定所述包络信号中比值大于1对应的信号为所述有效信号。
  58. 根据权利要求55所述的检测方法,其特征在于,所述对所述无效信号的信号斜率进行处理,得到所述待处理超声信号,包括:
    将所述无效信号的信号斜率设置为零;
    采用第一标识标记出所述有效信号,并采用第二标识标记出所述无效信号,得到所述待处理超声信号。
  59. 根据权利要求54所述的检测方法,其特征在于,所述基于所述待处理超声信号进行峰值特征提取,并确定所述峰值特征对应的目标增益,包括:
    基于所述待处理超声信号的峰值位置以及峰值间隔,确定所述待处理超声信号的周期性;
    基于滑动窗对所述待处理超声信号进行相邻窗内能量的变化的计算,确定峰值趋势特征;
    利用各个所述滑动窗对应的能量与所述原始超声信号的基线信号的关系,确定信噪比;
    基于所述周期性、所述峰值趋势特征以及所述信噪比,确定所述目标增益。
  60. 根据权利要求54所述的检测方法,其特征在于,所述峰值特征包括所述待处理超声信号的周期性,所述方法还包括:
    基于所述周期性以及所述原始超声信号中的有效信号,确定提示信息;
    在超声界面上显示所述目标超声信号以及所述提示信息。
  61. 根据权利要求60所述的检测方法,其特征在于,所述基于所述周期性以及所述原始超声信号中的有效信号,确定提示信息,包括:
    当未识别出有效信号时,确定所述提示信息为未识别到有效信号。
  62. 根据权利要求60所述的检测方法,其特征在于,所述基于所述周期性以及所述原始超声信号中的有效信号,确定提示信息,包括:
    当识别出所述有效信号且所述周期性为不呈规律的周期特征时,确定所述提示信息为识别到干扰。
  63. 根据权利要求46所述的检测方法,其特征在于,当所述胎儿检测单元包括超声采集单元以及血氧采集单元时,获取胎儿检测单元采集到的胎儿生理数据,包括:
    获取胎心信号;
    在确认获取的所述采集信号为有效胎心信号时,进行肢体接入检测;
    在检测到有肢体接入时,启动血氧检测功能进行血氧检测,以获得所述胎儿生理数据。
  64. 根据权利要求63所述的检测方法,其特征在于,所述确认获取的所述胎心信号为有效胎心信号,包括:
    判断所述胎心信号是否大于设定信号阈值;
    若是,则判断所述胎心信号是否满足预设条件;
    在所述胎心信号满足所述预设条件,确定获取的所述胎心信号为有效胎心信号。
  65. 根据权利要求64所述的检测方法,其特征在于,所述判断所述胎心信号是否满足预设条件,包括:
    对所述胎心信号的绝对值信号进行第一滤波处理,得到第一信号,并提取所述第一信号的包络信号;以及
    对所述胎心信号的绝对值信号进行第二滤波处理,得到第二信号,并提取所述第二信号的基线信号;
    在预设时间范围内,所述包络信号和所述基线信号的比值大于设定信号质量阈值,则确定所述胎心信号满足所述预设条件;
    其中,所述第一滤波处理的截止频率大于所述第二滤波处理的截止频率。
  66. 根据权利要求63所述的检测方法,其特征在于,所述进行肢体接入检测,包括:
    控制红外光管和/或红光管按照第一预设时序开启或关闭;其中,所述红外光管和所述红光管不同时开启;
    采集红外光和/或红光;
    根据所述红外光的信号强度和/或所述红光的信号强度,判断是否有肢体接入。
  67. 根据权利要求66所述的检测方法,其特征在于,所述控制红外光管和/或红光管按照第一预设时序开启或关闭,包括:
    输出第一脉冲控制信号至所述红外光管和/或所述红光管;
    其中,所述红光管用于在所述第一脉冲控制信号的上升沿开始时关闭,以及在延时第一预设时间段后开启,并持续第二预设时间段,所述第一预设时间段和所述第二预设时间段之和为所述第一脉冲控制信号的高电平持续时间;
    所述红外光管用于在所述第一脉冲控制信号的下降沿开始时关闭,以及在延时第三预设时间段后开启,并持续第四预设时间段,所述第三预设时间段和所述第四预设时间段之和为所述第一脉冲控制信号的低电平持续时间。
  68. 根据权利要求66所述的检测方法,其特征在于,所述根据所述红外光的信号强度和/或所述红光的信号强度,判断是否有肢体接入,包括:
    确定所述红外光管开启时间段采集的红外光的第一幅值,以及确定所述红外光管关闭时间段采集的红外光的第二幅值;和/或,
    确定所述红光管开启时间段采集的红光的第三幅值,以及确定所述红光管关闭时间段采集的红光的第四幅值;
    在所述第一幅值和所述第二幅值的幅值差大于设定第一幅度阈值,和/或所述第三幅值和所述第四幅值的幅值差大于设定第二幅度阈值时,确定有肢体接入。
  69. 根据权利要求66所述的检测方法,其特征在于,所述根据所述红外光的信号强度和/或所述红光的信号强度,判断是否有肢体接入,包括:
    确定所述红外光管开启时间段所述红外光管发射的红外光的第一能量、以及采集的红外光的第二能量;和/或
    确定所述红光管开启时间段所述红光管发射的红光的第三能量、以及采集的红光的第四能量;
    在所述第二能量与所述第一能量的比值大于设定第一比例阈值,和/或所述第三能量与所述第四能量的比值大于设定第二比例阈值时,确定有肢体接入;
    其中,所述第一比例阈值由所述红外光管关闭时间段,采集的红外光强度确定,所述第二比例阈值由所述红光管关闭时间段,采集的红光强度确定。
  70. 根据权利要求66所述的检测方法,其特征在于,所述启动血氧检测功能进行血氧检测,包括:
    控制所述红外光管和/或所述红光管按照第二预设时序开启或关闭;其中,所述红外光管和所述红光管不同时开启,所述第二预设时序对应的开关频率大于所述第一预设时序对应的开关频率;
    基于接收到的红外光和/或红光,进行血氧检测。
PCT/CN2022/083998 2021-04-02 2022-03-30 胎心多普勒仪及检测方法 WO2022206822A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22779004.5A EP4278980A4 (en) 2021-04-02 2022-03-30 FETAL DOPPLER AND DETECTION METHODS
US18/546,421 US20240099637A1 (en) 2021-04-02 2022-03-30 A fetal doppler and a detection method

