WO2022205483A1 - 传输方法、终端设备、网络设备及通信系统 - Google Patents

传输方法、终端设备、网络设备及通信系统 Download PDF

Info

Publication number
WO2022205483A1
WO2022205483A1 PCT/CN2021/085472 CN2021085472W WO2022205483A1 WO 2022205483 A1 WO2022205483 A1 WO 2022205483A1 CN 2021085472 W CN2021085472 W CN 2021085472W WO 2022205483 A1 WO2022205483 A1 WO 2022205483A1
Authority
WO
WIPO (PCT)
Prior art keywords
uci
pusch
real
symbol length
occupied
Prior art date
Application number
PCT/CN2021/085472
Other languages
English (en)
French (fr)
Other versions
WO2022205483A9 (zh
Inventor
方昀
史志华
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/085472 priority Critical patent/WO2022205483A1/zh
Priority to CN202180083262.7A priority patent/CN116602034A/zh
Publication of WO2022205483A1 publication Critical patent/WO2022205483A1/zh
Publication of WO2022205483A9 publication Critical patent/WO2022205483A9/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communication, and more particularly, to a transmission method, terminal device, network device and communication system.
  • 5G Fifth Generation
  • eMBB enhanced Mobile Broadband
  • URLLC Ultra Reliability and Low Latency Communication
  • mMTC Massive Machine Type Communication
  • PUSCH Physical Uplink Shared Channel, physical uplink shared channel
  • TRP Transmission and Reception Point
  • DCI Downlink Control Information, downlink control signaling
  • Embodiments of the present application provide a transmission method, a terminal device, a network device, and a communication system, so as to determine a solution for multiple PUSCHs for carrying UCI at least for multiple TRPs.
  • the embodiment of the present application provides a transmission method, including:
  • the terminal device determines a second real physical uplink shared channel for multiplexing the UCI based on the required symbol length for carrying the uplink control signaling UCI and/or the first real physical uplink shared channel PUSCH for multiplexing the UCI PUSCH,
  • the first receiving end and/or the first beam direction directed by the first real PUSCH is different from the second receiving end and/or the second beam direction directed by the second real PUSCH.
  • the embodiment of the present application provides a transmission method, including:
  • the network device performs demodulation of the uplink control signaling UCI on the resources that transmit the physical uplink shared channel PUSCH through at least the first and second receivers and/or at least the first and second beam directions, including the required symbol length of the UCI and/or the first real PUSCH for multiplexing the UCI, determining the second real PUSCH for multiplexing the UCI,
  • the first receiving end and/or the first beam direction directed by the first real PUSCH is different from the second receiving end and/or the second beam direction directed by the second real PUSCH.
  • An embodiment of the present application provides a terminal device, including:
  • a processor configured to determine a method for multiplexing the UCI based on a required symbol length for carrying the uplink control signaling UCI and/or a first real physical uplink shared channel PUSCH for multiplexing the UCI the second real PUSCH,
  • the first receiving end and/or the first beam direction directed by the first real PUSCH is different from the second receiving end and/or the second beam direction directed by the second real PUSCH.
  • An embodiment of the present application provides a network device, including:
  • a processor configured to perform demodulation of the uplink control signaling UCI on resources that transmit the physical uplink shared channel PUSCH through at least the first and second receivers and/or at least the first and second beam directions, including based on a desired symbol length for carrying the UCI and/or a first real PUSCH for multiplexing the UCI, determining a second real PUSCH for multiplexing the UCI,
  • the first receiving end and/or the first beam direction directed by the first real PUSCH is different from the second receiving end and/or the second beam direction directed by the second real PUSCH.
  • An embodiment of the present application provides a terminal device, including a transceiver, a processor, and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, and execute the transmission method performed by the above-mentioned terminal device.
  • An embodiment of the present application provides a network device, including a transceiver, a processor, and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the transmission method performed by the above-mentioned network device.
  • Embodiments of the present application provide a communication system, including:
  • At least one of the aforementioned network devices At least one of the aforementioned network devices.
  • An embodiment of the present application provides a chip for implementing the above-mentioned transmission method.
  • the chip includes: a processor for calling and running a computer program from the memory, so that the device on which the chip is installed executes the above-mentioned transmission method.
  • An embodiment of the present application provides a computer-readable storage medium for storing a computer program, and the computer program enables a computer to execute the above-mentioned transmission method.
  • An embodiment of the present application provides a computer program product, including computer program instructions, and the computer program instructions cause a computer to execute the above-mentioned transmission method.
  • the embodiments of the present application provide a computer program, which, when running on a computer, causes the computer to execute the above-mentioned transmission method.
  • the present application at least provides a solution for determining multiple PUSCHs for carrying UCI, for example, for multiple TRPs, thereby at least supporting UCI in different PUSCHs for multiple receiving ends.
  • FIG. 1 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a transmission method according to an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a transmission method according to another embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a part of operations in a transmission method according to another embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a transmission method according to another embodiment of the present application.
  • Figure 6 shows a schematic diagram of repeated transmission.
  • FIG. 7 is a schematic flowchart of a transmission method according to another embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a transmission method according to another embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a part of operations in a transmission method according to another embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a transmission method according to another embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • FIG. 14 is a schematic block diagram of a chip according to an embodiment of the present application.
  • FIG. 15 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • Figure 16 shows a schematic diagram of repeated PUSCH transmission.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • CDMA Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • LTE LTE-based access to unlicensed spectrum
  • LTE-U Universal Mobile Telecommunication System
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • WiFi Wireless Fidelity
  • the communication system in this embodiment of the present application may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, a dual connectivity (Dual Connectivity, DC) scenario, or a standalone (Standalone, SA) distribution. web scene.
  • Carrier Aggregation, CA Carrier Aggregation, CA
  • DC Dual Connectivity
  • SA standalone
  • This embodiment of the present application does not limit the applied spectrum.
  • the embodiments of the present application may be applied to licensed spectrum, and may also be applied to unlicensed spectrum.
  • terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • UE User Equipment
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • the terminal device can be a station (STAION, ST) in the WLAN, can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, and next-generation communication systems, such as terminal devices in NR networks or Terminal equipment in the future evolved Public Land Mobile Network (Public Land Mobile Network, PLMN) network, etc.
  • STAION, ST in the WLAN
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which are the general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • a network device can be a device used to communicate with a mobile device.
  • the network device can be an access point (Access Point, AP) in WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA, or a WCDMA
  • a base station NodeB, NB
  • it can also be an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, wearable device, and network equipment (gNB) in NR networks Or network equipment in the PLMN network that evolves in the future.
  • AP Access Point
  • BTS Base Transceiver Station
  • gNB network equipment
  • a network device provides services for a cell
  • a terminal device communicates with the network device through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell
  • the cell may be a network device (for example, a frequency domain resource).
  • the cell corresponding to the base station), the cell can belong to the macro base station, or it can belong to the base station corresponding to the small cell (Small cell), where the small cell can include: Metro cell, Micro cell, Pico cell cell), Femto cell, etc.
  • These small cells have the characteristics of small coverage and low transmit power, and are suitable for providing high-speed data transmission services.
  • the "instruction" mentioned in the embodiments of the present application may be a direct instruction, an indirect instruction, or an associated relationship.
  • a indicates B it can indicate that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indicates B indirectly, such as A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • corresponding may indicate that there is a direct or indirect corresponding relationship between the two, or may indicate that there is an associated relationship between the two, or indicate and be instructed, configure and be instructed configuration, etc.
  • FIG. 1 exemplarily shows one network device 110 and two terminal devices 120.
  • the wireless communication system 100 may include a plurality of network devices 110, and the coverage of each network device 110 may include other numbers
  • the terminal device 120 is not limited in this embodiment of the present application.
  • the wireless communication system 100 may further include other network entities such as a mobility management entity (Mobility Management Entity, MME), an access and mobility management function (Access and Mobility Management Function, AMF). This is not limited.
  • MME Mobility Management Entity
  • AMF Access and Mobility Management Function
  • FIG. 2 is a schematic flowchart of a transmission method 200 according to an embodiment of the present application.
  • the method can optionally be applied to the system shown in Figure 1, but is not limited thereto.
  • the method includes at least some of the following.
  • the terminal device determines, based on the required symbol length for carrying the uplink control signaling UCI and/or the first real physical uplink shared channel PUSCH for multiplexing the UCI, for The second real PUSCH of the UCI is multiplexed.
  • the first receiver and/or the first beam direction targeted by the first real PUSCH may be different from the second receiver and/or the second beam direction targeted by the second real PUSCH.
  • PUSCH for multiplexing UCI may refer to placing UCI on the PUSCH or a part thereof.
  • symbol may refer to an OFDM (Orthogonal Frenquency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbol, or may refer to other symbols for transmission.
  • OFDM Orthogonal Frenquency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • the first real physical uplink shared channel PUSCH for multiplexing the UCI is determined based on the required symbol length for carrying the uplink control signaling UCI and/or the first real physical uplink shared channel PUSCH for multiplexing the UCI. 2.
  • the real PUSCH can at least support the carrying of UCI in different PUSCHs for multiple receiving ends, thereby at least solving the technical problem such as the lack of related technical solutions in the 5G technology. It should be pointed out that the technical problem described here is just an example, and the present application can actually solve other technical problems, so it should not be taken as a limitation to the present application.
  • the receiving end may include a transmitting and receiving point TRP.
  • the receiving end may also include a non-TRP receiving end.
  • the receiving end and the beam direction may have a one-to-one correspondence.
  • the first beam direction may correspond to the first receiving end
  • the second beam direction may correspond to the second receiving end.
  • the receiving end and the beam direction may be in a one-to-one correspondence, or may not be in a one-to-one correspondence.
  • the transmission method according to this embodiment of the present application may further include:
  • the terminal device may determine the required symbol length for carrying the UCI based on the symbol length of the nominal PUSCH.
  • the method for determining the required symbol length for carrying UCI based on the symbol length of the nominal PUSCH may refer to, for example, 3GPP TS 38.213 V16.5.0 (2021-03), etc. It should be noted that the present application is not limited to this, and other methods may also be used to determine the required symbol length for carrying the UCI.
  • the terminal device in S210 is based on the required symbol length for carrying the uplink control signaling UCI and/or the first real physical uplink shared for multiplexing the UCI.
  • Channel PUSCH, determining the second real PUSCH for multiplexing the UCI may include:
  • the UCI shall occupy the symbol length here may indicate that the UCI shall occupy the symbol length in the second real PUSCH.
  • the determining of the symbol length to be occupied by the UCI based on the required symbol length for carrying the UCI and/or the first real PUSCH in S2101 may include:
  • the determined length of the required symbol for carrying the UCI is greater than the length of the symbol occupied by the first real PUSCH, determining that the length of the symbol to be occupied by the UCI is the length of the symbol occupied by the first real PUSCH, Otherwise, it is determined that the symbol length to be occupied by the UCI is the required symbol length for carrying the UCI.
  • the terminal device in S210 is based on the required symbol length for carrying the uplink control signaling UCI and/or the first real physical uplink shared for multiplexing the UCI.
  • the channel PUSCH, for determining the second real PUSCH used for multiplexing the UCI may also include:
  • the terminal device determines each real PUSCH corresponding to the second receiving end and/or the second beam direction.
  • the terminal device in S210 is based on the required symbol length for carrying the uplink control signaling UCI and/or the first real physical uplink shared for multiplexing the UCI.
  • the channel PUSCH, for determining the second real PUSCH used for multiplexing the UCI may also include:
  • the terminal device determines the second real PUSCH based on the symbol length to be occupied by the UCI and the real PUSCHs corresponding to the second receiving end and/or the second beam direction.
  • the terminal device in S210 determines, based on the required symbol length for carrying the uplink control signaling UCI and/or the first real physical uplink shared channel PUSCH used for multiplexing the UCI, to be used for multiplexing.
  • the second real PUSCH with the UCI may include:
  • the symbol length to be occupied by the UCI is obtained based on the required symbol length for carrying the UCI and/or the symbol length occupied by the first real PUSCH.
  • the terminal device in S210 determines, based on the required symbol length for carrying the uplink control signaling UCI and/or the first real physical uplink shared channel PUSCH used for multiplexing the UCI, to be used for multiplexing.
  • the second real PUSCH with the UCI may include:
  • the symbol length to be occupied by the UCI is obtained based on the required symbol length for carrying the UCI and/or the symbol length occupied by the first real PUSCH.
  • the terminal device in S210 determines, based on the required symbol length for carrying the uplink control signaling UCI and/or the first real physical uplink shared channel PUSCH used for multiplexing the UCI, to be used for multiplexing.
  • the second real PUSCH with the UCI may include:
  • a real PUSCH with the largest occupied symbol length among the real PUSCHs corresponding to the second beam direction or the second receiving end is selected as the second real PUSCH.
  • the terminal device in S210 determines, based on the required symbol length for carrying the uplink control signaling UCI and/or the first real physical uplink shared channel PUSCH used for multiplexing the UCI, to be used for multiplexing.
  • the second real PUSCH with the UCI may include:
  • each real PUSCH corresponding to the second beam direction or the second receiving end if there is no real PUSCH whose occupied symbol length is greater than or equal to the symbol length to be occupied by the UCI, from the second beam direction or the second receiving end Among the corresponding real PUSCHs, the real PUSCH with the largest occupied symbol length is selected as the second real PUSCH,
  • the symbol length to be occupied by the UCI is obtained based on the required symbol length for carrying the UCI and/or the symbol length occupied by the first real PUSCH.
  • the transmission method according to the embodiment of the present application may further include:
  • the terminal device updates the symbol length of the first real PUSCH to the symbol length of the second real PUSCH.
  • the transmission method according to this embodiment of the present application may further include:
  • the terminal device receives the configuration about the type of uplink PUSCH repeated transmission.
