WO2022203222A1 - Material for forming nucleation-inhibition, and organic electroluminescent element comprising same - Google Patents

Material for forming nucleation-inhibition, and organic electroluminescent element comprising same Download PDF

Info

Publication number
WO2022203222A1
WO2022203222A1 PCT/KR2022/002862 KR2022002862W WO2022203222A1 WO 2022203222 A1 WO2022203222 A1 WO 2022203222A1 KR 2022002862 W KR2022002862 W KR 2022002862W WO 2022203222 A1 WO2022203222 A1 WO 2022203222A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
mmol
compound
synthesis
nucleation
Prior art date
Application number
PCT/KR2022/002862
Other languages
French (fr)
Korean (ko)
Inventor
김규리
김문수
강현빈
김남호
윤정훈
한갑종
오유진
Original Assignee
주식회사 랩토
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220020438A external-priority patent/KR20220135161A/en
Application filed by 주식회사 랩토 filed Critical 주식회사 랩토
Publication of WO2022203222A1 publication Critical patent/WO2022203222A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a material for forming a nucleation inhibiting formation for use in selectively depositing an electrically conductive vapor deposition film on the surface of each layer constituting an organic electroluminescent device, and also a nucleation inhibiting deposition film and a conductive vapor deposition film comprising such a material. It relates to an organic electroluminescent device.
  • LCD liquid crystal display
  • OLED Organic Light Emitting Diodes
  • the basic structure of an OLED display is generally an anode, a hole injection layer (HIL), a hole transporting layer (HTL), an emission layer (EML), an electron transporting layer (Electron Transporting Layer, ETL), and a multilayer structure of a cathode, and a sandwich structure in which an electron organic multilayer film is formed between two electrodes.
  • HIL hole injection layer
  • HTL hole transporting layer
  • ETL emission layer
  • ETL electron transporting layer
  • multilayer structure of a cathode and a sandwich structure in which an electron organic multilayer film is formed between two electrodes.
  • the organic light emitting phenomenon refers to a phenomenon in which electric energy is converted into light energy using an organic material.
  • An organic light emitting device using an organic light emitting phenomenon generally has a structure including an anode and a cathode and an organic material layer therebetween.
  • the organic material layer is often formed of a multilayer structure made of different materials in order to increase the efficiency and stability of the organic light emitting device, and may include, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like.
  • Such an organic light emitting device When a voltage is applied between the two electrodes in the structure of the organic light emitting device, holes are injected into the organic material layer from the anode and electrons from the cathode are injected into the organic material layer, and excitons are formed when the injected holes and electrons meet, and the excitons It lights up when it falls to the ground state.
  • Such an organic light emitting device is known to have characteristics such as self-luminescence, high luminance, high efficiency, low driving voltage, wide viewing angle, high contrast, and high-speed response.
  • a material used as an organic layer in an organic light emitting device may be classified into a light emitting material and a charge transporting material, for example, a hole injecting material, a hole transporting material, an electron transporting material, an electron injecting material, and the like, according to functions.
  • the light-emitting material includes blue, green, and red light-emitting materials depending on the light-emitting color, and yellow and orange light-emitting materials required to realize a better natural color.
  • a host/dopant system may be used as a light emitting material. The principle is that when a small amount of a dopant having a smaller energy band gap and excellent luminous efficiency than the host constituting the light emitting layer is mixed in the light emitting layer in a small amount, excitons generated from the host are transported to the dopant to emit light with high efficiency. At this time, since the wavelength of the host moves to the wavelength band of the dopant, light having a desired wavelength can be obtained according to the type of the dopant used.
  • materials constituting the organic material layer in the device such as a hole injection material, a hole transport material, a light emitting material, an electron transport material, an electron injection material, etc.
  • the performance of the organic light emitting device is recognized by the products.
  • OLED devices can typically be classified as “bottom-emission” or “top-emission” devices depending on the relative direction in which light is emitted from the device.
  • a bottom light emitting device light generated as a result of the radiative recombination process is emitted in a direction toward the base substrate of the device, whereas in a top light emitting device, light is emitted in a direction away from the base substrate.
  • electrodes proximate to the base substrate are generally made light-transmissive (e.g., substantially transparent or translucent) in bottom-emitting devices, whereas in top-emitting devices, electrodes opposite the base substrate generally exhibit light attenuation. It is made to transmit light to reduce it.
  • either the anode or the cathode may act as a transmissive electrode in top-emitting and bottom-emitting devices.
  • a transparent or translucent OLED device may also be implemented, wherein the device comprises a transparent portion through which external light may be transmitted.
  • a transparent portion may be provided in a non-light emitting region between each neighboring pixel.
  • a transparent OLED lighting panel may be formed by providing a plurality of transparent regions between the light emitting regions of the panel.
  • Transparent or translucent OLED devices may be bottom emitting, top emitting or double emitting devices.
  • a typical top light emitting device includes a light transmissive cathode, although either the cathode or the anode may be selected as the transmissive electrode.
  • Materials commonly used to form transmissive cathodes include silver (Ag), aluminum (Al), magnesium silver (Mg:Ag) alloys having a composition ranging from about 1:9 to about 9:1 by volume, and ytterbium silver ( Yb:Ag) and the like.
  • Transmissive cathodes include transparent conducting oxides (TCOs) such as indium tin oxide (ITO) and zinc oxide (ZnO) as well as thin films formed by depositing the material as a thin layer.
  • TCOs transparent conducting oxides
  • ITO indium tin oxide
  • ZnO zinc oxide
  • Multilayer cathodes comprising two or more TCO layers and/or thin metal films may also be used.
  • thin films relatively thin layer thicknesses of up to about tens of nanometers contribute to improved transparency and advantageous optical properties (eg, reduced microcavity effect) for use in OLEDs.
  • the thickness of the transmissive electrode decreases, the sheet resistance increases. Electrodes with high sheet resistance are generally undesirable for use in OLEDs, as they experience a large current-resistance (IR) drop when using the device, which harms the performance and efficiency of the OLED.
  • the IR drop can be compensated to some extent by increasing the power supply level.
  • increasing the power supply level for one pixel also increases the voltage supplied to the other components to maintain normal operation of the device, which is undesirable.
  • auxiliary electrode may be formed by depositing a conductive vapor deposition film in electrical communication with the transmissive electrode of the OLED device.
  • auxiliary electrodes lower the sheet resistance and the associated IR drop of the transmissive electrode, thereby allowing the current to be delivered more effectively to various areas of the device.
  • the methods of patterning the surface of the cathode there is a method of selectively depositing the surface of the cathode through a material for inhibiting nucleation or a deposition film containing the material for inhibiting nucleation in order to selectively deposit an electrically conductive vapor deposition film.
  • This method has a problem that requires improvement, such as addition of a process for depositing a material for formation of inhibiting nucleation and development of a new material for formation of inhibiting nucleation.
  • the cathode is patterned using a cathode patterning material (CPM).
  • CPM cathode patterning material
  • the present invention relates to a material for forming a nucleation inhibiting formation for use in selectively depositing an electrically conductive vapor deposition film on the surface of each layer constituting an organic electroluminescent device, and also a nucleation inhibiting deposition film and a conductive vapor deposition film comprising such a material.
  • An organic electroluminescent device is provided.
  • L 1 , L 2 and L 3 are each independently F, CF 3 , TMS, an arylene group or a heteroarylene group, substituted or unsubstituted with at least one of an alkyl group and a cycloalkyl group,
  • each L 1 , L 2 and L 3 are the same as or different from each other,
  • Ar 1 , Ar 2 and Ar 3 are each independently F, CF 3 , TMS, an alkyl group, a cycloalkyl group, and an aryl group unsubstituted or substituted with at least any one of an aryl group or a heteroaryl group,
  • R 1 is at least one of H, F, CF 3 , an alkyl group and a cycloalkyl group,
  • n is an integer from 0 to 4,
  • each R 1 is the same as or different from each other,
  • p, q and r are each independently an integer of 0 to 5
  • n is an integer of 0 or 1.
  • the compound according to the present invention may be used as a material for forming a nucleation suppression layer of an organic light emitting device.
  • the compound according to the present invention can improve the light transmittance by an external light source by relatively lowering the affinity or initial adhesion probability for the metal used for the cathode, and forming a nucleation inhibiting deposition film.
  • the compound according to the present invention exhibits a relatively low affinity or initial probability of attachment to the metal used for the cathode by introducing a fluoro group, so that the selective deposition and patterning of magnesium deposition or silver/magnesium deposition in certain applications It can be used as a material to achieve
  • FIG. 1 is a schematic diagram showing a deposition sequence of a nucleation inhibiting layer and a metal layer deposited on a substrate.
  • 2A is a schematic diagram showing a state in which a mask is aligned for patterning on a substrate during a deposition process.
  • Figure 2b is a schematic diagram showing the deposition of the nucleation inhibiting layer with the mask aligned.
  • 2C is a schematic view showing a state in which a metal layer is completely deposited on a substrate on which a nucleation inhibiting layer is formed by separating a mask.
  • 2D is a schematic diagram showing the state of a patterned metal layer on a substrate.
  • 3A is a photograph showing a cross-section when a metal is deposited on a substrate on which a nucleation inhibiting layer is deposited according to an embodiment of the present invention.
  • 3B is a photograph showing a cross-section when a metal is deposited on a substrate on which a nucleation inhibiting layer of a general organic material is deposited.
  • 4A is a photograph showing a sample of a device in which deposition of a metal layer is suppressed by a nucleation inhibiting layer according to an embodiment of the present invention.
  • 4B is a photograph showing a sample of a device in which nucleation is not inhibited by a nucleation inhibiting layer of a general organic material and a metal layer is deposited.
  • 5A and 5B are graphs showing transmittance spectra of the device of FIGS. 4A and 4B, respectively.
  • FIG. 6 is a diagram illustrating a cross-section of a top light emitting organic light emitting device including a nucleation inhibiting layer 2400 and a second electrode 2300 .
  • FIG. 7 is a view showing a cross-section of a top-emitting organic light emitting device including a nucleation inhibiting layer 2400 and a second electrode 2300 .
  • first, second, etc. may be used to describe various elements, but the elements should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, a first component may be referred to as a second component, and similarly, a second component may also be referred to as a first component.
  • the singular expression includes the plural expression unless the context clearly dictates otherwise.
  • substituted or unsubstituted is a deuterium atom, a halogen atom, a cyano group, a nitro group, an amino group, a hydroxy group, a silyl group, a boron group, a phosphine oxide group, a phosphine sulfide group, an alkyl group, an alkoxy group, an alke group It may mean unsubstituted or substituted with one or more substituents selected from the group consisting of a nyl group, an aryl group, a heteroaryl group, and a heterocyclic group.
  • each of the substituents exemplified above may be substituted or unsubstituted.
  • a biphenyl group may be interpreted as an aryl group or a phenyl group substituted with a phenyl group.
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • the alkyl group may be linear, branched or cyclic.
  • Carbon number of an alkyl group is 1 or more and 50 or less, 1 or more and 30 or less, 1 or more and 20 or less, 1 or more and 10 or less, or 1 or more and 6 or less.
  • alkyl group examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, t-butyl group, i-butyl group, 2-ethylbutyl group, 3, 3-dimethylbutyl group , n-pentyl group, i-pentyl group, neopentyl group, t-pentyl group, cyclopentyl group, 1-methylpentyl group, 3-methylpentyl group, 2-ethylpentyl group, 4-methyl-2-pentyl group , n-hexyl group, 1-methylhexyl group, 2-ethylhexyl group, 2-butylhexyl group, cyclohexyl group, 4-methylcyclohexyl group, 4-t-butylcyclohexyl group, n-heptyl group, 1 -Methyl
  • cycloalkyl group means a monovalent substituent derived from a monocyclic or polycyclic non-aromatic hydrocarbon having 3 to 40 carbon atoms.
  • examples of such a cycloalkyl group include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, norbornyl, adamantine, and the like.
  • the hydrocarbon ring group means any functional group or substituent derived from an aliphatic hydrocarbon ring.
  • the hydrocarbon ring group may be a saturated hydrocarbon ring group having 5 to 20 ring carbon atoms.
  • the aryl group means any functional group or substituent derived from an aromatic hydrocarbon ring.
  • the aryl group may be a monocyclic aryl group or a polycyclic aryl group.
  • the number of ring carbon atoms of the aryl group may be 6 or more and 30 or less, 6 or more and 20 or less, or 6 or more and 15 or less.
  • aryl group examples include a phenyl group, a naphthyl group, a fluorenyl group, an anthracenyl group, a phenanthryl group, a biphenyl group, a terphenyl group, a quarterphenyl group, a quinkphenyl group, a sexyphenyl group, a triphenylenyl group, a pyrenyl group, a peryleneyl group, a naphtha group
  • a cenyl group, a pyrenyl group, a benzo fluoranthenyl group, a chrysenyl group, etc. can be illustrated, it is not limited to these.
  • the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure.
  • the heteroaryl group may be a heteroaryl group including at least one of O, N, P, Si and S as a heterogeneous element.
  • the N and S atoms may optionally be oxidized and the N atom(s) may optionally be quaternized.
  • the number of ring carbon atoms in the heteroaryl group is 2 or more and 30 or less, or 2 or more and 20 or less.
  • the heteroaryl group may be a monocyclic heteroaryl group or a polycyclic heteroaryl group.
  • the polycyclic heteroaryl group may have, for example, a bicyclic or tricyclic structure.
  • heteroaryl group examples include a thiophene group, a furan group, a pyrrole group, an imidazole group, a pyrazolyl group, a thiazole group, an oxazole group, an oxadiazole group, a triazole group, a pyridine group, a bipyridine group, a pyrimidine group, a triazine group , tetrazine group, triazole group, tetrazole group, acridyl group, pyridazine group, pyrazinyl group, quinoline group, quinazoline group, quinoxaline group, phenoxazine group, phthalazine group, pyridopyrimidine group, pyridopyrazino group Pyrazine group, isoquinoline group, cinnol group, indole group, isoindole group, indazole group, carbazole group, N-
  • N-oxide aryl groups corresponding to the monocyclic heteroaryl group or polycyclic heteroaryl group for example, quaternary salts such as pyridyl N-oxide group, quinolyl N-oxide group, etc., but these not limited
  • the silyl group includes an alkyl silyl group and an aryl silyl group.
  • the silyl group include a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group, a phenylsilyl group, and the like. not limited
  • the boron group includes an alkyl boron group and an aryl boron group.
  • the boron group include, but are not limited to, a trimethylboron group, a triethylboron group, a t-butyldimethylboron group, a triphenylboron group, a diphenylboron group, and a phenylboron group.
  • the alkenyl group may be linear or branched. Although carbon number is not specifically limited, 2 or more and 30 or less, 2 or more and 20 or less, or 2 or more and 10 or less.
  • Examples of the alkenyl group include, but are not limited to, a vinyl group, a 1-butenyl group, a 1-pentenyl group, a 1,3-butadienyl aryl group, a styrenyl group, a styryl vinyl group, and the like.
  • examples of the arylamine group include a substituted or unsubstituted monoarylamine group, a substituted or unsubstituted diarylamine group, or a substituted or unsubstituted triarylamine group.
  • the aryl group in the arylamine group may be a monocyclic aryl group, and may include a polycyclic aryl group, or a monocyclic aryl group and a polycyclic aryl group at the same time.
  • arylamine group examples include a phenylamine group, a naphthylamine group, a biphenylamine group, an anthracenylamine group, a 3-methyl-phenylamine group, a 4-methyl-naphthylamine group, and a 2-methyl-biphenylamine group. group, 9-methyl-anthracenylamine group, diphenyl amine group, phenyl naphthylamine group, ditolyl amine group, phenyl tolyl amine group, carbazole and triphenyl amine group, but is not limited thereto.
  • examples of the heteroallylamine group include a substituted or unsubstituted monoheteroarylamine group, a substituted or unsubstituted diheteroarylamine group, or a substituted or unsubstituted triheteroarylamine group.
  • the heteroaryl group in the heteroarylamine group may be a monocyclic heterocyclic group or a polycyclic heterocyclic group.
  • the heteroarylamine group including two or more heterocyclic groups may include a monocyclic heterocyclic group, a polycyclic heterocyclic group, or a monocyclic heterocyclic group and a polycyclic heterocyclic group at the same time.
  • the aryl heteroarylamine group refers to an amine group substituted with an aryl group and a heterocyclic group.
  • adjacent group may mean a substituent substituted on an atom directly connected to the atom in which the substituent is substituted, another substituent substituted on the atom in which the substituent is substituted, or a substituent most sterically adjacent to the substituent.
  • substituents may mean a substituent substituted on an atom directly connected to the atom in which the substituent is substituted, another substituent substituted on the atom in which the substituent is substituted, or a substituent most sterically adjacent to the substituent.
  • 1,2-dimethylbenzene two methyl groups can be interpreted as “adjacent groups” to each other, and in 1,1-diethylcyclopentene, 2 The two ethyl groups can be interpreted as “adjacent groups” to each other.
  • the organic compound of the present invention is represented by the following formula (1).
  • L 1 , L 2 and L 3 are each independently F, CF 3 , TMS, an arylene group or a heteroarylene group, substituted or unsubstituted with at least one of an alkyl group and a cycloalkyl group,
  • each L 1 , L 2 and L 3 are the same as or different from each other,
  • Ar 1 , Ar 2 and Ar 3 are each independently F, CF 3 , TMS, an alkyl group, a cycloalkyl group, and an aryl group unsubstituted or substituted with at least any one of an aryl group or a heteroaryl group,
  • R 1 is at least one of H, F, CF 3 , an alkyl group and a cycloalkyl group,
  • n is an integer from 0 to 4,
  • each R 1 is the same as or different from each other,
  • p, q and r are each independently an integer of 0 to 5
  • n is an integer of 0 or 1.
  • the organic compound according to an embodiment of the present invention is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)
  • L 1 , L 2 and L 3 are each independently selected from a phenyl group, a naphthalene group, an anthracene group, a triphenylene group, and a pyridine group, each independently substituted or unsubstituted with at least one of F, CF 3 , TMS, an alkyl group and a cycloalkyl group becomes,
  • each L 1 , L 2 and L 3 are the same as or different from each other,
  • Ar 1 , Ar 2 and Ar 3 are each independently F, CF 3 , TMS, an alkyl group, a cycloalkyl group, and an aryl group substituted or unsubstituted with at least one of a phenyl group, a pyridine group, a naphthyl group, an anthracene group, a phenanthrene group, dibenzofuran It is selected from a group, a dibenzothiophene group, a benzoxazole group, a benzthiazole group, a benzimidazole group, a carbazole group and a triphenylene group,
  • the aryl group is a phenyl group unsubstituted or substituted with at least one of F, CF 3 , TMS, an alkyl group and a cycloalkyl group,
  • R 1 , p, q, r, m and n are as defined above.
  • the organic compound represented by Chemical Formula 1 of the present invention may be any one selected from compounds of Chemical Formulas 2 to 6, and the following compounds may be further substituted.
  • FIGS. 1 to 7 the present invention will be described with reference to FIGS. 1 to 7 .
  • FIG. 1 is a cross-sectional view schematically showing a device having a nucleation inhibiting layer according to an embodiment of the present invention.
  • a device having a nucleation inhibiting layer according to an embodiment is manufactured by sequentially stacking a nucleation inhibiting layer 110 and a metal layer 120 on a substrate 100 .
  • 1 is an example showing a deposition sequence showing that a device is manufactured by depositing a metal layer 120 on the nucleation inhibiting layer 110, and in the actual device, since the nucleation inhibiting layer suppresses the deposition of the metal layer, it is on the nucleation inhibiting layer. It may not be located or may contain only a portion.
  • FIGS. 2A to 2D are cross-sectional views illustrating a process for depositing a metal layer on a surface of a substrate according to an exemplary embodiment.
  • the contents shown in FIG. 2 are all a series of processes performed in the deposition chamber of a thermal evaporation system. Specifically, the inside of the deposition chamber is subdivided into a mechanism for transferring and aligning substrates, a gate for directly controlling deposition, a sensor for monitoring the deposition state, and a source for generating material deposition by applying heat. However, in FIG. 2, only parts directly related to the content of the present invention are illustrated and shown.
  • deposition and coating techniques including spin coating, dip coating, printing, spray coating, CVD, PVD, etc., and combinations thereof may be used for the method of forming and depositing the nucleation inhibiting layer 110 and the metal layer 120, A method of depositing each layer and a method of forming a film are not limited thereto.
  • FIG. 2A is a diagram illustrating a state in which the patterned mask 300 is positioned on the substrate 100 .
  • the mask is located under the substrate in FIG. 2A, it is expressed as a phase, the crucible 50 filled with material in the method of the thermal deposition process is located on the chamber bottom surface, and since it vaporizes by applying heat to the material, it is deposited from bottom to top Since the lower surface of the substrate 100 becomes the deposition direction because of its characteristics, the mask positioned in the deposition direction is expressed as on the substrate, but as mentioned above, the deposition and coating technology is not limited, so the mask is positioned in the deposition direction.
  • FIG. 2B is a diagram illustrating a state in which the nucleation inhibiting layer 110 is deposited in FIG. 2A . Since the patterned mask is positioned on the substrate, the nucleation inhibiting layer 110 is formed as an empty region of the mask on the substrate.
  • the crucible 50 is a crucible filled with an organic material, and depending on the material, the material of the crucible may be made of various materials such as alumina, quartz, titanium.
  • the nucleation inhibiting layer is patterned on the substrate when the mask is separated from the substrate after the deposition is completed.
  • FIG. 2C is a diagram illustrating a process of depositing a metal material through a crucible 60 filled with a metal material on the substrate 100 separated from the mask 300 or through an evaporation source.
  • nucleation inhibiting layer 110 suppresses nucleation of metal occurring on the surface of the substrate or the uppermost layer during metal deposition, it is difficult to form the metal layer 200 on the nucleation inhibiting layer.
  • 2D is a diagram illustrating a device in a state in which the metal layer 200 is finally patterned. Finally, the metal layer 200 is formed in the form of a mask pattern. This can be applied to various fields. It can be applied to UDC (Under Display Camera), auxiliary electrode patterning, semiconductor dry patterning, etc., which are the latest next-generation mobile display panel types.
  • UDC Under Display Camera
  • auxiliary electrode patterning auxiliary electrode patterning
  • semiconductor dry patterning etc.
  • 3A and 3B are diagrams illustrating images obtained by measuring a cross-section of a device deposited on a substrate 600 with a scanning electron microscope.
  • FIG. 3A shows a state in which a nucleation inhibiting layer 610 having a thickness of about 20 nm is deposited on a substrate 600 and then a metal is deposited to a thickness of about 500 nm, but is not deposited on the nucleation inhibiting layer 610 .
  • nucleation inhibiting layer 610 effectively suppresses nuclei generated when a metal is deposited to prevent clustering, thereby preventing the stable formation of a metal film.
  • 3B shows a state in which the metal layer 700 is well formed when the metal is deposited after depositing the general organic material 620 rather than the nucleation inhibiting material.
  • the general organic material 620 was formed to a thickness of 44 nm, and since the material has a weak ability to suppress nuclei generated during metal deposition, the nuclei are formed and the nuclei grow to form clusters with adjacent nuclei, indicating that the metal layer is normally formed. indicates.
  • 4A and 4B are images of an actual device in which nucleation is suppressed.
  • FIG 4A is an image of the nucleation inhibiting layer 810 deposited on the substrate 800 and the metal layer 900 additionally deposited on the nucleation inhibiting layer 810 .
  • the nucleation-inhibiting layer 810 was almost transparent on the image, indicating the actually deposited area with dotted lines and dotted lines. If nucleation is not suppressed, the metal layer 900 should be deposited in a much longer form, but it was not deposited inside the nucleation inhibiting layer 810 region and was limited outside the nucleation inhibiting layer 810 region.
  • 4B is an image of a device deposited on the general organic material 820 because the general organic material 820 deposited on the substrate 800 does not inhibit the deposition of metal.
  • the difference between the devices of FIGS. 4A and 4B is that when the same metal is deposited on the material of the nucleation inhibiting layer 810 and the general organic material 820, the difference is in whether or not the same metal is deposited.
  • the present invention has the advantage that metal can be conveniently patterned without the need for solution or dry exfoliation by using this difference, and the optical properties of the nucleation inhibiting layer 810 material also show properties close to transparent in the visible region. It can show high process efficiency when applied to suitable applications.
  • FIG. 5 is a graph showing the transmittance spectrum of a device in which a compound and a general organic material according to an embodiment of the present invention are applied to a nucleation inhibiting layer.
  • the black solid line 1000 and the black dotted line 1010 of FIG. 5 are the transmittance of the nucleation suppression layer of the device using the nucleation suppression layer, respectively, and the transmittance of the position where the nucleation suppression layer and the metal layer are stacked.
  • the same transmittance of the black solid line 1000 and the black dotted line 1010 indicates that the metal layer is not deposited on the upper surface of the position where the nucleation inhibiting layer is deposited.
  • the solid line 1020 and the dotted line 1030 of FIG. 5 are the transmittance of the general organic material of the device using the general organic material, respectively, and the transmittance of the position where the general organic material and the metal layer are stacked.
  • the transmittance of the solid line 1020 is not significantly different from that of the black solid line 1000 , but the dotted line 1030 shows that the transmittance is 0 and the metal is thickly deposited on the general organic material, so that light does not pass.
  • FIG. 6 is a view showing a cross-section of a top light emitting organic light emitting device including a nucleation inhibiting layer 2400 and a second metal layer 2300 .
  • the top light emitting organic light emitting device shown in FIG. 6 briefly shows an improved top light emitting organic light emitting device for securing a transmissive region in order to improve the transmittance reduction of the entire device due to the semi-transmissive second metal layer 2300 .
  • the first metal layer 2100 serving as a reflective electrode is deposited on the substrate 2000 by sputtering, thermal evaporation, or the like.
  • a red light emitting layer 2203 , a green light emitting layer 2202 , and a blue light emitting layer 2201 for a full color display are formed on the first metal layer 2100 .
  • An organic common layer 2250 serving to transport and inject electrons is formed on the emission layer.
  • the nucleation suppression layer 2400 is formed on the organic common layer 2250 so as not to overlap the patterns of the red light emitting layer 2203 , the green light emitting layer 2202 , and the blue light emitting layer 2201 .
  • the second metal layer 2300 serving as a semi-transmissive electrode is deposited on the patterned nucleation inhibiting layer 2400 , the red light emitting layer 2203 , the green light emitting layer 2202 , and the blue light emitting layer 2201 exactly overlap the second metal layer.
  • a metal layer 2300 may be formed.
  • nucleation inhibiting layer 2400 Since the nucleation inhibiting layer 2400 is close to transparent, light can pass through the region where the nucleation inhibiting layer 2400 is deposited as it is. Accordingly, even if a camera, IR sensor, face recognition TOF, etc. are formed in the direction of the substrate, it can be driven without significant degradation in performance.
  • FIG. 7 is a diagram illustrating a cross-section of a top-emitting organic light emitting device including a nucleation inhibiting layer 2400 and a second metal layer 2300 .
  • the difference from FIG. 6 is that FIG. 6 is a pattern for increasing light transmittance, but FIG. 7 is a cross-sectional view of an organic light emitting device including an auxiliary electrode 2500 for improving the IR drop phenomenon appearing in a large area organic light emitting device. to be.
  • the top light emitting organic light emitting device is characterized in that the metal thickness is thin for the transmittance of the second metal layer 2300 . This makes the sheet resistance of the second metal layer 2300 high. If the sheet resistance is high, the larger the area of the display, the more the voltage drop occurs due to the high resistance value. causes
  • the auxiliary electrode 2500 By forming the auxiliary electrode 2500 in a region that does not overlap the red light emitting layer 2203 , the green light emitting layer 2202 , and the blue light emitting layer 2201 , the voltage drop phenomenon can be prevented and the luminance uniformity of the entire screen can be increased. As shown in FIG. 7 , a patterned nucleation inhibiting layer 2400 is formed, and the auxiliary electrode 2500 is deposited to a thick thickness in which a voltage drop does not occur.
  • the organic light emitting device in which the auxiliary electrode 2500 is formed can minimize a voltage drop phenomenon even with a large area and can maintain excellent luminance uniformity over a large area.
  • the nucleation inhibiting layer 2400 provided in the present invention is a functional layer deposited on the second electrode 120 and includes an organic material according to Chemical Formula 1 of the present invention.
  • 1,3-dibromo-5-chlorobenzene (1,3-dibromo-5-chlorobenzene) 20.0 g (74.0 mmol), ((3,5-bis (trifluoromethyl) phenyl) in a 1-neck 250 mL flask Boronic acid ((3,5-bis(trifluoromethyl)phenyl)boronic acid) 42.0 g (162.8 mmol), Pd(PPh 3 ) 4 4.3 g (3.7 mmol), 2 M aqueous solution K 2 CO 3 148.0 mL (296.2 mmol) , 500 mL of toluene and 250 mL of ethanol were mixed, and then stirred under reflux for 18 hours.After completion of the reaction, cooled to room temperature. The separated organic layer was distilled under reduced pressure, and the obtained compound was purified by silica gel column chromatography (Hexane). to obtain 20.0 g (yield: 50.4%) of the compound intermediate (2) as a white solid.
  • 6-bromonaphthalen-2-ol (6-bromonaphthalen-2-ol) 50.0 g (224.2 mmol), (3,5-bis (trifluoromethyl) phenyl) boronic acid ((3,5-bis ( trifluoromethyl)phenyl)boronic acid) 57.8 g (224.2 mmol), Pd(PPh 3 ) 4 7.8 g (6.7 mmol), K 3 PO 4 142.7 g (672.5 mmol), toluene 600 mL, ethanol 200 mL, and water 200 mL After mixing, the mixture was stirred under reflux for 12 hours.
  • reaction mixture was cooled to room temperature, added with water, extracted with ethyl acetate, and the solvent was removed under reduced pressure.
  • the obtained reaction mixture was purified by silica gel column chromatography (CHCl 3 ) and solidified with a mixed solution (DCM/Hex) to obtain 57.2 g (yield: 71.6%) of the compound intermediate (5) as a white solid.
  • reaction mixture was purified by silica gel column chromatography (Hex:EA) and solidified with a mixed solution (Hex/EA) to obtain 55.7 g (yield: 79.2%) of compound intermediate (12) as a yellow solid.
  • 1-bromo-4-chlorobenzene (1-bromo-4-chlorobenzene) 30.0 g (156.7 mmol), 3,5-bistrifluoromethylphenylboronic acid ((3,5-bis ( trifluoromethyl)phenyl)boronic acid) 40.4 g (156.7 mmol), Pd(PPh 3 ) 4 5.4 g (4.7 mmol), K 2 CO 3 65.0 g (470.1 mmol), toluene 500 mL, ethanol 150 mL, and water 150 mL After mixing, the mixture was stirred under reflux for 12 hours.
  • reaction mixture was purified by silica gel column chromatography (Hex:CH 2 Cl 2 ) and solidified with methanol/hexane to obtain 10.2 g (yield: 74.4%) of the compound intermediate (19) as a white solid.
  • 1,5-dibromo-2,4-difluorobenzene (1,5-dibromo-2,4-difluorobenzene) 15.0 g (55.2 mmol)
  • 4-chlorophenylboronic acid (4 -Chlorophenylboronic acid) 25.9 g (165.5 mmol)
  • Pd(PPh 3 ) 4 0.6 g (0.6 mmol)
  • toluene 247 mL and ethanol 123 mL were mixed for one day. while stirring at reflux. After the reaction was completed, it was cooled to room temperature and the solvent was removed under reduced pressure.
  • the reactant was dissolved in dichloromethane, distilled water was added, and extraction was performed. The obtained reactant was dried over anhydrous magnesium sulfate and passed through a pad of silica gel. The reactant was solidified with a mixed solution (Dichloromethane:Hexane) to obtain 14.6 g (yield: 78.7%) of the compound intermediate (23) as a white solid.
  • reaction mixture was purified by silica gel column chromatography (Hex:EA) and solidified with a mixed solution (Hex/EA) to obtain 6.2 g (yield: 54.7%) of the compound intermediate (31) as a white solid.
  • 1,3-dibromo-5-iodobenzene (1,3-dibromo-5-iodobenzene) 10.0 g (27.6 mmol), (3,5-bis (trifluoromethyl) phenyl) in a 1-neck 250 mL flask Boronic acid ((3,5-bis(trifluoromethyl)phenyl)boronic acid) 7.8 g (30.4 mmol), Pd(PPh 3 ) 4 1.6 g (1.4 mmol), K 2 CO 3 11.5 g (82.9 mmol), toluene 240 mL and 120 mL of ethanol were mixed and stirred under reflux for one day. After the reaction was completed, it was cooled to room temperature. The compound obtained by distilling the separated organic layer under reduced pressure was purified by silica gel column chromatography (Hexane) to obtain 7.2 g (yield: 58.2%) of the compound intermediate (32) as a white solid.
  • 1,3-dibromo-5-iodobenzene (1,3-dibromo-5-iodobenzene) 10.0 g (27.6 mmol), [1,1'-biphenyl] -4-ylboron in a 1-neck 250mL flask Acid ([1,1'-biphenyl]-4-ylboronic acid) 6.0 g (30.4 mmol), Pd(PPh 3 ) 4 1.6 g (1.4 mmol), K 2 CO 3 11.5 g (82.9 mmol), toluene 240 mL and 120 mL of ethanol were mixed, followed by stirring under reflux for one day. After the reaction was completed, it was cooled to room temperature. The compound obtained by distilling the separated organic layer under reduced pressure was purified by silica gel column chromatography (Hexane) to obtain 5.9 g (yield: 55.0%) of the compound intermediate (33) as a white solid.
  • reaction mixture was purified by silica gel column chromatography (Hex:EA) and solidified with a mixed solution (Hex/EA) to obtain 9.5 g (yield: 79.4%) of the compound intermediate (34) as a white solid.
  • 1,3-dibromo-5-(tert-butyl)benzene (1,3-dibromo-5-(tert-butyl)benzene) 10.0 g (34.2 mmol), pinacol diboron (Bis(pinacolato)diboron) After mixing 18.3 g (71.9 mmol), Pd(dppf)Cl 2 ⁇ CH 2 Cl 2 1.4 g (1.7 mmol), KOAc 10.1 g (102.7 mmol) and 1,4-dioxane 200 mL, the mixture was stirred under reflux for one day. did.
  • reaction mixture was purified by silica gel column chromatography (Hex:EA) and solidified with a mixed solution (Hex/EA) to obtain 8.9 g (yield: 67.3%) of the compound intermediate (41) as a white solid.
  • reaction mixture was purified by silica gel column chromatography (Hex:EA) and solidified with a mixed solution (Hex/EA) to obtain 13.7 g (yield: 62.9%) of the compound intermediate (44) as a white solid.
  • 1-bromo-3,5-bis(trifluoromethyl)benzene (1-bromo-3,5-bis(trifluoromethyl)benzene) 20.0 g (68.3 mmol)
  • (3-chloro-2 -fluorophenyl) boronic acid ((3-chloro-2-fluorophenyl) boronic acid) 13.1 g (75.1 mmol)
  • K 2 CO 3 28.3 g (204.8 mmol) , 240 mL of toluene and 120 mL of ethanol were mixed, followed by stirring under reflux for one day.
  • reaction mixture was purified by silica gel column chromatography (Hex:EA) and solidified with a mixed solution (Hex/EA) to obtain 15.6 g (yield: 68.4%) of the compound intermediate (46) as a white solid.
  • reaction mixture was purified by silica gel column chromatography (Hex:EA) and solidified with a mixed solution (Hex/EA) to obtain 14.4 g (yield: 67.7%) of the compound intermediate (48) as a white solid.
  • 3-bromo-1,2,4,5-tetrafluorobenzene (3-bromo-1,2,4,5-tetrafluorobenzene) 50.0 g (218.5 mmol), (3,5- Bis(trifluoromethyl)phenyl)boronic acid ((3,5-bis(trifluoromethyl)phenyl)boronic acid) 61.9 g (249.3 mmol), Pd(PPh 3 ) 4 7.8 g (6.6 mmol), 2M aqueous solution K 2 CO 3 327.8 mL (655.5 mmol), 728 mL of toluene, and 364 mL of ethanol (EtOH) were mixed, followed by refluxing and stirring for 18 hours.
  • 6-bromonaphthalen-2-ol 6-bromonaphthalen-2-ol 10.0 g (44.8 mmol)
  • Intermediate (51) 24.6 g (67.2 mmol)
  • Pd (OAc) 2 1.0 g ( 4.5 mmol)
  • K 2 CO 3 24.8 g (179.3 mmol) and tetrahydrofuran (THF) 400 mL were mixed, followed by stirring under reflux. After completion of the reaction, the mixture was cooled to room temperature, distilled water was added, stirred, and extracted with ethyl acetate. The obtained compound was purified by silica gel column chromatography to obtain 10.7 g (yield: 47.3%) of the compound intermediate (52) as a white solid.
  • Synthesis example 1 Synthesis of compound 2-24 (LT19-30-238)
  • Synthesis example 2 Synthesis of compound 2-27 (LT20-35-577)
  • Synthesis example 4 Synthesis of compound 2-535 (LT20-30-447)
  • Synthesis example 5 Synthesis of compound 2-556 (LT20-30-089)
  • Synthesis example 6 Synthesis of compound 2-755 (LT19-30-221)
  • Synthesis example 7 Synthesis of compound 3-2 (LT20-35-574)
  • Synthesis example 8 Synthesis of compound 3-115 (LT20-35-579)
  • Synthesis example 9 Synthesis of compound 3-599 (LT20-35-573)
  • Synthesis example 10 Synthesis of compound 4-2 (LT20-35-587)
  • Synthesis example 12 Synthesis of compound 4-277 (LT20-35-585)
  • Synthesis example 13 Synthesis of compound 4-242 (LT20-30-360)
  • Synthesis example 15 Synthesis of compound 4-332 (LT20-30-078)
  • Synthesis example 16 Synthesis of compound 4-491 (LT20-30-395)
  • Synthesis example 17 Synthesis of compound 4-497 (LT20-30-348)
  • Synthesis example 18 Synthesis of compound 4-520 (LT20-30-046)
  • Synthesis example 19 Synthesis of compound 5-75 (LT21-30-076)
  • Synthesis example 20 Synthesis of compound 5-168 (LT20-30-616)
  • reaction product was solidified with methanol, filtered, and washed with distilled water.
  • the dried reactant was dissolved with toluene, and then concentrated through a pad of silica gel.
  • the reactant was solidified with a mixed solution (Dichloromethane: Hexanes) to obtain 4.9 g (yield: 35.0%) of compound 5-168 (LT20-30-616) as a white solid.
  • Synthesis example 21 Synthesis of compound 5-205 (LT20-30-457)
  • reaction mixture was purified by silica gel column chromatography (Hex:CHCl 3 ) and solidified with a mixed solvent (DCM/EA/MeOH), and 2.8 g of compound 5-205 (LT20-30-457) as a white solid (yield: 43.7) %) was obtained.
  • Synthesis example 22 Synthesis of compound 5-210 (LT20-30-442)
  • Synthesis example 23 Synthesis of compound 5-214 (LT21-30-064)
  • Synthesis example 24 Synthesis of compound 5-215 (LT21-30-062)
  • Synthesis example 25 Synthesis of compound 5-221 (LT21-30-067)
  • Synthesis example 26 Synthesis of compound 5-222 (LT21-30-068)
  • Synthesis example 27 Synthesis of compound 5-223 (LT21-30-074)
  • Synthesis example 28 Synthesis of compound 5-224 (LT21-30-072)
  • Synthesis example 29 Synthesis of compound 5-219 (LT21-30-056)
  • Synthesis example 30 Synthesis of compound 6-2 (LT21-30-270)
  • 1,3-dibromo-5-fluorobenzene (1,3-dibromo-5-fluorobenzene) 15.0 g (59.0 mmol), Intermediate (51) 64.1 g (177.0 mmol), Pd ( OAc) 2 2.0 g (8.9 mmol), S-Phos 7.3 g (17.7 mmol), K 2 CO 3 48.9 g (354.0 mmol) and tetrahydrofuran 454 mL were mixed, followed by stirring under reflux. After completion of the reaction, the mixture was cooled to room temperature, distilled water was added, stirred, and extracted with ethyl acetate. The obtained compound was purified by silica gel column chromatography to obtain 13.0 g (yield: 38.1%) of compound 6-2 (LT21-30-270) as a white solid.
  • Synthesis example 31 Synthesis of compound 6-4 (LT20-35-575)
  • Synthesis example 32 Synthesis of compound 6-25 (LT20-35-583)
  • Synthesis example 33 Synthesis of compound 6-29 (LT21-30-226)
  • transmittance was measured using a Filmetrics F20 instrument.
  • samples were prepared to analyze the optical properties change according to the type of the nucleation inhibiting layer.
  • the electrical and optical properties of metals are caused by the movement of electrons. Metals are concentrated on the metal surface according to the frequency of electromagnetic waves, and a skin effect occurs in which electrons react. At this time, the thickness that causes the skin effect is called the skin depth, and if it becomes thinner than the skin depth, the electro-optical properties inherent in the metal are lost.
  • the skin depth the thickness that causes the skin effect is called the skin depth, and if it becomes thinner than the skin depth, the electro-optical properties inherent in the metal are lost.
  • an optical characteristic since a metal having a thickness of less than the epidermal depth has a more transparent characteristic as the thickness becomes thinner, whether and the degree of inhibition of metal deposition can be determined by analyzing the transmittance spectrum of the metal.
  • a single-film sample for evaluating the nucleation inhibition properties is prepared by depositing in the order of a glass substrate/REF01 (50 nm) (nucleation inhibiting layer)/Mg (500 nm).
  • the glass substrate was subjected to oxygen and nitrogen mixed plasma treatment at 2 ⁇ 10 ⁇ 2 Torr at 100 W for 1 minute.
  • the organic material was deposited at a vacuum degree of 9 ⁇ 10 - 7 Torr or less, REF01 was deposited at 1 ⁇ /sec, and Mg was deposited at 2 ⁇ /sec.
  • a moisture absorbing tape was attached to the inside of the sample in a glove box filled with nitrogen gas, applied to a cover glass with Nagase UV resin, and then exposed to UV and sealed.
  • the transmittance A of the glass substrate/nucleation inhibiting layer portion is obtained as shown in FIG. /Nucleation inhibiting layer/Get the transmittance B of the metal part.
  • the transmittance C by the final metal can be obtained as transmittance B/transmittance A.
  • REF01 was used as the compound of the nucleation inhibitory layer in the preparation of the single film for evaluation of the nucleation inhibition properties.
  • the comparative test example used the REF01 as the nucleation inhibiting layer, and in Test Examples 1 to 45, each compound shown in Table 1 was used as the nucleation inhibiting layer. .
  • the transmittance C can be obtained as 100% in the test example, and it can be seen that the compound corresponding to this is completely effective in inhibiting magnesium nucleation, and the compound having a transmittance C of 80% or more is partially effective in inhibiting magnesium nucleation. It can be seen that
  • a single film is deposited on a glass substrate / REF01 (10 nm) (nucleation inhibitory layer) / (Ag / Mg) (9:1, 2.5 nm or 12.5 nm) in the order to prepare a single film sample Except for the above, a single membrane sample was prepared using the same method as for preparing the single membrane for evaluation of the nucleation inhibition properties.
  • the transmittance C of the comparative test example was able to obtain a transmittance of 0% in the 400 nm and 500 nm regions. This is a result that REF01 is not effective at all in suppressing the deposition of silver (Ag)/magnesium (Mg) alloy.
  • the single film is a glass substrate / REF01 (60 nm) (nucleation inhibiting layer) / Yb (1.2 nm) / (Ag: Mg) (9:1, 2.5 nm or 12.5 nm) in the order
  • a single-layer sample was prepared by using the same method as for preparing a single-layer for evaluation of the nucleation inhibition characteristics, except that a single-layer sample was prepared by deposition.
  • Table 3 shows the optical properties of the compounds according to the Comparative Test Examples and Test Examples 1 to 10.
  • the transmittance C of the comparative test example was 0% transmittance in the 400 nm and 500 nm regions. This is a result that REF01 is not effective at all in suppressing the ytterbium (Yb)/silver (Ag):magnesium (Mg) alloy deposition.
  • the organic compound according to the present invention can be used as a material for suppressing nucleation of organic electronic devices including organic light emitting devices, and the cathode of the organic light emitting device using the same can be obtained. It can be seen that it exhibits excellent characteristics for patterning.
  • the compound of Formula 1 has unexpectedly desirable properties for use as a cathode patterning material (CPM) in an OLED.
  • CPM cathode patterning material
  • the compound of the present invention can be applied to industrial organic electronic device products due to these properties.
  • the above-described synthesis example is an example, and the reaction conditions may be changed as needed.
  • the compound according to an embodiment of the present invention may be synthesized to have various substituents using methods and materials known in the art. By introducing various substituents into the core structure represented by Formula 1, it may have properties suitable for use in an organic electroluminescent device.
  • the metal nucleation inhibiting material according to the present invention can pattern the cathode by inhibiting the deposition of metal forming the cathode in the manufacture of an organic electroluminescent device.
  • the patterned cathode thus formed can achieve a reduction in sheet resistance, a reduction in IR drop through a transmissive electrode, and an Under Display Camera (UDC) in an organic electroluminescent device.
  • UDC Under Display Camera

Abstract

Provided is an organic compound for patterning a substantial cathode of an organic electroluminescent element. The organic electroluminescent element according to the present invention comprises: a first electrode; a hole organic material layer arranged on the first electrode; a light-emitting layer arranged on the hole organic material layer; an electronic organic material layer arranged on the light-emitting layer; a nucleation-inhibiting layer which is arranged on the electronic organic material layer, and which is arranged to not overlap with a light-emitting layer pattern of a second electrode; and a conductive deposition layer arranged to overlap with the light-emitting layer pattern of the second electrode, wherein the nucleation-inhibiting layer includes an organic compound expressed by chemical formula 1 of the present invention.

