WO2022205328A1 - 壬烯基琥珀酸酐改性淀粉及其制备方法与应用 - Google Patents

壬烯基琥珀酸酐改性淀粉及其制备方法与应用 Download PDF

Info

Publication number
WO2022205328A1
WO2022205328A1 PCT/CN2021/084993 CN2021084993W WO2022205328A1 WO 2022205328 A1 WO2022205328 A1 WO 2022205328A1 CN 2021084993 W CN2021084993 W CN 2021084993W WO 2022205328 A1 WO2022205328 A1 WO 2022205328A1
Authority
WO
WIPO (PCT)
Prior art keywords
starch
nsa
modified starch
succinic anhydride
substitution
Prior art date
Application number
PCT/CN2021/084993
Other languages
English (en)
French (fr)
Inventor
李冠天
朱帆
Original Assignee
李冠天
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李冠天 filed Critical 李冠天
Priority to PCT/CN2021/084993 priority Critical patent/WO2022205328A1/zh
Publication of WO2022205328A1 publication Critical patent/WO2022205328A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B31/00Preparation of derivatives of starch
    • C08B31/02Esters
    • C08B31/04Esters of organic acids, e.g. alkenyl-succinated starch

Definitions

  • the invention belongs to the field of modified starch, and particularly relates to nonenyl succinic anhydride modified starch and a preparation method and application thereof.
  • Pickering emulsion is a new type of emulsion stabilized by solid particles instead of small molecular surfactants.
  • Starch has been studied as a granular emulsifier in Pickering emulsions because it is a natural biological material with wide sources, low price, degradability and good biocompatibility.
  • natural starch contains more hydrophilic hydroxyl groups, and when used alone as a granular emulsifier, its emulsification effect is average, and the emulsion stability is poor.
  • OSA octenyl succinic anhydride
  • DDSA dodecenyl succinic anhydride
  • the present disclosure provides a nonenyl succinic anhydride modified starch.
  • the modified starch has a more suitable degree of substitution than the DDSA modified starch, and can have better emulsifying properties than the OSA modified starch under the same substitution degree.
  • Another aspect of the present disclosure provides the use of nonenyl succinic anhydride modified starch as an emulsifier.
  • Yet another aspect of the present disclosure provides Pickering emulsions comprising nonenylsuccinic anhydride modified starch.
  • the nonenyl succinic anhydride modified starch of the present disclosure exhibits excellent emulsifying performance when used as an emulsifier for Pickering emulsion.
  • Fig. 1 is the SEM photos of unmodified quinoa starch and NSA modified quinoa starch with different degrees of substitution according to the disclosed embodiment: a) unmodified quinoa starch; b) NSA 1 (DS 0.0080); c) NSA 2 (DS 0.0175); d) NSA 3 (DS 0.0359); e) NSA 4 (DS 0.0548).
  • Fig. 2 is the FTIR spectra of unmodified quinoa starch and NSA-modified quinoa starch with different degrees of substitution according to an embodiment of the disclosure.
  • FIG. 3 is the particle size distribution of unmodified quinoa starch and NSA-modified quinoa starch with different degrees of substitution according to an embodiment of the disclosure.
  • NSA 4 is the particle size distribution of droplets in Pickering emulsions stabilized by the unmodified quinoa starch/NSA modified quinoa starch of embodiments of the present disclosure during storage: a) unmodified quinoa starch; b) NSA 1 (DS 0.0080); c) NSA 2 (DS 0.0175); d) NSA 3 (DS 0.0359); e) NSA 4 (DS 0.0548).
  • a degree of substitution of 0.0050 to 0.023 is understood to include the endpoints 0.0050 and 0.023, as well as subranges 0.0050-0.010, 0.0080-0.012, 0.010-0.015, 0.010-0.020, 0.015-0.020, 0.015-0.023, and the like.
  • reagents and starting materials used in the present disclosure are commercially available or can be prepared by conventional chemical synthesis methods. Unless otherwise specified, specific techniques or conditions are not explicitly described in the following examples, and those skilled in the art can follow common techniques or conditions in the art or follow product specifications.
  • the reagents or instruments used without the manufacturer's indication are conventional products that can be purchased in the market.
  • Starches for modification can be derived from cereals, tubers, roots, legumes and fruits, such as barley, wheat, quinoa, oats, buckwheat, rye, sorghum, corn, potato, sweet potato, cassava, fava beans , mung beans, peas, bananas, plantains, etc.
  • fine-grained starch is preferred for NSA modification.
  • the starch source for modification is quinoa.
  • Quinoa starch granules are a kind of fine-grained starch, most of which are distributed in 0.4-2.0 microns, which are smaller than most other plant-derived starches.
  • the quinoa starch used has smaller granules, and the modified quinoa starch as a granular emulsifier has stronger emulsion stabilization ability.
  • Larger starches such as corn starch (particle size about 20 microns) and potato starch (particle size about 50 microns) can be reduced in size by processing such as grinding and sieving, and then used for NSA modification.
  • the NSA-modified starch of the present disclosure can be prepared by the esterification reaction of starch and NSA, and the reaction formula is shown below.
  • the preparation method of nonenyl succinic anhydride modified starch comprises the steps:
  • step 2) slowly adding nonenyl succinic anhydride to the suspension of step 1) under stirring;
  • nonenyl succinic anhydride forms a mixed solution with a solvent and then is added to the suspension in step 1).
  • the solvent is for example selected from water, ethanol, acetone or mixtures thereof.
  • the solvent is water, and a small amount of surfactant is added to the mixture of nonenylsuccinic anhydride and the solvent.
  • the surfactant is for example selected from sodium dodecyl sulfate (SDS), sodium cetyl sulfate, sodium octadecyl sulfate or mixtures thereof.
  • the preparation method of NSA-modified starch is as follows: starch and water are made into a suspension; NSA is slowly added to the suspension under stirring; during the stirring reaction, a base such as a concentration of 2- 20 wt% NaOH adjusts the pH to be weakly alkaline (eg, 8.0-9.0). After reacting for a period of time (eg 1-6 h), adjust pH (eg 6.5-7.0) with dilute acid such as hydrochloric acid with a concentration of 2-10 wt % to terminate the reaction, and centrifuge recovery to obtain NSA modified starch.
  • the above stirring reaction process can be carried out at room temperature or in a warm water bath, for example, in a warm water bath at 30°C.
  • the degree of substitution refers to the ratio of the number of esterified hydroxyl groups in the modified starch to the total number of glucose residues in the modified starch.
  • the substitution degree of modified starch can be regulated by controlling the mass ratio of NSA to starch in the esterification reaction.
  • For the degree of substitution please refer to Bao, J., Xing, J., Phillips, D.L., & Corke, H. (2003). Physical properties of octenyl succinic anhydride modified rice, wheat, and potato stars. Journal of Agricultural and Food Chemistry, 51, 2283–2287 method determination.
  • the degree of substitution of the NSA-modified starch does not exceed 0.10.