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN202110362153.0 2021-04-02
CN202110362153.0A CN115177245B (zh) 2021-04-02 2021-04-02 血氧检测方法、胎心监测设备及计算机可读存储介质
CN202110572668.3A CN115381482A (zh) 2021-05-25 2021-05-25 超声探头、控制方法及医疗设备
CN202110572668.3 2021-05-25
CN202111467542.6A CN116211345A (zh) 2021-12-03 2021-12-03 一体式胎心多普勒仪
CN202111467542.6 2021-12-03
CN202220245322.2U CN217659938U (zh) 2022-01-26 2022-01-26 一种具有血氧测量功能的胎心仪
CN202220225376.2 2022-01-26
CN202220225376.2U CN217659937U (zh) 2022-01-26 2022-01-26 一种具有血氧采集功能的多普勒胎心仪
CN202220245322.2 2022-01-26

Publications (1)

Publication Number Publication Date
WO2022206822A1 true WO2022206822A1 (zh) 2022-10-06

Family

ID=83457952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083998 WO2022206822A1 (zh) 2021-04-02 2022-03-30 胎心多普勒仪及检测方法

Country Status (3)

Country Link
US (1) US20240099637A1 (zh)
EP (1) EP4278980A4 (zh)
WO (1) WO2022206822A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230338006A1 (en) * 2022-04-21 2023-10-26 GE Precision Healthcare LLC Health monitoring system for water births
US12089984B2 (en) 2022-04-21 2024-09-17 GE Precision Healthcare LLC Health monitoring system for water births

