WO2022202687A1 - Fluorescent body particle, complex, and light emission device - Google Patents

Fluorescent body particle, complex, and light emission device Download PDF

Info

Publication number
WO2022202687A1
WO2022202687A1 PCT/JP2022/012722 JP2022012722W WO2022202687A1 WO 2022202687 A1 WO2022202687 A1 WO 2022202687A1 JP 2022012722 W JP2022012722 W JP 2022012722W WO 2022202687 A1 WO2022202687 A1 WO 2022202687A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
phosphor particles
phosphor
shaped portion
light
Prior art date
Application number
PCT/JP2022/012722
Other languages
French (fr)
Japanese (ja)
Inventor
真義 市川
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2023509137A priority Critical patent/JPWO2022202687A1/ja
Publication of WO2022202687A1 publication Critical patent/WO2022202687A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/61Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing fluorine, chlorine, bromine, iodine or unspecified halogen elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the present invention relates to phosphor particles, composites and light-emitting devices.
  • KSF phosphor As a phosphor capable of converting blue light emitted from a blue light emitting diode into red light, a fluoride phosphor represented by K 2 SiF 6 :Mn (often abbreviated as “KSF phosphor”) is known. There is This phosphor is efficiently excited by blue light. In addition, the half width of the emission spectrum of this phosphor is narrow and sharp. Therefore, by using this phosphor as the red phosphor, it is possible to realize a white LED with high brightness and excellent color rendering and color reproducibility.
  • KSF phosphor fluoride phosphor represented by K 2 SiF 6 :Mn
  • Patent Document 1 As a prior art of fluoride phosphors, for example, Patent Document 1 can be cited. Patent Document 1 describes a fluorine composition represented by the general formula A 2 M (1 ⁇ n) F 6 :Mn 4+ n , having a bulk density of 0.80 g/cm 3 or more and a mass median diameter of 30 ⁇ m or less. Compound phosphors are described. In the general formula, 0 ⁇ n ⁇ 0.1, element A is one or more alkali metal elements containing K, element M is Si simple substance, Ge simple substance, or Si and Ge, Sn, Ti, Zr and Hf. It is a combination with one or more elements selected from the group.
  • Patent document 2 can also be mentioned as a prior art of a fluoride fluorescent substance.
  • Patent Document 2 discloses A 2 BF 6 (where A is K, Na, Rb or Cs, B is Si, Ge, Sn, Ti or Zr, and K and Si, K and Ge, K and Ti excluding the combination), a phosphor characterized by comprising a crystal having a configuration in which a transition metal is substituted as an activator in a part of the host crystal.
  • the present inventor conducted various studies with the goal of obtaining a fluoride phosphor with good light emission characteristics.
  • the following phosphor particles are provided.
  • Phosphor particles whose composition is represented by the following general formula (1), including a first plate-shaped portion and a second plate-shaped portion at least partially connected to the first plate-shaped portion, wherein the first plate-shaped portion and the second plate-shaped portion are Not parallel, phosphor particles.
  • General formula ( 1 ): A2MF6 :Mn In general formula (1), Element A is one or more alkali metal elements containing K, The element M is Si alone, Ge alone, or a combination of Si and one or more elements selected from the group consisting of Ge, Sn, Ti, Zr and Hf.
  • a composite is provided that includes the phosphor powder described above and a sealing material that seals the phosphor powder.
  • a light-emitting device that includes a light-emitting element that emits excitation light and the composite that converts the wavelength of the excitation light.
  • the present invention provides a fluoride phosphor with good emission characteristics.
  • FIG. 4 is a diagram for explaining the shape of phosphor particles;
  • FIG. 4 is a diagram for explaining the shape of phosphor particles; It is a figure which shows an example of a light-emitting device.
  • 1 is an electron microscope image of phosphor particles produced in Example 1.
  • FIG. 4 is an electron microscope image of phosphor particles produced in Example 2.
  • FIG. 4 is an electron microscope image of phosphor particles produced in Comparative Example 1.
  • X to Y in the explanation of the numerical range means X or more and Y or less unless otherwise specified.
  • “1 to 5% by mass” means “1% by mass or more and 5% by mass or less”.
  • ⁇ Phosphor particles> The composition of the phosphor particles of this embodiment is represented by general formula (1) below. Due to this composition, the phosphor particles of this embodiment convert blue light normally emitted from a blue LED into red light.
  • General formula ( 1 ): A2MF6 :Mn In general formula (1), Element A is one or more alkali metal elements containing K, The element M is Si alone, Ge alone, or a combination of Si and one or more elements selected from the group consisting of Ge, Sn, Ti, Zr and Hf.
  • the phosphor particles of the present embodiment are connected to the first plate-like portion 1 and at least a part of the first plate-like portion 1, as shown in FIG. and a second plate-like portion 2 .
  • the first plate-like portion 1 and the second plate-like portion 2 are not parallel, that is, ⁇ shown in FIG. 1 is greater than 0° and less than 180°.
  • the phosphor particles of the present embodiment have a form in which "two non-parallel plate-like phosphors" are connected.
  • the phosphor particles of the present embodiment can be manufactured by using appropriate raw materials and adopting appropriate manufacturing methods and manufacturing conditions. For example, when the phosphor particles are precipitated by controlling the degree of saturation of the aqueous solution, one of the points is to instantaneously create a supersaturated state. Details of the manufacturing method will be described later.
  • first plate-shaped portion 1 and the second plate-shaped portion 2 are each drawn in a rectangular shape, but the shapes of the first plate-shaped portion 1 and the second plate-shaped portion 2 are , but not limited to rectangular shapes only.
  • Each of the first plate-like portion 1 and the second plate-like portion 2 may have a flat region that is wide enough to be observed with an electron microscope.
  • the first plate-shaped portion 1 and the second plate-shaped portion 2 are connected at a non-end portion of one plate-shaped portion and an end portion of the other plate-shaped portion.
  • the first plate-like part 1 and the second plate-like part 2 are connected at each end. Since the first plate-shaped portion 1 and the second plate-shaped portion 2 are connected at their respective ends, it is possible to further suppress the above-mentioned "the incident blue light is simply reflected without being emitted". It is believed that this leads to further improvement in light emission characteristics.
  • the angle ⁇ formed by the first plate-like portion 1 and the second plate-like portion 2 is preferably an acute angle, more preferably 20° or more and 50° or less, still more preferably 30° or more and 45° or less. Since the angle ⁇ is an acute angle, the blue light enters the acute-angled portion, and the above-mentioned "the incident blue light is simply reflected without being emitted" is further suppressed, and the light emission characteristics are further improved. It is thought that it will lead to improvement.
  • the first plate-shaped portion 1 and the second plate-shaped portion 2 are formed by a portion that is not an end portion of one plate-shaped portion and a portion that is not an end portion of the other plate-shaped portion.
  • each of the first plate-shaped portion 1 and the second plate-shaped portion 2 is, for example, 20 ⁇ m or less, preferably 0.5 ⁇ m or more and 20 ⁇ m or less, more preferably 1 ⁇ m or more and 20 ⁇ m or less, still more preferably 1 ⁇ m or more and 5 ⁇ m or less. be.
  • the thickness is not too large, it is believed that the luminous efficiency per mass of the phosphor particles increases, that is, the luminous efficiency of the phosphor particles increases.
  • the length of the phosphor particles of the present embodiment obtained from an electron microscope image is preferably 1 ⁇ m or more and 150 ⁇ m or less, more preferably 5 ⁇ m or more and 50 ⁇ m or less.
  • the major axis By setting the major axis to an appropriate size, better light emission characteristics can be obtained.
  • An image of a phosphor particle photographed with an electron microscope is a two-dimensional image, and the major diameter varies depending on the direction of the photographed phosphor particle. However, even if this variation is taken into account, better light emission characteristics can be obtained as long as the major axis is within the above numerical range.
  • the numerical range of 1 ⁇ m or more and 150 ⁇ m or less is a numerical range that takes into account variations in the length of the phosphor particles, which differ depending on the direction in which the phosphor particles are photographed.
  • Element A is one or more K-containing alkali metal elements. Specifically, K alone, or a combination of K and one or more alkali metal elements selected from Li, Na, Rb, and Cs can be used. From the viewpoint of chemical stability, the content of K in element A is preferably high (for example, K accounts for 50 mol % or more in element A), and element A is more preferably K alone.
  • the element M is Si alone, Ge alone, or a combination of Si and one or more elements selected from the group consisting of Ge, Sn, Ti, Zr and Hf. From the viewpoint of chemical stability, the content of Si in the element M is preferably high (for example, Si accounts for 50 mol % or more in the element M), and the element M is more preferably Si alone.
  • the phosphor particles of this embodiment can be manufactured by using an appropriate material and selecting an appropriate manufacturing method and manufacturing conditions. Examples of specific manufacturing methods will be described in Examples below, and two manufacturing methods, manufacturing methods 1 and 2, will be described below.
  • the production method 1 is a method in which a solution in which the components constituting the phosphor particles represented by the general formula (1) are dissolved is put into a large amount of water, thereby creating a supersaturated state at once and causing precipitation. is. It is believed that the sudden precipitation based on the supersaturation state results in phosphor particles containing two plate-like portions as described above.
  • the manufacturing method 1 will be described separately for the dissolution process and the precipitation process.
  • hydrofluoric acid aqueous solution of HF
  • a raw material containing element A such as K
  • a raw material containing element M preferably Si
  • a raw material containing F. preferably F
  • dissolving a raw material containing Mn a raw material containing Mn.
  • One raw material may serve as two or more of (i) to (iii).
  • K 2 SiF 6 used in the examples also serves as (i) to (iii).
  • the concentration of hydrogen fluoride in hydrofluoric acid before dissolving the raw materials is preferably 50 to 60% by mass.
  • a compound of the element A is preferable from the viewpoint of chemical stability.
  • oxides, hydroxides, fluorides and carbonates of element A can be used.
  • the raw material containing F can be a fluoride as a raw material for other elements (A, M, Mn). F is also supplied from hydrogen fluoride in hydrofluoric acid used as a solvent.
  • Raw materials containing Mn include hexafluoromanganates, permanganates, oxides (excluding permanganates), fluorides (excluding hexafluoromanganates), chlorides, sulfates, and nitrates. be done.
  • fluorides are preferred because Mn can be efficiently substituted for the Si site in the fluoride phosphor and good light emission characteristics can be obtained, and among fluorides, hexafluoromanganate is preferred.
  • Hexafluoromanganates include Na 2 MnF 6 , K 2 MnF 6 , Rb 2 MnF 6 and the like.
  • K 2 MnF 6 is preferable because it simultaneously contains F and K (corresponding to element A) constituting the fluoride phosphor in addition to Mn.
  • Particularly preferred sources include K2SiF6 and K2MnF6 .
  • ⁇ Precipitation process The solution prepared in the dissolution process is poured into a large amount of water. As a result, the system suddenly becomes supersaturated, and the phosphor particles having the composition represented by the general formula (1) are precipitated. At this time, it is preferable to appropriately control the charging speed. If the charging speed is inappropriate, particles of desired shape may not be obtained.
  • the solution is added to about 1 L to 2 L of ion-exchanged water at a rate of about 100 mL/s. is preferred. After that, it is preferable to continue stirring for about 1 to 10 minutes.
  • Manufacturing method 2 mainly includes a dissolution step, a Mn source input step, and a precipitation step. These steps will be described below. These steps can be performed at room temperature.
  • hydrofluoric acid aqueous solution of HF
  • a raw material containing element A such as K
  • a raw material containing element M preferably Si
  • a raw material containing element M preferably Si
  • a concentration of hydrogen fluoride in hydrofluoric acid before dissolving the raw materials is preferably 50 to 60% by mass.
  • a compound of the element A is preferable from the viewpoint of chemical stability.
  • oxides, hydroxides, fluorides and carbonates of element A can be used.
  • the raw material containing F can be a fluoride as a raw material for other elements (A, M, Mn). F is also supplied from hydrogen fluoride in hydrofluoric acid used as a solvent.
  • a particularly preferred raw material (other than hydrofluoric acid in hydrofluoric acid) used in the dissolution step is K 2 SiF 6 .
  • Mn source input step In the Mn source input step, the raw material containing Mn is added to the solution obtained in the dissolution step, and water is added to the system in the precipitation step described later. Stir for about 2 minutes.
  • Raw materials containing Mn include hexafluoromanganates, permanganates, oxides (excluding permanganates), fluorides (excluding hexafluoromanganates), chlorides, sulfates, and nitrates. be done.
  • fluorides are preferred because Mn can be efficiently substituted for the Si site in the fluoride phosphor and good light emission characteristics can be obtained, and among fluorides, hexafluoromanganate is preferred.
  • Hexafluoromanganates include Na 2 MnF 6 , K 2 MnF 6 , Rb 2 MnF 6 and the like.
  • K 2 MnF 6 is preferable because it simultaneously contains F and K (corresponding to element A) constituting the fluoride phosphor in addition to Mn.
  • the precipitation step In the precipitation step, an appropriate amount of water is put into the system as quickly as possible. As a result, the system suddenly becomes supersaturated, and the phosphor particles having the composition represented by the general formula (1) are precipitated.
  • “as quickly as possible” depends on the scale of the system, but for example, when 1 to 2 L of hydrofluoric acid is used in the dissolution step, with respect to water, preferably 1 L of water is added to the system in about 3 seconds. Say put it inside. It is presumed that the crystal growth becomes anisotropic due to such an operation that abruptly brings the system into a supersaturated state. As a result, it is presumed that phosphor particles having a shape in which two plate-like phosphors are connected are obtained.
  • the phosphor particles obtained by production method 1 or 2 are collected by solid-liquid separation by filtration or the like, and washed with an organic solvent such as methanol, ethanol, or acetone. If the fluoride-based phosphor is washed with water, part of it is hydrolyzed to produce a brown manganese compound, which may degrade the properties of the phosphor. Therefore, it is preferable to use an organic solvent in the cleaning step. Further, by washing several times with a hydrofluoric acid reaction solution before washing with an organic solvent, impurities generated in trace amounts can be dissolved and removed.
  • an organic solvent such as methanol, ethanol, or acetone.
  • the concentration of hydrofluoric acid in the hydrofluoric acid reaction solution used for washing is preferably 5% by mass or more from the viewpoint of suppressing decomposition of the fluoride phosphor, and preferably 60% by mass or less from the viewpoint of the solubility of the phosphor. .
  • a sieve with a predetermined mesh size may be used for classification, or coarse particles may be removed.
  • the composite of this embodiment includes the phosphor particles described above and a sealing material that seals the phosphor particles. Further, the light-emitting device of the present embodiment includes a light-emitting element that emits excitation light and the composite that converts the wavelength of the excitation light. The light-emitting device of this embodiment is preferably used, for example, as a backlight for a display.
  • FIG. 3 is a schematic diagram of the light emitting device 100.
  • a light-emitting device 100 includes a composite 10 and a light-emitting element 20 .
  • the composite 10 is provided in contact with the top of the light emitting element 20 .
  • Light emitting element 20 is typically a blue LED.
  • a terminal exists below the light emitting element 20 .
  • the light emitting element 20 can emit light by connecting the terminals to the power supply.
  • the excitation light emitted from the light emitting element 20 is wavelength-converted by the composite 10 . When the excitation light is blue light, the blue light is wavelength-converted into red light by the composite 10 containing phosphor particles.
  • the composite 10 can be composed of the phosphor particles described above and a sealing material that seals the phosphor powder.
  • the composite 10 may further include phosphor particles that do not correspond to the phosphor particles described above.
  • the sealing material for example, various curable resin materials (materials that are cured by heat and/or light) can be used. Any curable resin material can be used as long as it is sufficiently transparent and provides the optical properties required for displays and lighting devices. Examples of sealing materials include silicone resin materials. Curable silicone resin materials are supplied by Dow Corning Toray Co., Ltd. and Shin-Etsu Chemical Co., Ltd. Silicone resin materials are highly transparent and have excellent heat resistance. preferable.
  • an epoxy resin material, a urethane resin material, or the like can be used as the sealing material.
  • the amount of the phosphor particles (the phosphor particles described above and the phosphor particles not corresponding to the above phosphor particles) in the composite 10 is, for example, 10 to 70% by mass, preferably 25 to 55% by mass.
  • the size and shape of the light emitting element 20 are not particularly limited. Depending on the application of the light emitting device 100, the light emitting element 20 can be of any size and shape.
  • HF 55% by mass aqueous solution manufactured by Stella Chemifa Co., Ltd.
  • K 2 SiF 6 manufactured by Morita Chemical Co., Ltd.
  • K 2 MnF 6 prepared by the method described in paragraph 0042 of JP-A-2019-001897.
  • Phosphor particles were produced in the following procedure.
  • the first plate-shaped portion and the second plate-shaped portion contained phosphor particles that were not parallel to each other.
  • the angle formed by the first plate-like portion and the second plate-like portion was approximately 45°.
  • the thickness of the first plate-like portion and the second plate-like portion was approximately 1 ⁇ m.
  • the long diameter of the phosphor particles obtained from FIG. 4 was about 30 ⁇ m. Also, from FIG. 4, it was determined that the first plate-like portion and the second plate-like portion were connected at their respective ends.
  • Example 2 Phosphor particles were produced in the following procedure.
  • (1) At room temperature, 75 g of K 2 SiF 6 was added to 1500 mL of an HF aqueous solution having a concentration of 55% by mass in a Teflon (registered trademark) beaker and stirred for 10 minutes. This gave a homogeneous solution.
  • (2) 9 g of K 2 MnF 6 was added to the solution obtained in (1) above and stirred for 1 minute.
  • 1000 mL of ion-exchanged water was put into the beaker at a speed of 333 mL/s. This started the precipitation of a yellow solid. Stirring was then continued for 5 minutes.
  • the obtained phosphor powder contained a first plate-like portion and a second plate-like portion connected at least partially to the first plate-like portion, as shown in FIG. It was confirmed that the first plate-shaped portion and the second plate-shaped portion contained phosphor particles that were not parallel to each other.
  • the angle formed by the first plate-like portion and the second plate-like portion was approximately 30°.
  • the thickness of the first plate-like portion and the second plate-like portion was approximately 5 ⁇ m.
  • the long diameter of the phosphor particles obtained from FIG. 5 was about 100 ⁇ m. Also, from FIG. 5, it was determined that the first plate-like portion and the second plate-like portion were connected at their respective ends.
  • a standard reflector plate manufactured by Labsphere, trade name Spectralon having a reflectance of 99% was set in a side opening ( ⁇ 10 mm) of an integrating sphere ( ⁇ 60 mm).
  • a monochromatic light with a wavelength of 455 nm from a light emission source (Xe lamp) was introduced into this integrating sphere through an optical fiber, and the spectrum of the reflected light was measured with a spectrophotometer (manufactured by Otsuka Electronics Co., Ltd., trade name MCPD-7000).
  • the number of excitation light photons was calculated from the spectrum in the wavelength range of 450 to 465 nm.
  • a concave cell filled with the phosphor powder obtained in each example was set in the opening of an integrating sphere so as to have a smooth surface, and was irradiated with monochromatic light having a wavelength of 455 nm to cause excitation.
  • Spectra of reflected light and fluorescence were measured with a spectrophotometer.
  • the number of excited reflected light photons (Qref) and the number of fluorescence photons (Qem) were calculated from the obtained spectral data.

