WO2022202894A1 - Resin composition for low dielectric material, film for layered substrate, layered substrate, method for producing resin composition for low dielectric material, method for producing film for layered substrate, and method for producing layered substrate - Google Patents
Resin composition for low dielectric material, film for layered substrate, layered substrate, method for producing resin composition for low dielectric material, method for producing film for layered substrate, and method for producing layered substrate Download PDFInfo
- Publication number
- WO2022202894A1 WO2022202894A1 PCT/JP2022/013475 JP2022013475W WO2022202894A1 WO 2022202894 A1 WO2022202894 A1 WO 2022202894A1 JP 2022013475 W JP2022013475 W JP 2022013475W WO 2022202894 A1 WO2022202894 A1 WO 2022202894A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- low dielectric
- resin composition
- aromatic
- dielectric material
- Prior art date
Links
- 239000011342 resin composition Substances 0.000 title claims abstract description 128
- 239000003989 dielectric material Substances 0.000 title claims abstract description 119
- 239000000758 substrate Substances 0.000 title claims abstract description 79
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 55
- -1 triazine compound Chemical class 0.000 claims abstract description 110
- 229920005989 resin Polymers 0.000 claims abstract description 78
- 239000011347 resin Substances 0.000 claims abstract description 78
- 238000000034 method Methods 0.000 claims abstract description 23
- 239000000203 mixture Substances 0.000 claims abstract description 13
- 150000001875 compounds Chemical class 0.000 claims description 103
- 125000003118 aryl group Chemical group 0.000 claims description 99
- 125000001931 aliphatic group Chemical group 0.000 claims description 61
- 239000003822 epoxy resin Substances 0.000 claims description 46
- 229920000647 polyepoxide Polymers 0.000 claims description 46
- 125000001820 oxy group Chemical group [*:1]O[*:2] 0.000 claims description 36
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 claims description 33
- 230000009477 glass transition Effects 0.000 claims description 30
- 238000006116 polymerization reaction Methods 0.000 claims description 29
- 239000011810 insulating material Substances 0.000 claims description 28
- 125000004122 cyclic group Chemical group 0.000 claims description 26
- 239000003960 organic solvent Substances 0.000 claims description 25
- XQUPVDVFXZDTLT-UHFFFAOYSA-N 1-[4-[[4-(2,5-dioxopyrrol-1-yl)phenyl]methyl]phenyl]pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C(C=C1)=CC=C1CC1=CC=C(N2C(C=CC2=O)=O)C=C1 XQUPVDVFXZDTLT-UHFFFAOYSA-N 0.000 claims description 20
- XLJMAIOERFSOGZ-UHFFFAOYSA-M cyanate Chemical compound [O-]C#N XLJMAIOERFSOGZ-UHFFFAOYSA-M 0.000 claims description 20
- 229920003192 poly(bis maleimide) Polymers 0.000 claims description 20
- 125000001424 substituent group Chemical group 0.000 claims description 18
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 claims description 14
- 238000002156 mixing Methods 0.000 claims description 14
- 239000011256 inorganic filler Substances 0.000 claims description 12
- 229910003475 inorganic filler Inorganic materials 0.000 claims description 12
- 239000003063 flame retardant Substances 0.000 claims description 10
- 239000003607 modifier Substances 0.000 claims description 10
- 239000000976 ink Substances 0.000 claims description 8
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 6
- 239000011737 fluorine Substances 0.000 claims description 6
- 229910052731 fluorine Inorganic materials 0.000 claims description 6
- 238000010030 laminating Methods 0.000 claims description 6
- 239000003566 sealing material Substances 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 4
- 125000003277 amino group Chemical group 0.000 claims description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 122
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 122
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 106
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 78
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 77
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 76
- 229920000642 polymer Polymers 0.000 description 76
- 229910052757 nitrogen Inorganic materials 0.000 description 64
- JFDZBHWFFUWGJE-UHFFFAOYSA-N benzonitrile Chemical compound N#CC1=CC=CC=C1 JFDZBHWFFUWGJE-UHFFFAOYSA-N 0.000 description 54
- 239000000243 solution Substances 0.000 description 52
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 52
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 48
- 239000010410 layer Substances 0.000 description 46
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 42
- LQNUZADURLCDLV-UHFFFAOYSA-N nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 description 38
- 230000004580 weight loss Effects 0.000 description 37
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 32
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 30
- 239000000463 material Substances 0.000 description 28
- 235000002597 Solanum melongena Nutrition 0.000 description 26
- 238000004458 analytical method Methods 0.000 description 26
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 26
- 239000011521 glass Substances 0.000 description 26
- 238000006243 chemical reaction Methods 0.000 description 25
- 238000000113 differential scanning calorimetry Methods 0.000 description 25
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 description 24
- 238000012360 testing method Methods 0.000 description 23
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 20
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 20
- 238000002834 transmittance Methods 0.000 description 19
- 238000003763 carbonization Methods 0.000 description 18
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 17
- 238000000967 suction filtration Methods 0.000 description 17
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 16
- 239000000178 monomer Substances 0.000 description 16
- 235000011121 sodium hydroxide Nutrition 0.000 description 16
- 238000005160 1H NMR spectroscopy Methods 0.000 description 15
- 230000015572 biosynthetic process Effects 0.000 description 15
- 239000004020 conductor Substances 0.000 description 15
- 238000010438 heat treatment Methods 0.000 description 15
- 238000001226 reprecipitation Methods 0.000 description 15
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 14
- 238000009826 distribution Methods 0.000 description 14
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 14
- 238000006386 neutralization reaction Methods 0.000 description 14
- 239000003444 phase transfer catalyst Substances 0.000 description 14
- 239000007864 aqueous solution Substances 0.000 description 13
- 238000003786 synthesis reaction Methods 0.000 description 12
- 238000005259 measurement Methods 0.000 description 11
- 238000000921 elemental analysis Methods 0.000 description 10
- 238000005227 gel permeation chromatography Methods 0.000 description 10
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical group C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 9
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 9
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 9
- 238000005979 thermal decomposition reaction Methods 0.000 description 8
- 150000005181 nitrobenzenes Chemical class 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 238000002411 thermogravimetry Methods 0.000 description 7
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- 150000001339 alkali metal compounds Chemical class 0.000 description 6
- 239000004744 fabric Substances 0.000 description 6
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 230000001681 protective effect Effects 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 239000002585 base Substances 0.000 description 5
- 239000004305 biphenyl Substances 0.000 description 5
- 235000010290 biphenyl Nutrition 0.000 description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229920003986 novolac Polymers 0.000 description 5
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 5
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 5
- 229930185605 Bisphenol Natural products 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 4
- 239000004760 aramid Substances 0.000 description 4
- 229920003235 aromatic polyamide Polymers 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 4
- 238000003475 lamination Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 230000000930 thermomechanical effect Effects 0.000 description 4
- 239000002966 varnish Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- 125000006414 CCl Chemical group ClC* 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 3
- 150000001491 aromatic compounds Chemical class 0.000 description 3
- ZFVMWEVVKGLCIJ-UHFFFAOYSA-N bisphenol AF Chemical compound C1=CC(O)=CC=C1C(C(F)(F)F)(C(F)(F)F)C1=CC=C(O)C=C1 ZFVMWEVVKGLCIJ-UHFFFAOYSA-N 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000012043 crude product Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- MGNCLNQXLYJVJD-UHFFFAOYSA-N cyanuric chloride Chemical compound ClC1=NC(Cl)=NC(Cl)=N1 MGNCLNQXLYJVJD-UHFFFAOYSA-N 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N formaldehyde Natural products O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 150000002366 halogen compounds Chemical class 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- 239000012796 inorganic flame retardant Chemical class 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 3
- 239000000347 magnesium hydroxide Substances 0.000 description 3
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 3
- 125000004433 nitrogen atom Chemical group N* 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 238000001308 synthesis method Methods 0.000 description 3
- NIELKVFLOQJZIC-UHFFFAOYSA-N triazine;dihydrochloride Chemical compound Cl.Cl.C1=CN=NN=C1 NIELKVFLOQJZIC-UHFFFAOYSA-N 0.000 description 3
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 2
- HCNHNBLSNVSJTJ-UHFFFAOYSA-N 1,1-Bis(4-hydroxyphenyl)ethane Chemical compound C=1C=C(O)C=CC=1C(C)C1=CC=C(O)C=C1 HCNHNBLSNVSJTJ-UHFFFAOYSA-N 0.000 description 2
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 2
- YWFPGFJLYRKYJZ-UHFFFAOYSA-N 9,9-bis(4-hydroxyphenyl)fluorene Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C2=CC=CC=C21 YWFPGFJLYRKYJZ-UHFFFAOYSA-N 0.000 description 2
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 2
- 241000209094 Oryza Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- 239000004695 Polyether sulfone Substances 0.000 description 2
- 239000004697 Polyetherimide Substances 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 125000000732 arylene group Chemical group 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- 229930188620 butyrolactone Natural products 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 125000001309 chloro group Chemical group Cl* 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 229910002026 crystalline silica Inorganic materials 0.000 description 2
- 150000001925 cycloalkenes Chemical class 0.000 description 2
- 150000002009 diols Chemical class 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000008393 encapsulating agent Substances 0.000 description 2
- LZCLXQDLBQLTDK-UHFFFAOYSA-N ethyl 2-hydroxypropanoate Chemical compound CCOC(=O)C(C)O LZCLXQDLBQLTDK-UHFFFAOYSA-N 0.000 description 2
- XLLIQLLCWZCATF-UHFFFAOYSA-N ethylene glycol monomethyl ether acetate Natural products COCCOC(C)=O XLLIQLLCWZCATF-UHFFFAOYSA-N 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000005350 fused silica glass Substances 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 238000002329 infrared spectrum Methods 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 125000004957 naphthylene group Chemical group 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 239000012044 organic layer Substances 0.000 description 2
- 229920006287 phenoxy resin Polymers 0.000 description 2
- 239000013034 phenoxy resin Substances 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 2
- 125000004437 phosphorous atom Chemical group 0.000 description 2
- 229920006122 polyamide resin Polymers 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- 229920006393 polyether sulfone Polymers 0.000 description 2
- 229920001601 polyetherimide Polymers 0.000 description 2
- 239000009719 polyimide resin Substances 0.000 description 2
- 229920001955 polyphenylene ether Polymers 0.000 description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 229920005990 polystyrene resin Polymers 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229960003975 potassium Drugs 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 235000011118 potassium hydroxide Nutrition 0.000 description 2
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 238000007788 roughening Methods 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 235000017550 sodium carbonate Nutrition 0.000 description 2
- JRMUNVKIHCOMHV-UHFFFAOYSA-M tetrabutylammonium bromide Chemical compound [Br-].CCCC[N+](CCCC)(CCCC)CCCC JRMUNVKIHCOMHV-UHFFFAOYSA-M 0.000 description 2
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 2
- 239000012780 transparent material Substances 0.000 description 2
- KGSFMPRFQVLGTJ-UHFFFAOYSA-N 1,1,2-triphenylethylbenzene Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(C=1C=CC=CC=1)CC1=CC=CC=C1 KGSFMPRFQVLGTJ-UHFFFAOYSA-N 0.000 description 1
- WBODDOZXDKQEFS-UHFFFAOYSA-N 1,2,3,4-tetramethyl-5-phenylbenzene Chemical group CC1=C(C)C(C)=CC(C=2C=CC=CC=2)=C1C WBODDOZXDKQEFS-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 1
- LIAWCKFOFPPVGF-UHFFFAOYSA-N 2-ethyladamantane Chemical compound C1C(C2)CC3CC1C(CC)C2C3 LIAWCKFOFPPVGF-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- GSKNLOOGBYYDHV-UHFFFAOYSA-N 2-methylphenol;naphthalen-1-ol Chemical compound CC1=CC=CC=C1O.C1=CC=C2C(O)=CC=CC2=C1 GSKNLOOGBYYDHV-UHFFFAOYSA-N 0.000 description 1
- PUYOAVGNCWPANW-UHFFFAOYSA-N 2-methylpropyl 4-aminobenzoate Chemical compound CC(C)COC(=O)C1=CC=C(N)C=C1 PUYOAVGNCWPANW-UHFFFAOYSA-N 0.000 description 1
- TUJHKTMBIVIOOV-UHFFFAOYSA-N 3-(4-hydroxyphenyl)-1,1,3-trimethyl-2h-inden-5-ol Chemical compound C12=CC(O)=CC=C2C(C)(C)CC1(C)C1=CC=C(O)C=C1 TUJHKTMBIVIOOV-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical compound C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- BHWMWBACMSEDTE-UHFFFAOYSA-N 4-[1-(4-hydroxyphenyl)cyclododecyl]phenol Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)CCCCCCCCCCC1 BHWMWBACMSEDTE-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 239000004114 Ammonium polyphosphate Substances 0.000 description 1
- SDDLEVPIDBLVHC-UHFFFAOYSA-N Bisphenol Z Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)CCCCC1 SDDLEVPIDBLVHC-UHFFFAOYSA-N 0.000 description 1
- XBPCUCUWBYBCDP-UHFFFAOYSA-N Dicyclohexylamine Chemical compound C1CCCCC1NC1CCCCC1 XBPCUCUWBYBCDP-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- CGSLYBDCEGBZCG-UHFFFAOYSA-N Octicizer Chemical compound C=1C=CC=CC=1OP(=O)(OCC(CC)CCCC)OC1=CC=CC=C1 CGSLYBDCEGBZCG-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical class [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- YSMRWXYRXBRSND-UHFFFAOYSA-N TOTP Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C)OC1=CC=CC=C1C YSMRWXYRXBRSND-UHFFFAOYSA-N 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000008065 acid anhydrides Chemical group 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000007259 addition reaction Methods 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 150000007824 aliphatic compounds Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 235000019826 ammonium polyphosphate Nutrition 0.000 description 1
- 229920001276 ammonium polyphosphate Polymers 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 150000008359 benzonitriles Chemical class 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 125000002529 biphenylenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C12)* 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- CEDDGDWODCGBFQ-UHFFFAOYSA-N carbamimidoylazanium;hydron;phosphate Chemical compound NC(N)=N.OP(O)(O)=O CEDDGDWODCGBFQ-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000007810 chemical reaction solvent Substances 0.000 description 1
- 239000011231 conductive filler Substances 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 150000003983 crown ethers Chemical group 0.000 description 1
- 125000002592 cumenyl group Chemical group C1(=C(C=CC=C1)*)C(C)C 0.000 description 1
- 238000007766 curtain coating Methods 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001352 cyclobutyloxy group Chemical group C1(CCC1)O* 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000004956 cyclohexylene group Chemical group 0.000 description 1
- 125000002933 cyclohexyloxy group Chemical group C1(CCCCC1)O* 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001887 cyclopentyloxy group Chemical group C1(CCCC1)O* 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000006612 decyloxy group Chemical group 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 125000004915 dibutylamino group Chemical group C(CCC)N(CCCC)* 0.000 description 1
- 125000001664 diethylamino group Chemical group [H]C([H])([H])C([H])([H])N(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 1
- ASMQGLCHMVWBQR-UHFFFAOYSA-M diphenyl phosphate Chemical compound C=1C=CC=CC=1OP(=O)([O-])OC1=CC=CC=C1 ASMQGLCHMVWBQR-UHFFFAOYSA-M 0.000 description 1
- CZZYITDELCSZES-UHFFFAOYSA-N diphenylmethane Chemical compound C=1C=CC=CC=1CC1=CC=CC=C1 CZZYITDELCSZES-UHFFFAOYSA-N 0.000 description 1
- 125000004914 dipropylamino group Chemical group C(CC)N(CCC)* 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 229940116333 ethyl lactate Drugs 0.000 description 1
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000002783 friction material Substances 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004836 hexamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000000654 isopropylidene group Chemical group C(C)(C)=* 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000006611 nonyloxy group Chemical group 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005447 octyloxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 125000004817 pentamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- XNLICIUVMPYHGG-UHFFFAOYSA-N pentan-2-one Chemical compound CCCC(C)=O XNLICIUVMPYHGG-UHFFFAOYSA-N 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- ANRQGKOBLBYXFM-UHFFFAOYSA-M phenylmagnesium bromide Chemical compound Br[Mg]C1=CC=CC=C1 ANRQGKOBLBYXFM-UHFFFAOYSA-M 0.000 description 1
- 150000003003 phosphines Chemical group 0.000 description 1
- 150000004714 phosphonium salts Chemical group 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 125000000587 piperidin-1-yl group Chemical group [H]C1([H])N(*)C([H])([H])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920003050 poly-cycloolefin Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920000137 polyphosphoric acid Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000011736 potassium bicarbonate Substances 0.000 description 1
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 1
- 235000015497 potassium bicarbonate Nutrition 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 235000011181 potassium carbonates Nutrition 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- 229940086066 potassium hydrogencarbonate Drugs 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 125000002112 pyrrolidino group Chemical group [*]N1C([H])([H])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000010125 resin casting Methods 0.000 description 1
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 1
- 229960001755 resorcinol Drugs 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- STCOOQWBFONSKY-UHFFFAOYSA-N tributyl phosphate Chemical compound CCCCOP(=O)(OCCCC)OCCCC STCOOQWBFONSKY-UHFFFAOYSA-N 0.000 description 1
- VLCLHFYFMCKBRP-UHFFFAOYSA-N tricalcium;diborate Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]B([O-])[O-].[O-]B([O-])[O-] VLCLHFYFMCKBRP-UHFFFAOYSA-N 0.000 description 1
- DQWPFSLDHJDLRL-UHFFFAOYSA-N triethyl phosphate Chemical compound CCOP(=O)(OCC)OCC DQWPFSLDHJDLRL-UHFFFAOYSA-N 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- WVLBCYQITXONBZ-UHFFFAOYSA-N trimethyl phosphate Chemical compound COP(=O)(OC)OC WVLBCYQITXONBZ-UHFFFAOYSA-N 0.000 description 1
- 125000003258 trimethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- XZZNDPSIHUTMOC-UHFFFAOYSA-N triphenyl phosphate Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)(=O)OC1=CC=CC=C1 XZZNDPSIHUTMOC-UHFFFAOYSA-N 0.000 description 1
- AAAQKTZKLRYKHR-UHFFFAOYSA-N triphenylmethane Chemical compound C1=CC=CC=C1C(C=1C=CC=CC=1)C1=CC=CC=C1 AAAQKTZKLRYKHR-UHFFFAOYSA-N 0.000 description 1
- KOWVWXQNQNCRRS-UHFFFAOYSA-N tris(2,4-dimethylphenyl) phosphate Chemical compound CC1=CC(C)=CC=C1OP(=O)(OC=1C(=CC(C)=CC=1)C)OC1=CC=C(C)C=C1C KOWVWXQNQNCRRS-UHFFFAOYSA-N 0.000 description 1
- QLORRTLBSJTMSN-UHFFFAOYSA-N tris(2,6-dimethylphenyl) phosphate Chemical compound CC1=CC=CC(C)=C1OP(=O)(OC=1C(=CC=CC=1C)C)OC1=C(C)C=CC=C1C QLORRTLBSJTMSN-UHFFFAOYSA-N 0.000 description 1
- WTLBZVNBAKMVDP-UHFFFAOYSA-N tris(2-butoxyethyl) phosphate Chemical compound CCCCOCCOP(=O)(OCCOCCCC)OCCOCCCC WTLBZVNBAKMVDP-UHFFFAOYSA-N 0.000 description 1
- BIKXLKXABVUSMH-UHFFFAOYSA-N trizinc;diborate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]B([O-])[O-].[O-]B([O-])[O-] BIKXLKXABVUSMH-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/38—Layered products comprising a layer of synthetic resin comprising epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/34—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
- C08G65/38—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
- C08G65/40—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
- C08L71/08—Polyethers derived from hydroxy compounds or from their metallic derivatives
- C08L71/10—Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
Definitions
- the present invention provides a resin composition for a low dielectric material containing a triazine compound, a film for a laminated substrate, a laminated substrate, a method for producing a resin composition for a low dielectric material, and a lamination, for use as a low dielectric material for electronic devices and the like.
- the present invention relates to a method for manufacturing a substrate film and a method for manufacturing a laminated substrate.
- aromatic polyethers have excellent heat resistance and relatively excellent mechanical strength, so they are widely used in the automotive and mechanical fields as so-called engineering resins.
- engineering resins As a more preferable engineering resin, development of a new structure that is an even more excellent engineering resin that achieves both heat resistance and thermal stability is underway.
- Patent Document 1 discloses a polymer containing an alicyclic structure and a triazine structure, and a transparent material containing the polymer. This technique aims to provide a polymer having a triazine structure that can be used for transparent materials with high heat resistance.
- a triazine compound having a specific structure not only has excellent mechanical and thermal properties, but also has excellent properties as a low dielectric constant material and a low dielectric loss tangent material, leading to the completion of the present invention. rice field.
- the present invention has been made in view of the above circumstances, and is suitable as a low dielectric material because of its low dielectric constant, low dielectric loss tangent, high transparency, high solubility, and high heat resistance. It is an object of the present invention to provide a resin composition that can be used for a film, a film for a laminated substrate using the same, a laminated substrate, and a method for producing them.
- n is an integer of 2 or more
- R is a linear, branched or cyclic aliphatic group, a linear, branched or cyclic aliphatic oxy group, a linear Aromatic, branched or cyclic aliphatic secondary amino groups, aromatic groups or substituted aromatic groups, aromatic oxy groups or substituted aromatic oxy groups, aromatic secondary amino groups or substituted groups the aromatic secondary amino group having the fluorinated aliphatic group, the fluorinated aliphatic oxy group, the fluorinated aliphatic secondary amino group, the fluorinated aromatic group, fluorine represents a fluorinated aromatic oxy group or a fluorinated aromatic secondary amino group.
- Ar represents a linear, branched or cyclic aliphatic group or a divalent aromatic group having a fluorinated linear, branched or cyclic aliphatic group.
- R in the general formula (1) is represented by any one of the following general formulas (2) to (4), and Ar in the formula (1) is the following general formula (5)
- the resin composition for a low dielectric material represented by any one of (15).
- the resin composition for a low dielectric material wherein the triazine compound has a dielectric constant (D k ) of 2.7 or less and/or a dielectric loss tangent (D f ) of 0.004 or less.
- the resin composition for a low dielectric material wherein the triazine compound has a glass transition temperature of 160° C. or higher.
- the resin composition for a low dielectric material containing the triazine compound and an epoxy resin, bismaleimide resin or cyanate resin.
- the resin composition for a low dielectric material further comprising an inorganic filler, a modifier or a flame retardant.
- the above-mentioned resin composition for low dielectric materials which is used in equipment for transmitting and receiving high-frequency electromagnetic waves having a frequency of 0.1 to 500 GHz.
- the resin composition for a low dielectric material which is used for printed wiring boards, flexible printed wiring boards, sealing materials for electronic parts, resist inks, conductive pastes, insulating materials, or insulating boards.
- a film for a laminated substrate comprising an insulating material containing the resin composition for a low dielectric material on at least one surface thereof.
- a laminated substrate comprising two or more of the films for a laminated substrate.
- a method for producing the resin composition for a low dielectric material A compound represented by the following general formula (16) and a compound represented by the following general formula (17) are mixed and polymerized to obtain a triazine compound represented by the following general formula (18) for a low dielectric material.
- a method for producing a resin composition A method for producing a resin composition.
- n is an integer of 2 or more
- R is a linear, branched or cyclic aliphatic group, a linear, branched or cyclic An aliphatic oxy group, a linear, branched or cyclic aliphatic secondary amino group, an aromatic group or an aromatic group having a substituent, an aromatic oxy group or an aromatic oxy group having a substituent, an aromatic a secondary amino group or an aromatic secondary amino group having a substituent, the fluorinated aliphatic group, the fluorinated aliphatic oxy group, the fluorinated aliphatic secondary amino group, fluorinated represents the above aromatic group, the above fluorinated aromatic oxy group, or the above fluorinated aromatic secondary amino group.
- Ar represents a linear, branched or cyclic aliphatic group or a divalent aromatic group having a fluorinated linear, branched or cyclic aliphatic group.
- a method for producing a film for a laminated substrate comprising applying an insulating material containing the resin composition for a low dielectric material to at least one surface of a resin film.
- a method for producing a laminated substrate comprising laminating two or more films for the laminated substrate.
- n is an integer of 2 or more
- R is a linear, branched or cyclic aliphatic group, a linear, branched or cyclic aliphatic oxy group, a linear Aromatic, branched or cyclic aliphatic secondary amino groups, aromatic groups or substituted aromatic groups, aromatic oxy groups or substituted aromatic oxy groups, aromatic secondary amino groups or substituted groups the aromatic secondary amino group having the fluorinated aliphatic group, the fluorinated aliphatic oxy group, the fluorinated aliphatic secondary amino group, the fluorinated aromatic group, fluorine represents a fluorinated aromatic oxy group or a fluorinated aromatic secondary amino group.
- Ar represents a linear, branched or cyclic aliphatic group or a divalent aromatic group having a fluorinated linear, branched or cyclic aliphatic group.
- the triazine compound is a compound represented by the following general formula (2A), or Ar in the formula (1A) is represented by the following general formula (11A), and R is the following general formula ( 3A)
- the resin composition for a low dielectric material represented by any one of (5A).
- R 1 represents a structure represented by any one of the following general formulas (3A) to (5A).
- R 2 represents a structure represented by any one of general formulas (6A) to (10A) and (12A) below.
- [3A] The resin composition for a low dielectric material, containing a triazine compound in which the repeating unit represented by n in the general formula (1A) has an average degree of polymerization of 2 to 100.
- [4A] The resin composition for a low dielectric material, wherein the triazine compound has a dielectric constant Dk of 2.7 or less and a dielectric loss tangent Df of 0.004 or less.
- [5A] The resin composition for a low dielectric material, wherein the triazine compound has a glass transition temperature of 160° C. or higher.
- [6A] The resin composition for a low dielectric material, comprising the triazine compound and an epoxy resin.
- the resin composition for a low dielectric material further comprising an inorganic filler, modifier or flame retardant.
- the resin composition for a low dielectric material which is used in equipment for transmitting and receiving high-frequency electromagnetic waves having a frequency of 0.1 to 500 GHz.
- the resin composition for a low dielectric material which is used for printed wiring boards, flexible printed wiring boards, sealing materials for electronic parts, resist inks, conductive pastes, insulating materials, or insulating boards.
- a film for a laminated substrate comprising an insulating material containing the resin composition for a low dielectric material on at least one surface thereof.
- a laminated substrate comprising two or more of the films for a laminated substrate.
- [12A] A method for producing the resin composition for a low dielectric material, wherein a compound represented by the following general formula (13A) and a compound represented by the following general formula (14A) are mixed and polymerized.
- R is a linear, branched or cyclic aliphatic group, a linear, branched or cyclic aliphatic oxy group, a linear , a branched or cyclic aliphatic secondary amino group, an aromatic group or an aromatic group having a substituent, an aromatic oxy group or an aromatic oxy group having a substituent, an aromatic secondary amino group or a substituent
- Aromatic secondary amino group having, the fluorinated aliphatic group, the fluorinated aliphatic oxy group, the fluorinated aliphatic secondary amino group, the fluorinated aromatic group, fluorinated represents the above aromatic oxy group or a fluorinated aromatic secondary amino group.
- Ar represents a linear, branched or cyclic aliphatic group or a divalent aromatic group having a fluorinated linear, branched or cyclic aliphatic group.
- [15A] A method for producing a film for a laminated substrate, comprising applying an insulating material containing the resin composition for a low dielectric material to at least one surface of a resin film.
- [16A] A method for producing a laminated substrate, comprising laminating two or more of the films for a laminated substrate.
- a resin composition that can be suitably used as a low dielectric material because it has a low dielectric constant, a low dielectric loss tangent, a high transparency, a high solubility, and a high heat resistance.
- a film for a laminated substrate, a laminated substrate, and a method for producing them are obtained.
- the resin composition for low dielectric materials of this embodiment contains a specific triazine compound.
- a low dielectric material is a material with a low dielectric constant and/or a low dielectric loss tangent. That is, it is a low dielectric constant material or a low dielectric loss tangent material, and is hereinafter generically referred to as a "low dielectric material”. Definitions of dielectric constant and dielectric loss tangent measurement conditions will be described later.
- a low dielectric material is a material that is used in a portion of an electronic device or electronic component that requires a low dielectric constant and/or a low dielectric loss tangent.
- a portion requiring a low dielectric constant and/or a low dielectric loss tangent is, for example, a portion that requires insulation, and includes insulating parts such as an insulating plate and insulating parts of a printed wiring board.
- Printed wiring boards also include flexible printed wiring boards. Since the compound contained in the material of the present embodiment has a low dielectric constant and/or a low dielectric loss tangent, especially at high frequencies, it can be used as electronic components and electronic devices, especially for high-frequency compatible electronic components and electronic devices. is preferred.
- the triazine compound contained in the resin composition of this embodiment has a repeating unit represented by the following general formula (1).
- n is an integer of 2 or more
- R is a linear, branched or cyclic aliphatic group, a linear, branched or cyclic aliphatic oxy group, a linear A chain, branched or cyclic aliphatic secondary amino group, an aromatic group or an aromatic group having a substituent, an aromatic oxy group or an aromatic oxy group having a substituent, an aromatic secondary amino group or a substituent an aromatic secondary amino group having a group, the fluorinated aliphatic group, the fluorinated aliphatic oxy group, the fluorinated aliphatic secondary amino group, the fluorinated aromatic group, It represents a fluorinated aromatic oxy group or a fluorinated aromatic secondary amino group.
- the substituent is a group different from the group (atomic group) to be bonded, and can be bonded by replacing some atoms (preferably hydrogen) of the group to be bonded.
- An aromatic group broadly refers to a group containing the structure of a compound or partially substituted compound having aromatic character.
- Aliphatic groups broadly refer to groups containing structures of organic compounds or partially substituted compounds that do not have aromatic character.
- n represents the number of repeating units of the structure represented by formula (1) and is an integer of 2 or more.
- the average value of the degree of polymerization (n) of the triazine compound contained in the resin composition for a low dielectric material of the present embodiment is the average degree of polymerization, and the value of the average degree of polymerization is 2 to 600. is preferred.
- the aliphatic group those having 1 to 14 carbon atoms are preferable.
- the aliphatic groups include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl, and tert.
- aliphatic oxy groups include methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy, tert-butoxy, pentyloxy, hexyloxy, heptyloxy, and octyloxy. group, nonyloxy group, decyloxy group, cyclobutoxy group, cyclopentyloxy group, or cyclohexyloxy group.
- aliphatic secondary amino groups include dimethylamino group, diethylamino group, methylethylamino group, dipropylamino group, methylpropylamino group, dibutylamino group, methylbutylamino group, N-methylcyclohexylamino group and dicyclohexylamino group. , a pyrrolidino group, a piperidino group, or a morpholino group. As the aromatic group, those having 6 to 18 carbon atoms are preferred.
- the aromatic group includes a phenyl group, a methylphenyl group, a dimethylphenyl group, a cumenyl group, a mesityl group, a tert-butylphenyl group, a naphthyl group, and the like.
- the aromatic oxy group includes phenoxy group, methylphenoxy group, dimethylphenoxy group, naphthoxy group and the like.
- the aromatic secondary amino group includes an N-methylanilino group and a diphenylamino group.
- the fluorinated aromatic group includes a trifluoromethylphenyl group, a bistrifluoromethylphenyl group, a trifluoromethylphenoxy group, a bistrifluoromethylphenoxy group, an N-methyltrifluoromethylanilino group, or a trifluoromethyldiphenylamino group.
- base, etc. Ar represents a linear, branched or cyclic aliphatic group or a divalent aromatic group having a fluorinated linear, branched or cyclic aliphatic group.
- aliphatic groups include methyl group, trifluoromethyl group, methylene group, ethylene group, trimethylene group, tetramethylene group, propylene group, butylene group, pentylene group, hexylene group, cyclopentalene group, cyclohexylene group and isopropylidene group.
- the resin containing the triazine compound of the present embodiment is an aliphatic group-containing triazine resin when R is an aliphatic group, and a fluorinated aliphatic resin when R is a fluorinated aliphatic group. group-containing triazine resins.
- the degree to which R is fluorinated can be chosen widely, from one of the carbon attachment sites in R to all carbon attachment sites other than those attached to the group to which it is attached. For example, when R is a methyl group, 1 to 3 hydrogen atoms of the methyl group may be substituted with fluorine atoms, but 2 to 3 hydrogen atoms are preferred.
- R in Formula (1) may be the same substituent or may be different.
- the above-described chemical structure of the triazine compound contained in the resin composition of the present embodiment is determined by infrared spectrum (FT-IR), nuclear magnetic resonance spectrum (NMR, such as 1 H-NMR, 13 C-NMR, 19 F- NMR), elemental analysis, or the like.
- FT-IR infrared spectrum
- NMR nuclear magnetic resonance spectrum
- elemental analysis or the like.
- Examples of the arylene group for Ar include various divalent aromatic compounds obtained by extracting a total of two hydrogen atoms or other substituents bonded to aromatic rings in various aromatic compounds or aromatic ring-containing compounds. can be appropriately selected from group residues. Examples thereof include various aromatic residues obtained by abstracting two phenolic hydroxyl groups from various dihydric phenols. Examples of arylene groups can be appropriately selected from various phenylene groups, naphthylene groups, biphenylene groups, and the like. Other alkyl groups, aryl groups, or the like may be bonded to Ar.
- the triazine compound of the present embodiment has a structure in which R in general formula (1) below is represented by any one of general formulas (2) to (4) below.
- Ar may be a compound represented by a structure represented by any one of the following general formulas (5) to (15).
- the formula (2) may be represented as DCPT, the formula (3) as DCPpT, and the formula (4) as DCHAT.
- formula (5) is BisA
- formula (6) is BisZ
- formula (7) is BisP3MZ
- formula (8) is BisPHTG
- formula (9) is BisPCDE
- formula (10) is HPTM5I
- formula (11) is BisC
- formula (12) is BisTMP
- formula (13) is BisCHP
- formula ( 14) is sometimes expressed as BisAF
- equation (15) as BPFL equation (15) as BPFL.
- the dielectric constant is particularly low, the dielectric loss tangent is low, the transparency is high, the solubility is high, and the heat resistance is high.
- the triazine compound of the present embodiment preferably has an average degree of polymerization of 2 to 600 for the repeating unit represented by n in the general formula (1).
- the repeating unit represented by n has an average degree of polymerization of 2 to 600, a compound having an appropriate molecular weight can be obtained when used as a resin composition for a low dielectric material.
- the average degree of polymerization is preferably 2-300.
- the average degree of polymerization may be 2-100.
- the molecular weight of the triazine compound of the present embodiment is such that the number average molecular weight M n is 3 ⁇ 10 3 to 40 ⁇ 10 4 and the weight average molecular weight is It is preferred that M w is between 6 ⁇ 10 3 and 80 ⁇ 10 4 .
- the molecular weight of the compound of this embodiment can be measured using gel permeation chromatography (GPC) or the like. The average degree of polymerization can be determined from this molecular weight and the structure of the compound described above.
- the triazine compound of the present embodiment may have a dielectric constant (D k ) of 2.7 or less and/or a dielectric loss tangent (D f ) of 0.006 or less. It is also preferable that the dielectric loss tangent (D f ) is 0.004 or less.
- the dielectric constant (D k ) and dielectric loss tangent (D f ) are values measured by an existing dielectric property measuring device. As an existing dielectric property measuring device, for example, a cavity resonator type device or the like can be used.
- the triazine compound of the present embodiment preferably has a dielectric constant (D k ) of 2.6 or less, and more preferably has a dielectric loss tangent (D f ) of 0.003 or less.
- the triazine compound of the resin composition for low dielectric materials of the present embodiment preferably has a glass transition temperature of 160° C. or higher, more preferably 200° C. or higher. It is also preferable that the 5% thermal decomposition temperature is 340 to 500°C.
- the glass transition temperature of the triazine compound of the resin composition for low dielectric materials of the present embodiment is measured using differential scanning calorimetry (DSC), thermomechanical analysis (TMA), dynamic viscoelasticity measurement (DMA), or the like. be able to.
- the 5% thermal decomposition temperature of the resin composition for low dielectric materials of this embodiment is obtained by measuring the weight loss temperature. The weight loss temperature can be measured using, for example, thermogravimetry (TGA).
- the resin composition for the low dielectric material of the present embodiment preferably contains the triazine compound and epoxy resin, bismaleimide resin or cyanate resin.
- epoxy resin a bismaleimide resin, or a cyanate resin
- a resin composition for a low dielectric material excellent in heat resistance and dielectric properties can be obtained.
- the epoxy resin is not particularly limited, but in that a cured product having excellent heat resistance can be obtained, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, bisphenol sulfide type epoxy resin, biphenyl type epoxy resin, tetramethylbiphenyl type epoxy resin, polyhydroxynaphthalene type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, triphenylmethane type epoxy resin, Tetraphenylethane type epoxy resin, dicyclopentadiene-phenol addition reaction type epoxy resin, phenol aralkyl type epoxy resin, biphenyl aralkyl type epoxy resin, biphenyl novolac type epoxy resin, naphthol novolac type epoxy resin, naphthol aralkyl type epoxy resin, naphthol- Phenol-cocondensed novolak-type epoxy resin, naphthol-cresol co-
- the bismaleimide resin is not particularly limited, but in that a cured product having excellent heat resistance can be obtained, for example, diphenylmethane type bismaleimide resin, metaphenylene type bismaleimide resin, bisphenol A diphenyl ether type bismaleimide resin, diphenyl ether type bismaleimide resin, A maleimide resin, a diphenylsulfone-type bismaleimide resin, a diphenoxybenzene-type bismaleimide resin, an aniline novolac-type bismaleimide resin, or the like may be used. Each of these may be used alone, or two or more of them may be used in combination.
- the cyanate resin is not particularly limited, but in that a cured product having excellent heat resistance can be obtained, for example, bisphenol A type cyanate resin, tetramethylbisphenol F type cyanate resin, hexafluorobisphenol A type cyanate resin, bisphenol E type A cyanate resin, a bisphenol M-type cyanate resin, a novolak-type cyanate resin, a cyclopentadienylbisphenol-type cyanate resin, or the like may be used. Each of these may be used alone, or two or more of them may be used in combination.
- the resin composition for the low dielectric material of the present embodiment further contains an inorganic filler, a modifier or a flame retardant.
- an inorganic filler for example, fused silica, crystalline silica, alumina, silicon nitride, aluminum hydroxide, magnesium hydroxide, or the like may be used.
- the modifier can be appropriately selected from various thermosetting resins, thermoplastic resins, etc. Examples include phenoxy resins, polyamide resins, polyimide resins, polyetherimide resins, polyethersulfone resins, polyphenylene ether resins, and polyphenylene sulfide resins.
- polyester resin polystyrene resin, polyethylene terephthalate resin, cycloolefin resin, fluorine resin, or the like may be used.
- the flame retardant can be appropriately selected from, for example, halogen compounds, phosphorus atom-containing compounds, nitrogen atom-containing compounds, inorganic flame retardant compounds, and the like.
- Halogen compounds such as resin; trimethyl phosphate, triethyl phosphate, tributyl phosphate, tri-2-ethylhexyl phosphate, tributoxyethyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, xylenyl diphenyl Phosphates, phosphate esters such as 2-ethylhexyldiphenyl phosphate, tris(2,6 dimethylphenyl) phosphate, resorcin diphenyl phosphate, ammonium polyphosphate, polyphosphoric acid amide, red phosphorus, guanidine phosphate, condensed phosphorus such as dialkylhydroxymethyl phosphonates Phosphorus atom-containing compounds including acid ester compounds; nitrogen atom-containing compounds such as melamine; inorganic flame retardant compounds such as aluminum hydroxide, magnesium
- the resin composition for a low dielectric material of the present embodiment is preferably used for equipment that transmits and receives high-frequency electromagnetic waves with a frequency of 0.1 to 500 GHz.
- the resin composition for a low dielectric material of the present embodiment is preferably used for devices that transmit and receive microwave or millimeter wave electromagnetic waves.
- microwaves generally refer to electromagnetic waves with a frequency of 0.25 to 100 GHz
- millimeter waves refer to electromagnetic waves with a frequency of 30 to 300 GHz, and it is more preferable to use them for devices that transmit and receive these.
- the resin composition for a low dielectric material according to the present embodiment can be suitably used for devices using electromagnetic waves of frequencies such as 60 GHz used for wireless LANs and 75 to 79 GHz used for vehicle radars.
- the resin composition for a low dielectric material of this embodiment has a sufficiently low dielectric constant and dielectric loss tangent, and is particularly suitable for use with high-frequency electromagnetic waves.
- the resin composition for low dielectric materials of the present embodiment is preferably used for printed wiring boards, flexible printed wiring boards, sealing materials for electronic parts, resist inks, conductive pastes, insulating materials, or insulating plates.
- the resin composition for low dielectric materials of the present embodiment has sufficiently low dielectric constant and dielectric loss tangent, and is suitable for use in these members. Furthermore, it is particularly suitable for use in these members in equipment that uses high-frequency electromagnetic waves. More specific examples include resin compositions for copper-clad laminates, interlayer insulating materials for build-up printed circuit boards, build-up films, and the like.
- a resin composition for encapsulating electronic parts a resin composition for resist ink, a binder for friction materials, a conductive paste, a resin casting material, an adhesive, or a coating material such as an insulating paint.
- the resin composition for a low dielectric material of this embodiment is preferably used as an insulating material between layers of a laminated substrate.
- the resin composition is preferably prepared by mixing the triazine compound, the epoxy resin, the bismaleimide resin or the cyanate resin, the curing accelerator and the organic solvent, as in the manufacturing method described below.
- the film for laminated substrates of this embodiment has an insulating material containing the resin composition for the low dielectric material on at least one surface.
- an insulating material containing the resin composition for the low dielectric material By laminating a plurality of films for laminated substrates, these films can be used for laminated substrates, which will be described later.
- a film for a laminated substrate is composed of a film layer, which will be described later, and an insulating layer containing an insulating material. The insulating layer is provided on at least one surface of the film layer by a manufacturing method to be described later.
- the film layer can be configured using an appropriately selected film material, such as a resin film or a metal film.
- a resin film or a metal film such as polyethylene, polypropylene, polyvinyl chloride, polycycloolefin, polyethylene terephthalate (PET), polyethylene naphthalate, polycarbonate, polyimide, release paper, copper foil, aluminum foil, or the like can be used.
- the thickness of the laminated substrate film of the present embodiment is not particularly limited, but can be selected from the range of 10 to 150 ⁇ m, preferably from 25 to 50 ⁇ m.
- the film for laminated substrates of the present embodiment may further have a protective film on its surface.
- the protective film can prevent dust from adhering to the surface of the film layer and the insulating layer before use and from scratching, and can prevent performance such as insulation from deteriorating before use.
- the constituent material of the protective film may be selected from the same materials as those of the film layer described above.
- the thickness of the protective film may range from 1 to 40 ⁇ m.
- the laminated substrate film and protective film may be subjected to matte treatment, corona treatment, release treatment, or the like.
- the laminated board is in the form of a conductor laminated board or a build-up printed board, and a conductor layer made of a conductor such as metal and the insulating layer are laminated, a set of the conductor layer and the insulating layer is formed. It may also be a film for laminated substrates.
- the resin composition for a low dielectric material of this embodiment has excellent physical properties, heat resistance, a low dielectric constant and a low dielectric loss tangent. It is also extremely useful as an insulating material between layers composed of films for laminated substrates.
- Such an insulating material contains, in particular, a resin composition for low-dielectric materials, an epoxy resin, a bismaleimide resin, or a cyanate resin as essential components, and, if necessary, an organic solvent and a curing accelerator which will be described later. preferably.
- the laminated substrate of this embodiment comprises two or more films for laminated substrates. It is preferable that the laminated substrate is formed by laminating the film for a laminated substrate.
- the laminated substrate film may be an intermediate layer or a base layer in the laminated substrate. Moreover, it may be used for a layer on which a circuit is formed or a layer on which a circuit is not formed. Formation of the circuit can be performed by metal plating or the like.
- the laminated substrate of this embodiment can also be a conductor laminated substrate.
- a laminated substrate may be provided with an insulating layer made of a prepreg containing the resin composition for the low dielectric material and a conductor layer.
- a prepreg for insulation is formed by impregnating a fiber base material such as glass cloth, glass nonwoven fabric, aramid paper, aramid cloth, glass mat, glass roving cloth, etc. with a resin composition for low dielectric materials to form an insulating layer.
- the conductor layer can be made of metal, such as copper.
- the laminated substrate of the present embodiment can be a laminated substrate in the form of a build-up printed circuit board.
- a laminated board in the form of a build-up printed board can be obtained.
- Compositions and the like of the insulating layer and conductor layer can be arbitrarily selected from those described above.
- the resin composition for the low dielectric material of the present embodiment can be used by appropriately mixing components conventionally known as raw materials for the low dielectric material. As described above, the resin composition for the low dielectric material of the present embodiment has a high affinity with epoxy resin, bismaleimide resin, or cyanate resin. An effect of improving dielectric properties and thermal properties can also be expected.
- the resin composition for a low dielectric material of the present embodiment has a triazine-containing compound with a low dielectric constant, a low dielectric loss tangent, a high transparency, a high solubility, and a high heat resistance. It can be used preferably.
- the triazine-containing compound of the present embodiment has a low dielectric constant, a low dielectric loss tangent, a high transparency, a high solubility, and a high heat resistance, so that it can be suitably used as a printed wiring board.
- conventionally known polymer materials there are almost no materials that achieve a glass transition temperature of more than 200 ° C.
- the triazine-containing compound of the present embodiment has a particularly low dielectric constant, low dielectric loss tangent, high transparency, high solubility, and high heat resistance at high frequencies. It can be suitably used as a constituent material for equipment.
- a method for producing a resin composition for a low dielectric material comprises mixing a compound represented by the following general formula (16) and a compound represented by the following general formula (17), polymerizing them, and A triazine compound represented by formula (18) is obtained.
- n is an integer of 2 or more
- R is a linear, branched or cyclic aliphatic group, linear, branched or a cyclic aliphatic oxy group, a linear, branched or cyclic aliphatic secondary amino group, an aromatic group or an aromatic group having a substituent, an aromatic oxy group or an aromatic oxy group having a substituent, an aromatic secondary amino group or an aromatic secondary amino group having a substituent, the fluorinated aliphatic group, the fluorinated aliphatic oxy group, the fluorinated aliphatic secondary amino group, fluorine represents a fluorinated aromatic group, a fluorinated aromatic oxy group, or a fluorinated aromatic secondary amino group.
- Ar represents a linear, branched or cyclic aliphatic group or a divalent aromatic group having a fluorinated linear, branched or cyclic aliphatic group.
- n represents the number of repeating units of the structure represented by formula (18), and is not particularly limited as long as it is an integer of 2 or more.
- the compound of formula (16) is a dichloride in which both ends of the triazine ring are substituted with chlorine among the monomers constituting the compound of formula (18).
- the compound of formula (17) is a bisphenol in which both ends of the Ar group of formula (18) are substituted with OH groups.
- the compounds of the formula (16) and the formula (17) are mixed and heated in the presence of an alkali metal compound and an organic solvent to polymerize and react with the compound of the formula (18). A triazine compound is obtained.
- alkali metal compound any compound can be used as long as it can neutralize the hydrogen chloride produced by the polymerization of the formulas (16) and (17).
- an alkali metal compound for example, alkali metal carbonates, hydrogencarbonates, hydroxides, etc., and particularly hydroxides are preferably used.
- the alkali metal include lithium, sodium, potassium, rubidium and cesium, with sodium and potassium being preferred.
- sodium carbonate, potassium carbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, sodium hydroxide or potassium hydroxide can be used, and sodium hydroxide or potassium hydroxide is particularly preferred. can be used for These various alkali metal compounds may be used alone or in combination of two or more.
- the organic solvent one that can smoothly proceed with the polymerization reaction can be appropriately used.
- the organic solvent include aliphatic compounds, aromatic compounds and derivatives thereof, and examples of substituents include nitro group, cyano group and halogen element.
- substituents include nitrobenzene, benzonitrile, methylene chloride, chloroform, 1,4-dioxane, and tetrahydrofuran (THF).
- THF tetrahydrofuran
- a phase transfer catalyst may be added to the compound of formula (17) during the reaction.
- PTC phase transfer catalyst
- quaternary ammonium salts quaternary phosphonium salts, or crown ethers with alkyl chains can be used.
- quaternary ammonium salts include tetrabutylammonium bromide (TBAB) and cetyltrimethylammonium bromide (CTMAB).
- the polymerization temperature can be appropriately adjusted depending on the compounds, additives, and solvent used, but it can usually be carried out at 10 to 100°C.
- polymerization can be carried out at 20 to 35°C.
- the polymerization reaction time can also be appropriately adjusted depending on the components used and the polymerization temperature, but is usually about 0.1 to 20 hours.
- the polymerization is preferably carried out at 80°C to 100°C.
- an aqueous solution of an alkali metal compound and PTC are added to the compound of formula (16). Furthermore, the compound of formula (17) and an organic solvent are added here. These are vigorously stirred at the polymerization temperature to allow the reaction to take place for a sufficient period of time. After the polymerization reaction is fully completed, the triazine compound of formula (18) is recovered with methanol. After that, further steps such as washing with methanol or the like, drying under reduced pressure, and/or reprecipitation with an organic solvent may be performed.
- the resin composition for a low dielectric material of the present embodiment is a resin composition for a low dielectric material used as an insulating material between layers of a laminated substrate
- the resin composition for a low dielectric material contains a triazine compound, It is preferably produced by mixing an epoxy resin, a bismaleimide resin or a cyanate resin, a curing accelerator and an organic solvent. Since the curing reaction of the resin composition for the low dielectric material proceeds rapidly by mixing the curing accelerator in the production, the insulating material can be easily produced.
- the insulating layer is quickly formed, which is suitable for industrial production.
- the resin composition for low dielectric materials becomes a so-called varnish during production, and can be easily applied to other members as an insulating material.
- the coatability is improved when the insulating layer is formed by coating the surface of the film.
- any compound capable of accelerating the curing of the above compounds can be used as appropriate.
- imidazoles, tertiary amines, tertiary phosphines, or acid anhydrides may be used.
- the amount to be added can also be appropriately adjusted depending on the composition of the compound, but is preferably in the range of 0.01 to 2% by mass with respect to the total mass of the resin composition for low dielectric materials.
- a solvent capable of dissolving the above compound to form a varnish can be appropriately selected.
- organic solvents such as acetamide or N-methylpyrrolidone can be used.
- propylene glycol monomethyl ether acetate or methyl ethyl ketone can be preferably used.
- the amount to be added can also be appropriately adjusted depending on the composition of the compound, but in order to form a varnish, the non-volatile content should be in the range of 50 to 70% by mass with respect to the total mass of the resin composition for low dielectric materials. is preferred.
- the resin composition for a low dielectric material of the present embodiment is produced by further mixing an inorganic filler, a modifier or a flame retardant.
- Inorganic fillers can be, for example, fused silica, crystalline silica, alumina, silicon nitride, aluminum hydroxide, or magnesium hydroxide.
- conductive fillers such as silver powder and copper powder can be used as inorganic fillers.
- modifiers include phenoxy resins, polyamide resins, polyimide resins, polyetherimide resins, polyethersulfone resins, polyphenylene ether resins, polyphenylene sulfide resins, polyester resins, polystyrene resins, polyethylene terephthalate resins, cycloolefin resins, fluorine A resin or the like can be used.
- flame retardants that can be used include halogen compounds, phosphorus atom-containing compounds, nitrogen atom-containing compounds, inorganic flame retardant compounds, and the like.
- an insulating material containing a resin composition for a low dielectric material is applied to at least one surface of a resin film.
- the varnish-like resin composition for a low dielectric material is applied to at least one surface of a resin film as described above.
- the organic solvent is volatilized by heating or blowing hot air to form an insulating layer.
- the resin composition for the low dielectric material preferably has a non-volatile content excluding volatile components such as the organic solvent in a range of 30 to 60% by mass. Within this range, the coatability of the compound on a film and the formability of a laminated substrate film are particularly favorable.
- the thickness of the insulating layer to be formed is equal to or greater than the thickness of the conductor layer of the circuit board on which the laminated board is installed, which will be described later.
- the thickness of the conductor layer of the circuit board is usually in the range of 5 to 70 ⁇ m
- the thickness of the resin composition layer is preferably 10 to 100 ⁇ m.
- Method for manufacturing laminated substrate In the method for manufacturing a laminated substrate of this embodiment, two or more films for the laminated substrate are laminated.
- a protective film When manufacturing a printed wiring board using the laminated substrate of the present embodiment, if the film for the laminated substrate is protected by a protective film, after peeling these, the layer is directly in contact with the circuit board. It can be carried out by laminating on one side or both sides of the circuit board, for example, by a vacuum lamination method.
- the method of lamination may be a batch type or a continuous roll type.
- the film and the circuit board may be heated (preheated) before lamination, if necessary.
- the fiber base material is impregnated with the resin composition for low dielectric materials prepared in the form of a varnish, and heated at a heating temperature according to the type of solvent used, preferably at 50 to 170° C. to obtain a cured product.
- An insulating layer of prepreg is obtained. Paper, glass cloth, glass nonwoven fabric, aramid paper, aramid cloth, matted glass, glass roving cloth, or the like can be used as the fiber substrate.
- thermocompression bonding is, specifically, a method of carrying out at a temperature of 170 to 250° C. under a pressure of 1 to 10 MPa. Moreover, it is preferable to perform the thermocompression bonding for 10 minutes to 3 hours.
- the laminated board and printed board may be formed in the following procedure. That is, a wiring board having a circuit formed thereon is coated with a resin composition for a low dielectric material using a spray coating method, a curtain coating method, or the like, and then cured. Next, after drilling predetermined through holes or the like as necessary, the surface is treated with a roughening agent, washed with hot water to form unevenness, and then plated with a metal such as copper.
- the plating method is preferably electroless plating or electrolytic plating.
- the roughening agent an oxidizing agent, an alkali, an organic solvent, or the like can be used.
- Such an operation is repeated as desired to alternately build up insulating layers and conductor layers having a predetermined circuit pattern, thereby obtaining a build-up board.
- the drilling of the through-hole part is preferably performed after the formation of the outermost insulating layer.
- the resin composition for low dielectric material of the present embodiment In order to adjust the resin composition for low dielectric material of the present embodiment to a sealing material for electronic parts, the resin composition for low dielectric material, epoxy resin, bismaleimide resin or cyanate resin, if necessary There is a method of pre-mixing other coupling agents and/or additives such as release agents, inorganic fillers, etc., and then thoroughly mixing them using an extruder, kneader, roll, etc. until they are uniform. mentioned.
- the resin composition obtained by the above-described method is heated to prepare a semi-cured sheet, which is used as an encapsulant tape.
- a method of placing on a chip, heating to 100 to 150° C. to soften and mold, and curing completely at 170 to 250° C. can be mentioned.
- the resin composition for low dielectric materials of the present embodiment as a resist ink
- an epoxy resin, a bismaleimide resin or a cyanate resin, an organic solvent, a pigment, and talc are used.
- a filler or the like to form a resist ink composition apply the composition onto a printed circuit board by screen printing, and then form a cured resist ink.
- organic solvents used here include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, cyclohexanone, dimethylsulfoxide, dimethylformamide, dioxolane, tetrahydrofuran, propylene glycol monomethyl ether.
- Acetate, ethyl lactate, and the like can be mentioned.
- the resin composition for low dielectric materials of the present embodiment is used as an insulating material, for example, an insulating material between semiconductor layers, for example, in addition to the resin composition for low dielectric materials and epoxy resin, curing acceleration and a silane coupling agent to prepare a composition, which is applied onto a silicon substrate by spin coating or the like.
- the cured coating film is in direct contact with the semiconductor, it is preferable to make the coefficient of linear expansion of the insulating material close to that of the semiconductor so that cracks do not occur due to the difference in coefficient of linear expansion in a high-temperature environment.
- the resin composition for a low dielectric material of the present embodiment is used as a conductive paste
- fine conductive particles are dispersed in the resin composition for a low dielectric material to form a composition for an anisotropic conductive film.
- method a method of using a paste resin composition for circuit connection which is liquid at room temperature, or an anisotropic conductive adhesive.
- the triazine compound of this embodiment may be a compound represented by the general formula (2A) described above.
- R 1 represents a structure represented by any one of general formulas (3A) to (5A).
- R 2 represents a structure represented by any one of general formulas (6A) to (10A) and (12A).
- Ar in Formula (1A) may be a compound represented by Formula (11A).
- the method for producing a resin composition for a low dielectric material includes mixing the compound represented by the general formula (13A) and the compound represented by the general formula (14A). , to obtain a triazine compound represented by the general formula (15A).
- the compound of formula (13A) is a dichloride in which both ends of the triazine ring are substituted with chlorine among the monomers constituting the compound of formula (1A).
- the compound of formula (14A) is a diol in which both ends of the Ar group of formula (1A) are substituted with OH groups.
- a compound of formula (2A) is produced by configuring R in formula (13A) as R 1 in formula (2A) and formula (14A) as a diol in which a benzene ring and an OH group are bonded to both ends of R 2 You may
- permittivity/dielectric loss tangent measuring device cavity resonator type
- TE mode TM mode (10 GHz, 20 GHz)
- TM mode 10 GHz, 20 GHz
- Various reagents were commercially available and were purified by conventional methods as necessary.
- Various reaction solvents were dried and purified by conventional methods as necessary.
- R is the formula (2) and Ar is a triazine compound of formula (5) (DCPT-BisA, Example 1), a triazine compound of formula (6) (DCPT-BisZ, Example 2), a triazine compound of formula (7) (DCPT-BisP3MZ, Example 3), a triazine compound of formula (8) (DCPT-BisPHTG, Example 4), a triazine compound of formula (9) (DCPT-BisPCDE, Example 5), a triazine compound of formula (10) (DCPT-HPTM5I, Example 6), a triazine compound of formula (11) (DCPT-BisC, Example 7), a triazine compound of formula (12) (DCPT-BisTMP, Example 8), a triazine compound of formula (13) (DCPT-BisCHP, Example 9), Triazine compound of formula (14) (DCPT-BisAF, Example 10) Triazine compound of formula (5) (DCPT-BisA, Example 1),
- R is the formula (3) and Ar is a triazine compound of formula (5) (DCPpT-BisA, Example 12), a triazine compound of formula (8) (DCPpT-BisPHTG, Example 13), a triazine compound of formula (12) (DCPpT-BisTMP, Example 14), Triazine compound of formula (14) (DCPpT-BisAF, Example 15) was prepared.
- Ar is a triazine compound of formula (5) (DCPpT-BisA, Example 12), a triazine compound of formula (8) (DCPpT-BisPHTG, Example 13), a triazine compound of formula (12) (DCPpT-BisTMP, Example 14), Triazine compound of formula (14) (DCPpT-BisAF, Example 15) was prepared.
- R is the formula (4) and Ar is a triazine compound of formula (5) (DCHAT-BisA, Example 16), a triazine compound of formula (8) (DCHAT-BisPHTG, Example 17), a triazine compound of formula (9) (DCHAT-BisPCDE, Example 18), was prepared.
- DCPT Triazine dichloride Triazine dichloride
- Cyanuric chloride (18.44 g, 0.100 mol) and dehydrated tetrahydrofuran (THF, 200 mL) are placed in a three-necked flask (500 mL), equipped with a stirrer, dropping funnel, nitrogen inlet tube, and thermometer, and cooled to -10°C. did. While stirring this THF solution, a phenylmagnesium bromide THF solution (1 mol/L, 100 mL, 0.100 mol) was slowly added dropwise from a dropping funnel so as not to raise the temperature of the reaction solution.
- the synthesized compound had a yield of 13.1 g, a yield of 58%, and a melting point of 120°C.
- the analysis results using the equipment described above are as follows: FT-IR (KBr, cm ⁇ 1 ): 3047 (Ar—H), 1527 (C ⁇ N), 1258 (CN), 770 (C—Cl) 1 H-NMR (CDCl 3 , ppm): 8.50 (d, 2H, o-Ar-H), 7.66 (t, 1H, p-Ar-H), 7.53 (t, 2H, m -Ar-H) 13 C-NMR (CDCl 3 , ppm): 175.0, 172.2, 134.9, 132.8, 130.1, 129.2 Elemental analysis ( C9H5N3Cl2 ): calculated C , 47.82 %; H, 2.23%; N: 18.59%, found C, 48.11%; H, 2.43 %; N: 18.68%.
- DCPpT Triazine dichloride Triazine dichloride (DCPpT) used in each example was synthesized as follows. Cyanuric chloride (18.44 g, 0.100 mol) and dehydrated dichloromethane (150 mL) were added to a three-necked flask (300 mL), equipped with a dropping funnel, a nitrogen inlet tube and a thermometer, and cooled to 0°C. While stirring this dichloromethane solution, a solution of piperidine (8.52 g, 0.100 mol) dissolved in dehydrated dichloromethane (50 mL) was added dropwise at 0° C. and stirred for 2 hours.
- the synthesized compound had a yield of 10.72 g, a yield of 46%, and a melting point of 90-91°C.
- the analysis results using the equipment described above are as follows: FT-IR (KBr, cm ⁇ 1 ): 2940-2860 (CH), 1552 (C ⁇ N), 1170 (CN), 842 (C—Cl) 1 H-NMR (CDCl 3 , ppm): 3.82 (t, 4H, CH 2 ), 1.74-1.70 (m, 2H, CH 2 ), 1.67-1.63 (m, 4H , CH2 ) 13 C-NMR (CDCl 3 , ppm): 170.2, 163.6, 45.4, 25.7, 24.3 Elemental analysis ( C8H10N4Cl2 ): calculated C, 41.22%; H, 4.32% ; N: 24.04 %, found C, 41.01%; H, 4.68 %; N: 24.30%.
- DCHAT Triazine dichloride Triazine dichloride
- Cyanuric chloride (18.44 g, 0.100 mol) and dehydrated THF (50 mL) were added to a three-necked flask (300 mL), equipped with a dropping funnel, a nitrogen inlet tube and a thermometer, and cooled to 0°C.
- a solution of dicyclohexylamine (18.13 g, 0.100 mol) in THF (30 mL) was added dropwise at 0° C. and stirred for 2 hours.
