WO2022202685A1 - Work vehicle - Google Patents

Work vehicle Download PDF

Info

Publication number
WO2022202685A1
WO2022202685A1 PCT/JP2022/012708 JP2022012708W WO2022202685A1 WO 2022202685 A1 WO2022202685 A1 WO 2022202685A1 JP 2022012708 W JP2022012708 W JP 2022012708W WO 2022202685 A1 WO2022202685 A1 WO 2022202685A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
work
bodywork
amount
power
Prior art date
Application number
PCT/JP2022/012708
Other languages
French (fr)
Japanese (ja)
Inventor
成規 飯島
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2022202685A1 publication Critical patent/WO2022202685A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60PVEHICLES ADAPTED FOR LOAD TRANSPORTATION OR TO TRANSPORT, TO CARRY, OR TO COMPRISE SPECIAL LOADS OR OBJECTS
    • B60P3/00Vehicles adapted to transport, to carry or to comprise special loads or objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65FGATHERING OR REMOVAL OF DOMESTIC OR LIKE REFUSE
    • B65F3/00Vehicles particularly adapted for collecting refuse

Definitions

  • the present disclosure relates to a work vehicle, and more particularly to a work vehicle that drives body equipment using an electric hydraulic pump.
  • a technology has been proposed in which a vehicle is equipped with bodywork equipment such as garbage collection equipment, and hydraulic oil is supplied from an electric hydraulic pump to a hydraulic actuator via a hydraulic circuit, whereby the bodywork equipment is operated by the hydraulic actuator (for example, see Patent Document 1).
  • the electric hydraulic pump is powered by a battery.
  • An object of the present disclosure is to provide a work vehicle that avoids interruption of work in which bodywork equipment is activated.
  • a work vehicle includes an electric hydraulic pump that supplies hydraulic fluid to a hydraulic circuit, a battery that supplies electric power to the electric hydraulic pump, and a hydraulic actuator that is supplied with hydraulic fluid via the hydraulic circuit. and body equipment operated by the hydraulic actuator, the work vehicle includes a state acquisition device that acquires the state of the battery, a control device that controls the electric hydraulic pump, and the electric During the work in which the hydraulic pump is driven at a preset target rotation speed and the bodywork is operated by the hydraulic actuator, the control device detects the state of the battery acquired by the state acquisition device. When it is predicted that the work will be interrupted, control is performed to reduce the rotational speed of the electric hydraulic pump from the target rotational speed to reduce the operating speed of the mounting equipment.
  • FIG. 1A is an explanatory diagram illustrating a work vehicle of the present disclosure as viewed from the side.
  • FIG. 1B is an explanatory diagram illustrating an operation panel arranged on the work vehicle of FIG. 1A.
  • FIG. 2 is an explanatory diagram that schematically illustrates the arrangement relationship of each device in the work vehicle of FIG. 1A.
  • FIG. 3 is an explanatory diagram illustrating rotational speed data.
  • FIG. 4 is an explanatory diagram illustrating another embodiment of rotation speed data.
  • FIG. 5 is an explanatory diagram illustrating the relationship between battery temperature and discharge capability.
  • FIG. 6 is an explanatory diagram illustrating the relationship between the power consumption of devices other than the pump and the discharge capacity from the battery to the pump.
  • FIG. 1A is an explanatory diagram illustrating a work vehicle of the present disclosure as viewed from the side.
  • FIG. 1B is an explanatory diagram illustrating an operation panel arranged on the work vehicle of FIG. 1A.
  • FIG. 2 is an explanatory diagram that
  • FIG. 7 is an explanatory diagram illustrating a predetermined travel route of the work vehicle.
  • FIG. 8 is an explanatory diagram illustrating, in the form of a control flow, a prediction method based on the amount of charge.
  • FIG. 9 is an explanatory diagram illustrating a control flow executed in parallel with the control flow of FIG.
  • FIG. 10 is an explanatory diagram illustrating a prediction method based on supplied power in the form of a control flow.
  • FIG. 11 is an explanatory diagram illustrating a control flow executed in parallel with the control flow of FIG. 10;
  • FIG. 12 is an explanatory diagram illustrating past data.
  • FIG. 13 is an explanatory diagram illustrating, in the form of a control flow, a prediction method based on the number of times of actuation.
  • FIG. 14 is an explanatory diagram illustrating a control flow following the control flow of FIG. 13;
  • the work vehicle of the present disclosure will be described below based on the illustrated embodiment.
  • the "side view" in FIG. 1A means “seen from the width direction of the vehicle (vehicle width direction)".
  • a work vehicle 1 of the present disclosure illustrated in FIGS. 1A and 2 is an electric vehicle that uses a motor generator 2 as a power source for vehicle travel.
  • the motor-generator 2 is driven to rotate using electric power charged in a battery 8, which will be described later, so that the work vehicle 1 travels via wheels (not shown).
  • the motor generator 2 charges the battery 8 by regeneratively generating power through the wheels when the work vehicle 1 is running inertially or decelerated.
  • the motor generator 2 may be a motor for running that has only a running function without a regenerative power generation function.
  • the work vehicle 1 is not equipped with an engine, but may be a hybrid vehicle that uses both the engine and the motor generator 2 as power sources for vehicle travel.
  • the work vehicle 1 includes a mounting equipment 3 , a hydraulic actuator 4 , an operation panel 5 , an electric hydraulic pump (hereinafter referred to as pump) 6 having a motor 7 , and a battery 8 .
  • the work vehicle 1 further includes a charge amount sensor 9, a battery temperature sensor 10a, a power consumption sensor 10b, a navigation system (current position acquisition device) 11, and a control device 12.
  • Garbage collection equipment for collecting garbage D such as household garbage is exemplified as the mounting equipment 3 .
  • the mounting equipment 3 is configured to be operable by a hydraulic actuator 4 .
  • the mounting equipment 3 is configured to operate while the motor generator 2 is stopped.
  • the mounting equipment 3 is a well-known rotating plate type equipment and is configured to have a rotating plate 3a and a pushing plate 3b.
  • the rotating plate 3a is arranged inside a garbage loading box 3c mounted on the working vehicle 1. As shown in FIG.
  • the rotary plate 3a is rotatable with the vehicle width direction as the rotation axis direction.
  • the rotating plate 3a scrapes the garbage D thrown into the inside of the garbage loading box 3c from the garbage inlet 3d provided on the outer surface of the garbage loading box 3c toward the garbage storage box 3e connected to the garbage loading box 3c. configured to be raised.
  • the pushing plate 3b is arranged inside the garbage loading box 3c above the rotating plate 3a.
  • the pushing plate 3b is configured to be slidable in the longitudinal direction of the vehicle.
  • the pushing plate 3b is configured to be able to push the dust D raked up by the rotating plate 3a into the dust storage box 3e.
  • the rotary plate 3a and the pushing plate 3b are arranged at positions where the raking of the rotary plate 3a and the pushing of the pushing plate 3b do not interfere with each other.
  • the mounting equipment 3 may be equipment that is hydraulically driven using the hydraulic actuator 4, and may be, for example, a cleaning equipment that cleans with high-pressure water or a suction equipment that sucks sludge.
  • the hydraulic actuator 4 is connected to the mounting equipment 3 and configured to be able to supply hydraulic oil Ol through the hydraulic circuit 13 .
  • the hydraulic actuators 4 are a hydraulic motor 4a connected to the rotary plate 3a and a hydraulic cylinder 4b connected to the pushing plate 3b.
  • the hydraulic motor 4a is arranged inside the garbage loading box 3c, and is configured to rotate the rotary plate 3a by the rotation of the hydraulic motor 4a.
  • the hydraulic cylinder 4b is arranged inside the garbage loading box 3c, and is configured to be able to slide on the pushing plate 3b by sliding the hydraulic cylinder 4b.
  • the hydraulic motor 4a and the hydraulic cylinder 4b are driven by hydraulic oil Ol circulating in the hydraulic circuit 13.
  • Each of the hydraulic pressure and oil amount of the hydraulic oil Ol supplied to the hydraulic motor 4a is positive with respect to the two parameters of the rotational torque of the rotary plate 3a (the power to rake up the dust D) and the rotational speed of the rotary plate 3a.
  • the hydraulic pressure and oil amount of the hydraulic oil Ol supplied to the hydraulic cylinder 4b are positively correlated with two parameters: the torque of the pushing plate 3b (the force pushing in the dust D) and the rotation speed of the pushing plate 3b. It is in.
  • the operation panel 5 is arranged near the driver's seat of the work vehicle 1 or the mounting equipment 3 .
  • the operation panel 5 includes a power switch 5a, an operation start switch 5b, an operation stop switch 5c, and a control prohibition switch 5d, as shown in FIG. 1B.
  • the power switch 5a is for switching on/off the power of the mounting equipment 3 by the operator's operation.
  • the operation start switch 5b is for starting the operation of the mounting equipment 3 by the operator's operation.
  • the operation stop switch 5c is for stopping the operation of the mounting equipment 3 by the operator's operation.
  • the control prohibition switch 5d is a switch for manually prohibiting control for reducing the operation speed of the bodywork 3, which will be described later, by an operator's operation.
  • the operation panel 5 further includes an adjustment switch 5e.
  • the adjustment switch 5e can manually adjust the rotation speed of the pump 6 by the operator's operation.
  • the adjustment switch 5 e is configured as a plurality of switches corresponding to the magnitude of the rotation speed of the pump 6 .
  • the adjustment switch 5e is configured as a plurality of switches of "large”, “medium”, and “small” according to the magnitude of the rotation speed of the pump 6.
  • FIG. The "large” switch is operated by the operator to manually increase the rotation speed of the pump 6 to a relatively large value.
  • the "small” switch is operated by the operator to manually reduce the number of revolutions of the pump 6 to a relatively small value.
  • the "middle” switch is operated by the operator to manually set the number of revolutions of the pump 6 to a number intermediate between the number of revolutions set for "large” and the number of revolutions set for "small". It should be noted that the operation panel 5 may not be provided with the adjustment switch 5e.
  • the pump 6 is connected to the hydraulic actuator 4 via a hydraulic circuit 13 and is configured to be able to drive the hydraulic actuator 4 by supplying hydraulic oil Ol.
  • the pump 6 is an electric hydraulic pump driven by rotational power of a motor 7 driven by electric power of a battery 8 .
