WO2022205277A1 - Wireless communication method, base station, and user equipment - Google Patents

Wireless communication method, base station, and user equipment Download PDF

Info

Publication number
WO2022205277A1
WO2022205277A1 PCT/CN2021/084844 CN2021084844W WO2022205277A1 WO 2022205277 A1 WO2022205277 A1 WO 2022205277A1 CN 2021084844 W CN2021084844 W CN 2021084844W WO 2022205277 A1 WO2022205277 A1 WO 2022205277A1
Authority
WO
WIPO (PCT)
Prior art keywords
ptp
ptm
leg
transmission
bearer
Prior art date
Application number
PCT/CN2021/084844
Other languages
French (fr)
Inventor
Xin Zhang
Jia SHENG
Original Assignee
Tcl Communication(Ningbo)Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl Communication(Ningbo)Co., Ltd. filed Critical Tcl Communication(Ningbo)Co., Ltd.
Priority to PCT/CN2021/084844 priority Critical patent/WO2022205277A1/en
Priority to CN202180094612.XA priority patent/CN116889081A/en
Publication of WO2022205277A1 publication Critical patent/WO2022205277A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/40Connection management for selective distribution or broadcast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/22Manipulation of transport tunnels

Definitions

  • the present disclosure relates to the field of communication systems, and more particularly, to a wireless communication method, a base station, and a user equipment.
  • Wireless communication systems and networks have developed towards being a broadband and mobile system.
  • a user equipment UE is connected by a wireless link to a radio access network (RAN) .
  • the RAN comprises a set of base stations (BSs) which provide wireless links to the UEs located in cells covered by the base station, and an interface to a core network (CN) which provides overall network control.
  • BSs base stations
  • CN core network
  • the RAN and CN each conduct respective functions in relation to the overall network.
  • LTE Long Term Evolution
  • E-UTRAN Evolved Universal Mobile Telecommunication System Territorial Radio Access Network
  • 5G or NR new radio
  • RAN#86 a new work item on the support of NR multicast and broadcast was approved.
  • MBS 5G multicast and broadcast service
  • PTM point-to-multipoint
  • PTP point-to-point
  • a UE may be configured with two radio link control-unacknowledged mode (RLC-UM) entities for a multicast session.
  • RLC-UM radio link control-unacknowledged mode
  • One RLC entity is used to receive data using PTP transmission, and the other RLC entity is used to receive data using PTM transmission.
  • a packet data convergence protocol acts as a deciding anchor for switching the PTP transmission and the PTM transmission dynamically.
  • a common PDCP entity is used for two RLC entities including a PTM RLC bearer and a PTP RLC bearer.
  • an MBS radio bearer i.e., MRB
  • MRB can be associated with a PTM leg only, a PTP leg only, or both.
  • separate PDCP entities are used for two RLC entities including a PTM RLC bearer and a PTP RLC bearer. That is, an MBS session can be configured with separate resource blocks (RBs) (i.e., separate PDCP entities) .
  • RBs resource blocks
  • This alternative does not support PDCP reordering/sequence (SN) synchronization duplicate detection between RBs (i.e., between PDCP entities) .
  • SDAP service data adaptation protocol
  • a method of how to configure PTM transmission and PTP transmission is not disclosed currently. Moreover, lossless switching between the PTM transmission and the PTP transmission is not disclosed, either.
  • An object of the present disclosure is to propose a wireless communication method, a base station, and a user equipment.
  • a first aspect of the present disclosure provides a wireless communication method executable in a base station (BS) , including: establishing a multicast/broadcast service radio bearer (MRB) corresponding to a multicast/broadcast service (MBS) ; configuring at least one of a point-to-multipoint (PTM) leg and a point-to-point (PTP) leg; and executing transmission of the MBS according to the at least one of the PTM leg and the PTP leg.
  • MMBS multicast/broadcast service radio bearer
  • PTM point-to-multipoint
  • PTP point-to-point
  • a second aspect of the present disclosure provides a wireless communication method executable in a base station (BS) , including: establishing radio bearers (RB) corresponding to a multicast/broadcast service (MBS) ; configuring at least one of a point-to-multipoint (PTM) bearer and a point-to-point (PTP) bearer; and executing transmission of the MBS according to the at least one of the PTM bearer and the PTP bearer.
  • BS base station
  • RB radio bearers
  • MBS multicast/broadcast service
  • PTM point-to-multipoint
  • PTP point-to-point
  • a third aspect of the present disclosure provides a wireless communication method executable in a base station (BS) , including: deciding to switch between a PTM transmission and a PTP transmission; sending at least one indication to a user equipment (UE) to request the UE to send at least one packet data convergence protocol status report (PDCP SR) via radio resource control (RRC) signaling/MAC control element (MAC CE) ; receiving the at least one PDCP SR from the UE; and performing to switch between the PTM transmission and the PTP transmission.
  • BS base station
  • a fourth aspect of the present disclosure provides a wireless communication method executable in a base station (BS) , including: deciding to switch between a PTM transmission and a PTP transmission; performing at least one of PTM duplication and PTP duplication; transmitting packets of the at least one of the PTM duplication and the PTP duplication to a UE via the PTM transmission and the PTP transmission; stopping performing the at least one of the PTM duplication and the PTP duplication; and performing to switch between the PTM transmission and the PTP transmission.
  • BS base station
  • a fifth aspect of the present disclosure provides a wireless communication method executable in a base station (BS) , including: deciding to switch between a PTM transmission and a PTP transmission; performing at least one of PTM duplication and PTP duplication; transmitting packets of the at least one of the PTM duplication and the PTP duplication to a UE via the PTM transmission and the PTP transmission; performing to switch between the PTM transmission and the PTP transmission; and stopping performing the at least one of the PTM duplication and the PTP duplication.
  • BS base station
  • a sixth aspect of the present disclosure provides a wireless communication method executable in a user equipment (UE) , including: receiving at least one data packet of a multicast/broadcast service (MBS) according to configuration of a point-to-multipoint (PTM) transmission and a point-to-point (PTP) transmission.
  • MMS multicast/broadcast service
  • PTM point-to-multipoint
  • PTP point-to-point
  • a seventh aspect of the present disclosure provides a base station including a transceiver and a processor connected with the transceiver.
  • the processor is configured to execute the following steps including: establishing a multicast/broadcast service radio bearer (MRB) corresponding to a multicast/broadcast service (MBS) ; configuring at least one of a point-to-multipoint (PTM) leg and a point-to-point (PTP) leg; and executing transmission of the MBS according to the at least one of the PTM leg and the PTP leg.
  • MMBS multicast/broadcast service radio bearer
  • PTM point-to-multipoint
  • PTP point-to-point
  • An eighth aspect of the present disclosure provides a base station including a transceiver and a processor connected with the transceiver.
  • the processor is configured to execute the following steps including: establishing radio bearers (RB) corresponding to a multicast/broadcast service (MBS) ; configuring at least one of a point-to-multipoint (PTM) bearer and a point-to-point (PTP) bearer; and executing transmission of the MBS according to the at least one of the PTM bearer and the PTP bearer.
  • RB radio bearers
  • MBS multicast/broadcast service
  • PTM point-to-multipoint
  • PTP point-to-point
  • a ninth aspect of the present disclosure provides a base station including a transceiver and a processor connected with the transceiver.
  • the processor is configured to execute the following steps including: deciding to switch between a PTM transmission and a PTP transmission; sending at least one indication to a user equipment (UE) to request the UE to send at least one packet data convergence protocol status report (PDCP SR) via radio resource control (RRC) signaling/MAC control element (MAC CE) ; receiving the at least one PDCP SR from the UE; and performing to switch between the PTM transmission and the PTP transmission.
  • UE user equipment
  • RRC radio resource control
  • MAC CE radio resource control
  • a tenth aspect of the present disclosure provides a base station including a transceiver and a processor connected with the transceiver.
  • the processor is configured to execute the following steps including: deciding to switch between a PTM transmission and a PTP transmission; performing at least one of PTM duplication and PTP duplication; transmitting packets of the at least one of the PTM duplication and the PTP duplication to a UE via the PTM transmission and the PTP transmission; stopping performing the at least one of the PTM duplication and the PTP duplication; and performing to switch between the PTM transmission and the PTP transmission.
  • An eleventh aspect of the present disclosure provides a base station including a transceiver and a processor connected with the transceiver.
  • the processor is configured to execute the following steps including: deciding to switch between a PTM transmission and a PTP transmission; performing at least one of PTM duplication and PTP duplication; transmitting packets of the at least one of the PTM duplication and the PTP duplication to a UE via the PTM transmission and the PTP transmission; performing to switch between the PTM transmission and the PTP transmission; and stopping performing the at least one of the PTM duplication and the PTP duplication.
  • a twelfth aspect of the present disclosure provides a user equipment including a transceiver and a processor connected with the transceiver.
  • the processor is configured to execute the following steps including: receiving at least one data packet of a multicast/broadcast service (MBS) according to configuration of a point-to-multipoint (PTM) transmission and a point-to-point (PTP) transmission.
  • MMS multicast/broadcast service
  • PTM point-to-multipoint
  • PTP point-to-point
  • the disclosed method may be implemented in a chip.
  • the chip may include a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the disclosed method.
  • the disclosed method may be programmed as computer executable instructions stored in non-transitory computer readable medium.
  • the non-transitory computer readable medium when loaded to a computer, directs a processor of the computer to execute the disclosed method.
  • the non-transitory computer readable medium may include at least one from a group consisting of: a hard disk, a CD-ROM, an optical storage device, a magnetic storage device, a Read Only Memory, a Programmable Read Only Memory, an Erasable Programmable Read Only Memory, EPROM, an Electrically Erasable Programmable Read Only Memory and a Flash memory.
  • the disclosed method may be programmed as computer program product that causes a computer to execute the disclosed method.
  • the disclosed method may be programmed as computer program that causes a computer to execute the disclosed method.
  • the embodiments of the present disclosure provide configurations of PTM transmission and PTP transmission. Furthermore, the embodiments of the present disclosure provide lossless switching between the PTM transmission and the PTP transmission.
  • FIG. 1 is a schematic diagram showing a telecommunication system.
  • FIG. 2 is a schematic diagram showing a CRAN with a baseband unit pool, remote radio heads, and UEs.
  • FIG. 3 is a schematic diagram showing a wireless communication method executable in a base station according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram showing a split-bearer option according to the embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram showing a wireless communication method executable in a base station according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram showing a multiple bearer option according to the embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram showing a wireless communication method according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram showing duplication in the split-bearer option in FIG. 4.
  • FIG. 9 is a schematic diagram showing duplication in the multiple bearer option in FIG. 6.
  • FIG. 10 is a schematic diagram showing a wireless communication method according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram showing a wireless communication method according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram showing a wireless communication method according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram showing a wireless communication method according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic diagram showing a wireless communication method according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic diagram showing a wireless communication method according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic diagram showing a wireless communication method executable in a user equipment according to an embodiment of the present disclosure.
  • FIG. 17 is a block diagram of a system for wireless communication according to an embodiment of the present disclosure.
  • a telecommunication system including a group 100a of a plurality of UEs, a base station (BS) 200a, and a network entity device 300 executes the disclosed method according to an embodiment of the present disclosure.
  • the group 100a of a plurality of UEs may include a UE 10a, a UE 10b, and other UEs.
  • FIG. 1 is shown for illustrative not limiting, and the system may include more UEs, BSs, and CN entities. Connections between devices and device components are shown as lines and arrows in the figure. Connections between devices may be realized by wireless connections. Connections between device components may be realized by wirelines, buses, traces, cables or optical fabrics.
  • the UE 10a may include a processor 11a, a memory 12a, and a transceiver 13a.
  • the UE 10b may include a processor 11b, a memory 12b, and a transceiver 13b.
  • the base station 200a may include a baseband unit (BBU) 204a.
  • the base band unit 204a may include a processor 201a, a memory 202a, and a transceiver 203a.