- the reaction solution was liquid-separated with saturated saline, and anhydrous sodium sulfate was added to the organic layer and stirred to dehydrate.
- THF was distilled off from the filtrate obtained by suction filtration to obtain a crude product. Recrystallization was performed twice from a hexane/chloroform mixed solvent, and the obtained white columnar crystals were dried under reduced pressure at 50°C.
- the synthesized compound had a yield of 11.3 g, a yield of 34%, and a melting point of 167-168°C.
- the analysis results using the equipment described above are as follows: FT-IR (KBr, cm ⁇ 1 ): 2923 (CH), 1562 (C ⁇ N), 1227 (CN), 793 (C—Cl) 13 C-NMR (CDCl 3 , ppm): 169.0, 164.0, 56.8, 29.7, 26.1, 25.4. Elemental analysis ( C15H22N4Cl2 ): calculated C , 54.72 %; H, 6.73%; N, 17.02%, found C, 54.68%; H, 6.56. %; N, 17.17%.
- Example 1 The polymer of Example 1, DCPT-BisA, was synthesized as follows. Bisphenol A (BisA) (0.571 g, 2.50 mmol) and 1 M sodium hydroxide aqueous solution (5.1 mL) were placed in an eggplant flask (100 mL) together with a stirrer and dissolved. Cetyltrimethylammonium bromide (CTMAB, 0.277 g, 0.760 mmol) (30 mol % relative to the monomer) was added as a phase transfer catalyst and stirred. A solution of DCPT (0.565 g, 2.50 mmol) dissolved in dehydrated dichloromethane (5.0 mL) was added to an eggplant flask and vigorously stirred at room temperature for 18 hours.
- Bisphenol A (BisA) 0.571 g, 2.50 mmol
- 1 M sodium hydroxide aqueous solution 5.1 mL
- CTMAB Cetyltrimethylammonium bromide
- a solution of DCPT 0.565
- the synthesized compound has a yield of 0.68 g, a yield of 71%, a logarithmic viscosity of 0.94 dL/g (30° C., 0.5 g/dL of N-methyl-2-pyrrolidone solution), and a number average molecular weight (Mn ): 82,000, weight average molecular weight (Mw): 279,000, molecular weight distribution (Mw/Mn): 3.4, average degree of polymerization (n): 214.
- This polymer was dissolved in N,N-dimethylacetamide (DMAc) and cast onto a glass plate. It was dried under reduced pressure at 150° C. for 12 hours to obtain a colorless and transparent cast film (thickness: 40 ⁇ m).
- DMAc N,N-dimethylacetamide
- Example 2 The polymer of Example 2, DCPT-BisZ, was synthesized as follows. 4,4′-Cyclohexylidenebisphenol (BisZ) (0.671 g, 2.50 mmol) and 1M aqueous sodium hydroxide solution (5.1 mL) were placed in an eggplant flask (100 mL) with a stirrer and dissolved. Cetyltrimethylammonium bromide (CTMAB, 0.277 g, 0.760 mmol) (30 mol % relative to the monomer) was added as a phase transfer catalyst and stirred.
- CTMAB Cetyltrimethylammonium bromide
- the synthesized compound was yield: 0.95 g, yield: 90%, logarithmic viscosity: 1.02 dL/g (30°C, 0.5 g/dL tetrahydrofuran solution).
- Example 3 The polymer of Example 3, DCPT-BisP3MZ, was synthesized as follows. 4-[1-(4-Hydroxyphenol)-3-methylcyclohexyl]phenol (BisP3MZ) (0.706 g, 2.50 mmol) and 1 M sodium hydroxide aqueous solution (5.1 mL) were stirred in an eggplant flask (100 mL). It was put together with the child and allowed to dissolve. Cetyltrimethylammonium bromide (CTMAB, 0.277 g, 0.760 mmol) (30 mol % relative to the monomer) was added as a phase transfer catalyst and stirred.
- CTMAB Cetyltrimethylammonium bromide
- the synthesized compound has a yield of 0.76 g, a yield of 70%, a logarithmic viscosity of 0.92 dL/g (30° C., 0.5 g/dL of N-methyl-2-pyrrolidone solution), and a number average molecular weight (Mn ): 72,000, weight average molecular weight (Mw): 144,000, molecular weight distribution (Mw/Mn): 2.0, average degree of polymerization (n): 165.
- Example 4 The polymer of Example 4, DCPT-BisPHTG, was synthesized as follows. 4-[1-(4-Hydroxyphenol)-3,5,5-trimethylcyclohexyl]phenol (BisPHTG) (0.776 g, 2.50 mmol) and 1 M aqueous sodium hydroxide solution (5.1 mL) were placed in an eggplant flask (100 mL). ) was added with a stirrer and dissolved. Cetyltrimethylammonium bromide (CTMAB, 0.277 g, 0.760 mmol) (30 mol % relative to the monomer) was added as a phase transfer catalyst and stirred.
- CTMAB Cetyltrimethylammonium bromide
- the synthesized compound has a yield of 0.95 g, a yield of 82%, a logarithmic viscosity of 1.84 dL/g (30° C., 0.5 g/dL of N-methyl-2-pyrrolidone solution), and a number average molecular weight (Mn ): 264,000, weight average molecular weight (Mw): 422,000, molecular weight distribution (Mw/Mn): 1.6.
- Example 5 The polymer of Example 5, DCPT-BisPCDE, was synthesized as follows. 4,4′-Cyclododecylidenebisphenol (BisPCDE) (0.881 g, 2.50 mmol) and 1 M sodium hydroxide aqueous solution (5.1 mL) were placed in an eggplant flask (100 mL) with a stirrer and dissolved. Cetyltrimethylammonium bromide (CTMAB, 0.277 g, 0.760 mmol) (30 mol % relative to the monomer) was added as a phase transfer catalyst and stirred.
- BisPCDE 4,4′-Cyclododecylidenebisphenol
- 1 M sodium hydroxide aqueous solution 5.1 mL
- the synthesized compound has a yield of 1.03 g, a yield of 81%, a logarithmic viscosity of 0.91 dL/g (30° C., 0.5 g/dL of N-methyl-2-pyrrolidone solution), and a number average molecular weight (Mn ): 166,000, weight average molecular weight (Mw): 332,000, and molecular weight distribution (Mw/Mn): 2.0.
- Example 6 The polymer of Example 6, DCPT-HPTM5I, was synthesized as follows. 3-(4-Hydroxyphenyl)-1,1,3-trimethyl-5-indanol (HPTM5I) (0.671 g, 2.50 mmol) and 1 M sodium hydroxide aqueous solution (5.1 mL) were placed in an eggplant flask (100 mL). Put in with a stirrer and dissolve. Cetyltrimethylammonium bromide (CTMAB, 0.277 g, 0.760 mmol) (30 mol % relative to the monomer) was added as a phase transfer catalyst and stirred.
- CTMAB Cetyltrimethylammonium bromide
- the synthesized compound has a yield of 0.93 g, a yield of 88%, a logarithmic viscosity of 0.62 dL/g (30° C., 0.5 g/dL of N-methyl-2-pyrrolidone solution), and a number average molecular weight (Mn ): 135,000, weight average molecular weight (Mw): 283,500, and molecular weight distribution (Mw/Mn): 2.1.
- Example 7 The polymer of Example 7, DCPT-BisC, was synthesized as follows. A triazine compound was similarly synthesized using BisC in place of HPTM5I in Example 6.
- the synthesized compound has a yield of 78%, logarithmic viscosity of 1.00 dL/g (30°C, 0.5 g/dL of chloroform solution), number average molecular weight (Mn) by GPC (THF) of 138,000, weight Average molecular weight (Mw): 262,000, molecular weight distribution (Mw/Mn): 1.9.
- Example 8 The polymer of Example 8, DCPT-BisTMP, was synthesized as follows. A triazine compound was similarly synthesized using BisTMP in place of HPTM5I in Example 6.
- the synthesized compound has a yield of 76%, logarithmic viscosity of 1.12 dL/g (30°C, 0.5 g/dL of chloroform solution), number average molecular weight (Mn) by GPC (THF) of 184,000, weight Average molecular weight (Mw): 313,000, molecular weight distribution (Mw/Mn): 1.7.
- Example 9 The polymer of Example 9, DCPT-BisCHP, was synthesized as follows. A triazine compound was similarly synthesized using BisCHP in place of HPTM5I in Example 6.
- the synthesized compound has a yield of 76%, logarithmic viscosity of 0.49 dL/g (30°C, 0.5 g/dL of chloroform solution), number average molecular weight (Mn) by GPC (THF): 59,000, weight Average molecular weight (Mw): 124,000, molecular weight distribution (Mw/Mn): 2.1, average degree of polymerization (n): 108.
- Example 10 The polymer of Example 10, DCPT-BisAF, was synthesized as follows. 2,2-bis(4-hydroxyphenyl)hexafluoropropane (BisAF) (0.841 g, 2.50 mmol) and 1 M sodium hydroxide aqueous solution (5.1 mL) were placed in an eggplant flask (100 mL) with a stirrer and dissolved. let me Cetyltrimethylammonium bromide (CTMAB, 0.277 g, 0.760 mmol) (30 mol % relative to the monomer) was added as a phase transfer catalyst and stirred.
- BisAF 2,2-bis(4-hydroxyphenyl)hexafluoropropane
- 1 M sodium hydroxide aqueous solution 5.1 mL
- CTMAB Cetyltrimethylammonium bromide
- the synthesized compound has a yield of 1.02 g, a yield of 83%, a logarithmic viscosity of 1.21 dL/g (30° C., 0.5 g/dL of N-methyl-2-pyrrolidone solution), and a number average molecular weight (Mn ): 257,000, weight average molecular weight (Mw): 771,000, molecular weight distribution (Mw/Mn): 3.0.
- Example 11 The polymer of Example 11, DCPT-BPFL, was synthesized as follows. A 1 M sodium hydroxide aqueous solution (5.1 mL) and cetyltrimethylammonium bromide (CTMAB, 0.277 g, 0.760 mmol) (30 mol % relative to the monomer) were placed in an eggplant flask (100 mL) with a stirrer and stirred. A solution of 9,9-bis(4-hydroxyphenyl)fluorene (BPFL) (0.876 g, 2.50 mmol) and DCPT (0.565 g, 2.50 mmol) dissolved in dehydrated nitrobenzene (5.0 mL) was added to an eggplant flask.
- BPFL 9,9-bis(4-hydroxyphenyl)fluorene
- DCPT 0.565 g, 2.50 mmol
- the synthesized compound was yield: 0.52 g, yield: 42%, logarithmic viscosity: 1.25 dL/g (30°C, 0.5 g/dL N-methyl-2-pyrrolidone solution).
- Example 12 The polymer of Example 12, DCPpT-BisA, was synthesized as follows. Bisphenol A (0.571 g, 2.50 mmol) and 1 M sodium hydroxide aqueous solution (5.1 mL) were placed in an eggplant flask (100 mL) with a stirrer and dissolved. Cetyltrimethylammonium bromide (CTMAB, 0.277 g, 0.760 mmol) (30 mol % relative to the monomer) was added as a phase transfer catalyst and stirred. A solution of DCPpT (0.583 g, 2.50 mmol) dissolved in dehydrated benzonitrile (5.0 mL) was added to an eggplant flask and vigorously stirred at 80° C.
- CTMAB Cetyltrimethylammonium bromide
- the synthesized compound had a yield of 0.49 g, a yield of 51%, and a logarithmic viscosity of 0.53 dL/g (30°C, 0.5 g/dL chloroform solution).
- Example 13 The polymer of Example 13, DCPpT-BisPHTG, was synthesized as follows. BisPHTG (0.776 g, 2.50 mmol) and 1 M sodium hydroxide aqueous solution (5.1 mL) were placed in an eggplant flask (100 mL) with a stirrer and dissolved. Cetyltrimethylammonium bromide (CTMAB, 0.277 g, 0.760 mmol) (30 mol % relative to the monomer) was added and stirred. A solution of DCPpT (0.583 g, 2.50 mmol) dissolved in dehydrated nitrobenzene (5.0 mL) was added to an eggplant flask and vigorously stirred at 80° C. for 18 hours.
- CTMAB Cetyltrimethylammonium bromide
- the synthesized compound has a yield of 1.08 g, a yield of 92%, a logarithmic viscosity of 0.86 dL/g (30° C., 0.5 g/dL of chloroform solution), a number average molecular weight (Mn) of 103,000, Weight average molecular weight (Mw): 206,000, molecular weight distribution (Mw/Mn): 2.0.
- Example 14 The polymer of Example 14, DCPpT-BisTMP, was synthesized as follows. A triazine compound was similarly synthesized using BisTMP in place of BisPHTG in Example 13.
- the synthesized compound has a yield of 78%, a logarithmic viscosity of 0.48 dL/g (30°C, 0.5 g/dL of chloroform solution), a number average molecular weight (Mn) of 37,000, and a weight average molecular weight (Mw) of : 59,000, molecular weight distribution (Mw/Mn): 1.6, average degree of polymerization (n): 78.
- Example 15 The polymer of Example 15, DCPpT-BisAF, was synthesized as follows. BisAF (0.841 g, 2.50 mmol) and 1 M sodium hydroxide aqueous solution (5.1 mL) were placed in an eggplant flask (100 mL) with a stirrer and dissolved. Cetyltrimethylammonium bromide (CTMAB, 0.277 g, 0.760 mmol) (30 mol % relative to the monomer) was added and stirred. A solution of DCPpT (0.583 g, 2.50 mmol) dissolved in dehydrated nitrobenzene (5.0 mL) was added to an eggplant flask and vigorously stirred at 80° C. for 18 hours.
- CTMAB Cetyltrimethylammonium bromide
- the synthesized compound has a yield of 1.15 g, a yield of 93%, a logarithmic viscosity of 0.47 dL/g (30° C., 0.5 g/dL of chloroform solution), a number average molecular weight (Mn) of 80,000, Weight average molecular weight (Mw): 160,000, molecular weight distribution (Mw/Mn): 2.0, average degree of polymerization (n): 161.
- Example 16 The polymer of Example 16, DCHAT-BisA, was synthesized as follows. Bisphenol A (0.571 g, 2.50 mmol) and 5.1 mL of 1 M sodium hydroxide aqueous solution were placed in an eggplant flask (100 mL) together with a stirrer and dissolved. Cetyltrimethylammonium bromide (CTMAB, 0.277 g, 0.760 mmol) (30 mol % relative to the monomer) was added as a phase transfer catalyst and stirred. A solution of DCHAT (0.823 g, 2.50 mmol) dissolved in dehydrated nitrobenzene (5.0 mL) was added to an eggplant flask and vigorously stirred at 100° C. for 18 hours.
- CTMAB Cetyltrimethylammonium bromide
- the synthesized compound had a yield of 1.12 g, a yield of 92%, and a logarithmic viscosity of 0.57 dL/g (30°C, 0.5 g/dL chloroform solution).
- Example 17 The polymer of Example 17, DCHAT-BisPHTG, was synthesized as follows. A triazine compound was similarly synthesized using BisPHTG in place of BisA in Example 16.
- the synthesized compound had a yield of 83% and a logarithmic viscosity of 0.71 dL/g (30°C, 0.5 g/dL chloroform solution).
- Example 18 The polymer of Example 18, DCHAT-BisPCDE, was synthesized as follows. A triazine compound was similarly synthesized using BisPCDE in place of BisA in Example 16.
- the synthesized compound had a yield of 72% and a logarithmic viscosity of 0.57 dL/g (30°C, 0.5 g/dL chloroform solution).
- Cetyltrimethylammonium bromide (CTMAB, 0.277 g, 0.760 mmol) (30 mol % relative to the monomer) was added as a phase transfer catalyst and stirred.
- acetic acid was added for neutralization, poured into methanol (250 mL) to precipitate a polymer, collected by suction filtration, and dried under reduced pressure at room temperature for 6 hours.
- the resulting polymer was dissolved in chloroform and poured into methanol for reprecipitation. After recovering the polymer, it was dried under reduced pressure at 150° C. for 12 hours.
- Tables 2 and 3 show the results of examining the solubility of the compounds of Reference Examples 1 to 6 and 10 at room temperature or by heating. Solubility was measured at 10 mg/5.0 mL. ++: Dissolvable at room temperature. +: Dissolved by heating. +-: only partially dissolved. -: Insoluble.
- each reference example is a stable compound, it was shown to be soluble in certain organic solvents and to have excellent workability such as purification by reprecipitation and film formation by solution casting.
- TGA thermogravimetry
- DSC differential scanning calorimetry
- TMA thermomechanical analysis
- DMA dynamic viscoelasticity measurement
- Tables 4 and 5 T5 % is the 5% weight loss temperature
- T10 % is the 10% weight loss temperature, measured by TGA in nitrogen or air at a heating rate of 10°C/min.
- Char yield is the carbonization yield in weight percent at 800° C. in nitrogen.
- the glass transition temperature (Tg) in Table 5 is a value measured by DSC in nitrogen at a heating rate of 20°C/min, a value measured by TMA in nitrogen at a heating rate of 10°C/min, a value measured by DMA in nitrogen, It is a value measured at a heating rate of 2° C./min.
- the coefficient of thermal expansion (CTE) is a value measured at 100 to 150°C by TMA.
- Tables 6, 7 and 8 show the results of examining the optical properties and dielectric properties of the compounds of Reference Examples 1 to 6 and 10 under the above equipment conditions.
- Table 6 shows the values of the refractive index (n) of film samples having a film thickness (d) of 40 to 70 ⁇ m.
- the in-plane refractive index (n TE ) of the film in TE mode and the out-of-plane refractive index (n TM ) of the film in TM mode were measured at F-line (486 nm), d-line (588 nm) and C-line (656 nm).
- ⁇ n d is the birefringence
- V d is the Abbe number
- n TE and n TM are the wavelength d It is measured by a line.
- Table 7 shows values of dielectric constant (D k ) and dielectric loss tangent (D f ) measured by the cavity resonator. Measurements were made at 10 GHz and 20 GHz in TE mode and at 10 GHz in TM mode.
- Table 8 shows the cutoff wavelength ( ⁇ cutoff ), 80% transmitted wavelength ( ⁇ 80% ), and transmittance at 400 nm (T 400 ) according to the UV-visible absorption spectrum.
- Table 6 shows that all of Reference Examples 1 to 6 and 10 have a dielectric constant of 2.7 or less as determined from the average refractive index.
- all of Reference Examples 1 to 6 and 10 have D k (dielectric constant) of 2.7 or less and D f (dielectric loss tangent) of 0.03 or less, which are sufficiently low. rice field.
- the resin composition was well obtained with a yield of 40% or more for each reference example.
- Reference Examples 13 and 15 showed yields of 90% or more by selecting nitrobenzene as the organic solvent. In all of the reference examples, it was shown that high molecular weight products were obtained.
- Test Example 6 Solubility of compounds of Reference Examples 12, 13 and 15
- Table 10 shows the results of examining the solubility of the compounds of each reference example at room temperature or with heating. Solubility was measured at 10 mg/5.0 mL. The description of the table is the same as that of Test Example 2.
- each reference example is a stable compound, it was shown to be soluble in certain organic solvents and to be excellent for reprecipitation purification and molding.
- Test Example 7 Thermal Properties of Compounds of Reference Examples 12, 13 and 15
- Tables 11 and 12 show the results. The description of the table is the same as that of Test Example 3.
- Test Example 8 Optical properties and dielectric properties of compounds of Reference Examples 12, 13 and 15
- Tables 13 and 14 show the results of examining the optical properties and dielectric properties of the compounds of each reference example under the above equipment conditions.
- the transmittance of Reference Examples 13 and 15 is shown in Table 15. The description of the table is the same as that of Test Example 4.
- the resin composition was well obtained with a yield of 60% or more for each reference example.
- a yield of 90% or more was observed by selecting nitrobenzene as an organic solvent, and a high molecular weight product was obtained.
- Test Example 10 Solubility of compounds of Reference Examples 16 and 20
- Table 17 shows the results of examining the solubility of the compounds of each Reference Example at room temperature or with heating. Solubility was measured at 10 mg/5.0 mL. The description of the table is the same as that of Test Example 2.
- Test Example 11 Thermal properties of the compound of Reference Example 16
- the compound of Reference Example 16 was subjected to the above-described thermogravimetric measurement, differential scanning calorimetry, thermomechanical analysis, and dynamic viscoelasticity measurement, and the results of examining the thermal properties are shown in Tables 18 and 19. The description of the table is the same as that of Test Example 3.
- Test Example 12 Optical properties and dielectric properties of the compound of Reference Example 16
- Tables 20, 21 and 22 show the results of examining the optical properties and dielectric properties of the compound of Reference Example 16 under the above equipment conditions. The description of the table is the same as that of Test Example 4.
- Tables 20 and 21 show that D k ( ⁇ , permittivity) of Reference Example 16 is 2.7 or less, which is sufficiently low.
- a resin composition having a low dielectric constant, a low dielectric loss tangent, a high transparency, a high solubility, and a high heat resistance can be suitably used as a low dielectric material, and a method for producing the same. can get.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Provided are: a resin composition which has a low dielectric constant, a low dielectric loss tangent, high transparency, high solubility and high heat resistance and which can be advantageously used as a low dielectric material; a film for a layered substrate, which is obtained using the resin; a layered substrate; and methods for producing these. The present invention is: a resin composition for a low dielectric material, the composition containing a triazine compound having a specific repeating unit; a film for a layered substrate; a layered substrate; a method for producing a resin composition for a low dielectric material; a method for producing a film for a layered substrate; and a method for producing a layered substrate.
Description
本発明は、電子機器等の低誘電材料として用いるための、トリアジン化合物を含む低誘電材料用の樹脂組成物、積層基板用フィルム、積層基板、低誘電材料用の樹脂組成物の製造方法、積層基板用フィルムの製造方法及び積層基板の製造方法に関する。
本願は、2021年3月24日に、日本に出願された特願2021-050694号に基づき優先権を主張し、その内容をここに援用する。 The present invention provides a resin composition for a low dielectric material containing a triazine compound, a film for a laminated substrate, a laminated substrate, a method for producing a resin composition for a low dielectric material, and a lamination, for use as a low dielectric material for electronic devices and the like. The present invention relates to a method for manufacturing a substrate film and a method for manufacturing a laminated substrate.
This application claims priority based on Japanese Patent Application No. 2021-050694 filed in Japan on March 24, 2021, the contents of which are incorporated herein.
本願は、2021年3月24日に、日本に出願された特願2021-050694号に基づき優先権を主張し、その内容をここに援用する。 The present invention provides a resin composition for a low dielectric material containing a triazine compound, a film for a laminated substrate, a laminated substrate, a method for producing a resin composition for a low dielectric material, and a lamination, for use as a low dielectric material for electronic devices and the like. The present invention relates to a method for manufacturing a substrate film and a method for manufacturing a laminated substrate.
This application claims priority based on Japanese Patent Application No. 2021-050694 filed in Japan on March 24, 2021, the contents of which are incorporated herein.
樹脂材料のうち、芳香族ポリエーテルは、耐熱性に優れ、機械的強度などにも比較的優れているため、いわゆるエンジニアリング樹脂として、自動車分野、又は機械分野等に広く応用されている。さらに好ましいエンジニアリング樹脂としては、耐熱性及び熱安定性を両立した、一層優れたエンジニアリング樹脂である新規な構造の開発が進められている。
Among resin materials, aromatic polyethers have excellent heat resistance and relatively excellent mechanical strength, so they are widely used in the automotive and mechanical fields as so-called engineering resins. As a more preferable engineering resin, development of a new structure that is an even more excellent engineering resin that achieves both heat resistance and thermal stability is underway.
特許文献1には、脂環式構造及びトリアジン構造を含む重合体、並びに当該重合体を含んでなる透明材料が開示されている。この技術は、耐熱性が高い透明材料に使用できるトリアジン構造を有するポリマーを提供しようとするものである。
Patent Document 1 discloses a polymer containing an alicyclic structure and a triazine structure, and a transparent material containing the polymer. This technique aims to provide a polymer having a triazine structure that can be used for transparent materials with high heat resistance.
一方、社会の通信インフラが5Gへと移行していく中で、電子機器に用いられる電磁波のうち、マイクロ波やミリ波といった高周波の領域が注目を集め、通信分野や車両用レーダなどへの応用の研究も進められている。高周波の領域を用いる機器では、基板、共振器、フィルタ、アンテナ等の部材に、低誘電率、低誘電正接性が求められる。それと共に、これらの部材に用いられる素材は、さまざまな機械的特性、例えば物理的強度や熱特性などを両立していることが求められる。こういった特性を満たす材料としては、現在は樹脂材料などにセラミックスフィラーなどを添加したものが考えられている。
On the other hand, as the communication infrastructure of society shifts to 5G, among the electromagnetic waves used in electronic devices, high-frequency regions such as microwaves and millimeter waves are attracting attention and are being applied to the field of communication and radar for vehicles. research is also underway. Devices using high-frequency regions require substrates, resonators, filters, antennas, and other members to have low dielectric constants and low dielectric loss tangents. At the same time, the materials used for these members are required to have various mechanical properties such as physical strength and thermal properties. As a material that satisfies these characteristics, resin materials and the like added with ceramic fillers are currently considered.
一方で、有機材料、特に樹脂材料は、前記高周波の領域での電子機器類や電子部品に応用するために優れた特性を持つものの研究が進められている。その中でも、絶縁部品、プリント配線板などに用いることのできる低誘電の特性を持つ材料や、誘電正接の低い材料は、特に強く求められている。
On the other hand, organic materials, especially resin materials, are being researched for their excellent properties for application to electronic devices and electronic components in the high-frequency range. Among them, materials with low dielectric properties and materials with low dielectric loss tangent that can be used for insulating parts, printed wiring boards, etc. are particularly strongly desired.
本発明者らは、優れた特性を持つ樹脂材料のうちでも、低誘電の特性を持つ材料や、誘電正接の低い材料を探索した。その結果、特定の構造を有するトリアジン化合物が、優れた機械的、熱的特性だけでなく、低誘電率材料そして低誘電正接材料として優れた特性を持つことを見出し、本発明を完成するに至った。
Among resin materials with excellent properties, the inventors searched for materials with low dielectric properties and materials with low dielectric loss tangent. As a result, it was found that a triazine compound having a specific structure not only has excellent mechanical and thermal properties, but also has excellent properties as a low dielectric constant material and a low dielectric loss tangent material, leading to the completion of the present invention. rice field.
本発明は上記のような事情を鑑みてなされたものであり、誘電率が低く、誘電正接が低く、透明性が高く、溶解性が高く、かつ耐熱性が高いことから、低誘電材料として好適に使用できる樹脂組成物、それを用いた積層基板用フィルム、積層基板及びそれらの製造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and is suitable as a low dielectric material because of its low dielectric constant, low dielectric loss tangent, high transparency, high solubility, and high heat resistance. It is an object of the present invention to provide a resin composition that can be used for a film, a film for a laminated substrate using the same, a laminated substrate, and a method for producing them.
上記課題を解決するため、本発明は以下の態様を有する。
[1] 下記一般式(1)で示される繰り返し単位を有するトリアジン化合物を含む、低誘電材料用の樹脂組成物。
[式(1)中、nは2以上の整数であり、Rは、直鎖状、分岐鎖状もしくは環状の脂肪族基、直鎖状、分岐鎖状もしくは環状の脂肪族オキシ基、直鎖状、分岐鎖状もしくは環状の脂肪族二級アミノ基、芳香族基もしくは置換基を有する芳香族基、芳香族オキシ基もしくは置換基を有する芳香族オキシ基、芳香族二級アミノ基もしくは置換基を有する芳香族二級アミノ基、フッ素化された上記脂肪族基、フッ素化された上記脂肪族オキシ基、フッ素化された上記脂肪族二級アミノ基、フッ素化された上記芳香族基、フッ素化された上記芳香族オキシ基、または、フッ素化された芳香族二級アミノ基を表す。Arは、直鎖状、分岐鎖状もしくは環状の脂肪族基、または、フッ素化された直鎖状、分岐鎖状もしくは環状の脂肪族基を有する2価の芳香族基を表す。]
[2] 前記トリアジン化合物は、前記一般式(1)中のRが下記一般式(2)~(4)のいずれかで表され、前記式(1)中のArが下記一般式(5)~(15)のいずれかで表される、前記の低誘電材料用の樹脂組成物。
[3] 前記一般式(1)中のnで示される繰り返し単位の平均重合度が2~600であるトリアジン化合物を含む、前記の低誘電材料用の樹脂組成物。
[4] 前記トリアジン化合物は、誘電率(Dk)が2.7以下、及び/又は誘電正接(Df)が0.004以下である、前記の低誘電材料用の樹脂組成物。
[5] 前記トリアジン化合物は、ガラス転移温度が160℃以上である、前記の低誘電材料用の樹脂組成物。
[6] 前記トリアジン化合物及びエポキシ樹脂、ビスマレイミド樹脂又はシアネート樹脂を含む、前記の低誘電材料用の樹脂組成物。
[7] 無機質充填材、改質剤又は難燃付与剤をさらに含む、前記の低誘電材料用の樹脂組成物。
[8] 周波数が0.1~500GHzの高周波の電磁波の送受信を行う機器に用いられる、前記の低誘電材料用の樹脂組成物。
[9] プリント配線板、フレキシブルプリント配線板、電子部品用封止材、レジストインキ、導電ペースト、絶縁材料、又は絶縁板に用いる、前記の低誘電材料用の樹脂組成物。
[10] 前記の低誘電材料用の樹脂組成物を含む絶縁材料を、少なくとも1面に備えた積層基板用フィルム。
[11] 前記の積層基板用フィルムを2以上備えた積層基板。
[12] 前記の低誘電材料用の樹脂組成物の製造方法であって、
下記一般式(16)で表される化合物と下記一般式(17)で表される化合物とを混合し、重合させて下記一般式(18)で表されるトリアジン化合物を得る、低誘電材料用の樹脂組成物の製造方法。
[式(16)、(17)、(18)中、nは2以上の整数であり、Rは、直鎖状、分岐鎖状もしくは環状の脂肪族基、直鎖状、分岐鎖状もしくは環状の脂肪族オキシ基、直鎖状、分岐鎖状もしくは環状の脂肪族二級アミノ基、芳香族基もしくは置換基を有する芳香族基、芳香族オキシ基もしくは置換基を有する芳香族オキシ基、芳香族二級アミノ基もしくは置換基を有する芳香族二級アミノ基、フッ素化された上記脂肪族基、フッ素化された上記脂肪族オキシ基、フッ素化された上記脂肪族二級アミノ基、フッ素化された上記芳香族基、フッ素化された上記芳香族オキシ基、または、フッ素化された芳香族二級アミノ基を表す。Arは、直鎖状、分岐鎖状もしくは環状の脂肪族基、または、フッ素化された直鎖状、分岐鎖状もしくは環状の脂肪族基を有する2価の芳香族基を表す。]
[13] 積層基板の層間の絶縁材料として用いられる低誘電材料用の樹脂組成物の製造方法であって、
前記トリアジン化合物、エポキシ樹脂、ビスマレイミド樹脂又はシアネート樹脂、硬化促進剤及び有機溶剤を混合する、前記の低誘電材料用の樹脂組成物の製造方法。
[14] 無機質充填材、改質剤又は難燃付与剤をさらに混合する、前記の低誘電材料用の樹脂組成物の製造方法。
[15] 前記の低誘電材料用の樹脂組成物を含む絶縁材料を、樹脂フィルムの少なくとも1面に塗布する、積層基板用フィルムの製造方法。
[16] 前記の積層基板用のフィルムを2以上積層する、積層基板の製造方法。 In order to solve the above problems, the present invention has the following aspects.
[1] A resin composition for a low dielectric material, containing a triazine compound having a repeating unit represented by the following general formula (1).
[In the formula (1), n is an integer of 2 or more, R is a linear, branched or cyclic aliphatic group, a linear, branched or cyclic aliphatic oxy group, a linear Aromatic, branched or cyclic aliphatic secondary amino groups, aromatic groups or substituted aromatic groups, aromatic oxy groups or substituted aromatic oxy groups, aromatic secondary amino groups or substituted groups the aromatic secondary amino group having the fluorinated aliphatic group, the fluorinated aliphatic oxy group, the fluorinated aliphatic secondary amino group, the fluorinated aromatic group, fluorine represents a fluorinated aromatic oxy group or a fluorinated aromatic secondary amino group. Ar represents a linear, branched or cyclic aliphatic group or a divalent aromatic group having a fluorinated linear, branched or cyclic aliphatic group. ]
[2] In the triazine compound, R in the general formula (1) is represented by any one of the following general formulas (2) to (4), and Ar in the formula (1) is the following general formula (5) The resin composition for a low dielectric material, represented by any one of (15).
[3] The resin composition for a low dielectric material, containing a triazine compound in which the repeating unit represented by n in the general formula (1) has an average degree of polymerization of 2 to 600.
[4] The resin composition for a low dielectric material, wherein the triazine compound has a dielectric constant (D k ) of 2.7 or less and/or a dielectric loss tangent (D f ) of 0.004 or less.
[5] The resin composition for a low dielectric material, wherein the triazine compound has a glass transition temperature of 160° C. or higher.
[6] The resin composition for a low dielectric material, containing the triazine compound and an epoxy resin, bismaleimide resin or cyanate resin.
[7] The resin composition for a low dielectric material, further comprising an inorganic filler, a modifier or a flame retardant.
[8] The above-mentioned resin composition for low dielectric materials, which is used in equipment for transmitting and receiving high-frequency electromagnetic waves having a frequency of 0.1 to 500 GHz.
[9] The resin composition for a low dielectric material, which is used for printed wiring boards, flexible printed wiring boards, sealing materials for electronic parts, resist inks, conductive pastes, insulating materials, or insulating boards.
[10] A film for a laminated substrate, comprising an insulating material containing the resin composition for a low dielectric material on at least one surface thereof.
[11] A laminated substrate comprising two or more of the films for a laminated substrate.
[12] A method for producing the resin composition for a low dielectric material,
A compound represented by the following general formula (16) and a compound represented by the following general formula (17) are mixed and polymerized to obtain a triazine compound represented by the following general formula (18) for a low dielectric material. A method for producing a resin composition.
[In the formulas (16), (17) and (18), n is an integer of 2 or more, R is a linear, branched or cyclic aliphatic group, a linear, branched or cyclic An aliphatic oxy group, a linear, branched or cyclic aliphatic secondary amino group, an aromatic group or an aromatic group having a substituent, an aromatic oxy group or an aromatic oxy group having a substituent, an aromatic a secondary amino group or an aromatic secondary amino group having a substituent, the fluorinated aliphatic group, the fluorinated aliphatic oxy group, the fluorinated aliphatic secondary amino group, fluorinated represents the above aromatic group, the above fluorinated aromatic oxy group, or the above fluorinated aromatic secondary amino group. Ar represents a linear, branched or cyclic aliphatic group or a divalent aromatic group having a fluorinated linear, branched or cyclic aliphatic group. ]
[13] A method for producing a resin composition for a low dielectric material used as an insulating material between layers of a laminated substrate, comprising:
A method for producing a resin composition for a low dielectric material, wherein the triazine compound, epoxy resin, bismaleimide resin or cyanate resin, curing accelerator and organic solvent are mixed.
[14] A method for producing a resin composition for a low dielectric material, wherein an inorganic filler, a modifier or a flame retardant is further mixed.
[15] A method for producing a film for a laminated substrate, comprising applying an insulating material containing the resin composition for a low dielectric material to at least one surface of a resin film.
[16] A method for producing a laminated substrate, comprising laminating two or more films for the laminated substrate.
[1] 下記一般式(1)で示される繰り返し単位を有するトリアジン化合物を含む、低誘電材料用の樹脂組成物。
[2] 前記トリアジン化合物は、前記一般式(1)中のRが下記一般式(2)~(4)のいずれかで表され、前記式(1)中のArが下記一般式(5)~(15)のいずれかで表される、前記の低誘電材料用の樹脂組成物。
[4] 前記トリアジン化合物は、誘電率(Dk)が2.7以下、及び/又は誘電正接(Df)が0.004以下である、前記の低誘電材料用の樹脂組成物。
[5] 前記トリアジン化合物は、ガラス転移温度が160℃以上である、前記の低誘電材料用の樹脂組成物。
[6] 前記トリアジン化合物及びエポキシ樹脂、ビスマレイミド樹脂又はシアネート樹脂を含む、前記の低誘電材料用の樹脂組成物。
[7] 無機質充填材、改質剤又は難燃付与剤をさらに含む、前記の低誘電材料用の樹脂組成物。
[8] 周波数が0.1~500GHzの高周波の電磁波の送受信を行う機器に用いられる、前記の低誘電材料用の樹脂組成物。
[9] プリント配線板、フレキシブルプリント配線板、電子部品用封止材、レジストインキ、導電ペースト、絶縁材料、又は絶縁板に用いる、前記の低誘電材料用の樹脂組成物。
[10] 前記の低誘電材料用の樹脂組成物を含む絶縁材料を、少なくとも1面に備えた積層基板用フィルム。
[11] 前記の積層基板用フィルムを2以上備えた積層基板。
[12] 前記の低誘電材料用の樹脂組成物の製造方法であって、
下記一般式(16)で表される化合物と下記一般式(17)で表される化合物とを混合し、重合させて下記一般式(18)で表されるトリアジン化合物を得る、低誘電材料用の樹脂組成物の製造方法。
[13] 積層基板の層間の絶縁材料として用いられる低誘電材料用の樹脂組成物の製造方法であって、
前記トリアジン化合物、エポキシ樹脂、ビスマレイミド樹脂又はシアネート樹脂、硬化促進剤及び有機溶剤を混合する、前記の低誘電材料用の樹脂組成物の製造方法。
[14] 無機質充填材、改質剤又は難燃付与剤をさらに混合する、前記の低誘電材料用の樹脂組成物の製造方法。
[15] 前記の低誘電材料用の樹脂組成物を含む絶縁材料を、樹脂フィルムの少なくとも1面に塗布する、積層基板用フィルムの製造方法。
[16] 前記の積層基板用のフィルムを2以上積層する、積層基板の製造方法。 In order to solve the above problems, the present invention has the following aspects.
[1] A resin composition for a low dielectric material, containing a triazine compound having a repeating unit represented by the following general formula (1).
[2] In the triazine compound, R in the general formula (1) is represented by any one of the following general formulas (2) to (4), and Ar in the formula (1) is the following general formula (5) The resin composition for a low dielectric material, represented by any one of (15).
[4] The resin composition for a low dielectric material, wherein the triazine compound has a dielectric constant (D k ) of 2.7 or less and/or a dielectric loss tangent (D f ) of 0.004 or less.
[5] The resin composition for a low dielectric material, wherein the triazine compound has a glass transition temperature of 160° C. or higher.
[6] The resin composition for a low dielectric material, containing the triazine compound and an epoxy resin, bismaleimide resin or cyanate resin.
[7] The resin composition for a low dielectric material, further comprising an inorganic filler, a modifier or a flame retardant.
[8] The above-mentioned resin composition for low dielectric materials, which is used in equipment for transmitting and receiving high-frequency electromagnetic waves having a frequency of 0.1 to 500 GHz.
[9] The resin composition for a low dielectric material, which is used for printed wiring boards, flexible printed wiring boards, sealing materials for electronic parts, resist inks, conductive pastes, insulating materials, or insulating boards.
[10] A film for a laminated substrate, comprising an insulating material containing the resin composition for a low dielectric material on at least one surface thereof.
[11] A laminated substrate comprising two or more of the films for a laminated substrate.
[12] A method for producing the resin composition for a low dielectric material,
A compound represented by the following general formula (16) and a compound represented by the following general formula (17) are mixed and polymerized to obtain a triazine compound represented by the following general formula (18) for a low dielectric material. A method for producing a resin composition.
[13] A method for producing a resin composition for a low dielectric material used as an insulating material between layers of a laminated substrate, comprising:
A method for producing a resin composition for a low dielectric material, wherein the triazine compound, epoxy resin, bismaleimide resin or cyanate resin, curing accelerator and organic solvent are mixed.
[14] A method for producing a resin composition for a low dielectric material, wherein an inorganic filler, a modifier or a flame retardant is further mixed.
[15] A method for producing a film for a laminated substrate, comprising applying an insulating material containing the resin composition for a low dielectric material to at least one surface of a resin film.
[16] A method for producing a laminated substrate, comprising laminating two or more films for the laminated substrate.
また、本発明は別の側面として、以下の実施態様も有する。
[1A] 下記一般式(1A)で示される繰り返し単位を有するトリアジン化合物を含む、低誘電材料用の樹脂組成物。
[式(1A)中、nは2以上の整数であり、Rは、直鎖状、分岐鎖状もしくは環状の脂肪族基、直鎖状、分岐鎖状もしくは環状の脂肪族オキシ基、直鎖状、分岐鎖状もしくは環状の脂肪族二級アミノ基、芳香族基もしくは置換基を有する芳香族基、芳香族オキシ基もしくは置換基を有する芳香族オキシ基、芳香族二級アミノ基もしくは置換基を有する芳香族二級アミノ基、フッ素化された上記脂肪族基、フッ素化された上記脂肪族オキシ基、フッ素化された上記脂肪族二級アミノ基、フッ素化された上記芳香族基、フッ素化された上記芳香族オキシ基、または、フッ素化された芳香族二級アミノ基を表す。Arは、直鎖状、分岐鎖状もしくは環状の脂肪族基、または、フッ素化された直鎖状、分岐鎖状もしくは環状の脂肪族基を有する2価の芳香族基を表す。]
[2A] 前記トリアジン化合物が、下記一般式(2A)で表される化合物であるか、又は、前記式(1A)中のArが下記一般式(11A)で表され、Rが下記一般式(3A)~(5A)のいずれかで表される、前記の低誘電材料用の樹脂組成物。
[式(2A)中、R1は、下記一般式(3A)~(5A)のいずれか1で表される構造を表す。R2は、下記一般式(6A)~(10A)、(12A)のいずれか1で表される構造を表す。]
[3A] 前記一般式(1A)中のnで示される繰り返し単位の平均重合度が2~100であるトリアジン化合物を含む、前記の低誘電材料用の樹脂組成物。
[4A] 前記トリアジン化合物は、誘電率Dkが2.7以下、および誘電正接Dfが0.004以下である、前記の低誘電材料用の樹脂組成物。
[5A] 前記トリアジン化合物は、ガラス転移温度が160℃以上である、前記の低誘電材料用の樹脂組成物。
[6A] 前記トリアジン化合物及びエポキシ樹脂を含む、前記の低誘電材料用の樹脂組成物。
[7A] 無機質充填材、改質剤又は難燃付与剤をさらに含む、前記の低誘電材料用の樹脂組成物。
[8A] 周波数が0.1~500GHzの高周波の電磁波の送受信を行う機器に用いられる、前記の低誘電材料用の樹脂組成物。
[9A] プリント配線板、フレキシブルプリント配線板、電子部品用封止材、レジストインキ、導電ペースト、絶縁材料、又は絶縁板に用いる、前記の低誘電材料用の樹脂組成物。
[10A] 前記の低誘電材料用の樹脂組成物を含む絶縁材料を、少なくとも1面に備えた積層基板用フィルム。
[11A] 前記の積層基板用フィルムを2以上備えた積層基板。
[12A] 前記の低誘電材料用の樹脂組成物の製造方法であって、下記一般式(13A)で表される化合物と下記一般式(14A)で表される化合物とを混合し、重合させて下記一般式(15A)で表されるトリアジン化合物を得る、低誘電材料用の樹脂組成物の製造方法。
[式(13A)、(14A)、(15A)中、Rは、直鎖状、分岐鎖状もしくは環状の脂肪族基、直鎖状、分岐鎖状もしくは環状の脂肪族オキシ基、直鎖状、分岐鎖状もしくは環状の脂肪族二級アミノ基、芳香族基もしくは置換基を有する芳香族基、芳香族オキシ基もしくは置換基を有する芳香族オキシ基、芳香族二級アミノ基もしくは置換基を有する芳香族二級アミノ基、フッ素化された上記脂肪族基、フッ素化された上記脂肪族オキシ基、フッ素化された上記脂肪族二級アミノ基、フッ素化された上記芳香族基、フッ素化された上記芳香族オキシ基、または、フッ素化された芳香族二級アミノ基を表す。Arは、直鎖状、分岐鎖状もしくは環状の脂肪族基、または、フッ素化された直鎖状、分岐鎖状もしくは環状の脂肪族基を有する2価の芳香族基を表す。]
[13A] 積層基板の層間の絶縁材料として用いられる低誘電材料用の樹脂組成物の製造方法であって、前記トリアジン化合物、エポキシ樹脂、硬化促進剤及び有機溶剤を混合する、前記の低誘電材料用の樹脂組成物の製造方法。
[14A] 無機質充填材、改質剤又は難燃付与剤をさらに混合する、前記の低誘電材料用の樹脂組成物の製造方法。
[15A] 前記の低誘電材料用の樹脂組成物を含む絶縁材料を、樹脂フィルムの少なくとも1面に塗布する、積層基板用フィルムの製造方法。
[16A] 前記の積層基板用のフィルムを2以上積層する、積層基板の製造方法。 Moreover, this invention also has the following embodiments as another aspect.
[1A] A resin composition for a low dielectric material, containing a triazine compound having a repeating unit represented by the following general formula (1A).
[In the formula (1A), n is an integer of 2 or more, R is a linear, branched or cyclic aliphatic group, a linear, branched or cyclic aliphatic oxy group, a linear Aromatic, branched or cyclic aliphatic secondary amino groups, aromatic groups or substituted aromatic groups, aromatic oxy groups or substituted aromatic oxy groups, aromatic secondary amino groups or substituted groups the aromatic secondary amino group having the fluorinated aliphatic group, the fluorinated aliphatic oxy group, the fluorinated aliphatic secondary amino group, the fluorinated aromatic group, fluorine represents a fluorinated aromatic oxy group or a fluorinated aromatic secondary amino group. Ar represents a linear, branched or cyclic aliphatic group or a divalent aromatic group having a fluorinated linear, branched or cyclic aliphatic group. ]
[2A] The triazine compound is a compound represented by the following general formula (2A), or Ar in the formula (1A) is represented by the following general formula (11A), and R is the following general formula ( 3A) The resin composition for a low dielectric material represented by any one of (5A).
[In the formula (2A), R 1 represents a structure represented by any one of the following general formulas (3A) to (5A). R 2 represents a structure represented by any one of general formulas (6A) to (10A) and (12A) below. ]
[3A] The resin composition for a low dielectric material, containing a triazine compound in which the repeating unit represented by n in the general formula (1A) has an average degree of polymerization of 2 to 100.
[4A] The resin composition for a low dielectric material, wherein the triazine compound has a dielectric constant Dk of 2.7 or less and a dielectric loss tangent Df of 0.004 or less.
[5A] The resin composition for a low dielectric material, wherein the triazine compound has a glass transition temperature of 160° C. or higher.
[6A] The resin composition for a low dielectric material, comprising the triazine compound and an epoxy resin.
[7A] The resin composition for a low dielectric material, further comprising an inorganic filler, modifier or flame retardant.
[8A] The resin composition for a low dielectric material, which is used in equipment for transmitting and receiving high-frequency electromagnetic waves having a frequency of 0.1 to 500 GHz.
[9A] The resin composition for a low dielectric material, which is used for printed wiring boards, flexible printed wiring boards, sealing materials for electronic parts, resist inks, conductive pastes, insulating materials, or insulating boards.
[10A] A film for a laminated substrate, comprising an insulating material containing the resin composition for a low dielectric material on at least one surface thereof.
[11A] A laminated substrate comprising two or more of the films for a laminated substrate.
[12A] A method for producing the resin composition for a low dielectric material, wherein a compound represented by the following general formula (13A) and a compound represented by the following general formula (14A) are mixed and polymerized. A method for producing a resin composition for a low dielectric material, which obtains a triazine compound represented by the following general formula (15A).
[In the formulas (13A), (14A) and (15A), R is a linear, branched or cyclic aliphatic group, a linear, branched or cyclic aliphatic oxy group, a linear , a branched or cyclic aliphatic secondary amino group, an aromatic group or an aromatic group having a substituent, an aromatic oxy group or an aromatic oxy group having a substituent, an aromatic secondary amino group or a substituent Aromatic secondary amino group having, the fluorinated aliphatic group, the fluorinated aliphatic oxy group, the fluorinated aliphatic secondary amino group, the fluorinated aromatic group, fluorinated represents the above aromatic oxy group or a fluorinated aromatic secondary amino group. Ar represents a linear, branched or cyclic aliphatic group or a divalent aromatic group having a fluorinated linear, branched or cyclic aliphatic group. ]
[13A] A method for producing a resin composition for a low dielectric material used as an insulating material between layers of a laminated substrate, comprising mixing the triazine compound, an epoxy resin, a curing accelerator and an organic solvent. A method for producing a resin composition for
[14A] A method for producing the resin composition for a low dielectric material, wherein an inorganic filler, modifier or flame retardant is further mixed.
[15A] A method for producing a film for a laminated substrate, comprising applying an insulating material containing the resin composition for a low dielectric material to at least one surface of a resin film.
[16A] A method for producing a laminated substrate, comprising laminating two or more of the films for a laminated substrate.
[1A] 下記一般式(1A)で示される繰り返し単位を有するトリアジン化合物を含む、低誘電材料用の樹脂組成物。
[2A] 前記トリアジン化合物が、下記一般式(2A)で表される化合物であるか、又は、前記式(1A)中のArが下記一般式(11A)で表され、Rが下記一般式(3A)~(5A)のいずれかで表される、前記の低誘電材料用の樹脂組成物。
[4A] 前記トリアジン化合物は、誘電率Dkが2.7以下、および誘電正接Dfが0.004以下である、前記の低誘電材料用の樹脂組成物。
[5A] 前記トリアジン化合物は、ガラス転移温度が160℃以上である、前記の低誘電材料用の樹脂組成物。
[6A] 前記トリアジン化合物及びエポキシ樹脂を含む、前記の低誘電材料用の樹脂組成物。
[7A] 無機質充填材、改質剤又は難燃付与剤をさらに含む、前記の低誘電材料用の樹脂組成物。
[8A] 周波数が0.1~500GHzの高周波の電磁波の送受信を行う機器に用いられる、前記の低誘電材料用の樹脂組成物。
[9A] プリント配線板、フレキシブルプリント配線板、電子部品用封止材、レジストインキ、導電ペースト、絶縁材料、又は絶縁板に用いる、前記の低誘電材料用の樹脂組成物。
[10A] 前記の低誘電材料用の樹脂組成物を含む絶縁材料を、少なくとも1面に備えた積層基板用フィルム。
[11A] 前記の積層基板用フィルムを2以上備えた積層基板。
[12A] 前記の低誘電材料用の樹脂組成物の製造方法であって、下記一般式(13A)で表される化合物と下記一般式(14A)で表される化合物とを混合し、重合させて下記一般式(15A)で表されるトリアジン化合物を得る、低誘電材料用の樹脂組成物の製造方法。
[13A] 積層基板の層間の絶縁材料として用いられる低誘電材料用の樹脂組成物の製造方法であって、前記トリアジン化合物、エポキシ樹脂、硬化促進剤及び有機溶剤を混合する、前記の低誘電材料用の樹脂組成物の製造方法。
[14A] 無機質充填材、改質剤又は難燃付与剤をさらに混合する、前記の低誘電材料用の樹脂組成物の製造方法。
[15A] 前記の低誘電材料用の樹脂組成物を含む絶縁材料を、樹脂フィルムの少なくとも1面に塗布する、積層基板用フィルムの製造方法。
[16A] 前記の積層基板用のフィルムを2以上積層する、積層基板の製造方法。 Moreover, this invention also has the following embodiments as another aspect.
[1A] A resin composition for a low dielectric material, containing a triazine compound having a repeating unit represented by the following general formula (1A).
[2A] The triazine compound is a compound represented by the following general formula (2A), or Ar in the formula (1A) is represented by the following general formula (11A), and R is the following general formula ( 3A) The resin composition for a low dielectric material represented by any one of (5A).
[4A] The resin composition for a low dielectric material, wherein the triazine compound has a dielectric constant Dk of 2.7 or less and a dielectric loss tangent Df of 0.004 or less.
[5A] The resin composition for a low dielectric material, wherein the triazine compound has a glass transition temperature of 160° C. or higher.
[6A] The resin composition for a low dielectric material, comprising the triazine compound and an epoxy resin.
[7A] The resin composition for a low dielectric material, further comprising an inorganic filler, modifier or flame retardant.
[8A] The resin composition for a low dielectric material, which is used in equipment for transmitting and receiving high-frequency electromagnetic waves having a frequency of 0.1 to 500 GHz.
[9A] The resin composition for a low dielectric material, which is used for printed wiring boards, flexible printed wiring boards, sealing materials for electronic parts, resist inks, conductive pastes, insulating materials, or insulating boards.
[10A] A film for a laminated substrate, comprising an insulating material containing the resin composition for a low dielectric material on at least one surface thereof.
[11A] A laminated substrate comprising two or more of the films for a laminated substrate.
[12A] A method for producing the resin composition for a low dielectric material, wherein a compound represented by the following general formula (13A) and a compound represented by the following general formula (14A) are mixed and polymerized. A method for producing a resin composition for a low dielectric material, which obtains a triazine compound represented by the following general formula (15A).
[13A] A method for producing a resin composition for a low dielectric material used as an insulating material between layers of a laminated substrate, comprising mixing the triazine compound, an epoxy resin, a curing accelerator and an organic solvent. A method for producing a resin composition for
[14A] A method for producing the resin composition for a low dielectric material, wherein an inorganic filler, modifier or flame retardant is further mixed.
[15A] A method for producing a film for a laminated substrate, comprising applying an insulating material containing the resin composition for a low dielectric material to at least one surface of a resin film.
[16A] A method for producing a laminated substrate, comprising laminating two or more of the films for a laminated substrate.
本発明によれば、誘電率が低く、誘電正接が低く、透明性が高く、溶解性が高く、かつ耐熱性が高いことから、低誘電材料として好適に使用できる樹脂組成物、それを用いた積層基板用フィルム、積層基板及びそれらの製造方法が得られる。
According to the present invention, a resin composition that can be suitably used as a low dielectric material because it has a low dielectric constant, a low dielectric loss tangent, a high transparency, a high solubility, and a high heat resistance. A film for a laminated substrate, a laminated substrate, and a method for producing them are obtained.
以下、本発明に係る低誘電材料用の樹脂組成物及びその製造方法について、実施形態を示して説明する。ただし、本発明は以下の実施形態に限定されるものではない。
Hereinafter, the resin composition for low dielectric materials and the method for producing the same according to the present invention will be described with reference to embodiments. However, the present invention is not limited to the following embodiments.
(低誘電材料用の樹脂組成物)
本実施形態の低誘電材料用の樹脂組成物は、特定のトリアジン化合物を含む。
ここで低誘電材料とは、誘電率が低い及び/又は誘電正接が低い材料である。すなわち、低誘電率材料又は低誘電正接材料であるが、以下、総称して「低誘電材料」という。誘電率および誘電正接の測定条件などの定義は後述する。低誘電材料は、電子機器又は電子部品において低い誘電率及び/又は低い誘電正接が求められる部位に用いる材料である。低い誘電率及び/又は低い誘電正接が求められる部位とは、例えば絶縁が必要とされる部位で、絶縁板等の絶縁部品や、プリント配線板の絶縁部品などが挙げられる。プリント配線板は、フレキシブルプリント配線板も含む。本実施形態の材料が含む化合物は、特に高周波において誘電率が低く、及び/又は誘電正接が低いことから、電子部品や電子機器類としては、特に高周波対応の電子部品や電子機器類に用いることが好ましい。 (Resin composition for low dielectric material)
The resin composition for low dielectric materials of this embodiment contains a specific triazine compound.
Here, a low dielectric material is a material with a low dielectric constant and/or a low dielectric loss tangent. That is, it is a low dielectric constant material or a low dielectric loss tangent material, and is hereinafter generically referred to as a "low dielectric material". Definitions of dielectric constant and dielectric loss tangent measurement conditions will be described later. A low dielectric material is a material that is used in a portion of an electronic device or electronic component that requires a low dielectric constant and/or a low dielectric loss tangent. A portion requiring a low dielectric constant and/or a low dielectric loss tangent is, for example, a portion that requires insulation, and includes insulating parts such as an insulating plate and insulating parts of a printed wiring board. Printed wiring boards also include flexible printed wiring boards. Since the compound contained in the material of the present embodiment has a low dielectric constant and/or a low dielectric loss tangent, especially at high frequencies, it can be used as electronic components and electronic devices, especially for high-frequency compatible electronic components and electronic devices. is preferred.
本実施形態の低誘電材料用の樹脂組成物は、特定のトリアジン化合物を含む。
ここで低誘電材料とは、誘電率が低い及び/又は誘電正接が低い材料である。すなわち、低誘電率材料又は低誘電正接材料であるが、以下、総称して「低誘電材料」という。誘電率および誘電正接の測定条件などの定義は後述する。低誘電材料は、電子機器又は電子部品において低い誘電率及び/又は低い誘電正接が求められる部位に用いる材料である。低い誘電率及び/又は低い誘電正接が求められる部位とは、例えば絶縁が必要とされる部位で、絶縁板等の絶縁部品や、プリント配線板の絶縁部品などが挙げられる。プリント配線板は、フレキシブルプリント配線板も含む。本実施形態の材料が含む化合物は、特に高周波において誘電率が低く、及び/又は誘電正接が低いことから、電子部品や電子機器類としては、特に高周波対応の電子部品や電子機器類に用いることが好ましい。 (Resin composition for low dielectric material)
The resin composition for low dielectric materials of this embodiment contains a specific triazine compound.
Here, a low dielectric material is a material with a low dielectric constant and/or a low dielectric loss tangent. That is, it is a low dielectric constant material or a low dielectric loss tangent material, and is hereinafter generically referred to as a "low dielectric material". Definitions of dielectric constant and dielectric loss tangent measurement conditions will be described later. A low dielectric material is a material that is used in a portion of an electronic device or electronic component that requires a low dielectric constant and/or a low dielectric loss tangent. A portion requiring a low dielectric constant and/or a low dielectric loss tangent is, for example, a portion that requires insulation, and includes insulating parts such as an insulating plate and insulating parts of a printed wiring board. Printed wiring boards also include flexible printed wiring boards. Since the compound contained in the material of the present embodiment has a low dielectric constant and/or a low dielectric loss tangent, especially at high frequencies, it can be used as electronic components and electronic devices, especially for high-frequency compatible electronic components and electronic devices. is preferred.
本実施形態の樹脂組成物が含むトリアジン化合物は、下記一般式(1)で示される繰り返し単位を有する。
The triazine compound contained in the resin composition of this embodiment has a repeating unit represented by the following general formula (1).
ここで式(1)中、nは2以上の整数であり、Rは、直鎖状、分岐鎖状もしくは環状の脂肪族基、直鎖状、分岐鎖状もしくは環状の脂肪族オキシ基、直鎖状、分岐鎖状もしくは環状の脂肪族二級アミノ基、芳香族基もしくは置換基を有する芳香族基、芳香族オキシ基もしくは置換基を有する芳香族オキシ基、芳香族二級アミノ基もしくは置換基を有する芳香族二級アミノ基、フッ素化された上記脂肪族基、フッ素化された上記脂肪族オキシ基、フッ素化された上記脂肪族二級アミノ基、フッ素化された上記芳香族基、フッ素化された上記芳香族オキシ基、または、フッ素化された芳香族二級アミノ基を表す。
ここで置換基とは、結合する対象となる基(原子団)とは異なるグループの基であり、結合する対象の基の一部の原子(好ましくは水素)を置き換える形で結合し得るものを広く指す。芳香族基は芳香族性を有する化合物又は一部置換された化合物の構造を含む基を広く指す。脂肪族基は広くは芳香族性を有さない有機化合物の又は一部置換された化合物の構造を含む基を広く指す。
式中、nは、式(1)で表される構造の繰り返し単位数を表し、2以上の整数である。後述するように、本実施形態の低誘電材料用の樹脂組成物に含まれるトリアジン化合物の重合度(n)の平均の値が平均重合度であり、平均重合度の値は2~600であることが好ましい。
上記脂肪族基の例としては、炭素数が1~14のものが好ましい。具体的には、上記脂肪族基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、シクロブチル基、シクロペンチル基、又はシクロヘキシル基などがあげられる。脂肪族オキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基、シクロブトキシ基、シクロペンチルオキシ基、又はシクロヘキシルオキシ基などがあげられる。脂肪族二級アミノ基としては、ジメチルアミノ基、ジエチルアミノ基、メチルエチルアミノ基、ジプロピルアミノ基、メチルプロピルアミノ基、ジブチルアミノ基、メチルブチルアミノ基、N-メチルシクロヘキシルアミノ基、ジシクロヘキシルアミノ基、ピロリジノ基、ピペリジノ基、又はモルホリノ基などがあげられる。
芳香族基としては、炭素数が6~18のものが好ましい。具体的には、上記芳香族基としては、フェニル基、メチルフェニル基、ジメチルフェニル基、クメニル基、メシチル基、tert-ブチルフェニル基、又はナフチル基などがあげられる。芳香族オキシ基としては、フェノキシ基、メチルフェノキシ基、ジメチルフェノキシ基、又はナフトキシ基などがあげられる。芳香族二級アミノ基としては、N-メチルアニリノ基、ジフェニルアミノ基などがあげられる。フッ素化された芳香族基としては、トリフルオロメチルフェニル基、ビストリフルオロメチルフェニル基、トリフルオロメチルフェノキシ基、ビストリフルオロメチルフェノキシ基、N-メチルトリフルオロメチルアニリノ基、又はトリフルオロメチルジフェニルアミノ基などがあげられる。
Arは、直鎖状、分岐鎖状もしくは環状の脂肪族基、または、フッ素化された直鎖状、分岐鎖状もしくは環状の脂肪族基を有する2価の芳香族基を表す。
脂肪族基としては、メチル基、トリフルオロメチル基、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、シクロペンタレン基、シクロヘキシレン基、イソプロピリデン基、シクロペンチリデン基、シクロヘキシリデン基、メチルシクロヘキシリデン基、ジメチルシクロヘキシリデン基、トリメチルシクロヘキシリデン基、シクロオクチリデン基、シクロドデシリデン基、ヘキサフルオロイソプロピリデン基などがあげられる。 Here, in formula (1), n is an integer of 2 or more, R is a linear, branched or cyclic aliphatic group, a linear, branched or cyclic aliphatic oxy group, a linear A chain, branched or cyclic aliphatic secondary amino group, an aromatic group or an aromatic group having a substituent, an aromatic oxy group or an aromatic oxy group having a substituent, an aromatic secondary amino group or a substituent an aromatic secondary amino group having a group, the fluorinated aliphatic group, the fluorinated aliphatic oxy group, the fluorinated aliphatic secondary amino group, the fluorinated aromatic group, It represents a fluorinated aromatic oxy group or a fluorinated aromatic secondary amino group.
