WO2022205218A1 - 一种基于飞行时间ToF的测距相机及控制方法 - Google Patents

一种基于飞行时间ToF的测距相机及控制方法 Download PDF

Info

Publication number
WO2022205218A1
WO2022205218A1 PCT/CN2021/084739 CN2021084739W WO2022205218A1 WO 2022205218 A1 WO2022205218 A1 WO 2022205218A1 CN 2021084739 W CN2021084739 W CN 2021084739W WO 2022205218 A1 WO2022205218 A1 WO 2022205218A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical signal
signal
reflected
plane
measured
Prior art date
Application number
PCT/CN2021/084739
Other languages
English (en)
French (fr)
Inventor
周鸿彬
董晨
唐样洋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/084739 priority Critical patent/WO2022205218A1/zh
Priority to CN202180088622.2A priority patent/CN116710807A/zh
Publication of WO2022205218A1 publication Critical patent/WO2022205218A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar

Definitions

  • Time of flight (ToF) camera can be used for ranging.
  • the principle of ranging is to send optical signals to objects through optical transmitters, and then use optical receivers to receive optical signals returned from objects.
  • the flight (round trip) time to get the distance of the object.
  • the ToF camera generally uses the phase difference between the optical signal emitted by the optical transmitter and the optical signal received by the optical receiver to determine the flight (round-trip) time of the optical signal.
  • the optimization of the ranging process of the ToF camera can be realized, such as extending the ranging distance of the ToF camera or extending the ranging range of the ToF camera.
  • the object has the reflected light path of multiple light signals emitted by the light transmitter, the light receiver will receive the reflected light from many different paths and phases, which is very important for the ToF camera.
  • the ranging process produces interference, resulting in a low accuracy of the ToF camera ranging.
  • the embodiments of the present application provide a time-of-flight ToF-based ranging camera and a control method, which are used to reduce the influence of the diffuse reflection of the multi-path optical signals emitted by the optical transmitter on the point to be measured on the ranging results of the camera, and improve the The accuracy of the ToF camera ranging.
  • a first aspect of the embodiments of the present application provides a time-of-flight ToF-based ranging camera.
  • the camera can perform a measurement on a measured object in a certain frame of images in the photos or videos.
  • the object to be measured includes one or more points to be measured, such as a first point to be measured, a second point to be measured, and the like.
  • the camera includes a light transmitter and a light receiver, wherein the coordinate origin of the light transmitter in the camera is the first origin, and the emission surface of the light transmitter includes at least a first plane and a fourth plane, and the light in the camera
  • the coordinate origin of the receiver is the second origin, and the receiving surface of the light receiver includes a second plane and a fifth plane.
  • the light transmitter in the camera is used to transmit a first light signal to the first point to be measured, and the first light signal is reflected by the first point to be measured to form a first reflected light signal, And the first optical signal intersects the first polar line, and the first reflected optical signal intersects the second polar line; wherein, the first point to be measured, the plane where the first origin and the second origin are located is the third plane , and the third plane and the first plane intersect at the first epipolar line, and the third plane and the second plane intersect at the second epipolar line;
  • the light transmitter in the camera is also used to transmit a second light signal to the second to-be-measured point, and the second optical signal is reflected by the second to-be-measured point to form a second reflection optical signal, and the second optical signal intersects the third polar line, and the second reflected optical signal intersects the fourth polar line; wherein, the second point to be measured is different from the first point to be measured; and the second point to be measured , the plane where the first origin and the second origin are located is the sixth plane, and the sixth plane and the fourth plane intersect at the third pole line, and the sixth plane and the fifth plane intersect at the fourth pole line, wherein the third plane is not coplanar with the sixth plane;
  • the light receiver in the camera is used to receive the first reflected light signal and the second reflected light signal, wherein the first light signal and the first reflected light signal are used for The distance between the first point to be measured and the camera is determined, and the second light signal and the second reflected light signal are used to determine the distance between the second point to be measured and the camera.
  • the first reflected optical signal received by the optical receiver is formed by the reflection of the first optical signal transmitted by the optical transmitter on the first point to be measured, and the first optical signal and the first reflection
  • the light signal is used to determine the distance between the first point to be measured and the camera
  • the second reflected light signal received by the light receiver is the second light signal emitted by the light transmitter reflected on the second point to be measured formed, and the second light signal and the second reflected light signal are used to determine the distance between the second point to be measured and the camera.
  • the first epipolar line is different from the third epipolar line and the second epipolar line is different from the fourth epipolar line, it is used to determine the distance between the first point to be measured and the camera
  • the first optical signal and the first reflected optical signal do not interfere with each other with the second optical signal and the second reflected optical signal used to determine the distance between the second point to be measured and the camera. That is, the different light reflection signals received by the optical receiver through different polar lines do not interfere with each other, and the influence of the diffuse reflection of the multi-path optical signals emitted by the optical transmitter on the point to be measured on the camera ranging result is reduced. , to improve the accuracy of the ToF camera ranging.
  • intersection of the first optical signal and the first polar line may indicate that the transmission path of the first optical signal intersects the first polar line at a certain point or points, or may indicate the transmission path of the first optical signal Passing through one or more points in the first epipolar line; similarly, the intersection of the first reflected optical signal with the second epipolar line may indicate that the transmission path of the first reflected optical signal intersects the second epipolar line at one or more points. Alternatively, the transmission path of the first reflected optical signal may indicate one or more points in the second polar line.
  • the propagation path of the first optical signal passes through the first epipolar line and intersects the first epipolar line at a certain point (or multiple points) After that, the first optical signal is reflected by the first point to be measured to form a single beam (or multiple beams) of the first reflected optical signal.
  • the propagation path of the first reflected optical signal passes through the second polar line and is connected with the first The polar lines intersect at a point (or points).
  • the intersection of the second optical signal and the third polar line may indicate that the transmission path of the second optical signal intersects the third polar line at a certain point or points, or it may indicate that the transmission path of the second optical signal passes through One or more points in the second polar line; similarly, the second reflected light signal intersects the fourth polar line, which can indicate that the transmission path of the second reflected light signal intersects the fourth polar line at one or more points , or, may indicate that the transmission path of the second reflected optical signal passes through one or more points in the fourth polar line.
  • the propagation path of the second optical signal passes through the third epipolar line and intersects the third epipolar line at a certain point (or multiple points) After that, the second optical signal is reflected by the second point to be measured to form a single beam (or multiple beams) of the second reflected optical signal.
  • the propagation path of the second reflected optical signal passes through the fourth polar line and is connected with the first The quadrupoles intersect at a point (or points).
  • the emission surface included in the optical transmitter may specifically indicate the imaging surface of the optical transmitter in the camera pinhole model, that is, the plane equivalent to the imaging surface;
  • the included receiving surface may specifically indicate the imaging surface of the light receiver in the camera pinhole model, or, in other words, the sensor plane of the light receiver.
  • the distance between the first point to be measured and the camera may be the distance between the first point to be measured and the lens in the camera, or the distance between the first point to be measured and the geometric center in the camera. It can also be the distance between the first point to be measured and the photosensitive device in the camera, or the distance between the first point to be measured and other physical or virtual parts in the camera, which is not specified here. limit.
  • the distance between the second point to be measured and the camera may be the distance between the second point to be measured and the lens in the camera, or the distance between the second point to be measured and the geometric center in the camera
  • the distance can also be the distance between the second point to be measured and the photosensitive device in the camera, or the distance between the second point to be measured and other physical or virtual parts in the camera, which is not specifically limited here .
  • the optical transmitter may also include other emitting planes, such as a seventh plane or other planes; correspondingly, in the optical receiver, in addition to the second plane and the fourth plane Besides the five planes, other receiving planes may also be included, such as an eighth plane or other planes.
  • an epipolar line that satisfies the epipolar constraint can also exist in the aforementioned manner, and optical signals are sent and received on the corresponding epipolar line. , in order to realize the ranging of more different points to be measured.
  • the accuracy of the ToF camera ranging can be further improved.
  • the light emitter includes a first light source area and a second light source area, wherein the emission surface of the first light source area is the first plane, and the The emission surface of the second light source area is the fourth plane;
  • the light receiver includes a first pixel array area and a second pixel array area, wherein the receiving surface of the first pixel array area is the second plane, and the first pixel array area The receiving surface of the two-pixel array region is the fifth plane.
  • a plurality of light source regions can be set in the optical transmitter, and different emitting surfaces can be set on different light source regions, so as to realize the emission of a plurality of different light signals.
  • a plurality of pixel array regions may also be set in the light receiver, and different receiving surfaces may be set on different pixel array regions, so as to realize the reception of multiple different optical signals.
  • the first optical signal and the second optical signal are orthogonal to each other.
  • the first optical signal used to measure the distance of the first point to be measured and the second optical signal used to measure the distance of the second point to be measured may be orthogonal to each other, that is, the first optical signal
  • the coherence between the optical signal and the second optical signal is zero.
  • the coherence between the first optical signal and the second optical signal is 0, the interference between the first optical signal and the second optical signal can also be avoided, and the detection of the ToF camera can be further improved. distance accuracy.
  • both the first optical signal and the second optical signal are signals obtained through binary phase shift keying (binary phase shift keying, BPSK) encoding.
  • binary phase shift keying binary phase shift keying, BPSK
  • both the first optical signal and the second optical signal can be obtained by BPSK encoding, that is, the first optical signal and the second optical signal can be obtained by BPSK encoding using at least two original sequences respectively.
  • the different original sequences make the first optical signal and the second optical signal orthogonal.
  • a specific implementation manner of the first optical signal and the second optical signal is provided to improve the implementability of the solution.
  • the first optical signal and the second optical signal may be signals obtained by other encoding methods, such as quadrature phase shift keying (quadrature phase shift keying, QPSK), quadrature amplitude modulation (quadrature amplitude modulation) , QAM), or other methods, which are not limited here.
  • quadrature phase shift keying quadrature phase shift keying, QPSK
  • quadrature amplitude modulation quadrature amplitude modulation
  • QAM quadrature amplitude modulation
  • the first optical signal is a signal obtained by encoding a first pseudo-random sequence through BPSK
  • the second optical signal is a signal obtained by encoding a second pseudo-random sequence through BPSK.
  • the number of sequences with a value of 0 in the first pseudo-random sequence is equal to the number of sequences with a value of 0 in the second pseudo-random sequence.
  • the first optical signal and the second optical signal can be obtained by performing BPSK encoding on a pseudo-random sequence, wherein the number of sequences with a value of 0 in the first pseudo-random sequence used to generate the first optical signal is equal to The number of sequences with a value of 0 in the second pseudo-random sequence used to generate the second optical signal is the same, so that the interference between the generated first optical signal and the second optical signal is zero. That is, the first optical signal used to measure the distance of the first point to be measured and the second optical signal used to measure the distance of the second point to be measured do not interfere with each other, which further improves the accuracy of the distance measurement of the ToF camera.
  • the first optical signal is a signal obtained by BPSK encoding.
  • the first optical signal may be a signal obtained by BPSK encoding, that is, the first optical signal is obtained by performing BPSK encoding with a certain original sequence.
  • a specific implementation manner of the first optical signal is provided to improve the implementability of the solution.
  • the signal frequency of the first optical signal is a first frequency
  • the signal frequency of the second optical signal is a second frequency
  • the first frequency is different from the second frequency
  • the first optical signal and the second optical signal can be respectively transmitted through different signal frequencies, so as to realize the mutual orthogonality between the first optical signal and the second optical signal, so that the first optical signal and the second optical signal are mutually orthogonal.
  • the coherence between optical signals is 0.
  • the frequencies between the first optical signal and the second optical signal are different, the interference between the first optical signal and the second optical signal can also be avoided, further improving the accuracy of the ToF camera ranging Rate.
  • the light emitter also includes other emitting planes, such as the seventh plane or other planes; at this time, the relationship between the first plane and the first epipolar line is similar ( Or the relationship of the third epipolar line to the fourth plane), other epipolar lines also exist in other emitting surfaces; and, the optical transmitter can emit other optical signals passing through the other epipolar lines.
  • other optical signals may use signal frequencies different from the first frequency and the second frequency.
  • the optical transmitter is transmitting n optical signals (n is greater than 2, and the n optical signals include the first optical signal and the second optical signal) signal), n different signal frequencies can be set for the n-channel optical signals, that is, the signal frequencies of the n-channel optical signals are different from each other.
  • other optical signals can also use the first frequency or the second frequency.
  • the n-path optical signals can be alternately set to the first frequency and the second frequency, that is, the signal frequencies of any adjacent optical signals in the n-path optical signals are different from each other to achieve a better anti-interference effect.
  • the light transmitter in the camera is further configured to transmit a signal to the first to-be-measured point whose frequency is the second frequency
  • the light receiver in the camera is also used to receive the third reflected light signal, wherein the first light signal, the first reflected light signal, the third light signal and the third reflected light signal are used to determine The distance between the first point to be measured and the camera.
  • the ToF camera since the ToF camera generally uses the phase difference to obtain the distance, at a single frequency, the maximum ranging range of the ToF camera is limited by the mathematical relationship between the frequency and the speed of light. When the distance is larger than the maximum ranging range, the measured distance will have poor accuracy due to periodic aliasing.
  • the relationship between the first frequency and the second frequency can be used to calculate by emitting light signals of different frequencies respectively, so as to extend the ranging distance of the ToF camera.
  • the accuracy of the ranging result for the first point to be measured can be improved by using the first optical signal whose signal frequency is the first frequency and the third optical signal whose signal frequency is the second frequency.
  • intersection of the third optical signal with the first polar line may indicate that the transmission path of the third optical signal intersects the first polar line at a certain point or multiple points, or may indicate the transmission path of the third optical signal Passing through one or more points in the first epipolar line; similarly, the intersection of the third reflected optical signal with the second epipolar line may indicate that the transmission path of the third reflected optical signal intersects the second epipolar line at one or more points. point, or may indicate that the transmission path of the third reflected optical signal passes through one or more points in the second polar line.
  • the propagation path of the third optical signal passes through the first epipolar line and intersects the first epipolar line at a certain point (or multiple points) After that, the third optical signal is reflected by the first point to be measured to form a single beam (or multiple beams) of the first reflected optical signal, and the propagation path of the third reflected optical signal passes through the second polar line and is connected with the first The polar lines intersect at a point (or points).
  • the light transmitter in the camera is further configured to transmit a signal to the second to-be-measured point whose frequency is the first frequency
  • the fourth optical signal is reflected by the second to-be-measured point to form a fourth reflected optical signal, and the fourth optical signal intersects the third polar line, and the fourth reflected optical signal and the fourth The polar lines intersect;
  • the light receiver in the camera is also used to receive the fourth reflected light signal of the fourth light signal at the second to-be-measured point, wherein the second light signal, the second reflected light signal, the The fourth optical signal and the fourth reflection signal are used to determine the distance between the second point to be measured and the camera.
  • the ToF camera since the ToF camera generally uses the phase difference to obtain the distance, under a single frequency, the maximum ranging range of the ToF camera is limited by the mathematical relationship between the frequency and the speed of light.
  • the relationship between the first frequency and the second frequency can be used to calculate by emitting light signals of different frequencies respectively, so as to extend the ranging distance of the ToF camera.
  • the accuracy of the ranging result for the second point to be measured can be improved by using the second optical signal whose signal frequency is the second frequency and the fourth optical signal whose signal frequency is the first frequency.
  • intersection of the fourth optical signal and the third polar line may indicate that the transmission path of the fourth optical signal and the third polar line intersect at a certain point or multiple points, or may indicate the transmission path of the fourth optical signal Passing through one or more points in the second polar line; similarly, the intersection of the fourth reflected light signal with the fourth polar line may indicate that the transmission path of the fourth reflected light signal intersects the fourth polar line at one or more points. or, may indicate that the transmission path of the fourth reflected optical signal passes through one or more points in the fourth polar line.
  • the propagation path of the fourth optical signal passes through the third epipolar line and intersects the third epipolar line at a certain point (or multiple points)
  • the fourth optical signal is reflected by the second point to be measured to form a single beam (or multiple beams) of the fourth reflected optical signal, and the propagation path of the fourth reflected optical signal passes through the fourth polar line and is connected with the first The quadrupoles intersect at a point (or points).
  • the camera in order to implement the ranging function of the camera, it may be implemented through the settings of the controller in the camera.
  • the camera may further include a controller respectively connected to the light transmitter and the light receiver; in the process of the camera performing ranging, the controller is used to control the light transmitter to emit the first light signal; and, The controller is further configured to control the optical receiver to receive the first optical signal.
  • the camera can be provided with controllers connected to the optical transmitter and the optical receiver respectively, and the controller can control the optical transmitter to transmit optical signals, and control the optical receiver to receive optical signals, so that the optical transmitter can be controlled to receive the optical signals.
  • the controller can control the optical transmitter to transmit optical signals, and control the optical receiver to receive optical signals, so that the optical transmitter can be controlled to receive the optical signals.
  • the controller is further configured to control the optical transmitter to emit the second optical signal.
  • the controller is further configured to control the light receiver to receive the second reflected light signal.
  • the controller is further configured to control the optical transmitter to emit the third optical signal.
  • the controller is further configured to control the light receiver to receive the third reflected light signal.
  • the controller is further configured to control the optical transmitter to emit the fourth optical signal.
  • the controller is further configured to control the light receiver to receive the fourth reflected light signal.
  • the controller in the process of the camera performing ranging, may be specifically configured to sample the first reflected light signal to obtain a first sampling result; and then , the controller determines the first phase difference between the first optical signal and the first reflected optical signal according to the first sampling result; further, the controller determines the first point to be measured and the first phase difference according to the first phase difference distance between cameras.
  • the controller can determine the distance between the first point to be measured and the camera through the first optical signal transmitted by the optical transmitter and the first reflected optical signal received by the optical receiver.
  • a first phase difference is obtained by solving the phase between the first optical signal and the second reflected optical signal, and the distance between the first point to be measured and the camera is further determined according to the first phase difference.
  • the controller in the process of the camera performing ranging, may be specifically configured to sample the second reflected light signal to obtain a second sampling result; and then , the controller determines the second phase difference between the second optical signal and the second reflected optical signal according to the second sampling result; further, the controller determines the second to-be-measured point and the second phase difference according to the second phase difference distance between cameras.
  • the controller can determine the distance between the second point to be measured and the camera through the second optical signal transmitted by the optical transmitter and the second reflected optical signal received by the optical receiver. Specifically, it can be based on the ToF principle, through A second phase difference is obtained by solving the phase between the second optical signal and the second reflected optical signal, and the distance between the second point to be measured and the camera is further determined according to the second phase difference.
  • a second aspect of the embodiments of the present application provides a time-of-flight ToF-based ranging camera, which, when taking photos or videos using the principle of optical imaging,
  • the object to be measured includes one or more points to be measured, such as a first point to be measured, a second point to be measured, and the like.
  • the camera includes a controller, and a light transmitter and a light receiver respectively connected to the controller; the coordinate origin of the light transmitter is a first origin, and the emission surface of the light transmitter includes a first plane and a fourth plane A plane, the coordinate origin of the light receiver is the second origin, and the receiving surface of the light receiver includes a second plane and a fifth plane.
  • a first reflected light signal is formed, and the first light signal intersects with the first polar line, and the first reflected light signal intersects with the second polar line; wherein, the first point to be measured, the first origin and the second origin
  • the plane where it is located is a third plane, and the third plane and the first plane intersect at the first polar line, and the third plane and the second plane intersect at the second polar line;
  • the light transmitter in the camera is also used to transmit a second light signal to the second to-be-measured point under the control of the controller, and the second light signal passes through the first point.
  • the reflection of the two points to be measured forms a second reflected light signal, and the second light signal intersects the third polar line, and the second reflected light signal intersects the fourth polar line; wherein, the second point to be measured is different from the first to be measured.
  • the plane where the first origin and the second origin are located is the sixth plane, and the sixth plane and the fourth plane intersect at the third polar line, the sixth plane intersecting with the fifth plane at the fourth polar line, wherein the third plane and the sixth plane are not coplanar;
  • the light receiver in the camera is used for receiving the first reflected light signal and the second light signal under the control of the controller;
  • This section of the controller in the camera is used to determine the distance between the first point to be measured and the camera according to the first light signal and the first reflected light signal, and to determine the distance between the first point to be measured and the camera according to the second light signal and the second reflected light
  • the signal determines the distance between the second point to be measured and the camera.
  • the first reflected optical signal received by the optical receiver is formed by the reflection of the first optical signal transmitted by the optical transmitter on the first point to be measured, and the first reflected optical signal is The optical signal and the first reflected optical signal are used to determine the distance between the first point to be measured and the camera;
  • the second reflected optical signal received by the optical receiver is emitted by the optical transmitter
  • the second optical signal is formed by reflection on the second point to be measured, and the second optical signal and the second reflected light signal are used to determine the distance between the second point to be measured and the camera.
  • the first epipolar line is different from the third epipolar line and the second epipolar line is different from the fourth epipolar line, it is used to determine the distance between the first point to be measured and the camera
  • the first optical signal and the first reflected optical signal do not interfere with each other with the second optical signal and the second reflected optical signal used to determine the distance between the second point to be measured and the camera. That is, the different light reflection signals received by the optical receiver through different polar lines do not interfere with each other, and the influence of the diffuse reflection of the multi-path optical signals emitted by the optical transmitter on the point to be measured on the camera ranging result is reduced. , to improve the accuracy of the ToF camera ranging.
  • intersection of the first optical signal and the first polar line may indicate that the transmission path of the first optical signal intersects the first polar line at a certain point or points, or may indicate the transmission path of the first optical signal Passing through one or more points in the first epipolar line; similarly, the intersection of the first reflected optical signal with the second epipolar line may indicate that the transmission path of the first reflected optical signal intersects the second epipolar line at one or more points. Alternatively, the transmission path of the first reflected optical signal may indicate one or more points in the second polar line.
  • the propagation path of the first optical signal passes through the first epipolar line and intersects the first epipolar line at a certain point (or multiple points) After that, the first optical signal is reflected by the first point to be measured to form a single beam (or multiple beams) of the first reflected optical signal.
  • the propagation path of the first reflected optical signal passes through the second polar line and is connected with the first The polar lines intersect at a point (or points).
  • the intersection of the second optical signal and the third polar line may indicate that the transmission path of the second optical signal intersects the third polar line at a certain point or points, or it may indicate that the transmission path of the second optical signal passes through One or more points in the second polar line; similarly, the second reflected light signal intersects the fourth polar line, which can indicate that the transmission path of the second reflected light signal intersects the fourth polar line at one or more points , or, may indicate that the transmission path of the second reflected optical signal passes through one or more points in the fourth polar line.
  • the propagation path of the second optical signal passes through the third epipolar line and intersects the third epipolar line at a certain point (or multiple points) After that, the second optical signal is reflected by the second point to be measured to form a single beam (or multiple beams) of the second reflected optical signal.
  • the propagation path of the second reflected optical signal passes through the fourth polar line and is connected with the first The quadrupoles intersect at a point (or points).
  • the distance between the first point to be measured and the camera may be the distance between the first point to be measured and the lens in the camera, or the distance between the first point to be measured and the geometric center in the camera. It can also be the distance between the first point to be measured and the photosensitive device in the camera, or the distance between the first point to be measured and other physical or virtual parts in the camera, which is not specified here. limit.
  • the distance between the second point to be measured and the camera may be the distance between the second point to be measured and the lens in the camera, or the distance between the second point to be measured and the geometric center in the camera
  • the distance can also be the distance between the second point to be measured and the photosensitive device in the camera, or the distance between the second point to be measured and other physical or virtual parts in the camera, which is not specifically limited here .
  • the optical transmitter may also include other emitting planes, such as a seventh plane or other planes; correspondingly, in the optical receiver, in addition to the second plane and the fourth plane Besides the five planes, other receiving planes may also be included, such as an eighth plane or other planes.
  • other emitting surfaces in the optical transmitter and other receiving surfaces in the optical receiver there may also be an epipolar line that satisfies the epipolar constraint in the aforementioned manner, and the controller controls the optical signal on the corresponding epipolar line. Transceive and receive to achieve ranging for more different points to be measured.
  • the accuracy of the ToF camera ranging can be further improved.
  • the light emitter includes a first light source region and a second light source region, wherein the emission surface of the first light source region is the first plane, and the The emission surface of the second light source area is the fourth plane;
  • the light receiver includes a first pixel array area and a second pixel array area, wherein the receiving surface of the first pixel array area is the second plane, and the first pixel array area The receiving surface of the two-pixel array region is the fifth plane.
  • a plurality of light source regions can be set in the optical transmitter, and different emitting surfaces can be set on different light source regions, so as to realize the emission of a plurality of different light signals.
  • a plurality of pixel array regions may also be set in the light receiver, and different receiving surfaces may be set on different pixel array regions, so as to realize the reception of multiple different optical signals.
  • the first optical signal and the second optical signal are orthogonal to each other.
  • the first optical signal used to measure the distance of the first point to be measured and the second optical signal used to measure the distance of the second point to be measured may be orthogonal to each other, that is, the first optical signal
  • the coherence between the optical signal and the second optical signal is zero.
  • the coherence between the first optical signal and the second optical signal is 0, the interference between the first optical signal and the second optical signal can also be avoided, and the detection of the ToF camera can be further improved. distance accuracy.
  • both the first optical signal and the second optical signal are signals obtained through binary phase shift keying BPSK encoding.
  • both the first optical signal and the second optical signal can be obtained by BPSK encoding, that is, the first optical signal and the second optical signal can be obtained by BPSK encoding using at least two original sequences respectively.
  • the different original sequences make the first optical signal and the second optical signal orthogonal.
  • a specific implementation manner of the first optical signal and the second optical signal is provided to improve the implementability of the solution.
  • the first optical signal and the second optical signal may be signals obtained by other encoding methods, such as quadrature phase shift keying (quadrature phase shift keying, QPSK), quadrature amplitude modulation (quadrature amplitude modulation) , QAM), or other methods, which are not limited here.
  • quadrature phase shift keying quadrature phase shift keying, QPSK
  • quadrature amplitude modulation quadrature amplitude modulation
  • QAM quadrature amplitude modulation
  • the first optical signal is a signal obtained by encoding a first pseudo-random sequence through BPSK
  • the second optical signal is a signal obtained by encoding a second pseudo-random sequence through BPSK signal
  • the number of sequences with a value of 0 in the first pseudo-random sequence is equal to the number of sequences with a value of 0 in the second pseudo-random sequence.
  • the first optical signal and the second optical signal can be obtained by performing BPSK encoding on a pseudo-random sequence, wherein the number of sequences with a value of 0 in the first pseudo-random sequence used to generate the first optical signal is equal to The number of sequences with a value of 0 in the second pseudo-random sequence used to generate the second optical signal is the same, so that the interference between the generated first optical signal and the second optical signal is zero. That is, the first optical signal used to measure the distance of the first point to be measured and the second optical signal used to measure the distance of the second point to be measured do not interfere with each other, which further improves the accuracy of the distance measurement of the ToF camera.
  • the first optical signal is a signal obtained by BPSK encoding.
  • the first optical signal may be a signal obtained by BPSK encoding, that is, the first optical signal is obtained by performing BPSK encoding with a certain original sequence.
  • a specific implementation manner of the first optical signal is provided to improve the implementability of the solution.
  • the signal frequency of the first optical signal is the first frequency
  • the signal frequency of the second optical signal is the second frequency
  • the first frequency is different from the second frequency
  • the first optical signal and the second optical signal can be respectively transmitted through different signal frequencies, so as to realize the mutual orthogonality between the first optical signal and the second optical signal, so that the first optical signal and the second optical signal are mutually orthogonal.
  • the coherence between optical signals is 0.
  • the frequencies between the first optical signal and the second optical signal are different, the interference between the first optical signal and the second optical signal can also be avoided, further improving the accuracy of the ToF camera ranging Rate.
  • the light emitter also includes other emitting planes, such as the seventh plane or other planes; at this time, the relationship between the first plane and the first epipolar line is similar ( Or the relationship of the third epipolar line to the fourth plane), other epipolar lines also exist in other emitting surfaces; and, the optical transmitter can emit other optical signals passing through the other epipolar lines.
  • other optical signals may use signal frequencies different from the first frequency and the second frequency.
  • the optical transmitter is transmitting n optical signals (n is greater than 2, and the n optical signals include the first optical signal and the second optical signal) signal), n different signal frequencies can be set for the n-channel optical signals, that is, the signal frequencies of the n-channel optical signals are different from each other.
  • other optical signals can also use the first frequency or the second frequency.
  • the n-path optical signals can be alternately set to the first frequency and the second frequency, that is, the signal frequencies of any adjacent optical signals in the n-path optical signals are different from each other to achieve a better anti-interference effect.
  • the light transmitter in the camera is also used to, under the control of the controller, transmit to the first to-be-measured
  • the point emission signal frequency is a third optical signal of the second frequency, wherein the third optical signal is reflected by the first point to be measured to form a third reflected optical signal, and the third optical signal intersects the first polar line , the third reflected light signal intersects the second polar line;
  • the light receiver in the camera is also used for receiving the third reflected light signal under the control of the controller;
  • the controller in the camera is also used for receiving the third reflected light signal according to the first light signal, the first reflected light signal, the third light signal and the third reflected light signal determine the distance between the first point to be measured and the camera.
  • the ToF camera since the ToF camera generally uses the phase difference to obtain the distance, under a single frequency, the maximum ranging range of the ToF camera is limited by the mathematical relationship between the frequency and the speed of light.
  • the controller can control the same point to be measured to transmit and receive optical signals of different frequencies respectively, and use the relationship between the first frequency and the second frequency to perform calculations to extend the ranging distance of the ToF camera.
  • the accuracy of the ranging result for the first point to be measured can be improved by using the first optical signal whose signal frequency is the first frequency and the third optical signal whose signal frequency is the second frequency.
  • intersection of the third optical signal with the first polar line may indicate that the transmission path of the third optical signal intersects the first polar line at a certain point or multiple points, or may indicate the transmission path of the third optical signal Passing through one or more points in the first epipolar line; similarly, the intersection of the third reflected optical signal with the second epipolar line may indicate that the transmission path of the third reflected optical signal intersects the second epipolar line at one or more points. point, or may indicate that the transmission path of the third reflected optical signal passes through one or more points in the second polar line.
  • the propagation path of the third optical signal passes through the first epipolar line and intersects the first epipolar line at a certain point (or multiple points) After that, the third optical signal is reflected by the first point to be measured to form a single beam (or multiple beams) of the first reflected optical signal, and the propagation path of the third reflected optical signal passes through the second polar line and is connected with the first The polar lines intersect at a point (or points).
  • the light transmitter in the camera is also used to, under the control of the controller, send the camera to the second to-be-measured point.
  • the emission signal frequency is the fourth optical signal of the first frequency
  • the fourth optical signal is reflected by the second point to be measured to form a fourth reflected optical signal
  • the fourth optical signal intersects the third polar line
  • the fourth reflected light signal intersects with the fourth polar line
  • the light receiver in the camera is also used for receiving the fourth reflected light signal of the fourth light signal on the second to-be-measured point under the control of the controller
  • the controller in the camera is further configured to determine the distance between the second point to be measured and the camera according to the second light signal, the second reflected light signal, the fourth light signal and the fourth reflected signal .
  • the ToF camera since the ToF camera generally uses the phase difference to obtain the distance, under a single frequency, the maximum ranging range of the ToF camera is limited by the mathematical relationship between the frequency and the speed of light.
  • the relationship between the first frequency and the second frequency can be used to calculate by emitting light signals of different frequencies respectively, so as to extend the ranging distance of the ToF camera.
  • the accuracy of the ranging result for the second point to be measured can be improved by using the second optical signal whose signal frequency is the second frequency and the fourth optical signal whose signal frequency is the first frequency.
  • intersection of the fourth optical signal and the third polar line may indicate that the transmission path of the fourth optical signal and the third polar line intersect at a certain point or multiple points, or may indicate the transmission path of the fourth optical signal Passing through one or more points in the second polar line; similarly, the intersection of the fourth reflected light signal with the fourth polar line may indicate that the transmission path of the fourth reflected light signal intersects the fourth polar line at one or more points. or, may indicate that the transmission path of the fourth reflected optical signal passes through one or more points in the fourth polar line.
  • the propagation path of the fourth optical signal passes through the third epipolar line and intersects the third epipolar line at a certain point (or multiple points)
  • the fourth optical signal is reflected by the second point to be measured to form a single beam (or multiple beams) of the fourth reflected optical signal, and the propagation path of the fourth reflected optical signal passes through the fourth polar line and is connected with the first The quadrupoles intersect at a point (or points).
  • the controller in the camera is specifically configured to sample the first reflected light signal to obtain the first sampling result; Then, the controller determines a first phase difference between the first optical signal and the first reflected optical signal according to the first sampling result; further, the controller determines the first point to be measured and the first phase difference according to the first phase difference the distance between the cameras.
  • the camera can control the optical transmitter to transmit the optical signal through the controller, and control the optical receiver to receive the optical signal, so that the optical transmitter and the optical receiver are controlled by the controller, based on the ToF principle to realize the test to be measured point for distance measurement.
  • the controller can determine the distance between the first point to be measured and the camera through the first optical signal transmitted by the optical transmitter and the first reflected optical signal received by the optical receiver.
  • the first phase difference is obtained by solving the phase between the optical signal and the second reflected optical signal, and the distance between the first point to be measured and the camera is further determined according to the first phase difference.
  • the controller in the camera is specifically configured to sample the second reflected light signal to obtain a second sampling result; Then, the controller determines a second phase difference between the second optical signal and the second reflected optical signal according to the second sampling result; further, the controller determines the second to-be-measured point and the the distance between the cameras.
  • the controller can determine the distance between the second point to be measured and the camera through the second optical signal transmitted by the optical transmitter and the second reflected optical signal received by the optical receiver. Specifically, it can be based on the ToF principle, through A second phase difference is obtained by solving the phase between the second optical signal and the second reflected optical signal, and the distance between the second point to be measured and the camera is further determined according to the second phase difference.
  • a third aspect of the embodiments of the present application provides a time-of-flight ToF-based ranging camera, which, when taking photos or videos using the principle of optical imaging,
  • the object to be measured includes one or more points to be measured, such as a first point to be measured, a second point to be measured, and the like.
  • the camera includes a controller, and a light receiver connected to the controller;
  • the light receiver in the camera is used to receive the first reflected light signal under the control of the controller, and the first reflected light signal is the first light signal transmitted by the light transmitter through the The reflection of the first point to be measured is formed, and the first optical signal intersects the first polar line, and the first reflected optical signal intersects the second polar line;
  • the coordinate origin of the light emitter is the first origin and the light
  • the emitting surface of the transmitter includes a first plane and a fourth plane
  • the coordinate origin of the light receiver is the second origin
  • the receiving surface of the light receiver includes a second plane and a fifth plane
  • the first point to be measured, the The plane where the first origin and the second origin are located is a third plane, and the third plane and the first plane intersect at the first epipolar line, and the third plane and the second plane intersect at the second epipolar line ;
  • the light receiver in the camera is also used to receive the second reflected light signal under the control of the controller, and the second reflected light signal is emitted by the light transmitter.
  • the second optical signal is formed by the reflection of the second point to be measured, and the second optical signal intersects the third polar line, and the second reflected optical signal intersects the fourth polar line;
  • the controller in the camera is further configured to The light signal and the second reflected light signal determine the distance between the second point to be measured and the camera.
  • a second to-be-measured point different from the first to-be-measured point, the plane where the first origin and the second origin are located is a sixth plane, and the sixth plane and the Four planes intersect at the third epipolar line, and the sixth plane and the fifth plane intersect at the fourth epipolar line; wherein, the third plane and the sixth plane are not coplanar;
  • controller in the camera is configured to determine the distance between the first to-be-measured point and the camera according to the first light signal and the first reflected light signal.
  • the first reflected optical signal received by the optical receiver is formed by the reflection of the first optical signal transmitted by the optical transmitter on the first point to be measured, and the first reflected optical signal is The optical signal and the first reflected optical signal are used to determine the distance between the first point to be measured and the camera;
  • the second reflected optical signal received by the optical receiver is emitted by the optical transmitter
  • the second optical signal is formed by reflection on the second point to be measured, and the second optical signal and the second reflected light signal are used to determine the distance between the second point to be measured and the camera.
  • the first epipolar line is different from the third epipolar line and the second epipolar line is different from the fourth epipolar line, it is used to determine the distance between the first point to be measured and the camera
  • the first optical signal and the first reflected optical signal do not interfere with each other with the second optical signal and the second reflected optical signal used to determine the distance between the second point to be measured and the camera. That is, the different light reflection signals received by the optical receiver through different polar lines do not interfere with each other, and the influence of the diffuse reflection of the multi-path optical signals emitted by the optical transmitter on the point to be measured on the camera ranging result is reduced. , to improve the accuracy of the ToF camera ranging.
  • intersection of the first optical signal and the first polar line may indicate that the transmission path of the first optical signal intersects the first polar line at a certain point or points, or may indicate the transmission path of the first optical signal Passing through one or more points in the first epipolar line; similarly, the intersection of the first reflected optical signal with the second epipolar line may indicate that the transmission path of the first reflected optical signal intersects the second epipolar line at one or more points. Alternatively, the transmission path of the first reflected optical signal may indicate one or more points in the second polar line.
  • the propagation path of the first optical signal passes through the first epipolar line and intersects the first epipolar line at a certain point (or multiple points) After that, the first optical signal is reflected by the first point to be measured to form a single beam (or multiple beams) of the first reflected optical signal.
  • the propagation path of the first reflected optical signal passes through the second polar line and is connected with the first The polar lines intersect at a point (or points).
  • the intersection of the second optical signal and the third polar line may indicate that the transmission path of the second optical signal intersects the third polar line at a certain point or points, or it may indicate that the transmission path of the second optical signal passes through One or more points in the second polar line; similarly, the second reflected light signal intersects the fourth polar line, which can indicate that the transmission path of the second reflected light signal intersects the fourth polar line at one or more points , or, may indicate that the transmission path of the second reflected optical signal passes through one or more points in the fourth polar line.
  • the propagation path of the second optical signal passes through the third epipolar line and intersects the third epipolar line at a certain point (or multiple points) After that, the second optical signal is reflected by the second point to be measured to form a single beam (or multiple beams) of the second reflected optical signal.
  • the propagation path of the second reflected optical signal passes through the fourth polar line and is connected with the first The quadrupoles intersect at a point (or points).
  • the distance between the first point to be measured and the camera may be the distance between the first point to be measured and the lens in the camera, or the distance between the first point to be measured and the geometric center in the camera. It can also be the distance between the first point to be measured and the photosensitive device in the camera, or the distance between the first point to be measured and other physical or virtual parts in the camera, which is not specified here. limit.
  • the distance between the second point to be measured and the camera may be the distance between the second point to be measured and the lens in the camera, or the distance between the second point to be measured and the geometric center in the camera
  • the distance can also be the distance between the second point to be measured and the photosensitive device in the camera, or the distance between the second point to be measured and other physical or virtual parts in the camera, which is not specifically limited here .
  • the optical transmitter may also include other emitting planes, such as a seventh plane or other planes; correspondingly, in the optical receiver, in addition to the second plane and the fourth plane Besides the five planes, other receiving planes may also be included, such as an eighth plane or other planes.
  • other emitting surfaces in the optical transmitter and other receiving surfaces in the optical receiver there may also be an epipolar line that satisfies the epipolar constraint in the aforementioned manner, and the controller controls the optical signal on the corresponding epipolar line. Transceive and receive to achieve ranging for more different points to be measured.
  • the accuracy of the ToF camera ranging can be further improved.
  • the light emitter includes a first light source region and a second light source region, wherein the emission surface of the first light source region is the first plane, and the The emission surface of the second light source area is the fourth plane;
  • the light receiver includes a first pixel array area and a second pixel array area, wherein the receiving surface of the first pixel array area is the second plane, and the first pixel array area The receiving surface of the two-pixel array region is the fifth plane.
  • a plurality of light source regions can be set in the optical transmitter, and different emitting surfaces can be set on different light source regions, so as to realize the emission of a plurality of different light signals.
  • a plurality of pixel array regions may also be set in the light receiver, and different receiving surfaces may be set on different pixel array regions, so as to realize the reception of multiple different optical signals.
  • the first optical signal and the second optical signal are orthogonal to each other.
  • the first optical signal used to measure the distance of the first point to be measured and the second optical signal used to measure the distance of the second point to be measured may be orthogonal to each other, that is, the first optical signal
  • the coherence between the optical signal and the second optical signal is zero.
  • the coherence between the first optical signal and the second optical signal is 0, the interference between the first optical signal and the second optical signal can also be avoided, and the detection of the ToF camera can be further improved. distance accuracy.
  • both the first optical signal and the second optical signal are signals obtained through binary phase shift keying BPSK encoding.
  • both the first optical signal and the second optical signal can be obtained by BPSK encoding, that is, the first optical signal and the second optical signal can be obtained by BPSK encoding using at least two original sequences respectively.
  • the different original sequences make the first optical signal and the second optical signal orthogonal.
  • a specific implementation manner of the first optical signal and the second optical signal is provided to improve the implementability of the solution.
