WO2022206239A1 - 空间复用方法、装置、设备和介质 - Google Patents

空间复用方法、装置、设备和介质 Download PDF

Info

Publication number
WO2022206239A1
WO2022206239A1 PCT/CN2022/078013 CN2022078013W WO2022206239A1 WO 2022206239 A1 WO2022206239 A1 WO 2022206239A1 CN 2022078013 W CN2022078013 W CN 2022078013W WO 2022206239 A1 WO2022206239 A1 WO 2022206239A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
ppdu
spatial multiplexing
subbands
subband
Prior art date
Application number
PCT/CN2022/078013
Other languages
English (en)
French (fr)
Inventor
于健
李云波
淦明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22778424.6A priority Critical patent/EP4210401A4/en
Priority to BR112023008540A priority patent/BR112023008540A2/pt
Priority to CA3197153A priority patent/CA3197153A1/en
Priority to AU2022247599A priority patent/AU2022247599A1/en
Priority to MX2023005401A priority patent/MX2023005401A/es
Priority to JP2023524946A priority patent/JP2023552271A/ja
Priority to KR1020237012822A priority patent/KR20230069988A/ko
Publication of WO2022206239A1 publication Critical patent/WO2022206239A1/zh
Priority to US18/476,236 priority patent/US20240031828A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0067Rate matching
    • H04L1/0068Rate matching by puncturing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/16Deriving transmission power values from another channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/245TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/247TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where the output power of a terminal is based on a path parameter sent by another terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present disclosure relates to the field of wireless local area networks, and more particularly, to a spatial multiplexing method, apparatus and medium.
  • Wireless Local Area Network (WLAN) standards have been developed for many generations, including 802.11a/b/g, 802.11n, 802.11ac, 802.11ax, and 802.11be, which is currently under discussion.
  • the 802.11n standard is called High Throughput (HT)
  • the 802.11ac standard is called Very High Throughput (VHT)
  • the 802.11ax standard is called HE (High Efficient, high efficiency)
  • EHT Extremely High Throughput
  • 802.11ax WLAN devices such as access points and stations, can only support half-duplex transmission, that is, on the same spectrum width or channel, only one device can send information, and other devices can only receive signals but cannot send. Avoid interference with current transmitting equipment.
  • BSS basic service set
  • OBSS overlapping basic service sets
  • 802.11ax proposes the Spatial Reuse method. By adaptively adjusting the transmit power, the devices in the overlapping basic service sets can transmit at the same time, which improves the transmission efficiency.
  • the spatial multiplexing method of 802.11ax has the defects of large interference between devices and low system efficiency.
  • the present disclosure provides a spatial multiplexing solution.
  • a spatial multiplexing method receives part or all of the PSRR PPDU sent by the second spatial multiplexing device on the first frequency band.
  • the first frequency band includes one or more subbands of the same bandwidth.
  • SRP spatial multiplexing parameter
  • RPL received power level
  • the first spatial multiplexing device determines the size of the transmission of the PSRT PPDU on the second frequency band.
  • Reference transmit power The second frequency band includes one or more subbands having the bandwidth, and the second frequency band at least partially overlaps the first frequency band.
  • the RPL of the PSRR PPDU with the bandwidth as the granularity is determined based on one or more of the following: one or more subbands in the first frequency band occupied by part or all of the PSRR PPDU received by the first spatial multiplexing device ; or an unpunctured subband in the first or second frequency band.
  • the reference transmit power is determined for the entire second frequency band.
  • the RPL with the bandwidth as the granularity is based on the gap between one or more subbands in the first frequency band and the second frequency band occupied by part or all of the PSRR PPDU received by the first spatial multiplexing device determined by overlapping subbands.
  • the bandwidth-based RPL is determined based on one or more of the following: one or more subbands in the first frequency band occupied by part or all of the PSRR PPDU received by the first spatial multiplexing device The bandwidth of the unpunctured subbands in , or the overlapping subbands between one or more subbands in the first frequency band and the second frequency band occupied by part or all of the PSRR PPDU received by the first spatial multiplexing device The bandwidth of the unpunctured subbands in .
  • the reference transmit power is determined based on one of the following: the bandwidth of an unpunctured subband in the second frequency band, or all or part of the PSRR PPDU received by the first spatial multiplexing device.
  • the first spatial multiplexing device determines the unpunctured subbands in the first frequency band based on at least one of the following: puncturing indication information included in the preamble in the received PSRR PPDU, the PSRR PPDU
  • the first spatial multiplexing device determines to puncture the PSRT PPDU.
  • the first spatial multiplexing device adjusts the reference transmit power based on the predetermined offset.
  • the value of the bandwidth-granular SRP is adjusted by the second spatial multiplexing device based on a predetermined offset for the punctured PSRR PPDU.
  • the first frequency band includes multiple subbands.
  • the value of the SRP with the bandwidth as the granularity is the minimum value among the multiple values of the SRP for the multiple subbands.
  • determining the reference transmit power for transmitting PSRT PPDUs on the second frequency band includes: based on the value of the SRP for a subband in the first frequency band, and the RPL of the PSRR PPDU in the subband, the A spatial multiplexing device determines the reference transmit power for transmitting PSRT PPDUs on the subband, which subband in the first frequency band is contained in the second frequency band.
  • the first spatial multiplexing device determines that PSRT PPDUs are not allowed on the punctured subbands; or The first spatial multiplexing device determines the reference transmit power on the punctured subband to be less than a predefined maximum transmit power.
  • the first spatial multiplexing device is based on the overlapping subbands between the second frequency band and the first frequency band.
  • One or more reference transmit powers determined by one or more unpunctured subbands in the punctured subband are used to determine the reference transmit power on the punctured subbands.
  • determining the reference transmit power on the punctured subbands includes: the first spatial multiplexing device determining the reference transmit power on the punctured subbands to be determined for a plurality of unpunctured subbands The minimum reference transmission power among the multiple reference transmission powers or the average power of the multiple reference transmission powers.
  • the first spatial multiplexing device determines puncturing based on the value of the SRP for the punctured subbands
  • the reference transmit power on the subband of .
  • a spatial multiplexing method for a subband to be punctured in a first frequency band including a plurality of subbands with the same bandwidth for transmitting a physical layer protocol data unit (PPDU), the second spatial multiplexing device performs one of the following operations Determine the value of the corresponding spatial multiplexing parameter SRP: adjust the value of the SRP based on a predetermined offset; set the value of the SRP to a first value to indicate to other spatial multiplexing devices that the sub-subs to be punctured in the PPDU is prohibited or set the value of SRP to a second value to indicate to other spatial multiplexing devices that transmission on the subband to be punctured is permitted. Then, the second spatial multiplexing device transmits the punctured PPDU on the unpunctured subband in the first frequency band, and the trigger frame carried in the PPDU includes the determined value of the SRP.
  • the second spatial multiplexing device transmits the punctured PPDU on the unpunctured subband in the first frequency band
  • a communication device in a third aspect of the present disclosure, includes a receiving module and a first determining module.
  • the receiving module is configured to receive, through the first spatial multiplexing device, part or all of the PSRR PPDU sent by the second spatial multiplexing device on a first frequency band, the first frequency band including one or more subbands of the same bandwidth.
  • the first determination module is configured to determine, by the first spatial multiplexing device, on the second frequency band based on the value of the spatial multiplexing parameter SRP with the bandwidth as the granularity and the received power level RPL of the PSRR PPDU with the bandwidth as the granularity Reference transmit power for transmitting PSRT PPDUs.
  • the RPL of the PSRR PPDU with the bandwidth as the granularity is determined based on one or more of the following: one or more subbands in the first frequency band occupied by part or all of the received PSRR PPDU; or the first frequency band or Subbands in the second frequency band that are not punctured.
  • the reference transmit power is determined for the entire second frequency band.
  • the RPL at the bandwidth granularity is determined based on overlapping subbands between one or more subbands in the first frequency band and the second frequency band occupied by part or all of the received PSRR PPDU of.
  • the RPL at the bandwidth granularity is determined based on an unpunctured one or more subbands in the first frequency band occupied by part or all of the received PSRR PPDU The bandwidth of the subband, or the bandwidth of an unpunctured subband in the overlapping subbands between one or more subbands in the first frequency band and the second frequency band occupied by part or all of the received PSRR PPDU.
  • the reference transmit power is determined based on one of the following: the bandwidth of an unpunctured subband in the second frequency band, or the first frequency band occupied by some or all of the received PSRR PPDU The bandwidth of an unpunctured subband in the overlapping subbands between the one or more subbands of the second frequency band.
  • the apparatus further includes a second determination module.
  • the second determination module is configured to determine the unpunctured subbands in the first frequency band based on at least one of the following: puncturing indication information included in the preamble in the received PSRR PPDU; puncturing indication included in the PSRR PPDU information, wherein the PSRR PPDU is a non-high-throughput copy PPDU; or the puncturing indication information contained in the management frame of the basic service set BSS where the second spatial multiplexing device is located, and the management frame includes at least one of the following frames: a beacon frame, an association response frame, probe response frame, neighbor report frame, or reduced neighbor report frame.
  • the apparatus further includes a third determining module configured to determine, by the first spatial multiplexing device, to puncture the PSRT PPDU.
  • the apparatus also includes an adjustment module configured to adjust the reference transmit power based on the predetermined offset by the first spatial multiplexing device.
  • the value of the bandwidth-granular SRP is adjusted by the second spatial multiplexing device based on a predetermined offset for the punctured PSRR PPDU.
  • the first frequency band includes multiple subbands.
  • the value of the SRP with the bandwidth as the granularity is the minimum value among the multiple values of the SRP for the multiple subbands.
  • the first determining module is configured to determine, by the first spatial multiplexing device, based on the value of the SRP for a subband in the first frequency band, and the RPL of the PSRR PPDU in the subband Reference transmit power for transmitting PSRT PPDUs on subbands that are included in the second frequency band in the first frequency band.
  • the first determination module is configured to determine, by the first spatial multiplexing device, that the punctured subband is not allowed in the punctured subband in the overlapping subband between the second frequency band and the first frequency band.
  • the PSRT PPDU is sent on the subband; or the reference transmission power on the punctured subband is determined to be less than the predefined maximum transmission power by the first spatial multiplexing device.
  • the first determination module is configured for punctured subbands in overlapping subbands between the second frequency band and the first frequency band, by the first spatial multiplexing device based on the correlation between the second frequency band and the first frequency band.
  • the first determination module is configured to determine, by the first spatial multiplexing device, the reference transmit power on the punctured subband as a plurality of reference transmit powers determined for a plurality of unpunctured subbands The minimum reference transmit power in or the average power of multiple reference transmit powers.
  • the first determination module is configured for punctured subbands in overlapping subbands between the second frequency band and the first frequency band based on the punctured subbands by the first spatial multiplexing device The value of the SRP to determine the reference transmit power on the punctured subband.
  • a communication device in a fourth aspect of the present disclosure, includes a fourth determining module and a sending module.
  • the fourth determining module is configured to, for a subband to be punctured in the first frequency band including a plurality of subbands with the same bandwidth used for transmitting the physical layer protocol data unit PPDU, determine the corresponding spatial multiplexing through one of the following operations
  • the value of the parameter SRP adjust the value of the SRP based on a predetermined offset; set the value of the SRP to a first value to indicate to other spatial multiplexing devices that transmission on the subband where the PPDU is to be punctured is prohibited; or
  • the value of SRP is set to a second value to indicate to other spatial multiplexing devices that transmission on the subband to be punctured is allowed.
  • the sending module is configured to send the punctured PPDU on the unpunctured subband in the first frequency band, and the trigger frame carried in the PPDU contains the determined value of the SRP.
  • a communication device comprising: a processor; the processor is coupled to a memory, the memory stores instructions, wherein the instructions, when executed by the processor, cause the first or the first according to the present disclosure. Two aspects of the method are implemented.
  • a computer-readable storage medium having a program stored thereon, at least part of the program, when executed by a processor in a device, causes the device to perform the first or second aspect of the present disclosure Methods.
  • Fig. 1 shows a schematic diagram of an OBSS formed by partially overlapping a BSS with another BSS
  • Figure 2 shows a schematic diagram of a frame format in the trigger frame-based uplink scheduling transmission in the 802.11ax standard
  • Fig. 3 shows the frame format schematic diagram of the trigger frame shown in Fig. 2;
  • Fig. 4 shows the frame format schematic diagram of public information field and user information field in the trigger frame of 802.11ax;
  • Figure 5 shows a schematic diagram of the spatial multiplexing transmission process of 802.11ax
  • FIG. 6 illustrates an example environment in which embodiments of the present disclosure may be implemented
  • FIG. 7A shows a schematic diagram of a spatial multiplexing transmission process according to certain embodiments of the present disclosure
  • FIG. 7B shows a schematic diagram of a spatial multiplexing transmission process according to certain other embodiments of the present disclosure.
  • FIG. 7C shows a schematic diagram of a spatial multiplexing transmission process according to certain other embodiments of the present disclosure.
  • FIG. 7D shows a schematic diagram of the frame format of the common information field and some subfields in the user information field contained in the trigger frame according to some embodiments of the present disclosure
  • FIG. 8 shows a flowchart of a spatial multiplexing method according to some embodiments of the present disclosure
  • FIG. 9 shows a schematic diagram of channel division of 80/160/320MHz bandwidth in the 6GHz frequency band according to an embodiment of the present disclosure
  • Figure 10 shows a flowchart of a spatial multiplexing method according to certain other embodiments of the present disclosure
  • Figure 11 shows a schematic diagram of an apparatus according to certain embodiments of the present disclosure
  • Figure 12 shows a schematic diagram of an apparatus according to certain other embodiments of the present disclosure.
  • FIG. 13 shows a block diagram of a device in which certain embodiments of the present disclosure may be implemented.
  • the term “including” and variations thereof are open inclusive, ie “including but not limited to”.
  • the term “based on” is “based at least in part on.”
  • the term “one embodiment” means “at least one embodiment”; the term “another embodiment” means “at least one additional embodiment”. Relevant definitions of other terms will be given in the description below.
  • access point refers to any suitable device that enables a user terminal to access desired services.
  • APs include routers.
  • station or “STA” as used herein refers to a user terminal capable of accessing a desired service through an Access Point (AP).
  • stations Station, STA
  • PDAs personal digital assistants
  • mobile phones and the like.
  • WLAN devices such as APs and STAs, work in unlicensed spectrum, and obtain opportunities to transmit physical layer protocol data units (PHY Protocol Data Units, PPDUs) or other data packets or data packets through contention channels.
  • PHY Protocol Data Units PHY Protocol Data Units
  • OBSS Overlapping BSS
  • 802.11ax proposes a spatial reuse (Spatial Reuse) method, which enables devices in overlapping basic service sets to transmit at the same time by adaptively adjusting the transmit power.
  • Figure 1 shows a schematic diagram of an OBSS formed by partially overlapping one BSS with another BSS.
  • OBSS Overlapping BSS
  • BSS Basic Service Set
  • a basic service area is an area that contains members of the basic service set, which may contain members of other BSSs.
  • BSS 105 (labeled as BSS1) and BSS 110 (labeled as BSS2) partially overlap and are each OBSS.
  • AP 115 (labeled as AP1)
  • STA 120 (labeled as STA1)
  • STA 125 (labeled as STA3)
  • AP 130 (labeled as AP2)
  • STA 135 (labeled as STA2) belong to BSS 110.
  • AP2 in another BSS2 can receive the information sent by AP1 and STA1. Moreover, AP2 can also receive the information sent by STA3. At this time, AP2 can adaptively adjust the power of AP2 to send PPDUs to STA2 according to the spatial multiplexing parameters transmitted by AP1, so as to realize simultaneous transmission in the OBSS. Similarly, when AP2 located in the same BSS2 and STA2 perform data transmission, AP1 located in another BSS1 can receive the information sent by AP2. At this time, AP1 may also adaptively adjust the power of AP1 to send PPDUs to STA1 and/or STA3 according to the spatial multiplexing parameters transmitted by AP2, so as to realize simultaneous transmission within the OBSS.
  • AP1 or AP2 may transmit the spatial multiplexing parameter through the trigger frame during the uplink scheduling transmission process based on the trigger frame.
  • the uplink scheduling transmission process based on the trigger frame is described below with reference to FIG. 2 to FIG. 4 .
  • FIG. 2 there is shown a schematic diagram of an example frame format in trigger frame-based uplink scheduling transmission in the 802.11ax standard.
  • the AP1 can first send the trigger frame 205 , wherein the trigger frame 205 includes the resource scheduling and other parameters for one or more STAs to send the uplink PPDU, and the trigger frame 205
  • An example format is shown in Figure 3.
  • the trigger frame 205 includes a common information (common info) field 305 and a user information list (user info list) field 310.
  • the public information field 305 contains public information that all STAs need to read.
  • the user information list field 310 includes one or more user information (user info) fields 315, which contain information that the corresponding STA needs to read.
  • FIG. 4 shows a schematic diagram of the frame format of the common information field 305 and the user information field 315 in the trigger frame 205 .
  • the common information field 305 includes an uplink spatial reuse (UL Spatial Reuse) subfield 405 .
  • the association identification 12 (association identification 12, AID12) subfield 410 indicates the association identification of a certain STA
  • the resource unit allocation subfield (RU Allocation) 415 is used to indicate this STA (the STA indicated by AID12) ) is allocated to the specific resource unit (Resource Unit, RU) location.
  • STA1 and/or STA3 After receiving the trigger frame 205, STA1 and/or STA3 parse out the user information field 315 matching its own AID from the trigger frame 205, and then the resource unit allocation subfield 415 in the user information field 315 indicates Send high-efficiency trigger-based data packets on the RU, such as high-efficiency trigger-based physical layer protocol data unit (High Efficient Trigger Based Physical layer Protocol Data Unit, HE TB PPDU) 210, as shown in Figure 2.
  • STA1 and/or STA3 may also copy the UL Spatial Reuse field 405 in the received trigger frame 205 into the High Efficient Signal Field A (HE-SIG-A) field 220 in the HE TB PPDU 210 .
  • HE-SIG-A High Efficient Signal Field A
  • AP1 After receiving the HE TB PPDU 210, AP1 replies with an acknowledgement frame 215 to STA1 and/or STA3 to confirm that AP1 has received the HE TB PPDU 210.
  • the trigger frame 205 sent by the AP1 can be received by the AP2 inside the OBSS in addition to being received by the associated STA1 or STA3. Based on the information in the uplink spatial multiplexing subfield 405 in the trigger frame 205, AP2 and AP1 can perform spatial multiplexing transmission within the OBSS. An example process for spatially multiplexed transmission of AP1 and AP2 is discussed below with reference to FIG. 5 .
  • 5 shows a schematic diagram of an example spatial multiplexing transmission process 500 for 802.11ax.
  • AP1 sends a parameterized Spatial Reuse Reception (PSRR) PPDU 505 containing trigger frame 205 to STA1.
  • PSRR Spatial Reuse Reception
  • the common information field 305 in the trigger frame 205 includes an Uplink Spatial Reuse (UL Spatial Reuse) field 405, which carries an Uplink Spatial Reuse Parameter (UL SRP).
  • UL SRP Uplink Spatial Reuse
  • the value of UL SRP represents the transmit power of AP1 plus the maximum interference power that AP1 can accept.
  • the values of UL SRP1 to UL SRP4 are set as follows:
  • UL SRP1 UL SRP2.
  • the four UL SRPs represent four 20MHz subbands respectively;
  • the four UL SRPs respectively represent any one 20MHz subband in the four 40MHz subbands, and two 20MHz subbands in a certain 40MHz subband have the same value.
  • the bandwidth is indicated by the Uplink Bandwidth (UL BW) field 420 of the common information field 305 of the trigger frame 205 shown in FIG. 4 .
  • UL BW Uplink Bandwidth
  • the value of UL SRP is determined by AP1, which is equal to AP1's transmit power + its acceptable maximum interference power.
  • STA1 copies the UL Spatial Reuse field 405 in the received trigger frame 205 to the HE-SIG-A field 220 in the HE TB PPDU 210 to be sent, as shown in FIG. 2 .
  • AP2 also receives the trigger frame 205 sent by AP1, and after receiving the HE TB PPDU 210 (it is determined that STA1 has indeed sent the HE TB PPDU 210), according to the received power level (Received Power Level, RPL) of the PSRR PPDU 505, And the values of the four UL SRP1 to UL SRP4 and/or the values of the four SRP1 to SRP4 in the HE TB PPDU are used to calculate the power used for transmitting the parameterized Spatial Reuse Transmission (PSRT) PPDU.
  • the transmit power needs to satisfy:
  • the AP2 After that, after detecting that the HE TB PPDU 210 is sent, the AP2 sends the PSRT PPDU 510 according to the power calculated by the above formula (A):
  • RPL represents the power within the PSRR PPDU frequency band
  • AP2 sends PSRT PPDU transmit power normalized to 20MHz;
  • embodiments of the present disclosure propose an improved spatial multiplexing mechanism.
  • the first spatial multiplexing device determines the PSRT PPDU in its working frequency band.
  • the value of the SRP and the received power level (RPL) of the PSRR PPDU are normalized to the bandwidth of the subband.
  • the first spatial multiplexing device After receiving the PSRR PPDU sent by the second spatial multiplexing device on its operating frequency band (referred to as the first frequency band, which includes one or more subbands with the same bandwidth), the first spatial multiplexing device, Based on the value of the SRP with the bandwidth as the granularity and the received power level (RPL) of the PSRR PPDU with the bandwidth as the granularity, it is determined in its operating frequency band (called the second frequency band, which also includes one or more sub-bands with the bandwidth).
  • the reference transmit power for transmitting PSRT PPDUs on the band).
  • the first spatial multiplexing device is based on one or more subbands in the first frequency band, and/or unpunctured subbands in the first frequency band or the second frequency band, occupied by part or all of the PSRR PPDUs it receives to determine the RPL of the PSRR PPDU with the bandwidth as the granularity.