Description

핵생성 억제 형성용 물질 및 이를 포함하는 유기전계발광소자 Substance for forming inhibition of nucleation and organic electroluminescent device comprising same
본 발명은 유기전계발광소자를 구성하는 각각의 층의 표면 상에 전기 전도성 증착막을 선택적으로 증착하는데 사용하기 위한 핵생성 억제 형성용 물질, 또한 이러한 물질을 포함한 핵생성 억제 증착막 및 전도성 증착막을 포함하는 유기 전계 발광 소자에 관한 것이다.The present invention relates to a material for forming a nucleation inhibiting formation for use in selectively depositing an electrically conductive vapor deposition film on the surface of each layer constituting an organic electroluminescent device, and also a nucleation inhibiting deposition film and a conductive vapor deposition film comprising such a material. It relates to an organic electroluminescent device.
디스플레이 산업에서 표시장치의 대형화에 따라 공간 점유가 작은 평면표시소자의 요구가 증대되고 있다. LCD(Liquid Crystal Display)는 시야각이 제한되고, 자체 발광형이 아니므로 별도의 광원이 필요하다는 단점을 가지고 있다. 이러한 이유로 자기 발광 현상을 이용한 디스플레이로서 OLED(유기발광다이오드, Organic Light Emitting Diodes)가 주목받고 있다.In the display industry, the demand for a flat display device with a small space occupancy is increasing according to the enlargement of the display device. A liquid crystal display (LCD) has a limited viewing angle and is not a self-luminous type, so a separate light source is required. For this reason, OLED (Organic Light Emitting Diodes) is attracting attention as a display using the self-luminescence phenomenon.
OLED에 있어, 1963년 Pope 등에 의하여 안트라센(Anthracene) 방향족 탄화수소의 단결정을 이용한 캐리어 주입형 전계발광(Electroluminescence; EL)의 연구가 최초로 시도되었다. 이러한 연구로부터 유기물에서 전하주입, 재결합, 여기자 생성, 발광 등의 기초적 메커니즘과 전기발광 특성 등이 이해되고 연구되어 왔다. In OLED, a study of carrier injection electroluminescence (EL) using a single crystal of an anthracene aromatic hydrocarbon was first attempted by Pope et al. in 1963. From these studies, basic mechanisms such as charge injection, recombination, exciton generation, and light emission in organic materials and electroluminescence characteristics have been understood and studied.
특히 발광 효율을 높이기 위해 소자의 구조 변화 및 물질 개발 등 다양한 접근이 이루어지고 있다[Sun, S., Forrest, S. R., Appl. Phys. Lett. 91, 263503 (2007)/Ken-Tsung Wong, Org. Lett., 7, 2005, 5361-5364]. In particular, in order to increase the luminous efficiency, various approaches are being made, such as changing the structure of the device and developing materials [Sun, S., Forrest, S. R., Appl. Phys. Lett. 91, 263503 (2007)/Ken-Tsung Wong, Org. Lett., 7, 2005, 5361-5364].
OLED 디스플레이의 기본적 구조는, 일반적으로 양극(Anode), 정공주입층(Hole Injection Layer, HIL), 정공수송층(Hole Transporting Layer, HTL), 발광층 (Emission Layer, EML), 전자수송층(Electron Transporting Layer, ETL), 그리고 음극(Cathode)의 다층 구조로 구성되며, 전자 유기 다층막이 두 전극 사이에 형성된 샌드위치 구조로 되어 있다. The basic structure of an OLED display is generally an anode, a hole injection layer (HIL), a hole transporting layer (HTL), an emission layer (EML), an electron transporting layer (Electron Transporting Layer, ETL), and a multilayer structure of a cathode, and a sandwich structure in which an electron organic multilayer film is formed between two electrodes.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 통상 양극과 음극 및 이들 사이에 유기물층을 포함하는 구조를 가진다. 여기서 유기물층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공 주입층, 정공 수송층, 발광층, 전자 수송층, 전자 주입층 등을 포함할 수 있다. In general, the organic light emitting phenomenon refers to a phenomenon in which electric energy is converted into light energy using an organic material. An organic light emitting device using an organic light emitting phenomenon generally has a structure including an anode and a cathode and an organic material layer therebetween. Here, the organic material layer is often formed of a multilayer structure made of different materials in order to increase the efficiency and stability of the organic light emitting device, and may include, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like.
이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면, 양극에서는 정공이, 음극에서는 전자가 유기물층으로 주입되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 바닥상태로 떨어질 때 빛이 나게 된다. 이러한 유기 발광 소자는 자발광, 고휘도, 고효율, 낮은 구동전압, 넓은 시야각, 높은 콘트라스트, 고속 응답성 등의 특성을 갖는 것으로 알려져 있다.When a voltage is applied between the two electrodes in the structure of the organic light emitting device, holes are injected into the organic material layer from the anode and electrons from the cathode are injected into the organic material layer, and excitons are formed when the injected holes and electrons meet, and the excitons It lights up when it falls to the ground state. Such an organic light emitting device is known to have characteristics such as self-luminescence, high luminance, high efficiency, low driving voltage, wide viewing angle, high contrast, and high-speed response.
유기 발광 소자에서 유기물층으로 사용되는 재료는 기능에 따라, 발광 재료와 전하 수송 재료, 예컨대 정공 주입 재료, 정공 수송 재료, 전자 수송 재료, 전자 주입 재료 등으로 분류될 수 있다. A material used as an organic layer in an organic light emitting device may be classified into a light emitting material and a charge transporting material, for example, a hole injecting material, a hole transporting material, an electron transporting material, an electron injecting material, and the like, according to functions.
발광 재료는 발광색에 따라 청색, 녹색, 적색 발광 재료와 보다 나은 천연색을 구현하기 위해 필요한 노란색 및 주황색 발광 재료가 있다. 또한, 색순도의 증가와 에너지 전이를 통한 발광 효율을 증가시키기 위하여, 발광 재료로서 호스트/도판트 계를 사용할 수 있다. 그 원리는 발광층을 주로 구성하는 호스트보다 에너지 대역 간극이 작고 발광 효율이 우수한 도판트를 발광층에 소량 혼합하면, 호스트에서 발생한 엑시톤이 도판트로 수송되어 효율이 높게 빛을 내는 것이다. 이 때 호스트의 파장이 도판트의 파장대로 이동하므로, 이용하는 도판트의 종류에 따라 원하는 파장의 빛을 얻을 수 있다.The light-emitting material includes blue, green, and red light-emitting materials depending on the light-emitting color, and yellow and orange light-emitting materials required to realize a better natural color. In addition, in order to increase color purity and increase luminous efficiency through energy transfer, a host/dopant system may be used as a light emitting material. The principle is that when a small amount of a dopant having a smaller energy band gap and excellent luminous efficiency than the host constituting the light emitting layer is mixed in the light emitting layer in a small amount, excitons generated from the host are transported to the dopant to emit light with high efficiency. At this time, since the wavelength of the host moves to the wavelength band of the dopant, light having a desired wavelength can be obtained according to the type of the dopant used.
전술한 유기 발광 소자가 갖는 우수한 특징들을 충분히 발현하기 위해, 소자 내 유기물층을 이루는 물질, 예컨대 정공 주입 물질, 정공 수송 물질, 발광 물질, 전자 수송 물질, 전자 주입 물질 등이 개발되었고, 이로 인해 상용화된 제품들에 의해 유기 발광 소자의 성능을 인정받고 있다. In order to sufficiently express the excellent characteristics of the above-described organic light emitting device, materials constituting the organic material layer in the device, such as a hole injection material, a hole transport material, a light emitting material, an electron transport material, an electron injection material, etc. The performance of the organic light emitting device is recognized by the products.
OLED 장치는 통상적으로 장치로부터 빛이 방출되는 상대적인 방향에 따라 "배면 발광(bottom-emission)"또는 "전면 발광(top-emission)"장치로 분류될 수 있다. 배면 발광 장치에서는 방사 재결합 과정의 결과로 발생된 빛이 장치의 베이스 기판 쪽의 방향으로 방출되는 반면, 전면 발광 장치에서는 빛이 베이스 기판에서 멀어지는 방향으로 방출된다. 따라서, 베이스 기판에 근접한 전극은 일반적으로 배면 발광 장치에서 광 투과성(예를 들어, 실질적으로 투명 또는 반투명)으로 만들어지는 반면, 전면 발광 장치에서는 베이스 기판에 반대에 있는 전극은 일반적으로 빛의 감쇠를 줄이기 위해 빛을 투과하도록 만들어진다. 특정 장치 구조에 따라 애노드 또는 캐소드가 전면 발광 및 배면 발광 장치에서 투과형 전극으로 작용할 수 있다.OLED devices can typically be classified as “bottom-emission” or “top-emission” devices depending on the relative direction in which light is emitted from the device. In a bottom light emitting device, light generated as a result of the radiative recombination process is emitted in a direction toward the base substrate of the device, whereas in a top light emitting device, light is emitted in a direction away from the base substrate. Thus, electrodes proximate to the base substrate are generally made light-transmissive (e.g., substantially transparent or translucent) in bottom-emitting devices, whereas in top-emitting devices, electrodes opposite the base substrate generally exhibit light attenuation. It is made to transmit light to reduce it. Depending on the specific device structure, either the anode or the cathode may act as a transmissive electrode in top-emitting and bottom-emitting devices.
상기 장치 구성에 더하여, 투명 또는 반투명 OLED 장치도 구현될 수 있으며, 여기서 상기 장치는 상기 장치를 통해 외부 광이 투과될 수 있도록 하는 투명한 부분을 포함한다. 예를 들어, 투명 OLED 디스플레이 장치에서, 이웃하는 각 픽셀 사이의 비 발광 영역에 투명한 부분이 제공될 수 있다. 다른 예에서, 투명 OLED 조명 패널은 패널의 발광 영역 사이에 복수개의 투명 영역을 제공함으로써 형성될 수 있다. 투명 또는 반투명 OLED 장치는 배면 발광, 전면 발광 또는 양면 발광 장치일 수 있다.In addition to the device configuration, a transparent or translucent OLED device may also be implemented, wherein the device comprises a transparent portion through which external light may be transmitted. For example, in a transparent OLED display device, a transparent portion may be provided in a non-light emitting region between each neighboring pixel. In another example, a transparent OLED lighting panel may be formed by providing a plurality of transparent regions between the light emitting regions of the panel. Transparent or translucent OLED devices may be bottom emitting, top emitting or double emitting devices.
캐소드 또는 애노드가 투과형 전극으로 선택될 수 있지만 통상적인 전면 발광 장치는 광 투과형 캐소드를 포함한다. 투과형 캐소드를 형성하는 데 통상적으로 사용되는 물질은 은(Ag), 알루미늄(Al), 부피로 약 1:9 내지 약 9:1의 범위의 조성을 갖는 마그네슘 은(Mg:Ag) 합금 및 이테르븀 은(Yb:Ag) 등이 있다. 투과형 캐소드는 상기 물질을 얇은 층으로 증착함으로써 형성된 박막뿐만 아니라 인듐 주석 산화물(ITO) 및 아연 산화물(ZnO)과 같은 투명 전도성 산화물(TCO: transparent conducting oxide)을 포함한다. 2개 이상의 TCO 층 및/또는 금속 박막을 포함하는 다층 캐소드도 사용될 수 있다. 특히 박막의 경우, 최대 약 수십 나노 미터의 상대적으로 얇은 층 두께는 OLED에 사용하기 위한 향상된 투명성과 유리한 광학적 특성(예컨대, 감소된 미세공동 효과)에 기여한다. 그러나 투과형 전극의 두께가 감소하면 면저항 증가가 수반된다. 면저항이 높은 전극은 일반적으로 OLED에 사용하기에 바람직하지 않은데, 이는 장치를 사용할 때 큰 전류-저항(IR) 강하가 발생하여 OLED의 성능과 효율에 해를 끼치기 때문이다. IR 강하는 전원 공급 레벨을 높여 어느 정도 보상될 수 있다. 그러나 한 픽셀에 대한 전원 공급 레벨을 증가시키면 장치의 정상적인 동작을 유지하기 위해 다른 성분에 공급되는 전압도 높아져 바람직하지 않다.A typical top light emitting device includes a light transmissive cathode, although either the cathode or the anode may be selected as the transmissive electrode. Materials commonly used to form transmissive cathodes include silver (Ag), aluminum (Al), magnesium silver (Mg:Ag) alloys having a composition ranging from about 1:9 to about 9:1 by volume, and ytterbium silver ( Yb:Ag) and the like. Transmissive cathodes include transparent conducting oxides (TCOs) such as indium tin oxide (ITO) and zinc oxide (ZnO) as well as thin films formed by depositing the material as a thin layer. Multilayer cathodes comprising two or more TCO layers and/or thin metal films may also be used. Particularly for thin films, relatively thin layer thicknesses of up to about tens of nanometers contribute to improved transparency and advantageous optical properties (eg, reduced microcavity effect) for use in OLEDs. However, when the thickness of the transmissive electrode decreases, the sheet resistance increases. Electrodes with high sheet resistance are generally undesirable for use in OLEDs, as they experience a large current-resistance (IR) drop when using the device, which harms the performance and efficiency of the OLED. The IR drop can be compensated to some extent by increasing the power supply level. However, increasing the power supply level for one pixel also increases the voltage supplied to the other components to maintain normal operation of the device, which is undesirable.
전면 발광 OLED 장치에 대한 전원 공급 사양을 줄이기 위해 장치에 버스바(busbar) 구조 또는 보조 전극을 형성하는 솔루션이 제안되었다. 예를 들어, 이러한 보조 전극은 OLED 장치의 투과형 전극과 전기적으로 소통하는 전도성 증착막을 증착함으로써 형성될 수 있다. 이러한 보조 전극은 면저항 및 투과성 전극의 관련 IR 강하를 낮춤으로써 전류가 장치의 다양한 영역에 보다 효과적으로 전달되도록 할 수 있다. In order to reduce the power supply specification for a top-emitting OLED device, a solution of forming a busbar structure or auxiliary electrode in the device has been proposed. For example, such an auxiliary electrode may be formed by depositing a conductive vapor deposition film in electrical communication with the transmissive electrode of the OLED device. These auxiliary electrodes lower the sheet resistance and the associated IR drop of the transmissive electrode, thereby allowing the current to be delivered more effectively to various areas of the device.
음극표면을 패턴화하는 방법중 하나로 음극을 전체를 코팅한 후, 레이저를 사용하여 음극을 부분적으로 제거하여 음극을 패턴화하는 방법이 있다. 그러나 이 방법은 레이저로 음극을 제거하는데 있어 레이저로 제거한 부분에서 불순물이 발생해 이후 다른 공정에 큰 문제점을 야기할 수 있어 대량 생산에 문제가 생길 수 있다.As one of the methods of patterning the surface of the anode, there is a method of patterning the cathode by partially removing the cathode using a laser after coating the entire anode. However, in this method, when removing the cathode with a laser, impurities may be generated in the laser-removed portion, which may cause major problems in subsequent processes, which may cause problems in mass production.
음극 표면을 패턴화하는 방법중 하나로 전기 전도성 증착막을 선택적으로 증착하기 위하여 핵생성 억제 형성용 물질, 또는 이러한 물질을 포함한 핵생성 억제 증착막을 통하여, 음극 표면을 선택적으로 증착하는 방법이 있다. 이러한 방법은 핵생성 억제 형성용 물질을 증착하는 공정의 추가 및 신규 핵생성 억제 형성용 물질의 개발 등의 개선이 요구되는 문제점이 있다. As one of the methods of patterning the surface of the cathode, there is a method of selectively depositing the surface of the cathode through a material for inhibiting nucleation or a deposition film containing the material for inhibiting nucleation in order to selectively deposit an electrically conductive vapor deposition film. This method has a problem that requires improvement, such as addition of a process for depositing a material for formation of inhibiting nucleation and development of a new material for formation of inhibiting nucleation.
이러한 문제점을 극복하게 된다면 전면 발광 OLED 장치에 있어 음극을 패턴화하는 방법에 의해 면저항의 감소, 투과성 전극을 통한 IR 강하의 낮춤, 및 UDC(Under Display Camera)를 이룰 수 있을 것으로 예상되어진다.If this problem is overcome, it is expected that the reduction of sheet resistance, reduction of IR drop through the transparent electrode, and UDC (Under Display Camera) can be achieved by the method of patterning the cathode in the top-emitting OLED device.
본 발명의 과제는 디스플레이 디바이스의 전면을 패턴화된 음극으로 증착하는 것이다.SUMMARY OF THE INVENTION It is an object of the present invention to deposit the front surface of a display device with a patterned cathode.
또한, CPM(Cathode Patterning Material)을 이용하여 음극을 패턴화하는 것이다.In addition, the cathode is patterned using a cathode patterning material (CPM).
또한, 음극을 패턴화하는 것에 의해 면저항의 감소, 투과성 전극을 통한 IR 강하의 낮춤, 및 UDC(Under Display Camera)를 이룰 수 있도록 하는 것이다.In addition, by patterning the cathode, it is possible to reduce the sheet resistance, lower the IR drop through the transmissive electrode, and achieve an Under Display Camera (UDC).
본 발명은 유기전계발광소자를 구성하는 각각의 층의 표면 상에 전기 전도성 증착막을 선택적으로 증착하는데 사용하기 위한 핵생성 억제 형성용 물질, 또한 이러한 물질을 포함한 핵생성 억제 증착막 및 전도성 증착막을 포함하는 유기 전계 발광 소자를 제공한다.The present invention relates to a material for forming a nucleation inhibiting formation for use in selectively depositing an electrically conductive vapor deposition film on the surface of each layer constituting an organic electroluminescent device, and also a nucleation inhibiting deposition film and a conductive vapor deposition film comprising such a material. An organic electroluminescent device is provided.
[화학식 1][Formula 1]
Figure PCTKR2022002862-appb-img-000001
Figure PCTKR2022002862-appb-img-000001
상기 화학식 1에서, In Formula 1,
L1, L2 및 L3은, 각각 독립적으로 F, CF3, TMS, 알킬기 및 시클로알킬기 중 적어도 어느 하나로 치환 또는 비치환된, 아릴렌기 또는 헤테로아릴렌기이며, L 1 , L 2 and L 3 are each independently F, CF 3 , TMS, an arylene group or a heteroarylene group, substituted or unsubstituted with at least one of an alkyl group and a cycloalkyl group,
p, q 및 r이 각각 2이상인 경우, 각각의 L1, L2 및 L3은 서로 같거나 상이하며,When p, q and r are each 2 or more, each L 1 , L 2 and L 3 are the same as or different from each other,
Ar1, Ar2 및 Ar3은, 각각 독립적으로 F, CF3, TMS, 알킬기, 시클로알킬기 및 아릴기 중 적어도 어느 하나로 치환 또는 비치환된, 아릴기 또는 헤테로아릴기이고, Ar 1 , Ar 2 and Ar 3 are each independently F, CF 3 , TMS, an alkyl group, a cycloalkyl group, and an aryl group unsubstituted or substituted with at least any one of an aryl group or a heteroaryl group,
R1은 H, F, CF3, 알킬기 및 시클로알킬기 중 적어도 어느 하나이며,R 1 is at least one of H, F, CF 3 , an alkyl group and a cycloalkyl group,
m은 0 내지 4의 정수이고,m is an integer from 0 to 4,
m이 2이상인 경우, 각각의 R1은 서로 같거나 상이하며, When m is 2 or more, each R 1 is the same as or different from each other,
p, q 및 r은 각각 독립적으로 0 내지 5의 정수이고,p, q and r are each independently an integer of 0 to 5,
n 은 0 또는 1의 정수이다.n is an integer of 0 or 1.
본 발명에 따른 화합물은 유기 발광 소자의 핵생성 억제층을 형성하는 재료로 사용될 수 있다.The compound according to the present invention may be used as a material for forming a nucleation suppression layer of an organic light emitting device.
본 발명에 따른 화합물은 음극에 사용되는 금속에 대한 친화도 또는 초기 부착 확률을 상대적으로 낮추고, 핵생성 억제 증착막을 형성하는 특성을 나타내어, 외부 광원에 의한 광 투과율을 향상시킬 수 있다.The compound according to the present invention can improve the light transmittance by an external light source by relatively lowering the affinity or initial adhesion probability for the metal used for the cathode, and forming a nucleation inhibiting deposition film.
본 발명에 따른 화합물은 플루오로기가 도입됨으로써 음극에 사용되는 금속에 대한 상대적으로 낮은 친화도 또는 초기 부착 확률을 나타내는 특성으로 인해, 특정 응용 분야에서 마그네슘 증착 또는 은/마그네슘 증착의 선택적 증착 및 패턴화를 달성하는 재료로 이용할 수 있다.The compound according to the present invention exhibits a relatively low affinity or initial probability of attachment to the metal used for the cathode by introducing a fluoro group, so that the selective deposition and patterning of magnesium deposition or silver/magnesium deposition in certain applications It can be used as a material to achieve
도 1은 기판위에 증착되는 핵생성억제층과 금속층의 증착 순서를 보여주는 개략적인 도면이다. 1 is a schematic diagram showing a deposition sequence of a nucleation inhibiting layer and a metal layer deposited on a substrate.
도 2a는 증착공정 상 기판에 패터닝을 위해 마스크가 정렬된 상태를 보여주는 개략적인 도면이다. 2A is a schematic diagram showing a state in which a mask is aligned for patterning on a substrate during a deposition process.
도 2b은 마스크가 정렬된 상태에서 핵생성억제층의 증착을 보여주는 대략적인 도면이다.Figure 2b is a schematic diagram showing the deposition of the nucleation inhibiting layer with the mask aligned.
도 2c는 마스크를 분리하여 핵생성억제층이 형성된 기판 상에 금속층을 전면적으로 증착하는 상태를 보여주는 대략적인 도면이다.2C is a schematic view showing a state in which a metal layer is completely deposited on a substrate on which a nucleation inhibiting layer is formed by separating a mask.
도 2d는 기판상에 패터닝된 금속층의 상태를 보여주는 대략적인 도면이다.2D is a schematic diagram showing the state of a patterned metal layer on a substrate.
도 3a는 본 발명의 일실시예에 따른 핵생성억제층이 증착된 기판 상에 금속을 증착할 경우의 단면을 보여주는 사진이다. 3A is a photograph showing a cross-section when a metal is deposited on a substrate on which a nucleation inhibiting layer is deposited according to an embodiment of the present invention.
도 3b는 일반유기재료의 핵생성억제층이 증착된 기판 상에 금속을 증착할 경우의 단면을 보여주는 사진이다. 3B is a photograph showing a cross-section when a metal is deposited on a substrate on which a nucleation inhibiting layer of a general organic material is deposited.
도 4a는 본 발명의 일실시예에 따른 핵생성억제층에 의해 금속층의 증착이 억제된 소자의 샘플을 보여주는 사진이다.4A is a photograph showing a sample of a device in which deposition of a metal layer is suppressed by a nucleation inhibiting layer according to an embodiment of the present invention.
도 4b는 일반유기재료의 핵생성억제층에 의해 핵생성억제가 되지 못하고 금속층이 증착된 소자의 샘플을 보여주는 사진이다.4B is a photograph showing a sample of a device in which nucleation is not inhibited by a nucleation inhibiting layer of a general organic material and a metal layer is deposited.
도 5a와 5b는 각각 도 4a와 4b의 소자의 투과율 스펙트럼을 보여주는 그래프이다.5A and 5B are graphs showing transmittance spectra of the device of FIGS. 4A and 4B, respectively.
도 6은 핵생성억제층(2400)과 제2전극(2300)이 포함된 전면발광 유기발광소자의 단면을 나타낸 도면이다.6 is a diagram illustrating a cross-section of a top light emitting organic light emitting device including a nucleation inhibiting layer 2400 and a second electrode 2300 .
도 7은 핵생성억제층(2400)과 제2전극(2300)이 포함된 전면발광 유기발광소자의 단면을 나타낸 도면이다.FIG. 7 is a view showing a cross-section of a top-emitting organic light emitting device including a nucleation inhibiting layer 2400 and a second electrode 2300 .
이하 본 발명에 대하여 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. Since the present invention can have various changes and can have various forms, specific embodiments are illustrated in the drawings and described in detail in the text. However, this is not intended to limit the present invention to the specific disclosed form, it should be understood to include all modifications, equivalents and substitutes included in the spirit and scope of the present invention.
각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 위하여 실제보다 확대하여 도시한 것이다. 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.In describing each figure, like reference numerals have been used for like elements. In the accompanying drawings, the dimensions of the structures are enlarged than the actual size for clarity of the present invention. Terms such as first, second, etc. may be used to describe various elements, but the elements should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, a first component may be referred to as a second component, and similarly, a second component may also be referred to as a first component. The singular expression includes the plural expression unless the context clearly dictates otherwise.
본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 또한, 층, 막, 영역, 판 등의 부분이 다른 부분 "상에" 있다고 할 경우, 이는 다른 부분 "바로 위에" 있는 경우뿐 만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. In the present application, terms such as “comprise” or “have” are intended to designate that a feature, number, step, operation, component, part, or combination thereof described in the specification exists, but one or more other features It is to be understood that it does not preclude the possibility of the presence or addition of numbers, steps, operations, components, parts, or combinations thereof. Also, when a part of a layer, film, region, plate, etc. is said to be “on” another part, this includes not only the case where the other part is “directly on” but also the case where there is another part in between.
본 명세서에서, “치환 또는 비치환된”은 중수소 원자, 할로겐 원자, 시아노기, 니트로기, 아미노기, 히드록시기, 실릴기, 붕소기, 포스핀 옥사이드기, 포스핀 설파이드기, 알킬기, 알콕시기, 알케닐기, 아릴기, 헤테로 아릴기 및 헤테로 고리기로 이루어진 군에서 선택되는 1개 이상의 치환기로 치환 또는 비치환된 것을 의미할 수 있다. 또한, 상기 예시된 치환기 각각은 치환 또는 비치환된 것일 수 있다. 예를 들어, 바이페닐기는 아릴기로 해석될 수도 있고, 페닐기로 치환된 페닐기로 해석될 수도 있다.As used herein, "substituted or unsubstituted" is a deuterium atom, a halogen atom, a cyano group, a nitro group, an amino group, a hydroxy group, a silyl group, a boron group, a phosphine oxide group, a phosphine sulfide group, an alkyl group, an alkoxy group, an alke group It may mean unsubstituted or substituted with one or more substituents selected from the group consisting of a nyl group, an aryl group, a heteroaryl group, and a heterocyclic group. In addition, each of the substituents exemplified above may be substituted or unsubstituted. For example, a biphenyl group may be interpreted as an aryl group or a phenyl group substituted with a phenyl group.
본 명세서에서, 할로겐 원자의 예로는 불소 원자, 염소 원자, 브롬 원자 또는 요오드 원자가 있다.In the present specification, examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
본 명세서에서, 알킬기는 직쇄, 분지쇄 또는 고리형일 수 있다. 알킬기의 탄소수는 1 이상 50 이하, 1 이상 30 이하, 1 이상 20 이하, 1 이상 10 이하 또는 1 이상 6 이하이다. 알킬기의 예로는 메틸기, 에틸기, n-프로필기, 이소프로필기, n-부틸기, s-부틸기, t-부틸기, i-부틸기, 2- 에틸부틸기, 3, 3-디메틸부틸기, n-펜틸기, i-펜틸기, 네오펜틸기, t-펜틸기, 시클로펜틸기, 1-메틸펜틸기, 3-메틸펜틸기, 2-에틸펜틸기, 4-메틸-2-펜틸기, n-헥실기, 1-메틸헥실기, 2-에틸헥실기, 2-부틸헥실기, 시클로헥실기, 4-메틸시클로헥실기, 4-t-부틸시클로헥실기, n-헵틸기, 1-메틸헵틸기, 2,2-디메틸헵틸기, 2-에틸헵틸기, 2-부틸헵틸기, n-옥틸기, t-옥틸기, 2-에틸옥틸기, 2-부틸옥틸기, 2-헥실옥틸기, 3,7-디메틸옥틸기, 시클로옥틸기, n-노닐기, n-데실기, 아다만틸기, 2-에틸데실기, 2-부틸데실기, 2-헥실데실기, 2-옥틸데실기, n-운데실기, n-도데실기, 2-에틸도데실기, 2-부틸도데실기, 2-헥실도데실기, 2-옥틸도데실기, n-트리데실기, n-테트라데실기, n-펜타데실기, n-헥사데실기, 2-에틸헥사데실기, 2-부틸헥사데실기, 2-헥실헥사데실기, 2-옥틸헥사데실기, n-헵타데실기, n-옥타데실기, n-노나데실기, n-이코실기, 2-에틸이코실기, 2-부틸이코실기, 2-헥실이코실기, 2-옥틸이코실기, n-헨이코실기, n-도코실기, n-트리코실기, n-테트라코실기, n-펜타코실기, n-헥사코실기, n-헵타코실기, n-옥타코실기, n-노나코실기, 및 n-트리아콘틸기 등을 들 수 있지만, 이들에 한정되지 않는다.In the present specification, the alkyl group may be linear, branched or cyclic. Carbon number of an alkyl group is 1 or more and 50 or less, 1 or more and 30 or less, 1 or more and 20 or less, 1 or more and 10 or less, or 1 or more and 6 or less. Examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, t-butyl group, i-butyl group, 2-ethylbutyl group, 3, 3-dimethylbutyl group , n-pentyl group, i-pentyl group, neopentyl group, t-pentyl group, cyclopentyl group, 1-methylpentyl group, 3-methylpentyl group, 2-ethylpentyl group, 4-methyl-2-pentyl group , n-hexyl group, 1-methylhexyl group, 2-ethylhexyl group, 2-butylhexyl group, cyclohexyl group, 4-methylcyclohexyl group, 4-t-butylcyclohexyl group, n-heptyl group, 1 -Methylheptyl group, 2,2-dimethylheptyl group, 2-ethylheptyl group, 2-butylheptyl group, n-octyl group, t-octyl group, 2-ethyloctyl group, 2-butyloctyl group, 2-hexyl group Siloctyl group, 3,7-dimethyloctyl group, cyclooctyl group, n-nonyl group, n-decyl group, adamantyl group, 2-ethyldecyl group, 2-butyldecyl group, 2-hexyldecyl group, 2-ox Tyldecyl group, n-undecyl group, n-dodecyl group, 2-ethyldodecyl group, 2-butyldodecyl group, 2-hexyldodecyl group, 2-octyldodecyl group, n-tridecyl group, n-tetradecyl group, n -Pentadecyl group, n-hexadecyl group, 2-ethylhexadecyl group, 2-butylhexadecyl group, 2-hexylhexadecyl group, 2-octylhexadecyl group, n-heptadecyl group, n-octadecyl group , n-nonadecyl group, n-icosyl group, 2-ethyl icosyl group, 2-butyl icosyl group, 2-hexyl icosyl group, 2-octyl icosyl group, n-henicosyl group, n-docosyl group, n-tricho Sil group, n-tetracosyl group, n-pentacosyl group, n-hexacosyl group, n-heptacosyl group, n-octacosyl group, n-nonacosyl group, n-triacontyl group, etc. are mentioned, It is not limited to these.
본 명세서에서 "시클로알킬기"은 탄소수 3 내지 40개의 모노사이클릭 또는 폴리사이클릭 비-방향족 탄화수소로부터 유래된 1가의 치환기를 의미한다. 이러한 사이클로알킬기의 예로는 사이클로프로필, 사이클로부틸, 사이클로펜틸, 사이클로헥실, 노르보닐(norbornyl), 아다만틴(adamantine) 등을 들 수 있으나, 이에 한정되지는 않는다.As used herein, "cycloalkyl group" means a monovalent substituent derived from a monocyclic or polycyclic non-aromatic hydrocarbon having 3 to 40 carbon atoms. Examples of such a cycloalkyl group include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, norbornyl, adamantine, and the like.
본 명세서에서, 탄화수소 고리기는 지방족 탄화수소 고리로부터 유도된 임의의 작용기 또는 치환기를 의미한다. 탄화수소 고리기는 고리 형성 탄소수 5 이상 20 이하의 포화 탄화수소 고리기일 수 있다.As used herein, the hydrocarbon ring group means any functional group or substituent derived from an aliphatic hydrocarbon ring. The hydrocarbon ring group may be a saturated hydrocarbon ring group having 5 to 20 ring carbon atoms.
본 명세서에서, 아릴기는 방향족 탄화수소 고리로부터 유도된 임의의 작용기 또는 치환기를 의미한다. 아릴기는 단환식 아릴기 또는 다환식 아릴기일 수 있다. 아릴기의 고리 형성 탄소수는 6 이상 30 이하, 6 이상 20 이하, 또는 6 이상 15 이하일 수 있다. 아릴기의 예로는 페닐기, 나프틸기, 플루오레닐기, 안트라세닐기, 페난트릴기, 바이페닐기, 터페닐기, 쿼터페닐기, 퀸크페닐기, 섹시페닐기, 트리페닐에닐기, 피레닐기, 페릴렌일기, 나프타세닐기, 파이레닐기, 벤조 플루오란테닐기, 크리세닐기 등을 예시할 수 있지만, 이들에 한정되지 않는다.As used herein, the aryl group means any functional group or substituent derived from an aromatic hydrocarbon ring. The aryl group may be a monocyclic aryl group or a polycyclic aryl group. The number of ring carbon atoms of the aryl group may be 6 or more and 30 or less, 6 or more and 20 or less, or 6 or more and 15 or less. Examples of the aryl group include a phenyl group, a naphthyl group, a fluorenyl group, an anthracenyl group, a phenanthryl group, a biphenyl group, a terphenyl group, a quarterphenyl group, a quinkphenyl group, a sexyphenyl group, a triphenylenyl group, a pyrenyl group, a peryleneyl group, a naphtha group Although a cenyl group, a pyrenyl group, a benzo fluoranthenyl group, a chrysenyl group, etc. can be illustrated, it is not limited to these.
본 명세서에서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수도 있다. In the present specification, the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure.
본 명세서에서, 헤테로아릴기는 이종 원소로 O, N, P, Si 및 S 중 1개 이상을 포함하는 헤테로아릴기일 수 있다. N 및 S 원자는 경우에 따라 산화될 수 있고, N 원자(들)은 경우에 따라 4차화될 수 있다. 헤테로아릴기의 고리 형성 탄소수는 2 이상 30 이하 또는 2 이상 20 이하이다. 헤테로아릴기는 단환식 헤테로아릴기 또는 다환식 헤테로아릴기일 수 있다. 다환식 헤테로아릴기는 예를 들어, 2환 또는 3환 구조를 갖는 것일 수 있다. In the present specification, the heteroaryl group may be a heteroaryl group including at least one of O, N, P, Si and S as a heterogeneous element. The N and S atoms may optionally be oxidized and the N atom(s) may optionally be quaternized. The number of ring carbon atoms in the heteroaryl group is 2 or more and 30 or less, or 2 or more and 20 or less. The heteroaryl group may be a monocyclic heteroaryl group or a polycyclic heteroaryl group. The polycyclic heteroaryl group may have, for example, a bicyclic or tricyclic structure.
헤테로아릴기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 피라졸릴기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딘기, 비피리딘기, 피리미딘기, 트리아진기, 테트라진기, 트리아졸기, 테트라졸기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀린기, 퀴나졸린기, 퀴녹살린기, 페녹사진기, 프탈라진기, 피리도 피리미딘기, 피리도 피라지노 피라진기, 이소퀴놀린기, 신놀리기, 인돌기, 이소인돌기, 인다졸기, 카바졸기, N-아릴카바졸기, N-헤테로아릴카바졸기, N-알킬카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 벤조티오펜기, 벤조이소티아졸릴, 벤조이속사졸릴, 디벤조티오펜기, 티에노티오펜기, 벤조퓨란기, 페난트롤린기, 페난트리딘기, 티아졸기, 이소옥사졸기, 옥사디아졸기, 티아디아졸기, 이소티아졸기, 이속사졸기, 페노티아진기, 벤조디옥솔기, 디벤조실롤기 및 디벤조퓨란기, 이소벤조퓨란기 등이 있으나, 이들에 한정되지 않는다. 또한, 상기 단환식 헤테로 아릴기 또는 다환식 헤테로 아릴기에 상응하는 N-옥사이드 아릴기, 예를 들어, 피리딜 N-옥사이드기, 퀴놀릴 N-옥사이드기 등의 4차 염 등이 있으나, 이들에 한정되지 않는다. Examples of the heteroaryl group include a thiophene group, a furan group, a pyrrole group, an imidazole group, a pyrazolyl group, a thiazole group, an oxazole group, an oxadiazole group, a triazole group, a pyridine group, a bipyridine group, a pyrimidine group, a triazine group , tetrazine group, triazole group, tetrazole group, acridyl group, pyridazine group, pyrazinyl group, quinoline group, quinazoline group, quinoxaline group, phenoxazine group, phthalazine group, pyridopyrimidine group, pyridopyrazino group Pyrazine group, isoquinoline group, cinnol group, indole group, isoindole group, indazole group, carbazole group, N-arylcarbazole group, N-heteroarylcarbazole group, N-alkylcarbazole group, benzoxazole group, benzoimidazole group , benzothiazole group, benzocarbazole group, benzothiophene group, benzothiophene group, benzoisothiazolyl, benzoisoxazolyl, dibenzothiophene group, thienothiophene group, benzofuran group, phenanthroline group, phenanthridine group , a thiazole group, an isoxazole group, an oxadiazole group, a thiadiazole group, an isothiazole group, an isoxazole group, a phenothiazine group, a benzodioxol group, a dibenzosilol group and a dibenzofuran group, an isobenzofuran group, etc. It is not limited to these. In addition, there are N-oxide aryl groups corresponding to the monocyclic heteroaryl group or polycyclic heteroaryl group, for example, quaternary salts such as pyridyl N-oxide group, quinolyl N-oxide group, etc., but these not limited
본 명세서에서, 실릴기는 알킬 실릴기 및 아릴 실릴기를 포함한다. 실릴기의 예로는 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나, 이들에 한정되지 않는다.In the present specification, the silyl group includes an alkyl silyl group and an aryl silyl group. Examples of the silyl group include a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group, a phenylsilyl group, and the like. not limited
본 명세서에서, 붕소기는 알킬 붕소기 및 아릴 붕소기를 포함한다. 붕소기의 예로는 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 디페닐붕소기, 페닐붕소기 등이 있으나, 이들에 한정되지 않는다.In the present specification, the boron group includes an alkyl boron group and an aryl boron group. Examples of the boron group include, but are not limited to, a trimethylboron group, a triethylboron group, a t-butyldimethylboron group, a triphenylboron group, a diphenylboron group, and a phenylboron group.
본 명세서에서, 알케닐기는 직쇄 또는 분지쇄일 수 있다. 탄소수는 특별히 한정되지 않으나, 2 이상 30 이하, 2 이상 20 이하 또는 2 이상 10 이하이다. 알케닐기의 예로는 비닐기, 1-부테닐기, 1-펜테닐기, 1,3-부타디에닐 아릴기, 스티레닐기, 스티릴비닐기 등이 있으나, 이들에 한정되지 않는다.In the present specification, the alkenyl group may be linear or branched. Although carbon number is not specifically limited, 2 or more and 30 or less, 2 or more and 20 or less, or 2 or more and 10 or less. Examples of the alkenyl group include, but are not limited to, a vinyl group, a 1-butenyl group, a 1-pentenyl group, a 1,3-butadienyl aryl group, a styrenyl group, a styryl vinyl group, and the like.
본 명세서에 있어서, 아릴아민기의 예로는 치환 또는 비치환된 모노아릴아민기, 치환 또는 비치환된 디아릴아민기, 또는 치환 또는 비치환된 트리아릴아민기가 있다. 상기 아릴아민기 중의 아릴기는 단환식 아릴기일 수 있고, 다환식 아릴기, 또는 단환식아릴기와 다환식 아릴기를 동시에 포함할 수 있다. In the present specification, examples of the arylamine group include a substituted or unsubstituted monoarylamine group, a substituted or unsubstituted diarylamine group, or a substituted or unsubstituted triarylamine group. The aryl group in the arylamine group may be a monocyclic aryl group, and may include a polycyclic aryl group, or a monocyclic aryl group and a polycyclic aryl group at the same time.
아릴 아민기의 구체적인 예로는 페닐아민기, 나프틸아민기, 비페닐아민기, 안트라세닐아민기, 3-메틸-페닐아민기, 4-메틸-나프틸아민기, 2-메틸-비페닐아민기, 9-메틸-안트라세닐아민기, 디페닐 아민기, 페닐 나프틸아민기, 디톨릴 아민기, 페닐 톨릴 아민기, 카바졸 및 트리페닐 아민기 등이 있으나, 이에 한정되는 것은 아니다.Specific examples of the arylamine group include a phenylamine group, a naphthylamine group, a biphenylamine group, an anthracenylamine group, a 3-methyl-phenylamine group, a 4-methyl-naphthylamine group, and a 2-methyl-biphenylamine group. group, 9-methyl-anthracenylamine group, diphenyl amine group, phenyl naphthylamine group, ditolyl amine group, phenyl tolyl amine group, carbazole and triphenyl amine group, but is not limited thereto.
본 명세서에 있어서, 헤테로알릴아민기의 예로는 치환 또는 비치환된 모노헤테로아릴아민기, 치환 또는 비치환된 디헤테로아릴아민기, 또는 치환 또는 비치환된 트리헤테로아릴아민기가 있다. 상기 헤테로아릴아민기 중의 헤테로아릴기는 단환식 헤테로 고리기일 수 있고, 다환식 헤테로 고리기일 수 있다. 상기 2이상의 헤테로 고리기를 포함하는 헤테로아릴아민기는 단환식 헤테로 고리기, 다환식 헤테로 고리기, 또는 단환식 헤테로 고리기와 다환식 헤테로 고리기를 동시에 포함할 수 있다. In the present specification, examples of the heteroallylamine group include a substituted or unsubstituted monoheteroarylamine group, a substituted or unsubstituted diheteroarylamine group, or a substituted or unsubstituted triheteroarylamine group. The heteroaryl group in the heteroarylamine group may be a monocyclic heterocyclic group or a polycyclic heterocyclic group. The heteroarylamine group including two or more heterocyclic groups may include a monocyclic heterocyclic group, a polycyclic heterocyclic group, or a monocyclic heterocyclic group and a polycyclic heterocyclic group at the same time.
본 명세서에 있어서, 아릴헤테로아릴아민기는 아릴기 및 헤테로 고리기로 치환된 아민기를 의미한다.In the present specification, the aryl heteroarylamine group refers to an amine group substituted with an aryl group and a heterocyclic group.
본 명세서에서, “인접하는 기”는 해당 치환기가 치환된 원자와 직접 연결된 원자에 치환된 치환기, 해당 치환기가 치환된 원자에 치환된 다른 치환기 또는 해당 치환기와 입체구조적으로 가장 인접한 치환기를 의미할 수 있다. 예컨대, 1,2-디메틸벤젠(1,2-dimethylbenzene)에서 2개의 메틸기는 서로 “인접하는 기”로 해석될 수 있고, 1,1-디에틸시클로펜테인(1,1-diethylcyclopentene)에서 2개의 에틸기는 서로 “인접하는 기”로 해석될 수 있다.As used herein, "adjacent group" may mean a substituent substituted on an atom directly connected to the atom in which the substituent is substituted, another substituent substituted on the atom in which the substituent is substituted, or a substituent most sterically adjacent to the substituent. have. For example, in 1,2-dimethylbenzene, two methyl groups can be interpreted as “adjacent groups” to each other, and in 1,1-diethylcyclopentene, 2 The two ethyl groups can be interpreted as “adjacent groups” to each other.
이하에서는 상기 핵생성억제층에 사용되는 유기 화합물에 대해 설명한다.Hereinafter, an organic compound used in the nucleation inhibiting layer will be described.
본 발명의 유기 화합물은 하기 화학식 1로 표시된다.The organic compound of the present invention is represented by the following formula (1).
[화학식 1][Formula 1]
Figure PCTKR2022002862-appb-img-000002
Figure PCTKR2022002862-appb-img-000002
상기 화학식 1에서, In Formula 1,
L1, L2 및 L3은, 각각 독립적으로 F, CF3, TMS, 알킬기 및 시클로알킬기 중 적어도 어느 하나로 치환 또는 비치환된, 아릴렌기 또는 헤테로아릴렌기이며, L 1 , L 2 and L 3 are each independently F, CF 3 , TMS, an arylene group or a heteroarylene group, substituted or unsubstituted with at least one of an alkyl group and a cycloalkyl group,
p, q 및 r이 각각 2이상인 경우, 각각의 L1, L2 및 L3은 서로 같거나 상이하며,When p, q and r are each 2 or more, each L 1 , L 2 and L 3 are the same as or different from each other,
Ar1, Ar2 및 Ar3은, 각각 독립적으로 F, CF3, TMS, 알킬기, 시클로알킬기 및 아릴기 중 적어도 어느 하나로 치환 또는 비치환된, 아릴기 또는 헤테로아릴기이고, Ar 1 , Ar 2 and Ar 3 are each independently F, CF 3 , TMS, an alkyl group, a cycloalkyl group, and an aryl group unsubstituted or substituted with at least any one of an aryl group or a heteroaryl group,
R1은 H, F, CF3, 알킬기 및 시클로알킬기 중 적어도 어느 하나이며,R 1 is at least one of H, F, CF 3 , an alkyl group and a cycloalkyl group,
m은 0 내지 4의 정수이고,m is an integer from 0 to 4,
m이 2이상인 경우, 각각의 R1은 서로 같거나 상이하며, When m is 2 or more, each R 1 is the same as or different from each other,
p, q 및 r은 각각 독립적으로 0 내지 5의 정수이고,p, q and r are each independently an integer of 0 to 5,
n 은 0 또는 1의 정수이다. n is an integer of 0 or 1.
이때 본 발명의 일 실시예에 따른 유기 화합물은, At this time, the organic compound according to an embodiment of the present invention is
상기 화학식 1에서,In Formula 1,
L1, L2 및 L3은, 각각 독립적으로 F, CF3, TMS, 알킬기 및 시클로알킬기 중 적어도 어느 하나로 치환 또는 비치환된, 페닐기, 나프탈렌기, 안트라센기, 트라이페닐렌기 및 피리딘기 중에서 선택되며,L 1 , L 2 and L 3 are each independently selected from a phenyl group, a naphthalene group, an anthracene group, a triphenylene group, and a pyridine group, each independently substituted or unsubstituted with at least one of F, CF 3 , TMS, an alkyl group and a cycloalkyl group becomes,
p, q, 및 r이 2이상인 경우, 각각의 L1, L2 및 L3은 서로 같거나 상이하며,When p, q, and r are 2 or more, each L 1 , L 2 and L 3 are the same as or different from each other,