  • the network entity device 300 may include a processor 301, a memory 302, and a transceiver 303.
  • Each of the processors 11a, 11b, 201a, and 301 may be configured to implement proposed functions, procedures and/or methods described in the description.
  • Layers of radio interface protocol may be implemented in the processors 11a, 11b, 201a, and 301.
  • Each of the memories 12a, 12b, 202a, and 302 operatively stores a variety of programs and information to operate a connected processor.
  • Each of the transceivers 13a, 13b, 203a, and 303 is operatively coupled with a connected processor, transmits and/or receives radio signals or wireline signals.
  • the UE 10a may be in communication with the UE 10b through a sidelink.
  • the base station 200a may be an eNB, a gNB, or one of other types of radio nodes.
  • Each of the processors 11a, 11b, 201a, and 301 may include a central processing unit (CPU) , an application-specific integrated circuits (ASICs) , other chipsets, logic circuits and/or data processing devices.
  • Each of the memories 12a, 12b, 202a, and 302 may include a read-only memory (ROM) , a random access memory (RAM) , a flash memory, a memory card, a storage medium and/or other storage devices.
  • Each of the transceivers 13a, 13b, 203a, and 303 may include baseband circuitry and radio frequency (RF) circuitry to process radio frequency signals.
  • RF radio frequency
  • the techniques described herein can be implemented with modules, units, procedures, functions, entities and so on, that perform the functions described herein.
  • the modules can be stored in a memory and executed by the processors.
  • the memory can be implemented within a processor or external to the processor, in which those can be communicatively coupled to the processor via various means are known in the art.
  • the network entity device 300 may be a node in a CN.
  • CN may include LTE CN or 5G core (5GC) which includes user plane function (UPF) , session management function (SMF) , mobility management function (AMF) , unified data management (UDM) , policy control function (PCF) , control plane (CP) /user plane (UP) separation (CUPS) , authentication server (AUSF) , network slice selection function (NSSF) , and network exposure function (NEF) .
  • UPF user plane function
  • SMF session management function
  • AMF mobility management function
  • UDM unified data management
  • PCF policy control function
  • PCF control plane
  • CP control plane
  • UP user plane
  • CUPS authentication server
  • NSSF network slice selection function
  • NEF network exposure function
  • a base station 200b is an embodiment of the base station 200a and includes a central controller (CC) 210, access points 211-1, 211-2, ...and 211-M.
  • M is a positive integer.
  • the central controller 210 may be implemented into a central unit (CU) , and may include a BBU, such as BBU 204a, in connection with the access points (APs) 211-1, 211-2, ...and 211-M.
  • Each of the access points 211-1, 211-2, ...and 211-M may be implemented into a radio node, a remote unit (RU) , or a remote radio head (RRH) , and may include a transmission and reception point (TRP) .
  • the access points 211-1, 211-2, ...and 211-M may be located in different locations.
  • the central controller 210 receives wireless signals from a group 100b of V user equipments (UEs) through a group of M distributed radio nodes.
  • V is a positive integer.
  • the group of V user equipments includes UEs 10-1, 10-2, 10-3, and ...10-V.
  • the UEs 10-1, 10-2, 10-3, and ...10-V may be located in different locations.
  • a CRAN network operating in a time division duplex (TDD) mode where channel estimation is performed through uplink pilot transmission.
  • TDD time division duplex
  • Each coherence slot is divided between two instances of uplink training using orthogonal uplink pilots, uplink and downlink data transmission.
  • An embodiment of the present disclosure processes uplinks from V UEs to M single antenna access points (APs) .
  • APs single antenna access points
  • each AP performs uplink channel estimation independently.
  • the APs 211-1, 211-2, ...and 211-M are distributed within a coverage area and are managed by the central controller 210 that contains a centralized baseband unit (BBU) pool and handles operations of a physical layer and a medium access control (MAC) layer, such as data decoding and encoding, scheduling, and power allocation.
  • BBU baseband unit
  • MAC medium access control
  • the APs 211-1, 211-2, ...and 211-M are linked to the central controller 210 through high performance transport links known as fronthaul. Fronthaul may be implemented by optical cables or high bandwidth wireless channels.
  • the system in FIG. 2 including the base station 200b and the UEs 10-1, 10-2, 10-3, and ...10-V.
  • the UEs 10-1, 10-2, 10-3, and ...10-V is a simplified example of a CRAN.
  • the APs 211-1, 211-2, ...and 211-M perform channel estimation and the link level transmission chain until equalization.
  • the central controller 210 performs signal decoding, encoding, modulation, demodulation, scheduling and MAC layer operations.
  • Uplink (UL) transmission of a control signal or data may be a transmission operation from a UE to a base station.
  • Downlink (DL) transmission of a control signal or data may be a transmission operation from a base station to a UE.
  • FIG. 3 is a schematic diagram showing a wireless communication method executable in a base station (BS) according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram showing a split-bearer option according to the embodiment of the present disclosure.
  • a common PDCP entity is used for an PTM RLC bearer and an PTP RLC bearer.
  • an MRB corresponding to an MBS is established.
  • At least one of a PTM leg and a PTP leg is configured.
  • the PTM leg and the PTP leg are used for transmission of the MBS.
  • both of the PTM leg and the PTP leg are mandated to be configured.
  • the PTM leg and the PTP leg are activated.
  • the other of the PTM leg and the PTP leg can be deactivated.
  • one of the PTM leg and the PTP leg must be activated, and the other of the PTM leg and the PTP leg can be added or deleted.
  • the PTM leg must be activated, and the PTP leg can be added or deleted.
  • the PTP leg must be activated, and the PTM leg can be added or deleted.
  • only one of the PTM leg and the PTP leg is configured.
  • the other of the PTM leg and the PTP leg can be activated, added, released or deleted.
  • the only one of the PTM leg and the PTP leg which is configured can be switched to the other of the PTM leg and the PTP leg.
  • both of the PTM leg and the PTP leg are configured when the PTM leg and the PTP leg are required for transmission of the MBS.
  • one of the PTM leg and the PTP leg can be released or deleted.
  • one of the PTM leg and the PTP leg must be activated.
  • the PTM leg is activated, or both of the PTM leg and the PTP leg are activated. A case where only the PTP leg is activated is not allowed.
  • the PTP leg is activated, or both of the PTP leg and the PTM leg are activated. A case where only the PTM leg is activated is not allowed.
  • sequence number (SN) allocation should be aligned.
  • PDCP SN should be allocated the same.
  • a UE1 and a UE 2 are provided with a service data unit 1 (SDU1) via the PTM leg, while a UE3 is provided with a SDU2 which is the same as the SDU1 via the PTP leg.
  • SDU1 and the SUD2 are allocated the same SN.
  • transmission of the MBS is executed according to the at least one of the PTM leg and the PTP leg.
  • the transmission of the MBS is executed according to the configuration of the at least one of the PTM leg and the PTP leg.
  • the transmission of the MBS includes at least one initial packet in initial transmission, at least one retransmission packet in retransmission, at least one PDCP status report (SR) in PDCP SR transmission.
  • Table 1 shows various methods of the initial transmission, the retransmission, and the PDCP SR transmission.
  • the at least one initial packet in the initial transmission can be transmitted by only the PTM leg.
  • the PTP leg is optional for supporting the transmission of the at least one initial packet in the initial transmission.
  • the at least one initial packet in the initial transmission can be transmitted by the PTM leg, the PTP leg, or both of the PTM leg and the PTP leg.
  • the at least one retransmission packet in the retransmission can be transmitted by only the PTP leg.
  • the PTM leg is optional for supporting the transmission of the at least one retransmission packet in the retransmission.
  • the at least one retransmission packet in the retransmission can be transmitted by the PTP leg, the PTM leg, or both of the PTP leg and the PTM leg.
  • the PTP leg and a data radio bearer (DRB) are optional to supporting the transmission of the at least one PDCP SR in the PDCP SR transmission can be transmitted by only the PTP leg.
  • the at least one PDCP SR in the PDCP SR transmission can be transmitted by the PTP leg, the DRB, or both of the PTP leg and the DRB.
  • FIG. 5 is a schematic diagram showing a wireless communication method executable in a base station (BS) according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram showing a multiple bearer option according to the embodiment of the present disclosure.
  • separate PDCP entities are respectively used for an PTM RLC bearer and an PTP RLC bearer.
  • radio bearers (RB) corresponding to an MBS are established.
  • At least one of a PTM bearer and a PTP bearer is configured.
  • the PTM bearer and the PTP bearer are used for transmission of the MBS.
  • both of the PTM bearer and the PTP bearer are mandated to be configured.
  • the PTM bearer and the PTP bearer are activated.
  • the other of the PTM bearer and the PTP bearer can be deactivated.
  • one of the PTM bearer and the PTP bearer must be activated, and the other of the PTM bearer and the PTP bearer can be added or deleted.
  • the PTM bearer must be activated, and the PTP bearer can be added or deleted.
  • the PTP leg must be activated, and the PTM leg can be added or deleted.
  • only one of the PTM bearer and the PTP bearer is configured.
  • the other of the PTM bearer and the PTP bearer can be activated, added, released or deleted.
  • the only one of the PTM bearer and the PTP bearer which is configured can be switched to the other of the PTM bearer and the PTP bearer.
  • both of the PTM bearer and the PTP leg bearer are configured when the PTM bearer and the PTP bearer are required for transmission of the MBS.
  • both of the PTM bearer and the PTP bearer are configured, one of the PTM bearer and the PTP bearer can be released or deleted.
  • At least one of the PTM bearer and the PTP bearer must be activated.
  • the PTM bearer is activated, or both of the PTM bearer and the PTP bearer are activated. A case where only the PTP bearer is activated is not allowed.
  • transmission of the MBS is executed according to the at least one of the PTM bearer and the PTP bearer.
  • the transmission of the MBS is executed according to the configuration of the at least one of the PTM bearer and the PTP bearer.
  • the transmission of the MBS includes at least one initial packet in initial transmission, at least one retransmission packet in retransmission, at least one PDCP status report (SR) in PDCP SR transmission.
  • Table 2 shows various methods of the initial transmission, the retransmission, and the PDCP SR transmission.
  • the at least one initial packet in the initial transmission can be transmitted by only the PTM bearer.
  • the PTP bearer is optional for supporting the transmission of the at least one initial packet in the initial transmission.
  • the at least one initial packet in the initial transmission can be transmitted by the PTM bearer, the PTP bearer, or both of the PTM bearer and the PTP bearer.
  • the at least one retransmission packet in the retransmission can be transmitted by only the PTP bearer.
  • the PTM bearer is optional for supporting the transmission of the at least one retransmission packet in the retransmission.
  • the at least one retransmission packet in the retransmission can be transmitted by the PTP bearer, the PTM bearer, or both of the PTP bearer and the PTM bearer.
  • the at least one PDCP SR in the PDCP SR transmission can be transmitted by only the PTP bearer.
  • FIG. 7 is a schematic diagram showing a wireless communication method according to an embodiment of the present disclosure.
  • the wireless communication method is used for switching between a PTM transmission and a PTP transmission.
  • a gNB i.e., a base station decides to switch between a PTM transmission and a PTP transmission.
  • Various switching scenarios are not limited in the present disclosure.
  • step S71 the gNB sends at least one indication to a UE to request the UE to send at least one PDCP SR via radio resource control (RRC) signaling/MAC control element (MAC CE) .
  • RRC radio resource control
  • MAC CE radio control element
  • step S72 the UE sends the at least one PDCP SR to the gNB. That is, the gNB receives the at least one PDCP SR from the UE.
  • step S73 the gNB retransmits lost packets. If there are no lost packets, step S73 can be skipped.
  • step S74 the gNB performs to switch between the PTM transmission and the PTP transmission.
  • FIG. 8 is a schematic diagram showing duplication in the split-bearer option in FIG. 4.
  • the duplication is performed in an RLC layer. That is, the duplication is RLC duplication.
  • a PTP leg and a PTM leg transmit the same packets to a UE to enhance the reliability.
  • FIG. 9 is a schematic diagram showing duplication in the multiple bearer option in FIG. 6.
  • the duplication is performed in a PDCP layer. That is, the duplication is PDCP duplication.
  • a PTP bearer and a PTM bearer transmit the same packets to a UE to enhance the reliability.
  • FIG. 10 is a schematic diagram showing a wireless communication method according to an embodiment of the present disclosure.
  • the wireless communication method is used for duplication of packets.
  • a gNB decides to switch between a PTM transmission and a PTP transmission.
  • Various switching scenarios are not limited in the present disclosure.
  • the gNB performs at least one of PTM duplication and PTP duplication.
  • the gNB performs the PTM duplication.
  • the gNB performs the PTP duplication.
  • the gNB performs both of the PTM duplication and the PTP duplication.
  • step S102 the gNB transmits packets of the at least one of the PTM duplication and the PTP duplication to a UE via the PTM transmission and the PTP transmission.
  • step S103 the gNB stops performing the at least one of the PTM duplication and the PTP duplication in response to meeting a predetermined condition.