  • the transmission method according to this embodiment of the present application may further include:
  • the terminal device receives a downlink control signaling DCI indication, where the DCI indication triggers repeated transmission of PUSCH based on multiple beam directions and/or multiple receiving ends.
  • the transmission method according to the embodiment of the present application may further include:
  • the terminal device determines the symbol length occupied by the nominal PUSCH based on the downlink control signaling DCI indication;
  • the symbol length occupied by the corresponding real PUSCH and the beam direction and/or receiving end corresponding to each real PUSCH are determined.
  • the back-to-back repeat transmission mechanism mainly has the following characteristics:
  • Adjacent repeated transmission resources are connected end to end in the time domain;
  • the resources scheduled at one time can span the time slot, which can ensure that the business arriving at the back of the time slot can also allocate enough resources or perform real-time scheduling;
  • the time domain resource allocation is used to indicate the time domain resources of the first repeated transmission, and the time domain resources of the remaining transmission times will be determined according to the time domain resources of the first repeated transmission and the configuration of the uplink and downlink transmission directions.
  • each repeated transmission occupies consecutive symbols, as shown in Figure 6.
  • the symbol "DL" represents a downlink (Downlink).
  • the enhanced time-domain resource indication for uplink transmission can follow the time-domain resource indication mechanism of 3GPP R15, that is, high-layer signaling configures multiple time-domain resource locations, and physical-layer signaling indicates one of multiple time-domain resource locations.
  • the SLIV Start and Length Indicator Value, start point length indication
  • each time-domain resource location configured by high-layer signaling includes three information fields: start symbol, time-domain resource length, and repetition times.
  • the above-mentioned uplink repeated transmission mode is type B PUSCH repeated transmission.
  • the time slot-level repeated transmission of R15 is also enhanced, that is, the number of repeated transmissions can be dynamically indicated, which is called type A PUSCH repeated transmission.
  • Type A and type B PUSCH repeated transmissions can be determined by higher layer signaling configuration.
  • the resource indication method of repeated transmission gives the time domain resource range of each repeated transmission, but there may be some symbols that cannot be used for uplink transmission within the time domain resource range, such as downlink symbols, symbols used for periodic uplink sounding signal transmission. symbols etc. Therefore, the actually available uplink transmission resources need to be further limited.
  • the uplink transmission enhancement of R16 two kinds of time domain resources are defined:
  • Nominal PUSCH repeated transmission It can be determined by the resource allocation indication information of repeated transmission. The symbol lengths of the repeated transmissions of different nominal PUSCHs are the same. Nominal PUSCH repeated transmission is used to determine TBS (Transport Block Set, transport block set), uplink power control, and UCI multiplexing resources.
  • TBS Transport Block Set, transport block set
  • uplink power control and UCI multiplexing resources.
  • Real PUSCH repeated transmission In the time domain resources determined by the resource allocation indication information for repeated transmission, the unavailable symbols are removed to obtain time domain resources that can be used for uplink transmission every time.
  • the symbol lengths of different real PUSCH repeated transmissions are not necessarily the same.
  • the real PUSCH repeated transmission is used to determine DMRS (Demodulation Reference Signal, demodulation reference signal) symbols, actual transmission code rate, RV (Redundancy Version, redundancy version), and UCI multiplexing resources.
  • UCI may include channel state information CSI and/or hybrid automatic repeat request (Hybrid Automatic Repeat reQuest, HARQ) acknowledgment HARQ-ACK and the like.
  • CSI channel state information
  • HARQ hybrid automatic repeat request
  • aperiodic CSI can only be used in, for example, the first symbol (symbol ) is multiplexed on a real PUSCH whose length is greater than 1, and the symbol length occupied by the aperiodic CSI transmission part may be obtained based on the nominal length of the PUSCH retransmission and/or other related configurations.
  • the transmission method according to this embodiment of the present application may further include:
  • the terminal device receives the UCI, where the UCI is triggered by the downlink control signaling DCI.
  • the UCI received by the terminal device may overlap or overlap with the PUSCH in time domain resources.
  • the transmission method according to this embodiment of the present application may further include:
  • the terminal device transmits the UCI in the determined second real PUSCH.
  • the type of the UCI may include at least one of the following: periodic UCI; aperiodic UCI; quasi-periodic UCI.
  • the UCI includes channel state information CSI and/or hybrid automatic repeat request (Hybrid Automatic Repeat reQuest, HARQ) acknowledgment HARQ-ACK and the like.
  • CSI channel state information
  • HARQ hybrid automatic repeat request
  • the transmission method according to the embodiment of the present application may further include:
  • the demodulation of the UCI is performed on the resources that the terminal device transmits the PUSCH through at least the first and second receivers and/or at least the first and second beam directions.
  • the transmission method according to the embodiment of the present application may further include:
  • the terminal device determines the receiving end and/or beam direction corresponding to each real PUSCH according to the beam mapping pattern.
  • the time domain position for sending the first real PUSCH for carrying UCI is earlier than the time domain position for sending the second real PUSCH for carrying UCI.
  • UCI sent on the first PUSCH for the first receiver and/or beam direction can be made to precede UCI sent on the second PUSCH for the second receiver and/or beam direction.
  • the transmission method according to the embodiment of the present application may further include:
  • the terminal device determines the required symbol length for carrying the UCI based on the content of the UCI.
  • the content of the UCI may include relevant content information such as CSI and/or HARQ-ACK.
  • the symbol length required for transmission on the PUSCH may be determined according to the relevant content information.
  • the symbol length of the first real PUSCH and/or the second real PUSCH may be greater than 1.
  • the transmission method according to the present application is described above, and the transmission method of the present application can at least support UCI in different PUSCHs for multiple receiving ends, thereby at least solving the technical problem of lack of related technical solutions in 5G technology. .
  • FIG. 7 shows a transmission method according to another embodiment of the present application, which may include the following steps.
  • the network device may perform demodulation of the uplink control signaling UCI on the resources that transmit the physical uplink shared channel PUSCH through at least the first and second receiving ends and/or at least the first and second beam directions, including using A second real PUSCH for multiplexing the UCI is determined based on the required symbol length for carrying the UCI and/or the first real PUSCH for multiplexing the UCI.
  • the first receiver and/or the first beam direction targeted by the first real PUSCH may be different from the second receiver and/or the second beam direction targeted by the second real PUSCH.
  • the first real physical uplink shared channel PUSCH for multiplexing the UCI is determined based on the required symbol length for carrying the uplink control signaling UCI and/or the first real physical uplink shared channel PUSCH for multiplexing the UCI. 2.
  • the real PUSCH can at least support the carrying of UCI in different PUSCHs for multiple receiving ends, thereby at least solving the technical problem such as the lack of related technical solutions in the 5G technology. It should be pointed out that the technical problem described here is just an example, and the present application can actually solve other technical problems, so it should not be taken as a limitation to the present application.
  • the transmission method according to this embodiment of the present application may further include:
  • the network device determines the required symbol length for carrying the UCI based on the symbol length of the nominal PUSCH.
  • the step of S310 is to determine, based on the required symbol length for carrying the UCI and/or the first real PUSCH used for multiplexing the UCI, to multiplex the UCI.
  • the second real PUSCH can include:
  • the determining the symbol length to be occupied by the UCI based on the required symbol length for carrying the UCI and/or the first real PUSCH may include:
  • the determined length of the required symbol for carrying the UCI is greater than the length of the symbol occupied by the first real PUSCH, determining that the length of the symbol to be occupied by the UCI is the length of the symbol occupied by the first real PUSCH, Otherwise, it is determined that the symbol length to be occupied by the UCI is the required symbol length for carrying the UCI.
  • the first real PUSCH for multiplexing the UCI is determined based on the required symbol length for carrying the UCI and/or the first real PUSCH for multiplexing the UCI.
  • Two real PUSCH which can include:
  • S3102 Determine each real PUSCH corresponding to the second receiving end and/or the second beam direction.
  • the first real PUSCH for multiplexing the UCI is determined based on the required symbol length for carrying the UCI and/or the first real PUSCH for multiplexing the UCI.
  • Two real PUSCH which can also include:
  • S3103 Determine the second real PUSCH based on the symbol length to be occupied by the UCI and the respective real PUSCHs corresponding to the second receiving end and/or the second beam direction.
  • the determining the second real PUSCH for multiplexing the UCI based on the required symbol length for carrying the UCI and/or the first real PUSCH for multiplexing the UCI may include: :
  • a real PUSCH whose occupied symbol length is greater than or equal to the symbol length to be occupied by the UCI among the real PUSCHs corresponding to the second beam direction or the second receiving end is selected as the second real PUSCH.
  • the symbol length to be occupied by the UCI is obtained based on the required symbol length for carrying the UCI and/or the symbol length occupied by the first real PUSCH.
  • the determining the second real PUSCH for multiplexing the UCI based on the required symbol length for carrying the UCI and/or the first real PUSCH for multiplexing the UCI may include: :
  • a real PUSCH whose first occupied symbol length is greater than or equal to the symbol length to be occupied by the UCI among the real PUSCHs corresponding to the second beam direction or the second receiving end is selected as the second real PUSCH.
  • the symbol length to be occupied by the UCI is obtained based on the required symbol length for carrying the UCI and/or the symbol length occupied by the first real PUSCH.
  • the determining the second real PUSCH for multiplexing the UCI based on the required symbol length for carrying the UCI and/or the first real PUSCH for multiplexing the UCI may include: :
  • a real PUSCH with the largest occupied symbol length among the real PUSCHs corresponding to the second beam direction or the second receiving end is selected as the second real PUSCH.
  • the determining the second real PUSCH for multiplexing the UCI based on the required symbol length for carrying the UCI and/or the first real PUSCH for multiplexing the UCI may include: :
  • each real PUSCH corresponding to the second beam direction or the second receiving end if there is no real PUSCH whose occupied symbol length is greater than or equal to the symbol length to be occupied by the UCI, from the second beam direction or the second receiving end Among the corresponding real PUSCHs, the real PUSCH with the largest occupied symbol length is selected as the second real PUSCH.
  • the symbol length to be occupied by the UCI is obtained based on the required symbol length for carrying the UCI and/or the symbol length occupied by the first real PUSCH.
  • the transmission method according to this embodiment of the present application may further include:
  • the symbol length of the first real PUSCH is updated to the symbol length of the second real PUSCH.
  • the transmission method according to this embodiment of the present application may further include:
  • the network device configures the type of uplink PUSCH repeated transmission for the terminal device.
  • the transmission method according to this embodiment of the present application may further include:
  • the network device sends a downlink control signaling DCI indication, where the DCI indication triggers repeated PUSCH transmission based on multiple beam directions and/or multiple receivers.
  • the transmission method according to this embodiment of the present application may further include:
  • the network device triggers UCI reporting through downlink control signaling DCI.
  • the downlink control signaling DCI indicates the symbol length of the nominal PUSCH and/or the symbol length of each real PUSCH.
  • the transmission method according to the embodiment of the present application may further include:
  • the network device configures the type of uplink PUSCH repeated transmission as type B, determine the symbol length occupied by the nominal PUSCH based on the downlink control signaling DCI indication;
  • the symbol length occupied by the corresponding real PUSCH and the beam direction and/or receiving end corresponding to each real PUSCH are determined.
  • the transmission method according to this embodiment of the present application may further include:
  • the network device receives the UCI, where the UCI is triggered by the downlink control signaling DCI.
  • the received UCI may overlap or intersect with the PUSCH in time domain resources.
  • the transmission method according to this embodiment of the present application may further include:
  • the network device demodulates the UCI carried in the determined second real PUSCH.
  • the type of the UCI includes at least one of the following: periodic UCI; aperiodic UCI; quasi-periodic UCI.
  • the UCI includes channel state information CSI and/or hybrid automatic repeat request acknowledgement HARQ-ACK.
  • the receiving end and the beam direction may be in a one-to-one correspondence, or may not be in a one-to-one correspondence.
  • the receiving end includes a transmitting and receiving point TRP.
  • the transmission method according to the embodiment of the present application may further include:
  • the network device determines the receiving end and/or the beam direction corresponding to each real PUSCH according to the beam mapping mode.
  • the time domain position for sending the first real PUSCH for carrying UCI is earlier than the time domain position for sending the second real PUSCH for carrying UCI.
  • UCI sent on the first PUSCH for the first receiver and/or beam direction can be made to precede UCI sent on the second PUSCH for the second receiver and/or beam direction.
  • the transmission method according to the embodiment of the present application may further include:
  • the network device determines the required symbol length for carrying the UCI based on the content of the UCI.
  • the symbol length of the first real PUSCH and/or the second real PUSCH is greater than 1.
  • the terminal device 400 may include a processor 420 .
  • the processor 420 may be configured to determine for multiplexing based on a required symbol length for carrying uplink control signaling UCI and/or a first real physical uplink shared channel PUSCH for multiplexing the UCI.
  • the second real PUSCH of the UCI may be configured to determine for multiplexing based on a required symbol length for carrying uplink control signaling UCI and/or a first real physical uplink shared channel PUSCH for multiplexing the UCI.
  • the second real PUSCH of the UCI may be configured to determine for multiplexing based on a required symbol length for carrying uplink control signaling UCI and/or a first real physical uplink shared channel PUSCH for multiplexing the UCI.
  • the first receiving end and/or the first beam direction directed by the first real PUSCH is different from the second receiving end and/or the second beam direction directed by the second real PUSCH.
  • the first real physical uplink shared channel PUSCH for multiplexing the UCI is determined based on the required symbol length for carrying the uplink control signaling UCI and/or the first real physical uplink shared channel PUSCH for multiplexing the UCI. 2.
  • the real PUSCH can at least support the carrying of UCI in different PUSCHs for multiple receiving ends, thereby at least solving the technical problem such as the lack of related technical solutions in the 5G technology. It should be pointed out that the technical problem described here is just an example, and the present application can actually solve other technical problems, so it should not be taken as a limitation to the present application.
  • the processor may also be configured to:
  • the required symbol length for carrying the UCI is determined.
  • the processor may also be configured to:
  • the symbol length to be occupied by the UCI is determined.
  • the processor may also be configured to:
  • the determined length of the required symbol for carrying the UCI is greater than the length of the symbol occupied by the first real PUSCH, determining that the length of the symbol to be occupied by the UCI is the symbol occupied by the first real PUSCH Length, otherwise, it is determined that the symbol length to be occupied by the UCI is the required symbol length for carrying the UCI.
