WO2022203493A1 - Foaming formulation and use thereof as a viscoelastic surfactant in low-permeability reservoirs - Google Patents

Foaming formulation and use thereof as a viscoelastic surfactant in low-permeability reservoirs Download PDF

Info

Publication number
WO2022203493A1
WO2022203493A1 PCT/MX2022/050026 MX2022050026W WO2022203493A1 WO 2022203493 A1 WO2022203493 A1 WO 2022203493A1 MX 2022050026 W MX2022050026 W MX 2022050026W WO 2022203493 A1 WO2022203493 A1 WO 2022203493A1
Authority
WO
WIPO (PCT)
Prior art keywords
foaming
formulation
foaming formulation
accordance
foam
Prior art date
Application number
PCT/MX2022/050026
Other languages
Spanish (es)
French (fr)
Inventor
José del Carmen JIMÉNEZ OSORIO
Original Assignee
Chemiservis, S.A. De C.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemiservis, S.A. De C.V. filed Critical Chemiservis, S.A. De C.V.
Publication of WO2022203493A1 publication Critical patent/WO2022203493A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids

Definitions

  • the object of the present invention is to provide a foaming formulation and its use as a viscoelastic surfactant agent in low permeability reservoirs, which was designed to be used in low pressure reservoirs, where due to its characteristics it requires the use of low density systems, Likewise, the present invention can be adapted to densities of 0.5 to 0.2 g/cm 3 without losing its viscoelastic divergent properties.
  • VES systems are also used to slow down the reaction rate of the acid with the reservoir. This has the effect of creating predominantly long, deep-penetrating wormholes. Experimental modeling has shown these to provide the best performance in terms of increased productivity gains. Also, if acidizing is done to remove the effects of scaling (such as scaling, drilling damage etc), than this type of treatment is the most efficient method of circumventing. Such VES systems have been used extensively to great effect, significantly improving the recovery of incremental hydrocarbons in acidizing treatments.
  • VES containing bypass acids or damage removal treatments provide an excellent cost/performance ratio for the operator.
  • the present invention is A novel system with developed technology that addresses many of these concerns while providing excellent results as a divergent system.
  • Figure 1 Shows photographs of the Stability test of the present invention at room temperature, twenty-four hours without observing separation.
  • Figure 2 Shows photographs of the Stability test of the invention in its foamed version at room temperature, at two hours without observing breakage.
  • FIG. 1 Shows photographs of the stability test at 90°C of the system of the present invention stimulated.
  • Foam breaking begins at 10 minutes, total foam breaking is observed at 50 minutes.
  • FIG. 4 Shows a photograph of the invention (Base), spent with CaC0 3 to perform activation.
  • Figure 5 Shows a photograph of the invention (Base), spent with CaC0 3 to carry out activation, which corresponds to the continuation of the process started in figure 4.
  • Figure 6. Shows a photograph of the invention (base fluid) activated with CaC0 3 before being degraded with SNAC 2000 solvent system.
  • Figure 7. Shows a photograph of the invention (base fluid) activated with CaC03 , before being degraded with the SNAC 2000 solvent system, which corresponds to the continuation of the process started in figure 6.
  • Figure 8 Shows a photograph of the invention (Foamed) activated with CaC03 before being degraded with the SNAC 2000 solvent system.
  • Figure 9 Shows a photograph of the invention (Foamed) activated with CaC03 after being degraded with the SNAC 2000 solvent system.
  • Figure 10 Shows a photograph of the invention Activated (Base) and SNAC 2000 solvent system, filtered through No. 100 mesh.
  • Figure 11 Shows a photograph of the invention (Foaming) and SNAC 2000 solvent system, filtered through No. 100 mesh.
  • Figure 12 Shows a photograph Contamination of the FDV 82 system (Foaming) with oil samples from the Cantarell 2067, Maloob 401D, Zaap 46D and Balam 75D wells.
  • Figure 13 Shows a photograph showing the contamination of the present invention (Foaming) with oil samples from wells Xux 5, Ixtal 1 and Ek 21.
  • Figure 14 Shows a photograph showing the contamination of the present invention (Base ) with oil samples from the Cantarell 2067, Maloob 401D, Zaap 46D and Balam 75D wells.
  • Figure 15 Shows a photograph showing the contamination of the present invention (Base) with oil samples from the Xux 5, Ixtal 1 and Ek 21 wells.
  • Figure 16 Shows a photograph of the compatibility of the FDV 82 (Foamed) system with an oil sample from the Cantarell 2067 well filtered through No. 100 mesh.
  • Figure 17. Shows a photograph of the compatibility of the present invention (Foaming) with an oil sample from the Maloob 401D well filtered through No. 100 mesh.
  • Figure 18 Shows a photograph of the compatibility of the present invention (Foaming) with an oil sample from the Zaap 46D well filtered through No. 100 mesh.
  • Figure 19 Shows a photograph of the compatibility of the present invention (Foaming) with an oil sample from the Balam 75D well filtered through No. 100 mesh.
  • Figure 20 Shows a photograph of the compatibility of the present invention (Foaming) with an oil sample from the Xux 5 well filtered through No. 100 mesh.
  • Figure 21 Shows a photograph of the compatibility of the present invention (Foaming) with an oil sample from the Ixtal 1 well filtered through mesh No. 100.
  • Figure 22 Shows a photograph of the compatibility of the present invention (Foaming) with an oil sample from well Ek 21 filtered through mesh No. 100.
  • Figure 23 Shows a photograph of the compatibility of the present invention (Base) with an oil sample from the Cantarell 2067 well filtered by mesh No. 100.
  • Figure 24 Shows a photograph of the compatibility of the present invention (Base) with an oil sample from the Maloob 401D well filtered through No. 100 mesh.
  • Figure 25 Shows a photograph of the compatibility of the present invention (Base) with an oil sample from the Zaap 46D well filtered through No. 100 mesh.
  • Figure 26 Shows a photograph of the compatibility of the present invention (Base) with an oil sample from the Balam 75D well filtered by mesh No. 100.
  • Figure 27 Shows a photograph of the compatibility of the present invention (Base) with an oil sample from the Xux 5 well filtered by mesh No. 100.
  • Figure 28 Shows a photograph of the compatibility of the present invention (Base) with an oil sample from the Ixtal 1 well filtered through mesh No. 100.
  • Figure 29 Shows a photograph of the compatibility of the present invention (Base) with an oil sample from well Ek 21 filtered by mesh No. 100
  • the present invention provides a foaming formulation and its use as a viscoelastic surface active agent in low permeability reservoirs, said formulation comprises 0.5 to 1% of an iron sequestrant, 1 to 4% of a primary foaming agent, 1 to 4 % secondary foaming agent, 1 to 5% corrosion inhibitor, 0.5 to 2% additive dispersant, 3 to 12% hydrochloric acid, 0.5 to 1.5% gelling agent, and from 3 to 10% of a viscoelastic surfactant in addition to completing with water until reaching 100%; wherein the iron sequestrant is sodium erythorbate, the primary foaming agent is nitrogen base, the secondary foaming agent is glycol, the corrosion inhibitor is isopropanol, the additive dispersant is 2-propanol, the gelling agent is petroleum distillate Light Viscoelastic Surfactant is propylene glycol, as shown in table 1 and whose physical and chemical properties are detailed in table 2.
  • the present invention is a state-of-the-art foamed divergent system that provides high viscosity, when it comes into contact with calcium carbonate (CaC0 3) it initiates its activation process, to thus develop a viscous foam creating the divergence in the intervals of interest thus guaranteeing success in acid stimulations, the system is easy to degrade and does not create any damage by generating polymer residues since it is designed with viscoelastic surfactants that avoid this problem.
  • CaC0 3 calcium carbonate
  • the invention has a working temperature of 50 °C to 175 °C, is compatible with oils from 8 to 47 °API and can be used both in carbonate formations and in sand formations.
  • Another method to easily determine if you are creating close to 80% quality foam is to mark a line on the graduated pitcher where your final volume should end.
  • Specific gravity is the ratio of the weight of the material to the weight of water or the density of the material to the density of water.
  • API Gravity American Petroleum Institute
  • API Gravity is a term used to describe the gravity of crude oil or other petroleum products. In this procedure, a hydrometer or hydrometer should be used to determine the specific gravity in degrees °API in crude oil and its derivatives.
  • thermo-hydrometer with a range according to the API gravity of the sample.
  • Correct API degrees to 60°F by determining the difference between the temperature recorded in step 5 of the main procedure and 60°F. Multiply the difference by 0.1 °API to obtain the correction factor. If the temperature is above 60°F, subtract the factor from the specific gravity recorded in step 5. If the temperature is below 60°F, add the factor to the specific gravity recorded, for example:
  • Heavy crude has API gravities between 10 and 22.3 °API.
  • This method is considered practical for the determination of percentages of water and sediment present in crude oil.
  • a known volume of crude oil, solvent and demulsifier is placed in a centrifuge tube, which is heated to 60 + 3 °C to be centrifuged at 1800 rpm. Once the time is over centrifugation, the volume of the layer of water and sediment is read at the bottom of the tube.
  • a portion of the oil sample is weighed and dispersed in petroleum ether.
  • the insoluble asphaltene in the solution is filtered off, dried and weighed.
  • the percentage of asphaltenes is calculated from the weight of the solids retained on the filter paper and the initial weight of the analyzed sample.
  • paraffins For the determination of paraffins, the sample dispersed in petroleum ether is clarified. The addition of acetone and the reduction in temperature will cause the paraffins to precipitate from solution. It will be filtered, dried and weighed to obtain the percentage of paraffins from the initial weight of the sample.
  • the compatibility tests between the formation fluids and the proposed stimulation treatments are carried out in a 1: 1 contamination ratio at 90 °C temperature conditions in a constant temperature curing tub, monitoring the time of rupture or separation of phases which must be 100% of the emulsion generated at the beginning of the test, in a time not exceeding 30 minutes. Subsequently, the acid/crude oil system mixtures are left for four hours at the aforementioned temperature and at the end of this time they are filtered through a No 100 mesh to verify whether or not there is compatibility between the stimulation fluids and the recovered crude oil. This test guarantees the success of acid stimulations in oil reservoirs.
  • Oil characterization and compatibility tests with stimulation fluids are carried out under ASTM D287-2000, D4007-02, IP 143/01 and API standards.
  • phase breaking times are optimal, these did not exceed 20 min of testing with defined interfaces.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Abstract