  • the predetermined condition is met when a timer of the gNB stops. In another embodiment, the predetermined condition is met when a counter of the gNB reaches a maximum number.
  • step S104 the gNB performs to switch between the PTM transmission and the PTP transmission.
  • FIG. 11 is a schematic diagram showing a wireless communication method according to an embodiment of the present disclosure.
  • the wireless communication method is used for duplication of packets.
  • a gNB decides to switch between a PTM transmission and a PTP transmission.
  • Various switching scenarios are not limited in the present disclosure.
  • the gNB performs at least one of PTM duplication and PTP duplication.
  • the gNB performs the PTM duplication.
  • the gNB performs the PTP duplication.
  • the gNB performs both of the PTM duplication and the PTP duplication.
  • step S112 the gNB transmits packets of the at least one of the PTM duplication and the PTP duplication to a UE via the PTM transmission and the PTP transmission.
  • step S113 the gNB performs to switch between the PTM transmission and the PTP transmission in response to meeting a predetermined condition.
  • the predetermined condition is met when a timer of the gNB stops. In another embodiment, the predetermined condition is met when a counter of the gNB reaches a maximum number.
  • step S114 the gNB stops performing the at least one of the PTM duplication and the PTP duplication.
  • FIG. 12 is a schematic diagram showing a wireless communication method according to an embodiment of the present disclosure.
  • the wireless communication method is used for duplication of packets in combination with at least one PDCP SR.
  • a gNB decides to switch between a PTM transmission and a PTP transmission.
  • Various switching scenarios are not limited in the present disclosure.
  • the gNB performs at least one of PTM duplication and PTP duplication.
  • the gNB performs the PTM duplication.
  • the gNB performs the PTP duplication.
  • the gNB performs both of the PTM duplication and the PTP duplication.
  • step S122 the gNB transmits packets of the at least one of the PTM duplication and the PTP duplication to a UE via the PTM transmission and the PTP transmission.
  • step S123 the gNB sends at least one indication to the UE to request the UE to send at least one PDCP SR via radio RRC signaling/MAC CE.
  • step S124 the UE sends the at least one PDCP SR to the gNB.
  • step S125 the gNB retransmits lost packets. If there are no lost packets, step S125 can be skipped.
  • step S126 the gNB stops performing the at least one of the PTM duplication and the PTP duplication.
  • step S127 the gNB performs to switch between the PTM transmission and the PTP transmission.
  • FIG. 13 is a schematic diagram showing a wireless communication method according to an embodiment of the present disclosure.
  • the wireless communication method is used for duplication of packets in combination with at least one PDCP SR.
  • a gNB decides to switch between a PTM transmission and a PTP transmission.
  • Various switching scenarios are not limited in the present disclosure.
  • the gNB performs at least one of PTM duplication and PTP duplication.
  • the gNB performs the PTM duplication.
  • the gNB performs the PTP duplication.
  • the gNB performs both of the PTM duplication and the PTP duplication.
  • step S132 the gNB transmits packets of the at least one of the PTM duplication and the PTP duplication to a UE via the PTM transmission and the PTP transmission.
  • step S133 the gNB sends at least one indication to the UE to request the UE to send at least one PDCP SR via radio RRC signaling/MAC CE.
  • step S134 the UE sends the at least one PDCP SR to the gNB.
  • step S135 the gNB retransmits lost packets. If there are no lost packets, step S135 can be skipped.
  • step S136 the gNB performs to switch between the PTM transmission and the PTP transmission.
  • step S137 the gNB stops performing the at least one of the PTM duplication and the PTP duplication.
  • a gNB Before switching between a PTM transmission and a PTP transmission is performing, a gNB should switch to an acknowledged mode (AM) .
  • AM acknowledged mode
  • FIG. 14 is a schematic diagram showing a wireless communication method according to an embodiment of the present disclosure.
  • the wireless communication method is used for switching between a PTM transmission and a PTP transmission in combination with a mode switching.
  • a gNB decides to switch between a PTM transmission and a PTP transmission.
  • Various switching scenarios are not limited in the present disclosure.
  • step S141 the gNB switches to an AM.
  • the gNB switches from a PTP mode to a PTP AM.
  • the gNB switches from a PTM mode to a PTM AM.
  • the gNB switches from the PTP mode or the PTM mode to the AM. It is noted that when the gNB is in the AM, step S141 can be skipped.
  • step S142 the gNB transmits packets to a UE via the PTM transmission and the PTP transmission.
  • step S143 the gNB performs to switch between the PTM transmission and the PTP transmission in response to meeting a predetermined condition.
  • the predetermined condition is met when a timer of the gNB stops. In another embodiment, the predetermined condition is met when a counter of the gNB reaches a maximum number.
  • FIG. 15 is a schematic diagram showing a wireless communication method according to an embodiment of the present disclosure.
  • the wireless communication method is used for switching between a PTM transmission and a PTP transmission in combination with a mode switching and at least one PDCP SR.
  • a gNB decides to switch between a PTM transmission and a PTP transmission.
  • Various switching scenarios are not limited in the present disclosure.
  • step S151 the gNB switches to an AM.
  • the gNB switches from a PTP mode to a PTP AM.
  • the gNB switches from a PTM mode to a PTM AM.
  • the gNB switches from the PTP mode or the PTM mode to the AM. It is noted that when the gNB is in the AM, step S151 can be skipped.
  • step S152 the gNB transmits packets to a UE via the PTM transmission and the PTP transmission.
  • step S153 the gNB sends at least one indication to the UE to request the UE to send at least one PDCP SR via radio RRC signaling/MAC CE.
  • step S154 the UE sends the at least one PDCP SR to the gNB.
  • step S155 the gNB retransmits lost packets. If there are no lost packets, step S155 can be skipped.
  • step S156 the gNB performs to switch between the PTM transmission and the PTP transmission.
  • the embodiments of the present disclosure provide the configurations of the PTM transmission and the PTP transmission as shown in FIG. 3 to FIG. 6. Furthermore, the embodiments of the present disclosure provide lossless switching between the PTM transmission and the PTP transmission as shown in FIG. 7 to FIG. 15.
  • FIG. 16 is a schematic diagram showing a wireless communication method executable in a user equipment according to an embodiment of the present disclosure.
  • step S160 at least one data packet of an MBS is received according to configuration of a PTM transmission and a PTP transmission.
  • the configuration of the PTM transmission and the PTP transmission can be referred to the embodiments above and are not repeated herein.
  • FIG. 17 is a block diagram of a system 700 for wireless communication according to an embodiment of the present disclosure. Embodiments described herein may be implemented into the system using any suitably configured hardware and/or software.
  • FIG. 17 illustrates the system 700 including a radio frequency (RF) circuitry 710, a baseband circuitry 720, a processing unit 730, a memory/storage 740, a display 750, a camera 760, a sensor 770, and an input/output (I/O) interface 780, coupled with each other as illustrated.
  • RF radio frequency
  • the processing unit 730 may include a circuitry, such as, but not limited to, one or more single-core or multi-core processors.
  • the processors may include any combinations of general-purpose processors and dedicated processors, such as graphics processors and application processors.
  • the processors may be coupled with the memory/storage and configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems running on the system.
  • the baseband circuitry 720 may include a circuitry, such as, but not limited to, one or more single-core or multi-core processors.
  • the processors may include a baseband processor.
  • the baseband circuitry may handle various radio control functions that enable communication with one or more radio networks via the RF circuitry.
  • the radio control functions may include, but are not limited to, signal modulation, encoding, decoding, radio frequency shifting, etc.
  • the baseband circuitry may provide for communication compatible with one or more radio technologies.
  • the baseband circuitry may support communication with 5G NR, LTE, an evolved universal terrestrial radio access network (EUTRAN) and/or other wireless metropolitan area networks (WMAN) , a wireless local area network (WLAN) , a wireless personal area network (WPAN) .
  • EUTRAN evolved universal terrestrial radio access network
  • WMAN wireless metropolitan area networks
  • WLAN wireless local area network
  • WPAN wireless personal area network
  • the baseband circuitry 720 may include circuitry to operate with signals that are not strictly considered as being in a baseband frequency.
  • baseband circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
  • the RF circuitry 710 may enable communication with wireless networks using modulated electromagnetic radiation through a non-solid medium.
  • the RF circuitry may include switches, filters, amplifiers, etc. to facilitate the communication with the wireless network.
  • the RF circuitry 710 may include circuitry to operate with signals that are not strictly considered as being in a radio frequency.
  • RF circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
  • the transmitter circuitry, control circuitry, or receiver circuitry discussed above with respect to the UE, eNB, or gNB may be embodied in whole or in part in one or more of the RF circuitries, the baseband circuitry, and/or the processing unit.
  • “circuitry” may refer to, be part of, or include an Application Specific Integrated Circuit (ASIC) , an electronic circuit, a processor (shared, dedicated, or group) , and/or a memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable hardware components that provide the described functionality.
  • ASIC Application Specific Integrated Circuit
  • the electronic device circuitry may be implemented in, or functions associated with the circuitry may be implemented by, one or more software or firmware modules.
  • some or all of the constituent components of the baseband circuitry, the processing unit, and/or the memory/storage may be implemented together on a system on a chip (SOC) .
  • the memory/storage 740 may be used to load and store data and/or instructions, for example, for system.
  • the memory/storage for one embodiment may include any combination of suitable volatile memory, such as dynamic random access memory (DRAM) ) , and/or non-volatile memory, such as flash memory.
  • the I/O interface 780 may include one or more user interfaces designed to enable user interaction with the system and/or peripheral component interfaces designed to enable peripheral component interaction with the system.
  • User interfaces may include, but are not limited to a physical keyboard or keypad, a touchpad, a speaker, a microphone, etc.
  • Peripheral component interfaces may include, but are not limited to, a non-volatile memory port, a universal serial bus (USB) port, an audio jack, and a power supply interface.
  • USB universal serial bus
  • the sensor 770 may include one or more sensing devices to determine environmental conditions and/or location information related to the system.
  • the sensors may include, but are not limited to, a gyro sensor, an accelerometer, a proximity sensor, an ambient light sensor, and a positioning unit.
  • the positioning unit may also be part of, or interact with, the baseband circuitry and/or RF circuitry to communicate with components of a positioning network, e.g., a global positioning system (GPS) satellite.
  • the display 750 may include a display, such as a liquid crystal display and a touch screen display.
  • the system 700 may be a mobile computing device such as, but not limited to, a laptop computing device, a tablet computing device, a netbook, an ultrabook, a smartphone, etc.
  • system may have more or less components, and/or different architectures.
  • methods described herein may be implemented as a computer program.
  • the computer program may be stored on a storage medium, such as a non-transitory storage medium.
  • the embodiment of the present disclosure is a combination of techniques/processes that can be adopted in 3GPP specification to create an end product.
  • the units as separating components for explanation are or are not physically separated.
  • the units for display are or are not physical units, that is, located in one place or distributed on a plurality of network units. Some or all of the units are used according to the purposes of the embodiments.
  • each of the functional units in each of the embodiments can be integrated in one processing unit, physically independent, or integrated in one processing unit with two or more than two units.
  • the software function unit is realized and used and sold as a product, it can be stored in a readable storage medium in a computer.
  • the technical plan proposed by the present disclosure can be essentially or partially realized as the form of a software product.
  • one part of the technical plan beneficial to the conventional technology can be realized as the form of a software product.
  • the software product in the computer is stored in a storage medium, including a plurality of commands for a computational device (such as a personal computer, a server, or a network device) to run all or some of the steps disclosed by the embodiments of the present disclosure.
  • the storage medium includes a USB disk, a mobile hard disk, a read-only memory (ROM) , a random access memory (RAM) , a floppy disk, or other kinds of media capable of storing program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A wireless communication method executable in a base station (BS) includes: establishing a multicast/broadcast service radio bearer (MRB) corresponding to a multicast/broadcast service (MBS); configuring at least one of a point-to-multipoint (PTM) leg and a point-to-point (PTP) leg; and executing transmission of the MBS according to the at least one of the PTM leg and the PTP leg.