  • the pump 6 is a positive displacement pump, and has a characteristic that the pressure of the discharged hydraulic oil Ol is a fixed value, and the flow rate of the discharged hydraulic oil Ol is in a positive correlation with the rotation speed of the pump 6 .
  • the pressure of the hydraulic oil Ol discharged by the pump 6 when the mounting equipment 3 is operated is set to the extent that the operation of the mounting equipment 3 (rotational torque of the rotary plate 3a and pushing force of the pushing plate 3b) is not hindered. It is a configuration that becomes the pressure of
  • the pump 6 may be any positive displacement pump, such as a vane pump and a gear pump.
  • the pump 6 is configured to pump up the hydraulic oil Ol stored in the tank 14 to the hydraulic circuit 13 and supply the pumped hydraulic oil Ol to the hydraulic actuator 4 to drive the hydraulic actuator 4 .
  • the pumped hydraulic oil Ol is circulated to the respective hydraulic actuators 4 (4a, 4b) by the operation control valves 15 (15a, 15b) arranged in the hydraulic circuit 13 .
  • An excess amount of the pumped hydraulic oil Ol is directly returned to the tank 14 by a relief valve 16 arranged in the hydraulic circuit 13 .
  • the control device 12 controls the flow rate adjustment of the hydraulic oil Ol to the hydraulic motor 4a and the hydraulic cylinder 4b by adjusting the opening degree of the operation control valve 15 .
  • the opening adjustment of the relief valve 16 is controlled by the controller 12 .
  • the hydraulic circuit 13 may be provided with known devices such as an accumulator, regulator, and filter as required.
  • the hydraulic circuit 13 is indicated by a solid line
  • the electricity supply circuit is indicated by a broken line
  • the control signal is indicated by a dashed line.
  • the motor 7 is provided in the pump 6 and is configured to be able to drive the pump 6 by rotating the motor 7 .
  • the rotation of the motor 7 is interlocked with the rotation of the pump 6, and the number of rotations of the motor 7 and the number of rotations of the pump 6 are in a positive correlation.
  • the battery 8 is configured to be able to supply electricity to the motor 7 or the motor generator 2 via the inverter 17 .
  • auxiliary equipment such as an air conditioner for a vehicle is connected to the battery 8 via an inverter 17, so that electricity can be supplied to the auxiliary equipment as well.
  • the inverter 17 is configured to be able to drive the motor generator 2 and the motor 7, and converts alternating current to direct current or direct current to alternating current between the motor generator 2 and motor 7 and the battery 8.
  • the rotation speed of the motor 7 instructed by the inverter 17 is controlled by the controller 12 .
  • the inverter 17 is shared by the motor generator 2 and the motor 7 in this embodiment, the motor generator 2 and the motor 7 may each have a dedicated inverter.
  • a state acquisition device that acquires the state of the battery 8 is arranged in the work vehicle 1 .
  • a charge sensor 9, a battery temperature sensor 10a, and a power consumption sensor 10b are used as status acquisition devices.
  • the state of the battery 8 is the amount of charge S of the battery 8 and the amount of power Wp that can be supplied from the battery 8 to the pump 6 .
  • the charge amount S of the battery 8 is the ratio of the current power amount to the total power amount in the fully charged state of the battery 8 , and is acquired by the charge amount sensor 9 .
  • the amount of power Wp that can be supplied from the battery 8 to the pump 6 is a value based on the discharge capacity (also called allowable current) of the battery 8 and the amount of power Wr consumed by devices other than the pump 6 .
  • the discharge capability of battery 8 is detected from temperature T of battery 8 .
  • the amount of power Wp that can be supplied from the battery 8 to the pump 6 is the discharge capacity of the battery 8 obtained from the temperature T of the battery 8 obtained by the battery temperature sensor 10a and the power consumption Wr obtained by the power consumption sensor 10b. is calculated by the control device 12 based on
  • sensors 9, 10a, and 10b can be used as these sensors 9, 10a, and 10b. These sensors 9 , 10 a , 10 b are electrically connected to the control device 12 and the data detected by these sensors 9 , 10 a , 10 b are input to the control device 12 . Instead of these sensors 9, 10a, and 10b, a known computing device that computes the charge amount S and power consumption Wr of the battery 8 using various parameters may be used. Further, since the total power amount of the battery 8 is the specification value, the charge amount S and the current power amount of the battery 8 are mutually convertible values.
  • the navigation system 11 is installed in the work vehicle 1 and guides the travel route of the work vehicle 1 to the destination.
  • the navigation system 11 is an example of a current position acquisition device.
  • a computer is used as the control device 12.
  • the controller 12 controls various operations such as the operation of the operation control valve 15, the relief valve 16 and the inverter 17 described above, and also receives various inputs such as the charge amount S, temperature T, and power consumption Wr described above. Arithmetic processing is performed using the obtained data.
  • control device 12 predicts that the work in which the pump 6 is driven at the target rotation speed (target value of the rotation speed) Nm will be interrupted, the rotation speed of the pump 6 is lowered from the target rotation speed Nm to operate the body equipment 3. Perform control to reduce speed.
  • work means that the pump 6 is driven by the power of the battery 8, the hydraulic actuator 4 is driven by hydraulic oil Ol supplied from the driven pump 6, and the body equipment 3 is operated by the driven hydraulic actuator 4. It is done.
  • the prediction that the work will be interrupted is based on the charge amount S of the battery 8, and the amount of electric power for bodywork set for operation of the bodywork equipment 3 out of the electric energy charged in the battery 8 will be used up. It is to predict. Predicting that the work will be interrupted is predicting that the operation of the bodywork 3 will stop due to a decrease in the amount of electric power Wp that can be supplied from the battery 8 to the pump 6 . It is also possible to predict that the amount of electric power for bodywork will be used up based on the number of times the bodywork equipment 3 is operated when traveling along a known travel route.
  • the control device 12 of the present embodiment predicts that the amount of electric power for bodywork will be used up based on the amount of charge S of the battery 8 during work, and the amount of power Wp that can be supplied from the battery 8 to the pump 6 decreases. 3 will stop working.
  • the control device 12 stores rotation speed data 12a in the form of a control map.
  • the rotational speed data 12a is data used when it is predicted based on the charge amount S of the battery 8 that the electric energy for bodywork will be used up.
  • the rotational speed data 12a is data representing the correlation between the charge amount S of the battery 8 and the target rotational speed (target value of the rotational speed) Nm of the pump 6 .
  • the target rotation speed Nm is a value set through experiments, simulations, or the like, and is a value at which the operating speed of the mounting equipment 3 becomes a speed appropriate for the dust collection work of the worker (the driver of the work vehicle 1).
  • the target rotation speed Nm is set to a preset constant upper limit value Na.
  • the rotation speed data 12a may be data expressed in other forms such as mathematical expressions.
  • the lower limit charge amount Smin is a lower limit value that permits operation of the bodywork 3, and various methods are exemplified for its setting.
  • the lower limit charging amount Smin is set based on the amount of power for bodywork that is set in advance for operating the bodywork equipment 3 among the power amounts charged in the battery 8 .
  • the amount of electric power charged in the battery 8 at that point in time is obtained from the amount of charge in the battery 8 obtained at the start of the work in which the bodywork 3 is operated.
  • a value is obtained by subtracting the amount of power for mounting from the obtained amount of power.
  • the ratio of the obtained value to the total electric energy is obtained, and the obtained ratio becomes the lower limit charging amount Smin.
  • the amount of electric power for bodywork may be a preset fixed value. A value obtained by subtracting the estimated amount of power consumption to be consumed may be used.
  • the bodywork power amount is a fixed value, it is possible to obtain the amount of decrease in the charge amount of the battery 8 when the bodywork power amount is completely consumed. may be subtracted to obtain the lower limit charging amount Smin.
  • the charge amount threshold Sa is a value indicating a charge amount larger than the lower limit charge amount Smin, and is set through experiments, simulations, and the like.
  • the control device 12 stores rotation speed data 12b in the form of a control map.
  • the rotational speed data 12b is data used when it is predicted that the operation of the mounting equipment 3 will stop due to a decrease in the amount of electric power Wp that can be supplied from the battery 8 to the pump 6.
  • FIG. In this embodiment, the rotational speed data 12b is data representing the correlation between the amount of power Wp that can be supplied from the battery 8 to the pump 6 and the target rotational speed Nm of the pump 6 .
  • the amount of power Wp that can be supplied from the battery 8 to the pump 6 is determined by the correlation between the temperature T of the battery 8 and the discharge capacity W of the battery 8, the amount of power Wp that can be supplied from the battery 8 to the pump 6, and devices other than the pump 6. and the correlation with the power consumption Wr.
  • a power amount Wp that can be supplied from the battery 8 to the pump 6 is set with a lower limit power amount Wmin and a power amount threshold Wa.
  • the lower limit power amount Wmin indicates the minimum amount of power that can operate the mounting equipment 3 when the rotation speed of the pump 6 is set to the target rotation speed Nm.
  • the power amount threshold Wa is a value indicating a power amount greater than the lower limit power amount Wmin, and is set through experiments, simulations, and the like. Also in the rotation speed data 12b, the target rotation speed Nm is set to the constant upper limit value Na. Note that the rotation speed data 12b may be data expressed in other forms such as mathematical expressions.
  • the control device 12 also stores the upper limit value of the pressure of the hydraulic oil Ol flowing through the hydraulic circuit 13 .
  • the control device 12 is configured to open the relief valve 16 and adjust the actual pressure to less than the upper limit when the actual pressure of the hydraulic oil Ol flowing through the hydraulic circuit 13 exceeds the upper limit.
  • the actual pressure of the hydraulic oil Ol is detected by a pressure sensor arranged in the hydraulic circuit 13, for example.
  • the control device 12 has a work vehicle 1 in which a plurality of work points (garbage D collection points) using the mounting equipment 3 and stations St for charging the battery 8 are scattered at intervals. is also stored.
  • the travel route R is interspersed with four work points a, b, c, d.
  • the travel route R is set in advance through experiments, simulations, and the like.
  • a plurality of travel routes R may be stored in the control device 12 .
  • FIG. 8 and 9 A prediction method based on the amount of charge of the battery 8 will be described with reference to FIGS. 8 and 9.