The present invention relates to a foaming formulation and to the use thereof as a viscoelastic surfactant in low-permeability reservoirs, the formulation being designed to be used in low-pressure reservoirs where the use of low-density systems is required as a result of the characteristics of the reservoirs. The present invention can likewise be adapted to densities of 0.5 to 0.2 g/cm³ without losing its viscoelastic diverting properties. 10 15 20 25 30

Description

FORMULACIÓN ESPUMANTE Y SU USO COMO AGENTE TENSOACTIVO VISCOELÁSTICO EN YACIMIENTOS DE BAJA PERMEABILIDAD FOAMING FORMULATION AND ITS USE AS VISCOELASTIC SURFACE-ACTIVE AGENT IN LOW-PERMEABILITY RESERVOIRS
DESCRIPCION OBJETO DE LA INVENCION DESCRIPTION OBJECT OF THE INVENTION
El objeto de la presente invención es proveer una formulación espumante y su uso como agente tensoactivo viscoelástico en yacimientos de baja permeabilidad, la cual fue diseñado para ser utilizada en los yacimientos de baja presión, donde por sus características requiere uso de sistemas de baja densidad, de igual forma la presente invención puede adaptarse a densidades de 0.5 a 0.2 g/cm3 sin perder sus propiedades de divergente viscoelástico. ANTECEDENTES The object of the present invention is to provide a foaming formulation and its use as a viscoelastic surfactant agent in low permeability reservoirs, which was designed to be used in low pressure reservoirs, where due to its characteristics it requires the use of low density systems, Likewise, the present invention can be adapted to densities of 0.5 to 0.2 g/cm 3 without losing its viscoelastic divergent properties. BACKGROUND
En el pasado, el uso de fluidos de acidificación reticulados era limitado. La alta viscosidad del fluido requerido durante el bombeo aumenta las presiones de fricción, lo que requería una mayor potencia de bombeo. Además, la obtención de un fluido reticulado ácido-vivo fue un proceso costoso. En muchos casos, los ácidos totalmente reticulados eran simplemente necesarios para retardar la reacción de HC1 en carbonatos; simplemente viscosificar el ácido proporcionaba un amplio retraso en la reacción. En tales tratamientos, sin embargo, gran parte del ácido se habla perdido como resultado de la pérdida de fluido a través de los agujeros de gusano. En la actualidad existen sistemas específicos denominados "VES'', Sistemas Tensoactivos Viscoelásticos, los cuales proporcionan una excelente deviación incrementando la viscosidad al gastarse completamente el ácido con el carbonato. Los yacimientos de baja permeabilidad (carbonato de piedra caliza y la tiza) son una fuente importante de hidrocarburos en todo el mundo, lo más importante en el Medio Oriente, pero con la mayoría de los continentes que sostiene algunos tales depósitos. In the past, the use of crosslinked acidizing fluids was limited. The high viscosity of the fluid required during pumping increases friction pressures, which required greater pumping power. Furthermore, obtaining a cross-linked acid-living fluid was a costly process. In many cases, fully crosslinked acids were simply necessary to retard the reaction of HC1 to carbonates; simply viscosifying the acid provided ample delay in the reaction. In such treatments, however, much of the acid had been lost as a result of fluid loss through the wormholes. Currently there are specific systems called " VES '' , Viscoelastic Tensoactive Systems, which provide an excellent deflection by increasing the viscosity by completely spending the acid with the carbonate. Low-permeability reservoirs (carbonate limestone and chalk) are a major source of hydrocarbons throughout the world, most importantly in the Middle East, but with most continents supporting some such deposits.
La explotación comercial de estos recursos se puede lograr mediante acidificación y/o fractura de estos reservorios de baja permeabilidad para aumentar el contacto de la pared del pozo con el depósito, lo que mejora la productividad de hidrocarburos. Commercial exploitation of these resources can be achieved by acidizing and/or fracturing these low-permeability reservoirs to increase wellbore-wall contact with the reservoir, which improves hydrocarbon productivity.
Acidificación de los embalses mediante el tratamiento del siluro dará lugar a los agujeros de gusano preferente en las zonas de permeabilidad más altos del pozo, a menudo conduce a sólo el aumento incremental de la productividad de hidrocarburos. Dos opciones pueden considerarse más productivamente centrarse tratamiento ácido - colocación del ácido en la zona objetivo (utilizando tubería flexible) o utilizando técnicas de desviación químicos, tales como tensoactivos viscoelásticos (VES). Reservoir acidification by catfish treatment will lead to preferential wormholes in the higher permeability zones of the well, often leading to only incremental increase in hydrocarbon productivity. Two options can be considered to more productively focus acid treatment - placing the acid in the target area (using coiled tubing) or using chemical diversion techniques, such as viscoelastic surfactants (VES).
Además de proporcionar la desviación, los sistemas VES también se utilizan para reducir la velocidad de reacción del ácido con el depósito. Esto tiene el efecto de crear agujeros de gusano predominantemente largas, de penetración profunda. Modelado experimental ha demostrado que estos para proporcionar el mejor rendimiento en términos de incremento de ganancia de productividad. Además, si la acidificación se realiza para eliminar los efectos de la incrustación (como la escala, el daño de perforación etc), que este tipo de tratamiento es el método más eficiente de eludir. Tales sistemas VES se han utilizado ampliamente con gran efecto, mejorando significativamente la recuperación de hidrocarburos increméntales en los tratamientos de acidificación. In addition to providing diversion, VES systems are also used to slow down the reaction rate of the acid with the reservoir. This has the effect of creating predominantly long, deep-penetrating wormholes. Experimental modeling has shown these to provide the best performance in terms of increased productivity gains. Also, if acidizing is done to remove the effects of scaling (such as scaling, drilling damage etc), than this type of treatment is the most efficient method of circumventing. Such VES systems have been used extensively to great effect, significantly improving the recovery of incremental hydrocarbons in acidizing treatments.
La importancia de estas ventajas se ha agravado por las técnicas de terminación de pozos modernos, donde perforaciones horizontales largos son la geometría y más eficiente. Bullheading ya no es efectivo, y tubería flexible es costosa. The importance of these advantages has been compounded by modern well completion techniques, where long horizontal boreholes are geometry and more efficient. Bullheading is no longer effective, and coiled tubing is expensive.
VES que contienen ácidos desvio o tratamientos de eliminación de daños proporcionan una excelente relación costo / rendimiento para el operador. VES containing bypass acids or damage removal treatments provide an excellent cost/performance ratio for the operator.
Hasta la fecha, una serie de limitaciones de la tecnología VES en uso han limitado la adopción generalizada de esta para fluidos en el campo. Éstas incluyen: To date, a number of limitations of the VES technology in use have limited its widespread adoption for fluids in the field. These include:
• Limites térmicos a las propiedades viscosificantes del ácido gastado alrededor de 120 ° C / 250 °F • Thermal limits to viscosifying properties of spent acid around 120 °C / 250 °F
• Reducción de viscosificación tras la adición de inhibidores de la corrosión necesarios en el campo de solución aplicada. • Reduction of viscosification after the addition of necessary corrosion inhibitors in the field of applied solution.
• La pérdida de las propiedades elásticas (que mejoran la desviación) del fluido empobrecido a bajas temperaturas - por encima de aproximadamente 100 ° C / 210 ° F. • Loss of elastic (deflection-enhancing) properties of the lean fluid at low temperatures - above about 100°C / 210°F.