  • the first optical signal and the second optical signal may be signals obtained by other encoding methods, such as quadrature phase shift keying (quadrature phase shift keying, QPSK), quadrature amplitude modulation (quadrature amplitude modulation) , QAM), or other methods, which are not limited here.
  • quadrature phase shift keying quadrature phase shift keying, QPSK
  • quadrature amplitude modulation quadrature amplitude modulation
  • QAM quadrature amplitude modulation
  • the first optical signal is a signal obtained by encoding a first pseudo-random sequence through BPSK
  • the second optical signal is a signal obtained by encoding a second pseudo-random sequence through BPSK signal
  • the number of sequences with a value of 0 in the first pseudo-random sequence is equal to the number of sequences with a value of 0 in the second pseudo-random sequence.
  • the first optical signal and the second optical signal can be obtained by performing BPSK encoding on a pseudo-random sequence, wherein the number of sequences with a value of 0 in the first pseudo-random sequence used to generate the first optical signal is equal to The number of sequences with a value of 0 in the second pseudo-random sequence used to generate the second optical signal is the same, so that the interference between the generated first optical signal and the second optical signal is zero. That is, the first optical signal used to measure the distance of the first point to be measured and the second optical signal used to measure the distance of the second point to be measured do not interfere with each other, which further improves the accuracy of the distance measurement of the ToF camera.
  • the first optical signal is a signal obtained by BPSK encoding.
  • the first optical signal may be a signal obtained by BPSK encoding, that is, the first optical signal is obtained by performing BPSK encoding with a certain original sequence.
  • a specific implementation manner of the first optical signal is provided to improve the implementability of the solution.
  • the signal frequency of the first optical signal is the first frequency
  • the signal frequency of the second optical signal is the second frequency
  • the first frequency is different from the second frequency
  • the first optical signal and the second optical signal can be respectively transmitted through different signal frequencies, so as to realize the mutual orthogonality between the first optical signal and the second optical signal, so that the first optical signal and the second optical signal are mutually orthogonal.
  • the coherence between optical signals is 0.
  • the frequencies between the first optical signal and the second optical signal are different, the interference between the first optical signal and the second optical signal can also be avoided, further improving the accuracy of the ToF camera ranging Rate.
  • the light emitter also includes other emitting planes, such as the seventh plane or other planes; at this time, the relationship between the first plane and the first epipolar line is similar ( Or the relationship of the third epipolar line to the fourth plane), other epipolar lines also exist in other emitting surfaces; and, the optical transmitter can emit other optical signals passing through the other epipolar lines.
  • other optical signals may use signal frequencies different from the first frequency and the second frequency.
  • the optical transmitter is transmitting n optical signals (n is greater than 2, and the n optical signals include the first optical signal and the second optical signal) signal), n different signal frequencies can be set for the n-channel optical signals, that is, the signal frequencies of the n-channel optical signals are different from each other.
  • other optical signals can also use the first frequency or the second frequency.
  • the n-path optical signals can be alternately set to the first frequency and the second frequency, that is, the signal frequencies of any adjacent optical signals in the n-path optical signals are different from each other to achieve a better anti-interference effect.
  • the light receiver in the camera is further configured to receive a third reflected light signal under the control of the controller , the third reflected optical signal is formed by the third optical signal emitted by the optical transmitter through the reflection of the first point to be measured, and the third optical signal intersects with the first polar line, and the third reflected optical signal and The second polar lines intersect; wherein, the frequency of the third optical signal signal is the second frequency; at this time, the controller in the camera is further configured to, according to the first optical signal, the first reflected optical signal, the first The three light signals and the third reflected light signal determine the distance between the first point to be measured and the camera.
  • the ToF camera since the ToF camera generally uses the phase difference to obtain the distance, under a single frequency, the maximum ranging range of the ToF camera is limited by the mathematical relationship between the frequency and the speed of light.
  • the controller can control the same point to be measured to transmit and receive optical signals of different frequencies respectively, and use the relationship between the first frequency and the second frequency to perform calculations to extend the ranging distance of the ToF camera.
  • the accuracy of the ranging result of the first point to be measured can be improved by using the first optical signal whose signal frequency is the first frequency and the third optical signal whose signal frequency is the second frequency.
  • intersection of the third optical signal with the first polar line may indicate that the transmission path of the third optical signal intersects the first polar line at a certain point or multiple points, or may indicate the transmission path of the third optical signal Passing through one or more points in the first epipolar line; similarly, the intersection of the third reflected optical signal with the second epipolar line may indicate that the transmission path of the third reflected optical signal intersects the second epipolar line at one or more points. point, or may indicate that the transmission path of the third reflected optical signal passes through one or more points in the second polar line.
  • the propagation path of the third optical signal passes through the first epipolar line and intersects the first epipolar line at a certain point (or multiple points) After that, the third optical signal is reflected by the first point to be measured to form a single beam (or multiple beams) of the first reflected optical signal, and the propagation path of the third reflected optical signal passes through the second polar line and is connected with the first The polar lines intersect at a point (or points).
  • the light receiver in the camera is further configured to receive the fourth reflected light signal under the control of the controller,
  • the fourth reflected optical signal is formed by the reflection of the fourth optical signal emitted by the optical transmitter through the second to-be-measured point, and the fourth optical signal intersects the third polar line, and the fourth reflected optical signal is the same as the third polar line.
  • the quadrupole lines intersect; wherein, the signal frequency of the fourth optical signal is the first frequency; at this time, the controller in the camera is further configured to, according to the second optical signal, the second reflected optical signal, the first frequency.
  • the four light signals and the fourth reflection signal determine the distance between the second point to be measured and the camera.
  • the ToF camera since the ToF camera generally uses the phase difference to obtain the distance, under a single frequency, the maximum ranging range of the ToF camera is limited by the mathematical relationship between the frequency and the speed of light.
  • the relationship between the first frequency and the second frequency can be used to calculate by emitting light signals of different frequencies respectively, so as to extend the ranging distance of the ToF camera.
  • the accuracy of the ranging result for the second point to be measured can be improved by using the second optical signal whose signal frequency is the second frequency and the fourth optical signal whose signal frequency is the first frequency.
  • intersection of the fourth optical signal and the third polar line may indicate that the transmission path of the fourth optical signal and the third polar line intersect at a certain point or multiple points, or may indicate the transmission path of the fourth optical signal Passing through one or more points in the second polar line; similarly, the intersection of the fourth reflected light signal with the fourth polar line may indicate that the transmission path of the fourth reflected light signal intersects the fourth polar line at one or more points. or, may indicate that the transmission path of the fourth reflected optical signal passes through one or more points in the fourth polar line.
  • the propagation path of the fourth optical signal passes through the third epipolar line and intersects the third epipolar line at a certain point (or multiple points)
  • the fourth optical signal is reflected by the second point to be measured to form a single beam (or multiple beams) of the fourth reflected optical signal, and the propagation path of the fourth reflected optical signal passes through the fourth polar line and is connected with the first The quadrupoles intersect at a point (or points).
  • the controller in the camera is specifically configured to sample the first reflected light signal to obtain a first sampling result; Then, the controller determines a first phase difference between the first optical signal and the first reflected optical signal according to the first sampling result; further, the controller determines the first point to be measured and the first phase difference according to the first phase difference the distance between the cameras.
  • the camera can control the optical receiver to receive the light signal through the controller, so that the optical receiver can measure the distance of the point to be measured based on the ToF principle under the control of the controller.
  • the controller can determine the distance between the first point to be measured and the camera through the first optical signal transmitted by the optical transmitter and the first reflected optical signal received by the optical receiver.
  • the first phase difference is obtained by solving the phase between the optical signal and the second reflected optical signal, and the distance between the first point to be measured and the camera is further determined according to the first phase difference.
  • the controller in the camera is specifically configured to sample the second reflected light signal to obtain a second sampling result; Then, the controller determines a second phase difference between the second optical signal and the second reflected optical signal according to the second sampling result; further, the controller determines the second to-be-measured point and the the distance between the cameras.
  • the controller can determine the distance between the second point to be measured and the camera through the second optical signal transmitted by the optical transmitter and the second reflected optical signal received by the optical receiver. Specifically, it can be based on the ToF principle, through A second phase difference is obtained by solving the phase between the second optical signal and the second reflected optical signal, and the distance between the second point to be measured and the camera is further determined according to the second phase difference.
  • a fourth aspect of the embodiments of the present application provides a time-of-flight ToF-based ranging method.
  • the method is applied to a camera.
  • the camera can measure a certain frame of image in the photo or video.
  • the measured object in the distance measurement is performed, and the measured object includes one or more points to be measured, such as the first point to be measured, the second point to be measured, and the like.
  • the camera includes a light transmitter and a light receiver; the coordinate origin of the light transmitter is the first origin, the emission surface of the light transmitter includes a first plane and a fourth plane, and the coordinate origin of the light receiver is the first Two origins and the receiving surface of the light receiver includes a second plane and a fifth plane; the method includes:
  • the optical transmitter transmits a first optical signal to the first point to be measured and transmits a second optical signal to the second point to be measured, the first optical signal is reflected by the first point to be measured to form a first reflected optical signal, the The first optical signal intersects the first polar line, the first reflected optical signal intersects the second polar line; the second optical signal is reflected by the second point to be measured to form a second reflected optical signal, and the second optical signal It intersects with the third polar line, and the second reflected light signal intersects with the fourth polar line; wherein, the first point to be measured, the plane where the first origin and the second origin are located is the third plane, and the third plane intersecting with the first plane at the first epipolar line, the third plane intersecting with the second plane at the second epipolar line; wherein, the second point to be measured is different from the first point to be measured; and the second The point to be measured, the plane where the first origin and the second origin are located is the sixth plane, and the sixth plane and the fourth plane intersect at
  • the light receiver receives the first reflected light signal and the second reflected light signal, wherein the first light signal and the first reflected light signal are used to determine the distance between the first point to be measured and the camera, the The second light signal and the second reflected light signal are used to determine the distance between the second point to be measured and the camera.
  • the first reflected light signal received by the light receiver in the camera is formed by the reflection of the first light signal emitted by the light transmitter on the first point to be measured.
  • the first light signal and the first reflected light signal are used to determine the distance between the first point to be measured and the camera;
  • the second reflected light signal received by the light receiver in the camera is the light transmitter
  • the emitted second light signal is formed by reflection on the second point to be measured, and the second light signal and the second reflected light signal are used to determine the distance between the second point to be measured and the camera.
  • the first epipolar line is different from the third epipolar line and the second epipolar line is different from the fourth epipolar line, it is used to determine the distance between the first point to be measured and the camera
  • the first optical signal and the first reflected optical signal do not interfere with each other with the second optical signal and the second reflected optical signal used to determine the distance between the second point to be measured and the camera. That is, the different light reflection signals received by the optical receiver through different polar lines do not interfere with each other, and the influence of the diffuse reflection of the multi-path optical signals emitted by the optical transmitter on the point to be measured on the camera ranging result is reduced. , to improve the accuracy of the ToF camera ranging.
  • the light emitter includes a first light source area and a second light source area, wherein the emission surface of the first light source area is the first plane, and the emission surface of the second light source area is the fourth plane;
  • the light receiver includes a first pixel array area and a second pixel array area, wherein the receiving surface of the first pixel array area is the second plane, and the receiving surface of the second pixel array area is the fifth plane.
  • the first optical signal and the second optical signal are orthogonal to each other.
  • Both the first optical signal and the second optical signal are signals obtained through binary phase shift keying BPSK encoding.
  • the first optical signal is a signal obtained by encoding a first pseudo-random sequence through BPSK
  • the second optical signal is a signal obtained by encoding a second pseudo-random sequence through BPSK
  • a sequence with a value of 0 in the first pseudo-random sequence The number is equal to the number of sequences with a value of 0 in the second pseudo-random sequence.
  • the first optical signal is a signal obtained by BPSK encoding.
  • the signal frequency of the first optical signal is the first frequency
  • the signal frequency of the second optical signal is the second frequency
  • the first frequency is different from the second frequency
  • the method further includes:
  • the optical transmitter transmits a third optical signal whose signal frequency is the second frequency to the first to-be-measured point.
  • the third optical signal is reflected by the first to-be-measured point to form a third reflected optical signal.
  • the signal intersects the first polar line, and the third reflected light signal intersects the second polar line;
  • the optical receiver receives the third reflected optical signal, wherein the first optical signal, the first reflected optical signal, the third optical signal and the third reflected optical signal are used to determine the relationship between the first to-be-measured point and the distance between cameras.
  • the method further includes:
  • the optical transmitter transmits a fourth optical signal whose signal frequency is the first frequency to the second to-be-measured point.
  • the fourth optical signal is reflected by the second to-be-measured point to form a fourth reflected optical signal.
  • the signal intersects the third polar line, and the fourth reflected light signal intersects the fourth polar line;
  • the light receiver receives the fourth reflected light signal, wherein the second light signal, the second reflected light signal, the fourth light signal and the fourth reflected signal are used to determine the second to-be-measured point and the camera the distance between.
  • the camera further includes a controller respectively connected to the light transmitter and the light receiver;
  • the optical transmitter transmitting a first optical signal to the first point to be measured includes:
  • the controller controls the optical transmitter to transmit the first optical signal to the first point to be measured
  • the optical receiver receiving the first reflected optical signal includes:
  • the controller controls the light receiver to receive the first reflected light signal.
  • the method further includes:
  • the controller samples the first reflected light signal to obtain a first sampling result
  • the controller determines a first phase difference between the first optical signal and the first reflected optical signal according to the first sampling result
  • the controller determines the distance between the first point to be measured and the camera according to the first phase difference.
  • a fifth aspect of the embodiments of the present application provides a time-of-flight ToF-based ranging method, and the method is applied to a controller, wherein the controller is included in a camera, and the camera can take photos or videos by using the principle of optical imaging. Measure the distance of a measured object in a certain frame of image in a photo or video, where the measured object includes one or more points to be measured, such as a first point to be measured, a second point to be measured, and the like.
  • the camera further includes a light transmitter and a light receiver respectively connected to the controller; the coordinate origin of the light transmitter is the first origin, the emission surface of the light transmitter includes a first plane, and the light receiver has a first origin. The origin of the coordinates is the second origin, and the receiving surface of the light receiver includes the second plane; in the process of measuring the distance by the camera, the method executed by the controller includes:
  • the controller controls the optical transmitter to transmit a first optical signal and a second optical signal to the first point to be measured, the first optical signal is reflected by the first point to be measured to form a first reflected optical signal, and the The first optical signal intersects with the first polar line, and the first reflected optical signal intersects with the second polar line; the second optical signal is reflected by the second point to be measured to form a second reflected optical signal, and the second optical signal and The third polar line intersects, and the second reflected light signal intersects the fourth polar line; wherein, the first point to be measured, the plane where the first origin and the second origin are located is the third plane, and the third plane is the same as the The first plane intersects the first epipolar line, and the third plane intersects the second plane intersecting the second epipolar line; wherein, the second point to be measured is different from the first point to be measured; and the second point to be measured point, the plane where the first origin and the second origin are located is the sixth plane, and the sixth plane and the fourth plane intersect at
  • the controller controls the light receiver to receive the first reflected light signal and the second reflected light signal, and determines the distance between the first point to be measured and the camera according to the first light signal and the first reflected light signal , and the distance between the second point to be measured and the camera is determined according to the second light signal and the second reflected light signal.
  • the first reflected optical signal received by the optical receiver is formed by the reflection of the first optical signal transmitted by the optical transmitter on the first point to be measured, and the first reflected optical signal is The optical signal and the first reflected optical signal are used to determine the distance between the first point to be measured and the camera;
  • the second reflected optical signal received by the optical receiver is emitted by the optical transmitter
  • the second optical signal is formed by reflection on the second point to be measured, and the second optical signal and the second reflected light signal are used to determine the distance between the second point to be measured and the camera.
  • the first epipolar line is different from the third epipolar line and the second epipolar line is different from the fourth epipolar line, it is used to determine the distance between the first point to be measured and the camera
  • the first optical signal and the first reflected optical signal do not interfere with each other with the second optical signal and the second reflected optical signal used to determine the distance between the second point to be measured and the camera. That is, the different light reflection signals received by the optical receiver through different polar lines do not interfere with each other, and the influence of the diffuse reflection of the multi-path optical signals emitted by the optical transmitter on the point to be measured on the camera ranging result is reduced. , to improve the accuracy of the ToF camera ranging.
  • the light emitter includes a first light source area and a second light source area, wherein the emission surface of the first light source area is the first plane, and the emission surface of the second light source area is the fourth plane;
  • the light receiver includes a first pixel array area and a second pixel array area, wherein the receiving surface of the first pixel array area is the second plane, and the receiving surface of the second pixel array area is the fifth plane.
  • the first optical signal and the second optical signal are orthogonal to each other.
  • Both the first optical signal and the second optical signal are signals obtained through binary phase shift keying BPSK encoding.
  • the first optical signal is a signal obtained by encoding a first pseudo-random sequence through BPSK
  • the second optical signal is a signal obtained by encoding a second pseudo-random sequence through BPSK
  • a sequence with a value of 0 in the first pseudo-random sequence The number is equal to the number of sequences with a value of 0 in the second pseudo-random sequence.
  • the first optical signal is a signal obtained by BPSK encoding.
  • the signal frequency of the first optical signal is the first frequency
  • the signal frequency of the second optical signal is the second frequency
  • the first frequency is different from the second frequency
  • the method further includes:
  • the controller controls the optical transmitter to transmit a third optical signal with a signal frequency of the second frequency to the first point to be measured, and the third optical signal is reflected by the first point to be measured to form a third reflected light signal, and the third optical signal intersects the first polar line, and the third reflected optical signal intersects the second polar line;
  • the controller controls the light receiver to receive the third reflected light signal
  • the controller determines the distance between the first point to be measured and the camera according to the first light signal and the first reflected light signal, including:
  • the controller determines the distance between the first point to be measured and the camera according to the first light signal, the first reflected light signal, the third light signal and the third reflected light signal.
  • the method further includes:
  • the controller controls the optical transmitter to transmit a fourth optical signal with a signal frequency of the first frequency to the second to-be-measured point, and the fourth optical signal is reflected by the second to-be-measured point to form a fourth reflected light signal, and the fourth optical signal intersects the third polar line, and the fourth reflected optical signal intersects the fourth polar line;
  • the controller controls the light receiver to receive the four reflected light signals
  • the controller determines the distance between the second point to be measured and the camera according to the second light signal and the second reflected light signal, including:
  • the controller determines the distance between the second point to be measured and the camera according to the second light signal, the second reflected light signal, the fourth light signal and the fourth reflected signal.
  • the controller determining the distance between the first point to be measured and the camera according to the first light signal and the first reflected light signal includes:
  • the controller samples the first reflected light signal to obtain a first sampling result
  • the controller determines a first phase difference between the first optical signal and the first reflected optical signal according to the first sampling result
  • the controller determines the distance between the first point to be measured and the camera according to the first phase difference.
  • the controller determining the distance between the second to-be-measured point and the camera according to the second light signal and the second reflected light signal includes:
  • the controller samples the second reflected light signal to obtain a second sampling result
  • the controller determines a second phase difference between the second optical signal and the second reflected optical signal according to the second sampling result
  • the controller determines the distance between the second point to be measured and the camera according to the second phase difference.
  • a sixth aspect of an embodiment of the present application provides a time-of-flight ToF-based ranging camera, and the method is applied to a controller, wherein the controller is included in the camera, and the camera can take photos or videos by using the principle of optical imaging. Measure the distance of a measured object in a certain frame of image in a photo or video, where the measured object includes one or more points to be measured, such as a first point to be measured, a second point to be measured, and the like.
  • the camera further includes a light receiver connected to the controller; in the process of ranging from the camera, the method executed by the controller includes:
  • the controller controls the optical receiver to receive a first reflected optical signal and a second reflected optical signal, where the first reflected optical signal is formed by the reflection of the first optical signal emitted by the optical transmitter through the first point to be measured, and The first optical signal intersects the first polar line, and the first reflected optical signal intersects the second polar line; the second optical signal is reflected by the second point to be measured to form a second reflected optical signal, and the second optical signal The signal intersects the third polar line, and the second reflected light signal intersects the fourth polar line; wherein, the origin of the coordinates of the light emitter is the first origin and the emission surface of the light emitter includes a first plane, and the light receiver The origin of the coordinates is the second origin and the receiving surface of the light receiver includes a second plane; the first point to be measured, the plane where the first origin and the second origin are located is a third plane, and the third plane is the same as The first plane intersects the first epipolar line, the third plane intersects the second plane intersecting the
  • the controller determines the distance between the first point to be measured and the camera according to the first light signal and the first reflected light signal, and determines the first point according to the second light signal and the second reflected light signal. 2. The distance between the point to be measured and the camera.
  • the first reflected optical signal received by the optical receiver is formed by the reflection of the first optical signal transmitted by the optical transmitter on the first point to be measured, and the first reflected optical signal is The optical signal and the first reflected optical signal are used to determine the distance between the first point to be measured and the camera;
  • the second reflected optical signal received by the optical receiver is emitted by the optical transmitter
  • the second optical signal is formed by reflection on the second point to be measured, and the second optical signal and the second reflected light signal are used to determine the distance between the second point to be measured and the camera.
  • the first epipolar line is different from the third epipolar line and the second epipolar line is different from the fourth epipolar line, it is used to determine the distance between the first point to be measured and the camera
  • the first optical signal and the first reflected optical signal do not interfere with each other with the second optical signal and the second reflected optical signal used to determine the distance between the second point to be measured and the camera. That is, the different light reflection signals received by the optical receiver through different polar lines do not interfere with each other, and the influence of the diffuse reflection of the multi-path optical signals emitted by the optical transmitter on the point to be measured on the camera ranging result is reduced. , to improve the accuracy of the ToF camera ranging.
  • the light emitter includes a first light source area and a second light source area, wherein the emission surface of the first light source area is the first plane, and the emission surface of the second light source area is the fourth plane;
  • the light receiver includes a first pixel array area and a second pixel array area, wherein the receiving surface of the first pixel array area is the second plane, and the receiving surface of the second pixel array area is the fifth plane.
  • the first optical signal and the second optical signal are orthogonal to each other.
  • Both the first optical signal and the second optical signal are signals obtained through binary phase shift keying BPSK encoding.
  • the first optical signal is a signal obtained by encoding a first pseudo-random sequence through BPSK
  • the second optical signal is a signal obtained by encoding a second pseudo-random sequence through BPSK
  • a sequence with a value of 0 in the first pseudo-random sequence The number is equal to the number of sequences with a value of 0 in the second pseudo-random sequence.
  • the first optical signal is a signal obtained by BPSK encoding.
  • the signal frequency of the first optical signal is the first frequency
  • the signal frequency of the second optical signal is the second frequency
  • the first frequency is different from the second frequency
  • the method further includes:
  • the controller controls the optical receiver to receive a third reflected optical signal, the third reflected optical signal is formed by the reflection of the third optical signal emitted by the optical transmitter through the first to-be-measured point, and the third reflected optical signal is formed.
  • the three optical signals intersect with the first polar line, and the third reflected optical signal intersects with the second polar line; wherein, the frequency of the third optical signal signal is the second frequency;
  • the controller determines the distance between the first point to be measured and the camera according to the first light signal and the first reflected light signal, including:
  • the controller determines the distance between the first to-be-measured point and the camera by the first optical signal, the first reflected optical signal, the third optical signal and the third reflected optical signal.
  • the method further includes:
  • the controller controls the optical receiver to receive a fourth reflected optical signal;
  • the fourth reflected optical signal is formed by the reflection of the fourth optical signal emitted by the optical transmitter through the second to-be-measured point, and the fourth reflected optical signal is Four optical signals intersect with the third polar line, and the fourth reflected optical signal intersects with the fourth polar line; wherein, the signal frequency of the fourth optical signal is the first frequency;
  • the controller determines the distance between the second point to be measured and the camera according to the second light signal and the second reflected light signal, including:
  • the controller determines the distance between the second point to be measured and the camera according to the second light signal, the second reflected light signal, the fourth light signal and the fourth reflected signal.
  • the controller determining the distance between the first point to be measured and the camera according to the first light signal and the first reflected light signal includes:
  • the controller samples the first reflected light signal to obtain a first sampling result
  • the controller determines a first phase difference between the first optical signal and the first reflected optical signal according to the first sampling result
  • the controller determines the distance between the first point to be measured and the camera according to the first phase difference.
  • the controller determining the distance between the second to-be-measured point and the camera according to the second light signal and the second reflected light signal includes:
  • the controller samples the second reflected light signal to obtain a second sampling result
  • the controller determines a second phase difference between the second optical signal and the second reflected optical signal according to the second sampling result
  • the controller determines the distance between the second point to be measured and the camera according to the second phase difference.
  • a seventh aspect of an embodiment of the present application provides a chip system, where the chip system includes a processor, configured to support the controller to implement the functions involved in the fourth aspect or any possible implementation manner of the fourth aspect, or, Support the controller to implement the functions involved in the fifth aspect or any possible implementation manner of the fifth aspect, or support the controller to implement the functions involved in the sixth aspect or any possible implementation manner of the sixth aspect Function.
  • the chip system may further include a memory for storing necessary program instructions and data of the controller.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • An eighth aspect of the embodiments of the present application provides a computer-readable storage medium that stores one or more computer-executable instructions.
  • the processor executes any one of the fourth aspect or the fourth aspect above.
  • a ninth aspect of the embodiments of the present application provides a computer program product (or computer program) that stores one or more computers.
  • the computer program product runs on a computer, the computer can execute the fourth aspect or any of the fourth aspect.
  • An embodiment of the present application provides a time-of-flight ToF-based ranging camera, including an optical transmitter and an optical receiver; wherein the first reflected optical signal received by the optical receiver is the first optical signal transmitted by the optical transmitter in formed by reflection on the first point to be measured, and the first optical signal and the first reflected optical signal are used to determine the distance between the first point to be measured and the camera; and the second optical signal received by the optical receiver The reflected light signal is formed by the reflection of the second light signal emitted by the light transmitter on the second point to be measured, and the second light signal and the second reflected light signal are used to determine the relationship between the second point to be measured and the point to be measured. distance between cameras.
  • the first epipolar line is different from the third epipolar line and the second epipolar line is different from the fourth epipolar line, it is used to determine the distance between the first point to be measured and the camera
  • the first optical signal and the first reflected optical signal do not interfere with each other with the second optical signal and the second reflected optical signal used to determine the distance between the second point to be measured and the camera. That is, the different light reflection signals received by the optical receiver through different polar lines do not interfere with each other, and the influence of the diffuse reflection of the multi-path optical signals emitted by the optical transmitter on the point to be measured on the camera ranging result is reduced. , to improve the accuracy of the ToF camera ranging.
  • FIG. 1 is a schematic diagram of a ranging realization of a ToF camera in an embodiment of the application
  • FIG. 2 is another schematic diagram of the ranging realization of the ToF camera in the embodiment of the application;
  • FIG. 3 is another schematic diagram of the realization of ranging of the ToF camera in the embodiment of the present application.
  • FIG. 4 is a schematic diagram of a ToF camera in an embodiment of the present application.
  • FIG. 5A is another schematic diagram of the implementation of ranging of a ToF camera in an embodiment of the present application.
  • FIG. 5B is another schematic diagram of the implementation of ranging of the ToF camera in the embodiment of the present application.
  • FIG. 5C is another schematic diagram of the ToF camera in the embodiment of the application.
  • FIG. 5D is another schematic diagram of the ToF camera in the embodiment of the present application.
  • FIG. 6 is another schematic diagram of the realization of ranging of the ToF camera in the embodiment of the present application.
  • FIG. 7 is another schematic diagram of the ranging realization of the ToF camera in the embodiment of the application.
  • FIG. 8 is another schematic diagram of the ranging realization of the ToF camera in the embodiment of the application.
  • FIG. 9 is another schematic diagram of the ranging realization of the ToF camera in the embodiment of the present application.
  • FIG. 10A is another schematic diagram of the ranging realization of the ToF camera in the embodiment of the application.
  • FIG. 10B is another schematic diagram of the ranging realization of the ToF camera in the embodiment of the present application.
  • FIG. 10C is another schematic diagram of the ranging realization of the ToF camera in the embodiment of the application.
  • FIG. 11 is another schematic diagram of the ranging realization of the ToF camera in the embodiment of the application.
  • FIG. 12 is another schematic diagram of the implementation of ranging of the ToF camera in the embodiment of the application.
  • FIG. 13 is another schematic diagram of the ranging realization of the ToF camera in the embodiment of the application.
  • FIG. 14 is another schematic diagram of the ranging realization of the ToF camera in the embodiment of the application.
  • FIG. 15 is another schematic diagram of the ranging realization of the ToF camera in the embodiment of the application.
  • FIG. 16 is another schematic diagram of the ToF camera in the embodiment of the application.
  • FIG. 17 is another schematic diagram of the ToF camera in the embodiment of the application.
  • FIG. 18 is a schematic diagram of a ToF-based ranging method in an embodiment of the present application.
  • FIG. 19 is another schematic diagram of a ToF-based ranging method in an embodiment of the present application.
  • FIG. 20 is another schematic diagram of a ToF-based ranging method in an embodiment of the present application.
  • Time of flight (ToF) camera can be used for ranging.
  • the principle of ranging is to send optical signals to objects through optical transmitters, and then use optical receivers to receive optical signals returned from objects.
  • the flight (round trip) time to get the distance of the object.
  • the ToF camera generally determines the flight (round-trip) time of the optical signal through the phase difference between the optical signal emitted by the optical transmitter and the optical signal received by the optical receiver.
  • a ToF camera has a light transmitter, a light receiver, and a controller.
  • the light transmitter may also be called a light source, an active light source, an illumination unit, etc.
  • the light receiver may also be called a light sensor, a ToF sensor, an image sensor, a sensor, etc.
  • the controller may also be called a control unit, Computational unit, analysis unit, etc.
  • the controller may be integrated in the optical transmitter, may also be integrated in the ToF sensor, or may be set independently of the optical transmitter and independent of the optical receiver, which is not limited here.
  • the controller may be a general-purpose processing unit implemented by software, such as a central processing unit (Central Processing Unit, CPU); it may also be a dedicated circuit or chip, such as an application specific integrated circuit (ASIC) chip 210, etc. .
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • Figure 1 is a schematic diagram of the ranging implementation of the ToF camera.
  • the light transmitter is the active light source 101 and the light source is driven to emit light signals
  • the light receiver is the ToF sensor 102 and the light signal is received by the pixel array (or called pixel matrix), and the controller is integrated in The ToF sensor 102 will be described as an example.
  • the pixel array or called pixel matrix
  • each pixel of the pixel array includes a set of differential signal collection structures: type A (TapA) with Type B (TapB).
  • the optical signal received by the ToF sensor in the first half cycle (0 degrees to 180 degrees) is TapA
  • the optical signal received optical signal is TapB.
  • FIG. 2 is a schematic diagram of a ToF camera ranging implementation, specifically a schematic diagram of the ToF camera in which the light source 101 emits light signals and the ToF sensor 102 receives reflected light signals.
  • 0 degrees to 180 degrees collect electrons for the ToF sensor 102 based on TapA
  • 180 degrees to 360 degrees collect electrons for the ToF sensor 102 based on TapB.
  • the output value of the pixel is the difference value between TapA and TapB, that is, TapA-TapB.
  • the ToF camera can indirectly obtain the distance by using the phase difference of the reflected light.
  • ToF cameras need to perform multiple exposures, such as 3-phase sampling, 4-phase sampling, 6-phase sampling, etc.
  • FIG. 3 is a schematic diagram of a ToF camera ranging implementation, specifically a schematic diagram of the ToF camera in which the light source 101 emits light signals and the ToF sensor 102 receives reflected light signals.
  • the ToF camera needs to perform 4 different phase samplings on the reflected light at 0°, 90°, 180°, and 270°, that is, the pixel array will be 0°, 90°. , 180°, and 270° with a total of 4 different phase delays, and repeated 4 exposures.
  • the phase of the pixel array modulation signal is shifted by 0°, 90°, 180°, and 270°, respectively, and the corresponding outputs Q 1 , Q 2 , Q 3 , and Q 4 , and the relationships are:
  • a 0 is the sampled value of TapA at 0°
  • B 180 is the sampled value of TapB at 180°, and so on for the rest, which will not be repeated here.
  • c is the speed of light
  • f is the signal frequency of the light signal emitted by the light source 101 .
  • the embodiments of the present application provide a time-of-flight ToF-based ranging camera and a control method, which are used to reduce the effect of diffuse reflection on the point to be measured by the multi-path optical signal emitted by the optical transmitter on the ranging result of the camera. Influence, improve the accuracy of ToF camera ranging.
  • FIG. 4 is a schematic diagram of a ToF-based ranging camera 400 (hereinafter referred to as ToF camera 400 ) in an embodiment of the present application.
  • the ToF camera 400 includes a controller 401 and light emitters respectively connected to the controller 401 402 and optical receiver 403.
  • controller 401 can be integrated in the optical transmitter 402 or integrated in the optical receiver 403, or can be set independently of the optical transmitter 402 and independent of the optical receiver 403, which is not limited here. .
  • epipolar geometry describes a geometric coordinate system composed of two cameras, where the camera can be replaced by a light source, and the geometric properties remain unchanged.
  • FIG. 5A is a schematic diagram of the realization of the ranging of the ToF camera, specifically, a schematic diagram of the realization principle of the epipolar line geometry.
  • the coordinate origins of the two different cameras are O c and O p respectively
  • the imaging planes are the image plane c and the image plane p respectively
  • the distance between the two cameras is defined as the baseline
  • X is the three-dimensional A point in the space, that is, X is the point to be measured.
  • X, O c and Op form a plane, called the epipolar plane.
  • the epipolar plane intersects with the image plane c and the image plane p respectively, and the two intersecting lines are called the pair.
  • the epipolar line c and the epipolar line p, the epipolar line is an important characteristic in the epipolar geometry.
  • the point to be measured when the position of the point to be measured relative to the camera only changes in depth (for example, when the point to be measured moves from X to X 1 , X 2 or X 3 ), the point to be measured is in the epipolar geometry of the two cameras The coordinates of the imaging point will be translated. Since X, X 1 , X 2 and X 3 are all located on the epipolar plane, the translation directions of the imaging points of the two cameras follow the direction of the epipolar line.
  • the imaging points of X 1 , X 2 , and X 3 on the image plane p are P 1 , P 2 , and P 3 , which all fall on the epipolar line p, that is, the imaging points are translated on the epipolar line p.
  • FIG. 5B is another schematic diagram of the realization of ranging of the ToF camera, specifically, another schematic diagram of the realization principle of epipolar line geometry.
  • the coordinate origins of the two different cameras are O c and O p respectively
  • the imaging planes are the image plane c and the image plane p, respectively
  • the distance between the two cameras is defined as the baseline
  • X is a point in the three-dimensional space, that is, X is the point to be measured.
  • X, O c and Op form a plane, which is called the first pair of polar planes.
  • the first pair of polar planes intersect with the image plane c and the image plane p respectively.
  • the intersecting lines are called the epipolar line c and the epipolar line p ; there are also points to be measured Y in the space, Y, O c and Op form a plane, called the second epipolar plane, the second epipolar plane respectively It intersects with the image plane c and the image plane p, and the two intersecting lines are called the epipolar line n and the epipolar line m.
  • the epipolar line c is different from the epipolar line n
  • the epipolar line p Different from the epipolar line m.
  • the reflected light signal (denoted as The reflected light signal A) will inevitably fall on the epipolar line p, and the reflected light signal (referred to as reflected light signal B) formed by the optical signal passing through the epipolar line c on the point to be measured Y (referred to as reflected light signal B) will definitely not fall on the On the epipolar line p; at this time, when the signal acquisition is only performed on the epipolar line p, only the reflected light signal A can be received, but the reflected light signal B cannot be received, that is, the reception of the reflected light signal A will not be affected.
  • the reflected light signal B may still have an impact on the reflected light signal A due to irregular diffuse reflection, but compared with not using the epipolar geometry
  • the interference caused by the reflected light signal B can be greatly reduced.
  • the reflected light signal (denoted as reflected light signal C) formed by the light signal passing through the epipolar line n at the point to be measured Y (referred to as the reflected light signal C) is bound to be It falls on the epipolar line m, and the reflected light signal (referred to as reflected light signal D) formed on the point X to be measured by the optical signal passing through the epipolar line n will definitely not fall on the epipolar line m; at this time , when the signal collection is only performed on the epipolar line m, only the reflected light signal C can be received, but the reflected light signal D cannot be received, that is, the reception of the reflected light signal C will not be affected by the reflected light signal D.
  • the reflected light signal D may still have an influence on the reflected light signal C due to irregular diffuse reflection, but compared with not using the epipolar geometry
  • the interference caused by the reflected light signal D can be greatly reduced.
  • the epipolar line can be an oblique line or a horizontal or vertical line on the image plane coordinates, depending on whether the coordinate systems of the two cameras are parallel.
  • the epipolar line is an oblique line.
  • the epipolar line is a horizontal line (or vertical line) parallel to the baseline as shown in FIG. 5A .
  • only the pair of polar lines are horizontal lines as an example for description.
  • FIG. 5C is another schematic diagram of the ToF camera 400 provided by the embodiment of the present application.
  • the ToF camera 400 includes a controller 401 , a light transmitter 402 and a light receiver 403 .
  • the origin of the coordinates of the optical transmitter 402 is the first origin 4021 and the emission surface of the optical transmitter 402 includes the first plane 4022
  • the origin of the coordinates of the optical receiver 403 is the second origin 4031 and the The receiving surface includes a second plane 4032 .
  • the emission surface included in the light emitter 402 can specifically indicate the imaging surface of the light emitter 402 in the camera pinhole model, that is, the plane equivalent to the imaging surface of the light emitter 402 in the camera pinhole model;
  • the receiving surface included in the receiver 403 can specifically indicate the imaging surface of the optical receiver 403 in the camera pinhole model, that is, the plane equivalent to the imaging surface of the optical receiver 403 in the camera pinhole model, or, in other words, the light The sensor plane of the receiver.
  • the light transmitter 402 in the ToF camera 400 is used to transmit a first light signal to the first point to be measured 100 under the control of the controller 401 .
  • the first optical signal is reflected by the first to-be-measured point to form a first reflected optical signal, and the first optical signal intersects with the first polar line 4023 , and the first reflected optical signal intersects with the second polar line 4033 .
  • the first epipolar line 4023 and the second epipolar line 4033 are respectively epipolar lines in the epipolar geometry, that is, the first epipolar line 4023 and the second epipolar line 4033 satisfy the epipolar constraint.
  • the first point to be measured 100, the plane where the first origin 4021 and the second origin 4031 are located is a third plane, and the third plane and the first plane intersect at the first polar line 4023, the third plane intersects with the second plane at the second polar line 4033; at this time, the light receiver 403 in the ToF camera 400 is used to receive the first reflected light signal under the control of the controller 401; the controller 401, It is used to determine the distance between the first point to be measured 100 and the camera 400 according to the first light signal and the first reflected light signal.
  • the first optical signal emitted by the light emitter 402 passing through the first epipolar line 4023 is reflected by the first point to be measured 100
  • the formed first reflected light signal can pass through the second polar line 4033 and be received by the light receiver 403, so that the light receiver 403 can receive the diffuse reflection obtained by other regions other than the second polar line 4033.
  • the optical signal reduces interference with the first reflected optical signal.
  • the first optical signal and the first reflected optical signal are used to determine the ranging result, which can reduce the interference of other reflected signals generated by the diffuse reflection on the first to-be-measured point 100 to the ranging result, that is, reduce the The influence of the diffuse reflection on the point 100 to be measured on the camera ranging result improves the accuracy of the ToF camera ranging.
  • multiple exposures of the object to be measured can be performed by sending and receiving a single optical signal, so as to realize
  • the distance measurement of multiple points to be measured in the object to be measured can also be achieved through the transmission and reception of multiple optical signals to achieve fewer exposures of the object to be measured, so as to achieve distance measurement of multiple points to be measured in the object to be measured, and through the transmission and reception of multiple optical signals.
  • Different polar constraints are set for different points to be measured, so that the multi-channel optical reflection signals received by the optical receiver through different polar lines do not interfere with each other, and the multi-channel optical signals transmitted by the optical transmitter are reduced in the point to be measured.
  • the effect of diffuse reflection on the camera ranging results is improved, and the accuracy of ToF camera ranging is improved.
  • the implementation scheme of sending and receiving multiple optical signals will be described in detail below.
  • FIG. 5D is another schematic diagram of the ToF camera 400 in the embodiment of the present application.
  • the optical transmitter 402 may be configured to transmit multiple optical signals
  • the optical receiver 403 may be configured to receive multiple optical signals.
  • the emitting surface of the optical transmitter 402 may also include at least a fourth plane 4024 ; similarly, the receiving surface of the optical receiver 403 includes In addition to the second plane 4032, at least a fifth plane 4034 may also be included.
  • the light transmitter 402 is also used to transmit the first to-be-measured point 200 to the second to-be-measured point 200 different from the first to-be-measured point 100 under the control of the controller 401.
  • the second optical signal is reflected by the second to-be-measured point 200 to form a second reflected optical signal, and the second optical signal intersects the third polar line 4025, and the second reflected optical signal and the fourth Polar lines 4035 intersect.
  • the third epipolar line 4025 and the fourth epipolar line 4035 are respectively epipolar lines in the epipolar geometry, that is, the third epipolar line 4025 and the fourth epipolar line 4035 satisfy the epipolar constraint.
  • the second to-be-measured point 200, the plane where the first origin 4021 and the second origin 4031 are located is a sixth plane, and the sixth plane and the fourth plane intersect at the third polar line 4025, the sixth plane
  • the fourth polar line 4035 intersects with the fifth plane, wherein the third plane and the sixth plane are not coplanar; at this time, the light receiver 403 is also used to receive the The second reflected light signal; correspondingly, the controller 401 is further configured to determine the distance between the second to-be-measured point 200 and the camera 400 according to the second light signal and the second reflected light signal.
  • the diffuse reflection light signal received by the light receiver 403 through other regions other than the fourth epipolar line 4035 can be reduced to the second reflected light signal interference.
  • the subsequent controller 401 determines the ranging result according to the second optical signal and the second reflected optical signal, which can reduce the interference of other reflected signals generated by the diffuse reflection on the second to-be-measured point 200 to the ranging result, that is, Reduce the influence of diffuse reflection on the point to be measured on the camera ranging results.
  • the third plane and the sixth plane are not coplanar, that is, the first polar line 4023 is different from the third polar line 4025 and the second polar line 4033 is different from the fourth polar line 4035, the The first light signal and the first reflected light signal for the distance between the point 100 and the camera 400 are mutually compatible with the second light signal and the second reflected light signal for determining the distance between the second point to be measured 200 and the camera 400 . Do not interfere. Therefore, different optical signals for ranging from different points to be measured do not interfere with each other, which further improves the accuracy of the ToF camera ranging.