  • FIG. 8 and 9 The control flows illustrated in FIGS. 8 and 9 are executed periodically and in parallel when the work vehicle 1 is stopped and the power switch 5a is turned on by the worker.
  • This control flow is a flow in the case of predicting that the amount of power for bodywork will be used up based on the amount of charge S of the battery 8 .
  • the rotation speed of the pump 6 is set to the target rotation speed Nm at the start.
  • step S110 the operator presses the operation start switch 5b to start the operation of the mounting equipment 3, and determines whether or not to start the work using the mounting equipment 3. judge. If it is determined to start the operation of the mounting equipment 3 (YES), the process proceeds to step S120. If it is determined not to start the operation of the bodywork 3 (NO), the control flow of FIG. 8 is terminated.
  • step S120 the charge amount S of the battery 8 is acquired using the charge amount sensor 9.
  • step S130 the lower limit charge amount Smin is calculated by subtracting the amount of decrease in the case where the above-described amount of power for mounting is consumed from the charge amount S obtained in step S120.
  • step S140 the charge amount threshold value Sa is set using the lower limit charge amount Smin calculated in step S130. After executing step S140, the control flow in FIG. 8 ends.
  • the amount of power for mounting is calculated by the control device 12 based on the past data 12c illustrated in FIG.
  • the past data 12c is data that includes the power consumption for traveling Wt and the power consumption for work Wo for each work point.
  • the traveling power consumption Wt is the power consumed by the battery 8 in each section from the start to the end of movement from the work point to another work point.
  • the power consumption Wo for work is the amount of power consumed by the battery 8 from the start to the end of the work by the bodywork 3 at the work point.
  • the initial value of the amount of power for bodywork is set to the total value Wo5 of the amount of power for work, or the value obtained by adding a margin to the total value Wo5.
  • the amount of electric power for bodywork is obtained by subtracting the actual value of electric power consumption for work actually consumed at a work point where the work has already been completed from the initial value. These actual values are obtained by time-integrating the amount of electric power Wr that can be supplied from the battery 8 to the pump 6 with the work time at each work point. In this way, the amount of power for bodywork is updated at any time at the start of work.
  • step S220 it is determined whether or not the charge amount S acquired in step S210 is smaller than the charge amount threshold value Sa set in step S140 of FIG. If the charge amount S is equal to or greater than the charge amount threshold Sa (NO), the control flow of FIG. 9 is restarted from step S210. If the charge amount S is less than the charge amount threshold value Sa (YES), the process proceeds to step S230.
  • step S230 the target rotation speed Nm of the pump 6 is decreased to the lower limit value Nb.
  • step S240 it is determined whether or not the charge amount S obtained in step S210 is smaller than the lower limit charge amount Smin calculated in step S130 of FIG. If the charge amount S is equal to or greater than the lower limit charge amount Smin (NO), the control flow of FIG. 9 is restarted from step S210. If the charge amount S is less than the lower limit charge amount Smin (YES), the process proceeds to step S250. In step S250, the pump 6 is automatically stopped. After performing step S250, the control flow in FIG. 9 ends.
  • FIG. 10 and 11 A prediction method based on the amount of power Wp that can be supplied from the battery 8 to the pump 6 will be described with reference to FIGS. 10 and 11.
  • FIG. 10 and 11 The control flows illustrated in FIGS. 10 and 11 are executed periodically and in parallel when the work vehicle 1 is stopped and the power switch 5a is turned on by the worker.
  • This control flow is a flow for predicting that the amount of electric power for bodywork will be used up based on the amount of electric power Wp that can be supplied from the battery 8 to the pump 6 .
  • the rotation speed of the pump 6 is set to the target rotation speed Nm at the start.
  • step S310 the operator presses the operation start switch 5b to start the operation of the mounting equipment 3, and determines whether or not to start the work using the mounting equipment 3. judge. If it is determined to start the operation of the mounting equipment 3 (YES), the process proceeds to step S320. If it is determined not to start the operation of the mounting equipment 3 (NO), the control flow of FIG. 10 is terminated.
  • step S320 the discharge capacity W of the battery 8 and other power consumption Wr other than the pump 6 are acquired using the detection data of the battery temperature sensor 10a and the power consumption sensor 10b.
  • step S330 the amount of power Wp that can be supplied from the battery 8 to the pump 6 is calculated using the discharge capacity W and the amount of power consumption Wr acquired in step S320. After executing step S330, the control flow of FIG. 10 is terminated.
  • step S420 it is determined whether or not the power amount Wp acquired in step S410 is less than the power amount threshold Wa. If the power amount Wp is greater than or equal to the power amount threshold Wa (NO), the control flow of FIG. 11 is restarted from step S410. If the power amount Wp is less than the power amount threshold Wa (YES), the process proceeds to step S430. In step S430, the target rotation speed Nm of the pump 6 is decreased to the lower limit value Nb. After performing step S430, the process proceeds to step S440.
  • step S440 it is determined whether or not the power consumption Wp acquired in step S410 is less than the lower limit power consumption Wmin calculated in step S330 of FIG. If the electric energy W is equal to or greater than the lower limit electric energy Wmin (NO), the control flow of FIG. 11 is restarted from step S410. If the electric energy Wp is less than the lower limit electric energy Wmin (YES), the process proceeds to step S450.
  • step S450 the pump 6 is automatically stopped. After executing step S450, the control flow of FIG. 11 ends. 10 and 11, the control flow of FIGS. 10 and 11 is forcibly terminated when the operator operates the operation end switch 5c. Further, when the pump 6 is automatically stopped in step S450, it is necessary for the operator to return to the station St once to charge the battery 8.
  • the rotation of the pump 6 is lowered from the target rotation speed Nm to lower the operating speed of the mounting equipment 3.
  • the rotation speed of the pump 6 in a state in which the pump 6 is driven at the target rotation speed Nm, the rotation speed of the pump 6 is is lowered from the target rotation speed Nm to lower the operating speed of the mounting equipment 3 .
  • the rotation speed of the pump 6 has a positive correlation with the rotation speed of the motor 7, and the rotation speed of the motor 7 has a positive correlation with the power consumption of the battery 8 per unit time. That is, when the rotation speed of the pump 6 decreases, the power consumption of the battery 8 per unit time also decreases. Therefore, by lowering the target rotation speed Nm of the pump 6, the power consumption of the battery 8 required for the operation of the mounting equipment 3 can be reduced.
  • the power consumption of the battery 8 is reduced when the discharge capacity of the battery 8 is reduced, power for operating the bodywork 3 can be secured, and interruption of work can be avoided. Further, if the work vehicle 1 is an electric vehicle as in this embodiment, the battery 8 cannot be charged while the mounting equipment 3 is operating while the work vehicle 1 is stopped. Therefore, the effect of reducing the power consumption of the battery 8 becomes even greater.
  • the rotation speed of the pump 6 is set to a rotation speed lower than the target rotation speed Nm when the mounting equipment 3 is in operation, the rotation speed per unit time of the rotary plate 3a and the number of pushes per unit time of the push-in plate 3b do not increase. it will only be less. That is, since the rotating torque of the rotating plate 3a and the pushing force of the pushing plate 3b are not affected at all, the dust D cannot be scraped up by the rotating plate 3a, and the dust D cannot be pushed in by the pushing plate 3b. There is no problem in driving 3.
  • the work vehicle 1 of the embodiment reduces the operating speed of the bodywork equipment 3 when it is predicted that the bodywork power amount will be used up based on the charge amount S of the battery 8 before the bodywork power amount is used up. . Therefore, compared to the case where the operating speed of the bodywork 3 is not reduced, the time from the time of prediction until the state of charge S of the battery 8 becomes less than the minimum state of charge Smin can be lengthened. That is, the number of operations of the mounting equipment 3 can be increased.
  • the work vehicle 1 calculates the lower limit charging amount Smin and the charging amount threshold Sa for each task.
  • the amount of work done by the bodywork 3 varies from work point to work point. Therefore, in this way, it is advantageous to appropriately reduce the operating speed of the bodywork equipment 3 to ensure the required number of operations of the bodywork equipment 3 at each work point.
  • the lower limit charging amount Smin and the charging amount threshold Sa may be set to the same value at all work points.
  • the past data 12c illustrated in FIG. 12 may be stored in the control device 12, and the rotation speed of the pump 6 during work in which the bodywork 3 is operated may be adjusted based on this past data 12c.
  • the past data 12c is a history of when the work vehicle 1 traveled along the travel route R and performed work on the mounting equipment 3.
  • the past data 12c is data that replaces the rotation speed data 12a in the adjustment control of the rotation speed of the pump 6.
  • the past data 12c may be data based on a single history or data based on a plurality of histories (for example, an average value).
  • the past data 12c is set in advance through experiments, simulations, or the like and stored in the control device 12.
  • the past data 12c is data that includes at least the number of operations A of the bodywork equipment 3 for each work point on the travel route R.
  • the past data 12c is data that also includes the travel power consumption Wt and the work power consumption Wo for each work point.
  • the traveling power consumption Wt is the power consumed by the battery 8 from the start to the end of movement from the work point to another work point (in each section).
  • the power consumption Wo for work is the amount of power consumed by the battery 8 from the start to the end of the work by the bodywork 3 at the work point.
  • the work vehicle 1 When the past data 12c is stored in the control device 12, the work vehicle 1 is provided with an operation frequency sensor (operation frequency acquisition device) 18 that acquires the operation frequency A of the mounting equipment 3, as illustrated in FIG.
  • Various known sensors can be used as the operation number sensor 18 .
  • the actuation number sensor 18 is electrically connected to the control device 12 , and the data detected by this sensor 18 is input to the control device 12 .
  • a known computing device that computes the actuation number A using various parameters such as the amount of electric power required for operation of the bodywork 3 per unit time may be used.
  • FIG. 13 and 14 A control method for the work vehicle 1 will be described with reference to FIGS. 13 and 14.
  • FIG. 13 and 14 The control flows illustrated in FIGS. 13 and 14 are periodically executed when the work vehicle 1 is stopped and the power switch 5a is turned on by the operator.
  • step S510 the current position of the vehicle 1 on the travel route R is acquired using the navigation system 11 in step S510. In this embodiment, it is acquired at which of the work points a, b, c, and d the vehicle 1 is located.
  • step S520 the planned number of operations Ap from the current work point to the end of the last work point in the past data 12c is calculated.
  • the current work point is the point where the work using the bodywork 3 is performed during the progress of this control flow.