  • the degree of substitution of the NSA-modified starch does not exceed 0.060. In a more preferred embodiment, the degree of substitution of the NSA-modified starch does not exceed 0.023.
  • the NSA-modified starch has a degree of substitution of 0.0050 to 0.023, 0.0060 to 0.023, 0.0070 to 0.023, 0.0080 to 0.023, 0.0090 to 0.023, 0.010 to 0.023, 0.011 to 0.023, 0.012 to 0.023, 0.013 to 0.023, 0.014 to 0.023, 0.015 to 0.023, 0.016 to 0.023, 0.017 to 0.023, 0.018 to 0.023, 0.019 to 0.023, 0.020 to 0.023, 0.021 to 0.023, or 0.022 to 0.023.
  • the NSA modified starch has a degree of substitution of 0.0050 to 0.020, 0.0060 to 0.020, 0.0070 to 0.020, 0.0080 to 0.020, 0.0090 to 0.020, 0.010 to 0.020, 0.011 to 0.020, 0.012 to 0.020, 0.013 to 0.020, 0.014 to 0.020, 0.015 to 0.020, 0.016 to 0.020, 0.017 to 0.020, 0.018 to 0.020, or 0.019 to 0.020.
  • the degree of substitution of the NSA-modified starch is from 0.010 to 0.020.
  • the degree of substitution of the NSA-modified starch is from 0.015 to 0.023.
  • the change in moment-of-mass mean diameter or De Broucker mean diameter D[4,3] before and after NSA modification of starch is not more than 25%, such as not more than 24%, not more than 23%, not more than 25% higher than 22%, not higher than 21%, not higher than 20%, not higher than 19%, not higher than 18%, not higher than 17%, not higher than 16%, not higher than 15%, not higher than 14%, no more than 13%, no more than 12%, no more than 11%, no more than 10%, no more than 9%.
  • the moment-of-mass mean diameter or De Broucker mean diameter D[4,3] of starch will decrease after NSA modification.
  • the De Broucker average diameter D[4,3] of the NSA modified starch is less than or equal to 5.0 ⁇ m, such as less than or equal to 4.0 ⁇ m, less than or equal to 3.0 ⁇ m, less than or equal to 2.5 ⁇ m, less than or equal to 2.0 ⁇ m, less than or equal to 2.0 ⁇ m 1.8 ⁇ m.
  • the De Broucker average diameter D[4,3] of the NSA modified starch is greater than or equal to 0.10 ⁇ m, such as greater than or equal to 0.20 ⁇ m, greater than or equal to 0.30 ⁇ m, greater than or equal to 0.40 ⁇ m, greater than or equal to 0.50 ⁇ m, greater than or equal to 0.60 ⁇ m, greater than or equal to 0.70 ⁇ m, greater than or equal to 0.80 ⁇ m, greater than or equal to 0.90 ⁇ m, greater than or equal to 1.0 ⁇ m, greater than or equal to 1.1 ⁇ m, greater than or equal to 1.2 ⁇ m, greater than or equal to 1.3 ⁇ m, greater than or equal to 1.4 ⁇ m, greater than or equal to 1.5 ⁇ m, greater than or equal to 1.6 ⁇ m, greater than or equal to 1.7 ⁇ m.
  • the De Broucker average diameter D[4,3] of the NSA-modified starch is 0.10 ⁇ m or more and 3.0 ⁇ m or less. In one embodiment, the De Broucker average diameter D[4,3] of the NSA-modified starch is 0.50 ⁇ m or more and 2.0 ⁇ m or less.
  • the NSA-modified starch of the present disclosure introduces a hydrophilic carboxylic acid group and a long hydrophobic alkenyl chain into the starch. It is believed that during the preparation of emulsions hydrophilic carboxylic acid groups extend into the water phase, hydrophobic nonenyl long chains extend into the oil phase, and complex polysaccharide long chains unfold at the oil-water interface to form a layer Continuous, dense, unbreakable interface film. Compared with the unmodified starch, the NSA modified starch of the present disclosure has significantly improved emulsifying properties.
  • the NSA-modified starch of the present disclosure can be used as a granular emulsifier for the emulsification of food, medicine or cosmetics with a suitable degree of substitution. Of course, the NSA-modified starch of the present disclosure may also be used as a particle emulsifier in other fields such as coatings, oil extraction, papermaking, and the like.
  • the NSA-modified starches of the present disclosure can be used as granular emulsifiers to prepare Pickering emulsions.
  • the present disclosure provides an O/W Pickering emulsion comprising the NSA modified starch described above as a granular emulsifier.
  • the present disclosure provides a W/O Pickering emulsion comprising the NSA modified starch described above as a granular emulsifier.
  • O/W Pickering emulsions can be prepared by:
  • W/O Pickering emulsions can be prepared by:
  • the oil phase to be treated is mixed with the above-mentioned NSA modified starch with a high-speed homogenizer, and the rotating speed is, for example, 5000-25000rpm;
  • the nonenyl succinic anhydride modified starch of the present disclosure exhibits excellent emulsifying performance as a granular emulsifier for Pickering emulsions.
  • unmodified quinoa starch 25 g, dry basis
  • NSA was mixed with water to 20% (w/v)
  • a small amount of surfactant about 50 mg of SDS
  • the pH of the suspension was maintained in the range of 8.0-9.0 with dilute NaOH solution.
  • the reaction temperature was kept at 25°C. After the pH became stable, the pH of the suspension was adjusted to 6.5-7.0 with dilute HCl solution.
  • the modified quinoa starch was recovered by centrifugation at 4,000 xg for 20 minutes.
  • the starch cake was washed once with ethanol and twice with acetone, and then dried in an air oven at 40° C. for 48 hours to obtain the desired chemically modified starch.
  • the degree of substitution was determined in Bao, J., Xing, J., Phillips, D.L., & Corke, H. (2003). Physical properties of octenyl succinic anhydride modified rice, wheat, and potato starsches. Journal of Agricultural and Food Chemistry, 51, 2283–2287 with some modifications. Briefly, modified and unmodified starches (2.0 g, dry basis) were suspended in 50 mL of distilled water in an Erlenmeyer flask. The starch was gelatinized in a boiling water bath for 30 minutes and then cooled with stirring at room temperature. NaOH solution (25 mL, 0.50 M) was added to the Erlenmeyer flask and kept shaking overnight.
  • V blank and V sample are the volume (mL) of HCl consumed by the titration blank sample (unmodified starch) and chemically modified sample, respectively; M is the molar concentration of HCl (mol/L); W is the sample weight ( gram).
  • the small particles (about 2 ⁇ m) of quinoa starch allow a high contact area between the modifier and the starch, resulting in a high degree of substitution.
  • the maximum allowable degree of substitution of OSA in food is 3% (w/w in starch, the degree of substitution is about 0.023).
  • the DS of two NSA samples (NSA 1 and 2) were within this standard, while the higher DS of the other two samples (NSA 3 and 4) could be used for non-food applications.
  • OSA-modified quinoa starch and DDSA-modified quinoa starch were prepared similarly to the above-mentioned preparation method of NSA-modified quinoa starch. Their substitution degrees were measured according to the above-mentioned substitution degree determination method, and the substitution degree of DDSA-modified quinoa starch was relatively low, only 0.0023 to 0.0095.
  • the lower degree of substitution of DDSA modification may be due to the longer alkenyl chain of DDSA and lower solubility in aqueous environments; and the fact that DDSA is in solid form at room temperature, these properties may limit the interaction between DDSA and starch granules. contact, resulting in a decrease in the degree of substitution.