Abstract

Fluorescent body particles according to the present invention have a compositional makeup represented by general formula (1) A2MF6:Mn. In general formula (1), element A is one or more alkali metal elements including K, and element M is Si alone, Ge alone, or a combination between Si and at least one element selected from the group consisting of Ge, Sn, Ti, Zr, and Hf. The fluorescent body particles each include a first plate-like part and a second plate-like part that is at least partially connected with the first plate-like part. The first plate-like part and the second plate-like are not parallel to each other.

Description

蛍光体粒子、複合体および発光装置Phosphor particles, composites and light-emitting devices
 本発明は、蛍光体粒子、複合体および発光装置に関する。 The present invention relates to phosphor particles, composites and light-emitting devices.
 青色発光ダイオードから発せられる青色光を赤色光に変換可能な蛍光体として、KSiF:Mnで表されるフッ化物蛍光体(しばしば「KSF蛍光体」などと略記される)が知られている。この蛍光体は青色光で効率良く励起される。また、この蛍光体の発光スペクトルの半値幅は、狭く、シャープである。よって、赤色蛍光体としてこの蛍光体を用いることで、高輝度で演色性や色再現性に優れた白色LEDを実現できる。 As a phosphor capable of converting blue light emitted from a blue light emitting diode into red light, a fluoride phosphor represented by K 2 SiF 6 :Mn (often abbreviated as “KSF phosphor”) is known. there is This phosphor is efficiently excited by blue light. In addition, the half width of the emission spectrum of this phosphor is narrow and sharp. Therefore, by using this phosphor as the red phosphor, it is possible to realize a white LED with high brightness and excellent color rendering and color reproducibility.
 フッ化物蛍光体の先行技術としては、例えば、特許文献1が挙げられる。特許文献1には、組成が一般式A(1-n):Mn4+ で表され、嵩密度が0.80g/cm以上、かつ、質量メジアン径が30μm以下であるフッ化物蛍光体が記載されている。一般式において、0<n≦0.1、元素AはKを含有する1種以上のアルカリ金属元素、元素MはSi単体、Ge単体、またはSiとGe、Sn、Ti、ZrおよびHfからなる群から選ばれる1種以上の元素との組み合わせである。 As a prior art of fluoride phosphors, for example, Patent Document 1 can be cited. Patent Document 1 describes a fluorine composition represented by the general formula A 2 M (1−n) F 6 :Mn 4+ n , having a bulk density of 0.80 g/cm 3 or more and a mass median diameter of 30 μm or less. Compound phosphors are described. In the general formula, 0 < n ≤ 0.1, element A is one or more alkali metal elements containing K, element M is Si simple substance, Ge simple substance, or Si and Ge, Sn, Ti, Zr and Hf. It is a combination with one or more elements selected from the group.
 また、フッ化物蛍光体の先行技術としては、特許文献2を挙げることもできる。特許文献2には、ABF(但し、AはK、Na、Rb又はCs、BはSi、Ge、Sn、Ti又はZrであって、KとSi、KとGe、KとTiの組み合わせを除く。)で表される母体結晶の一部に、賦活剤として遷移金属が置換された構成をとる結晶体からなることを特徴とする蛍光体が記載されている。 Moreover, Patent document 2 can also be mentioned as a prior art of a fluoride fluorescent substance. Patent Document 2 discloses A 2 BF 6 (where A is K, Na, Rb or Cs, B is Si, Ge, Sn, Ti or Zr, and K and Si, K and Ge, K and Ti excluding the combination), a phosphor characterized by comprising a crystal having a configuration in which a transition metal is substituted as an activator in a part of the host crystal.
特開2019-001897号公報JP 2019-001897 A 国際公開第2009/119486号WO2009/119486
 白色LEDの普及に伴い、フッ化物蛍光体の発光特性のより一層の向上が求められている。 With the spread of white LEDs, there is a demand for further improvements in the light emission properties of fluoride phosphors.
 本発明者は、発光特性が良好なフッ化物蛍光体を得ることを課題として、様々な検討を行った。 The present inventor conducted various studies with the goal of obtaining a fluoride phosphor with good light emission characteristics.
 検討を通じ、本発明者らは、以下に提供される発明を完成させた。 Through investigation, the inventors completed the invention provided below.
 本発明によれば、以下の蛍光体粒子が提供される。 According to the present invention, the following phosphor particles are provided.
 組成が以下一般式(1)で表される蛍光体粒子であって、
 第一の板状部と、前記第一の板状部と少なくとも一部でつながっている第二の板状部とを含み、前記第一の板状部と前記第二の板状部とは平行ではない、蛍光体粒子。
   一般式(1):AMF:Mn
 一般式(1)において、
 元素AはKを含有する1種以上のアルカリ金属元素であり、
 元素MはSi単体、Ge単体、または、SiとGe、Sn、Ti、ZrおよびHfからなる群から選ばれる1種以上の元素との組み合わせである。
Phosphor particles whose composition is represented by the following general formula (1),
including a first plate-shaped portion and a second plate-shaped portion at least partially connected to the first plate-shaped portion, wherein the first plate-shaped portion and the second plate-shaped portion are Not parallel, phosphor particles.
General formula ( 1 ): A2MF6 :Mn
In general formula (1),
Element A is one or more alkali metal elements containing K,
The element M is Si alone, Ge alone, or a combination of Si and one or more elements selected from the group consisting of Ge, Sn, Ti, Zr and Hf.
 また、本発明によれば、
 上記の蛍光体粉末と、その蛍光体粉末を封止する封止材と、を備える複合体
が提供される。
Moreover, according to the present invention,
A composite is provided that includes the phosphor powder described above and a sealing material that seals the phosphor powder.
 また、本発明によれば、
 励起光を発する発光素子と、励起光の波長を変換する上記複合体と、を備える発光装置
が提供される。
Moreover, according to the present invention,
A light-emitting device is provided that includes a light-emitting element that emits excitation light and the composite that converts the wavelength of the excitation light.
 本発明により、発光特性が良好なフッ化物蛍光体が提供される。  The present invention provides a fluoride phosphor with good emission characteristics.
蛍光体粒子の形状について説明するための図である。FIG. 4 is a diagram for explaining the shape of phosphor particles; 蛍光体粒子の形状について説明するための図である。FIG. 4 is a diagram for explaining the shape of phosphor particles; 発光装置の一例を示す図である。It is a figure which shows an example of a light-emitting device. 実施例1で製造された蛍光体粒子の電子顕微鏡画像である。1 is an electron microscope image of phosphor particles produced in Example 1. FIG. 実施例2で製造された蛍光体粒子の電子顕微鏡画像である。4 is an electron microscope image of phosphor particles produced in Example 2. FIG. 比較例1で製造された蛍光体粒子の電子顕微鏡画像である。4 is an electron microscope image of phosphor particles produced in Comparative Example 1. FIG.
 以下、本発明の実施形態について、図面を参照しつつ、詳細に説明する。すべての図面はあくまで説明用のものである。図面中の各部材の形状や寸法比などは、必ずしも現実の物品と対応しない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. All drawings are for illustration purposes only. The shape and dimensional ratio of each member in the drawings do not necessarily correspond to the actual article.
 本明細書中、数値範囲の説明における「X~Y」との表記は、特に断らない限り、X以上Y以下のことを表す。例えば、「1~5質量%」とは「1質量%以上5質量%以下」を意味する。 In this specification, the notation "X to Y" in the explanation of the numerical range means X or more and Y or less unless otherwise specified. For example, "1 to 5% by mass" means "1% by mass or more and 5% by mass or less".
<蛍光体粒子>
 本実施形態の蛍光体粒子の組成は、以下一般式(1)で表される。この組成により、本実施形態の蛍光体粒子は、通常、青色LEDから発せられる青色光を赤色光に変換する。
  一般式(1):AMF:Mn
 一般式(1)において、
 元素AはKを含有する1種以上のアルカリ金属元素であり、
 元素MはSi単体、Ge単体、または、SiとGe、Sn、Ti、ZrおよびHfからなる群から選ばれる1種以上の元素との組み合わせである。
<Phosphor particles>
The composition of the phosphor particles of this embodiment is represented by general formula (1) below. Due to this composition, the phosphor particles of this embodiment convert blue light normally emitted from a blue LED into red light.
General formula ( 1 ): A2MF6 :Mn
In general formula (1),
Element A is one or more alkali metal elements containing K,
The element M is Si alone, Ge alone, or a combination of Si and one or more elements selected from the group consisting of Ge, Sn, Ti, Zr and Hf.
 また、「形状」の観点で、本実施形態の蛍光体粒子は、図1に示すように、第一の板状部1と、その第一の板状部1と少なくとも一部でつながっている第二の板状部2とを備える。そして、第一の板状部1と第二の板状部2とは平行ではない、つまり、図1に示したθは0°より大きく180°より小さい。要するに、本実施形態の蛍光体粒子は「非平行の2枚の板状の蛍光体」がつながった形態であると言える。 In terms of "shape", the phosphor particles of the present embodiment are connected to the first plate-like portion 1 and at least a part of the first plate-like portion 1, as shown in FIG. and a second plate-like portion 2 . The first plate-like portion 1 and the second plate-like portion 2 are not parallel, that is, θ shown in FIG. 1 is greater than 0° and less than 180°. In short, it can be said that the phosphor particles of the present embodiment have a form in which "two non-parallel plate-like phosphors" are connected.
 「非平行の2枚の板状の蛍光体がある」ことにより、入射した青色光が、発光につながらず単に反射してしまうことが抑えられ、発光特性が高まると推測される。 It is speculated that the fact that "there are two non-parallel plate-shaped phosphors" suppresses the incident blue light from simply being reflected instead of leading to light emission, improving the light emission characteristics.