• intolerancia de los ácidos / VES a hierro (III) recogió en disolución de los productos de corrosión, lo que lleva a la separación de fases y el daño potencial a inyección en el depósito. • El requisito de una alta concentración de VES (5- 8%) en ácido para desarrollar desvio, por lo que la solución cara • intolerance of acids / VES to iron (III) collected in solution of corrosion products, leading to phase separation and potential damage upon injection into the reservoir. • The requirement of a high concentration of VES (5- 8%) in acid to develop bypass, so the expensive solution
• Alta toxicidad del agente tensioactivo viscoelástico, la eliminación de los productos de la consideración en algunas partes del mundo, y causando una carga ambiental significativo donde los fluidos se desechan en los ambientes marinos. • High toxicity of the viscoelastic surfactant, removing the products from consideration in some parts of the world, and causing a significant environmental burden where fluids are disposed of in marine environments.
Por lo anterior, la presente invención se Un sistema novedoso con tecnologia desarrollado que se ocupa de muchas de estas preocupaciones y que a su vez proporciona excelentes resultados como sistema divergente. Therefore, the present invention is A novel system with developed technology that addresses many of these concerns while providing excellent results as a divergent system.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
Figura 1. Muestra fotografias de la prueba de Estabilidad de la presente invención a temperatura ambiente, a veinticuatro horas sin observarse separación. Figure 1. Shows photographs of the Stability test of the present invention at room temperature, twenty-four hours without observing separation.
Figura 2. Muestra fotografias de la prueba Estabilidad de la invención en su versión espumada a temperatura ambiente, a dos horas sin observar rompimiento. Figure 2. Shows photographs of the Stability test of the invention in its foamed version at room temperature, at two hours without observing breakage.
Figura 3. Muestra fotografias de la prueba de estabilidad a 90°C del sistema de la presente invención estimulada.Figure 3. Shows photographs of the stability test at 90°C of the system of the present invention stimulated.
Inicia rompimiento de espuma a los 10 minutos, se observa rompimiento total de la espuma a los 50 minutos. Foam breaking begins at 10 minutes, total foam breaking is observed at 50 minutes.
Figura 4. Muestra una fotografia de la invención (Base), gastada con CaC03 para realizar activación. Figure 4. Shows a photograph of the invention (Base), spent with CaC0 3 to perform activation.
Figura 5. Muestra una fotografia de la invención (Base), gastada con CaC03 para realizar activación, que corresponde a la continuación del proceso iniciado en la figura 4. Figura 6. Muestra una fotografia de la invención (fluido base) activado con CaC03 antes de ser degradado con sistema solvente SNAC 2000. Figura 7. Muestra una fotografía de la invención (fluido base) activado con CaC03, antes de ser degradado con sistema solvente SNAC 2000. que corresponde a la continuación del proceso iniciado en la figura 6. Figure 5. Shows a photograph of the invention (Base), spent with CaC0 3 to carry out activation, which corresponds to the continuation of the process started in figure 4. Figure 6. Shows a photograph of the invention (base fluid) activated with CaC0 3 before being degraded with SNAC 2000 solvent system. Figure 7. Shows a photograph of the invention (base fluid) activated with CaC03 , before being degraded with the SNAC 2000 solvent system, which corresponds to the continuation of the process started in figure 6.
Figura 8. Muestra una fotografía de la invención (Espumado) activado con CaC03 antes de ser degradado con sistema solvente SNAC 2000. Figure 8. Shows a photograph of the invention (Foamed) activated with CaC03 before being degraded with the SNAC 2000 solvent system.
Figura 9. Muestra una fotografía de la invención (Espumado) activado con CaC03 después de ser degradado con sistema solvente SNAC 2000. Figure 9. Shows a photograph of the invention (Foamed) activated with CaC03 after being degraded with the SNAC 2000 solvent system.
Figura 10. Muestra una fotografía de la invención Activado (Base) y sistema solvente SNAC 2000, filtrado por malla No. 100. Figure 10. Shows a photograph of the invention Activated (Base) and SNAC 2000 solvent system, filtered through No. 100 mesh.
Figura 11. Muestra una fotografía de la invención (Espumado) y sistema solvente SNAC 2000, filtrado por malla No. 100. Figure 11. Shows a photograph of the invention (Foaming) and SNAC 2000 solvent system, filtered through No. 100 mesh.
Figura 12. Muestra una fotografía Contaminación del sistema FDV 82 (Espumado) con muestras de aceite de los pozos Cantarell 2067, Maloob 401D, Zaap 46D y Balam 75D. Figure 12. Shows a photograph Contamination of the FDV 82 system (Foaming) with oil samples from the Cantarell 2067, Maloob 401D, Zaap 46D and Balam 75D wells.
Figura 13. Muestra una fotografía donde se aprecia la contaminación de la presente invención (Espumado) con muestras de aceite de los pozos Xux 5, Ixtal 1 y Ek 21. Figura 14 Muestra una fotografía donde se aprecia la contaminación de la presente invención (Base) con muestras de aceite de los pozos Cantarell 2067, Maloob 401D, Zaap 46D y Balam 75D. Figure 13. Shows a photograph showing the contamination of the present invention (Foaming) with oil samples from wells Xux 5, Ixtal 1 and Ek 21. Figure 14 Shows a photograph showing the contamination of the present invention (Base ) with oil samples from the Cantarell 2067, Maloob 401D, Zaap 46D and Balam 75D wells.
Figura 15. Muestra una fotografía donde se aprecia la contaminación de la presente invención (Base) con muestras de aceite de los pozos Xux 5, Ixtal 1 y Ek 21. Figure 15. Shows a photograph showing the contamination of the present invention (Base) with oil samples from the Xux 5, Ixtal 1 and Ek 21 wells.
Figura 16. Muestra una fotografía de la compatibilidad sistema FDV 82 (Espumado) con muestra de aceite del pozo Cantarell 2067 filtrado por malla No. 100. Figura 17. Muestra una fotografía de la compatibilidad de la presente invención (Espumado) con muestra de aceite del pozo Maloob 401D filtrado por malla No. 100. Figure 16. Shows a photograph of the compatibility of the FDV 82 (Foamed) system with an oil sample from the Cantarell 2067 well filtered through No. 100 mesh. Figure 17. Shows a photograph of the compatibility of the present invention (Foaming) with an oil sample from the Maloob 401D well filtered through No. 100 mesh.
Figura 18. Muestra una fotografía de la compatibilidad de la presente invención (Espumado) con muestra de aceite del pozo Zaap 46D filtrado por malla No. 100. Figure 18. Shows a photograph of the compatibility of the present invention (Foaming) with an oil sample from the Zaap 46D well filtered through No. 100 mesh.
Figura 19. Muestra una fotografía de la compatibilidad de la presente invención (Espumado) con muestra de aceite del pozo Balam 75D filtrado por malla No. 100. Figure 19. Shows a photograph of the compatibility of the present invention (Foaming) with an oil sample from the Balam 75D well filtered through No. 100 mesh.
Figura 20. Muestra una fotografía de la compatibilidad de la presente invención (Espumado) con muestra de aceite del pozo Xux 5 filtrado por malla No. 100. Figure 20. Shows a photograph of the compatibility of the present invention (Foaming) with an oil sample from the Xux 5 well filtered through No. 100 mesh.
Figura 21. Muestra una fotografía de la compatibilidad de la presente invención (Espumado) con muestra de aceite del pozo Ixtal 1 filtrado por malla No. 100. Figure 21. Shows a photograph of the compatibility of the present invention (Foaming) with an oil sample from the Ixtal 1 well filtered through mesh No. 100.
Figura 22. Muestra una fotografía de la compatibilidad de la presente invención (Espumado) con muestra de aceite del pozo Ek 21 filtrado por malla No. 100. Figure 22. Shows a photograph of the compatibility of the present invention (Foaming) with an oil sample from well Ek 21 filtered through mesh No. 100.