  • SEM Scanning electron microscope
  • Figure 1 shows the scanning electron microscope images of the samples of the examples, wherein a is unmodified quinoa starch granules; b is NSA-modified quinoa starch, DS is 0.0080; c is NSA-modified quinoa starch, DS is 0.0175 ; d is NSA modified quinoa starch, DS is 0.0359; e is NSA modified quinoa starch, DS is 0.0548.
  • FTIR Fourier transform infrared
  • Figure 2 shows the results of FITR analysis of unmodified and NSA-modified quinoa starch of Example samples.
  • starch NSA modification two peaks began to appear around 1566cm -1 and 1724cm -1 , and the peak areas of these two peaks increased with the increase of substitution degree.
  • the peak around 1566 cm -1 is related to the asymmetric stretching vibration of the RCOO- group, which indicates the presence of esterification and the formation of monoesters.
  • the particle size distribution was determined by laser light scattering. Using the procedure as described in Li, G., & Zhu, F. (2017). Amylopectin molecular structure in relation to physicochemical properties of quinoa starch. Carbohydrate Polymers, 164, 396-402, by Mastersizer 2000 particle size analyzer (Malvern Instruments, Worcestershire, UK) to measure the particle size distribution of unmodified and NSA modified quinoa starch. The starch suspension (1%, w/w) was mixed overnight at 300 rpm and then slowly added to the sample dispersion device filled with water until the light shielding ranged between 10% and 20%. The stirring speed of the dispersing unit was maintained at 2100 rpm.
  • the refractive index of the particle, the absorption index of the particle and the refractive index of the dispersant are defined as 1.5, 0 and 1.33, respectively.
  • Number average diameter D[n, 0.5] (diameter at the middle of the size distribution based on numbers), mass moment average diameter or De Broucker average diameter D[4, 3], and record surface moment average diameter or Sauter average diameter D[ 3, 2].
  • Span (a measure of distribution width), uniformity (a measure of deviation from the median) and specific surface area (SSA, surface area per unit weight) were also calculated.
  • Figure 3 presents the particle size distribution of unmodified quinoa starch and NSA modified quinoa starch.
  • the D[4,3] of unmodified quinoa starch is 1.96 ⁇ m, which is consistent with previous studies and results obtained by SEM.
  • the size of quinoa starch granules first decreased and then increased (Table 1).
  • Quinoa starch has granular aggregates in its unmodified state. Particle size values may be overestimated due to aggregation of some starch granules during preparation.
  • NSA modifies the starch to charge the particle surface, the same charge on the particle surface promotes the separation of the particles, thereby reducing the estimated average particle size.
  • the size increase of the most substituted granules may be due to NSA-induced disruption of the starch granule structure, which promotes water infiltration into the internal granule structure and increases in size.
  • Surface gelatinization may lead to particle swelling and fusion, which may be another reason for the increase in particle size.
  • HS refers to the height of the serum phase and HE refers to the total height of the emulsion.
  • NSA 4 is the particle size distribution of droplets in Pickering emulsions stabilized by the unmodified quinoa starch/NSA modified quinoa starch of embodiments of the present disclosure during storage: a) unmodified quinoa starch; b) NSA 1 (DS 0.0080); c) NSA 2 (DS 0.0175); d) NSA 3 (DS 0.0359); e) NSA 4 (DS 0.0548).
  • the moment-of-mass mean diameter (D[4,3]) of the unmodified quinoa starch/NSA-modified quinoa starch stabilized Pickering emulsion was measured using a method similar to that described above for starch suspensions. The result is as follows:
  • NSA modification has obvious advantages over OSA when the degree of substitution is low.
  • the degree of substitution of OSA 1 (DS: 0.0113) is higher than that of NSA 1 (DS: 0.0080).
  • the particle size (Day 1: 167.4 ⁇ m) of the Pickering emulsion formed by OSA-modified starch is larger than that of NSA-modified starch.
  • the stability of the latter is also better (NSA Day 10: 180 ⁇ m; OSA Day 10: 239.1 ⁇ m).
  • OSA 2 (DS: 0.0200) has the same trend compared to NSA 2 (DS: 0.0175).
  • a possible reason for the above results is that NSA is more hydrophobic than OSA.
  • OSA-modified emulsions outperformed NSA at high degrees of substitution.
  • the particle size of Pickering emulsion modified by NSA 3 (DS: 0.0359) is close to that of OSA 3 (DS: 0.0283) (NSA 3Day 1: 119 ⁇ m; OSA 3 Day 1: 124.3 ⁇ m), while the particle size of NSA 4 (DS: 0.0548)
  • the particle size (NSA 4Day 1: 149 ⁇ m) was significantly larger than that of OSA 4 (DS: 0.0427) (OSA 4 Day 1: 74.2 ⁇ m).
  • OSA 4 Day 1: 74.2 ⁇ m The possible reason is that NSA molecules have stronger hydrophobicity and are prone to agglutination under high substitution degree.
  • the optimal substitution degree of NSA to form Pickering emulsion is lower and that of OSA is higher.
  • the Pickering emulsion formed by NSA at low degree of substitution (DS ⁇ 0.03) was significantly better than that of OSA-substituted starch.
  • chemically modified starch products with a high degree of substitution are not suitable for the food industry due to safety reasons.
  • the FDA stipulates that the degree of substitution of OSA modified starch added in food shall not exceed 0.023.
  • NSA-modified starch it is conceivable that NSA-modified starch has stronger emulsifying ability and the formed Pickering emulsion is more stable under the same restriction of substitution degree. Therefore, it also has broader application prospects.
  • the particle size of the DDSA-stabilized emulsion was 136.9 ⁇ m, an increase of 132% compared with the first day, while the particle size of the NSA-modified emulsion was 180 ⁇ m on the tenth day, an increase of only 24% compared with the first day. Therefore, the stability of Pickering emulsion formed by NSA modified starch is obviously better than that of DDSA with the same degree of substitution.
  • NSA has stronger hydrophobicity than OSA, so it can achieve the same emulsification effect at a lower degree of substitution.
  • OSA has lower hydrophobicity and lower emulsification effect with the same degree of substitution, but the stability of Pickering emulsion formed by NSA modified starch is significantly better than that of DDSA with the same degree of substitution.
  • DDSA is solid at room temperature and its hydrophobicity is too strong, it is difficult for the esterification reaction to reach the most suitable degree of substitution range for emulsification, while NSA can easily obtain a high degree of substitution, so as to achieve the most suitable area for emulsification, which is also more conducive to application. and produce.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Dermatology (AREA)
  • Medicinal Preparation (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