  • the processor may also be configured to:
  • Each real PUSCH corresponding to the second receiving end and/or the second beam direction is determined.
  • the processor may also be configured to:
  • the second real PUSCH is determined based on the symbol length to be occupied by the UCI and the respective real PUSCHs corresponding to the second receiving end and/or the second beam direction.
  • the processor may also be configured to:
  • a real PUSCH whose occupied symbol length is greater than or equal to the symbol length to be occupied by the UCI among the real PUSCHs corresponding to the second beam direction or the second receiving end is selected as the second real PUSCH.
  • the symbol length to be occupied by the UCI is obtained based on the required symbol length for carrying the UCI and/or the symbol length occupied by the first real PUSCH.
  • the processor may also be configured to:
  • a real PUSCH whose first occupied symbol length is greater than or equal to the symbol length to be occupied by the UCI among the real PUSCHs corresponding to the second beam direction or the second receiving end is selected as the second real PUSCH.
  • the symbol length to be occupied by the UCI is obtained based on the required symbol length for carrying the UCI and/or the symbol length occupied by the first real PUSCH.
  • the processor may also be configured to:
  • a real PUSCH with the largest occupied symbol length among the real PUSCHs corresponding to the second beam direction or the second receiving end is selected as the second real PUSCH.
  • the processor may also be configured to:
  • each real PUSCH corresponding to the second beam direction or the second receiving end if there is no real PUSCH whose occupied symbol length is greater than or equal to the symbol length to be occupied by the UCI, from the second beam direction or the second receiving end Among the corresponding real PUSCHs, the real PUSCH with the largest occupied symbol length is selected as the second real PUSCH.
  • the symbol length to be occupied by the UCI is obtained based on the required symbol length for carrying the UCI and/or the symbol length occupied by the first real PUSCH.
  • the processor may also be configured to:
  • the symbol length of the first real PUSCH is updated to the symbol length of the second real PUSCH.
  • the terminal device may further include:
  • the transceiver 410 may be configured to receive configuration regarding the type of uplink PUSCH repeated transmission.
  • the transceiver 410 can also be configured to:
  • the processor may also be configured to:
  • the received configuration regarding the type of uplink PUSCH repeated transmission is type B, determining the length of the symbol occupied by the nominal PUSCH based on the downlink control signaling DCI indication;
  • the symbol length occupied by the corresponding real PUSCH and the beam direction and/or receiving end corresponding to each real PUSCH are determined.
  • the transceiver can also be configured to:
  • UCI is received, and the UCI is triggered by downlink control signaling DCI.
  • the UCI received by the transceiver overlaps or intersects with the PUSCH in time domain resources.
  • the transceiver can also be configured to:
  • UCI is transmitted in the determined second real PUSCH.
  • the type of the UCI includes at least one of the following: periodic UCI; aperiodic UCI; quasi-periodic UCI.
  • the UCI includes channel state information CSI and/or hybrid automatic repeat request acknowledgement HARQ-ACK.
  • the UCI is demodulated on resources that transmit the PUSCH through at least the first and second receivers and/or at least the first and second beam directions.
  • the receiving end includes a transmitting and receiving point TRP.
  • the processor may also be configured to:
  • the receiving end and/or the beam direction corresponding to each real PUSCH is determined.
  • the time domain position for sending the first real PUSCH for carrying UCI is earlier than the time domain position for sending the second real PUSCH for carrying UCI.
  • UCI sent on the first PUSCH for the first receiver and/or beam direction can be made to precede UCI sent on the second PUSCH for the second receiver and/or beam direction.
  • the processor may also be configured to:
  • the required symbol length for carrying the UCI is determined.
  • the symbol length of the first real PUSCH and/or the second real PUSCH is greater than 1.
  • the network device 500 may include a processor 510 .
  • the processor 510 may be configured to perform demodulation of the uplink control signaling UCI on resources that transmit the physical uplink shared channel PUSCH through at least the first and second receivers and/or at least the first and second beam directions , including determining a second real PUSCH for multiplexing the UCI based on a required symbol length for carrying the UCI and/or a first real PUSCH for multiplexing the UCI.
  • the first receiving end and/or the first beam direction directed by the first real PUSCH is different from the second receiving end and/or the second beam direction directed by the second real PUSCH.
  • the first real physical uplink shared channel PUSCH for multiplexing the UCI is determined based on the required symbol length for carrying the uplink control signaling UCI and/or the first real physical uplink shared channel PUSCH for multiplexing the UCI. 2.
  • the real PUSCH can at least support the carrying of UCI in different PUSCHs for multiple receiving ends, thereby at least solving the technical problem such as the lack of related technical solutions in the 5G technology. It should be pointed out that the technical problem described here is just an example, and the present application can actually solve other technical problems, so it should not be taken as a limitation to the present application.
  • processor 510 may also be configured to:
  • the required symbol length for carrying UCI is determined based on the symbol length of the nominal PUSCH.
  • processor 510 may also be configured to:
  • the symbol length to be occupied by the UCI is determined.
  • processor 510 may also be configured to:
  • the determined length of the required symbol for carrying the UCI is greater than the length of the symbol occupied by the first real PUSCH, determining that the length of the symbol to be occupied by the UCI is the length of the symbol occupied by the first real PUSCH, Otherwise, it is determined that the symbol length to be occupied by the UCI is the required symbol length for carrying the UCI.
  • processor 510 may also be configured to:
  • Each real PUSCH corresponding to the second receiving end and/or the second beam direction is determined.
  • processor 510 may also be configured to:
  • the second real PUSCH is determined based on the symbol length to be occupied by the UCI and the respective real PUSCHs corresponding to the second receiving end and/or the second beam direction.
  • processor 510 may also be configured to:
  • the symbol length to be occupied by the UCI is obtained based on the required symbol length for carrying the UCI and/or the symbol length occupied by the first real PUSCH.
  • processor 510 may also be configured to:
  • the symbol length to be occupied by the UCI is obtained based on the required symbol length for carrying the UCI and/or the symbol length occupied by the first real PUSCH.
  • processor 510 may also be configured to:
  • a real PUSCH with the largest occupied symbol length among the real PUSCHs corresponding to the second beam direction or the second receiving end is selected as the second real PUSCH.
  • processor 510 may also be configured to:
  • each real PUSCH corresponding to the second beam direction or the second receiving end if there is no real PUSCH whose occupied symbol length is greater than or equal to the symbol length to be occupied by the UCI, from the second beam direction or the second receiving end Among the corresponding real PUSCHs, the real PUSCH with the largest occupied symbol length is selected as the second real PUSCH,
  • the symbol length to be occupied by the UCI is obtained based on the required symbol length for carrying the UCI and/or the symbol length occupied by the first real PUSCH.
  • the symbol length of the first real PUSCH is updated to the symbol length of the second real PUSCH.
  • the processor 510 may be further configured to: configure the type of uplink PUSCH repeated transmission for the terminal device.
  • the network device 500 may further include:
  • the transceiver 520 may be configured to send a downlink control signaling DCI indication, where the DCI indication triggers repeated transmission of the PUSCH based on multiple beam directions and/or multiple receivers.
  • processor 510 may also be configured to:
  • UCI reporting is triggered through downlink control signaling DCI.
  • the downlink control signaling DCI may indicate the symbol length of the nominal PUSCH and/or the symbol length of each real PUSCH.
  • processor 510 may also be configured to:
  • the type of uplink PUSCH repeated transmission is configured as type B, determining the symbol length occupied by the nominal PUSCH based on the DCI indication of the downlink control signaling;
  • the symbol length occupied by the corresponding real PUSCH and the beam direction and/or receiving end corresponding to each real PUSCH are determined.
  • the transceiver 520 can also be configured to:
  • UCI is received, and the UCI is triggered by downlink control signaling DCI.
  • the received UCI may overlap or intersect with the PUSCH in time domain resources.
  • processor 510 may also be configured to:
  • the type of the UCI may include at least one of the following: periodic UCI; aperiodic UCI; quasi-periodic UCI.
  • the UCI may include channel state information CSI and/or hybrid automatic repeat request acknowledgment HARQ-ACK.
  • the receiving end and the beam direction may have a one-to-one correspondence.
  • the receiving end may include a transmitting and receiving point TRP.
  • the processor may also be configured to:
  • the receiving end and/or the beam direction corresponding to each real PUSCH is determined.
  • the time domain position for sending the first real PUSCH for carrying UCI is earlier than the time domain position for sending the second real PUSCH for carrying UCI.
  • UCI sent on the first PUSCH for the first receiver and/or beam direction can be made to precede UCI sent on the second PUSCH for the second receiver and/or beam direction.
  • the processor may also be configured to:
  • the required symbol length for carrying the UCI is determined.
  • the symbol length of the first real PUSCH and/or the second real PUSCH is greater than 1.
  • each device, unit, module, etc. for example, the above-mentioned transceivers 410, 520 and processors 420, 510, etc.
  • the operations and/or functions of each device, unit, module, etc. are respectively for realizing the above-mentioned transmission method.
  • Corresponding operations and/or functions performed by the network device in the above are not repeated here for the sake of brevity.
  • FIG. 13 is a schematic structural diagram of a communication device 600 according to an embodiment of the present application.
  • the communication device 600 shown in FIG. 13 may include a processor 610 and a memory 620 .
  • the processor 610 may call and run a computer program from the memory 620 to implement the transmission method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610 , or may be integrated in the processor 610 .
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, specifically, may send information or data to other devices, or receive other Information or data sent by a device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of the antennas may be one or more.
  • the communication device 600 may be a network device in this embodiment of the present application, and the communication device 600 may implement corresponding processes implemented by the network device in each transmission method in this embodiment of the present application. For brevity, details are not repeated here. .
  • the communication device 600 may be a terminal device in this embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the terminal device in each transmission method in the embodiment of the present application. For brevity, details are not repeated here. .
  • FIG. 14 is a schematic structural diagram of a chip 700 according to an embodiment of the present application.
  • the chip 700 shown in FIG. 14 may include a processor 710 and a memory 720 .
  • the processor 710 may call and run a computer program from the memory to implement the methods in the embodiments of the present application.
  • the memory 720 may be a separate device independent of the processor 710 , or may be integrated in the processor 710 .
  • the chip 700 may further include an input interface 730 .
  • the processor 710 may control the input interface 730 to communicate with other devices or chips, and specifically, may acquire information or data sent by other devices or chips.
  • the chip 700 may further include an output interface 740 .
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in each transmission method in the embodiment of the present application, which is not repeated here for brevity.
  • the chip can be applied to the terminal device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the terminal device in each transmission method in the embodiment of the present application, which is not repeated here for brevity.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • the processor mentioned above may be a general-purpose processor, a digital signal processor (DSP), a field programmable gate array (FPGA), an application specific integrated circuit (ASIC) or Other programmable logic devices, transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • the general-purpose processor mentioned above may be a microprocessor or any conventional processor or the like.
  • the memory mentioned above may be either volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM).
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, the memory in the embodiments of the present application is intended to include but not limited to these and any other suitable types of memory.
  • FIG. 15 is a schematic block diagram of a communication system 800 according to an embodiment of the present application.
  • the communication system 800 may include a terminal device 810 and a network device 820 .
  • the terminal device 810 may be used to implement the corresponding functions implemented by the terminal device in the above-mentioned transmission method, or may be the above-mentioned terminal device 400 or the communication device 600 as the terminal device.
  • the network device 820 may be used to implement the corresponding functions implemented by the network device in the above-mentioned transmission method, or may be the above-mentioned network device 500 or the communication device 600 as a terminal device. For brevity, details are not repeated here.
  • the terminal side can determine the real PUSCH repeated transmission according to the slot boundary (slot boundary) and/or other configurations.
  • the target receiving end and/or the beam direction (eg TRP) sent by each real PUSCH can be determined according to the beam mapping mode indicated by the network side.
  • the real PUSCH 1 and the real PUSCH 2 respectively correspond to the receiving end 1 and/or the beam direction 1 of the network side (for example, may correspond to the target TRP 1).
  • the real PUSCH 3 and 4 respectively correspond to the receiving end 2 and/or the beam direction 2 of the network side (for example, may correspond to the target TRP 2)
  • the real PUSCH 5 may correspond to the receiving end 1 or the beam direction 1 of the network side (for example, , which can correspond to the target TRP 1).
  • the terminal side can determine, for example, based on the real PUSCH 1 of the first receiver and/or the beam direction, that the time domain resources required by UCI (eg, aperiodic CSI) occupy 7 OFDM symbols, and the terminal side can use the 7 OFDM symbols according to the to select the real PUSCH 4 as the PUSCH (ie, the second real PUSCH) used for aperiodic CSI multiplexing in the second receiver and/or beam direction, and the terminal can perform aperiodic CSI multiplexing on the second real PUSCH. use.
  • UCI eg, aperiodic CSI
  • the network side is configured with PUSCH repeated transmission, and the terminal side can determine the target receiving end and/or beam direction (eg TRP) for each real PUSCH transmission according to the beam mapping mode indicated by the network side.
  • TRP target receiving end and/or beam direction
  • the real PUSCH 1 (length is 5) and the real PUSCH 2 (length is 4) correspond to the receiving end 1 and/or the beam direction 1 (corresponding to the target TRP 1) on the network side, respectively.
  • the real PUSCHs 3 and 4 (both with a length of 4) correspond to the receiving end 2 and/or the beam direction 2 (corresponding to the target TRP2) on the network side.
  • the terminal side can, for example, calculate the time domain resources required to obtain aperiodic CSI based on the real PUSCH 1 of the receiving terminal 1 and/or beam direction 1 to occupy 4 OFDM symbols, and the terminal side can select the real PUSCH 3 according to the 4 OFDM symbols.
  • the terminal side can perform multiplexing of aperiodic CSI on the PUSCH.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored on or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be transmitted over a wire from a website site, computer, server or data center (eg coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (eg infrared, wireless, microwave, etc.) means to another website site, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes one or more available media integrated.
  • the available medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (eg, a Solid State Disk (SSD)), and the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium eg, a Solid State Disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种传输方法、终端设备、网络设备及通信系统。该传输方法包括:终端设备基于用于承载上行链路控制信令UCI的所需符号长度和/或用于复用所述UCI的第一真实物理上行共享信道PUSCH,确定用于复用所述UCI的第二真实PUSCH,其中,第一真实PUSCH针对的第一接收端和/或第一波束方向与第二真实PUSCH针对的第二接收端和/或第二波束方向不同。