  • the final work point is the nearest work point (work point d in FIG. 7) from the side returning to the station St on the travel route R. For example, if the current work point is a, the planned number of operations Ap will be A2+A3+A4 using the past data 12c of FIG.
  • step S530 the planned number of operations Ap will be A2+A3+A4 using the past data 12c of FIG.
  • step S530 the lower limit number of times Amin is set using the planned number of times of operation Ap calculated in step S520.
  • the lower limit number of times Amin is set to a number of times at which there is a possibility that the work vehicle 1 may be hindered from traveling on the travel route R when the number of times Ar of the remaining operation of the mounting equipment 3 becomes less than the lower limit number of times Amin.
  • the remaining number of operations Ar is a value obtained by subtracting the number of operations A acquired by the number of operations sensor 18 from the total number of operations A5 of the mounting equipment 3 in the past data 12c.
  • the lower limit number of times Amin is set through experiments, simulations, etc., and is, for example, a value of about 80 to 90% of the planned number of times of operation Ap.
  • step S540 it is determined whether or not the operation start switch 5b is pushed by the operator to start the operation of the mounting equipment 3 and to start the work using the mounting equipment 3. If it is determined to start the operation of the mounting equipment 3 (YES), the process proceeds to step S550. If it is determined not to start the operation of the mounting equipment 3 (NO), the control flow of FIG. 14 is terminated.
  • step S550 the driving of the pump 6 is started, the rotation speed thereof is adjusted to the target rotation speed Nm, and the operation frequency A of the mounting equipment 3 is acquired using the operation frequency sensor 18.
  • step S560 the remaining number of operations Ar is calculated based on the number of operations A obtained in step S550 while the bodywork 3 is being operated by the hydraulic actuator 4 . After performing step S560, the process proceeds to step S570.
  • step S570 it is determined whether or not the remaining number of operations Ar calculated in step S560 is smaller than the planned number of operations Ap calculated in step S520. If the remaining number of operations Ar is greater than or equal to the planned number of operations Ap (NO), the control flow of FIG. 14 is restarted from step S550. If the remaining number of operations Ar is smaller than the planned number of operations Ap (YES), the process proceeds to step S580. In step S580, the rotational speed of the pump 6 is reduced from the target rotational speed Nm to reduce the operating speed of the mounting equipment 3. After performing step S580, the process proceeds to step S590.
  • step S590 it is determined whether or not the remaining number of operations Ar calculated in step S560 is less than the lower limit number of times Amin set in step S530. If the remaining number of operations Ar is greater than or equal to the lower limit number of times Amin (NO), the control flow of FIG. 14 is restarted from step S550. If the remaining number of operations Ar is less than the lower limit number of times Amin (YES), the process proceeds to step S600. At step S600, the pump 6 is automatically stopped. After performing step S600, the control flow of FIG. 14 ends. 13 and 14, the control flow of FIGS. 13 and 14 is forcibly terminated when the operation end switch 5c is operated by the operator. Further, when the pump 6 is automatically stopped in step S600, it is necessary for the operator to return to the station St once to charge the battery 8. FIG.
  • the rotation speed of the pump 6 is adjusted in consideration of the progress of the work using the mounting equipment 3 . Therefore, it is advantageous to reduce the power consumption of the battery 8 when the bodywork 3 is in operation and reduce the chances of charging the battery 8 .
  • the work vehicle 1 may be configured such that the control device 12 performs control to reduce the operation speed of the mounting equipment 3 only by prediction based on the charge amount S of the battery 8 .
  • the work vehicle 1 may be configured such that the control device 12 performs control to reduce the operating speed of the mounting equipment 3 only by prediction based on the amount of electric power Wp that can be supplied from the battery 8 to the pump 6 .
  • the amount of power Wp that can be supplied from the battery 8 to the pump 6 may be determined based only on the discharge capacity of the battery 8 or based on the amount of power consumed by devices other than the pump 6 .
  • the work vehicle 1 predicts both the prediction based on the charge amount S of the battery 8 and the prediction based on the electric power amount Wp that can be supplied from the battery 8 to the pump 6. It is preferable that the control device 12 is configured to perform control to reduce the operating speed. Making both of these predictions is advantageous for reducing the frequency with which the work that actuates the bodywork 3 is interrupted.
  • the rotation speed of the pump 6 is reduced based on the data acquired by the sensors 9, 10a, 10b, and 18 described above. It may be lowered gradually. Specifically, the rotation speed of the pump 6 may be gradually decreased as the charge amount S of the battery 8 and the power amount Wp that can be supplied from the battery 8 to the pump 6 decrease. The rotation speed of the pump 6 may be gradually decreased as the number of times A of the mounting equipment 3 is operated increases. In this way, the power consumption per unit time of the battery 8 is appropriately set according to the SOC of the battery 8, which is advantageous for reducing the power consumption of the battery 8.
  • the operator may feel uncomfortable with the sudden adjustment of the rotation speed. Therefore, if the worker operates the control prohibition switch 5d to prohibit the rotation speed adjustment of the pump 6 by the control device 12 during the work using the mounting equipment 3, the worker can collect the dust D without discomfort. can.
  • the operator may feel that the mounting equipment 3 is operating quickly or slowly depending on the work environment. Therefore, it is advantageous for the operator to operate the adjustment switch 5e to adjust the rotation speed of the pump 6 to a value according to the working environment, thereby improving the working efficiency of the operator.
  • the work vehicle according to the present disclosure can be widely applied to techniques for avoiding interruption of work in which body equipment is operated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Refuse-Collection Vehicles (AREA)

Abstract

In a work vehicle 1, a hydraulic oil Ol is supplied from an electric hydraulic pump 6 through a hydraulic circuit 13 to a hydraulic actuator 4, the hydraulic actuator 4 causes mounted equipment 3 installed in the work vehicle 1 to operate, the rotation rate of the electric hydraulic pump 6 is driven according to a target rotation rate Nm, and if an interruption is predicted in work in which the mounted equipment 3 is operated by the hydraulic actuator 4, the rotation rate of the electric hydraulic pump 6 is lowered from the target rotation rate Nm to thereby lower the operating speed of the mounted equipment 3.

Description

作業車両work vehicle
 本開示は、作業車両に関し、特に、電動油圧ポンプを用いて架装設備を駆動させる作業車両に関する。 The present disclosure relates to a work vehicle, and more particularly to a work vehicle that drives body equipment using an electric hydraulic pump.
 塵芥収集設備などの架装設備を車両に備えて、電動油圧ポンプから油圧回路を介して油圧アクチュエータに作動油を供給することで、油圧アクチュエータにより架装設備を作動させる技術が提案されている(例えば、特許文献1参照)。電動油圧ポンプはバッテリから電力を供給される。 A technology has been proposed in which a vehicle is equipped with bodywork equipment such as garbage collection equipment, and hydraulic oil is supplied from an electric hydraulic pump to a hydraulic actuator via a hydraulic circuit, whereby the bodywork equipment is operated by the hydraulic actuator ( For example, see Patent Document 1). The electric hydraulic pump is powered by a battery.
日本国特開2018―20641号公報Japanese Patent Application Laid-Open No. 2018-20641
 架装設備が作動する作業中に、バッテリの充電量の減り具合(あるいは、電動油圧ポンプで消費された消費電力量の増加具合)が大きいと、架装設備を作動させるための電力がなくなり、作業が中断する。作業の中断を回避するにはステーションでのバッテリの充電機会を増加させる、バッテリを大型化するなどの対策を行う必要がある。エンジン搭載型の車両の場合は、さらに、エンジン動力を用いたモータ発電によりバッテリを充電するなどの対策を行うことも考えられる。 If the amount of charge in the battery decreases significantly (or the amount of power consumed by the electric hydraulic pump increases) while the bodywork is being operated, there will be no power to operate the bodywork. work is interrupted. In order to avoid work interruptions, it is necessary to take measures such as increasing the chances of charging the battery at the station and increasing the size of the battery. In the case of an engine-mounted vehicle, it is also conceivable to take measures such as charging the battery by motor power generation using engine power.
 しかしながら、ステーションでのバッテリの充電機会を増加させると、車両がステーションに戻る頻度が増加して架装設備を用いた作業の効率が低下する。バッテリを大型化すると、バッテリの重量増加による車重増加により車両の走行に要するエネルギー量が増加して車両の走行効率が低下する。エンジン動力を用いてモータ発電を行うと、エンジンの駆動機会の増加により燃費が悪化する。また、バッテリはバッテリの温度が予め設定された温度範囲を外れると放電能力(許容電流ともいう)が低下する。バッテリの放電能力が低下すると架装設備を作動させるための電力が確保できず、作業が中断する。これらの諸問題を解決するためには、架装設備作動時のバッテリの消費電力量を低減させてバッテリの充電機会を低減させることが非常に有用である。 However, increasing the chances of charging the battery at the station increases the frequency with which the vehicle returns to the station, reducing the efficiency of work using bodywork equipment. When the size of the battery is increased, the vehicle weight increases due to the increased weight of the battery, which increases the amount of energy required for running the vehicle, and reduces the running efficiency of the vehicle. When motor power generation is performed using engine power, fuel efficiency deteriorates due to an increase in engine driving opportunities. In addition, when the temperature of the battery deviates from a preset temperature range, the discharge capacity (also called allowable current) of the battery decreases. When the discharge capacity of the battery declines, the power to operate the body equipment cannot be secured, and work is interrupted. In order to solve these problems, it is very useful to reduce the power consumption of the battery during the operation of the body equipment to reduce the chances of charging the battery.
 本開示の目的は、架装設備を作動した作業の中断を回避する作業車両を提供することにある。 An object of the present disclosure is to provide a work vehicle that avoids interruption of work in which bodywork equipment is activated.