壬烯基琥珀酸酐改性淀粉及其制备方法,以及包含壬烯基琥珀酸酐改性淀粉的皮克林乳液。该化学改性淀粉作为颗粒乳化剂具有优良的乳化性能和广泛的应用前景。

Description

壬烯基琥珀酸酐改性淀粉及其制备方法与应用 技术领域
本发明属于改性淀粉领域,具体涉及壬烯基琥珀酸酐改性淀粉及其制备方法与应用。
背景技术
皮克林乳液(Pickering emulsion)是一种由固体颗粒代替小分子表面活性剂稳定乳液体系的新型乳液,在食品、化妆品、生物医药、造纸、涂料及石油开采等领域有着广泛的应用前景。已有研究将淀粉用作皮克林乳液中的颗粒乳化剂,因其是一种天然的生物材料,来源广,价格低,可降解,生物相容性好。然而,天然淀粉含有较多的亲水性羟基,单独作为颗粒乳化剂时其乳化效果一般,且乳液稳定性较差。现有技术中已有通过疏水化修饰改性淀粉来改善淀粉的乳化性能的尝试。常见的淀粉改性剂有辛烯基琥珀酸酐(OSA)和十二烯基琥珀酸酐(DDSA),其中OSA改性淀粉有较多的研究。然而,仍然需要开发一种新的改性淀粉以克服OSA改性淀粉或DDSA改性淀粉的不足。
发明内容
为了克服OSA改性淀粉或DDSA改性淀粉的不足,本公开提供一种壬烯基琥珀酸酐改性淀粉。该改性淀粉具有比DDSA改性淀粉更适宜的取代度水平,并且可在同等取代度条件下具有比OSA改性淀粉更好的乳化性能。本公开另一方面提供壬烯基琥珀酸酐改性淀粉作为乳化剂的用途。本公开的又一方面提供包含壬烯基琥珀酸酐改性淀粉的皮克林乳液。本公开的壬烯基琥珀酸酐改性淀粉作为乳化剂用于皮克林乳液表现出优良的乳化性能。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作 简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为本公开实施例的未改性藜麦淀粉和不同取代度的NSA改性藜麦淀粉的SEM照片:a)未改性藜麦淀粉;b)NSA 1(DS 0.0080);c)NSA 2(DS 0.0175);d)NSA 3(DS 0.0359);e)NSA 4(DS 0.0548)。
图2为本公开实施例的未改性藜麦淀粉和不同取代度的NSA改性藜麦淀粉的FTIR谱图。
图3为本公开实施例的未改性藜麦淀粉和不同取代度的NSA改性藜麦淀粉的粒度分布。
图4为通过本公开实施例的未改性藜麦淀粉/NSA改性藜麦淀粉稳定的皮克林乳液中的液滴在储存期间的粒度分布:a)未改性藜麦淀粉;b)NSA 1(DS 0.0080);c)NSA 2(DS 0.0175);d)NSA 3(DS 0.0359);e)NSA 4(DS 0.0548)。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
应该理解的是,在不冲突的前提下,本发明的任一和所有实施方案都可与任一其它实施方案或多个其它实施方案中的技术特征进行组合以得到另外的实施方案。本发明包括这样的组合得到另外的实施方案。
本公开中提及的所有出版物和专利在此通过引用以它们的全部内容纳入本公开。如通过引用纳入的任何出版物和专利中使用的用途或术语与本公开中使用的用途或术语冲突,以本公开的用途和术语为准。
除非另有规定,本文使用的所有技术术语和科学术语具有要求保护主题所属领域的通常含义。倘若对于某术语存在多个定义,则以本文定义为准。
本文所用的章节标题仅用于组织文章的目的,而不应被解释为对所述主 题的限制。
除非另有说明,当公开或要求保护任何类型的范围(例如取代度)时,意图单独公开或要求保护该范围可有理由涵盖的各可能的数值,包括两个端点以及涵盖在其中的任何子范围。例如取代度为0.0050至0.023,应理解包括端点0.0050和0.023,以及子范围0.0050-0.010,0.0080-0.012,0.010-0.015,0.010-0.020,0.015-0.020,0.015-0.023等。
本公开中使用的“包括”、“含有”或者“包含”等类似的词语意指出现该词前面的要素涵盖出现在该词后面列举的要素及其等同,而不排除未记载的要素。本文所用的术语“含有”或“包括(包含)”可以是开放式、半封闭式和封闭式的。换言之,所述术语也包括“基本上由…组成”、或“由…组成”。
应该理解,在本公开中使用的单数形式(如“一种”)可包括复数指代,除非另有规定。
本公开所用试剂和原料是市售可得的或者可通过常规化学合成方法制得的。除非特别说明,在下面实施例中没有明确描述具体技术或条件的,本领域技术人员可以按照本领域内的常用的技术或条件或按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可通过市购到的常规产品。
用于改性的淀粉可以来源于禾谷类、块茎类、根类、豆类和果实类,例如大麦、小麦、藜麦、燕麦、荞麦、黑麦、高梁、玉米、马铃薯、甘薯、木薯、蚕豆、绿豆、豌豆、香蕉、芭蕉等。在一种实施方式中,优选细颗粒的淀粉用于NSA改性。在一种优选的实施方式中,用于改性的淀粉来源藜麦。藜麦淀粉颗粒是一种细颗粒淀粉,颗粒粒径多数分布在0.4-2.0微米,小于大多数的其它植物来源淀粉。与玉米淀粉和马铃薯淀粉等较大颗粒淀粉相比,采用的藜麦淀粉颗粒小,改性的藜麦淀粉作为颗粒乳化剂具有更强的乳液稳定能力。玉米淀粉(颗粒粒径约20微米)、马铃薯淀粉(颗粒粒径约50微米)等颗粒较大的淀粉可通过加工例如研磨过筛使得其颗粒变小,然后将其用于NSA改性。
本公开的NSA改性淀粉可通过淀粉与NSA的酯化反应制备,其反应式如下所示。
Figure PCTCN2021084993-appb-000001
在一种实施方案中,壬烯基琥珀酸酐改性淀粉的制备方法包括如下步骤:
1)将淀粉与水混合配成悬浊液;
2)在搅拌下将壬烯基琥珀酸酐缓慢加入步骤1)的悬浊液中;
3)加入碱或酸来控制悬浊液的pH;和
4)离心得到NSA改性淀粉。
在一种优选的实施方案中,壬烯基琥珀酸酐先与溶剂形成混合液再加入步骤1)的悬浊液中。溶剂例如选自水、乙醇、丙酮或者它们的混合物。
在一种更优选的实施方案中,所述溶剂是水,并且在壬烯基琥珀酸酐与溶剂形成的混合液中加入少量表面活性剂。表面活性剂例如选自十二烷基硫酸钠(SDS)、十六烷基硫酸钠、十八烷基硫酸钠或者它们的混合物。
在一种实施方案中,NSA改性淀粉制备方法如下:将淀粉与水配成悬浊液;在搅拌下向该悬浊液中缓慢加入NSA;在搅拌反应过程中用碱例如浓度为2-20重量%的NaOH调控pH为弱碱性(例如8.0-9.0)。反应一段时间(例如1-6h)之后,用稀酸例如浓度为2-10重量%的盐酸调节pH(例如6.5-7.0)以终止反应,离心回收得到NSA改性淀粉。上述搅拌反应过程可以在室温进行或者温水浴中进行,例如在30℃的温水浴中进行。
NSA改性淀粉的成功可通过FTIR得到验证。与RCOO-基团的不对称拉伸振动和羰基C=O基团的拉伸振动相关的两个峰证实了淀粉与NSA的酯化反应的成功。
取代度是指改性淀粉中发生酯化的羟基数量与改性淀粉的葡萄糖残基总数量的比值。通过在酯化反应中控制NSA与淀粉的质量比,可以调控改性淀粉的取代度。取代度可参照Bao,J.,Xing,J.,Phillips,D.L.,&Corke,H.(2003). Physical properties of octenyl succinic anhydride modified rice,wheat,and potato starches.Journal of Agricultural and Food Chemistry,51,2283–2287的方法测定。在一种实施方案中,NSA改性的淀粉的取代度不超过0.10。在一种优选实施方案中,NSA改性的淀粉的取代度不超过0.060。在一种更优选的实施方案中,NSA改性的淀粉的取代度不超过0.023。例如在一种实施方案中,NSA改性的淀粉的取代度为0.0050至0.023、0.0060至0.023、0.0070至0.023、0.0080至0.023、0.0090至0.023、0.010至0.023、0.011至0.023、0.012至0.023、0.013至0.023、0.014至0.023、0.015至0.023、0.016至0.023、0.017至0.023、0.018至0.023、0.019至0.023、0.020至0.023、0.021至0.023或者0.022至0.023。例如在另一种实施方案中,NSA改性的淀粉的取代度为0.0050至0.020、0.0060至0.020、0.0070至0.020、0.0080至0.020、0.0090至0.020、0.010至0.020、0.011至0.020、0.012至0.020、0.013至0.020、0.014至0.020、0.015至0.020、0.016至0.020、0.017至0.020、0.018至0.020或者0.019至0.020。例如在一种实施方案中,NSA改性的淀粉的取代度为0.010至0.020。例如在一种实施方案中,NSA改性的淀粉的取代度为0.015至0.023。