Here, the substituent is a group different from the group (atomic group) to be bonded, and can be bonded by replacing some atoms (preferably hydrogen) of the group to be bonded. point broadly. An aromatic group broadly refers to a group containing the structure of a compound or partially substituted compound having aromatic character. Aliphatic groups broadly refer to groups containing structures of organic compounds or partially substituted compounds that do not have aromatic character.
In the formula, n represents the number of repeating units of the structure represented by formula (1) and is an integer of 2 or more. As will be described later, the average value of the degree of polymerization (n) of the triazine compound contained in the resin composition for a low dielectric material of the present embodiment is the average degree of polymerization, and the value of the average degree of polymerization is 2 to 600. is preferred.
As examples of the aliphatic group, those having 1 to 14 carbon atoms are preferable. Specifically, the aliphatic groups include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl, and tert. -pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group and the like. Examples of aliphatic oxy groups include methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy, tert-butoxy, pentyloxy, hexyloxy, heptyloxy, and octyloxy. group, nonyloxy group, decyloxy group, cyclobutoxy group, cyclopentyloxy group, or cyclohexyloxy group. Examples of aliphatic secondary amino groups include dimethylamino group, diethylamino group, methylethylamino group, dipropylamino group, methylpropylamino group, dibutylamino group, methylbutylamino group, N-methylcyclohexylamino group and dicyclohexylamino group. , a pyrrolidino group, a piperidino group, or a morpholino group.
As the aromatic group, those having 6 to 18 carbon atoms are preferred. Specifically, the aromatic group includes a phenyl group, a methylphenyl group, a dimethylphenyl group, a cumenyl group, a mesityl group, a tert-butylphenyl group, a naphthyl group, and the like. The aromatic oxy group includes phenoxy group, methylphenoxy group, dimethylphenoxy group, naphthoxy group and the like. The aromatic secondary amino group includes an N-methylanilino group and a diphenylamino group. The fluorinated aromatic group includes a trifluoromethylphenyl group, a bistrifluoromethylphenyl group, a trifluoromethylphenoxy group, a bistrifluoromethylphenoxy group, an N-methyltrifluoromethylanilino group, or a trifluoromethyldiphenylamino group. base, etc.
Ar represents a linear, branched or cyclic aliphatic group or a divalent aromatic group having a fluorinated linear, branched or cyclic aliphatic group.
Examples of aliphatic groups include methyl group, trifluoromethyl group, methylene group, ethylene group, trimethylene group, tetramethylene group, propylene group, butylene group, pentylene group, hexylene group, cyclopentalene group, cyclohexylene group and isopropylidene group. group, cyclopentylidene group, cyclohexylidene group, methylcyclohexylidene group, dimethylcyclohexylidene group, trimethylcyclohexylidene group, cyclooctylidene group, cyclododecylidene group, hexafluoroisopropylidene group and the like. .
ここで置換基とは、結合する対象となる基(原子団)とは異なるグループの基であり、結合する対象の基の一部の原子(好ましくは水素)を置き換える形で結合し得るものを広く指す。芳香族基は芳香族性を有する化合物又は一部置換された化合物の構造を含む基を広く指す。脂肪族基は広くは芳香族性を有さない有機化合物の又は一部置換された化合物の構造を含む基を広く指す。
式中、nは、式(1)で表される構造の繰り返し単位数を表し、2以上の整数である。後述するように、本実施形態の低誘電材料用の樹脂組成物に含まれるトリアジン化合物の重合度(n)の平均の値が平均重合度であり、平均重合度の値は2~600であることが好ましい。
上記脂肪族基の例としては、炭素数が1~14のものが好ましい。具体的には、上記脂肪族基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、シクロブチル基、シクロペンチル基、又はシクロヘキシル基などがあげられる。脂肪族オキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基、シクロブトキシ基、シクロペンチルオキシ基、又はシクロヘキシルオキシ基などがあげられる。脂肪族二級アミノ基としては、ジメチルアミノ基、ジエチルアミノ基、メチルエチルアミノ基、ジプロピルアミノ基、メチルプロピルアミノ基、ジブチルアミノ基、メチルブチルアミノ基、N-メチルシクロヘキシルアミノ基、ジシクロヘキシルアミノ基、ピロリジノ基、ピペリジノ基、又はモルホリノ基などがあげられる。
芳香族基としては、炭素数が6~18のものが好ましい。具体的には、上記芳香族基としては、フェニル基、メチルフェニル基、ジメチルフェニル基、クメニル基、メシチル基、tert-ブチルフェニル基、又はナフチル基などがあげられる。芳香族オキシ基としては、フェノキシ基、メチルフェノキシ基、ジメチルフェノキシ基、又はナフトキシ基などがあげられる。芳香族二級アミノ基としては、N-メチルアニリノ基、ジフェニルアミノ基などがあげられる。フッ素化された芳香族基としては、トリフルオロメチルフェニル基、ビストリフルオロメチルフェニル基、トリフルオロメチルフェノキシ基、ビストリフルオロメチルフェノキシ基、N-メチルトリフルオロメチルアニリノ基、又はトリフルオロメチルジフェニルアミノ基などがあげられる。
Arは、直鎖状、分岐鎖状もしくは環状の脂肪族基、または、フッ素化された直鎖状、分岐鎖状もしくは環状の脂肪族基を有する2価の芳香族基を表す。
脂肪族基としては、メチル基、トリフルオロメチル基、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、シクロペンタレン基、シクロヘキシレン基、イソプロピリデン基、シクロペンチリデン基、シクロヘキシリデン基、メチルシクロヘキシリデン基、ジメチルシクロヘキシリデン基、トリメチルシクロヘキシリデン基、シクロオクチリデン基、シクロドデシリデン基、ヘキサフルオロイソプロピリデン基などがあげられる。 Here, in formula (1), n is an integer of 2 or more, R is a linear, branched or cyclic aliphatic group, a linear, branched or cyclic aliphatic oxy group, a linear A chain, branched or cyclic aliphatic secondary amino group, an aromatic group or an aromatic group having a substituent, an aromatic oxy group or an aromatic oxy group having a substituent, an aromatic secondary amino group or a substituent an aromatic secondary amino group having a group, the fluorinated aliphatic group, the fluorinated aliphatic oxy group, the fluorinated aliphatic secondary amino group, the fluorinated aromatic group, It represents a fluorinated aromatic oxy group or a fluorinated aromatic secondary amino group.
Here, the substituent is a group different from the group (atomic group) to be bonded, and can be bonded by replacing some atoms (preferably hydrogen) of the group to be bonded. point broadly. An aromatic group broadly refers to a group containing the structure of a compound or partially substituted compound having aromatic character. Aliphatic groups broadly refer to groups containing structures of organic compounds or partially substituted compounds that do not have aromatic character.
In the formula, n represents the number of repeating units of the structure represented by formula (1) and is an integer of 2 or more. As will be described later, the average value of the degree of polymerization (n) of the triazine compound contained in the resin composition for a low dielectric material of the present embodiment is the average degree of polymerization, and the value of the average degree of polymerization is 2 to 600. is preferred.
As examples of the aliphatic group, those having 1 to 14 carbon atoms are preferable. Specifically, the aliphatic groups include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl, and tert. -pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group and the like. Examples of aliphatic oxy groups include methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy, tert-butoxy, pentyloxy, hexyloxy, heptyloxy, and octyloxy. group, nonyloxy group, decyloxy group, cyclobutoxy group, cyclopentyloxy group, or cyclohexyloxy group. Examples of aliphatic secondary amino groups include dimethylamino group, diethylamino group, methylethylamino group, dipropylamino group, methylpropylamino group, dibutylamino group, methylbutylamino group, N-methylcyclohexylamino group and dicyclohexylamino group. , a pyrrolidino group, a piperidino group, or a morpholino group.
As the aromatic group, those having 6 to 18 carbon atoms are preferred. Specifically, the aromatic group includes a phenyl group, a methylphenyl group, a dimethylphenyl group, a cumenyl group, a mesityl group, a tert-butylphenyl group, a naphthyl group, and the like. The aromatic oxy group includes phenoxy group, methylphenoxy group, dimethylphenoxy group, naphthoxy group and the like. The aromatic secondary amino group includes an N-methylanilino group and a diphenylamino group. The fluorinated aromatic group includes a trifluoromethylphenyl group, a bistrifluoromethylphenyl group, a trifluoromethylphenoxy group, a bistrifluoromethylphenoxy group, an N-methyltrifluoromethylanilino group, or a trifluoromethyldiphenylamino group. base, etc.
Ar represents a linear, branched or cyclic aliphatic group or a divalent aromatic group having a fluorinated linear, branched or cyclic aliphatic group.
Examples of aliphatic groups include methyl group, trifluoromethyl group, methylene group, ethylene group, trimethylene group, tetramethylene group, propylene group, butylene group, pentylene group, hexylene group, cyclopentalene group, cyclohexylene group and isopropylidene group. group, cyclopentylidene group, cyclohexylidene group, methylcyclohexylidene group, dimethylcyclohexylidene group, trimethylcyclohexylidene group, cyclooctylidene group, cyclododecylidene group, hexafluoroisopropylidene group and the like. .
すなわち、本実施形態のトリアジン化合物を含む樹脂は、Rが脂肪族基である場合は脂肪族基含有トリアジン樹脂であり、Rが前記脂肪族基がフッ素化されたものである場合はフッ素化脂肪族基含有トリアジン樹脂である。
Rがフッ素化される程度は、Rに含まれる炭素の結合部位うち1か所から、結合する対象の基に結合する以外の全ての炭素の結合部位まで、広く選択されていてよい。例えば、Rがメチル基である場合、メチル基の有する水素のうち1~3か所がフッ素に置換されていてもよいが、2~3か所が好ましい。
なお、式(1)中のRは、同じ置換基であっても、異なるものであってもよい。
本実施形態の樹脂組成物が含むトリアジン化合物の上述したような化学構造は、赤外スペクトル(FT-IR)、核磁気共鳴スペクトル(NMR、例えば1H-NMR、13C-NMR、19F-NMR)、又は元素分析等によって同定することができる。 That is, the resin containing the triazine compound of the present embodiment is an aliphatic group-containing triazine resin when R is an aliphatic group, and a fluorinated aliphatic resin when R is a fluorinated aliphatic group. group-containing triazine resins.
The degree to which R is fluorinated can be chosen widely, from one of the carbon attachment sites in R to all carbon attachment sites other than those attached to the group to which it is attached. For example, when R is a methyl group, 1 to 3 hydrogen atoms of the methyl group may be substituted with fluorine atoms, but 2 to 3 hydrogen atoms are preferred.
In addition, R in Formula (1) may be the same substituent or may be different.
The above-described chemical structure of the triazine compound contained in the resin composition of the present embodiment is determined by infrared spectrum (FT-IR), nuclear magnetic resonance spectrum (NMR, such as 1 H-NMR, 13 C-NMR, 19 F- NMR), elemental analysis, or the like.
Rがフッ素化される程度は、Rに含まれる炭素の結合部位うち1か所から、結合する対象の基に結合する以外の全ての炭素の結合部位まで、広く選択されていてよい。例えば、Rがメチル基である場合、メチル基の有する水素のうち1~3か所がフッ素に置換されていてもよいが、2~3か所が好ましい。
なお、式(1)中のRは、同じ置換基であっても、異なるものであってもよい。
本実施形態の樹脂組成物が含むトリアジン化合物の上述したような化学構造は、赤外スペクトル(FT-IR)、核磁気共鳴スペクトル(NMR、例えば1H-NMR、13C-NMR、19F-NMR)、又は元素分析等によって同定することができる。 That is, the resin containing the triazine compound of the present embodiment is an aliphatic group-containing triazine resin when R is an aliphatic group, and a fluorinated aliphatic resin when R is a fluorinated aliphatic group. group-containing triazine resins.
The degree to which R is fluorinated can be chosen widely, from one of the carbon attachment sites in R to all carbon attachment sites other than those attached to the group to which it is attached. For example, when R is a methyl group, 1 to 3 hydrogen atoms of the methyl group may be substituted with fluorine atoms, but 2 to 3 hydrogen atoms are preferred.
In addition, R in Formula (1) may be the same substituent or may be different.
The above-described chemical structure of the triazine compound contained in the resin composition of the present embodiment is determined by infrared spectrum (FT-IR), nuclear magnetic resonance spectrum (NMR, such as 1 H-NMR, 13 C-NMR, 19 F- NMR), elemental analysis, or the like.
Arのアリーレン基の例としては、各種の芳香族化合物又は芳香族環含有化合物中の芳香族環に結合している水素原子や他の置換基を合計2個引き抜いてなる各種の二価の芳香族残基から、適宜選択することができる。例えば、各種の二価フェノール類からその2個のフェノール性水酸基を引き抜いてなる各種の芳香族残基などを挙げることができる。アリーレン基の例としては、各種のフェニレン基、ナフチレン基、及びビフェニレン基などの中から適宜選択することができる。Arには他のアルキル基、又はアリール基等が結合していてもよい。
Examples of the arylene group for Ar include various divalent aromatic compounds obtained by extracting a total of two hydrogen atoms or other substituents bonded to aromatic rings in various aromatic compounds or aromatic ring-containing compounds. can be appropriately selected from group residues. Examples thereof include various aromatic residues obtained by abstracting two phenolic hydroxyl groups from various dihydric phenols. Examples of arylene groups can be appropriately selected from various phenylene groups, naphthylene groups, biphenylene groups, and the like. Other alkyl groups, aryl groups, or the like may be bonded to Ar.
本実施形態の前記トリアジン化合物は、下記一般式(1)中、Rが下記一般式(2)~(4)のいずれかで表される構造を表す。又は、Arは下記一般式(5)~(15)のいずれかで表される構造で表される化合物であってもよい。
The triazine compound of the present embodiment has a structure in which R in general formula (1) below is represented by any one of general formulas (2) to (4) below. Alternatively, Ar may be a compound represented by a structure represented by any one of the following general formulas (5) to (15).
ここで、前記Rが置換した一般式(16)で表される化合物について、式(2)はDCPT、式(3)はDCPpT、式(4)はDCHATと表されることもある。
前記Arの構造について、式(5)~(15)の両端にOH基を有する、二価のビスフェノール(HO-Ar-OH)について、式(5)はBisA、式(6)はBisZ、式(7)はBisP3MZ、式(8)はBisPHTG、式(9)はBisPCDE、式(10)はHPTM5I、式(11)はBisC、式(12)はBisTMP、式(13)はBisCHP、式(14)はBisAF、式(15)はBPFLと表されることもある。
本実施形態の低誘電材料用の樹脂組成物にこれらの構造のR、Arを用いた場合、特に、誘電率が低く、誘電正接が低く、透明性が高く、溶解性が高く、かつ耐熱性の高いトリアジン化合物を含む、低誘電材料用の樹脂組成物が得られる。 Here, regarding the compound represented by the general formula (16) substituted with R, the formula (2) may be represented as DCPT, the formula (3) as DCPpT, and the formula (4) as DCHAT.
Regarding the structure of Ar, with respect to the divalent bisphenol (HO-Ar-OH) having OH groups at both ends of formulas (5) to (15), formula (5) is BisA, formula (6) is BisZ, and formula (7) is BisP3MZ, formula (8) is BisPHTG, formula (9) is BisPCDE, formula (10) is HPTM5I, formula (11) is BisC, formula (12) is BisTMP, formula (13) is BisCHP, formula ( 14) is sometimes expressed as BisAF, and equation (15) as BPFL.
When R and Ar having these structures are used in the resin composition for the low dielectric material of the present embodiment, the dielectric constant is particularly low, the dielectric loss tangent is low, the transparency is high, the solubility is high, and the heat resistance is high. A resin composition for low dielectric materials containing a triazine compound having a high .
前記Arの構造について、式(5)~(15)の両端にOH基を有する、二価のビスフェノール(HO-Ar-OH)について、式(5)はBisA、式(6)はBisZ、式(7)はBisP3MZ、式(8)はBisPHTG、式(9)はBisPCDE、式(10)はHPTM5I、式(11)はBisC、式(12)はBisTMP、式(13)はBisCHP、式(14)はBisAF、式(15)はBPFLと表されることもある。
本実施形態の低誘電材料用の樹脂組成物にこれらの構造のR、Arを用いた場合、特に、誘電率が低く、誘電正接が低く、透明性が高く、溶解性が高く、かつ耐熱性の高いトリアジン化合物を含む、低誘電材料用の樹脂組成物が得られる。 Here, regarding the compound represented by the general formula (16) substituted with R, the formula (2) may be represented as DCPT, the formula (3) as DCPpT, and the formula (4) as DCHAT.
Regarding the structure of Ar, with respect to the divalent bisphenol (HO-Ar-OH) having OH groups at both ends of formulas (5) to (15), formula (5) is BisA, formula (6) is BisZ, and formula (7) is BisP3MZ, formula (8) is BisPHTG, formula (9) is BisPCDE, formula (10) is HPTM5I, formula (11) is BisC, formula (12) is BisTMP, formula (13) is BisCHP, formula ( 14) is sometimes expressed as BisAF, and equation (15) as BPFL.
When R and Ar having these structures are used in the resin composition for the low dielectric material of the present embodiment, the dielectric constant is particularly low, the dielectric loss tangent is low, the transparency is high, the solubility is high, and the heat resistance is high. A resin composition for low dielectric materials containing a triazine compound having a high .
本実施形態の前記トリアジン化合物は、前記一般式(1)中のnで示される繰り返し単位の平均重合度が2~600であることが好ましい。
nで示される繰り返し単位の平均重合度が2~600であるとき、低誘電材料用の樹脂組成物として用いる場合に適切な分子量の化合物が得られる。また、前記平均重合度は2~300であることも好ましい。または、前記平均重合度は2~100であってもよい。
本実施形態の前記トリアジン化合物の分子量は、目安として、上述の式(2)~(4)のRを用いたとき、数平均分子量Mnが3×103~40×104、重量平均分子量Mwが6×103~80×104であることが好ましい。なお、本実施形態の化合物の分子量は、ゲル浸透クロマトグラフィー(GPC)などを用いて測定することができる。この分子量及び前記した化合物の構造から、平均重合度を求めることができる。 The triazine compound of the present embodiment preferably has an average degree of polymerization of 2 to 600 for the repeating unit represented by n in the general formula (1).
When the repeating unit represented by n has an average degree of polymerization of 2 to 600, a compound having an appropriate molecular weight can be obtained when used as a resin composition for a low dielectric material. Also, the average degree of polymerization is preferably 2-300. Alternatively, the average degree of polymerization may be 2-100.
As a guideline, the molecular weight of the triazine compound of the present embodiment is such that the number average molecular weight M n is 3×10 3 to 40×10 4 and the weight average molecular weight is It is preferred that M w is between 6×10 3 and 80×10 4 . The molecular weight of the compound of this embodiment can be measured using gel permeation chromatography (GPC) or the like. The average degree of polymerization can be determined from this molecular weight and the structure of the compound described above.
nで示される繰り返し単位の平均重合度が2~600であるとき、低誘電材料用の樹脂組成物として用いる場合に適切な分子量の化合物が得られる。また、前記平均重合度は2~300であることも好ましい。または、前記平均重合度は2~100であってもよい。
本実施形態の前記トリアジン化合物の分子量は、目安として、上述の式(2)~(4)のRを用いたとき、数平均分子量Mnが3×103~40×104、重量平均分子量Mwが6×103~80×104であることが好ましい。なお、本実施形態の化合物の分子量は、ゲル浸透クロマトグラフィー(GPC)などを用いて測定することができる。この分子量及び前記した化合物の構造から、平均重合度を求めることができる。 The triazine compound of the present embodiment preferably has an average degree of polymerization of 2 to 600 for the repeating unit represented by n in the general formula (1).
When the repeating unit represented by n has an average degree of polymerization of 2 to 600, a compound having an appropriate molecular weight can be obtained when used as a resin composition for a low dielectric material. Also, the average degree of polymerization is preferably 2-300. Alternatively, the average degree of polymerization may be 2-100.
As a guideline, the molecular weight of the triazine compound of the present embodiment is such that the number average molecular weight M n is 3×10 3 to 40×10 4 and the weight average molecular weight is It is preferred that M w is between 6×10 3 and 80×10 4 . The molecular weight of the compound of this embodiment can be measured using gel permeation chromatography (GPC) or the like. The average degree of polymerization can be determined from this molecular weight and the structure of the compound described above.
本実施形態の前記トリアジン化合物は、誘電率(Dk)が2.7以下、及び/又は誘電正接(Df)が0.006以下であってもよい。また、誘電正接(Df)が0.004以下であることも好ましい。
ここで、誘電率(Dk)及び誘電正接(Df)は、既存の誘電特性測定装置で測定した値である。既存の誘電特性測定装置としては、例えば、空洞共振器タイプのものなどを使用できる。
また、本実施形態の前記トリアジン化合物は、誘電率(Dk)は2.6以下であることが好ましく、誘電正接(Df)が0.003以下であることがより好ましい。 The triazine compound of the present embodiment may have a dielectric constant (D k ) of 2.7 or less and/or a dielectric loss tangent (D f ) of 0.006 or less. It is also preferable that the dielectric loss tangent (D f ) is 0.004 or less.
Here, the dielectric constant (D k ) and dielectric loss tangent (D f ) are values measured by an existing dielectric property measuring device. As an existing dielectric property measuring device, for example, a cavity resonator type device or the like can be used.
Further, the triazine compound of the present embodiment preferably has a dielectric constant (D k ) of 2.6 or less, and more preferably has a dielectric loss tangent (D f ) of 0.003 or less.
ここで、誘電率(Dk)及び誘電正接(Df)は、既存の誘電特性測定装置で測定した値である。既存の誘電特性測定装置としては、例えば、空洞共振器タイプのものなどを使用できる。
また、本実施形態の前記トリアジン化合物は、誘電率(Dk)は2.6以下であることが好ましく、誘電正接(Df)が0.003以下であることがより好ましい。 The triazine compound of the present embodiment may have a dielectric constant (D k ) of 2.7 or less and/or a dielectric loss tangent (D f ) of 0.006 or less. It is also preferable that the dielectric loss tangent (D f ) is 0.004 or less.
Here, the dielectric constant (D k ) and dielectric loss tangent (D f ) are values measured by an existing dielectric property measuring device. As an existing dielectric property measuring device, for example, a cavity resonator type device or the like can be used.
Further, the triazine compound of the present embodiment preferably has a dielectric constant (D k ) of 2.6 or less, and more preferably has a dielectric loss tangent (D f ) of 0.003 or less.
本実施形態の低誘電材料用の樹脂組成物のトリアジン化合物は、ガラス転移温度が160℃以上であることが好ましく、200℃以上であることがより好ましい。また、5%熱分解温度が340~500℃であることも好ましい。
本実施形態の低誘電材料用の樹脂組成物のトリアジン化合物のガラス転移温度は、示差走査熱量測定(DSC)、熱機械分析(TMA)、動的粘弾性測定(DMA)などを用いて測定することができる。
本実施形態の低誘電材料用の樹脂組成物の5%熱分解温度は、重量減少温度を測定することにより得られる。重量減少温度は、例えば熱重量測定(TGA)などを用いて測定することができる。 The triazine compound of the resin composition for low dielectric materials of the present embodiment preferably has a glass transition temperature of 160° C. or higher, more preferably 200° C. or higher. It is also preferable that the 5% thermal decomposition temperature is 340 to 500°C.
The glass transition temperature of the triazine compound of the resin composition for low dielectric materials of the present embodiment is measured using differential scanning calorimetry (DSC), thermomechanical analysis (TMA), dynamic viscoelasticity measurement (DMA), or the like. be able to.
The 5% thermal decomposition temperature of the resin composition for low dielectric materials of this embodiment is obtained by measuring the weight loss temperature. The weight loss temperature can be measured using, for example, thermogravimetry (TGA).
本実施形態の低誘電材料用の樹脂組成物のトリアジン化合物のガラス転移温度は、示差走査熱量測定(DSC)、熱機械分析(TMA)、動的粘弾性測定(DMA)などを用いて測定することができる。
本実施形態の低誘電材料用の樹脂組成物の5%熱分解温度は、重量減少温度を測定することにより得られる。重量減少温度は、例えば熱重量測定(TGA)などを用いて測定することができる。 The triazine compound of the resin composition for low dielectric materials of the present embodiment preferably has a glass transition temperature of 160° C. or higher, more preferably 200° C. or higher. It is also preferable that the 5% thermal decomposition temperature is 340 to 500°C.
The glass transition temperature of the triazine compound of the resin composition for low dielectric materials of the present embodiment is measured using differential scanning calorimetry (DSC), thermomechanical analysis (TMA), dynamic viscoelasticity measurement (DMA), or the like. be able to.
The 5% thermal decomposition temperature of the resin composition for low dielectric materials of this embodiment is obtained by measuring the weight loss temperature. The weight loss temperature can be measured using, for example, thermogravimetry (TGA).
本実施形態の低誘電材料用の樹脂組成物は、前記トリアジン化合物及びエポキシ樹脂、ビスマレイミド樹脂又はシアネート樹脂を含むことも好ましい。エポキシ樹脂、ビスマレイミド樹脂又はシアネート樹脂を含有することで、耐熱性、誘電特性に優れる低誘電材料用の樹脂組成物が得られる。
The resin composition for the low dielectric material of the present embodiment preferably contains the triazine compound and epoxy resin, bismaleimide resin or cyanate resin. By containing an epoxy resin, a bismaleimide resin, or a cyanate resin, a resin composition for a low dielectric material excellent in heat resistance and dielectric properties can be obtained.
エポキシ樹脂としては、特に限定されないが、耐熱性に優れる硬化物が得られるという点において、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールスルフィド型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、ポリヒドロキシナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ジシクロペンタジエン-フェノール付加反応型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂、ビフェニル変性フェノール型エポキシ樹脂(フェノール骨格とビフェニル骨格がビスメチレン基で連結された多価フェノール型エポキシ樹脂)、ビフェニル変性ナフトール型エポキシ樹脂(ナフトール骨格とビフェニル骨格がビスメチレン基で連結された多価ナフトール型エポキシ樹脂)、アルコキシ基含有芳香環変性ノボラック型エポキシ樹脂(ホルムアルデヒドでグリシジル基含有芳香環及びアルコキシ基含有芳香環が連結された化合物)、フェニレンエーテル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型エポキシ樹脂、又はキサンテン型エポキシ樹脂等を用いてもよい。これらはそれぞれ単独で用いても、2種以上を併用しても良い。
ビスマレイミド樹脂としては、特に限定されないが、耐熱性に優れる硬化物が得られるという点において、例えば、ジフェニルメタン型ビスマレイミド樹脂、メタフェニレン型ビスマレイミド樹脂、ビスフェノールAジフェニルエーテル型ビスマレイミド樹脂、ジフェニルエーテル型ビスマレイミド樹脂、ジフェニルスルホン型ビスマレイミド樹脂、ジフェノキシベンゼン型ビスマレイミド樹脂、アニリンノボラック型ビスマレイミド樹脂などを用いても良い。これらはそれぞれ単独で用いても、2種以上を併用しても良い。
シアネート樹脂としては、特に限定されないが、耐熱性に優れる硬化物が得られるという点において、例えば、ビスフェノールA型シアネート樹脂、テトラメチルビスフェノールF型シアネート樹脂、ヘキサフルオロビスフェノールA型シアネート樹脂、ビスフェノールE型シアネート樹脂、ビスフェノールM型シアネート樹脂、ノボラック型シアネート樹脂、シクロペンタジエニルビスフェノール型シアネート樹脂などを用いても良い。これらはそれぞれ単独で用いても、2種以上を併用しても良い。 The epoxy resin is not particularly limited, but in that a cured product having excellent heat resistance can be obtained, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, bisphenol sulfide type epoxy resin, biphenyl type epoxy resin, tetramethylbiphenyl type epoxy resin, polyhydroxynaphthalene type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, triphenylmethane type epoxy resin, Tetraphenylethane type epoxy resin, dicyclopentadiene-phenol addition reaction type epoxy resin, phenol aralkyl type epoxy resin, biphenyl aralkyl type epoxy resin, biphenyl novolac type epoxy resin, naphthol novolac type epoxy resin, naphthol aralkyl type epoxy resin, naphthol- Phenol-cocondensed novolak-type epoxy resin, naphthol-cresol co-condensed novolak-type epoxy resin, biphenyl-modified phenol-type epoxy resin (polyhydric phenol-type epoxy resin in which the phenol skeleton and biphenyl skeleton are linked by bismethylene groups), biphenyl-modified naphthol-type epoxy Resin (polyvalent naphthol-type epoxy resin in which a naphthol skeleton and a biphenyl skeleton are linked by a bismethylene group), alkoxy group-containing aromatic ring-modified novolak-type epoxy resin (glycidyl group-containing aromatic ring and alkoxy group-containing aromatic ring are linked with formaldehyde compounds), phenylene ether-type epoxy resins, naphthylene ether-type epoxy resins, aromatic hydrocarbon-formaldehyde resin-modified phenol resin-type epoxy resins, xanthene-type epoxy resins, or the like may be used. Each of these may be used alone, or two or more of them may be used in combination.
The bismaleimide resin is not particularly limited, but in that a cured product having excellent heat resistance can be obtained, for example, diphenylmethane type bismaleimide resin, metaphenylene type bismaleimide resin, bisphenol A diphenyl ether type bismaleimide resin, diphenyl ether type bismaleimide resin, A maleimide resin, a diphenylsulfone-type bismaleimide resin, a diphenoxybenzene-type bismaleimide resin, an aniline novolac-type bismaleimide resin, or the like may be used. Each of these may be used alone, or two or more of them may be used in combination.
The cyanate resin is not particularly limited, but in that a cured product having excellent heat resistance can be obtained, for example, bisphenol A type cyanate resin, tetramethylbisphenol F type cyanate resin, hexafluorobisphenol A type cyanate resin, bisphenol E type A cyanate resin, a bisphenol M-type cyanate resin, a novolak-type cyanate resin, a cyclopentadienylbisphenol-type cyanate resin, or the like may be used. Each of these may be used alone, or two or more of them may be used in combination.
ビスマレイミド樹脂としては、特に限定されないが、耐熱性に優れる硬化物が得られるという点において、例えば、ジフェニルメタン型ビスマレイミド樹脂、メタフェニレン型ビスマレイミド樹脂、ビスフェノールAジフェニルエーテル型ビスマレイミド樹脂、ジフェニルエーテル型ビスマレイミド樹脂、ジフェニルスルホン型ビスマレイミド樹脂、ジフェノキシベンゼン型ビスマレイミド樹脂、アニリンノボラック型ビスマレイミド樹脂などを用いても良い。これらはそれぞれ単独で用いても、2種以上を併用しても良い。
シアネート樹脂としては、特に限定されないが、耐熱性に優れる硬化物が得られるという点において、例えば、ビスフェノールA型シアネート樹脂、テトラメチルビスフェノールF型シアネート樹脂、ヘキサフルオロビスフェノールA型シアネート樹脂、ビスフェノールE型シアネート樹脂、ビスフェノールM型シアネート樹脂、ノボラック型シアネート樹脂、シクロペンタジエニルビスフェノール型シアネート樹脂などを用いても良い。これらはそれぞれ単独で用いても、2種以上を併用しても良い。 The epoxy resin is not particularly limited, but in that a cured product having excellent heat resistance can be obtained, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, bisphenol sulfide type epoxy resin, biphenyl type epoxy resin, tetramethylbiphenyl type epoxy resin, polyhydroxynaphthalene type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, triphenylmethane type epoxy resin, Tetraphenylethane type epoxy resin, dicyclopentadiene-phenol addition reaction type epoxy resin, phenol aralkyl type epoxy resin, biphenyl aralkyl type epoxy resin, biphenyl novolac type epoxy resin, naphthol novolac type epoxy resin, naphthol aralkyl type epoxy resin, naphthol- Phenol-cocondensed novolak-type epoxy resin, naphthol-cresol co-condensed novolak-type epoxy resin, biphenyl-modified phenol-type epoxy resin (polyhydric phenol-type epoxy resin in which the phenol skeleton and biphenyl skeleton are linked by bismethylene groups), biphenyl-modified naphthol-type epoxy Resin (polyvalent naphthol-type epoxy resin in which a naphthol skeleton and a biphenyl skeleton are linked by a bismethylene group), alkoxy group-containing aromatic ring-modified novolak-type epoxy resin (glycidyl group-containing aromatic ring and alkoxy group-containing aromatic ring are linked with formaldehyde compounds), phenylene ether-type epoxy resins, naphthylene ether-type epoxy resins, aromatic hydrocarbon-formaldehyde resin-modified phenol resin-type epoxy resins, xanthene-type epoxy resins, or the like may be used. Each of these may be used alone, or two or more of them may be used in combination.
The bismaleimide resin is not particularly limited, but in that a cured product having excellent heat resistance can be obtained, for example, diphenylmethane type bismaleimide resin, metaphenylene type bismaleimide resin, bisphenol A diphenyl ether type bismaleimide resin, diphenyl ether type bismaleimide resin, A maleimide resin, a diphenylsulfone-type bismaleimide resin, a diphenoxybenzene-type bismaleimide resin, an aniline novolac-type bismaleimide resin, or the like may be used. Each of these may be used alone, or two or more of them may be used in combination.
The cyanate resin is not particularly limited, but in that a cured product having excellent heat resistance can be obtained, for example, bisphenol A type cyanate resin, tetramethylbisphenol F type cyanate resin, hexafluorobisphenol A type cyanate resin, bisphenol E type A cyanate resin, a bisphenol M-type cyanate resin, a novolak-type cyanate resin, a cyclopentadienylbisphenol-type cyanate resin, or the like may be used. Each of these may be used alone, or two or more of them may be used in combination.
本実施形態の低誘電材料用の樹脂組成物は、無機質充填材、改質剤又は難燃付与剤をさらに含むことも好ましい。
無機質充填材としては、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化珪素、水酸化アルミニウム、又は水酸化マグネシウム等を用いても良い。
改質剤としては、各種の熱硬化性樹脂および熱可塑性樹脂等から適宜選択できるが、例えばフェノキシ樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリエーテルスルホン樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリエステル樹脂、ポリスチレン樹脂、又はポリエチレンテレフタレート樹脂、シクロオレフィン樹脂、フッ素樹脂などを用いてもよい。
難燃付与剤としては、例えば、ハロゲン化合物、燐原子含有化合物や窒素原子含有化合物や無機系難燃化合物等から適宜選択できるが、例えば、テトラブロモビスフェノールA型エポキシ樹脂やブロム化フェノールノボラック型エポキシ樹脂などのハロゲン化合物;トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリ-2-エチルヘキシルホスフェート、トリブトキシエチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、キシレニルジフェニルホスフェート、2-エチルヘキシルジフェニルホスフェート、トリス(2,6ジメチルフェニル)ホスフェート、レゾルシンジフェニルホスフェートなどのリン酸エステル、ポリリン酸アンモニウム、ポリリン酸アミド、赤リン、リン酸グアニジン、ジアルキルヒドロキシメチルホスホネートなどの縮合リン酸エステル化合物を含む燐原子含有化合物;メラミンなどの窒素原子含有化合物、水酸化アルミニウム、水酸化マグネシウム、硼酸亜鉛、又は硼酸カルシウムなどの無機系難燃化合物;などを用いてもよい。 It is also preferable that the resin composition for the low dielectric material of the present embodiment further contains an inorganic filler, a modifier or a flame retardant.
As the inorganic filler, for example, fused silica, crystalline silica, alumina, silicon nitride, aluminum hydroxide, magnesium hydroxide, or the like may be used.
The modifier can be appropriately selected from various thermosetting resins, thermoplastic resins, etc. Examples include phenoxy resins, polyamide resins, polyimide resins, polyetherimide resins, polyethersulfone resins, polyphenylene ether resins, and polyphenylene sulfide resins. , polyester resin, polystyrene resin, polyethylene terephthalate resin, cycloolefin resin, fluorine resin, or the like may be used.
The flame retardant can be appropriately selected from, for example, halogen compounds, phosphorus atom-containing compounds, nitrogen atom-containing compounds, inorganic flame retardant compounds, and the like. Halogen compounds such as resin; trimethyl phosphate, triethyl phosphate, tributyl phosphate, tri-2-ethylhexyl phosphate, tributoxyethyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, xylenyl diphenyl Phosphates, phosphate esters such as 2-ethylhexyldiphenyl phosphate, tris(2,6 dimethylphenyl) phosphate, resorcin diphenyl phosphate, ammonium polyphosphate, polyphosphoric acid amide, red phosphorus, guanidine phosphate, condensed phosphorus such as dialkylhydroxymethyl phosphonates Phosphorus atom-containing compounds including acid ester compounds; nitrogen atom-containing compounds such as melamine; inorganic flame retardant compounds such as aluminum hydroxide, magnesium hydroxide, zinc borate, or calcium borate; and the like may be used.
無機質充填材としては、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化珪素、水酸化アルミニウム、又は水酸化マグネシウム等を用いても良い。
改質剤としては、各種の熱硬化性樹脂および熱可塑性樹脂等から適宜選択できるが、例えばフェノキシ樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリエーテルスルホン樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリエステル樹脂、ポリスチレン樹脂、又はポリエチレンテレフタレート樹脂、シクロオレフィン樹脂、フッ素樹脂などを用いてもよい。
難燃付与剤としては、例えば、ハロゲン化合物、燐原子含有化合物や窒素原子含有化合物や無機系難燃化合物等から適宜選択できるが、例えば、テトラブロモビスフェノールA型エポキシ樹脂やブロム化フェノールノボラック型エポキシ樹脂などのハロゲン化合物;トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリ-2-エチルヘキシルホスフェート、トリブトキシエチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、キシレニルジフェニルホスフェート、2-エチルヘキシルジフェニルホスフェート、トリス(2,6ジメチルフェニル)ホスフェート、レゾルシンジフェニルホスフェートなどのリン酸エステル、ポリリン酸アンモニウム、ポリリン酸アミド、赤リン、リン酸グアニジン、ジアルキルヒドロキシメチルホスホネートなどの縮合リン酸エステル化合物を含む燐原子含有化合物;メラミンなどの窒素原子含有化合物、水酸化アルミニウム、水酸化マグネシウム、硼酸亜鉛、又は硼酸カルシウムなどの無機系難燃化合物;などを用いてもよい。 It is also preferable that the resin composition for the low dielectric material of the present embodiment further contains an inorganic filler, a modifier or a flame retardant.
As the inorganic filler, for example, fused silica, crystalline silica, alumina, silicon nitride, aluminum hydroxide, magnesium hydroxide, or the like may be used.
The modifier can be appropriately selected from various thermosetting resins, thermoplastic resins, etc. Examples include phenoxy resins, polyamide resins, polyimide resins, polyetherimide resins, polyethersulfone resins, polyphenylene ether resins, and polyphenylene sulfide resins. , polyester resin, polystyrene resin, polyethylene terephthalate resin, cycloolefin resin, fluorine resin, or the like may be used.
The flame retardant can be appropriately selected from, for example, halogen compounds, phosphorus atom-containing compounds, nitrogen atom-containing compounds, inorganic flame retardant compounds, and the like. Halogen compounds such as resin; trimethyl phosphate, triethyl phosphate, tributyl phosphate, tri-2-ethylhexyl phosphate, tributoxyethyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, xylenyl diphenyl Phosphates, phosphate esters such as 2-ethylhexyldiphenyl phosphate, tris(2,6 dimethylphenyl) phosphate, resorcin diphenyl phosphate, ammonium polyphosphate, polyphosphoric acid amide, red phosphorus, guanidine phosphate, condensed phosphorus such as dialkylhydroxymethyl phosphonates Phosphorus atom-containing compounds including acid ester compounds; nitrogen atom-containing compounds such as melamine; inorganic flame retardant compounds such as aluminum hydroxide, magnesium hydroxide, zinc borate, or calcium borate; and the like may be used.
本実施形態の低誘電材料用の樹脂組成物は、周波数が0.1~500GHzの高周波の電磁波の送受信を行う機器に用いられることが好ましい。
具体的には、本実施形態の低誘電材料用の樹脂組成物は、マイクロ波又はミリ波の電磁波の送受信を行う機器に用いることが好ましい。ここで、一般にマイクロ波は周波数が0.25~100GHz、ミリ波は周波数が30~300GHzの電磁波を指し、これらの送受信を行う機器に用いることがさらに好ましい。本実施形態の低誘電材料用の樹脂組成物は、無線LANに用いられる60GHzや、車両用レーダに用いられる75~79GHzといった周波数の電磁波を用いる機器に好適に用いることができる。
本実施形態の低誘電材料用の樹脂組成物は、誘電率と誘電正接が十分に低く、高周波の電磁波に用いることに特に適している。 The resin composition for a low dielectric material of the present embodiment is preferably used for equipment that transmits and receives high-frequency electromagnetic waves with a frequency of 0.1 to 500 GHz.
Specifically, the resin composition for a low dielectric material of the present embodiment is preferably used for devices that transmit and receive microwave or millimeter wave electromagnetic waves. Here, microwaves generally refer to electromagnetic waves with a frequency of 0.25 to 100 GHz, and millimeter waves refer to electromagnetic waves with a frequency of 30 to 300 GHz, and it is more preferable to use them for devices that transmit and receive these. The resin composition for a low dielectric material according to the present embodiment can be suitably used for devices using electromagnetic waves of frequencies such as 60 GHz used for wireless LANs and 75 to 79 GHz used for vehicle radars.
The resin composition for a low dielectric material of this embodiment has a sufficiently low dielectric constant and dielectric loss tangent, and is particularly suitable for use with high-frequency electromagnetic waves.
具体的には、本実施形態の低誘電材料用の樹脂組成物は、マイクロ波又はミリ波の電磁波の送受信を行う機器に用いることが好ましい。ここで、一般にマイクロ波は周波数が0.25~100GHz、ミリ波は周波数が30~300GHzの電磁波を指し、これらの送受信を行う機器に用いることがさらに好ましい。本実施形態の低誘電材料用の樹脂組成物は、無線LANに用いられる60GHzや、車両用レーダに用いられる75~79GHzといった周波数の電磁波を用いる機器に好適に用いることができる。
本実施形態の低誘電材料用の樹脂組成物は、誘電率と誘電正接が十分に低く、高周波の電磁波に用いることに特に適している。 The resin composition for a low dielectric material of the present embodiment is preferably used for equipment that transmits and receives high-frequency electromagnetic waves with a frequency of 0.1 to 500 GHz.
Specifically, the resin composition for a low dielectric material of the present embodiment is preferably used for devices that transmit and receive microwave or millimeter wave electromagnetic waves. Here, microwaves generally refer to electromagnetic waves with a frequency of 0.25 to 100 GHz, and millimeter waves refer to electromagnetic waves with a frequency of 30 to 300 GHz, and it is more preferable to use them for devices that transmit and receive these. The resin composition for a low dielectric material according to the present embodiment can be suitably used for devices using electromagnetic waves of frequencies such as 60 GHz used for wireless LANs and 75 to 79 GHz used for vehicle radars.
The resin composition for a low dielectric material of this embodiment has a sufficiently low dielectric constant and dielectric loss tangent, and is particularly suitable for use with high-frequency electromagnetic waves.
本実施形態の低誘電材料用の樹脂組成物は、プリント配線板、フレキシブルプリント配線板、電子部品用封止材、レジストインキ、導電ペースト、絶縁材料又は絶縁板に用いることが好ましい。本実施形態の低誘電材料用の樹脂組成物は、誘電率と誘電正接が十分に低く、これらの部材に用いることに適している。さらに、高周波の電磁波を用いる機器においてこれらの部材に用いることに特に適している。
さらに具体的な例としては、銅張積層板用樹脂組成物、ビルドアッププリント基板の層間絶縁材料、又はビルドアップフィルム等として用いることができる。また、電子部品の封止材用樹脂組成物、レジストインキ用樹脂組成物、摩擦材用結合剤、導電ペースト、樹脂注型材料、接着剤、又は絶縁塗料等のコーティング材料等に用いることもできる。 The resin composition for low dielectric materials of the present embodiment is preferably used for printed wiring boards, flexible printed wiring boards, sealing materials for electronic parts, resist inks, conductive pastes, insulating materials, or insulating plates. The resin composition for low dielectric materials of the present embodiment has sufficiently low dielectric constant and dielectric loss tangent, and is suitable for use in these members. Furthermore, it is particularly suitable for use in these members in equipment that uses high-frequency electromagnetic waves.
More specific examples include resin compositions for copper-clad laminates, interlayer insulating materials for build-up printed circuit boards, build-up films, and the like. It can also be used as a resin composition for encapsulating electronic parts, a resin composition for resist ink, a binder for friction materials, a conductive paste, a resin casting material, an adhesive, or a coating material such as an insulating paint. .
さらに具体的な例としては、銅張積層板用樹脂組成物、ビルドアッププリント基板の層間絶縁材料、又はビルドアップフィルム等として用いることができる。また、電子部品の封止材用樹脂組成物、レジストインキ用樹脂組成物、摩擦材用結合剤、導電ペースト、樹脂注型材料、接着剤、又は絶縁塗料等のコーティング材料等に用いることもできる。 The resin composition for low dielectric materials of the present embodiment is preferably used for printed wiring boards, flexible printed wiring boards, sealing materials for electronic parts, resist inks, conductive pastes, insulating materials, or insulating plates. The resin composition for low dielectric materials of the present embodiment has sufficiently low dielectric constant and dielectric loss tangent, and is suitable for use in these members. Furthermore, it is particularly suitable for use in these members in equipment that uses high-frequency electromagnetic waves.
More specific examples include resin compositions for copper-clad laminates, interlayer insulating materials for build-up printed circuit boards, build-up films, and the like. It can also be used as a resin composition for encapsulating electronic parts, a resin composition for resist ink, a binder for friction materials, a conductive paste, a resin casting material, an adhesive, or a coating material such as an insulating paint. .
本実施形態の低誘電材料用の樹脂組成物は、積層基板の層間の絶縁材料として用いられることが好ましい。この場合、樹脂組成物は後述する製造方法のように、前記トリアジン化合物、エポキシ樹脂、ビスマレイミド樹脂又はシアネート樹脂、硬化促進剤及び有機溶剤を混合して調整されていることが好ましい。
The resin composition for a low dielectric material of this embodiment is preferably used as an insulating material between layers of a laminated substrate. In this case, the resin composition is preferably prepared by mixing the triazine compound, the epoxy resin, the bismaleimide resin or the cyanate resin, the curing accelerator and the organic solvent, as in the manufacturing method described below.
(積層基板用フィルム)
本実施形態の積層基板用フィルムは、前記低誘電材料用の樹脂組成物を含む絶縁材料を、少なくとも1面に備えている。この積層基板用フィルムは、複数を積層することで後述する積層基板に用いることができるものである。
積層基板用フィルムは、後述するフィルム層、及び絶縁材料を有する絶縁層からなる。絶縁層は、後述する製造方法により、フィルム層の少なくとも1面に備えられている。 (film for laminated substrates)
The film for laminated substrates of this embodiment has an insulating material containing the resin composition for the low dielectric material on at least one surface. By laminating a plurality of films for laminated substrates, these films can be used for laminated substrates, which will be described later.
A film for a laminated substrate is composed of a film layer, which will be described later, and an insulating layer containing an insulating material. The insulating layer is provided on at least one surface of the film layer by a manufacturing method to be described later.
本実施形態の積層基板用フィルムは、前記低誘電材料用の樹脂組成物を含む絶縁材料を、少なくとも1面に備えている。この積層基板用フィルムは、複数を積層することで後述する積層基板に用いることができるものである。
積層基板用フィルムは、後述するフィルム層、及び絶縁材料を有する絶縁層からなる。絶縁層は、後述する製造方法により、フィルム層の少なくとも1面に備えられている。 (film for laminated substrates)
The film for laminated substrates of this embodiment has an insulating material containing the resin composition for the low dielectric material on at least one surface. By laminating a plurality of films for laminated substrates, these films can be used for laminated substrates, which will be described later.
A film for a laminated substrate is composed of a film layer, which will be described later, and an insulating layer containing an insulating material. The insulating layer is provided on at least one surface of the film layer by a manufacturing method to be described later.
フィルム層は、適宜選択されたフィルム材料、例えば、樹脂フィルムや金属フィルム等を用いて構成することができる。具体的には、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリシクロオレフィン、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート、ポリカーボネート、ポリイミド、離型紙、銅箔、アルミニウム箔などを用いて形成することができる。
The film layer can be configured using an appropriately selected film material, such as a resin film or a metal film. Specifically, polyethylene, polypropylene, polyvinyl chloride, polycycloolefin, polyethylene terephthalate (PET), polyethylene naphthalate, polycarbonate, polyimide, release paper, copper foil, aluminum foil, or the like can be used.
本実施形態の積層基板用フィルムの厚さは特に限定されないが、10~150μmの範囲から選択でき、25~50μmの範囲であることが好ましい。
The thickness of the laminated substrate film of the present embodiment is not particularly limited, but can be selected from the range of 10 to 150 μm, preferably from 25 to 50 μm.
本実施形態の積層基板用フィルムは、さらに表面に保護フィルムを備えていてもよい。保護フィルムにより、使用する前のフィルム層や絶縁層の表面へのゴミ等の付着やキズが生じることを防止することができ、使用する前に絶縁などの性能が落ちることを防止することができる。保護フィルムの構成素材は、前記したフィルム層と同様の素材から選択してもよい。保護フィルムの厚さは1~40μmの範囲であってもよい。
なお、積層基板用フィルム及び保護フィルムはマット処理、コロナ処理、又は離型処理等を施してあってもよい。
なお、積層基板が導体積層基板やビルドアッププリント基板状であって、金属等の導体からなる導体層と、前記絶縁層を積層されているときは、導体層と絶縁層を組み合わせた一組が積層基板用フィルムであることもある。 The film for laminated substrates of the present embodiment may further have a protective film on its surface. The protective film can prevent dust from adhering to the surface of the film layer and the insulating layer before use and from scratching, and can prevent performance such as insulation from deteriorating before use. . The constituent material of the protective film may be selected from the same materials as those of the film layer described above. The thickness of the protective film may range from 1 to 40 μm.
The laminated substrate film and protective film may be subjected to matte treatment, corona treatment, release treatment, or the like.
In addition, when the laminated board is in the form of a conductor laminated board or a build-up printed board, and a conductor layer made of a conductor such as metal and the insulating layer are laminated, a set of the conductor layer and the insulating layer is formed. It may also be a film for laminated substrates.
なお、積層基板用フィルム及び保護フィルムはマット処理、コロナ処理、又は離型処理等を施してあってもよい。
なお、積層基板が導体積層基板やビルドアッププリント基板状であって、金属等の導体からなる導体層と、前記絶縁層を積層されているときは、導体層と絶縁層を組み合わせた一組が積層基板用フィルムであることもある。 The film for laminated substrates of the present embodiment may further have a protective film on its surface. The protective film can prevent dust from adhering to the surface of the film layer and the insulating layer before use and from scratching, and can prevent performance such as insulation from deteriorating before use. . The constituent material of the protective film may be selected from the same materials as those of the film layer described above. The thickness of the protective film may range from 1 to 40 μm.
The laminated substrate film and protective film may be subjected to matte treatment, corona treatment, release treatment, or the like.
In addition, when the laminated board is in the form of a conductor laminated board or a build-up printed board, and a conductor layer made of a conductor such as metal and the insulating layer are laminated, a set of the conductor layer and the insulating layer is formed. It may also be a film for laminated substrates.
本実施形態の低誘電材料用の樹脂組成物は、すぐれた物理的特性、耐熱性、誘電率の低さ及び誘電正接の低さという特性を有しているため、積層基板用フィルムを2以上備える積層基板において、積層基板用フィルムからなる層間の絶縁材料としても極めて有用である。かかる絶縁材料は、特に、低誘電材料用の樹脂組成物及びエポキシ樹脂、ビスマレイミド樹脂又はシアネート樹脂を必須成分とし、更に、必要により、後述する有機溶剤や硬化促進剤を配合されて製造されていることが好ましい。
The resin composition for a low dielectric material of this embodiment has excellent physical properties, heat resistance, a low dielectric constant and a low dielectric loss tangent. It is also extremely useful as an insulating material between layers composed of films for laminated substrates. Such an insulating material contains, in particular, a resin composition for low-dielectric materials, an epoxy resin, a bismaleimide resin, or a cyanate resin as essential components, and, if necessary, an organic solvent and a curing accelerator which will be described later. preferably.
(積層基板)
本実施形態の積層基板は、前記積層基板用フィルムを2以上備えてなる。積層基板は、前記積層基板用フィルムが積層されてなることが好ましい。積層基板用フィルムは、積層基板において中間層、又は下地層であってもよい。また、回路を形成させる層に用いても、形成させない層に用いてもよい。回路の形成は金属めっき処理などとして行うことができる。 (Laminate substrate)
The laminated substrate of this embodiment comprises two or more films for laminated substrates. It is preferable that the laminated substrate is formed by laminating the film for a laminated substrate. The laminated substrate film may be an intermediate layer or a base layer in the laminated substrate. Moreover, it may be used for a layer on which a circuit is formed or a layer on which a circuit is not formed. Formation of the circuit can be performed by metal plating or the like.
本実施形態の積層基板は、前記積層基板用フィルムを2以上備えてなる。積層基板は、前記積層基板用フィルムが積層されてなることが好ましい。積層基板用フィルムは、積層基板において中間層、又は下地層であってもよい。また、回路を形成させる層に用いても、形成させない層に用いてもよい。回路の形成は金属めっき処理などとして行うことができる。 (Laminate substrate)
The laminated substrate of this embodiment comprises two or more films for laminated substrates. It is preferable that the laminated substrate is formed by laminating the film for a laminated substrate. The laminated substrate film may be an intermediate layer or a base layer in the laminated substrate. Moreover, it may be used for a layer on which a circuit is formed or a layer on which a circuit is not formed. Formation of the circuit can be performed by metal plating or the like.
また、本実施形態の積層基板は、導体積層基板とすることもできる。例えば、前記低誘電材料用の樹脂組成物を含むプリプレグからなる絶縁層と、導体層を備える積層基板とすることができる。絶縁用のプリプレグは、低誘電材料用の樹脂組成物をガラス布、ガラス不織布、アラミド紙、アラミド布、ガラスマット、ガラスロービング布などの繊維基材に含侵させて絶縁層を形成する。導体層は金属、例えば銅などで形成することができる。
Further, the laminated substrate of this embodiment can also be a conductor laminated substrate. For example, a laminated substrate may be provided with an insulating layer made of a prepreg containing the resin composition for the low dielectric material and a conductor layer. A prepreg for insulation is formed by impregnating a fiber base material such as glass cloth, glass nonwoven fabric, aramid paper, aramid cloth, glass mat, glass roving cloth, etc. with a resin composition for low dielectric materials to form an insulating layer. The conductor layer can be made of metal, such as copper.
また、本実施形態の積層基板は、ビルドアッププリント基板状の積層基板とすることもできる。配線基板上に、低誘電材料用の樹脂組成物からなる絶縁層と、その上にめっきされた導体層を交互に形成することで、ビルドアッププリント基板状の積層基板とすることもできる。絶縁層及び導体層の組成等の構成については、前記したものから任意に選択できる。
Also, the laminated substrate of the present embodiment can be a laminated substrate in the form of a build-up printed circuit board. By alternately forming an insulating layer made of a resin composition for a low dielectric material and a plated conductor layer thereon on a wiring board, a laminated board in the form of a build-up printed board can be obtained. Compositions and the like of the insulating layer and conductor layer can be arbitrarily selected from those described above.
(その他の構成)
本実施形態の低誘電材料用の樹脂組成物は、低誘電材料用の素材として従来知られた成分を適宜混合して使用できる。
本実施形態の低誘電材料用の樹脂組成物は、前述したように、本材料はエポキシ樹脂、ビスマレイミド樹脂又はシアネート樹脂との親和性が高いため、熱硬化性樹脂系の材料を混ぜることで誘電特性及び熱特性を改善する効果も期待できる。 (Other configurations)
The resin composition for the low dielectric material of the present embodiment can be used by appropriately mixing components conventionally known as raw materials for the low dielectric material.
As described above, the resin composition for the low dielectric material of the present embodiment has a high affinity with epoxy resin, bismaleimide resin, or cyanate resin. An effect of improving dielectric properties and thermal properties can also be expected.
本実施形態の低誘電材料用の樹脂組成物は、低誘電材料用の素材として従来知られた成分を適宜混合して使用できる。
本実施形態の低誘電材料用の樹脂組成物は、前述したように、本材料はエポキシ樹脂、ビスマレイミド樹脂又はシアネート樹脂との親和性が高いため、熱硬化性樹脂系の材料を混ぜることで誘電特性及び熱特性を改善する効果も期待できる。 (Other configurations)
The resin composition for the low dielectric material of the present embodiment can be used by appropriately mixing components conventionally known as raw materials for the low dielectric material.
As described above, the resin composition for the low dielectric material of the present embodiment has a high affinity with epoxy resin, bismaleimide resin, or cyanate resin. An effect of improving dielectric properties and thermal properties can also be expected.
(低誘電材料用の樹脂組成物の作用効果)
本実施形態の低誘電材料用の樹脂組成物は、トリアジン含有化合物の誘電率が低く、誘電正接が低く、透明性が高く、溶解性が高く、さらに耐熱性が高いことから、低誘電材料として好適に使用できる。また、本実施形態のトリアジン含有化合物は、誘電率が低く、誘電正接が低く、透明性が高く、溶解性が高く、さらに耐熱性が高いことから、プリント配線板として好適に使用できる。
従来知られたポリマー素材では、ガラス転移温度が200℃超、誘電正接が0.003未満を併せて達成している材料はほとんどないが、本実施形態のうち好ましい範囲では、これらを達成することができる。
さらに、本実施形態のトリアジン含有化合物は、特に、高周波における誘電率が低く、誘電正接が低く、透明性が高く、溶解性が高く、さらに耐熱性が高いことから、高周波対応の電子部品や電子機器類の構成素材として好適に使用できる。 (Action and effect of resin composition for low dielectric material)
The resin composition for a low dielectric material of the present embodiment has a triazine-containing compound with a low dielectric constant, a low dielectric loss tangent, a high transparency, a high solubility, and a high heat resistance. It can be used preferably. In addition, the triazine-containing compound of the present embodiment has a low dielectric constant, a low dielectric loss tangent, a high transparency, a high solubility, and a high heat resistance, so that it can be suitably used as a printed wiring board.
Among conventionally known polymer materials, there are almost no materials that achieve a glass transition temperature of more than 200 ° C. and a dielectric loss tangent of less than 0.003, but in the preferred range of the present embodiment, it is possible to achieve these. can be done.
Furthermore, the triazine-containing compound of the present embodiment has a particularly low dielectric constant, low dielectric loss tangent, high transparency, high solubility, and high heat resistance at high frequencies. It can be suitably used as a constituent material for equipment.
本実施形態の低誘電材料用の樹脂組成物は、トリアジン含有化合物の誘電率が低く、誘電正接が低く、透明性が高く、溶解性が高く、さらに耐熱性が高いことから、低誘電材料として好適に使用できる。また、本実施形態のトリアジン含有化合物は、誘電率が低く、誘電正接が低く、透明性が高く、溶解性が高く、さらに耐熱性が高いことから、プリント配線板として好適に使用できる。
従来知られたポリマー素材では、ガラス転移温度が200℃超、誘電正接が0.003未満を併せて達成している材料はほとんどないが、本実施形態のうち好ましい範囲では、これらを達成することができる。
さらに、本実施形態のトリアジン含有化合物は、特に、高周波における誘電率が低く、誘電正接が低く、透明性が高く、溶解性が高く、さらに耐熱性が高いことから、高周波対応の電子部品や電子機器類の構成素材として好適に使用できる。 (Action and effect of resin composition for low dielectric material)
The resin composition for a low dielectric material of the present embodiment has a triazine-containing compound with a low dielectric constant, a low dielectric loss tangent, a high transparency, a high solubility, and a high heat resistance. It can be used preferably. In addition, the triazine-containing compound of the present embodiment has a low dielectric constant, a low dielectric loss tangent, a high transparency, a high solubility, and a high heat resistance, so that it can be suitably used as a printed wiring board.
Among conventionally known polymer materials, there are almost no materials that achieve a glass transition temperature of more than 200 ° C. and a dielectric loss tangent of less than 0.003, but in the preferred range of the present embodiment, it is possible to achieve these. can be done.
Furthermore, the triazine-containing compound of the present embodiment has a particularly low dielectric constant, low dielectric loss tangent, high transparency, high solubility, and high heat resistance at high frequencies. It can be suitably used as a constituent material for equipment.
(低誘電材料用の樹脂組成物の製造方法)
本実施形態の低誘電材料用の樹脂組成物の製造方法は、下記一般式(16)で表される化合物と下記一般式(17)で表される化合物とを混合し、重合させて下記一般式(18)で表されるトリアジン化合物を得る。 (Method for producing resin composition for low dielectric material)
A method for producing a resin composition for a low dielectric material according to the present embodiment comprises mixing a compound represented by the following general formula (16) and a compound represented by the following general formula (17), polymerizing them, and A triazine compound represented by formula (18) is obtained.
本実施形態の低誘電材料用の樹脂組成物の製造方法は、下記一般式(16)で表される化合物と下記一般式(17)で表される化合物とを混合し、重合させて下記一般式(18)で表されるトリアジン化合物を得る。 (Method for producing resin composition for low dielectric material)
A method for producing a resin composition for a low dielectric material according to the present embodiment comprises mixing a compound represented by the following general formula (16) and a compound represented by the following general formula (17), polymerizing them, and A triazine compound represented by formula (18) is obtained.
ここで式(16)、(17)、(18)中、nは2以上の整数であり、Rは、直鎖状、分岐鎖状もしくは環状の脂肪族基、直鎖状、分岐鎖状もしくは環状の脂肪族オキシ基、直鎖状、分岐鎖状もしくは環状の脂肪族二級アミノ基、芳香族基もしくは置換基を有する芳香族基、芳香族オキシ基もしくは置換基を有する芳香族オキシ基、芳香族二級アミノ基もしくは置換基を有する芳香族二級アミノ基、フッ素化された上記脂肪族基、フッ素化された上記脂肪族オキシ基、フッ素化された上記脂肪族二級アミノ基、フッ素化された上記芳香族基、フッ素化された上記芳香族オキシ基、または、フッ素化された芳香族二級アミノ基を表す。Arは、直鎖状、分岐鎖状もしくは環状の脂肪族基、または、フッ素化された直鎖状、分岐鎖状もしくは環状の脂肪族基を有する2価の芳香族基を表す。
式中、nは、式(18)で表される構造の繰り返し単位数を表し、2以上の整数であれば特に限定されない。 Here, in formulas (16), (17) and (18), n is an integer of 2 or more, R is a linear, branched or cyclic aliphatic group, linear, branched or a cyclic aliphatic oxy group, a linear, branched or cyclic aliphatic secondary amino group, an aromatic group or an aromatic group having a substituent, an aromatic oxy group or an aromatic oxy group having a substituent, an aromatic secondary amino group or an aromatic secondary amino group having a substituent, the fluorinated aliphatic group, the fluorinated aliphatic oxy group, the fluorinated aliphatic secondary amino group, fluorine represents a fluorinated aromatic group, a fluorinated aromatic oxy group, or a fluorinated aromatic secondary amino group. Ar represents a linear, branched or cyclic aliphatic group or a divalent aromatic group having a fluorinated linear, branched or cyclic aliphatic group.
In the formula, n represents the number of repeating units of the structure represented by formula (18), and is not particularly limited as long as it is an integer of 2 or more.
式中、nは、式(18)で表される構造の繰り返し単位数を表し、2以上の整数であれば特に限定されない。 Here, in formulas (16), (17) and (18), n is an integer of 2 or more, R is a linear, branched or cyclic aliphatic group, linear, branched or a cyclic aliphatic oxy group, a linear, branched or cyclic aliphatic secondary amino group, an aromatic group or an aromatic group having a substituent, an aromatic oxy group or an aromatic oxy group having a substituent, an aromatic secondary amino group or an aromatic secondary amino group having a substituent, the fluorinated aliphatic group, the fluorinated aliphatic oxy group, the fluorinated aliphatic secondary amino group, fluorine represents a fluorinated aromatic group, a fluorinated aromatic oxy group, or a fluorinated aromatic secondary amino group. Ar represents a linear, branched or cyclic aliphatic group or a divalent aromatic group having a fluorinated linear, branched or cyclic aliphatic group.
In the formula, n represents the number of repeating units of the structure represented by formula (18), and is not particularly limited as long as it is an integer of 2 or more.
式(16)の化合物は、式(18)の化合物を構成する単量体のうち、トリアジン環の両端を塩素で置換したジクロリドである。式(17)の化合物は、式(18)のAr基の両端をOH基で置換したビスフェノールである。
The compound of formula (16) is a dichloride in which both ends of the triazine ring are substituted with chlorine among the monomers constituting the compound of formula (18). The compound of formula (17) is a bisphenol in which both ends of the Ar group of formula (18) are substituted with OH groups.
製造の具体的工程としては、例えば、式(16)と式(17)の化合物を混合し、アルカリ金属化合物及び有機溶媒の存在下で加熱して反応させることで重合させ、式(18)のトリアジン化合物を得る。
As a specific production process, for example, the compounds of the formula (16) and the formula (17) are mixed and heated in the presence of an alkali metal compound and an organic solvent to polymerize and react with the compound of the formula (18). A triazine compound is obtained.
前記アルカリ金属化合物としては、式(16)と式(17)の重合で生成する塩化水素を中和することが可能なものであればどのようなものも使用できる。このようなアルカリ金属化合物としては、例えば、アルカリ金属の炭酸塩、炭酸水素塩、水酸化物等、特に水酸化物が好ましく使用される。前記アルカリ金属としては、リチウム、ナトリウム、カリウム、ルビジウム又はセシウムを挙げることができるが、中でも、ナトリウム又はカリウムが好ましい。
このような各種のアルカリ金属化合物としては、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化ナトリウム又は水酸化カリウムなどを用いることができ、特に、水酸化ナトリウム又は水酸化カリウムを好適に用いることができる。これら各種のアルカリ金属化合物は、単独で使用してもよく、2種以上を併用してもよい。 As the alkali metal compound, any compound can be used as long as it can neutralize the hydrogen chloride produced by the polymerization of the formulas (16) and (17). As such an alkali metal compound, for example, alkali metal carbonates, hydrogencarbonates, hydroxides, etc., and particularly hydroxides are preferably used. Examples of the alkali metal include lithium, sodium, potassium, rubidium and cesium, with sodium and potassium being preferred.
As such various alkali metal compounds, sodium carbonate, potassium carbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, sodium hydroxide or potassium hydroxide can be used, and sodium hydroxide or potassium hydroxide is particularly preferred. can be used for These various alkali metal compounds may be used alone or in combination of two or more.
このような各種のアルカリ金属化合物としては、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化ナトリウム又は水酸化カリウムなどを用いることができ、特に、水酸化ナトリウム又は水酸化カリウムを好適に用いることができる。これら各種のアルカリ金属化合物は、単独で使用してもよく、2種以上を併用してもよい。 As the alkali metal compound, any compound can be used as long as it can neutralize the hydrogen chloride produced by the polymerization of the formulas (16) and (17). As such an alkali metal compound, for example, alkali metal carbonates, hydrogencarbonates, hydroxides, etc., and particularly hydroxides are preferably used. Examples of the alkali metal include lithium, sodium, potassium, rubidium and cesium, with sodium and potassium being preferred.
As such various alkali metal compounds, sodium carbonate, potassium carbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, sodium hydroxide or potassium hydroxide can be used, and sodium hydroxide or potassium hydroxide is particularly preferred. can be used for These various alkali metal compounds may be used alone or in combination of two or more.
前記有機溶媒は、重合反応を円滑に進めることができるものを適宜使用できる。有機溶媒の具体例としては、例えば、脂肪族化合物、芳香族化合物及びこれらの誘導体を用いることができ、置換基として、例えばニトロ基、シアノ基、ハロゲン元素などが挙げられる。このような有機溶媒の具体例としては、ニトロベンゼン、ベンゾニトリル、塩化メチレン、クロロホルム、1,4-ジオキサン、テトラヒドロフラン(THF)などを用いることができる。これら各種の中性溶媒は、単独で使用してもよく、2種以上を併用してもよい。
As for the organic solvent, one that can smoothly proceed with the polymerization reaction can be appropriately used. Specific examples of the organic solvent include aliphatic compounds, aromatic compounds and derivatives thereof, and examples of substituents include nitro group, cyano group and halogen element. Specific examples of such organic solvents include nitrobenzene, benzonitrile, methylene chloride, chloroform, 1,4-dioxane, and tetrahydrofuran (THF). These various neutral solvents may be used alone or in combination of two or more.
式(17)の化合物には、反応時に相間移動触媒(PTC)を添加してもよい。PTCの具体例としては、アルキル鎖をもつ四級アンモニウム塩、四級ホスホニウム塩、又はクラウンエーテルを使用できる。四級アンモニウム塩の例としては、例えば、臭化テトラブチルアンモニウム(TBAB)や臭化セチルトリメチルアンモニウム(CTMAB)などを用いることができる。
A phase transfer catalyst (PTC) may be added to the compound of formula (17) during the reaction. As specific examples of PTC, quaternary ammonium salts, quaternary phosphonium salts, or crown ethers with alkyl chains can be used. Examples of quaternary ammonium salts include tetrabutylammonium bromide (TBAB) and cetyltrimethylammonium bromide (CTMAB).
重合温度は、使用する化合物や添加物、溶媒によって適宜調整できるが、通常、10~100℃で行うことができる。例えば、前記式(1)の化合物のRが式(2)で表される構造を有する場合、20~35℃で重合を行うことができる。重合反応時間も、使用する成分及び前記重合温度によって適宜調整できるが、通常は0.1~20時間程度である。例えば、前記式(1)の化合物のRが式(3)又は(4)で表される構造を有する場合、80℃~100℃で重合を行うことが好ましい。
The polymerization temperature can be appropriately adjusted depending on the compounds, additives, and solvent used, but it can usually be carried out at 10 to 100°C. For example, when R in the compound of formula (1) has a structure represented by formula (2), polymerization can be carried out at 20 to 35°C. The polymerization reaction time can also be appropriately adjusted depending on the components used and the polymerization temperature, but is usually about 0.1 to 20 hours. For example, when R in the compound of formula (1) has a structure represented by formula (3) or (4), the polymerization is preferably carried out at 80°C to 100°C.
具体的な製造過程の例としては、まず、式(16)の化合物に、アルカリ金属化合物の水溶液とPTCを添加する。さらに、ここに式(17)の化合物と有機溶媒を加える。これらを前記重合温度で激しく攪拌して、十分な時間で反応を行わせる。重合反応が十分に完了した後、メタノールにより式(18)のトリアジン化合物を回収する。この後、メタノール等でさらに洗浄や、減圧乾燥、及び/又は有機溶媒による再沈殿などの工程を経てもよい。
As an example of a specific manufacturing process, first, an aqueous solution of an alkali metal compound and PTC are added to the compound of formula (16). Furthermore, the compound of formula (17) and an organic solvent are added here. These are vigorously stirred at the polymerization temperature to allow the reaction to take place for a sufficient period of time. After the polymerization reaction is fully completed, the triazine compound of formula (18) is recovered with methanol. After that, further steps such as washing with methanol or the like, drying under reduced pressure, and/or reprecipitation with an organic solvent may be performed.
(製造方法におけるその他の添加物)
本実施形態の低誘電材料用の樹脂組成物が、積層基板の層間の絶縁材料として用いられる低誘電材料用の樹脂組成物である場合、この低誘電材料用の樹脂組成物は、トリアジン化合物、エポキシ樹脂、ビスマレイミド樹脂又はシアネート樹脂、硬化促進剤及び有機溶剤を混合して製造されることが好ましい。
硬化促進剤を混合して製造されることで、低誘電材料用の樹脂組成物の硬化反応が速やかに進行するので、絶縁材料としての製造が行いやすい。特に、絶縁材料を後述する積層基板用フィルムの表面の絶縁層として用いる場合は、すみやかに絶縁層が形成されるので工業的な製造に好適である。
有機溶剤を混合して製造されることで、低誘電材料用の樹脂組成物が製造時にいわゆるワニス状となり、絶縁材料として、他の部材への塗布が行いやすい。特に、絶縁材料を後述する積層基板用フィルムの表面の絶縁層として用いる場合は、フィルムの表面に塗布して絶縁層を形成する際の塗工性が良好となる。 (Other Additives in Manufacturing Method)
When the resin composition for a low dielectric material of the present embodiment is a resin composition for a low dielectric material used as an insulating material between layers of a laminated substrate, the resin composition for a low dielectric material contains a triazine compound, It is preferably produced by mixing an epoxy resin, a bismaleimide resin or a cyanate resin, a curing accelerator and an organic solvent.
Since the curing reaction of the resin composition for the low dielectric material proceeds rapidly by mixing the curing accelerator in the production, the insulating material can be easily produced. In particular, when the insulating material is used as an insulating layer on the surface of a film for laminated substrates, which will be described later, the insulating layer is quickly formed, which is suitable for industrial production.
By being produced by mixing an organic solvent, the resin composition for low dielectric materials becomes a so-called varnish during production, and can be easily applied to other members as an insulating material. In particular, when the insulating material is used as an insulating layer on the surface of a film for laminated substrates, which will be described later, the coatability is improved when the insulating layer is formed by coating the surface of the film.
本実施形態の低誘電材料用の樹脂組成物が、積層基板の層間の絶縁材料として用いられる低誘電材料用の樹脂組成物である場合、この低誘電材料用の樹脂組成物は、トリアジン化合物、エポキシ樹脂、ビスマレイミド樹脂又はシアネート樹脂、硬化促進剤及び有機溶剤を混合して製造されることが好ましい。
硬化促進剤を混合して製造されることで、低誘電材料用の樹脂組成物の硬化反応が速やかに進行するので、絶縁材料としての製造が行いやすい。特に、絶縁材料を後述する積層基板用フィルムの表面の絶縁層として用いる場合は、すみやかに絶縁層が形成されるので工業的な製造に好適である。
有機溶剤を混合して製造されることで、低誘電材料用の樹脂組成物が製造時にいわゆるワニス状となり、絶縁材料として、他の部材への塗布が行いやすい。特に、絶縁材料を後述する積層基板用フィルムの表面の絶縁層として用いる場合は、フィルムの表面に塗布して絶縁層を形成する際の塗工性が良好となる。 (Other Additives in Manufacturing Method)
When the resin composition for a low dielectric material of the present embodiment is a resin composition for a low dielectric material used as an insulating material between layers of a laminated substrate, the resin composition for a low dielectric material contains a triazine compound, It is preferably produced by mixing an epoxy resin, a bismaleimide resin or a cyanate resin, a curing accelerator and an organic solvent.
Since the curing reaction of the resin composition for the low dielectric material proceeds rapidly by mixing the curing accelerator in the production, the insulating material can be easily produced. In particular, when the insulating material is used as an insulating layer on the surface of a film for laminated substrates, which will be described later, the insulating layer is quickly formed, which is suitable for industrial production.
By being produced by mixing an organic solvent, the resin composition for low dielectric materials becomes a so-called varnish during production, and can be easily applied to other members as an insulating material. In particular, when the insulating material is used as an insulating layer on the surface of a film for laminated substrates, which will be described later, the coatability is improved when the insulating layer is formed by coating the surface of the film.
硬化促進剤としては、前記化合物の硬化を促進できる化合物は適宜使用できるが、例えばイミダゾール類、三級アミン類、三級ホスフィン類、又は酸無水物類等を用いても良い。
添加量も、前記化合物の組成により適宜調整できるが、低誘電材料用の樹脂組成物の総質量に対して0.01~2質量%となる範囲であることが好ましい。 As the curing accelerator, any compound capable of accelerating the curing of the above compounds can be used as appropriate. For example, imidazoles, tertiary amines, tertiary phosphines, or acid anhydrides may be used.
The amount to be added can also be appropriately adjusted depending on the composition of the compound, but is preferably in the range of 0.01 to 2% by mass with respect to the total mass of the resin composition for low dielectric materials.
添加量も、前記化合物の組成により適宜調整できるが、低誘電材料用の樹脂組成物の総質量に対して0.01~2質量%となる範囲であることが好ましい。 As the curing accelerator, any compound capable of accelerating the curing of the above compounds can be used as appropriate. For example, imidazoles, tertiary amines, tertiary phosphines, or acid anhydrides may be used.
The amount to be added can also be appropriately adjusted depending on the composition of the compound, but is preferably in the range of 0.01 to 2% by mass with respect to the total mass of the resin composition for low dielectric materials.
有機溶剤としては、前記化合物を溶解しワニス状とすることのできる溶剤を適宜選択できるが、例えばアルコール性溶媒、ケトン類、酢酸エステル類、カルビトール類、芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、又はN-メチルピロリドンなどの既知の有機溶剤を用いることができる。なかでも、プロピレングリコールモノメチルエーテルアセテート、又はメチルエチルケトンは好適に使用できる。
添加量も、前記化合物の組成により適宜調整できるが、ワニス状とするには、低誘電材料用の樹脂組成物の総質量に対して、不揮発分が50~70質量%となる範囲であることが好ましい。 As the organic solvent, a solvent capable of dissolving the above compound to form a varnish can be appropriately selected. Known organic solvents such as acetamide or N-methylpyrrolidone can be used. Among them, propylene glycol monomethyl ether acetate or methyl ethyl ketone can be preferably used.
The amount to be added can also be appropriately adjusted depending on the composition of the compound, but in order to form a varnish, the non-volatile content should be in the range of 50 to 70% by mass with respect to the total mass of the resin composition for low dielectric materials. is preferred.
添加量も、前記化合物の組成により適宜調整できるが、ワニス状とするには、低誘電材料用の樹脂組成物の総質量に対して、不揮発分が50~70質量%となる範囲であることが好ましい。 As the organic solvent, a solvent capable of dissolving the above compound to form a varnish can be appropriately selected. Known organic solvents such as acetamide or N-methylpyrrolidone can be used. Among them, propylene glycol monomethyl ether acetate or methyl ethyl ketone can be preferably used.
The amount to be added can also be appropriately adjusted depending on the composition of the compound, but in order to form a varnish, the non-volatile content should be in the range of 50 to 70% by mass with respect to the total mass of the resin composition for low dielectric materials. is preferred.
本実施形態の低誘電材料用の樹脂組成物は、無機質充填材、改質剤又は難燃付与剤をさらに混合して製造されていることも好ましい。
無機質充填材は、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化珪素、水酸化アルミニウム、又は水酸化マグネシウムを用いることができる。低誘電材料用の樹脂組成物を導電ペーストや導電フィルムなどの用途に使用する場合は、無機質充填材としては銀粉や銅粉等の導電性充填剤を用いることができる。
改質剤としては、例えばフェノキシ樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリエーテルスルホン樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリエステル樹脂、ポリスチレン樹脂、又はポリエチレンテレフタレート樹脂、シクロオレフィン樹脂、フッ素樹脂などを用いることができる。
難燃付与剤は、例えば、ハロゲン化合物、燐原子含有化合物や窒素原子含有化合物又は無機系難燃化合物などを用いることができる。 It is also preferable that the resin composition for a low dielectric material of the present embodiment is produced by further mixing an inorganic filler, a modifier or a flame retardant.
Inorganic fillers can be, for example, fused silica, crystalline silica, alumina, silicon nitride, aluminum hydroxide, or magnesium hydroxide. When the resin composition for low dielectric materials is used for applications such as conductive pastes and conductive films, conductive fillers such as silver powder and copper powder can be used as inorganic fillers.
Examples of modifiers include phenoxy resins, polyamide resins, polyimide resins, polyetherimide resins, polyethersulfone resins, polyphenylene ether resins, polyphenylene sulfide resins, polyester resins, polystyrene resins, polyethylene terephthalate resins, cycloolefin resins, fluorine A resin or the like can be used.
Examples of flame retardants that can be used include halogen compounds, phosphorus atom-containing compounds, nitrogen atom-containing compounds, inorganic flame retardant compounds, and the like.
無機質充填材は、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化珪素、水酸化アルミニウム、又は水酸化マグネシウムを用いることができる。低誘電材料用の樹脂組成物を導電ペーストや導電フィルムなどの用途に使用する場合は、無機質充填材としては銀粉や銅粉等の導電性充填剤を用いることができる。
改質剤としては、例えばフェノキシ樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリエーテルスルホン樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリエステル樹脂、ポリスチレン樹脂、又はポリエチレンテレフタレート樹脂、シクロオレフィン樹脂、フッ素樹脂などを用いることができる。
難燃付与剤は、例えば、ハロゲン化合物、燐原子含有化合物や窒素原子含有化合物又は無機系難燃化合物などを用いることができる。 It is also preferable that the resin composition for a low dielectric material of the present embodiment is produced by further mixing an inorganic filler, a modifier or a flame retardant.
Inorganic fillers can be, for example, fused silica, crystalline silica, alumina, silicon nitride, aluminum hydroxide, or magnesium hydroxide. When the resin composition for low dielectric materials is used for applications such as conductive pastes and conductive films, conductive fillers such as silver powder and copper powder can be used as inorganic fillers.
Examples of modifiers include phenoxy resins, polyamide resins, polyimide resins, polyetherimide resins, polyethersulfone resins, polyphenylene ether resins, polyphenylene sulfide resins, polyester resins, polystyrene resins, polyethylene terephthalate resins, cycloolefin resins, fluorine A resin or the like can be used.
Examples of flame retardants that can be used include halogen compounds, phosphorus atom-containing compounds, nitrogen atom-containing compounds, inorganic flame retardant compounds, and the like.
(積層基板用フィルムの製造方法)
本実施形態の積層基板用フィルムの製造方法は、低誘電材料用の樹脂組成物を含む絶縁材料を、樹脂フィルムの少なくとも1面に塗布する。
前記製造方法は、具体的には、前述したようにワニス状とした低誘電材料用の樹脂組成物を、樹脂フィルムの少なくとも1面に表面に塗布する。ついで、加熱、あるいは熱風吹きつけ等により有機溶剤を揮散させて、絶縁層を形成させることにより製造することができる。 (Manufacturing method of film for laminated substrate)
In the method for producing a film for laminated substrates of this embodiment, an insulating material containing a resin composition for a low dielectric material is applied to at least one surface of a resin film.
Specifically, in the manufacturing method, the varnish-like resin composition for a low dielectric material is applied to at least one surface of a resin film as described above. Then, the organic solvent is volatilized by heating or blowing hot air to form an insulating layer.
本実施形態の積層基板用フィルムの製造方法は、低誘電材料用の樹脂組成物を含む絶縁材料を、樹脂フィルムの少なくとも1面に塗布する。
前記製造方法は、具体的には、前述したようにワニス状とした低誘電材料用の樹脂組成物を、樹脂フィルムの少なくとも1面に表面に塗布する。ついで、加熱、あるいは熱風吹きつけ等により有機溶剤を揮散させて、絶縁層を形成させることにより製造することができる。 (Manufacturing method of film for laminated substrate)
In the method for producing a film for laminated substrates of this embodiment, an insulating material containing a resin composition for a low dielectric material is applied to at least one surface of a resin film.
Specifically, in the manufacturing method, the varnish-like resin composition for a low dielectric material is applied to at least one surface of a resin film as described above. Then, the organic solvent is volatilized by heating or blowing hot air to form an insulating layer.
ここで、前記低誘電材料用の樹脂組成物は、前記有機溶媒などの揮発成分を除く不揮発分が30~60質量%となる範囲であることが好ましい。この範囲であることで、特に前記配合物のフィルムへの塗工性や、積層基板用フィルムの成形性が好適である。
Here, the resin composition for the low dielectric material preferably has a non-volatile content excluding volatile components such as the organic solvent in a range of 30 to 60% by mass. Within this range, the coatability of the compound on a film and the formability of a laminated substrate film are particularly favorable.
形成される絶縁層の厚さは、後述する、積層基板を設置する回路基板が有する導体層の厚さ以上とするのが好ましい。回路基板が有する導体層の厚さは通常5~70μmの範囲であるとすれば、樹脂組成物層の厚さは10~100μmの厚みを有するのが好ましい。
It is preferable that the thickness of the insulating layer to be formed is equal to or greater than the thickness of the conductor layer of the circuit board on which the laminated board is installed, which will be described later. Given that the thickness of the conductor layer of the circuit board is usually in the range of 5 to 70 μm, the thickness of the resin composition layer is preferably 10 to 100 μm.
(積層基板の製造方法)
本実施形態の積層基板の製造方法は、前記の積層基板用のフィルムを2以上積層する。
本実施形態の積層基板を用いてプリント配線板を製造する際には、積層基板用のフィルムが保護フィルムで保護されている場合はこれらを剥離した後、層を回路基板に直接接するように、回路基板の片面又は両面に、例えば真空ラミネート法によりラミネートするなどをして行うことができる。ラミネートの方法はバッチ式であってもロールでの連続式であってもよい。またラミネートを行う前にフィルム及び回路基板を必要により加熱(プレヒート)しておいてもよい。 (Method for manufacturing laminated substrate)
In the method for manufacturing a laminated substrate of this embodiment, two or more films for the laminated substrate are laminated.
When manufacturing a printed wiring board using the laminated substrate of the present embodiment, if the film for the laminated substrate is protected by a protective film, after peeling these, the layer is directly in contact with the circuit board. It can be carried out by laminating on one side or both sides of the circuit board, for example, by a vacuum lamination method. The method of lamination may be a batch type or a continuous roll type. In addition, the film and the circuit board may be heated (preheated) before lamination, if necessary.
本実施形態の積層基板の製造方法は、前記の積層基板用のフィルムを2以上積層する。
本実施形態の積層基板を用いてプリント配線板を製造する際には、積層基板用のフィルムが保護フィルムで保護されている場合はこれらを剥離した後、層を回路基板に直接接するように、回路基板の片面又は両面に、例えば真空ラミネート法によりラミネートするなどをして行うことができる。ラミネートの方法はバッチ式であってもロールでの連続式であってもよい。またラミネートを行う前にフィルム及び回路基板を必要により加熱(プレヒート)しておいてもよい。 (Method for manufacturing laminated substrate)
In the method for manufacturing a laminated substrate of this embodiment, two or more films for the laminated substrate are laminated.
When manufacturing a printed wiring board using the laminated substrate of the present embodiment, if the film for the laminated substrate is protected by a protective film, after peeling these, the layer is directly in contact with the circuit board. It can be carried out by laminating on one side or both sides of the circuit board, for example, by a vacuum lamination method. The method of lamination may be a batch type or a continuous roll type. In addition, the film and the circuit board may be heated (preheated) before lamination, if necessary.
導体積層基板を製造する場合、以下のような手順で形成してもよい。すなわち、前記したワニス状に調整した低誘電材料用の樹脂組成物を、繊維基材に含浸させ、用いた溶剤種に応じた加熱温度、好ましくは50~170℃で加熱することによって、硬化物であるプリプレグの絶縁層を得る。繊維基材は、紙、ガラス布、ガラス不織布、アラミド紙、アラミド布、マット化ガラス、又はガラスロービング布などを用いることができる。この際、用いる低誘電材料用の樹脂組成物と繊維基材の配合割合は、通常、プリプレグ中の樹脂分が20~60質量%となるように調整することが好ましい。
得られたプリプレグを積層し、更に導体層となる素材の膜、例えば銅箔を重ねて、加熱圧着させることにより、目的とする導体板積層基板を得ることができる。ここで加熱圧着させる方法は、具体的には、1~10MPaの加圧下に170~250℃なる温度条件で行う方法が挙げられる。また、加熱圧着は、10分~3時間行うことが好ましい。 When manufacturing a conductor laminated substrate, it may be formed by the following procedure. That is, the fiber base material is impregnated with the resin composition for low dielectric materials prepared in the form of a varnish, and heated at a heating temperature according to the type of solvent used, preferably at 50 to 170° C. to obtain a cured product. An insulating layer of prepreg is obtained. Paper, glass cloth, glass nonwoven fabric, aramid paper, aramid cloth, matted glass, glass roving cloth, or the like can be used as the fiber substrate. In this case, it is preferable to adjust the mixing ratio of the resin composition for the low dielectric material and the fiber base material so that the resin content in the prepreg is usually 20 to 60% by mass.
The obtained prepreg is laminated, and a film of a material to be a conductor layer, such as a copper foil, is laminated and thermocompressed to obtain the desired conductor plate laminated substrate. Here, the method of thermocompression bonding is, specifically, a method of carrying out at a temperature of 170 to 250° C. under a pressure of 1 to 10 MPa. Moreover, it is preferable to perform the thermocompression bonding for 10 minutes to 3 hours.
得られたプリプレグを積層し、更に導体層となる素材の膜、例えば銅箔を重ねて、加熱圧着させることにより、目的とする導体板積層基板を得ることができる。ここで加熱圧着させる方法は、具体的には、1~10MPaの加圧下に170~250℃なる温度条件で行う方法が挙げられる。また、加熱圧着は、10分~3時間行うことが好ましい。 When manufacturing a conductor laminated substrate, it may be formed by the following procedure. That is, the fiber base material is impregnated with the resin composition for low dielectric materials prepared in the form of a varnish, and heated at a heating temperature according to the type of solvent used, preferably at 50 to 170° C. to obtain a cured product. An insulating layer of prepreg is obtained. Paper, glass cloth, glass nonwoven fabric, aramid paper, aramid cloth, matted glass, glass roving cloth, or the like can be used as the fiber substrate. In this case, it is preferable to adjust the mixing ratio of the resin composition for the low dielectric material and the fiber base material so that the resin content in the prepreg is usually 20 to 60% by mass.
The obtained prepreg is laminated, and a film of a material to be a conductor layer, such as a copper foil, is laminated and thermocompressed to obtain the desired conductor plate laminated substrate. Here, the method of thermocompression bonding is, specifically, a method of carrying out at a temperature of 170 to 250° C. under a pressure of 1 to 10 MPa. Moreover, it is preferable to perform the thermocompression bonding for 10 minutes to 3 hours.
積層基板用フィルムをビルドアッププリント基板として用いる場合、以下のような手順で積層基板及びプリント基板を形成してもよい。すなわち、回路を形成した配線基板にスプレーコーティング法、又はカーテンコーティング法等を用いて、低誘電材料用の樹脂組成物を塗布した後、硬化させる。次いで、必要に応じて所定のスルーホール部等の穴あけを行った後、粗化剤により処理し、その表面を湯洗することによって、凹凸を形成させ、銅などの金属をめっき処理する。前記めっき方法は、無電解めっき、又は電解めっき処理が好ましい。また前記粗化剤としては、酸化剤、アルカリ、又は有機溶剤等を用いることができる。このような操作を所望に応じて順次繰り返し、絶縁層及び所定の回路パターンの導体層を交互にビルドアップして形成することにより、ビルドアップ基板を得ることができる。但し、スルーホール部の穴あけは、最外層の絶縁層の形成後に行うことが好ましく、また、銅箔上で当該樹脂組成物を半硬化させた樹脂付き銅箔を、回路を形成した配線基板上に、170~250℃で加熱圧着することで、粗化面を形成、メッキ処理の工程を省き、ビルドアップ基板を作製することも可能である。
When using the laminated board film as a build-up printed board, the laminated board and printed board may be formed in the following procedure. That is, a wiring board having a circuit formed thereon is coated with a resin composition for a low dielectric material using a spray coating method, a curtain coating method, or the like, and then cured. Next, after drilling predetermined through holes or the like as necessary, the surface is treated with a roughening agent, washed with hot water to form unevenness, and then plated with a metal such as copper. The plating method is preferably electroless plating or electrolytic plating. As the roughening agent, an oxidizing agent, an alkali, an organic solvent, or the like can be used. Such an operation is repeated as desired to alternately build up insulating layers and conductor layers having a predetermined circuit pattern, thereby obtaining a build-up board. However, the drilling of the through-hole part is preferably performed after the formation of the outermost insulating layer. In addition, it is possible to fabricate a build-up board by forming a roughened surface and omitting the plating process by heat-pressing at 170 to 250°C.
(電子部品用封止材等の製造方法)
本実施形態の低誘電材料用の樹脂組成物を電子部品用封止材に調整するためには、前記低誘電材料用の樹脂組成物、エポキシ樹脂、ビスマレイミド樹脂又はシアネート樹脂、必要に応じて配合されるその他のカップリング剤、及び/又は離型剤などの添加剤や無機充填材などを予備混合した後、押出機、ニーダ、ロール等を用いて均一になるまで十分に混合する手法が挙げられる。半導体のテープ状封止剤として使用する場合には、前述の手法によって得られた樹脂組成物を加熱して半硬化シートを作製し、封止剤テープとした後、この封止剤テープを半導体チップ上に置き、100~150℃に加熱して軟化させ成形し、170~250℃で完全に硬化させる方法を挙げることができる。 (Manufacturing method of sealing material for electronic parts, etc.)
In order to adjust the resin composition for low dielectric material of the present embodiment to a sealing material for electronic parts, the resin composition for low dielectric material, epoxy resin, bismaleimide resin or cyanate resin, if necessary There is a method of pre-mixing other coupling agents and/or additives such as release agents, inorganic fillers, etc., and then thoroughly mixing them using an extruder, kneader, roll, etc. until they are uniform. mentioned. When used as a tape-shaped encapsulant for semiconductors, the resin composition obtained by the above-described method is heated to prepare a semi-cured sheet, which is used as an encapsulant tape. A method of placing on a chip, heating to 100 to 150° C. to soften and mold, and curing completely at 170 to 250° C. can be mentioned.
本実施形態の低誘電材料用の樹脂組成物を電子部品用封止材に調整するためには、前記低誘電材料用の樹脂組成物、エポキシ樹脂、ビスマレイミド樹脂又はシアネート樹脂、必要に応じて配合されるその他のカップリング剤、及び/又は離型剤などの添加剤や無機充填材などを予備混合した後、押出機、ニーダ、ロール等を用いて均一になるまで十分に混合する手法が挙げられる。半導体のテープ状封止剤として使用する場合には、前述の手法によって得られた樹脂組成物を加熱して半硬化シートを作製し、封止剤テープとした後、この封止剤テープを半導体チップ上に置き、100~150℃に加熱して軟化させ成形し、170~250℃で完全に硬化させる方法を挙げることができる。 (Manufacturing method of sealing material for electronic parts, etc.)
In order to adjust the resin composition for low dielectric material of the present embodiment to a sealing material for electronic parts, the resin composition for low dielectric material, epoxy resin, bismaleimide resin or cyanate resin, if necessary There is a method of pre-mixing other coupling agents and/or additives such as release agents, inorganic fillers, etc., and then thoroughly mixing them using an extruder, kneader, roll, etc. until they are uniform. mentioned. When used as a tape-shaped encapsulant for semiconductors, the resin composition obtained by the above-described method is heated to prepare a semi-cured sheet, which is used as an encapsulant tape. A method of placing on a chip, heating to 100 to 150° C. to soften and mold, and curing completely at 170 to 250° C. can be mentioned.
本実施形態の低誘電材料用の樹脂組成物をレジストインキとして調整するためには、前記低誘電材料用の樹脂組成物、エポキシ樹脂、ビスマレイミド樹脂又はシアネート樹脂、更に、有機溶剤、顔料、タルク、及びフィラー等を加えてレジストインキ用組成物とした後、スクリーン印刷方式にてプリント基板上に塗布した後、レジストインキ硬化物とする方法が挙げられる。ここで用いる有機溶剤としては、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、シクロヘキサノン、ジメチルスルホキシド、ジメチルホルムアミド、ジオキソラン、テトラヒドロフラン、プロピレングリコールモノメチルエーテルアセテート、又はエチルラクテート等が挙げられる。
In order to prepare the resin composition for low dielectric materials of the present embodiment as a resist ink, the resin composition for low dielectric materials, an epoxy resin, a bismaleimide resin or a cyanate resin, an organic solvent, a pigment, and talc are used. , and a filler or the like to form a resist ink composition, apply the composition onto a printed circuit board by screen printing, and then form a cured resist ink. Examples of organic solvents used here include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, cyclohexanone, dimethylsulfoxide, dimethylformamide, dioxolane, tetrahydrofuran, propylene glycol monomethyl ether. Acetate, ethyl lactate, and the like can be mentioned.
本実施形態の低誘電材料用の樹脂組成物を絶縁材料、例えば半導体の層の間の絶縁材料として使用する場合は、例えば、前記低誘電材料用の樹脂組成物、エポキシ樹脂に加え、硬化促進剤、シランカップリング剤を配合して組成物を調整し、これをシリコン基板上にスピンコーティング等により塗布する方法が挙げられる。この場合、硬化塗膜は半導体に直接接することになるため、高温環境下において線膨張率の差によるクラックが生じないよう、絶縁材の線膨張率を半導体の線膨張率に近づけることが好ましい。
When the resin composition for low dielectric materials of the present embodiment is used as an insulating material, for example, an insulating material between semiconductor layers, for example, in addition to the resin composition for low dielectric materials and epoxy resin, curing acceleration and a silane coupling agent to prepare a composition, which is applied onto a silicon substrate by spin coating or the like. In this case, since the cured coating film is in direct contact with the semiconductor, it is preferable to make the coefficient of linear expansion of the insulating material close to that of the semiconductor so that cracks do not occur due to the difference in coefficient of linear expansion in a high-temperature environment.
本実施形態の低誘電材料用の樹脂組成物を導電ペーストとして使用する場合、例えば、微細導電性粒子を前記低誘電材料用の樹脂組成物中に分散させ異方性導電膜用組成物とする方法、室温で液状である回路接続用ペースト樹脂組成物や異方性導電接着剤とする方法が挙げられる。
When the resin composition for a low dielectric material of the present embodiment is used as a conductive paste, for example, fine conductive particles are dispersed in the resin composition for a low dielectric material to form a composition for an anisotropic conductive film. method, a method of using a paste resin composition for circuit connection which is liquid at room temperature, or an anisotropic conductive adhesive.
(本実施形態の他の側面)
本実施形態の他の側面として、本実施形態の前記トリアジン化合物は、前述した一般式(2A)で表される化合物であってもよい。ここで、式(2A)中、R1は、一般式(3A)~(5A)のいずれかで表される構造を表す。R2は、一般式(6A)~(10A)、(12A)のいずれかで表される構造を表す。また、式(1A)中のArが式(11A)で表される化合物であってもよい。 (Another aspect of this embodiment)
As another aspect of this embodiment, the triazine compound of this embodiment may be a compound represented by the general formula (2A) described above. Here, in formula (2A), R 1 represents a structure represented by any one of general formulas (3A) to (5A). R 2 represents a structure represented by any one of general formulas (6A) to (10A) and (12A). Further, Ar in Formula (1A) may be a compound represented by Formula (11A).
本実施形態の他の側面として、本実施形態の前記トリアジン化合物は、前述した一般式(2A)で表される化合物であってもよい。ここで、式(2A)中、R1は、一般式(3A)~(5A)のいずれかで表される構造を表す。R2は、一般式(6A)~(10A)、(12A)のいずれかで表される構造を表す。また、式(1A)中のArが式(11A)で表される化合物であってもよい。 (Another aspect of this embodiment)
As another aspect of this embodiment, the triazine compound of this embodiment may be a compound represented by the general formula (2A) described above. Here, in formula (2A), R 1 represents a structure represented by any one of general formulas (3A) to (5A). R 2 represents a structure represented by any one of general formulas (6A) to (10A) and (12A). Further, Ar in Formula (1A) may be a compound represented by Formula (11A).
また他の側面として、本実施形態の低誘電材料用の樹脂組成物の製造方法は、前述した一般式(13A)で表される化合物と一般式(14A)で表される化合物とを混合し、重合させて一般式(15A)で表されるトリアジン化合物を得る。この場合、式(13A)の化合物は、式(1A)の化合物を構成する単量体のうち、トリアジン環の両端を塩素で置換したジクロリドである。式(14A)の化合物は、式(1A)のAr基の両端をOH基で置換したジオールである。式(13A)中のRを式(2A)中のR1、式(14A)をR2の両端にベンゼン環とOH基が結合したジオールとして構成することで、式(2A)の化合物として製造してもよい。
As another aspect, the method for producing a resin composition for a low dielectric material according to the present embodiment includes mixing the compound represented by the general formula (13A) and the compound represented by the general formula (14A). , to obtain a triazine compound represented by the general formula (15A). In this case, the compound of formula (13A) is a dichloride in which both ends of the triazine ring are substituted with chlorine among the monomers constituting the compound of formula (1A). The compound of formula (14A) is a diol in which both ends of the Ar group of formula (1A) are substituted with OH groups. A compound of formula (2A) is produced by configuring R in formula (13A) as R 1 in formula (2A) and formula (14A) as a diol in which a benzene ring and an OH group are bonded to both ends of R 2 You may
以下、実施例を示す。なお、本発明は実施例に限定されるものではない。
Examples are shown below. In addition, the present invention is not limited to the examples.
(試験条件)
試料の合成及び合成した試料についての分析には、以下の機器を用いた。
(1)GPC:東ソー(株)製 高速GPCシステムHLC-8220GPC(カラム:東ソーTSKgel(α-M)、カラム温度:45℃、溶離液:N-メチル-2-ピロリドン(NMP)(0.01mol/L臭化リチウムを含む。)又はテトラヒドロフラン(THF)、検量線:標準ポリスチレン、カラム流速:0.2mL/min)
(2)赤外スペクトル(FT-IR):日本分光(株)製 FT/IR-4200
(3)核磁気共鳴スペクトル(NMR):日本分光製 JNM-ECA500
(4)熱重量測定(TGA):(株)日立ハイテクサイエンス製 TG/DTA7300、昇温速度10℃/min
(5)示差走査熱量測定(DSC):(株)日立ハイテクサイエンス製 DSC7000、昇温速度20℃/min
(6)熱機械分析(TMA):(株)日立ハイテクサイエンス製 TMA7100、昇温速度10℃/min
(7)動的粘弾性測定(DMA):(株)日立ハイテクサイエンス製 DMS7100、昇温速度2℃/min
(8)紫外可視分光光度計:(株)島津製作所製 UV-1800
(10)屈折率測定:Metricon社製 Model 2010/M PRISM COUPLER
(11)誘電率・誘電正接測定:(株)エーイーティー製 誘電率・誘電正接測定装置(空洞共振器タイプ)、TEモードとTMモード(10GHz、20GHz)
各種試薬は市販のものを用い必要に応じて常法により精製した。各種反応溶媒は、必要に応じて常法により乾燥・精製した。 (Test conditions)
The following instruments were used for sample synthesis and analysis of the synthesized samples.
(1) GPC: High-speed GPC system HLC-8220GPC manufactured by Tosoh Corporation (column: Tosoh TSKgel (α-M), column temperature: 45 ° C., eluent: N-methyl-2-pyrrolidone (NMP) (0.01 mol /L containing lithium bromide.) or tetrahydrofuran (THF), calibration curve: standard polystyrene, column flow rate: 0.2 mL / min)
(2) Infrared spectrum (FT-IR): FT/IR-4200 manufactured by JASCO Corporation
(3) Nuclear magnetic resonance spectrum (NMR): JNM-ECA500 manufactured by JASCO Corporation
(4) Thermogravimetric measurement (TGA): TG/DTA7300 manufactured by Hitachi High-Tech Science Co., Ltd., heating rate 10 ° C./min
(5) Differential scanning calorimetry (DSC): DSC7000 manufactured by Hitachi High-Tech Science Co., Ltd., heating rate 20 ° C./min
(6) Thermomechanical analysis (TMA): TMA7100 manufactured by Hitachi High-Tech Science Co., Ltd., heating rate 10 ° C./min
(7) Dynamic viscoelasticity measurement (DMA): DMS7100 manufactured by Hitachi High-Tech Science Co., Ltd., heating rate 2 ° C./min
(8) UV-visible spectrophotometer: UV-1800 manufactured by Shimadzu Corporation
(10) Refractive index measurement: Model 2010/M PRISM COUPLER manufactured by Metricon
(11) Permittivity/dielectric loss tangent measurement: AET Co., Ltd. permittivity/dielectric loss tangent measuring device (cavity resonator type), TE mode and TM mode (10 GHz, 20 GHz)
Various reagents were commercially available and were purified by conventional methods as necessary. Various reaction solvents were dried and purified by conventional methods as necessary.
試料の合成及び合成した試料についての分析には、以下の機器を用いた。
(1)GPC:東ソー(株)製 高速GPCシステムHLC-8220GPC(カラム:東ソーTSKgel(α-M)、カラム温度:45℃、溶離液:N-メチル-2-ピロリドン(NMP)(0.01mol/L臭化リチウムを含む。)又はテトラヒドロフラン(THF)、検量線:標準ポリスチレン、カラム流速:0.2mL/min)
(2)赤外スペクトル(FT-IR):日本分光(株)製 FT/IR-4200
(3)核磁気共鳴スペクトル(NMR):日本分光製 JNM-ECA500
(4)熱重量測定(TGA):(株)日立ハイテクサイエンス製 TG/DTA7300、昇温速度10℃/min
(5)示差走査熱量測定(DSC):(株)日立ハイテクサイエンス製 DSC7000、昇温速度20℃/min
(6)熱機械分析(TMA):(株)日立ハイテクサイエンス製 TMA7100、昇温速度10℃/min
(7)動的粘弾性測定(DMA):(株)日立ハイテクサイエンス製 DMS7100、昇温速度2℃/min
(8)紫外可視分光光度計:(株)島津製作所製 UV-1800
(10)屈折率測定:Metricon社製 Model 2010/M PRISM COUPLER
(11)誘電率・誘電正接測定:(株)エーイーティー製 誘電率・誘電正接測定装置(空洞共振器タイプ)、TEモードとTMモード(10GHz、20GHz)
各種試薬は市販のものを用い必要に応じて常法により精製した。各種反応溶媒は、必要に応じて常法により乾燥・精製した。 (Test conditions)
The following instruments were used for sample synthesis and analysis of the synthesized samples.
(1) GPC: High-speed GPC system HLC-8220GPC manufactured by Tosoh Corporation (column: Tosoh TSKgel (α-M), column temperature: 45 ° C., eluent: N-methyl-2-pyrrolidone (NMP) (0.01 mol /L containing lithium bromide.) or tetrahydrofuran (THF), calibration curve: standard polystyrene, column flow rate: 0.2 mL / min)
(2) Infrared spectrum (FT-IR): FT/IR-4200 manufactured by JASCO Corporation
(3) Nuclear magnetic resonance spectrum (NMR): JNM-ECA500 manufactured by JASCO Corporation
(4) Thermogravimetric measurement (TGA): TG/DTA7300 manufactured by Hitachi High-Tech Science Co., Ltd., heating rate 10 ° C./min
(5) Differential scanning calorimetry (DSC): DSC7000 manufactured by Hitachi High-Tech Science Co., Ltd., heating rate 20 ° C./min
(6) Thermomechanical analysis (TMA): TMA7100 manufactured by Hitachi High-Tech Science Co., Ltd., heating rate 10 ° C./min
(7) Dynamic viscoelasticity measurement (DMA): DMS7100 manufactured by Hitachi High-Tech Science Co., Ltd., heating rate 2 ° C./min
(8) UV-visible spectrophotometer: UV-1800 manufactured by Shimadzu Corporation
(10) Refractive index measurement: Model 2010/M PRISM COUPLER manufactured by Metricon
(11) Permittivity/dielectric loss tangent measurement: AET Co., Ltd. permittivity/dielectric loss tangent measuring device (cavity resonator type), TE mode and TM mode (10 GHz, 20 GHz)
Various reagents were commercially available and were purified by conventional methods as necessary. Various reaction solvents were dried and purified by conventional methods as necessary.
(樹脂組成物の製造)
前記式(1)の化合物のうち、Rが式(2)で、Arがそれぞれ、
式(5)であるトリアジン化合物(DCPT-BisA、実施例1)、
式(6)であるトリアジン化合物(DCPT-BisZ、実施例2)、
式(7)であるトリアジン化合物(DCPT-BisP3MZ、実施例3)、
式(8)であるトリアジン化合物(DCPT-BisPHTG、実施例4)、
式(9)であるトリアジン化合物(DCPT-BisPCDE、実施例5)、
式(10)であるトリアジン化合物(DCPT-HPTM5I、実施例6)、
式(11)であるトリアジン化合物(DCPT-BisC、実施例7)、
式(12)であるトリアジン化合物(DCPT-BisTMP、実施例8)、
式(13)であるトリアジン化合物(DCPT-BisCHP、実施例9)、
式(14)であるトリアジン化合物(DCPT-BisAF、実施例10)
式(15)であるトリアジン化合物(DCPG-BPFL、実施例11)
を調製した。 (Manufacture of resin composition)
Among the compounds of the formula (1), R is the formula (2) and Ar is
a triazine compound of formula (5) (DCPT-BisA, Example 1),
a triazine compound of formula (6) (DCPT-BisZ, Example 2),
a triazine compound of formula (7) (DCPT-BisP3MZ, Example 3),
a triazine compound of formula (8) (DCPT-BisPHTG, Example 4),
a triazine compound of formula (9) (DCPT-BisPCDE, Example 5),
a triazine compound of formula (10) (DCPT-HPTM5I, Example 6),
a triazine compound of formula (11) (DCPT-BisC, Example 7),
a triazine compound of formula (12) (DCPT-BisTMP, Example 8),
a triazine compound of formula (13) (DCPT-BisCHP, Example 9),
Triazine compound of formula (14) (DCPT-BisAF, Example 10)
Triazine compound of formula (15) (DCPG-BPFL, Example 11)
was prepared.
前記式(1)の化合物のうち、Rが式(2)で、Arがそれぞれ、
式(5)であるトリアジン化合物(DCPT-BisA、実施例1)、
式(6)であるトリアジン化合物(DCPT-BisZ、実施例2)、
式(7)であるトリアジン化合物(DCPT-BisP3MZ、実施例3)、
式(8)であるトリアジン化合物(DCPT-BisPHTG、実施例4)、
式(9)であるトリアジン化合物(DCPT-BisPCDE、実施例5)、
式(10)であるトリアジン化合物(DCPT-HPTM5I、実施例6)、
式(11)であるトリアジン化合物(DCPT-BisC、実施例7)、
式(12)であるトリアジン化合物(DCPT-BisTMP、実施例8)、
式(13)であるトリアジン化合物(DCPT-BisCHP、実施例9)、
式(14)であるトリアジン化合物(DCPT-BisAF、実施例10)
式(15)であるトリアジン化合物(DCPG-BPFL、実施例11)
を調製した。 (Manufacture of resin composition)
Among the compounds of the formula (1), R is the formula (2) and Ar is
a triazine compound of formula (5) (DCPT-BisA, Example 1),
a triazine compound of formula (6) (DCPT-BisZ, Example 2),
a triazine compound of formula (7) (DCPT-BisP3MZ, Example 3),
a triazine compound of formula (8) (DCPT-BisPHTG, Example 4),
a triazine compound of formula (9) (DCPT-BisPCDE, Example 5),
a triazine compound of formula (10) (DCPT-HPTM5I, Example 6),
a triazine compound of formula (11) (DCPT-BisC, Example 7),
a triazine compound of formula (12) (DCPT-BisTMP, Example 8),
a triazine compound of formula (13) (DCPT-BisCHP, Example 9),
Triazine compound of formula (14) (DCPT-BisAF, Example 10)
Triazine compound of formula (15) (DCPG-BPFL, Example 11)
was prepared.
また、前記式(1)の化合物のうち、Rが式(3)で、Arがそれぞれ、
式(5)であるトリアジン化合物(DCPpT-BisA、実施例12)、
式(8)であるトリアジン化合物(DCPpT-BisPHTG、実施例13)、
式(12)であるトリアジン化合物(DCPpT-BisTMP、実施例14)、
式(14)であるトリアジン化合物(DCPpT-BisAF、実施例15)
を調製した。 Further, among the compounds of the formula (1), R is the formula (3) and Ar is
a triazine compound of formula (5) (DCPpT-BisA, Example 12),
a triazine compound of formula (8) (DCPpT-BisPHTG, Example 13),
a triazine compound of formula (12) (DCPpT-BisTMP, Example 14),
Triazine compound of formula (14) (DCPpT-BisAF, Example 15)
was prepared.
式(5)であるトリアジン化合物(DCPpT-BisA、実施例12)、
式(8)であるトリアジン化合物(DCPpT-BisPHTG、実施例13)、
式(12)であるトリアジン化合物(DCPpT-BisTMP、実施例14)、
式(14)であるトリアジン化合物(DCPpT-BisAF、実施例15)
を調製した。 Further, among the compounds of the formula (1), R is the formula (3) and Ar is
a triazine compound of formula (5) (DCPpT-BisA, Example 12),
a triazine compound of formula (8) (DCPpT-BisPHTG, Example 13),
a triazine compound of formula (12) (DCPpT-BisTMP, Example 14),
Triazine compound of formula (14) (DCPpT-BisAF, Example 15)
was prepared.
また、前記式(1)の化合物のうち、Rが式(4)で、Arがそれぞれ、
式(5)であるトリアジン化合物(DCHAT-BisA、実施例16)、
式(8)であるトリアジン化合物(DCHAT-BisPHTG、実施例17)、
式(9)であるトリアジン化合物(DCHAT-BisPCDE、実施例18)、
を調製した。 Further, among the compounds of the formula (1), R is the formula (4) and Ar is
a triazine compound of formula (5) (DCHAT-BisA, Example 16),
a triazine compound of formula (8) (DCHAT-BisPHTG, Example 17),
a triazine compound of formula (9) (DCHAT-BisPCDE, Example 18),
was prepared.
式(5)であるトリアジン化合物(DCHAT-BisA、実施例16)、
式(8)であるトリアジン化合物(DCHAT-BisPHTG、実施例17)、
式(9)であるトリアジン化合物(DCHAT-BisPCDE、実施例18)、
を調製した。 Further, among the compounds of the formula (1), R is the formula (4) and Ar is
a triazine compound of formula (5) (DCHAT-BisA, Example 16),
a triazine compound of formula (8) (DCHAT-BisPHTG, Example 17),
a triazine compound of formula (9) (DCHAT-BisPCDE, Example 18),
was prepared.
(DCPTの合成)
各実施例で用いるトリアジンジクロリド(DCPT)は以下のように合成した。
三口フラスコ(500mL)に、塩化シアヌル(18.44g、0.100mol)と脱水テトラヒドロフラン(THF、200mL)を入れ、攪拌子、滴下漏斗、窒素導入管、温度計を取り付けて、-10℃に冷却した。このTHF溶液を攪拌しながら、滴下漏斗から臭化フェニルマグネシウムTHF溶液(1mol/L、100mL、0.100mol)を、反応溶液の温度が上がらないようにゆっくりと滴下した。-10℃で2時間攪拌した後、室温で12時間攪拌した。エバポレーターにより反応溶液からTHFを除去し、残った固体をクロロホルム(200mL)に溶解させ、蒸留水で洗浄した。クロロホルム層に無水硫酸ナトリウムを加え攪拌して脱水を行った。吸引濾過により得られた濾液からクロロホルムを留去して粗生成物を得た。これを昇華精製した後に、乾燥ヘキサンにより再結晶を行い、40℃で減圧乾燥することで白色針状結晶が得られた。 (Synthesis of DCPT)
Triazine dichloride (DCPT) used in each example was synthesized as follows.
Cyanuric chloride (18.44 g, 0.100 mol) and dehydrated tetrahydrofuran (THF, 200 mL) are placed in a three-necked flask (500 mL), equipped with a stirrer, dropping funnel, nitrogen inlet tube, and thermometer, and cooled to -10°C. did. While stirring this THF solution, a phenylmagnesium bromide THF solution (1 mol/L, 100 mL, 0.100 mol) was slowly added dropwise from a dropping funnel so as not to raise the temperature of the reaction solution. After stirring at -10°C for 2 hours, the mixture was stirred at room temperature for 12 hours. THF was removed from the reaction solution by an evaporator, and the remaining solid was dissolved in chloroform (200 mL) and washed with distilled water. Anhydrous sodium sulfate was added to the chloroform layer and the mixture was stirred for dehydration. Chloroform was distilled off from the filtrate obtained by suction filtration to obtain a crude product. After purification by sublimation, it was recrystallized with dry hexane and dried at 40° C. under reduced pressure to obtain white needle crystals.
各実施例で用いるトリアジンジクロリド(DCPT)は以下のように合成した。
三口フラスコ(500mL)に、塩化シアヌル(18.44g、0.100mol)と脱水テトラヒドロフラン(THF、200mL)を入れ、攪拌子、滴下漏斗、窒素導入管、温度計を取り付けて、-10℃に冷却した。このTHF溶液を攪拌しながら、滴下漏斗から臭化フェニルマグネシウムTHF溶液(1mol/L、100mL、0.100mol)を、反応溶液の温度が上がらないようにゆっくりと滴下した。-10℃で2時間攪拌した後、室温で12時間攪拌した。エバポレーターにより反応溶液からTHFを除去し、残った固体をクロロホルム(200mL)に溶解させ、蒸留水で洗浄した。クロロホルム層に無水硫酸ナトリウムを加え攪拌して脱水を行った。吸引濾過により得られた濾液からクロロホルムを留去して粗生成物を得た。これを昇華精製した後に、乾燥ヘキサンにより再結晶を行い、40℃で減圧乾燥することで白色針状結晶が得られた。 (Synthesis of DCPT)
Triazine dichloride (DCPT) used in each example was synthesized as follows.
Cyanuric chloride (18.44 g, 0.100 mol) and dehydrated tetrahydrofuran (THF, 200 mL) are placed in a three-necked flask (500 mL), equipped with a stirrer, dropping funnel, nitrogen inlet tube, and thermometer, and cooled to -10°C. did. While stirring this THF solution, a phenylmagnesium bromide THF solution (1 mol/L, 100 mL, 0.100 mol) was slowly added dropwise from a dropping funnel so as not to raise the temperature of the reaction solution. After stirring at -10°C for 2 hours, the mixture was stirred at room temperature for 12 hours. THF was removed from the reaction solution by an evaporator, and the remaining solid was dissolved in chloroform (200 mL) and washed with distilled water. Anhydrous sodium sulfate was added to the chloroform layer and the mixture was stirred for dehydration. Chloroform was distilled off from the filtrate obtained by suction filtration to obtain a crude product. After purification by sublimation, it was recrystallized with dry hexane and dried at 40° C. under reduced pressure to obtain white needle crystals.
合成した化合物は、収量:13.1g、収率:58%、融点:120℃であった。
この化合物について、前述した機器を用いての分析結果は、
FT-IR(KBr,cm-1):3047(Ar-H)、1527(C=N)、1258(C-N)、770(C-Cl)
1H-NMR(CDCl3,ppm):8.50(d,2H,o-Ar-H)、7.66(t,1H,p-Ar-H)、7.53(t,2H,m-Ar-H)
13C-NMR(CDCl3,ppm):175.0、172.2、134.9、132.8、130.1、129.2
元素分析(C9H5N3Cl2):計算値C,47.82%;H,2.23%;N:18.59%、測定値C,48.11%;H,2.43%;N:18.68%であった。 The synthesized compound had a yield of 13.1 g, a yield of 58%, and a melting point of 120°C.
For this compound, the analysis results using the equipment described above are as follows:
FT-IR (KBr, cm −1 ): 3047 (Ar—H), 1527 (C═N), 1258 (CN), 770 (C—Cl)
1 H-NMR (CDCl 3 , ppm): 8.50 (d, 2H, o-Ar-H), 7.66 (t, 1H, p-Ar-H), 7.53 (t, 2H, m -Ar-H)
13 C-NMR (CDCl 3 , ppm): 175.0, 172.2, 134.9, 132.8, 130.1, 129.2
Elemental analysis ( C9H5N3Cl2 ): calculated C , 47.82 %; H, 2.23%; N: 18.59%, found C, 48.11%; H, 2.43 %; N: 18.68%.
この化合物について、前述した機器を用いての分析結果は、
FT-IR(KBr,cm-1):3047(Ar-H)、1527(C=N)、1258(C-N)、770(C-Cl)
1H-NMR(CDCl3,ppm):8.50(d,2H,o-Ar-H)、7.66(t,1H,p-Ar-H)、7.53(t,2H,m-Ar-H)
13C-NMR(CDCl3,ppm):175.0、172.2、134.9、132.8、130.1、129.2
元素分析(C9H5N3Cl2):計算値C,47.82%;H,2.23%;N:18.59%、測定値C,48.11%;H,2.43%;N:18.68%であった。 The synthesized compound had a yield of 13.1 g, a yield of 58%, and a melting point of 120°C.
For this compound, the analysis results using the equipment described above are as follows:
FT-IR (KBr, cm −1 ): 3047 (Ar—H), 1527 (C═N), 1258 (CN), 770 (C—Cl)
1 H-NMR (CDCl 3 , ppm): 8.50 (d, 2H, o-Ar-H), 7.66 (t, 1H, p-Ar-H), 7.53 (t, 2H, m -Ar-H)
13 C-NMR (CDCl 3 , ppm): 175.0, 172.2, 134.9, 132.8, 130.1, 129.2
Elemental analysis ( C9H5N3Cl2 ): calculated C , 47.82 %; H, 2.23%; N: 18.59%, found C, 48.11%; H, 2.43 %; N: 18.68%.
(DCPpTの合成)
各実施例で用いるトリアジンジクロリド(DCPpT)は以下のように合成した。
三口フラスコ(300mL)に、塩化シアヌル(18.44g、0.100mol)と脱水ジクロロメタン(150mL)を加え、滴下漏斗、窒素導入管、温度計を取り付けて、0℃に冷却した。このジクロロメタン溶液を攪拌しながら、ピペリジン(8.52g、0.100mol)を脱水ジクロロメタン(50mL)に溶かした溶液を0℃で滴下し、2時間攪拌した。次に、N,N-ジイソプロピルエチルアミン(12.92g、0.100mol)をジクロロメタン(50mL)に溶解させた溶液を、反応溶液の温度が上昇しないように0~5℃を維持しながら滴下し、1時間攪拌した。反応溶液を蒸留水(300mL)で3回分液し、有機層に無水硫酸ナトリウムを加えて攪拌した。吸引ろ過により硫酸ナトリウムを取り除き、濾液からエバポレーターでジクロロメタンを留去して淡黄色の粗生成物を得た。ヘキサン/クロロホルム混合溶媒から再結晶を行い白色粒状結晶が得られ、40℃で減圧乾燥させた。 (Synthesis of DCPpT)
Triazine dichloride (DCPpT) used in each example was synthesized as follows.
Cyanuric chloride (18.44 g, 0.100 mol) and dehydrated dichloromethane (150 mL) were added to a three-necked flask (300 mL), equipped with a dropping funnel, a nitrogen inlet tube and a thermometer, and cooled to 0°C. While stirring this dichloromethane solution, a solution of piperidine (8.52 g, 0.100 mol) dissolved in dehydrated dichloromethane (50 mL) was added dropwise at 0° C. and stirred for 2 hours. Next, a solution of N,N-diisopropylethylamine (12.92 g, 0.100 mol) dissolved in dichloromethane (50 mL) was added dropwise while maintaining the temperature of the reaction solution from 0 to 5° C., Stirred for 1 hour. The reaction solution was separated with distilled water (300 mL) three times, and anhydrous sodium sulfate was added to the organic layer and stirred. Sodium sulfate was removed by suction filtration, and dichloromethane was distilled off from the filtrate using an evaporator to obtain a pale yellow crude product. Recrystallization was performed from a hexane/chloroform mixed solvent to obtain white granular crystals, which were dried under reduced pressure at 40°C.