Ar1, Ar2 및 Ar3은, 각각 독립적으로 F, CF3, TMS, 알킬기, 시클로알킬기 및 아릴기 중 적어도 어느 하나로 치환 또는 비치환된, 페닐기, 피리딘기, 나프틸기, 안트라센기, 페난트렌기, 디벤조퓨란기, 디벤조티오펜기, 벤즈옥사졸기, 벤즈티아졸기, 벤조이미다졸기, 카바졸기 및 트리페닐렌기 중에서 선택되는데, Ar 1 , Ar 2 and Ar 3 are each independently F, CF 3 , TMS, an alkyl group, a cycloalkyl group, and an aryl group substituted or unsubstituted with at least one of a phenyl group, a pyridine group, a naphthyl group, an anthracene group, a phenanthrene group, dibenzofuran It is selected from a group, a dibenzothiophene group, a benzoxazole group, a benzthiazole group, a benzimidazole group, a carbazole group and a triphenylene group,
이때 상기 아릴기는 F, CF3, TMS, 알킬기 및 시클로알킬기 중 적어도 어느 하나로 치환 또는 비치환된 페닐기이며, In this case, the aryl group is a phenyl group unsubstituted or substituted with at least one of F, CF 3 , TMS, an alkyl group and a cycloalkyl group,
R1, p, q, r, m 및 n은 상기에서 정의한 바와 같다. R 1 , p, q, r, m and n are as defined above.
본 발명의 상기 화학식 1로 표시되는 유기 화합물은 하기 화학식 2 내지 화학식 6의 화합물 중에서 선택된 어느 하나일 수 있고, 하기 화합물들은 추가로 치환될 수 있다. The organic compound represented by Chemical Formula 1 of the present invention may be any one selected from compounds of Chemical Formulas 2 to 6, and the following compounds may be further substituted.
[화학식 2] [Formula 2]
Figure PCTKR2022002862-appb-img-000003
Figure PCTKR2022002862-appb-img-000003
Figure PCTKR2022002862-appb-img-000004
Figure PCTKR2022002862-appb-img-000004
Figure PCTKR2022002862-appb-img-000005
Figure PCTKR2022002862-appb-img-000005
Figure PCTKR2022002862-appb-img-000006
Figure PCTKR2022002862-appb-img-000006
Figure PCTKR2022002862-appb-img-000007
Figure PCTKR2022002862-appb-img-000007
Figure PCTKR2022002862-appb-img-000008
Figure PCTKR2022002862-appb-img-000008
Figure PCTKR2022002862-appb-img-000009
Figure PCTKR2022002862-appb-img-000009
Figure PCTKR2022002862-appb-img-000010
Figure PCTKR2022002862-appb-img-000010
Figure PCTKR2022002862-appb-img-000011
Figure PCTKR2022002862-appb-img-000011
Figure PCTKR2022002862-appb-img-000012
Figure PCTKR2022002862-appb-img-000012
Figure PCTKR2022002862-appb-img-000013
Figure PCTKR2022002862-appb-img-000013
Figure PCTKR2022002862-appb-img-000014
Figure PCTKR2022002862-appb-img-000014
Figure PCTKR2022002862-appb-img-000015
Figure PCTKR2022002862-appb-img-000015
Figure PCTKR2022002862-appb-img-000016
Figure PCTKR2022002862-appb-img-000016
Figure PCTKR2022002862-appb-img-000017
Figure PCTKR2022002862-appb-img-000017
Figure PCTKR2022002862-appb-img-000018
Figure PCTKR2022002862-appb-img-000018
Figure PCTKR2022002862-appb-img-000019
Figure PCTKR2022002862-appb-img-000019
Figure PCTKR2022002862-appb-img-000020
Figure PCTKR2022002862-appb-img-000020
Figure PCTKR2022002862-appb-img-000021
Figure PCTKR2022002862-appb-img-000021
Figure PCTKR2022002862-appb-img-000022
Figure PCTKR2022002862-appb-img-000022
Figure PCTKR2022002862-appb-img-000023
Figure PCTKR2022002862-appb-img-000023
Figure PCTKR2022002862-appb-img-000024
Figure PCTKR2022002862-appb-img-000024
Figure PCTKR2022002862-appb-img-000025
Figure PCTKR2022002862-appb-img-000025
Figure PCTKR2022002862-appb-img-000026
Figure PCTKR2022002862-appb-img-000026
Figure PCTKR2022002862-appb-img-000027
Figure PCTKR2022002862-appb-img-000027
Figure PCTKR2022002862-appb-img-000028
Figure PCTKR2022002862-appb-img-000028
Figure PCTKR2022002862-appb-img-000029
Figure PCTKR2022002862-appb-img-000029
Figure PCTKR2022002862-appb-img-000030
Figure PCTKR2022002862-appb-img-000030
Figure PCTKR2022002862-appb-img-000031
Figure PCTKR2022002862-appb-img-000031
Figure PCTKR2022002862-appb-img-000032
Figure PCTKR2022002862-appb-img-000032
Figure PCTKR2022002862-appb-img-000033
Figure PCTKR2022002862-appb-img-000033
Figure PCTKR2022002862-appb-img-000034
Figure PCTKR2022002862-appb-img-000034
Figure PCTKR2022002862-appb-img-000035
Figure PCTKR2022002862-appb-img-000035
Figure PCTKR2022002862-appb-img-000036
Figure PCTKR2022002862-appb-img-000036
Figure PCTKR2022002862-appb-img-000037
Figure PCTKR2022002862-appb-img-000037
Figure PCTKR2022002862-appb-img-000038
Figure PCTKR2022002862-appb-img-000038
Figure PCTKR2022002862-appb-img-000039
Figure PCTKR2022002862-appb-img-000039
Figure PCTKR2022002862-appb-img-000040
Figure PCTKR2022002862-appb-img-000040
Figure PCTKR2022002862-appb-img-000041
Figure PCTKR2022002862-appb-img-000041
Figure PCTKR2022002862-appb-img-000042
Figure PCTKR2022002862-appb-img-000042
Figure PCTKR2022002862-appb-img-000043
Figure PCTKR2022002862-appb-img-000043
Figure PCTKR2022002862-appb-img-000044
Figure PCTKR2022002862-appb-img-000044
Figure PCTKR2022002862-appb-img-000045
Figure PCTKR2022002862-appb-img-000045
Figure PCTKR2022002862-appb-img-000046
Figure PCTKR2022002862-appb-img-000046
Figure PCTKR2022002862-appb-img-000047
Figure PCTKR2022002862-appb-img-000047
Figure PCTKR2022002862-appb-img-000048
Figure PCTKR2022002862-appb-img-000048
Figure PCTKR2022002862-appb-img-000049
Figure PCTKR2022002862-appb-img-000049
Figure PCTKR2022002862-appb-img-000050
Figure PCTKR2022002862-appb-img-000050
Figure PCTKR2022002862-appb-img-000051
Figure PCTKR2022002862-appb-img-000051
Figure PCTKR2022002862-appb-img-000052
Figure PCTKR2022002862-appb-img-000052
Figure PCTKR2022002862-appb-img-000053
Figure PCTKR2022002862-appb-img-000053
Figure PCTKR2022002862-appb-img-000054
Figure PCTKR2022002862-appb-img-000054
Figure PCTKR2022002862-appb-img-000055
Figure PCTKR2022002862-appb-img-000055
Figure PCTKR2022002862-appb-img-000056
Figure PCTKR2022002862-appb-img-000056
Figure PCTKR2022002862-appb-img-000057
Figure PCTKR2022002862-appb-img-000057
Figure PCTKR2022002862-appb-img-000058
Figure PCTKR2022002862-appb-img-000058
Figure PCTKR2022002862-appb-img-000059
Figure PCTKR2022002862-appb-img-000059
Figure PCTKR2022002862-appb-img-000060
Figure PCTKR2022002862-appb-img-000060
Figure PCTKR2022002862-appb-img-000061
Figure PCTKR2022002862-appb-img-000061
Figure PCTKR2022002862-appb-img-000062
Figure PCTKR2022002862-appb-img-000062
Figure PCTKR2022002862-appb-img-000063
Figure PCTKR2022002862-appb-img-000063
Figure PCTKR2022002862-appb-img-000064
Figure PCTKR2022002862-appb-img-000064
Figure PCTKR2022002862-appb-img-000065
Figure PCTKR2022002862-appb-img-000065
Figure PCTKR2022002862-appb-img-000066
Figure PCTKR2022002862-appb-img-000066
Figure PCTKR2022002862-appb-img-000067
Figure PCTKR2022002862-appb-img-000067
Figure PCTKR2022002862-appb-img-000068
Figure PCTKR2022002862-appb-img-000068
Figure PCTKR2022002862-appb-img-000069
Figure PCTKR2022002862-appb-img-000069
Figure PCTKR2022002862-appb-img-000070
Figure PCTKR2022002862-appb-img-000070
Figure PCTKR2022002862-appb-img-000071
Figure PCTKR2022002862-appb-img-000071
Figure PCTKR2022002862-appb-img-000072
Figure PCTKR2022002862-appb-img-000072
Figure PCTKR2022002862-appb-img-000073
Figure PCTKR2022002862-appb-img-000073
Figure PCTKR2022002862-appb-img-000074
Figure PCTKR2022002862-appb-img-000074
[화학식 3] [Formula 3]
Figure PCTKR2022002862-appb-img-000075
Figure PCTKR2022002862-appb-img-000075
Figure PCTKR2022002862-appb-img-000076
Figure PCTKR2022002862-appb-img-000076
Figure PCTKR2022002862-appb-img-000077
Figure PCTKR2022002862-appb-img-000077
Figure PCTKR2022002862-appb-img-000078
Figure PCTKR2022002862-appb-img-000078
Figure PCTKR2022002862-appb-img-000079
Figure PCTKR2022002862-appb-img-000079
Figure PCTKR2022002862-appb-img-000080
Figure PCTKR2022002862-appb-img-000080
Figure PCTKR2022002862-appb-img-000081
Figure PCTKR2022002862-appb-img-000081
Figure PCTKR2022002862-appb-img-000082
Figure PCTKR2022002862-appb-img-000082
Figure PCTKR2022002862-appb-img-000083
Figure PCTKR2022002862-appb-img-000083
Figure PCTKR2022002862-appb-img-000084
Figure PCTKR2022002862-appb-img-000084
Figure PCTKR2022002862-appb-img-000085
Figure PCTKR2022002862-appb-img-000085
Figure PCTKR2022002862-appb-img-000086
Figure PCTKR2022002862-appb-img-000086
Figure PCTKR2022002862-appb-img-000087
Figure PCTKR2022002862-appb-img-000087
Figure PCTKR2022002862-appb-img-000088
Figure PCTKR2022002862-appb-img-000088
Figure PCTKR2022002862-appb-img-000089
Figure PCTKR2022002862-appb-img-000089
Figure PCTKR2022002862-appb-img-000090
Figure PCTKR2022002862-appb-img-000090
Figure PCTKR2022002862-appb-img-000091
Figure PCTKR2022002862-appb-img-000091
Figure PCTKR2022002862-appb-img-000092
Figure PCTKR2022002862-appb-img-000092
Figure PCTKR2022002862-appb-img-000093
Figure PCTKR2022002862-appb-img-000093
Figure PCTKR2022002862-appb-img-000094
Figure PCTKR2022002862-appb-img-000094
Figure PCTKR2022002862-appb-img-000095
Figure PCTKR2022002862-appb-img-000095
Figure PCTKR2022002862-appb-img-000096
Figure PCTKR2022002862-appb-img-000096
Figure PCTKR2022002862-appb-img-000097
Figure PCTKR2022002862-appb-img-000097
Figure PCTKR2022002862-appb-img-000098
Figure PCTKR2022002862-appb-img-000098
Figure PCTKR2022002862-appb-img-000099
Figure PCTKR2022002862-appb-img-000099
Figure PCTKR2022002862-appb-img-000100
Figure PCTKR2022002862-appb-img-000100
Figure PCTKR2022002862-appb-img-000101
Figure PCTKR2022002862-appb-img-000101
Figure PCTKR2022002862-appb-img-000102
Figure PCTKR2022002862-appb-img-000102
Figure PCTKR2022002862-appb-img-000103
Figure PCTKR2022002862-appb-img-000103
Figure PCTKR2022002862-appb-img-000104
Figure PCTKR2022002862-appb-img-000104
Figure PCTKR2022002862-appb-img-000105
Figure PCTKR2022002862-appb-img-000105
Figure PCTKR2022002862-appb-img-000106
Figure PCTKR2022002862-appb-img-000106
Figure PCTKR2022002862-appb-img-000107
Figure PCTKR2022002862-appb-img-000107
Figure PCTKR2022002862-appb-img-000108
Figure PCTKR2022002862-appb-img-000108
Figure PCTKR2022002862-appb-img-000109
Figure PCTKR2022002862-appb-img-000109
Figure PCTKR2022002862-appb-img-000110
Figure PCTKR2022002862-appb-img-000110
Figure PCTKR2022002862-appb-img-000111
Figure PCTKR2022002862-appb-img-000111
Figure PCTKR2022002862-appb-img-000112
Figure PCTKR2022002862-appb-img-000112
Figure PCTKR2022002862-appb-img-000113
Figure PCTKR2022002862-appb-img-000113
Figure PCTKR2022002862-appb-img-000114
Figure PCTKR2022002862-appb-img-000114
Figure PCTKR2022002862-appb-img-000115
Figure PCTKR2022002862-appb-img-000115
Figure PCTKR2022002862-appb-img-000116
Figure PCTKR2022002862-appb-img-000116
Figure PCTKR2022002862-appb-img-000117
Figure PCTKR2022002862-appb-img-000117
Figure PCTKR2022002862-appb-img-000118
Figure PCTKR2022002862-appb-img-000118
Figure PCTKR2022002862-appb-img-000119
Figure PCTKR2022002862-appb-img-000119
Figure PCTKR2022002862-appb-img-000120
Figure PCTKR2022002862-appb-img-000120
Figure PCTKR2022002862-appb-img-000121
Figure PCTKR2022002862-appb-img-000121
Figure PCTKR2022002862-appb-img-000122
Figure PCTKR2022002862-appb-img-000122
Figure PCTKR2022002862-appb-img-000123
Figure PCTKR2022002862-appb-img-000123
Figure PCTKR2022002862-appb-img-000124
Figure PCTKR2022002862-appb-img-000124
Figure PCTKR2022002862-appb-img-000125
Figure PCTKR2022002862-appb-img-000125
Figure PCTKR2022002862-appb-img-000126
Figure PCTKR2022002862-appb-img-000126
Figure PCTKR2022002862-appb-img-000127
Figure PCTKR2022002862-appb-img-000127
Figure PCTKR2022002862-appb-img-000128
Figure PCTKR2022002862-appb-img-000128
Figure PCTKR2022002862-appb-img-000129
Figure PCTKR2022002862-appb-img-000129
Figure PCTKR2022002862-appb-img-000130
Figure PCTKR2022002862-appb-img-000130
Figure PCTKR2022002862-appb-img-000131
Figure PCTKR2022002862-appb-img-000131
Figure PCTKR2022002862-appb-img-000132
Figure PCTKR2022002862-appb-img-000132
Figure PCTKR2022002862-appb-img-000133
Figure PCTKR2022002862-appb-img-000133
Figure PCTKR2022002862-appb-img-000134
Figure PCTKR2022002862-appb-img-000134
Figure PCTKR2022002862-appb-img-000135
Figure PCTKR2022002862-appb-img-000135
Figure PCTKR2022002862-appb-img-000136
Figure PCTKR2022002862-appb-img-000136
Figure PCTKR2022002862-appb-img-000137
Figure PCTKR2022002862-appb-img-000137
Figure PCTKR2022002862-appb-img-000138
Figure PCTKR2022002862-appb-img-000138
Figure PCTKR2022002862-appb-img-000139
Figure PCTKR2022002862-appb-img-000139
Figure PCTKR2022002862-appb-img-000140
Figure PCTKR2022002862-appb-img-000140
Figure PCTKR2022002862-appb-img-000141
Figure PCTKR2022002862-appb-img-000141
Figure PCTKR2022002862-appb-img-000142
Figure PCTKR2022002862-appb-img-000142
Figure PCTKR2022002862-appb-img-000143
Figure PCTKR2022002862-appb-img-000143
Figure PCTKR2022002862-appb-img-000144
Figure PCTKR2022002862-appb-img-000144
Figure PCTKR2022002862-appb-img-000145
Figure PCTKR2022002862-appb-img-000145
Figure PCTKR2022002862-appb-img-000146
Figure PCTKR2022002862-appb-img-000146
Figure PCTKR2022002862-appb-img-000147
Figure PCTKR2022002862-appb-img-000147
Figure PCTKR2022002862-appb-img-000148
Figure PCTKR2022002862-appb-img-000148
Figure PCTKR2022002862-appb-img-000149
Figure PCTKR2022002862-appb-img-000149
Figure PCTKR2022002862-appb-img-000150
Figure PCTKR2022002862-appb-img-000150
Figure PCTKR2022002862-appb-img-000151
Figure PCTKR2022002862-appb-img-000151
[화학식 4] [Formula 4]
Figure PCTKR2022002862-appb-img-000152
Figure PCTKR2022002862-appb-img-000152
Figure PCTKR2022002862-appb-img-000153
Figure PCTKR2022002862-appb-img-000153
Figure PCTKR2022002862-appb-img-000154
Figure PCTKR2022002862-appb-img-000154
Figure PCTKR2022002862-appb-img-000155
Figure PCTKR2022002862-appb-img-000155
Figure PCTKR2022002862-appb-img-000156
Figure PCTKR2022002862-appb-img-000156
Figure PCTKR2022002862-appb-img-000157
Figure PCTKR2022002862-appb-img-000157
Figure PCTKR2022002862-appb-img-000158
Figure PCTKR2022002862-appb-img-000158
Figure PCTKR2022002862-appb-img-000159
Figure PCTKR2022002862-appb-img-000159
Figure PCTKR2022002862-appb-img-000160
Figure PCTKR2022002862-appb-img-000160
Figure PCTKR2022002862-appb-img-000161
Figure PCTKR2022002862-appb-img-000161
Figure PCTKR2022002862-appb-img-000162
Figure PCTKR2022002862-appb-img-000162
Figure PCTKR2022002862-appb-img-000163
Figure PCTKR2022002862-appb-img-000163
Figure PCTKR2022002862-appb-img-000164
Figure PCTKR2022002862-appb-img-000164
Figure PCTKR2022002862-appb-img-000165
Figure PCTKR2022002862-appb-img-000165
Figure PCTKR2022002862-appb-img-000166
Figure PCTKR2022002862-appb-img-000166
Figure PCTKR2022002862-appb-img-000167
Figure PCTKR2022002862-appb-img-000167
Figure PCTKR2022002862-appb-img-000168
Figure PCTKR2022002862-appb-img-000168
Figure PCTKR2022002862-appb-img-000169
Figure PCTKR2022002862-appb-img-000169
Figure PCTKR2022002862-appb-img-000170
Figure PCTKR2022002862-appb-img-000170
Figure PCTKR2022002862-appb-img-000171
Figure PCTKR2022002862-appb-img-000171
Figure PCTKR2022002862-appb-img-000172
Figure PCTKR2022002862-appb-img-000172
Figure PCTKR2022002862-appb-img-000173
Figure PCTKR2022002862-appb-img-000173
Figure PCTKR2022002862-appb-img-000174
Figure PCTKR2022002862-appb-img-000174
Figure PCTKR2022002862-appb-img-000175
Figure PCTKR2022002862-appb-img-000175
Figure PCTKR2022002862-appb-img-000176
Figure PCTKR2022002862-appb-img-000176
Figure PCTKR2022002862-appb-img-000177
Figure PCTKR2022002862-appb-img-000177
Figure PCTKR2022002862-appb-img-000178
Figure PCTKR2022002862-appb-img-000178
Figure PCTKR2022002862-appb-img-000179
Figure PCTKR2022002862-appb-img-000179
Figure PCTKR2022002862-appb-img-000180
Figure PCTKR2022002862-appb-img-000180
Figure PCTKR2022002862-appb-img-000181
Figure PCTKR2022002862-appb-img-000181
Figure PCTKR2022002862-appb-img-000182
Figure PCTKR2022002862-appb-img-000182
Figure PCTKR2022002862-appb-img-000183
Figure PCTKR2022002862-appb-img-000183
Figure PCTKR2022002862-appb-img-000184
Figure PCTKR2022002862-appb-img-000184
Figure PCTKR2022002862-appb-img-000185
Figure PCTKR2022002862-appb-img-000185
Figure PCTKR2022002862-appb-img-000186
Figure PCTKR2022002862-appb-img-000186
Figure PCTKR2022002862-appb-img-000187
Figure PCTKR2022002862-appb-img-000187
Figure PCTKR2022002862-appb-img-000188
Figure PCTKR2022002862-appb-img-000188
Figure PCTKR2022002862-appb-img-000189
Figure PCTKR2022002862-appb-img-000189
Figure PCTKR2022002862-appb-img-000190
Figure PCTKR2022002862-appb-img-000190
Figure PCTKR2022002862-appb-img-000191
Figure PCTKR2022002862-appb-img-000191
Figure PCTKR2022002862-appb-img-000192
Figure PCTKR2022002862-appb-img-000192
Figure PCTKR2022002862-appb-img-000193
Figure PCTKR2022002862-appb-img-000193
Figure PCTKR2022002862-appb-img-000194
Figure PCTKR2022002862-appb-img-000194
Figure PCTKR2022002862-appb-img-000195
Figure PCTKR2022002862-appb-img-000195
Figure PCTKR2022002862-appb-img-000196
Figure PCTKR2022002862-appb-img-000196
Figure PCTKR2022002862-appb-img-000197
Figure PCTKR2022002862-appb-img-000197
Figure PCTKR2022002862-appb-img-000198
Figure PCTKR2022002862-appb-img-000198
Figure PCTKR2022002862-appb-img-000199
Figure PCTKR2022002862-appb-img-000199
Figure PCTKR2022002862-appb-img-000200
Figure PCTKR2022002862-appb-img-000200
Figure PCTKR2022002862-appb-img-000201
Figure PCTKR2022002862-appb-img-000201
Figure PCTKR2022002862-appb-img-000202
Figure PCTKR2022002862-appb-img-000202
Figure PCTKR2022002862-appb-img-000203
Figure PCTKR2022002862-appb-img-000203
Figure PCTKR2022002862-appb-img-000204
Figure PCTKR2022002862-appb-img-000204
Figure PCTKR2022002862-appb-img-000205
Figure PCTKR2022002862-appb-img-000205
Figure PCTKR2022002862-appb-img-000206
Figure PCTKR2022002862-appb-img-000206
Figure PCTKR2022002862-appb-img-000207
Figure PCTKR2022002862-appb-img-000207
Figure PCTKR2022002862-appb-img-000208
Figure PCTKR2022002862-appb-img-000208
Figure PCTKR2022002862-appb-img-000209
Figure PCTKR2022002862-appb-img-000209
Figure PCTKR2022002862-appb-img-000210
Figure PCTKR2022002862-appb-img-000210
Figure PCTKR2022002862-appb-img-000211
Figure PCTKR2022002862-appb-img-000211
Figure PCTKR2022002862-appb-img-000212
Figure PCTKR2022002862-appb-img-000212
Figure PCTKR2022002862-appb-img-000213
Figure PCTKR2022002862-appb-img-000213
Figure PCTKR2022002862-appb-img-000214
Figure PCTKR2022002862-appb-img-000214
Figure PCTKR2022002862-appb-img-000215
Figure PCTKR2022002862-appb-img-000215
Figure PCTKR2022002862-appb-img-000216
Figure PCTKR2022002862-appb-img-000216
Figure PCTKR2022002862-appb-img-000217
Figure PCTKR2022002862-appb-img-000217
Figure PCTKR2022002862-appb-img-000218
Figure PCTKR2022002862-appb-img-000218
Figure PCTKR2022002862-appb-img-000219
Figure PCTKR2022002862-appb-img-000219
Figure PCTKR2022002862-appb-img-000220
Figure PCTKR2022002862-appb-img-000220
Figure PCTKR2022002862-appb-img-000221
Figure PCTKR2022002862-appb-img-000221
Figure PCTKR2022002862-appb-img-000222
Figure PCTKR2022002862-appb-img-000222
Figure PCTKR2022002862-appb-img-000223
Figure PCTKR2022002862-appb-img-000223
Figure PCTKR2022002862-appb-img-000224
Figure PCTKR2022002862-appb-img-000224
Figure PCTKR2022002862-appb-img-000225
Figure PCTKR2022002862-appb-img-000225
Figure PCTKR2022002862-appb-img-000226
Figure PCTKR2022002862-appb-img-000226
Figure PCTKR2022002862-appb-img-000227
Figure PCTKR2022002862-appb-img-000227
Figure PCTKR2022002862-appb-img-000228
Figure PCTKR2022002862-appb-img-000228
Figure PCTKR2022002862-appb-img-000229
Figure PCTKR2022002862-appb-img-000229
Figure PCTKR2022002862-appb-img-000230
Figure PCTKR2022002862-appb-img-000230
Figure PCTKR2022002862-appb-img-000231
Figure PCTKR2022002862-appb-img-000231
Figure PCTKR2022002862-appb-img-000232
Figure PCTKR2022002862-appb-img-000232
Figure PCTKR2022002862-appb-img-000233
Figure PCTKR2022002862-appb-img-000233
Figure PCTKR2022002862-appb-img-000234
Figure PCTKR2022002862-appb-img-000234
Figure PCTKR2022002862-appb-img-000235
Figure PCTKR2022002862-appb-img-000235
Figure PCTKR2022002862-appb-img-000236
Figure PCTKR2022002862-appb-img-000236
Figure PCTKR2022002862-appb-img-000237
Figure PCTKR2022002862-appb-img-000237
Figure PCTKR2022002862-appb-img-000238
Figure PCTKR2022002862-appb-img-000238
Figure PCTKR2022002862-appb-img-000239
Figure PCTKR2022002862-appb-img-000239
Figure PCTKR2022002862-appb-img-000240
Figure PCTKR2022002862-appb-img-000240
Figure PCTKR2022002862-appb-img-000241
Figure PCTKR2022002862-appb-img-000241
Figure PCTKR2022002862-appb-img-000242
Figure PCTKR2022002862-appb-img-000242
Figure PCTKR2022002862-appb-img-000243
Figure PCTKR2022002862-appb-img-000243
Figure PCTKR2022002862-appb-img-000244
Figure PCTKR2022002862-appb-img-000244
Figure PCTKR2022002862-appb-img-000245
Figure PCTKR2022002862-appb-img-000245
[화학식 5] [Formula 5]
Figure PCTKR2022002862-appb-img-000246
Figure PCTKR2022002862-appb-img-000246
Figure PCTKR2022002862-appb-img-000247
Figure PCTKR2022002862-appb-img-000247
Figure PCTKR2022002862-appb-img-000248
Figure PCTKR2022002862-appb-img-000248
Figure PCTKR2022002862-appb-img-000249
Figure PCTKR2022002862-appb-img-000249
Figure PCTKR2022002862-appb-img-000250
Figure PCTKR2022002862-appb-img-000250
Figure PCTKR2022002862-appb-img-000251
Figure PCTKR2022002862-appb-img-000251
Figure PCTKR2022002862-appb-img-000252
Figure PCTKR2022002862-appb-img-000252
Figure PCTKR2022002862-appb-img-000253
Figure PCTKR2022002862-appb-img-000253
Figure PCTKR2022002862-appb-img-000254
Figure PCTKR2022002862-appb-img-000254
Figure PCTKR2022002862-appb-img-000255
Figure PCTKR2022002862-appb-img-000255
Figure PCTKR2022002862-appb-img-000256
Figure PCTKR2022002862-appb-img-000256
Figure PCTKR2022002862-appb-img-000257
Figure PCTKR2022002862-appb-img-000257
Figure PCTKR2022002862-appb-img-000258
Figure PCTKR2022002862-appb-img-000258
Figure PCTKR2022002862-appb-img-000259
Figure PCTKR2022002862-appb-img-000259
Figure PCTKR2022002862-appb-img-000260
Figure PCTKR2022002862-appb-img-000260
Figure PCTKR2022002862-appb-img-000261
Figure PCTKR2022002862-appb-img-000261
Figure PCTKR2022002862-appb-img-000262
Figure PCTKR2022002862-appb-img-000262
Figure PCTKR2022002862-appb-img-000263
Figure PCTKR2022002862-appb-img-000263
Figure PCTKR2022002862-appb-img-000264
Figure PCTKR2022002862-appb-img-000264
Figure PCTKR2022002862-appb-img-000265
Figure PCTKR2022002862-appb-img-000265
Figure PCTKR2022002862-appb-img-000266
Figure PCTKR2022002862-appb-img-000266
Figure PCTKR2022002862-appb-img-000267
Figure PCTKR2022002862-appb-img-000267
Figure PCTKR2022002862-appb-img-000268
Figure PCTKR2022002862-appb-img-000268
Figure PCTKR2022002862-appb-img-000269
Figure PCTKR2022002862-appb-img-000269
Figure PCTKR2022002862-appb-img-000270
Figure PCTKR2022002862-appb-img-000270
[화학식 6] [Formula 6]
Figure PCTKR2022002862-appb-img-000271
Figure PCTKR2022002862-appb-img-000271
Figure PCTKR2022002862-appb-img-000272
Figure PCTKR2022002862-appb-img-000272
Figure PCTKR2022002862-appb-img-000273
Figure PCTKR2022002862-appb-img-000273
Figure PCTKR2022002862-appb-img-000274
Figure PCTKR2022002862-appb-img-000274
Figure PCTKR2022002862-appb-img-000275
Figure PCTKR2022002862-appb-img-000275
Figure PCTKR2022002862-appb-img-000276
Figure PCTKR2022002862-appb-img-000276
Figure PCTKR2022002862-appb-img-000277
Figure PCTKR2022002862-appb-img-000277
Figure PCTKR2022002862-appb-img-000278
Figure PCTKR2022002862-appb-img-000278
이하 하기 도 1 내지 7을 참조하여 본 발명을 설명한다.Hereinafter, the present invention will be described with reference to FIGS. 1 to 7 .
도 1은 본 발명의 일 실시예에 따른 핵생성억제층을 갖는 소자를 개략적으로 나타낸 단면도이다. 도 1을 참조하면, 일 실시예에 따른 핵생성억제층을 갖는 소자는 기판(100)위에 핵생성억제층(110)과 금속층(120)을 순차적으로 적층하여 제작됨을 알 수 있다. 1 is a cross-sectional view schematically showing a device having a nucleation inhibiting layer according to an embodiment of the present invention. Referring to FIG. 1 , it can be seen that a device having a nucleation inhibiting layer according to an embodiment is manufactured by sequentially stacking a nucleation inhibiting layer 110 and a metal layer 120 on a substrate 100 .
도 1은 핵생성억제층(110)위에 금속층(120)을 증착하여 소자를 제작한다는 것을 보여주는 증착순서를 나타내는 예시이며, 실제 소자는 핵생성억제층이 금속층의 증착을 억제하므로 핵성성억제층 위에 위치될 수 없거나 일부만을 포함할 수 있다.1 is an example showing a deposition sequence showing that a device is manufactured by depositing a metal layer 120 on the nucleation inhibiting layer 110, and in the actual device, since the nucleation inhibiting layer suppresses the deposition of the metal layer, it is on the nucleation inhibiting layer. It may not be located or may contain only a portion.
도 2a부터 도 2d는 일 실시예에 따른 기판의 표면상에 금속층을 증착시키기 위한 공정을 나타낸 단면도이다.2A to 2D are cross-sectional views illustrating a process for depositing a metal layer on a surface of a substrate according to an exemplary embodiment.
도 2에서 도시된 내용들은 모두 열증착장비(Themal evaporation system)의 증착챔버 내에서 이루어지는 일련의 과정들이다. 구체적으로 증착챔버 내부는 기판을 이송하고 정렬할 수 있는 기구부, 증착을 직접적으로 조절하는 게이트부, 증착상태를 모니터링 할 수 있는 센서부, 열을 가하여 재료의 증착을 발생시키는 소스부 등으로 세분화되어 있지만 도 2에서는 본 발명의 내용과 직접적으로 연관이 있는 부분들만 도시하여 나타내었다. The contents shown in FIG. 2 are all a series of processes performed in the deposition chamber of a thermal evaporation system. Specifically, the inside of the deposition chamber is subdivided into a mechanism for transferring and aligning substrates, a gate for directly controlling deposition, a sensor for monitoring the deposition state, and a source for generating material deposition by applying heat. However, in FIG. 2, only parts directly related to the content of the present invention are illustrated and shown.
그러나 핵생성억제층(110)과 금속층(120)을 성막하고 증착하는 방법에는 스핀코팅, 딥 코팅, 프린팅, 스프레이 코팅, CVD, PVD 등과 이들의 조합을 포함하는 증착 및 코팅기술이 사용될 수 있으며, 각 층의 증착방법 및 막의 생성 방법은 이에 제한되지 않는다.However, deposition and coating techniques including spin coating, dip coating, printing, spray coating, CVD, PVD, etc., and combinations thereof may be used for the method of forming and depositing the nucleation inhibiting layer 110 and the metal layer 120, A method of depositing each layer and a method of forming a film are not limited thereto.
도 2a는 기판(100)상에 패터닝 된 마스크(300)를 위치시킨 상태를 나타내는 도시이다. 도 2a에서 기판 아래에 마스크가 위치하지만 상이라 표현하는 것은, 열증착공정의 방법에서 재료가 충진되는 도가니(50)가 챔버 바닥면에 위치하며, 재료에 열을 가하여 기화하므로 아래에서 위로 증착되는 특성을 지니기 때문에, 기판(100) 하면이 증착방향이 되므로 증착방향에 위치된 마스크를 기판상이라 표현하였으나, 상기 언급된 대로 증착 및 코팅 기술은 제한하지 않으므로 증착방향 상 마스크가 위치된다.FIG. 2A is a diagram illustrating a state in which the patterned mask 300 is positioned on the substrate 100 . Although the mask is located under the substrate in FIG. 2A, it is expressed as a phase, the crucible 50 filled with material in the method of the thermal deposition process is located on the chamber bottom surface, and since it vaporizes by applying heat to the material, it is deposited from bottom to top Since the lower surface of the substrate 100 becomes the deposition direction because of its characteristics, the mask positioned in the deposition direction is expressed as on the substrate, but as mentioned above, the deposition and coating technology is not limited, so the mask is positioned in the deposition direction.
도 2b는 도 2a에서, 핵생성억제층(110)이 증착된 상태를 나타내는 도시이다. 기판 상에는 패턴된 마스크가 위치해 있으므로, 기판상의 마스크의 빈 영역으로 핵생성억제층(110)이 형성된다. 이때 도가니(50)는 유기재료가 충진되어 있는 도가니이며, 재료에 따라 도가니의 재질은 알루미나, 석영, 티타늄 등 다양한 재질로 만들어 질 수 있다. FIG. 2B is a diagram illustrating a state in which the nucleation inhibiting layer 110 is deposited in FIG. 2A . Since the patterned mask is positioned on the substrate, the nucleation inhibiting layer 110 is formed as an empty region of the mask on the substrate. At this time, the crucible 50 is a crucible filled with an organic material, and depending on the material, the material of the crucible may be made of various materials such as alumina, quartz, titanium.
도가니(50)에 핵생성억제층 재료를 충진 후 증착하고, 증착완료 후 마스크를 기판과 분리시키면 기판에 핵생성억제층이 패턴화 된다.After the crucible 50 is filled with the nucleation inhibiting layer material and deposited, the nucleation inhibiting layer is patterned on the substrate when the mask is separated from the substrate after the deposition is completed.
도 2c는 마스크(300)와 분리된 기판(100)에 금속 재료를 충진한 도가니(60) 혹은 증착원을 통하여 금속재료를 증착하는 공정을 나타낸 도시이다.FIG. 2C is a diagram illustrating a process of depositing a metal material through a crucible 60 filled with a metal material on the substrate 100 separated from the mask 300 or through an evaporation source.
핵생성억제층(110)은 금속 증착시 기판표면 혹은 최상위층 표면에서 발생하는 금속의 핵형성을 억제하므로 핵생성억제층 상에는 금속층(200)이 형성되기 어렵다. Since the nucleation inhibiting layer 110 suppresses nucleation of metal occurring on the surface of the substrate or the uppermost layer during metal deposition, it is difficult to form the metal layer 200 on the nucleation inhibiting layer.
도 2d는 최종적으로 금속층(200)이 패턴된 상태의 소자를 나타내는 도시이다. 최종적으로 금속층(200)은 마스크의 패턴형태로 형성된다. 이를 응용하면 다양한 분야에 적용할 수 있다. 최근 차세대 모바일 디스플레이 패널 형태인 UDC(Under Display Camera), 보조전극 패터닝, 반도체 건식 패터닝 등에 적용할 수 있을 것이다.2D is a diagram illustrating a device in a state in which the metal layer 200 is finally patterned. Finally, the metal layer 200 is formed in the form of a mask pattern. This can be applied to various fields. It can be applied to UDC (Under Display Camera), auxiliary electrode patterning, semiconductor dry patterning, etc., which are the latest next-generation mobile display panel types.
도 3a와 도 3b는 기판(600) 상에 증착된 소자의 단면을 주사전자현미경으로 측정한 이미지를 나타내는 도시이다. 3A and 3B are diagrams illustrating images obtained by measuring a cross-section of a device deposited on a substrate 600 with a scanning electron microscope.
도 3a는 기판(600) 상에 20nm 정도 두께의 핵생성억제층(610)을 증착한 후 금속을 500nm 정도의 두께로 증착하였지만, 핵생성억제층(610) 상에 증착되지 못한 상태를 나타낸다.FIG. 3A shows a state in which a nucleation inhibiting layer 610 having a thickness of about 20 nm is deposited on a substrate 600 and then a metal is deposited to a thickness of about 500 nm, but is not deposited on the nucleation inhibiting layer 610 .
이는, 핵생성억제층(610)이 금속이 증착될 때 생성되는 핵을 효과적으로 억제하여 클러스터화를 막아 금속막이 안정하게 생성되는 것을 잘 막는다는 것을 나타낸다.This indicates that the nucleation inhibiting layer 610 effectively suppresses nuclei generated when a metal is deposited to prevent clustering, thereby preventing the stable formation of a metal film.
도 3b는 핵생성억제 재료가 아닌 일반유기재료(620)를 증착하고 난 후, 금속을 증착하였을 때 금속층(700)이 잘 형성된 상태를 나타낸다. 일반유기재료(620)는 44nm의 두께로 형성되었고, 해당재료는 금속 증착 중 생성되는 핵을 억제하는 능력이 약하므로, 핵을 형성하고 핵이 성장하여 인접 핵과 클러스터를 형성하여 정상적으로 금속층이 형성되었음을 나타낸다.3B shows a state in which the metal layer 700 is well formed when the metal is deposited after depositing the general organic material 620 rather than the nucleation inhibiting material. The general organic material 620 was formed to a thickness of 44 nm, and since the material has a weak ability to suppress nuclei generated during metal deposition, the nuclei are formed and the nuclei grow to form clusters with adjacent nuclei, indicating that the metal layer is normally formed. indicates.
도 4a와 도 4b는 핵생성이 억제된 실제 소자의 이미지이다. 4A and 4B are images of an actual device in which nucleation is suppressed.
도 4a는 기판(800)상에 증착된 핵생성억제층(810)과 핵생성억제층(810) 상에 추가로 증착된 금속층(900)을 찍은 이미지이다. 핵생성억제층(810)은 이미지상 거의 투명하여 점선과 점으로 나타낸 선으로 실제 증착된 영역을 나타내었다. 핵생성 억제가 되지 않은 경우 금속층(900)이 훨씬 긴 형태로 증착되어야 하나 핵생성억제층(810) 영역 안쪽으로 증착되지 못하고 핵생성억제층(810) 영역 밖으로 제한되어 증착된 것이 나타났다. 4A is an image of the nucleation inhibiting layer 810 deposited on the substrate 800 and the metal layer 900 additionally deposited on the nucleation inhibiting layer 810 . The nucleation-inhibiting layer 810 was almost transparent on the image, indicating the actually deposited area with dotted lines and dotted lines. If nucleation is not suppressed, the metal layer 900 should be deposited in a much longer form, but it was not deposited inside the nucleation inhibiting layer 810 region and was limited outside the nucleation inhibiting layer 810 region.
도 4b는 기판(800) 상에 증착된 일반유기재료(820)가 금속의 증착을 억제하지 못하여 일반유기재료(820) 상에 증착된 소자의 이미지이다. 4B is an image of a device deposited on the general organic material 820 because the general organic material 820 deposited on the substrate 800 does not inhibit the deposition of metal.
도 4a와 도 4b 소자의 차이점은 핵생성억제층(810) 재료와 일반유기재료(820) 상에 동일한 금속이 증착되었을 때, 증착여부의 차이점을 보인다. 본 발명은 이 차이점을 이용하여 용액 혹은 건식 박리가 필요없이 편하게 금속을 패터닝할 수 있다는 장점을 지니고 있으며, 핵생성억제층(810) 재료의 광학특성 또한 가시광 영역에서 투명에 가까운 특성을 보이기 때문에 공정상 알맞은 어플리케이션에 적용 시 높은 공정효율을 보일 수 있다.The difference between the devices of FIGS. 4A and 4B is that when the same metal is deposited on the material of the nucleation inhibiting layer 810 and the general organic material 820, the difference is in whether or not the same metal is deposited. The present invention has the advantage that metal can be conveniently patterned without the need for solution or dry exfoliation by using this difference, and the optical properties of the nucleation inhibiting layer 810 material also show properties close to transparent in the visible region. It can show high process efficiency when applied to suitable applications.
도 5는 본 발명의 일실시예에 따른 화합물과 일반유기재료를 핵생성억제층에 적용한 소자의 투과율 스펙트럼 그래프이다.5 is a graph showing the transmittance spectrum of a device in which a compound and a general organic material according to an embodiment of the present invention are applied to a nucleation inhibiting layer.
도 5의 검정색 실선(1000)과 검정색 점선(1010)은 각 각 핵생성억제층을 이용한 소자의 핵생성억제층의 투과율과 핵생성억제층과 금속층이 적층되어 있는 위치의 투과율이다. The black solid line 1000 and the black dotted line 1010 of FIG. 5 are the transmittance of the nucleation suppression layer of the device using the nucleation suppression layer, respectively, and the transmittance of the position where the nucleation suppression layer and the metal layer are stacked.
검정색 실선(1000)과 검정색 점선(1010)의 투과율이 같다는 것은 핵생성억제층이 증착되어 있는 위치 상면에는 금속층이 증착되어 있지 않다는 것을 보여준다. The same transmittance of the black solid line 1000 and the black dotted line 1010 indicates that the metal layer is not deposited on the upper surface of the position where the nucleation inhibiting layer is deposited.
도 5의 실선(1020)과 점선(1030)은 각 각 일반유기재료를 이용한 소자의 일반유기재료의 투과율과 일반유기재료와 금속층이 적층되어 있는 위치의 투과율이다.The solid line 1020 and the dotted line 1030 of FIG. 5 are the transmittance of the general organic material of the device using the general organic material, respectively, and the transmittance of the position where the general organic material and the metal layer are stacked.
실선(1020)의 투과율은 검정색 실선(1000)과 큰 차이가 없지만 점선(1030)은 투과율이 0으로 일반유기재료 상에 금속이 두껍게 증착되어 빛이 통과하지 못하는 것을 보여준다. The transmittance of the solid line 1020 is not significantly different from that of the black solid line 1000 , but the dotted line 1030 shows that the transmittance is 0 and the metal is thickly deposited on the general organic material, so that light does not pass.
도 6은 핵생성억제층(2400)과 제2금속층(2300)이 포함된 전면발광 유기발광소자의 단면을 나타낸 도시이다. 도 6에 도시된 전면발광 유기발광소자는 반투과형 제2금속층(2300)에 의한 소자 전체의 투과도 저하를 개선하기 위해, 투과영역 확보를 위한 개선된 전면발광 유기발광소자를 간략히 나타내었다.6 is a view showing a cross-section of a top light emitting organic light emitting device including a nucleation inhibiting layer 2400 and a second metal layer 2300 . The top light emitting organic light emitting device shown in FIG. 6 briefly shows an improved top light emitting organic light emitting device for securing a transmissive region in order to improve the transmittance reduction of the entire device due to the semi-transmissive second metal layer 2300 .
기판(2000) 상에 반사형 전극역할의 제1금속층(2100)을 스퍼터, 열증착 등으로 증착하여 형성한다. 풀컬러 디스플레이를 위한 적색발광층(2203), 녹색발광층(2202), 청색발광층(2201)을 제1금속층(2100)상에 형성한다. The first metal layer 2100 serving as a reflective electrode is deposited on the substrate 2000 by sputtering, thermal evaporation, or the like. A red light emitting layer 2203 , a green light emitting layer 2202 , and a blue light emitting layer 2201 for a full color display are formed on the first metal layer 2100 .
발광층 상에 전자수송과 주입 역할을 하는 유기공통층(2250)을 형성한다. 유기공통층(2250) 상에 핵생성억제층(2400)을 적색발광층(2203), 녹색발광층(2202), 청색발광층(2201) 패턴과 겹치지 않도록 형성한다. 반투과전극 역할을 하는 제2금속층(2300)을 패터닝된 핵생성억제층(2400) 상에 증착하면 적색발광층(2203), 녹색발광층(2202), 청색발광층(2201)과 겹치는 영역에 정확히 제2금속층(2300)을 형성할 수 있다. 핵생성억제층(2400)은 투명에 가깝기 때문에 핵생성억제층(2400)이 증착되어 있는 영역은 빛이 그대로 통과할 수 있다. 이에 따라 기판 방향에 카메라, IR센서, 안면인식 TOF 등을 형성하여도 성능의 큰 저하 없이 구동을 가능하게 한다.An organic common layer 2250 serving to transport and inject electrons is formed on the emission layer. The nucleation suppression layer 2400 is formed on the organic common layer 2250 so as not to overlap the patterns of the red light emitting layer 2203 , the green light emitting layer 2202 , and the blue light emitting layer 2201 . When the second metal layer 2300 serving as a semi-transmissive electrode is deposited on the patterned nucleation inhibiting layer 2400 , the red light emitting layer 2203 , the green light emitting layer 2202 , and the blue light emitting layer 2201 exactly overlap the second metal layer. A metal layer 2300 may be formed. Since the nucleation inhibiting layer 2400 is close to transparent, light can pass through the region where the nucleation inhibiting layer 2400 is deposited as it is. Accordingly, even if a camera, IR sensor, face recognition TOF, etc. are formed in the direction of the substrate, it can be driven without significant degradation in performance.
도 7은 핵생성억제층(2400)과 제2금속층(2300)이 포함된 전면발광 유기발광소자의 단면을 나타낸 도시이다. 도 6과 다른점은 도 6은 광투과율을 높이기 위한 패턴이지만, 도 7은 대면적 유기발광소자에서 나타나는 IR드롭 현상을 개선하기 위한 보조전극(2500)을 포함하는 유기발광소자의 단면을 나타낸 도시이다.7 is a diagram illustrating a cross-section of a top-emitting organic light emitting device including a nucleation inhibiting layer 2400 and a second metal layer 2300 . The difference from FIG. 6 is that FIG. 6 is a pattern for increasing light transmittance, but FIG. 7 is a cross-sectional view of an organic light emitting device including an auxiliary electrode 2500 for improving the IR drop phenomenon appearing in a large area organic light emitting device. to be.
전면발광 유기발광소자는 제2금속층(2300)의 투과도를 위하여 금속 두께가 얇은 것이 특징이다. 이 점은 제2금속층(2300)의 면저항을 높게 만든다. 면저항이 높게되면 디스플레이의 면적이 커질수록 높은 저항값 때문에 전압강하 현상이 발생하게 되며, 회로에서 설계된 전압값을 화면 중앙으로 갈수록 유지할 수 없게 되면서 전류주입이 원활히 일어날 수 없게 되어 패널 전체의 휘도의 불균형을 초래한다. The top light emitting organic light emitting device is characterized in that the metal thickness is thin for the transmittance of the second metal layer 2300 . This makes the sheet resistance of the second metal layer 2300 high. If the sheet resistance is high, the larger the area of the display, the more the voltage drop occurs due to the high resistance value. causes