在一种实施方案中,淀粉NSA改性前后的质量矩平均直径或De Brouckere平均直径D[4,3]的变化不高于25%,例如不高于24%,不高于23%,不高于22%,不高于21%,不高于20%,不高于19%,不高于18%,不高于17%,不高于16%,不高于15%,不高于14%,不高于13%,不高于12%,不高于11%,不高于10%,不高于9%。通常,淀粉在NSA改性后的质量矩平均直径或De Brouckere平均直径D[4,3]将减小。
在一种实施方案中,NSA改性淀粉的De Brouckere平均直径D[4,3]小于等于5.0μm,例如小于等于4.0μm,小于等于3.0μm,小于等于2.5μm,小于等于2.0μm,小于等于1.8μm。在一种实施方案中,NSA改性淀粉的De Brouckere平均直径D[4,3]大于等于0.10μm,例如大于等于0.20μm,大于等于0.30μm,大于等于0.40μm,大于等于0.50μm,大于等于0.60μm,大于等于0.70μm,大于等于0.80μm,大于等于0.90μm,大于等于1.0μm,大于等于1.1μm,大于等于1.2μm,大于等于1.3μm,大于等于1.4μm,大于等于1.5μm,大于等于1.6μm,大于等于1.7μm。在一种实施方案中,NSA改性淀粉的De Brouckere平均直径D[4,3]为大于等于0.10μm且小于等于3.0 μm。在一种实施方案中,NSA改性淀粉的De Brouckere平均直径D[4,3]为大于等于0.50μm且小于等于2.0μm。
本公开的NSA改性淀粉在淀粉中引入了亲水性的羧酸基团和疏水性的烯基长链。据信在制备乳液时亲水的羧酸基团会伸向水相中,疏水的壬烯基长链会伸入油相中,而复杂的多糖长链会在油水界面上展开,形成一层连续、致密的不易破损的界面膜。本公开的NSA改性淀粉较未改性淀粉的乳化性能得到了显著提高。本公开的NSA改性淀粉可用作颗粒乳化剂,在适宜的取代度下用于食品、药物或化妆品的乳化。当然,本公开的NSA改性淀粉作为颗粒乳化剂也可能用于其它领域例如涂料、石油开采、造纸等领域。
本公开的NSA改性淀粉可作为颗粒乳化剂用于制备皮克林乳液。在一种实施方案中,本公开提供一种O/W皮克林乳液,其包含作为颗粒乳化剂的上述NSA改性淀粉。在另一种实施方案中,本公开提供一种W/O皮克林乳液,其包含作为颗粒乳化剂的上述NSA改性淀粉。
O/W皮克林乳液可通过以下方法制备:
1)将待处理水相与上述NSA改性淀粉用高速均质机混合,转速例如为5000-25000rpm;
2)将油相缓慢加入水相中,继续高速剪切均化得到乳液。
W/O皮克林乳液可通过以下方法制备:
1)将待处理油相与上述NSA改性淀粉用高速均质机混合,转速例如为5000-25000rpm;
2)将水相缓慢加入油相中,继续高速剪切均化得到乳液。
本公开的壬烯基琥珀酸酐改性淀粉作为颗粒乳化剂用于皮克林乳液表现出优良的乳化性能。
下面参考具体实施例,对本发明进行描述,需要说明的是,这些实施例仅是描述性的,而不以任何方式限制本发明。
(2-壬烯-1-基)琥珀酸酐(NSA,纯度≥85%)购自Sigma-Aldrich Chemical Co.(美国密苏里州圣路易斯)。所有其他的化学品均为分析纯。
以下以藜麦淀粉为例说明NSA改性淀粉及其应用。
用于改性的藜麦淀粉
采用Li,G.,Wang,S.,&Zhu,F.(2016).Physicochemical properties of quinoa starch.Carbohydrate Polymers,137,328–338表1中的S1藜麦淀粉。从藜麦种子中分离出藜麦淀粉(品牌:Fresh Produce Be Fresh Quinoa;Countdown超市;新西兰奥克兰)。通过伴刀豆凝集素A(Concanavalin A)沉淀法估算,藜麦淀粉的直链淀粉含量为10.9%。将制备的藜麦淀粉用于NSA改性。
NSA改性藜麦淀粉的制备:
在三口瓶中将未改性藜麦淀粉(25g,干基)与150mL去离子水混合形成悬浮液。另将NSA与水混合至20%(w/v),加入少量表面活性剂(约50mg的SDS)后剧烈震荡形成乳液,然后在持续搅拌下将该乳液逐滴加入三口瓶中。用稀NaOH溶液将悬浮液的pH值保持在8.0-9.0的范围内。反应温度保持在25℃。在pH变得稳定之后,用稀HCl溶液将悬浮液的pH调节至6.5-7.0。通过以4,000×g离心20分钟回收改性的藜麦淀粉。淀粉饼用乙醇洗涤一次,再用丙酮洗涤两次,然后在40℃的空气烘箱中干燥48小时,得到所需化学改性淀粉。
实施例NSA1
25克藜麦淀粉与0.50克NSA按照上述方案制备制成取代度为0.0080的改性藜麦淀粉
实施例NSA2
25克藜麦淀粉与1.0克NSA按照上述方案制备制成取代度为0.0175的改性藜麦淀粉
实施例NSA3
25克藜麦淀粉与2.0克NSA按照上述方案制备制成取代度为0.0359的改性藜麦淀粉
实施例NSA4
25克藜麦淀粉与3.0克NSA按照上述方案制备制成取代度为0.0548的改性藜麦淀粉
取代度(DS)的测定
取代度(DS)的确定在Bao,J.,Xing,J.,Phillips,D.L.,&Corke,H.(2003).Physical properties of octenyl succinic anhydride modified rice,wheat,and potato starches.Journal of Agricultural and Food Chemistry,51,2283–2287的基础上作了一些修改。简而言之,将改性的和未改性淀粉(2.0g,干基(dry basis))悬浮在锥形瓶中的50mL蒸馏水中。淀粉在沸水浴中糊化30分钟,然后在室温下搅拌冷却。将NaOH溶液(25mL,0.50M)加入到该锥形瓶中,然后保持振荡过夜。所得的悬浮液以酚酞为指示剂,用HCl溶液(0.34M)滴定至pH为7。记录未改性和化学改性的淀粉所消耗的HCl的量,并根据Wurzburg,O.B.(1964)Starch derivatives and modification.In Methods in Carbohydrate Chemistry,IV;Whistler,R.L,Ed.;Academic Press:New York,pp 286–288计算DS值。
NSA:
Figure PCTCN2021084993-appb-000002
Figure PCTCN2021084993-appb-000003
OSA:
Figure PCTCN2021084993-appb-000004
Figure PCTCN2021084993-appb-000005
DDSA:
Figure PCTCN2021084993-appb-000006
Figure PCTCN2021084993-appb-000007
其中,V 空白和V 样品分别是滴定空白样品(未改性的淀粉)和化学改性样品所消耗的HCl体积(mL);M是HCl的摩尔浓度(mol/L);W是样品重量(克)。
藜麦淀粉的小颗粒(约2μm)可使得改性剂与淀粉之间产生高的接触面积,从而导致高取代度。根据美国食品药品监督管理局(FDA)的规定,食品中OSA的最高取代度允许量为3%(淀粉中w/w,取代度为约0.023)。在实施例中,两个NSA样品(NSA 1和2)的DS均在该标准之内,而其他两个样品(NSA 3和4)的较高DS可用于非食品应用。
与上述NSA改性藜麦淀粉的制备方法类似地制备了OSA改性藜麦淀粉和DDSA改性藜麦淀粉。分别按上述取代度测定方法测量了它们的取代度,其中DDSA改性藜麦淀粉的取代度较低,仅为0.0023至0.0095。DDSA改性的取代度较低,其原因可能是DDSA的烯基链较长,在水性环境中的溶解度较低;并且DDSA在室温下呈固体形式,这些特性可能会限制DDSA与淀粉颗粒之间的接触,从而导致取代度降低。
形态学
未改性和NSA改性的藜麦淀粉的扫描电子显微镜(SEM)图像是由Hitachi S-3400N扫描电子显微镜(日本东京)测定的。图像是在5kV的加速电压下获得的。放大倍率为10.0k。
图1给出了实施例样品的扫描电子显微镜图像,其中a为未改性藜麦淀粉颗粒;b为NSA改性藜麦淀粉,DS为0.0080;c为NSA改性藜麦淀粉,DS为0.0175;d为NSA改性藜麦淀粉,DS为0.0359;e为NSA改性藜麦淀粉,DS为0.0548。
FTIR分析