 本開示の一態様の作業車両は、油圧回路に作動油を供給する電動油圧ポンプと、この電動油圧ポンプに電力を供給するバッテリと、前記油圧回路を介して作動油が供給される油圧アクチュエータと、この油圧アクチュエータにより作動する架装設備と、を備えて構成される作業車両において、前記バッテリの状態を取得する状態取得装置と、前記電動油圧ポンプを制御する制御装置と、を備え、前記電動油圧ポンプの回転数を予め設定された目標回転数で駆動させて、前記油圧アクチュエータにより前記架装設備を作動させた作業中に、前記制御装置は、前記状態取得装置が取得した前記バッテリの状態に基づいて、前記作業が中断することを予測した場合に、前記電動油圧ポンプの回転数を前記目標回転数から下げて前記架装設備の作動速度を低下させる制御を行う。 A work vehicle according to one aspect of the present disclosure includes an electric hydraulic pump that supplies hydraulic fluid to a hydraulic circuit, a battery that supplies electric power to the electric hydraulic pump, and a hydraulic actuator that is supplied with hydraulic fluid via the hydraulic circuit. and body equipment operated by the hydraulic actuator, the work vehicle includes a state acquisition device that acquires the state of the battery, a control device that controls the electric hydraulic pump, and the electric During the work in which the hydraulic pump is driven at a preset target rotation speed and the bodywork is operated by the hydraulic actuator, the control device detects the state of the battery acquired by the state acquisition device. When it is predicted that the work will be interrupted, control is performed to reduce the rotational speed of the electric hydraulic pump from the target rotational speed to reduce the operating speed of the mounting equipment.
 本開示によれば、架装設備の作動時にバッテリの消費電力量を低減させて作業の中断を回避することができる。 According to the present disclosure, it is possible to reduce the power consumption of the battery when the bodywork equipment is in operation, thereby avoiding work interruptions.
図1Aは、本開示の作業車両を側面視で例示する説明図である。FIG. 1A is an explanatory diagram illustrating a work vehicle of the present disclosure as viewed from the side. 図1Bは、図1Aの作業車両に配置された操作盤を例示する説明図である。FIG. 1B is an explanatory diagram illustrating an operation panel arranged on the work vehicle of FIG. 1A. 図2は、図1Aの作業車両における各装置の配置関係を模式的に例示する説明図である。FIG. 2 is an explanatory diagram that schematically illustrates the arrangement relationship of each device in the work vehicle of FIG. 1A. 図3は、回転数データを例示する説明図である。FIG. 3 is an explanatory diagram illustrating rotational speed data. 図4は、回転数データの別の実施形態を例示する説明図である。FIG. 4 is an explanatory diagram illustrating another embodiment of rotation speed data. 図5は、バッテリの温度と放電能力の関係を例示する説明図である。FIG. 5 is an explanatory diagram illustrating the relationship between battery temperature and discharge capability. 図6は、ポンプ以外の装置の消費電力量とバッテリからポンプへの放電能力との関係を例示する説明図である。FIG. 6 is an explanatory diagram illustrating the relationship between the power consumption of devices other than the pump and the discharge capacity from the battery to the pump. 図7は、作業車両の所定の走行ルートを例示する説明図である。FIG. 7 is an explanatory diagram illustrating a predetermined travel route of the work vehicle. 図8は、充電量に基づく予測方法を制御フローの形で例示する説明図である。FIG. 8 is an explanatory diagram illustrating, in the form of a control flow, a prediction method based on the amount of charge. 図9は、図8の制御フローと並行実施される制御フローを例示する説明図である。FIG. 9 is an explanatory diagram illustrating a control flow executed in parallel with the control flow of FIG. 図10は、供給電力に基づく予測方法を制御フローの形で例示する説明図である。FIG. 10 is an explanatory diagram illustrating a prediction method based on supplied power in the form of a control flow. 図11は、図10の制御フローと並行実施される制御フローを例示する説明図である。FIG. 11 is an explanatory diagram illustrating a control flow executed in parallel with the control flow of FIG. 10; 図12は、過去データを例示する説明図である。FIG. 12 is an explanatory diagram illustrating past data. 図13は、作動回数に基づく予測方法を制御フローの形で例示する説明図である。FIG. 13 is an explanatory diagram illustrating, in the form of a control flow, a prediction method based on the number of times of actuation. 図14は、図13の制御フローに連なる制御フローを例示する説明図である。FIG. 14 is an explanatory diagram illustrating a control flow following the control flow of FIG. 13;
 以下、本開示の作業車両を図に示した実施形態に基づいて説明する。尚、図1Aの「側面視」は「車両の幅方向(車幅方向)から視た」という意味である。 The work vehicle of the present disclosure will be described below based on the illustrated embodiment. The "side view" in FIG. 1A means "seen from the width direction of the vehicle (vehicle width direction)".
 図1A及び図2に例示する本開示の作業車両1はモータージェネレータ2を車両走行用の動力源とする電動車両である。モータージェネレータ2は、後述するバッテリ8に充電した電力量を用いて回転駆動することで車輪(図示しない)を介して作業車両1を走行させる。モータージェネレータ2は、作業車両1の慣性走行時や減速走行時に車輪を介して回生発電することでバッテリ8に充電する。モータージェネレータ2は、回生発電の機能を有さずに走行機能のみを有する走行用モータでもよい。この実施形態では、作業車両1にエンジンを搭載していないが、エンジンおよびモータージェネレータ2の両方を車両走行用の動力源とするハイブリッド車両としてもよい。 A work vehicle 1 of the present disclosure illustrated in FIGS. 1A and 2 is an electric vehicle that uses a motor generator 2 as a power source for vehicle travel. The motor-generator 2 is driven to rotate using electric power charged in a battery 8, which will be described later, so that the work vehicle 1 travels via wheels (not shown). The motor generator 2 charges the battery 8 by regeneratively generating power through the wheels when the work vehicle 1 is running inertially or decelerated. The motor generator 2 may be a motor for running that has only a running function without a regenerative power generation function. In this embodiment, the work vehicle 1 is not equipped with an engine, but may be a hybrid vehicle that uses both the engine and the motor generator 2 as power sources for vehicle travel.
 作業車両1は、架装設備3と、油圧アクチュエータ4と、操作盤5と、モータ7を有する電動油圧ポンプ(以下、ポンプという)6と、バッテリ8と、を備えている。この実施形態では、作業車両1は、さらに、充電量センサ9と、バッテリ温度センサ10aと、消費電力量センサ10bと、ナビゲーションシステム(現在位置取得装置)11と、制御装置12と、を備えている。 The work vehicle 1 includes a mounting equipment 3 , a hydraulic actuator 4 , an operation panel 5 , an electric hydraulic pump (hereinafter referred to as pump) 6 having a motor 7 , and a battery 8 . In this embodiment, the work vehicle 1 further includes a charge amount sensor 9, a battery temperature sensor 10a, a power consumption sensor 10b, a navigation system (current position acquisition device) 11, and a control device 12. there is
 架装設備3としては家庭用ゴミなどの塵芥Dを収集する塵芥収集設備が例示される。架装設備3は油圧アクチュエータ4により作動可能に構成されている。架装設備3はモータージェネレータ2の駆動が停止した状態で作動する構成である。この実施形態では、架装設備3は公知の回転板式の設備で回転板3aおよび押込板3bを有して構成されている。回転板3aは作業車両1に搭載されている塵芥積込箱3cの内部に配置されている。回転板3aは車幅方向を回転軸方向として回転可能に構成されている。回転板3aは、塵芥積込箱3cの外面に設けた塵芥投入口3dより塵芥積込箱3cの内部に投入された塵芥Dを塵芥積込箱3cに連接する塵芥収容箱3eに向かって掻き上げ可能に構成されている。押込板3bは回転板3aより上側で塵芥積込箱3cの内部に配置されている。押込板3bは車両の前後方向に摺動可能に構成されている。押込板3bは回転板3aにより掻き上げられた塵芥Dを塵芥収容箱3eに押し込み可能に構成されている。回転板3aおよび押込板3bは、回転板3aの掻き上げと押込板3bの押込みとが干渉しない位置に配置されている。尚、架装設備3は油圧アクチュエータ4を用いて油圧で駆動する設備であればよく、例えば高圧水によって洗浄を行う洗浄設備や汚泥を吸引する吸引設備などでもよい。 Garbage collection equipment for collecting garbage D such as household garbage is exemplified as the mounting equipment 3 . The mounting equipment 3 is configured to be operable by a hydraulic actuator 4 . The mounting equipment 3 is configured to operate while the motor generator 2 is stopped. In this embodiment, the mounting equipment 3 is a well-known rotating plate type equipment and is configured to have a rotating plate 3a and a pushing plate 3b. The rotating plate 3a is arranged inside a garbage loading box 3c mounted on the working vehicle 1. As shown in FIG. The rotary plate 3a is rotatable with the vehicle width direction as the rotation axis direction. The rotating plate 3a scrapes the garbage D thrown into the inside of the garbage loading box 3c from the garbage inlet 3d provided on the outer surface of the garbage loading box 3c toward the garbage storage box 3e connected to the garbage loading box 3c. configured to be raised. The pushing plate 3b is arranged inside the garbage loading box 3c above the rotating plate 3a. The pushing plate 3b is configured to be slidable in the longitudinal direction of the vehicle. The pushing plate 3b is configured to be able to push the dust D raked up by the rotating plate 3a into the dust storage box 3e. The rotary plate 3a and the pushing plate 3b are arranged at positions where the raking of the rotary plate 3a and the pushing of the pushing plate 3b do not interfere with each other. The mounting equipment 3 may be equipment that is hydraulically driven using the hydraulic actuator 4, and may be, for example, a cleaning equipment that cleans with high-pressure water or a suction equipment that sucks sludge.
 油圧アクチュエータ4は架装設備3に接続されていて油圧回路13を介して作動油Olが供給可能に構成されている。この実施形態では、油圧アクチュエータ4は、回転板3aに接続された油圧モータ4aと、押込板3bに接続された油圧シリンダ4bである。油圧モータ4aは、塵芥積込箱3cの内部に配置されていて、油圧モータ4aの回転により回転板3aを回転可能に構成されている。油圧シリンダ4bは、塵芥積込箱3cの内部に配置されていて、油圧シリンダ4bの摺動により押込板3bを摺動可能に構成されている。 The hydraulic actuator 4 is connected to the mounting equipment 3 and configured to be able to supply hydraulic oil Ol through the hydraulic circuit 13 . In this embodiment, the hydraulic actuators 4 are a hydraulic motor 4a connected to the rotary plate 3a and a hydraulic cylinder 4b connected to the pushing plate 3b. The hydraulic motor 4a is arranged inside the garbage loading box 3c, and is configured to rotate the rotary plate 3a by the rotation of the hydraulic motor 4a. The hydraulic cylinder 4b is arranged inside the garbage loading box 3c, and is configured to be able to slide on the pushing plate 3b by sliding the hydraulic cylinder 4b.
 油圧モータ4aおよび油圧シリンダ4bは油圧回路13を循環する作動油Olにより駆動される。油圧モータ4aに供給される作動油Olの油圧および油量のそれぞれは、回転板3aの回転トルク(塵芥Dを掻き上げる力)、回転板3aの回転数との二つのパラメータに対して正の相関関係にある。油圧シリンダ4bに供給される作動油Olの油圧および油量のそれぞれは、押込板3bのトルク(塵芥Dを押し込む力)、押込板3bの回転数との二つのパラメータに対して正の相関関係にある。 The hydraulic motor 4a and the hydraulic cylinder 4b are driven by hydraulic oil Ol circulating in the hydraulic circuit 13. Each of the hydraulic pressure and oil amount of the hydraulic oil Ol supplied to the hydraulic motor 4a is positive with respect to the two parameters of the rotational torque of the rotary plate 3a (the power to rake up the dust D) and the rotational speed of the rotary plate 3a. There is a correlation. The hydraulic pressure and oil amount of the hydraulic oil Ol supplied to the hydraulic cylinder 4b are positively correlated with two parameters: the torque of the pushing plate 3b (the force pushing in the dust D) and the rotation speed of the pushing plate 3b. It is in.
 操作盤5は作業車両1の運転席または架装設備3の近傍に配置されている。操作盤5は、図1Bに示すように、電源スイッチ5a、作動開始スイッチ5b、作動停止スイッチ5c、および、制御禁止スイッチ5dを備えている。電源スイッチ5aは作業者の操作により架装設備3の電源のオンオフを切り換えるものである。作動開始スイッチ5bは作業者の操作により架装設備3の作動を開始するものである。作動停止スイッチ5cは作業者の操作により架装設備3の作動を停止するものである。制御禁止スイッチ5dは後述する架装設備3の作動速度を低下させる制御を作業者の操作により手動で禁止するスイッチである。 The operation panel 5 is arranged near the driver's seat of the work vehicle 1 or the mounting equipment 3 . The operation panel 5 includes a power switch 5a, an operation start switch 5b, an operation stop switch 5c, and a control prohibition switch 5d, as shown in FIG. 1B. The power switch 5a is for switching on/off the power of the mounting equipment 3 by the operator's operation. The operation start switch 5b is for starting the operation of the mounting equipment 3 by the operator's operation. The operation stop switch 5c is for stopping the operation of the mounting equipment 3 by the operator's operation. The control prohibition switch 5d is a switch for manually prohibiting control for reducing the operation speed of the bodywork 3, which will be described later, by an operator's operation.
 この実施形態では、操作盤5はさらに調整用スイッチ5eを備えている。調整用スイッチ5eは作業者の操作によりポンプ6の回転数を手動で調整可能なものである。調整用スイッチ5eは、ポンプ6の回転数の大小に応じた複数のスイッチとして構成されている。この実施形態では、調整用スイッチ5eはポンプ6の回転数の大小に応じて「大」、「中」、「小」の複数のスイッチとして構成されている。「大」のスイッチは作業者の操作によりポンプ6の回転数を手動で比較的大きくする。「小」のスイッチは作業者の操作によりポンプ6の回転数を手動で比較的小さくする。「中」のスイッチは作業者の操作によりポンプ6の回転数を「大」で設定される回転数と「小」で設定される回転数との中間程度の回転数に手動で設定する。尚、調整用スイッチ5eを操作盤5に備えない構成にしてもよい。 In this embodiment, the operation panel 5 further includes an adjustment switch 5e. The adjustment switch 5e can manually adjust the rotation speed of the pump 6 by the operator's operation. The adjustment switch 5 e is configured as a plurality of switches corresponding to the magnitude of the rotation speed of the pump 6 . In this embodiment, the adjustment switch 5e is configured as a plurality of switches of "large", "medium", and "small" according to the magnitude of the rotation speed of the pump 6. FIG. The "large" switch is operated by the operator to manually increase the rotation speed of the pump 6 to a relatively large value. The "small" switch is operated by the operator to manually reduce the number of revolutions of the pump 6 to a relatively small value. The "middle" switch is operated by the operator to manually set the number of revolutions of the pump 6 to a number intermediate between the number of revolutions set for "large" and the number of revolutions set for "small". It should be noted that the operation panel 5 may not be provided with the adjustment switch 5e.
 ポンプ6は油圧アクチュエータ4に油圧回路13を介して接続されて作動油Olの供給により油圧アクチュエータ4を駆動可能に構成されている。ポンプ6は、バッテリ8の電力で駆動するモータ7の回転動力により駆動する電動油圧ポンプである。ポンプ6は、容積ポンプであり、吐出した作動油Olの圧力が固定値であり、吐出した作動油Olの流量がポンプ6の回転数と正の相関関係にある特性を有している。ポンプ6は、架装設備3の作動時にポンプ6により吐出される作動油Olの圧力が架装設備3の作動(回転板3aの回転トルクや押込板3bの押す力)に支障が生じない程度の圧力になる構成である。ポンプ6としては、容積ポンプであればよく、ベーンポンプやギヤポンプなどが例示される。 The pump 6 is connected to the hydraulic actuator 4 via a hydraulic circuit 13 and is configured to be able to drive the hydraulic actuator 4 by supplying hydraulic oil Ol. The pump 6 is an electric hydraulic pump driven by rotational power of a motor 7 driven by electric power of a battery 8 . The pump 6 is a positive displacement pump, and has a characteristic that the pressure of the discharged hydraulic oil Ol is a fixed value, and the flow rate of the discharged hydraulic oil Ol is in a positive correlation with the rotation speed of the pump 6 . The pressure of the hydraulic oil Ol discharged by the pump 6 when the mounting equipment 3 is operated is set to the extent that the operation of the mounting equipment 3 (rotational torque of the rotary plate 3a and pushing force of the pushing plate 3b) is not hindered. It is a configuration that becomes the pressure of The pump 6 may be any positive displacement pump, such as a vane pump and a gear pump.
 ポンプ6はタンク14に貯留された作動油Olを油圧回路13に汲み上げて、汲み上げた作動油Olを油圧アクチュエータ4に供給して油圧アクチュエータ4を駆動可能に構成されている。汲み上げた作動油Olは油圧回路13に配置されている作動制御バルブ15(15a、15b)によりそれぞれの油圧アクチュエータ4(4a、4b)に流通される。汲み上げた作動油Olにおける余分な量は油圧回路13に配置されているリリーフバルブ16により直接タンク14に戻される。作動制御バルブ15の開度調整による油圧モータ4aおよび油圧シリンダ4bへの作動油Olの流量調整は制御装置12により制御される。リリーフバルブ16の開度調整は制御装置12により制御される。尚、油圧回路13には必要に応じて公知のアキュムレータやレギュレータやフィルタなどの装置が配置されていてもよい。また、図2では、油圧回路13を実線で示し、電気の供給回路を破線で示し、制御信号を一点鎖線で示している。 The pump 6 is configured to pump up the hydraulic oil Ol stored in the tank 14 to the hydraulic circuit 13 and supply the pumped hydraulic oil Ol to the hydraulic actuator 4 to drive the hydraulic actuator 4 . The pumped hydraulic oil Ol is circulated to the respective hydraulic actuators 4 (4a, 4b) by the operation control valves 15 (15a, 15b) arranged in the hydraulic circuit 13 . An excess amount of the pumped hydraulic oil Ol is directly returned to the tank 14 by a relief valve 16 arranged in the hydraulic circuit 13 . The control device 12 controls the flow rate adjustment of the hydraulic oil Ol to the hydraulic motor 4a and the hydraulic cylinder 4b by adjusting the opening degree of the operation control valve 15 . The opening adjustment of the relief valve 16 is controlled by the controller 12 . It should be noted that the hydraulic circuit 13 may be provided with known devices such as an accumulator, regulator, and filter as required. In FIG. 2, the hydraulic circuit 13 is indicated by a solid line, the electricity supply circuit is indicated by a broken line, and the control signal is indicated by a dashed line.
 モータ7はポンプ6に備わっていてモータ7の回転によりポンプ6を駆動可能に構成されている。モータ7の回転はポンプ6の回転と連動して、モータ7の回転数はポンプ6の回転数と正の相関関係にある。バッテリ8はインバータ17を介してモータ7またはモータージェネレータ2に電気を供給可能に構成されている。バッテリ8には、モータージェネレータ2およびモータ7の他に車両用エアコンなどの補機がインバータ17を介して接続されていて、補機に対しても電気を供給可能に構成されている。 The motor 7 is provided in the pump 6 and is configured to be able to drive the pump 6 by rotating the motor 7 . The rotation of the motor 7 is interlocked with the rotation of the pump 6, and the number of rotations of the motor 7 and the number of rotations of the pump 6 are in a positive correlation. The battery 8 is configured to be able to supply electricity to the motor 7 or the motor generator 2 via the inverter 17 . In addition to the motor generator 2 and the motor 7, auxiliary equipment such as an air conditioner for a vehicle is connected to the battery 8 via an inverter 17, so that electricity can be supplied to the auxiliary equipment as well.
 インバータ17は、モータージェネレータ2およびモータ7を駆動可能に構成されて、モータージェネレータ2およびモータ7とバッテリ8との間で、交流を直流に、または、直流を交流に変換させる。インバータ17から指示されるモータ7の回転数は制御装置12により制御される。尚、この実施形態では、インバータ17はモータージェネレータ2とモータ7とで共用しているが、モータージェネレータ2およびモータ7のそれぞれで専用のインバータを配置した構成としてもよい。 The inverter 17 is configured to be able to drive the motor generator 2 and the motor 7, and converts alternating current to direct current or direct current to alternating current between the motor generator 2 and motor 7 and the battery 8. The rotation speed of the motor 7 instructed by the inverter 17 is controlled by the controller 12 . Although the inverter 17 is shared by the motor generator 2 and the motor 7 in this embodiment, the motor generator 2 and the motor 7 may each have a dedicated inverter.
 作業車両1にはバッテリ8の状態を取得する状態取得装置が配置されている。この実施形態では、状態取得装置として充電量センサ9、バッテリ温度センサ10a、消費電力量センサ10bを用いている。本開示において、バッテリ8の状態とは、バッテリ8の充電量Sとバッテリ8からポンプ6へ供給可能な電力量Wpである。バッテリ8の充電量Sはバッテリ8の満充電状態の総電力量に対する現在の電力量の割合であり、充電量センサ9で取得される。バッテリ8からポンプ6へ供給可能な電力量Wpはバッテリ8の放電能力(許容電流ともいう)とポンプ6以外の装置で消費される他の消費電力量Wrとに基づく値である。バッテリ8の放電能力はバッテリ8の温度Tから検知される。バッテリ8からポンプ6へ供給可能な電力量Wpは、バッテリ温度センサ10aで取得されるバッテリ8の温度Tから得られるバッテリ8の放電能力と消費電力量センサ10bで取得される消費電力量Wrとに基づいて制御装置12により算出される。 A state acquisition device that acquires the state of the battery 8 is arranged in the work vehicle 1 . In this embodiment, a charge sensor 9, a battery temperature sensor 10a, and a power consumption sensor 10b are used as status acquisition devices. In the present disclosure, the state of the battery 8 is the amount of charge S of the battery 8 and the amount of power Wp that can be supplied from the battery 8 to the pump 6 . The charge amount S of the battery 8 is the ratio of the current power amount to the total power amount in the fully charged state of the battery 8 , and is acquired by the charge amount sensor 9 . The amount of power Wp that can be supplied from the battery 8 to the pump 6 is a value based on the discharge capacity (also called allowable current) of the battery 8 and the amount of power Wr consumed by devices other than the pump 6 . The discharge capability of battery 8 is detected from temperature T of battery 8 . The amount of power Wp that can be supplied from the battery 8 to the pump 6 is the discharge capacity of the battery 8 obtained from the temperature T of the battery 8 obtained by the battery temperature sensor 10a and the power consumption Wr obtained by the power consumption sensor 10b. is calculated by the control device 12 based on
 これらのセンサ9、10a、10bとしては公知の様々なセンサを用いることができる。これらのセンサ9、10a、10bは制御装置12に電気的に接続されていて、これらのセンサ9、10a、10bにより検知されたデータは制御装置12に入力される。尚、これらのセンサ9、10a、10bの代わりに、各種パラメータを用いてバッテリ8の充電量Sや消費電力量Wrを演算する公知の演算装置を用いてもよい。また、バッテリ8の総電力量が仕様値であるので充電量Sとバッテリ8の現在の電力量とは相互に変換可能な値である。 Various known sensors can be used as these sensors 9, 10a, and 10b. These sensors 9 , 10 a , 10 b are electrically connected to the control device 12 and the data detected by these sensors 9 , 10 a , 10 b are input to the control device 12 . Instead of these sensors 9, 10a, and 10b, a known computing device that computes the charge amount S and power consumption Wr of the battery 8 using various parameters may be used. Further, since the total power amount of the battery 8 is the specification value, the charge amount S and the current power amount of the battery 8 are mutually convertible values.
 ナビゲーションシステム11は、作業車両1に配置されて、作業車両1の目的地までの走行経路を案内するものである。ナビゲーションシステム11は現在位置取得装置の一例である。 The navigation system 11 is installed in the work vehicle 1 and guides the travel route of the work vehicle 1 to the destination. The navigation system 11 is an example of a current position acquisition device.
 制御装置12としてはコンピュータを用いる。制御装置12は上述した作動制御バルブ15、リリーフバルブ16およびインバータ17の作動などの様々な作動を制御し、また、上述した充電量S、温度T、および、消費電力量Wrなどの様々な入力されたデータを用いた演算処理を行う。 A computer is used as the control device 12. The controller 12 controls various operations such as the operation of the operation control valve 15, the relief valve 16 and the inverter 17 described above, and also receives various inputs such as the charge amount S, temperature T, and power consumption Wr described above. Arithmetic processing is performed using the obtained data.
 制御装置12はポンプ6が目標回転数(回転数の目標値)Nmで駆動した作業が中断することを予測した場合にポンプ6の回転数を目標回転数Nmから下げて架装設備3の作動速度を低下させる制御を行う。本開示において、作業とはバッテリ8の電力によりポンプ6が駆動し、駆動したポンプ6から供給された作動油Olにより油圧アクチュエータ4が駆動し、駆動した油圧アクチュエータ4により架装設備3が作動して行われるものである。 When the control device 12 predicts that the work in which the pump 6 is driven at the target rotation speed (target value of the rotation speed) Nm will be interrupted, the rotation speed of the pump 6 is lowered from the target rotation speed Nm to operate the body equipment 3. Perform control to reduce speed. In the present disclosure, work means that the pump 6 is driven by the power of the battery 8, the hydraulic actuator 4 is driven by hydraulic oil Ol supplied from the driven pump 6, and the body equipment 3 is operated by the driven hydraulic actuator 4. It is done.
 作業が中断することの予測は、バッテリ8の充電量Sに基づいて、バッテリ8に充電された電力量のうちの架装設備3の作動用に設定された架装用電力量を使い切ることを予測することである。また、作業が中断することの予測は、バッテリ8からポンプ6へ供給可能な電力量Wpの低下により架装設備3の作動が停止することを予測することである。架装用電力量を使い切ることの予測は既知の走行ルートを走行する場合に架装設備3の作動回数に基づいて行うことも可能である。 The prediction that the work will be interrupted is based on the charge amount S of the battery 8, and the amount of electric power for bodywork set for operation of the bodywork equipment 3 out of the electric energy charged in the battery 8 will be used up. It is to predict. Predicting that the work will be interrupted is predicting that the operation of the bodywork 3 will stop due to a decrease in the amount of electric power Wp that can be supplied from the battery 8 to the pump 6 . It is also possible to predict that the amount of electric power for bodywork will be used up based on the number of times the bodywork equipment 3 is operated when traveling along a known travel route.
 本実施形態の制御装置12は作業中にバッテリ8の充電量Sに基づいた架装用電力量を使い切ることの予測と、バッテリ8からポンプ6へ供給可能な電力量Wpの低下により架装設備3の作動が停止することの予測との両方の予測を行う。 The control device 12 of the present embodiment predicts that the amount of electric power for bodywork will be used up based on the amount of charge S of the battery 8 during work, and the amount of power Wp that can be supplied from the battery 8 to the pump 6 decreases. 3 will stop working.
 図3に例示するように、制御装置12には回転数データ12aが制御マップの形で記憶されている。回転数データ12aはバッテリ8の充電量Sに基づいて架装用電力量を使い切ることが予測された場合に用いるデータである。この実施形態では、回転数データ12aはバッテリ8の充電量Sとポンプ6の目標回転数(回転数の目標値)Nmとの相関関係を表すデータである。目標回転数Nmは、実験やシミュレーションなどを通じて設定される値で、架装設備3の作動速度が作業者(作業車両1の運転者)の塵芥収集作業に適切な速度になる値である。この実施形態では、目標回転数Nmを予め設定された一定の上限値Naに設定している。尚、回転数データ12aは数式など他の形態で表されるデータでもよい。 As illustrated in FIG. 3, the control device 12 stores rotation speed data 12a in the form of a control map. The rotational speed data 12a is data used when it is predicted based on the charge amount S of the battery 8 that the electric energy for bodywork will be used up. In this embodiment, the rotational speed data 12a is data representing the correlation between the charge amount S of the battery 8 and the target rotational speed (target value of the rotational speed) Nm of the pump 6 . The target rotation speed Nm is a value set through experiments, simulations, or the like, and is a value at which the operating speed of the mounting equipment 3 becomes a speed appropriate for the dust collection work of the worker (the driver of the work vehicle 1). In this embodiment, the target rotation speed Nm is set to a preset constant upper limit value Na. Note that the rotation speed data 12a may be data expressed in other forms such as mathematical expressions.
 バッテリ8の充電量Sには、下限充電量Sminと充電量閾値Saとが設定されている。下限充電量Sminは架装設備3の作動を許可する下限値であり、その設定は種々の方法が例示される。下限充電量Sminはバッテリ8に充電された電力量のうちの架装設備3の作動用に予め設定された架装用電力量に基づいて設定される。架装設備3を作動させた作業の開始時に取得されたバッテリ8の充電量からその時点のバッテリ8に充電されている電力量を求める。次いで、求めた電力量から架装用電力量を減算した値を求める。次いで、求めた値の総電力量に対する割合を求め、求めた割合が下限充電量Sminとなる。 For the charge amount S of the battery 8, a lower limit charge amount Smin and a charge amount threshold Sa are set. The lower limit charge amount Smin is a lower limit value that permits operation of the bodywork 3, and various methods are exemplified for its setting. The lower limit charging amount Smin is set based on the amount of power for bodywork that is set in advance for operating the bodywork equipment 3 among the power amounts charged in the battery 8 . The amount of electric power charged in the battery 8 at that point in time is obtained from the amount of charge in the battery 8 obtained at the start of the work in which the bodywork 3 is operated. Next, a value is obtained by subtracting the amount of power for mounting from the obtained amount of power. Next, the ratio of the obtained value to the total electric energy is obtained, and the obtained ratio becomes the lower limit charging amount Smin.
 架装用電力量は予め設定された固定値でもよく、作業車両1の走行ルートが既知である場合に、バッテリ8の総電力量から予測される架装設備3の作動に要する電力量以外に消費される予測消費電力量を減算した値でもよい。架装用電力量が固定値である場合に、架装用電力量を全て消費した場合のバッテリ8の充電量の減少量を求めることが可能であり、バッテリ8の充電量Sからその減少量を減算して下限充電量Sminを求めてもよい。作業車両1の走行ルートが既知である場合に、予測消費電力量は作業が進行するごとに変動する。充電量閾値Saは下限充電量Sminよりも多い充電量を示す値で、実験やシミュレーションなどを通じて設定される。 The amount of electric power for bodywork may be a preset fixed value. A value obtained by subtracting the estimated amount of power consumption to be consumed may be used. When the bodywork power amount is a fixed value, it is possible to obtain the amount of decrease in the charge amount of the battery 8 when the bodywork power amount is completely consumed. may be subtracted to obtain the lower limit charging amount Smin. When the travel route of the work vehicle 1 is known, the predicted power consumption fluctuates as the work progresses. The charge amount threshold Sa is a value indicating a charge amount larger than the lower limit charge amount Smin, and is set through experiments, simulations, and the like.