Description

WIRELESS COMMUNICATION METHOD, BASE STATION, AND USER EQUIPMENT Technical Field
The present disclosure relates to the field of communication systems, and more particularly, to a wireless communication method, a base station, and a user equipment.
Background Art
Wireless communication systems and networks have developed towards being a broadband and mobile system. In cellular wireless communication systems, a user equipment (UE) is connected by a wireless link to a radio access network (RAN) . The RAN comprises a set of base stations (BSs) which provide wireless links to the UEs located in cells covered by the base station, and an interface to a core network (CN) which provides overall network control. As will be appreciated the RAN and CN each conduct respective functions in relation to the overall network. The 3rd Generation Partnership Project (3GPP) has developed the so-called Long Term Evolution (LTE) system, namely, an Evolved Universal Mobile Telecommunication System Territorial Radio Access Network, (E-UTRAN) , for a mobile access network where one or more macro-cells are supported by a base station known as an eNodeB or eNB (evolved NodeB) . More recently, LTE is evolving further towards the so-called 5G or NR (new radio) systems where one or more cells are supported by a base station known as a gNB.
At RAN#86, a new work item on the support of NR multicast and broadcast was approved. Based on the related discussion at SA2 for 5G multicast and broadcast service (MBS) , there are two delivery methods for the transmission of MBS packet flows over radio. One method is a point-to-multipoint (PTM) delivery method in which a RAN node delivers a single copy of MBS data packets over radio to a set of UEs. The other method is a point-to-point (PTP) delivery method in which a RAN node delivers separate copies of MBS data packet over radio to individual UE.
In 3GPP, it has been agreed that a UE may be configured with two radio link control-unacknowledged mode (RLC-UM) entities for a multicast session. One RLC entity is used to receive data using PTP transmission, and the other RLC entity is used to receive data using PTM transmission.
In the mainstream supported architecture, a packet data convergence protocol (PDCP) acts as a deciding anchor for switching the PTP transmission and the PTM transmission dynamically. A common PDCP entity is used for two RLC entities including a PTM RLC bearer and a PTP RLC bearer. As a result, an MBS radio bearer (i.e., MRB) can be associated with a PTM leg only, a PTP leg only, or both.
In addition to the common PDCP entity, separate PDCP entities are used for two RLC entities including a PTM RLC bearer and a PTP RLC bearer. That is, an MBS session can be configured with separate resource blocks (RBs) (i.e., separate PDCP entities) . This alternative does not support PDCP reordering/sequence (SN) synchronization duplicate detection between RBs (i.e., between PDCP entities) . As such, new functionalities are needed in a service data adaptation protocol (SDAP) .
Technical Problem
A method of how to configure PTM transmission and PTP transmission is not disclosed currently. Moreover, lossless switching between the PTM transmission and the PTP transmission is not disclosed, either.
Technical Solution
An object of the present disclosure is to propose a wireless communication method, a base station, and a user equipment.
A first aspect of the present disclosure provides a wireless communication method executable in a base station (BS) , including: establishing a multicast/broadcast service radio bearer (MRB) corresponding to a  multicast/broadcast service (MBS) ; configuring at least one of a point-to-multipoint (PTM) leg and a point-to-point (PTP) leg; and executing transmission of the MBS according to the at least one of the PTM leg and the PTP leg.
A second aspect of the present disclosure provides a wireless communication method executable in a base station (BS) , including: establishing radio bearers (RB) corresponding to a multicast/broadcast service (MBS) ; configuring at least one of a point-to-multipoint (PTM) bearer and a point-to-point (PTP) bearer; and executing transmission of the MBS according to the at least one of the PTM bearer and the PTP bearer.
A third aspect of the present disclosure provides a wireless communication method executable in a base station (BS) , including: deciding to switch between a PTM transmission and a PTP transmission; sending at least one indication to a user equipment (UE) to request the UE to send at least one packet data convergence protocol status report (PDCP SR) via radio resource control (RRC) signaling/MAC control element (MAC CE) ; receiving the at least one PDCP SR from the UE; and performing to switch between the PTM transmission and the PTP transmission.
A fourth aspect of the present disclosure provides a wireless communication method executable in a base station (BS) , including: deciding to switch between a PTM transmission and a PTP transmission; performing at least one of PTM duplication and PTP duplication; transmitting packets of the at least one of the PTM duplication and the PTP duplication to a UE via the PTM transmission and the PTP transmission; stopping performing the at least one of the PTM duplication and the PTP duplication; and performing to switch between the PTM transmission and the PTP transmission.
A fifth aspect of the present disclosure provides a wireless communication method executable in a base station (BS) , including: deciding to switch between a PTM transmission and a PTP transmission; performing at least one of PTM duplication and PTP duplication; transmitting packets of the at least one of the PTM duplication and the PTP duplication to a UE via the PTM transmission and the PTP transmission; performing to switch between the PTM transmission and the PTP transmission; and stopping performing the at least one of the PTM duplication and the PTP duplication.
A sixth aspect of the present disclosure provides a wireless communication method executable in a user equipment (UE) , including: receiving at least one data packet of a multicast/broadcast service (MBS) according to configuration of a point-to-multipoint (PTM) transmission and a point-to-point (PTP) transmission.
A seventh aspect of the present disclosure provides a base station including a transceiver and a processor connected with the transceiver. The processor is configured to execute the following steps including: establishing a multicast/broadcast service radio bearer (MRB) corresponding to a multicast/broadcast service (MBS) ; configuring at least one of a point-to-multipoint (PTM) leg and a point-to-point (PTP) leg; and executing transmission of the MBS according to the at least one of the PTM leg and the PTP leg.
An eighth aspect of the present disclosure provides a base station including a transceiver and a processor connected with the transceiver. The processor is configured to execute the following steps including: establishing radio bearers (RB) corresponding to a multicast/broadcast service (MBS) ; configuring at least one of a point-to-multipoint (PTM) bearer and a point-to-point (PTP) bearer; and executing transmission of the MBS according to the at least one of the PTM bearer and the PTP bearer.
A ninth aspect of the present disclosure provides a base station including a transceiver and a processor connected with the transceiver. The processor is configured to execute the following steps including: deciding to switch between a PTM transmission and a PTP transmission; sending at least one indication to a user equipment (UE) to request the UE to send at least one packet data convergence protocol status report (PDCP SR) via radio  resource control (RRC) signaling/MAC control element (MAC CE) ; receiving the at least one PDCP SR from the UE; and performing to switch between the PTM transmission and the PTP transmission.
A tenth aspect of the present disclosure provides a base station including a transceiver and a processor connected with the transceiver. The processor is configured to execute the following steps including: deciding to switch between a PTM transmission and a PTP transmission; performing at least one of PTM duplication and PTP duplication; transmitting packets of the at least one of the PTM duplication and the PTP duplication to a UE via the PTM transmission and the PTP transmission; stopping performing the at least one of the PTM duplication and the PTP duplication; and performing to switch between the PTM transmission and the PTP transmission.
An eleventh aspect of the present disclosure provides a base station including a transceiver and a processor connected with the transceiver. The processor is configured to execute the following steps including: deciding to switch between a PTM transmission and a PTP transmission; performing at least one of PTM duplication and PTP duplication; transmitting packets of the at least one of the PTM duplication and the PTP duplication to a UE via the PTM transmission and the PTP transmission; performing to switch between the PTM transmission and the PTP transmission; and stopping performing the at least one of the PTM duplication and the PTP duplication.
A twelfth aspect of the present disclosure provides a user equipment including a transceiver and a processor connected with the transceiver. The processor is configured to execute the following steps including: receiving at least one data packet of a multicast/broadcast service (MBS) according to configuration of a point-to-multipoint (PTM) transmission and a point-to-point (PTP) transmission.
The disclosed method may be implemented in a chip. The chip may include a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the disclosed method.
The disclosed method may be programmed as computer executable instructions stored in non-transitory computer readable medium. The non-transitory computer readable medium, when loaded to a computer, directs a processor of the computer to execute the disclosed method.
The non-transitory computer readable medium may include at least one from a group consisting of: a hard disk, a CD-ROM, an optical storage device, a magnetic storage device, a Read Only Memory, a Programmable Read Only Memory, an Erasable Programmable Read Only Memory, EPROM, an Electrically Erasable Programmable Read Only Memory and a Flash memory.
The disclosed method may be programmed as computer program product that causes a computer to execute the disclosed method.
The disclosed method may be programmed as computer program that causes a computer to execute the disclosed method.
Advantageous Effects
The embodiments of the present disclosure provide configurations of PTM transmission and PTP transmission. Furthermore, the embodiments of the present disclosure provide lossless switching between the PTM transmission and the PTP transmission.
Description of Drawings
In order to more clearly illustrate the embodiments of the present disclosure or related art, the following figures will be described in the embodiments are briefly introduced. It is obvious that the drawings are merely some embodiments of the present disclosure, a person having ordinary skill in this field can obtain other figures according to these figures without paying the premise.
FIG. 1 is a schematic diagram showing a telecommunication system.
FIG. 2 is a schematic diagram showing a CRAN with a baseband unit pool, remote radio heads, and UEs.
FIG. 3 is a schematic diagram showing a wireless communication method executable in a base station according to an embodiment of the present disclosure.
FIG. 4 is a schematic diagram showing a split-bearer option according to the embodiment of the present disclosure.
FIG. 5 is a schematic diagram showing a wireless communication method executable in a base station according to an embodiment of the present disclosure.
FIG. 6 is a schematic diagram showing a multiple bearer option according to the embodiment of the present disclosure.
FIG. 7 is a schematic diagram showing a wireless communication method according to an embodiment of the present disclosure.
FIG. 8 is a schematic diagram showing duplication in the split-bearer option in FIG. 4.
FIG. 9 is a schematic diagram showing duplication in the multiple bearer option in FIG. 6.
FIG. 10 is a schematic diagram showing a wireless communication method according to an embodiment of the present disclosure.
FIG. 11 is a schematic diagram showing a wireless communication method according to an embodiment of the present disclosure.
FIG. 12 is a schematic diagram showing a wireless communication method according to an embodiment of the present disclosure.
FIG. 13 is a schematic diagram showing a wireless communication method according to an embodiment of the present disclosure.
FIG. 14 is a schematic diagram showing a wireless communication method according to an embodiment of the present disclosure.
FIG. 15 is a schematic diagram showing a wireless communication method according to an embodiment of the present disclosure.
FIG. 16 is a schematic diagram showing a wireless communication method executable in a user equipment according to an embodiment of the present disclosure.
FIG. 17 is a block diagram of a system for wireless communication according to an embodiment of the present disclosure.
DETAILED DESCRIPTION OF EMBODIMENTS
Embodiments of the present disclosure are described in detail with the technical matters, structural features, achieved objects, and effects with reference to the accompanying drawings as follows. Specifically, the terminologies in the embodiments of the present disclosure are merely for describing the purpose of the certain embodiment, but not to limit the present disclosure.
With reference to FIG. 1, a telecommunication system including a group 100a of a plurality of UEs, a base station (BS) 200a, and a network entity device 300 executes the disclosed method according to an embodiment of the present disclosure. The group 100a of a plurality of UEs may include a UE 10a, a UE 10b, and other UEs. FIG. 1 is shown for illustrative not limiting, and the system may include more UEs, BSs, and CN entities. Connections between devices and device components are shown as lines and arrows in the figure. Connections between devices may be realized by wireless connections. Connections between device components may be realized by wirelines,  buses, traces, cables or optical fabrics. The UE 10a may include a processor 11a, a memory 12a, and a transceiver 13a. The UE 10b may include a processor 11b, a memory 12b, and a transceiver 13b. The base station 200a may include a baseband unit (BBU) 204a. The base band unit 204a may include a processor 201a, a memory 202a, and a transceiver 203a. The network entity device 300 may include a processor 301, a memory 302, and a transceiver 303. Each of the  processors  11a, 11b, 201a, and 301 may be configured to implement proposed functions, procedures and/or methods described in the description. Layers of radio interface protocol may be implemented in the  processors  11a, 11b, 201a, and 301. Each of the  memories  12a, 12b, 202a, and 302 operatively stores a variety of programs and information to operate a connected processor. Each of the  transceivers  13a, 13b, 203a, and 303 is operatively coupled with a connected processor, transmits and/or receives radio signals or wireline signals. The UE 10a may be in communication with the UE 10b through a sidelink. The base station 200a may be an eNB, a gNB, or one of other types of radio nodes.