各実施例で用いるトリアジンジクロリド(DCPpT)は以下のように合成した。
三口フラスコ(300mL)に、塩化シアヌル(18.44g、0.100mol)と脱水ジクロロメタン(150mL)を加え、滴下漏斗、窒素導入管、温度計を取り付けて、0℃に冷却した。このジクロロメタン溶液を攪拌しながら、ピペリジン(8.52g、0.100mol)を脱水ジクロロメタン(50mL)に溶かした溶液を0℃で滴下し、2時間攪拌した。次に、N,N-ジイソプロピルエチルアミン(12.92g、0.100mol)をジクロロメタン(50mL)に溶解させた溶液を、反応溶液の温度が上昇しないように0~5℃を維持しながら滴下し、1時間攪拌した。反応溶液を蒸留水(300mL)で3回分液し、有機層に無水硫酸ナトリウムを加えて攪拌した。吸引ろ過により硫酸ナトリウムを取り除き、濾液からエバポレーターでジクロロメタンを留去して淡黄色の粗生成物を得た。ヘキサン/クロロホルム混合溶媒から再結晶を行い白色粒状結晶が得られ、40℃で減圧乾燥させた。 (Synthesis of DCPpT)
Triazine dichloride (DCPpT) used in each example was synthesized as follows.
Cyanuric chloride (18.44 g, 0.100 mol) and dehydrated dichloromethane (150 mL) were added to a three-necked flask (300 mL), equipped with a dropping funnel, a nitrogen inlet tube and a thermometer, and cooled to 0°C. While stirring this dichloromethane solution, a solution of piperidine (8.52 g, 0.100 mol) dissolved in dehydrated dichloromethane (50 mL) was added dropwise at 0° C. and stirred for 2 hours. Next, a solution of N,N-diisopropylethylamine (12.92 g, 0.100 mol) dissolved in dichloromethane (50 mL) was added dropwise while maintaining the temperature of the reaction solution from 0 to 5° C., Stirred for 1 hour. The reaction solution was separated with distilled water (300 mL) three times, and anhydrous sodium sulfate was added to the organic layer and stirred. Sodium sulfate was removed by suction filtration, and dichloromethane was distilled off from the filtrate using an evaporator to obtain a pale yellow crude product. Recrystallization was performed from a hexane/chloroform mixed solvent to obtain white granular crystals, which were dried under reduced pressure at 40°C.
合成した化合物は、収量:10.72g、収率:46%、融点:90~91℃であった。
この化合物について、前述した機器を用いての分析結果は、
FT-IR(KBr、cm-1):2940-2860(C-H)、1552(C=N)、1170(C-N)、842(C-Cl)
1H-NMR(CDCl3、ppm):3.82(t,4H,CH2)、1.74-1.70(m,2H,CH2)、1.67-1.63(m,4H,CH2)
13C-NMR(CDCl3,ppm):170.2、163.6、45.4,25.7、24.3
元素分析(C8H10N4Cl2):計算値C,41.22%;H,4.32%;N:24.04%、実測値C,41.01%;H,4.68%;N:24.30%であった。 The synthesized compound had a yield of 10.72 g, a yield of 46%, and a melting point of 90-91°C.
For this compound, the analysis results using the equipment described above are as follows:
FT-IR (KBr, cm −1 ): 2940-2860 (CH), 1552 (C═N), 1170 (CN), 842 (C—Cl)
1 H-NMR (CDCl 3 , ppm): 3.82 (t, 4H, CH 2 ), 1.74-1.70 (m, 2H, CH 2 ), 1.67-1.63 (m, 4H , CH2 )
13 C-NMR (CDCl 3 , ppm): 170.2, 163.6, 45.4, 25.7, 24.3
Elemental analysis ( C8H10N4Cl2 ): calculated C, 41.22%; H, 4.32% ; N: 24.04 %, found C, 41.01%; H, 4.68 %; N: 24.30%.
この化合物について、前述した機器を用いての分析結果は、
FT-IR(KBr、cm-1):2940-2860(C-H)、1552(C=N)、1170(C-N)、842(C-Cl)
1H-NMR(CDCl3、ppm):3.82(t,4H,CH2)、1.74-1.70(m,2H,CH2)、1.67-1.63(m,4H,CH2)
13C-NMR(CDCl3,ppm):170.2、163.6、45.4,25.7、24.3
元素分析(C8H10N4Cl2):計算値C,41.22%;H,4.32%;N:24.04%、実測値C,41.01%;H,4.68%;N:24.30%であった。 The synthesized compound had a yield of 10.72 g, a yield of 46%, and a melting point of 90-91°C.
For this compound, the analysis results using the equipment described above are as follows:
FT-IR (KBr, cm −1 ): 2940-2860 (CH), 1552 (C═N), 1170 (CN), 842 (C—Cl)
1 H-NMR (CDCl 3 , ppm): 3.82 (t, 4H, CH 2 ), 1.74-1.70 (m, 2H, CH 2 ), 1.67-1.63 (m, 4H , CH2 )
13 C-NMR (CDCl 3 , ppm): 170.2, 163.6, 45.4, 25.7, 24.3
Elemental analysis ( C8H10N4Cl2 ): calculated C, 41.22%; H, 4.32% ; N: 24.04 %, found C, 41.01%; H, 4.68 %; N: 24.30%.
(DCHATの合成)
各実施例で用いるトリアジンジクロリド(DCHAT)は以下のように合成した。
三口フラスコ(300mL)に塩化シアヌル(18.44g、0.100mol)と脱水THF(50mL)を加え、滴下漏斗、窒素導入管、温度計を取り付けて、0℃に冷却した。ジシクロヘキシルアミン(18.13g、0.100mol)をTHF(30mL)に溶かした溶液を0℃で滴下し、2時間攪拌した。炭酸ナトリウム(5.30g、0.050mol)を蒸留水(30mL)に溶かした溶液を、反応溶液の温度が上昇しないように注意しながら0~5℃で滴下し1時間攪拌した。反応溶液を飽和食塩水で分液し、有機層に無水硫酸ナトリウムを加え攪拌して脱水した。吸引ろ過により得られた濾液からTHFを留去して粗生成物を得た。ヘキサン/クロロホルム混合溶媒から再結晶を2回行い、得られた白色柱状結晶を50℃で減圧乾燥した。 (Synthesis of DCHAT)
Triazine dichloride (DCHAT) used in each example was synthesized as follows.
Cyanuric chloride (18.44 g, 0.100 mol) and dehydrated THF (50 mL) were added to a three-necked flask (300 mL), equipped with a dropping funnel, a nitrogen inlet tube and a thermometer, and cooled to 0°C. A solution of dicyclohexylamine (18.13 g, 0.100 mol) in THF (30 mL) was added dropwise at 0° C. and stirred for 2 hours. A solution obtained by dissolving sodium carbonate (5.30 g, 0.050 mol) in distilled water (30 mL) was added dropwise at 0 to 5° C. while taking care not to raise the temperature of the reaction solution, and the mixture was stirred for 1 hour. The reaction solution was liquid-separated with saturated saline, and anhydrous sodium sulfate was added to the organic layer and stirred to dehydrate. THF was distilled off from the filtrate obtained by suction filtration to obtain a crude product. Recrystallization was performed twice from a hexane/chloroform mixed solvent, and the obtained white columnar crystals were dried under reduced pressure at 50°C.
各実施例で用いるトリアジンジクロリド(DCHAT)は以下のように合成した。
三口フラスコ(300mL)に塩化シアヌル(18.44g、0.100mol)と脱水THF(50mL)を加え、滴下漏斗、窒素導入管、温度計を取り付けて、0℃に冷却した。ジシクロヘキシルアミン(18.13g、0.100mol)をTHF(30mL)に溶かした溶液を0℃で滴下し、2時間攪拌した。炭酸ナトリウム(5.30g、0.050mol)を蒸留水(30mL)に溶かした溶液を、反応溶液の温度が上昇しないように注意しながら0~5℃で滴下し1時間攪拌した。反応溶液を飽和食塩水で分液し、有機層に無水硫酸ナトリウムを加え攪拌して脱水した。吸引ろ過により得られた濾液からTHFを留去して粗生成物を得た。ヘキサン/クロロホルム混合溶媒から再結晶を2回行い、得られた白色柱状結晶を50℃で減圧乾燥した。 (Synthesis of DCHAT)
Triazine dichloride (DCHAT) used in each example was synthesized as follows.
Cyanuric chloride (18.44 g, 0.100 mol) and dehydrated THF (50 mL) were added to a three-necked flask (300 mL), equipped with a dropping funnel, a nitrogen inlet tube and a thermometer, and cooled to 0°C. A solution of dicyclohexylamine (18.13 g, 0.100 mol) in THF (30 mL) was added dropwise at 0° C. and stirred for 2 hours. A solution obtained by dissolving sodium carbonate (5.30 g, 0.050 mol) in distilled water (30 mL) was added dropwise at 0 to 5° C. while taking care not to raise the temperature of the reaction solution, and the mixture was stirred for 1 hour. The reaction solution was liquid-separated with saturated saline, and anhydrous sodium sulfate was added to the organic layer and stirred to dehydrate. THF was distilled off from the filtrate obtained by suction filtration to obtain a crude product. Recrystallization was performed twice from a hexane/chloroform mixed solvent, and the obtained white columnar crystals were dried under reduced pressure at 50°C.
合成した化合物は、収量:11.3g、収率:34%、融点:167~168℃であった。
この化合物について、前述した機器を用いての分析結果は、
FT-IR(KBr、cm-1):2923(C-H)、1562(C=N)、1227(C-N)、793(C-Cl)
13C-NMR(CDCl3,ppm):169.0、164.0、56.8、29.7、26.1、25.4.
元素分析(C15H22N4Cl2):計算値C,54.72%;H,6.73%;N,17.02%、実測値C,54.68%;H,6.56%;N,17.17%であった。 The synthesized compound had a yield of 11.3 g, a yield of 34%, and a melting point of 167-168°C.
For this compound, the analysis results using the equipment described above are as follows:
FT-IR (KBr, cm −1 ): 2923 (CH), 1562 (C═N), 1227 (CN), 793 (C—Cl)
13 C-NMR (CDCl 3 , ppm): 169.0, 164.0, 56.8, 29.7, 26.1, 25.4.
Elemental analysis ( C15H22N4Cl2 ): calculated C , 54.72 %; H, 6.73%; N, 17.02%, found C, 54.68%; H, 6.56. %; N, 17.17%.
この化合物について、前述した機器を用いての分析結果は、
FT-IR(KBr、cm-1):2923(C-H)、1562(C=N)、1227(C-N)、793(C-Cl)
13C-NMR(CDCl3,ppm):169.0、164.0、56.8、29.7、26.1、25.4.
元素分析(C15H22N4Cl2):計算値C,54.72%;H,6.73%;N,17.02%、実測値C,54.68%;H,6.56%;N,17.17%であった。 The synthesized compound had a yield of 11.3 g, a yield of 34%, and a melting point of 167-168°C.
For this compound, the analysis results using the equipment described above are as follows:
FT-IR (KBr, cm −1 ): 2923 (CH), 1562 (C═N), 1227 (CN), 793 (C—Cl)
13 C-NMR (CDCl 3 , ppm): 169.0, 164.0, 56.8, 29.7, 26.1, 25.4.
Elemental analysis ( C15H22N4Cl2 ): calculated C , 54.72 %; H, 6.73%; N, 17.02%, found C, 54.68%; H, 6.56. %; N, 17.17%.
(実施例1)
実施例1のポリマー、DCPT-BisAは以下のように合成した。
ナスフラスコ(100mL)にビスフェノールA(BisA)(0.571g、2.50mmol)と1M水酸化ナトリウム水溶液(5.1mL)を攪拌子と共に入れ、溶解させた。相間移動触媒として臭化セチルトリメチルアンモニウム(CTMAB、0.277g、0.760mmol)(モノマーに対して30mol%)を加えて攪拌した。DCPT(0.565g、2.50mmol)を脱水ジクロロメタン(5.0mL)に溶かした溶液をナスフラスコに加え、室温で18時間激しく攪拌した。反応後、酢酸を加えて中和しメタノール(250mL)に注いでポリマーを析出させ、吸引濾過により回収し室温で6時間減圧乾燥させた。得られたポリマーをTHFに溶解しメタノールに注いで再沈殿させた。ポリマーを回収した後、100℃で12時間、減圧乾燥した。 (Example 1)
The polymer of Example 1, DCPT-BisA, was synthesized as follows.
Bisphenol A (BisA) (0.571 g, 2.50 mmol) and 1 M sodium hydroxide aqueous solution (5.1 mL) were placed in an eggplant flask (100 mL) together with a stirrer and dissolved. Cetyltrimethylammonium bromide (CTMAB, 0.277 g, 0.760 mmol) (30 mol % relative to the monomer) was added as a phase transfer catalyst and stirred. A solution of DCPT (0.565 g, 2.50 mmol) dissolved in dehydrated dichloromethane (5.0 mL) was added to an eggplant flask and vigorously stirred at room temperature for 18 hours. After the reaction, acetic acid was added for neutralization, poured into methanol (250 mL) to precipitate a polymer, collected by suction filtration, and dried under reduced pressure at room temperature for 6 hours. The resulting polymer was dissolved in THF and poured into methanol for reprecipitation. After recovering the polymer, it was dried under reduced pressure at 100° C. for 12 hours.
実施例1のポリマー、DCPT-BisAは以下のように合成した。
ナスフラスコ(100mL)にビスフェノールA(BisA)(0.571g、2.50mmol)と1M水酸化ナトリウム水溶液(5.1mL)を攪拌子と共に入れ、溶解させた。相間移動触媒として臭化セチルトリメチルアンモニウム(CTMAB、0.277g、0.760mmol)(モノマーに対して30mol%)を加えて攪拌した。DCPT(0.565g、2.50mmol)を脱水ジクロロメタン(5.0mL)に溶かした溶液をナスフラスコに加え、室温で18時間激しく攪拌した。反応後、酢酸を加えて中和しメタノール(250mL)に注いでポリマーを析出させ、吸引濾過により回収し室温で6時間減圧乾燥させた。得られたポリマーをTHFに溶解しメタノールに注いで再沈殿させた。ポリマーを回収した後、100℃で12時間、減圧乾燥した。 (Example 1)
The polymer of Example 1, DCPT-BisA, was synthesized as follows.
Bisphenol A (BisA) (0.571 g, 2.50 mmol) and 1 M sodium hydroxide aqueous solution (5.1 mL) were placed in an eggplant flask (100 mL) together with a stirrer and dissolved. Cetyltrimethylammonium bromide (CTMAB, 0.277 g, 0.760 mmol) (30 mol % relative to the monomer) was added as a phase transfer catalyst and stirred. A solution of DCPT (0.565 g, 2.50 mmol) dissolved in dehydrated dichloromethane (5.0 mL) was added to an eggplant flask and vigorously stirred at room temperature for 18 hours. After the reaction, acetic acid was added for neutralization, poured into methanol (250 mL) to precipitate a polymer, collected by suction filtration, and dried under reduced pressure at room temperature for 6 hours. The resulting polymer was dissolved in THF and poured into methanol for reprecipitation. After recovering the polymer, it was dried under reduced pressure at 100° C. for 12 hours.
合成した化合物は、収量:0.68g、収率:71%、対数粘度:0.94dL/g(30℃、0.5g/dLのN-メチル-2-ピロリドン溶液)、数平均分子量(Mn):82,000、重量平均分子量(Mw):279,000、分子量分布(Mw/Mn):3.4、平均重合度(n):214であった。
The synthesized compound has a yield of 0.68 g, a yield of 71%, a logarithmic viscosity of 0.94 dL/g (30° C., 0.5 g/dL of N-methyl-2-pyrrolidone solution), and a number average molecular weight (Mn ): 82,000, weight average molecular weight (Mw): 279,000, molecular weight distribution (Mw/Mn): 3.4, average degree of polymerization (n): 214.
このポリマーをN,N-ジメチルアセトアミド(DMAc)に溶解し、ガラス板上に流延した。150℃で12時間減圧乾燥させて、無色透明なキャストフィルム(膜厚40μm)を得た。
この実施例について、前述した機器を用いての分析結果は、
FT-IR(film、cm-1):3058(Ar-H)、2968(C-H)、1560(C=N)、1211(C-O)、1173(C-N)
元素分析(C24H19N3O2)n:計算値C,75.57%;H,5.02%;N,11.02%、実測値C,75.23%;H,5.18%;N,10.84%
溶解性:N-メチル-2-ピロリドン(NMP)、N,N-ジメチルアセトアミド(DMAc)、ニトロベンゼン、テトラヒドロフラン(THF)、1,4-ジオキサン、o-ジクロロベンゼン、ジクロロメタン、ベンゾニトリル、γ-ブチロラクトン、シクロペンタノンに可溶
5%重量減少温度:411℃(空気中)、419℃(窒素中) 10%重量減少温度:420℃(空気中)、428℃(窒素中)、炭化収率:33%(窒素中、800℃)
ガラス転移温度(Tg):184℃(DSC)、178℃(TMA)、175℃(DMA)、熱膨張係数(CTE):87ppm/℃
カットオフ波長:321nm、400nmでの透過率:84%
平均屈折率(n):1.634(d線)、複屈折(Δn):0.001(d線)、屈折率から計算される誘電率(ε):2.67(ε=n2)
誘電率(Dk):2.69(TEモード,10GHz)、2.69(TMモード,10GHz)、2.68(TEモード,20GHz)
誘電正接(Df):0.003(TEモード,10GHz)、0.003(TMモード,10GHz)、0.003(TEモード,20GHz)であった。 This polymer was dissolved in N,N-dimethylacetamide (DMAc) and cast onto a glass plate. It was dried under reduced pressure at 150° C. for 12 hours to obtain a colorless and transparent cast film (thickness: 40 μm).
For this example, the analysis results using the instrument described above are:
FT-IR (film, cm −1 ): 3058 (Ar—H), 2968 (C—H), 1560 (C=N), 1211 (C—O), 1173 (C—N)
Elemental analysis ( C24H19N3O2 )n : calculated C, 75.57 %; H, 5.02%; N, 11.02%; found C, 75.23%; 18%; N, 10.84%
Solubility: N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc), nitrobenzene, tetrahydrofuran (THF), 1,4-dioxane, o-dichlorobenzene, dichloromethane, benzonitrile, γ-butyrolactone , soluble in cyclopentanone 5% weight loss temperature: 411°C (in air), 419°C (in nitrogen) 10% weight loss temperature: 420°C (in air), 428°C (in nitrogen), carbonization yield: 33% (in nitrogen, 800°C)
Glass transition temperature (Tg): 184°C (DSC), 178°C (TMA), 175°C (DMA), coefficient of thermal expansion (CTE): 87 ppm/°C
Cutoff wavelength: 321 nm, transmittance at 400 nm: 84%
Average refractive index (n): 1.634 (d line), birefringence (Δn): 0.001 (d line), dielectric constant (ε) calculated from refractive index: 2.67 (ε = n 2 )
Dielectric constant (Dk): 2.69 (TE mode, 10 GHz), 2.69 (TM mode, 10 GHz), 2.68 (TE mode, 20 GHz)
Dielectric loss tangent (Df): 0.003 (TE mode, 10 GHz), 0.003 (TM mode, 10 GHz), 0.003 (TE mode, 20 GHz).
この実施例について、前述した機器を用いての分析結果は、
FT-IR(film、cm-1):3058(Ar-H)、2968(C-H)、1560(C=N)、1211(C-O)、1173(C-N)
元素分析(C24H19N3O2)n:計算値C,75.57%;H,5.02%;N,11.02%、実測値C,75.23%;H,5.18%;N,10.84%
溶解性:N-メチル-2-ピロリドン(NMP)、N,N-ジメチルアセトアミド(DMAc)、ニトロベンゼン、テトラヒドロフラン(THF)、1,4-ジオキサン、o-ジクロロベンゼン、ジクロロメタン、ベンゾニトリル、γ-ブチロラクトン、シクロペンタノンに可溶
5%重量減少温度:411℃(空気中)、419℃(窒素中) 10%重量減少温度:420℃(空気中)、428℃(窒素中)、炭化収率:33%(窒素中、800℃)
ガラス転移温度(Tg):184℃(DSC)、178℃(TMA)、175℃(DMA)、熱膨張係数(CTE):87ppm/℃
カットオフ波長:321nm、400nmでの透過率:84%
平均屈折率(n):1.634(d線)、複屈折(Δn):0.001(d線)、屈折率から計算される誘電率(ε):2.67(ε=n2)
誘電率(Dk):2.69(TEモード,10GHz)、2.69(TMモード,10GHz)、2.68(TEモード,20GHz)
誘電正接(Df):0.003(TEモード,10GHz)、0.003(TMモード,10GHz)、0.003(TEモード,20GHz)であった。 This polymer was dissolved in N,N-dimethylacetamide (DMAc) and cast onto a glass plate. It was dried under reduced pressure at 150° C. for 12 hours to obtain a colorless and transparent cast film (thickness: 40 μm).
For this example, the analysis results using the instrument described above are:
FT-IR (film, cm −1 ): 3058 (Ar—H), 2968 (C—H), 1560 (C=N), 1211 (C—O), 1173 (C—N)
Elemental analysis ( C24H19N3O2 )n : calculated C, 75.57 %; H, 5.02%; N, 11.02%; found C, 75.23%; 18%; N, 10.84%
Solubility: N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc), nitrobenzene, tetrahydrofuran (THF), 1,4-dioxane, o-dichlorobenzene, dichloromethane, benzonitrile, γ-butyrolactone , soluble in cyclopentanone 5% weight loss temperature: 411°C (in air), 419°C (in nitrogen) 10% weight loss temperature: 420°C (in air), 428°C (in nitrogen), carbonization yield: 33% (in nitrogen, 800°C)
Glass transition temperature (Tg): 184°C (DSC), 178°C (TMA), 175°C (DMA), coefficient of thermal expansion (CTE): 87 ppm/°C
Cutoff wavelength: 321 nm, transmittance at 400 nm: 84%
Average refractive index (n): 1.634 (d line), birefringence (Δn): 0.001 (d line), dielectric constant (ε) calculated from refractive index: 2.67 (ε = n 2 )
Dielectric constant (Dk): 2.69 (TE mode, 10 GHz), 2.69 (TM mode, 10 GHz), 2.68 (TE mode, 20 GHz)
Dielectric loss tangent (Df): 0.003 (TE mode, 10 GHz), 0.003 (TM mode, 10 GHz), 0.003 (TE mode, 20 GHz).
(実施例2)
実施例2のポリマー、DCPT-BisZは以下のように合成した。
ナスフラスコ(100mL)に4,4’-シクロヘキシリデンビスフェノール(BisZ)(0.671g、2.50mmol)と1M 水酸化ナトリウム水溶液(5.1mL)を攪拌子と共に入れ、溶解させた。相間移動触媒として臭化セチルトリメチルアンモニウム(CTMAB、0.277g、0.760mmol)(モノマーに対して30mol%)を加えて攪拌した。DCPT(0.565g、2.50mmol)を脱水ジクロロメタン(5.0mL)に溶かした溶液をナスフラスコに加え、室温で18時間激しく攪拌した。反応後、酢酸を加えて中和しメタノール(250mL)に注いでポリマーを析出させ、吸引濾過により回収し室温で6時間減圧乾燥させた。得られたポリマーをクロロホルムに溶解しメタノールに注いで再沈殿させた。ポリマーを回収した後、100℃で12時間、減圧乾燥した。 (Example 2)
The polymer of Example 2, DCPT-BisZ, was synthesized as follows.
4,4′-Cyclohexylidenebisphenol (BisZ) (0.671 g, 2.50 mmol) and 1M aqueous sodium hydroxide solution (5.1 mL) were placed in an eggplant flask (100 mL) with a stirrer and dissolved. Cetyltrimethylammonium bromide (CTMAB, 0.277 g, 0.760 mmol) (30 mol % relative to the monomer) was added as a phase transfer catalyst and stirred. A solution of DCPT (0.565 g, 2.50 mmol) dissolved in dehydrated dichloromethane (5.0 mL) was added to an eggplant flask and vigorously stirred at room temperature for 18 hours. After the reaction, acetic acid was added for neutralization, poured into methanol (250 mL) to precipitate a polymer, collected by suction filtration, and dried under reduced pressure at room temperature for 6 hours. The resulting polymer was dissolved in chloroform and poured into methanol for reprecipitation. After recovering the polymer, it was dried under reduced pressure at 100° C. for 12 hours.
実施例2のポリマー、DCPT-BisZは以下のように合成した。
ナスフラスコ(100mL)に4,4’-シクロヘキシリデンビスフェノール(BisZ)(0.671g、2.50mmol)と1M 水酸化ナトリウム水溶液(5.1mL)を攪拌子と共に入れ、溶解させた。相間移動触媒として臭化セチルトリメチルアンモニウム(CTMAB、0.277g、0.760mmol)(モノマーに対して30mol%)を加えて攪拌した。DCPT(0.565g、2.50mmol)を脱水ジクロロメタン(5.0mL)に溶かした溶液をナスフラスコに加え、室温で18時間激しく攪拌した。反応後、酢酸を加えて中和しメタノール(250mL)に注いでポリマーを析出させ、吸引濾過により回収し室温で6時間減圧乾燥させた。得られたポリマーをクロロホルムに溶解しメタノールに注いで再沈殿させた。ポリマーを回収した後、100℃で12時間、減圧乾燥した。 (Example 2)
The polymer of Example 2, DCPT-BisZ, was synthesized as follows.
4,4′-Cyclohexylidenebisphenol (BisZ) (0.671 g, 2.50 mmol) and 1M aqueous sodium hydroxide solution (5.1 mL) were placed in an eggplant flask (100 mL) with a stirrer and dissolved. Cetyltrimethylammonium bromide (CTMAB, 0.277 g, 0.760 mmol) (30 mol % relative to the monomer) was added as a phase transfer catalyst and stirred. A solution of DCPT (0.565 g, 2.50 mmol) dissolved in dehydrated dichloromethane (5.0 mL) was added to an eggplant flask and vigorously stirred at room temperature for 18 hours. After the reaction, acetic acid was added for neutralization, poured into methanol (250 mL) to precipitate a polymer, collected by suction filtration, and dried under reduced pressure at room temperature for 6 hours. The resulting polymer was dissolved in chloroform and poured into methanol for reprecipitation. After recovering the polymer, it was dried under reduced pressure at 100° C. for 12 hours.
合成した化合物は、収量:0.95g、収率:90%、対数粘度:1.02dL/g(30℃、0.5g/dLのテトラヒドロフラン溶液)であった。
The synthesized compound was yield: 0.95 g, yield: 90%, logarithmic viscosity: 1.02 dL/g (30°C, 0.5 g/dL tetrahydrofuran solution).
このポリマーをクロロホルムに溶解し、ガラス板上に流延した。150℃で12時間減圧乾燥させて、無色透明なキャストフィルム(膜厚57μm)を得た。
この実施例について、前述した機器を用いての分析結果は、
FT-IR(film、cm-1):3057(Ar-H)、2951(C-H)、1560(C=N)、1211(C-O)、1173(C-N)
1H-NMR(CDCl3,ppm):8.21(d,2H,Ar-H)、7.46(t,1H,Ar-H)、7.35(m,6H,Ar-H)、7.17(d,4H,Ar-H)、2.32(t,4H,CH2)、1.62(m,4H,CH2)、1.54(t,2H,CH2)
13C-NMR(CDCl3,ppm):175.74、172.96、149.74、146.03、134.55、133.29、129.24、128.61、128.41、121.30、46.09、37.57、26.44、22.98
元素分析(C27H23N3O2)n:計算値C,76.94%;H,5.50%;N,9.97%、実測値C,76.59%;H,5.86%;N,10.10%
溶解性:N-メチル-2-ピロリドン(NMP)、ニトロベンゼン、テトラヒドロフラン(THF)、1,4-ジオキサン、o-ジクロロベンゼン、クロロホルム、ジクロロメタン、ベンゾニトリル、シクロペンタノンに可溶。
5%重量減少温度:411℃(空気中)、421℃(窒素中) 10%重量減少温度:420℃(空気中)、429℃(窒素中)、炭化収率:25%(窒素中、800℃)
ガラス転移温度(Tg):201℃(DSC)、180℃(TMA)、181℃(DMA)、熱膨張係数(CTE):75ppm/℃
カットオフ波長:319nm、400nmでの透過率:83%
平均屈折率(n):1.633(d線)、複屈折(Δn):0.001(d線)、屈折率から計算される誘電率(ε):2.67(ε=n2)
誘電率(Dk):2.65(TEモード,10GHz)、2.68(TMモード,10GHz)、2.63(TEモード,20GHz)
誘電正接(Df):0.002(TEモード,10GHz)、0.002(TMモード,10GHz)、0.003(TEモード,20GHz)であった。 This polymer was dissolved in chloroform and cast onto a glass plate. It was dried under reduced pressure at 150° C. for 12 hours to obtain a colorless and transparent cast film (thickness: 57 μm).
For this example, the analysis results using the instrument described above are:
FT-IR (film, cm −1 ): 3057 (Ar—H), 2951 (C—H), 1560 (C=N), 1211 (C—O), 1173 (C—N)
1 H-NMR (CDCl 3 , ppm): 8.21 (d, 2H, Ar—H), 7.46 (t, 1H, Ar—H), 7.35 (m, 6H, Ar—H), 7.17 (d, 4H, Ar—H), 2.32 (t, 4H, CH 2 ), 1.62 (m, 4H, CH 2 ), 1.54 (t, 2H, CH 2 )
13 C-NMR (CDCl 3 , ppm): 175.74, 172.96, 149.74, 146.03, 134.55, 133.29, 129.24, 128.61, 128.41, 121.30 , 46.09, 37.57, 26.44, 22.98
Elemental analysis ( C27H23N3O2 )n : calculated C, 76.94 %; H, 5.50%; N, 9.97%; found C, 76.59%; 86%; N, 10.10%
Solubility: Soluble in N-methyl-2-pyrrolidone (NMP), nitrobenzene, tetrahydrofuran (THF), 1,4-dioxane, o-dichlorobenzene, chloroform, dichloromethane, benzonitrile, cyclopentanone.
5% weight loss temperature: 411°C (in air), 421°C (in nitrogen) 10% weight loss temperature: 420°C (in air), 429°C (in nitrogen), carbonization yield: 25% (in nitrogen, 800 °C)
Glass transition temperature (Tg): 201°C (DSC), 180°C (TMA), 181°C (DMA), coefficient of thermal expansion (CTE): 75 ppm/°C
Cutoff wavelength: 319 nm, transmittance at 400 nm: 83%
Average refractive index (n): 1.633 (d line), birefringence (Δn): 0.001 (d line), dielectric constant (ε) calculated from the refractive index: 2.67 (ε = n 2 )
Dielectric constant (Dk): 2.65 (TE mode, 10 GHz), 2.68 (TM mode, 10 GHz), 2.63 (TE mode, 20 GHz)
Dielectric loss tangent (Df): 0.002 (TE mode, 10 GHz), 0.002 (TM mode, 10 GHz), 0.003 (TE mode, 20 GHz).
この実施例について、前述した機器を用いての分析結果は、
FT-IR(film、cm-1):3057(Ar-H)、2951(C-H)、1560(C=N)、1211(C-O)、1173(C-N)
1H-NMR(CDCl3,ppm):8.21(d,2H,Ar-H)、7.46(t,1H,Ar-H)、7.35(m,6H,Ar-H)、7.17(d,4H,Ar-H)、2.32(t,4H,CH2)、1.62(m,4H,CH2)、1.54(t,2H,CH2)
13C-NMR(CDCl3,ppm):175.74、172.96、149.74、146.03、134.55、133.29、129.24、128.61、128.41、121.30、46.09、37.57、26.44、22.98
元素分析(C27H23N3O2)n:計算値C,76.94%;H,5.50%;N,9.97%、実測値C,76.59%;H,5.86%;N,10.10%
溶解性:N-メチル-2-ピロリドン(NMP)、ニトロベンゼン、テトラヒドロフラン(THF)、1,4-ジオキサン、o-ジクロロベンゼン、クロロホルム、ジクロロメタン、ベンゾニトリル、シクロペンタノンに可溶。
5%重量減少温度:411℃(空気中)、421℃(窒素中) 10%重量減少温度:420℃(空気中)、429℃(窒素中)、炭化収率:25%(窒素中、800℃)
ガラス転移温度(Tg):201℃(DSC)、180℃(TMA)、181℃(DMA)、熱膨張係数(CTE):75ppm/℃
カットオフ波長:319nm、400nmでの透過率:83%
平均屈折率(n):1.633(d線)、複屈折(Δn):0.001(d線)、屈折率から計算される誘電率(ε):2.67(ε=n2)
誘電率(Dk):2.65(TEモード,10GHz)、2.68(TMモード,10GHz)、2.63(TEモード,20GHz)
誘電正接(Df):0.002(TEモード,10GHz)、0.002(TMモード,10GHz)、0.003(TEモード,20GHz)であった。 This polymer was dissolved in chloroform and cast onto a glass plate. It was dried under reduced pressure at 150° C. for 12 hours to obtain a colorless and transparent cast film (thickness: 57 μm).
For this example, the analysis results using the instrument described above are:
FT-IR (film, cm −1 ): 3057 (Ar—H), 2951 (C—H), 1560 (C=N), 1211 (C—O), 1173 (C—N)
1 H-NMR (CDCl 3 , ppm): 8.21 (d, 2H, Ar—H), 7.46 (t, 1H, Ar—H), 7.35 (m, 6H, Ar—H), 7.17 (d, 4H, Ar—H), 2.32 (t, 4H, CH 2 ), 1.62 (m, 4H, CH 2 ), 1.54 (t, 2H, CH 2 )
13 C-NMR (CDCl 3 , ppm): 175.74, 172.96, 149.74, 146.03, 134.55, 133.29, 129.24, 128.61, 128.41, 121.30 , 46.09, 37.57, 26.44, 22.98
Elemental analysis ( C27H23N3O2 )n : calculated C, 76.94 %; H, 5.50%; N, 9.97%; found C, 76.59%; 86%; N, 10.10%
Solubility: Soluble in N-methyl-2-pyrrolidone (NMP), nitrobenzene, tetrahydrofuran (THF), 1,4-dioxane, o-dichlorobenzene, chloroform, dichloromethane, benzonitrile, cyclopentanone.
5% weight loss temperature: 411°C (in air), 421°C (in nitrogen) 10% weight loss temperature: 420°C (in air), 429°C (in nitrogen), carbonization yield: 25% (in nitrogen, 800 °C)
Glass transition temperature (Tg): 201°C (DSC), 180°C (TMA), 181°C (DMA), coefficient of thermal expansion (CTE): 75 ppm/°C
Cutoff wavelength: 319 nm, transmittance at 400 nm: 83%
Average refractive index (n): 1.633 (d line), birefringence (Δn): 0.001 (d line), dielectric constant (ε) calculated from the refractive index: 2.67 (ε = n 2 )
Dielectric constant (Dk): 2.65 (TE mode, 10 GHz), 2.68 (TM mode, 10 GHz), 2.63 (TE mode, 20 GHz)
Dielectric loss tangent (Df): 0.002 (TE mode, 10 GHz), 0.002 (TM mode, 10 GHz), 0.003 (TE mode, 20 GHz).
(実施例3)
実施例3のポリマー、DCPT-BisP3MZは以下のように合成した。
ナスフラスコ(100mL)に4-[1-(4-ヒドロキシフェノール)-3-メチルシクロヘキシル]フェノール(BisP3MZ)(0.706 g、2.50mmol)と1M 水酸化ナトリウム水溶液(5.1mL)を攪拌子と共に入れ、溶解させた。相間移動触媒として臭化セチルトリメチルアンモニウム(CTMAB、0.277g、0.760mmol)(モノマーに対して30mol%)を加えて攪拌した。DCPT(0.565g、2.50mmol)を脱水ジクロロメタン(5.0mL)に溶かした溶液をなすフラスコに加え、室温で18時間激しく攪拌した。反応後、酢酸を加えて中和しメタノール(250mL)に注いでポリマーを析出させ、吸引ろ過により回収し室温で6時間減圧乾燥させた。得られたポリマーをクロロホルムに溶解しメタノールに注いで再沈殿させた。ポリマーを回収した後、100℃で12時間、減圧乾燥した。 (Example 3)
The polymer of Example 3, DCPT-BisP3MZ, was synthesized as follows.
4-[1-(4-Hydroxyphenol)-3-methylcyclohexyl]phenol (BisP3MZ) (0.706 g, 2.50 mmol) and 1 M sodium hydroxide aqueous solution (5.1 mL) were stirred in an eggplant flask (100 mL). It was put together with the child and allowed to dissolve. Cetyltrimethylammonium bromide (CTMAB, 0.277 g, 0.760 mmol) (30 mol % relative to the monomer) was added as a phase transfer catalyst and stirred. A solution of DCPT (0.565 g, 2.50 mmol) in dry dichloromethane (5.0 mL) was added to the flask and stirred vigorously at room temperature for 18 hours. After the reaction, acetic acid was added for neutralization, poured into methanol (250 mL) to precipitate a polymer, collected by suction filtration, and dried under reduced pressure at room temperature for 6 hours. The resulting polymer was dissolved in chloroform and poured into methanol for reprecipitation. After recovering the polymer, it was dried under reduced pressure at 100° C. for 12 hours.
実施例3のポリマー、DCPT-BisP3MZは以下のように合成した。
ナスフラスコ(100mL)に4-[1-(4-ヒドロキシフェノール)-3-メチルシクロヘキシル]フェノール(BisP3MZ)(0.706 g、2.50mmol)と1M 水酸化ナトリウム水溶液(5.1mL)を攪拌子と共に入れ、溶解させた。相間移動触媒として臭化セチルトリメチルアンモニウム(CTMAB、0.277g、0.760mmol)(モノマーに対して30mol%)を加えて攪拌した。DCPT(0.565g、2.50mmol)を脱水ジクロロメタン(5.0mL)に溶かした溶液をなすフラスコに加え、室温で18時間激しく攪拌した。反応後、酢酸を加えて中和しメタノール(250mL)に注いでポリマーを析出させ、吸引ろ過により回収し室温で6時間減圧乾燥させた。得られたポリマーをクロロホルムに溶解しメタノールに注いで再沈殿させた。ポリマーを回収した後、100℃で12時間、減圧乾燥した。 (Example 3)
The polymer of Example 3, DCPT-BisP3MZ, was synthesized as follows.
4-[1-(4-Hydroxyphenol)-3-methylcyclohexyl]phenol (BisP3MZ) (0.706 g, 2.50 mmol) and 1 M sodium hydroxide aqueous solution (5.1 mL) were stirred in an eggplant flask (100 mL). It was put together with the child and allowed to dissolve. Cetyltrimethylammonium bromide (CTMAB, 0.277 g, 0.760 mmol) (30 mol % relative to the monomer) was added as a phase transfer catalyst and stirred. A solution of DCPT (0.565 g, 2.50 mmol) in dry dichloromethane (5.0 mL) was added to the flask and stirred vigorously at room temperature for 18 hours. After the reaction, acetic acid was added for neutralization, poured into methanol (250 mL) to precipitate a polymer, collected by suction filtration, and dried under reduced pressure at room temperature for 6 hours. The resulting polymer was dissolved in chloroform and poured into methanol for reprecipitation. After recovering the polymer, it was dried under reduced pressure at 100° C. for 12 hours.
合成した化合物は、収量:0.76g、収率:70%、対数粘度:0.92dL/g(30℃、0.5g/dLのN-メチル-2-ピロリドン溶液)、数平均分子量(Mn):72,000、重量平均分子量(Mw):144,000、分子量分布(Mw/Mn):2.0、平均重合度(n):165であった。
The synthesized compound has a yield of 0.76 g, a yield of 70%, a logarithmic viscosity of 0.92 dL/g (30° C., 0.5 g/dL of N-methyl-2-pyrrolidone solution), and a number average molecular weight (Mn ): 72,000, weight average molecular weight (Mw): 144,000, molecular weight distribution (Mw/Mn): 2.0, average degree of polymerization (n): 165.
このポリマーをクロロホルムに溶解し、ガラス板上に流延した。150℃で12時間減圧乾燥させて、無色透明なキャストフィルム(膜厚70μm)を得た。
この実施例について、前述した機器を用いての分析結果は、
FT-IR(film、cm-1):3056(Ar-H)、2949(C-H)、1560(C=N)、1211(C-O)、1173(C-N)
1H-NMR(CDCl3,ppm):8.19(m,2H,Ar-H)、7.44(t,3H,Ar-H)、7.35(m,2H,Ar-H)、7.23(m,4H,Ar-H)、7.13(m,2H,Ar-H)、2.65(q,2H,CH2)、1.89-1.53(m,6H,CH2,CH3)、1.03-0.97(m,4H,CH2)
13C-NMR(CDCl3,ppm):175.65、173.00、149.88、143.19、134.54、133.32、129.26、128.61、127.47、121.58、46.65、46.34、37.16、35.20、28.74、23.10、22.90
元素分析(C28H25N3O2)n:計算値C,77.21%;H,5.79%;N,9.65%、実測値C,76.61%;H,5.82%;N,9.66%
溶解性:N-メチル-2-ピロリドン(NMP)、N,N-ジメチルアセトアミド(DMAc)、ニトロベンゼン、テトラヒドロフラン(THF)、1,4-ジオキサン、o-ジクロロベンゼン、クロロホルム、ジクロロメタン、ベンゾニトリル、シクロヘキサノン、シクロペンタノンに可溶
5%重量減少温度:397℃(空気中)、416℃(窒素中) 10%重量減少温度:416℃(空気中)、426℃(窒素中)、炭化収率:18%(窒素中、800℃)
ガラス転移温度(Tg):225℃(DSC)、226℃(TMA)、221℃(DMA)、熱膨張係数(CTE):99ppm/℃
カットオフ波長:323nm、400nmでの透過率:81%、平均屈折率(n):1.617(d線)、複屈折(Δn):0.002(d線)、屈折率から計算される誘電率(ε):2.61(ε=n2)
誘電率(Dk):2.62(TEモード,10GHz)、2.61(TMモード,10GHz)、2.61(TEモード,20GHz)
誘電正接(Df):0.003(TEモード,10GHz)、0.003(TMモード,10GHz)、0.003(TEモード,20GHz)であった。 This polymer was dissolved in chloroform and cast onto a glass plate. It was dried under reduced pressure at 150° C. for 12 hours to obtain a colorless and transparent cast film (thickness: 70 μm).
For this example, the analysis results using the instrument described above are:
FT-IR (film, cm −1 ): 3056 (Ar—H), 2949 (C—H), 1560 (C=N), 1211 (C—O), 1173 (C—N)
1 H-NMR (CDCl 3 , ppm): 8.19 (m, 2H, Ar—H), 7.44 (t, 3H, Ar—H), 7.35 (m, 2H, Ar—H), 7.23 (m, 4H, Ar—H), 7.13 (m, 2H, Ar—H), 2.65 (q, 2H, CH 2 ), 1.89-1.53 (m, 6H, CH 2 , CH 3 ), 1.03-0.97 (m, 4H, CH 2 )
13 C-NMR (CDCl 3 , ppm): 175.65, 173.00, 149.88, 143.19, 134.54, 133.32, 129.26, 128.61, 127.47, 121.58 , 46.65, 46.34, 37.16, 35.20, 28.74, 23.10, 22.90
Elemental analysis ( C28H25N3O2 )n : calculated C, 77.21%; H, 5.79%; N, 9.65%; found C, 76.61 %; 82%; N, 9.66%
Solubility: N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc), nitrobenzene, tetrahydrofuran (THF), 1,4-dioxane, o-dichlorobenzene, chloroform, dichloromethane, benzonitrile, cyclohexanone , soluble in cyclopentanone 5% weight loss temperature: 397°C (in air), 416°C (in nitrogen) 10% weight loss temperature: 416°C (in air), 426°C (in nitrogen), carbonization yield: 18% (in nitrogen, 800°C)
Glass transition temperature (Tg): 225°C (DSC), 226°C (TMA), 221°C (DMA), coefficient of thermal expansion (CTE): 99 ppm/°C
Cutoff wavelength: 323 nm, transmittance at 400 nm: 81%, average refractive index (n): 1.617 (d line), birefringence (Δn): 0.002 (d line), calculated from the refractive index Permittivity (ε): 2.61 (ε=n 2 )
Dielectric constant (Dk): 2.62 (TE mode, 10 GHz), 2.61 (TM mode, 10 GHz), 2.61 (TE mode, 20 GHz)
Dielectric loss tangent (Df): 0.003 (TE mode, 10 GHz), 0.003 (TM mode, 10 GHz), 0.003 (TE mode, 20 GHz).
この実施例について、前述した機器を用いての分析結果は、
FT-IR(film、cm-1):3056(Ar-H)、2949(C-H)、1560(C=N)、1211(C-O)、1173(C-N)
1H-NMR(CDCl3,ppm):8.19(m,2H,Ar-H)、7.44(t,3H,Ar-H)、7.35(m,2H,Ar-H)、7.23(m,4H,Ar-H)、7.13(m,2H,Ar-H)、2.65(q,2H,CH2)、1.89-1.53(m,6H,CH2,CH3)、1.03-0.97(m,4H,CH2)
13C-NMR(CDCl3,ppm):175.65、173.00、149.88、143.19、134.54、133.32、129.26、128.61、127.47、121.58、46.65、46.34、37.16、35.20、28.74、23.10、22.90
元素分析(C28H25N3O2)n:計算値C,77.21%;H,5.79%;N,9.65%、実測値C,76.61%;H,5.82%;N,9.66%
溶解性:N-メチル-2-ピロリドン(NMP)、N,N-ジメチルアセトアミド(DMAc)、ニトロベンゼン、テトラヒドロフラン(THF)、1,4-ジオキサン、o-ジクロロベンゼン、クロロホルム、ジクロロメタン、ベンゾニトリル、シクロヘキサノン、シクロペンタノンに可溶
5%重量減少温度:397℃(空気中)、416℃(窒素中) 10%重量減少温度:416℃(空気中)、426℃(窒素中)、炭化収率:18%(窒素中、800℃)
ガラス転移温度(Tg):225℃(DSC)、226℃(TMA)、221℃(DMA)、熱膨張係数(CTE):99ppm/℃
カットオフ波長:323nm、400nmでの透過率:81%、平均屈折率(n):1.617(d線)、複屈折(Δn):0.002(d線)、屈折率から計算される誘電率(ε):2.61(ε=n2)
誘電率(Dk):2.62(TEモード,10GHz)、2.61(TMモード,10GHz)、2.61(TEモード,20GHz)
誘電正接(Df):0.003(TEモード,10GHz)、0.003(TMモード,10GHz)、0.003(TEモード,20GHz)であった。 This polymer was dissolved in chloroform and cast onto a glass plate. It was dried under reduced pressure at 150° C. for 12 hours to obtain a colorless and transparent cast film (thickness: 70 μm).
For this example, the analysis results using the instrument described above are:
FT-IR (film, cm −1 ): 3056 (Ar—H), 2949 (C—H), 1560 (C=N), 1211 (C—O), 1173 (C—N)
1 H-NMR (CDCl 3 , ppm): 8.19 (m, 2H, Ar—H), 7.44 (t, 3H, Ar—H), 7.35 (m, 2H, Ar—H), 7.23 (m, 4H, Ar—H), 7.13 (m, 2H, Ar—H), 2.65 (q, 2H, CH 2 ), 1.89-1.53 (m, 6H, CH 2 , CH 3 ), 1.03-0.97 (m, 4H, CH 2 )
13 C-NMR (CDCl 3 , ppm): 175.65, 173.00, 149.88, 143.19, 134.54, 133.32, 129.26, 128.61, 127.47, 121.58 , 46.65, 46.34, 37.16, 35.20, 28.74, 23.10, 22.90
Elemental analysis ( C28H25N3O2 )n : calculated C, 77.21%; H, 5.79%; N, 9.65%; found C, 76.61 %; 82%; N, 9.66%
Solubility: N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc), nitrobenzene, tetrahydrofuran (THF), 1,4-dioxane, o-dichlorobenzene, chloroform, dichloromethane, benzonitrile, cyclohexanone , soluble in cyclopentanone 5% weight loss temperature: 397°C (in air), 416°C (in nitrogen) 10% weight loss temperature: 416°C (in air), 426°C (in nitrogen), carbonization yield: 18% (in nitrogen, 800°C)
Glass transition temperature (Tg): 225°C (DSC), 226°C (TMA), 221°C (DMA), coefficient of thermal expansion (CTE): 99 ppm/°C
Cutoff wavelength: 323 nm, transmittance at 400 nm: 81%, average refractive index (n): 1.617 (d line), birefringence (Δn): 0.002 (d line), calculated from the refractive index Permittivity (ε): 2.61 (ε=n 2 )
Dielectric constant (Dk): 2.62 (TE mode, 10 GHz), 2.61 (TM mode, 10 GHz), 2.61 (TE mode, 20 GHz)
Dielectric loss tangent (Df): 0.003 (TE mode, 10 GHz), 0.003 (TM mode, 10 GHz), 0.003 (TE mode, 20 GHz).
(実施例4)
実施例4のポリマー、DCPT-BisPHTGは以下のように合成した。
ナスフラスコ(100mL)に4-[1-(4-ヒドロキシフェノール)-3,5,5-トリメチルシクロヘキシル]フェノール(BisPHTG)(0.776g、2.50mmol)と1M 水酸化ナトリウム水溶液(5.1mL)を攪拌子と共に入れ、溶解させた。相間移動触媒として臭化セチルトリメチルアンモニウム(CTMAB、0.277 g、0.760mmol)(モノマーに対して30mol%)を加えて攪拌した。DCPT(0.565g、2.50mmol)を脱水ジクロロメタン(5.0mL)に溶かした溶液をナスフラスコに加え、室温で18時間激しく攪拌した。反応後、酢酸を加えて中和しメタノール(250mL)に注いでポリマーを析出させ、吸引ろ過により回収し、室温で6時間減圧乾燥させた。得られたポリマーをクロロホルムに溶解し、メタノールに注いで再沈殿させた。ポリマーを回収した後、100℃で12時間、減圧乾燥した。 (Example 4)
The polymer of Example 4, DCPT-BisPHTG, was synthesized as follows.
4-[1-(4-Hydroxyphenol)-3,5,5-trimethylcyclohexyl]phenol (BisPHTG) (0.776 g, 2.50 mmol) and 1 M aqueous sodium hydroxide solution (5.1 mL) were placed in an eggplant flask (100 mL). ) was added with a stirrer and dissolved. Cetyltrimethylammonium bromide (CTMAB, 0.277 g, 0.760 mmol) (30 mol % relative to the monomer) was added as a phase transfer catalyst and stirred. A solution of DCPT (0.565 g, 2.50 mmol) dissolved in dehydrated dichloromethane (5.0 mL) was added to an eggplant flask and vigorously stirred at room temperature for 18 hours. After the reaction, acetic acid was added for neutralization, poured into methanol (250 mL) to precipitate a polymer, collected by suction filtration, and dried under reduced pressure at room temperature for 6 hours. The resulting polymer was dissolved in chloroform and poured into methanol for reprecipitation. After recovering the polymer, it was dried under reduced pressure at 100° C. for 12 hours.
実施例4のポリマー、DCPT-BisPHTGは以下のように合成した。
ナスフラスコ(100mL)に4-[1-(4-ヒドロキシフェノール)-3,5,5-トリメチルシクロヘキシル]フェノール(BisPHTG)(0.776g、2.50mmol)と1M 水酸化ナトリウム水溶液(5.1mL)を攪拌子と共に入れ、溶解させた。相間移動触媒として臭化セチルトリメチルアンモニウム(CTMAB、0.277 g、0.760mmol)(モノマーに対して30mol%)を加えて攪拌した。DCPT(0.565g、2.50mmol)を脱水ジクロロメタン(5.0mL)に溶かした溶液をナスフラスコに加え、室温で18時間激しく攪拌した。反応後、酢酸を加えて中和しメタノール(250mL)に注いでポリマーを析出させ、吸引ろ過により回収し、室温で6時間減圧乾燥させた。得られたポリマーをクロロホルムに溶解し、メタノールに注いで再沈殿させた。ポリマーを回収した後、100℃で12時間、減圧乾燥した。 (Example 4)
The polymer of Example 4, DCPT-BisPHTG, was synthesized as follows.
4-[1-(4-Hydroxyphenol)-3,5,5-trimethylcyclohexyl]phenol (BisPHTG) (0.776 g, 2.50 mmol) and 1 M aqueous sodium hydroxide solution (5.1 mL) were placed in an eggplant flask (100 mL). ) was added with a stirrer and dissolved. Cetyltrimethylammonium bromide (CTMAB, 0.277 g, 0.760 mmol) (30 mol % relative to the monomer) was added as a phase transfer catalyst and stirred. A solution of DCPT (0.565 g, 2.50 mmol) dissolved in dehydrated dichloromethane (5.0 mL) was added to an eggplant flask and vigorously stirred at room temperature for 18 hours. After the reaction, acetic acid was added for neutralization, poured into methanol (250 mL) to precipitate a polymer, collected by suction filtration, and dried under reduced pressure at room temperature for 6 hours. The resulting polymer was dissolved in chloroform and poured into methanol for reprecipitation. After recovering the polymer, it was dried under reduced pressure at 100° C. for 12 hours.
合成した化合物は、収量:0.95g、収率:82%、対数粘度:1.84dL/g(30℃、0.5g/dLのN-メチル-2-ピロリドン溶液)、数平均分子量(Mn):264,000、重量平均分子量(Mw):422,000、分子量分布(Mw/Mn):1.6であった。
The synthesized compound has a yield of 0.95 g, a yield of 82%, a logarithmic viscosity of 1.84 dL/g (30° C., 0.5 g/dL of N-methyl-2-pyrrolidone solution), and a number average molecular weight (Mn ): 264,000, weight average molecular weight (Mw): 422,000, molecular weight distribution (Mw/Mn): 1.6.
このポリマーをクロロホルムに溶解し、ガラス板上に流延した。150 ℃で12時間減圧乾燥させて、無色透明なキャストフィルム(膜厚60μm)を得た。
この実施例について、前述した機器を用いての分析結果は、
FT-IR(film、cm-1):3056(Ar-H)、2949(C-H)、1560(C=N)、1211(C-O)、1173(C-N)
1H-NMR(CDCl3,ppm):8.18-8.03(m,2H,Ar-H)、7.44(m,3H,Ar-H)、7.29(m,4H,Ar-H)、7.14(m,4H,Ar-H)、2.74(d,1H,CH)、2.54(d,1H,CH)、2.08-2.04(m,2H,CH2)、1.44(d,1H,CH)、1.26(t,1H,CH)、1.04-0.91(m,7H,CH,CH3)、0.51(s,3H,CH3)
元素分析(C30H29N3O2)n:計算値C,77.73%;H,6.30%;N,9.07%、実測値C,77.60%;H,6.40%;N,8.95%
溶解性:N-メチル-2-ピロリドン(NMP)、N,N-ジメチルアセトアミド(DMAc)、ニトロベンゼン、テトラヒドロフラン(THF)、1,4-ジオキサン、o-ジクロロベンゼン、クロロホルム、ジクロロメタン、ベンゾニトリル、シクロペンタノンに可溶
5%重量減少温度:407℃(空気中)、421℃(窒素中) 10%重量減少温度:420℃(空気中)、431℃(窒素中)、炭化収率:18(窒素中、800℃)
ガラス転移温度(Tg):243℃(DSC)、243℃(TMA)、246℃(DMA)、熱膨張係数(CTE):76ppm/℃
カットオフ波長:319nm、400nmでの透過率:80%
平均屈折率(n):1.598(d線)、複屈折(Δn):0.008(d線)、屈折率から計算される誘電率(ε):2.55(ε=n2)
誘電率(Dk):2.55(TEモード,10GHz)、2.57(TMモード,10GHz)、2.53(TEモード,20GHz)
誘電正接(Df):0.002(TEモード,10GHz)、0.002(TMモード,10GHz)、0.002(TEモード,20GHz)であった。 This polymer was dissolved in chloroform and cast onto a glass plate. It was dried under reduced pressure at 150° C. for 12 hours to obtain a colorless and transparent cast film (thickness: 60 μm).
For this example, the analysis results using the instrument described above are:
FT-IR (film, cm −1 ): 3056 (Ar—H), 2949 (C—H), 1560 (C=N), 1211 (C—O), 1173 (C—N)
1 H-NMR (CDCl 3 , ppm): 8.18-8.03 (m, 2H, Ar—H), 7.44 (m, 3H, Ar—H), 7.29 (m, 4H, Ar -H), 7.14 (m, 4H, Ar-H), 2.74 (d, 1H, CH), 2.54 (d, 1H, CH), 2.08-2.04 (m, 2H , CH 2 ), 1.44 (d, 1H, CH), 1.26 (t, 1H, CH), 1.04-0.91 (m, 7H, CH, CH 3 ), 0.51 (s , 3H, CH3 )
Elemental analysis ( C30H29N3O2 )n : calculated C, 77.73%; H, 6.30 %; N, 9.07%; found C, 77.60%; 40%; N, 8.95%
Solubility: N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc), nitrobenzene, tetrahydrofuran (THF), 1,4-dioxane, o-dichlorobenzene, chloroform, dichloromethane, benzonitrile, cycloform Soluble in pentanone 5% weight loss temperature: 407°C (in air), 421°C (in nitrogen) 10% weight loss temperature: 420°C (in air), 431°C (in nitrogen) Carbonization yield: 18 ( 800°C in nitrogen)
Glass transition temperature (Tg): 243°C (DSC), 243°C (TMA), 246°C (DMA), coefficient of thermal expansion (CTE): 76ppm/°C
Cutoff wavelength: 319 nm, transmittance at 400 nm: 80%
Average refractive index (n): 1.598 (d line), birefringence (Δn): 0.008 (d line), dielectric constant (ε) calculated from refractive index: 2.55 (ε = n 2 )
Dielectric constant (Dk): 2.55 (TE mode, 10 GHz), 2.57 (TM mode, 10 GHz), 2.53 (TE mode, 20 GHz)
Dielectric loss tangent (Df): 0.002 (TE mode, 10 GHz), 0.002 (TM mode, 10 GHz), 0.002 (TE mode, 20 GHz).
この実施例について、前述した機器を用いての分析結果は、
FT-IR(film、cm-1):3056(Ar-H)、2949(C-H)、1560(C=N)、1211(C-O)、1173(C-N)
1H-NMR(CDCl3,ppm):8.18-8.03(m,2H,Ar-H)、7.44(m,3H,Ar-H)、7.29(m,4H,Ar-H)、7.14(m,4H,Ar-H)、2.74(d,1H,CH)、2.54(d,1H,CH)、2.08-2.04(m,2H,CH2)、1.44(d,1H,CH)、1.26(t,1H,CH)、1.04-0.91(m,7H,CH,CH3)、0.51(s,3H,CH3)
元素分析(C30H29N3O2)n:計算値C,77.73%;H,6.30%;N,9.07%、実測値C,77.60%;H,6.40%;N,8.95%
溶解性:N-メチル-2-ピロリドン(NMP)、N,N-ジメチルアセトアミド(DMAc)、ニトロベンゼン、テトラヒドロフラン(THF)、1,4-ジオキサン、o-ジクロロベンゼン、クロロホルム、ジクロロメタン、ベンゾニトリル、シクロペンタノンに可溶
5%重量減少温度:407℃(空気中)、421℃(窒素中) 10%重量減少温度:420℃(空気中)、431℃(窒素中)、炭化収率:18(窒素中、800℃)
ガラス転移温度(Tg):243℃(DSC)、243℃(TMA)、246℃(DMA)、熱膨張係数(CTE):76ppm/℃
カットオフ波長:319nm、400nmでの透過率:80%
平均屈折率(n):1.598(d線)、複屈折(Δn):0.008(d線)、屈折率から計算される誘電率(ε):2.55(ε=n2)
誘電率(Dk):2.55(TEモード,10GHz)、2.57(TMモード,10GHz)、2.53(TEモード,20GHz)
誘電正接(Df):0.002(TEモード,10GHz)、0.002(TMモード,10GHz)、0.002(TEモード,20GHz)であった。 This polymer was dissolved in chloroform and cast onto a glass plate. It was dried under reduced pressure at 150° C. for 12 hours to obtain a colorless and transparent cast film (thickness: 60 μm).
For this example, the analysis results using the instrument described above are:
FT-IR (film, cm −1 ): 3056 (Ar—H), 2949 (C—H), 1560 (C=N), 1211 (C—O), 1173 (C—N)
1 H-NMR (CDCl 3 , ppm): 8.18-8.03 (m, 2H, Ar—H), 7.44 (m, 3H, Ar—H), 7.29 (m, 4H, Ar -H), 7.14 (m, 4H, Ar-H), 2.74 (d, 1H, CH), 2.54 (d, 1H, CH), 2.08-2.04 (m, 2H , CH 2 ), 1.44 (d, 1H, CH), 1.26 (t, 1H, CH), 1.04-0.91 (m, 7H, CH, CH 3 ), 0.51 (s , 3H, CH3 )
Elemental analysis ( C30H29N3O2 )n : calculated C, 77.73%; H, 6.30 %; N, 9.07%; found C, 77.60%; 40%; N, 8.95%
Solubility: N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc), nitrobenzene, tetrahydrofuran (THF), 1,4-dioxane, o-dichlorobenzene, chloroform, dichloromethane, benzonitrile, cycloform Soluble in pentanone 5% weight loss temperature: 407°C (in air), 421°C (in nitrogen) 10% weight loss temperature: 420°C (in air), 431°C (in nitrogen) Carbonization yield: 18 ( 800°C in nitrogen)
Glass transition temperature (Tg): 243°C (DSC), 243°C (TMA), 246°C (DMA), coefficient of thermal expansion (CTE): 76ppm/°C
Cutoff wavelength: 319 nm, transmittance at 400 nm: 80%
Average refractive index (n): 1.598 (d line), birefringence (Δn): 0.008 (d line), dielectric constant (ε) calculated from refractive index: 2.55 (ε = n 2 )
Dielectric constant (Dk): 2.55 (TE mode, 10 GHz), 2.57 (TM mode, 10 GHz), 2.53 (TE mode, 20 GHz)
Dielectric loss tangent (Df): 0.002 (TE mode, 10 GHz), 0.002 (TM mode, 10 GHz), 0.002 (TE mode, 20 GHz).