  • the distance between the second point to be measured 200 and the camera 400 may be the distance between the second point to be measured 200 and the lens (not shown in the figure) in the camera 400, or may be the distance between the second point to be measured 200 and the lens (not shown in the figure)
  • the distance between the second to-be-measured point 200 and the geometric center (not shown in the figure) in the camera 400 may also be the distance between the second to-be-measured point 200 and a photosensitive device (eg, the light receiver 403 ) in the camera 400 .
  • the distance may also be the distance between the second to-be-measured point 200 and other physical parts or virtual parts in the camera 400 , which is not specifically limited here.
  • the light emitter 402 may also include other emission planes, such as a seventh plane or other planes (not shown in the figure); correspondingly, in the In addition to the second plane 4032 and the fifth plane 4034, the light receiver 403 may also include other receiving planes (not shown in the figure), such as an eighth plane or other planes.
  • the controller 401 controls the corresponding epipolar line. Transceive and receive optical signals to achieve ranging from more different points to be measured. In addition, since different optical signals for ranging from different points to be measured do not interfere with each other, the accuracy of the ranging of the ToF camera 400 can be further improved.
  • intersection of the first optical signal and the first polar line 4023 may indicate that the transmission path of the first optical signal intersects the first polar line 4023 at a certain point or points, or may indicate that the first optical signal
  • the transmission path passes through one or more points in the first polar line 4023; similarly, the intersection of the first reflected optical signal with the second polar line 4033 may indicate that the transmission path of the first reflected optical signal intersects the second polar line 4033 At one or more points, or alternatively, the transmission path of the first reflected optical signal may be indicated to pass through one or more points in the second polar line 4033 .
  • the propagation path of the first optical signal passes through the first epipolar line 4023 and intersects the first epipolar line 4023 at a certain point (or multiple point), after that, the first optical signal is reflected by the first point to be measured 100 to form a single beam (or multiple beams) of first reflected optical signal, and the propagation path of the first reflected optical signal passes through the second polar line 4033 and intersect with the second polar line 4033 at a certain point (or points).
  • the distance between the first point to be measured 100 and the ToF camera 400 may be the distance between the first point to be measured 100 and the lens (not shown in the figure) in the ToF camera 400, or it may be is the distance between the first point to be measured 100 and the geometric center (not shown in the figure) in the ToF camera 400 , and may also be the distance between the first point to be measured 100 and the photosensitive device (for example, the light receiver 403 ) in the ToF camera 400 ), may also be the distance between the first point to be measured 100 and other physical parts or virtual parts in the ToF camera 400 , which is not specifically limited here.
  • the optical signal (including the first optical signal and the second optical signal or other optical signals) transmitted by the optical transmitter 402 may be a signal obtained by BPSK encoding.
  • the optical signal transmitted by the optical transmitter 402 may also be a signal obtained by other encoding methods, such as quadrature phase shift keying (quadrature phase shift keying, QPSK), quadrature amplitude modulation (quadrature amplitude modulation, QAM), or other methods, which are not limited here.
  • the first optical signal is a signal obtained by BPSK encoding.
  • the principle of BPSK is to use the phase offset to encode the signal
  • the code 0 is defined as a signal with a phase offset of 0°
  • the code 1 is a signal with a phase offset of 180°.
  • FIG. 6 is a schematic diagram of the implementation of distance measurement by the ToF camera 400 in the embodiment of the present application.
  • code 0 is the same as the conventional ToF control signal
  • code 1 is the phase shift of the conventional ToF control signal by 180°.
  • FIG. 7 is another schematic diagram of the implementation of distance measurement by the ToF camera 400 in the embodiment of the present application.
  • L0 and L1 are the light source signals of code 0 and code 1 respectively
  • R0, R1 are the reflected light signals of code 0 and code 1
  • S0A, S0B and S1A, S1B are the code 0 and code 1 pixel array TapA with the pixel array TapB signal. Since the phase difference between the light source and the pixel array remains unchanged, even if the encoder 1 light source and the pixel array are phase shifted by 180° at the same time, the signals measured by the encoder 1 pixel arrays TapA and TapB are still equal to the encoder 0.
  • FIG. 8 an example of forming a signal with BPSK random coding in the ToF system is shown in FIG. 8 , wherein the 0-degree and 180-degree phase shifts can be mapped to binary sequences.
  • Figure 8 is a simple BPSK coding example, which is 01011010.
  • the BPSK code can be offset by 1/2 period to generate the code in a pseudo-random manner, and limit the number of 0s and 1s in the code to be equal, so as to resist interference from different ToF signal sources.
  • the transmission of multiple optical signals can be implemented in different light source regions in the optical transmitter 402, and at the same time, the reception of the multiple optical signals can also be performed in the optical transmitter 402. implemented on different pixel array areas in the receiver 403 .
  • the light transmitter 402 includes at least a first light source area for emitting the first optical signal passing through the first plane 4022, and a second light source area for emitting the second optical signal passing through the fourth plane 4024; that is, , the emission surface of the first light source region is the first plane 4022 , and the emission surface of the second light source region is the fourth plane 4025 .
  • the light receiver 403 includes at least a first pixel array area for receiving the first reflected light signal passing through the second plane 4032 and a second pixel for receiving the second reflected light signal passing through the fifth plane 4034 Array area; wherein, the receiving surface of the first pixel array area is the second plane 4032 , and the receiving surface of the second pixel array area is the fifth plane 4035 .
  • more light source regions may be set in the light transmitter 402, and different emitting surfaces may be set on different light source regions, so as to realize the emission of multiple different light signals.
  • more pixel array regions may also be set in the light receiver 403, and different receiving surfaces may be set on different pixel array regions, so as to realize the reception of multiple different optical signals.
  • FIG. 10A is another schematic diagram of the implementation of ranging of the ToF camera 400 provided by the embodiment of the present application.
  • the light emitter 402 includes six different light source regions
  • the light receiver 403 includes six pixel array regions as an example.
  • the controller 401 controls the six light source regions in the light transmitter 402 to emit light signals, and controls the six pixel matrix (or pixel array) regions of the light receiver 403 to receive light signals.
  • the six light source areas include a first light source area 40201, a second light source area 40202, a third light source area 40203, a fourth light source area 40204, a fifth light source area 40205, and a sixth light source area 40206;
  • the six pixel array areas include a first pixel array area 40301, a second pixel array area 40302, a third pixel array area 40303, a fourth pixel array area 40304, a fifth pixel array area 40305, and a sixth pixel array area 40306.
  • the emitting surfaces of different light source regions in the light emitter 402 correspond to the receiving surfaces of different pixel array regions in the light receiver 403 one-to-one, and satisfy the antipolar constraint, at this time, the controller
  • the process of 401 controlling the optical transmitter 402 to transmit the optical signal and controlling the optical receiver 403 to receive the optical signal may be as shown in FIG. 10B .
  • the coordinate origin of the light transmitter 402 is 4021
  • the coordinate origin of the light receiver 403 is 4031
  • the first light source area 40201 in the light transmitter 402 and the first pixel array area 40301 in the light receiver 403 are between (Or, between the second light source area 40202 in the light transmitter 402 and the second pixel array area 40302 in the light receiver 403; or, between the third light source area 40203 in the light transmitter 402 and the third pixel array in the light receiver 403 area 40303; or, between the fourth light source area 40204 in the light transmitter 402 and the fourth pixel array area 40304 in the light receiver 403; or, between the fifth light source area 40205 in the light transmitter 402 and the light receiver 403
  • the fifth pixel array area 40305 or, between the sixth light source area 40206 in the light emitter 402 and the sixth pixel array area 40306 in the light receiver 403
  • the optical signal emitted by the first light source area 40201 passes through the first light source area 40201.
  • the first polar line 4023 in a plane 4022 is reflected by the point to be measured to form a reflected light signal.
  • the reflected light signal passes through the second polar line 4033 in the second plane 4032 and is received by the first pixel array area 40301.
  • an epipolar plane 1 is formed between the point to be measured and the coordinate origin 4021 of the light transmitter 402 and the coordinate origin 4031 of the light receiver 403, and the pair of polar planes 1 and the first plane 4022 intersect at the first epipolar line 4023, And the pair of pole planes 1 and the second plane 4032 intersect at the second pole line 4033 .
  • other emitting surfaces of the optical transmitter 402 and other receiving surfaces of the optical receiver 403 may also form the epipolar plane 2 , the epipolar plane 3 . . . the epipolar plane 6 in the illustration.
  • the controller 401 controls the transmission and reception of optical signals on the corresponding epipolar plane, so as to realize the ranging of different points to be measured, and since the different optical signals for distance measurement of different points to be measured do not interfere with each other, It can further improve the accuracy of the ToF camera ranging.
  • the first optical signal and the second optical signal are orthogonal to each other.
  • the first optical signal used to measure the distance of the first point to be measured 100 and the second optical signal used to measure the distance of the second point to be measured 200 may be mutually orthogonal.
  • the coherence between the optical signal and the second optical signal is 0 or close to 0.
  • both the first optical signal and the second optical signal are signals obtained through binary phase shift keying BPSK encoding.
  • both the first optical signal and the second optical signal can be obtained by BPSK encoding, that is, the first optical signal and the second optical signal can be obtained by performing BPSK encoding on at least two original sequences respectively, wherein the signals can be obtained by different The original sequence makes the first optical signal and the second optical signal orthogonal.
  • a specific implementation manner of the first optical signal and the second optical signal is provided to improve the implementability of the solution.
  • the first optical signal and the second optical signal may be signals obtained by other encoding methods, such as quadrature phase shift keying (quadrature phase shift keying, QPSK), quadrature amplitude modulation (quadrature amplitude modulation) , QAM), or other methods, which are not limited here.
  • quadrature phase shift keying quadrature phase shift keying, QPSK
  • quadrature amplitude modulation quadrature amplitude modulation
  • QAM quadrature amplitude modulation
  • FIG. 9 is another schematic diagram of the ranging implementation of the ToF camera 400 provided by the embodiment of the present application.
  • the C1 light source area and the C2 light source area respectively represent different light source areas of the light emitters 402 in different ToF cameras 400
  • the C1 light source area and the C2 light source area are encoded with different pseudo-random BPSK respectively, and the number of 0 and 1 is different. Restricted to be equal.
  • the coding characteristics of pseudo-random BPSK encoding are as follows:
  • TapB 0
  • TapA ⁇ TapB i.
  • the number of cycles is extremely large, and due to the pseudo-random sequence coding characteristics, the probability of the same code value of C1 and C2 and the difference of the code value are nearly equal, and therefore the interference of the C2 light source to the C1 pixel array is close to is 0.
  • the first optical signal may be a signal obtained by BPSK encoding, that is, using a certain original sequence to perform BPSK encoding to obtain the first optical signal, a scenario in which a certain ToF camera includes multiple optical transmitters working in parallel can be realized. Under the circumstance (or in the scenario where multiple ToF cameras work in parallel), through the coding characteristics of BPSK, the interference between different optical signals is reduced, and the ranging accuracy of the ToF camera is improved.
  • the first optical signal may be a signal obtained by encoding a first pseudo-random sequence through BPSK
  • the second optical signal may also be a signal obtained by encoding a second pseudo-random sequence through BPSK
  • the number of sequences with a value of 0 in the first pseudo-random sequence is equal to the number of sequences with a value of 0 in the second pseudo-random sequence.
  • the first optical signal and the second optical signal may be obtained by performing BPSK encoding on a pseudo-random sequence.
  • the number of cycles is extremely large, and due to the pseudo-random sequence coding characteristics, the probability of the same code value of C1 and C2 and the difference of the code value are nearly equal, and therefore the interference of the C2 light source to the C1 pixel array is close to is 0. Therefore, the number of sequences with a value of 0 in the first pseudo-random sequence used to generate the first optical signal is the same as the number of sequences with a value of 0 in the second pseudo-random sequence used to generate the second optical signal , the interference between the generated first optical signal and the second optical signal can be made zero.
  • the first optical signal used to measure the distance of the first point to be measured and the second optical signal used to measure the distance of the second point to be measured do not interfere with each other, which further improves the accuracy of the distance measurement of the ToF camera.
  • using pseudo-random BPSK coding has additional advantages, for example, when there is more than one ToF camera in the application scenario, it can resist ToF multi-camera interference at the same time.
  • FIG. 10C is another schematic diagram of the ranging implementation of the ToF camera 400 provided by the embodiment of the application.
  • FIG. 10C there are multiple different light source areas in the light transmitter 402 and multiple different pixel arrays in the light receiver 403 .
  • FIG. 10A and FIG. 10B For the correspondence between the regions, reference may be made to the descriptions in FIG. 10A and FIG. 10B , which will not be repeated here.
  • FIG. 10A and FIG. 10B are multiple different light source areas in the light transmitter 402 and multiple different pixel arrays in the light receiver 403 .
  • the controller 401 can respectively control the six light source regions in the light emitter 402 to emit light signals through six control signals (control signal 1, controller signal 2...control signal 6), and respectively control the light
  • the receiver 403 receives light signals in a six pixel matrix (or called pixel array) area.
  • different light source areas correspond to the control signals in different pixel matrix areas one-to-one, so as to realize the control signals in different epipolar planes (epipolar coding 1, epipolar coding 2... epipolar coding 6). Ranging is carried out in different areas to be measured.
  • the signal frequency of the first optical signal is the first frequency
  • the signal frequency of the second optical signal is the second frequency
  • the first frequency A frequency is different from the second frequency.
  • the first optical signal and the second optical signal can be respectively transmitted with different signal frequencies, so as to realize the mutual orthogonality between the first optical signal and the second optical signal, so that the first optical signal and the second optical signal are mutually orthogonal. The coherence between them is 0.
  • the optical receiver Even if a certain part of the first optical signal undergoes multiple diffuse reflections and passes through the fourth polar line to be received by the optical receiver, or a certain part of the second optical signal undergoes multiple diffuse reflections and passes through The second polar line is received by the optical receiver. Since the frequencies between the first optical signal and the second optical signal are different, the interference between the first optical signal and the second optical signal can also be avoided, further improving the accuracy of the ToF camera ranging Rate.
  • the light emitter also includes other emitting planes, such as the seventh plane or other planes; at this time, the relationship between the first plane and the first epipolar line is similar ( Or the relationship of the third epipolar line to the fourth plane), other epipolar lines also exist in other emitting surfaces; and, the optical transmitter can emit other optical signals passing through the other epipolar lines.
  • other optical signals may use signal frequencies different from the first frequency and the second frequency.
  • the optical transmitter is transmitting n optical signals (n is greater than 2, and the n optical signals include the first optical signal and the second optical signal) signal), n different signal frequencies can be set for the n-channel optical signals, that is, the signal frequencies of the n-channel optical signals are different from each other.
  • other optical signals can also use the first frequency or the second frequency.
  • the n-path optical signals can be alternately set to the first frequency and the second frequency, that is, the signal frequencies of any adjacent optical signals in the n-path optical signals are different from each other to achieve a better anti-interference effect.
  • FIG. 11 is another schematic diagram of the ranging implementation of the ToF camera 400 provided by the embodiment of the application.
  • FIG. 11 there are multiple different light source regions in the light transmitter 402 and multiple different pixels in the light receiver 403 .
  • the controller 401 can add different time domain codes to different epipolar planes of the optical transmitter 402 . (Time Domain Code 1, Time Domain Code 2... Time Domain Code 6) to ensure that different optical signals are orthogonal to each other.
  • FIG. 12 and FIG. 13 the implementation process using different time domain coding can be shown in FIG. 12 and FIG. 13 .
  • FIG. 12 and FIG. 13 there are multiple different light source regions in the light transmitter 402 and multiple different pixels in the light receiver 403 .
  • FIG. 10A and FIG. 10B For the correspondence between the array regions, reference may be made to the descriptions in FIG. 10A and FIG. 10B , which will not be repeated here.
  • FIG. 10A and FIG. 10B the descriptions in FIG. 10A and FIG. 10B , which will not be repeated here.
  • the time domain code 1 to the time domain code 6 are respectively encoded at different frequencies, that is, the light source and the pixel matrix and the epipolar region are encoded at different modulation frequencies.
  • modulation frequency 1 100 megahertz (Mhz)
  • modulation frequency 2 101 Mhz
  • modulation frequency 3 102 Mhz
  • modulation frequency 4 103 Mhz
  • modulation frequency 5 104 Mhz
  • modulation frequency 6 105 Mhz.
  • the value of the modulation frequency can be achieved in other ways, wherein the same frequency is used for the same epipolar region, and different frequencies are used for different epipolar regions. Due to the principle of the ToF system, different modulation frequencies cannot interfere with each other, so different epipolar regions cannot interfere with each other.
  • the ToF camera uses the phase difference to obtain the distance, at a single frequency f1, the maximum ranging range of the ToF camera is c /(2f 1 ), when the distance is greater than c/(2f 1 ), the measured distance will produce periodic aliasing.
  • the ToF camera can add a second frequency f 2 for phase calculation, and use the relationship between f 1 and f 2 for calculation to extend its range of use.
  • dual-frequency anti-aliasing Common combinations include dual high frequency, high frequency plus low frequency, etc. This technique is called phase de-aliasing.
  • an exemplary relatively simple anti-aliasing algorithm is provided here as an example.
  • the first frequency is f 1 of 100Mhz
  • the real distance is 2 meters for A, 3.5 meters for B, and 5 meters for C.
  • the depths of objects A, B, and C measured by the ToF camera at the f 1 frequency are all 0.5 meters due to aliasing; a more precise description is that the distances of A, B, and C measured by f 1 should be 0.5 +n*1.5m, n is the number of aliasing periods of objects A, B, and C themselves.
  • the optical transmitter 402 can also be used to, under the control of the controller 401, transmit to the A point to be measured 100 transmits a third optical signal with a signal frequency of the second frequency, and the third optical signal is reflected by the first point to be measured 100 to form a third reflected optical signal, wherein the third optical signal and the The first polar line 4023 intersects, the third reflected light signal and the second polar line 4033, correspondingly, the optical receiver 403 is also used to receive the third reflected light signal under the control of the controller 401; the controller 401 is further configured to determine the distance between the first to-be-measured point 100 and the camera 400 according to the first optical signal, the first reflected optical signal, the third optical signal and the third reflected optical signal.
  • the ToF camera 400 since the ToF camera 400 generally uses the phase difference to obtain the distance, under a single frequency, the maximum ranging range of the ToF camera is limited by the mathematical relationship between the frequency and the speed of light. When the distance between the point to be measured and the camera is greater than When the range is the largest, the measured distance will have poor accuracy due to periodic aliasing.
  • the controller 401 can control the optical signals of different frequencies for the same point to be measured, and use the relationship between the first frequency and the second frequency to perform calculations to extend the distance of the ToF camera.
  • the accuracy of the ranging result for the first point to be measured can be improved by using the first optical signal whose signal frequency is the first frequency and the third optical signal whose signal frequency is the second frequency.
  • the light transmitter 402 is also used to send the second light signal to the second light transmitter 402 under the control of the controller 401
  • the point to be measured 200 emits a fourth optical signal with a signal frequency of the first frequency
  • the fourth optical signal is reflected by the second point to be measured to form a fourth reflected optical signal
  • the fourth optical signal and the third pole The line 4025 intersects, and the fourth reflected optical signal intersects the fourth polar line 4035;
  • the optical receiver 403 is also used to receive the fourth optical signal at the second to-be-measured point under the control of the controller 401
  • the fourth reflected optical signal on 200; at this time, the controller 401 is further configured to determine the second to-be-received signal according to the second optical signal, the second reflected optical signal, the fourth optical signal and the fourth reflected signal The distance between the measuring point 200 and the camera 400
  • the second to-be-measured point 200 can be calculated using the relationship between the first frequency and the second frequency by emitting light signals of different frequencies respectively, so as to extend the ranging distance of the ToF camera.
  • the accuracy of the ranging result of the second to-be-measured point can be improved by using the second optical signal whose signal frequency is the second frequency and the fourth optical signal whose signal frequency is the first frequency.
  • FIG. 14 is another schematic diagram of the ranging implementation of the ToF camera 400 provided by the embodiment of the application.
  • the value of the modulation frequency can be achieved in other ways, wherein the same frequency can also be used in different epipolar regions. Due to the principle of the ToF system, different modulation frequencies cannot interfere with each other, so the epipolar regions (modulation frequency 1 and modulation frequency 2) of two different frequencies cannot interfere with each other. In addition, the use of two different frequency time domain coding methods has an additional advantage. It only needs to exchange modulation frequency 1 and modulation frequency 2 and perform exposure again, which can be applied to phase anti-aliasing at the same time to improve the maximum ToF. Ranging distance.
  • the controller 401 determines the distance between the first point to be measured 100 and the camera 400 .
  • the controller 401 determines the distance between the first point to be measured 100 and the camera 400 .
  • first sample the first reflected optical signal to obtain a first sampling result; then, determine the first phase between the first optical signal and the first reflected optical signal according to the first sampling result difference; further, the distance between the first point to be measured and the camera is determined according to the first phase difference.
  • the camera 400 can control the light transmitter 402 to transmit the light signal through the controller 401, and control the light receiver 403 to receive the light signal, so that under the control of the controller 401, the light transmitter 402 and the light receiver 403 are based on The ToF principle realizes the distance measurement of the point to be measured.
  • the controller 401 can determine the distance between the first point to be measured 100 and the camera 400 through the first optical signal transmitted by the optical transmitter 402 and the first reflected optical signal received by the optical receiver 403 , which can be specifically based on the ToF principle , the first phase difference is obtained by solving the phase between the first optical signal and the second reflected optical signal, and the distance between the first point to be measured and the camera is further determined according to the first phase difference.
  • the controller 401 in the process of determining the distance between the second point to be measured 200 and the camera 400, the controller 401 first samples the second reflected light signal to obtain a second sampling result; Then, a second phase difference between the second optical signal and the second reflected optical signal is determined according to the second sampling result; further, the second to-be-measured point 200 and the camera 400 are determined according to the second phase difference the distance between.
  • the controller 401 can determine the distance between the second to-be-measured point 200 and the camera 400 through the second optical signal transmitted by the optical transmitter 402 and the second reflected optical signal received by the optical receiver 403 , which can be specifically based on the ToF
  • the second phase difference is obtained by solving the phase between the second optical signal and the second reflected optical signal, and the distance between the second point to be measured and the camera is further determined according to the second phase difference.
  • the first row of the pixel matrix receives the direct path (optical signal) of the first row of the light source, and simultaneously receives the multi-path light transmitted by the second row of the light source through diffuse reflection.
  • the embodiments of the present application also provide other implementation solutions of the ToF-based ranging camera, which are specifically shown below.
  • the ToF-based ranging camera 400 (referred to as the ToF camera 400 ) only includes a light transmitter 402 and a light receiver 403 , and is used externally
  • the controller 401 is used to control the signal transmission and reception of the optical transmitter 402 and the optical receiver 403, and to measure the distance.
  • the optical transmitter 402 and the optical receiver 403 and the process of realizing the distance measurement through the external controller 401 , can refer to the implementation process shown in the aforementioned FIGS. 1 to 15 , which is not repeated here. Repeat.
  • the ToF-based ranging camera 400 (referred to as the ToF camera 400 for short) only includes a light receiver 403 and a controller 401 , and is externally used for An optical transmitter 402 that emits an optical signal.
  • the optical receiver 403 and the controller 401 and the process of realizing the distance measurement through the external optical transmitter 402 , you can refer to the implementation process shown in the aforementioned FIG. 1 to FIG. 15 . Repeat.
  • the one-to-one positional relationship between different light source regions in the light transmitter 402 and different pixel array regions in the light receiver 403 may be implemented by means of a limited hardware structure.
  • the spatial position of each light source area in the light emitter 402 can be matched with the light with the polar constraint by means of constraints such as embedded card slots and limit locking.
  • the spatial positions of each pixel array area in the receiver 403 are fixed.
  • a card slot position can be reserved in the camera 400, so that after the light transmitter 402 is connected, the light transmitter 402 can be The spatial position of each light source region of , and the spatial position of each pixel array region in the light receiver 403 with epipolar constraints remain unchanged.
  • the one-to-one correspondence between the different light source regions in the light transmitter 402 and the different pixel array regions in the light receiver 403 can be achieved by manual debugging.
  • the spatial position of the light transmitter 402 and/or the light receiver 403 in the camera 400 can be adjusted, for example, by means of pulleys and rollers.
  • the spatial position of each light source region in the light emitter 402 remains unchanged from the spatial position of each pixel array region in the light receiver 403 with epipolar constraints.
  • the different light source regions may be integrally provided in the light emitter 402 , or each light source region may be independently provided in the light emitter 402 , which is not limited here; similarly, different pixel array regions may be integrated and integrated in the light receiver 403, or each pixel array region may be independently arranged in the light receiver 403, which is not discussed here.
  • the camera matrix, the distortion parameter and the rotation-translation matrix of both the optical transmitter 402 and the optical receiver 403 can be obtained through stereo vision correction, and then the corresponding corresponding optical transmitter 402 and the optical receiver 403 can be determined. Epipolar region.
  • FIG. 18 is a schematic diagram of a ToF-based ranging method provided by an embodiment of the present application, wherein the method can be applied to the controller in any of the implementation manners of FIG. 4 to FIG. 17 , wherein the controller is included in the a camera; the camera further includes a light transmitter and a light receiver respectively connected to the controller; the coordinate origin of the light transmitter is the first origin and the emission surface of the light transmitter includes a first plane, the coordinates of the light receiver The origin is the second origin and the receiving surface of the light receiver includes the second plane.
  • the ranging method includes the following steps.
  • the controller controls the optical transmitter to transmit a first optical signal to a first point to be measured, and controls the optical transmitter to transmit a second optical signal to a second point to be measured.
  • step S101 the controller controls the optical transmitter to transmit a first optical signal to the first point to be measured, and the first optical signal is reflected by the first point to be measured to form a first reflection optical signal, and the first optical signal intersects the first polar line, and the first reflected optical signal intersects the second polar line; the second optical signal is reflected by the second to-be-measured point to form a second reflected optical signal, and The second optical signal intersects the third polar line, and the second reflected optical signal intersects the fourth polar line; wherein, the first point to be measured, the plane where the first origin and the second origin are located is the third plane, and The third plane and the first plane intersect at the first epipolar line, and the third plane and the second plane intersect at the second epipolar line.
  • the second to-be-measured point is different from the first to-be-measured point; and the second to-be-measured point, the plane where the first origin and the second origin are located is a sixth plane, and the sixth plane and the fourth The plane intersects the third epipolar line, the sixth plane intersects the fifth plane and the fourth epipolar line, wherein the third plane and the sixth plane are not coplanar;
  • the controller controls the optical receiver to receive the first reflected light signal and the second reflected light signal.
  • step S102 the controller controls the optical receiver to receive the first reflected optical signal formed by the reflection of the first optical signal transmitted in step S101, and to receive the reflected optical signal formed by the second optical signal transmitted in step S101.
  • the second reflected light signal is the first reflected optical signal formed by the reflection of the first optical signal transmitted in step S101.
  • the controller determines the distance between the first point to be measured and the camera according to the first light signal and the first reflected light signal, and determines the distance between the first point to be measured and the camera according to the second light signal and the second reflection
  • the light signal determines the distance between the second point to be measured and the camera.
  • step S103 the controller determines the distance between the first point to be measured and the camera according to the second light signal transmitted in step S101 and the first reflected light signal received in step S102 , and the controller determines the distance between the second to-be-measured point and the camera according to the second light signal transmitted in step S101 and the second reflected light signal received in step S102.
  • the light emitter includes a first light source area and a second light source area, wherein the emission surface of the first light source area is the first plane, and the emission surface of the second light source area is the fourth plane;
  • the light receiver includes a first pixel array area and a second pixel array area, wherein the receiving surface of the first pixel array area is the second plane, and the receiving surface of the second pixel array area is the fifth plane.
  • the first optical signal and the second optical signal are orthogonal to each other.
  • Both the first optical signal and the second optical signal are signals obtained through binary phase shift keying BPSK encoding.
  • the first optical signal is a signal obtained by encoding a first pseudo-random sequence through BPSK
  • the second optical signal is a signal obtained by encoding a second pseudo-random sequence through BPSK
  • a sequence with a value of 0 in the first pseudo-random sequence The number is equal to the number of sequences with a value of 0 in the second pseudo-random sequence.
  • the first optical signal is a signal obtained by BPSK encoding.
  • the signal frequency of the first optical signal is the first frequency
  • the signal frequency of the second optical signal is the second frequency
  • the first frequency is different from the second frequency
  • step S103 the method further includes:
  • the controller controls the optical transmitter to transmit a third optical signal with a signal frequency of the second frequency to the first point to be measured, and the third optical signal is reflected by the first point to be measured to form a third reflected light signal, and the third optical signal intersects the first polar line, and the third reflected optical signal intersects the second polar line;
  • the controller controls the light receiver to receive the third reflected light signal
  • the controller determines the distance between the first point to be measured and the camera according to the first light signal and the first reflected light signal, including:
  • the controller determines the distance between the first point to be measured and the camera according to the first light signal, the first reflected light signal, the third light signal and the third reflected light signal.
  • step S103 the method further includes:
  • the controller controls the optical transmitter to transmit a fourth optical signal with a signal frequency of the first frequency to the second to-be-measured point, and the fourth optical signal is reflected by the second to-be-measured point to form a fourth reflected light signal, and the fourth optical signal intersects the third polar line, and the fourth reflected optical signal intersects the fourth polar line;
  • the controller controls the light receiver to receive the four reflected light signals
  • the controller determines the distance between the second point to be measured and the camera according to the second light signal and the second reflected light signal, including:
  • the controller determines the distance between the second point to be measured and the camera according to the second light signal, the second reflected light signal, the fourth light signal and the fourth reflected signal.
  • step S103 the process of the controller determining the distance between the first point to be measured and the camera according to the first light signal and the first reflected light signal may specifically include:
  • the controller samples the first reflected light signal to obtain a first sampling result
  • the controller determines a first phase difference between the first optical signal and the first reflected optical signal according to the first sampling result
  • the controller determines the distance between the first point to be measured and the camera according to the first phase difference.
  • the process of the controller determining the distance between the second point to be measured and the camera according to the second light signal and the second reflected light signal may specifically include:
  • the controller samples the second reflected light signal to obtain a second sampling result
  • the controller determines a second phase difference between the second optical signal and the second reflected optical signal according to the second sampling result
  • the controller determines the distance between the second point to be measured and the camera according to the second phase difference.
  • the first reflected optical signal received by the optical receiver is formed by the reflection of the first optical signal transmitted by the optical transmitter on the first to-be-measured point, and the first reflected optical signal is The light signal and the first reflected light signal are used to determine the distance between the first point to be measured and the camera. Since the first epipolar line and the second epipolar line satisfy the epipolar line constraint, the first reflected light signal formed by the first optical signal emitted by the optical transmitter passing through the first epipolar line and reflected by the first point to be measured can be Passing through the second polar line and being received by the light receiver can reduce the interference to the first reflected light signal for the diffusely reflected light signal received by the light receiver through other regions other than the second polar line.
  • the subsequent controller determines the ranging result according to the first optical signal and the first reflected optical signal, which can reduce the interference to the ranging result by other reflected signals generated by the diffuse reflection on the first point to be measured, that is, reduce the amount of time to be measured.
  • the effect of diffuse reflection on the measuring point on the camera ranging result improves the accuracy of the ToF camera ranging.
  • FIG. 19 is another schematic diagram of a ToF-based ranging method provided by an embodiment of the present application, wherein the method is applied to a controller, wherein the controller is included in a camera; the camera further includes a method connected to the controller light receiver.
  • the ranging method includes the following steps.
  • the controller controls the optical receiver to receive the first reflected light signal and the second reflected light signal.
  • step S201 the controller controls the optical receiver to receive a first reflected optical signal, where the first reflected optical signal is the first optical signal transmitted by the optical transmitter through the reflection of the first point to be measured formed, and the first optical signal intersects the first polar line, and the first reflected optical signal intersects the second polar line; the second reflected optical signal is the second optical signal emitted by the optical transmitter through the second The reflection of the point to be measured is formed, and the second optical signal intersects the third polar line, and the second reflected optical signal intersects the fourth polar line; wherein, the coordinate origin of the light emitter is the first origin and the The emitting surface includes a first plane, the coordinate origin of the light receiver is the second origin, and the receiving surface of the light receiver includes a second plane; the first point to be measured, the plane where the first origin and the second origin are located is a third plane, and the third plane and the first plane intersect at the first epipolar line, and the third plane and the second plane intersect at the second epipolar line.
  • the emitting surface of the optical transmitter further includes a fourth plane
  • the receiving surface of the optical receiver further includes a fifth plane
  • the second point to be measured, the plane where the first origin and the second origin are located is the sixth plane
  • the sixth plane and the fourth plane intersect at the third pole line
  • the sixth plane and the fifth plane intersect at the fourth pole line; wherein, the third plane and the sixth plane are not coplanar.
  • the controller determines the distance between the first to-be-measured point and the camera according to the first light signal and the first reflected light signal, and determines the distance between the first point to be measured and the camera according to the second light signal and the second reflection
  • the light signal determines the distance between the second point to be measured and the camera.
  • step S202 the controller determines the distance between the first point to be measured and the camera according to the first light signal and the first reflected light signal in step S101.
  • the light emitter includes a first light source area and a second light source area, wherein the emission surface of the first light source area is the first plane, and the emission surface of the second light source area is the fourth plane;
  • the light receiver includes a first pixel array area and a second pixel array area, wherein the receiving surface of the first pixel array area is the second plane, and the receiving surface of the second pixel array area is the fifth plane.
  • the first optical signal and the second optical signal are orthogonal to each other.
  • Both the first optical signal and the second optical signal are signals obtained through binary phase shift keying BPSK encoding.
  • the first optical signal is a signal obtained by encoding a first pseudo-random sequence through BPSK
  • the second optical signal is a signal obtained by encoding a second pseudo-random sequence through BPSK
  • a sequence with a value of 0 in the first pseudo-random sequence The number is equal to the number of sequences with a value of 0 in the second pseudo-random sequence.
  • the first optical signal is a signal obtained by BPSK encoding.
  • the signal frequency of the first optical signal is the first frequency
  • the signal frequency of the second optical signal is the second frequency
  • the first frequency is different from the second frequency
  • step S202 the method further includes:
  • the controller controls the optical receiver to receive a third reflected optical signal, the third reflected optical signal is formed by the reflection of the third optical signal emitted by the optical transmitter through the first to-be-measured point, and the third reflected optical signal is formed.
  • the three optical signals intersect with the first polar line, and the third reflected optical signal intersects with the second polar line; wherein, the frequency of the third optical signal signal is the second frequency;
  • the controller determines the distance between the first point to be measured and the camera according to the first light signal and the first reflected light signal, including:
  • the controller determines the distance between the first to-be-measured point and the camera by the first optical signal, the first reflected optical signal, the third optical signal and the third reflected optical signal.
  • step S202 the method further includes:
  • the controller controls the optical receiver to receive a fourth reflected optical signal;
  • the fourth reflected optical signal is formed by the reflection of the fourth optical signal emitted by the optical transmitter through the second to-be-measured point, and the fourth reflected optical signal is Four optical signals intersect with the third polar line, and the fourth reflected optical signal intersects with the fourth polar line; wherein, the signal frequency of the fourth optical signal is the first frequency;
  • the controller determines the distance between the second point to be measured and the camera according to the second light signal and the second reflected light signal, including:
  • the controller determines the distance between the second point to be measured and the camera according to the second light signal, the second reflected light signal, the fourth light signal and the fourth reflected signal.
  • step S202 the controller determining the distance between the first point to be measured and the camera according to the first light signal and the first reflected light signal includes:
  • the controller samples the first reflected light signal to obtain a first sampling result
  • the controller determines a first phase difference between the first optical signal and the first reflected optical signal according to the first sampling result
  • the controller determines the distance between the first point to be measured and the camera according to the first phase difference.
  • the controller determining the distance between the second point to be measured and the camera according to the second light signal and the second reflected light signal includes:
  • the controller samples the second reflected light signal to obtain a second sampling result
  • the controller determines a second phase difference between the second optical signal and the second reflected optical signal according to the second sampling result
  • the controller determines the distance between the second point to be measured and the camera according to the second phase difference.
  • the first reflected optical signal received by the optical receiver is formed by the reflection of the first optical signal transmitted by the optical transmitter on the first point to be measured, and the first reflected optical signal is The light signal and the first reflected light signal are used to determine the distance between the first point to be measured and the camera. Since the first epipolar line and the second epipolar line satisfy the epipolar line constraint, the first reflected light signal formed by the first optical signal emitted by the optical transmitter passing through the first epipolar line and reflected by the first point to be measured can be Passing through the second polar line and being received by the light receiver can reduce the interference to the first reflected light signal for the diffusely reflected light signal received by the light receiver through other regions other than the second polar line.
  • the subsequent controller determines the ranging result according to the first optical signal and the first reflected optical signal, which can reduce the interference to the ranging result by other reflected signals generated by the diffuse reflection on the first point to be measured, that is, reduce the amount of time to be measured.
  • the effect of diffuse reflection on the measuring point on the camera ranging result improves the accuracy of the ToF camera ranging.
  • FIG. 20 is another schematic diagram of a ToF-based ranging method provided by an embodiment of the application, wherein the method is applied to a camera, and the camera includes a light transmitter and a light receiver, wherein the coordinate origin of the light transmitter is is the first origin and the emitting surface of the light transmitter includes a first plane, the coordinate origin of the light receiver is the second origin and the receiving surface of the light receiver includes a second plane.
  • the ranging method includes the following steps.
  • the optical transmitter transmits a first optical signal to the first to-be-measured point, and transmits a second optical signal to the second to-be-measured point.
  • step S301 when the camera is performing ranging, the light transmitter in the camera transmits a first light signal to the first point to be measured.
  • the first optical signal is reflected by the first point to be measured to form a first reflected optical signal, the first optical signal intersects with the first polar line, and the first reflected optical signal intersects with the second polar line;
  • the first point to be measured, the plane where the first origin and the second origin are located is a third plane, and the third plane and the first plane intersect at the first polar line, and the third plane and the second The plane intersects the second epipolar line.
  • the emitting surface of the optical transmitter further includes a fourth plane
  • the receiving surface of the optical receiver further includes a fifth plane
  • the optical transmitter transmits a second optical signal to the second to-be-measured point, the The second optical signal is reflected by the second to-be-measured point to form a second reflected optical signal, the second optical signal intersects with the third polar line, and the second reflected optical signal intersects with the fourth polar line;
  • the point to be measured is different from the first point to be measured; for the second point to be measured, the plane where the first origin and the second origin are located is the sixth plane, and the sixth plane and the fourth plane intersect at the sixth plane.
  • Tripolar line, the sixth plane and the fifth plane intersect at the fourth polar line, wherein the third plane and the sixth plane are not coplanar;
  • the optical receiver receives the first reflected light signal and the second reflected light signal.
  • step S302 the light receiver in the camera receives the first reflected light signal and the second reflected light signal.
  • the first optical signal and the first reflected optical signal are used to determine the distance between the first point to be measured and the camera, and the second optical signal and the second reflected optical signal are used to determine the second to-be-measured point The distance between the measuring point and this camera.
  • the light emitter includes a first light source area and a second light source area, wherein the emission surface of the first light source area is the first plane, and the emission surface of the second light source area is the fourth plane;
  • the light receiver includes a first pixel array area and a second pixel array area, wherein the receiving surface of the first pixel array area is the second plane, and the receiving surface of the second pixel array area is the fifth plane.
  • the first optical signal and the second optical signal are orthogonal to each other.
  • Both the first optical signal and the second optical signal are signals obtained through binary phase shift keying BPSK encoding.
  • the first optical signal is a signal obtained by encoding a first pseudo-random sequence through BPSK
  • the second optical signal is a signal obtained by encoding a second pseudo-random sequence through BPSK
  • a sequence with a value of 0 in the first pseudo-random sequence The number is equal to the number of sequences with a value of 0 in the second pseudo-random sequence.
  • the first optical signal is a signal obtained by BPSK encoding.
  • the signal frequency of the first optical signal is the first frequency
  • the signal frequency of the second optical signal is the second frequency
  • the first frequency is different from the second frequency
  • step S301 and step S302 the method further includes:
  • the optical transmitter transmits a third optical signal whose signal frequency is the second frequency to the first to-be-measured point.
  • the third optical signal is reflected by the first to-be-measured point to form a third reflected optical signal.
  • the signal intersects the first polar line, and the third reflected light signal intersects the second polar line;
  • the optical receiver receives the third reflected optical signal, wherein the first optical signal, the first reflected optical signal, the third optical signal and the third reflected optical signal are used to determine the relationship between the first to-be-measured point and the distance between cameras.
  • step S301 and step S302 the method further includes:
  • the optical transmitter transmits a fourth optical signal whose signal frequency is the first frequency to the second to-be-measured point.
  • the fourth optical signal is reflected by the second to-be-measured point to form a fourth reflected optical signal.
  • the signal intersects the third polar line, and the fourth reflected light signal intersects the fourth polar line;
  • the light receiver receives the fourth reflected light signal, wherein the second light signal, the second reflected light signal, the fourth light signal and the fourth reflected signal are used to determine the second to-be-measured point and the camera the distance between.
  • the camera further includes a controller respectively connected to the light transmitter and the light receiver;
  • step S301 the execution process of the optical transmitter transmitting the first optical signal to the first point to be measured may specifically include:
  • the controller controls the optical transmitter to transmit the first optical signal to the first point to be measured
  • step S302 the process of receiving the first reflected optical signal by the optical receiver may specifically include:
  • the controller controls the light receiver to receive the first reflected light signal.
  • the method may further include:
  • the controller samples the first reflected light signal to obtain a first sampling result
  • the controller determines a first phase difference between the first optical signal and the first reflected optical signal according to the first sampling result
  • the controller determines the distance between the first point to be measured and the camera according to the first phase difference.
  • the first reflected light signal received by the light receiver in the camera is formed by the reflection of the first light signal emitted by the light transmitter on the first point to be measured.
  • the first light signal and the first reflected light signal are used to determine the distance between the first point to be measured and the camera.
  • the first reflected light signal formed by the first optical signal emitted by the optical transmitter passing through the first epipolar line and reflected by the first point to be measured can be Passing through the second polar line and being received by the light receiver can reduce the interference to the first reflected light signal for the diffusely reflected light signal received by the light receiver through other regions other than the second polar line, that is, reduce Other reflection signals generated by diffuse reflection on the point to be measured interfere with the ranging process of the ToF camera, reduce the influence of the diffuse reflection on the point to be measured on the camera ranging result, and improve the accuracy of the ToF camera ranging.
  • An embodiment of the present application further provides a chip system, where the chip system includes a processor for supporting the controller to implement the functions involved in the method shown in FIG. 18 or FIG. 19 or FIG. 20 .
  • the chip system may further include a memory for storing necessary program instructions and data of the controller.
  • the chip system may be composed of chips, or may include chips and other discrete devices. Among them, the technical effect brought by the chip system can refer to the technical effect brought by the method shown in FIG. 18 or FIG. 19 or FIG. 20 , and details are not repeated here.
  • Embodiments of the present application further provide a computer-readable storage medium that stores one or more computer-executable instructions.
  • the processor executes the method shown in FIG. 18 or FIG. 19 or FIG. 20 above. , for details, reference may be made to the foregoing description, which will not be repeated here.
  • Embodiments of the present application also provide a computer program product (or computer program) that stores one or more computers.
  • the computer program product runs on a computer, the computer can execute the operations shown in FIG. 18 or FIG. 19 or FIG. 20 above.
  • FIG. 18 or FIG. 19 or FIG. 20 For details, reference may be made to the foregoing description, which will not be repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