Description

传输方法、终端设备、网络设备及通信系统 技术领域
本申请涉及通信领域,更具体地,涉及一种传输方法、终端设备、网络设备及通信系统。
背景技术
为了满足当前对于速率、时延、高速移动性、能效等的需求以及应对未来生活中业务的多样性、复杂性,3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)国际标准组织开始研发5G(第五代)移动通信技术。5G的主要应用场景包括增强移动超宽带(enhanced Mobile Broadband,eMBB)、低时延高可靠通信(Ultra Reliability and Low Latency Communication,URLLC)、大规模机器类通信(Massive Machine Type Communication,mMTC)。
3GPP R17中引入了基于多个接收端(例如TRP(Transmission and Reception Point,发射接收点))进行PUSCH(Physical Uplink Shared Channel,物理上行共享信道)的重复传输(repetition transmission),通过DCI(Downlink Control Information,下行控制信令)指示PUSCH重复发送给不同的TRP来对PUSCH的可靠性进行增强。
由于现有技术中仅存在单TRP的PUSCH重复传输,因此还没有针对多TRP来确定用于承载UCI(Uplink Control Information,上行链路控制信令)的多个PUSCH的方案。
发明内容
本申请实施例提供一种传输方法、终端设备、网络设备及通信系统,以至少针对多TRP来确定用于承载UCI的多个PUSCH的方案。
本申请实施例提供一种传输方法,包括:
终端设备基于用于承载上行链路控制信令UCI的所需符号长度和/或用于复用所述UCI的第一真实物理上行共享信道PUSCH,确定用于复用所述UCI的第二真实PUSCH,
其中,第一真实PUSCH针对的第一接收端和/或第一波束方向与第二真实PUSCH针对的第二接收端和/或第二波束方向不同。
本申请实施例提供一种传输方法,包括:
网络设备在通过至少第一和第二接收端和/或至少第一和第二波束方向发送物理上行共享信道PUSCH的资源上进行上行链路控制信令UCI的解调,包括基于用于承载所述UCI的所需符号长度和/或用于复用所述UCI的第一真实PUSCH,确定用于复用所述UCI的第二真实PUSCH,
其中,第一真实PUSCH针对的第一接收端和/或第一波束方向与第二真实PUSCH针对的第二接收端和/或第二波束方向不同。
本申请实施例提供一种终端设备,包括:
处理器,配置用于基于用于承载上行链路控制信令UCI的所需符号长度和/或用于复用所述UCI的第一真实物理上行共享信道PUSCH,确定用于复用所述UCI的第二真实PUSCH,
其中,第一真实PUSCH针对的第一接收端和/或第一波束方向与第二真实PUSCH针对的第二接收端和/或第二波束方向不同。
本申请实施例提供一种网络设备,包括:
处理器,配置用于在通过至少第一和第二接收端和/或至少第一和第二波束方向发送物理上行共享信道PUSCH的资源上进行上行链路控制信令UCI的解调,包括基于用于承载所述UCI的所需符号长度和/或用于复用所述UCI的第一真实PUSCH,确定用于复用所述UCI的第二真实PUSCH,
其中,第一真实PUSCH针对的第一接收端和/或第一波束方向与第二真实PUSCH针对的第二接收端和/或第二波束方向不同。
本申请实施例提供一种终端设备,包括收发器、处理器和存储器。其中,该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述终端设备所执行的传输方法。
本申请实施例提供一种网络设备,包括收发器、处理器和存储器。其中,该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述网络设备所执行的传输方法。
本申请实施例提供一种通信系统,包括:
至少一个上述终端设备;以及
至少一个上述网络设备。
本申请实施例提供一种芯片,用于实现上述的传输方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的传输方法。
本申请实施例提供一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的传输方法。
本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的传输方法。
本申请实施例提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述的传输方法。
本申请至少提供了例如针对多TRP来确定用于承载UCI的多个PUSCH的方案,由此至少能够支持针对多个接收端在不同的PUSCH中承载UCI。
附图说明
图1是根据本申请实施例的应用场景的示意图。
图2是根据本申请一实施例的传输方法的示意性流程图。
图3是根据本申请另一实施例的传输方法的示意性流程图。
图4是根据本申请另一实施例的传输方法中的一部分操作的示意性流程图。
图5是根据本申请另一实施例的传输方法的示意性流程图。
图6示出了重复传输的示意图。
图7是根据本申请另一实施例的传输方法的示意性流程图。
图8是根据本申请另一实施例的传输方法的示意性流程图。
图9是根据本申请另一实施例的传输方法中的一部分操作的示意性流程图。
图10是根据本申请另一实施例的传输方法的示意性流程图。
图11是根据本申请一实施例的终端设备的示意性框图。
图12是根据本申请一实施例的网络设备的示意性框图。
图13是根据本申请一实施例的通信设备的示意性框图。
图14是根据本申请一实施例的芯片的示意性框图。
图15是根据本申请一实施例的通信系统的示意性框图。
图16给出了PUSCH重复传输的一个示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、免授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、免授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及车辆间(Vehicle to Vehicle,V2V)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
本申请实施例对应用的频谱并不限定。例如,本申请实施例可以应用于授权频谱,也可以应用于免授权频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中:终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,NR网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携 式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备等。
在本申请实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请的保护范围。
图1示例性地示出了一个网络设备110和两个终端设备120,可选地,该无线通信系统100可以包括多个网络设备110,并且每个网络设备110的覆盖范围内可以包括其它数量的终端设备120,本申请实施例对此不做限定。
可选地,该无线通信系统100还可以包括移动性管理实体(Mobility Management Entity,MME)、接入与移动性管理功能(Access and Mobility Management Function,AMF)等其他网络实体,本申请实施例对此不作限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
图2是根据本申请一实施例的传输方法200的示意性流程图。该方法可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容。
S210,终端设备(例如前述的UE等通信设备)基于用于承载上行链路控制信令UCI的所需符号长度和/或用于复用UCI的第一真实物理上行共享信道PUSCH,确定用于复用所述UCI的第二真实PUSCH。
其中,第一真实PUSCH针对的第一接收端和/或第一波束方向与第二真实PUSCH针对的第二接收端和/或第二波束方向可以是不同的。
这里,“用于复用UCI的PUSCH”可以指在该PUSCH或其一部分上放置UCI。
在本申请中,术语“符号”(symbol)可以指OFDM(Orthogonal Frenquency Division Multiplexing,正交频分复用)符号,也可以是其他的传输用符号。
在本申请中,通过基于用于承载上行链路控制信令UCI的所需符号长度和/或用于复用UCI的第一真实物理上行共享信道PUSCH来确定用于复用所述UCI的第二真实PUSCH,至少能够支持针对多个接收端在不同的PUSCH中承载UCI,由此至少可以解决例如5G技术中缺少相关技术方案的技术问题。需要指出的是,这里描述的技术问题只是一个示例,本申请实际上还能够解决其他技术问题,因此不应将其作为对于本申请的限制。
可选地,所述接收端可以包括发射接收点TRP。另外,所述接收端也可以包括非TRP的接收端。
可选地,接收端与波束方向可以具有一一对应的关系。例如,第一波束方向可以与第一接收端对应,第二波束方向可以与第二接收端对应。当然,接收端与波束方向可以一一对应,也可以不是一一对应的。
需要说明的是,这里的“第一”、“第二”不用来表示特指哪个。
可选地,如图3所示,根据本申请实施例的传输方法还可以包括:
S209,终端设备可以基于名义PUSCH的符号长度,确定所述用于承载UCI的所需符号长度。
例如,基于名义PUSCH的符号长度来确定所述用于承载UCI的所需符号长度的方法可以参见例 如3GPP TS 38.213 V16.5.0(2021-03)等。需要说明的是,本申请不限于此,而是也可以采用其他方法来确定用于承载UCI的所需符号长度。
可选地,如图4所示,S210中的所述终端设备基于用于承载上行链路控制信令UCI的所需符号长度和/或用于复用所述UCI的第一真实物理上行共享信道PUSCH,确定用于复用所述UCI的第二真实PUSCH可以包括:
S2101,基于用于承载所述UCI的所需符号长度和/或第一真实PUSCH,确定所述UCI要占用符号长度。
在本申请中,这里的“所述UCI要占用符号长度”可以表示所述UCI在第二真实PUSCH中要占用符号长度。
可选地,如图4所示,S2101的所述基于用于承载所述UCI的所需符号长度和/或第一真实PUSCH,确定所述UCI要占用符号长度,可以包括:
如果所确定的所述用于承载所述UCI的所需符号长度大于所述第一真实PUSCH所占用符号长度,则确定所述UCI要占用符号长度为所述第一真实PUSCH所占用符号长度,否则,确定所述UCI要占用符号长度为所述用于承载所述UCI的所需符号长度。
可选地,如图4所示,S210中的所述终端设备基于用于承载上行链路控制信令UCI的所需符号长度和/或用于复用所述UCI的第一真实物理上行共享信道PUSCH,确定用于复用所述UCI的第二真实PUSCH,还可以包括:
S2102,终端设备确定与第二接收端和/或第二波束方向对应的各真实PUSCH。
可选地,如图4所示,S210中的所述终端设备基于用于承载上行链路控制信令UCI的所需符号长度和/或用于复用所述UCI的第一真实物理上行共享信道PUSCH,确定用于复用所述UCI的第二真实PUSCH,还可以包括:
S2103,终端设备基于所述UCI要占用符号长度和所述与第二接收端和/或第二波束方向对应的各真实PUSCH,确定所述第二真实PUSCH。
可选地,S210的所述终端设备基于用于承载上行链路控制信令UCI的所需符号长度和/或用于复用所述UCI的第一真实物理上行共享信道PUSCH,确定用于复用所述UCI的第二真实PUSCH,可以包括:
选择与第二波束方向或第二接收端对应的各真实PUSCH之中的、所占用符号长度大于等于UCI要占用符号长度的一个真实PUSCH,作为所述第二真实PUSCH,
其中,所述UCI要占用符号长度为基于所述用于承载所述UCI的所需符号长度和/或所述第一真实PUSCH所占用符号长度而得到的。
可选地,S210的所述终端设备基于用于承载上行链路控制信令UCI的所需符号长度和/或用于复用所述UCI的第一真实物理上行共享信道PUSCH,确定用于复用所述UCI的第二真实PUSCH,可以包括:
选择与第二波束方向或第二接收端对应的各真实PUSCH之中的、第一个所占用符号长度大于等于所述UCI要占用符号长度的真实PUSCH,作为所述第二真实PUSCH,
其中,所述UCI要占用符号长度为基于所述用于承载所述UCI的所需符号长度和/或所述第一真实PUSCH所占用符号长度而得到的。
可选地,S210的所述终端设备基于用于承载上行链路控制信令UCI的所需符号长度和/或用于复用所述UCI的第一真实物理上行共享信道PUSCH,确定用于复用所述UCI的第二真实PUSCH,可以包括:
选择与第二波束方向或第二接收端对应的各真实PUSCH之中的、所占用符号长度最大的真实PUSCH,作为所述第二真实PUSCH。
可选地,S210的所述终端设备基于用于承载上行链路控制信令UCI的所需符号长度和/或用于复用所述UCI的第一真实物理上行共享信道PUSCH,确定用于复用所述UCI的第二真实PUSCH,可以包括:
在与第二波束方向或第二接收端对应的各真实PUSCH之中,不存在所占用符号长度大于等于UCI要占用符号长度的真实PUSCH的情况下,从与第二波束方向或第二接收端对应的各真实PUSCH之中选择所占用符号长度最大的真实PUSCH,作为所述第二真实PUSCH,
其中,所述UCI要占用符号长度为基于所述用于承载所述UCI的所需符号长度和/或所述第一真实PUSCH所占用符号长度而得到的。
可选地,根据本申请实施例的传输方法还可以包括:
终端设备将所述第一真实PUSCH的符号长度更新为所述第二真实PUSCH的符号长度。
可选地,如图5所示,根据本申请实施例的传输方法还可以包括:
S201,终端设备接收关于上行PUSCH重复传输的类型的配置。
可选地,如图5所示,根据本申请实施例的传输方法还可以包括:
S202,终端设备接收下行控制信令DCI指示,该DCI指示触发基于多个波束方向和/或多个接收端的PUSCH重复传输。
可选地,根据本申请实施例的传输方法还可以包括:
在终端设备接收的关于上行PUSCH重复传输的类型的配置为类型B(type B)的情况下,终端设备基于下行控制信令DCI指示,确定名义PUSCH所占用符号长度;以及
基于确定的所述名义PUSCH所占用符号长度,确定相应的真实PUSCH所占用符号长度以及各真实PUSCH对应的波束方向和/或接收端。
为了减少时延,在3GPP R16阶段,对于上行传输做了进一步增强,引入背靠背(piggybacking)重复传输机制。背靠背重复传输机制主要具备如下特点:
1)相邻的重复传输资源在时域首尾相连;
2)一次调度的资源可以跨越时隙,这样可以保证在时隙后部到达的业务也能够分配足够的资源或进行即时调度;
3)采用动态方式指示重复次数,适应业务和信道环境的动态变化;
4)时域资源分配用于指示第一次重复传输的时域资源,剩余的传输次数的时域资源将根据第一次重复传输的时域资源以及上下行传输方向配置等信息来确定,另外,每一次重复传输都占用连续的符号,如图6所示。在图6中,符号“DL”表示下行链路(Downlink)。
上行传输增强的时域资源指示可以沿用3GPP R15的时域资源指示机制,即高层信令配置多个时域资源位置,物理层信令指示多个时域资源位置中的一个。在R15,对于高层信令配置的每一个时域资源位置采用SLIV(Start and Length Indicator Value,起点长度指示)方式指示。但对于上行传输增强,高层信令配置的每一个时域资源位置包含起始符号、时域资源长度和重复次数3个信息域。
上述的上行重复传输方式为类型B的PUSCH重复传输。在R16中,在引入类型B的PUSCH重复传输的同时,也增强了R15的时隙级重复传输,即重复传输次数可以动态指示,称为类型A PUSCH重复传输。类型A和类型B的PUSCH重复传输可以通过高层信令配置来确定。
重复传输的资源指示方式给出了每一次重复传输的时域资源范围,但该时域资源范围内可能存在一些无法用于上行传输的符号,例如下行符号、用于周期性上行探测信号传输的符号等。因此,实际可用的上行传输资源需要进一步限定。在R16的上行传输增强中,定义了两种时域资源:
1)名义PUSCH重复传输:可以通过重复传输的资源分配指示信息来确定。不同名义PUSCH重复传输的符号长度相同。名义PUSCH重复传输用于确定TBS(Transport Block Set,传输块集)、上行功率控制和UCI复用资源等。
2)真实PUSCH重复传输:在用于重复传输的资源分配指示信息所确定的时域资源内,去掉不可用的符号,得到每一次可以用于上行传输的时域资源。不同的真实PUSCH重复传输的符号长度不一定相同。真实PUSCH重复传输用于确定DMRS(Demodulation Reference Signal,解调参考信号)符号、实际传输码率、RV(Redundancy Version,冗余版本)和UCI复用资源等。
UCI可以包括信道状态信息CSI和/或混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)确认HARQ-ACK等等。
例如,在UCI为CSI的情况下,当上行传输增强配置为PUSCH重复传输类型B时,如果例如非周期CSI在和PUSCH发生重叠和交叉时,非周期CSI可以仅在例如第一个符号(symbol)长度大于1的真实PUSCH上进行复用,并且用于非周期CSI传输部分所占的符号长度可以是基于该PUSCH重新传输的名义长度和/或其他相关配置来获得的。
可选地,如图5所示,根据本申请实施例的传输方法还可以包括:
S203,终端设备接收UCI,所述UCI是通过下行控制信令DCI来触发的。
可选地,如上所述,终端设备接收的UCI在时域资源上与PUSCH可以存在重叠或交叉。
可选地,如图5所示,根据本申请实施例的传输方法还可以包括:
S211,终端设备在所确定的所述第二真实PUSCH中传输UCI。
可选地,所述UCI的类型可以包括以下至少之一:周期UCI;非周期UCI;准周期UCI。
可选地,所述UCI包括信道状态信息CSI和/或混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)确认HARQ-ACK等等。
可选地,根据本申请实施例的传输方法还可以包括:
在终端设备通过至少第一和第二接收端和/或至少第一和第二波束方向发送PUSCH的资源上进行 UCI的解调。
可选地,根据本申请实施例的传输方法还可以包括:
终端设备根据波束映射模式(beam mapping pattern),确定每个真实PUSCH所对应的接收端和/或波束方向。
其中,在PUSCH重复传输时,发送用于承载UCI的第一真实PUSCH的时域位置早于发送用于承载UCI的第二真实PUSCH的时域位置。
由此,可以使得在针对第一接收端和/或波束方向的第一PUSCH上发送的UCI先于在针对第二接收端和/或波束方向的第二PUSCH上发送的UCI。
可选地,根据本申请实施例的传输方法还可以包括:
终端设备基于所述UCI的内容,确定用于承载UCI的所需符号长度。
这里,UCI的内容可以包括例如CSI和/或HARQ-ACK等的相关内容信息,在本申请中,可以根据这些相关内容信息,确定其要在PUSCH上传输所需的符号长度。
可选地,所述第一真实PUSCH和/或所述第二真实PUSCH的符号长度可以大于1。
上面描述了根据本申请的传输方法,通过本申请的传输方法,至少能够支持针对多个接收端在不同的PUSCH中承载UCI,由此至少可以解决例如5G技术中缺少相关技术方案的技术问题。。
为了使得本申请更容易理解,以下将通过一些示例来进行更具体的描述。
图7示出了根据本申请另一实施例的传输方法,其可以包括如下步骤。
S310,网络设备可以在通过至少第一和第二接收端和/或至少第一和第二波束方向发送物理上行共享信道PUSCH的资源上进行上行链路控制信令UCI的解调,包括基于用于承载所述UCI的所需符号长度和/或用于复用所述UCI的第一真实PUSCH,确定用于复用所述UCI的第二真实PUSCH。
其中,第一真实PUSCH针对的第一接收端和/或第一波束方向与第二真实PUSCH针对的第二接收端和/或第二波束方向可以是不同的。
在本申请中,通过基于用于承载上行链路控制信令UCI的所需符号长度和/或用于复用UCI的第一真实物理上行共享信道PUSCH来确定用于复用所述UCI的第二真实PUSCH,至少能够支持针对多个接收端在不同的PUSCH中承载UCI,由此至少可以解决例如5G技术中缺少相关技术方案的技术问题。需要指出的是,这里描述的技术问题只是一个示例,本申请实际上还能够解决其他技术问题,因此不应将其作为对于本申请的限制。
可选地,如图8所示,根据本申请实施例的传输方法还可以包括:
S309,所述网络设备基于名义PUSCH的符号长度来确定所述用于承载UCI的所需符号长度。
可选地,如图9所示,S310的所述基于用于承载所述UCI的所需符号长度和/或用于复用所述UCI的第一真实PUSCH,确定用于复用所述UCI的第二真实PUSCH,可以包括:
S3101,基于用于承载所述UCI的所需符号长度和/或第一真实PUSCH,确定所述UCI要占用符号长度。
可选地,所述基于用于承载所述UCI的所需符号长度和/或第一真实PUSCH,确定所述UCI要占用符号长度,可以包括:
如果所确定的所述用于承载所述UCI的所需符号长度大于所述第一真实PUSCH所占用符号长度,则确定所述UCI要占用符号长度为所述第一真实PUSCH所占用符号长度,否则,确定所述UCI要占用符号长度为所述用于承载所述UCI的所需符号长度。
可选地,如图9所示,所述基于用于承载所述UCI的所需符号长度和/或用于复用所述UCI的第一真实PUSCH,确定用于复用所述UCI的第二真实PUSCH,可以包括:
S3102,确定与第二接收端和/或第二波束方向对应的各真实PUSCH。
可选地,如图9所示,所述基于用于承载所述UCI的所需符号长度和/或用于复用所述UCI的第一真实PUSCH,确定用于复用所述UCI的第二真实PUSCH,还可以包括:
S3103,基于所述UCI要占用符号长度和所述与第二接收端和/或第二波束方向对应的各真实PUSCH,确定所述第二真实PUSCH。
可选地,所述基于用于承载所述UCI的所需符号长度和/或用于复用所述UCI的第一真实PUSCH,确定用于复用所述UCI的第二真实PUSCH,可以包括:
选择与第二波束方向或第二接收端对应的各真实PUSCH之中的、所占用符号长度大于等于UCI要占用符号长度的一个真实PUSCH,作为所述第二真实PUSCH。
其中,所述UCI要占用符号长度为基于所述用于承载所述UCI的所需符号长度和/或所述第一真实PUSCH所占用符号长度而得到的。
可选地,所述基于用于承载所述UCI的所需符号长度和/或用于复用所述UCI的第一真实PUSCH, 确定用于复用所述UCI的第二真实PUSCH,可以包括:
选择与第二波束方向或第二接收端对应的各真实PUSCH之中的、第一个所占用符号长度大于等于所述UCI要占用符号长度的真实PUSCH,作为所述第二真实PUSCH。
其中,所述UCI要占用符号长度为基于所述用于承载所述UCI的所需符号长度和/或所述第一真实PUSCH所占用符号长度而得到的。
可选地,所述基于用于承载所述UCI的所需符号长度和/或用于复用所述UCI的第一真实PUSCH,确定用于复用所述UCI的第二真实PUSCH,可以包括:
选择与第二波束方向或第二接收端对应的各真实PUSCH之中的、所占用符号长度最大的真实PUSCH,作为所述第二真实PUSCH。
可选地,所述基于用于承载所述UCI的所需符号长度和/或用于复用所述UCI的第一真实PUSCH,确定用于复用所述UCI的第二真实PUSCH,可以包括:
在与第二波束方向或第二接收端对应的各真实PUSCH之中,不存在所占用符号长度大于等于UCI要占用符号长度的真实PUSCH的情况下,从与第二波束方向或第二接收端对应的各真实PUSCH之中选择所占用符号长度最大的真实PUSCH,作为所述第二真实PUSCH。
其中,所述UCI要占用符号长度为基于所述用于承载所述UCI的所需符号长度和/或所述第一真实PUSCH所占用符号长度而得到的。
可选地,如图9所示,根据本申请实施例的传输方法还可以包括:
将所述第一真实PUSCH的符号长度更新为所述第二真实PUSCH的符号长度。
可选地,如图10所示,根据本申请实施例的传输方法还可以包括:
S301,网络设备为终端设备配置上行PUSCH重复传输的类型。
可选地,如图10所示,根据本申请实施例的传输方法还可以包括:
S302,网络设备发送下行控制信令DCI指示,该DCI指示触发基于多个波束方向和/或多个接收端的PUSCH重复传输。
可选地,如图10所示,根据本申请实施例的传输方法还可以包括:
S303,网络设备通过下行控制信令DCI来触发UCI上报。
可选地,下行控制信令DCI指示名义PUSCH的符号长度和/或各真实PUSCH的符号长度。
可选地,根据本申请实施例的传输方法还可以包括:
在网络设备将上行PUSCH重复传输的类型配置为类型B的情况下,基于下行控制信令DCI指示,确定名义PUSCH所占用符号长度;以及
基于确定的所述名义PUSCH所占用符号长度,确定相应的真实PUSCH所占用符号长度以及各真实PUSCH对应的波束方向和/或接收端。
可选地,如图10所示,根据本申请实施例的传输方法还可以包括:
S311,网络设备接收UCI,所述UCI是通过下行控制信令DCI来触发的。
可选地,所接收的UCI在时域资源上与PUSCH可能存在重叠或交叉。
可选地,如图10所示,根据本申请实施例的传输方法还可以包括:
S312,网络设备对在所确定的所述第二真实PUSCH中承载的UCI进行解调。
可选地,所述UCI的类型包括以下至少之一:周期UCI;非周期UCI;准周期UCI。
可选地,所述UCI包括信道状态信息CSI和/或混合自动重传请求确认HARQ-ACK。
可选地,接收端与波束方向具有一一对应的关系。
当然,接收端与波束方向可以一一对应,也可以不是一一对应的。
可选地,所述接收端包括发射接收点TRP。
可选地,根据本申请实施例的传输方法还可以包括:
网络设备根据波束映射模式,确定每个真实PUSCH所对应的接收端和/或波束方向。
其中,在PUSCH重复传输时,发送用于承载UCI的第一真实PUSCH的时域位置早于发送用于承载UCI的第二真实PUSCH的时域位置。
由此,可以使得在针对第一接收端和/或波束方向的第一PUSCH上发送的UCI先于在针对第二接收端和/或波束方向的第二PUSCH上发送的UCI。
可选地,根据本申请实施例的传输方法还可以包括:
网络设备基于所述UCI的内容,确定用于承载UCI的所需符号长度。
可选地,所述第一真实PUSCH和/或所述第二真实PUSCH的符号长度大于1。
本申请实施例提供一种终端设备,如图11所示,该终端设备400可以包括处理器420。
所述处理器420可以配置用于基于用于承载上行链路控制信令UCI的所需符号长度和/或用于复用 所述UCI的第一真实物理上行共享信道PUSCH,确定用于复用所述UCI的第二真实PUSCH。
其中,第一真实PUSCH针对的第一接收端和/或第一波束方向与第二真实PUSCH针对的第二接收端和/或第二波束方向不同。
在本申请中,通过基于用于承载上行链路控制信令UCI的所需符号长度和/或用于复用UCI的第一真实物理上行共享信道PUSCH来确定用于复用所述UCI的第二真实PUSCH,至少能够支持针对多个接收端在不同的PUSCH中承载UCI,由此至少可以解决例如5G技术中缺少相关技术方案的技术问题。需要指出的是,这里描述的技术问题只是一个示例,本申请实际上还能够解决其他技术问题,因此不应将其作为对于本申请的限制。
可选地,所述处理器还可以配置用于:
基于名义PUSCH的符号长度,确定所述用于承载UCI的所需符号长度。
可选地,所述处理器还可以配置用于:
基于用于承载所述UCI的所需符号长度和/或第一真实PUSCH,确定所述UCI要占用符号长度。
可选地,所述处理器还可以配置用于:
在所确定的所述用于承载所述UCI的所需符号长度大于所述第一真实PUSCH所占用符号长度的情况下,确定所述UCI要占用符号长度为所述第一真实PUSCH所占用符号长度,否则,确定所述UCI要占用符号长度为所述用于承载所述UCI的所需符号长度。
可选地,所述处理器还可以配置用于:
确定与第二接收端和/或第二波束方向对应的各真实PUSCH。
可选地,所述处理器还可以配置用于:
基于所述UCI要占用符号长度和所述与第二接收端和/或第二波束方向对应的各真实PUSCH,确定所述第二真实PUSCH。
可选地,所述处理器还可以配置用于:
选择与第二波束方向或第二接收端对应的各真实PUSCH之中的、所占用符号长度大于等于UCI要占用符号长度的一个真实PUSCH,作为所述第二真实PUSCH。