Each of the  processors  11a, 11b, 201a, and 301 may include a central processing unit (CPU) , an application-specific integrated circuits (ASICs) , other chipsets, logic circuits and/or data processing devices. Each of the  memories  12a, 12b, 202a, and 302 may include a read-only memory (ROM) , a random access memory (RAM) , a flash memory, a memory card, a storage medium and/or other storage devices. Each of the  transceivers  13a, 13b, 203a, and 303 may include baseband circuitry and radio frequency (RF) circuitry to process radio frequency signals. When the embodiments are implemented in software, the techniques described herein can be implemented with modules, units, procedures, functions, entities and so on, that perform the functions described herein. The modules can be stored in a memory and executed by the processors. The memory can be implemented within a processor or external to the processor, in which those can be communicatively coupled to the processor via various means are known in the art.
The network entity device 300 may be a node in a CN. CN may include LTE CN or 5G core (5GC) which includes user plane function (UPF) , session management function (SMF) , mobility management function (AMF) , unified data management (UDM) , policy control function (PCF) , control plane (CP) /user plane (UP) separation (CUPS) , authentication server (AUSF) , network slice selection function (NSSF) , and network exposure function (NEF) .
With reference to FIG. 2, a base station 200b is an embodiment of the base station 200a and includes a central controller (CC) 210, access points 211-1, 211-2, …and 211-M. M is a positive integer. The central controller 210 may be implemented into a central unit (CU) , and may include a BBU, such as BBU 204a, in connection with the access points (APs) 211-1, 211-2, …and 211-M. Each of the access points 211-1, 211-2, …and 211-M may be implemented into a radio node, a remote unit (RU) , or a remote radio head (RRH) , and may include a transmission and reception point (TRP) . The access points 211-1, 211-2, …and 211-M may be located in different locations.
The central controller 210 receives wireless signals from a group 100b of V user equipments (UEs) through a group of M distributed radio nodes. V is a positive integer. The group of V user equipments includes UEs 10-1, 10-2, 10-3, and …10-V. The UEs 10-1, 10-2, 10-3, and …10-V may be located in different locations.
The considered technical problem falls in the area of high density connectivity and non-orthogonal multiple access (NOMA) in CRAN systems. In an example, a CRAN network operating in a time division duplex (TDD) mode where channel estimation is performed through uplink pilot transmission.
Each coherence slot is divided between two instances of uplink training using orthogonal uplink pilots, uplink and downlink data transmission. An embodiment of the present disclosure processes uplinks from V UEs to M single antenna access points (APs) . At each time slot, each AP performs uplink channel estimation independently.
The APs 211-1, 211-2, …and 211-M are distributed within a coverage area and are managed by the central controller 210 that contains a centralized baseband unit (BBU) pool and handles operations of a physical layer and a medium access control (MAC) layer, such as data decoding and encoding, scheduling, and power allocation. The APs 211-1, 211-2, …and 211-M are linked to the central controller 210 through high performance transport links known as fronthaul. Fronthaul may be implemented by optical cables or high bandwidth wireless channels. The system in FIG. 2 including the base station 200b and the UEs 10-1, 10-2, 10-3, and …10-V. The UEs 10-1, 10-2, 10-3, and …10-V is a simplified example of a CRAN. The APs 211-1, 211-2, …and 211-M perform channel estimation and the link level transmission chain until equalization. The central controller 210 performs signal decoding, encoding, modulation, demodulation, scheduling and MAC layer operations.
Uplink (UL) transmission of a control signal or data may be a transmission operation from a UE to a base station. Downlink (DL) transmission of a control signal or data may be a transmission operation from a base station to a UE.
Please refer to FIG. 3 and FIG. 4. FIG. 3 is a schematic diagram showing a wireless communication method executable in a base station (BS) according to an embodiment of the present disclosure. FIG. 4 is a schematic diagram showing a split-bearer option according to the embodiment of the present disclosure.
As shown in FIG. 4, a common PDCP entity is used for an PTM RLC bearer and an PTP RLC bearer.
In block S30, an MRB corresponding to an MBS is established.
In block S32, at least one of a PTM leg and a PTP leg is configured. The PTM leg and the PTP leg are used for transmission of the MBS.
In one embodiment, both of the PTM leg and the PTP leg are mandated to be configured. When a UE receives the MBS corresponding to the MRB, the PTM leg and the PTP leg are activated. When only one of the PTM leg and the PTP leg is used for transmission, the other of the PTM leg and the PTP leg can be deactivated. In one embodiment, one of the PTM leg and the PTP leg must be activated, and the other of the PTM leg and the PTP leg can be added or deleted. For example, the PTM leg must be activated, and the PTP leg can be added or deleted. Alternatively, the PTP leg must be activated, and the PTM leg can be added or deleted.
In another embodiment, only one of the PTM leg and the PTP leg is configured. When the only one of the PTM leg and the PTP leg is configured, the other of the PTM leg and the PTP leg can be activated, added, released or deleted. The only one of the PTM leg and the PTP leg which is configured can be switched to the other of the PTM leg and the PTP leg. Alternatively, both of the PTM leg and the PTP leg are configured when the PTM leg and the PTP leg are required for transmission of the MBS. When both of the PTM leg and the PTP leg are configured, one of the PTM leg and the PTP leg can be released or deleted. In one embodiment, one of the PTM leg and the PTP leg must be activated. For example, the PTM leg is activated, or both of the PTM leg and the PTP leg are activated. A case where only the PTP leg is activated is not allowed. Alternatively, the PTP leg is activated, or both of the PTP leg and the PTM leg are activated. A case where only the PTM leg is activated is not allowed.
In the split-bearer option as shown in FIG. 4, sequence number (SN) allocation should be aligned. In detail, when the same service is provided by the PTM leg and the PTP leg, PDCP SN should be allocated the same. For example, a UE1 and a UE 2 are provided with a service data unit 1 (SDU1) via the PTM leg, while a UE3 is provided with a SDU2 which is the same as the SDU1 via the PTP leg. The SUD1 and the SUD2 are allocated the same SN.
In block S34, transmission of the MBS is executed according to the at least one of the PTM leg and the PTP leg. In detail, the transmission of the MBS is executed according to the configuration of the at least one of the PTM leg and the PTP leg.
The transmission of the MBS includes at least one initial packet in initial transmission, at least one retransmission packet in retransmission, at least one PDCP status report (SR) in PDCP SR transmission. Table 1 shows various methods of the initial transmission, the retransmission, and the PDCP SR transmission.
The at least one initial packet in the initial transmission can be transmitted by only the PTM leg. The PTP leg is optional for supporting the transmission of the at least one initial packet in the initial transmission. In summary, the at least one initial packet in the initial transmission can be transmitted by the PTM leg, the PTP leg, or both of the PTM leg and the PTP leg.
The at least one retransmission packet in the retransmission can be transmitted by only the PTP leg. The PTM leg is optional for supporting the transmission of the at least one retransmission packet in the retransmission. In summary, the at least one retransmission packet in the retransmission can be transmitted by the PTP leg, the PTM leg, or both of the PTP leg and the PTM leg.
The PTP leg and a data radio bearer (DRB) are optional to supporting the transmission of the at least one PDCP SR in the PDCP SR transmission can be transmitted by only the PTP leg. In summary, the at least one PDCP SR in the PDCP SR transmission can be transmitted by the PTP leg, the DRB, or both of the PTP leg and the DRB.
Please refer to FIG. 5 and FIG. 6. FIG. 5 is a schematic diagram showing a wireless communication method executable in a base station (BS) according to an embodiment of the present disclosure. FIG. 6 is a schematic diagram showing a multiple bearer option according to the embodiment of the present disclosure.
As shown in FIG. 6, separate PDCP entities are respectively used for an PTM RLC bearer and an PTP RLC bearer.
In block S50, radio bearers (RB) corresponding to an MBS are established.
In block S52, at least one of a PTM bearer and a PTP bearer is configured. The PTM bearer and the PTP bearer are used for transmission of the MBS.
In one embodiment, both of the PTM bearer and the PTP bearer are mandated to be configured. When a UE receives the MBS corresponding to the MRB, the PTM bearer and the PTP bearer are activated. When only one of the PTM bearer and the PTP bearer is used for transmission, the other of the PTM bearer and the PTP bearer can be deactivated. In one embodiment, one of the PTM bearer and the PTP bearer must be activated, and the other of the PTM bearer and the PTP bearer can be added or deleted. For example, the PTM bearer must be activated, and the PTP bearer can be added or deleted. Alternatively, the PTP leg must be activated, and the PTM leg can be added or deleted.
In another embodiment, only one of the PTM bearer and the PTP bearer is configured. When the only one of the PTM bearer and the PTP bearer is configured, the other of the PTM bearer and the PTP bearer can be activated, added, released or deleted. The only one of the PTM bearer and the PTP bearer which is configured can be switched to the other of the PTM bearer and the PTP bearer. Alternatively, both of the PTM bearer and the PTP leg bearer are configured when the PTM bearer and the PTP bearer are required for transmission of the MBS. When both of the PTM bearer and the PTP bearer are configured, one of the PTM bearer and the PTP bearer can be released or deleted. In the present embodiment, at least one of the PTM bearer and the PTP bearer must be activated. In the present embodiment, the PTM bearer is activated, or both of the PTM bearer and the PTP bearer are activated. A case where only the PTP bearer is activated is not allowed.
In block S54, transmission of the MBS is executed according to the at least one of the PTM bearer and the PTP bearer. In detail, the transmission of the MBS is executed according to the configuration of the at least one of the PTM bearer and the PTP bearer.
The transmission of the MBS includes at least one initial packet in initial transmission, at least one retransmission packet in retransmission, at least one PDCP status report (SR) in PDCP SR transmission. Table 2 shows various methods of the initial transmission, the retransmission, and the PDCP SR transmission.
The at least one initial packet in the initial transmission can be transmitted by only the PTM bearer. The PTP bearer is optional for supporting the transmission of the at least one initial packet in the initial transmission. In summary, the at least one initial packet in the initial transmission can be transmitted by the PTM bearer, the PTP bearer, or both of the PTM bearer and the PTP bearer.
The at least one retransmission packet in the retransmission can be transmitted by only the PTP bearer. The PTM bearer is optional for supporting the transmission of the at least one retransmission packet in the retransmission. In summary, the at least one retransmission packet in the retransmission can be transmitted by the PTP bearer, the PTM bearer, or both of the PTP bearer and the PTM bearer.
The at least one PDCP SR in the PDCP SR transmission can be transmitted by only the PTP bearer.
Please refer to FIG. 7. FIG. 7 is a schematic diagram showing a wireless communication method according to an embodiment of the present disclosure. The wireless communication method is used for switching between a PTM transmission and a PTP transmission.
In step S70, a gNB (i.e., a base station) decides to switch between a PTM transmission and a PTP transmission. Various switching scenarios are not limited in the present disclosure.
In step S71, the gNB sends at least one indication to a UE to request the UE to send at least one PDCP SR via radio resource control (RRC) signaling/MAC control element (MAC CE) .
In step S72, the UE sends the at least one PDCP SR to the gNB. That is, the gNB receives the at least one PDCP SR from the UE.
In step S73, the gNB retransmits lost packets. If there are no lost packets, step S73 can be skipped.
In step S74, the gNB performs to switch between the PTM transmission and the PTP transmission.
Please refer to FIG. 8. FIG. 8 is a schematic diagram showing duplication in the split-bearer option in FIG. 4. As shown in FIG. 8, the duplication is performed in an RLC layer. That is, the duplication is RLC duplication. A PTP leg and a PTM leg transmit the same packets to a UE to enhance the reliability.
Please refer to FIG. 9. FIG. 9 is a schematic diagram showing duplication in the multiple bearer option in FIG. 6. As shown in FIG. 9, the duplication is performed in a PDCP layer. That is, the duplication is PDCP duplication. A PTP bearer and a PTM bearer transmit the same packets to a UE to enhance the reliability.
Please refer to FIG. 10. FIG. 10 is a schematic diagram showing a wireless communication method according to an embodiment of the present disclosure. The wireless communication method is used for duplication of packets.
In step S100, a gNB decides to switch between a PTM transmission and a PTP transmission. Various switching scenarios are not limited in the present disclosure.
In step S101, the gNB performs at least one of PTM duplication and PTP duplication. In detail, in one embodiment, the gNB performs the PTM duplication. In another embodiment, the gNB performs the PTP duplication. In yet another embodiment, the gNB performs both of the PTM duplication and the PTP duplication.
In step S102, the gNB transmits packets of the at least one of the PTM duplication and the PTP duplication to a UE via the PTM transmission and the PTP transmission.
In step S103, the gNB stops performing the at least one of the PTM duplication and the PTP duplication in response to meeting a predetermined condition. In one embodiment, the predetermined condition is met when a timer of the gNB stops. In another embodiment, the predetermined condition is met when a counter of the gNB reaches a maximum number.
In step S104, the gNB performs to switch between the PTM transmission and the PTP transmission.
Please refer to FIG. 11. FIG. 11 is a schematic diagram showing a wireless communication method according to an embodiment of the present disclosure. The wireless communication method is used for duplication of packets.
In step S110, a gNB decides to switch between a PTM transmission and a PTP transmission. Various switching scenarios are not limited in the present disclosure.
In step S111, the gNB performs at least one of PTM duplication and PTP duplication. In detail, in one embodiment, the gNB performs the PTM duplication. In another embodiment, the gNB performs the PTP duplication. In yet another embodiment, the gNB performs both of the PTM duplication and the PTP duplication.
In step S112, the gNB transmits packets of the at least one of the PTM duplication and the PTP duplication to a UE via the PTM transmission and the PTP transmission.
In step S113, the gNB performs to switch between the PTM transmission and the PTP transmission in response to meeting a predetermined condition. In one embodiment, the predetermined condition is met when a timer of the gNB stops. In another embodiment, the predetermined condition is met when a counter of the gNB reaches a maximum number.