(実施例5)
実施例5のポリマー、DCPT-BisPCDEは以下のように合成した。
ナスフラスコ(100mL)に4,4’-シクロドデシリデンビスフェノール(BisPCDE)(0.881g、2.50mmol)と1M 水酸化ナトリウム水溶液(5.1mL)を攪拌子と共に入れ、溶解させた。相間移動触媒として臭化セチルトリメチルアンモニウム(CTMAB、0.277g、0.760mmol)(モノマーに対して30mol%)を加えて攪拌した。DCPT(0.565g、2.50mmol)を脱水ジクロロメタン(5.0mL)に溶かした溶液をナスフラスコに加え、室温で18時間激しく攪拌して反応を行った。反応後、酢酸を加えて中和しメタノール(250mL)に注いでポリマーを析出させ、吸引ろ過により回収し室温で6時間減圧乾燥させた。得られたポリマーをクロロホルムに溶解し、メタノールに注いで再沈殿させた。ポリマーを回収した後、100℃で12時間減圧乾燥した。 (Example 5)
The polymer of Example 5, DCPT-BisPCDE, was synthesized as follows.
4,4′-Cyclododecylidenebisphenol (BisPCDE) (0.881 g, 2.50 mmol) and 1 M sodium hydroxide aqueous solution (5.1 mL) were placed in an eggplant flask (100 mL) with a stirrer and dissolved. Cetyltrimethylammonium bromide (CTMAB, 0.277 g, 0.760 mmol) (30 mol % relative to the monomer) was added as a phase transfer catalyst and stirred. A solution of DCPT (0.565 g, 2.50 mmol) dissolved in dehydrated dichloromethane (5.0 mL) was added to an eggplant-shaped flask, and the reaction was carried out by vigorously stirring at room temperature for 18 hours. After the reaction, acetic acid was added for neutralization, poured into methanol (250 mL) to precipitate a polymer, collected by suction filtration, and dried under reduced pressure at room temperature for 6 hours. The resulting polymer was dissolved in chloroform and poured into methanol for reprecipitation. After recovering the polymer, it was dried under reduced pressure at 100° C. for 12 hours.
実施例5のポリマー、DCPT-BisPCDEは以下のように合成した。
ナスフラスコ(100mL)に4,4’-シクロドデシリデンビスフェノール(BisPCDE)(0.881g、2.50mmol)と1M 水酸化ナトリウム水溶液(5.1mL)を攪拌子と共に入れ、溶解させた。相間移動触媒として臭化セチルトリメチルアンモニウム(CTMAB、0.277g、0.760mmol)(モノマーに対して30mol%)を加えて攪拌した。DCPT(0.565g、2.50mmol)を脱水ジクロロメタン(5.0mL)に溶かした溶液をナスフラスコに加え、室温で18時間激しく攪拌して反応を行った。反応後、酢酸を加えて中和しメタノール(250mL)に注いでポリマーを析出させ、吸引ろ過により回収し室温で6時間減圧乾燥させた。得られたポリマーをクロロホルムに溶解し、メタノールに注いで再沈殿させた。ポリマーを回収した後、100℃で12時間減圧乾燥した。 (Example 5)
The polymer of Example 5, DCPT-BisPCDE, was synthesized as follows.
4,4′-Cyclododecylidenebisphenol (BisPCDE) (0.881 g, 2.50 mmol) and 1 M sodium hydroxide aqueous solution (5.1 mL) were placed in an eggplant flask (100 mL) with a stirrer and dissolved. Cetyltrimethylammonium bromide (CTMAB, 0.277 g, 0.760 mmol) (30 mol % relative to the monomer) was added as a phase transfer catalyst and stirred. A solution of DCPT (0.565 g, 2.50 mmol) dissolved in dehydrated dichloromethane (5.0 mL) was added to an eggplant-shaped flask, and the reaction was carried out by vigorously stirring at room temperature for 18 hours. After the reaction, acetic acid was added for neutralization, poured into methanol (250 mL) to precipitate a polymer, collected by suction filtration, and dried under reduced pressure at room temperature for 6 hours. The resulting polymer was dissolved in chloroform and poured into methanol for reprecipitation. After recovering the polymer, it was dried under reduced pressure at 100° C. for 12 hours.
合成した化合物は、収量:1.03g、収率:81%、対数粘度:0.91dL/g(30℃、0.5g/dLのN-メチル-2-ピロリドン溶液)、数平均分子量(Mn):166,000、重量平均分子量(Mw):332,000、分子量分布(Mw/Mn):2.0であった。
The synthesized compound has a yield of 1.03 g, a yield of 81%, a logarithmic viscosity of 0.91 dL/g (30° C., 0.5 g/dL of N-methyl-2-pyrrolidone solution), and a number average molecular weight (Mn ): 166,000, weight average molecular weight (Mw): 332,000, and molecular weight distribution (Mw/Mn): 2.0.
このポリマーをクロロホルムに溶解し、ガラス板上に流延した。150℃で12時間減圧乾燥させて、無色透明なキャストフィルム(膜厚54μm)を得た。
この実施例について、前述した機器を用いての分析結果は、
FT-IR(film、cm-1):3059(Ar-H)、2936(C-H)、1560(C=N)、1211(C-O)、1173(C-N)
1H-NMR(CDCl3,ppm):8.16(d,2H,Ar-H)、7.47(t,1H,Ar-H)、7.33(t,2H,Ar-H)、7.27(d,4H,Ar-H)、7.16(d,4H,Ar-H)、2.13(m,4H,CH2)、1.38(m,14H,CH2)、1.04(m,4H,CH2)
13C-NMR(CDCl3,ppm):175.5、173.2、149.9、147.2、134.6、133.3、129.2、128.8、128.6、121.0、48.3、33.5、26.6、26.3、22.3、22.1、20.2
溶解性:N-メチル-2-ピロリドン(NMP)、ニトロベンゼン、テトラヒドロフラン(THF)、1,4-ジオキサン、o-ジクロロベンゼン、クロロホルム、ジクロロメタン、ベンゾニトリル、シクロペンタノンに可溶
5%重量減少温度:383℃(空気中)、404℃(窒素中) 10%重量減少温度:408℃(空気中)、417℃(窒素中)、炭化収率:18(窒素中、800℃)
ガラス転移温度(Tg):239℃(DSC)、243℃(TMA)、240℃(DMA)、熱膨張係数(CTE):76ppm/℃
カットオフ波長:321nm、400nmでの透過率:85%
平均屈折率(n):1.599(d線)、複屈折(Δn):0.010(d線)、屈折率から計算される誘電率(ε):2.56(ε=n2)
誘電率(Dk):2.62(TEモード,10GHz)、2.63(TMモード,10GHz)、2.60(TEモード,20GHz)
誘電正接(Df):0.002(TEモード,10GHz)、0.002(TMモード,10GHz)、0.002(TEモード,20GHz)
であった。 This polymer was dissolved in chloroform and cast onto a glass plate. It was dried under reduced pressure at 150° C. for 12 hours to obtain a colorless and transparent cast film (thickness: 54 μm).
For this example, the analysis results using the instrument described above are:
FT-IR (film, cm −1 ): 3059 (Ar—H), 2936 (C—H), 1560 (C=N), 1211 (C—O), 1173 (C—N)
1 H-NMR (CDCl 3 , ppm): 8.16 (d, 2H, Ar—H), 7.47 (t, 1H, Ar—H), 7.33 (t, 2H, Ar—H), 7.27 (d, 4H, Ar—H), 7.16 (d, 4H, Ar—H), 2.13 (m, 4H, CH 2 ), 1.38 (m, 14H, CH 2 ), 1.04 (m, 4H, CH2 )
13 C-NMR (CDCl 3 , ppm): 175.5, 173.2, 149.9, 147.2, 134.6, 133.3, 129.2, 128.8, 128.6, 121.0 , 48.3, 33.5, 26.6, 26.3, 22.3, 22.1, 20.2
Solubility: Soluble in N-methyl-2-pyrrolidone (NMP), nitrobenzene, tetrahydrofuran (THF), 1,4-dioxane, o-dichlorobenzene, chloroform, dichloromethane, benzonitrile, cyclopentanone 5% weight loss temperature : 383°C (in air), 404°C (in nitrogen) 10% weight loss temperature: 408°C (in air), 417°C (in nitrogen), carbonization yield: 18 (in nitrogen, 800°C)
Glass transition temperature (Tg): 239°C (DSC), 243°C (TMA), 240°C (DMA), coefficient of thermal expansion (CTE): 76 ppm/°C
Cutoff wavelength: 321 nm, transmittance at 400 nm: 85%
Average refractive index (n): 1.599 (d line), birefringence (Δn): 0.010 (d line), dielectric constant (ε) calculated from refractive index: 2.56 (ε = n 2 )
Dielectric constant (Dk): 2.62 (TE mode, 10 GHz), 2.63 (TM mode, 10 GHz), 2.60 (TE mode, 20 GHz)
Dielectric loss tangent (Df): 0.002 (TE mode, 10 GHz), 0.002 (TM mode, 10 GHz), 0.002 (TE mode, 20 GHz)
Met.
この実施例について、前述した機器を用いての分析結果は、
FT-IR(film、cm-1):3059(Ar-H)、2936(C-H)、1560(C=N)、1211(C-O)、1173(C-N)
1H-NMR(CDCl3,ppm):8.16(d,2H,Ar-H)、7.47(t,1H,Ar-H)、7.33(t,2H,Ar-H)、7.27(d,4H,Ar-H)、7.16(d,4H,Ar-H)、2.13(m,4H,CH2)、1.38(m,14H,CH2)、1.04(m,4H,CH2)
13C-NMR(CDCl3,ppm):175.5、173.2、149.9、147.2、134.6、133.3、129.2、128.8、128.6、121.0、48.3、33.5、26.6、26.3、22.3、22.1、20.2
溶解性:N-メチル-2-ピロリドン(NMP)、ニトロベンゼン、テトラヒドロフラン(THF)、1,4-ジオキサン、o-ジクロロベンゼン、クロロホルム、ジクロロメタン、ベンゾニトリル、シクロペンタノンに可溶
5%重量減少温度:383℃(空気中)、404℃(窒素中) 10%重量減少温度:408℃(空気中)、417℃(窒素中)、炭化収率:18(窒素中、800℃)
ガラス転移温度(Tg):239℃(DSC)、243℃(TMA)、240℃(DMA)、熱膨張係数(CTE):76ppm/℃
カットオフ波長:321nm、400nmでの透過率:85%
平均屈折率(n):1.599(d線)、複屈折(Δn):0.010(d線)、屈折率から計算される誘電率(ε):2.56(ε=n2)
誘電率(Dk):2.62(TEモード,10GHz)、2.63(TMモード,10GHz)、2.60(TEモード,20GHz)
誘電正接(Df):0.002(TEモード,10GHz)、0.002(TMモード,10GHz)、0.002(TEモード,20GHz)
であった。 This polymer was dissolved in chloroform and cast onto a glass plate. It was dried under reduced pressure at 150° C. for 12 hours to obtain a colorless and transparent cast film (thickness: 54 μm).
For this example, the analysis results using the instrument described above are:
FT-IR (film, cm −1 ): 3059 (Ar—H), 2936 (C—H), 1560 (C=N), 1211 (C—O), 1173 (C—N)
1 H-NMR (CDCl 3 , ppm): 8.16 (d, 2H, Ar—H), 7.47 (t, 1H, Ar—H), 7.33 (t, 2H, Ar—H), 7.27 (d, 4H, Ar—H), 7.16 (d, 4H, Ar—H), 2.13 (m, 4H, CH 2 ), 1.38 (m, 14H, CH 2 ), 1.04 (m, 4H, CH2 )
13 C-NMR (CDCl 3 , ppm): 175.5, 173.2, 149.9, 147.2, 134.6, 133.3, 129.2, 128.8, 128.6, 121.0 , 48.3, 33.5, 26.6, 26.3, 22.3, 22.1, 20.2
Solubility: Soluble in N-methyl-2-pyrrolidone (NMP), nitrobenzene, tetrahydrofuran (THF), 1,4-dioxane, o-dichlorobenzene, chloroform, dichloromethane, benzonitrile, cyclopentanone 5% weight loss temperature : 383°C (in air), 404°C (in nitrogen) 10% weight loss temperature: 408°C (in air), 417°C (in nitrogen), carbonization yield: 18 (in nitrogen, 800°C)
Glass transition temperature (Tg): 239°C (DSC), 243°C (TMA), 240°C (DMA), coefficient of thermal expansion (CTE): 76 ppm/°C
Cutoff wavelength: 321 nm, transmittance at 400 nm: 85%
Average refractive index (n): 1.599 (d line), birefringence (Δn): 0.010 (d line), dielectric constant (ε) calculated from refractive index: 2.56 (ε = n 2 )
Dielectric constant (Dk): 2.62 (TE mode, 10 GHz), 2.63 (TM mode, 10 GHz), 2.60 (TE mode, 20 GHz)
Dielectric loss tangent (Df): 0.002 (TE mode, 10 GHz), 0.002 (TM mode, 10 GHz), 0.002 (TE mode, 20 GHz)
Met.
(実施例6)
実施例6のポリマー、DCPT-HPTM5Iは以下のように合成した。
ナスフラスコ(100mL)に3-(4-ヒドロキシフェニル)-1,1,3-トリメチル-5-インダノール(HPTM5I)(0.671g、2.50mmol)と1M 水酸化ナトリウム水溶液(5.1mL)を攪拌子と共に入れ、溶解させた。相間移動触媒として臭化セチルトリメチルアンモニウム(CTMAB、0.277g、0.760mmol)(モノマーに対して30mol%)を加えて攪拌した。DCPT(0.565g、2.50mmol)を脱水ニトロベンゼン(5.0mL)に溶かした溶液をナスフラスコに加え、室温で18時間激しく攪拌した。反応後、酢酸を加えて中和しメタノール(250mL)に注いでポリマーを析出させ、吸引ろ過により回収し室温で6時間、100℃で12時間、減圧乾燥した。 (Example 6)
The polymer of Example 6, DCPT-HPTM5I, was synthesized as follows.
3-(4-Hydroxyphenyl)-1,1,3-trimethyl-5-indanol (HPTM5I) (0.671 g, 2.50 mmol) and 1 M sodium hydroxide aqueous solution (5.1 mL) were placed in an eggplant flask (100 mL). Put in with a stirrer and dissolve. Cetyltrimethylammonium bromide (CTMAB, 0.277 g, 0.760 mmol) (30 mol % relative to the monomer) was added as a phase transfer catalyst and stirred. A solution of DCPT (0.565 g, 2.50 mmol) dissolved in dehydrated nitrobenzene (5.0 mL) was added to an eggplant flask and vigorously stirred at room temperature for 18 hours. After the reaction, acetic acid was added for neutralization, poured into methanol (250 mL) to precipitate a polymer, recovered by suction filtration, and dried under reduced pressure at room temperature for 6 hours and at 100° C. for 12 hours.
実施例6のポリマー、DCPT-HPTM5Iは以下のように合成した。
ナスフラスコ(100mL)に3-(4-ヒドロキシフェニル)-1,1,3-トリメチル-5-インダノール(HPTM5I)(0.671g、2.50mmol)と1M 水酸化ナトリウム水溶液(5.1mL)を攪拌子と共に入れ、溶解させた。相間移動触媒として臭化セチルトリメチルアンモニウム(CTMAB、0.277g、0.760mmol)(モノマーに対して30mol%)を加えて攪拌した。DCPT(0.565g、2.50mmol)を脱水ニトロベンゼン(5.0mL)に溶かした溶液をナスフラスコに加え、室温で18時間激しく攪拌した。反応後、酢酸を加えて中和しメタノール(250mL)に注いでポリマーを析出させ、吸引ろ過により回収し室温で6時間、100℃で12時間、減圧乾燥した。 (Example 6)
The polymer of Example 6, DCPT-HPTM5I, was synthesized as follows.
3-(4-Hydroxyphenyl)-1,1,3-trimethyl-5-indanol (HPTM5I) (0.671 g, 2.50 mmol) and 1 M sodium hydroxide aqueous solution (5.1 mL) were placed in an eggplant flask (100 mL). Put in with a stirrer and dissolve. Cetyltrimethylammonium bromide (CTMAB, 0.277 g, 0.760 mmol) (30 mol % relative to the monomer) was added as a phase transfer catalyst and stirred. A solution of DCPT (0.565 g, 2.50 mmol) dissolved in dehydrated nitrobenzene (5.0 mL) was added to an eggplant flask and vigorously stirred at room temperature for 18 hours. After the reaction, acetic acid was added for neutralization, poured into methanol (250 mL) to precipitate a polymer, recovered by suction filtration, and dried under reduced pressure at room temperature for 6 hours and at 100° C. for 12 hours.
合成した化合物は、収量:0.93g、収率:88%、対数粘度:0.62dL/g(30℃、0.5g/dLのN-メチル-2-ピロリドン溶液)、数平均分子量(Mn):135,000、重量平均分子量(Mw):283,500、分子量分布(Mw/Mn):2.1であった。
The synthesized compound has a yield of 0.93 g, a yield of 88%, a logarithmic viscosity of 0.62 dL/g (30° C., 0.5 g/dL of N-methyl-2-pyrrolidone solution), and a number average molecular weight (Mn ): 135,000, weight average molecular weight (Mw): 283,500, and molecular weight distribution (Mw/Mn): 2.1.
このポリマーをクロロホルムに溶解し、ガラス板上に流延した。160℃で12時間減圧乾燥させて、無色透明なキャストフィルム(膜厚40μm)を得た。
この実施例について、前述した機器を用いての分析結果は、
FT-IR(film、cm-1):3066(Ar-H)、2957(C-H)、1560(C=N)、1211(C-O)、1173(C-N)
1H-NMR(CDCl3,ppm):8.29-8.12(m,2H,Ar-H)、7.44(t,1H,Ar-H)、7.34-7.22(m,5H,Ar-H)、7.16-7.06(m,4H,Ar-H)、2.40(d,1H,CH)、2.27(d,1H,CH)、1.72(s,3H,CH3)、1.37(s,3H,CH3)、1.08(s,3H,CH3)
13C-NMR(CDCl3,ppm):175.7、173.1、151.1、149.9、149.8、149.7、148.2、134.6、133.2、129.2、128.6、127.8、123.6、121.1、120.6、118.3、59.6、50.6、42.7、31.0、30.7、30.3
溶解性: N-メチル-2-ピロリドン(NMP)、N,N-ジメチルアセトアミド(DMAc)、ニトロベンゼン、テトラヒドロフラン(THF)、1,4-ジオキサン、o-ジクロロベンゼン、クロロホルム、ジクロロメタン、ベンゾニトリル、γ-ブチロラクトン、シクロヘキサノン、シクロペンタノンに可溶
5%重量減少温度:418℃(空気中)、438℃(窒素中) 10%重量減少温度:429℃(空気中)、446℃(窒素中) 炭化収率:33%(窒素中、800℃)
ガラス転移温度(Tg):206℃(DSC)、203℃(TMA)、201℃(DMA)、熱膨張係数(CTE):85ppm/℃
カットオフ波長:322nm、400nmでの透過率:79%
平均屈折率(n):1.613(d線)、複屈折(Δn):0.001(d線)、屈折率から計算される誘電率(ε):2.60(ε=n2)
誘電率(Dk):2.60(TEモード,10GHz)、2.63(TMモード,10GHz)、2.60(TEモード,20GHz)
誘電正接(Df):0.004(TEモード,10GHz)、0.004(TMモード,10GHz)、0.004(TEモード,20GHz)
であった。 This polymer was dissolved in chloroform and cast onto a glass plate. It was dried under reduced pressure at 160° C. for 12 hours to obtain a colorless and transparent cast film (thickness: 40 μm).
For this example, the analysis results using the instrument described above are:
FT-IR (film, cm −1 ): 3066 (Ar—H), 2957 (C—H), 1560 (C=N), 1211 (C—O), 1173 (C—N)
1 H-NMR (CDCl 3 , ppm): 8.29-8.12 (m, 2H, Ar-H), 7.44 (t, 1H, Ar-H), 7.34-7.22 (m , 5H, Ar-H), 7.16-7.06 (m, 4H, Ar-H), 2.40 (d, 1H, CH), 2.27 (d, 1H, CH), 1.72 (s, 3H, CH3 ), 1.37 (s, 3H, CH3 ), 1.08 (s, 3H, CH3 )
13 C-NMR (CDCl 3 , ppm): 175.7, 173.1, 151.1, 149.9, 149.8, 149.7, 148.2, 134.6, 133.2, 129.2 , 128.6, 127.8, 123.6, 121.1, 120.6, 118.3, 59.6, 50.6, 42.7, 31.0, 30.7, 30.3
Solubility: N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc), nitrobenzene, tetrahydrofuran (THF), 1,4-dioxane, o-dichlorobenzene, chloroform, dichloromethane, benzonitrile, γ -Soluble in butyrolactone, cyclohexanone, cyclopentanone 5% weight loss temperature: 418°C (in air), 438°C (in nitrogen) 10% weight loss temperature: 429°C (in air), 446°C (in nitrogen) Carbonization Yield: 33% (800°C in nitrogen)
Glass transition temperature (Tg): 206°C (DSC), 203°C (TMA), 201°C (DMA), coefficient of thermal expansion (CTE): 85 ppm/°C
Cutoff wavelength: 322 nm, transmittance at 400 nm: 79%
Average refractive index (n): 1.613 (d line), birefringence (Δn): 0.001 (d line), dielectric constant (ε) calculated from the refractive index: 2.60 (ε = n 2 )
Dielectric constant (Dk): 2.60 (TE mode, 10 GHz), 2.63 (TM mode, 10 GHz), 2.60 (TE mode, 20 GHz)
Dielectric loss tangent (Df): 0.004 (TE mode, 10 GHz), 0.004 (TM mode, 10 GHz), 0.004 (TE mode, 20 GHz)
Met.
この実施例について、前述した機器を用いての分析結果は、
FT-IR(film、cm-1):3066(Ar-H)、2957(C-H)、1560(C=N)、1211(C-O)、1173(C-N)
1H-NMR(CDCl3,ppm):8.29-8.12(m,2H,Ar-H)、7.44(t,1H,Ar-H)、7.34-7.22(m,5H,Ar-H)、7.16-7.06(m,4H,Ar-H)、2.40(d,1H,CH)、2.27(d,1H,CH)、1.72(s,3H,CH3)、1.37(s,3H,CH3)、1.08(s,3H,CH3)
13C-NMR(CDCl3,ppm):175.7、173.1、151.1、149.9、149.8、149.7、148.2、134.6、133.2、129.2、128.6、127.8、123.6、121.1、120.6、118.3、59.6、50.6、42.7、31.0、30.7、30.3
溶解性: N-メチル-2-ピロリドン(NMP)、N,N-ジメチルアセトアミド(DMAc)、ニトロベンゼン、テトラヒドロフラン(THF)、1,4-ジオキサン、o-ジクロロベンゼン、クロロホルム、ジクロロメタン、ベンゾニトリル、γ-ブチロラクトン、シクロヘキサノン、シクロペンタノンに可溶
5%重量減少温度:418℃(空気中)、438℃(窒素中) 10%重量減少温度:429℃(空気中)、446℃(窒素中) 炭化収率:33%(窒素中、800℃)
ガラス転移温度(Tg):206℃(DSC)、203℃(TMA)、201℃(DMA)、熱膨張係数(CTE):85ppm/℃
カットオフ波長:322nm、400nmでの透過率:79%
平均屈折率(n):1.613(d線)、複屈折(Δn):0.001(d線)、屈折率から計算される誘電率(ε):2.60(ε=n2)
誘電率(Dk):2.60(TEモード,10GHz)、2.63(TMモード,10GHz)、2.60(TEモード,20GHz)
誘電正接(Df):0.004(TEモード,10GHz)、0.004(TMモード,10GHz)、0.004(TEモード,20GHz)
であった。 This polymer was dissolved in chloroform and cast onto a glass plate. It was dried under reduced pressure at 160° C. for 12 hours to obtain a colorless and transparent cast film (thickness: 40 μm).
For this example, the analysis results using the instrument described above are:
FT-IR (film, cm −1 ): 3066 (Ar—H), 2957 (C—H), 1560 (C=N), 1211 (C—O), 1173 (C—N)
1 H-NMR (CDCl 3 , ppm): 8.29-8.12 (m, 2H, Ar-H), 7.44 (t, 1H, Ar-H), 7.34-7.22 (m , 5H, Ar-H), 7.16-7.06 (m, 4H, Ar-H), 2.40 (d, 1H, CH), 2.27 (d, 1H, CH), 1.72 (s, 3H, CH3 ), 1.37 (s, 3H, CH3 ), 1.08 (s, 3H, CH3 )
13 C-NMR (CDCl 3 , ppm): 175.7, 173.1, 151.1, 149.9, 149.8, 149.7, 148.2, 134.6, 133.2, 129.2 , 128.6, 127.8, 123.6, 121.1, 120.6, 118.3, 59.6, 50.6, 42.7, 31.0, 30.7, 30.3
Solubility: N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc), nitrobenzene, tetrahydrofuran (THF), 1,4-dioxane, o-dichlorobenzene, chloroform, dichloromethane, benzonitrile, γ -Soluble in butyrolactone, cyclohexanone, cyclopentanone 5% weight loss temperature: 418°C (in air), 438°C (in nitrogen) 10% weight loss temperature: 429°C (in air), 446°C (in nitrogen) Carbonization Yield: 33% (800°C in nitrogen)
Glass transition temperature (Tg): 206°C (DSC), 203°C (TMA), 201°C (DMA), coefficient of thermal expansion (CTE): 85 ppm/°C
Cutoff wavelength: 322 nm, transmittance at 400 nm: 79%
Average refractive index (n): 1.613 (d line), birefringence (Δn): 0.001 (d line), dielectric constant (ε) calculated from the refractive index: 2.60 (ε = n 2 )
Dielectric constant (Dk): 2.60 (TE mode, 10 GHz), 2.63 (TM mode, 10 GHz), 2.60 (TE mode, 20 GHz)
Dielectric loss tangent (Df): 0.004 (TE mode, 10 GHz), 0.004 (TM mode, 10 GHz), 0.004 (TE mode, 20 GHz)
Met.
(実施例7)
実施例7のポリマー、DCPT-BisCは以下のように合成した。
実施例6のHPTM5Iの代わりにBisCを用いて、同様にトリアジン化合物を合成した。 (Example 7)
The polymer of Example 7, DCPT-BisC, was synthesized as follows.
A triazine compound was similarly synthesized using BisC in place of HPTM5I in Example 6.
実施例7のポリマー、DCPT-BisCは以下のように合成した。
実施例6のHPTM5Iの代わりにBisCを用いて、同様にトリアジン化合物を合成した。 (Example 7)
The polymer of Example 7, DCPT-BisC, was synthesized as follows.
A triazine compound was similarly synthesized using BisC in place of HPTM5I in Example 6.
合成した化合物は、収率:78%、対数粘度:1.00dL/g(30℃、0.5g/dLのクロロホルム溶液)、GPC(THF)による数平均分子量(Mn):138,000、重量平均分子量(Mw):262,000、分子量分布(Mw/Mn):1.9であった。
The synthesized compound has a yield of 78%, logarithmic viscosity of 1.00 dL/g (30°C, 0.5 g/dL of chloroform solution), number average molecular weight (Mn) by GPC (THF) of 138,000, weight Average molecular weight (Mw): 262,000, molecular weight distribution (Mw/Mn): 1.9.
このポリマーをクロロホルムに溶解し、ガラス板上に流延した。150℃で12時間減圧乾燥させて、無色透明なキャストフィルム(膜厚29μm)を得た。
この実施例について、前述した機器を用いての分析結果は、
FT-IR(film、cm-1):3057(Ar-H)、2967(C-H)、1560(C=N)、1211(C-O)、1173(C-N)
1H-NMR(CDCl3,ppm):8.20(d,2H,Ar-H)、7.46(t,1H,Ar-H)、7.35(t,2H,Ar-H)、7.15(m,4H,Ar-H)、7.07(d,2H,Ar-H)、2.19(s,6H,CH3)、1.73(s,6H,CH3)
13C-NMR(CDCl3,ppm):175.8、173.0、148.7、148.3、134.7、133.2、129.8、129.7、129.2、128.6、125.6、121.2、42.5、31.2、16.8
溶解性:N-メチル-2-ピロリドン(NMP)、ニトロベンゼン、ベンゾニトリル、テトラヒドロフラン(THF)、1,4-ジオキサン、o-ジクロロベンゼン、クロロホルム、ジクロロメタン、シクロペンタノンに可溶
5%重量減少温度:401℃(空気中)、411℃(窒素中)、10%重量減少温度:414℃(空気中)、419℃(窒素中)、炭化収率:26%(窒素中、800℃)、
ガラス転移温度(Tg):170℃(DSC)、169℃(TMA)、166℃(DMA)、熱膨張係数(CTE):93ppm/℃(50℃から100℃の範囲)
カットオフ波長:311nm、400nmでの透過率:77%
平均屈折率(n):1.620(d線)、複屈折(Δn):0.0018(d線)、屈折率から計算される誘電率(ε):2.62(ε=n2)
空洞共振器による誘電率(Dk):2.59(TEモード,10GHz)、2.60(TEモード,20GHz)
誘電正接(Df):0.001(TEモード,10GHz)、0.002(TEモード,20GHz)
であった。 This polymer was dissolved in chloroform and cast onto a glass plate. It was dried under reduced pressure at 150° C. for 12 hours to obtain a colorless and transparent cast film (thickness: 29 μm).
For this example, the analysis results using the instrument described above are:
FT-IR (film, cm −1 ): 3057 (Ar—H), 2967 (C—H), 1560 (C=N), 1211 (C—O), 1173 (C—N)
1 H-NMR (CDCl 3 , ppm): 8.20 (d, 2H, Ar—H), 7.46 (t, 1H, Ar—H), 7.35 (t, 2H, Ar—H), 7.15 (m, 4H, Ar-H), 7.07 (d, 2H, Ar-H), 2.19 (s, 6H, CH3 ), 1.73 (s, 6H, CH3 )
13 C-NMR (CDCl 3 , ppm): 175.8, 173.0, 148.7, 148.3, 134.7, 133.2, 129.8, 129.7, 129.2, 128.6 , 125.6, 121.2, 42.5, 31.2, 16.8
Solubility: Soluble in N-methyl-2-pyrrolidone (NMP), nitrobenzene, benzonitrile, tetrahydrofuran (THF), 1,4-dioxane, o-dichlorobenzene, chloroform, dichloromethane, cyclopentanone 5% weight loss temperature : 401°C (in air), 411°C (in nitrogen), 10% weight loss temperature: 414°C (in air), 419°C (in nitrogen), carbonization yield: 26% (800°C in nitrogen),
Glass transition temperature (Tg): 170°C (DSC), 169°C (TMA), 166°C (DMA), coefficient of thermal expansion (CTE): 93 ppm/°C (range from 50°C to 100°C)
Cutoff wavelength: 311 nm, transmittance at 400 nm: 77%
Average refractive index (n): 1.620 (d line), birefringence (Δn): 0.0018 (d line), dielectric constant (ε) calculated from refractive index: 2.62 (ε = n 2 )
Dielectric constant (Dk) due to cavity resonator: 2.59 (TE mode, 10 GHz), 2.60 (TE mode, 20 GHz)
Dielectric loss tangent (Df): 0.001 (TE mode, 10 GHz), 0.002 (TE mode, 20 GHz)
Met.
この実施例について、前述した機器を用いての分析結果は、
FT-IR(film、cm-1):3057(Ar-H)、2967(C-H)、1560(C=N)、1211(C-O)、1173(C-N)
1H-NMR(CDCl3,ppm):8.20(d,2H,Ar-H)、7.46(t,1H,Ar-H)、7.35(t,2H,Ar-H)、7.15(m,4H,Ar-H)、7.07(d,2H,Ar-H)、2.19(s,6H,CH3)、1.73(s,6H,CH3)
13C-NMR(CDCl3,ppm):175.8、173.0、148.7、148.3、134.7、133.2、129.8、129.7、129.2、128.6、125.6、121.2、42.5、31.2、16.8
溶解性:N-メチル-2-ピロリドン(NMP)、ニトロベンゼン、ベンゾニトリル、テトラヒドロフラン(THF)、1,4-ジオキサン、o-ジクロロベンゼン、クロロホルム、ジクロロメタン、シクロペンタノンに可溶
5%重量減少温度:401℃(空気中)、411℃(窒素中)、10%重量減少温度:414℃(空気中)、419℃(窒素中)、炭化収率:26%(窒素中、800℃)、
ガラス転移温度(Tg):170℃(DSC)、169℃(TMA)、166℃(DMA)、熱膨張係数(CTE):93ppm/℃(50℃から100℃の範囲)
カットオフ波長:311nm、400nmでの透過率:77%
平均屈折率(n):1.620(d線)、複屈折(Δn):0.0018(d線)、屈折率から計算される誘電率(ε):2.62(ε=n2)
空洞共振器による誘電率(Dk):2.59(TEモード,10GHz)、2.60(TEモード,20GHz)
誘電正接(Df):0.001(TEモード,10GHz)、0.002(TEモード,20GHz)
であった。 This polymer was dissolved in chloroform and cast onto a glass plate. It was dried under reduced pressure at 150° C. for 12 hours to obtain a colorless and transparent cast film (thickness: 29 μm).
For this example, the analysis results using the instrument described above are:
FT-IR (film, cm −1 ): 3057 (Ar—H), 2967 (C—H), 1560 (C=N), 1211 (C—O), 1173 (C—N)
1 H-NMR (CDCl 3 , ppm): 8.20 (d, 2H, Ar—H), 7.46 (t, 1H, Ar—H), 7.35 (t, 2H, Ar—H), 7.15 (m, 4H, Ar-H), 7.07 (d, 2H, Ar-H), 2.19 (s, 6H, CH3 ), 1.73 (s, 6H, CH3 )
13 C-NMR (CDCl 3 , ppm): 175.8, 173.0, 148.7, 148.3, 134.7, 133.2, 129.8, 129.7, 129.2, 128.6 , 125.6, 121.2, 42.5, 31.2, 16.8
Solubility: Soluble in N-methyl-2-pyrrolidone (NMP), nitrobenzene, benzonitrile, tetrahydrofuran (THF), 1,4-dioxane, o-dichlorobenzene, chloroform, dichloromethane, cyclopentanone 5% weight loss temperature : 401°C (in air), 411°C (in nitrogen), 10% weight loss temperature: 414°C (in air), 419°C (in nitrogen), carbonization yield: 26% (800°C in nitrogen),
Glass transition temperature (Tg): 170°C (DSC), 169°C (TMA), 166°C (DMA), coefficient of thermal expansion (CTE): 93 ppm/°C (range from 50°C to 100°C)
Cutoff wavelength: 311 nm, transmittance at 400 nm: 77%
Average refractive index (n): 1.620 (d line), birefringence (Δn): 0.0018 (d line), dielectric constant (ε) calculated from refractive index: 2.62 (ε = n 2 )
Dielectric constant (Dk) due to cavity resonator: 2.59 (TE mode, 10 GHz), 2.60 (TE mode, 20 GHz)
Dielectric loss tangent (Df): 0.001 (TE mode, 10 GHz), 0.002 (TE mode, 20 GHz)
Met.
(実施例8)
実施例8のポリマー、DCPT-BisTMPは以下のように合成した。
実施例6のHPTM5Iの代わりにBisTMPを用いて、同様にトリアジン化合物を合成した。 (Example 8)
The polymer of Example 8, DCPT-BisTMP, was synthesized as follows.
A triazine compound was similarly synthesized using BisTMP in place of HPTM5I in Example 6.
実施例8のポリマー、DCPT-BisTMPは以下のように合成した。
実施例6のHPTM5Iの代わりにBisTMPを用いて、同様にトリアジン化合物を合成した。 (Example 8)
The polymer of Example 8, DCPT-BisTMP, was synthesized as follows.
A triazine compound was similarly synthesized using BisTMP in place of HPTM5I in Example 6.
合成した化合物は、収率:76%、対数粘度:1.12dL/g(30℃、0.5g/dLのクロロホルム溶液)、GPC(THF)による数平均分子量(Mn):184,000、重量平均分子量(Mw):313,000、分子量分布(Mw/Mn):1.7であった。
The synthesized compound has a yield of 76%, logarithmic viscosity of 1.12 dL/g (30°C, 0.5 g/dL of chloroform solution), number average molecular weight (Mn) by GPC (THF) of 184,000, weight Average molecular weight (Mw): 313,000, molecular weight distribution (Mw/Mn): 1.7.
このポリマーをクロロホルムに溶解し、ガラス板上に流延した。150℃で12時間減圧乾燥させて、無色透明なキャストフィルム(膜厚56μm)を得た。
この実施例について、前述した機器を用いての分析結果は、
FT-IR(film、cm-1):3051(Ar-H)、2923(C-H)、1560(C=N)、1211(C-O)、1173(C-N)
1H-NMR(CDCl3,ppm):8.19(d,2H,Ar-H)、7.47(t,1H,Ar-H)、7.35(t,2H,Ar-H)、6.99(s,4H,Ar-H)、2.13(s,12H,CH3)、1.71(s,6H,CH3)
13C-NMR(CDCl3,ppm):175.9、172.7、148.0、147.5、134.8、133.1、129.4、129.2、128.5、127.2、42.3、31.2、16.9
溶解性:N-メチル-2-ピロリドン(NMP)、ニトロベンゼン、ベンゾニトリル、テトラヒドロフラン(THF)、1,4-ジオキサン、o-ジクロロベンゼン、クロロホルム、ジクロロメタン、シクロペンタノンに可溶
5%重量減少温度:383℃(空気中)、406℃(窒素中)、10%重量減少温度:396℃(空気中)、413℃(窒素中)、炭化収率:18%(窒素中、800℃)
ガラス転移温度(Tg):212℃(DSC)、208℃(TMA)、209℃(DMA)、熱膨張係数(CTE):67ppm/℃(50℃から100℃の範囲)
カットオフ波長:314nm、400nmでの透過率:84%
平均屈折率(n):1.591(d線)、複屈折(Δn):0.0022(d線)、屈折率から計算される誘電率(ε):2.53(ε=n2)
空洞共振器による誘電率(Dk):2.50(TEモード,10GHz)、2.51(TMモード,10GHz)、2.51(TEモード,20GHz)
誘電正接(Df):0.002(TEモード,10GHz)、0.002(TMモード,10GHz)、0.002(TEモード,20GHz)
であった。 This polymer was dissolved in chloroform and cast onto a glass plate. It was dried under reduced pressure at 150° C. for 12 hours to obtain a colorless and transparent cast film (thickness: 56 μm).
For this example, the analysis results using the instrument described above are:
FT-IR (film, cm −1 ): 3051 (Ar—H), 2923 (C—H), 1560 (C=N), 1211 (C—O), 1173 (C—N)
1 H-NMR (CDCl 3 , ppm): 8.19 (d, 2H, Ar—H), 7.47 (t, 1H, Ar—H), 7.35 (t, 2H, Ar—H), 6.99 (s, 4H, Ar-H), 2.13 (s, 12H, CH3 ), 1.71 (s, 6H, CH3 )
13 C-NMR (CDCl 3 , ppm): 175.9, 172.7, 148.0, 147.5, 134.8, 133.1, 129.4, 129.2, 128.5, 127.2 , 42.3, 31.2, 16.9
Solubility: Soluble in N-methyl-2-pyrrolidone (NMP), nitrobenzene, benzonitrile, tetrahydrofuran (THF), 1,4-dioxane, o-dichlorobenzene, chloroform, dichloromethane, cyclopentanone 5% weight loss temperature : 383°C (in air), 406°C (in nitrogen), 10% weight loss temperature: 396°C (in air), 413°C (in nitrogen), carbonization yield: 18% (in nitrogen, 800°C)
Glass transition temperature (Tg): 212°C (DSC), 208°C (TMA), 209°C (DMA), coefficient of thermal expansion (CTE): 67 ppm/°C (range from 50°C to 100°C)
Cutoff wavelength: 314 nm, transmittance at 400 nm: 84%
Average refractive index (n): 1.591 (d line), birefringence (Δn): 0.0022 (d line), dielectric constant (ε) calculated from refractive index: 2.53 (ε = n 2 )
Dielectric constant (Dk) due to cavity resonator: 2.50 (TE mode, 10 GHz), 2.51 (TM mode, 10 GHz), 2.51 (TE mode, 20 GHz)
Dielectric loss tangent (Df): 0.002 (TE mode, 10 GHz), 0.002 (TM mode, 10 GHz), 0.002 (TE mode, 20 GHz)
Met.
この実施例について、前述した機器を用いての分析結果は、
FT-IR(film、cm-1):3051(Ar-H)、2923(C-H)、1560(C=N)、1211(C-O)、1173(C-N)
1H-NMR(CDCl3,ppm):8.19(d,2H,Ar-H)、7.47(t,1H,Ar-H)、7.35(t,2H,Ar-H)、6.99(s,4H,Ar-H)、2.13(s,12H,CH3)、1.71(s,6H,CH3)
13C-NMR(CDCl3,ppm):175.9、172.7、148.0、147.5、134.8、133.1、129.4、129.2、128.5、127.2、42.3、31.2、16.9
溶解性:N-メチル-2-ピロリドン(NMP)、ニトロベンゼン、ベンゾニトリル、テトラヒドロフラン(THF)、1,4-ジオキサン、o-ジクロロベンゼン、クロロホルム、ジクロロメタン、シクロペンタノンに可溶
5%重量減少温度:383℃(空気中)、406℃(窒素中)、10%重量減少温度:396℃(空気中)、413℃(窒素中)、炭化収率:18%(窒素中、800℃)
ガラス転移温度(Tg):212℃(DSC)、208℃(TMA)、209℃(DMA)、熱膨張係数(CTE):67ppm/℃(50℃から100℃の範囲)
カットオフ波長:314nm、400nmでの透過率:84%
平均屈折率(n):1.591(d線)、複屈折(Δn):0.0022(d線)、屈折率から計算される誘電率(ε):2.53(ε=n2)
空洞共振器による誘電率(Dk):2.50(TEモード,10GHz)、2.51(TMモード,10GHz)、2.51(TEモード,20GHz)
誘電正接(Df):0.002(TEモード,10GHz)、0.002(TMモード,10GHz)、0.002(TEモード,20GHz)
であった。 This polymer was dissolved in chloroform and cast onto a glass plate. It was dried under reduced pressure at 150° C. for 12 hours to obtain a colorless and transparent cast film (thickness: 56 μm).
For this example, the analysis results using the instrument described above are:
FT-IR (film, cm −1 ): 3051 (Ar—H), 2923 (C—H), 1560 (C=N), 1211 (C—O), 1173 (C—N)
1 H-NMR (CDCl 3 , ppm): 8.19 (d, 2H, Ar—H), 7.47 (t, 1H, Ar—H), 7.35 (t, 2H, Ar—H), 6.99 (s, 4H, Ar-H), 2.13 (s, 12H, CH3 ), 1.71 (s, 6H, CH3 )
13 C-NMR (CDCl 3 , ppm): 175.9, 172.7, 148.0, 147.5, 134.8, 133.1, 129.4, 129.2, 128.5, 127.2 , 42.3, 31.2, 16.9
Solubility: Soluble in N-methyl-2-pyrrolidone (NMP), nitrobenzene, benzonitrile, tetrahydrofuran (THF), 1,4-dioxane, o-dichlorobenzene, chloroform, dichloromethane, cyclopentanone 5% weight loss temperature : 383°C (in air), 406°C (in nitrogen), 10% weight loss temperature: 396°C (in air), 413°C (in nitrogen), carbonization yield: 18% (in nitrogen, 800°C)
Glass transition temperature (Tg): 212°C (DSC), 208°C (TMA), 209°C (DMA), coefficient of thermal expansion (CTE): 67 ppm/°C (range from 50°C to 100°C)
Cutoff wavelength: 314 nm, transmittance at 400 nm: 84%
Average refractive index (n): 1.591 (d line), birefringence (Δn): 0.0022 (d line), dielectric constant (ε) calculated from refractive index: 2.53 (ε = n 2 )
Dielectric constant (Dk) due to cavity resonator: 2.50 (TE mode, 10 GHz), 2.51 (TM mode, 10 GHz), 2.51 (TE mode, 20 GHz)
Dielectric loss tangent (Df): 0.002 (TE mode, 10 GHz), 0.002 (TM mode, 10 GHz), 0.002 (TE mode, 20 GHz)
Met.
(実施例9)
実施例9のポリマー、DCPT-BisCHPは以下のように合成した。
実施例6のHPTM5Iの代わりにBisCHPを用いて、同様にトリアジン化合物を合成した。 (Example 9)
The polymer of Example 9, DCPT-BisCHP, was synthesized as follows.
A triazine compound was similarly synthesized using BisCHP in place of HPTM5I in Example 6.
実施例9のポリマー、DCPT-BisCHPは以下のように合成した。
実施例6のHPTM5Iの代わりにBisCHPを用いて、同様にトリアジン化合物を合成した。 (Example 9)
The polymer of Example 9, DCPT-BisCHP, was synthesized as follows.
A triazine compound was similarly synthesized using BisCHP in place of HPTM5I in Example 6.
合成した化合物は、収率:76%、対数粘度:0.49dL/g(30℃、0.5g/dLのクロロホルム溶液)、GPC(THF)による数平均分子量(Mn):59,000、重量平均分子量(Mw):124,000、分子量分布(Mw/Mn):2.1、平均重合度(n):108であった。
The synthesized compound has a yield of 76%, logarithmic viscosity of 0.49 dL/g (30°C, 0.5 g/dL of chloroform solution), number average molecular weight (Mn) by GPC (THF): 59,000, weight Average molecular weight (Mw): 124,000, molecular weight distribution (Mw/Mn): 2.1, average degree of polymerization (n): 108.
このポリマーをクロロホルムに溶解し、ガラス板上に流延した。150℃で12時間減圧乾燥させて、無色透明なキャストフィルム(膜厚115μm)を得た。
この実施例について、前述した機器を用いての分析結果は、
FT-IR(film、cm-1):3051(Ar-H)、2851(C-H)、1560(C=N)、1211(C-O)、1173(C-N)
1H-NMR(CDCl3,ppm):8.24(d,2H,Ar-H)、7.54-7.35(m,3H,Ar-H)、7.19-6.99(m,5H,Ar-H)、6.73-6.65(m,1H,Ar-H)、2.64(m,2H,CH)、1.74-1.58(m,16H,CH2)、1.31-1.13(m,10H,CH2)
13C-NMR(CDCl3,ppm):175.7、173.5、148.3、147.4、138.8、134.7、133.1、129.2、128.6、125.9、125.2、121.3、43.0、37.8、33.6、31.3、26.9、26.1
溶解性:N-メチル-2-ピロリドン(NMP)、N,N-ジメチルアセトアミド(DMAc)、ニトロベンゼン、ベンゾニトリル、テトラヒドロフラン(THF)、1,4-ジオキサン、o-ジクロロベンゼン、クロロホルム、ジクロロメタン、シクロヘキサノン、シクロペンタノンに可溶
5%重量減少温度:413℃(空気中)、415℃(窒素中)、10%重量減少温度:422℃(空気中)、423℃(窒素中)、炭化収率:9%(窒素中、800℃)
ガラス転移温度(Tg):161℃(DSC)、153℃(TMA)、146℃(DMA)、熱膨張係数(CTE):91ppm/℃(50℃から100℃の範囲)
カットオフ波長:318nm、400nmでの透過率:82%
平均屈折率(n):1.590(d線)、複屈折(Δn):0.0003(d線)、屈折率から計算される誘電率(ε):2.53(ε=n2)
空洞共振器による誘電率(Dk):2.51(TEモード,10GHz)、2.53(TMモード,10GHz)、2.55(TEモード,20GHz)、誘電正接(Df):0.005(TEモード,10GHz)、0.005(TMモード,10GHz)、0.004(TEモード,20GHz)
であった。 This polymer was dissolved in chloroform and cast onto a glass plate. It was dried under reduced pressure at 150° C. for 12 hours to obtain a colorless and transparent cast film (thickness: 115 μm).
For this example, the analysis results using the instrument described above are:
FT-IR (film, cm −1 ): 3051 (Ar—H), 2851 (C—H), 1560 (C=N), 1211 (C—O), 1173 (C—N)
1 H-NMR (CDCl 3 , ppm): 8.24 (d, 2H, Ar-H), 7.54-7.35 (m, 3H, Ar-H), 7.19-6.99 (m , 5H, Ar—H), 6.73-6.65 (m, 1H, Ar—H), 2.64 (m, 2H, CH), 1.74-1.58 (m, 16H, CH 2 ), 1.31-1.13 (m, 10H, CH 2 )
13 C-NMR (CDCl 3 , ppm): 175.7, 173.5, 148.3, 147.4, 138.8, 134.7, 133.1, 129.2, 128.6, 125.9 , 125.2, 121.3, 43.0, 37.8, 33.6, 31.3, 26.9, 26.1
Solubility: N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc), nitrobenzene, benzonitrile, tetrahydrofuran (THF), 1,4-dioxane, o-dichlorobenzene, chloroform, dichloromethane, cyclohexanone , soluble in cyclopentanone 5% weight loss temperature: 413°C (in air), 415°C (in nitrogen), 10% weight loss temperature: 422°C (in air), 423°C (in nitrogen), carbonization yield : 9% (in nitrogen, 800°C)
Glass transition temperature (Tg): 161°C (DSC), 153°C (TMA), 146°C (DMA), coefficient of thermal expansion (CTE): 91 ppm/°C (range from 50°C to 100°C)
Cutoff wavelength: 318 nm, transmittance at 400 nm: 82%
Average refractive index (n): 1.590 (d line), birefringence (Δn): 0.0003 (d line), dielectric constant (ε) calculated from the refractive index: 2.53 (ε = n 2 )
Dielectric constant (Dk) by cavity resonator: 2.51 (TE mode, 10 GHz), 2.53 (TM mode, 10 GHz), 2.55 (TE mode, 20 GHz), dielectric loss tangent (Df): 0.005 ( TE mode, 10 GHz), 0.005 (TM mode, 10 GHz), 0.004 (TE mode, 20 GHz)
Met.
この実施例について、前述した機器を用いての分析結果は、
FT-IR(film、cm-1):3051(Ar-H)、2851(C-H)、1560(C=N)、1211(C-O)、1173(C-N)
1H-NMR(CDCl3,ppm):8.24(d,2H,Ar-H)、7.54-7.35(m,3H,Ar-H)、7.19-6.99(m,5H,Ar-H)、6.73-6.65(m,1H,Ar-H)、2.64(m,2H,CH)、1.74-1.58(m,16H,CH2)、1.31-1.13(m,10H,CH2)
13C-NMR(CDCl3,ppm):175.7、173.5、148.3、147.4、138.8、134.7、133.1、129.2、128.6、125.9、125.2、121.3、43.0、37.8、33.6、31.3、26.9、26.1
溶解性:N-メチル-2-ピロリドン(NMP)、N,N-ジメチルアセトアミド(DMAc)、ニトロベンゼン、ベンゾニトリル、テトラヒドロフラン(THF)、1,4-ジオキサン、o-ジクロロベンゼン、クロロホルム、ジクロロメタン、シクロヘキサノン、シクロペンタノンに可溶
5%重量減少温度:413℃(空気中)、415℃(窒素中)、10%重量減少温度:422℃(空気中)、423℃(窒素中)、炭化収率:9%(窒素中、800℃)
ガラス転移温度(Tg):161℃(DSC)、153℃(TMA)、146℃(DMA)、熱膨張係数(CTE):91ppm/℃(50℃から100℃の範囲)
カットオフ波長:318nm、400nmでの透過率:82%
平均屈折率(n):1.590(d線)、複屈折(Δn):0.0003(d線)、屈折率から計算される誘電率(ε):2.53(ε=n2)
空洞共振器による誘電率(Dk):2.51(TEモード,10GHz)、2.53(TMモード,10GHz)、2.55(TEモード,20GHz)、誘電正接(Df):0.005(TEモード,10GHz)、0.005(TMモード,10GHz)、0.004(TEモード,20GHz)
であった。 This polymer was dissolved in chloroform and cast onto a glass plate. It was dried under reduced pressure at 150° C. for 12 hours to obtain a colorless and transparent cast film (thickness: 115 μm).
For this example, the analysis results using the instrument described above are:
FT-IR (film, cm −1 ): 3051 (Ar—H), 2851 (C—H), 1560 (C=N), 1211 (C—O), 1173 (C—N)
1 H-NMR (CDCl 3 , ppm): 8.24 (d, 2H, Ar-H), 7.54-7.35 (m, 3H, Ar-H), 7.19-6.99 (m , 5H, Ar—H), 6.73-6.65 (m, 1H, Ar—H), 2.64 (m, 2H, CH), 1.74-1.58 (m, 16H, CH 2 ), 1.31-1.13 (m, 10H, CH 2 )
13 C-NMR (CDCl 3 , ppm): 175.7, 173.5, 148.3, 147.4, 138.8, 134.7, 133.1, 129.2, 128.6, 125.9 , 125.2, 121.3, 43.0, 37.8, 33.6, 31.3, 26.9, 26.1
Solubility: N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc), nitrobenzene, benzonitrile, tetrahydrofuran (THF), 1,4-dioxane, o-dichlorobenzene, chloroform, dichloromethane, cyclohexanone , soluble in cyclopentanone 5% weight loss temperature: 413°C (in air), 415°C (in nitrogen), 10% weight loss temperature: 422°C (in air), 423°C (in nitrogen), carbonization yield : 9% (in nitrogen, 800°C)
Glass transition temperature (Tg): 161°C (DSC), 153°C (TMA), 146°C (DMA), coefficient of thermal expansion (CTE): 91 ppm/°C (range from 50°C to 100°C)
Cutoff wavelength: 318 nm, transmittance at 400 nm: 82%
Average refractive index (n): 1.590 (d line), birefringence (Δn): 0.0003 (d line), dielectric constant (ε) calculated from the refractive index: 2.53 (ε = n 2 )
Dielectric constant (Dk) by cavity resonator: 2.51 (TE mode, 10 GHz), 2.53 (TM mode, 10 GHz), 2.55 (TE mode, 20 GHz), dielectric loss tangent (Df): 0.005 ( TE mode, 10 GHz), 0.005 (TM mode, 10 GHz), 0.004 (TE mode, 20 GHz)
Met.
(実施例10)
実施例10のポリマー、DCPT-BisAFは以下のように合成した。
ナスフラスコ(100mL)に2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン(BisAF)(0.841g、2.50mmol)と1M 水酸化ナトリウム水溶液(5.1mL)を攪拌子と共に入れ、溶解させた。相間移動触媒として臭化セチルトリメチルアンモニウム(CTMAB、0.277g、0.760mmol)(モノマーに対して30mol%)を加えて攪拌した。DCPT(0.565g、2.50mmol)を脱水ジクロロメタン(5.0mL)に溶かした溶液をナスフラスコに加え、室温で18時間激しく攪拌した。反応後、酢酸を加えて中和しメタノール(250mL)に注いでポリマーを析出させ、吸引ろ過により回収し、室温で6時間、120℃で12時間、減圧乾燥した。 (Example 10)
The polymer of Example 10, DCPT-BisAF, was synthesized as follows.
2,2-bis(4-hydroxyphenyl)hexafluoropropane (BisAF) (0.841 g, 2.50 mmol) and 1 M sodium hydroxide aqueous solution (5.1 mL) were placed in an eggplant flask (100 mL) with a stirrer and dissolved. let me Cetyltrimethylammonium bromide (CTMAB, 0.277 g, 0.760 mmol) (30 mol % relative to the monomer) was added as a phase transfer catalyst and stirred. A solution of DCPT (0.565 g, 2.50 mmol) dissolved in dehydrated dichloromethane (5.0 mL) was added to an eggplant flask and vigorously stirred at room temperature for 18 hours. After the reaction, acetic acid was added for neutralization, poured into methanol (250 mL) to precipitate a polymer, collected by suction filtration, and dried under reduced pressure at room temperature for 6 hours and at 120° C. for 12 hours.
実施例10のポリマー、DCPT-BisAFは以下のように合成した。
ナスフラスコ(100mL)に2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン(BisAF)(0.841g、2.50mmol)と1M 水酸化ナトリウム水溶液(5.1mL)を攪拌子と共に入れ、溶解させた。相間移動触媒として臭化セチルトリメチルアンモニウム(CTMAB、0.277g、0.760mmol)(モノマーに対して30mol%)を加えて攪拌した。DCPT(0.565g、2.50mmol)を脱水ジクロロメタン(5.0mL)に溶かした溶液をナスフラスコに加え、室温で18時間激しく攪拌した。反応後、酢酸を加えて中和しメタノール(250mL)に注いでポリマーを析出させ、吸引ろ過により回収し、室温で6時間、120℃で12時間、減圧乾燥した。 (Example 10)
The polymer of Example 10, DCPT-BisAF, was synthesized as follows.
2,2-bis(4-hydroxyphenyl)hexafluoropropane (BisAF) (0.841 g, 2.50 mmol) and 1 M sodium hydroxide aqueous solution (5.1 mL) were placed in an eggplant flask (100 mL) with a stirrer and dissolved. let me Cetyltrimethylammonium bromide (CTMAB, 0.277 g, 0.760 mmol) (30 mol % relative to the monomer) was added as a phase transfer catalyst and stirred. A solution of DCPT (0.565 g, 2.50 mmol) dissolved in dehydrated dichloromethane (5.0 mL) was added to an eggplant flask and vigorously stirred at room temperature for 18 hours. After the reaction, acetic acid was added for neutralization, poured into methanol (250 mL) to precipitate a polymer, collected by suction filtration, and dried under reduced pressure at room temperature for 6 hours and at 120° C. for 12 hours.
合成した化合物は、収量:1.02g、収率:83%、対数粘度:1.21dL/g(30℃、0.5g/dLのN-メチル-2-ピロリドン溶液)、数平均分子量(Mn):257,000、重量平均分子量(Mw):771,000、分子量分布(Mw/Mn):3.0であった。
The synthesized compound has a yield of 1.02 g, a yield of 83%, a logarithmic viscosity of 1.21 dL/g (30° C., 0.5 g/dL of N-methyl-2-pyrrolidone solution), and a number average molecular weight (Mn ): 257,000, weight average molecular weight (Mw): 771,000, molecular weight distribution (Mw/Mn): 3.0.
このポリマーをクロロホルムに溶解し、ガラス板上に流延した。120℃で12時間減圧乾燥させて、無色透明なキャストフィルム(膜厚80μm)を得た。
この実施例について、前述した機器を用いての分析結果は、
1H-NMR(CDCl3,ppm):8.24(d,2H,Ar-H)、7.55-7.51(m,5H,Ar-H)、7.41(t,2H,Ar-H)、7.33(d,4H,Ar-H)
13C-NMR(CDCl3,ppm):176.1、172.5、152.3、134.2、133.7、131.6、131.0、129.3、128.8、121.6
元素分析(C24H13F6N3O2)n:計算値C,58.90%;H,2.68%;N,8.60%、実測値C,58.42%;H,2.88%;N,8.15%
溶解性:N-メチル-2-ピロリドン(NMP)、N,N-ジメチルアセトアミド(DMAc)、ニトロベンゼン、テトラヒドロフラン(THF)、1,4-ジオキサン、o-ジクロロベンゼン、クロロホルム、ジクロロメタン、ベンゾニトリル、γ-ブチロラクトン、シクロヘキサノン、シクロペンタノンに可溶
5%重量減少温度:404℃(空気中)、404℃(窒素中) 10%重量減少温度:414℃(空気中)、412℃(窒素中) 炭化収率:41%(窒素中、800℃)
ガラス転移温度(Tg):202℃(DSC)、202℃(TMA)、199℃(DMA)、熱膨張係数(CTE):64ppm/℃
カットオフ波長:321nm、400nmでの透過率:84%
平均屈折率(n):1.570(d線)、複屈折(Δn):0.0004(d線)、屈折率から計算される誘電率(ε):2.46(ε=n2)
誘電率(Dk):2.52(TEモード,10GHz)、2.52(TMモード,10GHz)、2.53(TEモード,20GHz)
誘電正接(Df):0.002(TEモード,10GHz)、0.003(TMモード,10GHz)、0.003(TEモード,20GHz)であった。 This polymer was dissolved in chloroform and cast onto a glass plate. It was dried under reduced pressure at 120° C. for 12 hours to obtain a colorless and transparent cast film (thickness: 80 μm).
For this example, the analysis results using the instrument described above are:
1 H-NMR (CDCl 3 , ppm): 8.24 (d, 2H, Ar—H), 7.55-7.51 (m, 5H, Ar—H), 7.41 (t, 2H, Ar -H), 7.33 (d, 4H, Ar-H)
13 C-NMR (CDCl 3 , ppm): 176.1, 172.5, 152.3, 134.2, 133.7, 131.6, 131.0, 129.3, 128.8, 121.6
Elemental analysis ( C24H13F6N3O2 )n : Calculated value C, 58.90 %; H, 2.68%; N, 8.60%, found value C, 58.42 %; 2.88%; N, 8.15%
Solubility: N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc), nitrobenzene, tetrahydrofuran (THF), 1,4-dioxane, o-dichlorobenzene, chloroform, dichloromethane, benzonitrile, γ -Soluble in butyrolactone, cyclohexanone, cyclopentanone 5% weight loss temperature: 404°C (in air), 404°C (in nitrogen) 10% weight loss temperature: 414°C (in air), 412°C (in nitrogen) Carbonization Yield: 41% (800°C in nitrogen)
Glass transition temperature (Tg): 202°C (DSC), 202°C (TMA), 199°C (DMA), coefficient of thermal expansion (CTE): 64 ppm/°C
Cutoff wavelength: 321 nm, transmittance at 400 nm: 84%
Average refractive index (n): 1.570 (d line), birefringence (Δn): 0.0004 (d line), dielectric constant (ε) calculated from refractive index: 2.46 (ε = n 2 )
Dielectric constant (Dk): 2.52 (TE mode, 10 GHz), 2.52 (TM mode, 10 GHz), 2.53 (TE mode, 20 GHz)
Dielectric loss tangent (Df): 0.002 (TE mode, 10 GHz), 0.003 (TM mode, 10 GHz), 0.003 (TE mode, 20 GHz).