利用Bruker Vertex 70光谱仪(Bruker Optik GmbH,Ettlingen,Germany),在400cm -1至4000cm -1的波长范围内测量了傅立叶变换红外(FTIR)光谱。空气光谱用作空白,每个样品光谱在64次独立扫描中取平均值。
图2显示了实施例样品的未改性和NSA改性藜麦淀粉的FITR分析结果。淀粉NSA改性后在1566cm -1和1724cm -1附近开始出现两个峰,这两个峰的峰面积随取代度的增加而增加。1566cm -1附近的峰与RCOO-基团的不对称拉伸振动有关,这表明存在酯化和单酯的形成。1724cm -1处的峰与羰基C=O基团的拉伸振动有关。这两个峰证实了淀粉与NSA的酯化成功。
粒度分布
粒度分布是通过激光散射法确定的。采用如Li,G.,&Zhu,F.(2017).Amylopectin molecular structure in relation to physicochemical properties of quinoa starch.Carbohydrate Polymers,164,396–402中所述步骤,通过Mastersizer 2000粒度分析仪(Malvern Instruments,Worcestershire,UK)测量未改性和NSA改性藜麦淀粉的粒度分布。淀粉悬浮液(1%,w/w)以300rpm混合过夜,然后缓慢加至装满水的样品分散装置中,直至光遮蔽范围在10%至20%之间。分散单元的搅拌速度保持在2100rpm。颗粒的折射率,颗粒的吸收指数和分散剂的折射率分别定义为1.5、0和1.33。数均直径D[n,0.5](基于数字的尺寸分布的中间位置的直径),质量矩平均直径或De Brouckere平均直径D[4,3],并记录表面积矩平均直径或Sauter平均直径D[3,2]。还计算了跨度(分布宽度的度量),均匀性(与中位数的偏离的度量)和比表面积(SSA,单位重量的表面积)。
表1:NSA改性藜麦淀粉的取代度和颗粒大小
Figure PCTCN2021084993-appb-000008
Figure PCTCN2021084993-appb-000009
同一列中带有不同字母的值存在显着差异(p<0.05)
图3给出了未改性藜麦淀粉和NSA改性藜麦淀粉的粒度分布。未改性藜麦淀粉的D[4,3]为1.96μm,这与先前的研究和通过SEM获得的结果一致。随着取代度的增加,藜麦淀粉颗粒的大小先减小然后增加(表1)。藜麦淀粉在其未改性状态下具有颗粒状聚集体。由于制备过程的某些淀粉颗粒聚集,可能会高估粒径值。NSA对淀粉进行改性以使颗粒表面带电,颗粒表面上的相同电荷促进了颗粒的分离,从而降低了估计的平均粒径。取代度最高的颗粒(NSA 4)的尺寸增加可能是由于NSA引起的淀粉颗粒结构破坏,从而促进了水渗入内部颗粒结构并增大了尺寸。表面糊化可能导致颗粒溶胀和融合,这可能是粒径增加的另一个原因。
皮克林乳液的制备
将0.5克未改性藜麦淀粉或NSA改性藜麦淀粉悬浮在25mL的0.20M NaCl水溶液中。将该浆料用T25数字式Ultra-Turrax(IKA Works,Inc.,Wilmington,USA)以10,000rpm混合1分钟。在混合过程中,将10mL含有苏丹红染料的米糠油缓慢加入到浆料中。继续均质2分钟后即制成O/W皮克林乳液。乳液的外观,粒径分析,乳化性能及稳定性测试在制备后第1、2、4、6和10天分别进行。
乳液的液滴大小和稳定性
在第1天(制备乳液的第一天),第2、4、6和10天拍摄皮克林乳液的照片。记录总乳液和水相的高度,并使用以下公式计算乳化指数(creaming index,CI):
Figure PCTCN2021084993-appb-000010
其中H S指浆液相(serum phase)的高度,H E指乳液的总高度。
表2:未改性和NSA改性的藜麦淀粉稳定的皮克林乳液在储存期间的乳化指数
样品 第1天(%) 第2天(%) 第4天(%) 第6天(%) 第10天(%)
未改性 71.1±3.6a 65.0±1.2a 65.7±1.9a 66.2±0.8a 69.5±1.5a
NSA 1 64.1±4.6a 61.2±2.2a 61.0±2.2b 61.2±1.3b 61.3±2.6b
NSA 2 47.4±2.1b 46.7±2.9b 46.7±0.1d 46.9±3.4d 48.1±3.7c
NSA 3 36.2±1.5c 38.5±0.6c 38.9±1.3e 39.3±1.0e 37.9±0.7d
NSA 4 46.4±2.2b 48.7±2.7b 51.9±1.6c 54.9±1.5c 50.3±2.4c
同一列中带有不同字母的值存在显着差异(p<0.05)
图4为通过本公开实施例的未改性藜麦淀粉/NSA改性藜麦淀粉稳定的皮克林乳液中的液滴在储存期间的粒度分布:a)未改性藜麦淀粉;b)NSA 1(DS 0.0080);c)NSA 2(DS 0.0175);d)NSA 3(DS 0.0359);e)NSA 4(DS 0.0548)。
采用与上述测量淀粉悬浮液类似的方法测量未改性藜麦淀粉/NSA改性藜麦淀粉稳定的皮克林乳液的质量矩平均直径(D[4,3])。其结果如下:
表3:未改性和NSA改性的藜麦淀粉稳定的皮克林乳液在储存期间的D[4,3]
样品 第1天(μm) 第2天(μm) 第4天(μm) 第6天(μm) 第10天(μm)
未改性 224±7a 276±3a 283±10a 268±4a 253±18a
NSA 1 145±6b 160±5b 155±9b 169±5b 180±10b
NSA 2 126±9c 121±8c 129±3c 126±4c 133±4c
NSA 3 119±1c 127±7c 122±2c 123±2c 123±3c
NSA 4 149±6b 154±7b 156±12b 163±10b 175±14b
同一列中带有不同字母的值存在显着差异(p<0.05)
OSA、NSA、DDSA改性淀粉的比较研究
研究发现NSA改性在低取代度的时候乳化性能明显好于OSA,后者在高取代度的时候乳化性能好于NSA改性。
在低取代度时NSA改性较OSA有明显的优势。OSA 1(DS:0.0113)的取代度高于NSA 1(DS:0.0080),然而,OSA改性淀粉形成的皮克林乳液的粒径(Day 1:167.4μm)却大于NSA改性淀粉形成的乳液粒径(Day 1:145μm)。后者的稳定性也较好(NSA Day 10:180μm;OSA Day 10:239.1μm)。OSA 2 (DS:0.0200)相比NSA 2(DS:0.0175)也有同样的趋势。以上结果的可能原因是NSA的疏水性比OSA更强。
在高取代度时OSA改性的乳液性能优于NSA。NSA 3(DS:0.0359)改性形成的皮克林乳液粒径与OSA 3(DS:0.0283)接近(NSA 3Day 1:119μm;OSA 3Day 1:124.3μm),而NSA 4(DS:0.0548)的粒径(NSA 4Day 1:149μm)明显大于OSA 4(DS:0.0427)(OSA 4Day 1:74.2μm)。可能的原因是NSA分子具有更强的疏水性,在高取代度下容易发生凝集。
综上所述,NSA形成皮克林乳液的最适取代度较低而OSA的最适取代度较高。NSA在低取代度下(DS<0.03)形成的皮克林乳液明显好于OSA取代的淀粉。一直以来,高取代度的化学改性淀粉制品因为安全原因不适用于食品行业,例如FDA规定食品中添加的OSA改性淀粉取代度不得超过0.023。虽然NSA改性的淀粉尚未有任何标准可循,但可以想见在同样的取代度限制下NSA改性的淀粉具有更强的乳化能力,形成的皮克林乳液也更为稳定。因此也有更为广阔的应用前景。
比较DDSA改性淀粉(取代度0.0077)与NSA改性淀粉(取代度0.0080)发现:DDSA改性淀粉稳定的乳液在刚制备完之后相比NSA具有更小的尺寸(DDSA,Day 1:58.9μm;NSA,Day 1:145μm)然而NSA改性的稳定性明显好于DDSA。在第10天DDSA稳定的乳液粒径为136.9μm,较第一天增大了132%,而NSA改性的乳液第10天粒径为180μm,较第一天仅增大了24%。因此NSA改性淀粉形成的皮克林乳液稳定性明显好于同取代度的DDSA。
综上所述,NSA相比OSA有更强的疏水性,因而可以在较低的取代度下达到同样的乳化效果。NSA相比DDSA虽然疏水性下降,同样的取代度乳化效果较低,但是NSA改性淀粉形成的皮克林乳液稳定性明显好于同取代度的DDSA。另外,因为DDSA常温下为固体并且疏水性太强,酯化反应难以达到最适合乳化的取代度范围,而NSA可以较容易的获得高取代度,从而达到最适合乳化的区域,也更利于应用和生产。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。