一种基于飞行时间ToF的测距相机及控制方法,用于降低待测点上的漫反射对相机测距结果的影响,提升ToF相机测距的准确率。在该相机中,通过第一光信号和第一反射光信号确定第一待测点与相机之间的距离,并通过第二光信号和第二反射光信号确定第二待测点与相机之间的距离。由于使用不同的对极约束,使得用于确定第一待测点与相机之间距离的第一光信号和第一反射光信号,与用于确定第二待测点与相机之间距离的第二光信号和第二反射光信号之间互不干扰。即,使得光接收器通过不同极线所接收得到的不同光反射信号之间互不干扰,降低光发射器所发射的多路光信号在待测点上产生漫反射对相机测距结果的影响,提升ToF相机测距的准确率。

Description

一种基于飞行时间ToF的测距相机及控制方法 技术领域
本申请涉及光学领域,尤其涉及一种基于飞行时间ToF的测距相机及控制方法。
背景技术
飞行时间(time of flight,ToF)相机,可以应用于测距,其测距原理是通过光发射器向物体发送光信号,然后用光接收器接收从物体返回的光信号,通过探测光信号的飞行(往返)时间来得到该物体的距离。
目前,ToF相机在测距过程中,一般是通过光发射器所发射光信号与光接收器所接收的光信号之间的相位差,实现光信号的飞行(往返)时间的确定。其中,光发射器和光接收器之间通过多路光信号的收发,可以实现对ToF相机测距过程的优化,例如扩展ToF相机的测距距离或者扩展ToF相机的测距范围等。
然而,物体表面普遍存在漫反射,当被摄物体存在光发射器所发射的多个光信号的反射光路径时,光接收器会接收到来自许多不同路径及相位的反射光,对ToF相机的测距过程产生干扰,导致ToF相机测距的准确率较低。
发明内容
本申请实施例提供了一种基于飞行时间ToF的测距相机及控制方法,用于降低光发射器所发射的多路光信号在待测点上产生漫反射对相机测距结果的影响,提升ToF相机测距的准确率。
本申请实施例第一方面提供了一种基于飞行时间ToF的测距相机,该相机在利用光学成像原理拍摄照片或视频时,可以对照片或视频中的某一帧图像中的被测物体进行测距,该被测物体包括一个或多个待测点,例如第一待测点、第二待测点等。具体地,该相机包括光发射器和光接收器,其中,相机中的光发射器的坐标原点为第一原点且该光发射器的发射面至少包括第一平面和第四平面,相机中的光接收器的坐标原点为第二原点且该光接收器的接收面包括第二平面和第五平面。
在相机进行测距的过程中,相机中的光发射器用于向第一待测点发射第一光信号,该第一光信号经过所述第一待测点的反射形成第一反射光信号,且该第一光信号与第一极线相交,第一反射光信号与第二极线相交;其中,该第一待测点,该第一原点和该第二原点所在的平面为第三平面,且该第三平面与该第一平面相交于该第一极线,该第三平面与该第二平面相交于第二极线;
并且,在相机进行测距的过程中,相机中的光发射器还用于向第二待测点发射第二光信号,第二光信号经过所述第二待测点的反射形成第二反射光信号,且第二光信号与第三极线相交,第二反射光信号与第四极线相交;其中,第二待测点不同于该第一待测点;且该第二待测点,该第一原点和该第二原点所在的平面为第六平面,且该第六平面与该第四平面相交于该第三极线,该第六平面与该第五平面相交于第四极线,其中,该第三平面与 该第六平面不共面;
进一步地,在相机进行测距的过程中,相机中的光接收器用于接收该第一反射光信号和该第二反射光信号,其中,该第一光信号和该第一反射光信号用于确定该第一待测点与该相机之间的距离,且该第二光信号和该第二反射光信号用于确定该第二待测点与该相机之间的距离。
基于上述技术方案,光接收器接收得到的第一反射光信号为光发射器所发射的第一光信号在第一待测点上反射所形成的,且该第一光信号和该第一反射光信号用于确定该第一待测点与该相机之间的距离;且光接收器接收得到的第二反射光信号为光发射器所发射的第二光信号在第二待测点上反射所形成的,且该第二光信号和该第二反射光信号用于确定该第二待测点与该相机之间的距离。由于第三平面与第六平面内不共面,即第一极线不同于第三极线且第二极线不同于第四极线,使得用于确定第一待测点与相机之间距离的第一光信号和第一反射光信号,与用于确定第二待测点与相机之间距离的第二光信号和第二反射光信号之间互不干扰。即,使得光接收器通过不同极线所接收得到的不同光反射信号之间互不干扰,降低光发射器所发射的多路光信号在待测点上产生漫反射对相机测距结果的影响,提升ToF相机测距的准确率。
需要说明的是,第一光信号与第一极线相交,可以指示第一光信号的传输路径与第一极线相交于某一点或多个点,或者,可以指示第一光信号的传输路径穿过第一极线中的一个或多个点;类似的,第一反射光信号与第二极线相交,可以指示第一反射光信号的传输路径与第二极线相交于某一点或多个点,或者,可以指示第一反射光信号的传输路径穿过第二极线中的一个或多个点。例如,当第一光信号包括一束光信号(或多束光信号)时,第一光信号的传播路径穿过第一极线并与第一极线相交于某一点(或多个点)上,此后,该第一光信号再经过第一待测点的反射形成单束(或多束)的第一反射光信号,第一反射光信号的传播路径穿过第二极线并与第二极线相交于某一点(或多个点)上。类似地,第二光信号与第三极线相交,可以指示第二光信号的传输路径与第三极线相交于某一点或多个点,或者,可以指示第二光信号的传输路径穿过第二极线中的一个或多个点;类似的,第二反射光信号与第四极线相交,可以指示第二反射光信号的传输路径与第四极线相交于某一点或多个点,或者,可以指示第二反射光信号的传输路径穿过第四极线中的一个或多个点。例如,当第二光信号包括一束光信号(或多束光信号)时,第二光信号的传播路径穿过第三极线并与第三极线相交于某一点(或多个点)上,此后,该第二光信号再经过第二待测点的反射形成单束(或多束)的第二反射光信号,第二反射光信号的传播路径穿过第四极线并与第四极线相交于某一点(或多个点)上。
此外,本实施例及后续实施例中,光发射器所包括的发射面,具体可以指示光发射器在相机针孔模型中的成像面,即等效于该成像面的平面;光接收器所包括的接收面,具体可以指示光接收器在相机针孔模型中的成像面,或者说,光接收器的传感器(sensor)平面。
需要说明的是,第一待测点与该相机之间的距离可以为该第一待测点与相机中的镜头之间的距离,也可以为第一待测点与相机中的几何中心之间的距离,也可以为第一待测点 与相机中的感光器件之间的距离,还可以是第一待测点与相机中其它实体部分或虚拟部分之间的距离,此处不做具体的限定。类似地,第二待测点与该相机之间的距离可以为该第二待测点与相机中的镜头之间的距离,也可以为第二待测点与相机中的几何中心之间的距离,也可以为第二待测点与相机中的感光器件之间的距离,还可以是第二待测点与相机中其它实体部分或虚拟部分之间的距离,此处不做具体的限定。
此外,在光发射器中除了第一平面和第四平面之外,还可以包括其他的发射面,例如第七平面或者是其它的平面;相应的,在光接收器中除了第二平面和第五平面之外,还可以包括其他的接收平面,例如第八平面或者是其它的平面。并且,光发射器中其它的发射面与光接收器中其它的接收面之间,也可以通过前述方式存在满足对极约束的对极线,并在对应的对极线上进行光信号的收发,以实现对更多不同待测点的测距。此外,由于对不同待测点进行测距的不同光信号之间互不干扰,可以进一步提升ToF相机测距的准确率。
在本申请实施例第一方面的一种可能的实现方式中,该光发射器包括第一光源区域和第二光源区域,其中,该第一光源区域的发射面为该第一平面,且该第二光源区域的发射面为该第四平面;该光接收器包括第一像素阵列区域和第二像素阵列区域,其中,该第一像素阵列区域的接收面为该第二平面,且该第二像素阵列区域的接收面为该第五平面。
基于上述技术方案,光发射器中可以设置多个光源区域,在不同光源区域上设置不同的发射面,以实现多个不同光信号的发射。相应的,光接收器中也可以设置多个像素阵列区域,在不同像素阵列区域上设置不同的接收面,以实现多个不同光信号的接收。
在本申请实施例第一方面的一种可能的实现方式中,该第一光信号与该第二光信号相互正交。
基于上述技术方案,用于对第一待测点进行测距的第一光信号与用于对第二待测点进行测距的第二光信号之间可以是相互正交的,即第一光信号与第二光信号之间的相干性为0。此时,即使第一光信号的某一部分光信号经过多次漫反射而穿过第四极线被光接收器接收,或者是第二光信号的某一部分光信号经过多次漫反射而穿过第二极线被光接收器接收,由于第一光信号与第二光信号之间的相干性为0,也可以避免第一光信号与第二光信号之间的干扰,进一步提升ToF相机测距的准确率。
在本申请实施例第一方面的一种可能的实现方式中,该第一光信号和该第二光信号均为通过二进制相移键控(binary phase shift keying、BPSK)编码得到的信号。
基于上述技术方案,第一光信号和第二光信号都可以通过BPSK编码方式得到的信号,即使用至少两个原始序列分别进行BPSK编码得到第一光信号和第二光信号,其中,可以通过不同的原始序列使得第一光信号和第二光信号正交。提供了第一光信号和第二光信号的一种具体的实现方式,提升方案的可实现性。
可选地,该第一光信号和该第二光信号可以为通过其它的编码方式得到的信号,例如正交相移键控(quadrature phase shift keying、QPSK),正交幅度调制(quadrature amplitude modulation,QAM),或者是其它的方式,此处不做限定。
在本申请实施例第一方面的一种可能的实现方式中,该第一光信号为第一伪随机序列通过BPSK编码得到的信号,该第二光信号为第二伪随机序列通过BPSK编码得到的信号, 且该第一伪随机序列中取值为0的序列个数和该第二伪随机序列中取值为0的序列个数相等。
基于上述技术方案,第一光信号和第二光信号可以通过伪随机序列进行BPSK编码得到,其中,用于生成得到第一光信号的第一伪随机序列中取值为0的序列个数与用于生成得到第二光信号的第二伪随机序列中取值为0的序列个数相同,可以使得生成得到的第一光信号和第二光信号之间的干扰为0。即用于对第一待测点进行测距的第一光信号与用于对第二待测点进行测距的第二光信号之间互不干扰,进一步提升ToF相机测距的准确率。
在本申请实施例第一方面的一种可能的实现方式中,该第一光信号为通过BPSK编码得到的信号。
基于上述技术方案,第一光信号可以为通过BPSK编码方式得到的信号,即使用某一原始序列进行BPSK编码得到第一光信号。提供了第一光信号的一种具体的实现方式,提升方案的可实现性。
在本申请实施例第一方面的一种可能的实现方式中,该第一光信号的信号频率为第一频率,该第二光信号的信号频率为第二频率,且该第一频率不同于该第二频率。
基于上述技术方案,第一光信号和第二光信号可以分别通过不同的信号频率进行发射,以实现第一光信号与第二光信号之间的相互正交,使得第一光信号与第二光信号之间的相干性为0。此时,即使第一光信号的某一部分光信号经过多次漫反射而穿过第四极线被光接收器接收,或者是第二光信号的某一部分光信号经过多次漫反射而穿过第二极线被光接收器接收,由于第一光信号与第二光信号之间频率不同,也可以避免第一光信号与第二光信号之间的干扰,进一步提升ToF相机测距的准确率。
此外,在光发射器中除了第一平面和第四平面之外,如果还包括其他发射面,例如第七平面或者是其它平面;此时,类似于第一平面与第一极线的关系(或者是第三极线与第四平面的关系),在其它发射面中也存在其它极线;并且,光发射器可以发射穿过其它极线的其它光信号。其中,其它光信号可以使用不同于第一频率和第二频率的信号频率,例如,光发射器在发射n路光信号(n大于2,且n路光信号包括第一光信号和第二光信号)时,可以为n路光信号设置n个不同的信号频率,即n路光信号的信号频率互不相同。此外,其它光信号也可以使用第一频率或第二频率,例如,光发射器在发射n路光信号(n大于2,且n路光信号包括第一光信号和第二光信号)时,可以将n路光信号交替设置为第一频率和第二频率,即n路光信号中任意相邻的光信号的信号频率互不相同即可实现较好的抗干扰效果。
在本申请实施例第一方面的一种可能的实现方式中,在相机进行测距的过程中,相机中的光发射器还用于向该第一待测点发射信号频率为该第二频率的第三光信号,其中,第三光信号经过所述第一待测点的反射形成第三反射光信号,且该第三光信号与第一极线相交,第三反射光信号与第二极线相交;相机中的光接收器还用于接收第三反射光信号,其中,该第一光信号,该第一反射光信号,该第三光信号和该第三反射光信号用于确定该第一待测点与该相机之间的距离。
基于上述技术方案,由于ToF相机一般是利用相位差求得距离,在单一频率下,ToF 相机最大测距范围受限于该频率与光速之间的数学关系,当待测点与相机之间的距离大于该最大测距范围时,所测得距离将由于产生周期性混叠(aliasing)而导致准确率较差。为避免此缺陷,对同一待测点可以通过分别发射不同频率的光信号,利用第一频率与第二频率之间的关系进行计算,以扩展ToF相机的测距距离。其中,可以通过信号频率为第一频率的第一光信号和信号频率为第二频率的第三光信号提升对第一待测点的测距结果的准确率。
需要说明的是,第三光信号与第一极线相交,可以指示第三光信号的传输路径与第一极线相交于某一点或多个点,或者,可以指示第三光信号的传输路径穿过第一极线中的一个或多个点;类似的,第三反射光信号与第二极线相交,可以指示第三反射光信号的传输路径与第二极线相交于某一点或多个点,或者,可以指示第三反射光信号的传输路径穿过第二极线中的一个或多个点。例如,当第三光信号包括一束光信号(或多束光信号)时,第三光信号的传播路径穿过第一极线并与第一极线相交于某一点(或多个点)上,此后,该第三光信号再经过第一待测点的反射形成单束(或多束)的第一反射光信号,第三反射光信号的传播路径穿过第二极线并与第二极线相交于某一点(或多个点)上。
在本申请实施例第一方面的一种可能的实现方式中,在相机进行测距的过程中,相机中的光发射器还用于向该第二待测点发射信号频率为该第一频率的第四光信号,所述第四光信号经过所述第二待测点的反射形成第四反射光信号,且该第四光信号与第三极线相交,第四反射光信号与第四极线相交;相机中的光接收器还用于接收该第四光信号在该第二待测点上的第四反射光信号,其中,该第二光信号,该第二反射光信号,该第四光信号和该第四反射信号用于确定该第二待测点与该相机之间的距离。
基于上述技术方案,由于ToF相机一般是利用相位差求得距离,在单一频率下,ToF相机最大测距范围受限于该频率与光速之间的数学关系,当待测点与相机之间的距离大于该最大测距范围时,所测得距离将由于产生周期性混叠(aliasing)而导致准确率较差。为避免此缺陷,对同一待测点可以通过分别发射不同频率的光信号,利用第一频率与第二频率之间的关系进行计算,以扩展ToF相机的测距距离。其中,可以通过信号频率为第二频率的第二光信号和信号频率为第一频率的第四光信号提升对第二待测点的测距结果的准确率。
需要说明的是,第四光信号与第三极线相交,可以指示第四光信号的传输路径与第三极线相交于某一点或多个点,或者,可以指示第四光信号的传输路径穿过第二极线中的一个或多个点;类似的,第四反射光信号与第四极线相交,可以指示第四反射光信号的传输路径与第四极线相交于某一点或多个点,或者,可以指示第四反射光信号的传输路径穿过第四极线中的一个或多个点。例如,当第四光信号包括一束光信号(或多束光信号)时,第四光信号的传播路径穿过第三极线并与第三极线相交于某一点(或多个点)上,此后,该第四光信号再经过第二待测点的反射形成单束(或多束)的第四反射光信号,第四反射光信号的传播路径穿过第四极线并与第四极线相交于某一点(或多个点)上。
在本申请实施例第一方面的一种可能的实现方式中,为了实现相机的测距功能,可以在该相机中通过控制器的设置实现。具体地,该相机还可以包括分别连接于该光发射器和 该光接收器的控制器;在相机进行测距的过程中,控制器用于控制该光发射器发射该第一光信号;并且,该控制器还用于控制该光接收器接收该第一光信号。
基于上述技术方案,该相机可以设置分别连接于该光发射器和光接收器的控制器,并通过该控制器控制光发射器发射光信号,并控制光接收器接收光信号,以使得光发射器和光接收器在控制器的控制下,基于ToF原理实现对待测点进行测距。
可选地,该控制器,还用于控制该光发射器发射该第二光信号。
可选地,该控制器,还用于控制该光接收器接收该第二反射光信号。
可选地,该控制器,还用于控制该光发射器发射该第三光信号。
可选地,该控制器,还用于控制该光接收器接收该第三反射光信号。
可选地,该控制器,还用于控制该光发射器发射该第四光信号。
可选地,该控制器,还用于控制该光接收器接收该第四反射光信号。
在本申请实施例第一方面的一种可能的实现方式中,在相机进行测距的过程中,该控制器具体可以用于对该第一反射光信号进行采样,得到第一采样结果;然后,控制器根据该第一采样结果确定该第一光信号和该第一反射光信号之间的第一相位差;进一步地,控制器根据该第一相位差确定该第一待测点与该相机之间的距离。
基于上述技术方案,控制器可以通过光发射器所发射的第一光信号和光接收器所接收的第一反射光信号确定第一待测点与相机之间的距离,具体可以基于ToF原理,通过对第一光信号和第二反射光信号之间的相位求解得到第一相位差,再进一步根据该第一相位差确定第一待测点与相机之间的距离。
在本申请实施例第一方面的一种可能的实现方式中,在相机进行测距的过程中,该控制器具体可以用于对该第二反射光信号进行采样,得到第二采样结果;然后,控制器根据该第二采样结果确定该第二光信号和该第二反射光信号之间的第二相位差;进一步地,控制器根据该第二相位差确定该第二待测点与该相机之间的距离。
基于上述技术方案,控制器可以通过光发射器所发射的第二光信号和光接收器所接收的第二反射光信号确定第二待测点与相机之间的距离,具体可以基于ToF原理,通过对第二光信号和第二反射光信号之间的相位求解得到第二相位差,再进一步根据该第二相位差确定第二待测点与相机之间的距离。
本申请实施例第二方面提供了一种基于飞行时间ToF的测距相机,该相机在利用光学成像原理拍摄照片或视频时,可以对照片或视频中的某一帧图像中的被测物体进行测距,该被测物体包括一个或多个待测点,例如第一待测点、第二待测点等。具体地,该相机包括控制器,以及分别连接于该控制器的光发射器和光接收器;该光发射器的坐标原点为第一原点且该光发射器的发射面包括第一平面和第四平面,该光接收器的坐标原点为第二原点且该光接收器的接收面包括第二平面和第五平面。
在相机进行测距的过程中,该光发射器用于在该控制器的控制下,向第一待测点发射第一光信号,所述第一光信号经过所述第一待测点的反射形成第一反射光信号,且该第一光信号与第一极线相交,第一反射光信号与第二极线相交;其中,该第一待测点,该第一原点和该第二原点所在的平面为第三平面,且该第三平面与该第一平面相交于该第一极线, 该第三平面与该第二平面相交于第二极线;
并且,在相机进行测距的过程中,相机中的光发射器还用于在该控制器的控制下,向第二待测点发射第二光信号,所述第二光信号经过所述第二待测点的反射形成第二反射光信号,且第二光信号与第三极线相交,第二反射光信号与第四极线相交;其中,第二待测点不同于该第一待测点;且该第二待测点,该第一原点和该第二原点所在的平面为第六平面,且该第六平面与该第四平面相交于该第三极线,该第六平面与该第五平面相交于第四极线,其中,该第三平面与该第六平面不共面;
相机中的光接收器用于在该控制器的控制下,接收该第一反射光信号和第二光信号;
相机中该段控制器,用于根据该第一光信号和该第一反射光信号确定该第一待测点与该相机之间的距离,并根据该第二光信号和该第二反射光信号确定该第二待测点与该相机之间的距离。
基于上述技术方案,在控制器的控制下,光接收器接收得到的第一反射光信号为光发射器所发射的第一光信号在第一待测点上反射所形成的,且该第一光信号和该第一反射光信号用于确定该第一待测点与该相机之间的距离;在控制器的控制下,光接收器接收得到的第二反射光信号为光发射器所发射的第二光信号在第二待测点上反射所形成的,且该第二光信号和该第二反射光信号用于确定该第二待测点与该相机之间的距离。由于第三平面与第六平面内不共面,即第一极线不同于第三极线且第二极线不同于第四极线,使得用于确定第一待测点与相机之间距离的第一光信号和第一反射光信号,与用于确定第二待测点与相机之间距离的第二光信号和第二反射光信号之间互不干扰。即,使得光接收器通过不同极线所接收得到的不同光反射信号之间互不干扰,降低光发射器所发射的多路光信号在待测点上产生漫反射对相机测距结果的影响,提升ToF相机测距的准确率。
需要说明的是,第一光信号与第一极线相交,可以指示第一光信号的传输路径与第一极线相交于某一点或多个点,或者,可以指示第一光信号的传输路径穿过第一极线中的一个或多个点;类似的,第一反射光信号与第二极线相交,可以指示第一反射光信号的传输路径与第二极线相交于某一点或多个点,或者,可以指示第一反射光信号的传输路径穿过第二极线中的一个或多个点。例如,当第一光信号包括一束光信号(或多束光信号)时,第一光信号的传播路径穿过第一极线并与第一极线相交于某一点(或多个点)上,此后,该第一光信号再经过第一待测点的反射形成单束(或多束)的第一反射光信号,第一反射光信号的传播路径穿过第二极线并与第二极线相交于某一点(或多个点)上。类似地,第二光信号与第三极线相交,可以指示第二光信号的传输路径与第三极线相交于某一点或多个点,或者,可以指示第二光信号的传输路径穿过第二极线中的一个或多个点;类似的,第二反射光信号与第四极线相交,可以指示第二反射光信号的传输路径与第四极线相交于某一点或多个点,或者,可以指示第二反射光信号的传输路径穿过第四极线中的一个或多个点。例如,当第二光信号包括一束光信号(或多束光信号)时,第二光信号的传播路径穿过第三极线并与第三极线相交于某一点(或多个点)上,此后,该第二光信号再经过第二待测点的反射形成单束(或多束)的第二反射光信号,第二反射光信号的传播路径穿过第四极线并与第四极线相交于某一点(或多个点)上。
需要说明的是,第一待测点与该相机之间的距离可以为该第一待测点与相机中的镜头之间的距离,也可以为第一待测点与相机中的几何中心之间的距离,也可以为第一待测点与相机中的感光器件之间的距离,还可以是第一待测点与相机中其它实体部分或虚拟部分之间的距离,此处不做具体的限定。类似地,第二待测点与该相机之间的距离可以为该第二待测点与相机中的镜头之间的距离,也可以为第二待测点与相机中的几何中心之间的距离,也可以为第二待测点与相机中的感光器件之间的距离,还可以是第二待测点与相机中其它实体部分或虚拟部分之间的距离,此处不做具体的限定。
此外,在光发射器中除了第一平面和第四平面之外,还可以包括其他的发射面,例如第七平面或者是其它的平面;相应的,在光接收器中除了第二平面和第五平面之外,还可以包括其他的接收平面,例如第八平面或者是其它的平面。并且,光发射器中其它的发射面与光接收器中其它的接收面之间,也可以通过前述方式存在满足对极约束的对极线,控制器在对应的对极线上控制光信号的收发,以实现对更多不同待测点的测距。此外,由于对不同待测点进行测距的不同光信号之间互不干扰,可以进一步提升ToF相机测距的准确率。
在本申请实施例第二方面的一种可能的实现方式中,该光发射器包括第一光源区域和第二光源区域,其中,该第一光源区域的发射面为该第一平面,且该第二光源区域的发射面为该第四平面;该光接收器包括第一像素阵列区域和第二像素阵列区域,其中,该第一像素阵列区域的接收面为该第二平面,且该第二像素阵列区域的接收面为该第五平面。
基于上述技术方案,光发射器中可以设置多个光源区域,在不同光源区域上设置不同的发射面,以实现多个不同光信号的发射。相应的,光接收器中也可以设置多个像素阵列区域,在不同像素阵列区域上设置不同的接收面,以实现多个不同光信号的接收。
在本申请实施例第二方面的一种可能的实现方式中,该第一光信号与该第二光信号相互正交。
基于上述技术方案,用于对第一待测点进行测距的第一光信号与用于对第二待测点进行测距的第二光信号之间可以是相互正交的,即第一光信号与第二光信号之间的相干性为0。此时,即使第一光信号的某一部分光信号经过多次漫反射而穿过第四极线被光接收器接收,或者是第二光信号的某一部分光信号经过多次漫反射而穿过第二极线被光接收器接收,由于第一光信号与第二光信号之间的相干性为0,也可以避免第一光信号与第二光信号之间的干扰,进一步提升ToF相机测距的准确率。
在本申请实施例第二方面的一种可能的实现方式中,该第一光信号和该第二光信号均为通过二进制相移键控BPSK编码得到的信号。
基于上述技术方案,第一光信号和第二光信号都可以通过BPSK编码方式得到的信号,即使用至少两个原始序列分别进行BPSK编码得到第一光信号和第二光信号,其中,可以通过不同的原始序列使得第一光信号和第二光信号正交。提供了第一光信号和第二光信号的一种具体的实现方式,提升方案的可实现性。
可选地,该第一光信号和该第二光信号可以为通过其它的编码方式得到的信号,例如正交相移键控(quadrature phase shift keying、QPSK),正交幅度调制(quadrature  amplitude modulation,QAM),或者是其它的方式,此处不做限定。
在本申请实施例第二方面的一种可能的实现方式中,该第一光信号为第一伪随机序列通过BPSK编码得到的信号,该第二光信号为第二伪随机序列通过BPSK编码得到的信号,且该第一伪随机序列中取值为0的序列个数和该第二伪随机序列中取值为0的序列个数相等。
基于上述技术方案,第一光信号和第二光信号可以通过伪随机序列进行BPSK编码得到,其中,用于生成得到第一光信号的第一伪随机序列中取值为0的序列个数与用于生成得到第二光信号的第二伪随机序列中取值为0的序列个数相同,可以使得生成得到的第一光信号和第二光信号之间的干扰为0。即用于对第一待测点进行测距的第一光信号与用于对第二待测点进行测距的第二光信号之间互不干扰,进一步提升ToF相机测距的准确率。
在本申请实施例第二方面的一种可能的实现方式中,该第一光信号为通过BPSK编码得到的信号。
基于上述技术方案,第一光信号可以为通过BPSK编码方式得到的信号,即使用某一原始序列进行BPSK编码得到第一光信号。提供了第一光信号的一种具体的实现方式,提升方案的可实现性。
在本申请实施例第二方面的一种可能的实现方式中,该第一光信号的信号频率为第一频率,该第二光信号的信号频率为第二频率,且该第一频率不同于该第二频率。
基于上述技术方案,第一光信号和第二光信号可以分别通过不同的信号频率进行发射,以实现第一光信号与第二光信号之间的相互正交,使得第一光信号与第二光信号之间的相干性为0。此时,即使第一光信号的某一部分光信号经过多次漫反射而穿过第四极线被光接收器接收,或者是第二光信号的某一部分光信号经过多次漫反射而穿过第二极线被光接收器接收,由于第一光信号与第二光信号之间频率不同,也可以避免第一光信号与第二光信号之间的干扰,进一步提升ToF相机测距的准确率。
此外,在光发射器中除了第一平面和第四平面之外,如果还包括其他发射面,例如第七平面或者是其它平面;此时,类似于第一平面与第一极线的关系(或者是第三极线与第四平面的关系),在其它发射面中也存在其它极线;并且,光发射器可以发射穿过其它极线的其它光信号。其中,其它光信号可以使用不同于第一频率和第二频率的信号频率,例如,光发射器在发射n路光信号(n大于2,且n路光信号包括第一光信号和第二光信号)时,可以为n路光信号设置n个不同的信号频率,即n路光信号的信号频率互不相同。此外,其它光信号也可以使用第一频率或第二频率,例如,光发射器在发射n路光信号(n大于2,且n路光信号包括第一光信号和第二光信号)时,可以将n路光信号交替设置为第一频率和第二频率,即n路光信号中任意相邻的光信号的信号频率互不相同即可实现较好的抗干扰效果。
在本申请实施例第二方面的一种可能的实现方式中,在相机进行测距的过程中,相机中的光发射器,还用于在该控制器的控制下,向该第一待测点发射信号频率为该第二频率的第三光信号,其中,第三光信号经过所述第一待测点的反射形成第三反射光信号,且该第三光信号与第一极线相交,第三反射光信号与第二极线相交;相机中的光接收器还用于 在该控制器的控制下,接收第三反射光信号;相机中的控制器还用于根据该第一光信号,该第一反射光信号,该第三光信号和该第三反射光信号确定该第一待测点与该相机之间的距离。
基于上述技术方案,由于ToF相机一般是利用相位差求得距离,在单一频率下,ToF相机最大测距范围受限于该频率与光速之间的数学关系,当待测点与相机之间的距离大于该最大测距范围时,所测得距离将由于产生周期性混叠(aliasing)而导致准确率较差。为避免此缺陷,控制器可以对同一待测点可以通过分别控制收发不同频率的光信号,并利用第一频率与第二频率之间的关系进行计算,以扩展ToF相机的测距距离。其中,可以通过信号频率为第一频率的第一光信号和信号频率为第二频率的第三光信号提升对第一待测点的测距结果的准确率。
需要说明的是,第三光信号与第一极线相交,可以指示第三光信号的传输路径与第一极线相交于某一点或多个点,或者,可以指示第三光信号的传输路径穿过第一极线中的一个或多个点;类似的,第三反射光信号与第二极线相交,可以指示第三反射光信号的传输路径与第二极线相交于某一点或多个点,或者,可以指示第三反射光信号的传输路径穿过第二极线中的一个或多个点。例如,当第三光信号包括一束光信号(或多束光信号)时,第三光信号的传播路径穿过第一极线并与第一极线相交于某一点(或多个点)上,此后,该第三光信号再经过第一待测点的反射形成单束(或多束)的第一反射光信号,第三反射光信号的传播路径穿过第二极线并与第二极线相交于某一点(或多个点)上。
在本申请实施例第二方面的一种可能的实现方式中,在相机进行测距的过程中,相机中的光发射器还用于在该控制器的控制下,向该第二待测点发射信号频率为该第一频率的第四光信号,所述第四光信号经过所述第二待测点的反射形成第四反射光信号,且该第四光信号与第三极线相交,第四反射光信号与第四极线相交;相机中的光接收器还用于在该控制器的控制下,接收该第四光信号在该第二待测点上的第四反射光信号;此时,相机中的控制器还用于根据该第二光信号,该第二反射光信号,该第四光信号和该第四反射信号确定该第二待测点与该相机之间的距离。
基于上述技术方案,由于ToF相机一般是利用相位差求得距离,在单一频率下,ToF相机最大测距范围受限于该频率与光速之间的数学关系,当待测点与相机之间的距离大于该最大测距范围时,所测得距离将由于产生周期性混叠(aliasing)而导致准确率较差。为避免此缺陷,对同一待测点可以通过分别发射不同频率的光信号,利用第一频率与第二频率之间的关系进行计算,以扩展ToF相机的测距距离。其中,可以通过信号频率为第二频率的第二光信号和信号频率为第一频率的第四光信号提升对第二待测点的测距结果的准确率。
需要说明的是,第四光信号与第三极线相交,可以指示第四光信号的传输路径与第三极线相交于某一点或多个点,或者,可以指示第四光信号的传输路径穿过第二极线中的一个或多个点;类似的,第四反射光信号与第四极线相交,可以指示第四反射光信号的传输路径与第四极线相交于某一点或多个点,或者,可以指示第四反射光信号的传输路径穿过第四极线中的一个或多个点。例如,当第四光信号包括一束光信号(或多束光信号)时, 第四光信号的传播路径穿过第三极线并与第三极线相交于某一点(或多个点)上,此后,该第四光信号再经过第二待测点的反射形成单束(或多束)的第四反射光信号,第四反射光信号的传播路径穿过第四极线并与第四极线相交于某一点(或多个点)上。
在本申请实施例第二方面的一种可能的实现方式中,在相机进行测距的过程中,相机中的控制器具体用于对该第一反射光信号进行采样,得到第一采样结果;然后,控制器根据该第一采样结果确定该第一光信号和该第一反射光信号之间的第一相位差;进一步地,控制器根据该第一相位差确定该第一待测点与该相机之间的距离。
基于上述技术方案,该相机可以通过该控制器控制光发射器发射光信号,并控制光接收器接收光信号,以使得光发射器和光接收器在控制器的控制下,基于ToF原理实现对待测点进行测距。其中,控制器可以通过光发射器所发射的第一光信号和光接收器所接收的第一反射光信号确定第一待测点与相机之间的距离,具体可以基于ToF原理,通过对第一光信号和第二反射光信号之间的相位求解得到第一相位差,再进一步根据该第一相位差确定第一待测点与相机之间的距离。