Figura 23. Muestra una fotografía de la compatibilidad de la presente invención (Base) con muestra de aceite del pozo Cantarell 2067 filtrado por malla No. 100. Figure 23. Shows a photograph of the compatibility of the present invention (Base) with an oil sample from the Cantarell 2067 well filtered by mesh No. 100.
Figura 24. Muestra una fotografía de la compatibilidad de la presente invención (Base) con muestra de aceite del pozo Maloob 401D filtrado por malla No. 100. Figure 24. Shows a photograph of the compatibility of the present invention (Base) with an oil sample from the Maloob 401D well filtered through No. 100 mesh.
Figura 25. Muestra una fotografía de la compatibilidad de la presente invención (Base) con muestra de aceite del pozo Zaap 46D filtrado por malla No. 100. Figure 25. Shows a photograph of the compatibility of the present invention (Base) with an oil sample from the Zaap 46D well filtered through No. 100 mesh.
Figura 26. Muestra una fotografía de la compatibilidad de la presente invención (Base) con muestra de aceite del pozo Balam 75D filtrado por malla No. 100. Figure 26. Shows a photograph of the compatibility of the present invention (Base) with an oil sample from the Balam 75D well filtered by mesh No. 100.
Figura 27. Muestra una fotografía de la compatibilidad de la presente invención (Base) con muestra de aceite del pozo Xux 5 filtrado por malla No. 100. Figura 28. Muestra una fotografía de la compatibilidad de la presente invención (Base) con muestra de aceite del pozo Ixtal 1 filtrado por malla No. 100. Figure 27. Shows a photograph of the compatibility of the present invention (Base) with an oil sample from the Xux 5 well filtered by mesh No. 100. Figure 28. Shows a photograph of the compatibility of the present invention (Base) with an oil sample from the Ixtal 1 well filtered through mesh No. 100.
Figura 29. Muestra una fotografía de la compatibilidad de la presente invención (Base) con muestra de aceite del pozo Ek 21 filtrado por malla No. 100 Figure 29. Shows a photograph of the compatibility of the present invention (Base) with an oil sample from well Ek 21 filtered by mesh No. 100
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
La presente invención provee proveer una formulación espumante y su uso como agente tensoactivo viscoelástico en yacimientos de baja permeabilidad, dicha formulación comprende de 0.5 a 1% de un secuestrante de hierro, de 1 a 4% de un agente espumante primario, de 1 a 4 % de una agente espumante secundario, de 1 a 5% de un inhibidor de la corrosión, de 0.5 a 2% de un dispersante de aditivos, de 3 a 12% de ácido clorhídrico, de 0.5 a 1.5 % de un agente gelificante, y de 3 a 10% de un surfactante viscoelástico además de completar con agua hasta llegar al 100%; en donde el secuestrante de hierro des eritorbato de sodio, el agente espumante primario es base de nitrógeno, el agente espumante secundario es glicol, el inhibidor de corrosión es isopropanol, el dispersante de aditivos es 2-propanol, el agente gelificante es destilado de petróleo ligero Surfactante Viscoelástico es propilenglicol, como se muestra en la tabla 1 y cuyas propiedades físicas y químicas se detallan en la tabla 2.
Figure imgf000009_0001
Figure imgf000010_0001
The present invention provides a foaming formulation and its use as a viscoelastic surface active agent in low permeability reservoirs, said formulation comprises 0.5 to 1% of an iron sequestrant, 1 to 4% of a primary foaming agent, 1 to 4 % secondary foaming agent, 1 to 5% corrosion inhibitor, 0.5 to 2% additive dispersant, 3 to 12% hydrochloric acid, 0.5 to 1.5% gelling agent, and from 3 to 10% of a viscoelastic surfactant in addition to completing with water until reaching 100%; wherein the iron sequestrant is sodium erythorbate, the primary foaming agent is nitrogen base, the secondary foaming agent is glycol, the corrosion inhibitor is isopropanol, the additive dispersant is 2-propanol, the gelling agent is petroleum distillate Light Viscoelastic Surfactant is propylene glycol, as shown in table 1 and whose physical and chemical properties are detailed in table 2.
Figure imgf000009_0001
Figure imgf000010_0001
Tabla.1. Compuestos presentes en la Invención
Figure imgf000010_0002
Table 1. Compounds present in the Invention
Figure imgf000010_0002
Tabla 2. Características físicas y químicas de la presente invención Table 2. Physical and chemical characteristics of the present invention
La presente invención es un sistema divergente espumado de última generación que proporciona alta viscosidad, al entrar en contacto con el carbonato de calcio (CaC03) inicia su proceso de activación, para desarrollar de esta manera una espuma viscosa creando la divergencia en los intervalos de interés garantizando asi el éxito en las estimulaciones acidas, el sistema es fácil de degradar y no crea ningún daño por generación de residuos de polímeros ya que está diseñado con surfactantes viscoelásticos que evitan esta problemática. The present invention is a state-of-the-art foamed divergent system that provides high viscosity, when it comes into contact with calcium carbonate (CaC0 3) it initiates its activation process, to thus develop a viscous foam creating the divergence in the intervals of interest thus guaranteeing success in acid stimulations, the system is easy to degrade and does not create any damage by generating polymer residues since it is designed with viscoelastic surfactants that avoid this problem.
La invención tiene una temperatura de trabajo 50 °C a 175 °C, es compatible con aceites de 8 a 47 °API y puede ser utilizado tanto en formaciones de carbonatos como en formaciones de arenas. The invention has a working temperature of 50 °C to 175 °C, is compatible with oils from 8 to 47 °API and can be used both in carbonate formations and in sand formations.
Las ventajas más importantes que presenta la invención son: The most important advantages of the invention are:
• Proporciona una excelente divergencia por incremento de viscosidad al entrar en contacto con el carbonato de calcio. • Provides excellent diversion due to increased viscosity upon contact with calcium carbonate.
• Garantiza la colocación del ácido en la zona objetivo mediante la técnica de desviación química. • Ensures placement of acid in the target area using the chemical bypass technique.
• Ayuda a proporcionar la recuperación de hidrocarburos en los tratamientos acidificados. • Helps provide hydrocarbon recovery in acidified treatments.
• No genera daño a la formación ya que es un sistema libre de polímeros. • Does not cause damage to the formation since it is a polymer-free system.
• Abarca mayor área al ser espumado generando un ahorro económico • Covers a larger area when foamed, generating economic savings
• Proporciona una calidad de espuma que va de 50 a 80%. • Provides a foam quality ranging from 50 to 80%.
EJEMPLO 1 . PRUEBA DE ESTABILIDAD DE LA ESPUMA. EXAMPLE 1 . FOAM STABILITY TEST.
1. Preparar la base de los sistemas espumados a evaluar. 2. Colocar de 100 ml a 150ml de la muestra del sistema en una jarra de plástico graduada. 1. Prepare the base of the foamed systems to be evaluated. 2. Place 100 ml to 150 ml of the system sample in a graduated plastic jar.
3. Mezclar en un agitador de velocidad variable a 20, 000 rpm el volumen medido del sistema base durante 1 a 3 minuto o hasta observar el espumado del sistema. 4. Tarar una probeta de vidrio de 250 mil en una balanza analítica y verter 250 mil de sistema espumado. 3. Mix the measured volume of the base system on a variable speed mixer at 20,000 rpm for 1 to 3 minutes or until the system foams. 4. Tare a 250 mil glass cylinder on an analytical balance and pour 250 mil of foamed system.
5. Determinar la calidad de la espuma del sistema de la manera siguiente: 5. Determine the foam quality of the system as follows:
Medíante el uso de una balanza analítica para determinar la masa y dividirlo entre el volumen conocido, Ejemplo: 50 g de espuma en una probeta con volumen de 250 ml. Da como resultado 20%, 20% siendo el volumen de partida (sistema base) y el resto 80% siendo el de la espuma generada o calidad de espuma. Realizar cálculo de porcentaje de calidad de espuma con la siguiente formula 1: By using an analytical balance to determine the mass and divide by the known volume, Example: 50 g of foam in a 250 mL volumetric cylinder. Returns 20%, 20% being the starting volume (base system) and the rest 80% being that of the generated foam or foam quality. Perform foam quality percentage calculation with the following formula 1:
Fórmula 1
Figure imgf000012_0001
Formula 1
Figure imgf000012_0001
Otro método para determinar de una manera sencilla sí usted está creando cerca de 80% de calidad de espuma es marcar con una línea la jarra graduada donde su volumen final debe terminar. Ejemplo: digamos que inicie con 100 ml de la mezcla del sistema base (antes de la formación de espuma) deberá terminar con 500 ml de espuma al aplicar 20, 000 rpm de agitación sobre el sistema para espumar (volumen final), con una densidad de 0.20 g/ cm3 . Another method to easily determine if you are creating close to 80% quality foam is to mark a line on the graduated pitcher where your final volume should end. Example: Let's say you start with 100 ml of the base system mix (before foaming) you should end up with 500 ml of foam by applying 20,000 rpm of agitation on the system to foam (final volume), with a density of 0.20 g/cm 3 .
Calcular como se índica a continuación: Calculate as follows:
(100 ml /500 ml) * 100 = 20%, 20% siendo el volumen de partida (sistema base) y el resto 80% siendo el de la espuma generada o calidad de espuma. Realizar monitoreo de calidad de espuma a condiciones en la probeta de 250 ml y finalizar hasta que alcance el 50% de vida media, registrar los resultados. Realizar el mismo procedimiento, pero colocando una muestra para estabilidad a temperatura de 90°C. Emitir los resultados. Los resultados de estas pruebas se observan en la figura 1, figura 2 y figura 3. (100 ml /500 ml) * 100 = 20%, 20% being the starting volume (base system) and the rest 80% being that of the generated foam or foam quality. Carry out foam quality monitoring at conditions in the 250 ml test tube and finish until it reaches 50% of half-life, record the results. Carry out the same procedure, but placing a sample for stability at a temperature of 90°C. Issue the results. The results of these tests are shown in figure 1, figure 2 and figure 3.
EJEMPLO 2. DETERMINACION DE LA GRAVEDAD API EN EL ACEITE CRUDO EXAMPLE 2. DETERMINATION OF API GRAVITY IN CRUDE OIL
La gravedad especifica es la relación entre el peso del material con el peso del agua o la densidad del material con respecto a la densidad del agua. La gravedad API (American Petroleum Institute) es un término usado para describir la gravedad de un aceite crudo u otros derivados del petróleo. En este procedimiento se deberá utilizar un hidrómetro o un densímetro para determinar la gravedad especifica en grados °API en el crudo y sus derivados. Specific gravity is the ratio of the weight of the material to the weight of water or the density of the material to the density of water. API Gravity (American Petroleum Institute) is a term used to describe the gravity of crude oil or other petroleum products. In this procedure, a hydrometer or hydrometer should be used to determine the specific gravity in degrees °API in crude oil and its derivatives.
1.Transferir la muestra de crudo o su derivado a una probeta de 100 ó 250 ml según se requiera. 1.Transfer the crude oil sample or its derivative to a 100 or 250 ml cylinder as required.
1.Nota: Minimizar la formación de vapores y burbujas, evitando que la muestra salpique. 1.Note: Minimize the formation of vapors and bubbles, preventing the sample from splashing.
2 .Seleccione el termo hidrómetro con un rango acorde a la gravedad API de la muestra. 2 .Select the thermo-hydrometer with a range according to the API gravity of the sample.
3. Sumergir el hidrómetro en la muestra y darle ligeramente vuelta con la punta de los dedos. 3. Immerse the hydrometer in the sample and gently rotate it with your fingertips.
4.Luego que el hidrómetro se detenga y flote libremente sobre el liquido, leer la escala del hidrómetro donde la superficie del liquido corte la escala. 4. After the hydrometer stops and floats freely above the liquid, read the hydrometer scale where the surface of the liquid intersects the scale.
5 .Determinar la temperatura en °F 5 .Determine temperature in °F
Corregir los grados API a 60°F determinando la diferencia entre la temperatura registrada en el paso 5 del procedimiento principal y 60 °F. Multiplicar la diferencia por 0.1 °API para obtener el factor de corrección. Si la temperatura está arriba de 60 °F, restarle el factor a la gravedad especifica registrada en el paso 5. Si la temperatura está por abajo de 60 °F, añadirle el factor a la gravedad especifica registrada, por ejemplo : Correct API degrees to 60°F by determining the difference between the temperature recorded in step 5 of the main procedure and 60°F. Multiply the difference by 0.1 °API to obtain the correction factor. If the temperature is above 60°F, subtract the factor from the specific gravity recorded in step 5. If the temperature is below 60°F, add the factor to the specific gravity recorded, for example:
Gravedad especifica observada: 35.2 °API Temperatura observada: 77 °F (por encima de 60 °F)Observed Specific Gravity: 35.2 °API Observed Temperature: 77 °F (above 60 °F)
Corrección: (77 - 60) x 0.1 = 1.7 Correction: (77 - 60) x 0.1 = 1.7
La gravedad API corregida @ 60°F es: 35.2 -1.7 = 33.5 °API @ 60 °F The corrected API gravity @ 60°F is: 35.2 -1.7 = 33.5 °API @ 60 °F
Clasificación del petróleo según su gravedad APIClassification of oil according to its API gravity
Relacionándolo con su gravedad API el American Petroleum Institute clasifica el petróleo en "liviano", "mediano", "pesado" y "extrapesado". Relating it to its API gravity, the American Petroleum Institute classifies oil as "light", "medium", "heavy" and "extra heavy".
• Crudo liviano o ligero: tiene gravedades API mayores a 31,1 °API • Light or light crude: has API gravities greater than 31.1 °API
• Crudo medio o mediano: tiene gravedades API entre 22,3 y 31,1 °API. • Medium or medium crude oil: it has API gravities between 22.3 and 31.1 °API.
• Crudo pesado: tiene gravedades API entre 10 y 22,3 °API. • Heavy crude: has API gravities between 10 and 22.3 °API.
• Crudo extrapesado: gravedades API menores a 10 °API. • Extra heavy crude: API gravities less than 10 °API.
EJEMPLO 3. DETERMINACIÓN DEL % DE AGUA Y SEDIMENTO MEDIANTE EL MÉTODO ASTM D4007 EXAMPLE 3. DETERMINATION OF THE % OF WATER AND SEDIMENT USING THE ASTM D4007 METHOD
Este método es considerado práctico para la determinación de porcentajes de agua y sedimentos presentes en el crudo. Para esta metodología un volumen conocido de crudo, solvente y desemulsificante es colocado en un tubo de centrifuga, el cual es calentado a 60 + 3 °C para ser centrifugado a 1800 rpm. Una vez terminado el tiempo de centrifugación se lee en el fondo del tubo el volumen de la capa de agua y sedimento. This method is considered practical for the determination of percentages of water and sediment present in crude oil. For this methodology, a known volume of crude oil, solvent and demulsifier is placed in a centrifuge tube, which is heated to 60 + 3 °C to be centrifuged at 1800 rpm. Once the time is over centrifugation, the volume of the layer of water and sediment is read at the bottom of the tube.
EJEMPLO 4. DETERMINACIÓN DEL CONTENIDO DE PARAFINAS Y ASFÁLTENOS EN CRUDOS EXAMPLE 4. DETERMINATION OF THE PARAFFIN AND ASPHALTENE CONTENT IN CRUDE
Una porción de la muestra de aceite es pesada y dispersada en Éter de petróleo. El asfalteno insoluble en la solución es filtrado, secado y pesado. El porcentaje de asfáltenos es calculado a partir del peso de los sólidos retenidos sobre el papel filtro y el peso inicial de la muestra analizada. A portion of the oil sample is weighed and dispersed in petroleum ether. The insoluble asphaltene in the solution is filtered off, dried and weighed. The percentage of asphaltenes is calculated from the weight of the solids retained on the filter paper and the initial weight of the analyzed sample.