Claims (17)

  1. 一种壬烯基琥珀酸酐改性淀粉,其中淀粉的取代度不超过0.10。
  2. 根据权利要求1所述的壬烯基琥珀酸酐改性淀粉,其中所述取代度不超过0.06。
  3. 根据权利要求2所述的壬烯基琥珀酸酐改性淀粉,其中所述取代度不超过0.023。
  4. 根据权利要求3所述的壬烯基琥珀酸酐改性淀粉,其中所述取代度为0.0050-0.020。
  5. 根据权利要求1-4任一项所述的壬烯基琥珀酸酐改性淀粉,其De Brouckere平均直径D[4,3]小于等于5.0μm。
  6. 根据权利要求5所述的壬烯基琥珀酸酐改性淀粉,其De Brouckere平均直径D[4,3]小于等于3.0μm。
  7. 根据权利要求6所述的壬烯基琥珀酸酐改性淀粉,其De Brouckere平均直径D[4,3]大于等于0.50μm且小于等于2.0μm。
  8. 根据权利要求1-7任一项所述的壬烯基琥珀酸酐改性淀粉,所述淀粉来源于大麦、小麦、藜麦、燕麦、高梁、玉米、马铃薯、甘薯、木薯、豌豆、香蕉。
  9. 根据权利要求8所述的壬烯基琥珀酸酐改性淀粉,所述淀粉来源于藜麦。
  10. 根据权利要求1-9任一项所述的壬烯基琥珀酸酐改性淀粉作为乳化剂的应用。
  11. 根据权利要求10所述的应用,其作为乳化剂用于食品、化妆品或药品中。
  12. 一种皮克林乳液,其包含权利要求1-9任一项所述的壬烯基琥珀酸酐改性淀粉。
  13. 一种制备权利要求1的壬烯基琥珀酸酐改性淀粉的方法,其包括:
    1)将淀粉与水混合配成悬浊液;
    2)在搅拌下将壬烯基琥珀酸酐缓慢加入步骤1)的悬浊液中;
    3)加入碱或酸来控制悬浊液的pH;和
    4)离心得到NSA改性淀粉。
  14. 根据权利要求13所述的方法,其中壬烯基琥珀酸酐先与溶剂形成混合液再加入步骤1)的悬浊液中。
  15. 根据权利要求14所述的方法,其中所述溶剂选自水、乙醇、丙酮或者它们的混合物。
  16. 根据权利要求15所述的方法,其中所述溶剂是水,并且在壬烯基琥珀酸酐与溶剂形成的混合液中加入表面活性剂。
  17. 根据权利要求16所述的方法,其中所述表面活性剂选自十二烷基硫酸钠、十六烷基硫酸钠、十八烷基硫酸钠或者它们的混合物。
PCT/CN2021/084993 2021-04-01 2021-04-01 壬烯基琥珀酸酐改性淀粉及其制备方法与应用 WO2022205328A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/084993 WO2022205328A1 (zh) 2021-04-01 2021-04-01 壬烯基琥珀酸酐改性淀粉及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/084993 WO2022205328A1 (zh) 2021-04-01 2021-04-01 壬烯基琥珀酸酐改性淀粉及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2022205328A1 true WO2022205328A1 (zh) 2022-10-06