 ちなみに、本発明者の知る限り、一般式(1)で表される組成の蛍光体粒子の検討において、蛍光体粒子の「特異な形状」が着目されたことはこれまでなく、非平行の2枚の板状の蛍光体があるという蛍光体粒子は本発明者独自のものである。 By the way, as far as the present inventors know, in the investigation of the phosphor particles having the composition represented by the general formula (1), attention has not been paid to the "peculiar shape" of the phosphor particles. The phosphor particles in which there is a sheet of plate-like phosphor are unique to the present inventor.
 本実施形態の蛍光体粒子は、適切な原料を用い、適切な製法およびその製造条件を採用することにより製造することができる。例えば、水溶液の飽和度をコントロールして蛍光体粒子を析出させる際に、瞬間的に過飽和状態とすることが、ポイントの1つとして挙げられる。製造方法の詳細は後述する。 The phosphor particles of the present embodiment can be manufactured by using appropriate raw materials and adopting appropriate manufacturing methods and manufacturing conditions. For example, when the phosphor particles are precipitated by controlling the degree of saturation of the aqueous solution, one of the points is to instantaneously create a supersaturated state. Details of the manufacturing method will be described later.
 本実施形態の蛍光体粒子に関する説明を続ける。 The description of the phosphor particles of this embodiment will be continued.
(形状について)
 図1において、第一の板状部1および第二の板状部2は、それぞれ、長方形状に描かれているが、第一の板状部1および第二の板状部2の形状は、長方形状のみに限定されない。第一の板状部1および第二の板状部2は、それぞれ、電子顕微鏡で観察できる程度の広さの平坦な領域を有していればそれでよい。
(About shape)
In FIG. 1, the first plate-shaped portion 1 and the second plate-shaped portion 2 are each drawn in a rectangular shape, but the shapes of the first plate-shaped portion 1 and the second plate-shaped portion 2 are , but not limited to rectangular shapes only. Each of the first plate-like portion 1 and the second plate-like portion 2 may have a flat region that is wide enough to be observed with an electron microscope.
 第一の板状部1と第二の板状部2は、図2に示されるように、一方の板状部の端部ではない部分と、他方の板状部の端部とでつながっていてもよい。しかし、好ましくは、第一の板状部1と第二の板状部2は、各々の端部でつながっている。第一の板状部1と第二の板状部2が各々の端部でつながっていることにより、前述の「入射した青色光が、発光につながらず単に反射してしまうこと」が一層抑えられ、発光特性の一層の向上につながると考えられる。 As shown in FIG. 2, the first plate-shaped portion 1 and the second plate-shaped portion 2 are connected at a non-end portion of one plate-shaped portion and an end portion of the other plate-shaped portion. may Preferably, however, the first plate-like part 1 and the second plate-like part 2 are connected at each end. Since the first plate-shaped portion 1 and the second plate-shaped portion 2 are connected at their respective ends, it is possible to further suppress the above-mentioned "the incident blue light is simply reflected without being emitted". It is believed that this leads to further improvement in light emission characteristics.
 第一の板状部1と第二の板状部2とがなす角度θは、好ましくは鋭角であり、より好ましくは20°以上50°以下、さらに好ましくは30°以上45°以下である。角度θが鋭角であることにより、鋭角部分に青色光が入り込み、そして、前述の「入射した青色光が、発光につながらず単に反射してしまうこと」が一層抑えられて、発光特性の一層の向上につながると考えられる。
 念のため述べておくと、図2のように、第一の板状部1と第二の板状部2とが、一方の板状部の端部ではない部分と、他方の板状部の端部とでつながっている場合であって、第一の板状部1と第二の板状部2との位置関係が非直角である場合、第一の板状部1と第二の板状部2とがなす角度は「鋭角」であるとする。
The angle θ formed by the first plate-like portion 1 and the second plate-like portion 2 is preferably an acute angle, more preferably 20° or more and 50° or less, still more preferably 30° or more and 45° or less. Since the angle θ is an acute angle, the blue light enters the acute-angled portion, and the above-mentioned "the incident blue light is simply reflected without being emitted" is further suppressed, and the light emission characteristics are further improved. It is thought that it will lead to improvement.
Just to be sure, as shown in FIG. 2, the first plate-shaped portion 1 and the second plate-shaped portion 2 are formed by a portion that is not an end portion of one plate-shaped portion and a portion that is not an end portion of the other plate-shaped portion. When the positional relationship between the first plate-shaped portion 1 and the second plate-shaped portion 2 is non-perpendicular, when the first plate-shaped portion 1 and the second plate-shaped portion 2 It is assumed that the angle formed by the plate-like portion 2 is an "acute angle".
 第一の板状部1および第二の板状部2の厚みは、それぞれ、例えば20μm以下、好ましくは0.5μm以上20μm以下、より好ましくは1μm以上20μm以下、さらに好ましくは1μm以上5μm以下である。厚みが大きすぎないことにより、蛍光体粒子の質量あたりの発光効率が高まる、つまり、蛍光体粒子の発光効率が高まると考えられる。 The thickness of each of the first plate-shaped portion 1 and the second plate-shaped portion 2 is, for example, 20 μm or less, preferably 0.5 μm or more and 20 μm or less, more preferably 1 μm or more and 20 μm or less, still more preferably 1 μm or more and 5 μm or less. be. When the thickness is not too large, it is believed that the luminous efficiency per mass of the phosphor particles increases, that is, the luminous efficiency of the phosphor particles increases.
 本実施形態の蛍光体粒子を電子顕微鏡で撮影した画像から求められる長径は、好ましくは1μm以上150μm以下、より好ましくは5μm以上50μm以下である。この長径が適当な大きさであることにより、より良好な発光特性を得ることができる。
 蛍光体粒子を電子顕微鏡で撮影した画像は、2次元画像であり、撮影された蛍光体粒子の方向により長径はバラつく。しかし、このバラつきを鑑みても、長径が上記数値範囲程度に収まっていれば、より良好な発光特性を得ることができる。換言すると、上記の1μm以上150μm以下という数値範囲は、蛍光体粒子の撮影される方向により異なる長径のバラつきも考慮した数値範囲である。
The length of the phosphor particles of the present embodiment obtained from an electron microscope image is preferably 1 μm or more and 150 μm or less, more preferably 5 μm or more and 50 μm or less. By setting the major axis to an appropriate size, better light emission characteristics can be obtained.
An image of a phosphor particle photographed with an electron microscope is a two-dimensional image, and the major diameter varies depending on the direction of the photographed phosphor particle. However, even if this variation is taken into account, better light emission characteristics can be obtained as long as the major axis is within the above numerical range. In other words, the numerical range of 1 μm or more and 150 μm or less is a numerical range that takes into account variations in the length of the phosphor particles, which differ depending on the direction in which the phosphor particles are photographed.
(組成:一般式(1)について)
 元素AはKを含有する1種以上のアルカリ金属元素である。具体的にはK単体、または、KとLi、Na、Rb、Csのなかから選ばれる1種以上のアルカリ金属元素との組み合わせであることができる。化学的安定性の観点から、元素A中のKの含有割合は高いこと(例えば元素A中50モル%以上がKであること)が好ましく、元素AはK単体であることがより好ましい。
(Composition: About general formula (1))
Element A is one or more K-containing alkali metal elements. Specifically, K alone, or a combination of K and one or more alkali metal elements selected from Li, Na, Rb, and Cs can be used. From the viewpoint of chemical stability, the content of K in element A is preferably high (for example, K accounts for 50 mol % or more in element A), and element A is more preferably K alone.
 元素MはSi単体、Ge単体、または、SiとGe、Sn、Ti、ZrおよびHfからなる群から選ばれる1種以上の元素との組み合わせである。化学的安定性の観点から、元素M中のSiの含有割合は高いこと(例えば元素M中50モル%以上がSiであること)が好ましく、元素MはSi単体であることがより好ましい。 The element M is Si alone, Ge alone, or a combination of Si and one or more elements selected from the group consisting of Ge, Sn, Ti, Zr and Hf. From the viewpoint of chemical stability, the content of Si in the element M is preferably high (for example, Si accounts for 50 mol % or more in the element M), and the element M is more preferably Si alone.
<蛍光体粒子の製造方法>
 本実施形態の蛍光体粒子は、適切な素材を用い、適切な製造方法・製造条件を選択することで製造可能である。具体的な製造方法の例は後掲の実施例に記載しているが、以下では、製造方法1および2の2つの製造方法を説明する。
<Method for producing phosphor particles>
The phosphor particles of this embodiment can be manufactured by using an appropriate material and selecting an appropriate manufacturing method and manufacturing conditions. Examples of specific manufacturing methods will be described in Examples below, and two manufacturing methods, manufacturing methods 1 and 2, will be described below.
(製造方法1)
 製造方法1は、大まかには、一般式(1)で表される蛍光体粒子を構成する成分が溶解した溶液を、大量の水に投入することで、一気に過飽和状態を作り出し、析出させるというものである。過飽和状態に基づく急激な析出により、上述したような2つの板状部を含む蛍光体粒子が得られると考えられる。
 以下、製造方法1を、溶解工程と析出工程に分けて説明する。
(Manufacturing method 1)