在本申请实施例第二方面的一种可能的实现方式中,在相机进行测距的过程中,相机中的控制器具体用于对该第二反射光信号进行采样,得到第二采样结果;然后,控制器根据该第二采样结果确定该第二光信号和该第二反射光信号之间的第二相位差;进一步地,控制器根据该第二相位差确定该第二待测点与该相机之间的距离。
基于上述技术方案,控制器可以通过光发射器所发射的第二光信号和光接收器所接收的第二反射光信号确定第二待测点与相机之间的距离,具体可以基于ToF原理,通过对第二光信号和第二反射光信号之间的相位求解得到第二相位差,再进一步根据该第二相位差确定第二待测点与相机之间的距离。
本申请实施例第三方面提供了一种基于飞行时间ToF的测距相机,该相机在利用光学成像原理拍摄照片或视频时,可以对照片或视频中的某一帧图像中的被测物体进行测距,该被测物体包括一个或多个待测点,例如第一待测点、第二待测点等。具体地,该相机包括控制器,以及连接于该控制器的光接收器;
在相机进行测距的过程中,相机中的光接收器用于在该控制器的控制下,接收第一反射光信号,所述第一反射光信号为光发射器所发射的第一光信号经过第一待测点的反射形成,且该第一光信号与第一极线相交,第一反射光信号与第二极线相交;其中,该光发射器的坐标原点为第一原点且该光发射器的发射面包括第一平面和第四平面,该光接收器的坐标原点为第二原点且该光接收器的接收面包括第二平面和第五平面;该第一待测点,该第一原点和该第二原点所在的平面为第三平面,且该第三平面与该第一平面相交于该第一极线,该第三平面与该第二平面相交于该第二极线;
并且,在相机的测距过程中,相机中的光接收器还用于在该控制器的控制下,接收第二反射光信号,所述第二反射光信号为所述光发射器所发射的第二光信号经过第二待测点的反射形成,且第二光信号与第三极线相交,第二反射光信号与第四极线相交;相机中的控制器还用于根据该第二光信号和该第二反射光信号确定该第二待测点与该相机之间的距离。其中,被测物体上的待测点中不同于第一待测点的第二待测点,该第一原点和该第二 原点所在的平面为第六平面,且该第六平面与该第四平面相交于第三极线,该第六平面与该第五平面相交于第四极线;其中,该第三平面与该第六平面不共面;
此外,相机中的控制器用于根据该第一光信号和该第一反射光信号确定该第一待测点与该相机之间的距离。
基于上述技术方案,在控制器的控制下,光接收器接收得到的第一反射光信号为光发射器所发射的第一光信号在第一待测点上反射所形成的,且该第一光信号和该第一反射光信号用于确定该第一待测点与该相机之间的距离;在控制器的控制下,光接收器接收得到的第二反射光信号为光发射器所发射的第二光信号在第二待测点上反射所形成的,且该第二光信号和该第二反射光信号用于确定该第二待测点与该相机之间的距离。由于第三平面与第六平面内不共面,即第一极线不同于第三极线且第二极线不同于第四极线,使得用于确定第一待测点与相机之间距离的第一光信号和第一反射光信号,与用于确定第二待测点与相机之间距离的第二光信号和第二反射光信号之间互不干扰。即,使得光接收器通过不同极线所接收得到的不同光反射信号之间互不干扰,降低光发射器所发射的多路光信号在待测点上产生漫反射对相机测距结果的影响,提升ToF相机测距的准确率。
需要说明的是,第一光信号与第一极线相交,可以指示第一光信号的传输路径与第一极线相交于某一点或多个点,或者,可以指示第一光信号的传输路径穿过第一极线中的一个或多个点;类似的,第一反射光信号与第二极线相交,可以指示第一反射光信号的传输路径与第二极线相交于某一点或多个点,或者,可以指示第一反射光信号的传输路径穿过第二极线中的一个或多个点。例如,当第一光信号包括一束光信号(或多束光信号)时,第一光信号的传播路径穿过第一极线并与第一极线相交于某一点(或多个点)上,此后,该第一光信号再经过第一待测点的反射形成单束(或多束)的第一反射光信号,第一反射光信号的传播路径穿过第二极线并与第二极线相交于某一点(或多个点)上。类似地,第二光信号与第三极线相交,可以指示第二光信号的传输路径与第三极线相交于某一点或多个点,或者,可以指示第二光信号的传输路径穿过第二极线中的一个或多个点;类似的,第二反射光信号与第四极线相交,可以指示第二反射光信号的传输路径与第四极线相交于某一点或多个点,或者,可以指示第二反射光信号的传输路径穿过第四极线中的一个或多个点。例如,当第二光信号包括一束光信号(或多束光信号)时,第二光信号的传播路径穿过第三极线并与第三极线相交于某一点(或多个点)上,此后,该第二光信号再经过第二待测点的反射形成单束(或多束)的第二反射光信号,第二反射光信号的传播路径穿过第四极线并与第四极线相交于某一点(或多个点)上。
需要说明的是,第一待测点与该相机之间的距离可以为该第一待测点与相机中的镜头之间的距离,也可以为第一待测点与相机中的几何中心之间的距离,也可以为第一待测点与相机中的感光器件之间的距离,还可以是第一待测点与相机中其它实体部分或虚拟部分之间的距离,此处不做具体的限定。类似地,第二待测点与该相机之间的距离可以为该第二待测点与相机中的镜头之间的距离,也可以为第二待测点与相机中的几何中心之间的距离,也可以为第二待测点与相机中的感光器件之间的距离,还可以是第二待测点与相机中其它实体部分或虚拟部分之间的距离,此处不做具体的限定。
此外,在光发射器中除了第一平面和第四平面之外,还可以包括其他的发射面,例如第七平面或者是其它的平面;相应的,在光接收器中除了第二平面和第五平面之外,还可以包括其他的接收平面,例如第八平面或者是其它的平面。并且,光发射器中其它的发射面与光接收器中其它的接收面之间,也可以通过前述方式存在满足对极约束的对极线,控制器在对应的对极线上控制光信号的收发,以实现对更多不同待测点的测距。此外,由于对不同待测点进行测距的不同光信号之间互不干扰,可以进一步提升ToF相机测距的准确率。
在本申请实施例第三方面的一种可能的实现方式中,该光发射器包括第一光源区域和第二光源区域,其中,该第一光源区域的发射面为该第一平面,且该第二光源区域的发射面为该第四平面;该光接收器包括第一像素阵列区域和第二像素阵列区域,其中,该第一像素阵列区域的接收面为该第二平面,且该第二像素阵列区域的接收面为该第五平面。
基于上述技术方案,光发射器中可以设置多个光源区域,在不同光源区域上设置不同的发射面,以实现多个不同光信号的发射。相应的,光接收器中也可以设置多个像素阵列区域,在不同像素阵列区域上设置不同的接收面,以实现多个不同光信号的接收。
在本申请实施例第三方面的一种可能的实现方式中,该第一光信号与该第二光信号相互正交。
基于上述技术方案,用于对第一待测点进行测距的第一光信号与用于对第二待测点进行测距的第二光信号之间可以是相互正交的,即第一光信号与第二光信号之间的相干性为0。此时,即使第一光信号的某一部分光信号经过多次漫反射而穿过第四极线被光接收器接收,或者是第二光信号的某一部分光信号经过多次漫反射而穿过第二极线被光接收器接收,由于第一光信号与第二光信号之间的相干性为0,也可以避免第一光信号与第二光信号之间的干扰,进一步提升ToF相机测距的准确率。
在本申请实施例第三方面的一种可能的实现方式中,该第一光信号和该第二光信号均为通过二进制相移键控BPSK编码得到的信号。
基于上述技术方案,第一光信号和第二光信号都可以通过BPSK编码方式得到的信号,即使用至少两个原始序列分别进行BPSK编码得到第一光信号和第二光信号,其中,可以通过不同的原始序列使得第一光信号和第二光信号正交。提供了第一光信号和第二光信号的一种具体的实现方式,提升方案的可实现性。
可选地,该第一光信号和该第二光信号可以为通过其它的编码方式得到的信号,例如正交相移键控(quadrature phase shift keying、QPSK),正交幅度调制(quadrature amplitude modulation,QAM),或者是其它的方式,此处不做限定。
在本申请实施例第三方面的一种可能的实现方式中,该第一光信号为第一伪随机序列通过BPSK编码得到的信号,该第二光信号为第二伪随机序列通过BPSK编码得到的信号,且该第一伪随机序列中取值为0的序列个数和该第二伪随机序列中取值为0的序列个数相等。
基于上述技术方案,第一光信号和第二光信号可以通过伪随机序列进行BPSK编码得到,其中,用于生成得到第一光信号的第一伪随机序列中取值为0的序列个数与用于生成 得到第二光信号的第二伪随机序列中取值为0的序列个数相同,可以使得生成得到的第一光信号和第二光信号之间的干扰为0。即用于对第一待测点进行测距的第一光信号与用于对第二待测点进行测距的第二光信号之间互不干扰,进一步提升ToF相机测距的准确率。
在本申请实施例第三方面的一种可能的实现方式中,该第一光信号为通过BPSK编码得到的信号。
基于上述技术方案,第一光信号可以为通过BPSK编码方式得到的信号,即使用某一原始序列进行BPSK编码得到第一光信号。提供了第一光信号的一种具体的实现方式,提升方案的可实现性。
在本申请实施例第三方面的一种可能的实现方式中,该第一光信号的信号频率为第一频率,该第二光信号的信号频率为第二频率,且该第一频率不同于该第二频率。
基于上述技术方案,第一光信号和第二光信号可以分别通过不同的信号频率进行发射,以实现第一光信号与第二光信号之间的相互正交,使得第一光信号与第二光信号之间的相干性为0。此时,即使第一光信号的某一部分光信号经过多次漫反射而穿过第四极线被光接收器接收,或者是第二光信号的某一部分光信号经过多次漫反射而穿过第二极线被光接收器接收,由于第一光信号与第二光信号之间频率不同,也可以避免第一光信号与第二光信号之间的干扰,进一步提升ToF相机测距的准确率。
此外,在光发射器中除了第一平面和第四平面之外,如果还包括其他发射面,例如第七平面或者是其它平面;此时,类似于第一平面与第一极线的关系(或者是第三极线与第四平面的关系),在其它发射面中也存在其它极线;并且,光发射器可以发射穿过其它极线的其它光信号。其中,其它光信号可以使用不同于第一频率和第二频率的信号频率,例如,光发射器在发射n路光信号(n大于2,且n路光信号包括第一光信号和第二光信号)时,可以为n路光信号设置n个不同的信号频率,即n路光信号的信号频率互不相同。此外,其它光信号也可以使用第一频率或第二频率,例如,光发射器在发射n路光信号(n大于2,且n路光信号包括第一光信号和第二光信号)时,可以将n路光信号交替设置为第一频率和第二频率,即n路光信号中任意相邻的光信号的信号频率互不相同即可实现较好的抗干扰效果。
在本申请实施例第三方面的一种可能的实现方式中,在相机进行测距的过程中,相机中的光接收器,还用于在该控制器的控制下,接收第三反射光信号,所述第三反射光信号为所述光发射器所发射的第三光信号经过第一待测点的反射形成,且该第三光信号与第一极线相交,第三反射光信号与第二极线相交;其中,所述第三光信号信号频率为所述第二频率;此时,相机中的控制器还用于根据该第一光信号,该第一反射光信号,该第三光信号和该第三反射光信号确定该第一待测点与该相机之间的距离。
基于上述技术方案,由于ToF相机一般是利用相位差求得距离,在单一频率下,ToF相机最大测距范围受限于该频率与光速之间的数学关系,当待测点与相机之间的距离大于该最大测距范围时,所测得距离将由于产生周期性混叠(aliasing)而导致准确率较差。为避免此缺陷,控制器可以对同一待测点可以通过分别控制收发不同频率的光信号,并利用第一频率与第二频率之间的关系进行计算,以扩展ToF相机的测距距离。其中,可以通过 信号频率为第一频率的第一光信号和信号频率为第二频率的第三光信号提升对第一待测点的测距结果的准确率。
需要说明的是,第三光信号与第一极线相交,可以指示第三光信号的传输路径与第一极线相交于某一点或多个点,或者,可以指示第三光信号的传输路径穿过第一极线中的一个或多个点;类似的,第三反射光信号与第二极线相交,可以指示第三反射光信号的传输路径与第二极线相交于某一点或多个点,或者,可以指示第三反射光信号的传输路径穿过第二极线中的一个或多个点。例如,当第三光信号包括一束光信号(或多束光信号)时,第三光信号的传播路径穿过第一极线并与第一极线相交于某一点(或多个点)上,此后,该第三光信号再经过第一待测点的反射形成单束(或多束)的第一反射光信号,第三反射光信号的传播路径穿过第二极线并与第二极线相交于某一点(或多个点)上。
在本申请实施例第三方面的一种可能的实现方式中,在相机进行测距的过程中,相机中的光接收器还用于在该控制器的控制下,接收第四反射光信号,所述第四反射光信号为所述光发射器所发射的第四光信号经过第二待测点的反射形成,且该第四光信号与第三极线相交,第四反射光信号与第四极线相交;其中,所述第四光信号的信号频率为所述第一频率;此时,相机中的控制器还用于根据该第二光信号,该第二反射光信号,该第四光信号和该第四反射信号确定该第二待测点与该相机之间的距离。
基于上述技术方案,由于ToF相机一般是利用相位差求得距离,在单一频率下,ToF相机最大测距范围受限于该频率与光速之间的数学关系,当待测点与相机之间的距离大于该最大测距范围时,所测得距离将由于产生周期性混叠(aliasing)而导致准确率较差。为避免此缺陷,对同一待测点可以通过分别发射不同频率的光信号,利用第一频率与第二频率之间的关系进行计算,以扩展ToF相机的测距距离。其中,可以通过信号频率为第二频率的第二光信号和信号频率为第一频率的第四光信号提升对第二待测点的测距结果的准确率。
需要说明的是,第四光信号与第三极线相交,可以指示第四光信号的传输路径与第三极线相交于某一点或多个点,或者,可以指示第四光信号的传输路径穿过第二极线中的一个或多个点;类似的,第四反射光信号与第四极线相交,可以指示第四反射光信号的传输路径与第四极线相交于某一点或多个点,或者,可以指示第四反射光信号的传输路径穿过第四极线中的一个或多个点。例如,当第四光信号包括一束光信号(或多束光信号)时,第四光信号的传播路径穿过第三极线并与第三极线相交于某一点(或多个点)上,此后,该第四光信号再经过第二待测点的反射形成单束(或多束)的第四反射光信号,第四反射光信号的传播路径穿过第四极线并与第四极线相交于某一点(或多个点)上。
在本申请实施例第三方面的一种可能的实现方式中,在相机进行测距的过程中,相机中的控制器具体用于对该第一反射光信号进行采样,得到第一采样结果;然后,控制器根据该第一采样结果确定该第一光信号和该第一反射光信号之间的第一相位差;进一步地,控制器根据该第一相位差确定该第一待测点与该相机之间的距离。
基于上述技术方案,该相机可以通过该控制器控制光接收器接收光信号,以使得光接收器在控制器的控制下,基于ToF原理实现对待测点进行测距。其中,控制器可以通过光 发射器所发射的第一光信号和光接收器所接收的第一反射光信号确定第一待测点与相机之间的距离,具体可以基于ToF原理,通过对第一光信号和第二反射光信号之间的相位求解得到第一相位差,再进一步根据该第一相位差确定第一待测点与相机之间的距离。
在本申请实施例第三方面的一种可能的实现方式中,在相机进行测距的过程中,相机中的控制器具体用于对该第二反射光信号进行采样,得到第二采样结果;然后,控制器根据该第二采样结果确定该第二光信号和该第二反射光信号之间的第二相位差;进一步地,控制器根据该第二相位差确定该第二待测点与该相机之间的距离。
基于上述技术方案,控制器可以通过光发射器所发射的第二光信号和光接收器所接收的第二反射光信号确定第二待测点与相机之间的距离,具体可以基于ToF原理,通过对第二光信号和第二反射光信号之间的相位求解得到第二相位差,再进一步根据该第二相位差确定第二待测点与相机之间的距离。
本申请实施例第四方面提供了一种基于飞行时间ToF的测距方法,该方法应用于相机,该相机在利用光学成像原理拍摄照片或视频时,可以对照片或视频中的某一帧图像中的被测物体进行测距,该被测物体包括一个或多个待测点,例如第一待测点、第二待测点等。具体地,该相机包括光发射器和光接收器;该光发射器的坐标原点为第一原点且该光发射器的发射面包括第一平面和第四平面,该光接收器的坐标原点为第二原点且该光接收器的接收面包括第二平面和第五平面;该方法包括:
该光发射器向第一待测点发射第一光信号并向第二待测点发射第二光信号,该第一光信号经过该第一待测点的反射形成第一反射光信号,该第一光信号与第一极线相交,该第一反射光信号与第二极线相交;第二光信号经过所述第二待测点的反射形成第二反射光信号,且第二光信号与第三极线相交,第二反射光信号与第四极线相交;其中,该第一待测点,该第一原点和该第二原点所在的平面为第三平面,且该第三平面与该第一平面相交于该第一极线,该第三平面与该第二平面相交于该第二极线;其中,第二待测点不同于该第一待测点;且该第二待测点,该第一原点和该第二原点所在的平面为第六平面,且该第六平面与该第四平面相交于该第三极线,该第六平面与该第五平面相交于第四极线,其中,该第三平面与该第六平面不共面;
该光接收器接收该第一反射光信号和第二反射光信号,其中,该第一光信号和该第一反射光信号用于确定该第一待测点与该相机之间的距离,该第二光信号和该第二反射光信号用于确定该第二待测点与该相机之间的距离。
基于上述技术方案,相机在执行测距方法的过程中,相机中的光接收器接收得到的第一反射光信号为光发射器所发射的第一光信号在第一待测点上反射所形成的,且该第一光信号和该第一反射光信号用于确定该第一待测点与该相机之间的距离;相机中的光接收器接收得到的第二反射光信号为光发射器所发射的第二光信号在第二待测点上反射所形成的,且该第二光信号和该第二反射光信号用于确定该第二待测点与该相机之间的距离。由于第三平面与第六平面内不共面,即第一极线不同于第三极线且第二极线不同于第四极线,使得用于确定第一待测点与相机之间距离的第一光信号和第一反射光信号,与用于确定第二待测点与相机之间距离的第二光信号和第二反射光信号之间互不干扰。即,使得光接收 器通过不同极线所接收得到的不同光反射信号之间互不干扰,降低光发射器所发射的多路光信号在待测点上产生漫反射对相机测距结果的影响,提升ToF相机测距的准确率。
在本申请实施例第四方面的一种可能的实现方式中,
该光发射器包括第一光源区域和第二光源区域,其中,该第一光源区域的发射面为该第一平面,且该第二光源区域的发射面为该第四平面;
该光接收器包括第一像素阵列区域和第二像素阵列区域,其中,该第一像素阵列区域的接收面为该第二平面,且该第二像素阵列区域的接收面为该第五平面。
在本申请实施例第四方面的一种可能的实现方式中,该第一光信号与该第二光信号相互正交。
在本申请实施例第四方面的一种可能的实现方式中,
该第一光信号和该第二光信号均为通过二进制相移键控BPSK编码得到的信号。
在本申请实施例第四方面的一种可能的实现方式中,
该第一光信号为第一伪随机序列通过BPSK编码得到的信号,该第二光信号为第二伪随机序列通过BPSK编码得到的信号,且该第一伪随机序列中取值为0的序列个数和该第二伪随机序列中取值为0的序列个数相等。
在本申请实施例第四方面的一种可能的实现方式中,该第一光信号为通过BPSK编码得到的信号。
在本申请实施例第四方面的一种可能的实现方式中,
该第一光信号的信号频率为第一频率,该第二光信号的信号频率为第二频率,且该第一频率不同于该第二频率。
在本申请实施例第四方面的一种可能的实现方式中,该方法还包括:
该光发射器向该第一待测点发射信号频率为该第二频率的第三光信号,该第三光信号经过该第一待测点的反射形成第三反射光信号,该第三光信号与该第一极线相交,该第三反射光信号与该第二极线相交;
该光接收器接收该第三反射光信号,其中,该第一光信号,该第一反射光信号,该第三光信号和该第三反射光信号用于确定该第一待测点与该相机之间的距离。
在本申请实施例第四方面的一种可能的实现方式中,该方法还包括:
该光发射器向该第二待测点发射信号频率为该第一频率的第四光信号,该第四光信号经过该第二待测点的反射形成第四反射光信号,该第四光信号与该第三极线相交,该第四反射光信号与该第四极线相交;
该光接收器接收该第四反射光信号,其中,该第二光信号,该第二反射光信号,该第四光信号和该第四反射信号用于确定该第二待测点与该相机之间的距离。
在本申请实施例第四方面的一种可能的实现方式中,该相机还包括分别连接于该光发射器和该光接收器的控制器;
该光发射器向第一待测点发射第一光信号包括:
该控制器控制该光发射器向该第一待测点发射该第一光信号;
该光接收器接收该第一反射光信号包括:
该控制器控制该光接收器接收该第一反射光信号。
在本申请实施例第四方面的一种可能的实现方式中,该方法还包括:
该控制器对该第一反射光信号进行采样,得到第一采样结果;
该控制器根据该第一采样结果确定该第一光信号和该第一反射光信号之间的第一相位差;
该控制器根据该第一相位差确定该第一待测点与该相机之间的距离。
需要说明的是,第四方面及其任一可能的实现方式所描述的方法对应的具体实施过程与有益效果,可以参考前述第一方面及其可能的实现方式的描述,此处不再赘述。
本申请实施例第五方面提供了一种基于飞行时间ToF的测距方法,该方法应用于控制器,其中,该控制器包含于相机,该相机在利用光学成像原理拍摄照片或视频时,可以对照片或视频中的某一帧图像中的被测物体进行测距,该被测物体包括一个或多个待测点,例如第一待测点、第二待测点等。具体地,该相机还包括分别连接于该控制器的光发射器和光接收器;该光发射器的坐标原点为第一原点且该光发射器的发射面包括第一平面,该光接收器的坐标原点为第二原点且该光接收器的接收面包括第二平面;在相机进行测距的过程中,控制器所执行的方法包括:
该控制器控制该光发射器向第一待测点发射第一光信号和第二光信号,所述第一光信号经过所述第一待测点的反射形成第一反射光信号,且该第一光信号与第一极线相交,第一反射光信号与第二极线相交;第二光信号经过所述第二待测点的反射形成第二反射光信号,且第二光信号与第三极线相交,第二反射光信号与第四极线相交;其中,该第一待测点,该第一原点和该第二原点所在的平面为第三平面,且该第三平面与该第一平面相交于该第一极线,该第三平面与该第二平面相交于第二极线;其中,第二待测点不同于该第一待测点;且该第二待测点,该第一原点和该第二原点所在的平面为第六平面,且该第六平面与该第四平面相交于该第三极线,该第六平面与该第五平面相交于第四极线,其中,该第三平面与该第六平面不共面;
此后,控制器控制该光接收器接收该第一反射光信号和第二反射光信号,根据该第一光信号和该第一反射光信号确定该第一待测点与该相机之间的距离,并根据该第二光信号和该第二反射光信号确定该第二待测点与该相机之间的距离。
基于上述技术方案,在控制器的控制下,光接收器接收得到的第一反射光信号为光发射器所发射的第一光信号在第一待测点上反射所形成的,且该第一光信号和该第一反射光信号用于确定该第一待测点与该相机之间的距离;在控制器的控制下,光接收器接收得到的第二反射光信号为光发射器所发射的第二光信号在第二待测点上反射所形成的,且该第二光信号和该第二反射光信号用于确定该第二待测点与该相机之间的距离。由于第三平面与第六平面内不共面,即第一极线不同于第三极线且第二极线不同于第四极线,使得用于确定第一待测点与相机之间距离的第一光信号和第一反射光信号,与用于确定第二待测点与相机之间距离的第二光信号和第二反射光信号之间互不干扰。即,使得光接收器通过不同极线所接收得到的不同光反射信号之间互不干扰,降低光发射器所发射的多路光信号在待测点上产生漫反射对相机测距结果的影响,提升ToF相机测距的准确率。
在本申请实施例第五方面的一种可能的实现方式中,
该光发射器包括第一光源区域和第二光源区域,其中,该第一光源区域的发射面为该第一平面,且该第二光源区域的发射面为该第四平面;
该光接收器包括第一像素阵列区域和第二像素阵列区域,其中,该第一像素阵列区域的接收面为该第二平面,且该第二像素阵列区域的接收面为该第五平面。
在本申请实施例第五方面的一种可能的实现方式中,该第一光信号与该第二光信号相互正交。
在本申请实施例第五方面的一种可能的实现方式中,
该第一光信号和该第二光信号均为通过二进制相移键控BPSK编码得到的信号。
在本申请实施例第五方面的一种可能的实现方式中,
该第一光信号为第一伪随机序列通过BPSK编码得到的信号,该第二光信号为第二伪随机序列通过BPSK编码得到的信号,且该第一伪随机序列中取值为0的序列个数和该第二伪随机序列中取值为0的序列个数相等。
在本申请实施例第五方面的一种可能的实现方式中,该第一光信号为通过BPSK编码得到的信号。
在本申请实施例第五方面的一种可能的实现方式中,
该第一光信号的信号频率为第一频率,该第二光信号的信号频率为第二频率,且该第一频率不同于该第二频率。
在本申请实施例第五方面的一种可能的实现方式中,该方法还包括:
该控制器控制该光发射器向该第一待测点发射信号频率为该第二频率的第三光信号,所述第三光信号经过所述第一待测点的反射形成第三反射光信号,且该第三光信号与第一极线相交,第三反射光信号与第二极线相交;
该控制器控制该光接收器接收该第三反射光信号;
该控制器根据该第一光信号和该第一反射光信号确定该第一待测点与该相机之间的距离包括:
该控制器根据该第一光信号,该第一反射光信号,该第三光信号和该第三反射光信号确定该第一待测点与该相机之间的距离。
在本申请实施例第五方面的一种可能的实现方式中,该方法还包括:
该控制器控制该光发射器向该第二待测点发射信号频率为该第一频率的第四光信号,所述第四光信号经过所述第二待测点的反射形成第四反射光信号,且该第四光信号与第三极线相交,第四反射光信号与第四极线相交;
该控制器控制该光接收器接收该四反射光信号;
该控制器根据该第二光信号和该第二反射光信号确定该第二待测点与该相机之间的距离包括:
该控制器根据该第二光信号,该第二反射光信号,该第四光信号和该第四反射信号确定该第二待测点与该相机之间的距离。
在本申请实施例第五方面的一种可能的实现方式中,该控制器根据该第一光信号和该 第一反射光信号确定该第一待测点与该相机之间的距离包括:
该控制器对该第一反射光信号进行采样,得到第一采样结果;
该控制器根据该第一采样结果确定该第一光信号和该第一反射光信号之间的第一相位差;
该控制器根据该第一相位差确定该第一待测点与该相机之间的距离。
在本申请实施例第五方面的一种可能的实现方式中,该控制器根据该第二光信号和该第二反射光信号确定该第二待测点与该相机之间的距离包括:
该控制器对该第二反射光信号进行采样,得到第二采样结果;
该控制器根据该第二采样结果确定该第二光信号和该第二反射光信号之间的第二相位差;
该控制器根据该第二相位差确定该第二待测点与该相机之间的距离。
需要说明的是,第五方面及其任一可能的实现方式所描述的方法对应的具体实施过程与有益效果,可以参考前述第二方面及其可能的实现方式的描述,此处不再赘述。
本申请实施例第六方面提供了一种基于飞行时间ToF的测距相机,该方法应用于控制器,其中,该控制器包含于相机,该相机在利用光学成像原理拍摄照片或视频时,可以对照片或视频中的某一帧图像中的被测物体进行测距,该被测物体包括一个或多个待测点,例如第一待测点、第二待测点等。具体地,该相机还包括连接于该控制器的光接收器;在相机进行测距的过程中,控制器所执行的方法包括:
该控制器控制该光接收器接收第一反射光信号和第二反射光信号,所述第一反射光信号为光发射器所发射的第一光信号经过第一待测点的反射形成,且该第一光信号与第一极线相交,第一反射光信号与第二极线相交;该第二光信号经过所述第二待测点的反射形成第二反射光信号,且第二光信号与第三极线相交,第二反射光信号与第四极线相交;其中,该光发射器的坐标原点为第一原点且该光发射器的发射面包括第一平面,该光接收器的坐标原点为第二原点且该光接收器的接收面包括第二平面;该第一待测点,该第一原点和该第二原点所在的平面为第三平面,且该第三平面与该第一平面相交于该第一极线,该第三平面与该第二平面相交于该第二极线;其中,第二待测点不同于该第一待测点;且该第二待测点,该第一原点和该第二原点所在的平面为第六平面,且该第六平面与该第四平面相交于该第三极线,该第六平面与该第五平面相交于第四极线,其中,该第三平面与该第六平面不共面;
此后,该控制器根据该第一光信号和该第一反射光信号确定该第一待测点与该相机之间的距离,并根据该第二光信号和该第二反射光信号确定该第二待测点与该相机之间的距离。
基于上述技术方案,在控制器的控制下,光接收器接收得到的第一反射光信号为光发射器所发射的第一光信号在第一待测点上反射所形成的,且该第一光信号和该第一反射光信号用于确定该第一待测点与该相机之间的距离;在控制器的控制下,光接收器接收得到的第二反射光信号为光发射器所发射的第二光信号在第二待测点上反射所形成的,且该第二光信号和该第二反射光信号用于确定该第二待测点与该相机之间的距离。由于第三平面 与第六平面内不共面,即第一极线不同于第三极线且第二极线不同于第四极线,使得用于确定第一待测点与相机之间距离的第一光信号和第一反射光信号,与用于确定第二待测点与相机之间距离的第二光信号和第二反射光信号之间互不干扰。即,使得光接收器通过不同极线所接收得到的不同光反射信号之间互不干扰,降低光发射器所发射的多路光信号在待测点上产生漫反射对相机测距结果的影响,提升ToF相机测距的准确率。
在本申请实施例第六方面的一种可能的实现方式中,
该光发射器包括第一光源区域和第二光源区域,其中,该第一光源区域的发射面为该第一平面,且该第二光源区域的发射面为该第四平面;
该光接收器包括第一像素阵列区域和第二像素阵列区域,其中,该第一像素阵列区域的接收面为该第二平面,且该第二像素阵列区域的接收面为该第五平面。
在本申请实施例第六方面的一种可能的实现方式中,该第一光信号与该第二光信号相互正交。
在本申请实施例第六方面的一种可能的实现方式中,
该第一光信号和该第二光信号均为通过二进制相移键控BPSK编码得到的信号。
在本申请实施例第六方面的一种可能的实现方式中,
该第一光信号为第一伪随机序列通过BPSK编码得到的信号,该第二光信号为第二伪随机序列通过BPSK编码得到的信号,且该第一伪随机序列中取值为0的序列个数和该第二伪随机序列中取值为0的序列个数相等。
在本申请实施例第六方面的一种可能的实现方式中,该第一光信号为通过BPSK编码得到的信号。
在本申请实施例第六方面的一种可能的实现方式中,
该第一光信号的信号频率为第一频率,该第二光信号的信号频率为第二频率,且该第一频率不同于该第二频率。
在本申请实施例第六方面的一种可能的实现方式中,该方法还包括:
所述控制器控制所述光接收器接收第三反射光信号,所述第三反射光信号为所述光发射器所发射的第三光信号经过第一待测点的反射形成,且该第三光信号与第一极线相交,第三反射光信号与第二极线相交;其中,所述第三光信号信号频率为所述第二频率;
该控制器根据该第一光信号和该第一反射光信号确定该第一待测点与该相机之间的距离包括:
该控制器该第一光信号,该第一反射光信号,该第三光信号和该第三反射光信号确定该第一待测点与该相机之间的距离。
在本申请实施例第六方面的一种可能的实现方式中,该方法还包括:
所述控制器控制所述光接收器接收第四反射光信号;所述第四反射光信号为所述光发射器所发射的第四光信号经过第二待测点的反射形成,且该第四光信号与第三极线相交,第四反射光信号与第四极线相交;其中,所述第四光信号的信号频率为所述第一频率;
该控制器根据该第二光信号和该第二反射光信号确定该第二待测点与该相机之间的距离包括:
该控制器根据该第二光信号,该第二反射光信号,该第四光信号和该第四反射信号确定该第二待测点与该相机之间的距离。
在本申请实施例第六方面的一种可能的实现方式中,该控制器根据该第一光信号和该第一反射光信号确定该第一待测点与该相机之间的距离包括:
该控制器对该第一反射光信号进行采样,得到第一采样结果;
该控制器根据该第一采样结果确定该第一光信号和该第一反射光信号之间的第一相位差;
该控制器根据该第一相位差确定该第一待测点与该相机之间的距离。
在本申请实施例第六方面的一种可能的实现方式中,该控制器根据该第二光信号和该第二反射光信号确定该第二待测点与该相机之间的距离包括:
该控制器对该第二反射光信号进行采样,得到第二采样结果;
该控制器根据该第二采样结果确定该第二光信号和该第二反射光信号之间的第二相位差;
该控制器根据该第二相位差确定该第二待测点与该相机之间的距离。
需要说明的是,第六方面及其任一可能的实现方式所描述的方法对应的具体实施过程与有益效果,可以参考前述第三方面及其可能的实现方式的描述,此处不再赘述。
本申请实施例第七方面提供了一种芯片系统,该芯片系统包括处理器,用于支持控制器实现上述第四方面或第四方面任意一种可能的实现方式中所涉及的功能,或者,支持控制器实现上述第五方面或第五方面任意一种可能的实现方式中所涉及的功能,或者,支持控制器实现上述第六方面或第六方面任意一种可能的实现方式中所涉及的功能。
在一种可能的设计中,该芯片系统还可以包括存储器,存储器,用于保存控制器必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例第八方面提供一种存储一个或多个计算机执行指令的计算机可读存储介质,当计算机执行指令被处理器执行时,该处理器执行如上述第四方面或第四方面任意一种可能的实现方式所述的方法,或者,该处理器执行如上述第五方面或第五方面任意一种可能的实现方式所述的方法,或者,该处理器执行如上述第六方面或第六方面任意一种可能的实现方式所述的方法。
本申请实施例第九方面提供一种存储一个或多个计算机的计算机程序产品(或称计算机程序),当计算机程序产品在计算机上运行时,使得该计算机执行上述第四方面或第四方面任意一种可能实现方式,或者,使得该计算机执行上述第五方面或第五方面任意一种可能实现方式,或者,使得该计算机执行上述第六方面或第六方面任意一种可能实现方式。
其中,第七至第九方面及任一种可能实现方式所带来的技术效果可参见第四方面至第六方面及任一种可能实现方式所带来的技术效果,此处不再赘述。
本申请实施例提供了一种基于飞行时间ToF的测距相机,包括光发射器和光接收器;其中,光接收器接收得到的第一反射光信号为光发射器所发射的第一光信号在第一待测点上反射所形成的,且该第一光信号和该第一反射光信号用于确定该第一待测点与该相机之间的距离;且光接收器接收得到的第二反射光信号为光发射器所发射的第二光信号在第二 待测点上反射所形成的,且该第二光信号和该第二反射光信号用于确定该第二待测点与该相机之间的距离。由于第三平面与第六平面内不共面,即第一极线不同于第三极线且第二极线不同于第四极线,使得用于确定第一待测点与相机之间距离的第一光信号和第一反射光信号,与用于确定第二待测点与相机之间距离的第二光信号和第二反射光信号之间互不干扰。即,使得光接收器通过不同极线所接收得到的不同光反射信号之间互不干扰,降低光发射器所发射的多路光信号在待测点上产生漫反射对相机测距结果的影响,提升ToF相机测距的准确率。
附图说明
图1为本申请实施例中ToF相机的测距实现的一个示意图;
图2为本申请实施例中ToF相机的测距实现的另一个示意图;
图3为本申请实施例中ToF相机的测距实现的另一个示意图;
图4为本申请实施例中ToF相机的一个示意图;
图5A为本申请实施例中ToF相机的测距实现的另一个示意图;
图5B为本申请实施例中ToF相机的测距实现的另一个示意图;
图5C为本申请实施例中ToF相机的另一个示意图;
图5D为本申请实施例中ToF相机的另一个示意图;
图6为本申请实施例中ToF相机的测距实现的另一个示意图;
图7为本申请实施例中ToF相机的测距实现的另一个示意图;
图8为本申请实施例中ToF相机的测距实现的另一个示意图;
图9为本申请实施例中ToF相机的测距实现的另一个示意图;
图10A为本申请实施例中ToF相机的测距实现的另一个示意图;
图10B为本申请实施例中ToF相机的测距实现的另一个示意图;
图10C为本申请实施例中ToF相机的测距实现的另一个示意图;
图11为本申请实施例中ToF相机的测距实现的另一个示意图;
图12为本申请实施例中ToF相机的测距实现的另一个示意图;
图13为本申请实施例中ToF相机的测距实现的另一个示意图;
图14为本申请实施例中ToF相机的测距实现的另一个示意图;
图15为本申请实施例中ToF相机的测距实现的另一个示意图;
图16为本申请实施例中ToF相机的另一个示意图;
图17为本申请实施例中ToF相机的另一个示意图;
图18为本申请实施例中基于ToF的测距方法的一个示意图;
图19为本申请实施例中基于ToF的测距方法的另一个示意图;
图20为本申请实施例中基于ToF的测距方法的另一个示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然, 所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。
飞行时间(time of flight,ToF)相机,可以应用于测距,其测距原理是通过光发射器向物体发送光信号,然后用光接收器接收从物体返回的光信号,通过探测光信号的飞行(往返)时间来得到该物体的距离。其中,ToF相机在测距过程中,一般是通过光发射器所发射光信号与光接收器所接收的光信号之间的相位差,实现光信号的飞行(往返)时间的确定。下面将通过具体的示例介绍ToF相机的系统及其测距原理。
一般地,ToF相机具有光发射器、光接收器和控制器。光发射器也可以被称为光源、主动式光源、照射单元等;光接收器也可以被称为光传感器、ToF传感器、图像传感器、感测器等;控制器也可以被称为控制单元、计算单元、分析单元等。其中,控制器可以集成在光发射器中,也可以集成在ToF传感器中,也可以独立于光发射器且独立于光接收器进行设置,此处不做限定。示例性地,控制器可以是软件实现的通用处理单元,例如中央处理器(Central Processing Unit,CPU);也可以是专用电路或芯片例如,专用集成电路(application specific integrated circuit,ASIC)芯片210等。
请参阅图1,为ToF相机的测距实现的一个示意图。在该ToF相机100中,以光发射器为主动式光源101且通过光源驱动发射光信号、光接收器为ToF传感器102且通过像素阵列(或称为像素矩阵)接收光信号、控制器集成于ToF传感器102中为例进行说明。在图1中,ToF相机100与被摄物体200的距离为D(也可以记为d),集成于ToF传感器102中的控制器通过光源驱动控制主动式光源101向被摄物体200发射光信号,并且,控制器同步控制ToF传感器101中的像素阵列接收在被摄物体200上反射的光信号,使得主动式光源101和像素阵列进行连续的同步调制,直到曝光结束。具体地,ToF传感器102内部所包含的像素阵列中,ToF传感器102经由曝光收集电子后所输出的信号强度,具体在像素阵列的每个像素包含了一组差分信号收集结构:类型A(TapA)与类型B(TapB)。其中,在调制信号收发的一个周期(0度到360度)内,ToF传感器在前半个周期(0度到180度)内接收得到的光信号为TapA,在后半个周期内(180度到360度)接收得到的光信号为TapB。
请参阅图2,为ToF相机的测距实现的一个示意图,具体为ToF相机中光源101发射光信号与ToF传感器102接收反射光信号的一个示意图。如图2所示,在一个调制周期内,0度至180度为ToF传感器102基于TapA收集电子,180度至360度为ToF传感器102基于TapB收集电子。在一次曝光完成后,该像素输出值为TapA与TapB之差分值,即TapA-TapB。其中,ToF相机可以利用反射光相位差间接求得距离。一般来说,为了采集各相位信息,ToF相机需要进行多次曝光,例如3相位采样、4相位采样、6相位采样等。
请参阅图3,为ToF相机的测距实现的一个示意图,具体为ToF相机中光源101发射 光信号与ToF传感器102接收反射光信号的一个示意图。如图3所示,以一般的4相位采样为例,ToF相机需要对反射光进行0°、90°、180°、270°共4次不同相位采样,即像素阵列会以0°、90°、180°、270°共4次不同相位延迟,重覆进行4次曝光。在4次采样中,像素阵列调制信号相位分别偏移0°、90°、180°、270°,并对应输出Q 1、Q 2、Q 3、Q 4,其关系分别为:
Q 1=A 0-B 180,
Q 2=A 90-B 270,
Q 3=A 180-B 0,
Q 4=A 270-B 90
其中,A 0为TapA在0°采样值,B 180为TapB在180°采样值,其余以此类推,此处不再赘述。
从而,相位值
Figure PCTCN2021084739-appb-000001
计算方式为:
Figure PCTCN2021084739-appb-000002
进一步地,距离d计算方式为:
Figure PCTCN2021084739-appb-000003
其中,c为光速,f为光源101所发射的光信号的信号频率。
由于在一般使用场景下物体表面普遍存在漫反射,在图1至图3所示ToF的测距实现过程中,当被摄物体存在一个以上的反射光路径时,像素阵列会接收到来自许多不同路径及相位反射光,对相位求解产生干扰;并且,由于ToF相机使用强度积分进行采样,来自不同路径反射光信息无法以简单的方法解析分离。即,当前ToF相机在测距过程中,物体表面上的漫反射容易对ToF相机的测距过程产生干扰,导致ToF相机测距的准确率较低。
为此,本申请实施例提供了一种基于飞行时间ToF的测距相机及控制方法,用于降低光发射器所发射的多路光信号在待测点上产生漫反射对相机测距结果的影响,提升ToF相机测距的准确率。
请参阅图4,为本申请实施例中基于ToF的测距相机400(以下简称为ToF相机400)的一个示意图,该ToF相机400包括控制器401,以及分别连接于该控制器401的光发射器402和光接收器403。
需要说明的是,控制器401可以集成在光发射器402中,也可以集成在光接收器403中,也可以独立于光发射器402且独立于光接收器403进行设置,此处不做限定。
其中,本申请实施例主要应用的技术原理为对极几何中的对极线(epipolar line)的几何特性,下面将通过一个示例,对对极几何进行说明。一般地,对极几何是描述由两台相机所组成的几何坐标系,其中,相机可替换为光源,几何特性维持不变。
请参阅图5A,为ToF相机的测距实现的一个示意图,具体为对极线几何实现原理的一个示意图。如图5A所示,两台不同相机的坐标原点分别为O c与O p,成像面分别为像平面c与像平面p,两台相机之间的距离定义为基线(baseline),X为三维空间中一点,即X为待测点,X、O c与O p构成一平面,称为对极平面,对极平面分别与像平面c及像平面p相交,两条相交线即称为对极线c与对极线p,对极线是对极几何中一重要特性。
如图5A所示,当待测点相对于相机的位置仅发生深度改变时(例如待测点从X移动到X 1、X 2或X 3时),待测点在对极几何中两相机成像点坐标会产生平移,由于X、X 1、X 2和X 3均位于对极平面上,使得两相机成像点的平移方向遵守对极线方向。具体表现为X 1、X 2、X 3在像平面p的成像点分别为P 1、P 2、P 3均落在对极线p上,即成像点在对极线p上平移。
请参阅图5B,为ToF相机的测距实现的另一个示意图,具体为对极线几何实现原理的另一个示意图。在图5B中,类似于图5A的设置,两台不同相机的坐标原点分别为O c与O p,成像面分别为像平面c与像平面p,两台相机之间的距离定义为基线,X为三维空间中一点,即X为待测点,X、O c与O p构成一平面,称为第一对极平面,第一对极平面分别与像平面c及像平面p相交,两条相交线即称为对极线c与对极线p;空间中还存在待测点Y,Y、O c与O p构成一平面,称为第二对极平面,第二对极平面分别与像平面c及像平面p相交,两条相交线即称为对极线n与对极线m。其中,由于两台相机的坐标原点与成像面之间的相对位置是固定的,而Y不位于第一对极平面上,显然,对极线c不同于对极线n,且对极线p不同于对极线m。
如图5B所示,当待测点相对于相机的位置发生改变导致移动后的待测点不在对极平面上时,例如待测点从X移动到Y时,由于Y位于第二对极平面上,使得Y在两相机上的成像点会在对极线n和对极线m上平移,而不会在对极线c和对极线p上。
由图5A和图5B所示示例可知,在理想状态下,由于对极几何的约束,在图5B中,经过对极线c的光信号在待测点X上形成的反射光信号(记为反射光信号A),必然会落在对极线p上,而经过对极线c的光信号在待测点Y上形成的反射光信号(记为反射光信号B),必然不会落在对极线p上;此时,当仅在对极线p上进行信号采集时,仅能接收得到反射光信号A,而无法接收得到反射光信号B,即反射光信号A的接收不会受到反射光信号B的影响。而在实际应用场景下,当仅在对极线p上进行信号采集时,反射光信号B可能还是会由于不规则的漫反射对反射光信号A产生影响,但是相较于不使用对极几何约束的方案而在完整的像平面p上接收反射光信号的方案来说,可以较大程度上地减少反射光信号B所产生的干扰。
类似地,在理想状态下,由于对极几何的约束,在图5B中,经过对极线n的光信号在待测点Y上形成的反射光信号(记为反射光信号C),必然会落在对极线m上,而经过对极线n的光信号在待测点X上形成的反射光信号(记为反射光信号D),必然不会落在对极线m上;此时,当仅在对极线m上进行信号采集时,仅能接收得到反射光信号C,而无法接收得到反射光信号D,即反射光信号C的接收不会受到反射光信号D的影响。而在实际应用场景下,当仅在对极线m上进行信号采集时,反射光信号D可能还是会由于不规则的漫反射对反射光信号C产生影响,但是相较于不使用对极几何约束的方案而在完整的像平面p上接收反射光信号的方案来说,可以较大程度上地减少反射光信号D所产生的干扰。
本申请中利用上述图5A和图5B所示对极几何的重要特性。其中,由于对极线的物理特性,待测点在深度改变时,接收到的光线与相机成像点会沿着对极线方向改变,因此可确保待测点在各种不同深度下,其成像点均会落在同一个对极平面内,而不受其它信号的干扰。
需要说明的是,对极线在像平面坐标上可以是斜线,也可以是水平或垂直线,取决于两台相机之坐标系是否平行。示例性的,如图5A中虚线框所示的坐标轴,当两台相机坐标轴之角度差不为0(例如Oc的X轴与Op的X轴不平行)时,对极线为斜线;当两台相机坐标轴之角度差为0(例如Oc的X轴与Op的X轴平行)时,对极线为如图5A所示的与基线平行的水平线(或垂直线)。本实施例及后续实施例中,仅以该对极线为水平线为例进行说明。
基于图5A和图5B所示对极线实现原理,图4所示的ToF相机400中相关结构可以通过图5A和图5B所示对极线原理实现。请参阅图5C,为本申请实施例提供的ToF相机400的另一个示意图。
具体地,在图5C中,ToF相机400包括控制器401、光发射器402和光接收器403。其中,该光发射器402的坐标原点为第一原点4021且该光发射器402的发射面包括第一平面4022,该光接收器403的坐标原点为第二原点4031且该光接收器403的接收面包括第二平面4032。其中,光发射器402所包括的发射面,具体可以指示光发射器402在相机针孔模型中的成像面,即等效于光发射器402在相机针孔模型中的成像面的平面;光接收器403所包括的接收面,具体可以指示光接收器403在相机针孔模型中的成像面,即等效于光接收器403在相机针孔模型中的成像面的平面,或者说,光接收器的传感器(sensor)平面。
在图5C所示ToF相机400进行测距的过程中,ToF相机400中的光发射器402,用于在该控制器401的控制下,向第一待测点100发射第一光信号,该第一光信号经过所述第一待测点的反射形成第一反射光信号,且该第一光信号与第一极线4023相交,第一反射光信号与第二极线4033相交。其中,第一极线4023和第二极线4033分别为对极几何中的对极线(epipolar line),即第一极线4023和第二极线4033满足对极约束。该第一待测点100,该第一原点4021和该第二原点4031所在的平面为第三平面,且该第三平面与该第一平面相交于该第一极线4023,该第三平面与该第二平面相交于第二极线4033;此时,ToF相机400中的光接收器403,用于在该控制器401的控制下,接收该第一反射光信号;该控制器401,用于根据该第一光信号和该第一反射光信号确定该第一待测点100与该相机400之间的距离。
基于上述技术方案,由于第一极线4023和第二极线4033满足极线约束,使得光发射器402穿过该第一极线4023所发射的第一光信号经过第一待测点100反射所形成的第一反射光信号,能够穿过该第二极线4033而被该光接收器403接收,可以使得光接收器403通过第二极线4033之外的其它区域所接收得到的漫反射光信号减少对第一反射光信号的干扰。此外,该第一光信号和该第一反射光信号用于确定测距结果,可以减少在第一待测点100上经过漫反射所产生的其它反射信号对该测距结果的干扰,即降低待测点100上的漫反射对相机测距结果的影响,提升ToF相机测距的准确率。
此外,图5C所示ToF相机400在对待测物体进行曝光测距的过程中,光发射器402和光接收器403之间,可以通过单路光信号的收发对待测物体进行多次曝光,以实现对待测物体中多个待测点进行测距;也可以通过多路光信号的收发实现对待测物体进行较少次数 的曝光,以实现对待测物体中多个待测点进行测距,并且通过对不同待测点设置不同的对极约束,使得光接收器通过不同极线所接收得到的多路光反射信号之间互不干扰,降低光发射器所发射的多路光信号在待测点上产生漫反射对相机测距结果的影响,提升ToF相机测距的准确率。下面将详细介绍收发多路光信号的实现方案。
请参阅图5D,为本申请实施例中ToF相机400的另一个示意图。如图5D所示,相比于图5C中的ToF相机400,可以在光发射器402中设置多路光信号的发送,在光接收器403中设置多路光信号的接收。
具体的,图5D所示ToF相机400中,该光发射器402的发射面除了包括第一平面4022之外,至少还可以包括第四平面4024;类似的,该光接收器403的接收面除了包括第二平面4032之外,至少还可以包括第五平面4034。此时,在ToF相机400进行测距的过程中,该光发射器402,还用于在该控制器401的控制下,向不同于第一待测点100的第二待测点200发射第二光信号,该第二光信号经过所述第二待测点200的反射形成第二反射光信号,且该第二光信号与第三极线4025相交,该第二反射光信号与第四极线4035相交。其中,第三极线4025和第四极线4035分别为对极几何中的对极线(epipolar line),即第三极线4025和第四极线4035满足对极约束。该第二待测点200,该第一原点4021和该第二原点4031所在的平面为第六平面,且该第六平面与该第四平面相交于该第三极线4025,该第六平面与该第五平面相交于第四极线4035,其中,该第三平面与该第六平面不共面;此时,光接收器403,还用于在该控制器401的控制下,接收该第二反射光信号;相应的,该控制器401,还用于根据该第二光信号和该第二反射光信号确定该第二待测点200与该相机400之间的距离。
其中,由于第三极线4025和第四极线4035满足极线约束,可以使得光接收器403通过第四极线4035之外的其它区域所接收得到的漫反射光信号减少对第二反射光信号的干扰。后续控制器401根据该第二光信号和该第二反射光信号确定测距结果,可以减少在第二待测点200上经过漫反射所产生的其它反射信号对该测距结果的干扰,即降低待测点上的漫反射对相机测距结果的影响。此外,由于第三平面与第六平面内不共面,即第一极线4023不同于第三极线4025且第二极线4033不同于第四极线4035,使得用于确定第一待测点100与相机400之间距离的第一光信号和第一反射光信号,与用于确定第二待测点200与相机400之间距离的第二光信号和第二反射光信号之间互不干扰。从而,对不同待测点进行测距的不同光信号之间互不干扰,进一步提升ToF相机测距的准确率。
需要说明的是,第二待测点200与该相机400之间的距离可以为该第二待测点200与相机400中的镜头(图中未画出)之间的距离,也可以为第二待测点200与相机400中的几何中心(图中未画出)之间的距离,也可以为第二待测点200与相机400中的感光器件(例如光接收器403)之间的距离,还可以是第二待测点200与相机400中其它实体部分或虚拟部分之间的距离,此处不做具体的限定。
此外,在光发射器402中除了第一平面4022和第四平面4024之外,还可以包括其他的发射面,例如第七平面或者是其它的平面(图中未画出);相应的,在光接收器403中除了第二平面4032和第五平面4034之外,还可以包括其他的接收平面(图中未画出), 例如第八平面或者是其它的平面。并且,光发射器402中其它的发射面与光接收器403中其它的接收面之间,也可以通过前述方式存在满足对极约束的对极线,控制器401在对应的对极线上控制光信号的收发,以实现对更多不同待测点的测距。此外,由于对不同待测点进行测距的不同光信号之间互不干扰,可以进一步提升ToF相机400测距的准确率。
需要说明的是,第一光信号与第一极线4023相交,可以指示第一光信号的传输路径与第一极线4023相交于某一点或多个点,或者,可以指示第一光信号的传输路径穿过第一极线4023中的一个或多个点;类似的,第一反射光信号与第二极线4033相交,可以指示第一反射光信号的传输路径与第二极线4033相交于某一点或多个点,或者,可以指示第一反射光信号的传输路径穿过第二极线4033中的一个或多个点。例如,当第一光信号包括一束光信号(或多束光信号)时,第一光信号的传播路径穿过第一极线4023并与第一极线4023相交于某一点(或多个点)上,此后,该第一光信号再经过第一待测点100的反射形成单束(或多束)的第一反射光信号,第一反射光信号的传播路径穿过第二极线4033并与第二极线4033相交于某一点(或多个点)上。
需要说明的是,第一待测点100与该ToF相机400之间的距离可以为该第一待测点100与ToF相机400中的镜头(图中未画出)之间的距离,也可以为第一待测点100与ToF相机400中的几何中心(图中未画出)之间的距离,也可以为第一待测点100与ToF相机400中的感光器件(例如光接收器403)之间的距离,还可以是第一待测点100与ToF相机400中其它实体部分或虚拟部分之间的距离,此处不做具体的限定。
在一种可能的实现方式中,光发射器402所发射的光信号(包括第一光信号和第二光信号或者是其它的光信号)可以为通过BPSK编码得到的信号。可选地,光发射器402所发射的光信号也可以为通过其它的编码方式得到的信号,例如正交相移键控(quadrature phase shift keying、QPSK),正交幅度调制(quadrature amplitude modulation,QAM),或者是其它的方式,此处不做限定。
下面将以该第一光信号为通过BPSK编码得到的信号为例进行说明。其中,BPSK原理为利用相位偏移对信号进行编码,定义编码0为偏移相位0°的信号,编码1为偏移相位180°的信号。
请参阅图6,为本申请实施例中ToF相机400测距实现的一个示意图。如图6所示,BPSK应用在ToF系统时,编码0与常规ToF控制信号相同,编码1为常规ToF控制信号相移180°。
请参阅图7,为本申请实施例中ToF相机400测距实现的另一个示意图。如图7所示,L0,L1分别为编码0与编码1的光源信号,R0,R1为编码0与编码1的反射光信号,S0A,S0B与S1A,S1B为编码0与编码1像素阵列TapA与像素阵列TapB信号。由于光源与像素阵列相位差保持不变,即使编码1光源与像素阵列同时相移180°,编码1像素阵列TapA与TapB所测得信号与编码0仍相等。示例性地,ToF系统中以BPSK随机编码组成信号的范例如图8所示,其中,0度与180度相移可被映射至二进制序列。图8为一简单BPSK编码范例,其编码为01011010。在ToF系统中,可利用BPSK编码偏移1/2周期特性,以伪随机方式产生编码,并将编码中0与1个数限制为相等,即可达到抵抗来自不同ToF信号 源干扰之效果。
在一种可能的实现方式中,图5D所示ToF相机400中,多路光信号的发射可以在光发射器402中的不同光源区域上实现,同时,多路光信号的接收也可以在光接收器403中的不同像素阵列区域上实现。具体的,该光发射器402至少包括用于发射经过第一平面4022的第一光信号的第一光源区域,以及用于发射经过第四平面4024的第二光信号的第二光源区域;即,该第一光源区域的发射面为该第一平面4022,且该第二光源区域的发射面为该第四平面4025。类似的,该光接收器403至少包括用于接收经过第二平面4032的第一反射光信号的第一像素阵列区域,以及用于接收经过第五平面4034的第二反射光信号的第二像素阵列区域;其中,该第一像素阵列区域的接收面为该第二平面4032,且该第二像素阵列区域的接收面为该第五平面4035。其中,光发射器402中可以设置更多个光源区域,在不同光源区域上设置不同的发射面,以实现多个不同光信号的发射。相应的,光接收器403中也可以设置更多个像素阵列区域,在不同像素阵列区域上设置不同的接收面,以实现多个不同光信号的接收。
请参阅图10A,为本申请实施例提供的ToF相机400的测距实现的另一个示意图,在图10A所示示例中,在空间维度上,以光发射器402中包括六个不同光源区域,且光接收器403中包括六个像素阵列区域为例。
如图10A所示,控制器401控制光发射器402中六个光源区域发射光信号,并控制光接收器403六个像素矩阵(或称为像素阵列)区域接收光信号。其中,在六个光源区域中,包括第一光源区域40201,第二光源区域40202,第三光源区域40203,第四光源区域40204,第五光源区域40205,第六光源区域40206;类似的,在六个像素阵列区域中,包括第一像素阵列区域40301,第二像素阵列区域40302,第三像素阵列区域40303,第四像素阵列区域40304,第五像素阵列区域40305,第六像素阵列区域40306。
具体地,在图10A所示示例中,光发射器402中不同光源区域的发射面与光接收器403中不同像素阵列区域的接收面一一对应,且满足对极约束,此时,控制器401控制光发射器402发射光信号并控制光接收器403接收光信号的过程可以如图10B所示。
在图10B中,光发射器402的坐标原点为4021,光接收器403的坐标原点为4031,光光发射器402中第一光源区域40201与光接收器403中第一像素阵列区域40301之间(或者,光发射器402中第二光源区域40202与光接收器403中第二像素阵列区域40302之间;或者,光发射器402中第三光源区域40203与光接收器403中第三像素阵列区域40303之间;或者,光发射器402中第四光源区域40204与光接收器403中第四像素阵列区域40304之间;或者,光发射器402中第五光源区域40205与光接收器403中第五像素阵列区域40305之间;或者,光发射器402中第六光源区域40206与光接收器403中第六像素阵列区域40306之间),存在满足对极约束的对极线。
具体地,在图10B中,以光发射器402中第一光源区域40201与光接收器403中第一像素阵列区域40301的实现过程为例,第一光源区域40201所发射的光信号穿过第一平面4022中的第一极线4023,并经过待测点的反射形成反射光信号,该反射光信号穿过第二平面4032中的第二极线4033被第一像素阵列区域40301所接收,且该待测点与光发射器402 的坐标原点4021、光接收器403的坐标原点4031之间形成对极平面1,并且该对极平面1与第一平面4022相交于第一极线4023,且该对极平面1与第二平面4032相交于第二极线4033。类似地,光发射器402中的其它发射面和光接收器403的其它接收面还可以形成图示中对极平面2、对极平面3...对极平面6。此后,控制器401在对应的对极平面上控制光信号的收发,以实现对不同待测点的测距,并且,由于对不同待测点进行测距的不同光信号之间互不干扰,可以进一步提升ToF相机测距的准确率。
在一种可能的实现方式中,ToF相机400所收发的多路光信号中,该第一光信号与该第二光信号相互正交。具体地,用于对第一待测点100进行测距的第一光信号与用于对第二待测点200进行测距的第二光信号之间可以是相互正交的,即第一光信号与第二光信号之间的相干性为0或接近于0。此时,即使第一光信号的某一部分光信号经过多次漫反射而穿过第四极线4035被光接收器403接收,或者是第二光信号的某一部分光信号经过多次漫反射而穿过第二极线4033被光接收器403接收,由于第一光信号与第二光信号之间的相干性为0,也可以避免第一光信号与第二光信号之间的干扰,进一步提升ToF相机测距的准确率。
可选地,该第一光信号和该第二光信号均为通过二进制相移键控BPSK编码得到的信号。具体地,第一光信号和第二光信号都可以通过BPSK编码方式得到的信号,即使用至少两个原始序列分别进行BPSK编码得到第一光信号和第二光信号,其中,可以通过不同的原始序列使得第一光信号和第二光信号正交。提供了第一光信号和第二光信号的一种具体的实现方式,提升方案的可实现性。
可选地,该第一光信号和该第二光信号可以为通过其它的编码方式得到的信号,例如正交相移键控(quadrature phase shift keying、QPSK),正交幅度调制(quadrature amplitude modulation,QAM),或者是其它的方式,此处不做限定。
基于图5D所示ToF相机400的结构实现,下面介绍该ToF相机400的几种实现实例。
请参阅图9,为本申请实施例提供的ToF相机400的测距实现的另一个示意图。如图9,C1光源区域与C2光源区域分别代表不同ToF相机400中光发射器402的不同光源区域,C1光源区域与C2光源区域分别以不同的伪随机BPSK进行编码,且0与1个数限制为相等。其中,在任一时间点上,伪随机BPSK进行编码的编码特性如下:
若C2光源区域与C1光源区域编码值相等,意即(C1,C2)=(0,0)或(1,1),C1像素阵列在此周期内曝光所接收到C2光源值为TapA=i,TapB=0,TapA–TapB=i。
若C2光源区域与C1光源区域编码值相异,意即(C1,C2)=(1,0)或(1,0),C1像素阵列在此周期内曝光所接收到C2光源值为TapA=0,TapB=i,TapA-TapB=-i。
其中,ToF系统整个曝光过程中,周期个数极大,且由于伪随机序列编码特性,C1与C2编码值相同与编码值相异的机率接近相等,且因此C2光源对C1像素阵列的干扰接近为0。
从而,第一光信号可以为通过BPSK编码方式得到的信号,即使用某一原始序列进行BPSK编码得到第一光信号,可以实现在某一ToF相机中包含有多个光发射器并行工作的场景下(或者是在多个ToF相机并行工作的场景下),通过BPSK的编码特性,降低不同光信 号之间的干扰,提升ToF相机的测距准确率。
此外,如图9所示实现示例,该第一光信号可以为第一伪随机序列通过BPSK编码得到的信号,同时,该第二光信号也可以为第二伪随机序列通过BPSK编码得到的信号,且该第一伪随机序列中取值为0的序列个数和该第二伪随机序列中取值为0的序列个数相等。具体地,第一光信号和第二光信号可以通过伪随机序列进行BPSK编码得到。其中,ToF系统整个曝光过程中,周期个数极大,且由于伪随机序列编码特性,C1与C2编码值相同与编码值相异的机率接近相等,且因此C2光源对C1像素阵列的干扰接近为0。从而,用于生成得到第一光信号的第一伪随机序列中取值为0的序列个数与用于生成得到第二光信号的第二伪随机序列中取值为0的序列个数相同,可以使得生成得到的第一光信号和第二光信号之间的干扰为0。即用于对第一待测点进行测距的第一光信号与用于对第二待测点进行测距的第二光信号之间互不干扰,进一步提升ToF相机测距的准确率。另外,使用伪随机BPSK编码具有额外优势,例如,当应用场景中存在一台以上的ToF相机时,可同时抵抗ToF多机干扰。