  • the first spatial multiplexing device may consider the bandwidth matching and/or puncturing of the PSRT PPDU and the PSRR PPDU.
  • the first spatial multiplexing device can simultaneously consider bandwidth normalization and bandwidth matching and/or puncturing issues of PSRT PPDU and PSRR PPDU when calculating the transmit power of PSRT PPDU.
  • This spatial multiplexing mechanism improves the accuracy of PSRT PPDU transmission power calculation, reduces the interference caused to the reception of the spatial multiplexing equipment, and improves the system efficiency.
  • FIG. 6 illustrates an example environment 600 in which embodiments of the present disclosure may be implemented.
  • the environment 600 includes two spatial multiplexing devices, namely a first spatial multiplexing device 602 and a second spatial multiplexing device 604 .
  • both the first spatial multiplexing device 602 and the second spatial multiplexing device 604 are implemented by an access point (AP).
  • Environment 600 also includes STA 606, STA 608, and STA 610, where STA 606 and STA 608 can communicate with first spatial multiplexing device 602, and STA 610 can communicate with second spatial multiplexing device 604.
  • the communication of the first spatial multiplexing device 602 and the second spatial multiplexing device 604 with the STA 606, the STA 608 and the STA 610 may be performed wirelessly.
  • the communication may follow any suitable communication technology and corresponding communication standard.
  • the first spatial multiplexing device 602, STA 606 and STA 608 belong to one BSS 612
  • the second spatial multiplexing device 604 and STA 610 belong to another BSS 614.
  • the two BSSs 612 and 614 are OBSSs.
  • the second spatial multiplexing device 604 may be communicated by a plurality of STAs at the BSS 614.
  • the first spatial multiplexing device 602 located in the BSS 612 can receive the information sent by the second spatial multiplexing device 604.
  • the second spatial multiplexing device 604 may also receive the information sent by the first spatial multiplexing device 602 .
  • the first spatial multiplexing device 602 can adaptively adjust the power of the first spatial multiplexing device 602 to send the PPDU to the STA 608 according to the spatial multiplexing parameter transmitted by the second spatial multiplexing device 604 .
  • the second spatial multiplexing device 604 can also adaptively adjust the power of the second spatial multiplexing device 604 to send the PPDU to the STA 610 according to the spatial multiplexing parameters transmitted by the first spatial multiplexing device 602 .
  • first spatial multiplexing device 602 and the second spatial multiplexing device 604 by an access point is merely an example and not a limitation.
  • the first spatial multiplexing device 602 and the second spatial multiplexing device 604 of the present disclosure are not limited to the AP in this example, but may be other various devices suitable for spatial multiplexing transmission depending on the specific implementation and scenario, Including but not limited to communication servers, routers, switches, bridges, computers, mobile phones and other APs and STAs.
  • the devices communicating with the first spatial multiplexing device 602 and the second spatial multiplexing device 604 are shown as STAs in FIG. 6 for purposes of example only.
  • the present disclosure is not limited to this, but depends on specific implementations and scenarios, and can be other communication devices, including but not limited to communication servers, routers, switches, bridges, computers, mobile phones and other APs and STAs.
  • environment 600 shows two spatial multiplexing devices and three devices in communication therewith, namely STA 606, STA 608, and STA 610, for illustration purposes only.
  • STA 606, STA 608, and STA 610 for illustration purposes only.
  • embodiments of the present disclosure can be extended to apply to other numbers of spatial multiplexing devices that can communicate with any suitable number of other devices.
  • the first spatial multiplexing device 602 determines to perform spatial multiplexing transmission with the second spatial multiplexing device 604, according to the value of the SRP normalized to the bandwidth of the subband in the operating frequency band and the RPL of the PSRR PPDU from the second spatial multiplexing device 604 to determine the transmit power for transmitting the PSRT PPDU.
  • FIG. 7A, 7B and 7C An example spatial multiplexing transmission process illustrating the first spatial multiplexing device 602 and the second spatial multiplexing device 604 is discussed below with reference to Figures 7A, 7B, and 7C.
  • both the first spatial multiplexing device 602 and the second spatial multiplexing device 604 are implemented by APs labeled AP2 and AP1, respectively.
  • FIG. 7A shows a schematic diagram of a spatial multiplexing transmission process 700A in accordance with certain embodiments of the present disclosure.
  • AP1 (as an example of the second spatial multiplexing device 604) sends a PSRR PPDU 701 containing a trigger frame to STA1.
  • the PSRR PPDU 701 can be any PPDU (such as a PSRR PPDU carrying a management frame), and then AP2 only uses the PSRR PPDU to obtain the RPL.
  • the difference between the process 700 and the process 500 is mainly that the PSRR PPDU 701 carrying the trigger frame 205 can schedule both the HE TB PPDU and/or the EHT TB PPDU of the STA1.
  • AP2 (as an example of the first spatial multiplexing device 602) may perform spatial multiplexing based on HE and/or EHT TB PPDUs. In some embodiments, AP2 may not receive (or not based on) HE and/or EHT TB PPDUs, and directly perform spatial multiplexing through PSRR PPDUs that carry trigger frames. This will be further described later with reference to FIG. 7B.
  • STA1 After receiving that the common information field in the trigger frame contains UL Spatial Reuse and/or the special user field contains EHT UL Spatial Reuse, STA1 sends HE TB PPDU 702 and/or EHT TB PPDU 703.
  • the subsequent process of AP2 sending the PSRT PPDU is similar to the spatial multiplexing transmission process 500 of 802.11ax, and will not be repeated here.
  • FIG. 7D shows a schematic diagram of the frame format of the common information field and some subfields in the user information field included in the trigger frame according to some embodiments of the present disclosure.
  • the common information field 705 in the trigger frame includes four uplink parameter spatial multiplexing (Uplink Parameterized Spatial Reuse, UL PSR) fields 710 each having a length of 4 bits.
  • the user information list field 715 further includes a special user information field, that is, an association identification 12 (AID12) field 720 .
  • This field 720 indicates a predetermined value (2007) that is intended as an extension of the Common Information field, which contains two 4-bit UL SRP fields 725 and 730 for EHT TB PPDUs, labeled EHT UL SRP1 and EHT UL respectively SRP2.
  • EHT UL SRP1 and EHT UL SRP2 can be set as follows:
  • EHT UL SRP1 EHT UL SRP2;
  • EHT UL SRP1 represents the first 20MHz subband
  • the two EHT UL SRPs respectively represent any one 20MHz subband in the two 40MHz subbands, and the two 20MHz subbands in a certain 40MHz subband have the same value.
  • the two EHT UL SRPs respectively represent any one 20MHz subband in the two 80MHz subbands, and the value of the four 20MHz subbands in a certain 80MHz subband is the same.
  • the two EHT UL SRPs respectively represent any one 20MHz subband in the two 160MHz subbands, and the eight 20MHz subbands in a certain 160MHz subband have the same value.
  • the above-mentioned setting manner of the SRP is only a setting manner of some embodiments of the present disclosure, and the present disclosure is not limited thereto, and other setting manners are possible.
  • FIG. 7B shows a schematic diagram of a spatial multiplexing transmission process 700B in accordance with certain other embodiments of the present disclosure.
  • the transmission process shown in FIG. 7B is the same as or similar to that shown in FIG. 7A and will not be repeated here. The following mainly discusses the differences between the two.
  • STA1 begins spatial multiplexing transmission after receiving HE TB PPDU 702 and/or EHT TB PPDU 703.
  • the spatial multiplexing transmission is started after the AP2 receives the PSRR PPDU 701 carrying the trigger frame. That is, after time point 735 in FIG. 7B , AP2 decides to perform spatial multiplexing transmission. Regardless of whether HE TB PPDU 702 and/or EHT TB PPDU 703 are sent.
  • AP2 only completes spatial multiplexing transmission through PSRR PPDU.
  • STA1 may also not send the HE/EHT TB PPDU, for example, when the channel of STA1 is busy or STA1 does not receive the trigger frame correctly.
  • FIG. 7C shows a schematic diagram of a spatial multiplexing transmission process 700C in accordance with certain other embodiments of the present disclosure.
  • AP2 may decide to perform spatial multiplexing transmission without receiving a trigger frame from AP1.
  • AP1 sends a PSRR PPDU 740 carrying a beacon frame.
  • AP2 can obtain the RPL when acquiring the beacon frame.
  • AP2 may perform spatial multiplexing transmission after receiving HE TB PPDU 745 and/or EHT PPDU 750.
  • Figure 8 shows a flow diagram of a spatial multiplexing method 800 in accordance with certain embodiments of the present disclosure.
  • the method 800 may be performed by the first spatial multiplexing device 602 or the second spatial multiplexing device 604 .
  • the method 800 is described below with reference to FIG. 9 from the perspective of the first spatial multiplexing device 602 .
  • first spatial multiplexing device 602 receives part or all of a PSRR PPDU sent by second spatial multiplexing device 604 on the first frequency band in which it operates.
  • the first frequency band is the operating frequency band of the second spatial multiplexing device 604, and its bandwidth may include 20MHz, 40MHz, 80MHz, 160MHz, 320MHz, and so on.
  • the first frequency band includes one or more sub-bands (often also referred to as sub-channels or sub-blocks) of the same bandwidth.
  • the bandwidth of the subbands may also include 20MHz, 40MHz, 80MHz, 160MHz, 320MHz, and so on. As an example, if the first frequency band is 320 MHz and the bandwidth of the sub-band is 20 MHz, the first frequency band includes 16 sub-bands. Similarly, if the first frequency band is 320MHz and the bandwidth of the subband is 40MHz, then the first frequency band includes 8 subbands.
  • the first spatial multiplexing device 602 receives part or all of the PSRR PPDU sent by the second spatial multiplexing device 604 on the first frequency band. This will be further described below in conjunction with FIG. 9 .
  • FIG. 9 shows a schematic diagram of channel division of 80/160/320 MHz bandwidths in the 6 GHz frequency band according to an embodiment of the present disclosure.
  • 802.11be designs two 320MHz channels 905 and 910 in order to effectively utilize the channel, which are the 320MHz channel with the channel center frequency of 31/95/159 and the 320MHz channel with the center frequency of 63/127/191, respectively. Labeled 320-1 and 320-2, respectively.
  • UNII stands for Unlicensed National Information Infrastructure (U-NII) radio band.
  • the first spatial multiplexing device 602 is implemented by the AP and works on the channel 320-2, if the first spatial multiplexing device 602 receives the data sent by the second spatial multiplexing device 604 on the channel 320-1 PSRR PPDU, its received power is approximately equal to half of its entire PSRR PPDU bandwidth (BW).
  • the first spatial multiplexing device 602 is implemented by a station (STA) and the STA only has the capability of 80 MHz or works in the 80 MHz mode
  • the first spatial multiplexing device 602 receives the second spatial multiplexing device 602
  • the device 604 sends a PSRR PPDU with a bandwidth of 160 MHz, it can only receive a part of 80 MHz, and the power it receives is about half of the entire PSRR PPDU BW.
  • the first spatial multiplexing device 602 and the second spatial multiplexing device 604 work on channels with different channel center frequencies, one of the spatial multiplexing devices can only receive part of the PSRR sent by the other spatial multiplexing device PPDU. This creates a bandwidth mismatch problem.
  • the first spatial multiplexing device 602 will consider this issue when determining the transmit power of the PSRR PPDU, which will be described in detail later.
  • the PSRR PPDU sent by the second spatial multiplexing device 604 may contain a trigger frame (eg, trigger frame 205 shown in FIG. 2).
  • the first spatial multiplexing device 602 may receive a PSRR PPDU containing a trigger frame that the second spatial multiplexing device 604 may send to the STA 610.
  • the trigger frame may have a format other than that shown in FIG. 2 .
  • the first spatial multiplexing device 602 determines that on the second frequency band Reference transmit power for transmitting PSRT PPDUs.
  • the second frequency band is the working frequency band of the first spatial multiplexing device 602, and also includes one or more subbands.
  • the bandwidths of the subbands of the second frequency band are the same as the bandwidths of the subbands of the first frequency band, and the second frequency band and the first frequency band at least partially overlap. In this way, the first spatial multiplexing device 602 can receive the PSRR PPDU from the second spatial multiplexing device 604.
  • the first spatial multiplexing device 602 may obtain the SRP specified by the second spatial multiplexing device 604 for each subband contained in the trigger frame carried in the received PSRR PPDU, and calculate accordingly The value of the SRP with subband bandwidth as granularity.
  • the intended recipient of the PSRR PPDU eg, STA 610 may copy the UL SRP field in the trigger frame in the PSRR PPDU received from the second spatial multiplexing device 604 into the transmitted HE TB PPDU and/or copy the EHT UL SRP field in the received trigger frame to the U-SIG field in the transmitted EHT TB PPDU.
  • the first spatial multiplexing device 602 can obtain the SRP for each subband.
  • the first spatial multiplexing device 602 may calculate its transmission based on one or more of the UL SRP value in the trigger frame, the EHT UL SRP value, the SRP value in the HE TB PPDU, and the EHT SRP value in the U-SIG. The transmit power used by the PSRT PPDU.
  • the value of the SRP may not only be in the trigger frame in the PSRR PPDU, but also in the HE/EHT TB PPDU sent by the intended recipient of the PSRR PPDU (e.g., the STA 610).
  • the first spatial multiplexing device 602 may obtain BW and PSR through HE/EHT TB PPDUs from STAs (eg, STA 610).
  • the PSRR PPDU may not carry a trigger frame, but carry a management frame (such as a beacon frame, etc.).
  • the first spatial multiplexing device 602 may determine the RPL based on the PSRR PPDU, and obtain the value of the SRP from the HE/EHT PPDU sent by other devices (such as the STA communicating with the second spatial multiplexing device 604).
  • the HE/EHT PPDU may also include an HE Multiple User (MU) PPDU, an EHT MU PPDU, an HE Single User (SU) PPDU, and an HE Extended Range (Extended Range, ER) SU PPDU one or more.
  • PSRR PPDU and HE/EHT PPDU PPDU may not be next to each other.
  • the value of the SRP in the HE/EHT PPDU may be received from the second spatial multiplexing device 604.
  • the value of the SRP may be an SRP value set by other devices autonomously. Whether it is UL SRP or EHT UL SRP, it represents the value on a certain subband (for example, the bandwidth is 20MHz).
  • the embodiments of the present disclosure also normalize the RPL to the subband bandwidth, eg, 20MHz.
  • the following formula 1 can be used to determine the transmit power of the PSRT PPDU:
  • the TxPower PSRT represents the total transmit power of the PSRT PPDU transmitted by the first spatial multiplexing device 602, which is an example of the reference transmit power of the PSRT PPDU on the second frequency band.
  • the reference transmit power of the PSRT PPDU is determined for the entire second frequency band.
  • the reference transmit power of the PSRT PPDU over the entire second frequency band is determined by normalizing the entire operating frequency band to 20 MHz.
  • BW PSRT represents the bandwidth of the PSRT PPDU (that is, the bandwidth of the second frequency band);
  • PSR kth, 20MHz represents the UL SRP corresponding to the kth 20MHz within the bandwidth range of the PSRR PPDU, such as one or more UL SRP fields in the trigger frame, HE one or more of the SRP fields in the HE-SIG-A field in the PPDU, one or more of the EHT UL SRP fields in the trigger frame, and/or one or more of the EHT SRP fields in the U-SIG field in the EHT PPDU The value of the PSR indicated in one or more.
  • RPL PSRR represents the total power of PSRR PPDUs received by the first spatial multiplexing device 602 within the bandwidth range of PSRR PPDUs
  • BW PSRR represents the bandwidth of PSRR PPDUs (ie, the bandwidth of the first frequency band).
  • the first frequency band in which the second spatial multiplexing device 604 operates may include multiple subbands for which the second spatial multiplexing device 604 specifies multiple values of SRP.
  • the second spatial multiplexing device 604 may use one or more UL SRP fields in the trigger frame, one or more SRP fields in the HE-SIG-A field in the HE PPDU, one or more SRP fields in the trigger frame
  • the values of these SRPs are indicated by the EHT UL SRP fields, and/or one or more EHT SRP fields in the U-SIG field in the EHT PPDU.
  • the value of the SRP with the bandwidth as the granularity may take the minimum value among the multiple values of the SRP.
  • the smallest PSR kth,20MHz in the range of PSRR PPDU BW (ie, the first frequency band) may be taken for calculation.
  • TxPower PSRT and RPL PSRR are normalized by formula (1), so that several variables in the inequality all represent a value at 20MHz. In this way, the accuracy of the transmission power calculation can be improved.
  • 802.11be designs two 320MHz channels 905 and 910 in order to effectively utilize the channel.
  • Channel 320-2 of 63/127/191.
  • the power it receives is approximately equal to its entire PSRR PPDU BW half of .
  • the first spatial multiplexing device 602 is implemented by a station (STA), and the STA only has the capability of 80MHz, or works in the 80MHz mode, then when the first spatial multiplexing device 602 receives the PSRR PPDU of 160MHz, it Only one of the 80MHz parts can be received, and the received power is about half of the entire PSRR PPDU BW. It can be seen that if the first spatial multiplexing device 602 and the second spatial multiplexing device 604 work on channels with different channel center frequencies, one of the spatial multiplexing devices can only receive part of the PSRR PPDU sent by the other spatial multiplexing device , that is, a bandwidth mismatch occurs.
  • STA station
  • the width of the frequency range in which the PSRR PPDU is received by the first spatial multiplexing device 602 is not the entire bandwidth of the PSRR PPDU sent by the second spatial multiplexing device 604, but a part of the bandwidth of a part of the PSRR PPDU, the received RPL PSRR will become smaller , according to Equation 2, will result in more TxPower PSRT calculated than actually allowed.
  • the first spatial multiplexing device 602 may determine the RPL of the PSRR PPDU based on one or more subbands in the first frequency band occupied by part or all of the received PSRR PPDU, so as to The bandwidth mismatch is taken into account when calculating the transmit power of the PSRT PPDU, thereby further improving the accuracy of the transmit power calculation.
  • the first spatial multiplexing device 602 determines the reference transmit power for transmitting PSRT PPDUs on the second bandwidth in consideration of bandwidth mismatch is discussed below.
  • the first spatial multiplexing device 602 may use the following formula to determine the transmit power of the PSRT PPDU:
  • BW PSRR,Rx represents the frequency range of PSRR PPDUs received by the first spatial multiplexing device 602
  • RPL PSRR,Rx represents the power of the frequency range of PSRR PPDUs received by the first spatial multiplexing device 602 .
  • the frequency range of the PSRR PPDU received by the first spatial multiplexing device 602 is used, instead of always using the entire PSRR PPDU bandwidth as a normalized parameter, and correspondingly, the frequency range received by the first spatial multiplexing device 602 is used.
  • the power of the received PSRR PPDU frequency range is calculated by the power of the received PSRR PPDU frequency range, rather than the total power of the PSRR PPDU received by the first spatial multiplexing device 602 within the frequency range of the PSRR PPDU, thereby solving the problem of The problem caused by bandwidth mismatch further improves the accuracy of transmit power calculation.
  • the bandwidth-based RPL is based on the relationship between one or more subbands of the first frequency band and the second frequency band occupied by part or all of the PSRR PPDU received by the first spatial multiplexing device 602 determined by overlapping subbands.
  • a specific example is discussed below.
  • BW ⁇ PSRR,PSRT> and RPL ⁇ PSRR,PSRT> can also be used, as shown in Equation 3a below, where BW ⁇ PSRR,PSRT> represents PSRT
  • BW ⁇ PSRR,PSRT> represents PSRT
  • RPL ⁇ PSRR,PSRT> represents the power of PSRR PPDUs received in the overlapping area .
  • the first frequency band and the second frequency band can be taken as the Minimum PSR kth, 20MHz in overlapping area.
  • This formula takes into account the situation that the PSRT PPDU BW and the PSRR PPDU received by the first spatial multiplexing device 602 have different ranges.
  • the overlapping area is 160MHz
  • the transmitted PSRT PPDU is a certain 80MHz within the 160MHz range.
  • BW ⁇ PSRR,PSRT> is equal to 80MHz
  • RPL ⁇ PSRR,PSRT> is the power of the received PSRR PPDU within the 80MHz.
  • the frequency range of the overlapping area of the bandwidths of the PSRT PPDU and the PSRR PPDU is the frequency range of the PSRR PPDU received by the first spatial multiplexing device 602.
  • the formula 3 is equal to Equation 3a.
  • the first spatial multiplexing device 602 and/or the second spatial multiplexing device 604 may perform preamble puncturing when transmitting PPDUs.
  • the preamble puncturing means that the preamble and data are not transmitted on a certain 20MHz subband within the range of the PPDU bandwidth, or energy is not transmitted.
  • the above formula always uses the entire PPDU bandwidth as a normalized parameter, and does not consider the situation of preamble puncturing.
  • Equation 1 can be equivalent to the following formula:
  • the entire bandwidth of the PSRR PPDU and/or the PSRT PPDU is larger than the equivalent bandwidth of the power transmission, which will erroneously increase the TxPower PSRT .
  • the punctured part of the preamble can occupy at most 50% of the entire PPDU bandwidth
  • the determination of the RPL of the PSRR PPDU with sub-band bandwidth granularity may be determined based on the sub-bands that are not punctured in the first frequency band or the second frequency band.
  • the calculation of the transmit power of the PSRT PPDU may consider the overlapping and puncturing conditions of the first frequency band and the second frequency band at the same time.
  • the RPL with the sub-band bandwidth as the granularity is determined based on one of the following: one or more sub-bands in the first frequency band occupied by part or all of the PSRR PPDU received by the first spatial multiplexing device 602 The bandwidth of the unpunctured sub-band, or the un-punctured sub-bands in the overlapping sub-bands between one or more sub-bands in the first frequency band and the second frequency band occupied by part or all of the PSRR PPDU received by the first spatial multiplexing device 602; The bandwidth of the punched subband.
  • the reference transmit power of the PSRT PPDU may be determined based on one of the following: the bandwidth of an unpunctured subband in the second frequency band, or the first spatial multiplexing device 602 The bandwidth of the unpunctured subbands in the overlapping subbands between the one or more subbands in the first frequency band and the second frequency band occupied by part or all of the received PSRR PPDU.
  • Equation 3 can be further improved as:
  • BW PSRT, non-punc represents the equivalent bandwidth remaining after removing the puncturing part
  • BW PSRR, Rx, non-punc represents the equivalent bandwidth remaining after removing the puncturing part from the received PSRR PPDU frequency range. Since no energy is sent in the punctured part, RPL PSRR,Rx is equal to RPL PSRR,Rx,non-punc .
  • the frequency range of the received PSRR PPDU can also be replaced with the overlapping area of the frequency band occupied by the PSRT PPDU and the PSRR PPDU.
  • BW ⁇ PSRR, PSRT>, non-punc is the equivalent bandwidth remaining after removing the puncturing part from the overlapping area of the bandwidth of the PSRT PPDU and the PSRR PPDU. Equation 3a can be expressed as:
  • RPL ⁇ PSRR, PSRT> and RPL ⁇ PSRR, PSRT>, non-punc are the same.
  • the first spatial multiplexing device 602 knows its puncturing situation, or the expected puncturing situation. For the puncturing case of PSRR PPDUs, in some embodiments, the first spatial multiplexing device 602 determines unpunctured subbands in the first frequency band based on at least one of the following: the preamble in the received PSRR PPDU The puncturing indication information contained, the puncturing indication information contained in the PSRR PPDU, wherein the PSRR PPDU is a non-high-throughput duplication PPDU, or the puncturing indication contained in the management frame of the basic service set BSS where the second spatial multiplexing device 604 is located information, the management frame includes at least one of the following frames: a beacon frame, an association response frame, a probe response frame, a neighbor report frame or a reduced neighbor report frame.