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6340346B1 (en) * 1999-11-26 2002-01-22 T.A.O. Medical Technologies Ltd. Method and system for system identification of physiological systems
US20110218413A1 (en) * 2010-03-02 2011-09-08 Yixiang Wang Method and Apparatus for Non-invasive Fetal Oximetry
CN102485180A (zh) * 2010-12-06 2012-06-06 中国科学院深圳先进技术研究院 胎儿监护装置和方法
KR20130089525A (ko) * 2012-02-02 2013-08-12 강원대학교산학협력단 심전도 전극이 부착된 초음파 프로브를 이용한 산모와 태아의 심박수 동시 측정장치
CN206183300U (zh) * 2016-07-26 2017-05-24 北京春闱科技有限公司 胎心仪
CN206355073U (zh) * 2016-07-26 2017-07-28 北京春闱科技有限公司 具有母体心电监测功能的胎心仪
US20210059538A1 (en) * 2019-08-28 2021-03-04 GE Precision Healthcare LLC Apparatus and methods of monitoring maternal and fetal heart rate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108024788B (zh) * 2015-09-15 2021-04-27 皇家飞利浦有限公司 用于确定胎儿心率的设备和方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6340346B1 (en) * 1999-11-26 2002-01-22 T.A.O. Medical Technologies Ltd. Method and system for system identification of physiological systems
US20110218413A1 (en) * 2010-03-02 2011-09-08 Yixiang Wang Method and Apparatus for Non-invasive Fetal Oximetry
CN102485180A (zh) * 2010-12-06 2012-06-06 中国科学院深圳先进技术研究院 胎儿监护装置和方法
KR20130089525A (ko) * 2012-02-02 2013-08-12 강원대학교산학협력단 심전도 전극이 부착된 초음파 프로브를 이용한 산모와 태아의 심박수 동시 측정장치
CN206183300U (zh) * 2016-07-26 2017-05-24 北京春闱科技有限公司 胎心仪
CN206355073U (zh) * 2016-07-26 2017-07-28 北京春闱科技有限公司 具有母体心电监测功能的胎心仪
US20210059538A1 (en) * 2019-08-28 2021-03-04 GE Precision Healthcare LLC Apparatus and methods of monitoring maternal and fetal heart rate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4278980A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230338006A1 (en) * 2022-04-21 2023-10-26 GE Precision Healthcare LLC Health monitoring system for water births
US12089984B2 (en) 2022-04-21 2024-09-17 GE Precision Healthcare LLC Health monitoring system for water births

Also Published As

Publication number Publication date
EP4278980A4 (en) 2024-06-19
US20240099637A1 (en) 2024-03-28
EP4278980A1 (en) 2023-11-22

Similar Documents

Publication Publication Date Title
WO2022206822A1 (zh) 胎心多普勒仪及检测方法
US5766208A (en) Body monitoring and imaging apparatus and method
US11957503B2 (en) Electronic stethoscope with accessories
CN106994025B (zh) 获取胎心率的方法、系统及设备
CN103705270B (zh) 胎心监测设备
WO2019128794A1 (zh) 一种超声探头以及控制超声诊断仪的方法和装置
US9675322B2 (en) Enhanced ultrasound device and methods of using same
CN110141271A (zh) 数字生理音采集器
KR102429722B1 (ko) 멀티 채널 반지형 스마트 청진기
CN208464060U (zh) 反射式桡动脉脉搏波探测器
CN210447058U (zh) 数字生理音采集器
CN209695228U (zh) 一种实现多种扫描方式的超声仪
CN103892869A (zh) 一种听诊器
CN209695222U (zh) 一种多功能听诊器
TWI670044B (zh) 脈波量測系統及其對準導引方法
CN217447828U (zh) 多功能探头
CN216135923U (zh) 一种多频可调的血管内超声诊断仪
TWI834112B (zh) 多功能探頭
US20240206738A1 (en) Semi-compact photoacoustic devices and systems
CN219048579U (zh) 一种听诊器及听诊系统
US20240206739A1 (en) Semi-compact photoacoustic devices and systems
US20240210309A1 (en) Semi-compact photoacoustic devices and systems
CN211834362U (zh) 一种压电式智能医疗腕表
US20240210308A1 (en) Semi-compact photoacoustic devices and systems
CN212213707U (zh) 一种鼾声检测系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779004

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18546421

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022779004

Country of ref document: EP

Effective date: 20230816

NENP Non-entry into the national phase

Ref country code: DE