Roughly speaking, the production method 1 is a method in which a solution in which the components constituting the phosphor particles represented by the general formula (1) are dissolved is put into a large amount of water, thereby creating a supersaturated state at once and causing precipitation. is. It is believed that the sudden precipitation based on the supersaturation state results in phosphor particles containing two plate-like portions as described above.
Hereinafter, the manufacturing method 1 will be described separately for the dissolution process and the precipitation process.
・溶解工程
 まず、フッ化水素酸(HFの水溶液)に、(i)元素A(Kなど)を含む原料、(ii)元素M(好ましくはSi)を含む原料、(iii)Fを含む原料、(iv)Mnを含む原料などを溶解させる。一つの原料が、(i)~(iii)のうち2以上を兼ねてもよい。例えば、実施例で使用のKSiFは、(i)~(iii)を兼ねる。
 原料を溶解させる前のフッ化水素酸中のフッ化水素の濃度は、好ましくは50~60質量%である。
Dissolution step First, hydrofluoric acid (aqueous solution of HF) is added to (i) a raw material containing element A (such as K), (ii) a raw material containing element M (preferably Si), and (iii) a raw material containing F. , (iv) dissolving a raw material containing Mn. One raw material may serve as two or more of (i) to (iii). For example, K 2 SiF 6 used in the examples also serves as (i) to (iii).
The concentration of hydrogen fluoride in hydrofluoric acid before dissolving the raw materials is preferably 50 to 60% by mass.
 元素Aを含む原料としては、化学的安定性から、元素Aの化合物が好ましい。例えば、元素Aの酸化物、水酸化物、フッ化物、炭酸塩を使用することができる。
 Fを含む原料は、他の元素(A、M、Mn)の原料としてのフッ化物であることができる。また、溶媒に用いられるフッ化水素酸中のフッ化水素からも、Fは供給される。
 Mnを含む原料としては、ヘキサフルオロマンガン酸塩、過マンガン酸塩、酸化物(過マンガン酸塩を除く)、フッ化物(ヘキサフルオロマンガン酸塩を除く)、塩化物、硫酸塩、硝酸塩が挙げられる。なかでも、フッ化物蛍光体中のSiサイトにMnを効率よく置換させることができ、良好な発光特性が得られることからフッ化物が好ましく、フッ化物の中でもヘキサフルオロマンガン酸塩が好ましい。ヘキサフルオロマンガン酸塩として、NaMnF、KMnF、RbMnFなどが挙げられる。特にKMnFは、Mn以外にもフッ化物蛍光体を構成するFやK(元素Aに該当)を同時に含むため好ましい。
As the raw material containing the element A, a compound of the element A is preferable from the viewpoint of chemical stability. For example, oxides, hydroxides, fluorides and carbonates of element A can be used.
The raw material containing F can be a fluoride as a raw material for other elements (A, M, Mn). F is also supplied from hydrogen fluoride in hydrofluoric acid used as a solvent.
Raw materials containing Mn include hexafluoromanganates, permanganates, oxides (excluding permanganates), fluorides (excluding hexafluoromanganates), chlorides, sulfates, and nitrates. be done. Among these, fluorides are preferred because Mn can be efficiently substituted for the Si site in the fluoride phosphor and good light emission characteristics can be obtained, and among fluorides, hexafluoromanganate is preferred. Hexafluoromanganates include Na 2 MnF 6 , K 2 MnF 6 , Rb 2 MnF 6 and the like. In particular, K 2 MnF 6 is preferable because it simultaneously contains F and K (corresponding to element A) constituting the fluoride phosphor in addition to Mn.
 特に好ましい原料(フッ化水素酸中のフッ化水素酸以外)としては、KSiFおよびKMnFが挙げられる。 Particularly preferred sources (other than hydrofluoric acid in hydrofluoric acid ) include K2SiF6 and K2MnF6 .
・析出工程
 溶解工程で作製した溶液を、大量の水に投入する。これにより、系が急激に過飽和な状態となり、一般式(1)で表される組成の蛍光体粒子が析出する。このとき、投入速度を適切に制御することが好ましい。投入速度が不適切な場合、所望の形状の粒子が得られない場合がある。
 系のスケールにもよるが、例えば溶解工程において溶液を作製するために1LのHF水溶液を用いた場合、その溶液を、1Lから2L程度のイオン交換水に、100mL/s程度の速度で投入することが好ましい。その後、攪拌を1~10分程度継続することが好ましい。
・Precipitation process The solution prepared in the dissolution process is poured into a large amount of water. As a result, the system suddenly becomes supersaturated, and the phosphor particles having the composition represented by the general formula (1) are precipitated. At this time, it is preferable to appropriately control the charging speed. If the charging speed is inappropriate, particles of desired shape may not be obtained.
Depending on the scale of the system, for example, when 1 L of HF aqueous solution is used to prepare a solution in the dissolution step, the solution is added to about 1 L to 2 L of ion-exchanged water at a rate of about 100 mL/s. is preferred. After that, it is preferable to continue stirring for about 1 to 10 minutes.
(製造方法2)
 製造方法2は、主に、溶解工程と、Mn源投入工程と、析出工程とを含む。以下、これら工程について説明する。これら工程は、室温下で行うことができる。
(Manufacturing method 2)
Manufacturing method 2 mainly includes a dissolution step, a Mn source input step, and a precipitation step. These steps will be described below. These steps can be performed at room temperature.
・溶解工程
 溶解工程においては、通常、フッ化水素酸(HFの水溶液)に、(i)元素A(Kなど)を含む原料、(ii)元素M(好ましくはSi)を含む原料、(iii)Fを含む原料などを溶解させる。一つの原料が、(i)~(iii)のうち2以上を兼ねてもよい。例えば、実施例で使用のKSiFは、(i)~(iii)の原料全てを兼ねる。
 原料を溶解させる前のフッ化水素酸中のフッ化水素の濃度は、好ましくは50~60質量%である。
Dissolution step In the dissolution step, hydrofluoric acid (aqueous solution of HF) is usually added to (i) a raw material containing element A (such as K), (ii) a raw material containing element M (preferably Si), (iii) ) Dissolve the raw material containing F. One raw material may serve as two or more of (i) to (iii). For example, K 2 SiF 6 used in the examples serves as all of the raw materials (i) to (iii).
The concentration of hydrogen fluoride in hydrofluoric acid before dissolving the raw materials is preferably 50 to 60% by mass.
 元素Aを含む原料としては、化学的安定性から、元素Aの化合物が好ましい。例えば、元素Aの酸化物、水酸化物、フッ化物、炭酸塩を使用することができる。
 Fを含む原料は、他の元素(A、M、Mn)の原料としてのフッ化物であることができる。また、溶媒に用いられるフッ化水素酸中のフッ化水素からも、Fは供給される。
As the raw material containing the element A, a compound of the element A is preferable from the viewpoint of chemical stability. For example, oxides, hydroxides, fluorides and carbonates of element A can be used.
The raw material containing F can be a fluoride as a raw material for other elements (A, M, Mn). F is also supplied from hydrogen fluoride in hydrofluoric acid used as a solvent.
 溶解工程で用いられる特に好ましい原料(フッ化水素酸中のフッ化水素酸以外)としては、KSiFが挙げられる。 A particularly preferred raw material (other than hydrofluoric acid in hydrofluoric acid) used in the dissolution step is K 2 SiF 6 .
・Mn源投入工程
 Mn源投入工程においては、溶解工程で得られた溶液に、Mnを含む原料を投入して、後述の析出工程で水を系中に投入するまでの間、例えば1秒~2分程度攪拌する。
Mn source input step In the Mn source input step, the raw material containing Mn is added to the solution obtained in the dissolution step, and water is added to the system in the precipitation step described later. Stir for about 2 minutes.
 Mnを含む原料としては、ヘキサフルオロマンガン酸塩、過マンガン酸塩、酸化物(過マンガン酸塩を除く)、フッ化物(ヘキサフルオロマンガン酸塩を除く)、塩化物、硫酸塩、硝酸塩が挙げられる。なかでも、フッ化物蛍光体中のSiサイトにMnを効率よく置換させることができ、良好な発光特性が得られることからフッ化物が好ましく、フッ化物の中でもヘキサフルオロマンガン酸塩が好ましい。ヘキサフルオロマンガン酸塩として、NaMnF、KMnF、RbMnFなど挙げられる。特にKMnFは、Mn以外にもフッ化物蛍光体を構成するFやK(元素Aに該当)を同時に含むため好ましい。 Raw materials containing Mn include hexafluoromanganates, permanganates, oxides (excluding permanganates), fluorides (excluding hexafluoromanganates), chlorides, sulfates, and nitrates. be done. Among these, fluorides are preferred because Mn can be efficiently substituted for the Si site in the fluoride phosphor and good light emission characteristics can be obtained, and among fluorides, hexafluoromanganate is preferred. Hexafluoromanganates include Na 2 MnF 6 , K 2 MnF 6 , Rb 2 MnF 6 and the like. In particular, K 2 MnF 6 is preferable because it simultaneously contains F and K (corresponding to element A) constituting the fluoride phosphor in addition to Mn.
・析出工程
 析出工程においては、適量の水を、可能な限り素早く系中に投入する。これにより、系が急激に過飽和な状態となり、一般式(1)で表される組成の蛍光体粒子が析出する。ここでの「可能な限り素早く」とは、系のスケールにもよるが、例えば溶解工程において1から2Lのフッ化水素酸を用いた場合、水については、好ましくは1Lを3秒程度で系中に投入することを言う。
 このような、系を急激に過飽和な状態とする操作により、おそらくは、結晶の成長が異方的となると推測される。その結果、2枚の板状の蛍光体がつながった形状の蛍光体粒子が得られると推測される。
- Precipitation step In the precipitation step, an appropriate amount of water is put into the system as quickly as possible. As a result, the system suddenly becomes supersaturated, and the phosphor particles having the composition represented by the general formula (1) are precipitated. Here, "as quickly as possible" depends on the scale of the system, but for example, when 1 to 2 L of hydrofluoric acid is used in the dissolution step, with respect to water, preferably 1 L of water is added to the system in about 3 seconds. Say put it inside.
It is presumed that the crystal growth becomes anisotropic due to such an operation that abruptly brings the system into a supersaturated state. As a result, it is presumed that phosphor particles having a shape in which two plate-like phosphors are connected are obtained.