  • the first spatial multiplexing device 602 may explicitly know it through a signaling indication. For example, in some embodiments, the first spatial multiplexing device 602 may determine the unpunctured subband in the first frequency band based on the puncturing indication information contained in the preamble in the received PSRR PPDU.
  • the PSRR PPDU is an EHT Multiple User (MU) PPDU, which is OFDMA transmission, and its puncturing information is located in the resource unit allocation subfield (RU allocation subfield) of the EHT-SIG field, and the punctured 20MHz corresponds to The resource unit allocation subfield will indicate 26, ie, punctured 242-subcarrier resource units (punctured 242-tone RU), where one 20MHz corresponds to one 242-tone RU.
  • the PSRR PPDU is an EHT MU PPDU and is a non-OFDMA transmission, and its puncturing information is located in the punctured channel information subfield of the U-SIG field.
  • PSRR PPDUs can also be implemented as HE PPDUs, including HE MU PPDUs, HE SU PPDUs, or HE ERSU PPDUs, and non-high-throughput replication PPDUs.
  • the PSRR PPDU is a HE MU PPDU, and its puncturing information is located in the bandwidth (BW) subfield.
  • BW bandwidth
  • the bandwidth subfield indicates 0, 1, 2, and 3, there is no puncturing, and the calculation can be directly used.
  • PPDU BW bandwidth
  • the bandwidth subfield indicates 4 and 5
  • the entire bandwidth is 80MHz
  • there is a 20MHz subband to be punctured the PPDU BW is 80MHz, and the equivalent bandwidth is 60MHz.
  • the bandwidth subfield indicates 6
  • the entire bandwidth is 160MHz
  • the primary 80MHz channel has a 20MHz subband that is punctured
  • the secondary 80MHz channel has 0 to 2 punctured 20MHz subbands, but the exact number is unclear.
  • the first spatial multiplexing device 602 can clearly know the puncturing situation.
  • the bandwidth subfield indicates 7
  • the entire bandwidth is 160MHz
  • at least one 20Mhz subband is punctured
  • the primary 80MHz channel will have 0, 1 or 2 20Mhz subbands punctured
  • the secondary 80MHz channel will have 0 , 1 or 2 20Mhz subbands are punched.
  • the PSRR PPDU when the PSRR PPDU is a non-HT duplicate PPDU, the PSRR PPDU may carry bandwidth and puncturing information, specifically, the information may be located in a service field.
  • the first spatial multiplexing device 602 may determine the unpunctured subbands in the first frequency band based on the puncturing indication information contained in the PSRR PPDU.
  • the first spatial multiplexing device 602 may determine the unpunctured subband in the first frequency band based on the puncturing indication information contained in the management frame of the BSS where the second spatial multiplexing device 604 is located.
  • the static puncturing information of which 20MHz subbands are punctured may be carried in management frames such as beacon frames, association response frames, probe response frames, neighbor report frames, and reduced neighbor report frames.
  • the first spatial multiplexing device 602 may explicitly know the puncturing situation of the PSRR PPDU through signaling indication.
  • the blind detection of the first spatial multiplexing device 602 can also be used to determine the puncturing situation of the PSRR PPDU.
  • the first spatial multiplexing device 602 can detect whether there is a non-none of the PSRR PPDU on each 20MHz. -HT preamble.
  • the first spatial multiplexing device 602 adjusts the reference transmit power based on a predetermined offset, thereby simplifying the processing of the first spatial multiplexing device 602 and further improving computational efficiency.
  • the predetermined offset may be set to 3dB.
  • the first spatial multiplexing device 602 may adjust the reference transmission power (eg TxPower PSRT ) based on the offset when calculating the reference transmission power of PSRT PPDUs (eg TxPower PSRT ). .
  • the first spatial multiplexing device 602 may further subtract an offset of, for example, 3 dB based on the TxPower PSRT calculated by formula 1/2/3/3a.
  • the first spatial multiplexing device 602 can adjust the equivalent bandwidth when it knows the puncturing of the PSRR PPDU, and only uses the offset adjustment when it does not know the puncturing.
  • the first spatial multiplexing device 602 may not adjust.
  • the first spatial multiplexing device 602 may be adjusted all the time.
  • the second spatial multiplexing device 604 may adjust the UL SRP/EHT UL SRP value based on the offset to compensate for the transmission power calculation deviation caused by the puncturing of the PSRR PPDU. For example, if the PSRR PPDU is punctured with a preamble, an offset of, for example, 3 dB is further subtracted from the originally set PSR value. If the PSRR PPDU is not punctured, the second spatial multiplexing device 604 may not subtract the offset further. On the one hand, in this way, backward compatibility can be achieved when the first spatial multiplexing device 602 is a legacy device.
  • the operation of the first spatial multiplexing device 602 can be simplified without the first spatial multiplexing device 602 taking into account the adjustment of the offset.
  • the second spatial multiplexing device 604 always subtracts an offset of, for example, 3 dB.
  • the first spatial multiplexing device 602 may perform the execution. the above adjustments. Otherwise, adjustment is performed by the second spatial multiplexing device 604 to compensate for transmit power calculation deviations due to puncturing of PSRR PPDUs.
  • the offset can be adjusted by the second spatial multiplexing device 604 when setting the SRP value, for example, on the basis of the originally set PSR value, The offset such as 3dB is further subtracted, thereby realizing the adjustment of the calculation deviation of the transmit power caused by puncturing of PSRT PPDU, such as 3dB.
  • the offset may also be adjusted by the first spatial multiplexing device 602 when calculating the TxPower PSRT . It should be pointed out that because the first spatial multiplexing device 602 knows the puncturing situation of the PSRT PPDU, the first spatial multiplexing device 602 can directly solve the puncturing situation (using Equation 4 or 4a, the solution on the left side of the inequality). However, in order to simplify the calculation process, it is also possible to simply subtract 3dB from the calculated TxPower PSRT (formula 1/2/3/3a).
  • the first spatial multiplexing device 602 and the second spatial multiplexing device 604 may perform corresponding offset adjustment respectively.
  • the 3dB offset may be subtracted by the first spatial multiplexing device 602 when calculating the TxPower PSRT
  • the 3dB offset may be subtracted by the second spatial multiplexing device 604 when setting the SRP value.
  • 6dB may also be handed over to a party.
  • the reference transmit power of the PSRT PPDU can also be determined sub-band by sub-band.
  • the first spatial multiplexing device 602 may be based on the value of the SRP specified by the second spatial multiplexing device 604 for a certain subband in the first frequency band (the subband is also included in the second frequency band), and The RPL of the PSRR PPDU in the subband is used to determine the reference transmit power for transmitting the PSRT PPDU on this subband.
  • a method for calculating PSRT PPDU transmission power is provided one by one with 20MHz sub-band bandwidth, and the following formula is used:
  • the PSRT PPDU transmit power can be determined for the unpunctured subband in the first frequency band using Equation 6.
  • the first spatial multiplexing device 602 when the first spatial multiplexing device 602 receives the PSRR PPDU, it needs to detect the power on each 20MHz, and needs to calculate TxPower PSRT,kth,20MHz with 20MHz as the granularity.
  • the 20MHz subband or TxPower PSRT, jth, 20MHz on the subchannel that has not received PSRR PPDU can adopt the following rules, where j is used to indicate the channel index of 20MHz that has not received PSRR PPDU, It can be said to be located in BW ⁇ PSRR, PSRT>, punc :
  • the first spatial multiplexing device 602 may determine the reference transmit power on the punctured subband to be less than a predefined maximum transmit power.
  • the maximum transmit power may be predefined in the system or in standard specifications or regulations. Because there is no PSRR PPDU transmission on this subband, the triggered HE/EHT TB PPDU will not be transmitted on this 20MHz subband, so the PSRT PPDU on the corresponding 20MHz subband will not be transmitted to the second spatial multiplexing device. 604 Interference caused by receiving HE/EHT TB PPDUs. However, the limits on transmit power by standard specifications or regulations still exist. Therefore, the power for PSR-based spatial multiplexing is still limited by regulations.
  • PSR-based spatial multiplexing is not allowed on 20MHz subbands that do not receive PSRR PPDUs. Accordingly, the first spatial multiplexing device 602 may determine that PSRT PPDUs are not allowed on the punctured subband. This is equivalent to the 20MHz subband where the PSRR PPDU is punctured, and the PSRT PPDU is also punctured. Because it is possible that the second spatial multiplexing device 604 sends the PSRR PPDU for puncturing because other users are already transmitting on these 20MHz subbands, or there are radar signals, or there are existing users (incumbent users, which can be understood as an authorized user) ) is being transmitted, so for safety reasons, PSR-based spatial multiplexing is not performed.
  • the first spatial multiplexing device 602 determines the reference transmit power on the punctured subband as the average power of the plurality of reference transmit powers determined for the plurality of unpunctured subbands. For example, it can be transmitted using the minimum TxPower PSRT,kth,20MHz calculated by Equation 6 or the average value of TxPower PSRT, kth,20MHz in BW ⁇ PSRR,PSRT>,non-punc . This method can be regarded as a trade-off between the above-mentioned two methods of not restricting the transmission power and not allowing spatial multiplexing.
  • the SRP parameters on the unpunctured 20MHz subband of the received PSRR PPDU are used to determine the 20MHz frequency that has not received the PSRR PPDU.
  • TxPower PSRT,jth,20MHz on subband (caused by puncturing or bandwidth mismatch).
  • Equation 6 it can be further deduced on the basis of Equation 6, summing up all parameters on 20MHz in BW ⁇ PSRR, PSRT>, non-punc ,
  • Equation 7 is equivalent to Equation 8 or Equation 8a:
  • the first spatial multiplexing device 602 transmits the PSRT PPDU, one way is to satisfy the formula 8/8a, and it is not necessary to satisfy the formula 6 for every 20MHz.
  • Some of the above embodiments provide a way of calculating TxPower PSRT,kth, 20MHz by 20MHz, which can directly normalize the granularity of PSRT PPDU transmit power calculation to the subband bandwidth, which improves the calculation accuracy.
  • the first spatial multiplexing device 602 may determine the reference transmit power of the PSRT PPDU on the punctured subband based on the value of the SRP for the punctured subband.
  • the following describes how the second spatial multiplexing device 604 sets the UL SRP field when there is preamble puncturing in the PSRR PPDU, and uses the first spatial multiplexing device 602 or other spatial multiplexing devices to indicate the punctured subband How to perform spatial multiplexing transmission.
  • FIG. 10 shows a flow diagram of a spatial multiplexing method 1000 according to certain other embodiments of the present disclosure.
  • the method 1000 may be performed by the second spatial multiplexing device 604 .
  • PPDUs physical layer protocol data units
  • the first spatial multiplexing device 602 can be made to adjust the transmission power of the PSRT PPDU accordingly, so as to compensate for the PSRR Transmit power calculation deviation caused by PPDU puncturing.
  • the second spatial multiplexing device 604 may select the first spatial multiplexing device 602 does not perform PSR-based spatial multiplexing on the 20MHz subband or subchannel that has not received the PSRR PPDU.
  • the UL SRP value of the UL SRP field and/or the EHT UL SRP field corresponding to the 20MHz subchannel is set to a specific value, such as 0 or 15 (refer to Table 1 below).
  • the UL SRP value of all UL SRP fields and/or EHT UL SRP fields may be set to a specific value such as 0 or 15.
  • other spatial multiplexing devices eg, the first spatial multiplexing device 602 may be indicated to prohibit the The transmission is performed on the punctured subband.
  • the first spatial multiplexing device 602 does not need to perform power correction for the preamble puncturing of the PSRR PPDU, and therefore does not need to adopt the power calculation/adjustment methods in the previous embodiments.
  • Table 1 below shows example settings for UL SRP values.
  • the UL SRP The value is set to a value other than 0 or 15, for example, the value of the PSR can be set to 14, as shown in Table 1, which indicates the maximum allowable PSR value.
  • the second spatial multiplexing device 604 transmits a punctured PPDU on an unpunctured subband in the first frequency band, the trigger frame carried in the PPDU containing the determined value of the SRP.
  • Embodiments of the present disclosure also provide corresponding apparatuses for implementing the above-mentioned methods or processes.
  • FIG. 11 shows a schematic diagram of an apparatus according to certain embodiments of the present disclosure.
  • the apparatus 1100 includes a receiving module 1105 and a first determining module 1110 .
  • the receiving module 1105 is configured to receive, through the first spatial multiplexing device 602, part or all of the PSRR PPDU sent by the second spatial multiplexing device 604 on a first frequency band, the first frequency band including one or more subbands of the same bandwidth .
  • the first determination module 1110 is configured to pass the first spatial multiplexing device 602 based on the value of the spatial multiplexing parameter (SRP) with the bandwidth as the granularity and the received power level (RPL) of the PSRR PPDU with the bandwidth as the granularity
  • SRP spatial multiplexing parameter
  • RPL received power level
  • the RPL of the PSRR PPDU with the bandwidth as the granularity is determined based on one or more of the following: one or more subbands in the first frequency band occupied by part or all of the received PSRR PPDU; or the first frequency band or Subbands in the second frequency band that are not punctured.
  • the reference transmit power is determined for the entire second frequency band.
  • the RPL at the granularity of the bandwidth is determined based on overlapping subbands between one or more subbands in the first frequency band and the second frequency band occupied by part or all of the received PSRR PPDU of.
  • the RPL at the bandwidth granularity is determined based on an unpunctured one or more subbands in the first frequency band occupied by part or all of the received PSRR PPDU The bandwidth of the subband, or the bandwidth of an unpunctured subband in the overlapping subbands between one or more subbands in the first frequency band and the second frequency band occupied by part or all of the received PSRR PPDU.
  • the reference transmit power is determined based on one of the following: the bandwidth of an unpunctured subband in the second frequency band, or the first frequency band occupied by part or all of the received PSRR PPDU The bandwidth of an unpunctured subband in the overlapping subbands between the one or more subbands of the second frequency band.
  • the apparatus 1100 further includes a second determination module.
  • the second determination module is configured to determine the unpunctured subbands in the first frequency band based on at least one of the following: puncturing indication information included in the preamble in the received PSRR PPDU; puncturing indication included in the PSRR PPDU information, wherein the PSRR PPDU is a non-high-throughput copy PPDU; or the puncturing indication information contained in the management frame of the basic service set BSS where the second spatial multiplexing device 604 is located.
  • the management frame includes at least one of the following frames: beacon frame, association Response frame, probe response frame, neighbor report frame, or reduced neighbor report frame.
  • the apparatus 1100 further includes a third determining module configured to determine, through the first spatial multiplexing device 602, to puncture the PSRT PPDU.
  • the apparatus 1100 further includes an adjustment module configured to adjust the reference transmit power based on the predetermined offset by the first spatial multiplexing device 602 .
  • the value of the bandwidth-granular SRP is adjusted by the second spatial multiplexing device 604 based on a predetermined offset for the punctured PSRR PPDU.
  • the first frequency band includes a plurality of subbands.
  • the value of the SRP with the bandwidth as the granularity is the minimum value among the multiple values of the SRP for the multiple subbands.
  • the first determination module 1110 is configured to determine, by the first spatial multiplexing device 602, based on the value of the SRP for a subband in the first frequency band, and the RPL of the PSRR PPDU in the subband The reference transmit power for transmitting PSRT PPDUs on this subband.
  • the subband in the first frequency band is contained in the second frequency band.
  • the first determination module 1110 is configured to determine, by the first spatial multiplexing device 602, that for punctured subbands in the overlapping subbands between the second frequency band and the first frequency band, the The PSRT PPDU is sent on the punctured subband; or the reference transmit power on the punctured subband is determined by the first spatial multiplexing device 602 to be less than a predefined maximum transmit power.
  • the first determination module 1110 is configured for punctured subbands in the overlapping subbands between the second frequency band and the first frequency band, based on the second frequency band by the first spatial multiplexing device 602
  • the reference transmit power on the punctured subband is determined from one or more reference transmit powers determined from one or more unpunctured subbands in the overlapping subbands between the first frequency bands.
  • the first determination module 1110 is configured to, for the punctured subbands in the overlapping subbands between the second frequency band and the first frequency band, by the first spatial multiplexing device 602 based on the One or more reference transmit powers determined by one or more unpunctured subbands in overlapping subbands between a frequency band to determine the reference transmit power on the punctured subbands.
  • the first determination module 1110 is configured to determine, by the first spatial multiplexing device 602, the reference transmit power on the punctured subband as a plurality of references determined for a plurality of unpunctured subbands The minimum reference transmission power among the transmission powers or the average power of multiple reference transmission powers.
  • the first determination module 1110 is configured, for punctured subbands in the overlapping subbands between the second frequency band and the first frequency band, by the first spatial multiplexing device 602 based on the punctured subbands The value of the SRP of the subband determines the reference transmit power on the punctured subband.
  • Figure 12 shows a schematic diagram of an apparatus according to certain other embodiments of the present disclosure.
  • the apparatus 1200 includes a fourth determining module 1205 and a sending module 1210 .
  • the fourth determining module 1205 is configured to, for a subband to be punctured in the first frequency band including a plurality of subbands with the same bandwidth used for transmitting a physical layer protocol data unit (PPDU), determine a corresponding subband by one of the following operations:
  • the value of the spatial multiplexing parameter SRP the value of the SRP is adjusted based on a predetermined offset; the value of the SRP is set to the first value to indicate to other spatial multiplexing devices that the processing on the subband where the PPDU is to be punctured is prohibited transmission; or set the value of SRP to a second value to indicate to other spatial multiplexing devices that transmission on the subband to be punctured is permitted.
  • the sending module 1210 is configured to send a punctured PPDU on an unpunctured subband in the first frequency band, and a trigger frame carried in the PPDU contains the determined value of the SRP
  • the modules included in the apparatuses 1100 and 1200 may be implemented in various ways, including software, hardware, firmware, or any combination thereof.
  • one or more modules may be implemented using software and/or firmware, such as machine-executable instructions stored on a storage medium.
  • some or all of the modules in apparatuses 1100 and 1200 may be implemented, at least in part, by one or more hardware logic components.
  • exemplary types of hardware logic components include field programmable gate arrays (FPGAs), application specific integrated circuits (ASICs), application specific standards (ASSPs), systems on chips (SOCs), complex programmable logic devices (CPLD), etc.
  • FIG. 13 shows a block diagram of a device 1300 in which certain embodiments of the present disclosure may be implemented.
  • the apparatus 1300 can be used to implement the method flows in FIGS. 8 and 10 .
  • the device 1300 includes a processor 1310 that controls the operation and functionality of the device 1300 .
  • processor 1310 may perform various operations with instructions 1330 stored in memory 1320 coupled thereto.
  • Memory 1320 may be of any suitable type suitable for use in the local technical environment, and may be implemented using any suitable data storage technology, including but not limited to semiconductor-based storage devices, magnetic storage devices and systems, optical storage devices and systems. Although only one memory unit is shown in FIG. 13 , there may be multiple physically distinct memory units in device 1300 .
  • Processor 1310 may be of any suitable type suitable for use in the local technical environment, and may include, but is not limited to, general purpose computers, special purpose computers, microcontrollers, digital signal controllers (DSPs), and controller-based multi-core controller architectures. one or more.
  • Device 1300 may also include multiple processors 1310 .
  • the processor 1310 is coupled with the communication unit 1340 .
  • the communication unit 1340 may enable reception and transmission of information through radio signals or by means of optical fibers, cables, and/or other components.
  • the embodiment of the present disclosure solves and corrects the problem of interference caused by the reception of the spatial multiplexing device, and reduces the reception of the spatial multiplexing device.
  • the interference caused by the system improves the efficiency of the system.
  • the various example embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic, or any combination thereof. Certain aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor or other computing device. While aspects of the example embodiments of the present disclosure are illustrated or described as block diagrams, flowcharts, or using some other graphical representation, it will be understood that the blocks, apparatus, systems, techniques, or methods described herein may be taken as non-limiting Examples of are implemented in hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controllers or other computing devices, or some combination thereof.
  • example embodiments of the present disclosure may be described in the context of machine- or computer-executable instructions, such as included in program modules executed in a device on a target's real or virtual processor.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, etc. that perform particular tasks or implement particular abstract data structures.
  • the functionality of the program modules may be combined or divided among the described program modules.
  • Machine-executable instructions for program modules may be executed within local or distributed devices. In a distributed facility, program modules may be located in both local and remote storage media.
  • Computer program code for implementing the methods of the present disclosure may be written in one or more programming languages. Such computer program code may be provided to a processor of a general purpose computer, special purpose computer or other programmable data processing apparatus such that the program code, when executed by the computer or other programmable data processing apparatus, causes the flowchart and/or block diagrams The functions/operations specified in are implemented.
  • the program code may execute entirely on the computer, partly on the computer, as a stand-alone software package, partly on the computer and partly on a remote computer or entirely on the remote computer or server.
  • a machine-readable medium or computer-readable medium may be any tangible medium that contains or stores a program for or in connection with an instruction execution system, apparatus, or device.
  • the machine-readable medium may be a machine-readable signal medium or a machine-readable storage medium.
  • Machine-readable media may include, but are not limited to, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor systems, devices, or devices, or any suitable combination thereof. More detailed examples of machine-readable storage media include electrical connections with one or more wires, portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), erasable programmable read only Memory (EPROM or flash memory), optical storage devices, magnetic storage devices, or any suitable combination thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transmitters (AREA)
  • Noise Elimination (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