Para la determinación de las parafinas, la muestra dispersa en éter de petróleo es clarificada. La adición de acetona y la reducción de temperatura causarán la precipitación de las parafinas de la solución. Se filtrará, secará y pesará para obtener el porcentaje de parafinas a partir del peso inicial de la muestra. For the determination of paraffins, the sample dispersed in petroleum ether is clarified. The addition of acetone and the reduction in temperature will cause the paraffins to precipitate from solution. It will be filtered, dried and weighed to obtain the percentage of paraffins from the initial weight of the sample.
EJEMPLO 5. METODOLOGÍA DE COMPATIBILIDAD ENTRE LOS SISTEMAS DE ESTIMULACIÓN Y ACEITE CRUDO EXAMPLE 5. COMPATIBILITY METHODOLOGY BETWEEN STIMULATION SYSTEMS AND CRUDE OIL
Las pruebas de compatibilidad entre los fluidos de la formación y los tratamientos de estimulación propuestos se realizan en relación contaminación 1: 1 a las condiciones de temperatura de 90 °C en una tina de curado a temperatura constante, monitoreando el tiempo de rompimiento o separación de fases la cual debe ser de 100% de la emulsión generada al inicio de la prueba, en un tiempo no mayor a los 30 minutos. Posteriormente se dejan las mezclas sistema ácidos/aceite crudo durante cuatro horas a la temperatura antes mencionada y al finalizar este tiempo se filtran sobre una malla No 100 para verificar si existe o no compatibilidad entre los fluidos de estimulación y el aceite crudo recuperado. Esta prueba garantiza el éxito de las estimulaciones ácidas en los yacimientos de petróleo. The compatibility tests between the formation fluids and the proposed stimulation treatments are carried out in a 1: 1 contamination ratio at 90 °C temperature conditions in a constant temperature curing tub, monitoring the time of rupture or separation of phases which must be 100% of the emulsion generated at the beginning of the test, in a time not exceeding 30 minutes. Subsequently, the acid/crude oil system mixtures are left for four hours at the aforementioned temperature and at the end of this time they are filtered through a No 100 mesh to verify whether or not there is compatibility between the stimulation fluids and the recovered crude oil. This test guarantees the success of acid stimulations in oil reservoirs.
1. Tomar 50ml del sistema FDV 82gastado con CaC03 1. Take 50ml of the spent FDV 82 system with CaC0 3
2. Mezclar en relación uno a uno la muestra de crudo/sistema ácido gastado. 2. Mix in a one-to-one ratio the crude oil/spent acid system sample.
3. Colocar las muestras en frascos de vidrio y agitar vigorosamente la mezcla durante 30 segundos y colocarlos en el baño térmico a 90 °C. 3. Place the samples in glass jars and vigorously shake the mixture for 30 seconds and place them in the thermal bath at 90 °C.
4. Verificar el rompimiento (separación) de la mezcla, durante los periodos de tiempo 2, 5, 10, 20 y 30 minutos registrar tiempo y características de las fases. 4. Verify the breaking (separation) of the mixture, during the periods of time 2, 5, 10, 20 and 30 minutes, record the time and characteristics of the phases.
5. Posteriormente dejar los frascos en el baño térmico hasta completar 4 horas de prueba. 5. Subsequently, leave the flasks in the thermal bath until completing 4 hours of testing.
6.Retirar y filtrar los sistemas por una malla N° 100. 6.Remove and filter the systems through a No. 100 mesh.
7. En caso de quedar sólidos retenidos, verificar si son solubles en agua caliente o solvente aromático registrar la cantidad de los sólidos y la solubilidad de estos. 7. If solids are retained, verify if they are soluble in hot water or aromatic solvent, record the amount of solids and their solubility.
8 .Emitir resultados 8 .Issue results
Las pruebas de caracterización del aceite y compatibilidad con fluidos de estimulación se realizadas bajo las normas ASTM D287-2000, D4007-02, IP 143/01 y APIOil characterization and compatibility tests with stimulation fluids are carried out under ASTM D287-2000, D4007-02, IP 143/01 and API standards.
RP 42 segunda edición. RP 42 second edition.
EJEMPLO 6. PROCEDIMIENTO GENERAL DE LA PRUEBA DE ACTIVACIÓNEXAMPLE 6. GENERAL PROCEDURE OF THE ACTIVATION TEST
1. Preparar la formulación objeto de la presente invención. 1. Prepare the formulation object of the present invention.
2. Determinar la viscosidad inicial. 2. Determine the initial viscosity.
3. Medir 100ml del sistema en un vaso de precipitado.3. Measure 100ml of the system into a beaker.
4. Calcular los gramos de CaC03 de acuerdo con la concentración del sistema para gastarlo por completo. 5. Agregar el CaC03 sobre el sistema y agitar con una espátula hasta observar incremento en la viscosidad. 4. Calculate the grams of CaC0 3 according to the concentration of the system to spend it completely. 5. Add the CaC0 3 to the system and stir with a spatula until an increase in viscosity is observed.
6. Determinar viscosidad al sistema activado. 6. Determine viscosity to the activated system.
5 EJEMPLO 7. PROCEDIMIENTO GENERAL DE LA PRUEBA DE DEGRADACIÓN. 5 EXAMPLE 7. GENERAL PROCEDURE OF THE DEGRADATION TEST.
1. Colocar 10m0l del sistema activado FDV 82 en un frasco de 250ml . 1. Place 10m0l of the FDV 82 activated system in a 250ml bottle.
2. Agregar 50ml de aceite crudo. 0 3. Cerrar el frasco y agitar hasta observar degradación o reducción de la viscosidad del sistema. 2. Add 50ml of crude oil. 0 3. Close the bottle and shake until observing degradation or reduction of the viscosity of the system.
4. Determinar la viscosidad final del sistema.
Figure imgf000017_0001
Figure imgf000018_0001
4. Determine the final viscosity of the system.
Figure imgf000017_0001
Figure imgf000018_0001
Tabla.3. Resultados de compatibilidad aceites varios y presente invención.
Figure imgf000018_0002
Figure imgf000019_0001
Table.3. Compatibility results of various oils and the present invention.
Figure imgf000018_0002
Figure imgf000019_0001
Tabla.4. Resultados de la caracterización de los aceites.
Figure imgf000019_0002
Figure imgf000020_0001
Table.4. Results of the characterization of the oils.
Figure imgf000019_0002
Figure imgf000020_0001
Tabla.5. Resultados de la caracterización de los aceitesTable.5. Results of the characterization of the oils
(continuación) (continuation)
Para activar la presente invención fue necesario gastar el sistema con CaC03, se calculó la concentración necesaria de este material para gastar el sistema completamente. To activate the present invention it was necessary to spend the system with CaC03, the necessary concentration of this material to completely spend the system was calculated.
Para degradar la invención (base y espumado) o reducir la viscosidad fue necesario emplear el sistema solvente SNAC 2000, se realizó la contaminación usando 50ml del aceite y 100ml de la invención activada, se agito vigorosamente la reducción de la viscosidad se presenta casi de manera inmediata. To degrade the invention (base and foaming) or reduce the viscosity it was necessary to use the SNAC 2000 solvent system, contamination was carried out using 50ml of oil and 100ml of the activated invention, it was vigorously shaken, the reduction in viscosity is presented almost completely. immediate.
Los resultados de las pruebas muestran que la presente invención, es totalmente compatible con las muestras de aceite que se recuperaron en los pozos: Cantarell 2067, Maloob 401D, Zaap 46D, Balam 75D, Xux 5, Ixtal 1 y Ek 21. Ver figuras de la 12 a la 20 y tabla 3 de resultados. The results of the tests show that the present invention is fully compatible with the oil samples that were recovered in the wells: Cantarell 2067, Maloob 401D, Zaap 46D, Balam 75D, Xux 5, Ixtal 1 and Ek 21. See figures of 12 to 20 and table 3 of results.
Para finalizar la evaluación de la presente invención, se realizó una prueba de compatibilidad utilizando muestras de aceite de los pozos: Cantarell 2067, Maloob 401D, Zaap 46D, Balam 75D, Xux 5, Ixtal 1 y Ek 21. To finalize the evaluation of the present invention, a compatibility test was carried out using oil samples from the following wells: Cantarell 2067, Maloob 401D, Zaap 46D, Balam 75D, Xux 5, Ixtal 1 and Ek 21.
Los tiempos de rompimiento de fases (Aceite/invención) son óptimos estos no rebasaron los 20 min de prueba con interfaces definidas. The phase breaking times (Oil/invention) are optimal, these did not exceed 20 min of testing with defined interfaces.