この実施例について、前述した機器を用いての分析結果は、
1H-NMR(CDCl3,ppm):8.24(d,2H,Ar-H)、7.55-7.51(m,5H,Ar-H)、7.41(t,2H,Ar-H)、7.33(d,4H,Ar-H)
13C-NMR(CDCl3,ppm):176.1、172.5、152.3、134.2、133.7、131.6、131.0、129.3、128.8、121.6
元素分析(C24H13F6N3O2)n:計算値C,58.90%;H,2.68%;N,8.60%、実測値C,58.42%;H,2.88%;N,8.15%
溶解性:N-メチル-2-ピロリドン(NMP)、N,N-ジメチルアセトアミド(DMAc)、ニトロベンゼン、テトラヒドロフラン(THF)、1,4-ジオキサン、o-ジクロロベンゼン、クロロホルム、ジクロロメタン、ベンゾニトリル、γ-ブチロラクトン、シクロヘキサノン、シクロペンタノンに可溶
5%重量減少温度:404℃(空気中)、404℃(窒素中) 10%重量減少温度:414℃(空気中)、412℃(窒素中) 炭化収率:41%(窒素中、800℃)
ガラス転移温度(Tg):202℃(DSC)、202℃(TMA)、199℃(DMA)、熱膨張係数(CTE):64ppm/℃
カットオフ波長:321nm、400nmでの透過率:84%
平均屈折率(n):1.570(d線)、複屈折(Δn):0.0004(d線)、屈折率から計算される誘電率(ε):2.46(ε=n2)
誘電率(Dk):2.52(TEモード,10GHz)、2.52(TMモード,10GHz)、2.53(TEモード,20GHz)
誘電正接(Df):0.002(TEモード,10GHz)、0.003(TMモード,10GHz)、0.003(TEモード,20GHz)であった。 This polymer was dissolved in chloroform and cast onto a glass plate. It was dried under reduced pressure at 120° C. for 12 hours to obtain a colorless and transparent cast film (thickness: 80 μm).
For this example, the analysis results using the instrument described above are:
1 H-NMR (CDCl 3 , ppm): 8.24 (d, 2H, Ar—H), 7.55-7.51 (m, 5H, Ar—H), 7.41 (t, 2H, Ar -H), 7.33 (d, 4H, Ar-H)
13 C-NMR (CDCl 3 , ppm): 176.1, 172.5, 152.3, 134.2, 133.7, 131.6, 131.0, 129.3, 128.8, 121.6
Elemental analysis ( C24H13F6N3O2 )n : Calculated value C, 58.90 %; H, 2.68%; N, 8.60%, found value C, 58.42 %; 2.88%; N, 8.15%
Solubility: N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc), nitrobenzene, tetrahydrofuran (THF), 1,4-dioxane, o-dichlorobenzene, chloroform, dichloromethane, benzonitrile, γ -Soluble in butyrolactone, cyclohexanone, cyclopentanone 5% weight loss temperature: 404°C (in air), 404°C (in nitrogen) 10% weight loss temperature: 414°C (in air), 412°C (in nitrogen) Carbonization Yield: 41% (800°C in nitrogen)
Glass transition temperature (Tg): 202°C (DSC), 202°C (TMA), 199°C (DMA), coefficient of thermal expansion (CTE): 64 ppm/°C
Cutoff wavelength: 321 nm, transmittance at 400 nm: 84%
Average refractive index (n): 1.570 (d line), birefringence (Δn): 0.0004 (d line), dielectric constant (ε) calculated from refractive index: 2.46 (ε = n 2 )
Dielectric constant (Dk): 2.52 (TE mode, 10 GHz), 2.52 (TM mode, 10 GHz), 2.53 (TE mode, 20 GHz)
Dielectric loss tangent (Df): 0.002 (TE mode, 10 GHz), 0.003 (TM mode, 10 GHz), 0.003 (TE mode, 20 GHz).
(実施例11)
実施例11のポリマー、DCPT-BPFLは以下のように合成した。
ナスフラスコ(100mL)に1M 水酸化ナトリウム水溶液(5.1mL)と臭化セチルトリメチルアンモニウム(CTMAB、0.277g、0.760mmol)(モノマーに対して30mol%)を攪拌子と共に入れ、攪拌した。9,9-ビス(4-ヒドロキシフェニル)フルオレン(BPFL)(0.876g、2.50mmol)とDCPT(0.565g、2.50mmol)を脱水ニトロベンゼン(5.0mL)に溶かした溶液をナスフラスコに加え、室温で18時間激しく攪拌した。反応後、酢酸を加えて中和しメタノール(250mL)に注いでポリマーを析出させ、吸引濾過により回収し室温で6時間、180℃で12時間、減圧乾燥した。 (Example 11)
The polymer of Example 11, DCPT-BPFL, was synthesized as follows.
A 1 M sodium hydroxide aqueous solution (5.1 mL) and cetyltrimethylammonium bromide (CTMAB, 0.277 g, 0.760 mmol) (30 mol % relative to the monomer) were placed in an eggplant flask (100 mL) with a stirrer and stirred. A solution of 9,9-bis(4-hydroxyphenyl)fluorene (BPFL) (0.876 g, 2.50 mmol) and DCPT (0.565 g, 2.50 mmol) dissolved in dehydrated nitrobenzene (5.0 mL) was added to an eggplant flask. and stirred vigorously at room temperature for 18 hours. After the reaction, acetic acid was added for neutralization, poured into methanol (250 mL) to precipitate a polymer, recovered by suction filtration, and dried under reduced pressure at room temperature for 6 hours and at 180° C. for 12 hours.
実施例11のポリマー、DCPT-BPFLは以下のように合成した。
ナスフラスコ(100mL)に1M 水酸化ナトリウム水溶液(5.1mL)と臭化セチルトリメチルアンモニウム(CTMAB、0.277g、0.760mmol)(モノマーに対して30mol%)を攪拌子と共に入れ、攪拌した。9,9-ビス(4-ヒドロキシフェニル)フルオレン(BPFL)(0.876g、2.50mmol)とDCPT(0.565g、2.50mmol)を脱水ニトロベンゼン(5.0mL)に溶かした溶液をナスフラスコに加え、室温で18時間激しく攪拌した。反応後、酢酸を加えて中和しメタノール(250mL)に注いでポリマーを析出させ、吸引濾過により回収し室温で6時間、180℃で12時間、減圧乾燥した。 (Example 11)
The polymer of Example 11, DCPT-BPFL, was synthesized as follows.
A 1 M sodium hydroxide aqueous solution (5.1 mL) and cetyltrimethylammonium bromide (CTMAB, 0.277 g, 0.760 mmol) (30 mol % relative to the monomer) were placed in an eggplant flask (100 mL) with a stirrer and stirred. A solution of 9,9-bis(4-hydroxyphenyl)fluorene (BPFL) (0.876 g, 2.50 mmol) and DCPT (0.565 g, 2.50 mmol) dissolved in dehydrated nitrobenzene (5.0 mL) was added to an eggplant flask. and stirred vigorously at room temperature for 18 hours. After the reaction, acetic acid was added for neutralization, poured into methanol (250 mL) to precipitate a polymer, recovered by suction filtration, and dried under reduced pressure at room temperature for 6 hours and at 180° C. for 12 hours.
合成した化合物は、収量:0.52g、収率:42%、対数粘度:1.25dL/g(30℃、0.5g/dLのN-メチル-2-ピロリドン溶液)であった。
The synthesized compound was yield: 0.52 g, yield: 42%, logarithmic viscosity: 1.25 dL/g (30°C, 0.5 g/dL N-methyl-2-pyrrolidone solution).
このポリマーをクロロホルム溶解し、ガラス板上に流延した。180℃で12時間減圧乾燥させて、無色透明なキャストフィルム(膜厚74μm)を得た。
この実施例について、前述した機器を用いての分析結果は、
溶解性:N-メチル-2-ピロリドン(NMP)、N,N-ジメチルアセトアミド(DMAc)、ニトロベンゼン、テトラヒドロフラン(THF)、1,4-ジオキサン、o-ジクロロベンゼン、クロロホルム、ジクロロメタン、ベンゾニトリルに可溶
ガラス転移温度(Tg):247℃(DSC)、270℃(TMA)、264℃(DMA)
カットオフ波長:325nm、400nmでの透過率:83%
平均屈折率(n):1.670(d線)、複屈折(Δn):0.0003(d線)、屈折率から計算される誘電率(ε):2.79(ε=n2)
誘電率(Dk):2.78(TEモード,10GHz)、2.80(TMモード,10GHz)、2.78(TEモード,20GHz)
誘電正接(Df):0.002(TEモード,10GHz)、0.003(TMモード,10GHz)、0.003(TEモード,20GHz)であった。 This polymer was dissolved in chloroform and cast onto a glass plate. It was dried under reduced pressure at 180° C. for 12 hours to obtain a colorless and transparent cast film (thickness: 74 μm).
For this example, the analysis results using the instrument described above are:
Solubility: N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc), nitrobenzene, tetrahydrofuran (THF), 1,4-dioxane, o-dichlorobenzene, chloroform, dichloromethane, benzonitrile Melting Glass transition temperature (Tg): 247°C (DSC), 270°C (TMA), 264°C (DMA)
Cutoff wavelength: 325 nm, transmittance at 400 nm: 83%
Average refractive index (n): 1.670 (d line), birefringence (Δn): 0.0003 (d line), dielectric constant (ε) calculated from refractive index: 2.79 (ε = n 2 )
Dielectric constant (Dk): 2.78 (TE mode, 10 GHz), 2.80 (TM mode, 10 GHz), 2.78 (TE mode, 20 GHz)
Dielectric loss tangent (Df): 0.002 (TE mode, 10 GHz), 0.003 (TM mode, 10 GHz), 0.003 (TE mode, 20 GHz).
この実施例について、前述した機器を用いての分析結果は、
溶解性:N-メチル-2-ピロリドン(NMP)、N,N-ジメチルアセトアミド(DMAc)、ニトロベンゼン、テトラヒドロフラン(THF)、1,4-ジオキサン、o-ジクロロベンゼン、クロロホルム、ジクロロメタン、ベンゾニトリルに可溶
ガラス転移温度(Tg):247℃(DSC)、270℃(TMA)、264℃(DMA)
カットオフ波長:325nm、400nmでの透過率:83%
平均屈折率(n):1.670(d線)、複屈折(Δn):0.0003(d線)、屈折率から計算される誘電率(ε):2.79(ε=n2)
誘電率(Dk):2.78(TEモード,10GHz)、2.80(TMモード,10GHz)、2.78(TEモード,20GHz)
誘電正接(Df):0.002(TEモード,10GHz)、0.003(TMモード,10GHz)、0.003(TEモード,20GHz)であった。 This polymer was dissolved in chloroform and cast onto a glass plate. It was dried under reduced pressure at 180° C. for 12 hours to obtain a colorless and transparent cast film (thickness: 74 μm).
For this example, the analysis results using the instrument described above are:
Solubility: N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc), nitrobenzene, tetrahydrofuran (THF), 1,4-dioxane, o-dichlorobenzene, chloroform, dichloromethane, benzonitrile Melting Glass transition temperature (Tg): 247°C (DSC), 270°C (TMA), 264°C (DMA)
Cutoff wavelength: 325 nm, transmittance at 400 nm: 83%
Average refractive index (n): 1.670 (d line), birefringence (Δn): 0.0003 (d line), dielectric constant (ε) calculated from refractive index: 2.79 (ε = n 2 )
Dielectric constant (Dk): 2.78 (TE mode, 10 GHz), 2.80 (TM mode, 10 GHz), 2.78 (TE mode, 20 GHz)
Dielectric loss tangent (Df): 0.002 (TE mode, 10 GHz), 0.003 (TM mode, 10 GHz), 0.003 (TE mode, 20 GHz).
(実施例12)
実施例12のポリマー、DCPpT-BisAは以下のように合成した。
ナスフラスコ(100mL)にビスフェノールA(0.571g、2.50mmol)と1M 水酸化ナトリウム水溶液(5.1mL)を攪拌子と共に入れ、溶解させた。相間移動触媒として臭化セチルトリメチルアンモニウム(CTMAB、0.277g、0.760mmol)(モノマーに対して30mol%)を加えて攪拌した。DCPpT(0.583g、2.50mmol)を脱水ベンゾニトリル(5.0mL)に溶かした溶液をナスフラスコに加え、80℃で18時間激しく攪拌した。反応後、酢酸を加えて中和しメタノール(250mL)に注いでポリマーを析出させ、吸引濾過により回収し室温で6時間減圧乾燥させた。得られたポリマーをクロロホルムに溶解し、メタノールに注いで再沈殿させた。ポリマーを回収した後、150℃で12時間、減圧乾燥した。 (Example 12)
The polymer of Example 12, DCPpT-BisA, was synthesized as follows.
Bisphenol A (0.571 g, 2.50 mmol) and 1 M sodium hydroxide aqueous solution (5.1 mL) were placed in an eggplant flask (100 mL) with a stirrer and dissolved. Cetyltrimethylammonium bromide (CTMAB, 0.277 g, 0.760 mmol) (30 mol % relative to the monomer) was added as a phase transfer catalyst and stirred. A solution of DCPpT (0.583 g, 2.50 mmol) dissolved in dehydrated benzonitrile (5.0 mL) was added to an eggplant flask and vigorously stirred at 80° C. for 18 hours. After the reaction, acetic acid was added for neutralization, poured into methanol (250 mL) to precipitate a polymer, collected by suction filtration, and dried under reduced pressure at room temperature for 6 hours. The resulting polymer was dissolved in chloroform and poured into methanol for reprecipitation. After recovering the polymer, it was dried under reduced pressure at 150° C. for 12 hours.
実施例12のポリマー、DCPpT-BisAは以下のように合成した。
ナスフラスコ(100mL)にビスフェノールA(0.571g、2.50mmol)と1M 水酸化ナトリウム水溶液(5.1mL)を攪拌子と共に入れ、溶解させた。相間移動触媒として臭化セチルトリメチルアンモニウム(CTMAB、0.277g、0.760mmol)(モノマーに対して30mol%)を加えて攪拌した。DCPpT(0.583g、2.50mmol)を脱水ベンゾニトリル(5.0mL)に溶かした溶液をナスフラスコに加え、80℃で18時間激しく攪拌した。反応後、酢酸を加えて中和しメタノール(250mL)に注いでポリマーを析出させ、吸引濾過により回収し室温で6時間減圧乾燥させた。得られたポリマーをクロロホルムに溶解し、メタノールに注いで再沈殿させた。ポリマーを回収した後、150℃で12時間、減圧乾燥した。 (Example 12)
The polymer of Example 12, DCPpT-BisA, was synthesized as follows.
Bisphenol A (0.571 g, 2.50 mmol) and 1 M sodium hydroxide aqueous solution (5.1 mL) were placed in an eggplant flask (100 mL) with a stirrer and dissolved. Cetyltrimethylammonium bromide (CTMAB, 0.277 g, 0.760 mmol) (30 mol % relative to the monomer) was added as a phase transfer catalyst and stirred. A solution of DCPpT (0.583 g, 2.50 mmol) dissolved in dehydrated benzonitrile (5.0 mL) was added to an eggplant flask and vigorously stirred at 80° C. for 18 hours. After the reaction, acetic acid was added for neutralization, poured into methanol (250 mL) to precipitate a polymer, collected by suction filtration, and dried under reduced pressure at room temperature for 6 hours. The resulting polymer was dissolved in chloroform and poured into methanol for reprecipitation. After recovering the polymer, it was dried under reduced pressure at 150° C. for 12 hours.
合成した化合物は、収量:0.49g、収率:51%、対数粘度:0.53dL/g(30℃、0.5g/dLのクロロホルム溶液)であった。
The synthesized compound had a yield of 0.49 g, a yield of 51%, and a logarithmic viscosity of 0.53 dL/g (30°C, 0.5 g/dL chloroform solution).
このポリマーをクロロホルムに溶解し、ガラス板上に流延した。150℃で12時間減圧乾燥させて、無色透明なキャストフィルム(膜厚52μm)を得た。
この実施例について、前述した機器を用いての分析結果は、
FT-IR(film、cm-1):3038(Ar-H)、2935(C-H)、1560(C=N)、1211(C-O)、1173(C-N)
1H-NMR(CDCl3,ppm):7.20(d,4H,Ar-H)、7.06(d,4H,Ar-H)、3.62(t,4H,CH2)、1.67-1.61(m,8H,CH2,CH3)、1.51(m,4H,CH2)
13C-NMR(CDCl3,ppm):172.3、166.3、150.1、147.5、127.6、121.3、44.8、42.5、31.1、25.8、24.6
溶解性:クロロホルム、ジクロロメタン、ベンゾニトリル、シクロヘキサノンに可溶
5%重量減少温度:352℃(空気中)、405℃(窒素中) 10%重量減少温度:386℃(空気中)、413℃(窒素中) 炭化収率:27%(窒素中、800℃)
ガラス転移温度(Tg):178℃(DSC)、183℃(TMA)、171℃(DMA)、熱膨張係数(CTE):104ppm/℃
カットオフ波長:286nm、400nmにおける透過率:83%
平均屈折率(n):1.604(d線)、複屈折(Δn):0.003(d線)、屈折率から計算される誘電率(ε):2.57(ε=n2)
誘電率(Dk):2.55(TEモード,10GHz)、2.60(TMモード,10GHz)、2.66(TEモード,20GHz)
誘電正接(Df):0.003(TEモード,10GHz)、0.003(TMモード,10GHz)、0.004(TEモード,20GHz)であった。 This polymer was dissolved in chloroform and cast onto a glass plate. It was dried under reduced pressure at 150° C. for 12 hours to obtain a colorless and transparent cast film (thickness: 52 μm).
For this example, the analysis results using the instrument described above are:
FT-IR (film, cm −1 ): 3038 (Ar—H), 2935 (C—H), 1560 (C=N), 1211 (C—O), 1173 (C—N)
1 H-NMR (CDCl 3 , ppm): 7.20 (d, 4H, Ar—H), 7.06 (d, 4H, Ar—H), 3.62 (t, 4H, CH 2 ), 1 .67-1.61 (m, 8H, CH 2 , CH 3 ), 1.51 (m, 4H, CH 2 )
13 C-NMR (CDCl 3 , ppm): 172.3, 166.3, 150.1, 147.5, 127.6, 121.3, 44.8, 42.5, 31.1, 25.8 , 24.6
Solubility: Soluble in chloroform, dichloromethane, benzonitrile, cyclohexanone 5% weight loss temperature: 352°C (in air), 405°C (in nitrogen) 10% weight loss temperature: 386°C (in air), 413°C (nitrogen Medium) Carbonization yield: 27% (in nitrogen, 800 ° C.)
Glass transition temperature (Tg): 178°C (DSC), 183°C (TMA), 171°C (DMA), coefficient of thermal expansion (CTE): 104ppm/°C
Cutoff wavelength: 286 nm, transmittance at 400 nm: 83%
Average refractive index (n): 1.604 (d line), birefringence (Δn): 0.003 (d line), dielectric constant (ε) calculated from the refractive index: 2.57 (ε = n 2 )
Dielectric constant (Dk): 2.55 (TE mode, 10 GHz), 2.60 (TM mode, 10 GHz), 2.66 (TE mode, 20 GHz)
Dielectric loss tangent (Df): 0.003 (TE mode, 10 GHz), 0.003 (TM mode, 10 GHz), 0.004 (TE mode, 20 GHz).
この実施例について、前述した機器を用いての分析結果は、
FT-IR(film、cm-1):3038(Ar-H)、2935(C-H)、1560(C=N)、1211(C-O)、1173(C-N)
1H-NMR(CDCl3,ppm):7.20(d,4H,Ar-H)、7.06(d,4H,Ar-H)、3.62(t,4H,CH2)、1.67-1.61(m,8H,CH2,CH3)、1.51(m,4H,CH2)
13C-NMR(CDCl3,ppm):172.3、166.3、150.1、147.5、127.6、121.3、44.8、42.5、31.1、25.8、24.6
溶解性:クロロホルム、ジクロロメタン、ベンゾニトリル、シクロヘキサノンに可溶
5%重量減少温度:352℃(空気中)、405℃(窒素中) 10%重量減少温度:386℃(空気中)、413℃(窒素中) 炭化収率:27%(窒素中、800℃)
ガラス転移温度(Tg):178℃(DSC)、183℃(TMA)、171℃(DMA)、熱膨張係数(CTE):104ppm/℃
カットオフ波長:286nm、400nmにおける透過率:83%
平均屈折率(n):1.604(d線)、複屈折(Δn):0.003(d線)、屈折率から計算される誘電率(ε):2.57(ε=n2)
誘電率(Dk):2.55(TEモード,10GHz)、2.60(TMモード,10GHz)、2.66(TEモード,20GHz)
誘電正接(Df):0.003(TEモード,10GHz)、0.003(TMモード,10GHz)、0.004(TEモード,20GHz)であった。 This polymer was dissolved in chloroform and cast onto a glass plate. It was dried under reduced pressure at 150° C. for 12 hours to obtain a colorless and transparent cast film (thickness: 52 μm).
For this example, the analysis results using the instrument described above are:
FT-IR (film, cm −1 ): 3038 (Ar—H), 2935 (C—H), 1560 (C=N), 1211 (C—O), 1173 (C—N)
1 H-NMR (CDCl 3 , ppm): 7.20 (d, 4H, Ar—H), 7.06 (d, 4H, Ar—H), 3.62 (t, 4H, CH 2 ), 1 .67-1.61 (m, 8H, CH 2 , CH 3 ), 1.51 (m, 4H, CH 2 )
13 C-NMR (CDCl 3 , ppm): 172.3, 166.3, 150.1, 147.5, 127.6, 121.3, 44.8, 42.5, 31.1, 25.8 , 24.6
Solubility: Soluble in chloroform, dichloromethane, benzonitrile, cyclohexanone 5% weight loss temperature: 352°C (in air), 405°C (in nitrogen) 10% weight loss temperature: 386°C (in air), 413°C (nitrogen Medium) Carbonization yield: 27% (in nitrogen, 800 ° C.)
Glass transition temperature (Tg): 178°C (DSC), 183°C (TMA), 171°C (DMA), coefficient of thermal expansion (CTE): 104ppm/°C
Cutoff wavelength: 286 nm, transmittance at 400 nm: 83%
Average refractive index (n): 1.604 (d line), birefringence (Δn): 0.003 (d line), dielectric constant (ε) calculated from the refractive index: 2.57 (ε = n 2 )
Dielectric constant (Dk): 2.55 (TE mode, 10 GHz), 2.60 (TM mode, 10 GHz), 2.66 (TE mode, 20 GHz)
Dielectric loss tangent (Df): 0.003 (TE mode, 10 GHz), 0.003 (TM mode, 10 GHz), 0.004 (TE mode, 20 GHz).
(実施例13)
実施例13のポリマー、DCPpT-BisPHTGは以下のように合成した。
ナスフラスコ(100mL)にBisPHTG(0.776g、2.50mmol)と1M 水酸化ナトリウム水溶液(5.1mL)を攪拌子と共に入れ、溶解させた。臭化セチルトリメチルアンモニウム(CTMAB、0.277g、0.760mmol)(モノマーに対して30mol%)を加えて攪拌した。DCPpT(0.583g、2.50mmol)を脱水ニトロベンゼン(5.0mL)に溶かした溶液をナスフラスコに加え、80℃で18時間激しく攪拌した。反応後、酢酸を加えて中和しメタノール(250mL)に注いでポリマーを析出させ、吸引濾過により回収し室温で6時間減圧乾燥させた。得られたポリマーをクロロホルムに溶解しメタノールに注いで再沈殿させた。ポリマーを回収した後、180℃で12時間、減圧乾燥した。 (Example 13)
The polymer of Example 13, DCPpT-BisPHTG, was synthesized as follows.
BisPHTG (0.776 g, 2.50 mmol) and 1 M sodium hydroxide aqueous solution (5.1 mL) were placed in an eggplant flask (100 mL) with a stirrer and dissolved. Cetyltrimethylammonium bromide (CTMAB, 0.277 g, 0.760 mmol) (30 mol % relative to the monomer) was added and stirred. A solution of DCPpT (0.583 g, 2.50 mmol) dissolved in dehydrated nitrobenzene (5.0 mL) was added to an eggplant flask and vigorously stirred at 80° C. for 18 hours. After the reaction, acetic acid was added for neutralization, poured into methanol (250 mL) to precipitate a polymer, collected by suction filtration, and dried under reduced pressure at room temperature for 6 hours. The resulting polymer was dissolved in chloroform and poured into methanol for reprecipitation. After recovering the polymer, it was dried under reduced pressure at 180° C. for 12 hours.
実施例13のポリマー、DCPpT-BisPHTGは以下のように合成した。
ナスフラスコ(100mL)にBisPHTG(0.776g、2.50mmol)と1M 水酸化ナトリウム水溶液(5.1mL)を攪拌子と共に入れ、溶解させた。臭化セチルトリメチルアンモニウム(CTMAB、0.277g、0.760mmol)(モノマーに対して30mol%)を加えて攪拌した。DCPpT(0.583g、2.50mmol)を脱水ニトロベンゼン(5.0mL)に溶かした溶液をナスフラスコに加え、80℃で18時間激しく攪拌した。反応後、酢酸を加えて中和しメタノール(250mL)に注いでポリマーを析出させ、吸引濾過により回収し室温で6時間減圧乾燥させた。得られたポリマーをクロロホルムに溶解しメタノールに注いで再沈殿させた。ポリマーを回収した後、180℃で12時間、減圧乾燥した。 (Example 13)
The polymer of Example 13, DCPpT-BisPHTG, was synthesized as follows.
BisPHTG (0.776 g, 2.50 mmol) and 1 M sodium hydroxide aqueous solution (5.1 mL) were placed in an eggplant flask (100 mL) with a stirrer and dissolved. Cetyltrimethylammonium bromide (CTMAB, 0.277 g, 0.760 mmol) (30 mol % relative to the monomer) was added and stirred. A solution of DCPpT (0.583 g, 2.50 mmol) dissolved in dehydrated nitrobenzene (5.0 mL) was added to an eggplant flask and vigorously stirred at 80° C. for 18 hours. After the reaction, acetic acid was added for neutralization, poured into methanol (250 mL) to precipitate a polymer, collected by suction filtration, and dried under reduced pressure at room temperature for 6 hours. The resulting polymer was dissolved in chloroform and poured into methanol for reprecipitation. After recovering the polymer, it was dried under reduced pressure at 180° C. for 12 hours.
合成した化合物は、収量:1.08g、収率:92%、対数粘度:0.86dL/g(30℃、0.5g/dLのクロロホルム溶液)、数平均分子量(Mn):103,000、重量平均分子量(Mw):206,000、分子量分布(Mw/Mn):2.0であった。
The synthesized compound has a yield of 1.08 g, a yield of 92%, a logarithmic viscosity of 0.86 dL/g (30° C., 0.5 g/dL of chloroform solution), a number average molecular weight (Mn) of 103,000, Weight average molecular weight (Mw): 206,000, molecular weight distribution (Mw/Mn): 2.0.
このポリマーをクロロホルムに溶解し、ガラス板上に流延した。150℃で12時間減圧乾燥させて、無色透明なキャストフィルム(膜厚77μm)を得た。
この実施例について、前述した機器を用いての分析結果は、
1H -NMR(CDCl3,ppm):7.32(d,2H,Ar-H)、7.18(d,2H,Ar-H)、7.02(m,4H,Ar-H)、3.54~3.38(m,4H,CH2)、2.68-2.42(d,2H,CH2)、2.00(m,2H,CH2)、1.49~0.86(m,15H,CH,CH2,CH3)、0.35(d,3H,CH3)
溶解性:N-メチル-2-ピロリドン(NMP)、N,N-ジメチルアセトアミド(DMAc)、ニトロベンゼン、テトラヒドロフラン(THF)、1,4-ジオキサン、o-ジクロロベンゼン、クロロホルム、ジクロロメタン、ベンゾニトリル、シクロヘキサノン、シクロペンタノンに可溶
5%重量減少温度:340℃(空気中)、407℃(窒素中) 10%重量減少温度:360℃(空気中)、417℃(窒素中) 炭化収率:17%(窒素中、800℃)
ガラス転移温度(Tg):236℃(DSC)、246℃(TMA)、233℃(DMA)
熱膨張係数(CTE):79ppm/℃
カットオフ波長:288nm、400nmでの透過率:86%
平均屈折率(n):1.578(d線)、複屈折(Δn):0.004(d線)、屈折率から計算される誘電率(ε):2.49(ε=n2)
誘電率(Dk):2.54(TEモード,10GHz)、2.53(TMモード,10GHz)、2.52(TEモード,20GHz)
誘電正接(Df):0.002(TEモード,10GHz)、0.002(TMモード,10GHz)、0.002(TEモード,20GHz)であった。 This polymer was dissolved in chloroform and cast onto a glass plate. It was dried under reduced pressure at 150° C. for 12 hours to obtain a colorless and transparent cast film (thickness: 77 μm).
For this example, the analysis results using the instrument described above are:
1 H-NMR (CDCl 3 , ppm): 7.32 (d, 2H, Ar—H), 7.18 (d, 2H, Ar—H), 7.02 (m, 4H, Ar—H), 3.54-3.38 (m, 4H, CH 2 ), 2.68-2.42 (d, 2H, CH 2 ), 2.00 (m, 2H, CH 2 ), 1.49-0. 86 (m, 15H, CH, CH2 , CH3 ), 0.35 (d, 3H, CH3 )
Solubility: N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc), nitrobenzene, tetrahydrofuran (THF), 1,4-dioxane, o-dichlorobenzene, chloroform, dichloromethane, benzonitrile, cyclohexanone , soluble in cyclopentanone 5% weight loss temperature: 340°C (in air), 407°C (in nitrogen) 10% weight loss temperature: 360°C (in air), 417°C (in nitrogen) Carbonization yield: 17 % (in nitrogen, 800°C)
Glass transition temperature (Tg): 236°C (DSC), 246°C (TMA), 233°C (DMA)
Coefficient of thermal expansion (CTE): 79ppm/°C
Cutoff wavelength: 288 nm, transmittance at 400 nm: 86%
Average refractive index (n): 1.578 (d line), birefringence (Δn): 0.004 (d line), dielectric constant (ε) calculated from refractive index: 2.49 (ε = n 2 )
Dielectric constant (Dk): 2.54 (TE mode, 10 GHz), 2.53 (TM mode, 10 GHz), 2.52 (TE mode, 20 GHz)
Dielectric loss tangent (Df): 0.002 (TE mode, 10 GHz), 0.002 (TM mode, 10 GHz), 0.002 (TE mode, 20 GHz).
この実施例について、前述した機器を用いての分析結果は、
1H -NMR(CDCl3,ppm):7.32(d,2H,Ar-H)、7.18(d,2H,Ar-H)、7.02(m,4H,Ar-H)、3.54~3.38(m,4H,CH2)、2.68-2.42(d,2H,CH2)、2.00(m,2H,CH2)、1.49~0.86(m,15H,CH,CH2,CH3)、0.35(d,3H,CH3)
溶解性:N-メチル-2-ピロリドン(NMP)、N,N-ジメチルアセトアミド(DMAc)、ニトロベンゼン、テトラヒドロフラン(THF)、1,4-ジオキサン、o-ジクロロベンゼン、クロロホルム、ジクロロメタン、ベンゾニトリル、シクロヘキサノン、シクロペンタノンに可溶
5%重量減少温度:340℃(空気中)、407℃(窒素中) 10%重量減少温度:360℃(空気中)、417℃(窒素中) 炭化収率:17%(窒素中、800℃)
ガラス転移温度(Tg):236℃(DSC)、246℃(TMA)、233℃(DMA)
熱膨張係数(CTE):79ppm/℃
カットオフ波長:288nm、400nmでの透過率:86%
平均屈折率(n):1.578(d線)、複屈折(Δn):0.004(d線)、屈折率から計算される誘電率(ε):2.49(ε=n2)
誘電率(Dk):2.54(TEモード,10GHz)、2.53(TMモード,10GHz)、2.52(TEモード,20GHz)
誘電正接(Df):0.002(TEモード,10GHz)、0.002(TMモード,10GHz)、0.002(TEモード,20GHz)であった。 This polymer was dissolved in chloroform and cast onto a glass plate. It was dried under reduced pressure at 150° C. for 12 hours to obtain a colorless and transparent cast film (thickness: 77 μm).
For this example, the analysis results using the instrument described above are:
1 H-NMR (CDCl 3 , ppm): 7.32 (d, 2H, Ar—H), 7.18 (d, 2H, Ar—H), 7.02 (m, 4H, Ar—H), 3.54-3.38 (m, 4H, CH 2 ), 2.68-2.42 (d, 2H, CH 2 ), 2.00 (m, 2H, CH 2 ), 1.49-0. 86 (m, 15H, CH, CH2 , CH3 ), 0.35 (d, 3H, CH3 )
Solubility: N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc), nitrobenzene, tetrahydrofuran (THF), 1,4-dioxane, o-dichlorobenzene, chloroform, dichloromethane, benzonitrile, cyclohexanone , soluble in cyclopentanone 5% weight loss temperature: 340°C (in air), 407°C (in nitrogen) 10% weight loss temperature: 360°C (in air), 417°C (in nitrogen) Carbonization yield: 17 % (in nitrogen, 800°C)
Glass transition temperature (Tg): 236°C (DSC), 246°C (TMA), 233°C (DMA)
Coefficient of thermal expansion (CTE): 79ppm/°C
Cutoff wavelength: 288 nm, transmittance at 400 nm: 86%
Average refractive index (n): 1.578 (d line), birefringence (Δn): 0.004 (d line), dielectric constant (ε) calculated from refractive index: 2.49 (ε = n 2 )
Dielectric constant (Dk): 2.54 (TE mode, 10 GHz), 2.53 (TM mode, 10 GHz), 2.52 (TE mode, 20 GHz)
Dielectric loss tangent (Df): 0.002 (TE mode, 10 GHz), 0.002 (TM mode, 10 GHz), 0.002 (TE mode, 20 GHz).
(実施例14)
実施例14のポリマー、DCPpT-BisTMPは以下のように合成した。
実施例13のBisPHTGの代わりにBisTMPを用いて、同様にトリアジン化合物を合成した。 (Example 14)
The polymer of Example 14, DCPpT-BisTMP, was synthesized as follows.
A triazine compound was similarly synthesized using BisTMP in place of BisPHTG in Example 13.
実施例14のポリマー、DCPpT-BisTMPは以下のように合成した。
実施例13のBisPHTGの代わりにBisTMPを用いて、同様にトリアジン化合物を合成した。 (Example 14)
The polymer of Example 14, DCPpT-BisTMP, was synthesized as follows.
A triazine compound was similarly synthesized using BisTMP in place of BisPHTG in Example 13.
合成した化合物は、収率:78%、対数粘度:0.48dL/g(30℃、0.5g/dLのクロロホルム溶液)、数平均分子量(Mn):37,000、重量平均分子量(Mw):59,000、分子量分布(Mw/Mn):1.6、平均重合度(n):78であった。
The synthesized compound has a yield of 78%, a logarithmic viscosity of 0.48 dL/g (30°C, 0.5 g/dL of chloroform solution), a number average molecular weight (Mn) of 37,000, and a weight average molecular weight (Mw) of : 59,000, molecular weight distribution (Mw/Mn): 1.6, average degree of polymerization (n): 78.
このポリマーをクロロホルムに溶解し、ガラス板上に流延した。150℃で12時間減圧乾燥させて、無色透明なキャストフィルム(膜厚67μm)を得た。
この実施例について、前述した機器を用いての分析結果は、
溶解性:ベンゾニトリル、テトラヒドロフラン(THF)、1,4-ジオキサン、クロロホルム、ジクロロメタン、シクロヘキサノンに可溶
5%重量減少温度:380℃(空気中)、399℃(窒素中) 10%重量減少温度:395℃(空気中)、406℃(窒素中) 炭化収率:17%(窒素中、800℃)
ガラス転移温度(Tg):201℃(DSC)、205℃(TMA)、199℃(DMA)
熱膨張係数(CTE):80ppm/℃
カットオフ波長:294nm
平均屈折率(n):1.571(d線)、複屈折(Δn):0.002(d線)、屈折率から計算される誘電率(ε):2.47(ε=n2)
誘電率(Dk):2.55(TEモード,10GHz)、2.50(TEモード,20GHz)
誘電正接(Df):0.002(TEモード,10GHz)、0.002(TEモード,20GHz)であった。 This polymer was dissolved in chloroform and cast onto a glass plate. It was dried under reduced pressure at 150° C. for 12 hours to obtain a colorless and transparent cast film (thickness: 67 μm).
For this example, the analysis results using the instrument described above are:
Solubility: soluble in benzonitrile, tetrahydrofuran (THF), 1,4-dioxane, chloroform, dichloromethane, cyclohexanone 5% weight loss temperature: 380°C (in air), 399°C (in nitrogen) 10% weight loss temperature: 395°C (in air), 406°C (in nitrogen) Carbonization yield: 17% (800°C in nitrogen)
Glass transition temperature (Tg): 201°C (DSC), 205°C (TMA), 199°C (DMA)
Coefficient of thermal expansion (CTE): 80ppm/°C
Cutoff wavelength: 294 nm
Average refractive index (n): 1.571 (d line), birefringence (Δn): 0.002 (d line), dielectric constant (ε) calculated from refractive index: 2.47 (ε = n 2 )
Dielectric constant (Dk): 2.55 (TE mode, 10 GHz), 2.50 (TE mode, 20 GHz)
Dielectric loss tangent (Df): 0.002 (TE mode, 10 GHz), 0.002 (TE mode, 20 GHz).
この実施例について、前述した機器を用いての分析結果は、
溶解性:ベンゾニトリル、テトラヒドロフラン(THF)、1,4-ジオキサン、クロロホルム、ジクロロメタン、シクロヘキサノンに可溶
5%重量減少温度:380℃(空気中)、399℃(窒素中) 10%重量減少温度:395℃(空気中)、406℃(窒素中) 炭化収率:17%(窒素中、800℃)
ガラス転移温度(Tg):201℃(DSC)、205℃(TMA)、199℃(DMA)
熱膨張係数(CTE):80ppm/℃
カットオフ波長:294nm
平均屈折率(n):1.571(d線)、複屈折(Δn):0.002(d線)、屈折率から計算される誘電率(ε):2.47(ε=n2)
誘電率(Dk):2.55(TEモード,10GHz)、2.50(TEモード,20GHz)
誘電正接(Df):0.002(TEモード,10GHz)、0.002(TEモード,20GHz)であった。 This polymer was dissolved in chloroform and cast onto a glass plate. It was dried under reduced pressure at 150° C. for 12 hours to obtain a colorless and transparent cast film (thickness: 67 μm).
For this example, the analysis results using the instrument described above are:
Solubility: soluble in benzonitrile, tetrahydrofuran (THF), 1,4-dioxane, chloroform, dichloromethane, cyclohexanone 5% weight loss temperature: 380°C (in air), 399°C (in nitrogen) 10% weight loss temperature: 395°C (in air), 406°C (in nitrogen) Carbonization yield: 17% (800°C in nitrogen)
Glass transition temperature (Tg): 201°C (DSC), 205°C (TMA), 199°C (DMA)
Coefficient of thermal expansion (CTE): 80ppm/°C
Cutoff wavelength: 294 nm
Average refractive index (n): 1.571 (d line), birefringence (Δn): 0.002 (d line), dielectric constant (ε) calculated from refractive index: 2.47 (ε = n 2 )
Dielectric constant (Dk): 2.55 (TE mode, 10 GHz), 2.50 (TE mode, 20 GHz)
Dielectric loss tangent (Df): 0.002 (TE mode, 10 GHz), 0.002 (TE mode, 20 GHz).
(実施例15)
実施例15のポリマー、DCPpT-BisAFは以下のように合成した。
ナスフラスコ(100mL)にBisAF(0.841g、2.50mmol)と1M 水酸化ナトリウム水溶液(5.1mL)を攪拌子と共に入れ、溶解させた。臭化セチルトリメチルアンモニウム(CTMAB、0.277g、0.760mmol)(モノマーに対して30mol%)を加えて攪拌した。DCPpT(0.583g、2.50mmol)を脱水ニトロベンゼン(5.0mL)に溶かした溶液をナスフラスコに加え、80℃で18時間激しく攪拌した。反応後、酢酸を加えて中和しメタノール(250mL)に注いでポリマーを析出させ、吸引濾過により回収し室温で6時間減圧乾燥させた。得られたポリマーをクロロホルムに溶解し、メタノールに注いで再沈殿させた。ポリマーを回収した後、150℃で12時間、減圧乾燥した。 (Example 15)
The polymer of Example 15, DCPpT-BisAF, was synthesized as follows.
BisAF (0.841 g, 2.50 mmol) and 1 M sodium hydroxide aqueous solution (5.1 mL) were placed in an eggplant flask (100 mL) with a stirrer and dissolved. Cetyltrimethylammonium bromide (CTMAB, 0.277 g, 0.760 mmol) (30 mol % relative to the monomer) was added and stirred. A solution of DCPpT (0.583 g, 2.50 mmol) dissolved in dehydrated nitrobenzene (5.0 mL) was added to an eggplant flask and vigorously stirred at 80° C. for 18 hours. After the reaction, acetic acid was added for neutralization, poured into methanol (250 mL) to precipitate a polymer, collected by suction filtration, and dried under reduced pressure at room temperature for 6 hours. The resulting polymer was dissolved in chloroform and poured into methanol for reprecipitation. After recovering the polymer, it was dried under reduced pressure at 150° C. for 12 hours.
実施例15のポリマー、DCPpT-BisAFは以下のように合成した。
ナスフラスコ(100mL)にBisAF(0.841g、2.50mmol)と1M 水酸化ナトリウム水溶液(5.1mL)を攪拌子と共に入れ、溶解させた。臭化セチルトリメチルアンモニウム(CTMAB、0.277g、0.760mmol)(モノマーに対して30mol%)を加えて攪拌した。DCPpT(0.583g、2.50mmol)を脱水ニトロベンゼン(5.0mL)に溶かした溶液をナスフラスコに加え、80℃で18時間激しく攪拌した。反応後、酢酸を加えて中和しメタノール(250mL)に注いでポリマーを析出させ、吸引濾過により回収し室温で6時間減圧乾燥させた。得られたポリマーをクロロホルムに溶解し、メタノールに注いで再沈殿させた。ポリマーを回収した後、150℃で12時間、減圧乾燥した。 (Example 15)
The polymer of Example 15, DCPpT-BisAF, was synthesized as follows.
BisAF (0.841 g, 2.50 mmol) and 1 M sodium hydroxide aqueous solution (5.1 mL) were placed in an eggplant flask (100 mL) with a stirrer and dissolved. Cetyltrimethylammonium bromide (CTMAB, 0.277 g, 0.760 mmol) (30 mol % relative to the monomer) was added and stirred. A solution of DCPpT (0.583 g, 2.50 mmol) dissolved in dehydrated nitrobenzene (5.0 mL) was added to an eggplant flask and vigorously stirred at 80° C. for 18 hours. After the reaction, acetic acid was added for neutralization, poured into methanol (250 mL) to precipitate a polymer, collected by suction filtration, and dried under reduced pressure at room temperature for 6 hours. The resulting polymer was dissolved in chloroform and poured into methanol for reprecipitation. After recovering the polymer, it was dried under reduced pressure at 150° C. for 12 hours.
合成した化合物は、収量:1.15g、収率:93%、対数粘度:0.47dL/g(30℃、0.5g/dLのクロロホルム溶液)、数平均分子量(Mn):80,000、重量平均分子量(Mw):160,000、分子量分布(Mw/Mn):2.0、平均重合度(n):161であった。
The synthesized compound has a yield of 1.15 g, a yield of 93%, a logarithmic viscosity of 0.47 dL/g (30° C., 0.5 g/dL of chloroform solution), a number average molecular weight (Mn) of 80,000, Weight average molecular weight (Mw): 160,000, molecular weight distribution (Mw/Mn): 2.0, average degree of polymerization (n): 161.
このポリマーをクロロホルムに溶解し、ガラス板上に流延した。150℃で12時間減圧乾燥させて、無色透明なキャストフィルム(膜厚73μm)を得た。
この実施例について、前述した機器を用いての分析結果は、
1H-NMR(CDCl3,ppm):7.40(d,4H,Ar-H)、7.22(d,4H,Ar-H)、3.62(t,4H,CH2)、1.63(t,2H,CH2)、1.53(m,4H,CH2)
13C-NMR(CDCl3,ppm):171.9、166.1、152.6、131.3、130.3、121.6、44.9、25.7、24.5
FT-IR(film、cm-1):2934(Ar-H)、1598(C=N)、1376(C-N)、1240(C-F)、1179(C-O)
溶解性:N-メチル-2-ピロリドン(NMP)、N,N-ジメチルアセトアミド(DMAc)、ニトロベンゼン、テトラヒドロフラン(THF)、1,4-ジオキサン、o-ジクロロベンゼン、クロロホルム、ジクロロメタン、ベンゾニトリル、シクロヘキサノンに可溶
5%重量減少温度:346℃(空気中)、390℃(窒素中) 10%重量減少温度:371℃(空気中)、400℃(窒素中) 炭化収率:36%(窒素中、800℃)
ガラス転移温度(Tg):184℃(DSC)、188℃(TMA)、194℃(DMA)
熱膨張係数(CTE):79ppm/℃
カットオフ波長:288nm、400nmでの透過率:88%
平均屈折率(n):1.544(d線)、複屈折(Δn):0.003(d線)、屈折率から計算される誘電率(ε):2.38(ε=n2)
誘電率(Dk):2.41(TEモード,10GHz)、2.42(TMモード,10GHz)、2.37(TEモード,20GHz)
誘電正接(Df):0.002(TEモード,10GHz)、0.002(TMモード,10GHz)、0.002(TEモード,20GHz)であった。 This polymer was dissolved in chloroform and cast onto a glass plate. It was dried under reduced pressure at 150° C. for 12 hours to obtain a colorless and transparent cast film (thickness: 73 μm).
For this example, the analysis results using the instrument described above are:
1 H-NMR (CDCl 3 , ppm): 7.40 (d, 4H, Ar—H), 7.22 (d, 4H, Ar—H), 3.62 (t, 4H, CH 2 ), 1 .63 (t, 2H, CH2 ), 1.53 (m, 4H, CH2 )
13 C-NMR (CDCl 3 , ppm): 171.9, 166.1, 152.6, 131.3, 130.3, 121.6, 44.9, 25.7, 24.5
FT-IR (film, cm −1 ): 2934 (Ar—H), 1598 (C=N), 1376 (C—N), 1240 (C—F), 1179 (C—O)
Solubility: N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc), nitrobenzene, tetrahydrofuran (THF), 1,4-dioxane, o-dichlorobenzene, chloroform, dichloromethane, benzonitrile, cyclohexanone 5% weight loss temperature: 346°C (in air), 390°C (in nitrogen) 10% weight loss temperature: 371°C (in air), 400°C (in nitrogen) Carbonization yield: 36% (in nitrogen , 800°C)
Glass transition temperature (Tg): 184°C (DSC), 188°C (TMA), 194°C (DMA)
Coefficient of thermal expansion (CTE): 79ppm/°C
Cutoff wavelength: 288 nm, transmittance at 400 nm: 88%
Average refractive index (n): 1.544 (d line), birefringence (Δn): 0.003 (d line), dielectric constant (ε) calculated from refractive index: 2.38 (ε = n 2 )
Dielectric constant (Dk): 2.41 (TE mode, 10 GHz), 2.42 (TM mode, 10 GHz), 2.37 (TE mode, 20 GHz)
Dielectric loss tangent (Df): 0.002 (TE mode, 10 GHz), 0.002 (TM mode, 10 GHz), 0.002 (TE mode, 20 GHz).
この実施例について、前述した機器を用いての分析結果は、
1H-NMR(CDCl3,ppm):7.40(d,4H,Ar-H)、7.22(d,4H,Ar-H)、3.62(t,4H,CH2)、1.63(t,2H,CH2)、1.53(m,4H,CH2)
13C-NMR(CDCl3,ppm):171.9、166.1、152.6、131.3、130.3、121.6、44.9、25.7、24.5
FT-IR(film、cm-1):2934(Ar-H)、1598(C=N)、1376(C-N)、1240(C-F)、1179(C-O)
溶解性:N-メチル-2-ピロリドン(NMP)、N,N-ジメチルアセトアミド(DMAc)、ニトロベンゼン、テトラヒドロフラン(THF)、1,4-ジオキサン、o-ジクロロベンゼン、クロロホルム、ジクロロメタン、ベンゾニトリル、シクロヘキサノンに可溶
5%重量減少温度:346℃(空気中)、390℃(窒素中) 10%重量減少温度:371℃(空気中)、400℃(窒素中) 炭化収率:36%(窒素中、800℃)
ガラス転移温度(Tg):184℃(DSC)、188℃(TMA)、194℃(DMA)
熱膨張係数(CTE):79ppm/℃
カットオフ波長:288nm、400nmでの透過率:88%
平均屈折率(n):1.544(d線)、複屈折(Δn):0.003(d線)、屈折率から計算される誘電率(ε):2.38(ε=n2)
誘電率(Dk):2.41(TEモード,10GHz)、2.42(TMモード,10GHz)、2.37(TEモード,20GHz)
誘電正接(Df):0.002(TEモード,10GHz)、0.002(TMモード,10GHz)、0.002(TEモード,20GHz)であった。 This polymer was dissolved in chloroform and cast onto a glass plate. It was dried under reduced pressure at 150° C. for 12 hours to obtain a colorless and transparent cast film (thickness: 73 μm).
For this example, the analysis results using the instrument described above are:
1 H-NMR (CDCl 3 , ppm): 7.40 (d, 4H, Ar—H), 7.22 (d, 4H, Ar—H), 3.62 (t, 4H, CH 2 ), 1 .63 (t, 2H, CH2 ), 1.53 (m, 4H, CH2 )
13 C-NMR (CDCl 3 , ppm): 171.9, 166.1, 152.6, 131.3, 130.3, 121.6, 44.9, 25.7, 24.5
FT-IR (film, cm −1 ): 2934 (Ar—H), 1598 (C=N), 1376 (C—N), 1240 (C—F), 1179 (C—O)
Solubility: N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc), nitrobenzene, tetrahydrofuran (THF), 1,4-dioxane, o-dichlorobenzene, chloroform, dichloromethane, benzonitrile, cyclohexanone 5% weight loss temperature: 346°C (in air), 390°C (in nitrogen) 10% weight loss temperature: 371°C (in air), 400°C (in nitrogen) Carbonization yield: 36% (in nitrogen , 800°C)
Glass transition temperature (Tg): 184°C (DSC), 188°C (TMA), 194°C (DMA)
Coefficient of thermal expansion (CTE): 79ppm/°C
Cutoff wavelength: 288 nm, transmittance at 400 nm: 88%
Average refractive index (n): 1.544 (d line), birefringence (Δn): 0.003 (d line), dielectric constant (ε) calculated from refractive index: 2.38 (ε = n 2 )
Dielectric constant (Dk): 2.41 (TE mode, 10 GHz), 2.42 (TM mode, 10 GHz), 2.37 (TE mode, 20 GHz)
Dielectric loss tangent (Df): 0.002 (TE mode, 10 GHz), 0.002 (TM mode, 10 GHz), 0.002 (TE mode, 20 GHz).
(実施例16)
実施例16のポリマー、DCHAT-BisAは以下のように合成した。
ナスフラスコ(100mL)にビスフェノールA(0.571g、2.50mmol)と1M 水酸化ナトリウム水溶液5.1mLを攪拌子と共に入れ、溶解させた。相間移動触媒として臭化セチルトリメチルアンモニウム(CTMAB、0.277g、0.760mmol)(モノマーに対して30mol%)を加えて攪拌した。DCHAT(0.823g、2.50mmol)を脱水ニトロベンゼン(5.0mL)に溶かした溶液をナスフラスコに加え、100℃で18時間激しく攪拌した。反応後、酢酸を加えて中和しメタノール(250mL)に注いでポリマーを析出させ、吸引濾過により回収し室温で6時間減圧乾燥させた。得られたポリマーをクロロホルムに溶解しメタノールに注いで再沈殿させた。ポリマーを回収した後150℃で12時間、減圧乾燥した。 (Example 16)
The polymer of Example 16, DCHAT-BisA, was synthesized as follows.
Bisphenol A (0.571 g, 2.50 mmol) and 5.1 mL of 1 M sodium hydroxide aqueous solution were placed in an eggplant flask (100 mL) together with a stirrer and dissolved. Cetyltrimethylammonium bromide (CTMAB, 0.277 g, 0.760 mmol) (30 mol % relative to the monomer) was added as a phase transfer catalyst and stirred. A solution of DCHAT (0.823 g, 2.50 mmol) dissolved in dehydrated nitrobenzene (5.0 mL) was added to an eggplant flask and vigorously stirred at 100° C. for 18 hours. After the reaction, acetic acid was added for neutralization, poured into methanol (250 mL) to precipitate a polymer, collected by suction filtration, and dried under reduced pressure at room temperature for 6 hours. The resulting polymer was dissolved in chloroform and poured into methanol for reprecipitation. After recovering the polymer, it was dried under reduced pressure at 150° C. for 12 hours.
実施例16のポリマー、DCHAT-BisAは以下のように合成した。
ナスフラスコ(100mL)にビスフェノールA(0.571g、2.50mmol)と1M 水酸化ナトリウム水溶液5.1mLを攪拌子と共に入れ、溶解させた。相間移動触媒として臭化セチルトリメチルアンモニウム(CTMAB、0.277g、0.760mmol)(モノマーに対して30mol%)を加えて攪拌した。DCHAT(0.823g、2.50mmol)を脱水ニトロベンゼン(5.0mL)に溶かした溶液をナスフラスコに加え、100℃で18時間激しく攪拌した。反応後、酢酸を加えて中和しメタノール(250mL)に注いでポリマーを析出させ、吸引濾過により回収し室温で6時間減圧乾燥させた。得られたポリマーをクロロホルムに溶解しメタノールに注いで再沈殿させた。ポリマーを回収した後150℃で12時間、減圧乾燥した。 (Example 16)
The polymer of Example 16, DCHAT-BisA, was synthesized as follows.
Bisphenol A (0.571 g, 2.50 mmol) and 5.1 mL of 1 M sodium hydroxide aqueous solution were placed in an eggplant flask (100 mL) together with a stirrer and dissolved. Cetyltrimethylammonium bromide (CTMAB, 0.277 g, 0.760 mmol) (30 mol % relative to the monomer) was added as a phase transfer catalyst and stirred. A solution of DCHAT (0.823 g, 2.50 mmol) dissolved in dehydrated nitrobenzene (5.0 mL) was added to an eggplant flask and vigorously stirred at 100° C. for 18 hours. After the reaction, acetic acid was added for neutralization, poured into methanol (250 mL) to precipitate a polymer, collected by suction filtration, and dried under reduced pressure at room temperature for 6 hours. The resulting polymer was dissolved in chloroform and poured into methanol for reprecipitation. After recovering the polymer, it was dried under reduced pressure at 150° C. for 12 hours.
合成した化合物は、収量:1.12g、収率:92%、対数粘度:0.57dL/g(30℃、0.5g/dLのクロロホルム溶液)であった。
The synthesized compound had a yield of 1.12 g, a yield of 92%, and a logarithmic viscosity of 0.57 dL/g (30°C, 0.5 g/dL chloroform solution).
このポリマーをクロロホルムに溶解し、ガラス板上に流延した。180℃で12時間減圧乾燥させて、無色透明なキャストフィルム(膜厚140μm)を得た。
この実施例について、前述した機器を用いての分析結果は、
元素分析(C30H36N4O2)n:計算値C,74.35%;H,7.49%;N:11.56%、実測値C,73.61%;H,6.80%;N:11.38%
溶解性:o-ジクロロベンゼン、クロロホルム、ジクロロメタンに可溶
5%重量減少温度:388℃(空気中)、402℃(窒素中) 10%重量減少温度:404℃(空気中)、412℃(窒素中) 炭化収率:27%(窒素中、800℃)
ガラス転移温度(Tg):211℃(DSC)、181℃(TMA)、201℃(DMA)
熱膨張係数(CTE):99ppm/℃
カットオフ波長:291nm、400nmでの透過率:87%
平均屈折率(n):1.577(d線)、複屈折(Δn):0.004(d線)、屈折率から計算される誘電率(ε):2.49(ε=n2)
誘電率(Dk):2.59(TEモード,10GHz)、2.60(TMモード,10GHz)、2.56(TEモード、20GHz)
誘電正接(Df):0.004(TEモード,10GHz)、0.004(TMモード,10GHz)、0.005(TEモード、20GHz)であった。 This polymer was dissolved in chloroform and cast onto a glass plate. It was dried under reduced pressure at 180° C. for 12 hours to obtain a colorless and transparent cast film (thickness: 140 μm).
For this example, the analysis results using the instrument described above are:
Elemental analysis ( C30H36N4O2 )n : calculated C, 74.35 %; H, 7.49%; N: 11.56%, found C, 73.61%; 80%; N: 11.38%
Solubility: soluble in o-dichlorobenzene, chloroform, dichloromethane 5% weight loss temperature: 388°C (in air), 402°C (in nitrogen) 10% weight loss temperature: 404°C (in air), 412°C (nitrogen Medium) Carbonization yield: 27% (in nitrogen, 800 ° C.)
Glass transition temperature (Tg): 211°C (DSC), 181°C (TMA), 201°C (DMA)
Coefficient of thermal expansion (CTE): 99ppm/°C
Cutoff wavelength: 291 nm, transmittance at 400 nm: 87%
Average refractive index (n): 1.577 (d line), birefringence (Δn): 0.004 (d line), dielectric constant (ε) calculated from refractive index: 2.49 (ε = n 2 )
Dielectric constant (Dk): 2.59 (TE mode, 10 GHz), 2.60 (TM mode, 10 GHz), 2.56 (TE mode, 20 GHz)
Dielectric loss tangent (Df): 0.004 (TE mode, 10 GHz), 0.004 (TM mode, 10 GHz), 0.005 (TE mode, 20 GHz).
この実施例について、前述した機器を用いての分析結果は、
元素分析(C30H36N4O2)n:計算値C,74.35%;H,7.49%;N:11.56%、実測値C,73.61%;H,6.80%;N:11.38%
溶解性:o-ジクロロベンゼン、クロロホルム、ジクロロメタンに可溶
5%重量減少温度:388℃(空気中)、402℃(窒素中) 10%重量減少温度:404℃(空気中)、412℃(窒素中) 炭化収率:27%(窒素中、800℃)
ガラス転移温度(Tg):211℃(DSC)、181℃(TMA)、201℃(DMA)
熱膨張係数(CTE):99ppm/℃
カットオフ波長:291nm、400nmでの透過率:87%
平均屈折率(n):1.577(d線)、複屈折(Δn):0.004(d線)、屈折率から計算される誘電率(ε):2.49(ε=n2)
誘電率(Dk):2.59(TEモード,10GHz)、2.60(TMモード,10GHz)、2.56(TEモード、20GHz)
誘電正接(Df):0.004(TEモード,10GHz)、0.004(TMモード,10GHz)、0.005(TEモード、20GHz)であった。 This polymer was dissolved in chloroform and cast onto a glass plate. It was dried under reduced pressure at 180° C. for 12 hours to obtain a colorless and transparent cast film (thickness: 140 μm).
For this example, the analysis results using the instrument described above are:
Elemental analysis ( C30H36N4O2 )n : calculated C, 74.35 %; H, 7.49%; N: 11.56%, found C, 73.61%; 80%; N: 11.38%
Solubility: soluble in o-dichlorobenzene, chloroform, dichloromethane 5% weight loss temperature: 388°C (in air), 402°C (in nitrogen) 10% weight loss temperature: 404°C (in air), 412°C (nitrogen Medium) Carbonization yield: 27% (in nitrogen, 800 ° C.)
Glass transition temperature (Tg): 211°C (DSC), 181°C (TMA), 201°C (DMA)
Coefficient of thermal expansion (CTE): 99ppm/°C
Cutoff wavelength: 291 nm, transmittance at 400 nm: 87%
Average refractive index (n): 1.577 (d line), birefringence (Δn): 0.004 (d line), dielectric constant (ε) calculated from refractive index: 2.49 (ε = n 2 )
Dielectric constant (Dk): 2.59 (TE mode, 10 GHz), 2.60 (TM mode, 10 GHz), 2.56 (TE mode, 20 GHz)
Dielectric loss tangent (Df): 0.004 (TE mode, 10 GHz), 0.004 (TM mode, 10 GHz), 0.005 (TE mode, 20 GHz).
(実施例17)
実施例17のポリマー、DCHAT-BisPHTGは以下のように合成した。
実施例16のBisAの代わりにBisPHTGを用いて、同様にトリアジン化合物を合成した。 (Example 17)
The polymer of Example 17, DCHAT-BisPHTG, was synthesized as follows.
A triazine compound was similarly synthesized using BisPHTG in place of BisA in Example 16.
実施例17のポリマー、DCHAT-BisPHTGは以下のように合成した。
実施例16のBisAの代わりにBisPHTGを用いて、同様にトリアジン化合物を合成した。 (Example 17)
The polymer of Example 17, DCHAT-BisPHTG, was synthesized as follows.
A triazine compound was similarly synthesized using BisPHTG in place of BisA in Example 16.
合成した化合物は、収率:83%、対数粘度:0.71dL/g(30℃、0.5g/dLのクロロホルム溶液)であった。GPC(THF)による数平均分子量(Mn):65,000、重量平均分子量(Mw):104,000、分子量分布(Mw/Mn):1.6、平均重合度(n):114であった。
The synthesized compound had a yield of 83% and a logarithmic viscosity of 0.71 dL/g (30°C, 0.5 g/dL chloroform solution). Number average molecular weight (Mn) by GPC (THF): 65,000, weight average molecular weight (Mw): 104,000, molecular weight distribution (Mw/Mn): 1.6, average degree of polymerization (n): 114 .