提供了空间复用方法、装置、设备和介质。该方法中,第一空间复用设备接收由第二空间复用设备在第一频带上发送的PSRR PPDU的部分或全部,第一频带包括一个或多个带宽相同的子带。基于以该带宽为粒度的空间复用参数SRP的值以及以该带宽为粒度的PSRR PPDU的接收功率水平RPL,第一空间复用设备确定在第二频带上发送PSRT PPDU的参考发送功率。第二频带包括一个或多个具有该带宽的子带,第二频带与第一频带至少部分重叠。以该带宽为粒度的PSRR PPDU的RPL基于以下中的一项或多项来确定:第一空间复用设备接收到的PSRR PPDU的部分或全部所占用的第一频带中的一个或多个子带、或者第一频带或第二频带中未打孔的子带。由此,减少了对空间复用设备接收造成的干扰,提升了系统效率。

Description

空间复用方法、装置、设备和介质 技术领域
本公开涉及无线局域网领域,更具体地,涉及空间复用方法、装置和介质。
背景技术
无线局域网(Wireless Local Area Network,WLAN)标准发展至今已历经多代,包括802.11a/b/g、802.11n、802.11ac、802.11ax以及现在正在讨论中的802.11be等。其中,802.11n标准称为高吞吐率(High Throughput,HT),802.11ac标准称为非常高吞吐率(Very High Throughput,VHT),802.11ax标准称为HE(High Efficient,高效),802.11be标准称为EHT(Extremely High Throughput,超高吞吐率)。
802.11ax的WLAN设备,如接入点和站点,只能支持半双工传输,即在同一个频谱宽度或者信道上,只能有一个设备发送信息,其他设备只能接收信号而无法发送,以避免对当前发送设备的干扰。但随着WLAN设备的密度越来越高,一个基本服务集(basic service set,BSS)与另一个BSS重叠的情况越来越普遍,即重叠基本服务集(Overlapping BSS,OBSS)的情况越来越普遍。如果采用传统方法,则传输效率会非常低。针对这种情况,802.11ax提出了空间复用(Spatial Reuse)的方法,通过自适应调整发送功率,使得处于重叠基本服务集中的设备能够同时传输,提升了传输效率。然而,802.11ax的空间复用的方法存在设备间干扰较大,系统效率较低的缺陷。
发明内容
本公开提供了一种空间复用的方案。
在本公开的第一方面,提供了一种空间复用方法。在该方法中,第一空间复用设备接收由第二空间复用设备在第一频带上发送的PSRR PPDU的部分或全部。第一频带包括一个或多个带宽相同的子带。基于以该带宽为粒度的空间复用参数(SRP)的值,以及以该带宽为粒度的PSRR PPDU的接收功率水平(RPL),第一空间复用设备确定在第二频带上发送PSRT PPDU的参考发送功率。第二频带包括一个或多个具有该带宽的子带,并且第二频带与第一频带至少部分重叠。以该带宽为粒度的PSRR PPDU的RPL基于以下中的一项或多项来确定:第一空间复用设备接收到的PSRR PPDU的部分或全部所占用的第一频带中的一个或多个子带;或者第一频带或第二频带中未打孔的子带。
在某些实现方式中,其中参考发送功率是针对整个第二频带确定的。
在某些实现方式中,以该带宽为粒度的RPL是基于第一空间复用设备接收到的PSRR PPDU的部分或全部所占用的第一频带中的一个或多个子带与第二频带之间的重叠子带而确定的。
在某些实现方式中,以带宽为粒度的RPL是基于以下一项来确定的:第一空间复用设备接收到的PSRR PPDU的部分或全部所占用的第一频带中的一个或多个子带中的未打孔的子带的带宽,或者第一空间复用设备接收到的PSRR PPDU的部分或全部所占用的第一频带中的一个或多个子带与第二频带之间的重叠子带中的未打孔的子带的带宽。
在某些实现方式中,参考发送功率是基于以下一项来确定的:第二频带中的未打孔的子 带的带宽,或者第一空间复用设备接收到的PSRR PPDU的部分或全部所占用的第一频带中的一个或多个子带与第二频带之间的重叠子带中的未打孔的子带的带宽。
在某些实现方式中,第一空间复用设备基于以下至少一项来确定第一频带中的未打孔的子带:接收到的PSRR PPDU中的前导码包含的打孔指示信息,PSRR PPDU中包含的打孔指示信息,其中PSRR PPDU为非高吞吐率复制PPDU,或者第二空间复用设备所在基本服务集合BSS的管理帧中包含的打孔指示信息,管理帧包括以下至少一个帧:信标帧、关联响应帧、探测响应帧、邻居报告帧或者缩减邻居报告帧。
在某些实现方式中,其中第一空间复用设备确定对PSRT PPDU进行打孔。第一空间复用设备基于预定偏移量对参考发送功率进行调整。
在某些实现方式中,以带宽为粒度的SRP的值由第二空间复用设备针对经过打孔的PSRR PPDU而基于预定偏移量进行了调整。
在某些实现方式中,第一频带包括多个子带。以带宽为粒度的SRP的值是针对该多个子带的SRP的多个值中的最小值。
在某些实现方式中,确定在第二频带上发送PSRT PPDU的参考发送功率包括:基于针对第一频带中的一个子带的SRP的值,以及在该子带中的PSRR PPDU的RPL,第一空间复用设备确定在该子带上发送PSRT PPDU的参考发送功率,第一频带中的该子带被包含在第二频带中。
在某些实现方式中,针对第二频带与第一频带之间的重叠子带中的打孔的子带,第一空间复用设备确定不允许在打孔的子带上发送PSRT PPDU;或者第一空间复用设备将打孔的子带上的参考发送功率确定为小于预定义的最大发送功率。
在某些实现方式中,针对第二频带与第一频带之间的重叠子带中的打孔的子带,第一空间复用设备基于针对第二频带与第一频带之间的重叠子带中的一个或多个未打孔的子带确定的一个或多个参考发送功率,来确定打孔的子带上的参考发送功率。
在某些实现方式中,确定打孔的子带上的参考发送功率包括:第一空间复用设备将打孔的子带上的参考发送功率确定为针对多个未打孔的子带确定的多个参考发送功率中的最小参考发送功率或者多个参考发送功率的平均功率。
在某些实现方式中,针对第二频带与第一频带之间的重叠子带中的打孔的子带,第一空间复用设备基于针对打孔的子带的SRP的值来确定打孔的子带上的参考发送功率。
在本公开的第二方面,提供了一种空间复用方法。在该方法中,针对用于发送物理层协议数据单元(PPDU)的包括多个带宽相同的子带的第一频带中要被打孔的子带,第二空间复用设备通过以下一个操作来确定相应的空间复用参数SRP的值:基于预定偏移量对SRP的值进行调整;将SRP的值设置为第一值,以向其他空间复用设备指示禁止在PPDU要被打孔的子带上进行传输;或者将SRP的值设置为第二值,以向其他空间复用设备指示允许在要被打孔的子带上进行传输。继而,第二空间复用设备在第一频带中的未打孔的子带上发送经打孔的PPDU,PPDU中承载的触发帧中包含所确定的SRP的值。
在本公开的第三方面,提供了一种通信装置。该装置包括接收模块和第一确定模块。接收模块被配置为通过第一空间复用设备接收由第二空间复用设备在第一频带上发送的PSRR PPDU的部分或全部,该第一频带包括一个或多个带宽相同的子带。第一确定模块被配置为基于以该带宽为粒度的空间复用参数SRP的值,以及以该带宽为粒度的PSRR PPDU的接收 功率水平RPL,通过第一空间复用设备确定在第二频带上发送PSRT PPDU的参考发送功率。以该带宽为粒度的PSRR PPDU的RPL基于以下中的一项或多项来确定:接收到的PSRR PPDU的部分或全部所占用的第一频带中的一个或多个子带;或者第一频带或第二频带中未打孔的子带。
在某些实现方式中,参考发送功率是针对整个第二频带确定的。
在某些实现方式中,以该带宽为粒度的RPL是基于接收到的PSRR PPDU的部分或全部所占用的第一频带中的一个或多个子带与第二频带之间的重叠子带而确定的。
在某些实现方式中,以该带宽为粒度的RPL是基于以下一项来确定的:接收到的PSRR PPDU的部分或全部所占用的第一频带中的一个或多个子带中的未打孔的子带的带宽,或者接收到的PSRR PPDU的部分或全部所占用的第一频带中的一个或多个子带与第二频带之间的重叠子带中的未打孔的子带的带宽。
在某些实现方式中,参考发送功率是基于以下一项来确定的:第二频带中的未打孔的子带的带宽,或者接收到的PSRR PPDU的部分或全部所占用的第一频带中的一个或多个子带与第二频带之间的重叠子带中的未打孔的子带的带宽。
在某些实现方式中,该装置还包括第二确定模块。第二确定模块被配置为基于以下至少一项来确定第一频带中的未打孔的子带:接收到的PSRR PPDU中的前导码包含的打孔指示信息;PSRR PPDU中包含的打孔指示信息,其中PSRR PPDU为非高吞吐率复制PPDU;或者第二空间复用设备所在基本服务集合BSS的管理帧中包含的打孔指示信息,管理帧包括以下至少一个帧:信标帧、关联响应帧、探测响应帧、邻居报告帧或者缩减邻居报告帧。
在某些实现方式中,该装置还包括第三确定模块,被配置为通过第一空间复用设备确定对PSRT PPDU进行打孔。该装置还还包括调整模块,被配置为通过第一空间复用设备基于预定偏移量对参考发送功率进行调整。
在某些实现方式中,以带宽为粒度的SRP的值由第二空间复用设备针对经过打孔的PSRR PPDU而基于预定偏移量进行了调整。
在某些实现方式中,第一频带包括多个子带。以该带宽为粒度的SRP的值是针对该多个子带的SRP的多个值中的最小值。
在某些实现方式中,第一确定模块被配置为基于针对第一频带中的一个子带的SRP的值,以及在该子带中的PSRR PPDU的RPL,通过第一空间复用设备确定在子带上发送PSRT PPDU的参考发送功率,第一频带中的该子带被包含在第二频带中。
在某些实现方式中,第一确定模块被配置为针对第二频带与第一频带之间的重叠子带中的打孔的子带,通过第一空间复用设备确定不允许在打孔的子带上发送PSRT PPDU;或者通过第一空间复用设备将打孔的子带上的参考发送功率确定为小于预定义的最大发送功率。
在某些实现方式中,第一确定模块被配置为针对第二频带与第一频带之间的重叠子带中的打孔的子带,通过第一空间复用设备基于针对第二频带与第一频带之间的重叠子带中的一个或多个未打孔的子带确定的一个或多个参考发送功率,来确定打孔的子带上的参考发送功率。
在某些实现方式中,第一确定模块被配置为通过第一空间复用设备将打孔的子带上的参考发送功率确定为针对多个未打孔的子带确定的多个参考发送功率中的最小参考发送功率或者多个参考发送功率的平均功率。
在某些实现方式中,第一确定模块被配置为针对第二频带与第一频带之间的重叠子带中的打孔的子带,通过第一空间复用设备基于针对打孔的子带的SRP的值来确定打孔的子带上的参考发送功率。
在本公开的第四方面,提供了一种通信装置。该通信装置包括第四确定模块和发送模块。第四确定模块被配置为针对用于发送物理层协议数据单元PPDU的包括多个带宽相同的子带的第一频带中要被打孔的子带,通过以下一个操作来确定相应的空间复用参数SRP的值:基于预定偏移量对SRP的值进行调整;将SRP的值设置为第一值,以向其他空间复用设备指示禁止在PPDU要被打孔的子带上进行传输;或者将SRP的值设置为第二值,以向其他空间复用设备指示允许在要被打孔的子带上进行传输。发送模块被配置为在第一频带中的未打孔的子带上发送经打孔的PPDU,PPDU中承载的触发帧中包含所确定的SRP的值。
在本公开的第五方面,提供了一种通信设备,该通信设备包括:处理器;处理器与存储器耦合,存储器存储指令,其中指令在被处理器执行时使根据本公开的第一或第二方面的方法被执行。
在本公开的第六方面,提供了一种计算机可读存储介质,其上存储有程序,至少部分程序在由设备中的处理器执行时,使设备执行根据本公开的第一或第二方面的方法。
应当理解,发明内容部分中所描述的内容并非旨在限定本公开的关键或重要特征,亦非用于限制本公开的范围。本公开的其它特征将通过以下的描述变得容易理解。
附图说明
结合附图并参考以下详细说明,本公开各实施例的上述和其他特征、优点及方面将变得更加明显。在附图中,相同或相似的附图标记表示相同或相似的元素,其中:
图1示出了一个BSS与另一个BSS部分重叠形成的OBSS的示意图;
图2示出了802.11ax标准中基于触发帧的上行调度传输中的帧格式的示意图;
图3示出了图2中所示的触发帧的帧格式示意图;
图4示出了802.11ax的触发帧中公共信息字段和用户信息字段的帧格式示意图;
图5示出了802.11ax的空间复用传输流程示意图;
图6示出了本公开的实施例可以在其中实施的示例环境;
图7A示出了根据本公开的某些实施例的空间复用传输过程的示意图;
图7B示出了根据本公开的某些其他实施例的空间复用传输过程的示意图;
图7C示出了根据本公开的某些其他实施例的空间复用传输过程的示意图;
图7D示出了根据本公开的某些实施例的触发帧中包含的公共信息字段和用户信息字段中部分子字段的帧格式的示意图;
图8示出了根据本公开的某些实施例的空间复用方法的流程图;
图9示出了本公开的实施例的6GHz频段中80/160/320MHz带宽的信道划分的示意图;
图10示出了根据本公开的某些其他实施例的空间复用方法的流程图;
图11示出了根据本公开的某些实施例的装置的示意图;
图12示出了根据本公开的某些其他实施例的装置的示意图;以及
图13示出了其中可以实施本公开的某些实施例的设备的框图。
具体实施方式
下面将参照附图更详细地描述本公开的实施例。虽然附图中示出了本公开的某些实施例,然而应当理解的是,本公开可以通过各种形式来实现,而且不应该被解释为限于这里阐述的实施例,相反提供这些实施例是为了更加透彻和完整地理解本公开。应当理解的是,本公开的附图及实施例仅用于示例性作用,并非用于限制本公开的保护范围。
在此使用的术语“包括”及其变形是开放性包括,即“包括但不限于”。术语“基于”是“至少部分地基于”。术语“一个实施例”表示“至少一个实施例”;术语“另一实施例”表示“至少一个另外的实施例”。其他术语的相关定义将在下文描述中给出。
应理解,尽管本文可以使用术语“第一”和“第二”等来描述各种元件,但这些元件不应受到这些术语的限制。这些术语仅用于区分一个元件和另一个元件。如本文所用,术语“和/或”包括一个或多个所列术语的任何和所有组合。
在此使用的术语“接入点”或“AP”是指能够使用户终端访问所需服务的任何适当设备。AP的示例包括路由器。在此使用的术语“站点”或“STA”是指能够通过接入点(Access Point,AP)访问所需服务的用户终端。站点(Station,STA)的示例包括个人计算机、平板计算机、个人数字助理(PDA)、移动电话等。
WLAN设备,例如AP和STA工作在非授权频谱,通过竞争信道获得传输物理层协议数据单元(PHY Protocol Data Unit,PPDU)或者其他数据包或者数据分组的机会。如前面所提到的,随着WLAN设备的密度越来越高,一个基本服务集(Basic Service Set,BSS)落在另一个BSS的基本服务区内构成一个重叠基本服务集(Overlapping BSS,OBSS)的情况越来越普遍。针对这种情况,802.11ax提出了空间复用(Spatial Reuse)的方法,通过自适应调整发送功率,使得处于重叠基本服务集中的设备能够同时传输。
图1示出了一个BSS与另一个BSS部分重叠形成的OBSS的示意图。
首先介绍一下重叠基本服务集(Overlapping BSS,OBSS)。如果一个与站点不相关联的基本服务集(BSS)跟与站点相关联的BSS工作在同一频带(也称为信道)上,并且该不相关联的BSS(部分或全部)在相关联的BSS的基本服务区内,则不相关联的BSS即称为该站点的重叠基本服务集(OBSS)。基本服务区是指包含基本服务集成员的区域,它可能包含其他BSS的成员。
在图1所示的示例中,BSS 105(标记为BSS1)与BSS 110(标记为BSS2)部分重叠,互为OBSS。图1中,AP 115(标记为AP1)、STA 120(标记为STA1)以及STA 125(标记为STA3)属于BSS 105,AP 130(标记为AP2)和STA 135(标记为STA2)属于BSS 110。
由于BSS1和BSS2的基本服务区存在部分重叠,如图1所示,当位于同一个BSS1内的AP1与STA1进行数据传输时,位于另一个BSS2的AP2可以接收到AP1和STA1发送的信息。而且,AP2还可以接收到STA3发送的信息。此时,AP2可以根据AP1传递的空间复用参数,自适应调整AP2向STA2发送PPDU的功率,以实现在OBSS内部的同时传输。同理,当位于同一个BSS2内的AP2与STA2进行数据传输时,位于另一个BSS1的AP1可以接收到AP2发送的信息。此时,AP1也可以根据AP2传递的空间复用参数,自适应调整AP1向STA1和/或STA3发送PPDU的功率,以实现在OBSS内部的同时传输。
AP1或AP2可以在基于触发帧的上行调度传输过程中通过触发帧来传输空间复用参数。下面参考图2到图4来描述基于触发帧的上行调度传输过程。
首先参考图2,其示出了802.11ax标准中基于触发帧的上行调度传输中的示例帧格式的示意图。
如图2所示,AP1在基于触发帧的上行调度传输中,可以首先发送触发帧205,其中触发帧205中包含用于一个或多个STA发送上行PPDU的资源调度以及其他参数,触发帧205的示例格式在图3中示出。如图3所示,触发帧205中包括公共信息(common info)字段305和用户信息列表(user info list)字段310。公共信息字段305包含所有STA都需要读取的公共信息。用户信息列表字段310包括一个或多个用户信息(user info)字段315,包含相应STA需要读取的信息。
图4示出触发帧205中公共信息字段305和用户信息字段315的帧格式示意图。
如图4所示,公共信息字段305中包括上行空间复用(UL Spatial Reuse)子字段405。在用户信息字段315中,关联标识12(association identification 12,AID12)子字段410表示某一个STA的关联标识,而资源单元分配子字段(RU Allocation)415用来指示这个STA(AID12所指示的STA)所分配到的具体的资源单元(Resource Unit,RU)位置。
STA1和/或STA3接收到该触发帧205后,从该触发帧205中解析出与自己的AID相匹配的用户信息字段315,然后在该用户信息字段315中的资源单元分配子字段415所指示的RU上发送高效基于触发的数据分组,例如高效基于触发的物理层协议数据单元(High Efficient Trigger Based Physical layer Protocol Data Unit,HE TB PPDU)210,如图2所示。STA1和/或STA3还可以将接收到的触发帧205中的UL Spatial Reuse字段405复制到HE TB PPDU 210中的高效信令字段A(High Efficient Signal Field A,HE-SIG-A)字段220中。