Family

ID=83457842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084993 WO2022205328A1 (zh) 2021-04-01 2021-04-01 壬烯基琥珀酸酐改性淀粉及其制备方法与应用

Country Status (1)

Country Link
WO (1) WO2022205328A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB691364A (en) * 1949-02-18 1953-05-13 Nat Starch Products Inc Polysaccharide derivatives of substituted dicarboxylic acids
GB717901A (en) * 1949-12-14 1954-11-03 Nat Starch Products Inc Free-flowing starch derivative
US3691110A (en) * 1969-06-11 1972-09-12 Asahi Chemical Ind Antistatic treating agent from polyepoxide-polyamine reaction
US4061610A (en) * 1976-05-19 1977-12-06 The Sherwin-Williams Company Coating compositions containing starch half-esters and process for preparing same
CN1968683A (zh) * 2004-04-14 2007-05-23 维克特拉有限公司 包含两亲性淀粉的药用组合物
CN102134282A (zh) * 2011-01-07 2011-07-27 华南理工大学 羟丙基和烯基琥珀酸复合改性淀粉及其制法和应用
WO2020148579A1 (en) * 2019-01-17 2020-07-23 Glasing Joe Emulsions and methods of making the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB691364A (en) * 1949-02-18 1953-05-13 Nat Starch Products Inc Polysaccharide derivatives of substituted dicarboxylic acids
GB717901A (en) * 1949-12-14 1954-11-03 Nat Starch Products Inc Free-flowing starch derivative
US3691110A (en) * 1969-06-11 1972-09-12 Asahi Chemical Ind Antistatic treating agent from polyepoxide-polyamine reaction
US4061610A (en) * 1976-05-19 1977-12-06 The Sherwin-Williams Company Coating compositions containing starch half-esters and process for preparing same
CN1968683A (zh) * 2004-04-14 2007-05-23 维克特拉有限公司 包含两亲性淀粉的药用组合物
CN102134282A (zh) * 2011-01-07 2011-07-27 华南理工大学 羟丙基和烯基琥珀酸复合改性淀粉及其制法和应用
WO2020148579A1 (en) * 2019-01-17 2020-07-23 Glasing Joe Emulsions and methods of making the same

Similar Documents

Publication Publication Date Title
Tang et al. Pickering emulsions stabilized by hydrophobically modified nanocellulose containing various structural characteristics
Simsek et al. Chemical composition, digestibility and emulsification properties of octenyl succinic esters of various starches
Bhosale et al. Process optimization for the synthesis of octenyl succinyl derivative of waxy corn and amaranth starches
Pan et al. Preparation and characterization of emulsion stabilized by octenyl succinic anhydride-modified dextrin for improving storage stability and curcumin encapsulation
Liu et al. Pickering emulsions stabilized by compound modified areca taro (Colocasia esculenta (L.) Schott) starch with ball-milling and OSA
García-Tejeda et al. Synthesis and characterization of rice starch laurate as food-grade emulsifier for canola oil-in-water emulsions
Ye et al. Structure and physicochemical properties for modified starch-based nanoparticle from different maize varieties
Zhang et al. Impact of octenyl succinic anhydride (OSA) esterification on microstructure and physicochemical properties of sorghum starch
EP1365773B1 (en) Water-soluble esterified hydrocolloids
CN110003498B (zh) 一种可食用型的皮克林乳液及其制备方法
Wang et al. Stabilization of Pickering emulsions using starch nanocrystals treated with alkaline solution
Nain et al. Development, characterization, and biocompatibility of zinc oxide coupled starch nanocomposites from different botanical sources
García-Gurrola et al. Synthesis and succinylation of starch nanoparticles by means of a single step using sonochemical energy
Chen et al. Improving emulsification performance of waxy maize starch by esterification combined with pulsed electric field
Lopes et al. Effect of chitosan structure modification and complexation to whey protein isolate on oil/water interface stabilization
Jia et al. Fabrication and characterization of Pickering high internal phase emulsions stabilized by debranched starch-capric acid complex nanoparticles
Azfaralariff et al. Sago starch nanocrystal-stabilized Pickering emulsions: Stability and rheological behavior
Dilbaghi et al. Synthesis and characterization of novel amphiphilic tamarind seed xyloglucan-octenyl succinic anhydride conjugate
Ren et al. Pickering emulsion: A multi-scale stabilization mechanism based on modified lotus root starch/xanthan gum nanoparticles
WO2022205328A1 (zh) 壬烯基琥珀酸酐改性淀粉及其制备方法与应用
Pourramezan et al. Preparation of octenyl succinylated kappa-carrageenan; reaction optimization, characterization, and application in low-fat vegan mayonnaise
Shah et al. A two-tier modified starch-oxidation followed by n-octenyl succinylation as gum Arabic substitute: Process details and characterization
Wang et al. Characterization of Pickering emulsion by SCFAs-modified debranched starch and a potent for delivering encapsulated bioactive compound
Zhong et al. Shape and size-controlled starch nanoparticles prepared by self-assembly in natural deep eutectic solvents: Effect and mechanism
Liu et al. Comparison of cellulose and chitin nanofibers on Pickering emulsion stability—Investigation of size and surface wettability contribution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21933986

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18553615

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE