WO2022202958A1 - Non-aqueous secondary battery polymer composition and non-aqueous secondary battery - Google Patents

Non-aqueous secondary battery polymer composition and non-aqueous secondary battery Download PDF

Info

Publication number
WO2022202958A1
WO2022202958A1 PCT/JP2022/013823 JP2022013823W WO2022202958A1 WO 2022202958 A1 WO2022202958 A1 WO 2022202958A1 JP 2022013823 W JP2022013823 W JP 2022013823W WO 2022202958 A1 WO2022202958 A1 WO 2022202958A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
secondary battery
polymer
aqueous secondary
monomer
Prior art date
Application number
PCT/JP2022/013823
Other languages
French (fr)
Japanese (ja)
Inventor
きらら 小枝
和孝 竹野
匡志 岩本
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Publication of WO2022202958A1 publication Critical patent/WO2022202958A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/45Heterocyclic compounds having sulfur in the ring
    • C08K5/46Heterocyclic compounds having sulfur in the ring with oxygen or nitrogen in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a polymer composition for non-aqueous secondary batteries and non-aqueous secondary batteries.
  • a liquid composition obtained by adding a binder, a thickening agent, etc. to an electrode active material is applied to the surface of a current collector.
  • Styrene-butadiene-based copolymer latex is known as a binder capable of forming an electrode layer having high adhesion to the metal constituting the current collector and having high flexibility.
  • the binder functions to improve the adhesion between the electrode layer containing the active material and the current collector or separator. may be inadequate. Insufficient adhesion tends to impair the charge-discharge cycle characteristics of the secondary battery.
  • Patent Document 1 proposes an electrode binder containing a predetermined polymer containing 2 to 25% by mass of a structural unit derived from an ethylenically unsaturated carboxylic acid and having a glass transition temperature adjusted to 25° C. or lower. It is Further, in Patent Document 2, a predetermined weight containing 20 to 70 parts by mass of repeating units derived from a conjugated diene compound and 10 to 50 parts by mass of repeating units derived from an unsaturated carboxylic acid and having specified physical properties related to the glass transition temperature Compositions for electrical storage devices have been proposed that contain coalescence.
  • the electrode binder described in Patent Document 1 it is described that an electrode having excellent active material coverage, a certain degree of flexibility, and good cycle characteristics when used in a battery can be obtained. Further, according to the composition for an electricity storage device described in Patent Document 2, it is described that an electricity storage device electrode having excellent flexibility, abrasion resistance, and powder-off resistance as well as exhibiting good charge-discharge durability characteristics can be obtained. .
  • the desired carboxylic acid content cannot be achieved, and as a result, the cycle characteristics are still insufficient.
  • the desired flexibility cannot be expressed, and as a result, electrode cracks may occur during winding during battery production, and cycle It turns out that the properties are still not sufficient.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and as a result of expressing high flexibility that can suppress cracks and high peel strength after immersion in the electrolyte when used in non-aqueous secondary batteries.
  • An object of the present invention is to provide a polymer composition for non-aqueous secondary batteries that can exhibit high cycle characteristics.
  • a polymer particle comprising a polymer having units U1 derived from ethylenic monomer M1 and units U2 derived from (meth)acrylate monomer M2,
  • the ethylenic monomer M1 as a homopolymer has a glass transition temperature of ⁇ 15° C. or less ⁇ 50° C.
  • the (meth)acrylate monomer M2 as a homopolymer has a glass transition temperature of less than ⁇ 40° C.,
  • the content of the unit U1 is 1.0% by mass or more and 44% by mass or less, and the content of the unit U2 is 56% by mass or more, relative to 100% by mass of the total units constituting the polymer.
  • a polymer composition for a non-aqueous secondary battery which is 99% by mass or less.
  • the polymer composition for non-aqueous secondary batteries according to any one of [1] to [5], wherein the polymer particles have an average particle size of 150 nm or more.
  • the polymer further has a unit U3 derived from the ethylenic monomer M3, The ethylenic monomer M3 as a homopolymer has a glass transition temperature of ⁇ 15° C. or higher, and the ethylenic monomer M3 contains a polar functional group, The content of the unit U3 is 1% by mass or more and 43% by mass or less with respect to 100% by mass of all units constituting the polymer,
  • the non-aqueous two according to any one of [1] to [6] A polymer composition for secondary batteries.
  • the polar functional group possessed by the ethylenic monomer M1 and the polar functional group possessed by the ethylenic monomer M3 are from a carboxylic acid group, a hydroxy group, a sulfonic acid group, a phosphoric acid group, or the like, or an alkali metal salt thereof.
  • the content of the alkali metal salt G2 is 5.0 mol% or more and 95 mol% or less with respect to the total molar amount (100 mol%) of the carboxy group G1 and the alkali metal salt G2, [7] or [8]
  • [11] [1] A polymer composition for a non-aqueous secondary battery electrode binder, comprising the polymer composition for a non-aqueous secondary battery according to any one of [1] to [10].
  • a non-aqueous secondary battery comprising the polymer composition for a non-aqueous secondary battery according to any one of [1] to [11].
  • a polymer composition can be provided.
  • a polymer composition for a non-aqueous secondary battery according to one aspect of the present embodiment includes an ethylenic monomer M1 (hereinafter simply referred to as “monomer M1 ” or “M1”. (hereinafter also simply referred to as “U2”), including polymer particles.
  • the ethylenic monomer unit M1 as a homopolymer has a glass transition temperature of less than ⁇ 15° C. and ⁇ 50° C. or more, and the ethylenic monomer M1 has a polar functional group (hereinafter also referred to as “polar group”. ).
  • the glass transition temperature of the ethylenic monomer M2 as a homopolymer is less than -40°C.
  • the content of unit U1 is 1.0% by mass or more and 44% by mass or less, and the content of unit U2 is 56% by mass or more and 99% by mass, based on 100% by mass of all units constituting the polymer. It is below.
  • the strength is improved due to the high adhesiveness and flexibility mainly based on the unit U1 derived from the ethylenic monomer M1 having a polar functional group. , and cycle characteristics can be expressed.
  • the unit U1 can contribute as a soft component in the polymer particles because the glass transition temperature of the monomer M1 as a homopolymer is less than ⁇ 15° C. and ⁇ 50° C. or more.
  • the glass transition temperature of the ethylenic monomer M1 as a homopolymer is preferably ⁇ 17° C. or lower, more preferably ⁇ 20° C. or lower.
  • the glass transition temperature of the ethylenic monomer M1 as a homopolymer is preferably ⁇ 45° C. or higher, more preferably ⁇ 40° C. or higher.
  • the glass transition temperature can be calculated by the method described in Examples below. Further, the glass transition temperature can be adjusted within the above range by, for example, selecting a monomer having a relatively low SP value as the ethylenic monomer M1.
  • the unit U1 can contribute as an adhesion component in the polymer particles, since the ethylenic monomer M1 has a polar functional group.
  • the polar group possessed by the ethylenic monomer M1 is not particularly limited. mentioned.
  • the polar group is preferably a carboxylic acid group or an alkali metal salt thereof.
  • the ethylenic monomer M1 is not particularly limited, but for example, 2-acryloyloxyethyl succinic acid, 4-hydroxybutyl acrylate, ⁇ -carboxy-polycaprolactone (meth)acrylate, 3-sulfopropyl (meth)acrylate Acrylic acid esters such as potassium and 2-(meth)acryloyloxyethyl acid phosphate are included.
  • the ethylenic monomer M1 one of the above-exemplified ones may be used alone, or two or more thereof may be used in combination.
  • the ethylenic monomer M1 is preferably 2-acryloyloxyethyl succinic acid and 4-hydroxybutyl acrylate, more preferably 2-acryloyloxyethyl succinate, from the viewpoint of productivity and cost.
  • Ethyl succinate is preferably 2-acryloyloxyethyl succinic acid and 4-hydroxybutyl acrylate, more preferably 2-acryloyloxyethyl succinate, from the viewpoint of productivity and cost.
  • the unit U2 can contribute as a soft component in the polymer particles by having a glass transition temperature of less than ⁇ 40° C. as a homopolymer of the (meth)acrylate monomer M2.
  • the glass transition temperature of the (meth)acrylate monomer M2 as a homopolymer is preferably ⁇ 45° C. or lower, more preferably ⁇ 50° C. or lower.
  • the glass transition temperature can be calculated by the method described in Examples below. Further, the glass transition temperature can be adjusted within the above range by, for example, selecting a monomer having a relatively low SP value as the (meth)acrylate monomer M2.
  • the (meth)acrylate monomer M2 is not particularly limited, but examples include normal butyl (meth)acrylate, heptyl (meth)acrylate, octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, and isodecyl (meth)acrylate. , lauryl (meth)acrylate, octadecyl (meth)acrylate, tetradecyl (meth)acrylate and other (meth)acrylic acid esters.
  • the (meth)acrylate monomer M2 one of the above-exemplified monomers may be used alone, or two or more thereof may be used in combination.
  • the (meth)acrylate monomer M2 is preferably 2-ethylhexyl (meth)acrylate and normal-butyl (meth)acrylate, more preferably 2- Ethylhexyl (meth)acrylate.
  • the polymer in the present embodiment further includes units U3 (hereinafter also simply referred to as "U3") derived from the ethylenic monomer M3 (hereinafter also simply referred to as "monomer M3" or “M3”).
  • U3 units U3 derived from the ethylenic monomer M3
  • M3 ethylenic monomer M3
  • the ethylenic monomer unit M3 as a homopolymer has a glass transition temperature of ⁇ 15° C. or higher, and the ethylenic monomer M3 has a polar functional group (polar group).
  • the polar group possessed by the ethylenic monomer M3 is not particularly limited, and examples thereof include a carboxylic acid group, a hydroxy group, a sulfonic acid group, phosphoric acid, and alkali metal salts thereof.
  • the polar group is preferably a carboxylic acid group or an alkali metal salt thereof. Since the unit U3 has a glass transition temperature of ⁇ 15° C. or higher as a homopolymer of the ethylenic monomer M3, it can contribute as a hard component and an adhesion component in the polymer particles. From the viewpoint of obtaining higher strength, the glass transition temperature of the ethylenic monomer M3 as a homopolymer is preferably 50° C.
  • the glass transition temperature can be measured by the method described in Examples below. Further, the glass transition temperature can be adjusted within the above range by, for example, selecting a monomer having a relatively high SP value as the ethylenic monomer M3.
  • the ethylenic monomer M3 is not particularly limited, but examples thereof include ethylenically unsaturated carboxylic acids such as itaconic acid, fumaric acid, hydroxyethyl (meth)acrylate, (meth)acrylic acid, and alkali metal salts thereof.
  • ethylenic monomer M3 one of the above examples may be used alone, or two or more thereof may be used in combination.
  • the ethylenic monomer M3 is preferably (meth)acrylic acid or an alkali metal salt thereof, more preferably methacrylic acid or an alkali metal salt thereof, from the viewpoint of productivity and the like.
  • the polymer may further have a unit U4 (hereinafter also simply referred to as "U4") other than the units U1, U2 and U3.
  • U4 a unit U4 (hereinafter also simply referred to as "U4") other than the units U1, U2 and U3.
  • optional unit U4 include, but are not limited to, aromatic vinyl monomers such as styrene and vinylnaphthalene, nitrile group-containing monomers such as (meth)acrylonitrile, sulfones such as vinylsulfonic acid, Acid group-containing monomers, aromatic divinyl monomers such as divinylbenzene, acrylic acid ester monomers such as methyl (meth)acrylate, ethyl (meth)acrylate, and butyl methacrylate Ethylene glycol di(meth)acrylate, propylene glycol alkylene glycol di(meth)acrylates such as di(meth)acrylate 1,4-butanediol di(meth)acryl
  • the content of unit U1 is 1.0% by mass or more and 44% by mass or less, and the content of unit U2 is 56% by mass or more and 99% by mass, based on 100% by mass of all units constituting the polymer. It is below. While the unit U1 that contributes as a soft component and adhesion component is an essential component, the polymer particles can achieve both high strength and flexibility by containing a certain amount of units U2 that contribute as a soft component. can. From the viewpoint of achieving both high strength and flexibility, the content of the unit U1 is preferably 3.0% by mass or more and 43% by mass or less, more preferably 5.0% by mass or more and 40% by mass or less.
  • the content of U1 is less than 1%, flexibility is impaired, and if it exceeds 44%, aggregation occurs during polymerization.
  • the content of the unit U2 is preferably 56.5% by mass or more and 95% by mass or less, more preferably 57% by mass or more and 90% by mass or less. If the U2 content is less than 56%, the flexibility and electrolyte resistance are impaired, and if it exceeds 99%, the strength is reduced.
  • the content of the unit U3 is not particularly limited to 100% by mass of the total units constituting the polymer, but is preferably 1% by mass or more and 43% by mass or less.
  • each unit can also be specified by analyzing the polymer particles by a conventional method.
  • the number of polar functional groups of the polymer particles is preferably 1.0 ⁇ 10 21 or more. When the number of polar functional groups is 1.0 ⁇ 10 21 or more, high strength tends to be obtained. The number of polar functional groups is more preferably 1.5 ⁇ 10 21 or more, still more preferably 1.8 ⁇ 10 21 or more. The upper limit of the number of polar functional groups is not particularly limited. When the number of polar functional groups is 1.0 ⁇ 10 21 or more, the peel strength before and after immersion in the electrolytic solution is improved. The number of polar functional groups can be determined by the method described in Examples below.
  • the Young's modulus can be adjusted within the above range by, for example, using the types of the above-mentioned preferred monomers as the constituent components of the polymer, or by including the preferred amount as the content of each unit.
  • the Young's modulus of the polymer particles is measured from the dry coating and is preferably 1000 MPa or less.
  • a Young's modulus of 1000 MPa or less tends to provide high flexibility.
  • Young's modulus is more preferably 900 MPa or less, and still more preferably 800 MPa or less.
  • the lower limit of Young's modulus is not particularly limited.
  • the Young's modulus of the polymer particles is 1000 MPa or less, the peel strength before and after immersion in the electrolytic solution is improved. From the viewpoint of strength, the Young's modulus is preferably 10 or more.
  • the Young's modulus can be measured by the method described in Examples below.
  • the Young's modulus can be adjusted within the above range by, for example, using the types of the above-mentioned preferred monomers as the constituent components of the polymer, or by including the preferred amount as the content of each unit.
  • the insoluble content of the polymer particles in the electrolytic solution (hereinafter also referred to as “electrolytic solution-insoluble content”) is preferably 0.90 times or more.
  • the electrolyte-insoluble matter is an index for evaluating the dissolution of the polymer particles into the electrolyte, and when the value is 0.90 times or more, side reactions other than the battery reaction can be suppressed in the electrolyte. , the adhesive strength tends to be maintained even in the electrolytic solution.
  • the electrolyte insoluble content is more preferably 0.92 times or more, still more preferably 0.94 times or more, and even more preferably 0.96 times or more.
  • the upper limit of the electrolyte insoluble content is not particularly limited.
  • the electrolyte-insoluble matter is 0.9 times or more, the peel strength of the electrode after immersion in the electrolyte is improved.
  • the electrolyte-insoluble matter can be measured by the method described in Examples below.
  • the electrolyte-insoluble matter is adjusted to the above range by using the above-described preferred monomer types as the constituent components of the polymer particles, or by including an amount that is considered preferable as the content of each unit. can.
  • the degree of swelling of the polymer particles with respect to the electrolytic solution is preferably less than 2.5 times.
  • the degree of swelling of the electrolyte solution is an index for evaluating the resistance of the polymer particles to the electrolyte solution. It tends to stay strong.
  • the degree of swelling is more preferably 2.3 times or less, still more preferably less than 2.0 times, still more preferably 1.9 times or less, still more preferably 1.5 times or less, and most preferably 1.3 times. less than double.
  • the lower limit of the degree of swelling of the electrolytic solution is not particularly limited.
  • the degree of swelling of the electrolytic solution can be measured by the method described in Examples below.
  • the degree of swelling of the electrolytic solution is adjusted to the above range by using the above-described preferred types of monomers as the constituent components of the polymer particles, or by including the preferred amount as the content of each unit. can.
  • both the electrolyte-insoluble matter and the electrolyte-swelling degree of the polymer particles satisfy the numerical ranges described above.
  • the method for adjusting the values of the electrolyte-insoluble matter and the electrolyte-swelling degree of the polymer particles in the present embodiment to the numerical ranges described above is not limited to the methods described above.
  • the SP value means the cohesive energy density (E) of various atomic groups and the molar molecule
  • E the cohesive energy density of various atomic groups
  • V the volume of the solubility parameter
  • the SP value of a typical electrolytic solution is not limited to the following, but is about 11, for example.
  • a monomer component with an SP value exceeding 11 can be treated as a high SP value component, and a monomer component with an SP value of less than 11 can be treated as a low SP value component.
  • the ethylenic monomer M1 usually tends to have a high SP value.
  • the SP value of the homopolymer composed of the ethylenic monomer M1 is not limited to the following, but is 10.0 to 13.0. is preferably Moreover, the ethylenic monomer M2 usually tends to have a low SP value.
  • the SP value of the ethylenic monomer M2 is not limited to the following, it is preferably 8.0 to 10.0.
  • the SP value of the ethylenic monomer M2 is within the above range, it is possible to suppress the degree of swelling of the electrolytic solution to a low level.
  • the ethylenic monomer M3 usually tends to have a high SP value.
  • the SP value of the ethylenic monomer M3 is not limited to the following, it is preferably 10.0 to 17.0.
  • the content of the former is 56% by mass or more and less than 99%
  • the SP value of the ethylenic monomer M2 is in the above range, so that the peel strength can be maintained even after immersion in the electrolyte, and the latter is 1% or more and 44% by mass. %, the peel strength after immersion in the electrolytic solution can be maintained, which is preferable.
  • the average particle size of the polymer particles in the present embodiment is preferably 150 nm or more from the viewpoint of suppressing migration of the binder during drying after application of the coating liquid for the secondary battery negative electrode and not decreasing the peel strength of the electrode. It is preferably 200 nm or more, more preferably 250 nm or more, still more preferably 300 nm or more, 350 nm or more, or 400 nm or more. This improves the peel strength of the electrode before and after immersion in the electrolyte. Moreover, the average particle diameter of the polymer particles in the present embodiment is preferably 2000 nm or less from the viewpoint of suppressing sedimentation of the binder.
  • the above-mentioned average particle diameter can be measured by the method described in Examples below, and is adjusted within the above range by adjusting the composition ratio of each unit derived from the monomer of the polymer particles, the polymerization temperature, the emulsifier, etc. can.
  • the composition of the present embodiment can contain various known optional components in addition to the polymer particles of the present embodiment, depending on its use.
  • the application of the composition of the present embodiment is not particularly limited as long as it is used as one material for non-aqueous secondary batteries, and it can be used as a negative electrode material, a positive electrode material, a separator material, and the like. , it is particularly preferable to use it as a negative electrode material.
  • composition for manufacturing a battery material when used for manufacturing a negative electrode, a positive electrode, or a separator, it is particularly referred to as "a composition for manufacturing a battery material.”
  • the composition for producing a battery material when a negative electrode is produced using the composition for producing a battery material, the composition for producing a battery material may contain the polymer particles of the present embodiment, a negative electrode active material, and optionally optional components. can.
  • the composition for producing a battery material may contain the polymer particles of the present embodiment, a positive electrode active material, and optionally optional components. .
  • the composition for producing a battery material may contain the polymer particles of the present embodiment, a separator raw material, and optional components as necessary.
  • the composition of the present embodiment does not contain any of the negative electrode active material, positive electrode active material, and separator raw material, it can be applied as an additive for manufacturing battery materials. That is, when the composition of the present embodiment is used as a binder, it is referred to as a "binder composition", and when it is used as a thickener, it is referred to as a "thickener composition”.
  • composition of the present embodiment can be said to include “battery material manufacturing composition”, “binder composition” and “thickener composition”. All of the applications are common in that the polymer particles of the present embodiment are contained. Moreover, in any application, when the composition of the present embodiment contains an optional component, the type and mixing ratio thereof are not particularly limited, and may be appropriately determined according to the application.
  • the negative electrode active material that can be used is not particularly limited, but examples thereof include carbon-based active materials and silicone-based active materials.
  • carbon-based active materials include, but are not limited to, graphite, carbon fiber, coke, hard carbon, mesocarbon microbeads (MCMB), furfuryl alcohol resin sintered body (PFA), conductive polymer (poly-p -phenylene, etc.).
  • silicone-based active material include, but are not limited to, silicon, SiO x (0.01 ⁇ x ⁇ 2), alloys of silicon and transition metals, and the like.
  • the positive electrode active material that can be used is not particularly limited, but examples include lithium-containing composite oxides, transition metal oxides, transition metal fluorides, transition metal sulfides, and the like. mentioned.
  • lithium-containing composite oxides include, but are not limited to, LiCoO 2 , LiMnO 2 , LiNiO 2 , LiMn 2 O 4 , LiXCoYSnZO 2 , LiFePO 4 , and LiXCoYSnZO 2 .
  • transition metal oxides include, but are not limited to, MnO 2 , MoO 3 , V 2 O 5 , V 6 O 13 , Fe 2 O 3 and Fe 3 O 4 .
  • transition metal fluorides include, but are not particularly limited to, CuF 2 and NiF 2 .
  • transition metal sulfides include, but are not particularly limited to, TiS 2 , TiS 3 , MoS 3 , FeS 2 and the like.
  • the unit U1 and / or the unit U3 is a carboxyl group G1 derived from the monomer M1 and / or the monomer M3 (hereinafter also simply referred to as "G1") and its It can have an alkali metal salt G2 (hereinafter also simply referred to as "G2").
  • G1 carboxyl group G1 derived from the monomer M1 and / or the monomer M3
  • G2 alkali metal salt
  • the unit U1 and the unit U3 each have a carboxyl group G1 and its alkali metal salt G2
  • the content of G2 is 5.0 mol% or more and 95 mol% with respect to 100 mol% of the total molar amount of G1 and G2. The following are preferable.
  • the monomers M1 and M3 at least a part of the above-described polar functional group-containing monomer may be contained in the monomer unit of the water-soluble molecule in the form of a neutralized alkali metal salt.
  • the content of G2 is more preferably 5 to 75 mol%, still more preferably 5 to 70 mol%, and even more preferably 5 to 65%.
  • Alkali metal salts are not particularly limited, but include, for example, lithium salts, potassium salts, sodium salts, etc., with sodium salts being preferred.
  • the composition of the present embodiment when used as a binder composition, the polymer particles of the present embodiment and 0.0001 parts by mass or more and 1.0 parts by mass or less with respect to 100 parts by mass of the polymer particles and an isothiazoline-based compound.
  • the isothiazoline-based compound is not particularly limited, and various known compounds can be employed.
  • the binder composition of the present embodiment can contain an antifoaming agent as an optional component.
  • antifoaming agents include mineral oil-based, silicone-based, acrylic-based, and polyether-based various antifoaming agents. When it contains an antifoaming agent, it tends to be more excellent in defoaming properties.
  • the type and mixing ratio of the optional component are not particularly limited.
  • the method for producing the composition of the present embodiment is not particularly limited, but the following production method (hereinafter also referred to as "the production method of the present embodiment") can be preferably used. That is, in order to obtain a composition containing polymer particles, a method of carrying out emulsion polymerization using the raw material monomers and the like described above is preferable. Appropriate seed particles can be used during polymerization, and the seed particles can also be obtained by ordinary emulsion polymerization.
  • a known method can be employed for the emulsion polymerization, and it can be produced by appropriately using a polymerization initiator, a molecular weight adjuster, a chelating agent, a pH adjuster, an emulsifier, etc. in an aqueous medium.
  • the emulsifier is not particularly limited, but for example, anionic surfactants, nonionic surfactants, amphoteric surfactants, reactive surfactants, etc. can be used alone or in combination of two or more.
  • anionic surfactants include, but are not limited to, higher alcohol sulfate esters, alkylbenzene sulfonates, aliphatic sulfonates, polyethylene glycol alkyl ether sulfate esters, and the like.
  • nonionic surfactant is not particularly limited, for example, polyethylene glycol alkyl ester type, alkyl ether type, alkylphenyl ether type and the like are used.
  • amphoteric surfactant is not particularly limited, but examples thereof include betaines such as lauryl betaine and stearyl betaine, amino acid types such as lauryl- ⁇ -alanine, stearyl- ⁇ -alanine, and lauryl di(aminoethyl)glycine. Used.
  • reactive surfactants include, but are not limited to, polyoxyethylene alkylpropenylphenyl ether, ⁇ -[1-[(allyloxy)methyl]-2-(nonylphenoxy)ethyl]- ⁇ -hydroxypolyoxyethylene etc.
  • the polymerization initiator is not particularly limited, but for example, water-soluble polymerization initiators such as sodium persulfate, potassium persulfate and ammonium persulfate; A combination of redox polymerization initiators and the like can be used alone or in combination.
  • conditions such as stirring speed, polymerization temperature, reaction (polymerization) time, etc. are not particularly limited as long as the composition of the present embodiment can be obtained.
  • the stirring speed can be usually 50 rpm or more and 500 rpm or less
  • the polymerization temperature can be usually 50° C. or more and 100° C. or less
  • the reaction time can be usually 3 hours or more and 72 hours or less.
  • the polymer particles are dispersed in a dispersion medium and optional components are added to obtain the composition of the present embodiment. can be obtained.
  • Water can be used as the dispersion medium, and an organic solvent suitable for the active material can also be used as necessary.
  • the non-aqueous secondary battery of this embodiment can be manufactured using the composition of this embodiment.
  • the non-aqueous secondary battery of this embodiment contains the composition of this embodiment.
  • typical constituent members thereof include a negative electrode, a negative electrode current collector, a positive electrode, a positive electrode current collector, a separator, and an electrolytic solution.
  • at least one of its main members is obtained using the composition of the present embodiment, that is, at least one of the main members is , as long as it contains the composition of the present embodiment.
  • each member contains the composition of the present embodiment can be specified by whether or not the member contains the polymer particles of the present embodiment.
  • the method for producing the non-aqueous secondary battery of the present embodiment is not particularly limited, but taking a lithium ion secondary battery as an example, the composition of the present embodiment is applied to a current collector, heated, and dried.
  • the positive and negative electrodes are opposed to each other with a separator interposed therebetween, and an electrolytic solution is injected and sealed.
  • the negative electrode current collector is not particularly limited, but for example, copper foil is used, and the positive electrode current collector is not particularly limited, but for example, aluminum foil is used.
  • the electrolytic solution is not particularly limited, but for example, a solution obtained by dissolving an electrolyte such as LiClO 4 , LiBF 4 , or LiPF 6 in an organic solvent can be used.
  • organic solvents include, but are not limited to, ethers, ketones, lactones, nitriles, amines, amides, carbonates, chlorinated hydrocarbons, etc.
  • Representative examples include tetrahydrofuran and acetonitrile. , butyronitrile, propylene carbonate, ethylene carbonate, diethyl carbonate, etc., which are used singly or as a mixture of two or more.
  • the coating method is not particularly limited, but any coater head such as a reverse roll coater, comma bar coater, gravure coater, and air knife coater can be used.
  • the drying method is also not particularly limited, and for example, standing drying, air drying, hot air drying, infrared heating, far infrared heating, etc. can be used.
  • the drying temperature is not particularly limited, it can be performed at, for example, 60°C to 150°C.
  • composition and “coating liquid”, but both concepts are included in the composition of the present embodiment.
  • Example 1 0.2 parts by mass of polyoxyethylene polycyclic phenyl ether/sulfate ammonium salt (Nippon Nyukazai Co., Ltd., trade name "Newcol 707-SF”) and 750 parts by mass of ion-exchanged water were added to the reactor, and the mixture was stirred to 70 parts by mass. The temperature was raised to °C and held. To this, 1.0 part by mass of sodium persulfate (hereinafter also referred to as "NPS”) was added.
  • NPS sodium persulfate
  • MAES 2-acryloyloxyethyl succinic acid
  • 2-EHA 2-ethylhexyl acrylate
  • methacrylic acid hereinafter referred to as 1.0 parts by mass of a monomer solution obtained by mixing 50 parts by mass of "MAA” and polyoxyethylene polycyclic phenyl ether sulfate ammonium salt (Nippon Nyukazai Co., Ltd. trade name "Newcol 707-SF) and 300 parts by mass of ion-exchanged water were added.
  • the resulting mixture was emulsified with a homogenizer and the obtained emulsion was added dropwise, and the dropwise addition was completed in 2.5 hours while the temperature was kept at 70° C. After that, the polymerization was continued for 2 hours. After that, the temperature was raised from 70° C. to 80° C. and held for 1.5 hours to complete the polymerization.
  • the blending amount of each monomer component is 13% by mass for MAES and 62% by mass for 2-EHA relative to 100% by mass of the total amount of monomer components (MAES, 2-EHA and MAA).
  • MAA was 25 mass %.
  • filtration was performed using a 200 ⁇ m mesh.
  • the polymerization rate was 99%.
  • An aqueous solution prepared by dissolving 63.0 parts by mass of a 10% aqueous sodium hydroxide solution in 347.8 parts by mass of ion-exchanged water was added to the obtained polymer particles to neutralize them, thereby obtaining a composition.
  • the resulting composition had a pH of 7 and a solids content of 10%.
  • the polymerization rate was calculated by adding the solid content to the ratio of the amount of residue to the amount of all ingredients charged.
  • ⁇ Preparation of coating liquid for secondary battery negative electrode> To 1.5 parts by mass of the composition obtained as a solid content, 1.0 parts by mass of carboxymethyl cellulose as a thickener component and 100 parts by mass of natural graphite as a negative electrode active material are added. Exchanged water was added and stirred with a mechanical stirrer to adjust the total solid content to 60%. This is used as a premix, and then dispersed for 30 seconds at a peripheral speed of 20 m / sec using a thin film swirling high-speed mixer (PRIMIX, product name "TK Filmix FM56-L type”), and the secondary battery This was used as a coating liquid for the negative electrode.
  • PRIMIX product name "TK Filmix FM56-L type
  • the above coating solution was applied to one side of a copper foil with a die coater so that the thickness after drying was 100 ⁇ m, and then dried at 60° C. for 60 minutes. After drying at 120° C. for 3 minutes, compression molding was performed using a roll press.
  • the negative electrode active material coating amount was 106 g/m 2 and the negative electrode active material bulk density was 1.35 g/cm 3 .
  • Examples 2 to 11 and Comparative Examples 1 to 5 were performed in the same manner as in Example 1, except that the types and/or blending amounts of the monomers and additives were changed as shown in the table below. was prepared to prepare a secondary battery negative electrode. Further, monomers other than the monomers used in Example 1 were also added at the same time as the monomers used in Example 1.
  • the mass display of each monomer component in the above table indicates the amount of the monomer compounded as mass% with respect to the total amount of the monomer components of 100 mass%. However, methylisothiazoline is shown in parts by mass actually used.
  • MAES 2-acryloyloxyethyl succinic acid 4HBA: 4-hydroxybutyl acrylate
  • 2-EHA 2-ethylhexyl acrylate
  • BA butyl acrylate
  • MAA methacrylic acid AA: acrylic acid 1,9-ND: 1,9 nonanediol dimethacrylate
  • EA ethyl acrylate
  • HEMA 2-hydroxyethyl methacrylate
  • DVB divinylbenzene
  • the number of polar functional groups per 1 g of polymer particles is determined by dividing the contents of the monomer M1 and the monomer M3 per 1 g of the polymer particles specified by analyzing the polymer particles by a conventional method into the monomer M1 and the monomer It was calculated by dividing by the molecular weight of the compound M3, multiplying Avogadro's number by the acid value, and adding them together.
  • the composition containing the polymer particles was left to dry in an oven at 130° C. for 1 hour.
  • the average particle size of the polymer particles was measured using a particle size measuring device (manufactured by Otsuka Electronics Co., Ltd., FPAR-1000).
  • the measurement conditions were light intensity of 10,000 to 50,000 cps and measurement time of 180 seconds, and the average particle diameter (nm) was determined by cumulant analysis of the obtained data.
  • Glass transition temperature: Tg Glass transition temperature
  • crack A composition containing polymer particles was adjusted to have a solid content of 10% and a pH of 7.0, and 100 g of the composition was poured into a SUS container of length 10 cm ⁇ width 10 cm ⁇ height 7 cm. This was dried at 45° C. for 36 hours, then dried at 85° C. for 12 hours, and then dried at 115° C. for 2 hours to obtain a film. It was visually evaluated whether cracks had occurred in this film. It can be evaluated that the more flexible the film does not crack, the less likely it is that electrode cracks will occur during winding during battery production. Specifically, cracks were evaluated based on the following criteria. It is preferable that the crack is ⁇ or more. More preferably, it is (double-circle). ⁇ : No cracks ⁇ : 1 or more but less than 3 cracks ⁇ : 3 or more but less than 5 cracks ⁇ : 5 or more cracks
  • peel strength A test piece having a width of 2 cm and a length of 12 cm was cut out from the obtained secondary battery negative electrode, and the surface of the test piece on the collector side was attached to an aluminum plate with a double-sided tape.
  • a tape with a width of 18 mm (trade name “Cellotape (registered trademark)” (manufactured by Nichiban Co., Ltd.)) was attached to the electrode layer side of the test piece, and the tape was applied in a 180 ° direction at a speed of 100 mm / min.
  • the peel strength was measured six times, and the average value (N/18 mm) was calculated as the peel strength (before immersion in the electrolytic solution).
  • is more preferable, and ⁇ is even more preferable.
  • a secondary battery using a secondary battery negative electrode and manufactured by the following method is charged at a constant current of 2C at 60° C. by a constant current and constant voltage charging method until it reaches 4.2 V, and then a constant voltage. and then discharged to 3.0V at a constant current of 2C.
  • the cycle test was performed up to 100 cycles, and the ratio of the discharge capacity at the 100th cycle to the initial discharge capacity was defined as the capacity retention rate, which was evaluated according to the following criteria. The larger this value, the smaller the decrease in capacity due to repeated charging and discharging.
  • Cycle characteristics are preferably ⁇ or higher. ⁇ is more preferable, and ⁇ is even more preferable.
  • Capacity retention rate is 90% or more ⁇ : Capacity retention rate is 80% or more and less than 90% ⁇ : Capacity retention rate is 70% or more and less than 80% ⁇ : Capacity retention rate is less than 70%
  • a positive electrode and a negative electrode of a secondary battery were punched into circular shapes, and the positive electrode, separator, and negative electrode were laminated in this order so that the active material surfaces of the positive electrode and the negative electrode faced each other, and then housed in a stainless steel container with a lid.
  • the container and the lid were insulated, and the container was placed in contact with the copper foil of the negative electrode, and the lid was placed in contact with the aluminum foil of the positive electrode. Then, an electrolytic solution was poured into the container, the container was sealed, and the container was left at room temperature for one day to produce a secondary battery.
  • the separator was made of a polyethylene porous film, and the secondary battery negative electrode obtained in Examples 1 to 6 and Comparative Examples 1 to 4 was used.
  • the secondary battery positive electrode one manufactured as follows was used. 92.2% by mass of lithium cobalt composite oxide (LiCoO 2 ) as a positive electrode active material, 2.3% by mass each of flaky graphite and acetylene black as a conductive material, and 3.2% by mass of polyvinylidene fluoride (PVDF) as a binder.
  • LiCoO 2 lithium cobalt composite oxide
  • PVDF polyvinylidene fluoride
  • NMP N-methylpyrrolidone

Abstract

A non-aqueous secondary battery polymer composition comprising polymer particles that contain a polymer which as a unit U1 derived from an ethylene monomer M1 and a unit U2 derived from a (meth)acrylate monomer M2, wherein: the glass transition temperature of a homopolymer of the ethylene monomer M1 is lower than -15°C but not lower than -50°C; the ethylene monomer M1 has a polar functional group; the glass transition temperature of a homopolymer of the (meth)acrylate monomer M2 is lower than -40°C; the content of the unit U1 with respect to 100 mass% of all units constituting the polymer is 1.0-44 mass%; and the content of the unit U2 is 56-99 mass%.

Description

非水系二次電池用重合体組成物及び非水系二次電池Polymer composition for non-aqueous secondary battery and non-aqueous secondary battery
 本発明は、非水系二次電池用重合体組成物及び非水系二次電池に関する。 The present invention relates to a polymer composition for non-aqueous secondary batteries and non-aqueous secondary batteries.
 従来、リチウムイオン二次電池等の電気化学的デバイスに用いられる電極を製造する方法としては、電極活物質にバインダーや増粘剤等を添加した液状の組成物を、集電体表面に塗布して乾燥することによって、当該集電体の上に電極層を形成させる方法が挙げられる。ここで、集電体を構成する金属との接着力が高く、しかも、柔軟性が高い電極層を形成することができるバインダーとして、スチレン-ブタジエン系共重合体ラテックスが知られている。なお、バインダーは、活物質を含む電極層と、集電体又はセパレータとの密着性を向上させるために機能するものであるが、上記の共重合体ラテックスは、集電体又はセパレータとの密着性が不十分となる場合がある。上記密着性が十分でない場合、二次電池の充放電サイクル特性を損ねる傾向にある。 Conventionally, as a method for producing electrodes used in electrochemical devices such as lithium ion secondary batteries, a liquid composition obtained by adding a binder, a thickening agent, etc. to an electrode active material is applied to the surface of a current collector. a method of forming an electrode layer on the current collector by drying the current collector. Styrene-butadiene-based copolymer latex is known as a binder capable of forming an electrode layer having high adhesion to the metal constituting the current collector and having high flexibility. The binder functions to improve the adhesion between the electrode layer containing the active material and the current collector or separator. may be inadequate. Insufficient adhesion tends to impair the charge-discharge cycle characteristics of the secondary battery.
 上記に鑑み、特許文献1では、エチレン性不飽和カルボン酸に由来する構造単位を2~25質量%含有し、ガラス転移温度を25℃以下に調整した所定の重合体を含む電極用バインダーが提案されている。また特許文献2では、共役ジエン化合物に由来する繰り返し単位20~70質量部と不飽和カルボン酸に由来する繰り返し単位10~50質量部とを含有し、ガラス転移温度に関する物性を特定した所定の重合体を含有する、蓄電デバイス用組成物が提案されている。 In view of the above, Patent Document 1 proposes an electrode binder containing a predetermined polymer containing 2 to 25% by mass of a structural unit derived from an ethylenically unsaturated carboxylic acid and having a glass transition temperature adjusted to 25° C. or lower. It is Further, in Patent Document 2, a predetermined weight containing 20 to 70 parts by mass of repeating units derived from a conjugated diene compound and 10 to 50 parts by mass of repeating units derived from an unsaturated carboxylic acid and having specified physical properties related to the glass transition temperature Compositions for electrical storage devices have been proposed that contain coalescence.
特許第6431249号公報Japanese Patent No. 6431249 特開第2020-009652号Japanese Patent Application Laid-Open No. 2020-009652
 特許文献1に記載の電極用バインダーによれば、活物質の被覆性に優れ、ある一定の柔軟性をも持ち合わせ、電池にした際のサイクル特性が良好な電極を得られると記載されている。また、特許文献2に記載の蓄電デバイス用組成物によれば、柔軟性、耐擦性及び粉落ち耐性に優れるとともに、良好な充放電耐久特性を示す蓄電デバイス電極が得られると記載されている。
 一方、本発明者らが検討したところ、特許文献1の記載の電極用バインダーによっても、所望とするカルボン酸含有量を実現できず、結果としてサイクル特性が未だ十分ではないことが判明している。
 また、特許文献2の記載の蓄電デバイス用組成物によっても、所望とする柔軟性を発現できず、結果として電池製造の際の巻回時の電極割れ(クラック)が発生する場合があり、サイクル特性が未だ十分ではないことが判明している。
According to the electrode binder described in Patent Document 1, it is described that an electrode having excellent active material coverage, a certain degree of flexibility, and good cycle characteristics when used in a battery can be obtained. Further, according to the composition for an electricity storage device described in Patent Document 2, it is described that an electricity storage device electrode having excellent flexibility, abrasion resistance, and powder-off resistance as well as exhibiting good charge-discharge durability characteristics can be obtained. .
On the other hand, as a result of investigation by the present inventors, it has been found that even with the electrode binder described in Patent Document 1, the desired carboxylic acid content cannot be achieved, and as a result, the cycle characteristics are still insufficient. .
Further, even with the composition for an electricity storage device described in Patent Document 2, the desired flexibility cannot be expressed, and as a result, electrode cracks may occur during winding during battery production, and cycle It turns out that the properties are still not sufficient.
 本発明は、上記の従来技術が有する課題に鑑みてなされたものであり、非水系二次電池に用いられることによりクラックを抑制できる高い柔軟性及び高い電解液浸漬後のピール強度を発現した結果、高いサイクル特性を発現できる、非水系二次電池用重合体組成物を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems of the prior art, and as a result of expressing high flexibility that can suppress cracks and high peel strength after immersion in the electrolyte when used in non-aqueous secondary batteries. An object of the present invention is to provide a polymer composition for non-aqueous secondary batteries that can exhibit high cycle characteristics.
 本発明者らは、鋭意研究した結果、所定の組成或いは物性を有する重合体粒子を用いることにより、上記課題を達成できることを見出し、本発明を完成するに至った。 As a result of intensive research, the present inventors have found that the above-mentioned problems can be achieved by using polymer particles having a predetermined composition or physical properties, and have completed the present invention.
 すなわち、本発明は以下の態様を包含する。
[1]
 エチレン性単量体M1に由来する単位U1及び(メタ)アクリレート性単量体M2に由来する単位U2を有する重合体を含む、重合体粒子を含み、
 前記エチレン性単量体M1のホモポリマーとしてのガラス転移温度が、-15℃未満-50℃以上であり、かつ、当該エチレン性単量体M1は極性官能基を有し、
 前記(メタ)アクリレート性単量体M2のホモポリマーとしてのガラス転移温度が、-40℃未満であり、
 前記重合体を構成する全単位100質量%に対して、前記単位U1の含有量が、1.0質量%以上44質量%以下であり、かつ、前記単位U2の含有量が、56質量%以上99質量%以下である、非水系二次電池用重合体組成物。
[2]
 前記重合体粒子の電解液に対する膨潤度が2.5倍未満である、[1]記載の非水系二次電池用重合体組成物。
 
[3]
 前記重合体粒子1gあたりの極性官能基数が1.0×1021以上である、[1]又は[2]に記載の非水系二次電池用重合体組成物。
[4]
 フィルムとして微小硬度計を用いて得られるヤング率が1000MPa以下である、[1]~[3]のいずれかに記載の非水系二次電池用重合体組成物。
[5]
 前記重合体粒子の電解液に対する不溶分が0.90倍以上である、[1]~[4]のいずれかに記載の非水系二次電池用重合体組成物。
[6]
 前記重合体粒子の平均粒子径が150nm以上である、[1]~[5]のいずれかに記載の非水系二次電池用重合体組成物。
[7]
 前記重合体がエチレン性単量体M3に由来する単位U3をさらに有し、
 前記エチレン性単量体M3のホモポリマーとしてのガラス転移温度が、-15℃以上であり、当該エチレン性単量体M3は極性官能基を含有し、
 前記重合体を構成する全単位100質量%に対して、前記単位U3の含有量が、1質量%以上43質量%以下である、[1]~[6]のいずれかに記載の非水系二次電池用重合体組成物。
[8]
 前記エチレン性単量体M1が有する極性官能基と、前記エチレン性単量体M3が有する極性官能基とがカルボン酸基、ヒドロキシ基、スルホン酸基、リン酸基等、又はそのアルカリ金属塩からなる群から選ばれる少なくとも1つからなる、[7]に記載の非水系二次電池用重合体組成物。
[9]
 前記単位U1及び前記単位U3が、前記単量体M1及び前記単量体M3に由来するカルボキシ基G1及びそのアルカリ金属塩G2をそれぞれ有し、
 前記アルカリ金属塩G2の含有量が、前記カルボキシ基G1及び前記アルカリ金属塩G2の合計モル量(100mol%)に対して、5.0mol%以上95mol%以下である、[7]又は[8]に記載の非水系二次電池重合用体組成物。
[10]
 前記(メタ)アクリレート性単量体M2が2-エチルヘキシル(メタ)アクリレート又はノルマルブチル(メタ)アクリレートを含む、[1]~[9]のいずれかに記載の非水系二次電池重合体組成物。
[11]
[1]~[10]のいずれか一項に記載の非水系二次電池用重合体組成物を含む、非水二次電池電極バインダー用重合体組成物。
[12]
 前記重合体粒子100質量部に対して、0.0001質量部以上1.0質量部以下のイソチアゾリン系化合物をさらに含む、[1]~[10]のいずれかに記載の非水系二次電池用重合体組成物。
[13]
 [1]~[11]のいずれかに記載の非水系二次電池用重合体組成物を含む、非水系二次電池。
That is, the present invention includes the following aspects.
[1]
A polymer particle comprising a polymer having units U1 derived from ethylenic monomer M1 and units U2 derived from (meth)acrylate monomer M2,
The ethylenic monomer M1 as a homopolymer has a glass transition temperature of −15° C. or less −50° C. or more, and the ethylenic monomer M1 has a polar functional group,
The (meth)acrylate monomer M2 as a homopolymer has a glass transition temperature of less than −40° C.,
The content of the unit U1 is 1.0% by mass or more and 44% by mass or less, and the content of the unit U2 is 56% by mass or more, relative to 100% by mass of the total units constituting the polymer. A polymer composition for a non-aqueous secondary battery, which is 99% by mass or less.
[2]
The polymer composition for a non-aqueous secondary battery according to [1], wherein the degree of swelling of the polymer particles with respect to the electrolytic solution is less than 2.5 times.

[3]
The polymer composition for non-aqueous secondary batteries according to [1] or [2], wherein the number of polar functional groups per 1 g of the polymer particles is 1.0×10 21 or more.
[4]
The polymer composition for non-aqueous secondary batteries according to any one of [1] to [3], wherein the film has a Young's modulus of 1000 MPa or less as measured by a microhardness tester.
[5]
The polymer composition for a non-aqueous secondary battery according to any one of [1] to [4], wherein the polymer particles have an insoluble content in the electrolytic solution of 0.90 times or more.
[6]
The polymer composition for non-aqueous secondary batteries according to any one of [1] to [5], wherein the polymer particles have an average particle size of 150 nm or more.
[7]
The polymer further has a unit U3 derived from the ethylenic monomer M3,
The ethylenic monomer M3 as a homopolymer has a glass transition temperature of −15° C. or higher, and the ethylenic monomer M3 contains a polar functional group,
The content of the unit U3 is 1% by mass or more and 43% by mass or less with respect to 100% by mass of all units constituting the polymer, The non-aqueous two according to any one of [1] to [6] A polymer composition for secondary batteries.
[8]
The polar functional group possessed by the ethylenic monomer M1 and the polar functional group possessed by the ethylenic monomer M3 are from a carboxylic acid group, a hydroxy group, a sulfonic acid group, a phosphoric acid group, or the like, or an alkali metal salt thereof. The polymer composition for non-aqueous secondary batteries according to [7], comprising at least one selected from the group consisting of:
[9]
the unit U1 and the unit U3 each have a carboxy group G1 derived from the monomer M1 and the monomer M3 and an alkali metal salt G2 thereof;
The content of the alkali metal salt G2 is 5.0 mol% or more and 95 mol% or less with respect to the total molar amount (100 mol%) of the carboxy group G1 and the alkali metal salt G2, [7] or [8] The non-aqueous secondary battery polymer composition according to .
[10]
The non-aqueous secondary battery polymer composition according to any one of [1] to [9], wherein the (meth)acrylate monomer M2 contains 2-ethylhexyl (meth)acrylate or normal-butyl (meth)acrylate. .
[11]
[1] A polymer composition for a non-aqueous secondary battery electrode binder, comprising the polymer composition for a non-aqueous secondary battery according to any one of [1] to [10].
[12]
For a non-aqueous secondary battery according to any one of [1] to [10], further comprising 0.0001 parts by mass or more and 1.0 parts by mass or less of an isothiazoline compound with respect to 100 parts by mass of the polymer particles. Polymer composition.
[13]
A non-aqueous secondary battery comprising the polymer composition for a non-aqueous secondary battery according to any one of [1] to [11].
 本発明によれば、非水系二次電池に用いられることによりクラックを抑制できる高い柔軟性及び高い電解液浸漬後のピール強度を発現した結果、高いサイクル特性を発現できる、非水系二次電池用重合体組成物を提供することができる。 According to the present invention, as a result of expressing high flexibility that can suppress cracks by being used in a non-aqueous secondary battery and high peel strength after immersion in an electrolytic solution, high cycle characteristics can be expressed. For non-aqueous secondary batteries. A polymer composition can be provided.
 以下、本発明の実施の形態(以下、「本実施形態」ともいう。)について詳細に説明する。なお、本発明は、以下の本実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。 Hereinafter, embodiments of the present invention (hereinafter also referred to as "present embodiments") will be described in detail. It should be noted that the present invention is not limited to the present embodiment described below, and various modifications can be made within the scope of the gist of the present invention.
[非水系二次電池用重合体組成物]
 本実施形態の一態様に係る非水系二次電池用重合体組成物(以下、「本実施形態の組成物」ともいう。)は、エチレン性単量体M1(以下、単に「単量体M1」又は「M1」ともいう。)に由来する単位U1(以下、単に「U1」ともいう。)及び(メタ)アクリレート性単量体M2(以下、単に「単量体M2」又は「M2」ともいう。)に由来する単位U2(以下、単に「U2」ともいう。)を有する重合体を含む、重合体粒子を含む。
 エチレン性単量単位M1のホモポリマーとしてのガラス転移温度は、-15℃未満-50℃以上であり、かつ、当該エチレン性単量体M1は極性官能基(以下、「極性基」ともいう。)を有する。
 エチレン性単量体M2のホモポリマーとしてのガラス転移温度は、-40℃未満である。
 重合体を構成する全単位100質量%に対して、単位U1の含有量が、1.0質量%以上44質量%以下であり、かつ、単位U2の含有量が、56質量%以上99質量%以下である。
 本実施形態の組成物によれば、非水系二次電池に用いられることにより、主として極性官能基を有するエチレン性単量体M1に由来する単位U1に基づく高い結着性と柔軟性によって、強度、及びサイクル特性を発現できる。
[Polymer composition for non-aqueous secondary battery]
A polymer composition for a non-aqueous secondary battery according to one aspect of the present embodiment (hereinafter also referred to as "the composition of the present embodiment") includes an ethylenic monomer M1 (hereinafter simply referred to as "monomer M1 ” or “M1”. (hereinafter also simply referred to as “U2”), including polymer particles.
The ethylenic monomer unit M1 as a homopolymer has a glass transition temperature of less than −15° C. and −50° C. or more, and the ethylenic monomer M1 has a polar functional group (hereinafter also referred to as “polar group”. ).
The glass transition temperature of the ethylenic monomer M2 as a homopolymer is less than -40°C.
The content of unit U1 is 1.0% by mass or more and 44% by mass or less, and the content of unit U2 is 56% by mass or more and 99% by mass, based on 100% by mass of all units constituting the polymer. It is below.
According to the composition of the present embodiment, when used in a non-aqueous secondary battery, the strength is improved due to the high adhesiveness and flexibility mainly based on the unit U1 derived from the ethylenic monomer M1 having a polar functional group. , and cycle characteristics can be expressed.
(単位U1)
 単位U1は、単量体M1におけるホモポリマーとしてのガラス転移温度が-15℃未満-50℃以上であることにより、重合体粒子において軟質成分として寄与し得る。より高い柔軟性を得る観点から、エチレン性単量体M1のホモポリマーとしてのガラス転移温度は、好ましくは-17℃以下であり、より好ましくは-20℃以下である。柔軟性と強度のバランスの観点から、エチレン性単量体M1のホモポリマーとしてのガラス転移温度は、好ましくは-45℃以上であり、より好ましくは-40℃以上である。
 上記ガラス転移温度は、後述する実施例に記載の方法により算出できる。また、上記ガラス転移温度は、例えば、SP値の比較的低い単量体をエチレン性単量体M1として選択すること等により、上記した範囲に調整することができる。
(Unit U1)
The unit U1 can contribute as a soft component in the polymer particles because the glass transition temperature of the monomer M1 as a homopolymer is less than −15° C. and −50° C. or more. From the viewpoint of obtaining higher flexibility, the glass transition temperature of the ethylenic monomer M1 as a homopolymer is preferably −17° C. or lower, more preferably −20° C. or lower. From the viewpoint of the balance between flexibility and strength, the glass transition temperature of the ethylenic monomer M1 as a homopolymer is preferably −45° C. or higher, more preferably −40° C. or higher.
The glass transition temperature can be calculated by the method described in Examples below. Further, the glass transition temperature can be adjusted within the above range by, for example, selecting a monomer having a relatively low SP value as the ethylenic monomer M1.
 単位U1は、エチレン性単量体M1は極性官能基を有することによって、重合体粒子において、密着成分として寄与し得る。より高い強度を得る観点から、エチレン性単量体M1が有する極性基としては、特に限定されないが、例えば、カルボン酸基、ヒドロキシ基、スルホン酸基、リン酸等、又はそのアルカリ金属塩等が挙げられる。
 本実施形態においては、極性基は、好ましくはカルボン酸基又はそのアルカリ金属塩である。
The unit U1 can contribute as an adhesion component in the polymer particles, since the ethylenic monomer M1 has a polar functional group. From the viewpoint of obtaining higher strength, the polar group possessed by the ethylenic monomer M1 is not particularly limited. mentioned.
In this embodiment, the polar group is preferably a carboxylic acid group or an alkali metal salt thereof.
 エチレン性単量体M1は、特に限定されないが、例えば、2-アクリロイロキシエチルコハク酸、4-ヒドロキシブチルアクリレート、ω-カルボキシ-ポリカプロラクトン(メタ)アクリレート、(メタ)クリル酸3-スルホプロピルカリウム、2-(メタ)クリロイロキシエチルアッシドフォスフェート等のアクリル酸エステル類が挙げられる。エチレン性単量体M1としては、上記例示した中から1種を単独で用いてもよく、2種以上を併用してもよい。
 本実施形態においては、生産性及びコストの観点等から、エチレン性単量体M1は、好ましくは2-アクリロイロキシエチルコハク酸及び4-ヒドロキシブチルアクリレートであり、より好ましくは2-アクリロイロキシエチルコハク酸である。
The ethylenic monomer M1 is not particularly limited, but for example, 2-acryloyloxyethyl succinic acid, 4-hydroxybutyl acrylate, ω-carboxy-polycaprolactone (meth)acrylate, 3-sulfopropyl (meth)acrylate Acrylic acid esters such as potassium and 2-(meth)acryloyloxyethyl acid phosphate are included. As the ethylenic monomer M1, one of the above-exemplified ones may be used alone, or two or more thereof may be used in combination.
In the present embodiment, the ethylenic monomer M1 is preferably 2-acryloyloxyethyl succinic acid and 4-hydroxybutyl acrylate, more preferably 2-acryloyloxyethyl succinate, from the viewpoint of productivity and cost. Ethyl succinate.
(単位U2)
 単位U2は、(メタ)アクリレート性単量体M2のホモポリマーとしてのガラス転移温度が-40℃未満であることにより、重合体粒子において軟質成分として寄与し得る。より高い柔軟性を得る観点から、(メタ)アクリレート性単量体M2のホモポリマーとしてのガラス転移温度は、好ましくは-45℃以下であり、より好ましくは-50℃以下である。
 上記ガラス転移温度は、後述する実施例に記載の方法により算出できる。また、上記ガラス転移温度は、例えば、SP値の比較的低い単量体を(メタ)アクリレート性単量体M2として選択すること等により、上記した範囲に調整することができる。
(Unit U2)
The unit U2 can contribute as a soft component in the polymer particles by having a glass transition temperature of less than −40° C. as a homopolymer of the (meth)acrylate monomer M2. From the viewpoint of obtaining higher flexibility, the glass transition temperature of the (meth)acrylate monomer M2 as a homopolymer is preferably −45° C. or lower, more preferably −50° C. or lower.
The glass transition temperature can be calculated by the method described in Examples below. Further, the glass transition temperature can be adjusted within the above range by, for example, selecting a monomer having a relatively low SP value as the (meth)acrylate monomer M2.
 (メタ)アクリレート性単量体M2は、特に限定されないが、例えば、ノルマルブチル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、オクタデシル(メタ)アクリレート、テトラデシル(メタ)アクリレート等の(メタ)アクリル酸エステル類等が挙げられる。(メタ)アクリレート性単量体M2としては、上記例示した中から1種を単独で用いてもよく、2種以上を併用してもよい。
 本実施形態においては、生産性及びコストの観点等から、(メタ)アクリレート性単量体M2は、好ましくは2-エチルヘキシル(メタ)アクリレート及びノルマルブチル(メタ)アクリレートであり、より好ましくは2-エチルヘキシル(メタ)アクリレートである。
The (meth)acrylate monomer M2 is not particularly limited, but examples include normal butyl (meth)acrylate, heptyl (meth)acrylate, octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, and isodecyl (meth)acrylate. , lauryl (meth)acrylate, octadecyl (meth)acrylate, tetradecyl (meth)acrylate and other (meth)acrylic acid esters. As the (meth)acrylate monomer M2, one of the above-exemplified monomers may be used alone, or two or more thereof may be used in combination.
In the present embodiment, the (meth)acrylate monomer M2 is preferably 2-ethylhexyl (meth)acrylate and normal-butyl (meth)acrylate, more preferably 2- Ethylhexyl (meth)acrylate.
(単位U3)
 本実施形態における重合体は、エチレン性単量体M3(以下、単に「単量体M3」又は「M3」ともいう。)に由来する単位U3(以下、単に「U3」ともいう。)をさらに有することができる。
 エチレン性単量単位M3のホモポリマーとしてのガラス転移温度は、-15℃以上であり、かつ、当該エチレン性単量体M3は極性官能基(極性基)を有する。
 エチレン性単量体M3が有する極性基としては、特に限定されないが、例えば、カルボン酸基、ヒドロキシ基、スルホン酸基、リン酸等、又はそのアルカリ金属塩等が挙げられる。本実施形態においては、極性基は、好ましくはカルボン酸基又はそのアルカリ金属塩である。
 単位U3は、エチレン性単量体M3のホモポリマーとしてのガラス転移温度が-15℃以上であることにより、重合体粒子において硬質成分かつ密着成分として寄与し得る。より高い強度を得る観点から、エチレン性単量体M3のホモポリマーとしてのガラス転移温度は、好ましくは50℃以上であり、より好ましくは100℃以上であり、さらに好ましくは150℃以上であり、よりさらに好ましくは180℃以上である。
 上記ガラス転移温度は、後述する実施例に記載の方法により測定できる。また、上記ガラス転移温度は、例えば、SP値の比較的高い単量体をエチレン性単量体M3として選択すること等により、上記した範囲に調整することができる。
(Unit U3)
The polymer in the present embodiment further includes units U3 (hereinafter also simply referred to as "U3") derived from the ethylenic monomer M3 (hereinafter also simply referred to as "monomer M3" or "M3"). can have
The ethylenic monomer unit M3 as a homopolymer has a glass transition temperature of −15° C. or higher, and the ethylenic monomer M3 has a polar functional group (polar group).
The polar group possessed by the ethylenic monomer M3 is not particularly limited, and examples thereof include a carboxylic acid group, a hydroxy group, a sulfonic acid group, phosphoric acid, and alkali metal salts thereof. In this embodiment, the polar group is preferably a carboxylic acid group or an alkali metal salt thereof.
Since the unit U3 has a glass transition temperature of −15° C. or higher as a homopolymer of the ethylenic monomer M3, it can contribute as a hard component and an adhesion component in the polymer particles. From the viewpoint of obtaining higher strength, the glass transition temperature of the ethylenic monomer M3 as a homopolymer is preferably 50° C. or higher, more preferably 100° C. or higher, and still more preferably 150° C. or higher. Even more preferably, it is 180° C. or higher.
The glass transition temperature can be measured by the method described in Examples below. Further, the glass transition temperature can be adjusted within the above range by, for example, selecting a monomer having a relatively high SP value as the ethylenic monomer M3.
 エチレン性単量体M3は、特に限定されないが、例えば、イタコン酸、フマル酸、ヒドロキシエチル(メタ)アクリレート、(メタ)アクリル酸等のエチレン性不飽和カルボン酸又はそのアルカリ金属塩が挙げられる。エチレン性単量体M3としては、上記例示した中から1種を単独で用いてもよく、2種以上を併用してもよい。
 本実施形態においては、生産性の観点等から、エチレン性単量体M3は、好ましくは(メタ)アクリル酸又はそのアルカリ金属塩であり、より好ましくはメタクリル酸又はそのアルカリ金属塩である。
The ethylenic monomer M3 is not particularly limited, but examples thereof include ethylenically unsaturated carboxylic acids such as itaconic acid, fumaric acid, hydroxyethyl (meth)acrylate, (meth)acrylic acid, and alkali metal salts thereof. As the ethylenic monomer M3, one of the above examples may be used alone, or two or more thereof may be used in combination.
In the present embodiment, the ethylenic monomer M3 is preferably (meth)acrylic acid or an alkali metal salt thereof, more preferably methacrylic acid or an alkali metal salt thereof, from the viewpoint of productivity and the like.
(その他の単位)
 重合体は、単位U1、単位U2及び単位U3以外の単位U4(以下、単に「U4」ともいう。)をさらに有していてもよい。そのような任意の単位U4としては、以下に限定されないが、例えば、スチレン、ビニルナフタレン等の芳香族ビニル単量体、(メタ)アクリロニトリル等のニトリル基含有単量体、ビニルスルホン酸等のスルホン酸基含有単量体、ジビニルベンゼン等の芳香族ジビニル単量体、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチルメタクリレートなどのアクリル酸エステル単量体エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート等のアルキレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等のポリオールポリ(メタ)アクリレート、ジアリルフマレート、ジアリルイタコネート、トリアリルイソシアヌレート等のアリル化合物、ビニルトリメトキシシラン、ビニルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリエトキシシラン等のシランカップリング剤等の単量体M4(以下、単に「単量体M4」又は「M4」ともいう。)に由来する単位が挙げられ、上記例示した中から1種を単独で用いてもよく、2種以上を併用してもよい。
(Other units)
The polymer may further have a unit U4 (hereinafter also simply referred to as "U4") other than the units U1, U2 and U3. Examples of such optional unit U4 include, but are not limited to, aromatic vinyl monomers such as styrene and vinylnaphthalene, nitrile group-containing monomers such as (meth)acrylonitrile, sulfones such as vinylsulfonic acid, Acid group-containing monomers, aromatic divinyl monomers such as divinylbenzene, acrylic acid ester monomers such as methyl (meth)acrylate, ethyl (meth)acrylate, and butyl methacrylate Ethylene glycol di(meth)acrylate, propylene glycol alkylene glycol di(meth)acrylates such as di(meth)acrylate 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate; polyol poly(meth)acrylates such as trimethylolpropane di(meth)acrylate, trimethylolpropane tri(meth)acrylate, pentaerythritol di(meth)acrylate, pentaerythritol di(meth)acrylate, pentaerythritol tetra(meth)acrylate; Allyl compounds such as diallyl fumarate, diallyl itaconate, triallyl isocyanurate, vinyltrimethoxysilane, vinyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxy A monomer M4 such as a silane coupling agent such as silane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltriethoxysilane (hereinafter simply referred to as "monomer M4 or "M4"), and one of the above-exemplified units may be used alone, or two or more thereof may be used in combination.
(各単位の含有量)
 重合体を構成する全単位100質量%に対して、単位U1の含有量が、1.0質量%以上44質量%以下であり、かつ、単位U2の含有量が、56質量%以上99質量%以下である。軟質成分かつ密着成分として寄与する単位U1を必須成分としつつも、軟質成分として寄与する一定量の単位U2が含有されていることによって、重合体粒子は、高い強度及び柔軟性を両立することができる。
  高い強度及び柔軟性を両立する観点から、上記単位U1の含有量は、好ましくは3.0質量%以上43質量%以下であり、より好ましくは5.0質量%以上40質量%以下である。U1の含有量が1%未満の場合は柔軟性が損なわれ、44%より多い場合は、重合中に凝集したりする。同様の観点から、単位U2の含有量は、好ましくは56.5質量%以上95質量%以下であり、より好ましくは57質量%以上90質量%以下である。U2の含有量が56%未満の場合は柔軟性と電解液耐性が損なわれ、99%より多い場合は強度が低下する。
 重合体が単位U3をさらに有する場合には、重合体を構成する全単位100質量%に対して、単位U3の含有量は、特に限定されないが、好ましくは1質量%以上43質量%以下であり、好ましくは10質量%以上43質量%以下であり、より好ましくは14質量%以上43質量%以下であり、よりさらに好ましくは20質量%以上32質量%以下である。U3の含有量が1%未満の場合は強度が低下し、43%より多い場合は柔軟性と電解液耐性が低下する。
 各単位の含有量については、重合体粒子を常法により分析して特定することもできる。
(Content of each unit)
The content of unit U1 is 1.0% by mass or more and 44% by mass or less, and the content of unit U2 is 56% by mass or more and 99% by mass, based on 100% by mass of all units constituting the polymer. It is below. While the unit U1 that contributes as a soft component and adhesion component is an essential component, the polymer particles can achieve both high strength and flexibility by containing a certain amount of units U2 that contribute as a soft component. can.
From the viewpoint of achieving both high strength and flexibility, the content of the unit U1 is preferably 3.0% by mass or more and 43% by mass or less, more preferably 5.0% by mass or more and 40% by mass or less. If the content of U1 is less than 1%, flexibility is impaired, and if it exceeds 44%, aggregation occurs during polymerization. From the same viewpoint, the content of the unit U2 is preferably 56.5% by mass or more and 95% by mass or less, more preferably 57% by mass or more and 90% by mass or less. If the U2 content is less than 56%, the flexibility and electrolyte resistance are impaired, and if it exceeds 99%, the strength is reduced.
When the polymer further has a unit U3, the content of the unit U3 is not particularly limited to 100% by mass of the total units constituting the polymer, but is preferably 1% by mass or more and 43% by mass or less. , preferably 10% by mass or more and 43% by mass or less, more preferably 14% by mass or more and 43% by mass or less, and even more preferably 20% by mass or more and 32% by mass or less. If the U3 content is less than 1%, the strength is reduced, and if it is more than 43%, the flexibility and electrolyte resistance are reduced.
The content of each unit can also be specified by analyzing the polymer particles by a conventional method.
(重合体粒子の極性官能基数)
 重合体粒子の極性官能基数は、好ましくは1.0×1021以上である。極性官能基数が1.0×1021以上であることにより、高い強度が得られる傾向にある。極性官能基数は、より好ましくは1.5×1021以上であり、さらに好ましくは1.8×1021以上である。極性官能基数の上限は特に限定されない。極性官能基数が1.0×1021以上であることで、電解液浸漬前後のピール強度が向上する。
 極性官能基数は、後述する実施例に記載の方法により求めることができる。
 極性官能基数は、例えば、重合体の構成成分として上述した好ましい単量体の種類を用いることや、各単位の含有量として好ましいとした量含むこと等により、ヤング率を上記範囲に調整できる。
(Number of polar functional groups of polymer particles)
The number of polar functional groups of the polymer particles is preferably 1.0×10 21 or more. When the number of polar functional groups is 1.0×10 21 or more, high strength tends to be obtained. The number of polar functional groups is more preferably 1.5×10 21 or more, still more preferably 1.8×10 21 or more. The upper limit of the number of polar functional groups is not particularly limited. When the number of polar functional groups is 1.0×10 21 or more, the peel strength before and after immersion in the electrolytic solution is improved.
The number of polar functional groups can be determined by the method described in Examples below.
As for the number of polar functional groups, the Young's modulus can be adjusted within the above range by, for example, using the types of the above-mentioned preferred monomers as the constituent components of the polymer, or by including the preferred amount as the content of each unit.
(重合体粒子のヤング率)
 重合体粒子のヤング率は、その乾燥塗膜から測定され、好ましくは1000MPa以下である。ヤング率が1000MPa以下であることにより、高い柔軟性が得られる傾向にある。ヤング率は、より好ましくは900MPa以下であり、さらに好ましくは800MPa以下である。ヤング率の下限は特に限定されない。重合体粒子のヤング率が1000MPa以下であることで電解液浸漬前後のピール強度が向上する。また強度の観点からヤング率は10以上であることがこのましい。
 ヤング率は、後述する実施例に記載の方法により測定することができる。
 ヤング率は、例えば、重合体の構成成分として上述した好ましい単量体の種類を用いることや、各単位の含有量として好ましいとした量含むこと等により、ヤング率を上記範囲に調整できる。
(Young's modulus of polymer particles)
The Young's modulus of the polymer particles is measured from the dry coating and is preferably 1000 MPa or less. A Young's modulus of 1000 MPa or less tends to provide high flexibility. Young's modulus is more preferably 900 MPa or less, and still more preferably 800 MPa or less. The lower limit of Young's modulus is not particularly limited. When the Young's modulus of the polymer particles is 1000 MPa or less, the peel strength before and after immersion in the electrolytic solution is improved. From the viewpoint of strength, the Young's modulus is preferably 10 or more.
The Young's modulus can be measured by the method described in Examples below.
The Young's modulus can be adjusted within the above range by, for example, using the types of the above-mentioned preferred monomers as the constituent components of the polymer, or by including the preferred amount as the content of each unit.
(重合体粒子の電解液不溶分)
 重合体粒子の電解液に対する不溶分(以下、「電解液不溶分」ともいう。)は、好ましくは0.90倍以上である。ここで、電解液不溶分は、重合体粒子の電解液への溶けだしを評価する指標となり、その値が0.90倍以上であることにより、電解液中において電池反応以外の副反応を抑制でき、電解液中でも密着力を維持できる傾向にある。電解液不溶分は、より好ましくは0.92倍以上であり、さらに好ましくは0.94倍以上であり、よりさらに好ましくは0.96倍以上である。電解液不溶分の上限は特に限定されない。電解液不溶分が0.9倍以上であることで、電極の電解液浸漬後のピール強度が向上する。
 電解液不溶分は、後述する実施例に記載の方法により測定することができる。
 電解液不溶分は、重合体粒子の構成成分として上述した好ましい単量体の種類を用いることや、各単位の含有量として好ましいとした量含むこと等により、電解液不溶分を上記範囲に調整できる。
(Polymer particles insoluble in electrolyte solution)
The insoluble content of the polymer particles in the electrolytic solution (hereinafter also referred to as “electrolytic solution-insoluble content”) is preferably 0.90 times or more. Here, the electrolyte-insoluble matter is an index for evaluating the dissolution of the polymer particles into the electrolyte, and when the value is 0.90 times or more, side reactions other than the battery reaction can be suppressed in the electrolyte. , the adhesive strength tends to be maintained even in the electrolytic solution. The electrolyte insoluble content is more preferably 0.92 times or more, still more preferably 0.94 times or more, and even more preferably 0.96 times or more. The upper limit of the electrolyte insoluble content is not particularly limited. When the electrolyte-insoluble matter is 0.9 times or more, the peel strength of the electrode after immersion in the electrolyte is improved.
The electrolyte-insoluble matter can be measured by the method described in Examples below.
The electrolyte-insoluble matter is adjusted to the above range by using the above-described preferred monomer types as the constituent components of the polymer particles, or by including an amount that is considered preferable as the content of each unit. can.
(重合体粒子の電解液膨潤度)
 重合体粒子の電解液に対する膨潤度(以下、「電解液膨潤度」ともいう。)は、好ましくは2.5倍未満である。ここで、電解液膨潤度は、重合体粒子の電解液への耐性を評価する指標となり、その値が2.5倍未満であることにより、電解液中においても集電体やセパレータとの密着力を維持できる傾向にある。膨潤度は、より好ましくは2.3倍以下であり、さらに好ましくは2.0倍未満であり、さらに好ましくは1.9倍以下、さらに好ましくは1.5倍以下、最も好ましくは1.3倍以下である。電解液膨潤度の下限は特に限定されない。電解液膨潤度を低く抑えることで電解液浸漬後のピール強度が向上する。
 電解液膨潤度は、後述する実施例に記載の方法により測定することができる。
 電解液膨潤度は、重合体粒子の構成成分として上述した好ましい単量体の種類を用いることや、各単位の含有量として好ましいとした量含むこと等により、電解液膨潤度を上記範囲に調整できる。
(Electrolyte solution swelling degree of polymer particles)
The degree of swelling of the polymer particles with respect to the electrolytic solution (hereinafter also referred to as "swelling degree of electrolytic solution") is preferably less than 2.5 times. Here, the degree of swelling of the electrolyte solution is an index for evaluating the resistance of the polymer particles to the electrolyte solution. It tends to stay strong. The degree of swelling is more preferably 2.3 times or less, still more preferably less than 2.0 times, still more preferably 1.9 times or less, still more preferably 1.5 times or less, and most preferably 1.3 times. less than double. The lower limit of the degree of swelling of the electrolytic solution is not particularly limited. By suppressing the degree of swelling in the electrolyte, the peel strength after immersion in the electrolyte is improved.
The degree of swelling of the electrolytic solution can be measured by the method described in Examples below.
The degree of swelling of the electrolytic solution is adjusted to the above range by using the above-described preferred types of monomers as the constituent components of the polymer particles, or by including the preferred amount as the content of each unit. can.
 本実施形態における重合体粒子は、重合体粒子の電解液不溶分及び電解液膨潤度の両方が上述した数値範囲を満たすことがとりわけ好ましい。 Regarding the polymer particles in the present embodiment, it is particularly preferable that both the electrolyte-insoluble matter and the electrolyte-swelling degree of the polymer particles satisfy the numerical ranges described above.
 本実施形態における電解液は、実施例に示すエチレンカーボネート/エチルメチルカーボネート=1/2(体積比)の混合溶媒である。 The electrolytic solution in this embodiment is a mixed solvent of ethylene carbonate/ethyl methyl carbonate=1/2 (volume ratio) shown in Examples.
(電解液不溶分及び電解液膨潤度の調整方法)
 本実施形態における重合体粒子の電解液不溶分及び電解液膨潤度の値を上述した数値範囲に調整する方法は、上述した方法に限定されない。例えば、単量体成分が有する溶解度パラメータ(以下、「SP値」ともいう。)に着目し、一般的な電解液が有するSP値を基準として、SP値の高い単量体成分及びSP値の低い単量体成分を併用することにより、また、各単量体成分のSP値を考慮しつつ、その含有量比を増減させること等によっても、本実施形態における重合体粒子の電解液不溶分及び電解液膨潤度の値を前述した数値範囲に調整することができる。
 本明細書中、SP値とは、「R.F.Fedors: Polym. Eng. Sci., 14〔2〕, 147-154(1974)」に記載された、各種原子団の凝集エネルギー密度(E)とモル分子容(V)を用い、下記式(A)により算出した溶解性パラメーターδを意味する。
 δ=ΣE/ΣV    (A)
(式(A)中、E、Vは、それぞれ、Fedorsによる各種原子団のE、モル容積Vを表す。)
(Method for adjusting electrolyte-insoluble matter and electrolyte-swelling degree)
The method for adjusting the values of the electrolyte-insoluble matter and the electrolyte-swelling degree of the polymer particles in the present embodiment to the numerical ranges described above is not limited to the methods described above. For example, focusing on the solubility parameter (hereinafter also referred to as "SP value") of the monomer component, based on the SP value of a general electrolytic solution, the monomer component with a high SP value and the SP value By using a low monomer component together, and by increasing or decreasing the content ratio while considering the SP value of each monomer component, the electrolyte insoluble content of the polymer particles in the present embodiment And the value of the degree of swelling of the electrolytic solution can be adjusted within the numerical range described above.
In the present specification, the SP value means the cohesive energy density (E) of various atomic groups and the molar molecule Means the solubility parameter δ calculated by the following formula (A) using the volume (V).
δ=ΣE/ΣV (A)
(In formula (A), E and V represent E and molar volume V of various atomic groups according to Fedors, respectively.)
 一般的な電解液が有するSP値としては、以下に限定されないが、例えば、11程度である。この例に従えば、SP値が11を超える単量体成分を高SP値成分と扱い、SP値が11未満の単量体成分を低SP値成分と扱うことができる。
  エチレン性単量体M1は、通常、SP値が高くなる傾向にある。エチレン性単量体M1から構成されるホモポリマーのSP値は、以下に限定されないが、10.0~13.0.であることが好ましい。
 また、エチレン性単量体M2は、通常、SP値が低くなる傾向にある。エチレン性単量体M2のSP値は、以下に限定されないが、8.0~10.0であることが好ましい。エチレン性単量体M2のSP値が上記範囲にあることで、電解液膨潤度を低く抑えることが可能となる。
 また、エチレン性単量体M3は、通常、SP値が高くなる傾向にある。エチレン性単量体M3のSP値は、以下に限定されないが、10.0~17.0であることが好ましい。
 換言すると、SP値が8.0~10.0である低SP値成分と、SP値が10.0~17.0である高SP値成分とを併用する場合、その含有量としては、前者を56質量%以上99%未満とすることで、エチレン性単量体M2のSP値が上記範囲にあることで、電解液浸漬後にもピール強度が維持でき、かつ、後者を1%以上44質量%未満とすることで、電解液浸漬後のピール強度が維持できるため好ましい。
The SP value of a typical electrolytic solution is not limited to the following, but is about 11, for example. According to this example, a monomer component with an SP value exceeding 11 can be treated as a high SP value component, and a monomer component with an SP value of less than 11 can be treated as a low SP value component.
The ethylenic monomer M1 usually tends to have a high SP value. The SP value of the homopolymer composed of the ethylenic monomer M1 is not limited to the following, but is 10.0 to 13.0. is preferably
Moreover, the ethylenic monomer M2 usually tends to have a low SP value. Although the SP value of the ethylenic monomer M2 is not limited to the following, it is preferably 8.0 to 10.0. When the SP value of the ethylenic monomer M2 is within the above range, it is possible to suppress the degree of swelling of the electrolytic solution to a low level.
Moreover, the ethylenic monomer M3 usually tends to have a high SP value. Although the SP value of the ethylenic monomer M3 is not limited to the following, it is preferably 10.0 to 17.0.
In other words, when a low SP value component with an SP value of 8.0 to 10.0 and a high SP value component with an SP value of 10.0 to 17.0 are used together, the content of the former is 56% by mass or more and less than 99%, the SP value of the ethylenic monomer M2 is in the above range, so that the peel strength can be maintained even after immersion in the electrolyte, and the latter is 1% or more and 44% by mass. %, the peel strength after immersion in the electrolytic solution can be maintained, which is preferable.
(平均粒子径)
 本実施形態における重合体粒子の平均粒子径は、二次電池負極用塗工液塗布後の乾燥時にバインダーのマイグレーションを抑制し電極のピール強度を低下させない観点から、好ましくは150nm以上であり、より好ましくは200nm以上であり、さらに好ましくは250nm以上、さらにより好ましくは300nm以上、350nm以上、400nm以上である。このことで電極の電解液浸漬前後のピール強度が向上する。
 また本実施形態における重合体粒子の平均粒子径は、バインダーの沈降を抑制する観点から、2000nm以下が好ましい。
 上記した平均粒子径は、後述する実施例に記載の方法により測定することができ、重合体粒子の単量体に由来する各単位の組成比、重合温度、乳化剤等により、各々上記範囲に調整できる。
(Average particle size)
The average particle size of the polymer particles in the present embodiment is preferably 150 nm or more from the viewpoint of suppressing migration of the binder during drying after application of the coating liquid for the secondary battery negative electrode and not decreasing the peel strength of the electrode. It is preferably 200 nm or more, more preferably 250 nm or more, still more preferably 300 nm or more, 350 nm or more, or 400 nm or more. This improves the peel strength of the electrode before and after immersion in the electrolyte.
Moreover, the average particle diameter of the polymer particles in the present embodiment is preferably 2000 nm or less from the viewpoint of suppressing sedimentation of the binder.
The above-mentioned average particle diameter can be measured by the method described in Examples below, and is adjusted within the above range by adjusting the composition ratio of each unit derived from the monomer of the polymer particles, the polymerization temperature, the emulsifier, etc. can.
(用途)
 本実施形態の組成物は、その用途に応じ、本実施形態における重合体粒子の他、種々公知の任意成分を含むことができる。本実施形態の組成物の用途としては、非水系二次電池の一材料として使用されるものであれば特に限定されず、負極用材料、正極用材料及びセパレータ用材料等として用いることができるが、負極用材料として用いることがとりわけ好ましい。
(Application)
The composition of the present embodiment can contain various known optional components in addition to the polymer particles of the present embodiment, depending on its use. The application of the composition of the present embodiment is not particularly limited as long as it is used as one material for non-aqueous secondary batteries, and it can be used as a negative electrode material, a positive electrode material, a separator material, and the like. , it is particularly preferable to use it as a negative electrode material.
 以下、本実施形態の組成物を、負極、正極又はセパレータの製造用に用いる場合は特に「電池材料製造用組成物」と称するものとする。ここで、電池材料製造用組成物により負極を製造する場合、電池材料製造用組成物は、本実施形態における重合体粒子と、負極活物質と、必要に応じて任意成分とを含むものとすることができる。また、電池材料製造用組成物により正極を製造する場合、電池材料製造用組成物は、本実施形態における重合体粒子と、正極活物質と、必要に応じて任意成分とを含むものとすることができる。さらに、電池材料製造用組成物によりセパレータを製造する場合、電池材料製造用組成物は、本実施形態における重合体粒子と、セパレータ原料と、必要に応じて任意成分とを含むものとすることができる。
 一方、本実施形態の組成物が、負極活物質、正極活物質及びセパレータ原料のいずれも含まない場合、電池材料製造用の添加剤として適用することができる。すなわち、本実施形態の組成物をバインダー用途に用いる場合は「バインダー用組成物」と、増粘剤用途に用いる場合は「増粘剤用組成物」と、それぞれ称するものとする。
 上記のとおり、「本実施形態の組成物」との用語は、「電池材料製造用組成物」、「バインダー用組成物」及び「増粘剤用組成物」を包含するものということができ、いずれの用途においても、本実施形態における重合体粒子が含まれているという点において共通する。また、いずれの用途においても、本実施形態の組成物が任意成分を含む場合、その種類や配合割合等は特に限定されず、用途に応じて適宜決定すればよい。
Hereinafter, when the composition of the present embodiment is used for manufacturing a negative electrode, a positive electrode, or a separator, it is particularly referred to as "a composition for manufacturing a battery material." Here, when a negative electrode is produced using the composition for producing a battery material, the composition for producing a battery material may contain the polymer particles of the present embodiment, a negative electrode active material, and optionally optional components. can. In addition, when a positive electrode is produced using the composition for producing a battery material, the composition for producing a battery material may contain the polymer particles of the present embodiment, a positive electrode active material, and optionally optional components. . Furthermore, when a separator is produced using the composition for producing a battery material, the composition for producing a battery material may contain the polymer particles of the present embodiment, a separator raw material, and optional components as necessary.
On the other hand, when the composition of the present embodiment does not contain any of the negative electrode active material, positive electrode active material, and separator raw material, it can be applied as an additive for manufacturing battery materials. That is, when the composition of the present embodiment is used as a binder, it is referred to as a "binder composition", and when it is used as a thickener, it is referred to as a "thickener composition".
As described above, the term "composition of the present embodiment" can be said to include "battery material manufacturing composition", "binder composition" and "thickener composition". All of the applications are common in that the polymer particles of the present embodiment are contained. Moreover, in any application, when the composition of the present embodiment contains an optional component, the type and mixing ratio thereof are not particularly limited, and may be appropriately determined according to the application.
 電池材料製造用組成物により負極を製造する場合、用いうる負極活物質としては、特に限定されないが、例えば、炭素系活物質やシリコーン系活物質が挙げられる。
 炭素系活物質としては、特に限定されないが、例えば、黒鉛、炭素繊維、コークス、ハードカーボン、メソカーボンマイクロビーズ(MCMB)、フルフリルアルコール樹脂焼成体(PFA)、導電性高分子(ポリ-p-フェニレン等)等が挙げられる。
 シリコーン系活物質としては、特に限定されないが、例えば、ケイ素、SiO(0.01≦x<2)、ケイ素と遷移金属との合金等が挙げられる。
When manufacturing a negative electrode using the composition for manufacturing a battery material, the negative electrode active material that can be used is not particularly limited, but examples thereof include carbon-based active materials and silicone-based active materials.
Examples of carbon-based active materials include, but are not limited to, graphite, carbon fiber, coke, hard carbon, mesocarbon microbeads (MCMB), furfuryl alcohol resin sintered body (PFA), conductive polymer (poly-p -phenylene, etc.).
Examples of the silicone-based active material include, but are not limited to, silicon, SiO x (0.01≦x<2), alloys of silicon and transition metals, and the like.
 電池材料製造用組成物により正極を製造する場合、用いうる正極活物質としては、特に限定されないが、例えば、リチウム含有複合酸化物や遷移金属酸化物、遷移金属フッ化物、遷移金属硫化物等が挙げられる。
 リチウム含有複合酸化物としては、特に限定されないが、例えば、LiCoO、LiMnO、LiNiO、LiMn、LiXCoYSnZO、LiFePO、LiXCoYSnZO等が挙げられる。
 遷移金属酸化物としては、特に限定されないが、例えば、MnO、MoO、V、V13、Fe、Fe等が挙げられる。
 遷移金属フッ化物としては、特に限定されないが、例えば、CuF、NiF等が挙げられる。
 遷移金属硫化物としては、特に限定されないが、例えば、TiS、TiS、MoS、FeS等が挙げられる。
When a positive electrode is produced from the composition for producing a battery material, the positive electrode active material that can be used is not particularly limited, but examples include lithium-containing composite oxides, transition metal oxides, transition metal fluorides, transition metal sulfides, and the like. mentioned.
Examples of lithium-containing composite oxides include, but are not limited to, LiCoO 2 , LiMnO 2 , LiNiO 2 , LiMn 2 O 4 , LiXCoYSnZO 2 , LiFePO 4 , and LiXCoYSnZO 2 .
Examples of transition metal oxides include, but are not limited to, MnO 2 , MoO 3 , V 2 O 5 , V 6 O 13 , Fe 2 O 3 and Fe 3 O 4 .
Examples of transition metal fluorides include, but are not particularly limited to, CuF 2 and NiF 2 .
Examples of transition metal sulfides include, but are not particularly limited to, TiS 2 , TiS 3 , MoS 3 , FeS 2 and the like.
(カルボキシ基G1及びそのアルカリ金属塩G2)
 本実施形態において、粘度調整の観点から、単位U1及び/又は単位U3が、単量体M1及び/又は単量体M3に由来するカルボキシル基G1(以下、単に「G1」ともいう。)及びそのアルカリ金属塩G2(以下、単に「G2」ともいう。)を有することができる。また、単位U1及び単位U3が、それぞれカルボキシル基G1及びそのアルカリ金属塩G2を有する場合に、G2の含有量は、G1及びG2の合計モル量100mol%に対して、5.0mol%以上95mol%以下であることが好ましい。すなわち、単量体M1及びM3としては、前述した極性官能基含有単量体の少なくとも一部が中和されたアルカリ金属塩の形で水溶性分子の単量体単位に含まれていてもよい。本実施形態において、G2の含有量は、5~75mol%であることがより好ましく、さらに好ましくは5~70mol%であり、よりさらに好ましくは5~65%である。
 アルカリ金属塩としては、特に限定されないが、例えば、リチウム塩、カリウム塩、ナトリウム塩等が挙げられ、ナトリウム塩が好ましい。
(Carboxy group G1 and its alkali metal salt G2)
In the present embodiment, from the viewpoint of viscosity adjustment, the unit U1 and / or the unit U3 is a carboxyl group G1 derived from the monomer M1 and / or the monomer M3 (hereinafter also simply referred to as "G1") and its It can have an alkali metal salt G2 (hereinafter also simply referred to as "G2"). Further, when the unit U1 and the unit U3 each have a carboxyl group G1 and its alkali metal salt G2, the content of G2 is 5.0 mol% or more and 95 mol% with respect to 100 mol% of the total molar amount of G1 and G2. The following are preferable. That is, as the monomers M1 and M3, at least a part of the above-described polar functional group-containing monomer may be contained in the monomer unit of the water-soluble molecule in the form of a neutralized alkali metal salt. . In this embodiment, the content of G2 is more preferably 5 to 75 mol%, still more preferably 5 to 70 mol%, and even more preferably 5 to 65%.
Alkali metal salts are not particularly limited, but include, for example, lithium salts, potassium salts, sodium salts, etc., with sodium salts being preferred.
 本実施形態の組成物は、例えばバインダー用組成物として用いられる場合に、本実施形態における重合体粒子と、当該重合体粒子100質量部に対して0.0001質量部以上1.0質量部以下のイソチアゾリン系化合物とを含むことが好ましい。上記範囲を満たす場合、せん断力に対するヒステリシスな粘度挙動を抑制でき、より安定した塗工性を発現できる傾向にある。イソチアゾリン系化合物としては、特に限定されず、種々公知のものを採用でき、例えば、2-メチル-4-イソチアゾリン-3-オン、5-クロロ-2-メチル-4-イソチアゾリン-3-オン、1,2-ベンゾイソチアゾリン-3-オン、2-n-オクチル4-イソチアゾリン-3-オン、4,5-ジクロロ-2-n-オクチル-4-イソチアゾリン-3-オン、2-エチル-4-イソチアゾリン-3-オン、4,5-ジクロロ-2-シクロヘキシル-4-イソチアゾリン-3-オン、5-クロロ-2-エチル-4-イソチアゾリン-3-オン、5-クロロ-2-t-オクチル-4-イソチアゾリン-3-オン、4-クロロ-2-n-オクチル-4-イソチアゾリン-3-オン、5-クロロ-2-n-オクチル-4-イソチアゾリン-3-オン、N-n-ブチル-1,2-ベンゾイソチアゾリン-3-オン、N-ブチルベンゾイソチアゾリン-3-オン、N-メチルベンゾイソチアゾリン-3-オン、N-エチルベンゾイソチアゾリン-3-オン、N-プロピルベンゾイソチアゾリン-3-オン、N-イソブチルベンゾイソチアゾリン-3-オン、N-ペンチルベンゾイソチアゾリン-3-オン、N-イソペンチルベンゾイソチアゾリン-3-オン、N-ヘキシルベンゾイソチアゾリン-3-オン、N-アリルベンゾイソチアゾリン-3-オン、N-(2-ブテニル)ベンゾイソチアゾリン-3-オン等が挙げられる。これらの中でも、2-メチル-4-イソチアゾリン-3-オンが好ましい。
 その他、本実施形態のバインダー用組成物は、任意成分として消泡剤を含むことができる。
 消泡剤としては、ミネラルオイル系、シリコーン系、アクリル系、ポリエーテル系の各種消泡剤が挙げられる。消泡剤を含む場合、より脱泡性に優れる傾向にある。
 この場合において、任意成分の種類や配合割合等は特に限定されない。
For example, when the composition of the present embodiment is used as a binder composition, the polymer particles of the present embodiment and 0.0001 parts by mass or more and 1.0 parts by mass or less with respect to 100 parts by mass of the polymer particles and an isothiazoline-based compound. When the above range is satisfied, hysteretic viscosity behavior against shear force can be suppressed, and more stable coatability tends to be exhibited. The isothiazoline-based compound is not particularly limited, and various known compounds can be employed. , 2-benzisothiazolin-3-one, 2-n-octyl 4-isothiazolin-3-one, 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one, 2-ethyl-4-isothiazoline -3-one, 4,5-dichloro-2-cyclohexyl-4-isothiazolin-3-one, 5-chloro-2-ethyl-4-isothiazolin-3-one, 5-chloro-2-t-octyl-4 -isothiazolin-3-one, 4-chloro-2-n-octyl-4-isothiazolin-3-one, 5-chloro-2-n-octyl-4-isothiazolin-3-one, Nn-butyl-1 , 2-benzisothiazolin-3-one, N-butylbenzisothiazolin-3-one, N-methylbenzisothiazolin-3-one, N-ethylbenzisothiazolin-3-one, N-propylbenzisothiazolin-3-one, N-isobutylbenzisothiazolin-3-one, N-pentylbenzisothiazolin-3-one, N-isopentylbenzisothiazolin-3-one, N-hexylbenzisothiazolin-3-one, N-allylbenzisothiazolin-3-one , N-(2-butenyl)benzisothiazolin-3-one and the like. Among these, 2-methyl-4-isothiazolin-3-one is preferred.
In addition, the binder composition of the present embodiment can contain an antifoaming agent as an optional component.
Examples of antifoaming agents include mineral oil-based, silicone-based, acrylic-based, and polyether-based various antifoaming agents. When it contains an antifoaming agent, it tends to be more excellent in defoaming properties.
In this case, the type and mixing ratio of the optional component are not particularly limited.
(非水系二次電池用重合体組成物の製造方法)
 本実施形態の組成物を製造するための方法としては、特に限定されないが、次の製造方法(以下、「本実施形態の製法」ともいう。)にて好ましく製造することができる。すなわち、重合体粒子を含む組成物を得るべく、上述した原料単量体等を用いて乳化重合を行う方法が好ましい。重合時には適当なシード粒子を用いることができ、シード粒子も通常の乳化重合により得ることができる。また、乳化重合に際しては公知の方法を採用することができ、水性媒体中で重合開始剤、分子量調整剤、キレート化剤、pH調整剤、乳化剤等を適宜用いて製造することができる。
(Method for producing polymer composition for non-aqueous secondary battery)
The method for producing the composition of the present embodiment is not particularly limited, but the following production method (hereinafter also referred to as "the production method of the present embodiment") can be preferably used. That is, in order to obtain a composition containing polymer particles, a method of carrying out emulsion polymerization using the raw material monomers and the like described above is preferable. Appropriate seed particles can be used during polymerization, and the seed particles can also be obtained by ordinary emulsion polymerization. In addition, a known method can be employed for the emulsion polymerization, and it can be produced by appropriately using a polymerization initiator, a molecular weight adjuster, a chelating agent, a pH adjuster, an emulsifier, etc. in an aqueous medium.
 乳化剤としては、特に限定されないが、例えば、アニオン性界面活性剤、ノニオン性界面活性剤、両性界面活性剤、反応性界面活性剤等を単独で、或いは2種以上を併用して使用できる。 The emulsifier is not particularly limited, but for example, anionic surfactants, nonionic surfactants, amphoteric surfactants, reactive surfactants, etc. can be used alone or in combination of two or more.
 アニオン界面活性剤としては、特に限定されないが、例えば、高級アルコールの硫酸エステル、アルキルベンゼンスルホン酸塩、脂肪族スルホン酸塩、ポリエチレングリコールアルキルエーテルの硫酸塩エステル等が挙げられる。 Examples of anionic surfactants include, but are not limited to, higher alcohol sulfate esters, alkylbenzene sulfonates, aliphatic sulfonates, polyethylene glycol alkyl ether sulfate esters, and the like.
 ノニオン性界面活性剤としては、特に限定されないが、例えば、ポリエチレングリコールのアルキルエステル型、アルキルエーテル型、アルキルフェニルエーテル型等が用いられる。 Although the nonionic surfactant is not particularly limited, for example, polyethylene glycol alkyl ester type, alkyl ether type, alkylphenyl ether type and the like are used.
 両性界面活性剤としては、特に限定されないが、例えば、ラウリルベタイン、ステアリルベタイン等のベタイン類、ラウリル-β-アラニン、ステアリル-β-アラニン、ラウリルジ(アミノエチル)グリシン等のアミノ酸タイプのもの等が用いられる。 The amphoteric surfactant is not particularly limited, but examples thereof include betaines such as lauryl betaine and stearyl betaine, amino acid types such as lauryl-β-alanine, stearyl-β-alanine, and lauryl di(aminoethyl)glycine. Used.
 反応性界面活性剤としては、特に限定されないが、例えば、ポリオキシエチレンアルキルプロペニルフェニルエーテル、α-〔1-〔(アリルオキシ)メチル〕-2-(ノニルフェノキシ)エチル〕-ω-ヒドロキシポリオキシエチレン等が挙げられる。 Examples of reactive surfactants include, but are not limited to, polyoxyethylene alkylpropenylphenyl ether, α-[1-[(allyloxy)methyl]-2-(nonylphenoxy)ethyl]-ω-hydroxypolyoxyethylene etc.
 重合開始剤としては、特に限定されないが、例えば、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム等の水溶性重合開始剤、過酸化ベンゾイル、ラウリルパーオキサイド等の油溶性重合開始剤、還元剤との組み合わせによるレドックス系重合開始剤等を、単独で或いは組み合わせて使用できる。 The polymerization initiator is not particularly limited, but for example, water-soluble polymerization initiators such as sodium persulfate, potassium persulfate and ammonium persulfate; A combination of redox polymerization initiators and the like can be used alone or in combination.
 本実施形態の製法において、攪拌速度、重合温度、反応(重合)時間等の条件は、本実施形態の組成物が得られる限り、特に限定されない。典型的には、攪拌速度は通常50rpm以上500rpm以下とすることができ、重合温度は通常50℃以上100℃以下とすることができ、反応時間は通常3時間以上72時間以下とすることができる。 In the production method of the present embodiment, conditions such as stirring speed, polymerization temperature, reaction (polymerization) time, etc. are not particularly limited as long as the composition of the present embodiment can be obtained. Typically, the stirring speed can be usually 50 rpm or more and 500 rpm or less, the polymerization temperature can be usually 50° C. or more and 100° C. or less, and the reaction time can be usually 3 hours or more and 72 hours or less. .
 本実施形態の製法においては、上記のようにして重合体粒子を得た後、必要に応じて、当該重合体粒子を分散媒に分散させ、任意成分を加えることにより、本実施形態の組成物を得ることができる。分散媒としては水を用いることができ、また、必要に応じて活物質に適した有機系溶媒を用いることもできる。 In the production method of the present embodiment, after obtaining the polymer particles as described above, if necessary, the polymer particles are dispersed in a dispersion medium and optional components are added to obtain the composition of the present embodiment. can be obtained. Water can be used as the dispersion medium, and an organic solvent suitable for the active material can also be used as necessary.
(非水系二次電池)
 本実施形態の非水系二次電池は、本実施形態の組成物を用いて製造することができる。換言すると、本実施形態の非水系二次電池は、本実施形態の組成物を含むものである。
 本実施形態の非水系二次電池がリチウムイオン二次電池である場合、その典型的な構成部材としては、負極、負極集電体、正極、正極集電体、セパレータ及び電解液を挙げることができ、本実施形態の非水系二次電池は、その主要部材(負極、正極及びセパレータ)の少なくとも1つが本実施形態の組成物を用いて得られたもの、すなわち、その主要部材の少なくとも1つが、本実施形態の組成物を含むものであればよい。
 各部材が本実施形態の組成物を含むことについては、本実施形態における重合体粒子が当該部材に含まれているか否かにより特定することができる。
(Non-aqueous secondary battery)
The non-aqueous secondary battery of this embodiment can be manufactured using the composition of this embodiment. In other words, the non-aqueous secondary battery of this embodiment contains the composition of this embodiment.
When the nonaqueous secondary battery of the present embodiment is a lithium ion secondary battery, typical constituent members thereof include a negative electrode, a negative electrode current collector, a positive electrode, a positive electrode current collector, a separator, and an electrolytic solution. In the non-aqueous secondary battery of the present embodiment, at least one of its main members (negative electrode, positive electrode and separator) is obtained using the composition of the present embodiment, that is, at least one of the main members is , as long as it contains the composition of the present embodiment.
Whether or not each member contains the composition of the present embodiment can be specified by whether or not the member contains the polymer particles of the present embodiment.
 本実施形態の非水系二次電池の製造方法としては、特に限定されないが、リチウムイオン二次電池を例にすると、本実施形態の組成物を、集電体に塗布し、加熱し、乾燥することによって対応する電極を形成し、セパレータを介して正極及び負極を対向させ、電解液を注入して密封すること等が挙げられる。負極集電体としては、特に限定されないが、例えば、銅箔が用いられ、正極集電体としては、特に限定されないが、例えば、アルミ箔が用いられる。電解液としては、特に限定されないが、例えば、LiClO、LiBF、LiPF等の電解質を有機溶媒に溶解したものを使用できる。有機溶媒としては、特に限定されないが、例えば、エーテル類、ケトン類、ラクトン類、ニトリル類、アミン類、アミド類、カーボネート類、塩素化炭化水素類等が挙げられ、代表例としてはテトラヒドロフラン、アセトニトリル、ブチロニトリル、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート等を挙げることができ、1種類又は2種類以上の混合物として使用される。 The method for producing the non-aqueous secondary battery of the present embodiment is not particularly limited, but taking a lithium ion secondary battery as an example, the composition of the present embodiment is applied to a current collector, heated, and dried. The positive and negative electrodes are opposed to each other with a separator interposed therebetween, and an electrolytic solution is injected and sealed. The negative electrode current collector is not particularly limited, but for example, copper foil is used, and the positive electrode current collector is not particularly limited, but for example, aluminum foil is used. The electrolytic solution is not particularly limited, but for example, a solution obtained by dissolving an electrolyte such as LiClO 4 , LiBF 4 , or LiPF 6 in an organic solvent can be used. Examples of organic solvents include, but are not limited to, ethers, ketones, lactones, nitriles, amines, amides, carbonates, chlorinated hydrocarbons, etc. Representative examples include tetrahydrofuran and acetonitrile. , butyronitrile, propylene carbonate, ethylene carbonate, diethyl carbonate, etc., which are used singly or as a mixture of two or more.
 塗布方法としては、特に限定されないが、例えば、リバースロールコーター、コンマバーコーター、グラビヤコーター、エア-ナイフコーター等任意のコーターヘッドを用いることができる。乾燥方法としても、特に限定されず、例えば、放置乾燥、送風乾燥、温風乾燥、赤外線加熱機、遠赤外過熱機等が使用できる。乾燥温度は、特に限定されないが、例えば、60℃~150℃で行うことができる。 The coating method is not particularly limited, but any coater head such as a reverse roll coater, comma bar coater, gravure coater, and air knife coater can be used. The drying method is also not particularly limited, and for example, standing drying, air drying, hot air drying, infrared heating, far infrared heating, etc. can be used. Although the drying temperature is not particularly limited, it can be performed at, for example, 60°C to 150°C.
 以下に実施例を挙げて本実施形態をより具体的に説明するが、本実施形態はこれらの実施例により何ら限定されるものではない。なお、説明の便宜上、以下の実施例では「組成物」や「塗工液」といった文言を使用するが、いずれも本実施形態の組成物に包含される概念である。 The present embodiment will be described in more detail with examples below, but the present embodiment is not limited by these examples. For convenience of explanation, the following examples use terms such as “composition” and “coating liquid”, but both concepts are included in the composition of the present embodiment.
[実施例1]
 反応器に、ポリオキシエチレン多環フェニルエーテル・サルフェートアンモニウム塩(日本乳化剤社、商品名「ニューコール707-SF」)を0.2質量部とイオン交換水750質量部を加え、撹拌しながら70℃に昇温して保持した。ここへ、過硫酸ナトリウム(以下、「NPS」ともいう。)1.0質量部を加えた。そこに、2-アクリロイロキシエチルコハク酸(以下、「MAES」ともいう。)26質量部、2-エチルヘキシルアクリレート(以下、「2-EHA」ともいう。)124質量部及びメタクリル酸(以下、「MAA」ともいう。)50質量部を混合した単量体溶液と、ポリオキシエチレン多環フェニルエーテル・サルフェートアンモニウム塩(日本乳化剤社商品名「ニューコール707-SF」)を1.0質量部と、イオン交換水300質量部とを加えた。得られた混合液をホモジナイザーで乳化して得られた乳化液を滴下し、温度70℃に保ちながら2.5時間で滴下を終了した後、2時間重合を継続させた。その後、温度を70℃から80℃へ昇温し、1.5時間保持して重合を完結させた。このときの各単量体成分の配合量としては、単量体成分の合計量(MAES、2-EHA及びMAA)100質量%に対して、MAESは13質量%、2-EHAは62質量%、MAAは25質量%であった。
[Example 1]
0.2 parts by mass of polyoxyethylene polycyclic phenyl ether/sulfate ammonium salt (Nippon Nyukazai Co., Ltd., trade name "Newcol 707-SF") and 750 parts by mass of ion-exchanged water were added to the reactor, and the mixture was stirred to 70 parts by mass. The temperature was raised to °C and held. To this, 1.0 part by mass of sodium persulfate (hereinafter also referred to as "NPS") was added. There, 26 parts by mass of 2-acryloyloxyethyl succinic acid (hereinafter also referred to as "MAES"), 124 parts by mass of 2-ethylhexyl acrylate (hereinafter also referred to as "2-EHA") and methacrylic acid (hereinafter referred to as 1.0 parts by mass of a monomer solution obtained by mixing 50 parts by mass of "MAA" and polyoxyethylene polycyclic phenyl ether sulfate ammonium salt (Nippon Nyukazai Co., Ltd. trade name "Newcol 707-SF") and 300 parts by mass of ion-exchanged water were added. The resulting mixture was emulsified with a homogenizer and the obtained emulsion was added dropwise, and the dropwise addition was completed in 2.5 hours while the temperature was kept at 70° C. After that, the polymerization was continued for 2 hours. After that, the temperature was raised from 70° C. to 80° C. and held for 1.5 hours to complete the polymerization. At this time, the blending amount of each monomer component is 13% by mass for MAES and 62% by mass for 2-EHA relative to 100% by mass of the total amount of monomer components (MAES, 2-EHA and MAA). , MAA was 25 mass %.
 得られた重合体粒子100質量部に対し、添加剤としてメチルイソチアゾリン0.0005質量部を加えた後に、200μmメッシュを用いて濾過を行った。重合率は99%であった。得られた重合体粒子に10%水酸化ナトリウム水溶液63.0質量部をイオン交換水347.8質量部に溶解した水溶液を加え中和し、組成物を得た。得られた組成物はpH7、固形分10%であった。
 なお、重合率は、全仕込み成分量に対する残渣量の比率に固形分率を加えて算出した。
After adding 0.0005 parts by mass of methylisothiazoline as an additive to 100 parts by mass of the obtained polymer particles, filtration was performed using a 200 μm mesh. The polymerization rate was 99%. An aqueous solution prepared by dissolving 63.0 parts by mass of a 10% aqueous sodium hydroxide solution in 347.8 parts by mass of ion-exchanged water was added to the obtained polymer particles to neutralize them, thereby obtaining a composition. The resulting composition had a pH of 7 and a solids content of 10%.
The polymerization rate was calculated by adding the solid content to the ratio of the amount of residue to the amount of all ingredients charged.
<二次電池負極用塗工液の調製>
 固形分として得られた組成物1.5質量部に対して、更に増粘剤成分としてカルボキシメチルセルロース1.0固形分質量部と、さらに負極活物質として天然黒鉛100質量部を加え、そこへイオン交換水を添加し、メカニカルスターラーで攪拌して総固形分が60%になるように調製した。これをプレミックスとし、その後、薄膜旋回型高速ミキサー(PRIMIX社、製品名「T.K.フィルミックス FM56-L型」)を用いて周速20m/秒にて30秒分散し、二次電池負極用の塗工液とした。
<Preparation of coating liquid for secondary battery negative electrode>
To 1.5 parts by mass of the composition obtained as a solid content, 1.0 parts by mass of carboxymethyl cellulose as a thickener component and 100 parts by mass of natural graphite as a negative electrode active material are added. Exchanged water was added and stirred with a mechanical stirrer to adjust the total solid content to 60%. This is used as a premix, and then dispersed for 30 seconds at a peripheral speed of 20 m / sec using a thin film swirling high-speed mixer (PRIMIX, product name "TK Filmix FM56-L type"), and the secondary battery This was used as a coating liquid for the negative electrode.
<二次電池負極の作製>
 上記塗工液を用いて、乾燥後の厚みが100μmになるように銅箔の片面にダイコーターで塗布した後、60℃で60分乾燥した。120℃で3分間乾燥後、ロールプレス機で圧縮成形した。負極活物質塗布量は106g/m、負極活物質嵩密度は1.35g/cmになるようにした。
<Production of secondary battery negative electrode>
The above coating solution was applied to one side of a copper foil with a die coater so that the thickness after drying was 100 μm, and then dried at 60° C. for 60 minutes. After drying at 120° C. for 3 minutes, compression molding was performed using a roll press. The negative electrode active material coating amount was 106 g/m 2 and the negative electrode active material bulk density was 1.35 g/cm 3 .
[実施例2~11及び比較例1~5]
 各例において、単量体及び添加剤の種類並びに/又は配合量を以下の表に示すとおりに変更した点を除き、実施例1と同様にして、実施例2~11及び比較例1~5の組成物を調製し、二次電池負極を作成した。また、実施例1で用いた単量体以外の単量体も、実施例1で用いた単量体と同様のときに加えた。
[Examples 2 to 11 and Comparative Examples 1 to 5]
In each example, Examples 2 to 11 and Comparative Examples 1 to 5 were performed in the same manner as in Example 1, except that the types and/or blending amounts of the monomers and additives were changed as shown in the table below. was prepared to prepare a secondary battery negative electrode. Further, monomers other than the monomers used in Example 1 were also added at the same time as the monomers used in Example 1.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上述の表における各単量体成分の質量表示は、単量体の配合量は、単量体成分の合計量100質量%に対する質量%として示す。ただし、メチルイソチアゾリンは、実際に用いた質量部で示す。  The mass display of each monomer component in the above table indicates the amount of the monomer compounded as mass% with respect to the total amount of the monomer components of 100 mass%. However, methylisothiazoline is shown in parts by mass actually used.
 上述の表において、以下の略称を使用した。
  MAES:2-アクリロイロキシエチルコハク酸
  4HBA:4-ヒドロキシブチルアクリレート
  2-EHA:2-エチルヘキシルアクリレート
  BA:ブチルアクリレート
  MAA:メタクリル酸
  AA:アクリル酸
  1,9-ND:1,9ノナンジオールジメタクリレート
  EA:エチルアクリレート
  HEMA:2-ヒドロキシエチルメタクリレート
  DVB:ジビニルベンゼン
In the table above, the following abbreviations have been used.
MAES: 2-acryloyloxyethyl succinic acid 4HBA: 4-hydroxybutyl acrylate 2-EHA: 2-ethylhexyl acrylate BA: butyl acrylate MAA: methacrylic acid AA: acrylic acid 1,9-ND: 1,9 nonanediol dimethacrylate EA: ethyl acrylate HEMA: 2-hydroxyethyl methacrylate DVB: divinylbenzene
 上記のようにして得られた重合体粒子、組成物、及び二次電池負極を用い、後述する各種物性及び評価に供した。結果を下記表3に示す。 Using the polymer particles, composition, and secondary battery negative electrode obtained as described above, various physical properties and evaluations described later were performed. The results are shown in Table 3 below.
(官能基数)
 重合体粒子1gあたりの極性官能基数は、重合体粒子を常法により分析して特定した重合体粒子1gあたりの単量体M1と単量体M3の含有量を、単量体M1と単量体M3の分子量で除し、アボガドロ数と酸価を乗じて、足し合わせることで算出した。
(Number of functional groups)
The number of polar functional groups per 1 g of polymer particles is determined by dividing the contents of the monomer M1 and the monomer M3 per 1 g of the polymer particles specified by analyzing the polymer particles by a conventional method into the monomer M1 and the monomer It was calculated by dividing by the molecular weight of the compound M3, multiplying Avogadro's number by the acid value, and adding them together.
(ヤング率)
 平滑なガラス板上に横50mm×縦50mm×高さ2mmの型枠を設置した。そこに固形分10%に水で調整した重合体粒子を含む組成物を5g流し込んだ。これを80℃で1時間乾燥させたのち、100℃で1時間乾燥させることで200μm厚のフィルムを得た。得られたフィルムを微小硬度計(フィッシャーインストルメンツ社、製品名「H100C」)を使用し、F=5.000mN/20秒で5.000mNまで荷重増加させたのち、5秒クリープし、荷重増加と同条件で荷重減少させ、押し込み深さと荷重の相関曲線を得て、微小硬度計に付属のソフトウェアでヤング率を求めた。
(Young's modulus)
A mold of 50 mm wide×50 mm long×2 mm high was placed on a smooth glass plate. 5 g of a composition containing polymer particles adjusted with water to a solids content of 10% was poured thereinto. After drying this at 80° C. for 1 hour, it was dried at 100° C. for 1 hour to obtain a film with a thickness of 200 μm. Using a microhardness tester (Fisher Instruments, Inc., product name "H100C"), the obtained film was subjected to a load increase of F = 5.000 mN/20 seconds up to 5.000 mN, followed by creep for 5 seconds and load increase. The load was reduced under the same conditions as above, a correlation curve between indentation depth and load was obtained, and the Young's modulus was determined using the software attached to the microhardness tester.
(電解液膨潤度及び電解液不溶分)
 重合体粒子を含む組成物を130℃のオーブン中に1時間静置して乾燥させた。乾燥させて得られた重合体粒子の膜を0.5gになるように切り取った。切り取ったサンプルを、エチレンカーボネート/エチルメチルカーボネート=1/2(体積比)の混合溶媒10gと一緒に50mLのバイアル瓶に入れ、60℃で1日混合溶媒を浸透させた後、サンプルを取り出し、上記混合溶媒にて洗浄し、質量(Wa:g)を測定した。その後、サンプルを150℃のオーブン中に1時間静置してから、質量を測定し(Wb:g)、下記式より共重合体の電解液に対する膨潤度を算出した。
 重合体粒子の電解液に対する膨潤度(倍)=1+{(Wa-Wb)/(Wb)}
 重合体粒子の電解液に対する不溶分(倍)=Wb/0.5
(Electrolyte swelling degree and electrolyte insoluble matter)
The composition containing the polymer particles was left to dry in an oven at 130° C. for 1 hour. A film of the polymer particles obtained by drying was cut into pieces of 0.5 g. Place the cut sample in a 50 mL vial bottle together with 10 g of a mixed solvent of ethylene carbonate / ethyl methyl carbonate = 1/2 (volume ratio), let the mixed solvent permeate at 60 ° C. for 1 day, then remove the sample, After washing with the above mixed solvent, the mass (Wa: g) was measured. After that, the sample was allowed to stand still in an oven at 150° C. for 1 hour, the mass was measured (Wb: g), and the degree of swelling of the copolymer with respect to the electrolytic solution was calculated from the following formula.
Degree of swelling of the polymer particles with respect to the electrolytic solution (times) = 1 + {(Wa-Wb) / (Wb)}
Insoluble content of polymer particles in electrolytic solution (times) = Wb/0.5
(平均粒子径)
 重合体粒子の平均粒子径を、粒子径測定装置(大塚電子株式会社製、FPAR-1000)を使用して測定した。測定条件としては、光量=10000~50000cps、測定時間180秒とし、得られたデータにおけるキュムラント解析により平均粒子径(nm)を求めた。
(Average particle size)
The average particle size of the polymer particles was measured using a particle size measuring device (manufactured by Otsuka Electronics Co., Ltd., FPAR-1000). The measurement conditions were light intensity of 10,000 to 50,000 cps and measurement time of 180 seconds, and the average particle diameter (nm) was determined by cumulant analysis of the obtained data.
(ガラス転移温度:Tg)
 ホモポリマーのTgは、「Polymer Handbook(第3版)」等の公知の文献に記載されている値を使用した。使用した単量体のホモポリマーのガラス転移温度を以下の表2に示した。これ以外のホモポリマーのTgが「Polymer Handbook(第3版)」に記載のない場合は、各単量体を重合して実際にホモポリマーを作製し、ASTM D 3418の規格に準じて実測するものとする。
(Glass transition temperature: Tg)
For the Tg of the homopolymer, the values described in known documents such as "Polymer Handbook (3rd edition)" were used. The glass transition temperatures of the homopolymers of the monomers used are shown in Table 2 below. If the Tg of other homopolymers is not described in "Polymer Handbook (3rd edition)", each monomer is polymerized to actually prepare a homopolymer, and measured according to the standard of ASTM D 3418. shall be
Figure JPOXMLDOC01-appb-T000004
 
※1共栄社カタログ(https://www.kyoeisha.co.jp/product/kinou/lightacrylate.php)
※2三菱ケミカルカタログ(https://www.m-chemical.co.jp/products/departments/group/shinryo/product/1209827_6992.html)
※3ポリマーハンドブック第3版
※4実測値
Figure JPOXMLDOC01-appb-T000004

*1 Kyoeisha catalog (https://www.kyoeisha.co.jp/product/kinou/lightacrylate.php)
*2 Mitsubishi Chemical Catalog (https://www.m-chemical.co.jp/products/departments/group/shinryo/product/1209827_6992.html)
*3 Polymer Handbook 3rd edition *4 Measured values
(クラック)
 重合体粒子を含む組成物を固形分10%、pH7.0に調整し、縦10cm×横10cm×高さ7cmのSUS容器に、100g流し込んだ。これを45℃で36時間乾燥させたのち、85℃で12時間乾燥させ、更にその後115℃で2時間乾燥させ、フィルムを得た。このフィルムにクラックが生じているか目視で評価した。クラックが生じない柔軟なフィルムほど、電池製造の際の巻回時の電極割れが発生しがたいと評価でき、具体的には以下の基準に基づきクラックを評価した。クラックは○以上であることが好ましい。より好ましくは◎である。
  ◎:クラックなし
  〇:クラックが1か所以上3か所未満
  △:クラックが3か所以上5か所未満
  ×:クラックが5か所以上
(crack)
A composition containing polymer particles was adjusted to have a solid content of 10% and a pH of 7.0, and 100 g of the composition was poured into a SUS container of length 10 cm×width 10 cm×height 7 cm. This was dried at 45° C. for 36 hours, then dried at 85° C. for 12 hours, and then dried at 115° C. for 2 hours to obtain a film. It was visually evaluated whether cracks had occurred in this film. It can be evaluated that the more flexible the film does not crack, the less likely it is that electrode cracks will occur during winding during battery production. Specifically, cracks were evaluated based on the following criteria. It is preferable that the crack is ◯ or more. More preferably, it is (double-circle).
◎: No cracks ○: 1 or more but less than 3 cracks △: 3 or more but less than 5 cracks ×: 5 or more cracks
(ピール強度)
 得られた二次電池負極から幅2cm×長さ12cmの試験片を切り出し、この試験片の集電体側の表面を両面テープでアルミ板に貼り付けた。JIS Z 1522に準拠し、試験片の電極層側に幅18mmのテープ(商品名「セロテープ(登録商標)」(ニチバン社製))を貼り付け、180°方向に100mm/minの速度でテープを剥離したときの強度を6回測定し、その平均値(N/18mm)をピール強度(電解液浸漬前)として算出した。次いで、二次電池負極から幅2cm×長さ12cmの試験片を別途切り出し、この試験片をエチレンカーボネート/エチルメチルカーボネート=1/2(体積比)の混合溶媒に80℃で1週間浸した。その後、80℃で試験片を1日乾燥させたものを用い、上記と同様にしてピール強度(電解液浸漬後)を測定した。これらの値が大きいほど集電体と電極層の接着強度が高く、集電体から電極層が剥離しがたいと評価でき、具体的には、以下の基準に基づきピール強度を評価した。ピール強度は△以上であることが好ましい。より好ましくは○、さらに好ましくは◎である。
(ピール強度(電解液浸漬前))
  ◎:40N/m以上
  〇:30N/m以上40N/m未満
  △:20N/m以上30N/m未満
  ×:20N/m未満
(ピール強度(電解液浸漬後))
  ◎:30N/m以上
  〇:20N/m以上30N/m未満
  △:10N/m以上20N/m未満
  ×:10N/m未満
(peel strength)
A test piece having a width of 2 cm and a length of 12 cm was cut out from the obtained secondary battery negative electrode, and the surface of the test piece on the collector side was attached to an aluminum plate with a double-sided tape. In accordance with JIS Z 1522, a tape with a width of 18 mm (trade name “Cellotape (registered trademark)” (manufactured by Nichiban Co., Ltd.)) was attached to the electrode layer side of the test piece, and the tape was applied in a 180 ° direction at a speed of 100 mm / min. The peel strength was measured six times, and the average value (N/18 mm) was calculated as the peel strength (before immersion in the electrolytic solution). Next, a test piece having a width of 2 cm and a length of 12 cm was separately cut out from the negative electrode of the secondary battery, and this test piece was immersed in a mixed solvent of ethylene carbonate/ethyl methyl carbonate=1/2 (volume ratio) at 80° C. for 1 week. After that, the test piece was dried at 80° C. for one day, and the peel strength (after immersion in the electrolytic solution) was measured in the same manner as described above. The larger these values, the higher the adhesive strength between the current collector and the electrode layer, which can be evaluated as being difficult to peel off the electrode layer from the current collector. Specifically, the peel strength was evaluated based on the following criteria. The peel strength is preferably Δ or higher. ○ is more preferable, and ◎ is even more preferable.
(Peel strength (before immersion in electrolyte))
◎: 40 N / m or more ○: 30 N / m or more and less than 40 N / m △: 20 N / m or more and less than 30 N / m ×: less than 20 N / m (peel strength (after immersion in electrolyte solution))
◎: 30 N / m or more ○: 20 N / m or more and less than 30 N / m △: 10 N / m or more and less than 20 N / m ×: less than 10 N / m
(温度サイクル試験及びサイクル特性)
 二次電池負極を使用し、次の方法にて製造した二次電池に関して、60℃で2Cの定電流定電圧充電法にて、4.2Vになるまで定電流で充電し、その後、定電圧で充電し、次いで、2Cの定電流で3.0Vまで放電する充放電サイクルを行った。サイクル試験は100サイクルまで行い、初期放電容量に対する100サイクル目の放電容量の比を容量維持率とし、下記基準で判定した。この値が大きいほど繰り返し充放電による容量減が少ないことを示す。サイクル特性は△以上であることが好ましい。より好ましくは○、さらに好ましくは◎である。
(サイクル特性)
  ◎:容量維持率が90%以上
  〇:容量維持率が80%以上90%未満
  △:容量維持率が70%以上80%未満
  ×:容量維持率が70%未満
(Temperature cycle test and cycle characteristics)
A secondary battery using a secondary battery negative electrode and manufactured by the following method is charged at a constant current of 2C at 60° C. by a constant current and constant voltage charging method until it reaches 4.2 V, and then a constant voltage. and then discharged to 3.0V at a constant current of 2C. The cycle test was performed up to 100 cycles, and the ratio of the discharge capacity at the 100th cycle to the initial discharge capacity was defined as the capacity retention rate, which was evaluated according to the following criteria. The larger this value, the smaller the decrease in capacity due to repeated charging and discharging. Cycle characteristics are preferably Δ or higher. ○ is more preferable, and ◎ is even more preferable.
(Cycle characteristics)
◎: Capacity retention rate is 90% or more ○: Capacity retention rate is 80% or more and less than 90% △: Capacity retention rate is 70% or more and less than 80% ×: Capacity retention rate is less than 70%
<二次電池の作製>
 二次電池正極及び負極を円形に打抜き、当該正極と負極との活物質面が対向するよう、正極、セパレータ及び負極の順に積層した後に、蓋付きステンレス金属製容器に収納した。この容器と蓋とは絶縁されており、容器は負極の銅箔と、蓋は正極のアルミニウム箔と、それぞれ接するように配置した。そして、この容器内に電解液を注入して密閉し、その状態で室温にて1日放置して二次電池を作製した。
 ここで使用した上記電解液には、エチレンカーボネート/エチルメチルカーボネート=1/2(体積比)の混合溶媒に、溶質としてLiPFを濃度1.0mol/Lとなるように溶解させることにより調製したものを使用した。
 また、上記セパレータには、ポリエチレン多孔膜製のものを使用し、上記二次電池負極には、上記実施例1~6及び比較例1~4で得られた二次電池負極を使用した。
 さらに、上記二次電池正極には、以下のようにして作製されたものを使用した。
 正極活物質としてリチウムコバルト複合酸化物(LiCoO)92.2質量%、導電材としてリン片状グラファイトとアセチレンブラックそれぞれ2.3質量%、バインダーとしてポリフッ化ビニリデン(PVDF)3.2質量%を、N-メチルピロリドン(NMP)中に分散させてスラリーを調製した。このスラリーを正極集電体となる厚さ20μmのアルミニウム箔の片面にダイコーターで塗布し、130℃で3分間乾燥後、ロールプレス機で圧縮成形した。この時、正極の活物質塗布量は250g/m、活物質嵩密度は3.00g/cmになるようにした。このようにして得られた電極を二次電池正極として使用した。
<Production of secondary battery>
A positive electrode and a negative electrode of a secondary battery were punched into circular shapes, and the positive electrode, separator, and negative electrode were laminated in this order so that the active material surfaces of the positive electrode and the negative electrode faced each other, and then housed in a stainless steel container with a lid. The container and the lid were insulated, and the container was placed in contact with the copper foil of the negative electrode, and the lid was placed in contact with the aluminum foil of the positive electrode. Then, an electrolytic solution was poured into the container, the container was sealed, and the container was left at room temperature for one day to produce a secondary battery.
The electrolytic solution used here was prepared by dissolving LiPF 6 as a solute in a mixed solvent of ethylene carbonate/ethyl methyl carbonate = 1/2 (volume ratio) to a concentration of 1.0 mol/L. used something.
The separator was made of a polyethylene porous film, and the secondary battery negative electrode obtained in Examples 1 to 6 and Comparative Examples 1 to 4 was used.
Furthermore, as the secondary battery positive electrode, one manufactured as follows was used.
92.2% by mass of lithium cobalt composite oxide (LiCoO 2 ) as a positive electrode active material, 2.3% by mass each of flaky graphite and acetylene black as a conductive material, and 3.2% by mass of polyvinylidene fluoride (PVDF) as a binder. , N-methylpyrrolidone (NMP) to prepare a slurry. This slurry was applied to one side of a 20 μm-thick aluminum foil serving as a positive electrode current collector by a die coater, dried at 130° C. for 3 minutes, and then compression-molded by a roll press. At this time, the active material coating amount of the positive electrode was 250 g/m 2 and the bulk density of the active material was 3.00 g/cm 3 . The electrode thus obtained was used as a secondary battery positive electrode.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007