Claims

REIVINDICACIONES Habiendo descrito suficientemente mi invención, considero como una novedad y por lo tanto reclamo como de mi exclusiva propiedad, lo contenido en las siguientes cláusulas: CLAIMS Having sufficiently described my invention, I consider as a novelty and therefore I claim as my exclusive property, what is contained in the following clauses:
1. Una formulación espumante caracterizada. porque comprende de 0.5 a 1% de un secuestrante de hierro, de 1 a 4% de un agente espumante primario, de 1 a 4 % de una agente espumante secundario, de 1 a 5% de un inhibidor de la corrosión, de 0.5 a 2% de un dispersante de aditivos, de 3 a 12% de ácido clorhídrico, de 0.5 a 1.5 % de un agente gelificante, y de 3 a 10% de un surfactante viscoelástico además de completar con agua hasta llegar al 100%; en donde el secuestrante de hierro des eritorbato de sodio, el agente espumante primario es base de nitrógeno, el agente espumante secundario es glicol, el inhibidor de corrosión es isopropanol, el dispersante de aditivos es 2-propanol, el agente gelificante es destilado de petróleo ligero Surfactante Viscoelástico es propilenglicol. 1. A characterized foaming formulation. because it comprises from 0.5 to 1% of an iron sequestrant, from 1 to 4% of a primary foaming agent, from 1 to 4% of a secondary foaming agent, from 1 to 5% of a corrosion inhibitor, from 0.5 to 2% additive dispersant, 3 to 12% hydrochloric acid, 0.5 to 1.5% gelling agent, and 3 to 10% viscoelastic surfactant plus water to 100%; wherein the iron sequestrant is sodium erythorbate, the primary foaming agent is nitrogen base, the secondary foaming agent is glycol, the corrosion inhibitor is isopropanol, the additive dispersant is 2-propanol, the gelling agent is petroleum distillate Lightweight Viscoelastic Surfactant is propylene glycol.
2. La formulación espumante, de conformidad con la reivindicación 1 caracterizada porque presenta estabilidad y homogeneidad durante 24 horas a temperatura ambiente. 2. The foaming formulation, in accordance with claim 1, characterized in that it presents stability and homogeneity for 24 hours at room temperature.
3. La formulación espumante, de conformidad con la reivindicación 1 caracterizada porque presenta estabilidad y homogeneidad a 90°C. 3. The foaming formulation, in accordance with claim 1, characterized in that it presents stability and homogeneity at 90°C.
4. La formulación espumante, de conformidad con la reivindicación 1 caracterizada porque posee una densidad de 1.038 a 1.048 g/cm3 a 20°C. 4. The foaming formulation, according to claim 1, characterized in that it has a density of 1,038 to 1,048 g/cm 3 at 20°C.
5. La formulación espumante, de conformidad con la reivindicación 1 caracterizada. porque posee una densidad de espuma de 0.18 a 0.50 g/cm3 a 20°C 5. The foaming formulation, according to claim 1 characterized. because it has a foam density of 0.18 to 0.50 g/cm 3 at 20°C
6. La formulación espumante, de conformidad con la reivindicación 1, caracterizada porque posee un pH < 1.0 a 20°C. 6. The foaming formulation, according to claim 1, characterized in that it has a pH < 1.0 at 20°C.
7. La formulación espumante, de conformidad con la reivindicación 1, caracterizada porque posee una concentración ácida final de 2.8 a 3.5 %. 7. The foaming formulation, in accordance with claim 1, characterized in that it has a final acid concentration of 2.8 to 3.5%.
8. La formulación espumante, de conformidad con la reivindicación 1, caracterizada porque inicia rompimiento de espuma a partir de 10 minutos y se observa un rompimiento. 8. The foaming formulation, according to claim 1, characterized in that the foam breaks after 10 minutes and a break is observed.
9. La formulación espumante, de conformidad con la reivindicación 1, caracterizada porque al entrar en contacto con carbonato de calcio desarrolla una espuma viscosa. 9. The foaming formulation, according to claim 1, characterized in that when it comes into contact with calcium carbonate it develops a viscous foam.
10.La formulación espumante, de conformidad con la reivindicación 9, caracterizada porque la espuma se mantiene a los 50 minutos en una prueba de estabilidad10. The foaming formulation, according to claim 9, characterized in that the foam is maintained at 50 minutes in a stability test
11.La formulación espumante, de conformidad con la reivindicación 1, caracterizada porque tiene una temperatura de trabajo de 50 a 175°C. 11. The foaming formulation, in accordance with claim 1, characterized in that it has a working temperature of 50 to 175°C.
12.La formulación espumante, de conformidad con la reivindicación 1, caracterizada porque es compatible con aceites de 8 a 47 °API. 12. The foaming formulation, in accordance with claim 1, characterized in that it is compatible with oils from 8 to 47 °API.
13.La formulación espumante, de conformidad con la reivindicación 10, caracterizada porque posee una compatibilidad con aceite crudo con una relación aceite crudo:formulación 1:1. 13. The foaming formulation, according to claim 10, characterized in that it is compatible with crude oil with a crude oil:formulation ratio of 1:1.
14.La formulación espumante, de conformidad con la reivindicación 10, caracterizada porque se adapta a densidades de 0.5 a 0.2 g/cm3 conservando sus propiedades de divergente viscoelástico. La formulación ácida espumante, de conformidad con las reivindicaciones 1 a 14 para usarse como agente tensoactivo viscoelástico en yacimientos de baja permeabilidad. La formulación ácida espumante, de conformidad con la reivindicación 15 en donde los yacimientos de baja permeabilidad comprenden carbonato de piedra caliza y tiza. 14. The foaming formulation, according to claim 10, characterized in that it adapts to densities from 0.5 to 0.2 g/cm 3 conserving its viscoelastic divergent properties. The foaming acid formulation, in accordance with claims 1 to 14, to be used as a viscoelastic surface-active agent in low-permeability reservoirs. The foaming acid formulation, according to claim 15, wherein the low permeability deposits comprise limestone carbonate and chalk.
PCT/MX2022/050026 2021-03-26 2022-03-23 Foaming formulation and use thereof as a viscoelastic surfactant in low-permeability reservoirs WO2022203493A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MX2021003590A MX2021003590A (en) 2021-03-26 2021-03-26 Foaming formulation and its use as a viscoelastic tenso-active agent in low permeability deposits.
MXMX/A/2021/003590 2021-03-26