基于图5D所示多路光信号实现的ToF相机400的测距实现过程,在空间维度上,以多路光信号为6路光信号的实现为例。请参阅图10C,为本申请实施例提供的ToF相机400的测距实现的另一个示意图,在图10C中,光发射器402中多个不同的光源区域和光接收403中多个不同的像素阵列区域之间的对应关于可参考图10A和图10B的描述,此处不再赘述。如图10C所示,控制器401可以通过六个控制信号(控制信号1、控制器信号2...控制信号6)分别控制光发射器402中六个光源区域发射光信号,并分别控制光接收器403六个像素矩阵(或称为像素阵列)区域接收光信号。其中,不同的光源区域与不同的像素矩阵区域中的控制信号一一对应,以实现在不同对极平面(对极线编码1、对极线编码2...对极线编码6)中对不同待测区域进行测距。
在一种可能的实现方式中,ToF相机400所收发的多路光信号中,该第一光信号的信号频率为第一频率,该第二光信号的信号频率为第二频率,且该第一频率不同于该第二频率。具体地,第一光信号和第二光信号可以分别通过不同的信号频率进行发射,以实现第一光信号与第二光信号之间的相互正交,使得第一光信号与第二光信号之间的相干性为0。此时,即使第一光信号的某一部分光信号经过多次漫反射而穿过第四极线被光接收器接收,或者是第二光信号的某一部分光信号经过多次漫反射而穿过第二极线被光接收器接收,由于第一光信号与第二光信号之间频率不同,也可以避免第一光信号与第二光信号之间的干扰,进一步提升ToF相机测距的准确率。
此外,在光发射器中除了第一平面和第四平面之外,如果还包括其他发射面,例如第七平面或者是其它平面;此时,类似于第一平面与第一极线的关系(或者是第三极线与第四平面的关系),在其它发射面中也存在其它极线;并且,光发射器可以发射穿过其它极线的其它光信号。其中,其它光信号可以使用不同于第一频率和第二频率的信号频率,例如,光发射器在发射n路光信号(n大于2,且n路光信号包括第一光信号和第二光信号)时,可以为n路光信号设置n个不同的信号频率,即n路光信号的信号频率互不相同。此外,其它光信号也可以使用第一频率或第二频率,例如,光发射器在发射n路光信号(n 大于2,且n路光信号包括第一光信号和第二光信号)时,可以将n路光信号交替设置为第一频率和第二频率,即n路光信号中任意相邻的光信号的信号频率互不相同即可实现较好的抗干扰效果。
请参阅图11,为本申请实施例提供的ToF相机400的测距实现的另一个示意图,在图11中,光发射器402中多个不同的光源区域和光接收器403中多个不同的像素阵列区域之间的对应关于可参考图10A和图10B的描述,此处不再赘述。示例性地,在时间维度上,基于图10所示6路光信号的实现为例,如图11所示,控制器401可以在光发射器402的不同的对极平面中加入不同时间域编码(时间域编码1、时间域编码2...时间域编码6),以确保不同光信号之间相互正交。
具体地,使用不同时间域编码的实现过程,可以如图12和图13所示,在图12和图13中,光发射器402中多个不同的光源区域和光接收403中多个不同的像素阵列区域之间的对应关于可参考图10A和图10B的描述,此处不再赘述。具体地,如图12所示,通过控制器401所提供的多路控制信号,分别在光发射器402和光接收器403中,不同的对极平面(BPSK编码1、BPSK编码2...BPSK编码6)中使用不同的BPSK编码序列进行编码并收发信号;也可以如图13所示,通过控制器401控制所提供的的多路控制信号,分别在光发射器402和光接收器403中,不同的对极平面中使用不同的信号频率(调制频率1、调制频率2...调制频率6)进行收发信号;还可以是通过其它的编码方式实现在时间维度上对不同区域的光信号加以区分,例如QPSK、QAM等,或者是多种时间域编码方式的叠加实现,此处不再赘述。例如,当ToF相机400通过图13所示方式实现时,时间域编码1至时间域编码6分别以不同频率进行编码,即以不同调制频率对光源与像素矩阵对极线区域进行编码。作为一个示例,调制频率1=100兆赫兹(Mhz),调制频率2=101Mhz,调制频率3=102Mhz,调制频率4=103Mhz,调制频率5=104Mhz,调制频率6=105Mhz。显然,该调制频率的取值可以通过其它方式实现,其中,相同对极线区域采用相同频率,不同对极线区域采用不同频率。由于ToF系统原理,不同调制频率彼此之间无法互相干扰,因此不同对极线区域无法彼此互相干扰。
在一种可能的实现方式中,通过图1至图3所示ToF相机的测距原理可知,由于ToF相机利用相位差求得距离,在单一频率f 1下,ToF相机最大测距范围为c/(2f 1),当距离大于c/(2f 1)时,所测得距离将产生周期性混叠(aliasing)。为避免此缺陷,ToF相机可以增加第二个频率f 2进行相位计算,利用f 1与f 2的关系进行计算,以扩展其使用距离。双频去混叠的方式有许多种,常见的组合有双高频、高频加低频等。这种技术被称为相位去混叠(phase de-aliasing)。
在相位去混叠的实现过程中,此处提供一处示例性的较为简单的去混叠算法做为范例。例如,设置第一频率为100Mhz的f 1,其最大测距范围为c/(2×100×10 6)=1.5米。假设测距场景内有三个物体A、B、C,真实距离A为2米、B为3.5米、C为5米。ToF相机以f 1频率进行测距所测得物体A、B、C的深度,因混叠皆为0.5米;更精确的描述为,f 1所测得A、B、C的距离应为0.5+n*1.5米,n为物体A、B、C本身的混叠周期数。其中,为了求解n,导入第二频率f 2=20Mhz,其最大测距范围为c/(2×20×10 6)=7.5米,物体 A、B、C皆在f 2之最大测距范围内,利用f 2所测得物体A、B、C深度值,求出物体A、B、C正确的深度应为A=0.5+1.5×1=2(米)、B=0.5+1.5×2=3.5(米)、C=0.5+1.5×3=5(米),其中,物体A混叠1个周期,物体B混叠2个周期,物体C混叠3个周期。由于f 1的频率较高,f 1去混叠后深度之精度(precision)会比直接用f 2测距精度好。
具体地,基于前述描述的ToF相机400,ToF相机400所收发的不同频率的多路光信号的实现过程,该光发射器402,还可以用于在该控制器401的控制下,向该第一待测点100发射信号频率为该第二频率的第三光信号,第三光信号经过所述第一待测点100的反射并形成第三反射光信号,其中,该第三光信号与第一极线4023相交,第三反射光信号与第二极线4033、相应的,该光接收器403,还用于在该控制器401的控制下,接收第三反射光信号;该控制器401,还用于根据该第一光信号,该第一反射光信号,该第三光信号和该第三反射光信号确定该第一待测点100与该相机400之间的距离。其中,由于ToF相机400一般是利用相位差求得距离,在单一频率下,ToF相机最大测距范围受限于该频率与光速之间的数学关系,当待测点与相机之间的距离大于该最大测距范围时,所测得距离将由于产生周期性混叠(aliasing)而导致准确率较差。为避免此缺陷,控制器401可以对同一待测点可以通过分别控制收发不同频率的光信号,并利用第一频率与第二频率之间的关系进行计算,以扩展ToF相机的测距距离。另外,可以通过信号频率为第一频率的第一光信号和信号频率为第二频率的第三光信号提升对第一待测点的测距结果的准确率。
类似的,基于前述描述的ToF相机400,ToF相机400所收发的不同频率的多路光信号的实现过程,该光发射器402,还用于在该控制器401的控制下,向该第二待测点200发射信号频率为该第一频率的第四光信号,所述第四光信号经过所述第二待测点的反射形成第四反射光信号,且第四光信号与第三极线4025相交,第四反射光信号与第四极线4035相交;相应的,光接收器403,还用于在该控制器401的控制下,接收该第四光信号在该第二待测点200上的第四反射光信号;此时,该控制器401,还用于根据该第二光信号,该第二反射光信号,该第四光信号和该第四反射信号确定该第二待测点200与该相机400之间的距离。其中,对第二待测点200可以通过分别发射不同频率的光信号,利用第一频率与第二频率之间的关系进行计算,以扩展ToF相机的测距距离。另外,可以通过信号频率为第二频率的第二光信号和信号频率为第一频率的第四光信号提升对第二待测点的测距结果的准确率。
请参阅图14,为本申请实施例提供的ToF相机400的测距实现的另一个示意图,在图14中,光发射器402中多个不同的光源区域和光接收403中多个不同的像素阵列区域之间的对应关于可参考图10A和图10B的描述,此处不再赘述。如图14所示,控制器401可以分别控制光发射器402和光接收器403,在不同的对极平面中交替使用不同时间域编码(调制频率1、调制频率2),以确保不同光信号之间相互正交。例如调制频率1=80Mhz,调制频率2=60Mhz。显然,该调制频率的取值可以通过其它方式实现,其中,不相同对极线区域亦可采用相同频率。由于ToF系统原理,不同调制频率彼此之间无法互相干扰,因此两种不同频率的对极线区域(调制频率1与调制频率2)无法彼此互相干扰。此外,使用两种不同频率时间域编码的方式实现具有一额外优势,只需要将调制频率1与调制频率2 交换,再次进行曝光,即可同时应用于相位去混叠,以提升对ToF的最大测距距离。
在一种可能的实现方式中,基于图1至图3所示ToF相机的测距原理,在ToF相机400中,该控制器401在确定该第一待测点100与该相机400之间的距离的过程中,首先,对该第一反射光信号进行采样,得到第一采样结果;然后,根据该第一采样结果确定该第一光信号和该第一反射光信号之间的第一相位差;进一步地,根据该第一相位差确定该第一待测点与该相机之间的距离。具体地,该相机400可以通过该控制器401控制光发射器402发射光信号,并控制光接收器403接收光信号,以使得光发射器402和光接收器403在控制器401的控制下,基于ToF原理实现对待测点进行测距。其中,控制器401可以通过光发射器402所发射的第一光信号和光接收器403所接收的第一反射光信号确定第一待测点100与相机400之间的距离,具体可以基于ToF原理,通过对第一光信号和第二反射光信号之间的相位求解得到第一相位差,再进一步根据该第一相位差确定第一待测点与相机之间的距离。
类似的,在ToF相机400中,该控制器401在确定第二待测点200与相机400之间的距离的过程中,首先,对该第二反射光信号进行采样,得到第二采样结果;然后,根据该第二采样结果确定该第二光信号和该第二反射光信号之间的第二相位差;进一步地,根据该第二相位差确定该第二待测点200与该相机400之间的距离。具体地,控制器401可以通过光发射器402所发射的第二光信号和光接收器403所接收的第二反射光信号确定第二待测点200与相机400之间的距离,具体可以基于ToF原理,通过对第二光信号和第二反射光信号之间的相位求解得到第二相位差,再进一步根据该第二相位差确定第二待测点与相机之间的距离。
本实施例中,由于不同时间编码信号间彼此正交,来自不同对极线区域的光源经过漫反射被像素矩阵接收后将无法对测距结果造成影响,因此降低了多重路径干扰。以图15为例,在图15中,光发射器402中多个不同的光源区域和光接收403中多个不同的像素阵列区域之间的对应关于可参考图10A和图10B的描述,此处不再赘述。具体地,在图15中,像素矩阵中第一行接收到光源第一行直射径(光信号),并同时接收到光源第二行透过漫反射方式传递的多重路径光。相较于一般常规的ToF系统,所有来自于光源之漫反射、多重路径光均可造成多重路径干扰,而在图15所示ToF相机的实现中,由于不同对极线区域之时间编码不同,光源所发出第二行对极线区域多重路径光将无法对像素矩阵第一行对极线区域产生干扰。
基于图1至图15所示实现过程,本申请实施例还提供了基于ToF的测距相机的其它实现方案,具体如下所示。
如图16所示,相较于图4至图15所示ToF相机400,该基于ToF的测距相机400(简称为ToF相机400)仅包括光发射器402以及光接收器403,并外接用于对光发射器402和光接收器403进行信号收发的控制、及距离测算的控制器401。其中,图16所示ToF相机400中,光发射器402和光接收器403,以及通过外接的控制器401实现测距的过程,可以参考前述图1至图15所示实现过程,此处不再赘述。
如图17所示,相较于图4至图15所示ToF相机400,该基于ToF的测距相机400(简 称为ToF相机400)仅包括光接收器403以及控制器401,并外接用于发射光信号的光发射器402。其中,图17所示ToF相机400中,光接收器403和控制器401,以及通过外接的光发射器402实现测距的过程,可以参考前述图1至图15所示实现过程,此处不再赘述。
在一种可能的实现方案中,光发射器402中不同的光源区域与光接收器403中不同像素阵列区域一一对应的位置关系可以通过硬件结构的限定方式实现。例如,在图4和图16所示相机400中,通过嵌入式卡槽、限位锁死等约束方式,使得光发射器402中的每一个光源区域的空间位置,与存在对极约束的光接收器403中的每一个像素阵列区域的空间位置之间是固定不变的。又如,在图17所示相机400中,由于不具备光发射器402,因此,可以在相机400中预留卡槽位置,以便于在接入光发射器402之后,使得光发射器402中的每一个光源区域的空间位置,与存在对极约束的光接收器403中的每一个像素阵列区域的空间位置之间保持不变。
在另一种可能的实现方案中,光发射器402中不同的光源区域与光接收器403中不同像素阵列区域一一对应的位置关系可以通过人工调试的限定方式实现。例如,光发射器402和/或光接收器403在相机400中的空间位置是可调整的,例如通过滑轮、滚轮的方式加以调整,在相机400进行测距之前,通过人工调试的方式,使得光发射器402中的每一个光源区域的空间位置,与存在对极约束的光接收器403中的每一个像素阵列区域的空间位置之间保持不变。
此外,前述图4至图17任一项实施例的相机400中,不同光源区域之间可以是集成一体化设置于光发射器402中,也可以是每一个光源区域独立设置于光发射器402中,此处不做限定;类似地,不同像素阵列区域之间可以是集成一体化设置于光接收器403中,也可以是每一个像素阵列区域独立设置于光接收器403中,此处不做限定。示例性的,可以透过立体视觉校正,获取光发射器402与光接收器403两者的相机矩阵、畸变参数与旋转平移矩阵后,即可确定出光发射器402与光接收器403各自对应的对极线区域。
请参阅图18,为本申请实施例提供的基于ToF的测距方法的一个示意图,其中,该方法可以应用于图4至图17任一实现方式中的控制器,其中,该控制器包含于相机;该相机还包括分别连接于该控制器的光发射器和光接收器;该光发射器的坐标原点为第一原点且该光发射器的发射面包括第一平面,该光接收器的坐标原点为第二原点且该光接收器的接收面包括第二平面。
具体地,该测距方法包括如下步骤。
S101.控制器控制所述光发射器向第一待测点发射第一光信号,并控制所述光发射器向第二待测点发射第二光信号。
本实施例中,在步骤S101中,该控制器控制该光发射器向第一待测点发射第一光信号,所述第一光信号经过所述第一待测点的反射形成第一反射光信号,且该第一光信号与第一极线相交,第一反射光信号与第二极线相交;第二光信号经过所述第二待测点的反射形成第二反射光信号,且第二光信号与第三极线相交,第二反射光信号与第四极线相交;其中,该第一待测点,该第一原点和该第二原点所在的平面为第三平面,且该第三平面与该第一平面相交于该第一极线,该第三平面与该第二平面相交于第二极线。其中,第二待测点不 同于该第一待测点;且该第二待测点,该第一原点和该第二原点所在的平面为第六平面,且该第六平面与该第四平面相交于该第三极线,该第六平面与该第五平面相交于第四极线,其中,该第三平面与该第六平面不共面;
S102.控制器控制所述光接收器接收所述第一反射光信号和第二反射光信号。
本实施例中,在步骤S102中,该控制器控制光接收器接收步骤S101所发射第一光信号经过反射形成的第一反射光信号,并接受步骤S101所发射第二光信号经过反射形成的第二反射光信号。
S103.控制器根据所述第一光信号和所述第一反射光信号确定所述第一待测点与所述相机之间的距离,并根据所述第二光信号和所述第二反射光信号确定所述第二待测点与所述相机之间的距离。
本实施例中,在步骤S103中,控制器根据步骤S101所发射的第二光信号,和步骤S102所接收的第一反射光信号确定所述第一待测点与所述相机之间的距离,并且,控制器根据步骤S101所发射的第二光信号,和步骤S102所接收的第二反射光信号确定所述第二待测点与所述相机之间的距离。
在一种可能的实现方式中,
该光发射器包括第一光源区域和第二光源区域,其中,该第一光源区域的发射面为该第一平面,且该第二光源区域的发射面为该第四平面;
该光接收器包括第一像素阵列区域和第二像素阵列区域,其中,该第一像素阵列区域的接收面为该第二平面,且该第二像素阵列区域的接收面为该第五平面。
在一种可能的实现方式中,该第一光信号与该第二光信号相互正交。
在一种可能的实现方式中,
该第一光信号和该第二光信号均为通过二进制相移键控BPSK编码得到的信号。
在一种可能的实现方式中,
该第一光信号为第一伪随机序列通过BPSK编码得到的信号,该第二光信号为第二伪随机序列通过BPSK编码得到的信号,且该第一伪随机序列中取值为0的序列个数和该第二伪随机序列中取值为0的序列个数相等。
在一种可能的实现方式中,该第一光信号为通过BPSK编码得到的信号。
在一种可能的实现方式中,
该第一光信号的信号频率为第一频率,该第二光信号的信号频率为第二频率,且该第一频率不同于该第二频率。
在一种可能的实现方式中,在步骤S103之后,该方法还包括:
该控制器控制该光发射器向该第一待测点发射信号频率为该第二频率的第三光信号,所述第三光信号经过所述第一待测点的反射形成第三反射光信号,且该第三光信号与第一极线相交,第三反射光信号与第二极线相交;
该控制器控制该光接收器接收该第三反射光信号;
该控制器根据该第一光信号和该第一反射光信号确定该第一待测点与该相机之间的距离包括:
该控制器根据该第一光信号,该第一反射光信号,该第三光信号和该第三反射光信号确定该第一待测点与该相机之间的距离。
在一种可能的实现方式中,在步骤S103之后,该方法还包括:
该控制器控制该光发射器向该第二待测点发射信号频率为该第一频率的第四光信号,所述第四光信号经过所述第二待测点的反射形成第四反射光信号,且该第四光信号与第三极线相交,第四反射光信号与第四极线相交;
该控制器控制该光接收器接收该四反射光信号;
该控制器根据该第二光信号和该第二反射光信号确定该第二待测点与该相机之间的距离包括:
该控制器根据该第二光信号,该第二反射光信号,该第四光信号和该第四反射信号确定该第二待测点与该相机之间的距离。
在一种可能的实现方式中,在步骤S103中,该控制器根据该第一光信号和该第一反射光信号确定该第一待测点与该相机之间的距离的过程具体可以包括:
该控制器对该第一反射光信号进行采样,得到第一采样结果;
该控制器根据该第一采样结果确定该第一光信号和该第一反射光信号之间的第一相位差;
该控制器根据该第一相位差确定该第一待测点与该相机之间的距离。
在一种可能的实现方式中,在步骤S103之后,该控制器根据该第二光信号和该第二反射光信号确定该第二待测点与该相机之间的距离的过程具体可以包括:
该控制器对该第二反射光信号进行采样,得到第二采样结果;
该控制器根据该第二采样结果确定该第二光信号和该第二反射光信号之间的第二相位差;
该控制器根据该第二相位差确定该第二待测点与该相机之间的距离。
需要说明的是,在图18对应的测距方法的实现过程中,还可以参考前述图1至图17所示实现过程进一步加以优化和改进,此处不再赘述。
本实施例中,在控制器的控制下,光接收器接收得到的第一反射光信号为光发射器所发射的第一光信号在第一待测点上反射所形成的,且该第一光信号和该第一反射光信号用于确定该第一待测点与该相机之间的距离。由于第一极线和第二极线满足极线约束,使得光发射器穿过该第一极线所发射的第一光信号经过第一待测点反射所形成的第一反射光信号,能够穿过该第二极线而被该光接收器接收,可以使得光接收器通过第二极线之外的其它区域所接收得到的漫反射光信号减少对第一反射光信号的干扰。后续控制器根据该第一光信号和该第一反射光信号确定测距结果,可以减少在第一待测点上经过漫反射所产生的其它反射信号对该测距结果的干扰,即降低待测点上的漫反射对相机测距结果的影响,提升ToF相机测距的准确率。
请参阅图19,为本申请实施例提供的基于ToF的测距方法的另一个示意图,其中,该方法应用于控制器,其中,该控制器包含于相机;该相机还包括连接于该控制器的光接收器。
具体地,该测距方法包括如下步骤。
S201.控制器控制所述光接收器接收第一反射光信号和第二反射光信号。
本实施例中,在步骤S201中,控制器控制该光接收器接收第一反射光信号,所述第一反射光信号为光发射器所发射的第一光信号经过第一待测点的反射形成,且该第一光信号与第一极线相交,第一反射光信号与第二极线相交;所述第二反射光信号为所述光发射器所发射的第二光信号经过第二待测点的反射形成,且第二光信号与第三极线相交,第二反射光信号与第四极线相交;其中,该光发射器的坐标原点为第一原点且该光发射器的发射面包括第一平面,该光接收器的坐标原点为第二原点且该光接收器的接收面包括第二平面;该第一待测点,该第一原点和该第二原点所在的平面为第三平面,且该第三平面与该第一平面相交于该第一极线,该第三平面与该第二平面相交于该第二极线。
此外,该光发射器的发射面还包括第四平面,该光接收器的接收面还包括第五平面;第二待测点,该第一原点和该第二原点所在的平面为第六平面,且该第六平面与该第四平面相交于第三极线,该第六平面与该第五平面相交于第四极线;其中,该第三平面与该第六平面不共面。
S202.控制器根据所述第一光信号和所述第一反射光信号确定所述第一待测点与所述相机之间的距离,并根据所述第二光信号和所述第二反射光信号确定所述第二待测点与所述相机之间的距离。
本实施例中,在步骤S202中,该控制器根据步骤S101中的第一光信号和第一反射光信号确定该第一待测点与该相机之间的距离。
在一种可能的实现方式中,
该光发射器包括第一光源区域和第二光源区域,其中,该第一光源区域的发射面为该第一平面,且该第二光源区域的发射面为该第四平面;
该光接收器包括第一像素阵列区域和第二像素阵列区域,其中,该第一像素阵列区域的接收面为该第二平面,且该第二像素阵列区域的接收面为该第五平面。
在一种可能的实现方式中,该第一光信号与该第二光信号相互正交。
在一种可能的实现方式中,
该第一光信号和该第二光信号均为通过二进制相移键控BPSK编码得到的信号。
在一种可能的实现方式中,
该第一光信号为第一伪随机序列通过BPSK编码得到的信号,该第二光信号为第二伪随机序列通过BPSK编码得到的信号,且该第一伪随机序列中取值为0的序列个数和该第二伪随机序列中取值为0的序列个数相等。
在一种可能的实现方式中,该第一光信号为通过BPSK编码得到的信号。
在一种可能的实现方式中,
该第一光信号的信号频率为第一频率,该第二光信号的信号频率为第二频率,且该第一频率不同于该第二频率。
在一种可能的实现方式中,在步骤S202之后,该方法还包括:
所述控制器控制所述光接收器接收第三反射光信号,所述第三反射光信号为所述光发 射器所发射的第三光信号经过第一待测点的反射形成,且该第三光信号与第一极线相交,第三反射光信号与第二极线相交;其中,所述第三光信号信号频率为所述第二频率;
该控制器根据该第一光信号和该第一反射光信号确定该第一待测点与该相机之间的距离包括:
该控制器该第一光信号,该第一反射光信号,该第三光信号和该第三反射光信号确定该第一待测点与该相机之间的距离。
在一种可能的实现方式中,在步骤S202之后,该方法还包括:
所述控制器控制所述光接收器接收第四反射光信号;所述第四反射光信号为所述光发射器所发射的第四光信号经过第二待测点的反射形成,且该第四光信号与第三极线相交,第四反射光信号与第四极线相交;其中,所述第四光信号的信号频率为所述第一频率;
该控制器根据该第二光信号和该第二反射光信号确定该第二待测点与该相机之间的距离包括:
该控制器根据该第二光信号,该第二反射光信号,该第四光信号和该第四反射信号确定该第二待测点与该相机之间的距离。
在一种可能的实现方式中,在步骤S202中,该控制器根据该第一光信号和该第一反射光信号确定该第一待测点与该相机之间的距离包括:
该控制器对该第一反射光信号进行采样,得到第一采样结果;
该控制器根据该第一采样结果确定该第一光信号和该第一反射光信号之间的第一相位差;
该控制器根据该第一相位差确定该第一待测点与该相机之间的距离。
在一种可能的实现方式中,在步骤S202之后,该控制器根据该第二光信号和该第二反射光信号确定该第二待测点与该相机之间的距离包括:
该控制器对该第二反射光信号进行采样,得到第二采样结果;
该控制器根据该第二采样结果确定该第二光信号和该第二反射光信号之间的第二相位差;
该控制器根据该第二相位差确定该第二待测点与该相机之间的距离。
基于上述技术方案,在控制器的控制下,光接收器接收得到的第一反射光信号为光发射器所发射的第一光信号在第一待测点上反射所形成的,且该第一光信号和该第一反射光信号用于确定该第一待测点与该相机之间的距离。由于第一极线和第二极线满足极线约束,使得光发射器穿过该第一极线所发射的第一光信号经过第一待测点反射所形成的第一反射光信号,能够穿过该第二极线而被该光接收器接收,可以使得光接收器通过第二极线之外的其它区域所接收得到的漫反射光信号减少对第一反射光信号的干扰。后续控制器根据该第一光信号和该第一反射光信号确定测距结果,可以减少在第一待测点上经过漫反射所产生的其它反射信号对该测距结果的干扰,即降低待测点上的漫反射对相机测距结果的影响,提升ToF相机测距的准确率。
需要说明的是,在图19对应的测距方法的实现过程中,还可以参考前述图1至图17所示实现过程进一步加以优化和改进,此处不再赘述。
请参阅图20,为本申请实施例提供的基于ToF的测距方法的另一个示意图,其中,该方法应用于相机,该相机包括光发射器和光接收器,其中,该光发射器的坐标原点为第一原点且该光发射器的发射面包括第一平面,该光接收器的坐标原点为第二原点且该光接收器的接收面包括第二平面。
具体地,该测距方法包括如下步骤。
S301.光发射器向第一待测点发射第一光信号,并向第二待测点发射第二光信号。
本实施例中,在步骤S301中,相机在执行测距过程中,相机中的光发射器向第一待测点发射第一光信号。其中,该第一光信号经过该第一待测点的反射形成第一反射光信号,该第一光信号与第一极线相交,该第一反射光信号与第二极线相交;其中,该第一待测点,该第一原点和该第二原点所在的平面为第三平面,且该第三平面与该第一平面相交于该第一极线,该第三平面与该第二平面相交于该第二极线。
此外,该光发射器的发射面还包括第四平面,该光接收器的接收面还包括第五平面;在步骤S101中,该光发射器向第二待测点发射第二光信号,该第二光信号经过该第二待测点的反射形成第二反射光信号,该第二光信号与第三极线相交,该第二反射光信号与第四极线相交;其中,该第二待测点不同于该第一待测点;该第二待测点,该第一原点和该第二原点所在的平面为第六平面,且该第六平面与该第四平面相交于该第三极线,该第六平面与该第五平面相交于该第四极线,其中,该第三平面与该第六平面不共面;
S302.光接收器接收该第一反射光信号和第二反射光信号。
本实施例中,在步骤S302中,相机中的光接收器接收第一反射光信号和第二反射光信号。其中,该第一光信号和该第一反射光信号用于确定该第一待测点与该相机之间的距离,该第二光信号和该第二反射光信号用于确定该第二待测点与该相机之间的距离。
在一种可能的实现方式中,
该光发射器包括第一光源区域和第二光源区域,其中,该第一光源区域的发射面为该第一平面,且该第二光源区域的发射面为该第四平面;
该光接收器包括第一像素阵列区域和第二像素阵列区域,其中,该第一像素阵列区域的接收面为该第二平面,且该第二像素阵列区域的接收面为该第五平面。
在一种可能的实现方式中,该第一光信号与该第二光信号相互正交。
在一种可能的实现方式中,
该第一光信号和该第二光信号均为通过二进制相移键控BPSK编码得到的信号。
在一种可能的实现方式中,
该第一光信号为第一伪随机序列通过BPSK编码得到的信号,该第二光信号为第二伪随机序列通过BPSK编码得到的信号,且该第一伪随机序列中取值为0的序列个数和该第二伪随机序列中取值为0的序列个数相等。
在一种可能的实现方式中,该第一光信号为通过BPSK编码得到的信号。
在一种可能的实现方式中,
该第一光信号的信号频率为第一频率,该第二光信号的信号频率为第二频率,且该第一频率不同于该第二频率。
在一种可能的实现方式中,在步骤S301和步骤S302之外,该方法还包括:
该光发射器向该第一待测点发射信号频率为该第二频率的第三光信号,该第三光信号经过该第一待测点的反射形成第三反射光信号,该第三光信号与该第一极线相交,该第三反射光信号与该第二极线相交;
该光接收器接收该第三反射光信号,其中,该第一光信号,该第一反射光信号,该第三光信号和该第三反射光信号用于确定该第一待测点与该相机之间的距离。
在一种可能的实现方式中,在步骤S301和步骤S302之外,该方法还包括:
该光发射器向该第二待测点发射信号频率为该第一频率的第四光信号,该第四光信号经过该第二待测点的反射形成第四反射光信号,该第四光信号与该第三极线相交,该第四反射光信号与该第四极线相交;
该光接收器接收该第四反射光信号,其中,该第二光信号,该第二反射光信号,该第四光信号和该第四反射信号用于确定该第二待测点与该相机之间的距离。
在一种可能的实现方式中,该相机还包括分别连接于该光发射器和该光接收器的控制器;
步骤S301中,光发射器向第一待测点发射第一光信号的执行过程具体可以包括:
该控制器控制该光发射器向该第一待测点发射该第一光信号;
步骤S302中,该光接收器接收该第一反射光信号的过程具体可以包括:
该控制器控制该光接收器接收该第一反射光信号。
在一种可能的实现方式中,在步骤S302之后,该方法还可以进一步包括:
该控制器对该第一反射光信号进行采样,得到第一采样结果;
该控制器根据该第一采样结果确定该第一光信号和该第一反射光信号之间的第一相位差;
该控制器根据该第一相位差确定该第一待测点与该相机之间的距离。
基于上述技术方案,相机在执行测距方法的过程中,相机中的光接收器接收得到的第一反射光信号为光发射器所发射的第一光信号在第一待测点上反射所形成的,且该第一光信号和该第一反射光信号用于确定该第一待测点与该相机之间的距离。由于第一极线和第二极线满足极线约束,使得光发射器穿过该第一极线所发射的第一光信号经过第一待测点反射所形成的第一反射光信号,能够穿过该第二极线而被该光接收器接收,可以使得光接收器通过第二极线之外的其它区域所接收得到的漫反射光信号减少对第一反射光信号的干扰,即减少在待测点上经过漫反射所产生的其它反射信号对ToF相机的测距过程的干扰,降低待测点上的漫反射对相机测距结果的影响,提升ToF相机测距的准确率。
需要说明的是,在图20对应的测距方法的实现过程中,还可以参考前述图1至图17所示实现过程进一步加以优化和改进,此处不再赘述。
本申请实施例还提供了一种芯片系统,该芯片系统包括处理器,用于支持控制器实现上述图18或图19或图20所示方法中所涉及的功能。
在一种可能的设计中,该芯片系统还可以包括存储器,存储器,用于保存控制器必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。其 中,芯片系统所带来的技术效果可参见图18或图19或图20所示方法所带来的技术效果,此处不再赘述。
本申请实施例还提供一种存储一个或多个计算机执行指令的计算机可读存储介质,当计算机执行指令被处理器执行时,该处理器执行如上述图18或图19或图20所示方法,具体可参考前述描述,此处不再赘述。
本申请实施例还提供一种存储一个或多个计算机的计算机程序产品(或称计算机程序),当计算机程序产品在计算机上运行时,使得该计算机执行上述图18或图19或图20所示分,具体可参考前述描述,此处不再赘述。
以上所述,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以所述权利要求的保护范围为准。