In step S114, the gNB stops performing the at least one of the PTM duplication and the PTP duplication.
Please refer to FIG. 12. FIG. 12 is a schematic diagram showing a wireless communication method according to an embodiment of the present disclosure. The wireless communication method is used for duplication of packets in combination with at least one PDCP SR.
In step S120, a gNB decides to switch between a PTM transmission and a PTP transmission. Various switching scenarios are not limited in the present disclosure.
In step S121, the gNB performs at least one of PTM duplication and PTP duplication. In detail, in one embodiment, the gNB performs the PTM duplication. In another embodiment, the gNB performs the PTP duplication. In yet another embodiment, the gNB performs both of the PTM duplication and the PTP duplication.
In step S122, the gNB transmits packets of the at least one of the PTM duplication and the PTP duplication to a UE via the PTM transmission and the PTP transmission.
In step S123, the gNB sends at least one indication to the UE to request the UE to send at least one PDCP SR via radio RRC signaling/MAC CE.
In step S124, the UE sends the at least one PDCP SR to the gNB.
In step S125, the gNB retransmits lost packets. If there are no lost packets, step S125 can be skipped.
In step S126, the gNB stops performing the at least one of the PTM duplication and the PTP duplication.
In step S127, the gNB performs to switch between the PTM transmission and the PTP transmission.
Please refer to FIG. 13. FIG. 13 is a schematic diagram showing a wireless communication method according to an embodiment of the present disclosure. The wireless communication method is used for duplication of packets in combination with at least one PDCP SR.
In step S130, a gNB decides to switch between a PTM transmission and a PTP transmission. Various switching scenarios are not limited in the present disclosure.
In step S131, the gNB performs at least one of PTM duplication and PTP duplication. In detail, in one embodiment, the gNB performs the PTM duplication. In another embodiment, the gNB performs the PTP duplication. In yet another embodiment, the gNB performs both of the PTM duplication and the PTP duplication.
In step S132, the gNB transmits packets of the at least one of the PTM duplication and the PTP duplication to a UE via the PTM transmission and the PTP transmission.
In step S133, the gNB sends at least one indication to the UE to request the UE to send at least one PDCP SR via radio RRC signaling/MAC CE.
In step S134, the UE sends the at least one PDCP SR to the gNB.
In step S135, the gNB retransmits lost packets. If there are no lost packets, step S135 can be skipped.
In step S136, the gNB performs to switch between the PTM transmission and the PTP transmission.
In step S137, the gNB stops performing the at least one of the PTM duplication and the PTP duplication.
It is noted that before switching between a PTM transmission and a PTP transmission is performing, a gNB should switch to an acknowledged mode (AM) .
Please refer to FIG. 14. FIG. 14 is a schematic diagram showing a wireless communication method according to an embodiment of the present disclosure. The wireless communication method is used for switching between a PTM transmission and a PTP transmission in combination with a mode switching.
In step S140, a gNB decides to switch between a PTM transmission and a PTP transmission. Various switching scenarios are not limited in the present disclosure.
In step S141, the gNB switches to an AM. In one embodiment, the gNB switches from a PTP mode to a PTP AM. In another embodiment, the gNB switches from a PTM mode to a PTM AM. In yet another embodiment, the gNB switches from the PTP mode or the PTM mode to the AM. It is noted that when the gNB is in the AM, step S141 can be skipped.
In step S142, the gNB transmits packets to a UE via the PTM transmission and the PTP transmission.
In step S143, the gNB performs to switch between the PTM transmission and the PTP transmission in response to meeting a predetermined condition. In one embodiment, the predetermined condition is met when a timer of the gNB stops. In another embodiment, the predetermined condition is met when a counter of the gNB reaches a maximum number.
Please refer to FIG. 15. FIG. 15 is a schematic diagram showing a wireless communication method according to an embodiment of the present disclosure. The wireless communication method is used for switching between a PTM transmission and a PTP transmission in combination with a mode switching and at least one PDCP SR.
In step S150, a gNB decides to switch between a PTM transmission and a PTP transmission. Various switching scenarios are not limited in the present disclosure.
In step S151, the gNB switches to an AM. In one embodiment, the gNB switches from a PTP mode to a PTP AM. In another embodiment, the gNB switches from a PTM mode to a PTM AM. In yet another embodiment, the gNB switches from the PTP mode or the PTM mode to the AM. It is noted that when the gNB is in the AM, step S151 can be skipped.
In step S152, the gNB transmits packets to a UE via the PTM transmission and the PTP transmission.
In step S153, the gNB sends at least one indication to the UE to request the UE to send at least one PDCP SR via radio RRC signaling/MAC CE.
In step S154, the UE sends the at least one PDCP SR to the gNB.
In step S155, the gNB retransmits lost packets. If there are no lost packets, step S155 can be skipped.
In step S156, the gNB performs to switch between the PTM transmission and the PTP transmission.
The embodiments of the present disclosure provide the configurations of the PTM transmission and the PTP transmission as shown in FIG. 3 to FIG. 6. Furthermore, the embodiments of the present disclosure provide lossless switching between the PTM transmission and the PTP transmission as shown in FIG. 7 to FIG. 15.
Please refer to FIG. 16. FIG. 16 is a schematic diagram showing a wireless communication method executable in a user equipment according to an embodiment of the present disclosure.
In step S160, at least one data packet of an MBS is received according to configuration of a PTM transmission and a PTP transmission. The configuration of the PTM transmission and the PTP transmission can be referred to the embodiments above and are not repeated herein.
FIG. 17 is a block diagram of a system 700 for wireless communication according to an embodiment of the present disclosure. Embodiments described herein may be implemented into the system using any suitably configured hardware and/or software. FIG. 17 illustrates the system 700 including a radio frequency (RF) circuitry 710, a baseband circuitry 720, a processing unit 730, a memory/storage 740, a display 750, a camera 760, a sensor 770, and an input/output (I/O) interface 780, coupled with each other as illustrated.
The processing unit 730 may include a circuitry, such as, but not limited to, one or more single-core or multi-core processors. The processors may include any combinations of general-purpose processors and dedicated processors, such as graphics processors and application processors. The processors may be coupled with the memory/storage and configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems running on the system.
The baseband circuitry 720 may include a circuitry, such as, but not limited to, one or more single-core or multi-core processors. The processors may include a baseband processor. The baseband circuitry may handle various radio control functions that enable communication with one or more radio networks via the RF circuitry. The radio control functions may include, but are not limited to, signal modulation, encoding, decoding, radio frequency shifting, etc. In some embodiments, the baseband circuitry may provide for communication compatible with one or more radio technologies. For example, in some embodiments, the baseband circuitry may support communication with 5G NR, LTE, an evolved universal terrestrial radio access network (EUTRAN) and/or other wireless metropolitan area networks (WMAN) , a wireless local area network (WLAN) , a wireless personal area network (WPAN) . Embodiments in which the baseband circuitry is configured to support radio communications of more than one wireless protocol may be referred to as multi-mode baseband circuitry. In various embodiments, the baseband circuitry 720 may include circuitry to operate with signals that are not strictly considered as being in a baseband frequency. For example, in some embodiments, baseband circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
The RF circuitry 710 may enable communication with wireless networks using modulated electromagnetic radiation through a non-solid medium. In various embodiments, the RF circuitry may include switches, filters, amplifiers, etc. to facilitate the communication with the wireless network. In various embodiments, the RF circuitry 710 may include circuitry to operate with signals that are not strictly considered as being in a radio  frequency. For example, in some embodiments, RF circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
In various embodiments, the transmitter circuitry, control circuitry, or receiver circuitry discussed above with respect to the UE, eNB, or gNB may be embodied in whole or in part in one or more of the RF circuitries, the baseband circuitry, and/or the processing unit. As used herein, “circuitry” may refer to, be part of, or include an Application Specific Integrated Circuit (ASIC) , an electronic circuit, a processor (shared, dedicated, or group) , and/or a memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable hardware components that provide the described functionality. In some embodiments, the electronic device circuitry may be implemented in, or functions associated with the circuitry may be implemented by, one or more software or firmware modules. In some embodiments, some or all of the constituent components of the baseband circuitry, the processing unit, and/or the memory/storage may be implemented together on a system on a chip (SOC) .
The memory/storage 740 may be used to load and store data and/or instructions, for example, for system. The memory/storage for one embodiment may include any combination of suitable volatile memory, such as dynamic random access memory (DRAM) ) , and/or non-volatile memory, such as flash memory. In various embodiments, the I/O interface 780 may include one or more user interfaces designed to enable user interaction with the system and/or peripheral component interfaces designed to enable peripheral component interaction with the system. User interfaces may include, but are not limited to a physical keyboard or keypad, a touchpad, a speaker, a microphone, etc. Peripheral component interfaces may include, but are not limited to, a non-volatile memory port, a universal serial bus (USB) port, an audio jack, and a power supply interface.
In various embodiments, the sensor 770 may include one or more sensing devices to determine environmental conditions and/or location information related to the system. In some embodiments, the sensors may include, but are not limited to, a gyro sensor, an accelerometer, a proximity sensor, an ambient light sensor, and a positioning unit. The positioning unit may also be part of, or interact with, the baseband circuitry and/or RF circuitry to communicate with components of a positioning network, e.g., a global positioning system (GPS) satellite. In various embodiments, the display 750 may include a display, such as a liquid crystal display and a touch screen display. In various embodiments, the system 700 may be a mobile computing device such as, but not limited to, a laptop computing device, a tablet computing device, a netbook, an ultrabook, a smartphone, etc. In various embodiments, system may have more or less components, and/or different architectures. Where appropriate, methods described herein may be implemented as a computer program. The computer program may be stored on a storage medium, such as a non-transitory storage medium.
The embodiment of the present disclosure is a combination of techniques/processes that can be adopted in 3GPP specification to create an end product.
A person having ordinary skill in the art understands that each of the units, algorithm, and steps described and disclosed in the embodiments of the present disclosure are realized using electronic hardware or combinations of software for computers and electronic hardware. Whether the functions run in hardware or software depends on the condition of application and design requirement for a technical plan. A person having ordinary skill in the art can use different ways to realize the function for each specific application while such realizations should not go beyond the scope of the present disclosure. It is understood by a person having ordinary skill in the art that he/she can refer to the working processes of the system, device, and unit in the above-mentioned embodiment since the working  processes of the above-mentioned system, device, and unit are basically the same. For easy description and simplicity, these working processes will not be detailed.
It is understood that the disclosed system, device, and method in the embodiments of the present disclosure can be realized with other ways. The above-mentioned embodiments are exemplary only. The division of the units is merely based on logical functions while other divisions exist in realization. It is possible that a plurality of units or components are combined or integrated in another system. It is also possible that some characteristics are omitted or skipped. On the other hand, the displayed or discussed mutual coupling, direct coupling, or communicative coupling operate through some ports, devices, or units whether indirectly or communicatively by ways of electrical, mechanical, or other kinds of forms.
The units as separating components for explanation are or are not physically separated. The units for display are or are not physical units, that is, located in one place or distributed on a plurality of network units. Some or all of the units are used according to the purposes of the embodiments. Moreover, each of the functional units in each of the embodiments can be integrated in one processing unit, physically independent, or integrated in one processing unit with two or more than two units.
If the software function unit is realized and used and sold as a product, it can be stored in a readable storage medium in a computer. Based on this understanding, the technical plan proposed by the present disclosure can be essentially or partially realized as the form of a software product. Or, one part of the technical plan beneficial to the conventional technology can be realized as the form of a software product. The software product in the computer is stored in a storage medium, including a plurality of commands for a computational device (such as a personal computer, a server, or a network device) to run all or some of the steps disclosed by the embodiments of the present disclosure. The storage medium includes a USB disk, a mobile hard disk, a read-only memory (ROM) , a random access memory (RAM) , a floppy disk, or other kinds of media capable of storing program codes.
While the present disclosure has been described in connection with what is considered the most practical and preferred embodiments, it is understood that the present disclosure is not limited to the disclosed embodiments but is intended to cover various arrangements made without departing from the scope of the broadest interpretation of the appended claims.