(製造方法1および2の共通事項)
 製造方法1または2で得られた蛍光体粒子は、ろ過などにより固液分離して回収し、メタノール、エタノール、アセトンなどの有機溶剤で洗浄する。フッ化物系の蛍光体を水で洗浄してしまうと、その一部が加水分解して茶色のマンガン化合物が生成し、蛍光体の特性を低下させることがある。このため、洗浄工程では有機溶剤を用いることが好ましい。
 また、有機溶剤での洗浄前に、フッ化水素酸反応液で数回洗浄を行うと、微量生成していた不純物を溶解除去することができる。洗浄に用いるフッ化水素酸反応液におけるフッ化水素酸の濃度は、フッ化物蛍光体の分解抑制の観点から、5質量%以上が好ましく、蛍光体の溶解性の観点から60質量%以下が好ましい。洗浄工程後には、乾燥により洗浄液を十分に蒸発させることが好ましい。
 また、所定の目開きの篩を用いて分級したり、粗大粒子を取り除いたりしてもよい。
(Matters common to manufacturing methods 1 and 2)
The phosphor particles obtained by production method 1 or 2 are collected by solid-liquid separation by filtration or the like, and washed with an organic solvent such as methanol, ethanol, or acetone. If the fluoride-based phosphor is washed with water, part of it is hydrolyzed to produce a brown manganese compound, which may degrade the properties of the phosphor. Therefore, it is preferable to use an organic solvent in the cleaning step.
Further, by washing several times with a hydrofluoric acid reaction solution before washing with an organic solvent, impurities generated in trace amounts can be dissolved and removed. The concentration of hydrofluoric acid in the hydrofluoric acid reaction solution used for washing is preferably 5% by mass or more from the viewpoint of suppressing decomposition of the fluoride phosphor, and preferably 60% by mass or less from the viewpoint of the solubility of the phosphor. . After the washing step, it is preferable to sufficiently evaporate the washing liquid by drying.
Alternatively, a sieve with a predetermined mesh size may be used for classification, or coarse particles may be removed.
<複合体、発光装置>
 本実施形態の複合体は、上述の蛍光体粒子と、その蛍光体粒子を封止する封止材と、を備える。
 また、本実施形態の発光装置は、励起光を発する発光素子と、その励起光の波長を変換する上記複合体と、を備える。
 本実施形態の発光装置は、例えば、ディスプレイのバックライトとして好ましく用いられる。
<Composite, light-emitting device>
The composite of this embodiment includes the phosphor particles described above and a sealing material that seals the phosphor particles.
Further, the light-emitting device of the present embodiment includes a light-emitting element that emits excitation light and the composite that converts the wavelength of the excitation light.
The light-emitting device of this embodiment is preferably used, for example, as a backlight for a display.
 以下、図3を参照しつつ、複合体および発光装置の一例を説明する。 An example of a composite and a light-emitting device will be described below with reference to FIG.
 図3は、発光装置100の模式図である。
 発光装置100は、複合体10と、発光素子20とを備える。複合体10は、発光素子20の上部に接して設けられている。
 発光素子20は、典型的には青色LEDである。発光素子20の下部には端子が存在する。端子が電源と接続されることで、発光素子20は発光することができる。
 発光素子20から発せられた励起光は、複合体10により波長変換される。励起光が青色光である場合、青色光は、蛍光体粒子を含む複合体10により、赤色光に波長変換される。
FIG. 3 is a schematic diagram of the light emitting device 100. As shown in FIG.
A light-emitting device 100 includes a composite 10 and a light-emitting element 20 . The composite 10 is provided in contact with the top of the light emitting element 20 .
Light emitting element 20 is typically a blue LED. A terminal exists below the light emitting element 20 . The light emitting element 20 can emit light by connecting the terminals to the power supply.
The excitation light emitted from the light emitting element 20 is wavelength-converted by the composite 10 . When the excitation light is blue light, the blue light is wavelength-converted into red light by the composite 10 containing phosphor particles.
 複合体10は、上述の蛍光体粒子と、その蛍光体粉末を封止する封止材とにより構成することができる。複合体10は、上述の蛍光体粒子に該当しない蛍光体粒子をさらに含んでもよい。
 封止材としては、例えば、各種の硬化性樹脂材料(熱および/または光により硬化する材料)を用いることができる。十分に透明であり、ディスプレイや照明装置に必要な光学特性を得られるものである限り、任意の硬化性樹脂材料を用いることができる。
 封止材としては、例えばシリコーン樹脂材料を挙げることができる。シリコーン樹脂材料については、東レ・ダウコーニング社や信越化学社などから、硬化性のものが供給されている、シリコーン樹脂材料は、透明性が高いことに加え、耐熱性に優れることなどの観点でも好ましい。また、封止材としては、エポキシ樹脂材料やウレタン樹脂材料なども挙げることができる。
 複合体10中における蛍光体粒子(上述の蛍光体粒子と、上述の蛍光体粒子に該当しない蛍光体粒子に)の量は、例えば10~70質量%、好ましくは25~55質量%である。
The composite 10 can be composed of the phosphor particles described above and a sealing material that seals the phosphor powder. The composite 10 may further include phosphor particles that do not correspond to the phosphor particles described above.
As the sealing material, for example, various curable resin materials (materials that are cured by heat and/or light) can be used. Any curable resin material can be used as long as it is sufficiently transparent and provides the optical properties required for displays and lighting devices.
Examples of sealing materials include silicone resin materials. Curable silicone resin materials are supplied by Dow Corning Toray Co., Ltd. and Shin-Etsu Chemical Co., Ltd. Silicone resin materials are highly transparent and have excellent heat resistance. preferable. Further, as the sealing material, an epoxy resin material, a urethane resin material, or the like can be used.
The amount of the phosphor particles (the phosphor particles described above and the phosphor particles not corresponding to the above phosphor particles) in the composite 10 is, for example, 10 to 70% by mass, preferably 25 to 55% by mass.
 発光素子20の大きさや形は特に限定されない。発光装置100の用途により、発光素子20は、任意の大きさや形であることができる。 The size and shape of the light emitting element 20 are not particularly limited. Depending on the application of the light emitting device 100, the light emitting element 20 can be of any size and shape.
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することができる。また、本発明は上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。 Although the embodiments of the present invention have been described above, these are examples of the present invention, and various configurations other than those described above can be adopted. Moreover, the present invention is not limited to the above-described embodiments, and includes modifications, improvements, etc. within the scope of achieving the object of the present invention.
 本発明の実施態様を、実施例および比較例に基づき詳細に説明する。念のため述べておくと、本発明は実施例のみに限定されない。 Embodiments of the present invention will be described in detail based on examples and comparative examples. It should be noted that the invention is not limited to the examples only.
<原料> 
 原料としては以下を用いた。
 HF:ステラケミファ株式会社製の濃度55質量%の水溶液
 KSiF:森田化学株式会社製のもの
 KMnF:特開2019-001897号公報の段落0042に記載の方法で準備したもの
<raw materials>
The following materials were used.
HF: 55% by mass aqueous solution manufactured by Stella Chemifa Co., Ltd. K 2 SiF 6 : manufactured by Morita Chemical Co., Ltd. K 2 MnF 6 : prepared by the method described in paragraph 0042 of JP-A-2019-001897.
<蛍光体粒子の製造>
(実施例1)
 以下手順で蛍光体粒子を製造した。
(1)室温下で、テフロン(登録商標)製ビーカーに入れた濃度55質量%のHF水溶液1000mLに、KSiF 50gと、KMnF 6gとを同時に投入し、40秒間攪拌した。
(2)上記(1)で得た液体を、テフロン(登録商標)製ビーカーに入れたイオン交換水1500mLに、速度100mL/sで投入した。全量投入後、5分間攪拌した。
<Production of Phosphor Particles>
(Example 1)
Phosphor particles were produced in the following procedure.
(1) At room temperature, 50 g of K 2 SiF 6 and 6 g of K 2 MnF 6 were simultaneously added to 1000 mL of an HF aqueous solution having a concentration of 55% by mass in a Teflon (registered trademark) beaker and stirred for 40 seconds.
(2) The liquid obtained in (1) above was put into 1500 mL of deionized water in a Teflon (registered trademark) beaker at a rate of 100 mL/s. After adding the entire amount, the mixture was stirred for 5 minutes.
 攪拌終了後、溶液を静置して黄色の固形分を沈殿させた。沈殿確認後、上澄み液を除去し、黄色の固形分を、濃度24質量%のフッ化水素酸で洗浄し、その後、メタノールを用いて洗浄した。洗浄した固形分を濾過して固形分を分離回収し、更に乾燥処理により、残存メタノールを蒸発除去した。乾燥処理後、目開き75μmのナイロン製篩を用い、この篩を通過した黄色粉末だけを分級して回収した。
 以上により、蛍光体粉末を得た。
After stirring was completed, the solution was allowed to stand to precipitate a yellow solid. After confirming the precipitation, the supernatant was removed, and the yellow solid content was washed with hydrofluoric acid having a concentration of 24% by mass, and then washed with methanol. The washed solid content was filtered to separate and recover the solid content, followed by drying to evaporate and remove residual methanol. After the drying treatment, using a nylon sieve with an opening of 75 μm, only the yellow powder that passed through this sieve was classified and collected.