其中,所述UCI要占用符号长度为基于所述用于承载所述UCI的所需符号长度和/或所述第一真实PUSCH所占用符号长度而得到的。
可选地,所述处理器还可以配置用于:
选择与第二波束方向或第二接收端对应的各真实PUSCH之中的、第一个所占用符号长度大于等于所述UCI要占用符号长度的真实PUSCH,作为所述第二真实PUSCH。
其中,所述UCI要占用符号长度为基于所述用于承载所述UCI的所需符号长度和/或所述第一真实PUSCH所占用符号长度而得到的。
可选地,所述处理器还可以配置用于:
选择与第二波束方向或第二接收端对应的各真实PUSCH之中的、所占用符号长度最大的真实PUSCH,作为所述第二真实PUSCH。
可选地,所述处理器还可以配置用于:
在与第二波束方向或第二接收端对应的各真实PUSCH之中,不存在所占用符号长度大于等于UCI要占用符号长度的真实PUSCH的情况下,从与第二波束方向或第二接收端对应的各真实PUSCH之中选择所占用符号长度最大的真实PUSCH,作为所述第二真实PUSCH。
其中,所述UCI要占用符号长度为基于所述用于承载所述UCI的所需符号长度和/或所述第一真实PUSCH所占用符号长度而得到的。
可选地,所述处理器还可以配置用于:
将所述第一真实PUSCH的符号长度更新为所述第二真实PUSCH的符号长度。
可选地,如图11所示,根据本申请实施例的终端设备还可以包括:
收发器410,可以配置用于接收关于上行PUSCH重复传输的类型的配置。
可选地,所述收发器410还可以配置用于:
接收下行控制信令DCI指示,该DCI指示触发基于多个波束方向和/或多个接收端的PUSCH重传。
可选地,所述处理器还可以配置用于:
在接收的关于上行PUSCH重复传输的类型的配置为类型B的情况下,基于下行控制信令DCI指示,确定名义PUSCH所占用符号长度;以及
基于确定的所述名义PUSCH所占用符号长度,确定相应的真实PUSCH所占用符号长度以及各真实PUSCH对应的波束方向和/或接收端。
可选地,所述收发器还可以配置用于:
接收UCI,所述UCI是通过下行控制信令DCI来触发的。
可选地,所述收发器接收的UCI在时域资源上与PUSCH存在重叠或交叉。
可选地,所述收发器还可以配置用于:
在所确定的所述第二真实PUSCH中传输UCI。
可选地,所述UCI的类型包括以下至少之一:周期UCI;非周期UCI;准周期UCI。
可选地,所述UCI包括信道状态信息CSI和/或混合自动重传请求确认HARQ-ACK。
可选地,所述UCI在通过至少第一和第二接收端和/或至少第一和第二波束方向发送PUSCH的资源上被解调。
可选地,接收端与波束方向具有一一对应的关系。
可选地,所述接收端包括发射接收点TRP。
可选地,所述处理器还可以配置用于:
根据波束映射模式,确定每个真实PUSCH所对应的接收端和/或波束方向。
其中,在PUSCH重复传输时,发送用于承载UCI的第一真实PUSCH的时域位置早于发送用于承载UCI的第二真实PUSCH的时域位置。
由此,可以使得在针对第一接收端和/或波束方向的第一PUSCH上发送的UCI先于在针对第二接收端和/或波束方向的第二PUSCH上发送的UCI。
可选地,所述处理器还可以配置用于:
基于所述UCI的内容,确定用于承载UCI的所需符号长度。
可选地,所述第一真实PUSCH和/或所述第二真实PUSCH的符号长度大于1。
本申请实施例提供一种网络设备,如图12所示,该网络设备500可以包括处理器510。
所述处理器510可以配置用于在通过至少第一和第二接收端和/或至少第一和第二波束方向发送物理上行共享信道PUSCH的资源上进行上行链路控制信令UCI的解调,包括基于用于承载所述UCI的所需符号长度和/或用于复用所述UCI的第一真实PUSCH,确定用于复用所述UCI的第二真实PUSCH。
其中,第一真实PUSCH针对的第一接收端和/或第一波束方向与第二真实PUSCH针对的第二接收端和/或第二波束方向不同。
在本申请中,通过基于用于承载上行链路控制信令UCI的所需符号长度和/或用于复用UCI的第一真实物理上行共享信道PUSCH来确定用于复用所述UCI的第二真实PUSCH,至少能够支持针对多个接收端在不同的PUSCH中承载UCI,由此至少可以解决例如5G技术中缺少相关技术方案的技术问题。需要指出的是,这里描述的技术问题只是一个示例,本申请实际上还能够解决其他技术问题,因此不应将其作为对于本申请的限制。
可选地,所述处理器510还可以配置用于:
基于名义PUSCH的符号长度来确定所述用于承载UCI的所需符号长度。
可选地,所述处理器510还可以配置用于:
基于用于承载所述UCI的所需符号长度和/或第一真实PUSCH,确定所述UCI要占用符号长度。
可选地,所述处理器510还可以配置用于:
如果所确定的所述用于承载所述UCI的所需符号长度大于所述第一真实PUSCH所占用符号长度,则确定所述UCI要占用符号长度为所述第一真实PUSCH所占用符号长度,否则,确定所述UCI要占用符号长度为所述用于承载所述UCI的所需符号长度。
可选地,所述处理器510还可以配置用于:
确定与第二接收端和/或第二波束方向对应的各真实PUSCH。
可选地,所述处理器510还可以配置用于:
基于所述UCI要占用符号长度和所述与第二接收端和/或第二波束方向对应的各真实PUSCH,确定所述第二真实PUSCH。
可选地,所述处理器510还可以配置用于:
选择与第二波束方向或第二接收端对应的各真实PUSCH之中的、所占用符号长度大于等于UCI要占用符号长度的一个真实PUSCH,作为所述第二真实PUSCH,
其中,所述UCI要占用符号长度为基于所述用于承载所述UCI的所需符号长度和/或所述第一真实PUSCH所占用符号长度而得到的。
可选地,所述处理器510还可以配置用于:
选择与第二波束方向或第二接收端对应的各真实PUSCH之中的、第一个所占用符号长度大于等于所述UCI要占用符号长度的真实PUSCH,作为所述第二真实PUSCH,
其中,所述UCI要占用符号长度为基于所述用于承载所述UCI的所需符号长度和/或所述第一真实 PUSCH所占用符号长度而得到的。
可选地,所述处理器510还可以配置用于:
选择与第二波束方向或第二接收端对应的各真实PUSCH之中的、所占用符号长度最大的真实PUSCH,作为所述第二真实PUSCH。
可选地,所述处理器510还可以配置用于:
在与第二波束方向或第二接收端对应的各真实PUSCH之中,不存在所占用符号长度大于等于UCI要占用符号长度的真实PUSCH的情况下,从与第二波束方向或第二接收端对应的各真实PUSCH之中选择所占用符号长度最大的真实PUSCH,作为所述第二真实PUSCH,
其中,所述UCI要占用符号长度为基于所述用于承载所述UCI的所需符号长度和/或所述第一真实PUSCH所占用符号长度而得到的。
可选地,所述第一真实PUSCH的符号长度被更新为所述第二真实PUSCH的符号长度。
可选地,所述处理器510还可以配置用于:为终端设备配置上行PUSCH重复传输的类型。
可选地,所述网络设备500还可以包括:
收发器520,可以配置用于发送下行控制信令DCI指示,该DCI指示触发基于多个波束方向和/或多个接收端的PUSCH重复传输。
可选地,所述处理器510还可以配置用于:
通过下行控制信令DCI来触发UCI上报。
可选地,下行控制信令DCI可以指示名义PUSCH的符号长度和/或各真实PUSCH的符号长度。
可选地,所述处理器510还可以配置用于:
在上行PUSCH重复传输的类型被配置为类型B的情况下,基于下行控制信令DCI指示,确定名义PUSCH所占用符号长度;以及
基于确定的所述名义PUSCH所占用符号长度,确定相应的真实PUSCH所占用符号长度以及各真实PUSCH对应的波束方向和/或接收端。
可选地,所述收发器520还可以配置用于:
接收UCI,所述UCI是通过下行控制信令DCI来触发的。
可选地,所接收的UCI可以在时域资源上与PUSCH存在重叠或交叉。
可选地,所述处理器510还可以配置用于:
对在所确定的所述第二真实PUSCH中承载的UCI进行解调。
可选地,所述UCI的类型可以包括以下至少之一:周期UCI;非周期UCI;准周期UCI。
可选地,所述UCI可以包括信道状态信息CSI和/或混合自动重传请求确认HARQ-ACK。
可选地,接收端与波束方向可以具有一一对应的关系。
可选地,所述接收端可以包括发射接收点TRP。
可选地,所述处理器还可以配置用于:
根据波束映射模式,确定每个真实PUSCH所对应的接收端和/或波束方向。
其中,在PUSCH重复传输时,发送用于承载UCI的第一真实PUSCH的时域位置早于发送用于承载UCI的第二真实PUSCH的时域位置。
由此,可以使得在针对第一接收端和/或波束方向的第一PUSCH上发送的UCI先于在针对第二接收端和/或波束方向的第二PUSCH上发送的UCI。
可选地,所述处理器还可以配置用于:
基于所述UCI的内容,确定用于承载UCI的所需符号长度。
可选地,所述第一真实PUSCH和/或所述第二真实PUSCH的符号长度大于1。
应理解,根据本申请实施例的网络设备中的各个器件、单元、模块等(例如上述的收发器410、520和处理器420、510等)的操作和/或功能分别为了实现上述的传输方法中由网络设备执行的相应操作和/或功能,因此为了简洁起见,在此不再赘述。
图13是根据本申请实施例的通信设备600的示意性结构图。图13所示的通信设备600可以包括处理器610以及存储器620。
其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的传输方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图13所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以 为一个或多个。
可选地,该通信设备600可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各传输方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600可为本申请实施例的终端设备,并且该通信设备600可以实现本申请实施例的各传输方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图14是根据本申请实施例的芯片700的示意性结构图。图14所示的芯片700可以包括处理器710、存储器720。其中,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各传输方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各传输方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
上述提及的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、现成可编程门阵列(field programmable gate array,FPGA)、专用集成电路(application specific integrated circuit,ASIC)或者其他可编程逻辑器件、晶体管逻辑器件、分立硬件组件等。其中,上述提到的通用处理器可以是微处理器或者也可以是任何常规的处理器等。
上述提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图15是根据本申请实施例的通信系统800的示意性框图。如图15所示,该通信系统800可以包括终端设备810和网络设备820。
其中,该终端设备810可以用于实现上述传输方法中由终端设备实现的相应的功能,或者可以是上述的终端设备400或者作为终端设备的通信设备600。其中,该网络设备820可以用于实现上述传输方法中由网络设备实现的相应的功能,或者可以是上述的网络设备500或者作为终端设备的通信设备600。为了简洁,在此不再赘述。
示例
以下将给出两个示例来更清楚和全面地说明本申请的技术方案。
假设网络侧(网络设备侧)配置了PUSCH重复传输,其中指示的重复传输的参数为4*8(即,重复传输的数目为4,名义PUSCH的长度为8,起始位置为第4个OFDM符号),终端侧(终端设备侧)可以根据时隙边界(slot boundary)和/或其它配置,来确定真实PUSCH重复传输。
如图16所示的例子,该例子中有5个真实PUSCH重复传输。
在终端侧,可以根据网络侧所指示的波束映射模式,来确定每个真实PUSCH所发送的目标接收端和/或波束方向(例如TRP)。假设真实PUSCH 1和真实PUSCH 2分别对应于网络侧的接收端1和/或波束方向1(例如,可以对应于目标TRP 1)。则真实PUSCH 3和4分别对应于网络侧的接收端2和/或波束方向2(例如,可以对应于目标TRP 2),真实PUSCH 5可以对应于网络侧的接收端1或波束方向1(例如,可以对应于目标TRP 1)。终端侧可以例如基于第一接收端和/或波束方向的真实PUSCH l来确定出UCI(例如非周期CSI)所需要的时域资源占用7个OFDM符号,并且终端侧可以根据这7个OFDM符号来选择真实PUSCH 4来作为第二接收端和/或波束方向中用于非周期CSI复用的PUSCH(即,第二真实PUSCH),终端在该第二真实PUSCH上可以进行非周期CSI的复用。
再例如,网络侧配置了PUSCH重复传输,终端侧可以根据网络侧指示的波束映射模式,确定每个真实PUSCH发送的目标接收端和/或波束方向(例如TRP)。假设真实PUSCH 1(长度为5)和真实PUSCH 2(长度为4)分别对应于网络侧的接收端1和/或波束方向1(对应于目标TRP 1)。真实PUSCH3和4(长度都为4)均对应于网络侧的接收端2和/或波束方向2(对应于目标TRP2)。则终端侧例如可以基于接收端1和/或波束方向1的真实PUSCH 1来计算获得非周期CSI需要的时域资源占用4个OFDM符号,终端侧根据这4个OFDM符号,可以选择真实PUSCH 3来作为接收端2和/或波束方向2上用于非周期CSI复用的PUSCH(即,第二真实PUSCH),终端侧可以在该PUSCH上进行非周期CSI的复用。
上面给出的示例仅是示意性的,本申请并不仅限于这样的示例。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
应理解,在本申请的各实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以该权利要求的保护范围为准。