AP1接收到该HE TB PPDU 210后,向STA1和/或STA3回复确认帧215,以确认AP1已收到该HE TB PPDU 210。
如图2所示的HE TB PPDU 210中可能包括的各字段的含义及功能可参考如下表1所示。
表1
Figure PCTCN2022078013-appb-000001
Figure PCTCN2022078013-appb-000002
AP1发送的触发帧205除了能够被与其相关联的STA1或STA3接收到,还可以被OBSS内部的AP2接收到。基于触发帧205中的上行空间复用子字段405中的信息,AP2可以与AP1在OBSS内部进行空间复用传输。下面参考图5来讨论AP1和AP2的空间复用传输的一个示例过程。
图5示出了802.11ax的示例空间复用传输过程500的示意图。
首先,AP1(即AP 115)发送一个包含触发帧205的参数功率复用接收(Parameterized Spatial Reuse Reception,PSRR)PPDU 505给STA1。如图6所示,触发帧205中的公共信息字段305包含上行空间复用(UL Spatial Reuse)字段405,其中承载上行空间复用参数(Uplink Spatial Reuse Parameter,UL SRP)。UL SRP的值代表AP1的发送功率加上AP1能够接受的最大干扰功率。在AP 115的工作频带具有不同带宽(bandwidth)时,UL SRP1至UL SRP4的值设定如下:
· 当带宽为20MHz时,UL SRP1=UL SRP2=UL SRP3=UL SRP4,表示该20MHz带宽上的UL SRP的值相等;
· 当带宽为40MHz时,UL SRP1=UL SRP3代表第一个20MHz子带(subband),也称为子信道(subchannel)或子块(subblock),UL SRP2=UL SRP4代表第二个20MHz子带;为了防止信道分配造成的混淆,当带宽为2.4GHz时,UL SRP1=UL SRP2。
· 当带宽为80MHz时,四个UL SRP分别代表四个20MHz子带;
· 当带宽为160MHz时,四个UL SRP分别代表四个40MHz子带中的任何一个20MHz子带,其中某一个40MHz子带中的两个20MHz子带的值相同。
带宽是通过图4中所示的触发帧205的公共信息字段305的上行带宽(Uplink Bandwidth,UL BW)字段420指示的。
UL SRP的值由AP1来决定,等于AP1的发送功率+其可接受的最大干扰功率。
STA1将接收到的触发帧205中的UL Spatial Reuse字段405复制到即将发送的HE TB PPDU 210中的HE-SIG-A字段220中去,如图2所示。同时AP2也同样收到了AP1发送的触发帧205,并在收到HE TB PPDU 210以后(确定STA1确实发了HE TB PPDU 210),根据PSRR PPDU 505的接收功率水平(Received Power Level,RPL),以及四个UL SRP1~UL SRP4的值和/或HE TB PPDU中的4个SRP1~SRP4的值计算其发送参数空间复用发送(Parameterized Spatial Reuse Transmission,PSRT)PPDU所用的功率。该发送功率需要满足:
AP2发送PSRT PPDU发射功率≤SRP–RPL,公式(A)
之后,在检测到HE TB PPDU 210发送后,AP2根据通过以上公式(A)计算所得功率来发送PSRT PPDU 510:
在上面的各公式中,
RPL表示PSRR PPDU频带范围内的功率;
AP2发送PSRT PPDU发射功率归一化到20MHz;
SRP:如果HE TB PPDU带宽<160MHz,则归一化到20MHz;如果HE TB PPDU带宽=160MHz,则归一化到40MHz。
发明人通过研究发现,上述802.11ax的空间复用传输方法存在以下缺陷:没有具体考虑发射功率归一化的问题,也没有考虑PSRT PPDU和PSRR PPDU带宽不匹配的问题。此外,该方法还没有考虑PSRT PPDU和/或PSRR PPDU存在前导码打孔情况下的功率归一化的问题。从而导致AP计算的发送功率不准确;并且进一步导致AP之间造成干扰,降低系统吞吐率。
由此,本公开的实施例提出了一种改进的空间复用机制。根据该机制,在两个设备(分别称为第一空间复用设备和第二空间复用设备)进行空间复用传输过程中,第一空间复用设备在确定在其工作频带上PSRT PPDU的发送功率时,将SRP的值以及PSRR PPDU的接收功率水平(RPL)归一化到子带的带宽。具体而言,第一空间复用设备在接收到由第二空间复用设备在其工作频带(称为第一频带,其包括一个或多个带宽相同的子带)上发送的PSRR PPDU之后,基于以该带宽为粒度的SRP的值以及以该带宽为粒度的PSRR PPDU的接收功率水平(RPL)来确定在其工作频带(称为第二频带,也包括一个或多个具有该带宽的子带)上发送PSRT PPDU的参考发送功率。
而且,第一空间复用设备基于其接收到的PSRR PPDU的部分或全部所占用的第一频带中的一个或多个子带、和/或第一频带或第二频带中未打孔的子带来确定以该带宽为粒度的PSRR PPDU的RPL。这样,第一空间复用设备在计算PSRT PPDU的发送功率时,可以考虑PSRT PPDU和PSRR PPDU带宽匹配和/或打孔问题。
以此方式,第一空间复用设备在计算PSRT PPDU的发送功率时可以同时考虑带宽归一化以及PSRT PPDU和PSRR PPDU带宽匹配和/或打孔问题。此种空间复用机制提高了对PSRT PPDU发送功率计算的准确度,减少了对空间复用设备接收造成的干扰,提升了系统效率。
图6示出了本公开的实施例可以在其中实施的示例环境600。
如图6所示,环境600包括两个空间复用设备,分别为第一空间复用设备602和第二空间复用设备604。在此示例中,第一空间复用设备602和第二空间复用设备604均由接入点(AP)实现。环境600还包括STA 606、STA 608和STA 610,其中STA 606和STA 608可以与第一空间复用设备602通信,STA 610可以与第二空间复用设备604通信。第一空间复用设备602和第二空间复用设备604与STA 606、STA 608和STA 610的通信可以无线方式进行。该通信可以遵循任意适当通信技术以及相应的通信标准。如图6所示,第一空间复用设备602、STA 606和STA 608属于一个BSS 612,第二空间复用设备604和STA 610属于另一个BSS 614。这两个BSS 612和614为OBSS。在某些实施例中,在BSS 612中可以只有一个STA与第一空间复用设备602通信。在BSS 614可以由多个STA与第二空间复用设备604通信。
在位于BSS 614内的第二空间复用设备604可以与STA 610进行数据传输时,位于BSS 612的第一空间复用设备602可以接收到第二空间复用设备604发送的信息。反之,第二空间复用设备604也可以接收到第一空间复用设备602发送的信息。第一空间复用设备602可以根据第二空间复用设备604传递的空间复用参数,自适应调整第一空间复用设备602向STA  608发送PPDU的功率。同理,第二空间复用设备604也可以根据第一空间复用设备602传递的空间复用参数,自适应调整第二空间复用设备604向STA 610发送PPDU的功率。
应当理解,第一空间复用设备602和第二空间复用设备604由接入点(AP)来实现仅仅是示例而非限制。本公开的第一空间复用设备602和第二空间复用设备604并不限于该示例中的AP,而是取决于具体实现和场景,可以为适于空间复用传输的其他各种设备,包括但不限于通信服务器、路由器、交换机、网桥、计算机、手机等AP和STA。此外,仅仅出于示例的目的在图6中示出了与第一空间复用设备602和第二空间复用设备604通信的设备以STA。本公开并不限于此,而是取决于具体实现和场景,可以为其他的通信设备,包括但不限于通信服务器、路由器、交换机、网桥、计算机、手机等AP和STA。
还应当理解,环境600仅出于说明目的示出了两个空间复用设备和三个与其通信的设备,即STA 606、STA 608和STA 610。但是,本公开的实施例可以扩展到应用于其他数量的空间复用设备,这些空间复用设备可以与任意适当数量的其他设备通信。
根据本公开的某些实施例,第一空间复用设备602在确定与第二空间复用设备604进行空间复用传输之后,根据归一化到工作频带中的子带的带宽的SRP的值以及来自第二空间复用设备604的PSRR PPDU的RPL来确定用于发送PSRT PPDU的发送功率。
下面参考图7A、图7B和图7C来讨论进行说明第一空间复用设备602与第二空间复用设备604的示例空间复用传输过程。在图7A、图7B和7C中所示的示例中,第一空间复用设备602和第二空间复用设备604都由分别标记为AP2和AP1的AP来实现。
首先参考图7A,其示出了根据本公开的某些实施例的空间复用传输过程700A的示意图。
如图7A所示,根据802.11be,首先,AP1(作为第二空间复用设备604的示例)发送一个包含触发帧的PSRR PPDU 701给STA1。在一些实施例中,PSRR PPDU 701可以为任何PPDU(比如携带管理帧的PSRR PPDU),然后AP2只利用PSRR PPDU获得RPL。利用STA1发送的任何携带SRP的PPDU(比如HE/EHT TB PPDU)获得SRP值。后文将参考图7C来进一步说明。
过程700与过程500的区别之处主要在于,携带触发帧205的PSRR PPDU 701可以调度STA1的HE TB PPDU和/或EHT TB PPDU两种PPDU。AP2(作为第一空间复用设备602的示例)可以基于HE和/或EHT TB PPDU进行空间复用。在一些实施例中,AP2可以不接收(或不基于)HE和/或EHT TB PPDU,直接通过携带触发帧的PSRR PPDU进行空间复用。后文将参考图7B来进一步说明。
如图7A所示,STA1在接收到触发帧中的公共信息字段包含上行空间复用(UL Spatial Reuse)和/或特殊用户字段包含EHT上行空间复用之后,发送HE TB PPDU 702和/或EHT TB PPDU 703。后续AP2发送PSRT PPDU的流程与802.11ax的空间复用传输过程500类似,这里不再赘述。
下面参考图7D来讨论通过触发帧来指示SPR的示例。
图7D示出了根据本公开的某些实施例的触发帧中包含的公共信息字段和用户信息字段中部分子字段的帧格式的示意图。
如图7D所示,触发帧中的公共信息字段705包含四个长度都为4比特的上行参数空间复用(Uplink Parameterized Spatial Reuse,UL PSR)字段710。在图7D所示的帧格式中,用户信息列表字段715中还包括一个特殊用户信息字段,即,关联标识12(AID12)字段720。 该字段720指示一个预定值(2007),表示其作为公共信息字段的一个扩展,其中包含两个4比特的用于EHT TB PPDU的UL SRP字段725和730,分别标记为EHT UL SRP1和EHT UL SRP2。
对于不同带宽,EHT UL SRP1和EHT UL SRP2的值可分别设定如下:
当带宽为20MHz时,EHT UL SRP1=EHT UL SRP2;
当带宽为40MHz时,EHT UL SRP1代表第一个20MHz子带,EHT UL SRP2代表第二个20MHz子带;为了防止信道分配造成的混淆,当带宽为2.4GHz时,令EHT UL SRP1=EHT UL SRP2。
当带宽为80MHz时,两个EHT UL SRP分别代表两个40MHz子带中的任何一个20MHz子带,其中某一个40MHz子带中的两个20MHz子带的值相同。
当带宽为160MHz时,两个EHT UL SRP分别代表两个80MHz子带中的任何一个20MHz子带,其中某一个80MHz子带中的四个20MHz子带的值相同。
当带宽为320MHz时,两个EHT UL SRP分别代表两个160MHz子带中的任何一个20MHz子带,其中某一个160MHz子带中的八个20MHz子带的值相同。
上述SRP的设置方式仅为本公开的某些实施例的设置方式,本公开并不限于此,而是可以有其他设置方式。
图7B示出了根据本公开的某些其他实施例的空间复用传输过程700B的示意图。
图7B中所示传输过程与图7A中相同或相似之处此处不再赘述。以下主要论述二者的区别之处。如前所述,在图7A所示的过程700A中,STA1在接收到HE TB PPDU 702和/或EHT TB PPDU 703之后开始进行空间复用传输。而在如图7B所示的过程700B中,在AP2在接收到承载触发帧的PSRR PPDU 701之后即开始进行空间复用传输。即,如图7B中的时间点735之后,AP2即决定进行空间复用传输。与HE TB PPDU 702和/或EHT TB PPDU 703是否发送无关。也就是说,图7B所示的实施例中,AP2仅通过PSRR PPDU完成空间复用传输。在一些实施例中,STA1也可以不发HE/EHT TB PPDU,比如在STA1的信道忙或者STA1没有正确接收触发帧的情况下。
图7C示出了根据本公开的某些其他实施例的空间复用传输过程700C的示意图。
图7C中所示传输过程与图7A和7B中相同或相似之处此处不再赘述。在过程700C中,AP2无需接收来自AP1的触发帧即可决定进行空间复用传输。如图7C所示,AP1发送携带信标帧的PSRR PPDU 740。AP2可以在获取信标帧时获得RPL。之后,AP2可以在接收到HE TB PPDU 745和/或EHT PPDU 750之后进行空间复用传输。
图8示出了根据本公开的某些实施例的空间复用方法800的流程图。方法800可以由第一空间复用设备602或者第二空间复用设备604来执行。为讨论方便,以下从第一空间复用设备602角度参考图9来描述方法800。
在方法800中,在框810处,第一空间复用设备602接收由第二空间复用设备604在其工作的第一频带上发送的PSRR PPDU的部分或全部。
第一频带是第二空间复用设备604的工作频带,其带宽可以包括20MHz、40MHz、80MHz、160MHz、320MHz等等。第一频带包括一个或多个带宽相同的子带(通常也称为子信道或者子块)。子带的带宽也可以包括20MHz、40MHz、80MHz、160MHz、320MHz等等。作为示例,如果第一频带为320MHz,子带的带宽为20MHz,则该第一频带中包括16个子带。类 似地,如果第一频带为320MHz,子带的带宽为40MHz,则该第一频带中包括8个子带。
根据不同的场景,第一空间复用设备602接收到由第二空间复用设备604在第一频带上发送的PSRR PPDU的部分或全部。下面结合附图9对此进一步说明。
图9示出了本公开的实施例的6GHz频段中80/160/320MHz带宽的信道划分的示意图。
如图9所示,802.11be为了有效利用信道,设计了两种320MHz信道905和910,分别为信道中心频率为31/95/159的320MHz信道和中心频率为63/127/191的320MHz信道,分别标记为320-1和320-2。在图9中,UNII代表非授权国际信息基础设施无线电频带(Unlicensed National Information Infrastructure(U-NII)radio band)。
在第一空间复用设备602由AP来实现并且工作在信道320-2上的实施例中,如果第一空间复用设备602收到了第二空间复用设备604在信道320-1上发送的PSRR PPDU,则其接收到的功率约等于其整个PSRR PPDU带宽(BW)内的一半。
又比如,在第一空间复用设备602由站点(STA)来实现而该STA只具备80MHz的能力或者工作在80MHz模式的实施例中,在第一空间复用设备602收到第二空间复用设备604发送的带宽为160MHz的PSRR PPDU时,其只能接收到其中的一个80MHz部分,同样其接收到的功率约等于整个PSRR PPDU BW内的一半。
可见,第一空间复用设备602和第二空间复用设备604若工作于具有不同信道中心频率的信道上,则其中一个空间复用设备仅能接收到另一个空间复用设备发送的部分PSRR PPDU。这就出现了带宽不匹配问题。在本公开的一些实施例中,第一空间复用设备602在确定PSRR PPDU的发送功率时将考虑该问题,后文将对此进行详细说明。
在某些实施例中,第二空间复用设备604发送的PSRR PPDU可以包含触发帧(例如,图2中所示的触发帧205)。例如,第一空间复用设备602可以接收到第二空间复用设备604可以向STA 610发送的包含触发帧的PSRR PPDU。触发帧可以具有除了图2所示的格式之外其他的格式。
接下来,继续参考图8,在框820处,基于以子带带宽为粒度的SRP的值,以及以该带宽为粒度的PSRR PPDU的RPL,第一空间复用设备602确定在第二频带上发送PSRT PPDU的参考发送功率。第二频带为第一空间复用设备602的工作频带,也包括一个或多个子带。第二频带的子带的带宽与第一频带的子带的带宽相同,并且第二频带与第一频带至少部分重叠。这样,第一空间复用设备602能够接收到来自第二空间复用设备604的PSRR PPDU。
在某些实施例中,第一空间复用设备602可以从接收到的PSRR PPDU中获得其中承载的触发帧中包含的第二空间复用设备604针对各个子带指定的SRP,并依此计算以子带带宽为粒度的SRP的值。在某些实施例中,PSRR PPDU的既定接收方(例如STA 610)可以将从第二空间复用设备604接收到的PSRR PPDU中的触发帧中的UL SRP字段复制到发送的HE TB PPDU中的HE-SIG-A字段中去,并且/或者将接收到的触发帧中的EHT UL SRP字段复制到发送的EHT TB PPDU中的U-SIG字段中去。相应地,第一空间复用设备602收到HE TB PPDU和/或EHT TB PPDU以后,可以获得针对各个子带的SRP。继而,第一空间复用设备602可以基于触发帧中的UL SRP值、EHT UL SRP值、HE TB PPDU中的SRP值、U-SIG中的EHT SRP值中的一个或多个来计算其发送PSRT PPDU所用的发射功率。
在某些实施例中,如上所述,SRP的值不仅可以在PSRR PPDU中的触发帧里,也可以在PSRR PPDU的既定接收方(例如STA 610)发送的HE/EHT TB PPDU中。在此示例中, 如果第一空间复用设备602收到了第二空间复用设备604发送的PSRR PPDU,并且通过前导码获取了RPL,但是没有对数据字段内的触发帧,第一空间复用设备602可以通过来自STA(例如STA 610)的HE/EHT TB PPDU来获取BW和PSR。