Claims (13)

  1.  エチレン性単量体M1に由来する単位U1及び(メタ)アクリレート性単量体M2に由来する単位U2を有する重合体を含む、重合体粒子を含み、
     前記エチレン性単量体M1のホモポリマーとしてのガラス転移温度が、-15℃未満-50℃以上であり、かつ、当該エチレン性単量体M1は極性官能基を有し、
     前記(メタ)アクリレート性単量体M2のホモポリマーとしてのガラス転移温度が、-40℃未満であり、
     前記重合体を構成する全単位100質量%に対して、前記単位U1の含有量が、1.0質量%以上44質量%以下であり、かつ、前記単位U2の含有量が、56質量%以上99質量%以下である、非水系二次電池用重合体組成物。
    A polymer particle comprising a polymer having units U1 derived from ethylenic monomer M1 and units U2 derived from (meth)acrylate monomer M2,
    The ethylenic monomer M1 as a homopolymer has a glass transition temperature of −15° C. or less −50° C. or more, and the ethylenic monomer M1 has a polar functional group,
    The (meth)acrylate monomer M2 as a homopolymer has a glass transition temperature of less than −40° C.,
    The content of the unit U1 is 1.0% by mass or more and 44% by mass or less, and the content of the unit U2 is 56% by mass or more, relative to 100% by mass of the total units constituting the polymer. A polymer composition for a non-aqueous secondary battery, which is 99% by mass or less.
  2.  前記重合体粒子の電解液に対する膨潤度が2.5倍未満である、請求項1記載の非水系二次電池用重合体組成物。 The polymer composition for a non-aqueous secondary battery according to claim 1, wherein the degree of swelling of the polymer particles with respect to the electrolytic solution is less than 2.5 times.
  3.  前記重合体粒子1gあたりの極性官能基数が1.0×1021以上である、請求項1又は2に記載の非水系二次電池用重合体組成物。 3. The polymer composition for a non-aqueous secondary battery according to claim 1, wherein the number of polar functional groups per 1 g of said polymer particles is 1.0×10 21 or more.
  4.  フィルムとして微小硬度計を用いて得られるヤング率が1000MPa以下である、請求項1~3のいずれか1項に記載の非水系二次電池用重合体組成物。 The polymer composition for non-aqueous secondary batteries according to any one of claims 1 to 3, wherein the film has a Young's modulus of 1000 MPa or less as measured by a microhardness tester.
  5.  前記重合体粒子の電解液に対する不溶分が0.90倍以上である、請求項1~4のいずれか1項に記載の非水系二次電池用重合体組成物。 The polymer composition for a non-aqueous secondary battery according to any one of claims 1 to 4, wherein the polymer particles have an insoluble content in the electrolytic solution of 0.90 times or more.
  6.  前記重合体粒子の平均粒子径が150nm以上である、請求項1~5のいずれか1項に記載の非水系二次電池用重合体組成物。 The polymer composition for a non-aqueous secondary battery according to any one of claims 1 to 5, wherein the polymer particles have an average particle size of 150 nm or more.
  7.  前記重合体がエチレン性単量体M3に由来する単位U3をさらに有し、
     前記エチレン性単量体M3のホモポリマーとしてのガラス転移温度が、-15℃以上であり、当該エチレン性単量体M3は極性官能基を含有し、
     前記重合体を構成する全単位100質量%に対して、前記単位U3の含有量が、1質量%以上43質量%以下である、請求項1~6のいずれか1項に記載の非水系二次電池用重合体組成物。
    The polymer further has a unit U3 derived from the ethylenic monomer M3,
    The ethylenic monomer M3 as a homopolymer has a glass transition temperature of −15° C. or higher, and the ethylenic monomer M3 contains a polar functional group,
    The content of the unit U3 is 1% by mass or more and 43% by mass or less with respect to 100% by mass of the total units constituting the polymer, the non-aqueous two according to any one of claims 1 to 6 A polymer composition for secondary batteries.
  8.  前記エチレン性単量体M1が有する極性官能基と、前記エチレン性単量体M3が有する極性官能基とがカルボン酸基、ヒドロキシ基、スルホン酸基、リン酸基等、又はそのアルFカリ金属塩からなる群から選ばれる少なくとも1つからなる、請求項7に記載の非水系二次電池用重合体組成物。 The polar functional group possessed by the ethylenic monomer M1 and the polar functional group possessed by the ethylenic monomer M3 are a carboxylic acid group, a hydroxy group, a sulfonic acid group, a phosphoric acid group, or the like, or an alkali F potassium metal thereof. 8. The polymer composition for non-aqueous secondary batteries according to claim 7, comprising at least one selected from the group consisting of salts.
  9.  前記単位U1及び前記単位U3が、前記単量体M1及び前記単量体M3に由来するカルボキシ基G1及びそのアルカリ金属塩G2をそれぞれ有し、
     前記アルカリ金属塩G2の含有量が、前記カルボキシ基G1及び前記アルカリ金属塩G2の合計モル量(100mol%)に対して、5.0mol%以上95mol%以下である、請求項7又は8に記載の非水系二次電池重合用体組成物。
    the unit U1 and the unit U3 each have a carboxy group G1 derived from the monomer M1 and the monomer M3 and an alkali metal salt G2 thereof;
    9. The content of the alkali metal salt G2 according to claim 7 or 8, wherein the total molar amount (100 mol %) of the carboxy group G1 and the alkali metal salt G2 is 5.0 mol % or more and 95 mol % or less. Non-aqueous secondary battery polymer composition.
  10.  前記(メタ)アクリレート性単量体M2が2-エチルヘキシル(メタ)アクリレート又はノルマルブチル(メタ)アクリレートを含む、請求項1~9のいずれか1項に記載の非水系二次電池重合体組成物。 The non-aqueous secondary battery polymer composition according to any one of claims 1 to 9, wherein the (meth)acrylate monomer M2 comprises 2-ethylhexyl (meth)acrylate or normal butyl (meth)acrylate. .
  11.  請求項1~10のいずれか1項に記載の非水系二次電池用重合体組成物を含む、非水二次電池電極バインダー用重合体組成物。 A polymer composition for a nonaqueous secondary battery electrode binder, comprising the polymer composition for a nonaqueous secondary battery according to any one of claims 1 to 10.
  12.  前記重合体粒子100質量部に対して、0.0001質量部以上1.0質量部以下のイソチアゾリン系化合物をさらに含む、請求項1~10のいずれか1項に記載の非水系二次電池用重合体組成物。 The non-aqueous secondary battery according to any one of claims 1 to 10, further comprising an isothiazoline compound of 0.0001 parts by mass or more and 1.0 parts by mass or less relative to 100 parts by mass of the polymer particles. Polymer composition.
  13.  請求項1~11のいずれか1項に記載の非水系二次電池用重合体組成物を含む、非水系二次電池。 A non-aqueous secondary battery comprising the polymer composition for a non-aqueous secondary battery according to any one of claims 1 to 11.
PCT/JP2022/013823 2021-03-24 2022-03-24 Non-aqueous secondary battery polymer composition and non-aqueous secondary battery WO2022202958A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-050398 2021-03-24
JP2021050398 2021-03-24

Publications (1)

Publication Number Publication Date
WO2022202958A1 true WO2022202958A1 (en) 2022-09-29

Family

ID=83397259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013823 WO2022202958A1 (en) 2021-03-24 2022-03-24 Non-aqueous secondary battery polymer composition and non-aqueous secondary battery

Country Status (1)

Country Link
WO (1) WO2022202958A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012002451A1 (en) * 2010-06-29 2012-01-05 日本ゼオン株式会社 Aqueous binder composition for secondary battery negative electrode
WO2012029839A1 (en) * 2010-09-01 2012-03-08 日本ゼオン株式会社 Aqueous binder composition for secondary battery cathode, slurry composition for secondary battery cathode, secondary battery cathode, and secondary battery
WO2013133167A1 (en) * 2012-03-09 2013-09-12 日東電工株式会社 Adhesive tape
KR20160064025A (en) * 2014-11-27 2016-06-07 주식회사 엘지화학 Binder Composition Having Higher Performance and Lithium Secondary Battery Comprising the Same
JP2016201238A (en) * 2015-04-09 2016-12-01 東洋インキScホールディングス株式会社 Packaging material for power storage device
JP2017526104A (en) * 2014-07-11 2017-09-07 エルジー・ケム・リミテッド Positive electrode and manufacturing method thereof
WO2019230592A1 (en) * 2018-05-31 2019-12-05 富士フイルム株式会社 Current collector having easily adhering layer, electrode, all-solid-state secondary battery, electronic device, electric vehicle, and methods for manufacturing current collector having easily adhering layer, electrode and all-solid-state secondary battery
WO2021039468A1 (en) * 2019-08-30 2021-03-04 富士フイルム株式会社 Composition containing inorganic solid electrolyte, sheet for all-solid secondary batteries, all-solid secondary battery, method for manufacturing sheet for all-solid secondary batteries, and method for manufacturing all-solid secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012002451A1 (en) * 2010-06-29 2012-01-05 日本ゼオン株式会社 Aqueous binder composition for secondary battery negative electrode
WO2012029839A1 (en) * 2010-09-01 2012-03-08 日本ゼオン株式会社 Aqueous binder composition for secondary battery cathode, slurry composition for secondary battery cathode, secondary battery cathode, and secondary battery
WO2013133167A1 (en) * 2012-03-09 2013-09-12 日東電工株式会社 Adhesive tape
JP2017526104A (en) * 2014-07-11 2017-09-07 エルジー・ケム・リミテッド Positive electrode and manufacturing method thereof
KR20160064025A (en) * 2014-11-27 2016-06-07 주식회사 엘지화학 Binder Composition Having Higher Performance and Lithium Secondary Battery Comprising the Same
JP2016201238A (en) * 2015-04-09 2016-12-01 東洋インキScホールディングス株式会社 Packaging material for power storage device
WO2019230592A1 (en) * 2018-05-31 2019-12-05 富士フイルム株式会社 Current collector having easily adhering layer, electrode, all-solid-state secondary battery, electronic device, electric vehicle, and methods for manufacturing current collector having easily adhering layer, electrode and all-solid-state secondary battery
WO2021039468A1 (en) * 2019-08-30 2021-03-04 富士フイルム株式会社 Composition containing inorganic solid electrolyte, sheet for all-solid secondary batteries, all-solid secondary battery, method for manufacturing sheet for all-solid secondary batteries, and method for manufacturing all-solid secondary battery

Similar Documents

Publication Publication Date Title
JP5644851B2 (en) All-solid secondary battery and method for producing all-solid secondary battery
JP5708872B1 (en) Nonaqueous secondary battery binder, nonaqueous secondary battery resin composition, nonaqueous secondary battery separator, nonaqueous secondary battery electrode and nonaqueous secondary battery
CN108292753B (en) Composition for non-aqueous secondary battery adhesive layer, adhesive layer for non-aqueous secondary battery, and non-aqueous secondary battery
JPWO2017094252A1 (en) Non-aqueous secondary battery adhesive layer composition, non-aqueous secondary battery adhesive layer, laminate and non-aqueous secondary battery
JP7064881B2 (en) Water-based binder composition for secondary battery electrodes, slurry for secondary battery electrodes, binders, secondary battery electrodes, and secondary batteries
WO2016152262A1 (en) All-solid secondary battery
US20180102542A1 (en) Binder for nonaqueous electrolyte secondary battery electrode, and use thereof
WO2017047378A1 (en) All-solid secondary battery
JP6809466B2 (en) Composition for non-aqueous secondary battery functional layer, non-aqueous secondary battery functional layer and non-aqueous secondary battery
US10541423B2 (en) Electrode mixture layer composition for nonaqueous electrolyte secondary battery, manufacturing method thereof and use therefor
WO2017047379A1 (en) Binder for all-solid-state secondary batteries, and all-solid-state secondary battery
US9786917B2 (en) Method for producing binder composition for storage battery device
JP2016058185A (en) Binder composition for power storage device electrode, slurry for power storage device electrode, power storage device electrode, and power storage device
KR20200042899A (en) Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP2004281055A (en) Binder resin composition for battery, mix slurry, electrode and battery using resin containing carboxyl group
JP2016058184A (en) Binder composition for power storage device electrode, slurry for power storage device electrode, power storage device electrode, and power storage device
US10957909B2 (en) Composition for binder for non-aqueous cell electrode, binder for non-aqueous cell electrode, composition for non-aqueous cell electrode, non-aqueous cell electrode, and non-aqueous cell
JP2023108603A (en) Aqueous binder composition for secondary battery, slurry composition for secondary battery electrode, secondary battery electrode, and secondary battery
JP2017168213A (en) Resin microparticle for power storage device, power storage device electrode, and power storage device
KR102486608B1 (en) Polymer composition for non-aqueous secondary battery and non-aqueous secondary battery
WO2022202958A1 (en) Non-aqueous secondary battery polymer composition and non-aqueous secondary battery
WO2022131253A1 (en) Non-aqueous secondary battery polymer composition and non-aqueous secondary battery
CN113036133A (en) Polymer composition for nonaqueous secondary battery, and nonaqueous secondary battery
KR102439896B1 (en) Polymer composition for non-aqueous secondary battery and non-aqueous secondary battery
JP2022149954A (en) Polymer composition for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775739

Country of ref document: EP

Kind code of ref document: A1