Claims (61)

  1. 一种传输方法,包括:
    终端设备基于用于承载上行链路控制信令UCI的所需符号长度和/或用于复用所述UCI的第一真实物理上行共享信道PUSCH,确定用于复用所述UCI的第二真实PUSCH,
    其中,第一真实PUSCH针对的第一接收端和/或第一波束方向与第二真实PUSCH针对的第二接收端和/或第二波束方向不同。
  2. 根据权利要求1所述的传输方法,还包括:
    终端设备基于名义PUSCH的符号长度,确定所述用于承载UCI的所需符号长度。
  3. 根据权利要求1或2所述的传输方法,其中,所述终端设备基于用于承载上行链路控制信令UCI的所需符号长度和/或用于复用所述UCI的第一真实物理上行共享信道PUSCH,确定用于复用所述UCI的第二真实PUSCH,包括:
    基于用于承载所述UCI的所需符号长度和/或第一真实PUSCH,确定所述UCI要占用符号长度。
  4. 根据权利要求3所述的传输方法,其中,所述基于用于承载所述UCI的所需符号长度和/或第一真实PUSCH,确定所述UCI要占用符号长度,包括:
    如果所确定的所述用于承载所述UCI的所需符号长度大于所述第一真实PUSCH所占用符号长度,则确定所述UCI要占用符号长度为所述第一真实PUSCH所占用符号长度,否则,确定所述UCI要占用符号长度为所述用于承载所述UCI的所需符号长度。
  5. 根据权利要求1~4中的任一项所述的传输方法,其中,所述终端设备基于用于承载上行链路控制信令UCI的所需符号长度和/或用于复用所述UCI的第一真实物理上行共享信道PUSCH,确定用于复用所述UCI的第二真实PUSCH,包括:
    终端设备确定与第二接收端和/或第二波束方向对应的各真实PUSCH。
  6. 根据权利要求5所述的传输方法,其中,所述终端设备基于用于承载上行链路控制信令UCI的所需符号长度和/或用于复用所述UCI的第一真实物理上行共享信道PUSCH,确定用于复用所述UCI的第二真实PUSCH,还包括:
    终端设备基于所述UCI要占用符号长度和所述与第二接收端和/或第二波束方向对应的各真实PUSCH,确定所述第二真实PUSCH。
  7. 根据权利要求1~6中的任一项所述的传输方法,其中,所述终端设备基于用于承载上行链路控制信令UCI的所需符号长度和/或用于复用所述UCI的第一真实物理上行共享信道PUSCH,确定用于复用所述UCI的第二真实PUSCH,包括:
    选择与第二波束方向或第二接收端对应的各真实PUSCH之中的、所占用符号长度大于等于UCI要占用符号长度的一个真实PUSCH,作为所述第二真实PUSCH,
    其中,所述UCI要占用符号长度为基于所述用于承载所述UCI的所需符号长度和/或所述第一真实PUSCH所占用符号长度而得到的。
  8. 根据权利要求1~7中的任一项所述的传输方法,其中,所述终端设备基于用于承载上行链路控制信令UCI的所需符号长度和/或用于复用所述UCI的第一真实物理上行共享信道PUSCH,确定用于复用所述UCI的第二真实PUSCH,包括:
    选择与第二波束方向或第二接收端对应的各真实PUSCH之中的、第一个所占用符号长度大于等于所述UCI要占用符号长度的真实PUSCH,作为所述第二真实PUSCH,
    其中,所述UCI要占用符号长度为基于所述用于承载所述UCI的所需符号长度和/或所述第一真实PUSCH所占用符号长度而得到的。
  9. 根据权利要求1~7中的任一项所述的传输方法,其中,所述终端设备基于用于承载上行链路控制信令UCI的所需符号长度和/或用于复用所述UCI的第一真实物理上行共享信道PUSCH,确定用于复用所述UCI的第二真实PUSCH,包括:
    选择与第二波束方向或第二接收端对应的各真实PUSCH之中的、所占用符号长度最大的真实PUSCH,作为所述第二真实PUSCH。
  10. 根据权利要求1~7和9中的任一项所述的传输方法,其中,所述终端设备基于用于承载上行链路控制信令UCI的所需符号长度和/或用于复用所述UCI的第一真实物理上行共享信道PUSCH,确定用于复用所述UCI的第二真实PUSCH,包括:
    在与第二波束方向或第二接收端对应的各真实PUSCH之中,不存在所占用符号长度大于等于UCI要占用符号长度的真实PUSCH的情况下,从与第二波束方向或第二接收端对应的各真实PUSCH之中选择所占用符号长度最大的真实PUSCH,作为所述第二真实PUSCH,
    其中,所述UCI要占用符号长度为基于所述用于承载所述UCI的所需符号长度和/或所述第一真实PUSCH所占用符号长度而得到的。
  11. 根据权利要求9~10中的任一项所述的传输方法,还包括:
    终端设备将所述第一真实PUSCH的符号长度更新为所述第二真实PUSCH的符号长度。
  12. 根据权利要求1~11中的任一项所述的传输方法,还包括:
    终端设备接收关于上行PUSCH重复传输的类型的配置。
  13. 根据权利要求1~12中的任一项所述的传输方法,还包括:
    终端设备接收下行控制信令DCI指示,该DCI指示触发基于多个波束方向和/或多个接收端的PUSCH重复传输。
  14. 根据权利要求1~13中的任一项所述的传输方法,还包括:
    在终端设备接收的关于上行PUSCH重复传输的类型的配置为类型B的情况下,终端设备基于下行控制信令DCI指示,确定名义PUSCH所占用符号长度;以及
    基于确定的所述名义PUSCH所占用符号长度,确定相应的真实PUSCH所占用符号长度以及各真实PUSCH对应的波束方向和/或接收端。
  15. 根据权利要求1~14中的任一项所述的传输方法,还包括:
    终端设备接收UCI,所述UCI是通过下行控制信令DCI来触发的。
  16. 根据权利要求1~15中的任一项所述的传输方法,其中,终端设备接收的UCI在时域资源上与PUSCH存在重叠或交叉。
  17. 根据权利要求1~16中的任一项所述的传输方法,还包括:
    终端设备在所确定的所述第二真实PUSCH中传输UCI。
  18. 根据权利要求1~17中的任一项所述的传输方法,其中,所述UCI的类型包括以下至少之一:周期UCI;非周期UCI;准周期UCI。
  19. 根据权利要求1~18中的任一项所述的传输方法,其中,所述UCI包括信道状态信息CSI和/或混合自动重传请求确认HARQ-ACK。
  20. 根据权利要求1~19中的任一项所述的传输方法,还包括:
    在终端设备通过至少第一和第二接收端和/或至少第一和第二波束方向发送PUSCH的资源上进行UCI的解调。
  21. 根据权利要求1~20中的任一项所述的传输方法,其中,接收端与波束方向具有一一对应的关系。
  22. 根据权利要求1~21中的任一项所述的传输方法,其中,所述接收端包括发射接收点TRP。
  23. 根据权利要求1~22中的任一项所述的传输方法,还包括:
    终端设备根据波束映射模式,确定每个真实PUSCH所对应的接收端和/或波束方向,
    其中,在PUSCH重复传输时,终端设备发送用于承载UCI的第一真实PUSCH的时域位置早于发送用于承载UCI的第二真实PUSCH的时域位置。
  24. 根据权利要求1~23中的任一项所述的传输方法,还包括:
    终端设备基于所述UCI的内容,确定用于承载UCI的所需符号长度。
  25. 根据权利要求1~24中的任一项所述的传输方法,其中,所述第一真实PUSCH和/或所述第二真实PUSCH的符号长度大于1。
  26. 一种传输方法,包括:
    网络设备在通过至少第一和第二接收端和/或至少第一和第二波束方向发送物理上行共享信道PUSCH的资源上进行上行链路控制信令UCI的解调,包括基于用于承载所述UCI的所需符号长度和/或用于复用所述UCI的第一真实PUSCH,确定用于复用所述UCI的第二真实PUSCH,
    其中,第一真实PUSCH针对的第一接收端和/或第一波束方向与第二真实PUSCH针对的第二接收端和/或第二波束方向不同。
  27. 根据权利要求26所述的传输方法,还包括:
    所述网络设备基于名义PUSCH的符号长度来确定所述用于承载UCI的所需符号长度。
  28. 根据权利要求26或27所述的传输方法,其中,所述基于用于承载所述UCI的所需符号长度和/或用于复用所述UCI的第一真实PUSCH,确定用于复用所述UCI的第二真实PUSCH,包括:
    基于用于承载所述UCI的所需符号长度和/或第一真实PUSCH,确定所述UCI要占用符号长度。
  29. 根据权利要求28所述的传输方法,其中,所述基于用于承载所述UCI的所需符号长度和/或第一真实PUSCH,确定所述UCI要占用符号长度,包括:
    如果所确定的所述用于承载所述UCI的所需符号长度大于所述第一真实PUSCH所占用符号长度, 则确定所述UCI要占用符号长度为所述第一真实PUSCH所占用符号长度,否则,确定所述UCI要占用符号长度为所述用于承载所述UCI的所需符号长度。
  30. 根据权利要求26~29中的任一项所述的传输方法,其中,所述基于用于承载所述UCI的所需符号长度和/或用于复用所述UCI的第一真实PUSCH,确定用于复用所述UCI的第二真实PUSCH,包括:
    确定与第二接收端和/或第二波束方向对应的各真实PUSCH。
  31. 根据权利要求5所述的传输方法,其中,所述基于用于承载所述UCI的所需符号长度和/或用于复用所述UCI的第一真实PUSCH,确定用于复用所述UCI的第二真实PUSCH,还包括:
    基于所述UCI要占用符号长度和所述与第二接收端和/或第二波束方向对应的各真实PUSCH,确定所述第二真实PUSCH。
  32. 根据权利要求26~31中的任一项所述的传输方法,其中,所述基于用于承载所述UCI的所需符号长度和/或用于复用所述UCI的第一真实PUSCH,确定用于复用所述UCI的第二真实PUSCH,包括:
    选择与第二波束方向或第二接收端对应的各真实PUSCH之中的、所占用符号长度大于等于UCI要占用符号长度的一个真实PUSCH,作为所述第二真实PUSCH,
    其中,所述UCI要占用符号长度为基于所述用于承载所述UCI的所需符号长度和/或所述第一真实PUSCH所占用符号长度而得到的。
  33. 根据权利要求26~32中的任一项所述的传输方法,其中,所述基于用于承载所述UCI的所需符号长度和/或用于复用所述UCI的第一真实PUSCH,确定用于复用所述UCI的第二真实PUSCH,包括:
    选择与第二波束方向或第二接收端对应的各真实PUSCH之中的、第一个所占用符号长度大于等于所述UCI要占用符号长度的真实PUSCH,作为所述第二真实PUSCH,
    其中,所述UCI要占用符号长度为基于所述用于承载所述UCI的所需符号长度和/或所述第一真实PUSCH所占用符号长度而得到的。
  34. 根据权利要求26~32中的任一项所述的传输方法,其中,所述基于用于承载所述UCI的所需符号长度和/或用于复用所述UCI的第一真实PUSCH,确定用于复用所述UCI的第二真实PUSCH,包括:
    选择与第二波束方向或第二接收端对应的各真实PUSCH之中的、所占用符号长度最大的真实PUSCH,作为所述第二真实PUSCH。
  35. 根据权利要求26~32和34中的任一项所述的传输方法,其中,所述基于用于承载所述UCI的所需符号长度和/或用于复用所述UCI的第一真实PUSCH,确定用于复用所述UCI的第二真实PUSCH,包括:
    在与第二波束方向或第二接收端对应的各真实PUSCH之中,不存在所占用符号长度大于等于UCI要占用符号长度的真实PUSCH的情况下,从与第二波束方向或第二接收端对应的各真实PUSCH之中选择所占用符号长度最大的真实PUSCH,作为所述第二真实PUSCH,
    其中,所述UCI要占用符号长度为基于所述用于承载所述UCI的所需符号长度和/或所述第一真实PUSCH所占用符号长度而得到的。
  36. 根据权利要求34~35中的任一项所述的传输方法,其中,所述第一真实PUSCH的符号长度被更新为所述第二真实PUSCH的符号长度。
  37. 根据权利要求26~36中的任一项所述的传输方法,还包括:
    网络设备为终端设备配置上行PUSCH重复传输的类型。
  38. 根据权利要求26~37中的任一项所述的传输方法,还包括:
    网络设备发送下行控制信令DCI指示,该DCI指示触发基于多个波束方向和/或多个接收端的PUSCH重复传输。
  39. 根据权利要求26~38中的任一项所述的传输方法,还包括:
    网络设备通过下行控制信令DCI来触发UCI上报。
  40. 根据权利要求26~39中的任一项所述的传输方法,其中,下行控制信令DCI指示名义PUSCH的符号长度和/或各真实PUSCH的符号长度。
  41. 根据权利要求26~40中的任一项所述的传输方法,还包括:
    在网络设备将上行PUSCH重复传输的类型配置为类型B的情况下,基于下行控制信令DCI指示,确定名义PUSCH所占用符号长度;以及
    基于确定的所述名义PUSCH所占用符号长度,确定相应的真实PUSCH所占用符号长度以及各真实PUSCH对应的波束方向和/或接收端。
  42. 根据权利要求26~41中的任一项所述的传输方法,还包括:
    网络设备接收UCI,所述UCI是通过下行控制信令DCI来触发的。
  43. 根据权利要求26~42中的任一项所述的传输方法,其中,所接收的UCI在时域资源上与PUSCH 存在重叠或交叉。
  44. 根据权利要求26~43中的任一项所述的传输方法,还包括:
    网络设备对在所确定的所述第二真实PUSCH中承载的UCI进行解调。
  45. 根据权利要求26~44中的任一项所述的传输方法,其中,所述UCI的类型包括以下至少之一:周期UCI;非周期UCI;准周期UCI。
  46. 根据权利要求26~45中的任一项所述的传输方法,其中,所述UCI包括信道状态信息CSI和/或混合自动重传请求确认HARQ-ACK。
  47. 根据权利要求26~46中的任一项所述的传输方法,其中,接收端与波束方向具有一一对应的关系。
  48. 根据权利要求26~47中的任一项所述的传输方法,其中,所述接收端包括发射接收点TRP。
  49. 根据权利要求26~48中的任一项所述的传输方法,还包括:
    网络设备根据波束映射模式,确定每个真实PUSCH所对应的接收端和/或波束方向,
    其中,在PUSCH重复传输时,发送用于承载UCI的第一真实PUSCH的时域位置早于发送用于承载UCI的第二真实PUSCH的时域位置。
  50. 根据权利要求26~49中的任一项所述的传输方法,还包括:
    网络设备基于所述UCI的内容,确定用于承载UCI的所需符号长度。
  51. 根据权利要求26~50中的任一项所述的传输方法,其中,所述第一真实PUSCH和/或所述第二真实PUSCH的符号长度大于1。
  52. 一种终端设备,包括:
    处理器,配置用于基于用于承载上行链路控制信令UCI的所需符号长度和/或用于复用所述UCI的第一真实物理上行共享信道PUSCH,确定用于复用所述UCI的第二真实PUSCH,
    其中,第一真实PUSCH针对的第一接收端和/或第一波束方向与第二真实PUSCH针对的第二接收端和/或第二波束方向不同。
  53. 根据权利要求52所述的终端设备,其中,所述处理器还配置用于:
    基于名义PUSCH的符号长度,确定所述用于承载UCI的所需符号长度。
  54. 根据权利要求52或53所述的终端设备,其中,所述处理器还配置用于:
    基于用于承载所述UCI的所需符号长度和/或第一真实PUSCH,确定所述UCI要占用符号长度。
  55. 根据权利要求54所述的终端设备,其中,所述处理器还配置用于:
    在所确定的所述用于承载所述UCI的所需符号长度大于所述第一真实PUSCH所占用符号长度的情况下,确定所述UCI要占用符号长度为所述第一真实PUSCH所占用符号长度,否则,确定所述UCI要占用符号长度为所述用于承载所述UCI的所需符号长度。
  56. 根据权利要求52~55中的任一项所述的终端设备,其中,所述处理器还配置用于:
    确定与第二接收端和/或第二波束方向对应的各真实PUSCH。
  57. 根据权利要求56所述的终端设备,其中,所述处理器还配置用于:
    基于所述UCI要占用符号长度和所述与第二接收端和/或第二波束方向对应的各真实PUSCH,确定所述第二真实PUSCH。
  58. 根据权利要求52~57中的任一项所述的终端设备,其中,所述处理器还配置用于:
    选择与第二波束方向或第二接收端对应的各真实PUSCH之中的、所占用符号长度大于等于UCI要占用符号长度的一个真实PUSCH,作为所述第二真实PUSCH,
    其中,所述UCI要占用符号长度为基于所述用于承载所述UCI的所需符号长度和/或所述第一真实PUSCH所占用符号长度而得到的。
  59. 根据权利要求52~58中的任一项所述的终端设备,其中,所述处理器还配置用于:
    选择与第二波束方向或第二接收端对应的各真实PUSCH之中的、第一个所占用符号长度大于等于所述UCI要占用符号长度的真实PUSCH,作为所述第二真实PUSCH,
    其中,所述UCI要占用符号长度为基于所述用于承载所述UCI的所需符号长度和/或所述第一真实PUSCH所占用符号长度而得到的。
  60. 根据权利要求52~58中的任一项所述的终端设备,其中,所述处理器还配置用于:
    选择与第二波束方向或第二接收端对应的各真实PUSCH之中的、所占用符号长度最大的真实PUSCH,作为所述第二真实PUSCH。
  61. 根据权利要求52~58和60中的任一项所述的终端设备,其中,所述处理器还配置用于:
    在与第二波束方向或第二接收端对应的各真实PUSCH之中,不存在所占用符号长度大于等于UCI要占用符号长度的真实PUSCH的情况下,从与第二波束方向或第二接收端对应的各真实PUSCH之中
PCT/CN2021/085472 2021-04-02 2021-04-02 传输方法、终端设备、网络设备及通信系统 WO2022205483A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/085472 WO2022205483A1 (zh) 2021-04-02 2021-04-02 传输方法、终端设备、网络设备及通信系统
CN202180083262.7A CN116602034A (zh) 2021-04-02 2021-04-02 传输方法、终端设备、网络设备及通信系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/085472 WO2022205483A1 (zh) 2021-04-02 2021-04-02 传输方法、终端设备、网络设备及通信系统