在某些实施例中,PSRR PPDU也可以不承载触发帧,而承载管理帧(如信标帧等)。此时,第一空间复用设备602可以基于PSRR PPDU确定RPL,而从其他设备(比如与第二空间复用设备604通信的STA)发送的HE/EHT PPDU中获得SRP的值。作为示例,除了HE/EHT TB PPDU,HE/EHT PPDU还可以包括HE多用户(Multiple User,MU)PPDU,EHT MU PPDU,HE单用户(Single User,SU)PPDU,HE扩展范围(Extended Range,ER)SU PPDU的一种或多种。时序上,PSRR PPDU和HE/EHT PPDU PPDU可能并不是紧挨着的。HE/EHT PPDU中的SRP的值可以是从第二空间复用设备604接收的。备选地或附加地,该SRP的值可以是其他设备自主设置SRP值。无论是UL SRP还是EHT UL SRP,都是代表的某一个子带(例如,带宽为20MHz)上的值。如前面所介绍的,已有的复用方法中,并未将SRP的值、RPL以及PSRT PPDU的发送功率归一化到相同带宽,从而导致所计算的发送功率不够准确。因此,为了计算的准确性,本公开的实施例也将RPL同样归一化到子带带宽,例如20MHz。
为此,在某些实施例中,可以采用以下公式1来确定PSRT PPDU的发送功率:
Figure PCTCN2022078013-appb-000003
其中TxPower PSRT表示第一空间复用设备602发送PSRT PPDU的总发送功率,是PSRT PPDU在第二频带上的参考发送功率的示例。在此示例中,PSRT PPDU的参考发送功率是针对整个第二频带确定的。通过将整个工作频带归一化到20MHz,来确定在整个第二频带上PSRT PPDU的参考发送功率。此外,BW PSRT表示PSRT PPDU的带宽(即第二频带的带宽);PSR kth,20MHz表示PSRR PPDU带宽范围内第k个20MHz对应的UL SRP,诸如触发帧中一个或多个UL SRP字段、HE PPDU中HE-SIG-A字段中的一个或多个SRP字段、触发帧中一个或多个EHT UL SRP字段、和/或EHT PPDU中U-SIG字段中的一个或多个EHT SRP字段中的一个或多个中指示的PSR的值。RPL PSRR表示第一空间复用设备602在PSRR PPDU的带宽范围内收到的PSRR PPDU的总功率,BW PSRR表示PSRR PPDU的带宽(即第一频带的带宽)。
可以看出,上述公式中的
Figure PCTCN2022078013-appb-000004
对TxPower PSRT进行了20MHz归一化;
Figure PCTCN2022078013-appb-000005
对RPL PSRR进行了20MHz归一化。
在某些实施例中,第二空间复用设备604工作的第一频带可以包括多个子带,而第二空间复用设备604针对这些子带指定了SRP的多个值。例如,如上所述,第二空间复用设备604可以通过触发帧中一个或多个UL SRP字段、HE PPDU中HE-SIG-A字段中的一个或多个SRP字段、触发帧中一个或多个EHT UL SRP字段、和/或EHT PPDU中U-SIG字段中的一个或多个EHT SRP字段来指示这些SRP的值。此时,以带宽为粒度的SRP的值可以取SRP的多个值中的最小值。例如,对于每个PSR kth,20MHz,计算的时候,可以取PSRR PPDU BW范围(即第一频带)内最小的PSR kth,20MHz来计算。备选地,也可以针对不同的k,使用相应的不同SRP的值来计算不同的TxPower PSRT,其中,k=1…,BW PSRR/20MHz。
在上述实施例中,通过公式(1)对TxPower PSRT和RPL PSRR进行了归一化,使得不等式中的几个变量都代表一个20MHz上的值。以此方式,能够提高发送功率计算的准确性。
如前面所提到的,如图9所示,802.11be为了有效利用信道,设计了两种320MHz信道905和910,分别为信道中心频率为31/95/159的信道320-1和中心频率为63/127/191的信道320-2。当第一空间复用设备602工作在信道320-2上且收到了第二空间复用设备604在信道320-1上发送的PSRR PPDU时,其接收到的功率约等于其整个PSRR PPDU BW内的一半。又比如,如果第一空间复用设备602由站点(STA)实现,而STA只具备80MHz的能力,或者工作在80MHz模式,那么在第一空间复用设备602收到160MHz的PSRR PPDU时,其只能接收到其中的一个80MHz部分,同样其接收到的功率约等于整个PSRR PPDU BW内的一半。可见第一空间复用设备602和第二空间复用设备604若工作于具有不同信道中心频率的信道上,则其中一个空间复用设备仅能接收到另一个空间复用设备发送的部分PSRR PPDU,即出现带宽不匹配的情况。
如果第一空间复用设备602接收到PSRR PPDU的频率范围的宽度不是第二空间复用设备604发送PSRR PPDU的整个带宽,而是部分PSRR PPDU的一部分带宽,则接收到的RPL PSRR会变小,按照公式2,会造成计算出的TxPower PSRT比实际允许的多。相应地,在某些实施例中,第一空间复用设备602可以基于接收到的PSRR PPDU的部分或全部所占用的第一频带中的一个或多个子带来确定PSRR PPDU的RPL,以便在计算PSRT PPDU的发送功率时将带宽不匹配的情况考虑在内,从而进一步提高发送功率计算的准确性。
下面讨论在考虑带宽不匹配情况下第一空间复用设备602如何确定在第二带宽上发送PSRT PPDU的参考发送功率的具体示例。
在某些实施例中,第一空间复用设备602可以采用以下公式来确定PSRT PPDU的发送功率:
Figure PCTCN2022078013-appb-000006
其中BW PSRR,Rx表示第一空间复用设备602所接收到的PSRR PPDU频率范围,RPL PSRR,Rx表示第一空间复用设备602所接收到的PSRR PPDU频率范围的功率。通过比较公式1与公式3,可以发现公式3中用参数RPL PSRR,Rx取代了公式1中的参数RPL PSRR,并用参数BW PSRR,Rx取代了公式1中的参数BW PSRR
该公式3中,采用第一空间复用设备602所接收到的PSRR PPDU频率范围,而不是始终采用整个PSRR PPDU带宽作为归一化的参数,并且相应地采用第一空间复用设备602所接收到的PSRR PPDU频率范围的功率所接收到的PSRR PPDU频率范围的功率,而不是第一空间复用设备602在PSRR PPDU的频率范围内收到的PSRR PPDU的总功率来进行计算,从而解决了带宽不匹配所产生的问题,进一步提高发送功率计算的准确性。
在某些实施例中,以带宽为粒度的RPL是基于第一空间复用设备602接收到的PSRR PPDU的部分或全部所占用的第一频带中的一个或多个子带与第二频带之间的重叠子带而确定的。以下讨论一个具体示例。
在此示例中,除了采用BW PSRR,Rx和RPL PSRR,Rx,还可以采用BW <PSRR,PSRT>和RPL <PSRR,PSRT>,如下面公式3a所示,其中BW <PSRR,PSRT>代表PSRT PPDU占用频带(即,第二频带)和PSRR PPDU占用频带(即,第一频带)的重叠区域的频率范围的大小,RPL <PSRR,PSRT>代表在该重叠区域内接收到的PSRR PPDU的功率。
Figure PCTCN2022078013-appb-000007
在第一频带包括多个子带,而针对这些子带的SRP有多个值的实施例中,在利用公式3a计算时,对于每个PSR kth,20MHz,可以取第一频带和第二频带的重叠区域内的最小的PSR kth,20MHz。备选地,也可以针对不同的k,使用相应的不同SRP的值来计算不同的TxPower PSRT,其中,k=1…,BW <PSRR,PSRT>/20MHz。
该公式考虑了PSRT PPDU BW和第一空间复用设备602接收到的PSRR PPDU的范围不同的情况。比如重叠区域是160MHz,而发送的PSRT PPDU是该160MHz范围内的某一个80MHz。则BW <PSRR,PSRT>等于80MHz,RPL <PSRR,PSRT>是该80MHz内接收到的PSRR PPDU的功率。由此,使得TxPower PSRT可以被准确计算。
当PSRT PPDU BW大于PSRT PPDU和PSRR PPDU带宽的重叠区域的频率范围,PSRT PPDU和PSRR PPDU带宽的重叠区域的频率范围就是第一空间复用设备602所接收到的PSRR PPDU频率范围,此时公式3等于公式3a。
在某些实施例中,第一空间复用设备602和/或第二空间复用设备604在传输PPDU可能会进行前导码打孔。前导码打孔代表在PPDU带宽的范围内的某一个20MHz子带上不传输前导码以及数据,或者说不传输能量。而上边的公式始终采用整个PPDU带宽作为归一化的参数,没有考虑前导码打孔的情况。例如,公式1可以等价为如下公式:
Figure PCTCN2022078013-appb-000008
当存在前导码打孔时,PSRR PPDU和/或PSRT PPDU的整个带宽大于有功率传输的等效带宽,会使TxPower PSRT错误地增大。假设前导码打孔的部分最多可以占据整个PPDU带宽的50%,那么采用PPDU的整个带宽,而不采用有功率传输的等效带宽,会造成不等式右边比实际情况大至多3+3=6dB,也就是会使计算出的TxPower PSRT比实际允许的大至多6dB,其中,PPDU BW是等效带宽的2倍,即,10×log 102≈3dB。
相应地,在第一空间复用设备602和/或第二空间复用设备604对PSRR PPDU和/或PSRT PPDU进行前导码打孔的实施例中,为了进一步提高发送功率计算的准确性,以子带带宽为粒度的PSRR PPDU的RPL的确定可以基于第一频带或第二频带中未打孔的子带来确定。
在某些实施例中,PSRT PPDU的发送功率的计算可以考虑同时考虑第一频带和第二频带的重叠和打孔情况。例如,以子带带宽为粒度的RPL是基于以下一项来确定的:第一空间复用设备602接收到的PSRR PPDU的部分或全部所占用的第一频带中的一个或多个子带中的未打孔子带的带宽,或者第一空间复用设备602接收到的PSRR PPDU的部分或全部所占用的第一频带中的一个或多个子带与第二频带之间的重叠子带中的未打孔子带的带宽。
备选地或附加地,在某些实施例中,PSRT PPDU的参考发送功率可以基于以下一项来确定:第二频带中的未打孔的子带的带宽,或者第一空间复用设备602接收到的PSRR PPDU的部分或全部所占用的第一频带中的一个或多个子带与第二频带之间的重叠子带中的未打孔的子带的带宽。
下面讨论同时考虑第一频带和第二频带的重叠和打孔情况来确定PSRT PPDU的参考发送功率的具体示例。
在某些实施例中,公式3可进一步改进为:
Figure PCTCN2022078013-appb-000009
其中BW PSRT,non-punc代表去除打孔部分剩下的等效带宽;BW PSRR,Rx,non-punc代表所接收到的PSRR PPDU频率范围去除打孔部分剩下的等效带宽。因为在打孔的部分不发送能量,所以RPL PSRR,Rx等于RPL PSRR,Rx,non-punc
同前面所提到的某些实施例类似,所接收到的PSRR PPDU频率范围,也可以替换成PSRT PPDU和PSRR PPDU占用频带的重叠区域。BW <PSRR,PSRT>,non-punc为PSRT PPDU和PSRR PPDU带宽的重叠区域去除打孔部分后剩下的等效带宽。公式3a在考虑了打孔以后,可以表示为:
Figure PCTCN2022078013-appb-000010
同样,RPL <PSRR,PSRT>和RPL <PSRR,PSRT>,non-punc相同。
因为PSRT PPDU是第一空间复用设备602即将发送的,所以第一空间复用设备602知道其打孔情况,或者预计的打孔情况。对于PSRR PPDU的打孔情况,在某些实施例中,第一空间复用设备602基于以下至少一项来确定第一频带中的未打孔的子带:接收到的PSRR PPDU中的前导码包含的打孔指示信息,PSRR PPDU中包含的打孔指示信息,其中PSRR PPDU为非高吞吐率复制PPDU,或者第二空间复用设备604所在基本服务集合BSS的管理帧中包含的打孔指示信息,管理帧包括以下至少一个帧:信标帧、关联响应帧、探测响应帧、邻居报告帧或者缩减邻居报告帧。
对于PSRR PPDU的打孔情况,在某些实施例中,第一空间复用设备602可以通过信令指示明确知道。例如,在某些实施例中,第一空间复用设备602可以基于接收到的PSRR PPDU中的前导码包含的打孔指示信息来确定第一频带中的未打孔子带。作为示例,PSRR PPDU为EHT多用户(Multiple User,MU)PPDU,为OFDMA传输,其打孔信息位于EHT-SIG字段的资源单元分配子字段(RU allocation subfield),被打孔的20MHz所对应的资源单元分配子字段会指示26,即,打孔的242-子载波资源单元(punctured 242-tone RU),其中一个20MHz对应一个242-tone RU。作为另一示例,PSRR PPDU为EHT MU PPDU,并且为非OFDMA传输,其打孔信息位于U-SIG字段中的打孔信道信息子字段。
除了EHT MU PPDU之外PSRR PPDU还可以实现为HE PPDU,包括HE MU PPDU、HE SU PPDU或HE ERSU PPDU,非高吞吐率复制PPDU。
作为又一示例,PSRR PPDU为HE MU PPDU,其打孔信息位于带宽(BW)子字段中,当带宽子字段指示为0、1、2、3时,不存在打孔,计算时可直接采用PPDU BW。当带宽子字段指示为4、5时,整个带宽为80MHz,存在一个20MHz子带被打孔(PPDU BW为80MHz,等效带宽为60MHz)。当带宽子字段指示为6时,整个带宽为160MHz,主80MHz信道存在一个20MHz子带被打孔,次80MHz信道存在0~2个打孔20MHz的子带,但是具体数目不清楚。所以针对这种情况,如果BW PSRT,non-punc或者BW <PSRR,PSRT>,non-punc为主80MHz信道,则第一空间复用设备602可以明确知道打孔情况。另外,当带宽子字段指示为7时,整个带宽为160MHz,至少存在一个20Mhz子带被打孔,主80MHz信道会有0、1或者2个20Mhz子带 被打孔,次80MHz信道会有0、1或者2个20Mhz子带被打孔。
在某些实施例中,在PSRR PPDU为非高吞吐率复制(non-HT duplicate)PPDU时,PSRR PPDU可以承载带宽和打孔信息,具体地,该信息可以位于服务字段。相应地,第一空间复用设备602可以基于PSRR PPDU中包含的打孔指示信息来确定第一频带中的未打孔子带。
在某些其他实施例中,第一空间复用设备602可以基于第二空间复用设备604所在BSS的管理帧中包含的打孔指示信息来确定第一频带中的未打孔子带。例如,可以在信标帧、关联响应帧、探测响应帧、邻居报告帧、缩减邻居报告帧等管理帧中携带有哪些20MHz子带被打孔的静态打孔信息。
对于上述的这些情况,第一空间复用设备602可以通过信令指示明确知道PSRR PPDU的打孔情况。
在某些实施例中,也可以依靠第一空间复用设备602的盲检测来确定PSRR PPDU的打孔情况,例如,第一空间复用设备602可以检测每个20MHz上是否存在PSRR PPDU的non-HT前导码。
在某些实施例中,针对前导码打孔问题,第一空间复用设备602基于预定偏移量对参考发送功率进行调整,从而简化第一空间复用设备602的处理,进一步提高计算效率。在某些实施例中,可以将预定偏移量设置为3dB。如前所述,当允许打孔的比例最多为50%时,PSRT PPDU和PSRR PPDU的打孔会分别造成至多3dB的错误提升。因此,在计算TxPower PSRT时,通过直接减掉一个3dB或6dB的偏移量,可以防止由于PSRT PPDU和/或PSRR PPDU打孔造成的错误提升。
在某些实施例中,对于PSRR PPDU的打孔造成的发送功率计算偏差,可以由第一空间复用设备602在计算PSRT PPDU的参考发送功率(例如TxPower PSRT)时基于偏移量来进行调整。作为示例,可以由第一空间复用设备602在公式1/2/3/3a计算出的TxPower PSRT的基础上,进一步减掉例如3dB的偏移量。当然,可以第一空间复用设备602在知道PSRR PPDU的打孔情况下采用等效带宽的方式调整,在不知道打孔情况时,才采用偏移量调整。在某些实施例中,第一空间复用设备602如果知道PSRR没打孔,可以不调整。在某些实施例中,第一空间复用设备602可以始终都调整。
在某些实施例中,可以通过第二空间复用设备604在设置UL SRP/EHT UL SRP值时基于偏移量来调整,以补偿由于PSRR PPDU的打孔造成的发送功率计算偏差。比如,如果PSRR PPDU采用了前导码打孔,则在原先设定的PSR值的基础上,进一步减掉例如3dB的偏移量。如果PSRR PPDU没有打孔,则第二空间复用设备604可以不进一步减掉该偏移量。这种方式一方面在第一空间复用设备602是传统设备的情况下可以实现后向兼容。另一方面,可以简化第一空间复用设备602的操作,而无需第一空间复用设备602考虑偏移量的调整。当然也可以为了简单起见,在某些实施例中,第二空间复用设备604始终减掉例如3dB的偏移量。
在某些实施例中,可以在标准规定第二空间复用设备604不调整,或者说第二空间复用设备604是基于802.11ax传统设备的情况下,由第一空间复用设备602来执行上述调整。否则,由第二空间复用设备604来执行调整,从而补偿由于PSRR PPDU的打孔造成的发送功率计算偏差。
对于PSRT PPDU打孔造成的发送功率计算偏差,在某些实施例中,偏移量可以通过第二空间复用设备604在设置SRP值时调整,比如在原先设定的PSR值的基础上,进一步减掉诸 如3dB的偏移量,从而实现对PSRT PPDU打孔造成的诸如3dB的发送功率计算偏差的调整。
在某些实施例中,偏移量也可以由第一空间复用设备602在计算TxPower PSRT时调整。需要指出,因为第一空间复用设备602知道PSRT PPDU的打孔情况,第一空间复用设备602本身可以直接通过打孔情况来解决(采用公式4或4a,不等式左边的方案)。但是为了简化计算过程,也可以简单地在计算出的TxPower PSRT(公式1/2/3/3a)的基础上,进一步减掉3dB。