Claims (88)

  1. A wireless communication method executable in a base station (BS) , comprising:
    establishing a multicast/broadcast service radio bearer (MRB) corresponding to a multicast/broadcast service (MBS) ;
    configuring at least one of a point-to-multipoint (PTM) leg and a point-to-point (PTP) leg; and
    executing transmission of the MBS according to the at least one of the PTM leg and the PTP leg.
  2. The wireless communication method of claim 1, wherein the PTM leg and the PTP leg are mandated to be configured.
  3. The wireless communication method of claim 2, wherein the PTM leg and the PTP leg are activated.
  4. The wireless communication method of claim 3, wherein when only one of the PTM leg and the PTP leg is used for transmission, the other of the PTM leg and the PTP leg is deactivated.
  5. The wireless communication method of claim 2, wherein one of the PTM leg and the PTP leg is activated, and the other of the PTM leg and the PTP leg is added or deleted.
  6. The wireless communication method of claim 1, wherein only one of the PTM leg and the PTP leg is configured, and the other of the PTM leg and the PTP leg is activated, added, released or deleted.
  7. The wireless communication method of claim 6, wherein the only one of the PTM leg and the PTP leg which is configured is switched to the other of the PTM leg and the PTP leg.
  8. The wireless communication method of claim 1, wherein both of the PTM leg and the PTP leg are configured when the PTM leg and the PTP leg are required for transmission of the MBS.
  9. The wireless communication method of claim 1, wherein the transmission of the MBS includes at least one initial packet in initial transmission.
  10. The wireless communication method of claim 9, wherein the at least one initial packet in the initial transmission is transmitted by the PTM leg, the PTP leg, or both of the PTM leg and the PTP leg.
  11. The wireless communication method of claim 1, wherein the transmission of the MBS includes at least one retransmission packet in retransmission.
  12. The wireless communication method of claim 11, wherein the at least one retransmission packet in the retransmission is transmitted by the PTP leg, the PTM leg, or both of the PTP leg and the PTM leg.
  13. The wireless communication method of claim 1, wherein the transmission of the MBS includes at least one packet data convergence protocol (PDCP) status report (SR) in PDCP SR transmission.
  14. The wireless communication method of claim 13, wherein the at least one PDCP SR in the PDCP SR transmission is transmitted by the PTP leg, a data radio bearer (DRB) , or both of the PTP leg and the DRB.
  15. A wireless communication method executable in a base station (BS) , comprising:
    establishing radio bearers (RB) corresponding to a multicast/broadcast service (MBS) ;
    configuring at least one of a point-to-multipoint (PTM) bearer and a point-to-point (PTP) bearer; and
    executing transmission of the MBS according to the at least one of the PTM bearer and the PTP bearer.
  16. The wireless communication method of claim 15, wherein the PTM bearer and the PTP bearer are mandated to be configured.
  17. The wireless communication method of claim 16, wherein the PTM bearer and the PTP bearer are activated.
  18. The wireless communication method of claim 17, wherein when only one of the PTM bearer and the PTP bearer is used for transmission, the other of the PTM bearer and the PTP bearer is deactivated.
  19. The wireless communication method of claim 16, wherein one of the PTM bearer and the PTP bearer is activated,  and the other of the PTM bearer and the PTP bearer is added or deleted.
  20. The wireless communication method of claim 15, wherein only one of the PTM bearer and the PTP bearer is configured, and the other of the PTM bearer and the PTP bearer is activated, added, released or deleted.
  21. The wireless communication method of claim 20, wherein the only one of the PTM bearer and the PTP bearer which is configured is switched to the other of the PTM bearer and the PTP bearer.
  22. The wireless communication method of claim 15, wherein both of the PTM leg and the PTP leg are configured when the PTM leg and the PTP leg are required for transmission of the MBS.
  23. The wireless communication method of claim 15, wherein the transmission of the MBS includes at least one initial packet in initial transmission.
  24. The wireless communication method of claim 23, wherein the at least one initial packet in the initial transmission is transmitted by the PTM bear, the PTP bearer, or both of the PTM bearer and the PTP bearer.
  25. The wireless communication method of claim 15, wherein the transmission of the MBS includes at least one retransmission packet in retransmission.
  26. The wireless communication method of claim 25, wherein the at least one retransmission packet in the retransmission is transmitted by the PTP bearer, the PTM bearer, or both of the PTP bearer and the PTM bearer.
  27. The wireless communication method of claim 15, wherein the transmission of the MBS includes at least one packet data convergence protocol (PDCP) status report (SR) in PDCP SR transmission.
  28. The wireless communication method of claim 27, wherein the at least one PDCP SR in the PDCP SR transmission is transmitted by only the PTP bearer.
  29. A wireless communication method executable in a base station (BS) , comprising:
    deciding to switch between a PTM transmission and a PTP transmission;
    sending at least one indication to a user equipment (UE) to request the UE to send at least one packet data convergence protocol status report (PDCP SR) via radio resource control (RRC) signaling/MAC control element (MAC CE) ;
    receiving the at least one PDCP SR from the UE; and
    performing to switch between the PTM transmission and the PTP transmission.
  30. A wireless communication method executable in a base station (BS) , comprising:
    deciding to switch between a PTM transmission and a PTP transmission;
    performing at least one of PTM duplication and PTP duplication;
    transmitting packets of the at least one of the PTM duplication and the PTP duplication to a UE via the PTM transmission and the PTP transmission;
    stopping performing the at least one of the PTM duplication and the PTP duplication; and
    performing to switch between the PTM transmission and the PTP transmission.
  31. A wireless communication method executable in a base station (BS) , comprising:
    deciding to switch between a PTM transmission and a PTP transmission;
    performing at least one of PTM duplication and PTP duplication;
    transmitting the at least one of packets of the PTM duplication and the PTP duplication to a UE via the PTM transmission and the PTP transmission;
    performing to switch between the PTM transmission and the PTP transmission; and
    stopping performing the at least one of the PTM duplication and the PTP duplication.
  32. A wireless communication method executable in a user equipment (UE) , comprising:
    receiving at least one data packet of a multicast/broadcast service (MBS) according to configuration of a point-to-multipoint (PTM) transmission and a point-to-point (PTP) transmission.
  33. A base station, comprising:
    a transceiver; and
    a processor connected with the transceiver and configured to execute the following steps comprising:
    establishing a multicast/broadcast service radio bearer (MRB) corresponding to a multicast/broadcast service (MBS) ;
    configuring at least one of a point-to-multipoint (PTM) leg and a point-to-point (PTP) leg; and
    executing transmission of the MBS according to the at least one of the PTM leg and the PTP leg.
  34. The base station of claim 33, wherein the PTM leg and the PTP leg are mandated to be configured.
  35. The base station of claim 34, wherein the PTM leg and the PTP leg are activated.
  36. The base station of claim 35, wherein when only one of the PTM leg and the PTP leg is used for transmission, the other of the PTM leg and the PTP leg is deactivated.
  37. The base station of claim 34, wherein one of the PTM leg and the PTP leg is activated, and the other of the PTM leg and the PTP leg is added or deleted.
  38. The base station of claim 33, wherein only one of the PTM leg and the PTP leg is configured, and the other of the PTM leg and the PTP leg is activated, added, released or deleted.
  39. The base station of claim 38, wherein the only one of the PTM leg and the PTP leg which is configured is switched to the other of the PTM leg and the PTP leg.
  40. The base station of claim 33, wherein both of the PTM leg and the PTP leg are configured when the PTM leg and the PTP leg are required for transmission of the MBS.
  41. The base station of claim 33, wherein the transmission of the MBS includes at least one initial packet in initial transmission.
  42. The base station of claim 41, wherein the at least one initial packet in the initial transmission is transmitted by the PTM leg, the PTP leg, or both of the PTM leg and the PTP leg.
  43. The base station of claim 33, wherein the transmission of the MBS includes at least one retransmission packet in retransmission.
  44. The base station of claim 43, wherein the at least one retransmission packet in the retransmission is transmitted by the PTP leg, the PTM leg, or both of the PTP leg and the PTM leg.
  45. The base station of claim 33, wherein the transmission of the MBS includes at least one packet data convergence protocol (PDCP) status report (SR) in PDCP SR transmission.
  46. The base station of claim 45, wherein the at least one PDCP SR in the PDCP SR transmission is transmitted by the PTP leg, a data radio bearer (DRB) , or both of the PTP leg and the DRB.
  47. A base station, comprising:
    a transceiver; and
    a processor connected with the transceiver and configured to execute the following steps comprising:
    establishing radio bearers (RB) corresponding to a multicast/broadcast service (MBS) ;
    configuring at least one of a point-to-multipoint (PTM) bearer and a point-to-point (PTP) bearer; and
    executing transmission of the MBS according to the at least one of the PTM bearer and the PTP bearer.
  48. The base station of claim 47, wherein the PTM bearer and the PTP bearer are mandated to be configured.
  49. The base station of claim 48, wherein the PTM bearer and the PTP bearer are activated.
  50. The base station of claim 48, wherein when only one of the PTM bearer and the PTP bearer is used for transmission, the other of the PTM bearer and the PTP bearer is deactivated.
  51. The base station of claim 48, wherein one of the PTM bearer and the PTP bearer is activated, and the other of the PTM bearer and the PTP bearer is added or deleted.
  52. The base station of claim 47, wherein only one of the PTM bearer and the PTP bearer is configured, and the other of the PTM bearer and the PTP bearer is activated, added, released or deleted.
  53. The base station of claim 52, wherein the only one of the PTM bearer and the PTP bearer which is configured is switched to the other of the PTM bearer and the PTP bearer.
  54. The base station of claim 47, wherein both of the PTM leg and the PTP leg are configured when the PTM leg and the PTP leg are required for transmission of the MBS.
  55. The base station of claim 47 wherein the transmission of the MBS includes at least one initial packet in initial transmission.
  56. The base station of claim 55, wherein the at least one initial packet in the initial transmission is transmitted by the PTM bear, the PTP bearer, or both of the PTM bearer and the PTP bearer.
  57. The base station of claim 47, wherein the transmission of the MBS includes at least one retransmission packet in retransmission.
  58. The base station of claim 57, wherein the at least one retransmission packet in the retransmission is transmitted by the PTP bearer, the PTM bearer, or both of the PTP bearer and the PTM bearer.
  59. The base station of claim 47, wherein the transmission of the MBS includes at least one packet data convergence protocol (PDCP) status report (SR) in PDCP SR transmission.
  60. The base station of claim 59, wherein the at least one PDCP SR in the PDCP SR transmission is transmitted by only the PTP bearer.
  61. A base station, comprising:
    a transceiver; and
    a processor connected with the transceiver and configured to execute the following steps comprising:
    deciding to switch between a PTM transmission and a PTP transmission;
    sending at least one indication to a user equipment (UE) to request the UE to send at least one packet data convergence protocol status report (PDCP SR) via radio resource control (RRC) signaling/MAC control element (MAC CE) ;
    receiving the at least one PDCP SR from the UE; and
    performing to switch between the PTM transmission and the PTP transmission.
  62. A base station, comprising:
    a transceiver; and
    a processor connected with the transceiver and configured to execute the following steps comprising:
    deciding to switch between a PTM transmission and a PTP transmission;
    performing at least one of PTM duplication and PTP duplication;
    transmitting packets of the at least one of the PTM duplication and the PTP duplication to a UE via the PTM transmission and the PTP transmission;
    stopping performing the at least one of the PTM duplication and the PTP duplication; and
    performing to switch between the PTM transmission and the PTP transmission.
  63. A base station, comprising:
    a transceiver; and
    a processor connected with the transceiver and configured to execute the following steps comprising:
    deciding to switch between a PTM transmission and a PTP transmission;
    performing at least one of PTM duplication and PTP duplication;
    transmitting packets of the at least one of the PTM duplication and the PTP duplication to a UE via the PTM transmission and the PTP transmission;
    performing to switch between the PTM transmission and the PTP transmission; and
    stopping performing the at least one of the PTM duplication and the PTP duplication.
  64. A user equipment, comprising:
    a transceiver; and
    a processor connected with the transceiver and configured to execute the following steps comprising:
    receiving at least one data packet of a multicast/broadcast service (MBS) according to configuration of a point-to-multipoint (PTM) transmission and a point-to-point (PTP) transmission.
  65. A chip, comprising:
    a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute any one of the wireless communication methods of claims 1 to 14.
  66. A chip, comprising:
    a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute any one of the wireless communication methods of claims 15 to 28.
  67. A chip, comprising:
    a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the wireless communication method of claim 29.
  68. A chip, comprising:
    a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the wireless communication method of claim 30.
  69. A chip, comprising:
    a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the wireless communication method of claim 31.
  70. A chip, comprising:
    a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the wireless communication method of claim 32.
  71. A computer readable storage medium, in which a computer program is stored, wherein the computer program causes a computer to execute any one of the wireless communication methods of claims 1 to 14.
  72. A computer readable storage medium, in which a computer program is stored, wherein the computer program causes a computer to execute any one of the wireless communication methods of claims 15 to 28.
  73. A computer readable storage medium, in which a computer program is stored, wherein the computer program causes a computer to execute the wireless communication method of claim 29.
  74. A computer readable storage medium, in which a computer program is stored, wherein the computer program causes a computer to execute the wireless communication method of claim 30.
  75. A computer readable storage medium, in which a computer program is stored, wherein the computer program causes a computer to execute the wireless communication method of claim 31.
  76. A computer readable storage medium, in which a computer program is stored, wherein the computer program causes a computer to execute the wireless communication method of claim 32.
  77. A computer program product, comprising a computer program, wherein the computer program causes a computer to execute any one of the wireless communication methods of claims 1 to 14.
  78. A computer program product, comprising a computer program, wherein the computer program causes a computer to execute any one of the wireless communication methods of claims 15 to 28.
  79. A computer program product, comprising a computer program, wherein the computer program causes a computer to execute the wireless communication method of claim 29.
  80. A computer program product, comprising a computer program, wherein the computer program causes a computer to execute the wireless communication method of claim 30.
  81. A computer program product, comprising a computer program, wherein the computer program causes a computer to execute the wireless communication method of claim 31.
  82. A computer program product, comprising a computer program, wherein the computer program causes a computer to execute the wireless communication method of claim 32.
  83. A computer program, wherein the computer program causes a computer to execute any one of the wireless communication methods of claims 1 to 14.
  84. A computer program, wherein the computer program causes a computer to execute any one of the wireless communication methods of claims 15 to 28.
  85. A computer program, wherein the computer program causes a computer to execute the wireless communication method of claim 29.
  86. A computer program, wherein the computer program causes a computer to execute the wireless communication method of claim 30.
  87. A computer program, wherein the computer program causes a computer to execute the wireless communication method of claim 31.
  88. A computer program, wherein the computer program causes a computer to execute the wireless communication method of claim 32.
PCT/CN2021/084844 2021-04-01 2021-04-01 Wireless communication method, base station, and user equipment WO2022205277A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/084844 WO2022205277A1 (en) 2021-04-01 2021-04-01 Wireless communication method, base station, and user equipment
CN202180094612.XA CN116889081A (en) 2021-04-01 2021-04-01 Wireless communication method, user equipment and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/084844 WO2022205277A1 (en) 2021-04-01 2021-04-01 Wireless communication method, base station, and user equipment