Publications (1)

Publication Number Publication Date
WO2022203493A1 true WO2022203493A1 (en) 2022-09-29

Family

ID=83395919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2022/050026 WO2022203493A1 (en) 2021-03-26 2022-03-23 Foaming formulation and use thereof as a viscoelastic surfactant in low-permeability reservoirs

Country Status (2)

Country Link
MX (1) MX2021003590A (en)
WO (1) WO2022203493A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060148660A1 (en) * 2004-12-15 2006-07-06 Yiyan Chen Foamed viscoelastic surfactants
EP1817391B1 (en) * 2004-11-18 2008-10-29 Services Pétroliers Schlumberger Composition and method for treating a subterranean formation
US20090111716A1 (en) * 2007-10-31 2009-04-30 Rhodia Inc. Addition of zwitterionic surfactant to water soluble polymer to increase the stability of the polymers in aqueous solutions containing salt and/or surfactants
US9260647B2 (en) * 2011-11-14 2016-02-16 Baker Hughes Incorporated Metallic particle mediated viscosity reduction of viscoelastic surfactants

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1817391B1 (en) * 2004-11-18 2008-10-29 Services Pétroliers Schlumberger Composition and method for treating a subterranean formation
US20060148660A1 (en) * 2004-12-15 2006-07-06 Yiyan Chen Foamed viscoelastic surfactants
US20090111716A1 (en) * 2007-10-31 2009-04-30 Rhodia Inc. Addition of zwitterionic surfactant to water soluble polymer to increase the stability of the polymers in aqueous solutions containing salt and/or surfactants
US9260647B2 (en) * 2011-11-14 2016-02-16 Baker Hughes Incorporated Metallic particle mediated viscosity reduction of viscoelastic surfactants

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JUN ZHOU ET AL.: "Different strategies of foam stabilization in the use of foam as a fracturing fluid", ADVANCES IN COLLOID AND INTERFACE SCIENCE, vol. 276, 11 January 2020 (2020-01-11), pages 1 - 20, XP086010916, DOI: 10.1016/j.cis.2020.102104 *

Also Published As

Publication number Publication date
MX2021003590A (en) 2021-09-30

Similar Documents

Publication Publication Date Title
US11149185B2 (en) Multifunctional foaming composition with wettability modifying, corrosion inhibitory and mineral scale inhibitory/dispersants properties for high temperature and ultra high salinity
ES2710776T3 (en) Well service fluid compositions and procedure for the use of microemulsions as return adjuvants
AU2016222831B2 (en) Compositions for enhanced oil recovery
Seyyedi et al. Investigation of rock wettability alteration by carbonated water through contact angle measurements
Mohsenzadeh et al. The novel use of deep eutectic solvents for enhancing heavy oil recovery
BR112017010332B1 (en) COMPOSITION, METHOD OF TREATMENT OF UNDERGROUND FORMATION, AND USE OF A COMPOUND IN TREATMENT OF UNDERGROUND FORMATION
NO20150532A1 (en) Emulsified acid with hydrophobic nanoparticulate for well stimulation
RU2691906C2 (en) Synergetic effect of auxiliary surfactants with respect to rheological characteristics of liquids for drilling, well completion/formation opening and formation hydraulic fracturing
BR112020020356A2 (en) METHOD FOR MOVING A HYDROCARBONET MATERIAL IN CONTACT WITH A SOLID MATERIAL, METHOD FOR REDUCING THE VISCOSITY OF A HYDROCARBONET MATERIAL, METHOD OF TRANSPORTING A HYDROCARBONET MATERIAL THROUGH A TUBE OF A TUBE , METHOD OF CONVERSION OF AN UNFINISHED PETROLEUM ACID INTO A SURFACTANT, METHOD FOR DISPLACING A BETUMINOUS MATERIAL IN CONTACT WITH SOLID MATERIAL BITUMINOUS AND METHOD OF TRANSPORTING A BITUMINOUS MATERIAL THROUGH A PIPE
AU2016203005B2 (en) A treatment fluid containing a corrosion inhibitor of a weak base
Mohsenzadeh et al. Effects of concentration, salinity and injection scenario of ionic liquids analogue in heavy oil recovery enhancement
WO2018081063A1 (en) Compositions for enhanced oil recovery
MX2012000404A (en) Dispersion compositions with nonionic surfactants for use in petroleum recovery.
Didier et al. Contradictory trends for smart water injection method: Role of pH and salinity from sand/oil/brine adhesion maps
Debnath et al. Evaluation of performance spectra of mono and divalent low saline brine injection in sandy-carbonates for mobilization of crude oil
WO2022203493A1 (en) Foaming formulation and use thereof as a viscoelastic surfactant in low-permeability reservoirs
Kaliyugarasan Surface chemistry study of low salinity waterflood
Bataweel Enhanced oil recovery in high salinity high temperature reservoir by chemical flooding
EP0467635A2 (en) Thermally insulating compositions and a method of insulating pipeline bundles and pipeline riser caissons
Wei et al. Critical Shear Stress of Clathrate and Semiclathrate Hydrates on Solid Substrates
WO2022203495A1 (en) Emulsified foaming formulation and use thereof as an organic material dissolving agent in low-pressure oil wells
Seetharaman et al. Insights into the interaction between lowsal-alkali formulation: Debunking the effect of alkali and lowsal-alkali formulation on the wettability alteration of the quartz substrate
Al-Amodi Study of polymer-surfactant interactions for chemical enhanced oil recovery in carbonate reservoirs
Adebisi Ionic Surfactant Systems for EOR Applications in High-Temperature Shale Reservoirs
WO2022203497A1 (en) Chelating agent-based formulation and use thereof as an agent for dissolving inorganic deposits in oil fields

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22776190

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22776190

Country of ref document: EP

Kind code of ref document: A1