As described above, a phosphor powder was obtained.
 電子顕微鏡での観察により、得られた蛍光体粉末中には、図4に示すような、第一の板状部と、第一の板状部と少なくとも一部でつながっている第二の板状部とを含み、第一の板状部と第二の板状部とは平行ではない蛍光体粒子が含まれていることを確認した。
 図4の蛍光体粒子において、第一の板状部と第二の板状部とがなす角度は、およそ45°であった。
 また、図4の蛍光体粒子において、第一の板状部および第二の板状部の厚みは、およそ1μmであった。
 また、図4から求められる蛍光体粒子の長径は、およそ30μmであった。
 また、図4から、第一の板状部と第二の板状部は、各々の端部でつながっていると判断された。
Observation with an electron microscope revealed that, as shown in FIG. It was confirmed that the first plate-shaped portion and the second plate-shaped portion contained phosphor particles that were not parallel to each other.
In the phosphor particles of FIG. 4, the angle formed by the first plate-like portion and the second plate-like portion was approximately 45°.
In addition, in the phosphor particles of FIG. 4, the thickness of the first plate-like portion and the second plate-like portion was approximately 1 μm.
Moreover, the long diameter of the phosphor particles obtained from FIG. 4 was about 30 μm.
Also, from FIG. 4, it was determined that the first plate-like portion and the second plate-like portion were connected at their respective ends.
(実施例2)
 以下手順で蛍光体粒子を製造した。
(1)室温下で、テフロン(登録商標)製ビーカーに入れた濃度55質量%のHF水溶液1500mLに、KSiF 75gを投入し、10分間攪拌した。これにより均一な溶液を得た。
(2)上記(1)で得た溶液に、KMnF 9gを投入し、1分間攪拌した。
(3)上記(2)の後、ビーカーに、イオン交換水1000mLを、333mL/sの速さで投入した。これにより黄色の固形分の析出が開始した。その後、5分間攪拌を継続した。
(Example 2)
Phosphor particles were produced in the following procedure.
(1) At room temperature, 75 g of K 2 SiF 6 was added to 1500 mL of an HF aqueous solution having a concentration of 55% by mass in a Teflon (registered trademark) beaker and stirred for 10 minutes. This gave a homogeneous solution.
(2) 9 g of K 2 MnF 6 was added to the solution obtained in (1) above and stirred for 1 minute.
(3) After the above (2), 1000 mL of ion-exchanged water was put into the beaker at a speed of 333 mL/s. This started the precipitation of a yellow solid. Stirring was then continued for 5 minutes.
 その後、沈殿の回収や洗浄などを、実施例1と同様に行った。そして、蛍光体粉末を得た。 After that, the collection of precipitates, washing, etc. were performed in the same manner as in Example 1. Then, phosphor powder was obtained.
 電子顕微鏡での観察により、得られた蛍光体粉末中には、図5に示すような、第一の板状部と、第一の板状部と少なくとも一部でつながっている第二の板状部とを含み、第一の板状部と第二の板状部とは平行ではない蛍光体粒子が含まれていることを確認した。
 図5の蛍光体粒子において、第一の板状部と第二の板状部とがなす角度は、およそ30°であった。
 また、図5の蛍光体粒子において、第一の板状部および第二の板状部の厚みは、およそ5μmであった。
 また、図5から求められる蛍光体粒子の長径は、およそ100μmであった。
 また、図5から、第一の板状部と第二の板状部は、各々の端部でつながっていると判断された。
Observation with an electron microscope revealed that the obtained phosphor powder contained a first plate-like portion and a second plate-like portion connected at least partially to the first plate-like portion, as shown in FIG. It was confirmed that the first plate-shaped portion and the second plate-shaped portion contained phosphor particles that were not parallel to each other.
In the phosphor particles of FIG. 5, the angle formed by the first plate-like portion and the second plate-like portion was approximately 30°.
In addition, in the phosphor particles of FIG. 5, the thickness of the first plate-like portion and the second plate-like portion was approximately 5 μm.
Moreover, the long diameter of the phosphor particles obtained from FIG. 5 was about 100 μm.
Also, from FIG. 5, it was determined that the first plate-like portion and the second plate-like portion were connected at their respective ends.
(比較例1)
 特許文献2(国際公開第2009/119486号)の記載を参考に、以下手順で蛍光体粒子を得た。以下手順は、室温で行った。
(1)まず、HF水溶液(46-48%):100mL、KMnO:6g、および、HO:100mLを混合して溶液を得た。
(2)上記溶液に、n型ダミーウェハから切り出した厚み0.635mmのSiウェハ0.38gを入れ、48時間静置した。
(3)静置後の溶液の上澄みを除去し、残った固形物(析出した結晶および溶け残ったSiウェハ)をメタノールで洗浄した。そして、溶け残ったSiウェハは手作業で取り除いた。
 以上により、蛍光体粉末を得た。
(Comparative example 1)
Phosphor particles were obtained in the following procedure with reference to the description in Patent Document 2 (International Publication No. 2009/119486). The following procedures were performed at room temperature.
(1) First, HF aqueous solution (46-48%): 100 mL, KMnO 4 : 6 g, and H 2 O: 100 mL were mixed to obtain a solution.
(2) 0.38 g of a Si wafer having a thickness of 0.635 mm cut from an n-type dummy wafer was added to the above solution and allowed to stand for 48 hours.
(3) The supernatant of the solution after standing was removed, and the remaining solids (precipitated crystals and undissolved Si wafer) were washed with methanol. Then, the undissolved Si wafer was removed manually.
As described above, a phosphor powder was obtained.
 図6に得られた蛍光体粒子の電子顕微鏡画像を示す。比較例1において、2つの板状部がつながっている蛍光体粒子を製造することはできなかった。 An electron microscope image of the obtained phosphor particles is shown in FIG. In Comparative Example 1, it was not possible to produce phosphor particles in which two plate-like portions were connected.
<同定:結晶相測定、組成測定など>
 各実施例で得られた蛍光体粒子を含む蛍光体粉末について、X線回折装置を用いて、X線回折パターンを得た。得られたX線回折パターンは、KSiF結晶と同一パターンであった。このことから、KSiF:Mnが単相で得られたことを確認した。
<Identification: crystal phase measurement, composition measurement, etc.>
Using an X-ray diffractometer, an X-ray diffraction pattern was obtained for the phosphor powder containing phosphor particles obtained in each example. The obtained X-ray diffraction pattern was the same pattern as the K 2 SiF 6 crystal. From this, it was confirmed that K 2 SiF 6 :Mn was obtained in a single phase.
<発光特性評価(量子効率など)>
 積分球(φ60mm)の側面開口部(φ10mm)に、反射率が99%の標準反射板(Labsphere社製、商品名スペクトラロン)をセットした。この積分球に、発光光源(Xeランプ)から455nmの波長に分光した単色光を光ファイバーにより導入し、反射光のスペクトルを分光光度計(大塚電子社製、商品名MCPD-7000)により測定した。この際、450~465nmの波長範囲のスペクトルから励起光フォトン数(Qex)を算出した。
 次に、凹型のセルに表面が平滑になるように、各実施例で得られた蛍光体粉末を充填したものを積分球の開口部にセットし、波長455nmの単色光を照射し、励起の反射光および蛍光のスペクトルを分光光度計により測定した。得られたスペクトルデータから励起反射光フォトン数(Qref)および蛍光フォトン数(Qem)を算出した。励起反射光フォトン数は、励起光フォトン数と同じ波長範囲で、蛍光フォトン数は、465~800nmの範囲で算出した。得られた三種類のフォトン数から、波長455nmの吸収率(=(Qex-Qref)/Qex×100)、内部量子効率(=Qem/(Qex-Qref)×100)および外部量子効率(=Qem/Qex×100)を求めた。
<Evaluation of emission characteristics (quantum efficiency, etc.)>
A standard reflector plate (manufactured by Labsphere, trade name Spectralon) having a reflectance of 99% was set in a side opening (φ10 mm) of an integrating sphere (φ60 mm). A monochromatic light with a wavelength of 455 nm from a light emission source (Xe lamp) was introduced into this integrating sphere through an optical fiber, and the spectrum of the reflected light was measured with a spectrophotometer (manufactured by Otsuka Electronics Co., Ltd., trade name MCPD-7000). At this time, the number of excitation light photons (Qex) was calculated from the spectrum in the wavelength range of 450 to 465 nm.
Next, a concave cell filled with the phosphor powder obtained in each example was set in the opening of an integrating sphere so as to have a smooth surface, and was irradiated with monochromatic light having a wavelength of 455 nm to cause excitation. Spectra of reflected light and fluorescence were measured with a spectrophotometer. The number of excited reflected light photons (Qref) and the number of fluorescence photons (Qem) were calculated from the obtained spectral data. The number of reflected excitation light photons was calculated in the same wavelength range as the number of excitation light photons, and the number of fluorescence photons was calculated in the range of 465 to 800 nm. From the obtained three types of photon numbers, absorptivity at a wavelength of 455 nm (= (Qex-Qref) / Qex × 100), internal quantum efficiency (= Qem / (Qex-Qref) × 100) and external quantum efficiency (= Qem /Qex×100) was obtained.
 上記の結果をまとめて表に示す。 The above results are summarized in the table.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1および2の評価結果は良好であった。 The evaluation results of Examples 1 and 2 were good.
 この出願は、2021年3月26日に出願された日本出願特願2021-052751号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2021-052751 filed on March 26, 2021, and the entire disclosure thereof is incorporated herein.
1 第一の板状部
2 第二の板状部
10 複合体
20 発光素子
100 発光装置
1 first plate-like portion 2 second plate-like portion 10 composite 20 light-emitting element 100 light-emitting device