Publications (1)

Publication Number Publication Date
WO2022205277A1 true WO2022205277A1 (en) 2022-10-06

Family

ID=83457774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084844 WO2022205277A1 (en) 2021-04-01 2021-04-01 Wireless communication method, base station, and user equipment

Country Status (2)

Country Link
CN (1) CN116889081A (en)
WO (1) WO2022205277A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140301267A1 (en) * 2011-03-21 2014-10-09 Zte Corporation Method for Switchover between MBMS Transmission Modes, Apparatus, and User Equipment
CN111901766A (en) * 2020-04-27 2020-11-06 中兴通讯股份有限公司 Method, device and equipment for bearer configuration, context information management and release

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140301267A1 (en) * 2011-03-21 2014-10-09 Zte Corporation Method for Switchover between MBMS Transmission Modes, Apparatus, and User Equipment
CN111901766A (en) * 2020-04-27 2020-11-06 中兴通讯股份有限公司 Method, device and equipment for bearer configuration, context information management and release

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CATT: "Open Issues on Dynamic PTM and PTP Switch", 3GPP DRAFT; R2-2100084, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Online; 20210125 - 20210205, 15 January 2021 (2021-01-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051973302 *
CMCC: "Discussion on Dynamic PTP and PTM switch", 3GPP DRAFT; R2-2101627, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. electronic; 20210125 - 20210205, 15 January 2021 (2021-01-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051974504 *
INTERDIGITAL INC.: "PTM/PTP mode switching", 3GPP DRAFT; R2-2101317, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic; 20210125 - 20210205, 15 January 2021 (2021-01-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051974258 *
SHANGHAI JIAO TONG UNIVERSITY: "Consideration on dynamic switch between PTP and PTM", 3GPP DRAFT; R2-2100506, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. E-Meeting; 20210125 - 20210205, 14 January 2021 (2021-01-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051972667 *
SPREADTRUM COMMUNICATIONS: "Discussion on reliability of MBS transmission", 3GPP DRAFT; R2-2100676, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. electronic; 20210125 - 20210205, 15 January 2021 (2021-01-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051973797 *

Also Published As

Publication number Publication date
CN116889081A (en) 2023-10-13

Similar Documents

Publication Publication Date Title
CN110402599B (en) Evolved Node B (ENB), user Equipment (UE) and method for switching between direct communication and indirect communication for relay arrangement
JP7426479B2 (en) Build a HARQ codebook to enable/disable feedback for each HARQ process
AU2022287633B2 (en) Communication apparatus, method and computer program
US20230171771A1 (en) Apparatus and method of wireless communication
CN114900547B (en) Communication method and device
CN104285400A (en) Hybrid automatic repeat request in communications
WO2022228077A1 (en) Mobility management method, and communication apparatus
EP4142402A1 (en) Communication control method and user equipment
WO2021036910A1 (en) Data transmission method and device
CN115707036A (en) Method and device for transmitting data
US11463899B2 (en) Apparatus and method for controlling measurement operations in wireless communication system
US20220201786A1 (en) Methods and apparatus to reduce packet latency in multi-leg transmission
US20230292164A1 (en) Electronic device, method, and storage medium for wireless communication system
WO2022110188A1 (en) Sidelink carrier management method, apparatus and system
US20230422336A1 (en) Method and device for wireless communication
CN114600472B (en) Communication method and device
KR20240064024A (en) Signal transmission method, signal reception method, and communication device
WO2022205277A1 (en) Wireless communication method, base station, and user equipment
WO2022141332A1 (en) Communication method and apparatus
US20230421316A1 (en) Beam reporting enhancement for simultaneous iab reception
US20180263072A1 (en) Device and Method of Handling Communications in a Dual Connectivity
WO2022140996A1 (en) Channel access method and communication device
TW202201995A (en) Apparatus and method of wireless communication
CN116648993A (en) Method and apparatus for deactivating and activating SCG in MR-DC scenarios
WO2024169931A1 (en) Conditional primary secondary cell change method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21933937

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180094612.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21933937

Country of ref document: EP

Kind code of ref document: A1