Claims (43)

  1. 一种基于飞行时间ToF的测距相机,其特征在于,包括光发射器和光接收器;所述光发射器的坐标原点为第一原点且所述光发射器的发射面包括第一平面和第四平面,所述光接收器的坐标原点为第二原点且所述光接收器的接收面包括第二平面和第五平面;
    所述光发射器,用于向第一待测点发射第一光信号并向第二待测点发射第二光信号,所述第一光信号经过所述第一待测点的反射形成第一反射光信号,所述第一光信号与第一极线相交,所述第一反射光信号与第二极线相交;所述第二光信号经过所述第二待测点的反射形成第二反射光信号,所述第二光信号与第三极线相交,所述第二反射光信号与第四极线相交;其中,所述第一待测点,所述第一原点和所述第二原点所在的平面为第三平面,且所述第三平面与所述第一平面相交于所述第一极线,所述第三平面与所述第二平面相交于所述第二极线;所述第二待测点,所述第一原点和所述第二原点所在的平面为第六平面,且所述第六平面与所述第四平面相交于所述第三极线,所述第六平面与所述第五平面相交于所述第四极线,且所述第三平面与所述第六平面不共面;
    所述光接收器,用于接收所述第一反射光信号和第二反射光信号,其中,所述第一光信号和所述第一反射光信号用于确定所述第一待测点与所述相机之间的距离,所述第二光信号和所述第二反射光信号用于确定所述第二待测点与所述相机之间的距离。
  2. 根据权利要求1所述的相机,其特征在于,
    所述光发射器包括第一光源区域和第二光源区域,其中,所述第一光源区域的发射面为所述第一平面,且所述第二光源区域的发射面为所述第四平面;
    所述光接收器包括第一像素阵列区域和第二像素阵列区域,其中,所述第一像素阵列区域的接收面为所述第二平面,且所述第二像素阵列区域的接收面为所述第五平面。
  3. 根据权利要求1或2所述的相机,其特征在于,所述第一光信号与所述第二光信号相互正交。
  4. 根据权利要求1至3任一项所述的相机,其特征在于,
    所述第一光信号和所述第二光信号均为通过二进制相移键控BPSK编码得到的信号。
  5. 根据权利要求4所述的相机,其特征在于,
    所述第一光信号为第一伪随机序列通过BPSK编码得到的信号,所述第二光信号为第二伪随机序列通过BPSK编码得到的信号,且所述第一伪随机序列中取值为0的序列个数和所述第二伪随机序列中取值为0的序列个数相等。
  6. 根据权利要求1至5任一项所述的相机,其特征在于,
    所述第一光信号的信号频率为第一频率,所述第二光信号的信号频率为第二频率,且所述第一频率不同于所述第二频率。
  7. 根据权利要求6所述的相机,其特征在于,
    所述光发射器,还用于向所述第一待测点发射信号频率为所述第二频率的第三光信号,所述第三光信号经过所述第一待测点的反射形成第三反射光信号,所述第三光信号与所述第一极线相交,所述第三反射光信号与所述第二极线相交;
    所述光接收器,还用于接收所述第三反射光信号,其中,所述第一光信号,所述第一 反射光信号,所述第三光信号和所述第三反射光信号用于确定所述第一待测点与所述相机之间的距离。
  8. 根据权利要求6或7所述的相机,其特征在于,
    所述光发射器,还用于向所述第二待测点发射信号频率为所述第一频率的第四光信号,所述第四光信号经过所述第二待测点的反射形成第四反射光信号,所述第四光信号与所述第三极线相交,所述第四反射光信号与所述第四极线相交;
    所述光接收器,还用于接收所述第四反射光信号,其中,所述第二光信号,所述第二反射光信号,所述第四光信号和所述第四反射信号用于确定所述第二待测点与所述相机之间的距离。
  9. 根据权利要求1至8任一项所述的相机,其特征在于,所述相机还包括分别连接于所述光发射器和所述光接收器的控制器;
    所述控制器,用于控制所述光发射器向所述第一待测点发射所述第一光信号;
    所述控制器,还用于控制所述光接收器接收所述第一反射光信号。
  10. 根据权利要求9所述的相机,其特征在于,所述控制器具体用于:
    对所述第一反射光信号进行采样,得到第一采样结果;
    根据所述第一采样结果确定所述第一光信号和所述第一反射光信号之间的第一相位差;
    根据所述第一相位差确定所述第一待测点与所述相机之间的距离。
  11. 一种基于飞行时间ToF的测距相机,其特征在于,包括控制器,以及连接于所述控制器的光接收器;
    所述光接收器,用于在所述控制器的控制下,接收第一反射光信号和第二反射光信号,光发射器发射的第一光信号经过所述第一待测点的反射形成第一反射光信号,所述第一光信号与第一极线相交,所述第一反射光信号与第二极线相交;所述光发射器所发射的第二光信号经过所述第二待测点的反射形成所述第二反射光信号,所述第二光信号与所述第三极线相交,所述第二反射光信号与所述第四极线相交;其中,所述光发射器的坐标原点为第一原点且所述光发射器的发射面包括第一平面和第四平面,所述光接收器的坐标原点为第二原点且所述光接收器的接收面包括第二平面和第五平面;所述第一待测点,所述第一原点和所述第二原点所在的平面为第三平面,且所述第三平面与所述第一平面相交于所述第一极线,所述第三平面与所述第二平面相交于所述第二极线;所述第二待测点,所述第一原点和所述第二原点所在的平面为第六平面,且所述第六平面与所述第四平面相交于第三极线,所述第六平面与所述第五平面相交于第四极线;其中,所述第三平面与所述第六平面不共面;
    所述控制器,用于根据所述第一光信号和所述第一反射光信号确定所述第一待测点与所述相机之间的距离,并根据所述第二光信号和所述第二反射光信号确定所述第二待测点与所述相机之间的距离。
  12. 根据权利要求11所述的相机,其特征在于,
    所述光发射器包括第一光源区域和第二光源区域,其中,所述第一光源区域的发射面 为所述第一平面,且所述第二光源区域的发射面为所述第四平面;
    所述光接收器包括第一像素阵列区域和第二像素阵列区域,其中,所述第一像素阵列区域的接收面为所述第二平面,且所述第二像素阵列区域的接收面为所述第五平面。
  13. 根据权利要求11或12所述的相机,其特征在于,所述第一光信号与所述第二光信号相互正交。
  14. 根据权利要求11至13任一项所述的相机,其特征在于,
    所述第一光信号和所述第二光信号均为通过二进制相移键控BPSK编码得到的信号。
  15. 根据权利要求14所述的相机,其特征在于,
    所述第一光信号为第一伪随机序列通过BPSK编码得到的信号,所述第二光信号为第二伪随机序列通过BPSK编码得到的信号,且所述第一伪随机序列中取值为0的序列个数和所述第二伪随机序列中取值为0的序列个数相等。
  16. 根据权利要求11至15任一项所述的相机,其特征在于,
    所述第一光信号的信号频率为第一频率,所述第二光信号的信号频率为第二频率,且所述第一频率不同于所述第二频率。
  17. 根据权利要求16所述的相机,其特征在于,
    所述光接收器,还用于在所述控制器的控制下,接收第三反射光信号,所述第三光信号经过所述第一待测点的反射形成第三反射光信号,所述第三光信号与所述第一极线相交,所述第三反射光信号与所述第二极线相交;其中,所述第三光信号信号频率为所述第二频率;
    所述控制器,还用于根据所述第一光信号,所述第一反射光信号,所述第三光信号和所述第三反射光信号确定所述第一待测点与所述相机之间的距离。
  18. 根据权利要求16或17所述的相机,其特征在于,
    所述光接收器,还用于在所述控制器的控制下,接收第四反射光信号,所述第四光信号经过所述第二待测点的反射形成第四反射光信号,所述第四光信号与所述第三极线相交,所述第四反射光信号与所述第四极线相交;其中,所述第四光信号的信号频率为所述第一频率;
    所述控制器,还用于根据所述第二光信号,所述第二反射光信号,所述第四光信号和所述第四反射信号确定所述第二待测点与所述相机之间的距离。
  19. 根据权利要求18任一项所述的相机,其特征在于,所述控制器具体用于:
    对所述第一反射光信号进行采样,得到第一采样结果;
    根据所述第一采样结果确定所述第一光信号和所述第一反射光信号之间的第一相位差;
    根据所述第一相位差确定所述第一待测点与所述相机之间的距离。
  20. 根据权利要求11至19任一项所述的相机,其特征在于,所述控制器具体用于:
    对所述第二反射光信号进行采样,得到第二采样结果;
    根据所述第二采样结果确定所述第二光信号和所述第二反射光信号之间的第二相位差;
    根据所述第二相位差确定所述第二待测点与所述相机之间的距离。
  21. 一种基于飞行时间ToF的测距方法,其特征在于,所述方法应用于相机,所述相机包括光发射器和光接收器;所述光发射器的坐标原点为第一原点且所述光发射器的发射面包括第一平面和第四平面,所述光接收器的坐标原点为第二原点且所述光接收器的接收面包括第二平面和第五平面;所述方法包括:
    所述光发射器向第一待测点发射第一光信号并向第二待测点发射第二光信号,所述第一光信号经过所述第一待测点的反射形成第一反射光信号,所述第一光信号与第一极线相交,所述第一反射光信号与第二极线相交;所述第二光信号经过所述第二待测点的反射形成第二反射光信号,所述第二光信号与第三极线相交,所述第二反射光信号与第四极线相交;其中,所述第一待测点,所述第一原点和所述第二原点所在的平面为第三平面,且所述第三平面与所述第一平面相交于所述第一极线,所述第三平面与所述第二平面相交于所述第二极线;所述第二待测点,所述第一原点和所述第二原点所在的平面为第六平面,且所述第六平面与所述第四平面相交于所述第三极线,所述第六平面与所述第五平面相交于所述第四极线,其中,所述第三平面与所述第六平面不共面;
    所述光接收器接收所述第一反射光信号和所述第二反射光信号,其中,所述第一光信号和所述第一反射光信号用于确定所述第一待测点与所述相机之间的距离。
  22. 根据权利要求21所述的方法,其特征在于,
    所述光发射器包括第一光源区域和第二光源区域,其中,所述第一光源区域的发射面为所述第一平面,且所述第二光源区域的发射面为所述第四平面;
    所述光接收器包括第一像素阵列区域和第二像素阵列区域,其中,所述第一像素阵列区域的接收面为所述第二平面,且所述第二像素阵列区域的接收面为所述第五平面。
  23. 根据权利要求21或22所述的方法,其特征在于,所述第一光信号与所述第二光信号相互正交。
  24. 根据权利要求21至23任一项所述的方法,其特征在于,
    所述第一光信号和所述第二光信号均为通过二进制相移键控BPSK编码得到的信号。
  25. 根据权利要求24所述的方法,其特征在于,
    所述第一光信号为第一伪随机序列通过BPSK编码得到的信号,所述第二光信号为第二伪随机序列通过BPSK编码得到的信号,且所述第一伪随机序列中取值为0的序列个数和所述第二伪随机序列中取值为0的序列个数相等。
  26. 根据权利要求21至25任一项所述的方法,其特征在于,
    所述第一光信号的信号频率为第一频率,所述第二光信号的信号频率为第二频率,且所述第一频率不同于所述第二频率。
  27. 根据权利要求26所述的方法,其特征在于,所述方法还包括:
    所述光发射器向所述第一待测点发射信号频率为所述第二频率的第三光信号,所述第三光信号经过所述第一待测点的反射形成第三反射光信号,所述第三光信号与所述第一极线相交,所述第三反射光信号与所述第二极线相交;
    所述光接收器接收所述第三反射光信号,其中,所述第一光信号,所述第一反射光信 号,所述第三光信号和所述第三反射光信号用于确定所述第一待测点与所述相机之间的距离。
  28. 根据权利要求26或27所述的方法,其特征在于,所述方法还包括:
    所述光发射器向所述第二待测点发射信号频率为所述第一频率的第四光信号,所述第四光信号经过所述第二待测点的反射形成第四反射光信号,所述第四光信号与所述第三极线相交,所述第四反射光信号与所述第四极线相交;
    所述光接收器接收所述第四反射光信号,其中,所述第二光信号,所述第二反射光信号,所述第四光信号和所述第四反射信号用于确定所述第二待测点与所述相机之间的距离。
  29. 根据权利要求21至28任一项所述的方法,其特征在于,所述相机还包括分别连接于所述光发射器和所述光接收器的控制器;
    所述光发射器向第一待测点发射第一光信号包括:
    所述控制器控制所述光发射器向所述第一待测点发射所述第一光信号;
    所述光接收器接收所述第一反射光信号包括:
    所述控制器控制所述光接收器接收所述第一反射光信号。
  30. 根据权利要求29所述的方法,其特征在于,所述方法还包括:
    所述控制器对所述第一反射光信号进行采样,得到第一采样结果;
    所述控制器根据所述第一采样结果确定所述第一光信号和所述第一反射光信号之间的第一相位差;
    所述控制器根据所述第一相位差确定所述第一待测点与所述相机之间的距离。
  31. 一种基于飞行时间ToF的测距方法,其特征在于,所述方法应用于控制器,其中,所述控制器包含于相机;所述相机还包括连接于所述控制器的光接收器;所述方法包括:
    所述控制器控制所述光接收器接收第一反射光信号和第二反射光信号,光发射器发射的第一光信号经过第一待测点的反射形成所述第一反射光信号,所述第一光信号与第一极线相交,所述第一反射光信号与第二极线相交;所述光发射器发射的第二光信号经过所述第二待测点的反射形成第二反射光信号,所述第二光信号与第三极线相交,所述第二反射光信号与第四极线相交;其中,所述光发射器的坐标原点为第一原点且所述光发射器的发射面包括第一平面和第四平面,所述光接收器的坐标原点为第二原点且所述光接收器的接收面包括第二平面和第五平面;所述第一待测点,所述第一原点和所述第二原点所在的平面为第三平面,且所述第三平面与所述第一平面相交于所述第一极线,所述第三平面与所述第二平面相交于所述第二极线;所述第二待测点,所述第一原点和所述第二原点所在的平面为第六平面,且所述第六平面与所述第四平面相交于第三极线,所述第六平面与所述第五平面相交于第四极线;所述第二待测点不同于所述第一待测点;其中,所述第三平面与所述第六平面不共面;
    所述控制器根据所述第一光信号和所述第一反射光信号确定所述第一待测点与所述相机之间的距离,并根据所述第二光信号和所述第二反射光信号确定所述第二待测点与所述相机之间的距离。
  32. 根据权利要求31所述的方法,其特征在于,
    所述光发射器包括第一光源区域和第二光源区域,其中,所述第一光源区域的发射面为所述第一平面,且所述第二光源区域的发射面为所述第四平面;
    所述光接收器包括第一像素阵列区域和第二像素阵列区域,其中,所述第一像素阵列区域的接收面为所述第二平面,且所述第二像素阵列区域的接收面为所述第五平面。
  33. 根据权利要求31或32所述的方法,其特征在于,所述第一光信号与所述第二光信号相互正交。
  34. 根据权利要求31至33任一项所述的方法,其特征在于,
    所述第一光信号和所述第二光信号均为通过二进制相移键控BPSK编码得到的信号。
  35. 根据权利要求34所述的方法,其特征在于,
    所述第一光信号为第一伪随机序列通过BPSK编码得到的信号,所述第二光信号为第二伪随机序列通过BPSK编码得到的信号,且所述第一伪随机序列中取值为0的序列个数和所述第二伪随机序列中取值为0的序列个数相等。
  36. 根据权利要求31至35任一项所述的方法,其特征在于,
    所述第一光信号的信号频率为第一频率,所述第二光信号的信号频率为第二频率,且所述第一频率不同于所述第二频率。
  37. 根据权利要求36所述的方法,其特征在于,所述方法还包括:
    所述控制器控制所述光接收器接收第三反射光信号,所述第三光信号经过所述第一待测点的反射形成第三反射光信号,所述第三光信号与所述第一极线相交,所述第三反射光信号与所述第二极线相交;其中,所述第三光信号信号频率为所述第二频率;
    所述控制器根据所述第一光信号和所述第一反射光信号确定所述第一待测点与所述相机之间的距离包括:
    所述控制器所述第一光信号,所述第一反射光信号,所述第三光信号和所述第三反射光信号确定所述第一待测点与所述相机之间的距离。
  38. 根据权利要求36或37所述的方法,其特征在于,所述方法还包括:
    所述控制器控制所述光接收器接收第四反射光信号;所述第四光信号经过所述第二待测点的反射形成第四反射光信号,所述第四光信号与所述第三极线相交,所述第四反射光信号与所述第四极线相交;其中,所述第四光信号的信号频率为所述第一频率;
    所述控制器根据所述第二光信号和所述第二反射光信号确定所述第二待测点与所述相机之间的距离包括:
    所述控制器根据所述第二光信号,所述第二反射光信号,所述第四光信号和所述第四反射信号确定所述第二待测点与所述相机之间的距离。
  39. 根据权利要求38任一项所述的方法,其特征在于,所述控制器根据所述第一光信号和所述第一反射光信号确定所述第一待测点与所述相机之间的距离包括:
    所述控制器对所述第一反射光信号进行采样,得到第一采样结果;
    所述控制器根据所述第一采样结果确定所述第一光信号和所述第一反射光信号之间的第一相位差;
    所述控制器根据所述第一相位差确定所述第一待测点与所述相机之间的距离。
  40. 根据权利要求31至39任一项所述的方法,其特征在于,所述控制器根据所述第二光信号和所述第二反射光信号确定所述第二待测点与所述相机之间的距离包括:
    所述控制器对所述第二反射光信号进行采样,得到第二采样结果;
    所述控制器根据所述第二采样结果确定所述第二光信号和所述第二反射光信号之间的第二相位差;
    所述控制器根据所述第二相位差确定所述第二待测点与所述相机之间的距离。
  41. 一种计算机可读存储介质,其特征在于,所述介质存储有指令,当所述指令被计算机执行时,实现权利要求21至40中任一项所述的方法。
  42. 一种计算机程序产品,其特征在于,包括指令,当所述指令在计算机上运行时,使得计算机执行如权利要求21至40中任一项所述的方法。
  43. 一种芯片,其特征在于,所述芯片包括处理器和通信接口;其中,所述通信接口和所述处理器耦合,所述处理器用于运行计算机程序或指令,以实现如权利要求21至40中任一项所述的方法。
PCT/CN2021/084739 2021-03-31 2021-03-31 一种基于飞行时间ToF的测距相机及控制方法 WO2022205218A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/084739 WO2022205218A1 (zh) 2021-03-31 2021-03-31 一种基于飞行时间ToF的测距相机及控制方法
CN202180088622.2A CN116710807A (zh) 2021-03-31 2021-03-31 一种基于飞行时间ToF的测距相机及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/084739 WO2022205218A1 (zh) 2021-03-31 2021-03-31 一种基于飞行时间ToF的测距相机及控制方法

Publications (1)

Publication Number Publication Date
WO2022205218A1 true WO2022205218A1 (zh) 2022-10-06

Family

ID=83457688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084739 WO2022205218A1 (zh) 2021-03-31 2021-03-31 一种基于飞行时间ToF的测距相机及控制方法

Country Status (2)

Country Link
CN (1) CN116710807A (zh)
WO (1) WO2022205218A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5682229A (en) * 1995-04-14 1997-10-28 Schwartz Electro-Optics, Inc. Laser range camera
CN107656284A (zh) * 2017-09-26 2018-02-02 艾普柯微电子(上海)有限公司 测距装置及测距方法
CN110390719A (zh) * 2019-05-07 2019-10-29 香港光云科技有限公司 基于飞行时间点云重建设备
CN111047709A (zh) * 2019-11-29 2020-04-21 暨南大学 一种双目视觉裸眼3d图像生成方法
US20210080578A1 (en) * 2019-09-13 2021-03-18 Topcon Corporation Three-dimensional survey apparatus, three-dimensional survey method, and three-dimensional survey program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5682229A (en) * 1995-04-14 1997-10-28 Schwartz Electro-Optics, Inc. Laser range camera
CN107656284A (zh) * 2017-09-26 2018-02-02 艾普柯微电子(上海)有限公司 测距装置及测距方法
CN110390719A (zh) * 2019-05-07 2019-10-29 香港光云科技有限公司 基于飞行时间点云重建设备
US20210080578A1 (en) * 2019-09-13 2021-03-18 Topcon Corporation Three-dimensional survey apparatus, three-dimensional survey method, and three-dimensional survey program
CN111047709A (zh) * 2019-11-29 2020-04-21 暨南大学 一种双目视觉裸眼3d图像生成方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAN JUNFENG, WANG SHUAI: "IMPLEMENTING AUTOMOBILE RANGING SYSTEM BASED ON BINOCULAR STEREO-VISION TECHNOLOGY", COMPUTER APPLICATIONS AND SOFTWARE, vol. 33, no. 9, 15 September 2016 (2016-09-15), pages 227 - 230, XP055973764, ISSN: 1000-386x, DOI: 10.3969/j.issn.1000-386x.2016.09.054 *
LONG ZHUOQUN, GONG XUE-MEI: "Measurement of Laser Multi-cycle Distance Pulsed Flying Time", JOURNAL OF XI'AN AEROTECHNICAL COLLEGE, vol. 27, no. 5, 20 September 2009 (2009-09-20), pages 16 - 18, XP055973765, ISSN: 1008-9233 *

Also Published As

Publication number Publication date
CN116710807A (zh) 2023-09-05

Similar Documents

Publication Publication Date Title
WO2022262332A1 (zh) 一种距离测量装置与相机融合系统的标定方法及装置
CN111045029B (zh) 一种融合的深度测量装置及测量方法
KR102015606B1 (ko) 멀티 라인 레이저 어레이 3차원 스캐닝 시스템 및 멀티 라인 레이저 어레이 3차원 스캐닝 방법
US10145671B2 (en) Three dimensional laser measuring system and method
US20220283306A1 (en) Localization Apparatus and Method
WO2023015880A1 (zh) 训练样本集的获取方法、模型训练方法及相关装置
US20200309898A1 (en) Multipath interference error correction in a time of flight sensor
WO2013091016A1 (en) Structured light system for robust geometry acquisition
CN206920599U (zh) 一种机械扫描式激光雷达光机结构
CN104049255A (zh) 一种基于编码调制的激光三维雷达装置
CN105372642A (zh) 一种基于调制频率测量的超高密度激光二维扫描装置
CN108519604A (zh) 一种基于伪随机码调制解调的固态面阵激光雷达测距方法
CN107564051B (zh) 一种深度信息采集方法及系统
WO2022205218A1 (zh) 一种基于飞行时间ToF的测距相机及控制方法
Sergiyenko et al. Multi-view 3D data fusion and patching to reduce Shannon entropy in Robotic Vision
CN118334239A (zh) 基于条纹投影测量的管道三维重建方法和设备
CN111510700A (zh) 图像采集装置
CN105427302B (zh) 一种基于移动稀疏相机采集阵列的三维采集及重建系统
WO2023077412A1 (zh) 一种物体测距方法及装置
Mure-Dubois et al. Fusion of time of flight camera point clouds
CN114556048B (zh) 测距方法、测距装置及计算机可读存储介质
WO2021068723A1 (zh) 传感器标定方法和传感器标定装置
Wirth et al. Automatic Spatial Calibration of Near-Field MIMO Radar With Respect to Optical Sensors
WO2021253308A1 (zh) 图像采集装置
CN110411713A (zh) 一种同轴相机主次镜在轨姿态测量系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21933880

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180088622.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21933880

Country of ref document: EP

Kind code of ref document: A1