Claims (7)

  1.  組成が以下一般式(1)で表される蛍光体粒子であって、
     第一の板状部と、前記第一の板状部と少なくとも一部でつながっている第二の板状部とを含み、前記第一の板状部と前記第二の板状部とは平行ではない、蛍光体粒子。
       一般式(1):AMF:Mn
     一般式(1)において、
     元素AはKを含有する1種以上のアルカリ金属元素であり、
     元素MはSi単体、Ge単体、または、SiとGe、Sn、Ti、ZrおよびHfからなる群から選ばれる1種以上の元素との組み合わせである。
    Phosphor particles whose composition is represented by the following general formula (1),
    including a first plate-shaped portion and a second plate-shaped portion at least partially connected to the first plate-shaped portion, wherein the first plate-shaped portion and the second plate-shaped portion are Not parallel, phosphor particles.
    General formula ( 1 ): A2MF6 :Mn
    In general formula (1),
    Element A is one or more alkali metal elements containing K,
    The element M is Si alone, Ge alone, or a combination of Si and one or more elements selected from the group consisting of Ge, Sn, Ti, Zr and Hf.
  2.  請求項1に記載の蛍光体粒子であって、
     前記第一の板状部と前記第二の板状部とがなす角度が鋭角である、蛍光体粒子。
    The phosphor particle according to claim 1,
    The phosphor particle, wherein the angle formed by the first plate-shaped portion and the second plate-shaped portion is an acute angle.
  3.  請求項1または2に記載の蛍光体粒子であって、
     前記第一の板状部および/または第二の板状部の厚みが20μm以下である、蛍光体粒子。
    The phosphor particles according to claim 1 or 2,
    The phosphor particles, wherein the thickness of the first plate-like portion and/or the second plate-like portion is 20 μm or less.
  4.  請求項1~3のいずれか1項に記載の蛍光体粒子であって、
     当該蛍光体粒子を電子顕微鏡で撮影した画像から求められる長径が1μm以上150μm以下である、蛍光体粒子。
    The phosphor particles according to any one of claims 1 to 3,
    Phosphor particles having a major axis of 1 μm or more and 150 μm or less as determined from an electron microscope image of the phosphor particles.
  5.  請求項1~4のいずれか1項に記載の蛍光体粒子であって、
     前記第一の板状部と前記第二の板状部とは各々の端部でつながっている、蛍光体粒子。
    The phosphor particles according to any one of claims 1 to 4,
    The phosphor particles, wherein the first plate-like portion and the second plate-like portion are connected at respective ends.
  6.  請求項1~6のいずれか1項に記載の蛍光体粒子と、前記蛍光体粒子を封止する封止材と、を備える複合体。 A composite comprising the phosphor particles according to any one of claims 1 to 6 and a sealing material that seals the phosphor particles.
  7.  励起光を発する発光素子と、前記励起光の波長を変換する請求項6に記載の複合体と、を備える発光装置。 A light-emitting device comprising a light-emitting element that emits excitation light and the complex according to claim 6 that converts the wavelength of the excitation light.
PCT/JP2022/012722 2021-03-26 2022-03-18 Fluorescent body particle, complex, and light emission device WO2022202687A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023509137A JPWO2022202687A1 (en) 2021-03-26 2022-03-18