적색발광층(2203), 녹색발광층(2202), 청색발광층(2201)과 겹치지 않는 영역에 보조전극(2500)을 형성하여 전압강하 현상을 막고 화면 전체의 휘도균일성을 높일 수 있다. 도 7에서 나타낸 바와 같이 패턴된 핵생성억제층(2400)을 형성하고 보조전극(2500)을 전압강하가 일어나지 않는 두꺼운 두께로 증착한다. 보조전극(2500)이 형성된 유기발광소자는 대면적이어도 전압강하현상을 최소화할 수 있고 대면적 휘도 균일성을 우수하게 유지할 수 있다.By forming the auxiliary electrode 2500 in a region that does not overlap the red light emitting layer 2203 , the green light emitting layer 2202 , and the blue light emitting layer 2201 , the voltage drop phenomenon can be prevented and the luminance uniformity of the entire screen can be increased. As shown in FIG. 7 , a patterned nucleation inhibiting layer 2400 is formed, and the auxiliary electrode 2500 is deposited to a thick thickness in which a voltage drop does not occur. The organic light emitting device in which the auxiliary electrode 2500 is formed can minimize a voltage drop phenomenon even with a large area and can maintain excellent luminance uniformity over a large area.
한편, 본 발명에서 제시되는 핵생성억제층(2400)은 제2 전극(120)위에 증착되는 기능층으로서, 본 발명의 화학식 1에 따른 유기물을 포함한다.Meanwhile, the nucleation inhibiting layer 2400 provided in the present invention is a functional layer deposited on the second electrode 120 and includes an organic material according to Chemical Formula 1 of the present invention.
이하 본 명세서를 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나 본 명세서에 따른 실시예들은 여러가지 다른 형태로 변형될 수 있으며, 본 출원의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 출원의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, examples will be given to describe the present specification in detail. However, the embodiments according to the present specification may be modified in various other forms, and the scope of the present application is not to be construed as being limited to the embodiments described below. The embodiments of the present application are provided to more completely explain the present specification to those of ordinary skill in the art.
[제조예][Production Example]
중간체 intermediate 합성예Synthesis example 1: 중간체(1)의 합성 1: Synthesis of Intermediate (1)
Figure PCTKR2022002862-appb-img-000279
Figure PCTKR2022002862-appb-img-000279
(중간체(1)의 합성)(Synthesis of Intermediate (1))
9-브로모-10-페닐안트라센(9-bromo-10-phenylanthracene) 5.0 g(15.0 mmol), (3,5-다이클로로페닐)보론산((3,5-dichlorophenyl)boronic acid) 3.2 g(16.5 mmol), Pd(PPh3)4 0.9 g(0.8 mmol), K2CO3 6.2 g(45.0 mmol), 톨루엔 120 mL 및 에탄올 60 mL를 혼합한 후, 하루동안 환류 교반하였다. 반응이 종결된 후, 상온으로 냉각하였다. 분리된 유기층을 감압 증류하여 얻어진 화합물을 실리카겔 컬럼크로마토그래피(Hexane)로 정제하여 흰색 고체의 화합물 중간체(1) 2.8 g(수율: 46.7%)을 얻었다.9-bromo-10-phenylanthracene (9-bromo-10-phenylanthracene) 5.0 g (15.0 mmol), (3,5-dichlorophenyl) boronic acid ((3,5-dichlorophenyl) boronic acid) 3.2 g ( 16.5 mmol), Pd(PPh 3 ) 4 0.9 g (0.8 mmol), K 2 CO 3 6.2 g (45.0 mmol), toluene 120 mL, and ethanol 60 mL were mixed and stirred under reflux for one day. After the reaction was completed, it was cooled to room temperature. The compound obtained by distilling the separated organic layer under reduced pressure was purified by silica gel column chromatography (Hexane) to obtain 2.8 g (yield: 46.7%) of the compound intermediate (1) as a white solid.
중간체 intermediate 합성예Synthesis example 2: 중간체(3)의 합성 2: Synthesis of intermediate (3)
Figure PCTKR2022002862-appb-img-000280
Figure PCTKR2022002862-appb-img-000280
(중간체(2)의 합성)(Synthesis of Intermediate (2))
1구 250mL 플라스크에서 1,3-디브로모-5-클로로벤젠(1,3-dibromo-5-chlorobenzene) 20.0 g(74.0 mmol), ((3,5-비스(트리플루오로메틸)페닐)보론산((3,5-bis(trifluoromethyl)phenyl)boronic acid) 42.0 g(162.8 mmol), Pd(PPh3)4 4.3 g(3.7 mmol), 2 M 수용액 K2CO3 148.0 mL (296.2 mmol), 톨루엔 500 mL 및 에탄올 250 mL를 혼합한 후, 18 시간동안 환류 교반하였다. 반응이 종결된 후, 상온으로 냉각하였다. 분리된 유기층을 감압 증류하여 얻어진 화합물을 실리카겔 컬럼크로마토그래피(Hexane)로 정제하여 흰색 고체의 화합물 중간체(2) 20.0 g(수율: 50.4%)을 얻었다.1,3-dibromo-5-chlorobenzene (1,3-dibromo-5-chlorobenzene) 20.0 g (74.0 mmol), ((3,5-bis (trifluoromethyl) phenyl) in a 1-neck 250 mL flask Boronic acid ((3,5-bis(trifluoromethyl)phenyl)boronic acid) 42.0 g (162.8 mmol), Pd(PPh 3 ) 4 4.3 g (3.7 mmol), 2 M aqueous solution K 2 CO 3 148.0 mL (296.2 mmol) , 500 mL of toluene and 250 mL of ethanol were mixed, and then stirred under reflux for 18 hours.After completion of the reaction, cooled to room temperature.The separated organic layer was distilled under reduced pressure, and the obtained compound was purified by silica gel column chromatography (Hexane). to obtain 20.0 g (yield: 50.4%) of the compound intermediate (2) as a white solid.
(중간체(3)의 합성)(Synthesis of Intermediate (3))
중간체(2) 10.0 g(18.6 mmol), 피나콜디보론(Bis(pinacolato)diboron) 5.7 g(22.4 mmol), Pd(dppf)Cl2·CH2Cl2 0.5 g(0.6 mmol), KOAc 5.5 g(55.9 mmol) 및 1,4-다이옥세인 200 mL를 혼합한 후, 하루동안 환류 교반 하였다. 반응이 종결된 후 상온으로 냉각하고, 정제수를 넣고 에틸아세테이트로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 반응 혼합물을 실리카겔 컬럼 크로마토그래피(Hex:EA)로 정제하고 혼합용액(Hex/EA)으로 고체화하여, 노란색 고체의 화합물 중간체(3) 8.2 g (수율: 70.1%)얻었다. Intermediate (2) 10.0 g (18.6 mmol), pinacol diboron (Bis(pinacolato)diboron) 5.7 g (22.4 mmol), Pd(dppf)Cl 2 CH 2 Cl 2 0.5 g (0.6 mmol), KOAc 5.5 g (55.9 mmol) and 200 mL of 1,4-dioxane were mixed and stirred under reflux for one day. After the reaction was completed, it was cooled to room temperature, purified water was added, extracted with ethyl acetate, and the solvent was removed under reduced pressure. The obtained reaction mixture was purified by silica gel column chromatography (Hex:EA) and solidified with a mixed solution (Hex/EA) to obtain 8.2 g (yield: 70.1%) of compound intermediate (3) as a yellow solid.
중간체 intermediate 합성예Synthesis example 3: 중간체(6)의 합성 3: Synthesis of intermediate (6)
Figure PCTKR2022002862-appb-img-000281
Figure PCTKR2022002862-appb-img-000281
(중간체(5)의 합성)(Synthesis of Intermediate (5))
6-브로모나프틸렌-2-올(6-bromonaphthalen-2-ol) 50.0 g(224.2 mmol), (3,5-비스(트리플루오로메틸)페닐)보론산((3,5-bis(trifluoromethyl)phenyl)boronic acid) 57.8 g(224.2 mmol), Pd(PPh3)4 7.8 g(6.7 mmol), K3PO4 142.7 g(672.5 mmol), 톨루엔 600 mL, 에탄올 200 mL 및 물 200 mL를 혼합한 후, 12 시간동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 물을 넣고 에틸아세테이트로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 반응 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하고 혼합용액(DCM/Hex)으로 고체화하여, 흰색 고체의 화합물 중간체(5) 57.2 g(수율: 71.6%)을 얻었다.6-bromonaphthalen-2-ol (6-bromonaphthalen-2-ol) 50.0 g (224.2 mmol), (3,5-bis (trifluoromethyl) phenyl) boronic acid ((3,5-bis ( trifluoromethyl)phenyl)boronic acid) 57.8 g (224.2 mmol), Pd(PPh 3 ) 4 7.8 g (6.7 mmol), K 3 PO 4 142.7 g (672.5 mmol), toluene 600 mL, ethanol 200 mL, and water 200 mL After mixing, the mixture was stirred under reflux for 12 hours. After completion of the reaction, the mixture was cooled to room temperature, added with water, extracted with ethyl acetate, and the solvent was removed under reduced pressure. The obtained reaction mixture was purified by silica gel column chromatography (CHCl 3 ) and solidified with a mixed solution (DCM/Hex) to obtain 57.2 g (yield: 71.6%) of the compound intermediate (5) as a white solid.
(중간체(6)의 합성)(Synthesis of Intermediate (6))
중간체(5) 57.2 g(160.6 mmol)을 다이클로로메탄 800 mL에 녹이고 피리딘 38.8 mL(481.7mmol)를 적가한 후 0℃로 온도를 낮췄다. Tf2O 32.4 mL(192.7 mmol)를 천천히 적가 한 후 상온으로 온도를 올린 후 12 시간동안 반응시켰다. 반응물을 증류수로 세척한 후, 분리한 유기층을 무수 황산나트륨으로 건조, 여과하고 농축한 후 컬럼 크로마토그래피로(CHCl3)로 정제하여 노란색 고체의 화합물 중간체(6) 78.0 g(수율: 100 %)을 얻었다.57.2 g (160.6 mmol) of the intermediate (5) was dissolved in 800 mL of dichloromethane, 38.8 mL (481.7 mmol) of pyridine was added dropwise, and the temperature was lowered to 0°C. 32.4 mL (192.7 mmol) of Tf 2 O was slowly added dropwise, and the temperature was raised to room temperature, followed by reaction for 12 hours. After washing the reaction product with distilled water, the separated organic layer was dried over anhydrous sodium sulfate, filtered, concentrated, and purified by column chromatography (CHCl 3 ) to obtain 78.0 g (yield: 100%) of compound intermediate (6) as a yellow solid. got it
중간체 intermediate 합성예Synthesis example 4: 중간체(7)의 합성 4: Synthesis of intermediate (7)
Figure PCTKR2022002862-appb-img-000282
Figure PCTKR2022002862-appb-img-000282
(중간체(7)의 합성)(Synthesis of Intermediate (7))
1구 2 L 플라스크에서 중간체(6) 78.0 g(159.7 mmol), 피나콜디보론(Bis(pinacolato)diboron) 60.8 g(239.6 mmol), Pd(dppf)Cl2CH2Cl2 2.6 g(3.2 mmol), KOAc 47.0 g(479.2 mmol) 및 1,4-디옥산 800 mL를 혼합한 후, 100℃에서 5시간 동안 교반 하였다. 반응이 종결된 후 상온으로 냉각하고 반응물을 셀라이트 패드에 통과시킨 후 감압 농축하였다. 반응 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하여 흰색 고체의 화합물 중간체(7) 57.0 g (수율: 76.5%)얻었다.In a 1-neck 2 L flask, 78.0 g (159.7 mmol) of intermediate (6), 60.8 g (239.6 mmol) of pinacol diboron (Bis(pinacolato)diboron), Pd(dppf)Cl 2 CH 2 Cl 2 2.6 g (3.2 mmol) ), KOAc 47.0 g (479.2 mmol) and 1,4-dioxane 800 mL were mixed, followed by stirring at 100° C. for 5 hours. After the reaction was completed, it was cooled to room temperature, and the reaction product was passed through a celite pad and concentrated under reduced pressure. The reaction mixture was purified by silica gel column chromatography (CHCl 3 ) to obtain 57.0 g (yield: 76.5%) of the compound intermediate (7) as a white solid.
중간체 intermediate 합성예Synthesis example 5: 중간체(8)의 합성 5: Synthesis of intermediate (8)
Figure PCTKR2022002862-appb-img-000283
Figure PCTKR2022002862-appb-img-000283
(중간체(8)의 합성)(Synthesis of Intermediate (8))
3-브로모-9-페닐-9H-카바졸(3-bromo-9-phenyl-9H-carbazole) 10.0 g(31.0 mmol), (3,5-다이클로로페닐)보론산((3,5-dichlorophenyl)boronic acid) 6.5 g(34.1 mmol), Pd(PPh3)4 1.1 g(0.9 mmol), K2CO3 12.9 g(93.1 mmol), 톨루엔 240 mL 및 에탄올 120 mL를 혼합한 후, 하루동안 환류 교반하였다. 반응이 종결된 후, 상온으로 냉각하였다. 분리된 유기층을 감압 증류하여 얻어진 화합물을 실리카겔 컬럼크로마토그래피(Hexane)로 정제하여 흰색 고체의 화합물 중간체(8) 9.1 g(수율: 75.5%)을 얻었다.1-bromo-9-phenyl-9H-carbazole (3-bromo-9-phenyl-9H-carbazole) 10.0 g (31.0 mmol), (3,5-dichlorophenyl) boronic acid ((3,5- dichlorophenyl)boronic acid) 6.5 g (34.1 mmol), Pd(PPh 3 ) 4 1.1 g (0.9 mmol), K 2 CO 3 12.9 g (93.1 mmol), 240 mL of toluene and 120 mL of ethanol were mixed, followed by one day. It was stirred at reflux. After the reaction was completed, it was cooled to room temperature. The compound obtained by distilling the separated organic layer under reduced pressure was purified by silica gel column chromatography (Hexane) to obtain 9.1 g (yield: 75.5%) of the compound intermediate (8) as a white solid.
중간체 intermediate 합성예Synthesis example 6: 중간체(12)의 합성 6: Synthesis of intermediate (12)
Figure PCTKR2022002862-appb-img-000284
Figure PCTKR2022002862-appb-img-000284
(중간체(12)의 합성)(Synthesis of Intermediate (12))
2구 2 L 플라스크에서 2-(4-브로모페닐)벤조[d]옥사졸(2-(4-bromophenyl)benzo[d]oxazole) 60.0 g(218.9 mmol), 피나콜디보론(Bis(pinacolato)diboron) 66.7 g(262.7 mmol), Pd(dppf)Cl2·CH2Cl2 8.9 g(10.9 mmol), KOAc 64.4 g(656.7 mmol) 및 1,4-다이옥세인 1 L를 혼합한 후, 하루동안 환류 교반 하였다. 반응이 종결된 후, 상온으로 냉각하고 정제수를 넣고 에틸아세테이트로 추출한 후, 감압 하에 용매를 제거하였다. 얻어진 반응 혼합물을 실리카겔 컬럼크로마토그래피(Hex:EA)로 정제하고 혼합용액(Hex/EA)으로 고체화하여, 노란색 고체의 화합물 중간체(12) 55.7 g (수율: 79.2%)을 얻었다. In a 2-neck 2 L flask, 2- (4-bromophenyl) benzo [d] oxazole (2- (4-bromophenyl) benzo [d] oxazole) 60.0 g (218.9 mmol), pinacol diboron (Bis (pinacolato) ) diboron) 66.7 g (262.7 mmol), Pd(dppf)Cl 2 CH 2 Cl 2 8.9 g (10.9 mmol), KOAc 64.4 g (656.7 mmol) and 1 L of 1,4-dioxane were mixed, and then 1 L while stirring under reflux. After the reaction was completed, it was cooled to room temperature, purified water was added, and the mixture was extracted with ethyl acetate, and the solvent was removed under reduced pressure. The obtained reaction mixture was purified by silica gel column chromatography (Hex:EA) and solidified with a mixed solution (Hex/EA) to obtain 55.7 g (yield: 79.2%) of compound intermediate (12) as a yellow solid.
중간체 intermediate 합성예Synthesis example 7: 중간체(14)의 합성 7: Synthesis of intermediate (14)
Figure PCTKR2022002862-appb-img-000285
Figure PCTKR2022002862-appb-img-000285
(중간체(13)의 합성)(Synthesis of Intermediate (13))
1구 2 L 플라스크에서 1-브로모-4-클로로벤젠 (1-bromo-4-chlorobenzene) 30.0 g(156.7 mmol), 3,5-비스트리플루오로메틸페닐보론산((3,5-bis(trifluoromethyl)phenyl)boronic acid) 40.4 g(156.7 mmol), Pd(PPh3)4 5.4 g(4.7 mmol), K2CO3 65.0 g(470.1 mmol), 톨루엔 500 mL, 에탄올 150 mL 및 물 150 mL를 혼합한 후, 12 시간동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 물을 넣고 에틸아세테이트로 추출한 후 반응액을 농축하였다. 반응 혼합물을 컬럼 크로마토그래피로(Hex) 정제하여, 흰색 액체의 화합물 중간체(13) 50.8 g(수율: 99.9%)을 얻었다. In a 1-neck 2 L flask, 1-bromo-4-chlorobenzene (1-bromo-4-chlorobenzene) 30.0 g (156.7 mmol), 3,5-bistrifluoromethylphenylboronic acid ((3,5-bis ( trifluoromethyl)phenyl)boronic acid) 40.4 g (156.7 mmol), Pd(PPh 3 ) 4 5.4 g (4.7 mmol), K 2 CO 3 65.0 g (470.1 mmol), toluene 500 mL, ethanol 150 mL, and water 150 mL After mixing, the mixture was stirred under reflux for 12 hours. After the reaction was completed, it was cooled to room temperature, water was added, and the reaction solution was concentrated after extraction with ethyl acetate. The reaction mixture was purified by column chromatography (Hex) to obtain 50.8 g (yield: 99.9%) of the compound intermediate (13) as a white liquid.
(중간체(14)의 합성)(Synthesis of Intermediate (14))
1구 2 L 플라스크에서 중간체(13) 50.8 g(156.5 mmol), 피나콜디보론(Bis(pinacolato)diboron) 51.6 g(203.4 mmol), Pd(dba)2 14.3 g(15.7 mmol), X-phos 14.9 g(31.3 mmol), KOAc 46.1 g(436.6 mmol) 및 톨루엔 650 mL를 혼합한 후, 110℃에서 12 시간동안 교반 하였다. 반응이 종결된 후 상온으로 냉각하고 반응물을 셀라이트 패드에 통과시킨 후 감압 농축하였다. 반응 혼합물을 실리카겔 컬럼크로마토그래피(Hex:EA)로 정제하여, 노란색 고체의 화합물 중간체(14) 54.6 g (수율: 83.8%)을 얻었다. Intermediate (13) 50.8 g (156.5 mmol), pinacol diboron (Bis(pinacolato)diboron) 51.6 g (203.4 mmol), Pd(dba) 2 14.3 g (15.7 mmol), X-phos in a 1-neck 2 L flask After mixing 14.9 g (31.3 mmol), 46.1 g (436.6 mmol) of KOAc and 650 mL of toluene, the mixture was stirred at 110° C. for 12 hours. After the reaction was completed, it was cooled to room temperature, and the reaction product was passed through a celite pad and concentrated under reduced pressure. The reaction mixture was purified by silica gel column chromatography (Hex:EA) to obtain 54.6 g (yield: 83.8%) of the compound intermediate (14) as a yellow solid.
중간체 intermediate 합성예Synthesis example 8: 중간체(17)의 합성 8: Synthesis of intermediate (17)
Figure PCTKR2022002862-appb-img-000286
Figure PCTKR2022002862-appb-img-000286
(중간체(15)의 합성)(Synthesis of Intermediate (15))
4구 3 L 플라스크에서 4-브로모페놀(4-bromophenol) 50.0 g(289.0 mmol), (4-플루오로페닐)보론산((4-fluorophenyl)boronic acid) 67.3 g(346.8 mmol), Pd(PPh3)4 10.0 g(8.7 mmol), K2CO3 119.8 g(867.0 mmol), 톨루엔 1.5 L, 에탄올 400 mL 및 물 400 mL를 혼합한 다음 80℃에서 16시간 동안 교반 하였다. 반응이 종결된 후 상온으로 냉각하고, 에틸아세테이트로 추출하여 유기층을 무수 황산마그네슘을 이용하여 건조, 여과, 감압 증류하였다. 얻어진 고체 혼합물을 에틸아세테이트에 녹여 셀라이트 패드 여과를 하고 혼합용액(Hex/EA)으로 고체화하여, 흰색 고체의 화합물 중간체(15) 48.1 g(수율: 88.4%)을 얻었다. In a 4-neck 3 L flask, 50.0 g (289.0 mmol) of 4-bromophenol, 67.3 g (346.8 mmol) of (4-fluorophenyl) boronic acid, and Pd ( PPh 3 ) 4 10.0 g (8.7 mmol), K 2 CO 3 119.8 g (867.0 mmol), toluene 1.5 L, ethanol 400 mL and water 400 mL were mixed and stirred at 80° C. for 16 hours. After completion of the reaction, the mixture was cooled to room temperature, extracted with ethyl acetate, and the organic layer was dried over anhydrous magnesium sulfate, filtered, and distilled under reduced pressure. The obtained solid mixture was dissolved in ethyl acetate, filtered through a celite pad, and solidified with a mixed solution (Hex/EA) to obtain 48.1 g (yield: 88.4%) of the compound intermediate (15) as a white solid.
(중간체(16)의 합성)(Synthesis of Intermediate (16))
1구 2 L 플라스크에서 중간체(15) 48.1 g(255.6 mmol)을 디클로로메탄 1.2 L에 녹이고 피리딘 41.3 mL(511.2 mmol)를 적가한 후, 0℃로 온도를 낮췄다. Tf2O 64.5 mL(383.4 mmol)를 천천히 적가 한 후 상온으로 온도를 올린 후 4 시간동안 반응시켰다. 정제수를 넣고 다이클로로메테인으로 추출한 후 무수 황산마그네슘으로 건조하고, 감압 하에 용매를 제거하였다. 얻어진 반응물을 혼합용액(MC/MeOH)으로 고체화하여, 무색 오일의 화합물 중간체(16) 47.0 g(수율: 57.4 %)을 얻었다. In a 1-neck 2 L flask, 48.1 g (255.6 mmol) of the intermediate (15) was dissolved in 1.2 L of dichloromethane, 41.3 mL (511.2 mmol) of pyridine was added dropwise, and the temperature was lowered to 0°C. 64.5 mL (383.4 mmol) of Tf 2 O was slowly added dropwise, and the temperature was raised to room temperature, followed by reaction for 4 hours. Purified water was added, the mixture was extracted with dichloromethane, dried over anhydrous magnesium sulfate, and the solvent was removed under reduced pressure. The obtained reactant was solidified with a mixed solution (MC/MeOH) to obtain 47.0 g (yield: 57.4 %) of the compound intermediate (16) as a colorless oil.
(중간체(17)의 합성)(Synthesis of intermediate (17))
2구 2 L 플라스크에서 중간체(16) 40.0 g(124.9 mmol), 피나콜디보론(Bis(pinacolato)diboron) 38.1 g(149.9 mmol), Pd(dppf)Cl2-CH2Cl2 5.1 g(6.2 mmol), KOAc 36.8 g(374.7 mmol) 및 1,4-다이옥산 600 mL를 혼합한 다음, 16시간 동안 환류 교반 하였다. 반응이 종결된 후 상온으로 냉각하고, 정제수를 넣고 에틸아세테이트로 추출한 후 무수 황산마그네슘으로 건조하고, 감압 하에 용매를 제거하였다. 얻어진 반응 혼합물을 실리카겔 컬럼 크로마토그래피(toluene)로 정제하고 저온에서 헥세인으로 고체화하여, 흰색 고체의 화합물 중간체(17) 26.3 g(수율: 70.5%)을 얻었다. In a 2-neck 2 L flask, 40.0 g (124.9 mmol) of intermediate (16), 38.1 g (149.9 mmol) of pinacol diboron (Bis(pinacolato)diboron), Pd(dppf)Cl 2 -CH 2 Cl 2 5.1 g (6.2 mmol), 36.8 g (374.7 mmol) of KOAc and 600 mL of 1,4-dioxane were mixed, followed by stirring under reflux for 16 hours. After the reaction was completed, it was cooled to room temperature, purified water was added, extracted with ethyl acetate, dried over anhydrous magnesium sulfate, and the solvent was removed under reduced pressure. The obtained reaction mixture was purified by silica gel column chromatography (toluene) and solidified with hexane at low temperature to obtain 26.3 g (yield: 70.5%) of the compound intermediate (17) as a white solid.
중간체 intermediate 합성예Synthesis example 9: 중간체(19)의 합성 9: Synthesis of intermediate (19)
Figure PCTKR2022002862-appb-img-000287
Figure PCTKR2022002862-appb-img-000287
(중간체(18)의 합성)(Synthesis of Intermediate (18))
2구 1000 mL 플라스크에서 1-브로모-4-클로로벤젠(1-bromo-4-chlorobenzene) 10.1 g(52.7 mmol), 4-(트리플루오로메틸)페닐보론산(4-(Trifluoromethyl)phenyl)boronic acid) 10.0 g(52.7 mmol), Pd(PPh3)4 1.8 g(1.6 mmol), K2CO3 14.6 g(105.3 mmol), 톨루엔 120 mL, 정제수 70 mL 및 에탄올 70 mL를 혼합한 다음, 110℃에서 5 시간동안 반응하였다. 반응이 종결된 후 상온으로 냉각하고, 정제수를 넣고 에틸아세테이트로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 반응 혼합물을 클로로포름에 녹여 실리카겔에 여과하고 용매를 감압 농축하였다. 얻어진 반응 혼합물을 메탄올/헥산으로 고체화하여, 흰색 고체의 화합물 중간체(18) 10.1 g(수율: 74.7%)을 얻었다. In a 2-neck 1000 mL flask, 1-bromo-4-chlorobenzene (1-bromo-4-chlorobenzene) 10.1 g (52.7 mmol), 4- (trifluoromethyl) phenylboronic acid (4- (Trifluoromethyl) phenyl) boronic acid) 10.0 g (52.7 mmol), Pd(PPh 3 ) 4 1.8 g (1.6 mmol), K 2 CO 3 14.6 g (105.3 mmol), toluene 120 mL, purified water 70 mL, and ethanol 70 mL were mixed, The reaction was carried out at 110° C. for 5 hours. After the reaction was completed, it was cooled to room temperature, purified water was added, extracted with ethyl acetate, and the solvent was removed under reduced pressure. The obtained reaction mixture was dissolved in chloroform, filtered through silica gel, and the solvent was concentrated under reduced pressure. The obtained reaction mixture was solidified with methanol/hexane to obtain 10.1 g (yield: 74.7%) of compound intermediate (18) as a white solid.
(중간체(19)의 합성)(Synthesis of Intermediate (19))
2구 250 mL 플라스크에서 중간체(18) 10.1 g(39.4 mmol), 비스(피나콜라토)디보론(bis(pinacolato)diboron) 12.0 g(47.2 mmol), Pd(dba)2 1.9 g(3.4 mmol), X-Phos 3.2 g(6.7 mmol), KOAc 7.7 g(78.7 mmol) 및 톨루엔 120 mL를 혼합한 다음, 110℃에서 5 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 정제수를 넣고 에틸아세테이트로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 반응 혼합물을 실리카겔 컬럼 크로마토그래피(Hex:CH2Cl2)로 정제하고 메탄올/헥산으로 고체화하여, 흰색 고체의 화합물 중간체(19) 10.2 g(수율: 74.4%)을 얻었다. In a 2-neck 250 mL flask, 10.1 g (39.4 mmol) of Intermediate (18), 12.0 g (47.2 mmol) of bis(pinacolato)diboron, 1.9 g (3.4 mmol) of Pd(dba) 2 , X-Phos 3.2 g (6.7 mmol), KOAc 7.7 g (78.7 mmol) and toluene 120 mL were mixed, and then stirred at 110° C. under reflux for 5 hours. After the reaction was completed, it was cooled to room temperature, purified water was added, extracted with ethyl acetate, and the solvent was removed under reduced pressure. The obtained reaction mixture was purified by silica gel column chromatography (Hex:CH 2 Cl 2 ) and solidified with methanol/hexane to obtain 10.2 g (yield: 74.4%) of the compound intermediate (19) as a white solid.
중간체 intermediate 합성예Synthesis example 10: 중간체(21)의 합성 10: Synthesis of intermediate (21)
Figure PCTKR2022002862-appb-img-000288
Figure PCTKR2022002862-appb-img-000288
(중간체(20)의 합성)(Synthesis of Intermediate (20))
1구 2 L 플라스크에서 2-아미노페놀(2-aminophenol) 25.0 g(229.1 mmol)과 4-브로모나프틸알데하이드(4-bromo-1-naphthaldehyde) 53.8 g(229.1 mmol)을 톨루엔 760 mL에 혼합한 후, 120℃에서 12 시간동안 교반 하였다. 반응이 종결된 후 상온으로 냉각하고 반응 혼합물을 감압 증류하여, 노란색 고체의 화합물 중간체(20) 74.7 g(crude)을 얻었다. In a 1-neck 2 L flask, 25.0 g (229.1 mmol) of 2-aminophenol and 53.8 g (229.1 mmol) of 4-bromo-1-naphthaldehyde were mixed in 760 mL of toluene. Then, the mixture was stirred at 120° C. for 12 hours. After completion of the reaction, the reaction mixture was cooled to room temperature and the reaction mixture was distilled under reduced pressure to obtain 74.7 g (crude) of the compound intermediate (20) as a yellow solid.
(중간체(21)의 합성)(Synthesis of Intermediate (21))
1구 2 L 플라스크에서 중간체(20) 74.7 g(229.1 mmol)을 다이클로로벤젠 760 mL에 녹였다. DDQ 62.4 g(274.9 mmol)을 첨가한 후, 상온에서 12 시간동안 교반하였다. 반응 혼합물을 Celite(CHCl3)로 여과하고 감압 농축한다. 혼합용액 (DCM/EtOH)로 고체화하여 흰색 고체의 화합물 중간체(21) 67.8 g(수율: 91.3%)을 얻었다. In a 1-neck 2 L flask, 74.7 g (229.1 mmol) of the intermediate (20) was dissolved in 760 mL of dichlorobenzene. After adding 62.4 g (274.9 mmol) of DDQ, the mixture was stirred at room temperature for 12 hours. The reaction mixture was filtered with Celite (CHCl 3 ) and concentrated under reduced pressure. It was solidified with a mixed solution (DCM/EtOH) to obtain 67.8 g (yield: 91.3%) of the compound intermediate (21) as a white solid.
중간체 intermediate 합성예Synthesis example 11: 중간체(23)의 합성 11: Synthesis of intermediate (23)
Figure PCTKR2022002862-appb-img-000289
Figure PCTKR2022002862-appb-img-000289
(중간체(23)의 합성)(Synthesis of intermediate (23))
1구 1 L 플라스크에서 1,5-디브로모-2,4-디플로로벤젠(1,5-dibromo-2,4-difluorobenzene) 15.0 g(55.2 mmol), 4-클로로페닐보론산(4-Chlorophenylboronic acid) 25.9 g(165.5 mmol), Pd(PPh3)4 0.6 g(0.6 mmol), 2 M 수용액 K2CO3 83 mL(165.5 mmol), 톨루엔 247 mL 및 에탄올 123 mL를 혼합한 후 하루동안 환류 교반하였다. 반응이 종결된 후, 상온으로 냉각하고 감압 하에 용매를 제거하였다. 반응물을 디클로로메탄으로 용해시키고 증류수를 넣고 추출하였다. 얻어진 반응물을 무수 황산 마그네슘으로 건조시켜 실리카겔 패드를 통과하였다. 반응물을 혼합용액(Dichloromethane:Hexane)으로 고체화하여 흰색 고체의 화합물 중간체(23) 14.6 g(수율: 78.7%)을 얻었다. In a 1-neck 1 L flask, 1,5-dibromo-2,4-difluorobenzene (1,5-dibromo-2,4-difluorobenzene) 15.0 g (55.2 mmol), 4-chlorophenylboronic acid (4 -Chlorophenylboronic acid) 25.9 g (165.5 mmol), Pd(PPh 3 ) 4 0.6 g (0.6 mmol), 2 M aqueous K 2 CO 3 83 mL (165.5 mmol), toluene 247 mL, and ethanol 123 mL were mixed for one day. while stirring at reflux. After the reaction was completed, it was cooled to room temperature and the solvent was removed under reduced pressure. The reactant was dissolved in dichloromethane, distilled water was added, and extraction was performed. The obtained reactant was dried over anhydrous magnesium sulfate and passed through a pad of silica gel. The reactant was solidified with a mixed solution (Dichloromethane:Hexane) to obtain 14.6 g (yield: 78.7%) of the compound intermediate (23) as a white solid.
중간체 intermediate 합성예Synthesis example 12: 중간체(26)의 합성 12: Synthesis of intermediate (26)
Figure PCTKR2022002862-appb-img-000290
Figure PCTKR2022002862-appb-img-000290
(중간체(24)의 합성)(Synthesis of Intermediate (24))
2구 500 mL 플라스크에서 4-브로모벤즈알데히드(4-Bromobenzaldehyde) 40.0 g(216.2 mmol), 3-클로로페닐보론산(3-Chlorophenylboronic acid) 40.6 g(259.4 mmol), Pd(PPh3)4 7.5 g(6.5 mmol), K2CO3 60.0 g(432.4 mmol), 톨루엔 400 mL, 에탄올 200 mL 및 증류수 200 mL를 혼합한 다음 80℃에서 16시간 동안 교반 하였다. 반응이 종결된 후 상온으로 냉각하고, 에틸아세테이트로 추출하여 유기층을 무수 황산마그네슘을 이용하여 건조, 여과, 감압 증류하였다. 얻어진 고체 혼합물을 에틸아세테이트에 녹여 셀라이트 패드 여과를 하고 혼합용액(Hex/EA)으로 고체화하여, 옅은 노란색 고체의 화합물(중간체(24)) 40.0 g(수율: 85.4%)을 얻었다. In a 2-neck 500 mL flask, 40.0 g (216.2 mmol) of 4-Bromobenzaldehyde, 40.6 g (259.4 mmol) of 3-Chlorophenylboronic acid, 4 7.5 g of Pd (PPh 3 ) (6.5 mmol), K 2 CO 3 60.0 g (432.4 mmol), toluene 400 mL, ethanol 200 mL, and distilled water 200 mL were mixed and stirred at 80° C. for 16 hours. After completion of the reaction, the mixture was cooled to room temperature, extracted with ethyl acetate, and the organic layer was dried over anhydrous magnesium sulfate, filtered, and distilled under reduced pressure. The obtained solid mixture was dissolved in ethyl acetate, filtered through a celite pad, and solidified with a mixed solution (Hex/EA) to obtain 40.0 g (yield: 85.4%) of the compound as a pale yellow solid (intermediate (24)).
(중간체(25)의 합성)(Synthesis of Intermediate (25))
1구 2 L 플라스크에서 중간체(24) 40.0 g(183.3 mmol)과 2-아미노페놀(2-aminophenol) 20.0 g(183.3 mmol)을 톨루엔 900 mL에 혼합한 후, 110℃에서 6 시간동안 교반하였다. 반응이 종결된 후, 상온으로 냉각하고 반응 혼합물을 감압 증류하여, 노란색 고체의 화합물 중간체(25) 56.4 g(crude)을 얻었다. In a 1-neck 2 L flask, 40.0 g (183.3 mmol) of the intermediate (24) and 20.0 g (183.3 mmol) of 2-aminophenol were mixed in 900 mL of toluene, followed by stirring at 110° C. for 6 hours. After the reaction was completed, it was cooled to room temperature and the reaction mixture was distilled under reduced pressure to obtain 56.4 g (crude) of the compound intermediate (25) as a yellow solid.
(중간체(26)의 합성)(Synthesis of Intermediate (26))
1구 2 L 플라스크에서 중간체(25) 56.4 g(183.3 mmol)을 다이클로로벤젠 900 mL에 녹였다. DDQ 49.9 g(219.9 mmol)을 첨가한 후, 상온에서 3 시간동안 교반하였다. 반응 혼합물을 Celite(CHCl3)로 여과하고 감압 농축한다. 혼합용액 (DCM/EtOH)으로 고체화하고 여과한 후 건조하여, 흰색 고체의 화합물 중간체(26) 48.4 g(수율: 86.4%)을 얻었다. In a 1-neck 2 L flask, 56.4 g (183.3 mmol) of the intermediate (25) was dissolved in 900 mL of dichlorobenzene. After adding 49.9 g (219.9 mmol) of DDQ, the mixture was stirred at room temperature for 3 hours. The reaction mixture was filtered with Celite (CHCl 3 ) and concentrated under reduced pressure. It was solidified with a mixed solution (DCM/EtOH), filtered, and dried to obtain 48.4 g (yield: 86.4%) of the compound intermediate (26) as a white solid.
중간체 intermediate 합성예Synthesis example 13: 중간체(29)의 합성 13: Synthesis of intermediate (29)
Figure PCTKR2022002862-appb-img-000291
Figure PCTKR2022002862-appb-img-000291
(중간체(27)의 합성)(Synthesis of intermediate (27))
1구 250 mL 플라스크에서 3-히드록시페닐보론산(3-Hydroxyphenylboronic acid) 3.2 g(23.2 mmol), 1-브로모-4-아이오도벤젠(1-Bromo-4-iodobenzene) 9.8 g(34.8 mmol), Pd(PPh3)4 1.3 g(1.2 mmol), 2M K2CO3 35 mL(69.6 mmol), 톨루엔 120 mL 및 에탄올 60 mL를 3 시간동안 환류 교반하였다. 상온으로 냉각한 후 에틸아세테이트를 이용하여 추출하고 용매를 제거하였다. 디클로로메탄에 녹여 실리카겔 컬럼크로마토그래피(DCM:HEX)로 정제하였다. 얻어진 고체를 헥산으로 여과하여 흰색 고체의 화합물 중간체(27) 3.88 g(수율: 67.1%)을 얻었다. In a 1-neck 250 mL flask, 3-hydroxyphenylboronic acid 3.2 g (23.2 mmol), 1-bromo-4-iodobenzene 9.8 g (34.8 mmol) ), Pd(PPh 3 ) 4 1.3 g (1.2 mmol), 2M K 2 CO 3 35 mL (69.6 mmol), 120 mL of toluene and 60 mL of ethanol were stirred under reflux for 3 hours. After cooling to room temperature, extraction was performed using ethyl acetate and the solvent was removed. It was dissolved in dichloromethane and purified by silica gel column chromatography (DCM:HEX). The obtained solid was filtered with hexane to obtain 3.88 g (yield: 67.1%) of the compound intermediate (27) as a white solid.
(중간체(28)의 합성)(Synthesis of Intermediate (28))
1구 250 mL 플라스크에서 중간체(27) 3.9 g(15.6 mmol), 3,5-비스(트리플로로메틸)페닐보론산(3,5-Bis(trifluoromethyl)phenylboronic acid) 4.8 g(18.7 mmol), Pd(PPh3)4 0.9 g(0.8 mmol), 2M K2CO3 24 mL(46.7 mmol), 톨루엔 80 mL 및 에탄올 40 mL를 하루동안 환류 교반하였다. 상온으로 냉각한 후 에틸아세테이트를 이용하여 추출하고 수분 및 용매를 제거하였다. 디클로로메탄에 녹여 실리카겔 컬럼크로마토그래피(DCM:HEX)로 정제하여 노란색 고체의 화합물 중간체(28) 5.58 g(수율: 93.8%)을 얻었다. In a one-necked 250 mL flask, 3.9 g (15.6 mmol) of the intermediate (27), 4.8 g (18.7 mmol) of 3,5-bis (trifluoromethyl) phenylboronic acid (3,5-Bis (trifluoromethyl) phenylboronic acid), Pd(PPh 3 ) 4 0.9 g (0.8 mmol), 2M K 2 CO 3 24 mL (46.7 mmol), 80 mL of toluene and 40 mL of ethanol were stirred under reflux for one day. After cooling to room temperature, extraction was performed using ethyl acetate, and moisture and solvent were removed. It was dissolved in dichloromethane and purified by silica gel column chromatography (DCM:HEX) to obtain 5.58 g (yield: 93.8%) of the compound intermediate (28) as a yellow solid.
(중간체(29)의 합성)(Synthesis of Intermediate (29))
1구 250 mL 플라스크에서 중간체(28) 5.6 g(14.6 mmol) 및 피리딘(Pyridine) 3.6 mL(43.8 mmol)를 디클로로메탄 60 mL에 혼합하고 교반하였다. 0℃에서 Trifluoromethanesulfonic anhydride 3.7 mL(21.9 mmol)를 천천히 적가한 후, 실온에서 2 시간동안 교반하였다. 반응이 종결된 후, 디클로로메탄으로 추출하고, 수분을 제거하였다. 실리카겔 컬럼크로마토그래피(DCM:HEX)로 정제하여 흰색 고체의 화합물 중간체(29) 7.63 g(수율: 100%)을 얻었다. In a one-necked 250 mL flask, 5.6 g (14.6 mmol) of the intermediate (28) and 3.6 mL (43.8 mmol) of pyridine were mixed in 60 mL of dichloromethane and stirred. Trifluoromethanesulfonic anhydride (3.7 mL (21.9 mmol)) was slowly added dropwise at 0°C, followed by stirring at room temperature for 2 hours. After the reaction was completed, the mixture was extracted with dichloromethane and water was removed. It was purified by silica gel column chromatography (DCM:HEX) to obtain 7.63 g (yield: 100%) of the compound intermediate (29) as a white solid.
중간체 intermediate 합성예Synthesis example 14: 중간체(31)의 합성 14: Synthesis of intermediate (31)
Figure PCTKR2022002862-appb-img-000292
Figure PCTKR2022002862-appb-img-000292
(중간체(30)의 합성)(Synthesis of intermediate (30))
1구 250mL 플라스크에서 1,3-디브로모-5-클로로벤젠(1,3-dibromo-5-chlorobenzene) 20.0 g(74.0 mmol), 중간체(14) 42.0 g(162.8 mmol), Pd(PPh3)4 4.3 g(3.7 mmol), 2 M 수용액 K2CO3 148.0 mL (296.2 mmol), 톨루엔 500 mL 및 에탄올 250 mL를 혼합한 후, 18시간 동안 환류 교반하였다. 반응이 종결된 후, 상온으로 냉각하였다. 분리된 유기층을 감압 증류하여 얻어진 화합물을 실리카겔 컬럼크로마토그래피(Hexane)로 정제하여 흰색 고체의 화합물 중간체(30) 23.1 g(수율: 45.3%)을 얻었다. In a 1-neck 250mL flask, 1,3-dibromo-5-chlorobenzene (1,3-dibromo-5-chlorobenzene) 20.0 g (74.0 mmol), Intermediate (14) 42.0 g (162.8 mmol), Pd (PPh 3 ) ) 4 4.3 g (3.7 mmol), 2M aqueous K 2 CO 3 148.0 mL (296.2 mmol), 500 mL of toluene and 250 mL of ethanol were mixed, followed by stirring under reflux for 18 hours. After the reaction was completed, it was cooled to room temperature. The compound obtained by distilling the separated organic layer under reduced pressure was purified by silica gel column chromatography (Hexane) to obtain 23.1 g (yield: 45.3%) of the compound intermediate (30) as a white solid.
(중간체(31)의 합성)(Synthesis of intermediate (31))
중간체(30) 10.0 g(14.5 mmol), 피나콜디보론(Bis(pinacolato)diboron) 4.4 g(17.4 mmol), Pd(dppf)Cl2·CH2Cl2 0.6 g(0.7 mmol), KOAc 4.2 g(43.6 mmol) 및 1,4-다이옥세인 200 mL를 혼합한 후, 하루동안 환류 교반 하였다. 반응이 종결된 후 상온으로 냉각하고, 정제수를 넣고 에틸아세테이트로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 반응 혼합물을 실리카겔 컬럼 크로마토그래피(Hex:EA)로 정제하고 혼합용액(Hex/EA)으로 고체화하여 흰색 고체의 화합물 중간체(31) 6.2 g (수율: 54.7%)을 얻었다. Intermediate (30) 10.0 g (14.5 mmol), pinacol diboron (Bis(pinacolato)diboron) 4.4 g (17.4 mmol), Pd(dppf)Cl 2 CH 2 Cl 2 0.6 g (0.7 mmol), KOAc 4.2 g (43.6 mmol) and 200 mL of 1,4-dioxane were mixed, followed by stirring under reflux for one day. After the reaction was completed, it was cooled to room temperature, purified water was added, extracted with ethyl acetate, and the solvent was removed under reduced pressure. The obtained reaction mixture was purified by silica gel column chromatography (Hex:EA) and solidified with a mixed solution (Hex/EA) to obtain 6.2 g (yield: 54.7%) of the compound intermediate (31) as a white solid.
중간체 intermediate 합성예Synthesis example 15: 중간체(32)의 합성 15: Synthesis of intermediate (32)
Figure PCTKR2022002862-appb-img-000293
Figure PCTKR2022002862-appb-img-000293
(중간체(32)의 합성)(Synthesis of Intermediate (32))
1구 250mL 플라스크에서 1,3-디브로모-5-아이오도벤젠(1,3-dibromo-5-iodobenzene) 10.0 g(27.6 mmol), (3,5-비스(트리플로로메틸)페닐)보론산((3,5-bis(trifluoromethyl)phenyl)boronic acid) 7.8 g(30.4 mmol), Pd(PPh3)4 1.6 g(1.4 mmol), K2CO3 11.5 g (82.9 mmol), 톨루엔 240 mL 및 에탄올 120 mL를 혼합한 후, 하루동안 환류 교반하였다. 반응이 종결된 후, 상온으로 냉각하였다. 분리된 유기층을 감압 증류하여 얻어진 화합물을 실리카겔 컬럼크로마토그래피(Hexane)로 정제하여 흰색 고체의 화합물 중간체(32) 7.2 g(수율: 58.2%)을 얻었다. 1,3-dibromo-5-iodobenzene (1,3-dibromo-5-iodobenzene) 10.0 g (27.6 mmol), (3,5-bis (trifluoromethyl) phenyl) in a 1-neck 250 mL flask Boronic acid ((3,5-bis(trifluoromethyl)phenyl)boronic acid) 7.8 g (30.4 mmol), Pd(PPh 3 ) 4 1.6 g (1.4 mmol), K 2 CO 3 11.5 g (82.9 mmol), toluene 240 mL and 120 mL of ethanol were mixed and stirred under reflux for one day. After the reaction was completed, it was cooled to room temperature. The compound obtained by distilling the separated organic layer under reduced pressure was purified by silica gel column chromatography (Hexane) to obtain 7.2 g (yield: 58.2%) of the compound intermediate (32) as a white solid.
중간체 intermediate 합성예Synthesis example 16: 중간체(33)의 합성 16: Synthesis of intermediate (33)
Figure PCTKR2022002862-appb-img-000294
Figure PCTKR2022002862-appb-img-000294
(중간체(33)의 합성)(Synthesis of Intermediate (33))
1구 250mL 플라스크에서 1,3-디브로모-5-아이오도벤젠(1,3-dibromo-5-iodobenzene) 10.0 g(27.6 mmol), [1,1'-바이페닐]-4-닐보론산([1,1'-biphenyl]-4-ylboronic acid) 6.0 g(30.4 mmol), Pd(PPh3)4 1.6 g(1.4 mmol), K2CO3 11.5 g (82.9 mmol), 톨루엔 240 mL 및 에탄올 120 mL를 혼합한 후, 하루동안 환류 교반하였다. 반응이 종결된 후, 상온으로 냉각하였다. 분리된 유기층을 감압 증류하여 얻어진 화합물을 실리카겔 컬럼크로마토그래피(Hexane)로 정제하여 흰색 고체의 화합물 중간체(33) 5.9 g(수율: 55.0%)을 얻었다. 1,3-dibromo-5-iodobenzene (1,3-dibromo-5-iodobenzene) 10.0 g (27.6 mmol), [1,1'-biphenyl] -4-ylboron in a 1-neck 250mL flask Acid ([1,1'-biphenyl]-4-ylboronic acid) 6.0 g (30.4 mmol), Pd(PPh 3 ) 4 1.6 g (1.4 mmol), K 2 CO 3 11.5 g (82.9 mmol), toluene 240 mL and 120 mL of ethanol were mixed, followed by stirring under reflux for one day. After the reaction was completed, it was cooled to room temperature. The compound obtained by distilling the separated organic layer under reduced pressure was purified by silica gel column chromatography (Hexane) to obtain 5.9 g (yield: 55.0%) of the compound intermediate (33) as a white solid.
중간체 intermediate 합성예Synthesis example 17: 중간체(35)의 합성 17: Synthesis of intermediate (35)
Figure PCTKR2022002862-appb-img-000295
Figure PCTKR2022002862-appb-img-000295
(중간체(34)의 합성)(Synthesis of Intermediate (34))
1-브로모-4-사이클로헥실벤젠(1-bromo-4-cyclohexylbenzene) 10.0 g(41.8 mmol), 피나콜디보론(Bis(pinacolato)diboron) 12.7 g(50.2 mmol), Pd(dppf)Cl2·CH2Cl2 1.7 g(2.1 mmol), KOAc 12.3 g(128.4 mmol) 및 1,4-다이옥세인 200 mL를 혼합한 후, 하루동안 환류 교반 하였다. 반응이 종결된 후 상온으로 냉각하고, 정제수를 넣고 에틸아세테이트로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 반응 혼합물을 실리카겔 컬럼 크로마토그래피(Hex:EA)로 정제하고 혼합용액(Hex/EA)으로 고체화하여 흰색 고체의 화합물 중간체(34) 9.5 g (수율: 79.4%)을 얻었다. 1-bromo-4-cyclohexylbenzene (1-bromo-4-cyclohexylbenzene) 10.0 g (41.8 mmol), pinacol diboron (Bis (pinacolato) diboron) 12.7 g (50.2 mmol), Pd (dppf) Cl 2 ·CH 2 Cl 2 1.7 g (2.1 mmol), 12.3 g (128.4 mmol) of KOAc and 200 mL of 1,4-dioxane were mixed, followed by stirring under reflux for one day. After the reaction was completed, it was cooled to room temperature, purified water was added, extracted with ethyl acetate, and the solvent was removed under reduced pressure. The obtained reaction mixture was purified by silica gel column chromatography (Hex:EA) and solidified with a mixed solution (Hex/EA) to obtain 9.5 g (yield: 79.4%) of the compound intermediate (34) as a white solid.
(중간체(35)의 합성)(Synthesis of intermediate (35))
1구 250mL 플라스크에서 중간체(34) 9.5 g(33.2 mmol), 1,3-디브로모-5-아이오도벤젠(1,3-dibromo-5-iodobenzene) 10.0 g(27.7 mmol), Pd(PPh3)4 1.6 g(1.4 mmol), K2CO3 11.5 g (82.9 mmol), 톨루엔 240 mL 및 에탄올 120 mL를 혼합한 후, 하루동안 환류 교반하였다. 반응이 종결된 후, 상온으로 냉각하였다. 분리된 유기층을 감압 증류하여 얻어진 화합물을 실리카겔 컬럼크로마토그래피(Hexane)로 정제하여 흰색 고체의 화합물 중간체(35) 6.7 g(수율: 64.5%)을 얻었다. Intermediate (34) 9.5 g (33.2 mmol), 1,3-dibromo-5-iodobenzene (1,3-dibromo-5-iodobenzene) 10.0 g (27.7 mmol), Pd (PPh) in a 1-neck 250 mL flask 3 ) 4 1.6 g (1.4 mmol), K 2 CO 3 11.5 g (82.9 mmol), 240 mL of toluene and 120 mL of ethanol were mixed, followed by stirring under reflux for one day. After the reaction was completed, it was cooled to room temperature. The compound obtained by distilling the separated organic layer under reduced pressure was purified by silica gel column chromatography (Hexane) to obtain 6.7 g (yield: 64.5%) of the compound intermediate (35) as a white solid.
중간체 intermediate 합성예Synthesis example 18: 중간체(37)의 합성 18: Synthesis of intermediate (37)
Figure PCTKR2022002862-appb-img-000296
Figure PCTKR2022002862-appb-img-000296
(중간체(36)의 합성)(Synthesis of Intermediate (36))
4-((3r,5r,7r)-아다만탄-1닐)페놀(4-((3r,5r,7r)-adamantan-1-yl)phenol) 86.7 g (380 mmol)을 DCM 900 mL에 넣은 후, 피리딘 61.2 mL (759 mmol)을 넣고 4~10℃로 냉각하였다. 4~10℃에서 Tf2O 79.2 mL (570 mmol)를 적가한 후, 실온에서 교반하였다. 증류수를 첨가하여 반응을 종결한 후, 추출하고 MgSO4로 건조하였다. 여과하고 농축한 후, 메탄올로 고체화하여 흰색의 고체의 화합물 중간체(36) 122.0 g (수율: 89.2%)을 얻었다. 86.7 g (380 mmol) of 4-((3r,5r,7r)-adamantan-1-yl)phenol (4-((3r,5r,7r)-adamantan-1-yl)phenol) in 900 mL of DCM After addition, 61.2 mL (759 mmol) of pyridine was added, and the mixture was cooled to 4-10°C. At 4-10°C, 79.2 mL (570 mmol) of Tf 2 O was added dropwise, followed by stirring at room temperature. After the reaction was terminated by adding distilled water, it was extracted and dried over MgSO 4 . After filtration and concentration, the mixture was solidified with methanol to obtain 122.0 g (yield: 89.2%) of compound intermediate (36) as a white solid.
(중간체(37)의 합성)(Synthesis of intermediate (37))
중간체(36) 15.5 g (43.0 mmol), PIN2B2 16.4 g (64.5 mmol), PdCl2dppf·DCM 1.4 g (1.7 mmol), KOAc 12.7 g (129.0 mmol) 및 Dioxane 150 mL를 혼합한 후, 12시간동안 환류 교반하였다. 상온으로 냉각한 후, 감압 하에서 용매를 제거하고 증류수를 첨가하였다. 반응물을 디클로로메탄으로 추출하고 분리한 유기층을 무수 황산나트륨으로 건조시킨 후, 여과하고 진공 농축하여 용매를 제거하였다. 혼합용액(DCM:n-Hexane)에 용해시킨 후, 실리카겔 패드를 통과시켰다. 여액을 농축시킨 후, n-Hexane으로 고체화하여 흰색 고체의 화합물 중간체(37) 11.3 g (수율: 77.9%)을 얻었다. 15.5 g of intermediate (36) (43.0 mmol), PIN 2 B 2 16.4 g (64.5 mmol), PdCl 2 dppf DCM 1.4 g (1.7 mmol), KOAc 12.7 g (129.0 mmol) and Dioxane 150 mL were mixed, followed by stirring under reflux for 12 hours. . After cooling to room temperature, the solvent was removed under reduced pressure and distilled water was added. The reaction product was extracted with dichloromethane, and the separated organic layer was dried over anhydrous sodium sulfate, filtered and concentrated in vacuo to remove the solvent. After dissolving in a mixed solution (DCM: n-Hexane), it was passed through a silica gel pad. After the filtrate was concentrated, it was solidified with n-Hexane to obtain 11.3 g (yield: 77.9%) of the compound intermediate (37) as a white solid.
중간체 intermediate 합성예Synthesis example 19: 중간체(40)의 합성 19: Synthesis of intermediate (40)
Figure PCTKR2022002862-appb-img-000297
Figure PCTKR2022002862-appb-img-000297
(중간체(40)의 합성)(Synthesis of intermediate (40))
1구 250mL 플라스크에서 2-(4-브로모페닐)벤조[d]티오펜(2-(4-bromophenyl)benzo[d]thiazole) 10.0 g(34.5 mmol), (4-클로로페닐)보론산((4-chlorophenyl)boronic acid) 5.9 g(37.9 mmol), Pd(PPh3)4 2.0 g(1.7 mmol), K2CO3 14.3 g (103.4 mmol), 톨루엔 240 mL 및 에탄올 120 mL를 혼합한 후, 하루동안 환류 교반하였다. 반응이 종결된 후, 상온으로 냉각하였다. 분리된 유기층을 감압 증류하여 얻어진 화합물을 실리카겔 컬럼크로마토그래피(Hexane)로 정제하여 흰색 고체의 화합물 중간체(40) 5.5 g(수율: 49.6%)을 얻었다. 10.0 g (34.5 mmol) of 2-(4-bromophenyl)benzo[d]thiophene (2-(4-bromophenyl)benzo[d]thiazole), (4-chlorophenyl)boronic acid ( After mixing (4-chlorophenyl)boronic acid) 5.9 g (37.9 mmol), Pd(PPh 3 ) 4 2.0 g (1.7 mmol), K 2 CO 3 14.3 g (103.4 mmol), toluene 240 mL and ethanol 120 mL , and stirred at reflux for one day. After the reaction was completed, it was cooled to room temperature. The compound obtained by distilling the separated organic layer under reduced pressure was purified by silica gel column chromatography (Hexane) to obtain 5.5 g (yield: 49.6%) of the compound intermediate (40) as a white solid.
중간체 intermediate 합성예Synthesis example 20: 중간체(41)의 합성 20: Synthesis of intermediate (41)
Figure PCTKR2022002862-appb-img-000298
Figure PCTKR2022002862-appb-img-000298
(중간체(41)의 합성)(Synthesis of Intermediate (41))
1,3-디브로모-5-(터트-부틸)벤젠(1,3-dibromo-5-(tert-butyl)benzene) 10.0 g(34.2 mmol), 피나콜디보론(Bis(pinacolato)diboron) 18.3 g(71.9 mmol), Pd(dppf)Cl2·CH2Cl2 1.4 g(1.7 mmol), KOAc 10.1 g(102.7 mmol) 및 1,4-다이옥세인 200 mL를 혼합한 후, 하루동안 환류 교반 하였다. 반응이 종결된 후 상온으로 냉각하고, 정제수를 넣고 에틸아세테이트로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 반응 혼합물을 실리카겔 컬럼 크로마토그래피(Hex:EA)로 정제하고 혼합용액(Hex/EA)으로 고체화하여 흰색 고체의 화합물 중간체(41) 8.9 g (수율: 67.3%)을 얻었다. 1,3-dibromo-5-(tert-butyl)benzene (1,3-dibromo-5-(tert-butyl)benzene) 10.0 g (34.2 mmol), pinacol diboron (Bis(pinacolato)diboron) After mixing 18.3 g (71.9 mmol), Pd(dppf)Cl 2 ·CH 2 Cl 2 1.4 g (1.7 mmol), KOAc 10.1 g (102.7 mmol) and 1,4-dioxane 200 mL, the mixture was stirred under reflux for one day. did. After the reaction was completed, it was cooled to room temperature, purified water was added, extracted with ethyl acetate, and the solvent was removed under reduced pressure. The obtained reaction mixture was purified by silica gel column chromatography (Hex:EA) and solidified with a mixed solution (Hex/EA) to obtain 8.9 g (yield: 67.3%) of the compound intermediate (41) as a white solid.
중간체 intermediate 합성예Synthesis example 21: 중간체(42)의 합성 21: Synthesis of intermediate (42)
Figure PCTKR2022002862-appb-img-000299
Figure PCTKR2022002862-appb-img-000299
(중간체(42)의 합성)(Synthesis of Intermediate (42))
1구 250mL 플라스크에서 2-브로모-1,3-디플로로-5-아이오도벤젠(2-bromo-1,3-difluoro-5-iodobenzene) 20.0 g(62.7 mmol), (3,5-비스(트리플로로메틸)페닐)보론산((3,5-bis(trifluoromethyl)phenyl)boronic acid) 17.8 g(69.0 mmol), Pd(PPh3)4 3.6 g(3.1 mmol), K2CO3 26.0 g (188.2 mmol), 톨루엔 240 mL 및 에탄올 120 mL를 혼합한 후, 하루동안 환류 교반하였다. 반응이 종결된 후, 상온으로 냉각하였다. 분리된 유기층을 감압 증류하여 얻어진 화합물을 실리카겔 컬럼크로마토그래피(Hexane)로 정제하여 흰색 고체의 화합물 중간체(42) 16.2 g(수율: 63.8%)을 얻었다. 2-bromo-1,3-difluoro-5-iodobenzene (2-bromo-1,3-difluoro-5-iodobenzene) 20.0 g (62.7 mmol), (3,5- Bis(trifluoromethyl)phenyl)boronic acid ((3,5-bis(trifluoromethyl)phenyl)boronic acid) 17.8 g (69.0 mmol), Pd(PPh 3 ) 4 3.6 g (3.1 mmol), K 2 CO 3 After mixing 26.0 g (188.2 mmol), 240 mL of toluene and 120 mL of ethanol, the mixture was stirred under reflux for one day. After the reaction was completed, it was cooled to room temperature. The compound obtained by distilling the separated organic layer under reduced pressure was purified by silica gel column chromatography (Hexane) to obtain 16.2 g (yield: 63.8%) of the compound intermediate (42) as a white solid.
중간체 intermediate 합성예Synthesis example 22: 중간체(44)의 합성 22: Synthesis of intermediate (44)
Figure PCTKR2022002862-appb-img-000300
Figure PCTKR2022002862-appb-img-000300
(중간체(43)의 합성)(Synthesis of intermediate (43))
1구 250mL 플라스크에서 1-브로모-3,5-비스(트리플로로메틸)벤젠(1-bromo-3,5-bis(trifluoromethyl)benzene) 20.0 g(68.3 mmol), (4-클로로-2-플로로페닐)보론산((4-chloro-2-fluorophenyl)boronic acid) 13.1 g(75.1 mmol), Pd(PPh3)4 3.9 g(3.4 mmol), K2CO3 28.3 g (204.8 mmol), 톨루엔 240 mL 및 에탄올 120 mL를 혼합한 후, 하루동안 환류 교반하였다. 반응이 종결된 후, 상온으로 냉각하였다. 분리된 유기층을 감압 증류하여 얻어진 화합물을 실리카겔 컬럼크로마토그래피(Hexane)로 정제하여 흰색 고체의 화합물 중간체(43) 17.2 g(수율: 73.5%)을 얻었다. 2-bromo-3,5-bis(trifluoromethyl)benzene (1-bromo-3,5-bis(trifluoromethyl)benzene) 20.0 g (68.3 mmol), (4-chloro-2) in a 1-neck 250mL flask -fluorophenyl) boronic acid ((4-chloro-2-fluorophenyl) boronic acid) 13.1 g (75.1 mmol), Pd (PPh 3 ) 4 3.9 g (3.4 mmol), K 2 CO 3 28.3 g (204.8 mmol) , 240 mL of toluene and 120 mL of ethanol were mixed, followed by stirring under reflux for one day. After the reaction was completed, it was cooled to room temperature. The compound obtained by distilling the separated organic layer under reduced pressure was purified by silica gel column chromatography (Hexane) to obtain 17.2 g (yield: 73.5%) of the compound intermediate (43) as a white solid.
(중간체(44)의 합성)(Synthesis of Intermediate 44)
중간체(43) 17.2 g(50.2 mmol), 피나콜디보론(Bis(pinacolato)diboron) 14.0 g(55.2 mmol), Pd(dppf)Cl2·CH2Cl2 2.1 g(2.5 mmol), KOAc 14.8 g(150.6 mmol) 및 1,4-다이옥세인 200 mL를 혼합한 후, 하루동안 환류 교반 하였다. 반응이 종결된 후 상온으로 냉각하고, 정제수를 넣고 에틸아세테이트로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 반응 혼합물을 실리카겔 컬럼 크로마토그래피(Hex:EA)로 정제하고 혼합용액(Hex/EA)으로 고체화하여 흰색 고체의 화합물 중간체(44) 13.7 g (수율: 62.9%)을 얻었다. Intermediate (43) 17.2 g (50.2 mmol), pinacol diboron (Bis(pinacolato)diboron) 14.0 g (55.2 mmol), Pd(dppf)Cl 2 CH 2 Cl 2 2.1 g (2.5 mmol), KOAc 14.8 g (150.6 mmol) and 200 mL of 1,4-dioxane were mixed, followed by stirring under reflux for one day. After the reaction was completed, it was cooled to room temperature, purified water was added, extracted with ethyl acetate, and the solvent was removed under reduced pressure. The obtained reaction mixture was purified by silica gel column chromatography (Hex:EA) and solidified with a mixed solution (Hex/EA) to obtain 13.7 g (yield: 62.9%) of the compound intermediate (44) as a white solid.
중간체 intermediate 합성예Synthesis example 23: 중간체(46)의 합성 23: Synthesis of intermediate (46)
Figure PCTKR2022002862-appb-img-000301
Figure PCTKR2022002862-appb-img-000301
(중간체(45)의 합성)(Synthesis of Intermediate (45))
1구 250mL 플라스크에서 1-브로모-3,5-비스(트리플로로메틸)벤젠(1-bromo-3,5-bis(trifluoromethyl)benzene) 20.0 g(68.3 mmol), (3-클로로-2-플로로페닐)보론산((3-chloro-2-fluorophenyl)boronic acid) 13.1 g(75.1 mmol), Pd(PPh3)4 3.9 g(3.4 mmol), K2CO3 28.3 g (204.8 mmol), 톨루엔 240 mL 및 에탄올 120 mL를 혼합한 후, 하루동안 환류 교반하였다. 반응이 종결된 후, 상온으로 냉각하였다. 분리된 유기층을 감압 증류하여 얻어진 화합물을 실리카겔 컬럼크로마토그래피(Hexane)로 정제하여 흰색 고체의 화합물 중간체(45) 18.0 g(수율: 77.0%)을 얻었다. In a 1-neck 250mL flask, 1-bromo-3,5-bis(trifluoromethyl)benzene (1-bromo-3,5-bis(trifluoromethyl)benzene) 20.0 g (68.3 mmol), (3-chloro-2 -fluorophenyl) boronic acid ((3-chloro-2-fluorophenyl) boronic acid) 13.1 g (75.1 mmol), Pd (PPh 3 ) 4 3.9 g (3.4 mmol), K 2 CO 3 28.3 g (204.8 mmol) , 240 mL of toluene and 120 mL of ethanol were mixed, followed by stirring under reflux for one day. After the reaction was completed, it was cooled to room temperature. The compound obtained by distilling the separated organic layer under reduced pressure was purified by silica gel column chromatography (Hexane) to obtain 18.0 g (yield: 77.0%) of the compound intermediate (45) as a white solid.
(중간체(46)의 합성)(Synthesis of Intermediate (46))
중간체(45) 18.0 g(52.5 mmol), 피나콜디보론(Bis(pinacolato)diboron) 14.7 g(57.8 mmol), Pd(dppf)Cl2·CH2Cl2 2.2 g(2.6 mmol), KOAc 15.5 g(157.6 mmol) 및 1,4-다이옥세인 200 mL를 혼합한 후, 하루동안 환류 교반 하였다. 반응이 종결된 후 상온으로 냉각하고, 정제수를 넣고 에틸아세테이트로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 반응 혼합물을 실리카겔 컬럼 크로마토그래피(Hex:EA)로 정제하고 혼합용액(Hex/EA)으로 고체화하여 흰색 고체의 화합물 중간체(46) 15.6 g (수율: 68.4%)을 얻었다. Intermediate (45) 18.0 g (52.5 mmol), pinacol diboron (Bis(pinacolato)diboron) 14.7 g (57.8 mmol), Pd(dppf)Cl 2 CH 2 Cl 2 2.2 g (2.6 mmol), KOAc 15.5 g (157.6 mmol) and 200 mL of 1,4-dioxane were mixed, followed by stirring under reflux for one day. After the reaction was completed, it was cooled to room temperature, purified water was added, extracted with ethyl acetate, and the solvent was removed under reduced pressure. The obtained reaction mixture was purified by silica gel column chromatography (Hex:EA) and solidified with a mixed solution (Hex/EA) to obtain 15.6 g (yield: 68.4%) of the compound intermediate (46) as a white solid.
중간체 intermediate 합성예Synthesis example 24: 중간체(48)의 합성 24: Synthesis of intermediate (48)
Figure PCTKR2022002862-appb-img-000302
Figure PCTKR2022002862-appb-img-000302
(중간체(47)의 합성)(Synthesis of intermediate (47))
1구 250mL 플라스크에서 1-브로모-3,5-비스(트리플로로메틸)벤젠(1-bromo-3,5-bis(trifluoromethyl)benzene) 20.0 g(68.3 mmol), (5-클로로-2-플로로페닐)보론산((5-chloro-2-fluorophenyl)boronic acid) 13.1 g(75.1 mmol), Pd(PPh3)4 3.9 g(3.4 mmol), K2CO3 28.3 g (204.8 mmol), 톨루엔 240 mL 및 에탄올 120 mL를 혼합한 후, 하루동안 환류 교반하였다. 반응이 종결된 후, 상온으로 냉각하였다. 분리된 유기층을 감압 증류하여 얻어진 화합물을 실리카겔 컬럼크로마토그래피(Hexane)로 정제하여 흰색 고체의 화합물 중간체(47) 16.8 g(수율: 71.8%)을 얻었다. 2-bromo-3,5-bis(trifluoromethyl)benzene (1-bromo-3,5-bis(trifluoromethyl)benzene) 20.0 g (68.3 mmol), (5-chloro-2) in a 1-neck 250mL flask -fluorophenyl) boronic acid ((5-chloro-2-fluorophenyl) boronic acid) 13.1 g (75.1 mmol), Pd (PPh 3 ) 4 3.9 g (3.4 mmol), K 2 CO 3 28.3 g (204.8 mmol) , 240 mL of toluene and 120 mL of ethanol were mixed, followed by stirring under reflux for one day. After the reaction was completed, it was cooled to room temperature. The compound obtained by distilling the separated organic layer under reduced pressure was purified by silica gel column chromatography (Hexane) to obtain 16.8 g (yield: 71.8%) of the compound intermediate (47) as a white solid.
(중간체(48)의 합성)(Synthesis of Intermediate (48))
중간체(47) 16.8 g(49.0 mmol), 피나콜디보론(Bis(pinacolato)diboron) 13.7 g(53.9 mmol), Pd(dppf)Cl2·CH2Cl2 2.0 g(2.5 mmol), KOAc 14.4 g(147.1 mmol) 및 1,4-다이옥세인 200 mL를 혼합한 후, 하루동안 환류 교반 하였다. 반응이 종결된 후 상온으로 냉각하고, 정제수를 넣고 에틸아세테이트로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 반응 혼합물을 실리카겔 컬럼 크로마토그래피(Hex:EA)로 정제하고 혼합용액(Hex/EA)으로 고체화하여 흰색 고체의 화합물 중간체(48) 14.4 g (수율: 67.7%)을 얻었다. Intermediate (47) 16.8 g (49.0 mmol), pinacol diboron (Bis(pinacolato)diboron) 13.7 g (53.9 mmol), Pd(dppf)Cl 2 CH 2 Cl 2 2.0 g (2.5 mmol), KOAc 14.4 g (147.1 mmol) and 200 mL of 1,4-dioxane were mixed and stirred under reflux for one day. After the reaction was completed, it was cooled to room temperature, purified water was added, extracted with ethyl acetate, and the solvent was removed under reduced pressure. The obtained reaction mixture was purified by silica gel column chromatography (Hex:EA) and solidified with a mixed solution (Hex/EA) to obtain 14.4 g (yield: 67.7%) of the compound intermediate (48) as a white solid.
중간체 intermediate 합성예Synthesis example 25: 중간체(51)의 합성 25: Synthesis of intermediate (51)
Figure PCTKR2022002862-appb-img-000303
Figure PCTKR2022002862-appb-img-000303
(중간체(51)의 합성)(Synthesis of Intermediate (51))
1구 2 L 플라스크에서 3-브로모-1,2,4,5-테트라플루오로벤젠(3-bromo-1,2,4,5-tetrafluorobenzene) 50.0 g(218.5 mmol), (3,5-비스(트리플루오로메틸)페닐)보론산((3,5-bis(trifluoromethyl)phenyl)boronic acid) 61.9 g(249.3 mmol), Pd(PPh3)4 7.8 g(6.6 mmol), 2M 수용액 K2CO3 327.8 mL(655.5 mmol), 톨루엔(Toluene) 728 mL 및 에탄올(EtOH) 364 mL를 혼합한 후 18 시간동안 환류, 교반하였다. 반응이 종결된 후, 상온으로 냉각하였다. 톨루엔으로 추출하고, 유기층을 분리한 후, 무수 황산나트륨으로 건조하였다. 얻어진 화합물을 셀라이트와 실리카겔 여과하여 흰색 액체의 화합물 중간체(51) 64.3 g(수율: 81.3%)을 얻었다.3-bromo-1,2,4,5-tetrafluorobenzene (3-bromo-1,2,4,5-tetrafluorobenzene) 50.0 g (218.5 mmol), (3,5- Bis(trifluoromethyl)phenyl)boronic acid ((3,5-bis(trifluoromethyl)phenyl)boronic acid) 61.9 g (249.3 mmol), Pd(PPh 3 ) 4 7.8 g (6.6 mmol), 2M aqueous solution K 2 CO 3 327.8 mL (655.5 mmol), 728 mL of toluene, and 364 mL of ethanol (EtOH) were mixed, followed by refluxing and stirring for 18 hours. After the reaction was completed, it was cooled to room temperature. After extraction with toluene, the organic layer was separated and dried over anhydrous sodium sulfate. The obtained compound was filtered with celite and silica gel to obtain 64.3 g (yield: 81.3%) of the compound intermediate (51) as a white liquid.
중간체 intermediate 합성예Synthesis example 26: 중간체(54)의 합성 26: Synthesis of intermediate (54)
Figure PCTKR2022002862-appb-img-000304
Figure PCTKR2022002862-appb-img-000304
(중간체(52)의 합성)(Synthesis of Intermediate 52)
1구 1 L 플라스크에서 6-브로모나프탈렌-2-올(6-bromonaphthalen-2-ol) 10.0 g(44.8 mmol), 중간체(51) 24.6 g(67.2 mmol), Pd(OAc)2 1.0 g(4.5 mmol), S-Phos 3.7 g(9.0 mmol), K2CO3 24.8 g(179.3 mmol) 및 테트라하이드로퓨란(THF) 400 mL를 혼합한 후, 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 증류수를 첨가하여 교반 후 에틸아세테이트로 추출하였다. 얻어진 화합물을 실리카겔 컬럼크로마토그래피로 정제하여 흰색 고체의 화합물 중간체(52) 10.7 g(수율: 47.3%)을 얻었다.In a 1-neck 1 L flask, 6-bromonaphthalen-2-ol (6-bromonaphthalen-2-ol) 10.0 g (44.8 mmol), Intermediate (51) 24.6 g (67.2 mmol), Pd (OAc) 2 1.0 g ( 4.5 mmol), S-Phos 3.7 g (9.0 mmol), K 2 CO 3 24.8 g (179.3 mmol) and tetrahydrofuran (THF) 400 mL were mixed, followed by stirring under reflux. After completion of the reaction, the mixture was cooled to room temperature, distilled water was added, stirred, and extracted with ethyl acetate. The obtained compound was purified by silica gel column chromatography to obtain 10.7 g (yield: 47.3%) of the compound intermediate (52) as a white solid.
(중간체(53)의 합성)(Synthesis of intermediate (53))
중간체(52) 10.7 g(21.2 mmol)을 다이클로로메탄 400 mL에 녹이고 피리딘 5.1 mL(63.7mmol)을 적가한 후 0℃로 온도를 낮췄다. Tf2O 2.1 mL(25.5 mmol)를 천천히 적가하고 상온으로 온도를 올린 후 12 시간동안 반응시켰다. 반응물을 증류수로 세척한 후, 분리한 유기층을 무수 황산나트륨으로 건조 여과하고 농축한 후 컬럼 크로마토그래피로 정제하여 노란색 고체의 화합물 중간체(53) 8.8 g(수율: 65.2%)을 얻었다.10.7 g (21.2 mmol) of the intermediate (52) was dissolved in 400 mL of dichloromethane, 5.1 mL (63.7 mmol) of pyridine was added dropwise, and the temperature was lowered to 0°C. 2.1 mL (25.5 mmol) of Tf 2 O was slowly added dropwise, and the temperature was raised to room temperature, followed by reaction for 12 hours. The reaction product was washed with distilled water, and the separated organic layer was dried over anhydrous sodium sulfate, filtered, concentrated, and purified by column chromatography to obtain 8.8 g (yield: 65.2%) of Compound (53) as a yellow solid.
(중간체(54)의 합성)(Synthesis of intermediate 54)
중간체(53) 8.8 g(13.8 mmol), 피나콜디보론(Bis(pinacolato)diboron) 4.2 g(16.6 mmol), Pd(dppf)Cl2·CH2Cl2 0.6 g(0.7 mmol), KOAc 4.1 g(41.5 mmol) 및 1,4-다이옥세인 150 mL를 혼합한 후, 하루동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 정제수를 첨가한 후, 에틸아세테이트로 추출하고 감압 하에 용매를 제거하였다. 얻어진 반응 혼합물을 실리카겔 컬럼 크로마토그래피로 정제하고 혼합용액(Hex/EA)으로 고체화하여, 흰색 고체의 화합물 중간체(54) 5.5 g (수율: 64.8%)을 얻었다.Intermediate (53) 8.8 g (13.8 mmol), pinacol diboron (Bis(pinacolato)diboron) 4.2 g (16.6 mmol), Pd(dppf)Cl 2 CH 2 Cl 2 0.6 g (0.7 mmol), KOAc 4.1 g (41.5 mmol) and 150 mL of 1,4-dioxane were mixed and stirred under reflux for one day. After the reaction was completed, it was cooled to room temperature, purified water was added, extracted with ethyl acetate, and the solvent was removed under reduced pressure. The obtained reaction mixture was purified by silica gel column chromatography and solidified with a mixed solution (Hex/EA) to obtain 5.5 g (yield: 64.8%) of compound intermediate (54) as a white solid.
중간체 intermediate 합성예Synthesis example 27: 중간체(56)의 합성 27: Synthesis of intermediate (56)
Figure PCTKR2022002862-appb-img-000305
Figure PCTKR2022002862-appb-img-000305
(중간체(55)의 합성)(Synthesis of intermediate (55))
2구 2 L 플라스크에 1-브로모-3,5-비스(트리플루오로메틸)벤젠(1-bromo-3,5-bis(trifluoromethyl)benzene) 85.0 g(289.9 mmol), (3-클로로-2-플루오로페닐)보론산((3-chloro-2-fluorophenyl)boronic acid) 55.6 g(318.9 mmol), Pd(PPh3)4 6.7 g(5.8 mmol), K2CO3 118.8 g (869.8 mmol), 톨루엔 700 mL, 에탄올 350 ml 및 증류수 350 ml를 혼합한 후, 80℃에서 하루 동안 반응하였다. 반응이 종료되면 실온으로 냉각한 후, 반응물에 증류수를 넣고 에틸아세테이트로 추출하였다. 분리한 유기층을 무수 황산마그네슘으로 건조, 여과하고 감압 증류한 후 얻어진 혼합물을 실리카 패드 여과를 하고, 무색 투명 오일의 화합물 중간체(55) 94.0 g(수율: 94.6%)을 얻었다.In a 2-neck 2 L flask, 1-bromo-3,5-bis (trifluoromethyl) benzene (1-bromo-3,5-bis (trifluoromethyl) benzene) 85.0 g (289.9 mmol), (3-chloro- 2-fluorophenyl) boronic acid ((3-chloro-2-fluorophenyl) boronic acid) 55.6 g (318.9 mmol), Pd (PPh 3 ) 4 6.7 g (5.8 mmol), K 2 CO 3 118.8 g (869.8 mmol) ), 700 ml of toluene, 350 ml of ethanol and 350 ml of distilled water were mixed, and then reacted at 80° C. for one day. When the reaction was completed, after cooling to room temperature, distilled water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The separated organic layer was dried over anhydrous magnesium sulfate, filtered, distilled under reduced pressure, and the resulting mixture was filtered through a silica pad to obtain 94.0 g (yield: 94.6%) of the compound intermediate (55) as a colorless and transparent oil.
(중간체(56)의 합성)(Synthesis of Intermediate (56))
2구 2 L 플라스크에 중간체(55) 60.0 g(175.1 mmol), 피나콜디보론(Bis(pinacolato)diboron) 92.6 g(262.7 mmol), Pd2(dba)3 8.0 g(8.8 mmol), KOAc 51.6 g(525.3 mmol), X-Phos 8.3 g(17.5 mmol) 및 톨루엔 900mL를 혼합한 후, 110℃에서 하루 동안 반응하였다. 반응이 종료되면 실온으로 냉각한 후 셀라이트 패드 여과하고 클로로포름으로 씻어주었다. 얻어진 혼합물을 실리카겔 컬럼크로마토그래피로 정제하고, 혼합용액(DCM/MeOH)으로 고체화하여, 노란색 고체의 화합물 중간체(56) 42.0 g(수율: 55.2%)을 얻었다.Intermediate (55) 60.0 g (175.1 mmol), pinacol diboron (Bis(pinacolato)diboron) 92.6 g (262.7 mmol), Pd 2 (dba) 3 8.0 g (8.8 mmol), KOAc 51.6 in a 2-neck 2 L flask g (525.3 mmol), 8.3 g (17.5 mmol) of X-Phos and 900 mL of toluene were mixed and reacted at 110° C. for one day. Upon completion of the reaction, the mixture was cooled to room temperature, filtered through a Celite pad, and washed with chloroform. The obtained mixture was purified by silica gel column chromatography and solidified with a mixed solution (DCM/MeOH) to obtain 42.0 g (yield: 55.2%) of compound intermediate (56) as a yellow solid.
상기 합성된 중간체 화합물을 이용하여 이하와 같이 다양한 유기화합물을 합성하였다. Various organic compounds were synthesized as follows using the synthesized intermediate compound.
합성예Synthesis example 1: 화합물 2-24(LT19-30-238)의 합성 1: Synthesis of compound 2-24 (LT19-30-238)
Figure PCTKR2022002862-appb-img-000306
Figure PCTKR2022002862-appb-img-000306
1구 250 mL 플라스크에서 중간체(1) 5.0 g(12.5 mmol), (3,5-비스(트리플로로메틸)페닐)보론산((3,5-bis(trifluoromethyl)phenyl)boronic acid) 6.8 g(26.3 mmol), Pd(PPh3)4 0.7 g(0.6 mmol), K2CO3 6.9 g(50.1 mmol), 톨루엔 120 mL 및 에탄올 60 mL를 혼합한 후, 하루동안 환류 교반하였다. 반응이 종결된 후, 상온으로 냉각하였다. 분리된 유기층을 감압 증류하여 얻어진 화합물을 실리카겔 컬럼크로마토그래피(Hexane)로 정제하여 흰색 고체의 화합물 2-24(LT19-30-238) 2.8 g(수율: 46.7%)을 얻었다. In a 1-neck 250 mL flask, 5.0 g (12.5 mmol) of Intermediate (1), (3,5-bis(trifluoromethyl)phenyl)boronic acid ((3,5-bis(trifluoromethyl)phenyl)boronic acid) 6.8 g (26.3 mmol), Pd(PPh 3 ) 4 0.7 g (0.6 mmol), K 2 CO 3 6.9 g (50.1 mmol), toluene 120 mL, and ethanol 60 mL were mixed and stirred under reflux for one day. After the reaction was completed, it was cooled to room temperature. The compound obtained by distilling the separated organic layer under reduced pressure was purified by silica gel column chromatography (Hexane) to obtain 2.8 g (yield: 46.7%) of compound 2-24 (LT19-30-238) as a white solid.
합성예Synthesis example 2: 화합물 2-27(LT20-35-577)의 합성 2: Synthesis of compound 2-27 (LT20-35-577)
Figure PCTKR2022002862-appb-img-000307
Figure PCTKR2022002862-appb-img-000307
1구 250 mL 플라스크에서 중간체(31) 3.0 g(3.8 mmol), 브로모벤젠(bromobenzene) 0.5 g(3.5 mmol), Pd(PPh3)4 0.2 g(0.2 mmol), K2CO3 1.5 g(10.5 mmol), 톨루엔 60 mL 및 에탄올 30 mL를 혼합한 후, 하루동안 환류 교반하였다. 반응이 종결된 후, 상온으로 냉각하였다. 분리된 유기층을 감압 증류하여 얻어진 화합물을 실리카겔 컬럼크로마토그래피(Hexane)로 정제하여 흰색 고체의 화합물 2-27(LT20-35-577) 1.1 g(수율: 43.1%)을 얻었다. In a 1-neck 250 mL flask, 3.0 g (3.8 mmol) of intermediate (31), 0.5 g (3.5 mmol) of bromobenzene, Pd (PPh 3 ) 4 0.2 g (0.2 mmol), K 2 CO 3 1.5 g ( 10.5 mmol), 60 mL of toluene and 30 mL of ethanol were mixed, followed by stirring under reflux for one day. After the reaction was completed, it was cooled to room temperature. The compound obtained by distilling the separated organic layer under reduced pressure was purified by silica gel column chromatography (Hexane) to obtain 1.1 g (yield: 43.1%) of compound 2-27 (LT20-35-577) as a white solid.
합성예Synthesis example 3: 화합물 2-114(LT20-35-570)의 합성 3: Synthesis of compound 2-114 (LT20-35-570)
Figure PCTKR2022002862-appb-img-000308
Figure PCTKR2022002862-appb-img-000308
1구 250 mL 플라스크에서 중간체(32) 3.0 g(6.7 mmol), 중간체(19) 4.9 g(14.1 mmol), Pd(PPh3)4 0.4 g(0.3 mmol), K2CO3 3.7 g(26.8 mmol), 톨루엔 60 mL 및 에탄올 30 mL를 혼합한 후, 하루동안 환류 교반하였다. 반응이 종결된 후, 상온으로 냉각하였다. 분리된 유기층을 감압 증류하여 얻어진 화합물을 실리카겔 컬럼크로마토그래피(Hexane)로 정제하여 흰색 고체의 화합물 2-114(LT20-35-570) 2.6 g(수율: 53.1%)을 얻었다. In a one-necked 250 mL flask, intermediate (32) 3.0 g (6.7 mmol), intermediate (19) 4.9 g (14.1 mmol), Pd(PPh 3 ) 4 0.4 g (0.3 mmol), K 2 CO 3 3.7 g (26.8 mmol) ), 60 mL of toluene and 30 mL of ethanol were mixed, followed by stirring under reflux for one day. After the reaction was completed, it was cooled to room temperature. The compound obtained by distilling the separated organic layer under reduced pressure was purified by silica gel column chromatography (Hexane) to obtain 2.6 g (yield: 53.1%) of compound 2-114 (LT20-35-570) as a white solid.
합성예Synthesis example 4: 화합물 2-535(LT20-30-447)의 합성 4: Synthesis of compound 2-535 (LT20-30-447)
Figure PCTKR2022002862-appb-img-000309
Figure PCTKR2022002862-appb-img-000309
2구 250mL 플라스크에서 중간체(3) 3.0 g(4.7 mmol), 2-브로모나프탈렌(2-bromonaphthalene) 1.0 g(5.2 mmol), Pd(PPh3)4 0.2 g(0.2 mmol), K2CO3 2.0 g(14.3 mmol), 톨루엔 30 mL 및 에탄올 15 mL, H2O 15 mL를 혼합한 후, 하루동안 환류 교반 하였다. 반응이 종결된 후, 상온으로 냉각하고, 층분리 하였다. 유기층을 농축 후, 농축잔사에 톨루엔을 투입하여 용해시킨 후, 실리카겔에 감압 여과하였다. 여과액을 농축 후, 메탄올에 환류 교반 하였다. 상온까지 냉각 후, 감압 여과 및 건조하였다. 건조 후, 노란색 고체의 화합물 2-535(LT20-30-447) 1.5 g(수율: 51.7%)을 얻었다. In a 2-neck 250mL flask, 3.0 g (4.7 mmol) of intermediate (3), 1.0 g (5.2 mmol) of 2-bromonaphthalene, Pd(PPh 3 ) 4 0.2 g (0.2 mmol), K 2 CO 3 2.0 g (14.3 mmol), 30 mL of toluene, 15 mL of ethanol, and 15 mL of H 2 O were mixed and stirred under reflux for one day. After the reaction was completed, it was cooled to room temperature, and the layers were separated. After the organic layer was concentrated, toluene was added to the concentrated residue to dissolve, and then filtered under reduced pressure on silica gel. The filtrate was concentrated and stirred under reflux in methanol. After cooling to room temperature, it was filtered under reduced pressure and dried. After drying, 1.5 g (yield: 51.7%) of compound 2-535 (LT20-30-447) as a yellow solid was obtained.
합성예Synthesis example 5: 화합물 2-556(LT20-30-089)의 합성 5: Synthesis of compound 2-556 (LT20-30-089)
Figure PCTKR2022002862-appb-img-000310
Figure PCTKR2022002862-appb-img-000310
2구 250 mL 플라스크에서 중간체(6) 4.0 g(8.2 mmol), 중간체(3) 4.1 g(8.2 mmol), Pd(PPh3)4 0.5 g(0.5 mmol), K2CO3 2.3 g(16.4 mmol), 톨루엔 48 mL, 정제수 24 mL, 에탄올 16 mL를 혼합한 후, 110℃에서 4시간 동안 반응하였다. 반응종료 후, 실온으로 냉각하고 여과하여 얻어진 반응 혼합물을 클로로포름에 녹여 실리카겔에 여과하였다. 얻어진 반응 혼합물을 헥산으로 고체화하여, 흰색 고체의 화합물 2-556(LT20-30-089) 4.5 g(수율: 78.6%)을 얻었다. In a 2-neck 250 mL flask, 4.0 g (8.2 mmol) of Intermediate (6), 4.1 g (8.2 mmol) of Intermediate (3), Pd(PPh 3 ) 4 0.5 g (0.5 mmol), K 2 CO 3 2.3 g (16.4 mmol), toluene 48 mL, purified water 24 mL, and ethanol 16 mL were mixed, followed by reaction at 110° C. for 4 hours. After completion of the reaction, the reaction mixture was cooled to room temperature and filtered. The resulting reaction mixture was dissolved in chloroform and filtered through silica gel. The obtained reaction mixture was solidified with hexane to obtain 4.5 g (yield: 78.6%) of compound 2-556 (LT20-30-089) as a white solid.
합성예Synthesis example 6: 화합물 2-755(LT19-30-221)의 합성 6: Synthesis of compound 2-755 (LT19-30-221)
Figure PCTKR2022002862-appb-img-000311
Figure PCTKR2022002862-appb-img-000311
중간체(8) 5.0 g(12.9 mmol), (3,5-비스(트리플로로메틸)페닐)보론산((3,5-bis(trifluoromethyl)phenyl)boronic acid) 7.0 g(27.0 mmol), Pd(PPh3)4 0.7 g(0.6 mmol), K2CO3 7.1 g(51.5 mmol), 톨루엔 120 mL 및 에탄올 60 mL를 혼합한 후, 하루동안 환류 교반하였다. 반응이 종결된 후, 상온으로 냉각하였다. 분리된 유기층을 감압 증류하여 얻어진 화합물을 실리카겔 컬럼크로마토그래피(Hexane)로 정제하여 흰색 고체의 화합물 2-755(LT19-30-221) 3.8 g(수율: 39.7%)을 얻었다. Intermediate (8) 5.0 g (12.9 mmol), (3,5-bis (trifluoromethyl) phenyl) boronic acid ((3,5-bis (trifluoromethyl) phenyl) boronic acid) 7.0 g (27.0 mmol), Pd (PPh 3 ) 4 0.7 g (0.6 mmol), K 2 CO 3 7.1 g (51.5 mmol), toluene 120 mL and ethanol 60 mL were mixed, followed by stirring under reflux for one day. After the reaction was completed, it was cooled to room temperature. The compound obtained by distilling the separated organic layer under reduced pressure was purified by silica gel column chromatography (Hexane) to obtain 3.8 g (yield: 39.7%) of compound 2-755 (LT19-30-221) as a white solid.
합성예Synthesis example 7: 화합물 3-2(LT20-35-574)의 합성 7: Synthesis of compound 3-2 (LT20-35-574)
Figure PCTKR2022002862-appb-img-000312
Figure PCTKR2022002862-appb-img-000312
1구 250 mL 플라스크에서 중간체(33) 3.0 g(6.7 mmol), (4-(트리플로로메틸)페닐)보론산((4-(trifluoromethyl)phenyl)boronic acid) 3.1 g(16.2 mmol), Pd(PPh3)4 0.4 g(0.4 mmol), K2CO3 4.3 g(30.9 mmol), 톨루엔 60 mL 및 에탄올 30 mL를 혼합한 후, 하루동안 환류 교반하였다. 반응이 종결된 후, 상온으로 냉각하였다. 분리된 유기층을 감압 증류하여 얻어진 화합물을 실리카겔 컬럼크로마토그래피(Hexane)로 정제하여 흰색 고체의 화합물 3-2(LT20-35-574) 2.0 g(수율: 49.9%)을 얻었다. In a 1-neck 250 mL flask, 3.0 g (6.7 mmol) of intermediate (33), (4- (trifluoromethyl) phenyl) boronic acid ((4- (trifluoromethyl) phenyl) boronic acid) 3.1 g (16.2 mmol), Pd (PPh 3 ) 4 0.4 g (0.4 mmol), K 2 CO 3 4.3 g (30.9 mmol), toluene 60 mL and ethanol 30 mL were mixed, and the mixture was stirred under reflux for one day. After the reaction was completed, it was cooled to room temperature. The compound obtained by distilling the separated organic layer under reduced pressure was purified by silica gel column chromatography (Hexane) to obtain 2.0 g (yield: 49.9%) of compound 3-2 (LT20-35-574) as a white solid.
합성예Synthesis example 8: 화합물 3-115(LT20-35-579)의 합성 8: Synthesis of compound 3-115 (LT20-35-579)
Figure PCTKR2022002862-appb-img-000313
Figure PCTKR2022002862-appb-img-000313
1구 250 mL 플라스크에서 중간체(31) 5.0 g(6.4 mmol), 중간체(13) 1.9 g(5.8 mmol), Pd(PPh3)4 0.3 g(0.3 mmol), K2CO3 2.4 g(17.5 mmol), 톨루엔 60 mL 및 에탄올 30 mL를 혼합한 후, 하루동안 환류 교반하였다. 반응이 종결된 후, 상온으로 냉각하였다. 분리된 유기층을 감압 증류하여 얻어진 화합물을 실리카겔 컬럼크로마토그래피(Hexane)로 정제하여 흰색 고체의 화합물 3-115(LT20-35-579) 2.6 g(수율: 47.4%)을 얻었다. In a one-necked 250 mL flask, 5.0 g (6.4 mmol) of intermediate (31), 1.9 g (5.8 mmol) of intermediate (13), 0.3 g (0.3 mmol) of Pd(PPh 3 ) 4 , 2.4 g (17.5 mmol) of K 2 CO 3 ), 60 mL of toluene and 30 mL of ethanol were mixed, followed by stirring under reflux for one day. After the reaction was completed, it was cooled to room temperature. The compound obtained by distilling the separated organic layer under reduced pressure was purified by silica gel column chromatography (Hexane) to obtain 2.6 g (yield: 47.4%) of compound 3-115 (LT20-35-579) as a white solid.
합성예Synthesis example 9: 화합물 3-599(LT20-35-573)의 합성 9: Synthesis of compound 3-599 (LT20-35-573)
Figure PCTKR2022002862-appb-img-000314
Figure PCTKR2022002862-appb-img-000314
1구 250 mL 플라스크에서 중간체(31) 5.0 g(6.4 mmol), 중간체(36) 2.1 g(5.8 mmol), Pd(PPh3)4 0.3 g(0.3 mmol), K2CO3 2.4 g(17.5 mmol), 톨루엔 60 mL 및 에탄올 30 mL를 혼합한 후, 하루동안 환류 교반하였다. 반응이 종결된 후, 상온으로 냉각하였다. 분리된 유기층을 감압 증류하여 얻어진 화합물을 실리카겔 컬럼크로마토그래피(Hexane)로 정제하여 흰색 고체의 화합물 3-599(LT20-35-573) 2.8 g(수율: 54.4%)을 얻었다. In a one-necked 250 mL flask, 5.0 g (6.4 mmol) of intermediate (31), 2.1 g (5.8 mmol) of intermediate (36), 0.3 g (0.3 mmol) of Pd(PPh 3 ) 4 , 2.4 g (17.5 mmol) of K 2 CO 3 ), 60 mL of toluene and 30 mL of ethanol were mixed, followed by stirring under reflux for one day. After the reaction was completed, it was cooled to room temperature. The compound obtained by distilling the separated organic layer under reduced pressure was purified by silica gel column chromatography (Hexane) to obtain 2.8 g (yield: 54.4%) of compound 3-599 (LT20-35-573) as a white solid.
합성예Synthesis example 10: 화합물 4-2(LT20-35-587)의 합성 10: Synthesis of compound 4-2 (LT20-35-587)
Figure PCTKR2022002862-appb-img-000315
Figure PCTKR2022002862-appb-img-000315
1구 250 mL 플라스크에서 4-브로모-1,1'-바이페닐(4-bromo-1,1'-biphenyl) 3.0 g(12.9 mmol), 중간체(14) 5.9 g(14.2 mmol), Pd(PPh3)4 0.7 g(0.6 mmol), K2CO3 5.3 g(38.6 mmol), 톨루엔 60 mL 및 에탄올 30 mL를 혼합한 후, 하루동안 환류 교반하였다. 반응이 종결된 후, 상온으로 냉각하였다. 분리된 유기층을 감압 증류하여 얻어진 화합물을 실리카겔 컬럼크로마토그래피(Hexane)로 정제하여 흰색 고체의 화합물 4-2(LT20-35-587) 2.6 g(수율: 45.7%)을 얻었다. In a 1-neck 250 mL flask, 4-bromo-1,1'-biphenyl (4-bromo-1,1'-biphenyl) 3.0 g (12.9 mmol), intermediate (14) 5.9 g (14.2 mmol), Pd ( PPh 3 ) 4 0.7 g (0.6 mmol), K 2 CO 3 5.3 g (38.6 mmol), toluene 60 mL and ethanol 30 mL were mixed, and the mixture was stirred under reflux for one day. After the reaction was completed, it was cooled to room temperature. The compound obtained by distilling the separated organic layer under reduced pressure was purified by silica gel column chromatography (Hexane) to obtain 2.6 g (yield: 45.7%) of compound 4-2 (LT20-35-587) as a white solid.
합성예Synthesis example 11: 화합물 4-62(LT20-35-580)의 합성 11: Synthesis of compound 4-62 (LT20-35-580)
Figure PCTKR2022002862-appb-img-000316
Figure PCTKR2022002862-appb-img-000316
1구 250 mL 플라스크에서 (4-(4-브로모페닐)디벤조[b,d]퓨란(4-(4-bromophenyl)dibenzo[b,d]furan) 3.0 g(9.3 mmol), 중간체(14) 4.3 g(10.2 mmol), Pd(PPh3)4 0.5 g(0.5 mmol), K2CO3 3.9 g(27.9 mmol), 톨루엔 60 mL 및 에탄올 30 mL를 혼합한 후, 하루동안 환류 교반하였다. 반응이 종결된 후, 상온으로 냉각하였다. 분리된 유기층을 감압 증류하여 얻어진 화합물을 실리카겔 컬럼크로마토그래피(Hexane)로 정제하여 흰색 고체의 화합물 4-62(LT20-35-580) 2.5 g(수율: 50.6%)을 얻었다. In a 1-neck 250 mL flask, (4- (4-bromophenyl) dibenzo [b, d] furan (4- (4-bromophenyl) dibenzo [b, d] furan) 3.0 g (9.3 mmol), intermediate (14 ) 4.3 g (10.2 mmol), Pd(PPh 3 ) 4 0.5 g (0.5 mmol), K 2 CO 3 3.9 g (27.9 mmol), toluene 60 mL and ethanol 30 mL were mixed and stirred under reflux for one day. After completion of the reaction, the reaction was cooled to room temperature.The compound obtained by distilling the separated organic layer under reduced pressure was purified by silica gel column chromatography (Hexane), and 2.5 g of compound 4-62 (LT20-35-580) as a white solid (yield: 50.6%) was obtained.
합성예Synthesis example 12: 화합물 4-277(LT20-35-585)의 합성 12: Synthesis of compound 4-277 (LT20-35-585)
Figure PCTKR2022002862-appb-img-000317
Figure PCTKR2022002862-appb-img-000317
1구 250 mL 플라스크에서 중간체(40) 3.0 g(9.3 mmol), (4-(트리메틸실릴)페닐)보론산((4-(trimethylsilyl)phenyl)boronic acid) 2.0 g(10.3 mmol), Pd(PPh3)4 0.5 g(0.5 mmol), K2CO3 3.9 g(28.0 mmol), 톨루엔 60 mL 및 에탄올 30 mL를 혼합한 후, 하루동안 환류 교반하였다. 반응이 종결된 후, 상온으로 냉각하였다. 분리된 유기층을 감압 증류하여 얻어진 화합물을 실리카겔 컬럼크로마토그래피(Hexane)로 정제하여 흰색 고체의 화합물 4-277(LT20-35-585) 1.7 g(수율: 39.4%)을 얻었다. In a 1-neck 250 mL flask, 3.0 g (9.3 mmol) of intermediate (40), (4- (trimethylsilyl) phenyl) boronic acid ((4- (trimethylsilyl) phenyl) boronic acid) 2.0 g (10.3 mmol), Pd (PPh) 3 ) 4 0.5 g (0.5 mmol), K 2 CO 3 3.9 g (28.0 mmol), toluene 60 mL, and ethanol 30 mL were mixed, followed by stirring under reflux for one day. After the reaction was completed, it was cooled to room temperature. The compound obtained by distilling the separated organic layer under reduced pressure was purified by silica gel column chromatography (Hexane) to obtain 1.7 g (yield: 39.4%) of compound 4-277 (LT20-35-585) as a white solid.
합성예Synthesis example 13: 화합물 4-242(LT20-30-360)의 합성 13: Synthesis of compound 4-242 (LT20-30-360)
Figure PCTKR2022002862-appb-img-000318
Figure PCTKR2022002862-appb-img-000318
1구 250 mL 플라스크에서 2-(4-브로모페닐)벤조옥사졸(2-(4-bromophenyl)benzo[d]oxazole) 3.0 g(10.9 mmol), 중간체(14) 5.0 g(12.0 mmol), Pd(PPh3)4 0.6 g(0.5 mmol), K2CO3 4.5 g(32.8 mmol), 톨루엔 120 mL 및 에탄올 60 mL를 혼합한 후, 하루동안 환류 교반하였다. 반응이 종결된 후, 상온으로 냉각하였다. 분리된 유기층을 감압 증류하여 얻어진 화합물을 실리카겔 컬럼크로마토그래피(Hexane)로 정제하여 흰색 고체의 화합물 4-242(LT20-30-360) 1.9 g(수율: 35.9%)을 얻었다. In a 1-neck 250 mL flask, 2- (4-bromophenyl) benzo [d] oxazole 3.0 g (10.9 mmol), Intermediate (14) 5.0 g (12.0 mmol), After mixing Pd(PPh 3 ) 4 0.6 g (0.5 mmol), K 2 CO 3 4.5 g (32.8 mmol), toluene 120 mL and ethanol 60 mL, the mixture was stirred under reflux for one day. After the reaction was completed, it was cooled to room temperature. The compound obtained by distilling the separated organic layer under reduced pressure was purified by silica gel column chromatography (Hexane) to obtain 1.9 g (yield: 35.9%) of compound 4-242 (LT20-30-360) as a white solid.
합성예Synthesis example 14: 화합물 4-244(LT20-30-445)의 합성 14: Synthesis of compound 4-244 (LT20-30-445)
Figure PCTKR2022002862-appb-img-000319
Figure PCTKR2022002862-appb-img-000319
2구 250 mL 플라스크에서 2-(4-브로모페닐)벤조옥사졸(2-(4-bromophenyl)benzo[d]oxazole) 4.0 g(14.6 mol), 중간체(17) 4.9 g(14.6 mmol), Pd(PPh3)4 0.8 g(0.7 mmol), K2CO3 4.1 g(29.2 mmol) 및 톨루엔 48 mL, 정제수 20 mL, 에탄올 16 mL를 혼합한 후, 90℃에서 12 시간동안 반응하였다. 반응이 종료되면 실온으로 냉각한 후, 생성된 고체를 여과하여 얻어진 반응 혼합물을 클로로포름에 용해시켜 실리카겔에 여과한 후 클로로포름과 2-프로판올로 고체화하여, 흰색 고체의 화합물 4-244(LT20-30-445) 2.9 g(수율: 54.7%)을 얻었다.In a 2-neck 250 mL flask, 2- (4-bromophenyl) benzoxazole (2- (4-bromophenyl) benzo [d] oxazole) 4.0 g (14.6 mol), intermediate (17) 4.9 g (14.6 mmol), Pd(PPh 3 ) 4 0.8 g (0.7 mmol), K 2 CO 3 4.1 g (29.2 mmol), 48 mL of toluene, 20 mL of purified water, and 16 mL of ethanol were mixed, followed by reaction at 90° C. for 12 hours. Upon completion of the reaction, after cooling to room temperature, the resulting solid was filtered, and the resulting reaction mixture was dissolved in chloroform, filtered through silica gel, and solidified with chloroform and 2-propanol, and compound 4-244 as a white solid (LT20-30- 445) 2.9 g (yield: 54.7%) was obtained.
합성예Synthesis example 15: 화합물 4-332(LT20-30-078)의 합성 15: Synthesis of compound 4-332 (LT20-30-078)
Figure PCTKR2022002862-appb-img-000320
Figure PCTKR2022002862-appb-img-000320
1구 250 mL 플라스크에서 중간체(7) 2.8 g(6.1 mmol), 2-(4-브로모페닐)다이벤조[b,d]퓨란(2-(4-bromophenyl)dibenzo[b,d]furan) 1.9 g(6.1 mmol), Pd(PPh3)4 211 mg(183.0 μmol), K2CO3 2.1 g(15.2 mmol) 및 톨루엔 80 mL, 에탄올 40 mL, 물 40 mL를 혼합한 후, 17 시간동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과한 후 건조하였다. 건조한 고체를 클로로포름에 용해시킨 후, 실리카 패드에 여과하고 DCM와 MeOH으로 고체화하여, 흰색 고체의 화합물 4-332(LT20-30-078) 2.2 g(수율: 62.4%)을 얻었다. Intermediate (7) 2.8 g (6.1 mmol), 2- (4-bromophenyl) dibenzo [b, d] furan (2- (4-bromophenyl) dibenzo [b, d] furan) in a one-necked 250 mL flask After mixing 1.9 g (6.1 mmol), Pd(PPh 3 ) 4 211 mg (183.0 μmol), K 2 CO 3 2.1 g (15.2 mmol) and toluene 80 mL, ethanol 40 mL, and water 40 mL, for 17 hours It was stirred at reflux. After the reaction was completed, it was cooled to room temperature, and the solid was filtered and dried. The dried solid was dissolved in chloroform, filtered through a silica pad, and solidified with DCM and MeOH to obtain 2.2 g (yield: 62.4%) of compound 4-332 (LT20-30-078) as a white solid.
합성예Synthesis example 16: 화합물 4-491(LT20-30-395)의 합성 16: Synthesis of compound 4-491 (LT20-30-395)
Figure PCTKR2022002862-appb-img-000321
Figure PCTKR2022002862-appb-img-000321
2구 250 mL 플라스크에서 2,6-다이브로모나프탈렌(2,6-dibromonaphthalene) 1.5 g(5.2 mmol), 중간체(14) 4.8(11.5 mmol), Pd(PPh3)4 363.7 mg(314.7 μmol), K2CO3 4.3 g(31.5 mmol), 톨루엔 35 mL, 에탄올 9 mL 및 증류수 9 mL를 혼합한 후, 90℃에서 하루동안 교반 하였다. 반응 종결한 후 상온으로 냉각하고, 증류수 50 ml를 첨가한 후 여과하였다. 얻어진 고체를 톨루엔에 녹여 실리카 패드에 여과하고, 톨루엔으로 고체화하여 흰색 고체의 화합물 4-491(LT20-30-395) 3.1 g(수율: 83.3%)을 얻었다. 2,6-dibromonaphthalene (2,6-dibromonaphthalene) 1.5 g (5.2 mmol), Intermediate (14) 4.8 (11.5 mmol), Pd (PPh 3 ) 4 363.7 mg (314.7 μmol) in a 2-neck 250 mL flask, After mixing 4.3 g (31.5 mmol) of K 2 CO 3 , 35 mL of toluene, 9 mL of ethanol and 9 mL of distilled water, the mixture was stirred at 90° C. for one day. After completion of the reaction, the mixture was cooled to room temperature, and 50 ml of distilled water was added, followed by filtration. The obtained solid was dissolved in toluene, filtered through a silica pad, and solidified with toluene to obtain 3.1 g (yield: 83.3%) of compound 4-491 (LT20-30-395) as a white solid.
합성예Synthesis example 17: 화합물 4-497(LT20-30-348)의 합성 17: Synthesis of compound 4-497 (LT20-30-348)
Figure PCTKR2022002862-appb-img-000322
Figure PCTKR2022002862-appb-img-000322
1구 250 mL 플라스크에서 2-브로모트리페닐렌(2-bromotriphenylene) 3.5 g(11.4 mmol), 중간체(14) 5.7 g(13.7 mmol), Pd(PPh3)4 658.3 mg(569.7 μmol), K3PO4 6.1 g(28.5 mmol), 톨루엔 40 mL, 에탄올 10 mL 및 물 10 mL를 혼합한 후, 12 시간동안 환류 교반하였다. 반응 종결 후 상온으로 냉각하고, 고체를 여과한 후 물과 메탄올로 씻어서 건조하였다. 건조한 고체를 클로로포름에 녹인 후 컬럼 크로마토그래피로로 정제하고, 클로로포름에 용해 후 교반하고 얻은 고체를 여과하여, 흰색 고체의 화합물 4-497(LT20-30-348) 3.5 g(수율: 59.5%)을 얻었다. In a 1-neck 250 mL flask, 2-bromotriphenylene 3.5 g (11.4 mmol), intermediate (14) 5.7 g (13.7 mmol), Pd (PPh 3 ) 4 658.3 mg (569.7 μmol), K 3 PO 4 6.1 g (28.5 mmol), toluene 40 mL, ethanol 10 mL, and water 10 mL were mixed, followed by stirring under reflux for 12 hours. After completion of the reaction, it was cooled to room temperature, the solid was filtered, washed with water and methanol, and dried. The dried solid was dissolved in chloroform, purified by column chromatography, dissolved in chloroform, stirred, and the obtained solid was filtered to obtain 3.5 g (yield: 59.5%) of compound 4-497 (LT20-30-348) as a white solid. got it
합성예Synthesis example 18: 화합물 4-520(LT20-30-046)의 합성 18: Synthesis of compound 4-520 (LT20-30-046)
Figure PCTKR2022002862-appb-img-000323
Figure PCTKR2022002862-appb-img-000323
1구 250 mL 플라스크에서 중간체(21) 3.0 g(9.3 mmol), 중간체(19) 3.2 g(9.3 mmol), Pd(PPh3)4 534.0 mg(462.7μmol), K2CO3 3.2g(23.1 mmol), 톨루엔 30 mL, 에탄올 10 mL 및 물 10 mL를 혼합한 후, 12 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과하고 물과 메탄올로 씻어서 건조하였다. 건조한 고체를 클로로포름에 녹인 후 실리카 패드에 여과하고 혼합용액(DCM/Acetone)으로 고체화하여 흰색 고체의 화합물 4-520(LT20-30-046) 2.7 g(수율: 62.2%)을 얻었다. In a 1-neck 250 mL flask, intermediate (21) 3.0 g (9.3 mmol), intermediate (19) 3.2 g (9.3 mmol), Pd(PPh 3 ) 4 534.0 mg (462.7 μmol), K 2 CO 3 3.2 g (23.1 mmol) ), toluene 30 mL, ethanol 10 mL, and water 10 mL were mixed, followed by stirring under reflux for 12 hours. After the reaction was completed, it was cooled to room temperature, the solid was filtered, washed with water and methanol, and dried. The dried solid was dissolved in chloroform, filtered through a silica pad, and solidified with a mixed solution (DCM/Acetone) to obtain 2.7 g (yield: 62.2%) of compound 4-520 (LT20-30-046) as a white solid.
합성예Synthesis example 19: 화합물 5-75(LT21-30-076)의 합성 19: Synthesis of compound 5-75 (LT21-30-076)
Figure PCTKR2022002862-appb-img-000324
Figure PCTKR2022002862-appb-img-000324
2구 250 mL 플라스크에서 1,3-디브로모-5-(테르트-부틸)벤젠(1,3-dibromo-5-(tert-butyl)benzene) 2.5 g(8.6 mmol), 중간체(14) 8.2 g(19.7 mmol), Pd(PPh3)4 1.0 g(0.9 mmol), K2CO3 5.9 g(42.8 mmol), 1,4-디옥센 30 mL 및 정제수 15 mL를 혼합한 후, 120℃에서 하루동안 교반하였다. 반응이 종결된 후 상온으로 냉각시킨 후, 실리카에 여과하여 여액을 감압 농축하였다. 얻어진 반응 혼합물을 아세톤/메탄올로 고체화하여 흰색 고체의 화합물 5-75(LT21-30-076) 3.5 g(수율:57.5%)을 얻었다. In a 2-neck 250 mL flask, 2.5 g (8.6 mmol) of 1,3-dibromo-5-(tert-butyl)benzene (1,3-dibromo-5-(tert-butyl)benzene), Intermediate (14) After mixing 8.2 g (19.7 mmol), Pd(PPh 3 ) 4 1.0 g (0.9 mmol), K 2 CO 3 5.9 g (42.8 mmol), 1,4-dioxene 30 mL and purified water 15 mL, 120° C. stirred for one day. After completion of the reaction, the mixture was cooled to room temperature, filtered through silica, and the filtrate was concentrated under reduced pressure. The obtained reaction mixture was solidified with acetone/methanol to obtain 3.5 g (yield: 57.5%) of compound 5-75 (LT21-30-076) as a white solid.
합성예Synthesis example 20: 화합물 5-168(LT20-30-616)의 합성 20: Synthesis of compound 5-168 (LT20-30-616)
Figure PCTKR2022002862-appb-img-000325
Figure PCTKR2022002862-appb-img-000325
1구 1 L 플라스크에 중간체(23) 7.0 g(20.9 mmol), (2,4,6-트리이소프로필)페닐보론산((2,4,6-triisopropylphenyl)boronic acid) 15.6 g(62.7 mmol), Pd(dba)2 1.0 g(1.7 mmol), X-Phos 1.6 g(3.3 mmol), K3PO4 22.2 g(104.4 mmol), 톨루엔 190 mL 및 증류수 20 mL를 혼합한 후, 하루동안 환류 교반하였다. 반응이 종결된 후, 상온으로 냉각하여 감압 하에 용매를 제거하였다. 반응물을 메탄올로 고체화하여 여과하고, 증류수로 씻어주었다. 건조한 반응물을 톨루엔으로 용해시킨 후, 실리카겔 패드를 통과하여 농축하였다. 반응물은 혼합용액(Dichloromethane:Hexanes)으로 고체화하여 흰색 고체의 화합물 5-168(LT20-30-616) 4.9 g(수율: 35.0%)을 얻었다. 15.6 g (62.7 mmol) of intermediate (23) 7.0 g (20.9 mmol), (2,4,6-triisopropylphenyl) boronic acid ((2,4,6-triisopropylphenyl) boronic acid) in a 1-neck 1 L flask , Pd(dba) 2 1.0 g (1.7 mmol), X-Phos 1.6 g (3.3 mmol), K 3 PO 4 22.2 g (104.4 mmol), toluene 190 mL and distilled water 20 mL were mixed, and then stirred under reflux for one day. did. After the reaction was completed, the solvent was removed under reduced pressure by cooling to room temperature. The reaction product was solidified with methanol, filtered, and washed with distilled water. The dried reactant was dissolved with toluene, and then concentrated through a pad of silica gel. The reactant was solidified with a mixed solution (Dichloromethane: Hexanes) to obtain 4.9 g (yield: 35.0%) of compound 5-168 (LT20-30-616) as a white solid.
합성예Synthesis example 21: 화합물 5-205(LT20-30-457)의 합성 21: Synthesis of compound 5-205 (LT20-30-457)
Figure PCTKR2022002862-appb-img-000326
Figure PCTKR2022002862-appb-img-000326
1구 250 mL 플라스크에서 중간체(26) 3.5 g(11.5 mmol), 중간체(14) 6.2 g(14.9 mmol), Pd2(dba)3 1.1 g(2.29 mmol), X-Phos 1.1 g(1.1 mmol), K3PO4 7.3 g(34.3 mmol) 및 자일렌 60 mL를 혼합한 후, 12 시간동안 환류 교반하였다. 반응이 종결된 후, 물을 첨가하고 클로로포름으로 추출한 후, 감압 농축하였다. 얻어진 반응 혼합물을 실리카겔 컬럼크로마토그래피(Hex:CHCl3)로 정제하고 혼합용매(DCM/EA/MeOH)로 고체화하여, 흰색 고체의 화합물 5-205(LT20-30-457) 2.8 g(수율: 43.7%)을 얻었다. In a 1-neck 250 mL flask, intermediate (26) 3.5 g (11.5 mmol), intermediate (14) 6.2 g (14.9 mmol), Pd 2 (dba) 3 1.1 g (2.29 mmol), X-Phos 1.1 g (1.1 mmol) , K 3 PO 4 7.3 g (34.3 mmol) and xylene 60 mL were mixed, followed by stirring under reflux for 12 hours. After completion of the reaction, water was added, extraction was performed with chloroform, and the mixture was concentrated under reduced pressure. The obtained reaction mixture was purified by silica gel column chromatography (Hex:CHCl 3 ) and solidified with a mixed solvent (DCM/EA/MeOH), and 2.8 g of compound 5-205 (LT20-30-457) as a white solid (yield: 43.7) %) was obtained.
합성예Synthesis example 22: 화합물 5-210(LT20-30-442)의 합성 22: Synthesis of compound 5-210 (LT20-30-442)
Figure PCTKR2022002862-appb-img-000327
Figure PCTKR2022002862-appb-img-000327
1구 250 mL 플라스크에서 중간체(29) 4.0 g(7.8 mmol), 4-(2-나프틸)페닐보론산(4-(2-Naphthyl)phenylboronic acid) 2.3 g(9.3 mmol), Pd(PPh3)4 0.5 g(0.4 mmol), 2M K2CO3 12 mL(23.3 mmol), 톨루엔 30 mL 및 에탄올 15 mL를 하루동안 환류 교반하였다. 상온으로 냉각한 후, 클로로포름을 이용하여 추출하고 용매를 제거하였다. 클로로포름에 녹여 실리카겔 컬럼 크로마토그래피(CHCl3:HEX)로 정제하였다. 얻어진 고체를 혼합용액(클로로포름/2-프로판올)으로 고체화하여 흰색 고체의 화합물 5-210(LT20-30-442) 3.45 g(수율: 78.2%)을 얻었다. Intermediate (29) 4.0 g (7.8 mmol), 4- (2-Naphthyl) phenylboronic acid (4- (2-Naphthyl) phenylboronic acid) 2.3 g (9.3 mmol), Pd (PPh 3 ) in a one-necked 250 mL flask ) 4 0.5 g (0.4 mmol), 2M K 2 CO 3 12 mL (23.3 mmol), 30 mL of toluene and 15 mL of ethanol were stirred under reflux for one day. After cooling to room temperature, extraction was performed using chloroform and the solvent was removed. It was dissolved in chloroform and purified by silica gel column chromatography (CHCl 3 :HEX). The obtained solid was solidified with a mixed solution (chloroform/2-propanol) to obtain 3.45 g (yield: 78.2%) of compound 5-210 (LT20-30-442) as a white solid.
합성예Synthesis example 23: 화합물 5-214(LT21-30-064)의 합성 23: Synthesis of compound 5-214 (LT21-30-064)
Figure PCTKR2022002862-appb-img-000328
Figure PCTKR2022002862-appb-img-000328
2구 250 mL 플라스크에서 중간체(41) 2.5 g(6.5 mmol), 중간체(42) 6.5 g(16.2 mmol), Pd(PPh3)4 0.7 g(0.6 mmol), K2CO3 4.4 g(32.4 mmol), 1,4-디옥센 30 mL, 정제수 15 mL를 혼합한 후, 120℃에서 하루동안 교반하였다. 반응이 종결된 후 상온으로 냉각하고 실리카에 여과하여 여액을 감압 농축하였다. 얻어진 반응 혼합물을 아세톤과 메탄올으로 고체화하여 흰색 고체의 화합물 5-214(LT21-30-064) 3.7 g(수율:72.2%)을 얻었다. 2.5 g (6.5 mmol) of intermediate (41), 6.5 g (16.2 mmol) of intermediate (42), 0.7 g (0.6 mmol) of Pd(PPh 3 ) 4 , 4.4 g (32.4 mmol) of K 2 CO 3 in a 2-neck 250 mL flask ), 30 mL of 1,4-dioxene, and 15 mL of purified water were mixed, followed by stirring at 120° C. for one day. After completion of the reaction, the mixture was cooled to room temperature, filtered through silica, and the filtrate was concentrated under reduced pressure. The obtained reaction mixture was solidified with acetone and methanol to obtain 3.7 g (yield: 72.2%) of compound 5-214 (LT21-30-064) as a white solid.
합성예Synthesis example 24: 화합물 5-215(LT21-30-062)의 합성 24: Synthesis of compound 5-215 (LT21-30-062)
Figure PCTKR2022002862-appb-img-000329
Figure PCTKR2022002862-appb-img-000329
2구 250 mL 플라스크에서 1,3-다이브로모-5-(터트-부틸)벤젠(1,3-dibromo-5-(tert-butyl)benzene) 3.0 g(10.3 mmol), 중간체(44) 9.4 g(21.6 mmol), Pd(PPh3)4 0.6 g(0.5 mmol), K2CO3 5.7 g(41.1 mmol), 1,4-디옥센 40 mL, 정제수 20 mL를 혼합한 후, 120℃에서 하루동안 교반하였다. 반응이 종결된 후 상온으로 냉각하고 실리카에 여과하여 여액을 감압 농축하였다. 얻어진 반응 혼합물을 아세톤과 메탄올으로 고체화하여 흰색 고체의 화합물 5-215(LT21-30-062) 3.2 g(수율: 41.7%)을 얻었다. In a 2-neck 250 mL flask, 3.0 g (10.3 mmol) of 1,3-dibromo-5-(tert-butyl)benzene, 9.4 g of Intermediate (44) After mixing (21.6 mmol), Pd(PPh 3 ) 4 0.6 g (0.5 mmol), K 2 CO 3 5.7 g (41.1 mmol), 1,4-dioxene 40 mL, and purified water 20 mL, at 120° C. for one day stirred for a while. After completion of the reaction, the mixture was cooled to room temperature, filtered through silica, and the filtrate was concentrated under reduced pressure. The obtained reaction mixture was solidified with acetone and methanol to obtain 3.2 g (yield: 41.7%) of compound 5-215 (LT21-30-062) as a white solid.
합성예Synthesis example 25: 화합물 5-221(LT21-30-067)의 합성 25: Synthesis of compound 5-221 (LT21-30-067)
Figure PCTKR2022002862-appb-img-000330
Figure PCTKR2022002862-appb-img-000330
2구 250 mL 플라스크에서 1,3-다이브로모-5-(터트-부틸)벤젠(1,3-dibromo-5-(tert-butyl)benzene) 3.0 g(10.3 mmol), 중간체(46) 9.4 g(21.6 mmol), Pd(PPh3)4 0.6 g(0.5 mmol), K2CO3 5.7 g(41.1 mmol), 1,4-디옥센 40 mL, 정제수 20 mL를 혼합한 후, 120℃에서 하루동안 교반하였다. 반응이 종결된 후 상온으로 냉각하고 실리카에 여과하여 여액을 감압 농축하였다. 얻어진 반응 혼합물을 아세톤과 메탄올으로 고체화하여 흰색 고체의 화합물 5-221(LT21-30-067) 3.4 g(수율: 44.3%)을 얻었다. In a 2-neck 250 mL flask, 3.0 g (10.3 mmol) of 1,3-dibromo-5-(tert-butyl)benzene, 9.4 g of Intermediate (46) After mixing (21.6 mmol), Pd(PPh 3 ) 4 0.6 g (0.5 mmol), K 2 CO 3 5.7 g (41.1 mmol), 1,4-dioxene 40 mL, and purified water 20 mL, at 120° C. for one day stirred for a while. After completion of the reaction, the mixture was cooled to room temperature, filtered through silica, and the filtrate was concentrated under reduced pressure. The obtained reaction mixture was solidified with acetone and methanol to obtain 3.4 g (yield: 44.3%) of compound 5-221 (LT21-30-067) as a white solid.
합성예Synthesis example 26: 화합물 5-222(LT21-30-068)의 합성 26: Synthesis of compound 5-222 (LT21-30-068)
Figure PCTKR2022002862-appb-img-000331
Figure PCTKR2022002862-appb-img-000331
2구 250 mL 플라스크에서 1,3-다이브로모-5-(터트-부틸)벤젠(1,3-dibromo-5-(tert-butyl)benzene) 3.0 g(10.3 mmol), 중간체(48) 9.4 g(21.6 mmol), Pd(PPh3)4 0.6 g(0.5 mmol), K2CO3 5.7 g(41.1 mmol), 1,4-디옥센 40 mL, 정제수 20 mL를 혼합한 후, 120℃에서 하루동안 교반하였다. 반응이 종결된 후 상온으로 냉각하고 실리카에 여과하여 여액을 감압 농축하였다. 얻어진 반응 혼합물을 아세톤과 메탄올으로 고체화하여 흰색 고체의 화합물 5-222(LT21-30-068) 3.0 g(수율: 39.1%)을 얻었다. In a 2-neck 250 mL flask, 3.0 g (10.3 mmol) of 1,3-dibromo-5-(tert-butyl)benzene, 9.4 g of Intermediate (48) After mixing (21.6 mmol), Pd(PPh 3 ) 4 0.6 g (0.5 mmol), K 2 CO 3 5.7 g (41.1 mmol), 1,4-dioxene 40 mL, and purified water 20 mL, at 120° C. for one day stirred for a while. After completion of the reaction, the mixture was cooled to room temperature, filtered through silica, and the filtrate was concentrated under reduced pressure. The obtained reaction mixture was solidified with acetone and methanol to obtain 3.0 g (yield: 39.1%) of compound 5-222 (LT21-30-068) as a white solid.
합성예Synthesis example 27: 화합물 5-223(LT21-30-074)의 합성 27: Synthesis of compound 5-223 (LT21-30-074)
Figure PCTKR2022002862-appb-img-000332
Figure PCTKR2022002862-appb-img-000332
1구 250 mL 플라스크에서 1,5-디브로모-2,4-디플로로벤젠(1,5-dibromo-2,4-difluorobenzene) 3.0 g(11.0 mmol), 중간체(46) 10.1 g(23.2 mmol), Pd(PPh3)4 0.6 g(0.6 mmol), K2CO3 6.1 g(44.1 mmol), 1,4-디옥센 40 mL, 정제수 20 mL를 혼합한 후, 120℃에서 하루동안 교반하였다. 반응이 종결된 후 상온으로 냉각하고 실리카에 여과하여 여액을 감압 농축하였다. 얻어진 반응 혼합물을 아세톤과 메탄올으로 고체화하여 흰색 고체의 화합물 5-223(LT21-30-074) 3.8 g(수율: 47.4%)을 얻었다. In a 1-neck 250 mL flask, 3.0 g (11.0 mmol) of 1,5-dibromo-2,4-difluorobenzene (1,5-dibromo-2,4-difluorobenzene), 10.1 g (23.2) of the intermediate (46) mmol), Pd(PPh 3 ) 4 0.6 g (0.6 mmol), K 2 CO 3 6.1 g (44.1 mmol), 1,4-dioxene 40 mL, and purified water 20 mL were mixed, followed by stirring at 120° C. for one day. did. After completion of the reaction, the mixture was cooled to room temperature, filtered through silica, and the filtrate was concentrated under reduced pressure. The obtained reaction mixture was solidified with acetone and methanol to obtain 3.8 g (yield: 47.4%) of compound 5-223 (LT21-30-074) as a white solid.
합성예Synthesis example 28: 화합물 5-224(LT21-30-072)의 합성 28: Synthesis of compound 5-224 (LT21-30-072)
Figure PCTKR2022002862-appb-img-000333
Figure PCTKR2022002862-appb-img-000333
1구 250 mL 플라스크에서 1,5-디브로모-2,4-디플로로벤젠(1,5-dibromo-2,4-difluorobenzene) 3.0 g(11.0 mmol), 중간체(48) 10.1 g(23.2 mmol), Pd(PPh3)4 0.6 g(0.6 mmol), K2CO3 6.1 g(44.1 mmol), 1,4-디옥센 40 mL, 정제수 20 mL를 혼합한 후, 120℃에서 하루동안 교반하였다. 반응이 종결된 후 상온으로 냉각하고 실리카에 여과하여 여액을 감압 농축하였다. 얻어진 반응 혼합물을 아세톤과 메탄올으로 고체화하여 흰색 고체의 화합물 5-224(LT21-30-072) 3.5 g(수율: 43.7%)을 얻었다. In a 1-neck 250 mL flask, 1,5-dibromo-2,4-difluorobenzene (1,5-dibromo-2,4-difluorobenzene) 3.0 g (11.0 mmol), intermediate (48) 10.1 g (23.2) mmol), Pd(PPh 3 ) 4 0.6 g (0.6 mmol), K 2 CO 3 6.1 g (44.1 mmol), 1,4-dioxene 40 mL, and purified water 20 mL were mixed, followed by stirring at 120° C. for one day. did. After completion of the reaction, the mixture was cooled to room temperature, filtered through silica, and the filtrate was concentrated under reduced pressure. The obtained reaction mixture was solidified with acetone and methanol to obtain 3.5 g (yield: 43.7%) of compound 5-224 (LT21-30-072) as a white solid.
합성예Synthesis example 29: 화합물 5-219(LT21-30-056)의 합성 29: Synthesis of compound 5-219 (LT21-30-056)
Figure PCTKR2022002862-appb-img-000334
Figure PCTKR2022002862-appb-img-000334
1구 250 mL 플라스크에서 1,5-다이브로모-2,4-다이플루오로벤젠(1,5-dibromo-2,4-difluorobenzene) 2.2 g(8.1 mmol), 중간체(44) 10.5 g(24.3 mmol), Pd(PPh3)4 935.1 mg(809.2 μmol), K2CO3 8.6 g(40.5 mmol), 톨루엔 30 mL, 에탄올 10 mL 및 물 10 mL를 혼합한 후, 12 시간동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과한 후 물과 메탄올로 씻어서 건조하였다. 건조한 고체를 클로로포름에 끓여서 녹인 후 실리카 패드에 통과시키고, 다이클로로메탄으로 고체화하여, 흰색 고체의 화합물 5-219(LT21-30-056) 2.9 g(수율: 49.7%)을 얻었다.In a 1-neck 250 mL flask, 1,5-dibromo-2,4-difluorobenzene (1,5-dibromo-2,4-difluorobenzene) 2.2 g (8.1 mmol), Intermediate (44) 10.5 g (24.3 mmol) ), Pd(PPh 3 ) 4 935.1 mg (809.2 μmol), K 2 CO 3 8.6 g (40.5 mmol), toluene 30 mL, ethanol 10 mL and water 10 mL were mixed, followed by stirring under reflux for 12 hours. After the reaction was completed, it was cooled to room temperature, the solid was filtered, washed with water and methanol, and dried. The dried solid was dissolved by boiling in chloroform, passed through a silica pad, and solidified with dichloromethane to obtain 2.9 g (yield: 49.7%) of compound 5-219 (LT21-30-056) as a white solid.
합성예Synthesis example 30: 화합물 6-2(LT21-30-270)의 합성 30: Synthesis of compound 6-2 (LT21-30-270)
Figure PCTKR2022002862-appb-img-000335
Figure PCTKR2022002862-appb-img-000335
1구 1 L 플라스크에서 1,3-디브로모-5-플루오로벤젠(1,3-dibromo-5-fluorobenzene) 15.0 g(59.0 mmol), 중간체(51) 64.1 g(177.0 mmol), Pd(OAc)2 2.0 g(8.9 mmol), S-Phos 7.3 g(17.7 mmol), K2CO3 48.9 g(354.0 mmol) 및 테트라하이드로퓨란 454 mL를 혼합한 후, 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 증류수를 첨가하여 교반 후 에틸아세테이트로 추출하였다. 얻어진 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 흰색 고체의 화합물 6-2(LT21-30-270) 13.0 g(수율: 38.1%)을 얻었다. In a 1-neck 1 L flask, 1,3-dibromo-5-fluorobenzene (1,3-dibromo-5-fluorobenzene) 15.0 g (59.0 mmol), Intermediate (51) 64.1 g (177.0 mmol), Pd ( OAc) 2 2.0 g (8.9 mmol), S-Phos 7.3 g (17.7 mmol), K 2 CO 3 48.9 g (354.0 mmol) and tetrahydrofuran 454 mL were mixed, followed by stirring under reflux. After completion of the reaction, the mixture was cooled to room temperature, distilled water was added, stirred, and extracted with ethyl acetate. The obtained compound was purified by silica gel column chromatography to obtain 13.0 g (yield: 38.1%) of compound 6-2 (LT21-30-270) as a white solid.
합성예Synthesis example 31: 화합물 6-4(LT20-35-575)의 합성 31: Synthesis of compound 6-4 (LT20-35-575)
Figure PCTKR2022002862-appb-img-000336
Figure PCTKR2022002862-appb-img-000336
1구 1 L 플라스크에서 1,3-디브로모-5-(트리플로로메틸)벤젠(1,3-dibromo-5-(trifluoromethyl)benzene) 2.0 g(6.6 mmol), 중간체(51) 7.2 g(19.7 mmol), Pd(OAc)2 0.2 g(1.0 mmol), S-Phos 0.8 g(2.0 mmol), K2CO3 5.5 g(39.5 mmol) 및 테트라하이드로퓨란 100 mL를 혼합한 후, 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 증류수를 첨가하여 교반 후 에틸아세테이트로 추출하였다. 얻어진 화합물을 실리카겔 컬럼크로마토그래피로 정제하여 흰색 고체의 화합물 6-4(LT20-35-575) 2.3 g(수율: 40.3%)을 얻었다. In a 1-neck 1 L flask, 2.0 g (6.6 mmol) of 1,3-dibromo-5- (trifluoromethyl) benzene (1,3-dibromo-5- (trifluoromethyl) benzene), 7.2 g of the intermediate (51) (19.7 mmol), Pd(OAc) 2 0.2 g (1.0 mmol), S-Phos 0.8 g (2.0 mmol), K 2 CO 3 5.5 g (39.5 mmol) and tetrahydrofuran 100 mL were mixed and stirred under reflux. did. After completion of the reaction, the mixture was cooled to room temperature, distilled water was added, stirred, and extracted with ethyl acetate. The obtained compound was purified by silica gel column chromatography to obtain 2.3 g (yield: 40.3%) of compound 6-4 (LT20-35-575) as a white solid.
합성예Synthesis example 32: 화합물 6-25(LT20-35-583)의 합성 32: Synthesis of compound 6-25 (LT20-35-583)
Figure PCTKR2022002862-appb-img-000337
Figure PCTKR2022002862-appb-img-000337
1구 250 mL 플라스크에서 1,5-다이브로모-2,4-다이플로로벤젠(1,5-dibromo-2,4-difluorobenzene) 0.9 g(3.3 mmol), 중간체(54) 4.0 g(6.5 mmol), Pd(PPh3)4 0.2 g(0.2 mmol), K2CO3 1.4 g(10.0 mmol), 톨루엔 60 mL 및 에탄올 30 mL를 혼합한 후, 하루동안 환류 교반하였다. 반응이 종결된 후, 상온으로 냉각하였다. 분리된 유기층을 감압 증류하여 얻어진 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 흰색 고체의 화합물 6-25(LT20-35-583) 1.6 g(수율: 45.2%)을 얻었다. 1,5-dibromo-2,4-difluorobenzene (1,5-dibromo-2,4-difluorobenzene) 0.9 g (3.3 mmol) in a 1-neck 250 mL flask, Intermediate (54) 4.0 g (6.5 mmol) ), Pd(PPh 3 ) 4 0.2 g (0.2 mmol), K 2 CO 3 1.4 g (10.0 mmol), toluene 60 mL, and ethanol 30 mL were mixed and stirred under reflux for one day. After the reaction was completed, it was cooled to room temperature. The compound obtained by distilling the separated organic layer under reduced pressure was purified by silica gel column chromatography to obtain 1.6 g (yield: 45.2%) of compound 6-25 (LT20-35-583) as a white solid.
합성예Synthesis example 33: 화합물 6-29(LT21-30-226)의 합성 33: Synthesis of compound 6-29 (LT21-30-226)
Figure PCTKR2022002862-appb-img-000338
Figure PCTKR2022002862-appb-img-000338
2구 100 mL 플라스크에서 1,4-다이브로모-2,5-비스(트리플루오로메틸)벤젠(1,4-dibromo-2,5-bis(trifluoromethyl)benzene) 3.0 g(8.1 mmol), 중간체(56) 7.7 g(17.7 mmol), Pd(PPh3)4 559.3 mg(484.0 μmol), K2CO3 6.7 g(48.4 mmol), 톨루엔 40 mL, 에탄올 10 mL 및 증류수 10 mL를 혼합한 후, 80℃에서 하루 동안 교반 하였다. 반응이 종료되면 실온으로 냉각한 반응액을 여과한 후 증류수, 메탄올 및 헥세인으로 씻어주었다. 얻어진 혼합물을 톨루엔을 이용하여 실리카겔 패드 여과하고, 톨루엔으로 재결정화하여, 흰색 고체의 화합물 6-29(LT21-30-226) 2.45 g(수율: 36.7%)을 얻었다. In a 2-neck 100 mL flask, 3.0 g (8.1 mmol) of 1,4-dibromo-2,5-bis(trifluoromethyl)benzene (1,4-dibromo-2,5-bis(trifluoromethyl)benzene), intermediate (56) 7.7 g (17.7 mmol), Pd(PPh 3 ) 4 559.3 mg (484.0 μmol), K 2 CO 3 6.7 g (48.4 mmol), toluene 40 mL, ethanol 10 mL and distilled water 10 mL were mixed, Stirred at 80 °C for one day. When the reaction was completed, the reaction solution cooled to room temperature was filtered and washed with distilled water, methanol and hexane. The resulting mixture was filtered through a silica gel pad using toluene, and recrystallized from toluene to obtain 2.45 g (yield: 36.7%) of compound 6-29 (LT21-30-226) as a white solid.
<시험예><Test Example>
본 발명의 화합물에 대하여 Filmetrics社 F20 기기를 이용하여 투과율(Transmittance)를 측정하였다.For the compound of the present invention, transmittance was measured using a Filmetrics F20 instrument.
핵생성억제층 위로 쌓이는 금속의 증착 억제력을 비교하기 위해, 핵생성억제층의 종류에 따른 광학적인 특성변화를 분석하기 위한 샘플들을 준비하였다.In order to compare the deposition inhibiting power of the metal deposited on the nucleation inhibiting layer, samples were prepared to analyze the optical properties change according to the type of the nucleation inhibiting layer.
금속의 전기, 광학적 특성은 전자의 움직임에 의해 발생한다. 금속은 전자기파의 주파수에 따라 금속표면에 집중하여 전자가 반응하는 표피효과(skin effect)가 발생한다. 이 때 표피효과를 일으키는 두께를 표피 깊이(skin depth)라 하며 이 표피 깊이 보다 얇아지면 금속 고유의 전기 광학적인 특성을 잃는다. 특히, 광학적인 특징으로 표피 깊이 이하의 두께의 금속은 두께가 더 얇아질수록 더 투명한 특징을 가지므로, 금속 증착 억제 여부 및 정도를 금속의 투과율 스펙트럼을 분석하여 판단할 수 있다. The electrical and optical properties of metals are caused by the movement of electrons. Metals are concentrated on the metal surface according to the frequency of electromagnetic waves, and a skin effect occurs in which electrons react. At this time, the thickness that causes the skin effect is called the skin depth, and if it becomes thinner than the skin depth, the electro-optical properties inherent in the metal are lost. In particular, as an optical characteristic, since a metal having a thickness of less than the epidermal depth has a more transparent characteristic as the thickness becomes thinner, whether and the degree of inhibition of metal deposition can be determined by analyzing the transmittance spectrum of the metal.
핵 생성 억제 특성 평가용 단막 제작:Monolayer fabrication for evaluation of nucleation inhibition properties:
금속 증착 억제력을 분석하기 위해, 유리기판/REF01(50nm)(핵생성억제층)/Mg(500nm) 순서로 증착하여 핵 생성 억제 특성 평가용 단막 샘플을 제작한다. In order to analyze the metal deposition inhibition, a single-film sample for evaluating the nucleation inhibition properties is prepared by depositing in the order of a glass substrate/REF01 (50 nm) (nucleation inhibiting layer)/Mg (500 nm).
유기물인 REF01를 증착하기 전에 유리기판은 2×10- 2Torr에서 100W로 1분간 산소와 질소 혼합 플라즈마 처리를 하였다. 유기물은 9×10- 7Torr 이하의 진공도에서 증착하였으며, REF01는 1Å/sec, Mg은 2Å/sec로 증착하였다. Before depositing the organic REF01, the glass substrate was subjected to oxygen and nitrogen mixed plasma treatment at 2×10 2 Torr at 100 W for 1 minute. The organic material was deposited at a vacuum degree of 9×10 - 7 Torr or less, REF01 was deposited at 1 Å/sec, and Mg was deposited at 2 Å/sec.
샘플 제작이 끝난 후 소자의 공기 및 수분의 접촉을 막기 위하여 질소 기체로 채워져 있는 글러브 박스 안에서 샘플내부에 흡습 테이프를 부착하고 커버글래스에 나가세社 UV 레진으로 도포한 후 UV를 노광시켜 봉지를 하였다. After sample preparation, in order to prevent the device from contacting air and moisture, a moisture absorbing tape was attached to the inside of the sample in a glove box filled with nitrogen gas, applied to a cover glass with Nagase UV resin, and then exposed to UV and sealed.
유리기판 위에 증착 된 핵생성억제층은 자체적인 투과율 특성을 가지므로 실제 핵생성억제층 위에 증착된 금속의 투과율을 얻기 위해서는 도 1과 같이 유리기판/핵생성억제층 부분의 투과율A를 얻고 유리기판/핵생성억제층/금속으로 구성된 부분의 투과율B를 얻는다. 최종 금속에 의한 투과율C는 투과율B/투과율A로 얻을 수 있다.Since the nucleation inhibiting layer deposited on the glass substrate has its own transmittance characteristics, in order to obtain the actual transmittance of the metal deposited on the nucleation inhibiting layer, the transmittance A of the glass substrate/nucleation inhibiting layer portion is obtained as shown in FIG. /Nucleation inhibiting layer/Get the transmittance B of the metal part. The transmittance C by the final metal can be obtained as transmittance B/transmittance A.
상기 핵 생성 억제 특성 평가용 단막 제작에서 핵생성억제층의 화합물로 REF01를 사용하였다. REF01 was used as the compound of the nucleation inhibitory layer in the preparation of the single film for evaluation of the nucleation inhibition properties.
Figure PCTKR2022002862-appb-img-000339
Figure PCTKR2022002862-appb-img-000339
< 마그네슘(Mg) 핵생성 억제 시험> < Magnesium (Mg) nucleation inhibition test>
상기 핵 생성 억제 특성 평가용 단막 제작 시험예에서, 비교시험예는 핵 생성 억제층으로 상기 REF01를 사용하였고, 시험예 1 내지 45는 핵생성억제층으로 하기 표 1에 나타낸 각각의 화합물을 사용하였다.In the single membrane fabrication test example for evaluating the nucleation inhibition properties, the comparative test example used the REF01 as the nucleation inhibiting layer, and in Test Examples 1 to 45, each compound shown in Table 1 was used as the nucleation inhibiting layer. .
상기 비교시험예 및 시험예 1 내지 45에 의한 화합물의 광학 특성을 표 1에 나타내었다.The optical properties of the compounds according to the Comparative Test Examples and Test Examples 1 to 45 are shown in Table 1.
구분division 화합물compound 투과율A
(@550nm)
Transmittance A
(@550nm)
투과율B
(@550nm)
Transmittance B
(@550nm)
투과율C
(@550nm)
Transmittance C
(@550nm)
비교시험예 Comparative test example REF01REF01 80%80% 3%3% 3.7%3.7%
시험예 1Test Example 1 2-24
(LT19-30-238)
2-24
(LT19-30-238)
80%80% 80%80% 100%100%
시험예 2Test Example 2 2-27
(LT20-35-577)
2-27
(LT20-35-577)
80%80% 60%60% 75.0%75.0%
시험예 3Test Example 3 2-114
(LT20-35-570)
2-114
(LT20-35-570)
80%80% 57%57% 71.3%71.3%
시험예 4Test Example 4 2-535
(LT20-30-447)
2-535
(LT20-30-447)
80%80% 80%80% 100%100%
시험예 5Test Example 5 2-556
(LT20-30-089)
2-556
(LT20-30-089)
80%80% 80%80% 100%100%
시험예 6Test Example 6 2-755
(LT19-30-221)
2-755
(LT19-30-221)
80%80% 80%80% 100%100%
시험예 7Test Example 7 3-2
(LT20-35-574)
3-2
(LT20-35-574)
80%80% 72%72% 70.0%70.0%
시험예 8Test Example 8 3-115
(LT20-35-579)
3-115
(LT20-35-579)
80%80% 74%74% 92.5%92.5%
시험예 9Test Example 9 3-599
(LT20-30-573)
3-599
(LT20-30-573)
80%80% 80%80% 100%100%
시험예 10Test Example 10 4-2
(LT20-35-587)
4-2
(LT20-35-587)
80%80% 69%69% 86.3%86.3%
시험예 11Test Example 11 4-62
(LT20-35-580)
4-62
(LT20-35-580)
80%80% 63%63% 78.8%78.8%
시험예 12Test Example 12 4-277
(LT20-35-585)
4-277
(LT20-35-585)
80%80% 65%65% 81.3%81.3%
시험예 13Test Example 13 4-242
(LT20-30-360)
4-242
(LT20-30-360)
80%80% 80%80% 100%100%
시험예 14Test Example 14 4-244
(LT20-30-445)
4-244
(LT20-30-445)
80%80% 80%80% 100%100%
시험예 15Test Example 15 4-332
(LT20-30-078)
4-332
(LT20-30-078)
80%80% 80%80% 100%100%
시험예 16Test Example 16 4-491
(LT20-30-395)
4-491
(LT20-30-395)
80%80% 80%80% 100%100%
시험예 17Test Example 17 4-497
(LT20-30-348)
4-497
(LT20-30-348)
80%80% 80%80% 100%100%
시험예 18Test Example 18 4-520
(LT20-30-046)
4-520
(LT20-30-046)
80%80% 80%80% 100%100%
시험예 19Test Example 19 5-75
(LT21-30-076)
5-75
(LT21-30-076)
80%80% 80%80% 80%80%
시험예 20Test Example 20 5-168
(LT20-30-616)
5-168
(LT20-30-616)
80%80% 80%80% 100%100%
시험예 21Test Example 21 5-205
(LT20-30-457)
5-205
(LT20-30-457)
80%80% 80%80% 100%100%
시험예 22Test Example 22 5-210
(LT20-30-442)
5-210
(LT20-30-442)
80%80% 80%80% 100%100%
시험예 23Test Example 23 5-214
(LT21-30-064)
5-214
(LT21-30-064)
80%80% 80%80% 100%100%
시험예 24Test Example 24 5-215
(LT21-30-062)
5-215
(LT21-30-062)
80%80% 80%80% 100%100%
시험예 25Test Example 25 5-221
(LT21-30-067)
5-221
(LT21-30-067)
80%80% 80%80% 100%100%
시험예 26Test Example 26 5-222
(LT21-30-068)
5-222
(LT21-30-068)
80%80% 80%80% 100%100%
시험예 27Test Example 27 5-223
(LT21-30-074)
5-223
(LT21-30-074)
80%80% 80%80% 100%100%
시험예 28Test Example 28 5-224
(LT21-30-072)
5-224
(LT21-30-072)
80%80% 80%80% 100%100%
시험예 29Test Example 29 5-219
(LT21-30-056)
5-219
(LT21-30-056)
80%80% 80%80% 100%100%
시험예 30Test Example 30 6-2
(LT21-30-270)
6-2
(LT21-30-270)
80%80% 80%80% 100%100%
시험예 31Test Example 31 6-4
(LT20-35-575)
6-4
(LT20-35-575)
80%80% 80%80% 100%100%
시험예 32Test Example 32 6-25
(LT20-35-583)
6-25
(LT20-35-583)
80%80% 80%80% 100%100%
시험예 33Test Example 33 6-29
(LT21-30-226)
6-29
(LT21-30-226)
80%80% 80%80% 100%100%
상기 표 1의 결과로부터, 비교시험예(REF01)의 투과율C는 모든 가시광선 영역에서 투과율이 3.7%를 얻을 수 있었다. 이는 REF01가 마그네슘 증착 억제에 효과가 크지 않다는 것을 알 수 있는 결과이다. From the results of Table 1, the transmittance C of Comparative Test Example (REF01) was able to obtain a transmittance of 3.7% in all visible light regions. This is a result showing that REF01 is not effective in inhibiting magnesium deposition.
한편, 시험예에서 투과율C를 100%로 얻을 수 있는데, 이에 해당하는 화합물은 마그네슘 핵 생성 억제에 완전히 효과적이라는 것을 알 수 있으며, 투과율C가 80% 이상되는 화합물은 마그네슘 핵 생성 억제에 부분적으로 효과적이라는 것을 알 수 있다. On the other hand, it can be seen that the transmittance C can be obtained as 100% in the test example, and it can be seen that the compound corresponding to this is completely effective in inhibiting magnesium nucleation, and the compound having a transmittance C of 80% or more is partially effective in inhibiting magnesium nucleation. it can be seen that
<은(Ag)/마그네슘(Mg) 핵생성 억제 시험><Silver (Ag)/magnesium (Mg) nucleation inhibition test>
은(Ag):마그네슘(Mg)Silver (Ag): Magnesium (Mg) 혼합 금속에 대한 핵 생성 억제 특성 평가용 단막 제작: Monolayer fabrication for evaluation of nucleation inhibition properties for mixed metals:
상기 핵 생성 억제 특성 평가용 단막 제작에서 단막을 유리기판/REF01(10nm)(핵생성억제층)/(Ag/Mg)(9:1, 2.5 nm 또는 12.5 nm) 순서로 증착하여 단막 샘플을 제작한 것을 제외하고는, 상기 핵 생성 억제 특성 평가용 단막 제작과 동일한 방법을 사용하여 단막 샘플을 제조하였다.In the monolayer production for evaluation of the nucleation inhibition properties, a single film is deposited on a glass substrate / REF01 (10 nm) (nucleation inhibitory layer) / (Ag / Mg) (9:1, 2.5 nm or 12.5 nm) in the order to prepare a single film sample Except for the above, a single membrane sample was prepared using the same method as for preparing the single membrane for evaluation of the nucleation inhibition properties.
Figure PCTKR2022002862-appb-img-000340
Figure PCTKR2022002862-appb-img-000340
<은(Ag)/마그네슘(Mg) 혼합 금속에 대한 핵생성 억제 시험><Nucleation inhibition test for silver (Ag)/magnesium (Mg) mixed metal>
상기 은(Ag)/마그네슘(Mg) 혼합 금속에 대한 핵 생성 억제 특성 평가용 단막 제작에서, 비교시험예는 핵생성억제층으로 REF01를 사용하였고, 시험예 1 내지 10은 핵생성억제층으로 하기 표 2에 나타낸 각각의 화합물을 사용하였다.In the manufacture of a single film for evaluation of nucleation inhibition properties for the silver (Ag)/magnesium (Mg) mixed metal, REF01 was used as the nucleation inhibiting layer in Comparative Test Examples, and Test Examples 1 to 10 were used as the nucleation inhibiting layer. Each compound shown in Table 2 was used.
상기 비교시험예 및 시험예 1 내지 10에 의한 화합물의 광학 특성을 표 2에 나타내었다.The optical properties of the compounds according to the Comparative Test Examples and Test Examples 1 to 10 are shown in Table 2.
구분division 화합물compound 투과율 C[%]
(Ag/Mg 두께: 2.5nm)
Transmittance C [%]
(Ag/Mg thickness: 2.5nm)
투과율 C[%]
(Ag/Mg 두께: 12.5nm)
Transmittance C [%]
(Ag/Mg thickness: 12.5nm)
400nm400nm 500nm500nm 400nm400nm 500nm500nm
비교시험예Comparative test example REF01REF01 0%0% 0%0% 0%0% 0%0%
시험예 1Test Example 1 5-75
(LT21-30-076)
5-75
(LT21-30-076)
83%83% 94%94% 0%0% 0%0%
시험예 2Test Example 2 5-214
(LT21-30-064)
5-214
(LT21-30-064)
97%97% 100%100% 71%71% 62%62%
시험예 3Test Example 3 5-215
(LT21-30-062)
5-215
(LT21-30-062)
93%93% 100%100% 0%0% 0%0%
시험예 4Test Example 4 5-221
(LT21-30-067)
5-221
(LT21-30-067)
90%90% 98%98% 0%0% 0%0%
시험예 5Test Example 5 5-222
(LT21-30-068)
5-222
(LT21-30-068)
85%85% 97%97% 0%0% 0%0%
시험예 6Test Example 6 5-223
(LT21-30-074)
5-223
(LT21-30-074)
100%100% 100%100% 73%73% 70%70%
시험예 7Test Example 7 5-224
(LT21-30-072)
5-224
(LT21-30-072)
100%100% 100%100% 85%85% 70%70%
시험예 8Test Example 8 5-219
(LT21-30-056)
5-219
(LT21-30-056)
100%100% 100%100% 83%83% 70%70%
시험예 9Test Example 9 6-2
(LT21-30-270)
6-2
(LT21-30-270)
100%100% 100%100% 90%90% 100%100%
시험예 10Test Example 10 6-29
(LT21-30-226)
6-29
(LT21-30-226)
100%100% 100%100% 88%88% 95%95%
상기 표 2의 결과로부터, 비교 시험예(REF01)의 투과율C는 400nm 및 500nm 영역에서 투과율을 0%를 얻을 수 있었다. 이는 REF01가 은(Ag)/마그네슘(Mg) 합금 증착 억제에 전혀 효과적이지 않은 결과이다. From the results of Table 2, the transmittance C of the comparative test example (REF01) was able to obtain a transmittance of 0% in the 400 nm and 500 nm regions. This is a result that REF01 is not effective at all in suppressing the deposition of silver (Ag)/magnesium (Mg) alloy.
그러나 시험예 1 내지 시험예 10에서는 400nm 및 500nm에서 은(Ag)/마그네슘(Mg) 합급의 증착 두께가 2.5nm인 경우, 투과율이 80% 내지 100%로 얻을 수 있는데, 이에 해당하는 화합물은 은(Ag)/마그네슘(Mg) 합금 증착 억제에도 효과적이라는 것을 알 수 있다.However, in Test Examples 1 to 10, when the deposition thickness of the silver (Ag)/magnesium (Mg) alloy at 400 nm and 500 nm is 2.5 nm, transmittance can be obtained in 80% to 100%, and the corresponding compound is silver It can be seen that the (Ag)/magnesium (Mg) alloy is also effective in suppressing deposition.
<이터븀(Yb)/은(Ag):마그네슘(Mg) 핵생성 억제 시험><Ytterbium (Yb)/silver (Ag): magnesium (Mg) nucleation inhibition test>
이터븀(Ytterbium ( YbYb )/)/ 은(Ag):마그네슘(Mg)Silver (Ag): Magnesium (Mg) 혼합 금속에 대한 핵 생성 억제 특성 평가용 단막 제작: Single-film fabrication for evaluation of nucleation inhibition properties for mixed metals:
상기 핵 생성 억제 특성 평가용 단막 제작에서 단막을 유리기판/REF01(60nm)(핵생성억제층)/Yb(1.2 nm)/(Ag:Mg)(9:1, 2.5 nm 또는 12.5 nm) 순서로 증착하여 단막 샘플을 제작한 것을 제외하고는, 상기 핵 생성 억제 특성 평가용 단막 제작과 동일한 방법을 사용하여 단막 샘플을 제조하였다.In the production of the single film for evaluation of the nucleation inhibition properties, the single film is a glass substrate / REF01 (60 nm) (nucleation inhibiting layer) / Yb (1.2 nm) / (Ag: Mg) (9:1, 2.5 nm or 12.5 nm) in the order A single-layer sample was prepared by using the same method as for preparing a single-layer for evaluation of the nucleation inhibition characteristics, except that a single-layer sample was prepared by deposition.
Figure PCTKR2022002862-appb-img-000341
Figure PCTKR2022002862-appb-img-000341
<이터븀(Yb)/은(Ag):마그네슘(Mg) 혼합 금속에 대한 핵생성 억제 시험><Nucleation inhibition test for ytterbium (Yb)/silver (Ag):magnesium (Mg) mixed metal>
상기 이터븀(Yb)/은(Ag):마그네슘(Mg) 혼합 금속에 대한 핵 생성 억제 특성 평가용 단막 제작에서, 비교시험예는 핵생성억제층으로 REF01를 사용하였고, 시험예 1 내지 10은 핵생성억제층으로 하기 표 3에 나타낸 각각의 화합물을 사용하였다.In the production of a single film for evaluation of nucleation inhibition properties for the ytterbium (Yb)/silver (Ag):magnesium (Mg) mixed metal, REF01 was used as the nucleation inhibiting layer in Comparative Test Examples, and Test Examples 1 to 10 were Each of the compounds shown in Table 3 below was used as the nucleation inhibitory layer.
상기 비교시험예 및 시험예 1 내지 10에 의한 화합물의 광학 특성을 표 3에 나타내었다.Table 3 shows the optical properties of the compounds according to the Comparative Test Examples and Test Examples 1 to 10.
구분division 화합물compound 투과율 C[%]
(Ag/Mg 두께: 2.5nm)
Transmittance C [%]
(Ag/Mg thickness: 2.5nm)
투과율 C[%]
(Ag/Mg 두께: 12.5nm)
Transmittance C [%]
(Ag/Mg thickness: 12.5nm)
400nm400nm 500nm500nm 400nm400nm 500nm500nm
비교시험예Comparative test example REF01REF01 0%0% 0%0% 0%0% 0%0%
시험예 1Test Example 1 5-75
(LT21-30-076)
5-75
(LT21-30-076)
83%83% 94%94% 0%0% 0%0%
시험예 2Test Example 2 5-214
(LT21-30-064)
5-214
(LT21-30-064)
97%97% 100%100% 51%51% 44%44%
시험예 3Test Example 3 5-215
(LT21-30-062)
5-215
(LT21-30-062)
93%93% 100%100% 0%0% 0%0%
시험예 4Test Example 4 5-221
(LT21-30-067)
5-221
(LT21-30-067)
90%90% 98%98% 0%0% 0%0%
시험예 5Test Example 5 5-222
(LT21-30-068)
5-222
(LT21-30-068)
85%85% 97%97% 0%0% 0%0%
시험예 6Test Example 6 5-223
(LT21-30-074)
5-223
(LT21-30-074)
95%95% 100%100% 63%63% 57%57%
시험예 7Test Example 7 5-224
(LT21-30-072)
5-224
(LT21-30-072)
90%90% 92%92% 57%57% 50%50%
시험예 8Test Example 8 5-219
(LT21-30-056)
5-219
(LT21-30-056)
88%88% 90%90% 53%53% 50%50%
시험예 9Test Example 9 6-2
(LT21-30-270)
6-2
(LT21-30-270)
100%100% 100%100% 90%90% 100%100%
시험예 10Test Example 10 6-29
(LT21-30-226)
6-29
(LT21-30-226)
90%90% 100%100% 88%88% 95%95%
상기 표 3의 결과로부터 비교 시험예(REF01)의 투과율C는 400nm 및 500nm 영역에서 투과율 0%를 얻을 수 있었다. 이는 REF01가 이터븀(Yb)/은(Ag):마그네슘(Mg) 합급 증착 억제에 전혀 효과적이지 않은 결과이다. From the results of Table 3, the transmittance C of the comparative test example (REF01) was 0% transmittance in the 400 nm and 500 nm regions. This is a result that REF01 is not effective at all in suppressing the ytterbium (Yb)/silver (Ag):magnesium (Mg) alloy deposition.
그러나 시험예 1 내지 시험예 10에서는 400nm 및 500nm에서 이터븀(Yb)/은(Ag):마그네슘(Mg) 합급의 증착 두께가 2.5nm인 경우, 투과율을 80% 내지 100%로 얻을 수 있어서 이에 해당하는 화합물은 이터븀(Yb)/은(Ag):마그네슘(Mg) 합금 증착 억제에도 효과적이라는 것을 알 수 있다.However, in Test Examples 1 to 10, when the deposition thickness of the ytterbium (Yb)/silver (Ag):magnesium (Mg) alloy at 400 nm and 500 nm is 2.5 nm, transmittance can be obtained from 80% to 100%, so that It can be seen that the corresponding compounds are also effective in inhibiting the deposition of ytterbium (Yb)/silver (Ag):magnesium (Mg) alloys.
상기 표 1, 표 2 및 표 3의 결과로부터, 본 발명에 따른 유기 화합물은 유기 발광 소자를 비롯한 유기 전자 소자의 핵생성 억제용 재료로서 사용될 수 있고, 이를 이용한 유기 발광 소자의 음극(Cathorde)을 패터닝(Patterning)하는데 우수한 특성을 나타냄을 알 수 있다. From the results of Table 1, Table 2 and Table 3, the organic compound according to the present invention can be used as a material for suppressing nucleation of organic electronic devices including organic light emitting devices, and the cathode of the organic light emitting device using the same can be obtained. It can be seen that it exhibits excellent characteristics for patterning.
또한, 핵생성 억제용 재료의 사용에 있어서, 사용 금속 두께의 목표 두께치를 한 번에 증착하거나, 목표 두께치까지 얇은 두께로 여러 번 나눠서 증착하여, 핵생성 억제의 특성을 개선시킬 수 있다.In addition, in the use of the material for suppressing nucleation, it is possible to improve the characteristics of suppressing nucleation by depositing a target thickness of the metal used at one time or by depositing several times with a thin thickness up to the target thickness.
따라서 화학식 1의 화합물은 OLED에서 Cathode patterning 재료(CPM)로 사용하기 위한 의외의 바람직한 특성을 가지고 있다.Therefore, the compound of Formula 1 has unexpectedly desirable properties for use as a cathode patterning material (CPM) in an OLED.
본 발명의 화합물이 이러한 특성에 의해 산업용 유기 전자 소자 제품에 적용될 수 있다. The compound of the present invention can be applied to industrial organic electronic device products due to these properties.
다만, 전술한 합성예는 일 예시이며, 반응 조건은 필요에 따라 변경될 수 있다. 또한, 본 발명의 일 실시예에 따른 화합물은 당 기술분야에 알려진 방법 및 재료를 이용하여 다양한 치환기를 가지도록 합성될 수 있다. 화학식 1로 표시되는 코어 구조에 다양한 치환체를 도입함으로써 유기 전계 발광 소자에 사용되기에 적합한 특성을 가질 수 있다. However, the above-described synthesis example is an example, and the reaction conditions may be changed as needed. In addition, the compound according to an embodiment of the present invention may be synthesized to have various substituents using methods and materials known in the art. By introducing various substituents into the core structure represented by Formula 1, it may have properties suitable for use in an organic electroluminescent device.
본 발명에 따른 금속 핵 생성 억제 물질은, 유기 전계 발광 소자의 제조에서 음극을 형성하는 금속의 증착을 억제하는 것에 의해 음극을 패턴화할 수 있다. The metal nucleation inhibiting material according to the present invention can pattern the cathode by inhibiting the deposition of metal forming the cathode in the manufacture of an organic electroluminescent device.
이렇게 형성된 패턴화된 음극은 유기 전계 발광 소자에서 면 저항의 감소, 투과성 전극을 통한 IR 강하의 낮춤 및 UDC(Under Display Camera)를 이룰 수 있다. The patterned cathode thus formed can achieve a reduction in sheet resistance, a reduction in IR drop through a transmissive electrode, and an Under Display Camera (UDC) in an organic electroluminescent device.

Claims (9)

  1. 하기 화학식 1로 표시되는, 유기전계발광소자의 음극의 패턴화를 위한 핵생성 억제 형성용 물질.A material for inhibiting nucleation for patterning of the cathode of an organic electroluminescent device, represented by the following formula (1).
    [화학식 1][Formula 1]
    Figure PCTKR2022002862-appb-img-000342
    Figure PCTKR2022002862-appb-img-000342
    상기 화학식 1에서, In Formula 1,
    L1, L2 및 L3은, 각각 독립적으로 F, CF3, TMS, 알킬기 및 시클로알킬기 중 적어도 어느 하나로 치환 또는 비치환된, 아릴렌기 또는 헤테로아릴렌기이며, L 1 , L 2 and L 3 are each independently F, CF 3 , TMS, an arylene group or a heteroarylene group, substituted or unsubstituted with at least one of an alkyl group and a cycloalkyl group,
    p, q 및 r이 각각 2이상인 경우, 각각의 L1, L2 및 L3은 서로 같거나 상이하며,When p, q and r are each 2 or more, each L 1 , L 2 and L 3 are the same as or different from each other,
    Ar1, Ar2 및 Ar3은, 각각 독립적으로 F, CF3, TMS, 알킬기, 시클로알킬기 및 아릴기 중 적어도 어느 하나로 치환 또는 비치환된, 아릴기 또는 헤테로아릴기이고, Ar 1 , Ar 2 and Ar 3 are each independently F, CF 3 , TMS, an alkyl group, a cycloalkyl group, and an aryl group unsubstituted or substituted with at least one of an aryl group or a heteroaryl group,
    R1은 H, F, CF3, 알킬기 및 시클로알킬기 중 적어도 어느 하나이며,R 1 is at least one of H, F, CF 3 , an alkyl group and a cycloalkyl group,
    m은 0 내지 4의 정수이고,m is an integer from 0 to 4,
    m이 2이상인 경우, 각각의 R1은 서로 같거나 상이하며, When m is 2 or more, each R 1 is the same as or different from each other,
    p, q 및 r은 각각 독립적으로 0 내지 5의 정수이고,p, q and r are each independently an integer of 0 to 5,
    n 은 0 또는 1의 정수이다.n is an integer of 0 or 1.
  2. 제 1항에 있어서, The method of claim 1,
    상기 화학식 1은, Formula 1 is,
    L1, L2 및 L3은, 각각 독립적으로 F, CF3, TMS, 알킬기 및 시클로알킬기 중 적어도 어느 하나로 치환 또는 비치환된, 페닐기, 나프탈렌기, 안트라센기, 트라이페닐렌기 및 피리딘기 중에서 선택되며,L 1 , L 2 and L 3 are each independently selected from F, CF 3 , TMS, a phenyl group, a naphthalene group, an anthracene group, a triphenylene group, and a pyridine group, unsubstituted or substituted with at least one of an alkyl group and a cycloalkyl group becomes,
    p, q, 및 r이 2이상인 경우, 각각의 L1, L2 및 L3은 서로 같거나 상이하며,When p, q, and r are 2 or more, each L 1 , L 2 and L 3 are the same as or different from each other,
    Ar1, Ar2 및 Ar3은, 각각 독립적으로 F, CF3, TMS, 알킬기, 시클로알킬기 및 아릴기 중 적어도 어느 하나로 치환 또는 비치환된, 페닐기, 피리딘기, 나프틸기, 안트라센기, 페난트렌기, 디벤조퓨란기, 디벤조티오펜기, 벤즈옥사졸기, 벤즈티아졸기, 벤조이미다졸기, 카바졸기 및 트리페닐렌기 중에서 선택되는데, Ar 1 , Ar 2 and Ar 3 are each independently F, CF 3 , TMS, an alkyl group, a cycloalkyl group, and an aryl group that is unsubstituted or substituted with at least one of a phenyl group, a pyridine group, a naphthyl group, an anthracene group, a phenanthrene group, dibenzofuran It is selected from a group, a dibenzothiophene group, a benzoxazole group, a benzthiazole group, a benzimidazole group, a carbazole group and a triphenylene group,
    이때 상기 아릴기는 F, CF3, TMS, 알킬기 및 시클로알킬기 중 적어도 어느 하나로 치환 또는 비치환된 페닐기이며, In this case, the aryl group is a phenyl group unsubstituted or substituted with at least one of F, CF 3 , TMS, an alkyl group, and a cycloalkyl group,
    R1, p, q, r, m 및 n은 상기 청구항 1에서 정의한 바와 같은 것을 특징으로 하는, 유기전계발광소자의 음극의 패턴화를 위한 핵생성 억제 형성용 물질.R 1 , p, q, r, m and n are nucleation-inhibited forming materials for patterning the cathode of an organic electroluminescent device, characterized in that as defined in claim 1 above.
  3. 제 1항에 있어서,The method of claim 1,
    상기 화학식 1은 하기 화학식 2 내지 화학식 6의 화합물 중에서 선택되는 유기전계발광소자의 음극의 패턴화를 위한 핵생성 억제 형성용 물질. Formula 1 is a material for inhibiting nucleation for patterning the cathode of an organic electroluminescent device selected from compounds of Formulas 2 to 6 below.
    [화학식 2] [Formula 2]
    Figure PCTKR2022002862-appb-img-000343
    Figure PCTKR2022002862-appb-img-000343
    Figure PCTKR2022002862-appb-img-000344
    Figure PCTKR2022002862-appb-img-000344
    Figure PCTKR2022002862-appb-img-000345
    Figure PCTKR2022002862-appb-img-000345
    Figure PCTKR2022002862-appb-img-000346
    Figure PCTKR2022002862-appb-img-000346
    Figure PCTKR2022002862-appb-img-000347
    Figure PCTKR2022002862-appb-img-000347
    Figure PCTKR2022002862-appb-img-000348
    Figure PCTKR2022002862-appb-img-000348
    Figure PCTKR2022002862-appb-img-000349
    Figure PCTKR2022002862-appb-img-000349
    Figure PCTKR2022002862-appb-img-000350
    Figure PCTKR2022002862-appb-img-000350
    Figure PCTKR2022002862-appb-img-000351
    Figure PCTKR2022002862-appb-img-000351
    Figure PCTKR2022002862-appb-img-000352
    Figure PCTKR2022002862-appb-img-000352
    Figure PCTKR2022002862-appb-img-000353
    Figure PCTKR2022002862-appb-img-000353
    Figure PCTKR2022002862-appb-img-000354
    Figure PCTKR2022002862-appb-img-000354
    Figure PCTKR2022002862-appb-img-000355
    Figure PCTKR2022002862-appb-img-000355
    Figure PCTKR2022002862-appb-img-000356
    Figure PCTKR2022002862-appb-img-000356
    Figure PCTKR2022002862-appb-img-000357
    Figure PCTKR2022002862-appb-img-000357
    Figure PCTKR2022002862-appb-img-000358
    Figure PCTKR2022002862-appb-img-000358
    Figure PCTKR2022002862-appb-img-000359
    Figure PCTKR2022002862-appb-img-000359
    Figure PCTKR2022002862-appb-img-000360
    Figure PCTKR2022002862-appb-img-000360
    Figure PCTKR2022002862-appb-img-000361
    Figure PCTKR2022002862-appb-img-000361
    Figure PCTKR2022002862-appb-img-000362
    Figure PCTKR2022002862-appb-img-000362
    Figure PCTKR2022002862-appb-img-000363
    Figure PCTKR2022002862-appb-img-000363
    Figure PCTKR2022002862-appb-img-000364
    Figure PCTKR2022002862-appb-img-000364
    Figure PCTKR2022002862-appb-img-000365
    Figure PCTKR2022002862-appb-img-000365
    Figure PCTKR2022002862-appb-img-000366
    Figure PCTKR2022002862-appb-img-000366
    Figure PCTKR2022002862-appb-img-000367
    Figure PCTKR2022002862-appb-img-000367
    Figure PCTKR2022002862-appb-img-000368
    Figure PCTKR2022002862-appb-img-000368
    Figure PCTKR2022002862-appb-img-000369
    Figure PCTKR2022002862-appb-img-000369
    Figure PCTKR2022002862-appb-img-000370
    Figure PCTKR2022002862-appb-img-000370
    Figure PCTKR2022002862-appb-img-000371
    Figure PCTKR2022002862-appb-img-000371
    Figure PCTKR2022002862-appb-img-000372
    Figure PCTKR2022002862-appb-img-000372
    Figure PCTKR2022002862-appb-img-000373
    Figure PCTKR2022002862-appb-img-000373
    Figure PCTKR2022002862-appb-img-000374
    Figure PCTKR2022002862-appb-img-000374
    Figure PCTKR2022002862-appb-img-000375
    Figure PCTKR2022002862-appb-img-000375
    Figure PCTKR2022002862-appb-img-000376
    Figure PCTKR2022002862-appb-img-000376
    Figure PCTKR2022002862-appb-img-000377
    Figure PCTKR2022002862-appb-img-000377
    Figure PCTKR2022002862-appb-img-000378
    Figure PCTKR2022002862-appb-img-000378
    Figure PCTKR2022002862-appb-img-000379
    Figure PCTKR2022002862-appb-img-000379
    Figure PCTKR2022002862-appb-img-000380
    Figure PCTKR2022002862-appb-img-000380
    Figure PCTKR2022002862-appb-img-000381
    Figure PCTKR2022002862-appb-img-000381
    Figure PCTKR2022002862-appb-img-000382
    Figure PCTKR2022002862-appb-img-000382
    Figure PCTKR2022002862-appb-img-000383
    Figure PCTKR2022002862-appb-img-000383
    Figure PCTKR2022002862-appb-img-000384
    Figure PCTKR2022002862-appb-img-000384
    Figure PCTKR2022002862-appb-img-000385
    Figure PCTKR2022002862-appb-img-000385
    Figure PCTKR2022002862-appb-img-000386
    Figure PCTKR2022002862-appb-img-000386
    Figure PCTKR2022002862-appb-img-000387
    Figure PCTKR2022002862-appb-img-000387
    Figure PCTKR2022002862-appb-img-000388
    Figure PCTKR2022002862-appb-img-000388
    Figure PCTKR2022002862-appb-img-000389
    Figure PCTKR2022002862-appb-img-000389
    Figure PCTKR2022002862-appb-img-000390
    Figure PCTKR2022002862-appb-img-000390
    Figure PCTKR2022002862-appb-img-000391
    Figure PCTKR2022002862-appb-img-000391
    Figure PCTKR2022002862-appb-img-000392
    Figure PCTKR2022002862-appb-img-000392
    Figure PCTKR2022002862-appb-img-000393
    Figure PCTKR2022002862-appb-img-000393
    Figure PCTKR2022002862-appb-img-000394
    Figure PCTKR2022002862-appb-img-000394
    Figure PCTKR2022002862-appb-img-000395
    Figure PCTKR2022002862-appb-img-000395
    Figure PCTKR2022002862-appb-img-000396
    Figure PCTKR2022002862-appb-img-000396
    Figure PCTKR2022002862-appb-img-000397
    Figure PCTKR2022002862-appb-img-000397
    Figure PCTKR2022002862-appb-img-000398
    Figure PCTKR2022002862-appb-img-000398
    Figure PCTKR2022002862-appb-img-000399
    Figure PCTKR2022002862-appb-img-000399
    Figure PCTKR2022002862-appb-img-000400
    Figure PCTKR2022002862-appb-img-000400
    Figure PCTKR2022002862-appb-img-000401
    Figure PCTKR2022002862-appb-img-000401
    Figure PCTKR2022002862-appb-img-000402
    Figure PCTKR2022002862-appb-img-000402
    Figure PCTKR2022002862-appb-img-000403
    Figure PCTKR2022002862-appb-img-000403
    Figure PCTKR2022002862-appb-img-000404
    Figure PCTKR2022002862-appb-img-000404
    Figure PCTKR2022002862-appb-img-000405
    Figure PCTKR2022002862-appb-img-000405
    Figure PCTKR2022002862-appb-img-000406
    Figure PCTKR2022002862-appb-img-000406
    Figure PCTKR2022002862-appb-img-000407
    Figure PCTKR2022002862-appb-img-000407
    Figure PCTKR2022002862-appb-img-000408
    Figure PCTKR2022002862-appb-img-000408
    Figure PCTKR2022002862-appb-img-000409
    Figure PCTKR2022002862-appb-img-000409
    Figure PCTKR2022002862-appb-img-000410
    Figure PCTKR2022002862-appb-img-000410
    Figure PCTKR2022002862-appb-img-000411
    Figure PCTKR2022002862-appb-img-000411
    Figure PCTKR2022002862-appb-img-000412
    Figure PCTKR2022002862-appb-img-000412
    Figure PCTKR2022002862-appb-img-000413
    Figure PCTKR2022002862-appb-img-000413
    Figure PCTKR2022002862-appb-img-000414
    Figure PCTKR2022002862-appb-img-000414
    [화학식 3] [Formula 3]
    Figure PCTKR2022002862-appb-img-000415
    Figure PCTKR2022002862-appb-img-000415
    Figure PCTKR2022002862-appb-img-000416
    Figure PCTKR2022002862-appb-img-000416
    Figure PCTKR2022002862-appb-img-000417
    Figure PCTKR2022002862-appb-img-000417
    Figure PCTKR2022002862-appb-img-000418
    Figure PCTKR2022002862-appb-img-000418
    Figure PCTKR2022002862-appb-img-000419
    Figure PCTKR2022002862-appb-img-000419
    Figure PCTKR2022002862-appb-img-000420
    Figure PCTKR2022002862-appb-img-000420
    Figure PCTKR2022002862-appb-img-000421
    Figure PCTKR2022002862-appb-img-000421
    Figure PCTKR2022002862-appb-img-000422
    Figure PCTKR2022002862-appb-img-000422
    Figure PCTKR2022002862-appb-img-000423
    Figure PCTKR2022002862-appb-img-000423
    Figure PCTKR2022002862-appb-img-000424
    Figure PCTKR2022002862-appb-img-000424
    Figure PCTKR2022002862-appb-img-000425
    Figure PCTKR2022002862-appb-img-000425
    Figure PCTKR2022002862-appb-img-000426
    Figure PCTKR2022002862-appb-img-000426
    Figure PCTKR2022002862-appb-img-000427
    Figure PCTKR2022002862-appb-img-000427
    Figure PCTKR2022002862-appb-img-000428
    Figure PCTKR2022002862-appb-img-000428
    Figure PCTKR2022002862-appb-img-000429
    Figure PCTKR2022002862-appb-img-000429
    Figure PCTKR2022002862-appb-img-000430
    Figure PCTKR2022002862-appb-img-000430
    Figure PCTKR2022002862-appb-img-000431
    Figure PCTKR2022002862-appb-img-000431
    Figure PCTKR2022002862-appb-img-000432
    Figure PCTKR2022002862-appb-img-000432
    Figure PCTKR2022002862-appb-img-000433
    Figure PCTKR2022002862-appb-img-000433
    Figure PCTKR2022002862-appb-img-000434
    Figure PCTKR2022002862-appb-img-000434
    Figure PCTKR2022002862-appb-img-000435
    Figure PCTKR2022002862-appb-img-000435
    Figure PCTKR2022002862-appb-img-000436
    Figure PCTKR2022002862-appb-img-000436
    Figure PCTKR2022002862-appb-img-000437
    Figure PCTKR2022002862-appb-img-000437
    Figure PCTKR2022002862-appb-img-000438
    Figure PCTKR2022002862-appb-img-000438
    Figure PCTKR2022002862-appb-img-000439
    Figure PCTKR2022002862-appb-img-000439
    Figure PCTKR2022002862-appb-img-000440
    Figure PCTKR2022002862-appb-img-000440
    Figure PCTKR2022002862-appb-img-000441
    Figure PCTKR2022002862-appb-img-000441
    Figure PCTKR2022002862-appb-img-000442
    Figure PCTKR2022002862-appb-img-000442
    Figure PCTKR2022002862-appb-img-000443
    Figure PCTKR2022002862-appb-img-000443
    Figure PCTKR2022002862-appb-img-000444
    Figure PCTKR2022002862-appb-img-000444
    Figure PCTKR2022002862-appb-img-000445
    Figure PCTKR2022002862-appb-img-000445
    Figure PCTKR2022002862-appb-img-000446
    Figure PCTKR2022002862-appb-img-000446
    Figure PCTKR2022002862-appb-img-000447
    Figure PCTKR2022002862-appb-img-000447
    Figure PCTKR2022002862-appb-img-000448
    Figure PCTKR2022002862-appb-img-000448
    Figure PCTKR2022002862-appb-img-000449
    Figure PCTKR2022002862-appb-img-000449
    Figure PCTKR2022002862-appb-img-000450
    Figure PCTKR2022002862-appb-img-000450
    Figure PCTKR2022002862-appb-img-000451
    Figure PCTKR2022002862-appb-img-000451
    Figure PCTKR2022002862-appb-img-000452
    Figure PCTKR2022002862-appb-img-000452
    Figure PCTKR2022002862-appb-img-000453
    Figure PCTKR2022002862-appb-img-000453
    Figure PCTKR2022002862-appb-img-000454
    Figure PCTKR2022002862-appb-img-000454
    Figure PCTKR2022002862-appb-img-000455
    Figure PCTKR2022002862-appb-img-000455
    Figure PCTKR2022002862-appb-img-000456
    Figure PCTKR2022002862-appb-img-000456
    Figure PCTKR2022002862-appb-img-000457
    Figure PCTKR2022002862-appb-img-000457
    Figure PCTKR2022002862-appb-img-000458
    Figure PCTKR2022002862-appb-img-000458
    Figure PCTKR2022002862-appb-img-000459
    Figure PCTKR2022002862-appb-img-000459
    Figure PCTKR2022002862-appb-img-000460
    Figure PCTKR2022002862-appb-img-000460
    Figure PCTKR2022002862-appb-img-000461
    Figure PCTKR2022002862-appb-img-000461
    Figure PCTKR2022002862-appb-img-000462
    Figure PCTKR2022002862-appb-img-000462
    Figure PCTKR2022002862-appb-img-000463
    Figure PCTKR2022002862-appb-img-000463
    Figure PCTKR2022002862-appb-img-000464
    Figure PCTKR2022002862-appb-img-000464
    Figure PCTKR2022002862-appb-img-000465
    Figure PCTKR2022002862-appb-img-000465
    Figure PCTKR2022002862-appb-img-000466
    Figure PCTKR2022002862-appb-img-000466
    Figure PCTKR2022002862-appb-img-000467
    Figure PCTKR2022002862-appb-img-000467
    Figure PCTKR2022002862-appb-img-000468
    Figure PCTKR2022002862-appb-img-000468
    Figure PCTKR2022002862-appb-img-000469
    Figure PCTKR2022002862-appb-img-000469
    Figure PCTKR2022002862-appb-img-000470
    Figure PCTKR2022002862-appb-img-000470
    Figure PCTKR2022002862-appb-img-000471
    Figure PCTKR2022002862-appb-img-000471
    Figure PCTKR2022002862-appb-img-000472
    Figure PCTKR2022002862-appb-img-000472
    Figure PCTKR2022002862-appb-img-000473
    Figure PCTKR2022002862-appb-img-000473
    Figure PCTKR2022002862-appb-img-000474
    Figure PCTKR2022002862-appb-img-000474
    Figure PCTKR2022002862-appb-img-000475
    Figure PCTKR2022002862-appb-img-000475
    Figure PCTKR2022002862-appb-img-000476
    Figure PCTKR2022002862-appb-img-000476
    Figure PCTKR2022002862-appb-img-000477
    Figure PCTKR2022002862-appb-img-000477
    Figure PCTKR2022002862-appb-img-000478
    Figure PCTKR2022002862-appb-img-000478
    Figure PCTKR2022002862-appb-img-000479
    Figure PCTKR2022002862-appb-img-000479
    Figure PCTKR2022002862-appb-img-000480
    Figure PCTKR2022002862-appb-img-000480
    Figure PCTKR2022002862-appb-img-000481
    Figure PCTKR2022002862-appb-img-000481
    Figure PCTKR2022002862-appb-img-000482
    Figure PCTKR2022002862-appb-img-000482
    Figure PCTKR2022002862-appb-img-000483
    Figure PCTKR2022002862-appb-img-000483
    Figure PCTKR2022002862-appb-img-000484
    Figure PCTKR2022002862-appb-img-000484
    Figure PCTKR2022002862-appb-img-000485
    Figure PCTKR2022002862-appb-img-000485
    Figure PCTKR2022002862-appb-img-000486
    Figure PCTKR2022002862-appb-img-000486
    Figure PCTKR2022002862-appb-img-000487
    Figure PCTKR2022002862-appb-img-000487
    Figure PCTKR2022002862-appb-img-000488
    Figure PCTKR2022002862-appb-img-000488
    Figure PCTKR2022002862-appb-img-000489
    Figure PCTKR2022002862-appb-img-000489
    Figure PCTKR2022002862-appb-img-000490
    Figure PCTKR2022002862-appb-img-000490
    Figure PCTKR2022002862-appb-img-000491
    Figure PCTKR2022002862-appb-img-000491
    [화학식 4] [Formula 4]
    Figure PCTKR2022002862-appb-img-000492
    Figure PCTKR2022002862-appb-img-000492
    Figure PCTKR2022002862-appb-img-000493
    Figure PCTKR2022002862-appb-img-000493
    Figure PCTKR2022002862-appb-img-000494
    Figure PCTKR2022002862-appb-img-000494
    Figure PCTKR2022002862-appb-img-000495
    Figure PCTKR2022002862-appb-img-000495
    Figure PCTKR2022002862-appb-img-000496
    Figure PCTKR2022002862-appb-img-000496
    Figure PCTKR2022002862-appb-img-000497
    Figure PCTKR2022002862-appb-img-000497
    Figure PCTKR2022002862-appb-img-000498
    Figure PCTKR2022002862-appb-img-000498
    Figure PCTKR2022002862-appb-img-000499
    Figure PCTKR2022002862-appb-img-000499
    Figure PCTKR2022002862-appb-img-000500
    Figure PCTKR2022002862-appb-img-000500
    Figure PCTKR2022002862-appb-img-000501
    Figure PCTKR2022002862-appb-img-000501
    Figure PCTKR2022002862-appb-img-000502
    Figure PCTKR2022002862-appb-img-000502
    Figure PCTKR2022002862-appb-img-000503
    Figure PCTKR2022002862-appb-img-000503
    Figure PCTKR2022002862-appb-img-000504
    Figure PCTKR2022002862-appb-img-000504
    Figure PCTKR2022002862-appb-img-000505
    Figure PCTKR2022002862-appb-img-000505
    Figure PCTKR2022002862-appb-img-000506
    Figure PCTKR2022002862-appb-img-000506
    Figure PCTKR2022002862-appb-img-000507
    Figure PCTKR2022002862-appb-img-000507
    Figure PCTKR2022002862-appb-img-000508
    Figure PCTKR2022002862-appb-img-000508
    Figure PCTKR2022002862-appb-img-000509
    Figure PCTKR2022002862-appb-img-000509
    Figure PCTKR2022002862-appb-img-000510
    Figure PCTKR2022002862-appb-img-000510
    Figure PCTKR2022002862-appb-img-000511
    Figure PCTKR2022002862-appb-img-000511
    Figure PCTKR2022002862-appb-img-000512
    Figure PCTKR2022002862-appb-img-000512
    Figure PCTKR2022002862-appb-img-000513
    Figure PCTKR2022002862-appb-img-000513
    Figure PCTKR2022002862-appb-img-000514
    Figure PCTKR2022002862-appb-img-000514
    Figure PCTKR2022002862-appb-img-000515
    Figure PCTKR2022002862-appb-img-000515
    Figure PCTKR2022002862-appb-img-000516
    Figure PCTKR2022002862-appb-img-000516
    Figure PCTKR2022002862-appb-img-000517
    Figure PCTKR2022002862-appb-img-000517
    Figure PCTKR2022002862-appb-img-000518
    Figure PCTKR2022002862-appb-img-000518
    Figure PCTKR2022002862-appb-img-000519
    Figure PCTKR2022002862-appb-img-000519
    Figure PCTKR2022002862-appb-img-000520
    Figure PCTKR2022002862-appb-img-000520
    Figure PCTKR2022002862-appb-img-000521
    Figure PCTKR2022002862-appb-img-000521
    Figure PCTKR2022002862-appb-img-000522
    Figure PCTKR2022002862-appb-img-000522
    Figure PCTKR2022002862-appb-img-000523
    Figure PCTKR2022002862-appb-img-000523
    Figure PCTKR2022002862-appb-img-000524
    Figure PCTKR2022002862-appb-img-000524
    Figure PCTKR2022002862-appb-img-000525
    Figure PCTKR2022002862-appb-img-000525
    Figure PCTKR2022002862-appb-img-000526
    Figure PCTKR2022002862-appb-img-000526
    Figure PCTKR2022002862-appb-img-000527
    Figure PCTKR2022002862-appb-img-000527
    Figure PCTKR2022002862-appb-img-000528
    Figure PCTKR2022002862-appb-img-000528
    Figure PCTKR2022002862-appb-img-000529
    Figure PCTKR2022002862-appb-img-000529
    Figure PCTKR2022002862-appb-img-000530
    Figure PCTKR2022002862-appb-img-000530
    Figure PCTKR2022002862-appb-img-000531
    Figure PCTKR2022002862-appb-img-000531
    Figure PCTKR2022002862-appb-img-000532
    Figure PCTKR2022002862-appb-img-000532
    Figure PCTKR2022002862-appb-img-000533
    Figure PCTKR2022002862-appb-img-000533
    Figure PCTKR2022002862-appb-img-000534
    Figure PCTKR2022002862-appb-img-000534
    Figure PCTKR2022002862-appb-img-000535
    Figure PCTKR2022002862-appb-img-000535
    Figure PCTKR2022002862-appb-img-000536
    Figure PCTKR2022002862-appb-img-000536
    Figure PCTKR2022002862-appb-img-000537
    Figure PCTKR2022002862-appb-img-000537
    Figure PCTKR2022002862-appb-img-000538
    Figure PCTKR2022002862-appb-img-000538
    Figure PCTKR2022002862-appb-img-000539
    Figure PCTKR2022002862-appb-img-000539
    Figure PCTKR2022002862-appb-img-000540
    Figure PCTKR2022002862-appb-img-000540
    Figure PCTKR2022002862-appb-img-000541
    Figure PCTKR2022002862-appb-img-000541
    Figure PCTKR2022002862-appb-img-000542
    Figure PCTKR2022002862-appb-img-000542
    Figure PCTKR2022002862-appb-img-000543
    Figure PCTKR2022002862-appb-img-000543
    Figure PCTKR2022002862-appb-img-000544
    Figure PCTKR2022002862-appb-img-000544
    Figure PCTKR2022002862-appb-img-000545
    Figure PCTKR2022002862-appb-img-000545
    Figure PCTKR2022002862-appb-img-000546
    Figure PCTKR2022002862-appb-img-000546
    Figure PCTKR2022002862-appb-img-000547
    Figure PCTKR2022002862-appb-img-000547
    Figure PCTKR2022002862-appb-img-000548
    Figure PCTKR2022002862-appb-img-000548
    Figure PCTKR2022002862-appb-img-000549
    Figure PCTKR2022002862-appb-img-000549
    Figure PCTKR2022002862-appb-img-000550
    Figure PCTKR2022002862-appb-img-000550
    Figure PCTKR2022002862-appb-img-000551
    Figure PCTKR2022002862-appb-img-000551
    Figure PCTKR2022002862-appb-img-000552
    Figure PCTKR2022002862-appb-img-000552
    Figure PCTKR2022002862-appb-img-000553
    Figure PCTKR2022002862-appb-img-000553
    Figure PCTKR2022002862-appb-img-000554
    Figure PCTKR2022002862-appb-img-000554
    Figure PCTKR2022002862-appb-img-000555
    Figure PCTKR2022002862-appb-img-000555
    Figure PCTKR2022002862-appb-img-000556
    Figure PCTKR2022002862-appb-img-000556
    Figure PCTKR2022002862-appb-img-000557
    Figure PCTKR2022002862-appb-img-000557
    Figure PCTKR2022002862-appb-img-000558
    Figure PCTKR2022002862-appb-img-000558
    Figure PCTKR2022002862-appb-img-000559
    Figure PCTKR2022002862-appb-img-000559
    Figure PCTKR2022002862-appb-img-000560
    Figure PCTKR2022002862-appb-img-000560
    Figure PCTKR2022002862-appb-img-000561
    Figure PCTKR2022002862-appb-img-000561
    Figure PCTKR2022002862-appb-img-000562
    Figure PCTKR2022002862-appb-img-000562
    Figure PCTKR2022002862-appb-img-000563
    Figure PCTKR2022002862-appb-img-000563
    Figure PCTKR2022002862-appb-img-000564
    Figure PCTKR2022002862-appb-img-000564
    Figure PCTKR2022002862-appb-img-000565
    Figure PCTKR2022002862-appb-img-000565
    Figure PCTKR2022002862-appb-img-000566
    Figure PCTKR2022002862-appb-img-000566
    Figure PCTKR2022002862-appb-img-000567
    Figure PCTKR2022002862-appb-img-000567
    Figure PCTKR2022002862-appb-img-000568
    Figure PCTKR2022002862-appb-img-000568
    Figure PCTKR2022002862-appb-img-000569
    Figure PCTKR2022002862-appb-img-000569
    Figure PCTKR2022002862-appb-img-000570
    Figure PCTKR2022002862-appb-img-000570
    Figure PCTKR2022002862-appb-img-000571
    Figure PCTKR2022002862-appb-img-000571
    Figure PCTKR2022002862-appb-img-000572
    Figure PCTKR2022002862-appb-img-000572
    Figure PCTKR2022002862-appb-img-000573
    Figure PCTKR2022002862-appb-img-000573
    Figure PCTKR2022002862-appb-img-000574
    Figure PCTKR2022002862-appb-img-000574
    Figure PCTKR2022002862-appb-img-000575
    Figure PCTKR2022002862-appb-img-000575
    Figure PCTKR2022002862-appb-img-000576
    Figure PCTKR2022002862-appb-img-000576
    Figure PCTKR2022002862-appb-img-000577
    Figure PCTKR2022002862-appb-img-000577
    Figure PCTKR2022002862-appb-img-000578
    Figure PCTKR2022002862-appb-img-000578
    Figure PCTKR2022002862-appb-img-000579
    Figure PCTKR2022002862-appb-img-000579
    Figure PCTKR2022002862-appb-img-000580
    Figure PCTKR2022002862-appb-img-000580
    Figure PCTKR2022002862-appb-img-000581
    Figure PCTKR2022002862-appb-img-000581
    Figure PCTKR2022002862-appb-img-000582
    Figure PCTKR2022002862-appb-img-000582
    Figure PCTKR2022002862-appb-img-000583
    Figure PCTKR2022002862-appb-img-000583
    Figure PCTKR2022002862-appb-img-000584
    Figure PCTKR2022002862-appb-img-000584
    Figure PCTKR2022002862-appb-img-000585
    Figure PCTKR2022002862-appb-img-000585
    [화학식 5] [Formula 5]
    Figure PCTKR2022002862-appb-img-000586
    Figure PCTKR2022002862-appb-img-000586
    Figure PCTKR2022002862-appb-img-000587
    Figure PCTKR2022002862-appb-img-000587
    Figure PCTKR2022002862-appb-img-000588
    Figure PCTKR2022002862-appb-img-000588
    Figure PCTKR2022002862-appb-img-000589
    Figure PCTKR2022002862-appb-img-000589
    Figure PCTKR2022002862-appb-img-000590
    Figure PCTKR2022002862-appb-img-000590
    Figure PCTKR2022002862-appb-img-000591
    Figure PCTKR2022002862-appb-img-000591
    Figure PCTKR2022002862-appb-img-000592
    Figure PCTKR2022002862-appb-img-000592
    Figure PCTKR2022002862-appb-img-000593
    Figure PCTKR2022002862-appb-img-000593
    Figure PCTKR2022002862-appb-img-000594
    Figure PCTKR2022002862-appb-img-000594
    Figure PCTKR2022002862-appb-img-000595
    Figure PCTKR2022002862-appb-img-000595
    Figure PCTKR2022002862-appb-img-000596
    Figure PCTKR2022002862-appb-img-000596
    Figure PCTKR2022002862-appb-img-000597
    Figure PCTKR2022002862-appb-img-000597
    Figure PCTKR2022002862-appb-img-000598
    Figure PCTKR2022002862-appb-img-000598
    Figure PCTKR2022002862-appb-img-000599
    Figure PCTKR2022002862-appb-img-000599
    Figure PCTKR2022002862-appb-img-000600
    Figure PCTKR2022002862-appb-img-000600
    Figure PCTKR2022002862-appb-img-000601
    Figure PCTKR2022002862-appb-img-000601
    Figure PCTKR2022002862-appb-img-000602
    Figure PCTKR2022002862-appb-img-000602
    Figure PCTKR2022002862-appb-img-000603
    Figure PCTKR2022002862-appb-img-000603
    Figure PCTKR2022002862-appb-img-000604
    Figure PCTKR2022002862-appb-img-000604
    Figure PCTKR2022002862-appb-img-000605
    Figure PCTKR2022002862-appb-img-000605
    Figure PCTKR2022002862-appb-img-000606
    Figure PCTKR2022002862-appb-img-000606
    Figure PCTKR2022002862-appb-img-000607
    Figure PCTKR2022002862-appb-img-000607
    Figure PCTKR2022002862-appb-img-000608
    Figure PCTKR2022002862-appb-img-000608
    Figure PCTKR2022002862-appb-img-000609
    Figure PCTKR2022002862-appb-img-000609
    Figure PCTKR2022002862-appb-img-000610
    Figure PCTKR2022002862-appb-img-000610
    [화학식 6] [Formula 6]
    Figure PCTKR2022002862-appb-img-000611
    Figure PCTKR2022002862-appb-img-000611
    Figure PCTKR2022002862-appb-img-000612
    Figure PCTKR2022002862-appb-img-000612
    Figure PCTKR2022002862-appb-img-000613
    Figure PCTKR2022002862-appb-img-000613
    Figure PCTKR2022002862-appb-img-000614
    Figure PCTKR2022002862-appb-img-000614
    Figure PCTKR2022002862-appb-img-000615
    Figure PCTKR2022002862-appb-img-000615
    Figure PCTKR2022002862-appb-img-000616
    Figure PCTKR2022002862-appb-img-000616
    Figure PCTKR2022002862-appb-img-000617
    Figure PCTKR2022002862-appb-img-000617
    Figure PCTKR2022002862-appb-img-000618
    Figure PCTKR2022002862-appb-img-000618
  4. 제1 전극;a first electrode;
    상기 제1 전극 위에 배치된 정공 유기물층;a hole organic material layer disposed on the first electrode;
    상기 정공 유기물층 상에 배치된 발광층;a light emitting layer disposed on the hole organic material layer;
    상기 발광층 상에 배치된 전자 유기물층; an electronic organic material layer disposed on the light emitting layer;
    상기 전자 유기물층 상에 배치된 제2 전극;a second electrode disposed on the electronic organic material layer;
    상기 제2 전극의 발광층 패턴과 겹치지 않도록 배치된 핵생성억제층; 및 a nucleation inhibiting layer disposed so as not to overlap the light emitting layer pattern of the second electrode; and
    상기 제2 전극의 발광층 패턴과 겹치도록 배치된 전도성 증착막;을 포함하며,and a conductive deposition film disposed to overlap the light emitting layer pattern of the second electrode.
    상기 핵생성억제층은 상기 제 1항 내지 제 3항 중 어느 한 항에 따른 유기 화합물을 포함하는 유기전계발광소자.The nucleation inhibiting layer is an organic electroluminescent device comprising the organic compound according to any one of claims 1 to 3.
  5. 제 4항에 있어서, 5. The method of claim 4,
    상기 제2 전극은 보조전극을 포함하고, 상기 전도성 증착막은 상기 제 1항 내지 제 3항 중 어느 한 항에 따른 유기 화합물을 포함하는 유기전계발광소자.The second electrode includes an auxiliary electrode, and the conductive deposition film is an organic electroluminescent device comprising the organic compound according to any one of claims 1 to 3.
  6. 제 4항에 있어서,5. The method of claim 4,
    상기 핵생성억제층은 3nm 내지 100nm의 두께를 갖는 유기전계발광소자.The nucleation inhibiting layer is an organic electroluminescent device having a thickness of 3nm to 100nm.
  7. 제 4항에 있어서,5. The method of claim 4,
    상기 전도성 증착막은 마그네슘을 포함하는 것을 특징으로 하는 유기전계발광소자.The conductive deposition film is an organic electroluminescent device, characterized in that it contains magnesium.
  8. 제 4항에 있어서,5. The method of claim 4,
    상기 핵생성억제층이 작용 가능한 제2 전극은 Mg, Ag, Yb 및 이 금속이 일정비율로 혼합된 합금 중 적어도 어느 하나를 포함하는 것을 특징으로 하는 유기전계발광소자.The second electrode that the nucleation inhibiting layer can act on is an organic electroluminescent device, characterized in that it comprises at least one of Mg, Ag, Yb, and an alloy in which the metal is mixed in a predetermined ratio.
  9. 제 4항에 있어서,5. The method of claim 4,
    상기 핵생성억제층이 작용 가능한 제2 전극은 0.5nm 내지 100nm의 두께를 갖는 것을 특징으로 하는 유기전계발광소자. The second electrode capable of activating the nucleation inhibiting layer has a thickness of 0.5 nm to 100 nm.
PCT/KR2022/002862 2021-03-26 2022-02-28 Material for forming nucleation-inhibition, and organic electroluminescent element comprising same WO2022203222A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210039944 2021-03-26
KR10-2021-0039944 2021-03-26
KR10-2022-0020438 2022-02-16
KR1020220020438A KR20220135161A (en) 2021-03-26 2022-02-16 Materials for forming a nucleation-inhibiting coating and organic electroluminescent device including the same