在某些实施例中,如果同时考虑PSRT PPDU和PSRR PPDU打孔的影响,可以由第一空间复用设备602和第二空间复用设备604分别进行相应的偏移量调整。例如,可以由第一空间复用设备602在计算TxPower PSRT时减掉3dB的偏移量,而由第二空间复用设备604在设置SRP值时减掉3dB的偏移量。在某些实施例中,也可以交给一方来承担6dB。
在计算PSRT PPDU在第二频带上的参考发送功率时,除了如上所述的,通过将整个工作频带归一化到子带带宽(例如20MHz)来针对整个第二频带上的参考发送功率之外,在某些实施例中,还可以逐个子带确定PSRT PPDU的参考发送功率。例如,第一空间复用设备602可以基于第二空间复用设备604针对第一频带中的某个子带(该子带也包含在第二频带中)指定的SRP的值,以及在该子带中的PSRR PPDU的RPL,来确定在该子带上发送PSRT PPDU的参考发送功率。
以下讨论一个具体示例。
具体地,在该示例中,提供了一种逐个20MHz子带带宽进行PSRT PPDU发送功率计算的方法,采用如下公式:
TxPower PSRT,kth,20MHz≤PSR kth,20MHz-RPL PSRR,kth,20MHz    (公式6)
其中k的范围位于BW <PSRR,PSRT>,non-punc中。也即,在PSRR PPDU存在前导码打孔的情况下,使用公式6可以针对第一频带中的未打孔子带确定PSRT PPDU发送功率。在本示例中,第一空间复用设备602在接收PSRR PPDU时,需要检测每个20MHz上的功率,并且需要以20MHz为粒度计算TxPower PSRT,kth,20MHz
对于带宽不匹配的情况,比如因为如图9中所示的320MHz信道320-1和320-2造成的160MHz上收不到PSRR PPDU,或者PSRR PPDU带宽小于PSRT PPDU带宽的时候,又或者PSRR PPDU存在前导码打孔的情况,没有收到PSRR PPDU的20MHz子带或者子信道上的TxPower PSRT,jth,20MHz可以采用以下规则,这里的j用来表示没有收到PSRR PPDU的20MHz的信道索引,可以说成位于BW <PSRR,PSRT>,punc中:
在某些实施例中,在没有收到PSRR PPDU的20MHz子带或子信道(即,打孔子带)上,可以没有针对基于PSR的空间复用的功率限制。在此实施例中,第一空间复用设备602可以将打孔子带上的参考发送功率确定为小于预定义的最大发送功率。该最大发送功率可以是系统或者标准规范或法规中预定义的。因为该子带上没有PSRR PPDU的传输,其触发的HE/EHT TB PPDU也不会在该20MHz子带上传输,因此PSRT PPDU在相应的20MHz子带上也不会对第二空间复用设备604接收HE/EHT TB PPDU造成干扰。但是,标准规范或法规对发射功率的限制仍然存在。因此,针对基于PSR的空间复用的功率仍然受到法规的限制。
在某些实施例中,在没有收到PSRR PPDU的20MHz子带上,不允许做基于PSR的空间复用。相应地,第一空间复用设备602可以确定不允许在打孔子带上发送PSRT PPDU。这等价于PSRR PPDU打孔的20MHz子带上,PSRT PPDU也要打孔。因为有可能第二空间复用设备604发送PSRR PPDU打孔是因为在这些20MHz子带上已经有其他用户正在传输,或者 有雷达信号,或者有现有用户(incumbent user,可以理解成一种授权用户)正在传输,所以为了安全起见,不进行基于PSR的空间复用。
在某些其他实施例中,第一空间复用设备602将打孔的子带上的参考发送功率确定为针对多个未打孔的子带确定的多个参考发送功率的平均功率。例如,可以利用通过公式6计算得到的最小的TxPower PSRT,kth,20MHz或者位于BW <PSRR,PSRT>,non-punc中TxPower PSRT,kth,20MHz的平均值来发送。该种方式可以看成是上述不限制发送功率和不允许空间复用两种方式的权衡,利用收到PSRR PPDU的未打孔20MHz子带上的SRP参数,来决定未收到PSRR PPDU的20MHz子带上(打孔或者带宽不匹配造成)的TxPower PSRT,jth,20MHz
举例而言,可以在公式6的基础上进一步推演,对BW <PSRR,PSRT>,non-punc内所有的20MHz上的参数求和,
Figure PCTCN2022078013-appb-000011
其中
Figure PCTCN2022078013-appb-000012
表示针对所有可能的k进行求和;∈表示所有可能的k属于由BW <PSRR,PSRT>,non-punc代表的集合。
公式7等价于公式8或者公式8a:
Figure PCTCN2022078013-appb-000013
Figure PCTCN2022078013-appb-000014
第一空间复用设备602在发送PSRT PPDU时,一种方式是满足公式8/8a即可,不需要每个20MHz都满足公式6。
若BW <PSRR,PSRT>,non-punc中存在N个未被打孔的20MHz信道,则BW <PSRR,PSRT>,non-punc中TxPower PSRT,kth,20MHz的平均值为:
Figure PCTCN2022078013-appb-000015
上述一些实施例中提供了逐个20MHz计算TxPower PSRT,kth,20MHz的方式,该种方式可以将PSRT PPDU发送功率计算的颗粒度直接归一化到子带带宽,提高了计算准确度。
上述一些实施例中描述了如何实现准确地计算发送功率。然而,本公开的实时例不限于此,也可以通过UL SRP字段来避免计算过程,从而简化操作,提高计算效率。例如,在某些实施例中,第一空间复用设备602可以基于针对打孔子带的SRP的值来确定在该打孔子带上PSRT PPDU的参考发送功率。
下面结合附图11描述当PSRR PPDU存在前导码打孔时,第二空间复用设备604如何设置UL SRP字段,以第一空间复用设备602或者其他空间复用设备指示在打孔的子带上如何进行空间复用传输。
图10示出了根据本公开的某些其他实施例的空间复用方法1000的流程图。方法1000可以由第二空间复用设备604来执行。
在方法1000中,在框1010处,第二空间复用设备604针对用于发送物理层协议数据单元(PPDU)(例如,PSRR PPDU)的第一频带中要被打孔的子带,通过以下一个操作来确定 相应的空间复用参数(SRP)的值:基于预定偏移量对SRP的值进行调整;将SRP的值设置为第一值,以向其他空间复用设备指示禁止在PPDU要被打孔的子带上进行传输;或者将SRP的值设置为第二值,以向其他空间复用设备指示允许在要被打孔的子带上进行传输。
如前面所提到的,在一些实施例中,通过基于预定偏移量对SRP的值进行调整,可以使第一空间复用设备602对PSRT PPDU的发送功率进行相应调整,从而可以补偿由于PSRR PPDU打孔造成的发送功率计算偏差。
在一些实施例中,若第二空间复用设备604希望第一空间复用设备602在没有收到PSRR PPDU的20MHz子带或子信道上,不做基于PSR的空间复用,则可以将该20MHz子信道所对应的UL SRP字段和/或EHT UL SRP字段的UL SRP值设置为特定值,例如0或者15(参考下面表1)。
在一些实施例中,如果PSRR PPDU存在前导码打孔时,为了简化实现,可以将所有的UL SRP字段和/或EHT UL SRP字段的UL SRP值设置为诸如0或者15的特定值。例如,当将所有的UL SRP字段和/或EHT UL SRP字段的UL SRP值设置为0或者5时,可以向其他空间复用设备(例如,第一空间复用设备602)指示禁止在PPDU要被打孔的子带上进行传输。
这样第一空间复用设备602就不需要针对PSRR PPDU的前导码打孔进行功率纠正,因此无需采用前面一些实施例中的功率计算/调整方法。
下面的表1示出了UL SRP值的示例设置。
表1 UL SRP/EHT UL SRP字段含义
Figure PCTCN2022078013-appb-000016
Figure PCTCN2022078013-appb-000017
在某些实施例中,若第二空间复用设备604对第一空间复用设备602在没有收到PSRR PPDU的20MHz子带上做基于PSR的空间复用不做限制,则可以将UL SRP值设置为除0或者15之外的其他值,比如可以设置为PSR的值为14,如表1所示,其表示允许最大的PSR值。
在框1020处,第二空间复用设备604在第一频带中的未打孔的子带上发送经打孔的PPDU,PPDU中承载的触发帧中包含所确定的SRP的值。
本公开的实施例还提供了用于实现上述方法或过程的相应装置。
图11示出了根据本公开的某些实施例的装置的示意图。
如图11所示,装置1100包括接收模块1105和第一确定模块1110。接收模块1105被配置为通过第一空间复用设备602接收由第二空间复用设备604在第一频带上发送的PSRR PPDU的部分或全部,第一频带包括一个或多个带宽相同的子带。第一确定模块1110被配置为基于以该带宽为粒度的空间复用参数(SRP)的值,以及以该带宽为粒度的PSRR PPDU的接收功率水平(RPL),通过第一空间复用设备602确定在第二频带上发送PSRT PPDU的参考发送功率。以该带宽为粒度的PSRR PPDU的RPL基于以下中的一项或多项来确定:接收到的PSRR PPDU的部分或全部所占用的第一频带中的一个或多个子带;或者第一频带或第二频带中未打孔的子带。
在某些实施例中,参考发送功率是针对整个第二频带确定的。
在某些实施例中,以该带宽为粒度的RPL是基于接收到的PSRR PPDU的部分或全部所占用的第一频带中的一个或多个子带与第二频带之间的重叠子带而确定的。
在某些实施例中,以该带宽为粒度的RPL是基于以下一项来确定的:接收到的PSRR PPDU的部分或全部所占用的第一频带中的一个或多个子带中的未打孔的子带的带宽,或者接收到的PSRR PPDU的部分或全部所占用的第一频带中的一个或多个子带与第二频带之间的重叠子带中的未打孔的子带的带宽。
在某些实施例中,参考发送功率是基于以下一项来确定的:第二频带中的未打孔的子带的带宽,或者接收到的PSRR PPDU的部分或全部所占用的第一频带中的一个或多个子带与第二频带之间的重叠子带中的未打孔的子带的带宽。
在某些实施例中,装置1100还包括第二确定模块。第二确定模块被配置为基于以下至少一项来确定第一频带中的未打孔的子带:接收到的PSRR PPDU中的前导码包含的打孔指示信息;PSRR PPDU中包含的打孔指示信息,其中PSRR PPDU为非高吞吐率复制PPDU;或者第二空间复用设备604所在基本服务集合BSS的管理帧中包含的打孔指示信息.管理帧包括以下至少一个帧:信标帧、关联响应帧、探测响应帧、邻居报告帧或者缩减邻居报告帧。
在某些实施例中,装置1100还包括第三确定模块,被配置为通过第一空间复用设备602确定对PSRT PPDU进行打孔。装置1100还包括调整模块,被配置为通过第一空间复用设备602基于预定偏移量对参考发送功率进行调整。
在某些实施例中,以带宽为粒度的SRP的值由第二空间复用设备604针对经过打孔的PSRR PPDU而基于预定偏移量进行了调整。
在某些实施例中,第一频带包括多个子带。以该带宽为粒度的SRP的值是针对该多个子带的SRP的多个值中的最小值。
在某些实施例中,第一确定模块1110被配置为基于针对第一频带中的一个子带的SRP的值,以及在子带中的PSRR PPDU的RPL,通过第一空间复用设备602确定在该子带上发送PSRT PPDU的参考发送功率。第一频带中的该子带被包含在第二频带中。
在某些实施例中,第一确定模块1110被配置为针对第二频带与第一频带之间的重叠子带中的打孔的子带,通过第一空间复用设备602确定不允许在打孔的子带上发送PSRT PPDU;或者通过第一空间复用设备602将打孔的子带上的参考发送功率确定为小于预定义的最大发送功率。
在某些实施例中,第一确定模块1110被配置为针对第二频带与第一频带之间的重叠子带中的打孔的子带,通过第一空间复用设备602基于针对第二频带与第一频带之间的重叠子带中的一个或多个未打孔的子带确定的一个或多个参考发送功率,来确定打孔的子带上的参考发送功率。
在某些实施例中,第一确定模块1110被配置为针对第二频带与第一频带之间的重叠子带中的打孔子带,通过第一空间复用设备602基于针对第二频带与第一频带之间的重叠子带中的一个或多个未打孔的子带确定的一个或多个参考发送功率,来确定打孔的子带上的参考发送功率。
在某些实施例中,第一确定模块1110被配置为通过第一空间复用设备602将打孔的子带上的参考发送功率确定为针对多个未打孔的子带确定的多个参考发送功率中的最小参考发送功率或者多个参考发送功率的平均功率。
在某些实施例中,第一确定模块1110被配置为针对第二频带与第一频带之间的重叠子带中的打孔的子带,通过第一空间复用设备602基于针对打孔的子带的SRP的值来确定打孔的子带上的参考发送功率。
图12示出了根据本公开的某些其他实施例的装置的示意图。
如图12所示,装置1200包括第四确定模块1205和发送模块1210。第四确定模块1205被配置为针对用于发送物理层协议数据单元(PPDU)的包括多个带宽相同的子带的第一频带中要被打孔的子带,通过以下一个操作来确定相应的空间复用参数SRP的值:基于预定偏移量对SRP的值进行调整;将SRP的值设置为第一值,以向其他空间复用设备指示禁止在PPDU要被打孔的子带上进行传输;或者将SRP的值设置为第二值,以向其他空间复用设备指示允 许在要被打孔的子带上进行传输。发送模块1210被配置为在第一频带中的未打孔的子带上发送经打孔的PPDU,PPDU中承载的触发帧中包含所确定的SRP的值。
应理解,上文结合图6至图10描述的空间复用方法同样适用于装置1100和1200。并且具有同样的效果,具体细节不再赘述。当前已知以及将来开发的任何适当空间复用技术技术都可以在此使用,本公开的范围在此方面不受限制。
装置1100和1200中所包括的模块可以利用各种方式来实现,包括软件、硬件、固件或其任意组合。在一些实施例中,一个或多个模块可以使用软件和/或固件来实现,例如存储在存储介质上的机器可执行指令。除了机器可执行指令之外或者作为替代,装置1100和1200中的部分或者全部模块可以至少部分地由一个或多个硬件逻辑组件来实现。作为示例而非限制,可以使用的示范类型的硬件逻辑组件包括现场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准品(ASSP)、片上系统(SOC)、复杂可编程逻辑器件(CPLD),等等。
图13示出了其中可以实施本公开的某些实施例的设备1300的框图。设备1300能够用来实现图8和图10中的方法流程。
如图13所示,设备1300包括处理器1310,处理器1310控制设备1300的操作和功能。例如,在某些示例实施例中,处理器1310可以借助于与其耦合的存储器1320中所存储的指令1330来执行各种操作。存储器1320可以是适用于本地技术环境的任何合适的类型,并且可以利用任何合适的数据存储技术来实现,包括但不限于基于半导体的存储器件、磁存储器件和系统、光存储器件和系统。尽管图13中仅仅示出了一个存储器单元,但是在设备1300中可以有多个物理不同的存储器单元。
处理器1310可以是适用于本地技术环境的任何合适的类型,并且可以包括但不限于通用计算机、专用计算机、微控制器、数字信号控制器(DSP)以及基于控制器的多核控制器架构中的一个或多个。设备1300也可以包括多个处理器1310。处理器1310与通信单元1340耦合。通信单元1340可以通过无线电信号或者借助于光纤、电缆和/或其他部件来实现信息的接收和发送。
上文参考图6到图12所描述的所有特征均适用于设备1300,在此不再赘述。
本公开的实施例,针对带宽不匹配、前导码打孔造成的PSRT PPDU发送功率计算过大,对空间复用设备的接收造成干扰的问题进行了解决纠正,减少了对空间复用设备的接收造成的干扰,提升了系统效率。
一般而言,本公开的各种示例实施例可以在硬件或专用电路、软件、逻辑,或其任何组合中实施。某些方面可以在硬件中实施,而其他方面可以在可以由控制器、微处理器或其他计算设备执行的固件或软件中实施。当本公开的示例实施例的各方面被图示或描述为框图、流程图或使用某些其他图形表示时,将理解此处描述的方框、装置、系统、技术或方法可以作为非限制性的示例在硬件、软件、固件、专用电路或逻辑、通用硬件或控制器或其他计算设备,或其某些组合中实施。
作为示例,本公开的示例实施例可以在机器或计算机可执行指令的上下文中被描述,机器可执行指令诸如包括在目标的真实或者虚拟处理器上的器件中执行的程序模块中。一般而言,程序模块包括例程、程序、库、对象、类、组件、数据结构等,其执行特定的任务或者实现特定的抽象数据结构。在各示例实施例中,程序模块的功能可以在所描述的程序模块之间合并或者分割。用于程序模块的机器可执行指令可以在本地或者分布式设备内执行。在分 布式设备中,程序模块可以位于本地和远程存储介质二者中。
用于实现本公开的方法的计算机程序代码可以用一种或多种编程语言编写。这些计算机程序代码可以提供给通用计算机、专用计算机或其他可编程的数据处理装置的处理器,使得程序代码在被计算机或其他可编程的数据处理装置执行的时候,引起在流程图和/或框图中规定的功能/操作被实施。程序代码可以完全在计算机上、部分在计算机上、作为独立的软件包、部分在计算机上且部分在远程计算机上或完全在远程计算机或服务器上执行。
在本公开的上下文中,机器可读介质或计算机可读介质可以是包含或存储用于或有关于指令执行系统、装置或设备的程序的任何有形介质。机器可读介质可以是机器可读信号介质或机器可读存储介质。机器可读介质可以包括但不限于电子的、磁的、光学的、电磁的、红外的或半导体系统、装置或设备,或其任意合适的组合。机器可读存储介质的更详细示例包括带有一根或多根导线的电气连接、便携式计算机磁盘、硬盘、随机存储存取器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或闪存)、光存储设备、磁存储设备,或其任意合适的组合。
另外,尽管操作以特定顺序被描绘,但这并不应该理解为要求此类操作以示出的特定顺序或以相继顺序完成,或者执行所有图示的操作以获取期望结果。在某些情况下,多任务或并行处理会是有益的。同样地,尽管上述讨论包含了某些特定的实施细节,但这并不应解释为限制任何发明或权利要求的范围,而应解释为对可以针对特定发明的特定示例实施例的描述。本说明书中在分开的示例实施例的上下文中描述的某些特征也可以整合实施在单个示例实施例中。反之,在单个示例实施例的上下文中描述的各种特征也可以分离地在多个示例实施例或在任意合适的子组合中实施。
尽管已经以特定于结构特征和/或方法动作的语言描述了主题,但是应当理解,所附权利要求中限定的主题并不限于上文描述的特定特征或动作。相反,上文描述的特定特征和动作是作为实现权利要求的示例形式而被公开的。