このポリマーをクロロホルムに溶解し、ガラス板上に流延した。180℃で12時間減圧乾燥させて、無色透明なキャストフィルム(膜厚96μm)を得た。
この実施例について、前述した機器を用いての分析結果は、
溶解性:N-メチル-2-ピロリドン(NMP)、ニトロベンゼン、ベンゾニトリル、テトラヒドロフラン(THF)、1,4-ジオキサン、o-ジクロロベンゼン、クロロホルム、ジクロロメタン、シクロヘキサノン、シクロペンタノンに可溶
5%重量減少温度:372℃(空気中)、406℃(窒素中) 10%重量減少温度:392℃(空気中)、416℃(窒素中) 炭化収率:19%(窒素中、800℃)
ガラス転移温度(Tg):263℃(DSC)、260℃(TMA)、260℃(DMA)
熱膨張係数(CTE):62ppm/℃
カットオフ波長:288nm、400nmでの透過率:80%
平均屈折率(n):1.559(d線)、複屈折(Δn):0.010(d線)、屈折率から計算される誘電率(ε):2.43(ε=n2)
誘電率(Dk):2.50(TEモード,10GHz)、2.54(TMモード,10GHz)、2.47(TEモード、20GHz)
誘電正接(Df):0.006(TEモード,10GHz)、0.005(TMモード,10GHz)、0.006(TEモード、20GHz)であった。 This polymer was dissolved in chloroform and cast onto a glass plate. It was dried under reduced pressure at 180° C. for 12 hours to obtain a colorless and transparent cast film (thickness: 96 μm).
For this example, the analysis results using the instrument described above are:
Solubility: Soluble in N-methyl-2-pyrrolidone (NMP), nitrobenzene, benzonitrile, tetrahydrofuran (THF), 1,4-dioxane, o-dichlorobenzene, chloroform, dichloromethane, cyclohexanone, cyclopentanone 5% by weight Reduction temperature: 372°C (in air), 406°C (in nitrogen) 10% weight loss temperature: 392°C (in air), 416°C (in nitrogen) Carbonization yield: 19% (in nitrogen, 800°C)
Glass transition temperature (Tg): 263°C (DSC), 260°C (TMA), 260°C (DMA)
Coefficient of thermal expansion (CTE): 62 ppm/°C
Cutoff wavelength: 288 nm, transmittance at 400 nm: 80%
Average refractive index (n): 1.559 (d line), birefringence (Δn): 0.010 (d line), dielectric constant (ε) calculated from refractive index: 2.43 (ε = n 2 )
Dielectric constant (Dk): 2.50 (TE mode, 10 GHz), 2.54 (TM mode, 10 GHz), 2.47 (TE mode, 20 GHz)
Dielectric loss tangent (Df): 0.006 (TE mode, 10 GHz), 0.005 (TM mode, 10 GHz), 0.006 (TE mode, 20 GHz).
この実施例について、前述した機器を用いての分析結果は、
溶解性:N-メチル-2-ピロリドン(NMP)、ニトロベンゼン、ベンゾニトリル、テトラヒドロフラン(THF)、1,4-ジオキサン、o-ジクロロベンゼン、クロロホルム、ジクロロメタン、シクロヘキサノン、シクロペンタノンに可溶
5%重量減少温度:372℃(空気中)、406℃(窒素中) 10%重量減少温度:392℃(空気中)、416℃(窒素中) 炭化収率:19%(窒素中、800℃)
ガラス転移温度(Tg):263℃(DSC)、260℃(TMA)、260℃(DMA)
熱膨張係数(CTE):62ppm/℃
カットオフ波長:288nm、400nmでの透過率:80%
平均屈折率(n):1.559(d線)、複屈折(Δn):0.010(d線)、屈折率から計算される誘電率(ε):2.43(ε=n2)
誘電率(Dk):2.50(TEモード,10GHz)、2.54(TMモード,10GHz)、2.47(TEモード、20GHz)
誘電正接(Df):0.006(TEモード,10GHz)、0.005(TMモード,10GHz)、0.006(TEモード、20GHz)であった。 This polymer was dissolved in chloroform and cast onto a glass plate. It was dried under reduced pressure at 180° C. for 12 hours to obtain a colorless and transparent cast film (thickness: 96 μm).
For this example, the analysis results using the instrument described above are:
Solubility: Soluble in N-methyl-2-pyrrolidone (NMP), nitrobenzene, benzonitrile, tetrahydrofuran (THF), 1,4-dioxane, o-dichlorobenzene, chloroform, dichloromethane, cyclohexanone, cyclopentanone 5% by weight Reduction temperature: 372°C (in air), 406°C (in nitrogen) 10% weight loss temperature: 392°C (in air), 416°C (in nitrogen) Carbonization yield: 19% (in nitrogen, 800°C)
Glass transition temperature (Tg): 263°C (DSC), 260°C (TMA), 260°C (DMA)
Coefficient of thermal expansion (CTE): 62 ppm/°C
Cutoff wavelength: 288 nm, transmittance at 400 nm: 80%
Average refractive index (n): 1.559 (d line), birefringence (Δn): 0.010 (d line), dielectric constant (ε) calculated from refractive index: 2.43 (ε = n 2 )
Dielectric constant (Dk): 2.50 (TE mode, 10 GHz), 2.54 (TM mode, 10 GHz), 2.47 (TE mode, 20 GHz)
Dielectric loss tangent (Df): 0.006 (TE mode, 10 GHz), 0.005 (TM mode, 10 GHz), 0.006 (TE mode, 20 GHz).
(実施例18)
実施例18のポリマー、DCHAT-BisPCDEは以下のように合成した。
実施例16のBisAの代わりにBisPCDEを用いて、同様にトリアジン化合物を合成した。 (Example 18)
The polymer of Example 18, DCHAT-BisPCDE, was synthesized as follows.
A triazine compound was similarly synthesized using BisPCDE in place of BisA in Example 16.
実施例18のポリマー、DCHAT-BisPCDEは以下のように合成した。
実施例16のBisAの代わりにBisPCDEを用いて、同様にトリアジン化合物を合成した。 (Example 18)
The polymer of Example 18, DCHAT-BisPCDE, was synthesized as follows.
A triazine compound was similarly synthesized using BisPCDE in place of BisA in Example 16.
合成した化合物は、収率:72%、対数粘度:0.57dL/g(30℃、0.5g/dLのクロロホルム溶液)であった。GPC(THF)による数平均分子量(Mn):75,000、重量平均分子量(Mw):120,000、分子量分布(Mw/Mn):1.6、平均重合度(n):123であった。
The synthesized compound had a yield of 72% and a logarithmic viscosity of 0.57 dL/g (30°C, 0.5 g/dL chloroform solution). Number average molecular weight (Mn) by GPC (THF): 75,000, weight average molecular weight (Mw): 120,000, molecular weight distribution (Mw/Mn): 1.6, average degree of polymerization (n): 123 .
このポリマーをクロロホルムに溶解し、ガラス板上に流延した。180℃で12時間減圧乾燥させて、無色透明なキャストフィルム(膜厚95μm)を得た。
この実施例について、前述した機器を用いての分析結果は、
溶解性:ニトロベンゼン、ベンゾニトリル、テトラヒドロフラン(THF)、1,4-ジオキサン、o-ジクロロベンゼン、クロロホルム、ジクロロメタン、シクロペンタノンに可溶
5%重量減少温度:336℃(空気中)、410℃(窒素中) 10%重量減少温度:353℃(空気中)、417℃(窒素中) 炭化収率:18%(窒素中、800℃)
ガラス転移温度(Tg):258℃(DSC)、247℃(TMA)、252℃(DMA)
熱膨張係数(CTE):49ppm/℃
カットオフ波長:284nm、400nmでの透過率:82%
平均屈折率(n):1.563(d線)、複屈折(Δn):0.010(d線)、屈折率から計算される誘電率(ε):2.44(ε=n2)
誘電率(Dk):2.27(TEモード,10GHz)、2.37(TMモード,10GHz)、2.42(TEモード、20GHz)
誘電正接(Df):0.003(TEモード,10GHz)、0.006(TMモード,10GHz)、0.007(TEモード、20GHz)
であった。 This polymer was dissolved in chloroform and cast onto a glass plate. It was dried under reduced pressure at 180° C. for 12 hours to obtain a colorless and transparent cast film (thickness: 95 μm).
For this example, the analysis results using the instrument described above are:
Solubility: soluble in nitrobenzene, benzonitrile, tetrahydrofuran (THF), 1,4-dioxane, o-dichlorobenzene, chloroform, dichloromethane, cyclopentanone 5% weight loss temperature: 336°C (in air), 410°C ( In nitrogen) 10% weight loss temperature: 353°C (in air), 417°C (in nitrogen) Carbonization yield: 18% (in nitrogen, 800°C)
Glass transition temperature (Tg): 258°C (DSC), 247°C (TMA), 252°C (DMA)
Coefficient of thermal expansion (CTE): 49ppm/°C
Cutoff wavelength: 284 nm, transmittance at 400 nm: 82%
Average refractive index (n): 1.563 (d line), birefringence (Δn): 0.010 (d line), dielectric constant (ε) calculated from refractive index: 2.44 (ε = n 2 )
Dielectric constant (Dk): 2.27 (TE mode, 10 GHz), 2.37 (TM mode, 10 GHz), 2.42 (TE mode, 20 GHz)
Dielectric loss tangent (Df): 0.003 (TE mode, 10 GHz), 0.006 (TM mode, 10 GHz), 0.007 (TE mode, 20 GHz)
Met.
この実施例について、前述した機器を用いての分析結果は、
溶解性:ニトロベンゼン、ベンゾニトリル、テトラヒドロフラン(THF)、1,4-ジオキサン、o-ジクロロベンゼン、クロロホルム、ジクロロメタン、シクロペンタノンに可溶
5%重量減少温度:336℃(空気中)、410℃(窒素中) 10%重量減少温度:353℃(空気中)、417℃(窒素中) 炭化収率:18%(窒素中、800℃)
ガラス転移温度(Tg):258℃(DSC)、247℃(TMA)、252℃(DMA)
熱膨張係数(CTE):49ppm/℃
カットオフ波長:284nm、400nmでの透過率:82%
平均屈折率(n):1.563(d線)、複屈折(Δn):0.010(d線)、屈折率から計算される誘電率(ε):2.44(ε=n2)
誘電率(Dk):2.27(TEモード,10GHz)、2.37(TMモード,10GHz)、2.42(TEモード、20GHz)
誘電正接(Df):0.003(TEモード,10GHz)、0.006(TMモード,10GHz)、0.007(TEモード、20GHz)
であった。 This polymer was dissolved in chloroform and cast onto a glass plate. It was dried under reduced pressure at 180° C. for 12 hours to obtain a colorless and transparent cast film (thickness: 95 μm).
For this example, the analysis results using the instrument described above are:
Solubility: soluble in nitrobenzene, benzonitrile, tetrahydrofuran (THF), 1,4-dioxane, o-dichlorobenzene, chloroform, dichloromethane, cyclopentanone 5% weight loss temperature: 336°C (in air), 410°C ( In nitrogen) 10% weight loss temperature: 353°C (in air), 417°C (in nitrogen) Carbonization yield: 18% (in nitrogen, 800°C)
Glass transition temperature (Tg): 258°C (DSC), 247°C (TMA), 252°C (DMA)
Coefficient of thermal expansion (CTE): 49ppm/°C
Cutoff wavelength: 284 nm, transmittance at 400 nm: 82%
Average refractive index (n): 1.563 (d line), birefringence (Δn): 0.010 (d line), dielectric constant (ε) calculated from refractive index: 2.44 (ε = n 2 )
Dielectric constant (Dk): 2.27 (TE mode, 10 GHz), 2.37 (TM mode, 10 GHz), 2.42 (TE mode, 20 GHz)
Dielectric loss tangent (Df): 0.003 (TE mode, 10 GHz), 0.006 (TM mode, 10 GHz), 0.007 (TE mode, 20 GHz)
Met.
[参考試験例]
以下、本実施形態の別の態様として、参考例を用いた参考試験を示す。 [Reference test example]
Hereinafter, reference tests using reference examples will be shown as another aspect of the present embodiment.
以下、本実施形態の別の態様として、参考例を用いた参考試験を示す。 [Reference test example]
Hereinafter, reference tests using reference examples will be shown as another aspect of the present embodiment.
参考例1~18のポリマーは、それぞれ上述した実施例1~18と同様の方法を用いて合成した。参考例1~18についての合成結果は後述の表に示した。
The polymers of Reference Examples 1-18 were synthesized using the same methods as in Examples 1-18 described above. Synthesis results for Reference Examples 1 to 18 are shown in the table below.
(参考例19)
参考例19のポリマー、DCPT-BPFLは以下のように合成した。
ナスフラスコ(100mL)に1M 水酸化ナトリウム水溶液(5.1mL)と臭化セチルトリメチルアンモニウム(CTMAB、0.277g、0.760mmol)(モノマーに対して30mol%)を攪拌子と共に入れ、攪拌した。9,9-ビス(4-ヒドロキシフェニル)フルオレン(BPFL)(0.876g、2.50mmol)とDCPT(0.565g、2.50mmol)を脱水ニトロベンゼン(5.0mL)に溶かした溶液をナスフラスコに加え、室温で18時間激しく攪拌した。反応後、酢酸を加えて中和しメタノール(250mL)に注いでポリマーを析出させ、吸引濾過により回収し室温で6時間、180℃で12時間、減圧乾燥した。
(参考例20)
参考例20のポリマー、DCHAT-BisAFは以下のように合成した。
ナスフラスコ(100mL)にビスフェノールAF(0.841g、2.50mmol)と1M 水酸化ナトリウム水溶液5.1mLを攪拌子と共に入れ、溶解させた。相間移動触媒として臭化セチルトリメチルアンモニウム(CTMAB、0.277g、0.760mmol)(モノマーに対して30mol%)を加えて攪拌した。DCHAT(0.823g、2.50mmol)を脱水ニトロベンゼン(5.0mL)に溶かした溶液をナスフラスコに加え、100℃で18時間激しく攪拌した。反応後、酢酸を加えて中和しメタノール(250mL)に注いでポリマーを析出させ、吸引濾過により回収し室温で6時間減圧乾燥させた。得られたポリマーをクロロホルムに溶解しメタノールに注いで再沈殿させた。ポリマーを回収した後150℃で12時間、減圧乾燥した。 (Reference example 19)
The polymer of Reference Example 19, DCPT-BPFL, was synthesized as follows.
A 1 M sodium hydroxide aqueous solution (5.1 mL) and cetyltrimethylammonium bromide (CTMAB, 0.277 g, 0.760 mmol) (30 mol % relative to the monomer) were placed in an eggplant flask (100 mL) with a stirrer and stirred. A solution of 9,9-bis(4-hydroxyphenyl)fluorene (BPFL) (0.876 g, 2.50 mmol) and DCPT (0.565 g, 2.50 mmol) dissolved in dehydrated nitrobenzene (5.0 mL) was added to an eggplant flask. and stirred vigorously at room temperature for 18 hours. After the reaction, acetic acid was added for neutralization, poured into methanol (250 mL) to precipitate a polymer, recovered by suction filtration, and dried under reduced pressure at room temperature for 6 hours and at 180° C. for 12 hours.
(Reference example 20)
The polymer of Reference Example 20, DCHAT-BisAF, was synthesized as follows.
Bisphenol AF (0.841 g, 2.50 mmol) and 5.1 mL of 1 M sodium hydroxide aqueous solution were placed in an eggplant flask (100 mL) together with a stirrer and dissolved. Cetyltrimethylammonium bromide (CTMAB, 0.277 g, 0.760 mmol) (30 mol % relative to the monomer) was added as a phase transfer catalyst and stirred. A solution of DCHAT (0.823 g, 2.50 mmol) dissolved in dehydrated nitrobenzene (5.0 mL) was added to an eggplant flask and vigorously stirred at 100° C. for 18 hours. After the reaction, acetic acid was added for neutralization, poured into methanol (250 mL) to precipitate a polymer, collected by suction filtration, and dried under reduced pressure at room temperature for 6 hours. The resulting polymer was dissolved in chloroform and poured into methanol for reprecipitation. After recovering the polymer, it was dried under reduced pressure at 150° C. for 12 hours.
参考例19のポリマー、DCPT-BPFLは以下のように合成した。
ナスフラスコ(100mL)に1M 水酸化ナトリウム水溶液(5.1mL)と臭化セチルトリメチルアンモニウム(CTMAB、0.277g、0.760mmol)(モノマーに対して30mol%)を攪拌子と共に入れ、攪拌した。9,9-ビス(4-ヒドロキシフェニル)フルオレン(BPFL)(0.876g、2.50mmol)とDCPT(0.565g、2.50mmol)を脱水ニトロベンゼン(5.0mL)に溶かした溶液をナスフラスコに加え、室温で18時間激しく攪拌した。反応後、酢酸を加えて中和しメタノール(250mL)に注いでポリマーを析出させ、吸引濾過により回収し室温で6時間、180℃で12時間、減圧乾燥した。
(参考例20)
参考例20のポリマー、DCHAT-BisAFは以下のように合成した。
ナスフラスコ(100mL)にビスフェノールAF(0.841g、2.50mmol)と1M 水酸化ナトリウム水溶液5.1mLを攪拌子と共に入れ、溶解させた。相間移動触媒として臭化セチルトリメチルアンモニウム(CTMAB、0.277g、0.760mmol)(モノマーに対して30mol%)を加えて攪拌した。DCHAT(0.823g、2.50mmol)を脱水ニトロベンゼン(5.0mL)に溶かした溶液をナスフラスコに加え、100℃で18時間激しく攪拌した。反応後、酢酸を加えて中和しメタノール(250mL)に注いでポリマーを析出させ、吸引濾過により回収し室温で6時間減圧乾燥させた。得られたポリマーをクロロホルムに溶解しメタノールに注いで再沈殿させた。ポリマーを回収した後150℃で12時間、減圧乾燥した。 (Reference example 19)
The polymer of Reference Example 19, DCPT-BPFL, was synthesized as follows.
A 1 M sodium hydroxide aqueous solution (5.1 mL) and cetyltrimethylammonium bromide (CTMAB, 0.277 g, 0.760 mmol) (30 mol % relative to the monomer) were placed in an eggplant flask (100 mL) with a stirrer and stirred. A solution of 9,9-bis(4-hydroxyphenyl)fluorene (BPFL) (0.876 g, 2.50 mmol) and DCPT (0.565 g, 2.50 mmol) dissolved in dehydrated nitrobenzene (5.0 mL) was added to an eggplant flask. and stirred vigorously at room temperature for 18 hours. After the reaction, acetic acid was added for neutralization, poured into methanol (250 mL) to precipitate a polymer, recovered by suction filtration, and dried under reduced pressure at room temperature for 6 hours and at 180° C. for 12 hours.
(Reference example 20)
The polymer of Reference Example 20, DCHAT-BisAF, was synthesized as follows.
Bisphenol AF (0.841 g, 2.50 mmol) and 5.1 mL of 1 M sodium hydroxide aqueous solution were placed in an eggplant flask (100 mL) together with a stirrer and dissolved. Cetyltrimethylammonium bromide (CTMAB, 0.277 g, 0.760 mmol) (30 mol % relative to the monomer) was added as a phase transfer catalyst and stirred. A solution of DCHAT (0.823 g, 2.50 mmol) dissolved in dehydrated nitrobenzene (5.0 mL) was added to an eggplant flask and vigorously stirred at 100° C. for 18 hours. After the reaction, acetic acid was added for neutralization, poured into methanol (250 mL) to precipitate a polymer, collected by suction filtration, and dried under reduced pressure at room temperature for 6 hours. The resulting polymer was dissolved in chloroform and poured into methanol for reprecipitation. After recovering the polymer, it was dried under reduced pressure at 150° C. for 12 hours.
(試験例1:参考例1~6、10の合成)
上述の合成方法により、参考例1~6、10の樹脂組成物を得た。合成結果を表1に示す。収率(Yield)は前記再沈殿を行った後の値である。対数粘度(ηinh)は0.5g/dLのNMP溶液において、30℃で測定した値である。BisZのCH2Cl2溶媒から得られた樹脂組成物の対数粘度の値は同様にTHF溶液で測定した。数平均分子量Mnと重量平均分子量MwはGPC(標準ポリスチレン換算、THF溶媒)で測定した。 (Test Example 1: Synthesis of Reference Examples 1 to 6 and 10)
Resin compositions of Reference Examples 1 to 6 and 10 were obtained by the synthesis method described above. Table 1 shows the synthesis results. The yield (Yield) is the value after the reprecipitation. Logarithmic viscosity (η inh ) is a value measured at 30° C. in a 0.5 g/dL NMP solution. The logarithmic viscosity values of resin compositions obtained from BisZ in CH 2 Cl 2 solvent were similarly measured in THF solutions. The number average molecular weight Mn and the weight average molecular weight Mw were measured by GPC (standard polystyrene conversion, THF solvent).
上述の合成方法により、参考例1~6、10の樹脂組成物を得た。合成結果を表1に示す。収率(Yield)は前記再沈殿を行った後の値である。対数粘度(ηinh)は0.5g/dLのNMP溶液において、30℃で測定した値である。BisZのCH2Cl2溶媒から得られた樹脂組成物の対数粘度の値は同様にTHF溶液で測定した。数平均分子量Mnと重量平均分子量MwはGPC(標準ポリスチレン換算、THF溶媒)で測定した。 (Test Example 1: Synthesis of Reference Examples 1 to 6 and 10)
Resin compositions of Reference Examples 1 to 6 and 10 were obtained by the synthesis method described above. Table 1 shows the synthesis results. The yield (Yield) is the value after the reprecipitation. Logarithmic viscosity (η inh ) is a value measured at 30° C. in a 0.5 g/dL NMP solution. The logarithmic viscosity values of resin compositions obtained from BisZ in CH 2 Cl 2 solvent were similarly measured in THF solutions. The number average molecular weight Mn and the weight average molecular weight Mw were measured by GPC (standard polystyrene conversion, THF solvent).
表1に示すように、各参考例について、再沈殿精製後の樹脂組成物が40%以上の収率で良好に得られた。参考例ごとに、有機溶剤としてニトロベンゼン、CH2Cl2のいずれを用いるかで収率に差が見られたが、多くの参考例はその選択により80~90%以上の収率が見られた。また、対数粘度は0.3~1.2dL/gで、Mnは7万~25万となり、高分子量体が得られた。
As shown in Table 1, for each reference example, a resin composition after reprecipitation purification was obtained in a good yield of 40% or more. A difference was observed in the yield depending on whether nitrobenzene or CH 2 Cl 2 was used as the organic solvent for each Reference Example, but in many Reference Examples yields of 80 to 90% or more were observed depending on the selection. . Further, logarithmic viscosity was 0.3 to 1.2 dL/g, Mn was 70,000 to 250,000, and a high molecular weight product was obtained.
(試験例2:参考例1~6、10の化合物の溶解性)
参考例1~6、10の化合物について、室温又は加熱を行って溶解性を検討した結果を表2、表3に示した。溶解性は10mg/5.0mLで測定した。
++:室温で溶解可能であった。
+:加熱することで溶解した。
+-:一部のみ溶解した。
-:不溶であった。 (Test Example 2: Solubility of compounds of Reference Examples 1 to 6 and 10)
Tables 2 and 3 show the results of examining the solubility of the compounds of Reference Examples 1 to 6 and 10 at room temperature or by heating. Solubility was measured at 10 mg/5.0 mL.
++: Dissolvable at room temperature.
+: Dissolved by heating.
+-: only partially dissolved.
-: Insoluble.
参考例1~6、10の化合物について、室温又は加熱を行って溶解性を検討した結果を表2、表3に示した。溶解性は10mg/5.0mLで測定した。
++:室温で溶解可能であった。
+:加熱することで溶解した。
+-:一部のみ溶解した。
-:不溶であった。 (Test Example 2: Solubility of compounds of Reference Examples 1 to 6 and 10)
Tables 2 and 3 show the results of examining the solubility of the compounds of Reference Examples 1 to 6 and 10 at room temperature or by heating. Solubility was measured at 10 mg/5.0 mL.
++: Dissolvable at room temperature.
+: Dissolved by heating.
+-: only partially dissolved.
-: Insoluble.
各参考例については、安定な化合物ではあるが、一定の有機溶媒に対して可溶であり、再沈殿による精製や溶液キャスト法によるフィルム成形などの加工性に優れていることが示された。
Although each reference example is a stable compound, it was shown to be soluble in certain organic solvents and to have excellent workability such as purification by reprecipitation and film formation by solution casting.
(試験例3:参考例1~6、10の化合物の熱特性)
参考例1~6、10の化合物について、上述の熱重量測定(TGA)、示差走査熱量測定(DSC)、熱機械分析(TMA)、動的粘弾性測定(DMA)により熱特性を検討した結果を表4、表5に示した。
表4のT5%は5%重量減少温度、T10%は10%重量減少温度で、TGAによって窒素中又は空気中において昇温速度10℃/minで測定した値である。Char yieldは炭化収率で、窒素中、800℃における重量%である。
表5のガラス転移温度(Tg)は、DSCにより窒素中、昇温速度20℃/minで測定した値、TMAにより窒素中、昇温速度10℃/minで測定した値、DMAにより窒素中、昇温速度2℃/minで測定した値である。熱膨張係数(CTE)について、TMAにより100~150℃で測定した値である。 (Test Example 3: Thermal properties of compounds of Reference Examples 1 to 6 and 10)
The thermal properties of the compounds of Reference Examples 1 to 6 and 10 were investigated by the above-mentioned thermogravimetry (TGA), differential scanning calorimetry (DSC), thermomechanical analysis (TMA), and dynamic viscoelasticity measurement (DMA). are shown in Tables 4 and 5.
In Table 4, T5 % is the 5% weight loss temperature, and T10 % is the 10% weight loss temperature, measured by TGA in nitrogen or air at a heating rate of 10°C/min. Char yield is the carbonization yield in weight percent at 800° C. in nitrogen.
The glass transition temperature (Tg) in Table 5 is a value measured by DSC in nitrogen at a heating rate of 20°C/min, a value measured by TMA in nitrogen at a heating rate of 10°C/min, a value measured by DMA in nitrogen, It is a value measured at a heating rate of 2° C./min. The coefficient of thermal expansion (CTE) is a value measured at 100 to 150°C by TMA.
参考例1~6、10の化合物について、上述の熱重量測定(TGA)、示差走査熱量測定(DSC)、熱機械分析(TMA)、動的粘弾性測定(DMA)により熱特性を検討した結果を表4、表5に示した。
表4のT5%は5%重量減少温度、T10%は10%重量減少温度で、TGAによって窒素中又は空気中において昇温速度10℃/minで測定した値である。Char yieldは炭化収率で、窒素中、800℃における重量%である。
表5のガラス転移温度(Tg)は、DSCにより窒素中、昇温速度20℃/minで測定した値、TMAにより窒素中、昇温速度10℃/minで測定した値、DMAにより窒素中、昇温速度2℃/minで測定した値である。熱膨張係数(CTE)について、TMAにより100~150℃で測定した値である。 (Test Example 3: Thermal properties of compounds of Reference Examples 1 to 6 and 10)
The thermal properties of the compounds of Reference Examples 1 to 6 and 10 were investigated by the above-mentioned thermogravimetry (TGA), differential scanning calorimetry (DSC), thermomechanical analysis (TMA), and dynamic viscoelasticity measurement (DMA). are shown in Tables 4 and 5.
In Table 4, T5 % is the 5% weight loss temperature, and T10 % is the 10% weight loss temperature, measured by TGA in nitrogen or air at a heating rate of 10°C/min. Char yield is the carbonization yield in weight percent at 800° C. in nitrogen.
The glass transition temperature (Tg) in Table 5 is a value measured by DSC in nitrogen at a heating rate of 20°C/min, a value measured by TMA in nitrogen at a heating rate of 10°C/min, a value measured by DMA in nitrogen, It is a value measured at a heating rate of 2° C./min. The coefficient of thermal expansion (CTE) is a value measured at 100 to 150°C by TMA.
表4の結果より、窒素中において5%の熱分解及び10%の熱分解が、いずれも390℃以上で起こっており、熱安定性が高いことが示された。
表5の結果より、各参考例はいずれもガラス転移温度(DSC測定)が180℃以上、参考例2~5については一定条件で200℃以上であり、高い耐熱性を示した。 From the results in Table 4, both 5% thermal decomposition and 10% thermal decomposition in nitrogen occurred at 390° C. or higher, indicating high thermal stability.
From the results in Table 5, each reference example had a glass transition temperature (DSC measurement) of 180° C. or higher, and Reference Examples 2 to 5 had a glass transition temperature of 200° C. or higher under certain conditions, indicating high heat resistance.
表5の結果より、各参考例はいずれもガラス転移温度(DSC測定)が180℃以上、参考例2~5については一定条件で200℃以上であり、高い耐熱性を示した。 From the results in Table 4, both 5% thermal decomposition and 10% thermal decomposition in nitrogen occurred at 390° C. or higher, indicating high thermal stability.
From the results in Table 5, each reference example had a glass transition temperature (DSC measurement) of 180° C. or higher, and Reference Examples 2 to 5 had a glass transition temperature of 200° C. or higher under certain conditions, indicating high heat resistance.
(試験例4:参考例1~6、10の化合物の光学特性、誘電特性)
参考例1~6、10の化合物について、上記機器条件において光学特性、誘電特性を検討した結果を表6、7、8に示した。
表6には、膜厚(d)が40~70μmのフィルム状サンプルの屈折率(n)の値を示してある。TEモードによりフィルム面内における屈折率(nTE)、TMモードによりフィルム面外における屈折率(nTM)を、F線(486nm)、d線(588nm)、C線(656nm)において測定した。Δndは複屈折、Vdはアッベ数、naveはnave=[(2nTE 2+nTM 2)/3]1/2で求められる平均屈折率であり、nTEとnTMは波長d線で測定したものである。εは誘電率であり、ε=nave 2で求めたものである。
表7には、空洞共振器により測定した誘電率(Dk)と誘電正接(Df)の値を示してある。TEモードでは10GHzと20GHzで測定し、TMモードでは10GHzで測定した。
表8には、紫外可視吸収スペクトルにより、カットオフされた波長(λcutoff)、80%が透過した波長(λ80%)、400nmにおける透過率(T400)を示した。 (Test Example 4: Optical properties and dielectric properties of compounds of Reference Examples 1 to 6 and 10)
Tables 6, 7 and 8 show the results of examining the optical properties and dielectric properties of the compounds of Reference Examples 1 to 6 and 10 under the above equipment conditions.
Table 6 shows the values of the refractive index (n) of film samples having a film thickness (d) of 40 to 70 μm. The in-plane refractive index (n TE ) of the film in TE mode and the out-of-plane refractive index (n TM ) of the film in TM mode were measured at F-line (486 nm), d-line (588 nm) and C-line (656 nm). Δn d is the birefringence, V d is the Abbe number, n ave is the average refractive index obtained by n ave =[(2n TE 2 +n TM 2 )/3] 1/2 , n TE and n TM are the wavelength d It is measured by a line. ε is the permittivity, which is obtained by ε=n ave 2 .
Table 7 shows values of dielectric constant (D k ) and dielectric loss tangent (D f ) measured by the cavity resonator. Measurements were made at 10 GHz and 20 GHz in TE mode and at 10 GHz in TM mode.
Table 8 shows the cutoff wavelength (λ cutoff ), 80% transmitted wavelength (λ 80% ), and transmittance at 400 nm (T 400 ) according to the UV-visible absorption spectrum.
参考例1~6、10の化合物について、上記機器条件において光学特性、誘電特性を検討した結果を表6、7、8に示した。
表6には、膜厚(d)が40~70μmのフィルム状サンプルの屈折率(n)の値を示してある。TEモードによりフィルム面内における屈折率(nTE)、TMモードによりフィルム面外における屈折率(nTM)を、F線(486nm)、d線(588nm)、C線(656nm)において測定した。Δndは複屈折、Vdはアッベ数、naveはnave=[(2nTE 2+nTM 2)/3]1/2で求められる平均屈折率であり、nTEとnTMは波長d線で測定したものである。εは誘電率であり、ε=nave 2で求めたものである。
表7には、空洞共振器により測定した誘電率(Dk)と誘電正接(Df)の値を示してある。TEモードでは10GHzと20GHzで測定し、TMモードでは10GHzで測定した。
表8には、紫外可視吸収スペクトルにより、カットオフされた波長(λcutoff)、80%が透過した波長(λ80%)、400nmにおける透過率(T400)を示した。 (Test Example 4: Optical properties and dielectric properties of compounds of Reference Examples 1 to 6 and 10)
Tables 6, 7 and 8 show the results of examining the optical properties and dielectric properties of the compounds of Reference Examples 1 to 6 and 10 under the above equipment conditions.
Table 6 shows the values of the refractive index (n) of film samples having a film thickness (d) of 40 to 70 μm. The in-plane refractive index (n TE ) of the film in TE mode and the out-of-plane refractive index (n TM ) of the film in TM mode were measured at F-line (486 nm), d-line (588 nm) and C-line (656 nm). Δn d is the birefringence, V d is the Abbe number, n ave is the average refractive index obtained by n ave =[(2n TE 2 +n TM 2 )/3] 1/2 , n TE and n TM are the wavelength d It is measured by a line. ε is the permittivity, which is obtained by ε=n ave 2 .
Table 7 shows values of dielectric constant (D k ) and dielectric loss tangent (D f ) measured by the cavity resonator. Measurements were made at 10 GHz and 20 GHz in TE mode and at 10 GHz in TM mode.
Table 8 shows the cutoff wavelength (λ cutoff ), 80% transmitted wavelength (λ 80% ), and transmittance at 400 nm (T 400 ) according to the UV-visible absorption spectrum.
表6において、参考例1~6、10のいずれも、平均屈折率から求められる誘電率が2.7以下であることが示された。
表7において、参考例1~6、10のいずれも、Dk(誘電率)が2.7以下、Df(誘電正接)が0.03以下の値であり、十分に低いことが示された。
なお、表中に示していないが、式(1)中のArに脂肪族基が含まれない参考例19では、誘電正接(Df):0.0024(TEモード,10GHz)、0.0025(TEモード,20GHz)と、0.003以下の値は見られたものの、誘電率(Dk):2.76(TEモード,10GHz)と参考例1~6、10よりも高い値であった。 Table 6 shows that all of Reference Examples 1 to 6 and 10 have a dielectric constant of 2.7 or less as determined from the average refractive index.
In Table 7, all of Reference Examples 1 to 6 and 10 have D k (dielectric constant) of 2.7 or less and D f (dielectric loss tangent) of 0.03 or less, which are sufficiently low. rice field.
Although not shown in the table, in Reference Example 19 in which Ar in Formula (1) does not contain an aliphatic group, the dielectric loss tangent (Df): 0.0024 (TE mode, 10 GHz), 0.0025 ( TE mode, 20 GHz) and a value of 0.003 or less were observed, but the dielectric constant (D k ) was 2.76 (TE mode, 10 GHz), which was a higher value than Reference Examples 1 to 6 and 10. .
表7において、参考例1~6、10のいずれも、Dk(誘電率)が2.7以下、Df(誘電正接)が0.03以下の値であり、十分に低いことが示された。
なお、表中に示していないが、式(1)中のArに脂肪族基が含まれない参考例19では、誘電正接(Df):0.0024(TEモード,10GHz)、0.0025(TEモード,20GHz)と、0.003以下の値は見られたものの、誘電率(Dk):2.76(TEモード,10GHz)と参考例1~6、10よりも高い値であった。 Table 6 shows that all of Reference Examples 1 to 6 and 10 have a dielectric constant of 2.7 or less as determined from the average refractive index.
In Table 7, all of Reference Examples 1 to 6 and 10 have D k (dielectric constant) of 2.7 or less and D f (dielectric loss tangent) of 0.03 or less, which are sufficiently low. rice field.
Although not shown in the table, in Reference Example 19 in which Ar in Formula (1) does not contain an aliphatic group, the dielectric loss tangent (Df): 0.0024 (TE mode, 10 GHz), 0.0025 ( TE mode, 20 GHz) and a value of 0.003 or less were observed, but the dielectric constant (D k ) was 2.76 (TE mode, 10 GHz), which was a higher value than Reference Examples 1 to 6 and 10. .
(試験例5:DCPpTを用いた参考例12、13、15の合成)
前記式(13A)の化合物として、式(2A)中のR1を式(4A)とし、重合温度を80℃で行い、上述の合成方法により、参考例12、13、15の合成を行った。合成結果を表9に示す。表の説明は試験例1と同様である。
なお、このとき、参考例12については、収量:0.49g、収率:51%、対数粘度:0.53dL/g(30℃、0.5g/dLのクロロホルム溶液)であった。参考例13については、収量:1.08g、収率:95%、対数粘度:0.86dL/g(30℃、0.5g/dLのクロロホルム溶液)であった。 (Test Example 5: Synthesis of Reference Examples 12, 13, and 15 using DCPpT)
As the compound of the formula (13A), R 1 in the formula (2A) was replaced by the formula (4A), the polymerization temperature was 80° C., and the synthesis of Reference Examples 12, 13, and 15 was performed by the synthesis method described above. . Table 9 shows the synthesis results. The description of the table is the same as that of Test Example 1.
At this time, for Reference Example 12, the yield was 0.49 g, the yield was 51%, and the logarithmic viscosity was 0.53 dL/g (30° C., 0.5 g/dL chloroform solution). For Reference Example 13, yield: 1.08 g, yield: 95%, logarithmic viscosity: 0.86 dL/g (30°C, 0.5 g/dL chloroform solution).
前記式(13A)の化合物として、式(2A)中のR1を式(4A)とし、重合温度を80℃で行い、上述の合成方法により、参考例12、13、15の合成を行った。合成結果を表9に示す。表の説明は試験例1と同様である。
なお、このとき、参考例12については、収量:0.49g、収率:51%、対数粘度:0.53dL/g(30℃、0.5g/dLのクロロホルム溶液)であった。参考例13については、収量:1.08g、収率:95%、対数粘度:0.86dL/g(30℃、0.5g/dLのクロロホルム溶液)であった。 (Test Example 5: Synthesis of Reference Examples 12, 13, and 15 using DCPpT)
As the compound of the formula (13A), R 1 in the formula (2A) was replaced by the formula (4A), the polymerization temperature was 80° C., and the synthesis of Reference Examples 12, 13, and 15 was performed by the synthesis method described above. . Table 9 shows the synthesis results. The description of the table is the same as that of Test Example 1.
At this time, for Reference Example 12, the yield was 0.49 g, the yield was 51%, and the logarithmic viscosity was 0.53 dL/g (30° C., 0.5 g/dL chloroform solution). For Reference Example 13, yield: 1.08 g, yield: 95%, logarithmic viscosity: 0.86 dL/g (30°C, 0.5 g/dL chloroform solution).
表9に示すように、各参考例について樹脂組成物が40%以上の収率で良好に得られた。参考例13、15はニトロベンゼンを有機溶媒として選択することで90%以上の収率が見られた。いずれの参考例においても、高分子量体で得られていることが示された。
As shown in Table 9, the resin composition was well obtained with a yield of 40% or more for each reference example. Reference Examples 13 and 15 showed yields of 90% or more by selecting nitrobenzene as the organic solvent. In all of the reference examples, it was shown that high molecular weight products were obtained.
(試験例6:参考例12、13、15の化合物の溶解性)
各参考例の化合物について、室温又は加熱を行って溶解性を検討した結果を表10に示した。溶解性は10mg/5.0mLで測定した。表の説明は試験例2と同様である。 (Test Example 6: Solubility of compounds of Reference Examples 12, 13 and 15)
Table 10 shows the results of examining the solubility of the compounds of each reference example at room temperature or with heating. Solubility was measured at 10 mg/5.0 mL. The description of the table is the same as that of Test Example 2.
各参考例の化合物について、室温又は加熱を行って溶解性を検討した結果を表10に示した。溶解性は10mg/5.0mLで測定した。表の説明は試験例2と同様である。 (Test Example 6: Solubility of compounds of Reference Examples 12, 13 and 15)
Table 10 shows the results of examining the solubility of the compounds of each reference example at room temperature or with heating. Solubility was measured at 10 mg/5.0 mL. The description of the table is the same as that of Test Example 2.
各参考例については、安定な化合物ではあるが、一定の有機溶媒に対して可溶であり、再沈殿精製や成形加工に優れていることが示された。
Although each reference example is a stable compound, it was shown to be soluble in certain organic solvents and to be excellent for reprecipitation purification and molding.
(試験例7:参考例12、13、15の化合物の熱特性)
各参考例の化合物について、上述の熱重量測定、示差走査熱量測定を行い、熱特性を検討した結果を表11、表12に示した。表の説明は試験例3と同様である。 (Test Example 7: Thermal Properties of Compounds of Reference Examples 12, 13 and 15)
The above-mentioned thermogravimetry and differential scanning calorimetry were performed on the compounds of each reference example, and the thermal properties were examined. Tables 11 and 12 show the results. The description of the table is the same as that of Test Example 3.
各参考例の化合物について、上述の熱重量測定、示差走査熱量測定を行い、熱特性を検討した結果を表11、表12に示した。表の説明は試験例3と同様である。 (Test Example 7: Thermal Properties of Compounds of Reference Examples 12, 13 and 15)
The above-mentioned thermogravimetry and differential scanning calorimetry were performed on the compounds of each reference example, and the thermal properties were examined. Tables 11 and 12 show the results. The description of the table is the same as that of Test Example 3.
表11の結果より、N2内において5%の熱分解、及び10%の熱分解が、いずれも340℃以上で起こっており、熱安定性が高いことが示された。
表12の結果より、各参考例はいずれもガラス転移温度が160℃以上、参考例9については230℃以上であり、高い耐熱性を示した。 From the results in Table 11, both 5% thermal decomposition and 10% thermal decomposition in N 2 occurred at 340° C. or higher, indicating high thermal stability.
From the results in Table 12, each reference example had a glass transition temperature of 160° C. or higher, and reference example 9 had a glass transition temperature of 230° C. or higher, indicating high heat resistance.
表12の結果より、各参考例はいずれもガラス転移温度が160℃以上、参考例9については230℃以上であり、高い耐熱性を示した。 From the results in Table 11, both 5% thermal decomposition and 10% thermal decomposition in N 2 occurred at 340° C. or higher, indicating high thermal stability.
From the results in Table 12, each reference example had a glass transition temperature of 160° C. or higher, and reference example 9 had a glass transition temperature of 230° C. or higher, indicating high heat resistance.
(試験例8:参考例12、13、15の化合物の光学特性、誘電特性)
各参考例の化合物について、上記機器条件において光学特性、誘電特性を検討した結果を表13、14に示した。また、透過率については参考例13、15について表15に示した。表の説明は試験例4と同様である。 (Test Example 8: Optical properties and dielectric properties of compounds of Reference Examples 12, 13 and 15)
Tables 13 and 14 show the results of examining the optical properties and dielectric properties of the compounds of each reference example under the above equipment conditions. The transmittance of Reference Examples 13 and 15 is shown in Table 15. The description of the table is the same as that of Test Example 4.
各参考例の化合物について、上記機器条件において光学特性、誘電特性を検討した結果を表13、14に示した。また、透過率については参考例13、15について表15に示した。表の説明は試験例4と同様である。 (Test Example 8: Optical properties and dielectric properties of compounds of Reference Examples 12, 13 and 15)
Tables 13 and 14 show the results of examining the optical properties and dielectric properties of the compounds of each reference example under the above equipment conditions. The transmittance of Reference Examples 13 and 15 is shown in Table 15. The description of the table is the same as that of Test Example 4.
表13、14において、参考例12、13、15のいずれも、Dk(誘電率)が2.6以下、Df(誘電正接)が0.004以下の値であり、十分に低いことが示された。
In Tables 13 and 14, all of Reference Examples 12, 13, and 15 have values of D k (dielectric constant) of 2.6 or less and D f (dielectric loss tangent) of 0.004 or less, which are sufficiently low. shown.
(試験例9:DCHATを用いた参考例16、20)
前記式(13A)の化合物として、式(2A)中のR1を式(5A)とし、重合温度を表に示す65~100℃で行い、上述の合成方法により、参考例16、20の合成を行った。合成結果を表15に示す。表の説明は試験例1と同様である。 (Test Example 9: Reference Examples 16 and 20 using DCHAT)
As the compound of the formula (13A), R 1 in the formula (2A) is replaced by the formula (5A), the polymerization temperature is 65 to 100 ° C. shown in the table, and the synthesis of Reference Examples 16 and 20 is performed by the synthesis method described above. did Table 15 shows the synthesis results. The description of the table is the same as that of Test Example 1.
前記式(13A)の化合物として、式(2A)中のR1を式(5A)とし、重合温度を表に示す65~100℃で行い、上述の合成方法により、参考例16、20の合成を行った。合成結果を表15に示す。表の説明は試験例1と同様である。 (Test Example 9: Reference Examples 16 and 20 using DCHAT)
As the compound of the formula (13A), R 1 in the formula (2A) is replaced by the formula (5A), the polymerization temperature is 65 to 100 ° C. shown in the table, and the synthesis of Reference Examples 16 and 20 is performed by the synthesis method described above. did Table 15 shows the synthesis results. The description of the table is the same as that of Test Example 1.
表16に示すように、各参考例について樹脂組成物が60%以上の収率で良好に得られた。参考例16はニトロベンゼンを有機溶媒として選択することで90%以上の収率が見られ、高分子量体が得られた。
As shown in Table 16, the resin composition was well obtained with a yield of 60% or more for each reference example. In Reference Example 16, a yield of 90% or more was observed by selecting nitrobenzene as an organic solvent, and a high molecular weight product was obtained.
(試験例10:参考例16、20の化合物の溶解性)
各参考例の化合物について、室温又は加熱を行って溶解性を検討した結果を表17に示した。溶解性は10mg/5.0mLで測定した。表の説明は試験例2と同様である。 (Test Example 10: Solubility of compounds of Reference Examples 16 and 20)
Table 17 shows the results of examining the solubility of the compounds of each Reference Example at room temperature or with heating. Solubility was measured at 10 mg/5.0 mL. The description of the table is the same as that of Test Example 2.
各参考例の化合物について、室温又は加熱を行って溶解性を検討した結果を表17に示した。溶解性は10mg/5.0mLで測定した。表の説明は試験例2と同様である。 (Test Example 10: Solubility of compounds of Reference Examples 16 and 20)
Table 17 shows the results of examining the solubility of the compounds of each Reference Example at room temperature or with heating. Solubility was measured at 10 mg/5.0 mL. The description of the table is the same as that of Test Example 2.
(試験例11:参考例16の化合物の熱特性)
参考例16の化合物について、上述の熱重量測定、示差走査熱量測定、熱機械分析、動的粘弾性測定を行い、熱特性を検討した結果を表18、表19に示した。表の説明は試験例3と同様である。 (Test Example 11: Thermal properties of the compound of Reference Example 16)
The compound of Reference Example 16 was subjected to the above-described thermogravimetric measurement, differential scanning calorimetry, thermomechanical analysis, and dynamic viscoelasticity measurement, and the results of examining the thermal properties are shown in Tables 18 and 19. The description of the table is the same as that of Test Example 3.
参考例16の化合物について、上述の熱重量測定、示差走査熱量測定、熱機械分析、動的粘弾性測定を行い、熱特性を検討した結果を表18、表19に示した。表の説明は試験例3と同様である。 (Test Example 11: Thermal properties of the compound of Reference Example 16)
The compound of Reference Example 16 was subjected to the above-described thermogravimetric measurement, differential scanning calorimetry, thermomechanical analysis, and dynamic viscoelasticity measurement, and the results of examining the thermal properties are shown in Tables 18 and 19. The description of the table is the same as that of Test Example 3.
表18の結果より、窒素中において5%の熱分解、及び10%の熱分解が、いずれも380℃以上で起こっており、熱安定性が高いことが示された。
表19の結果より、参考例16はガラス転移温度が180℃以上であり、高い耐熱性を示した。 From the results in Table 18, both 5% thermal decomposition and 10% thermal decomposition in nitrogen occurred at 380° C. or higher, indicating high thermal stability.
From the results in Table 19, Reference Example 16 had a glass transition temperature of 180° C. or higher and exhibited high heat resistance.
表19の結果より、参考例16はガラス転移温度が180℃以上であり、高い耐熱性を示した。 From the results in Table 18, both 5% thermal decomposition and 10% thermal decomposition in nitrogen occurred at 380° C. or higher, indicating high thermal stability.
From the results in Table 19, Reference Example 16 had a glass transition temperature of 180° C. or higher and exhibited high heat resistance.
(試験例12:参考例16の化合物の光学特性、誘電特性)
参考例16の化合物について、上記機器条件において光学特性、誘電特性を検討した結果を表20、21、22に示した。表の説明は試験例4と同様である。 (Test Example 12: Optical properties and dielectric properties of the compound of Reference Example 16)
Tables 20, 21 and 22 show the results of examining the optical properties and dielectric properties of the compound of Reference Example 16 under the above equipment conditions. The description of the table is the same as that of Test Example 4.
参考例16の化合物について、上記機器条件において光学特性、誘電特性を検討した結果を表20、21、22に示した。表の説明は試験例4と同様である。 (Test Example 12: Optical properties and dielectric properties of the compound of Reference Example 16)
Tables 20, 21 and 22 show the results of examining the optical properties and dielectric properties of the compound of Reference Example 16 under the above equipment conditions. The description of the table is the same as that of Test Example 4.
表20、21において、参考例16はDk(ε、誘電率)が2.7以下であり、十分に低いことが示された。
Tables 20 and 21 show that D k (ε, permittivity) of Reference Example 16 is 2.7 or less, which is sufficiently low.
本発明によれば、誘電率が低く、誘電正接が低く、透明性が高く、溶解性が高く、かつ耐熱性が高いことから、低誘電材料として好適に使用できる樹脂組成物及びその製造方法が得られる。
According to the present invention, a resin composition having a low dielectric constant, a low dielectric loss tangent, a high transparency, a high solubility, and a high heat resistance can be suitably used as a low dielectric material, and a method for producing the same. can get.
Claims (16)
- 下記一般式(1)で示される繰り返し単位を有するトリアジン化合物を含む、低誘電材料用の樹脂組成物。
- 前記トリアジン化合物は、前記一般式(1)中のRが下記一般式(2)~(4)のいずれかで表され、前記式(1)中のArが下記一般式(5)~(15)のいずれかで表される、請求項1に記載の低誘電材料用の樹脂組成物。
- 前記一般式(1)中のnで示される繰り返し単位の平均重合度が2~600であるトリアジン化合物を含む、請求項1又は2に記載の低誘電材料用の樹脂組成物。 The resin composition for a low dielectric material according to claim 1 or 2, comprising a triazine compound in which the repeating unit represented by n in the general formula (1) has an average degree of polymerization of 2 to 600.
- 前記トリアジン化合物は、誘電率(Dk)が2.7以下又は誘電正接(Df)が0.004以下である、請求項1から3のいずれか1項に記載の低誘電材料用の樹脂組成物。 The resin for low dielectric materials according to any one of claims 1 to 3, wherein the triazine compound has a dielectric constant ( Dk ) of 2.7 or less or a dielectric loss tangent ( Df ) of 0.004 or less. Composition.
- 前記トリアジン化合物は、ガラス転移温度が160℃以上である、請求項1から4のいずれか1項に記載の低誘電材料用の樹脂組成物。 The resin composition for a low dielectric material according to any one of claims 1 to 4, wherein the triazine compound has a glass transition temperature of 160°C or higher.
- 前記トリアジン化合物及びエポキシ樹脂、ビスマレイミド樹脂又はシアネート樹脂を含む、請求項1から5のいずれか1項に記載の低誘電材料用の樹脂組成物。 The resin composition for low dielectric materials according to any one of claims 1 to 5, comprising the triazine compound and epoxy resin, bismaleimide resin or cyanate resin.
- 無機質充填材、改質剤又は難燃付与剤をさらに含む、請求項1から6のいずれか1項に記載の低誘電材料用の樹脂組成物。 The resin composition for a low dielectric material according to any one of claims 1 to 6, further comprising an inorganic filler, modifier or flame retardant.
- 周波数が0.1~500GHzの高周波の電磁波の送受信を行う機器に用いられる、請求項1から7のいずれか1項に記載の低誘電材料用の樹脂組成物。 The resin composition for a low dielectric material according to any one of claims 1 to 7, which is used in equipment that transmits and receives high-frequency electromagnetic waves with a frequency of 0.1 to 500 GHz.
- プリント配線板、フレキシブルプリント配線板、電子部品用封止材、レジストインキ、導電ペースト、絶縁材料、又は絶縁板に用いる、請求項1から8のいずれか1項に記載の低誘電材料用の樹脂組成物。 The resin for low dielectric materials according to any one of claims 1 to 8, which is used for printed wiring boards, flexible printed wiring boards, sealing materials for electronic parts, resist inks, conductive pastes, insulating materials, or insulating boards. Composition.
- 請求項1から9のいずれか1項に記載の低誘電材料用の樹脂組成物を含む絶縁材料を、少なくとも1面に備えた積層基板用フィルム。 A film for laminated substrates, which comprises, on at least one surface, an insulating material containing the resin composition for low dielectric materials according to any one of claims 1 to 9.
- 請求項10に記載の積層基板用フィルムを2以上備えた積層基板。 A laminated substrate comprising two or more films for laminated substrates according to claim 10.
- 請求項1から9のいずれか1項に記載の低誘電材料用の樹脂組成物の製造方法であって、
下記一般式(16)で表される化合物と下記一般式(17)で表される化合物とを混合し、重合させて下記一般式(18)で表されるトリアジン化合物を得る、低誘電材料用の樹脂組成物の製造方法。
A compound represented by the following general formula (16) and a compound represented by the following general formula (17) are mixed and polymerized to obtain a triazine compound represented by the following general formula (18) for a low dielectric material. A method for producing a resin composition of
- 積層基板の層間の絶縁材料として用いられる低誘電材料用の樹脂組成物の製造方法であって、前記トリアジン化合物、エポキシ樹脂、ビスマレイミド樹脂又はシアネート樹脂、硬化促進剤及び有機溶剤を混合する、請求項12に記載の低誘電材料用の樹脂組成物の製造方法。 A method for producing a resin composition for a low dielectric material used as an insulating material between layers of a laminated substrate, comprising mixing the triazine compound, epoxy resin, bismaleimide resin or cyanate resin, a curing accelerator and an organic solvent. Item 13. A method for producing a resin composition for low dielectric materials according to item 12.
- 無機質充填材、改質剤又は難燃付与剤をさらに混合する、請求項13に記載の低誘電材料用の樹脂組成物の製造方法。 The method for producing a resin composition for a low dielectric material according to claim 13, further mixing an inorganic filler, a modifier or a flame retardant.
- 請求項13又は14の低誘電材料用の樹脂組成物の製造方法で製造した低誘電材料用の樹脂組成物を含む絶縁材料を、樹脂フィルムの少なくとも1面に塗布する、積層基板用フィルムの製造方法。 Manufacture of a film for laminated substrates, comprising coating an insulating material containing a resin composition for a low dielectric material manufactured by the method for manufacturing a resin composition for a low dielectric material according to claim 13 or 14 on at least one surface of a resin film. Method.
- 請求項15の積層基板用フィルムの製造方法で製造した積層基板用フィルムを2以上積層する、積層基板の製造方法。 A method for producing a laminated substrate, comprising laminating two or more films for a laminated substrate produced by the method for producing a film for a laminated substrate according to claim 15.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023509244A JPWO2022202894A1 (en) | 2021-03-24 | 2022-03-23 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021050694 | 2021-03-24 | ||
JP2021-050694 | 2021-03-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022202894A1 true WO2022202894A1 (en) | 2022-09-29 |
Family
ID=83395660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/013475 WO2022202894A1 (en) | 2021-03-24 | 2022-03-23 | Resin composition for low dielectric material, film for layered substrate, layered substrate, method for producing resin composition for low dielectric material, method for producing film for layered substrate, and method for producing layered substrate |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2022202894A1 (en) |
TW (1) | TW202306771A (en) |
WO (1) | WO2022202894A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06184300A (en) * | 1992-12-17 | 1994-07-05 | Idemitsu Kosan Co Ltd | Aromatic polyether, its production and triazine compound |
JP2001503077A (en) * | 1996-09-16 | 2001-03-06 | バイエル・アクチエンゲゼルシヤフト | Triazine polymers and their use in electroluminescent devices |
-
2022
- 2022-03-23 WO PCT/JP2022/013475 patent/WO2022202894A1/en active Application Filing
- 2022-03-23 JP JP2023509244A patent/JPWO2022202894A1/ja active Pending
- 2022-03-23 TW TW111110831A patent/TW202306771A/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06184300A (en) * | 1992-12-17 | 1994-07-05 | Idemitsu Kosan Co Ltd | Aromatic polyether, its production and triazine compound |
JP2001503077A (en) * | 1996-09-16 | 2001-03-06 | バイエル・アクチエンゲゼルシヤフト | Triazine polymers and their use in electroluminescent devices |
Non-Patent Citations (6)
Title |
---|
AUDEBERT, ROLAND ET AL.: "Preparation et proprietes de polycondensats s-triaziniques (No. 106)", BULLETIN DE LA SOCIETE CHIMIQUE DE FRANCE, SOCIETY FRANCAISE DE CHIMIE , PARIS, FRANCE, no. 2, 1 January 1970 (1970-01-01), France , pages 606 - 611, XP009539876, ISSN: 0037-8968 * |
BRAUN D., MOST D., ZISER T.: "TRIAZINE-BASED POLYMERS, 2. ÖSYNTHESIS AND CHARACTERIZATION OF POLYETHERS.", ANGEWANDTE MAKROMOLEKULARE CHEMIE. APPLIED MACROMOLECULARCHEMISTRY AND PHYSICS., WILEY VCH, WEINHEIM., DE, vol. 221., 1 October 1994 (1994-10-01), DE , pages 187 - 205., XP000470726, ISSN: 0003-3146, DOI: 10.1002/apmc.1994.052210116 * |
DATABASE CAPLUS 1 January 1900 (1900-01-01), NAKAMURA YOSHIRO,ET AL: "Relation of the chemical structure of polycyanurates to thermal and mechanical properties", XP002247885, Database accession no. 1970-13155 * |
MATSUO S.: "SYNTHESIS AND PROPERTIES OF POLY(ARYLENE ETHER PHENYL-S-TRIAZINE)S.", JOURNAL OF POLYMER SCIENCE : PART A: POLYMER CHEMISTRY, INTERSIENCE PUBLISHERS , NEW YORK , NY, US, vol. 32., no. 11., 1 August 1994 (1994-08-01), US , pages 2093 - 2098., XP000454358, ISSN: 0360-6376 * |
SETA KOSAKU, TAMURA YOSHIKO, SAITO: "Preparation of Polycyanurate from 2-R-4, 6-dichloro-s-triazine and Bisphenol-A", THE JOURNAL OF THE SOCIETY OF CHEMICAL INDUSTRY, JAPAN, vol. 70, no. 4, 1 January 1967 (1967-01-01), pages 588 - 593, XP055970330, DOI: 10.1246/nikkashi1898.70.4_588 * |
TANDEL, G. ; KAULA, S. ; PATEL, B. ; PATEL, K.: "Synthesis and physico-chemical properties of polycyanurates derived from 2-piperidino-4,6-dichloro-s-triazine with various diols", EUROPEAN POLYMER JOURNAL, PERGAMON PRESS LTD OXFORD, GB, vol. 30, no. 4, 1 January 1994 (1994-01-01), GB , pages 443 - 447, XP025949286, ISSN: 0014-3057, DOI: 10.1016/0014-3057(94)90041-8 * |
Also Published As
Publication number | Publication date |
---|---|
TW202306771A (en) | 2023-02-16 |
JPWO2022202894A1 (en) | 2022-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106366128B (en) | Phosphine phenanthrene class compound and its preparation method and application | |
TWI448509B (en) | Resin composition, prepreg and their uses | |
KR101659081B1 (en) | Liquid crystalline thermoset oligomer or polymer and thermosetting composition and subratrate inclduing same | |
CN108250675B (en) | Phosphorus-containing active ester, halogen-free composition thereof and copper-clad substrate | |
JP5245496B2 (en) | Epoxy resin composition and cured product thereof | |
KR101248294B1 (en) | Epoxy resin, epoxy resin composition, and utilizing the same, prepreg and laminated plate | |
JP5577399B2 (en) | Phosphorus-modified phenol novolac resin, curing agent containing the same, and epoxy resin composition | |
CN110218415B (en) | Resin composition, prepreg, laminate, metal-clad laminate, and printed wiring board | |
US9469757B2 (en) | Low dissipation factor resin composition and product made thereby | |
KR101830560B1 (en) | Epoxy resin composition, prepreg and laminate using same | |
WO2011025961A2 (en) | Thermosetting resin compositions and articles | |
CN104755422A (en) | Cyanogen-halide production method, cyanate ester compound and production method therefor, and resin composition | |
WO2007063947A1 (en) | Phenol resin composition, cured product thereof, resin composition for copper clad laminate, copper clad laminate and novel phenol resin | |
JP2019531262A (en) | Phosphorus-containing active ester, non-halogen composition thereof, and copper-clad laminate | |
JP5240516B2 (en) | Epoxy resin composition, cured product thereof, and build-up film insulating material | |
TW202017900A (en) | Cyanate ester compound and method for producing same, resin composition, cured product, single-layer resin sheet, laminated resin sheet, prepreg, metal foil-clad laminate, printed wiring board, sealing material, fiber-reinforced composite material, adhesive, and semiconductor device | |
KR20170095141A (en) | Oxazine resin composition and cured product thereof | |
KR20190070282A (en) | Epoxy resin composition and cured product thereof | |
JP2010077343A (en) | Epoxy resin composition, cured product of the same, and buildup film insulating material | |
JPH05301852A (en) | Cyanic acid ester, cyanic acid ester prepolymer and electrical laminate made from the same prepolymer | |
WO2022202894A1 (en) | Resin composition for low dielectric material, film for layered substrate, layered substrate, method for producing resin composition for low dielectric material, method for producing film for layered substrate, and method for producing layered substrate | |
JP5850228B2 (en) | Curable resin composition, cured product thereof, cyanate ester resin, semiconductor sealing material, prepreg, circuit board, and build-up film | |
WO2022202886A1 (en) | Resin composition for low-dielectric material, film for multilayer substrate, multilayer substrate, method for producing resin composition for low-dielectric material, method for producing film for multilayer substrate, and method for producing multilayer substrate | |
JP5880921B2 (en) | Curable resin composition, cured product thereof, printed wiring board | |
TWI856301B (en) | Resin composition for low dielectric material, film for laminated substrate, laminated substrate, method for producing resin composition for low dielectric material, method for producing film for laminated substrate, and method for producing laminated substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22775676 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2023509244 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22775676 Country of ref document: EP Kind code of ref document: A1 |