Publications (2)

Publication Number Publication Date
WO2022205483A1 true WO2022205483A1 (zh) 2022-10-06
WO2022205483A9 WO2022205483A9 (zh) 2023-06-08

Family

ID=83455522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/085472 WO2022205483A1 (zh) 2021-04-02 2021-04-02 传输方法、终端设备、网络设备及通信系统

Country Status (2)

Country Link
CN (1) CN116602034A (zh)
WO (1) WO2022205483A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108093480A (zh) * 2017-09-30 2018-05-29 中兴通讯股份有限公司 一种信号传输的方法及装置
CN111108795A (zh) * 2017-09-11 2020-05-05 苹果公司 用于新无线电的多传输接收点操作中的上行链路控制信令的装置和方法以及解调参考信号设计
CN112398612A (zh) * 2019-08-15 2021-02-23 大唐移动通信设备有限公司 传输资源大小的确定方法、装置、终端及网络侧设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111108795A (zh) * 2017-09-11 2020-05-05 苹果公司 用于新无线电的多传输接收点操作中的上行链路控制信令的装置和方法以及解调参考信号设计
CN108093480A (zh) * 2017-09-30 2018-05-29 中兴通讯股份有限公司 一种信号传输的方法及装置
CN112398612A (zh) * 2019-08-15 2021-02-23 大唐移动通信设备有限公司 传输资源大小的确定方法、装置、终端及网络侧设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OPPO: "PUSCH enhancement for URLLC", 3GPP DRAFT; R1-1912520, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 9 November 2019 (2019-11-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051823460 *

Also Published As

Publication number Publication date
CN116602034A (zh) 2023-08-15
WO2022205483A9 (zh) 2023-06-08

Similar Documents

Publication Publication Date Title
WO2019091098A1 (zh) D2d通信中资源配置的方法、终端设备和网络设备
WO2019091143A1 (zh) D2d通信中资源配置的方法、终端设备和网络设备
US20220060290A1 (en) Wireless communication method, receiving-end device, and sending-end device
CN115499113B (zh) 无线通信方法、无线通信装置、终端设备和网络设备
US11729819B2 (en) Method and device for determining contention window
WO2020087509A1 (zh) 无线通信方法、终端设备和网络设备
US20220173847A1 (en) Downlink transmission method and terminal device
US20230069425A1 (en) Sidelink resource allocation method and terminal device
CN114667701B (zh) 上行反馈资源的确定方法和终端设备
WO2022067611A1 (zh) 先侦听后传输失败上报的方法、终端设备和网络设备
WO2022151085A1 (zh) 波束管理方法、终端设备和网络设备
WO2022205483A1 (zh) 传输方法、终端设备、网络设备及通信系统
WO2021062869A1 (zh) 无线通信方法和终端设备
EP4156585A1 (en) Method for determining antenna panel for transmission, and terminal device
CN115211061B (zh) 信息传输的方法、终端设备和网络设备
WO2022151427A1 (zh) 一种传输方法、终端设备和网络设备
US20220303061A1 (en) Parameter setting method, parameter indication method, terminal device, and network device
CN112771963B (zh) 一种信息通知的方法和装置
CN113765642B (zh) Harq码本确定方法、终端设备和网络设备
WO2022141652A1 (zh) 无线通信的方法和设备
WO2022205413A1 (zh) 无线通信方法、终端设备和网络设备
CN116528376A (zh) 无线通信方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934138

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180083262.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21934138

Country of ref document: EP

Kind code of ref document: A1