Claims (32)

  1. 一种空间复用方法,包括:
    第一空间复用设备接收由第二空间复用设备在第一频带上发送的PSRR PPDU的部分或全部,所述第一频带包括一个或多个带宽相同的子带;
    基于以所述带宽为粒度的空间复用参数SRP的值,以及以所述带宽为粒度的所述PSRR PPDU的接收功率水平RPL,所述第一空间复用设备确定在第二频带上发送PSRT PPDU的参考发送功率,
    其中,所述第二频带包括一个或多个具有所述带宽的子带,并且所述第二频带与所述第一频带至少部分重叠,
    其中,以所述带宽为粒度的所述PSRR PPDU的所述RPL基于以下中的一项或多项来确定:
    所述第一空间复用设备接收到的所述PSRR PPDU的部分或全部所占用的所述第一频带中的一个或多个子带;或者
    第一频带或第二频带中未打孔的子带。
  2. 根据权利要求1所述的方法,其中所述参考发送功率是针对整个所述第二频带确定的。
  3. 根据权利要求2所述的方法,其中以所述带宽为粒度的所述RPL是基于所述第一空间复用设备接收到的所述PSRR PPDU的所述部分或全部所占用的所述第一频带中的所述一个或多个子带与所述第二频带之间的重叠子带而确定的。
  4. 根据权利要求2所述的方法,其中以所述带宽为粒度的所述RPL是基于以下一项来确定的:
    所述第一空间复用设备接收到的所述PSRR PPDU的所述部分或全部所占用的所述第一频带中的所述一个或多个子带中的未打孔的子带的带宽,或者
    所述第一空间复用设备接收到的所述PSRR PPDU的所述部分或全部所占用的所述第一频带中的所述一个或多个子带与所述第二频带之间的重叠子带中的未打孔的子带的带宽。
  5. 根据权利要求2所述的方法,其中所述参考发送功率是基于以下一项来确定的:
    所述第二频带中的所述未打孔的子带的带宽,或者
    所述第一空间复用设备接收到的所述PSRR PPDU的所述部分或全部所占用的所述第一频带中的所述一个或多个子带与所述第二频带之间的重叠子带中的未打孔的子带的带宽。
  6. 根据权利要求1所述的方法,还包括:
    所述第一空间复用设备基于以下至少一项来确定所述第一频带中的所述未打孔的子带:
    接收到的所述PSRR PPDU中的前导码包含的打孔指示信息;
    所述PSRR PPDU中包含的打孔指示信息,其中所述PSRR PPDU为非高吞吐率复制PPDU;或者
    所述第二空间复用设备所在基本服务集合BSS的管理帧中包含的打孔指示信息,所述管理帧包括以下至少一个帧:信标帧、关联响应帧、探测响应帧、邻居报告帧或者缩减邻居报告帧。
  7. 根据权利要求1所述的方法,其中所述第一空间复用设备确定对所述PSRT PPDU进行打孔,并且所述方法还包括:
    所述第一空间复用设备基于预定偏移量对所述参考发送功率进行调整。
  8. 根据权利要求1所述的方法,其中以所述带宽为粒度的所述SRP的所述值由所述第二空间复用设备针对经过打孔的所述PSRR PPDU而基于预定偏移量进行了调整。
  9. 根据权利要求1所述的方法,其中所述第一频带包括多个子带,并且以所述带宽为粒度的所述SRP的所述值是针对所述多个子带的所述SRP的多个值中的最小值。
  10. 根据权利要求1所述的方法,其中确定在所述第二频带上发送PSRT PPDU的参考发送功率包括:
    基于针对所述第一频带中的一个子带的所述SRP的所述值,以及在所述子带中的所述PSRR PPDU的所述RPL,所述第一空间复用设备确定在所述子带上发送所述PSRT PPDU的所述参考发送功率,所述第一频带中的所述子带被包含在所述第二频带中。
  11. 根据权利要求10所述的方法,还包括:
    针对所述第二频带与所述第一频带之间的重叠子带中的打孔的子带,所述第一空间复用设备确定不允许在所述打孔的子带上发送所述PSRT PPDU;或者
    所述第一空间复用设备将所述打孔的子带上的参考发送功率确定为小于预定义的最大发送功率。
  12. 根据权利要求10所述的方法,还包括:
    针对所述第二频带与所述第一频带之间的重叠子带中的打孔的子带,所述第一空间复用设备基于针对所述第二频带与所述第一频带之间的重叠子带中的一个或多个未打孔的子带确定的一个或多个参考发送功率,来确定所述打孔的子带上的参考发送功率。
  13. 根据权利要求12所述的方法,其中确定所述打孔的子带上的所述参考发送功率包括:
    所述第一空间复用设备将所述打孔的子带上的所述参考发送功率确定为针对所述多个未打孔的子带确定的所述多个参考发送功率中的最小参考发送功率或者所述多个参考发送功率的平均功率。
  14. 根据权利要求10所述的方法,还包括:
    针对所述第二频带与所述第一频带之间的重叠子带中的打孔的子带,所述第一空间复用设备基于针对所述打孔的子带的所述SRP的值来确定所述打孔的子带上的参考发送功率。
  15. 一种空间复用方法,包括:
    针对用于发送物理层协议数据单元PPDU的包括多个带宽相同的子带的第一频带中要被打孔的子带,第二空间复用设备通过以下一个操作来确定相应的空间复用参数SRP的值:
    基于预定偏移量对所述SRP的所述值进行调整;
    将所述SRP的所述值设置为第一值,以向其他空间复用设备指示禁止在所述PPDU要被打孔的所述子带上进行传输;或者
    将所述SRP的所述值设置为第二值,以向所述其他空间复用设备指示允许在所述要被打孔的所述子带上进行传输;以及
    所述第二空间复用设备在所述第一频带中的未打孔的子带上发送经打孔的所述PPDU,所述PPDU中承载的触发帧中包含所确定的SRP的值。
  16. 一种通信装置,包括:
    接收模块,被配置为通过第一空间复用设备接收由第二空间复用设备在第一频带上发送的PSRR PPDU的部分或全部,所述第一频带包括一个或多个带宽相同的子带;以及
    第一确定模块,被配置为基于以所述带宽为粒度的空间复用参数SRP的值,以及以所述 带宽为粒度的所述PSRR PPDU的接收功率水平RPL,通过所述第一空间复用设备确定在第二频带上发送PSRT PPDU的参考发送功率,
    其中,所述第二频带包括一个或多个具有所述带宽的子带,并且所述第二频带与所述第一频带至少部分重叠,
    其中,以所述带宽为粒度的所述PSRR PPDU的所述RPL基于以下中的一项或多项来确定:
    接收到的所述PSRR PPDU的部分或全部所占用的所述第一频带中的一个或多个子带;或者
    第一频带或第二频带中未打孔的子带。
  17. 根据权利要求16所述的通信装置,其中所述参考发送功率是针对整个所述第二频带确定的。
  18. 根据权利要求17所述的通信装置,其中以所述带宽为粒度的所述RPL是基于接收到的所述PSRR PPDU的所述部分或全部所占用的所述第一频带中的所述一个或多个子带与所述第二频带之间的重叠子带而确定的。
  19. 根据权利要求17所述的通信装置,其中以所述带宽为粒度的所述RPL是基于以下一项来确定的:
    接收到的所述PSRR PPDU的所述部分或全部所占用的所述第一频带中的所述一个或多个子带中的未打孔的子带的带宽,或者
    接收到的所述PSRR PPDU的所述部分或全部所占用的所述第一频带中的所述一个或多个子带与所述第二频带之间的重叠子带中的未打孔的子带的带宽。
  20. 根据权利要求17所述的通信装置,其中所述参考发送功率是基于以下一项来确定的:
    所述第二频带中的所述未打孔的子带的带宽,或者
    接收到的所述PSRR PPDU的所述部分或全部所占用的所述第一频带中的所述一个或多个子带与所述第二频带之间的重叠子带中的未打孔的子带的带宽。
  21. 根据权利要求16所述的通信装置,还包括:
    第二确定模块,被配置为基于以下至少一项来通过所述第一空间复用设备确定所述第一频带中的所述未打孔的子带:
    接收到的所述PSRR PPDU中的前导码包含的打孔指示信息;
    所述PSRR PPDU中包含的打孔指示信息,其中所述PSRR PPDU为非高吞吐率复制PPDU;或者
    所述第二空间复用设备所在基本服务集合BSS的管理帧中包含的打孔指示信息,所述管理帧包括以下至少一个帧:信标帧、关联响应帧、探测响应帧、邻居报告帧或者缩减邻居报告帧。
  22. 根据权利要求16所述的通信装置,还包括:
    第三确定模块,被配置为通过所述第一空间复用设备确定对所述PSRT PPDU进行打孔;以及
    调整模块,被配置为通过所述第一空间复用设备基于预定偏移量对所述参考发送功率进行调整。
  23. 根据权利要求16所述的通信装置,其中以所述带宽为粒度的所述SRP的值由所述 第二空间复用设备针对经过打孔的所述PSRR PPDU而基于预定偏移量进行了调整。
  24. 根据权利要求16所述的通信装置,其中所述第一频带包括多个子带,并且以所述带宽为粒度的SRP的值是针对所述多个子带的所述SRP的多个值中的最小值。
  25. 根据权利要求16所述的通信装置,其中所述第一确定模块被配置为:
    基于针对所述第一频带中的一个子带的所述SRP的值,以及在所述子带中的所述PSRR PPDU的所述RPL,通过所述第一空间复用设备确定在所述子带上发送所述PSRT PPDU的所述参考发送功率,所述第一频带中的所述子带被包含在第二频带中。
  26. 根据权利要求25所述的通信装置,其中所述第一确定模块被配置为:
    针对所述第二频带与所述第一频带之间的重叠子带中的打孔的子带,通过所述第一空间复用设备确定不允许在所述打孔的子带上发送所述PSRT PPDU;或者
    通过所述第一空间复用设备将所述打孔的子带上的参考发送功率确定为小于预定义的最大发送功率。
  27. 根据权利要求25所述的通信装置,其中所述第一确定模块被配置为:
    针对所述第二频带与所述第一频带之间的重叠子带中的打孔的子带,通过所述第一空间复用设备基于针对所述第二频带与所述第一频带之间的重叠子带中的一个或多个未打孔的子带确定的一个或多个参考发送功率,来确定所述打孔的子带上的参考发送功率。
  28. 根据权利要求27所述的通信装置,其中所述第一确定模块被配置为:
    通过所述第一空间复用设备将所述打孔的子带上的所述参考发送功率确定为针对所述多个未打孔的子带确定的所述多个参考发送功率中的最小参考发送功率或者所述多个参考发送功率的平均功率。
  29. 根据权利要求25所述的通信装置,其中所述第一确定模块被配置为:
    针对所述第二频带与所述第一频带之间的重叠子带中的打孔的子带,通过所述第一空间复用设备基于针对所述打孔的子带的所述SRP的值来确定所述打孔的子带上的参考发送功率。
  30. 一种通信装置,包括:
    第四确定模块,被配置为针对用于发送物理层协议数据单元PPDU的包括多个带宽相同的子带的第一频带中要被打孔的子带,通过以下一个操作来确定相应的空间复用参数SRP的值:
    基于预定偏移量对SRP的值进行调整;
    将SRP的值设置为第一值,以向其他空间复用设备指示禁止在PPDU要被打孔的子带上进行传输;或者
    将SRP的值设置为第二值,以向其他空间复用设备指示允许在要被打孔的子带上进行传输;
    发送模块,被配置为在第一频带中的未打孔的子带上发送经打孔的PPDU,PPDU中承载的触发帧中包含所确定的SRP的值。
  31. 一种通信设备,包括:
    处理器;处理器与存储器耦合,存储器存储指令,其中指令在被处理器执行时使根据权利要求1到14或者权利要求15所述的方法被执行。
  32. 一种计算机可读存储介质,其上存储有程序,至少部分程序在由设备中的处理器执行时,使设备执行根据权利要求1到14或者权利要求15所述的方法。
PCT/CN2022/078013 2021-04-01 2022-02-25 空间复用方法、装置、设备和介质 WO2022206239A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP22778424.6A EP4210401A4 (en) 2021-04-01 2022-02-25 SPACE REUSE METHOD AND APPARATUS, DEVICE AND MEDIUM
BR112023008540A BR112023008540A2 (pt) 2021-04-01 2022-02-25 Método, aparelho, dispositivo e meio de reutilização espacial
CA3197153A CA3197153A1 (en) 2021-04-01 2022-02-25 Spatial reuse method, apparatus, device, and medium
AU2022247599A AU2022247599A1 (en) 2021-04-01 2022-02-25 Spatial reuse method, apparatus, device, and medium
MX2023005401A MX2023005401A (es) 2021-04-01 2022-02-25 Metodo, aparato, dispositivo y medio de reutilizacion espacial.
JP2023524946A JP2023552271A (ja) 2021-04-01 2022-02-25 空間再利用方法、装置、デバイス、および媒体
KR1020237012822A KR20230069988A (ko) 2021-04-01 2022-02-25 공간 재사용 방법 및 장치, 디바이스, 및 매체
US18/476,236 US20240031828A1 (en) 2021-04-01 2023-09-27 Spatial reuse method, apparatus, device, and medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110358332.7A CN115190573A (zh) 2021-04-01 2021-04-01 空间复用方法、装置、设备和介质
CN202110358332.7 2021-04-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/476,236 Continuation US20240031828A1 (en) 2021-04-01 2023-09-27 Spatial reuse method, apparatus, device, and medium

Publications (1)

Publication Number Publication Date
WO2022206239A1 true WO2022206239A1 (zh) 2022-10-06

Family

ID=83456826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/078013 WO2022206239A1 (zh) 2021-04-01 2022-02-25 空间复用方法、装置、设备和介质

Country Status (10)

Country Link
US (1) US20240031828A1 (zh)
EP (1) EP4210401A4 (zh)
JP (1) JP2023552271A (zh)
KR (1) KR20230069988A (zh)
CN (3) CN115190573A (zh)
AU (1) AU2022247599A1 (zh)
BR (1) BR112023008540A2 (zh)
CA (1) CA3197153A1 (zh)
MX (1) MX2023005401A (zh)
WO (1) WO2022206239A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106961733A (zh) * 2016-01-11 2017-07-18 华为技术有限公司 传输数据的方法和装置
US20170325202A1 (en) * 2016-05-06 2017-11-09 Qualcomm Incorporated Trigger frame in wireless local area network
CN108271263A (zh) * 2016-12-30 2018-07-10 中兴通讯股份有限公司 空间复用的方法及装置
CN108353425A (zh) * 2015-11-03 2018-07-31 韦勒斯标准与技术协会公司 在包括重叠基本服务集的高密度环境中的无线通信方法和无线通信终端
CN110140374A (zh) * 2017-01-09 2019-08-16 韦勒斯标准与技术协会公司 用信号通知多用户分组的无线通信方法和无线通信终端

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3398179B1 (en) * 2015-12-28 2020-11-04 Newracom, Inc. Multiple network allocation vector operation
CN115379458A (zh) * 2016-04-02 2022-11-22 韦勒斯标准与技术协会公司 重叠的基本服务集的空间重用的无线通信方法和无线通信终端
WO2018084404A1 (ko) * 2016-11-01 2018-05-11 엘지전자 주식회사 무선 랜 시스템에서 ppdu를 송신하기 위한 공간 재사용을 수행하는 방법 및 장치
WO2020178302A1 (en) * 2019-03-07 2020-09-10 Nokia Technologies Oy Controlling downlink spatial reuse in wlan through rts/cts

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108353425A (zh) * 2015-11-03 2018-07-31 韦勒斯标准与技术协会公司 在包括重叠基本服务集的高密度环境中的无线通信方法和无线通信终端
CN106961733A (zh) * 2016-01-11 2017-07-18 华为技术有限公司 传输数据的方法和装置
US20170325202A1 (en) * 2016-05-06 2017-11-09 Qualcomm Incorporated Trigger frame in wireless local area network
CN108271263A (zh) * 2016-12-30 2018-07-10 中兴通讯股份有限公司 空间复用的方法及装置
CN110140374A (zh) * 2017-01-09 2019-08-16 韦勒斯标准与技术协会公司 用信号通知多用户分组的无线通信方法和无线通信终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4210401A4 *

Also Published As

Publication number Publication date
MX2023005401A (es) 2023-05-19
EP4210401A1 (en) 2023-07-12
CA3197153A1 (en) 2022-10-06
BR112023008540A2 (pt) 2023-10-31
CN115190573A (zh) 2022-10-14
US20240031828A1 (en) 2024-01-25
KR20230069988A (ko) 2023-05-19
CN117956559A (zh) 2024-04-30
CN116390215A (zh) 2023-07-04
EP4210401A4 (en) 2024-05-01
JP2023552271A (ja) 2023-12-15
AU2022247599A1 (en) 2023-05-04
CN116390215B (zh) 2023-11-28

Similar Documents

Publication Publication Date Title
US10178698B2 (en) Enhanced channel access mechanisms for wide band operation on unlicensed bands
US10098075B2 (en) Apparatus and method for power control, reporting and uplink transmission
CA2877484C (en) Method and apparatus for transreceiving operating channel information in wireless communication system
US9992797B2 (en) Wide bandwidth favored channel access methods in wireless local area networks
EP3008843B1 (en) Increased network throughput with cca level enhancement
US9807767B2 (en) Systems and methods for allocating tones between users in wireless communication systems
EP3024295B1 (en) Network allocation vector improvement for wireless networks
US9088991B2 (en) WLAN transmit modes and coexistence
US9648587B2 (en) Method and apparatus for transmitting and receiving a whitespace map in a wireless communication system
WO2022206239A1 (zh) 空间复用方法、装置、设备和介质
EP3177057B1 (en) Coordination method between access points using unlicensed frequency band
CN109511125B (zh) 一种无线网络中识别邻区干扰与异系统干扰的方法
EP4026380A1 (en) An access point and a communication method for facilitating scheduling of communication for communication apparatuses susceptible to interference
KR20140129007A (ko) 무선통신시스템에서 신호를 송수신하는 방법 및 장치
WO2023160106A1 (zh) 一种空间复用方法及第一设备
CN112218380A (zh) 传输harq-ack的方法及设备
WO2023288147A2 (en) Method and apparatus for ue initiated cot for multi-channel frame based equipment
Sadough et al. Power allocation for OFDM-based cognitive radio systems under imperfect spectrum sensing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22778424

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3197153

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022778424

Country of ref document: EP

Effective date: 20230403

ENP Entry into the national phase

Ref document number: 20237012822

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023524946

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2022247599

Country of ref document: AU

Date of ref document: 20220225

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023008540

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112023008540

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230504

NENP Non-entry into the national phase

Ref country code: DE