Publications (1)

Publication Number Publication Date
WO2022203222A1 true WO2022203222A1 (en) 2022-09-29

Family

ID=83397596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/002862 WO2022203222A1 (en) 2021-03-26 2022-02-28 Material for forming nucleation-inhibition, and organic electroluminescent element comprising same

Country Status (1)

Country Link
WO (1) WO2022203222A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050233562A1 (en) * 2004-04-19 2005-10-20 Adetutu Olubunmi O Method for forming a gate electrode having a metal
WO2020178804A1 (en) * 2019-03-07 2020-09-10 Oti Lumionics Inc. Materials for forming a nucleation-inhibiting coating and devices incorporating same
KR20200125941A (en) * 2018-02-02 2020-11-05 오티아이 루미오닉스 인크. Substance for forming nucleation inhibitory coating and device comprising same
KR20210006912A (en) * 2018-05-07 2021-01-19 오티아이 루미오닉스 인크. Method of providing auxiliary electrode and apparatus comprising auxiliary electrode
KR102324529B1 (en) * 2021-07-05 2021-11-12 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050233562A1 (en) * 2004-04-19 2005-10-20 Adetutu Olubunmi O Method for forming a gate electrode having a metal
KR20200125941A (en) * 2018-02-02 2020-11-05 오티아이 루미오닉스 인크. Substance for forming nucleation inhibitory coating and device comprising same
KR20210006912A (en) * 2018-05-07 2021-01-19 오티아이 루미오닉스 인크. Method of providing auxiliary electrode and apparatus comprising auxiliary electrode
WO2020178804A1 (en) * 2019-03-07 2020-09-10 Oti Lumionics Inc. Materials for forming a nucleation-inhibiting coating and devices incorporating same
KR102324529B1 (en) * 2021-07-05 2021-11-12 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKAGI RIE; MASUI KYOKO; NAKAMURA SHINICHIRO; TSUJIOKA TSUYOSHI: "Metal patterning using maskless vacuum evaporation process based on selective deposition of photochromic diarylethene", APPLIED PHYSICS LETTERS, AMERICAN INSTITUTE OF PHYSICS, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747, vol. 93, no. 21, 26 November 2008 (2008-11-26), 2 Huntington Quadrangle, Melville, NY 11747, pages 213304 - 213304-3, XP012112640, ISSN: 0003-6951, DOI: 10.1063/1.3028650 *

Similar Documents

Publication Publication Date Title
WO2012039534A1 (en) Compound for an organic photoelectric device, and organic photoelectric device including same
WO2020009467A1 (en) Polycyclic compound and organic light emitting diode comprising same
WO2021182893A1 (en) Organic light emitting device
WO2019221545A1 (en) Organic light emitting diode
WO2022015084A1 (en) Organic light-emitting element
WO2022139525A1 (en) Organic light-emitting device including organic compound
WO2022103031A1 (en) Triazine or pyrimidine derivative and organic electroluminescent element comprising same
WO2021049843A1 (en) Compound and organic light emitting device comprising same
WO2021020931A1 (en) Compound and organic light emitting device comprising same
WO2021230513A1 (en) Organic compound and organic electroluminescent device comprising same
WO2021230512A1 (en) Benzazole derivative, and organic electroluminescent device comprising same
WO2021230714A1 (en) Organic light-emitting element
WO2022203276A1 (en) Nucleation inhibition forming material, and organic electroluminescent device comprising same
WO2023018040A1 (en) Cyano group-substituted carbazole derivative and organic electroluminescent device comprising same
WO2023022417A1 (en) Cyano group-substituted heteroaryl amine derivative and organic electroluminescent device comprising same
WO2022065730A1 (en) Cyano group-substituted aryl or heteroaryl derivative and organic electroluminescent device comprising same
WO2022019535A1 (en) Compound and organic light-emitting device comprising same
WO2022080696A1 (en) High-refractive-index benzazole derivative, and organic electroluminescent device comprising same
WO2022019536A1 (en) Compound and organic light-emitting device comprising same
WO2021107681A1 (en) Compound and organic light-emitting device comprising same
WO2022203222A1 (en) Material for forming nucleation-inhibition, and organic electroluminescent element comprising same
WO2022203323A1 (en) Substance for forming nucleation inhibition and organic electroluminescent device comprising same
WO2020067595A1 (en) Heterocyclic compound and organic light emitting diode comprising same
WO2022119174A1 (en) Dibenzo 5-membered cyclic compound, and organic electroluminescence device comprising same
WO2022124516A1 (en) Organic compound and organic light emitting diode and organic light emitting device including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775924

Country of ref document: EP

Kind code of ref document: A1