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-052751 2021-03-26
JP2021052751 2021-03-26

Publications (1)

Publication Number Publication Date
WO2022202687A1 true WO2022202687A1 (en) 2022-09-29

Family

ID=83397209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012722 WO2022202687A1 (en) 2021-03-26 2022-03-18 Fluorescent body particle, complex, and light emission device

Country Status (3)

Country Link
JP (1) JPWO2022202687A1 (en)
TW (1) TW202305092A (en)
WO (1) WO2022202687A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119486A1 (en) * 2008-03-25 2009-10-01 国立大学法人群馬大学 Fluorescent material, process for producing the same, and white-light-emitting diode employing the fluorescent material
WO2016133110A1 (en) * 2015-02-18 2016-08-25 デンカ株式会社 Process for producing fluorescent material
JP2018178129A (en) * 2008-09-05 2018-11-15 三菱ケミカル株式会社 Fluophor and manufacturing method therefor, fluophor-containing composition and light-emitting device using fluophor, and image display unit and luminaire using light-emitting device
WO2022044860A1 (en) * 2020-08-25 2022-03-03 デンカ株式会社 Fluoride phosphor, complex, and light-emitting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119486A1 (en) * 2008-03-25 2009-10-01 国立大学法人群馬大学 Fluorescent material, process for producing the same, and white-light-emitting diode employing the fluorescent material
JP2018178129A (en) * 2008-09-05 2018-11-15 三菱ケミカル株式会社 Fluophor and manufacturing method therefor, fluophor-containing composition and light-emitting device using fluophor, and image display unit and luminaire using light-emitting device
WO2016133110A1 (en) * 2015-02-18 2016-08-25 デンカ株式会社 Process for producing fluorescent material
WO2022044860A1 (en) * 2020-08-25 2022-03-03 デンカ株式会社 Fluoride phosphor, complex, and light-emitting device

Also Published As

Publication number Publication date
TW202305092A (en) 2023-02-01
JPWO2022202687A1 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
KR102587491B1 (en) Fluoride phosphor and light-emitting device using it
KR102624694B1 (en) Fluoride phosphor, light-emitting device, and method for producing fluoride phosphor
TWI662105B (en) Phosphor, manufacturing method thereof, and light emitting device using the same
KR102590208B1 (en) Fluoride phosphor and light-emitting device using it
WO2022044860A1 (en) Fluoride phosphor, complex, and light-emitting device
US10669476B2 (en) Potassium fluoromanganate for use as raw material of manganese-activated complex fluoride phosphor and manganese-activated complex fluoride phosphor production method using same
JP6826445B2 (en) Potassium hexafluoride and manganese-activated compound fluoride phosphor using it
WO2022202687A1 (en) Fluorescent body particle, complex, and light emission device
JP2019044017A (en) Fluoride phosphors and light emitting devices
WO2022138205A1 (en) Fluoride fluorescent body, method for producing same, and light emission apparatus
WO2022202518A1 (en) Fluorescent body powder, complex, and light-emitting device
JP2019044018A (en) Fluoride phosphors and light emitting devices
WO2022202689A1 (en) Particles of fluorescent substance, composite, and light-emitting device
JP7242368B2 (en) Manufacturing method of fluoride phosphor
JP6964524B2 (en) Fluoride phosphor and light emitting device using it
WO2021029290A1 (en) Potassium hexafluoromanganate, and method for producing manganese-activated complex fluoride fluorescent body
WO2021029289A1 (en) Potassium hexafluoromanganate, method for producing potassium hexafluoromanganate, and method for producing manganese-activated complex fluoride phosphor
JP2018100332A (en) Method for producing fluoride phosphor
JP2018012814A (en) Method for producing fluoride phosphor
CN116615513A (en) Fluoride phosphor, method for producing same, and light-emitting device
CN107429159B (en) Phosphor, light-emitting device, and method for producing phosphor
TW202334375A (en) Red fluorescent substance and production method therefor
JP2019001985A (en) Fluoride phosphor and light-emitting device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775474

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023509137

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775474

Country of ref document: EP

Kind code of ref document: A1