 図4~図6に例示するように、制御装置12には回転数データ12bが制御マップの形で記憶されている。回転数データ12bはバッテリ8からポンプ6へ供給可能な電力量Wpの低下により架装設備3の作動が停止することが予測された場合に用いられるデータである。この実施形態では、回転数データ12bはバッテリ8からポンプ6へ供給可能な電力量Wpとポンプ6の目標回転数Nmとの相関関係を表すデータである。バッテリ8からポンプ6へ供給可能な電力量Wpは、バッテリ8の温度Tとバッテリ8の放電能力Wとの相関関係と、バッテリ8からポンプ6へ供給可能な電力量Wpとポンプ6以外の装置の消費電力量Wrとの相関関係とから求まる。バッテリ8からポンプ6へ供給可能な電力量Wpには、下限電力量Wminと電力量閾値Waとが設定されている。下限電力量Wminはポンプ6の回転数が目標回転数Nmに設定された場合に架装設備3を作動させることが可能な最小の電力量を示す。電力量Wpが下限電力量Wminよりも低い場合に架装設備3の作動が停止する。電力量閾値Waは下限電力量Wminよりも多い電力量を示す値で、実験やシミュレーションなどを通じて設定される。回転数データ12bにおいても、目標回転数Nmを一定の上限値Naに設定している。尚、回転数データ12bは数式など他の形態で表されるデータでもよい。 As illustrated in FIGS. 4 to 6, the control device 12 stores rotation speed data 12b in the form of a control map. The rotational speed data 12b is data used when it is predicted that the operation of the mounting equipment 3 will stop due to a decrease in the amount of electric power Wp that can be supplied from the battery 8 to the pump 6. FIG. In this embodiment, the rotational speed data 12b is data representing the correlation between the amount of power Wp that can be supplied from the battery 8 to the pump 6 and the target rotational speed Nm of the pump 6 . The amount of power Wp that can be supplied from the battery 8 to the pump 6 is determined by the correlation between the temperature T of the battery 8 and the discharge capacity W of the battery 8, the amount of power Wp that can be supplied from the battery 8 to the pump 6, and devices other than the pump 6. and the correlation with the power consumption Wr. A power amount Wp that can be supplied from the battery 8 to the pump 6 is set with a lower limit power amount Wmin and a power amount threshold Wa. The lower limit power amount Wmin indicates the minimum amount of power that can operate the mounting equipment 3 when the rotation speed of the pump 6 is set to the target rotation speed Nm. When the amount of electric power Wp is lower than the lower limit amount of electric power Wmin, the operation of the bodywork 3 is stopped. The power amount threshold Wa is a value indicating a power amount greater than the lower limit power amount Wmin, and is set through experiments, simulations, and the like. Also in the rotation speed data 12b, the target rotation speed Nm is set to the constant upper limit value Na. Note that the rotation speed data 12b may be data expressed in other forms such as mathematical expressions.
 制御装置12には、油圧回路13を流れる作動油Olの圧力の上限値も記憶されている。制御装置12は、油圧回路13を流れる作動油Olの実際の圧力がこの上限値以上になった場合に、リリーフバルブ16を開いてこの実際の圧力を上限値未満に調整する構成である。尚、作動油Olの実際の圧力は、例えば、油圧回路13に配置された圧力センサにより検知される。 The control device 12 also stores the upper limit value of the pressure of the hydraulic oil Ol flowing through the hydraulic circuit 13 . The control device 12 is configured to open the relief valve 16 and adjust the actual pressure to less than the upper limit when the actual pressure of the hydraulic oil Ol flowing through the hydraulic circuit 13 exceeds the upper limit. The actual pressure of the hydraulic oil Ol is detected by a pressure sensor arranged in the hydraulic circuit 13, for example.
 制御装置12には図7に例示するように架装設備3を用いた複数の作業地点(塵芥Dの収集場所)およびバッテリ8の充電用のステーションStが間隔をあけて点在する作業車両1の所定の走行ルートRも記憶されている。この実施形態では、4つの作業地点a、b、c、dが走行ルートRに点在している。走行ルートRは実験やシミュレーションなどを通じて予め設定される。制御装置12には複数の走行ルートRが記憶されていてもよい。 As shown in FIG. 7, the control device 12 has a work vehicle 1 in which a plurality of work points (garbage D collection points) using the mounting equipment 3 and stations St for charging the battery 8 are scattered at intervals. is also stored. In this embodiment, the travel route R is interspersed with four work points a, b, c, d. The travel route R is set in advance through experiments, simulations, and the like. A plurality of travel routes R may be stored in the control device 12 .
 バッテリ8の充電量に基づく予測方法について図8、図9を参照しながら説明する。図8、図9に例示する制御フローは作業車両1が停車して作業者により電源スイッチ5aがオンされているときに周期的に、かつ、並行して実施される制御フローである。この制御フローはバッテリ8の充電量Sに基づいて架装用電力量を使い切ることを予測する場合のフローである。尚、この制御フローはスタート時にポンプ6の回転数は目標回転数Nmに設定されているものとする。 A prediction method based on the amount of charge of the battery 8 will be described with reference to FIGS. 8 and 9. FIG. The control flows illustrated in FIGS. 8 and 9 are executed periodically and in parallel when the work vehicle 1 is stopped and the power switch 5a is turned on by the worker. This control flow is a flow in the case of predicting that the amount of power for bodywork will be used up based on the amount of charge S of the battery 8 . In this control flow, it is assumed that the rotation speed of the pump 6 is set to the target rotation speed Nm at the start.
 図8の制御フローがスタートすると、ステップS110では、作業者により作動開始スイッチ5bが押されて架装設備3の作動を開始して、架装設備3を用いた作業を開始するか否かを判定する。架装設備3の作動を開始すると判定した場合(YES)にはステップS120に進む。架装設備3の作動を開始しないと判定した場合(NO)には図8の制御フローを終了する。ステップS120では、充電量センサ9を用いてバッテリ8の充電量Sを取得する。ステップS120を実施後、ステップS130に進む。ステップS130では、ステップS120で取得した充電量Sから上述した架装用電力量が消費した場合の減少量を減算して下限充電量Sminを算出する。ステップS130を実施後、ステップS140に進む。ステップS140では、ステップS130で算出した下限充電量Sminを用いて充電量閾値Saを設定する。ステップS140を実施後、図8の制御フローを終了する。 When the control flow of FIG. 8 starts, in step S110, the operator presses the operation start switch 5b to start the operation of the mounting equipment 3, and determines whether or not to start the work using the mounting equipment 3. judge. If it is determined to start the operation of the mounting equipment 3 (YES), the process proceeds to step S120. If it is determined not to start the operation of the bodywork 3 (NO), the control flow of FIG. 8 is terminated. In step S120, the charge amount S of the battery 8 is acquired using the charge amount sensor 9. FIG. After performing step S120, the process proceeds to step S130. In step S130, the lower limit charge amount Smin is calculated by subtracting the amount of decrease in the case where the above-described amount of power for mounting is consumed from the charge amount S obtained in step S120. After performing step S130, the process proceeds to step S140. In step S140, the charge amount threshold value Sa is set using the lower limit charge amount Smin calculated in step S130. After executing step S140, the control flow in FIG. 8 ends.
 架装用電力量は、図12に例示する過去データ12cに基づいて制御装置12により算出される。過去データ12cの詳細については後述するが、この実施形態では走行用消費電力量Wtおよび作業用消費電力量Woのそれぞれを作業地点ごとに含んでいるデータである。走行用消費電力量Wtはその作業地点から他の作業地点への移動の開始から終了するまでの間の各区間でバッテリ8が消費する電力量である。作業用消費電力量Woはその作業地点での架装設備3による作業の開始から終了するまでにバッテリ8が消費する電力量である。この実施形態では、各区間での走行用消費電力量WtをWt1~Wt5で示し、その合計値(=Wt1+Wt2+Wt3+Wt4+Wt5)をWt6で示している。この実施形態では、各作業地点での作業用消費電力量WoをWo1~Wo4で示し、その合計値(=Wo1+Wo2+Wo3+Wo4)をWo5で示している。 The amount of power for mounting is calculated by the control device 12 based on the past data 12c illustrated in FIG. Although the details of the past data 12c will be described later, in this embodiment, the past data 12c is data that includes the power consumption for traveling Wt and the power consumption for work Wo for each work point. The traveling power consumption Wt is the power consumed by the battery 8 in each section from the start to the end of movement from the work point to another work point. The power consumption Wo for work is the amount of power consumed by the battery 8 from the start to the end of the work by the bodywork 3 at the work point. In this embodiment, the power consumption Wt for running in each section is indicated by Wt1 to Wt5, and the total value (=Wt1+Wt2+Wt3+Wt4+Wt5) is indicated by Wt6. In this embodiment, the work power consumption Wo at each work point is indicated by Wo1 to Wo4, and the total value (=Wo1+Wo2+Wo3+Wo4) is indicated by Wo5.
 架装用電力量は作業用電力量の合計値Wo5、あるいは、その合計値Wo5にマージンを加算した値が初期値として設定される。架装用電力量は、初期値から既に作業が完了した作業地点での実際に消費された作業用消費電力量の実績値を減算して得られる。これらの実績値は、バッテリ8からポンプ6へ供給可能な電力量Wrをそれぞれの作業地点での作業時間で時間積分して得られる。このように、架装用電力量は作業開始時点で随時、更新される。 The initial value of the amount of power for bodywork is set to the total value Wo5 of the amount of power for work, or the value obtained by adding a margin to the total value Wo5. The amount of electric power for bodywork is obtained by subtracting the actual value of electric power consumption for work actually consumed at a work point where the work has already been completed from the initial value. These actual values are obtained by time-integrating the amount of electric power Wr that can be supplied from the battery 8 to the pump 6 with the work time at each work point. In this way, the amount of power for bodywork is updated at any time at the start of work.
 図9の制御フローは作業車両1の停車後に図8のステップS110~S140を一度実行した後に行われる。図9の制御フローがスタートすると、ステップS210で充電量センサ9を用いてバッテリ8の充電量Sを取得する。ステップS210を実施後、ステップS220に進む。ステップS220では、ステップS210で取得した充電量Sが図8のステップS140で設定した充電量閾値Saよりも少ないか否かを判定する。充電量Sが充電量閾値Sa以上である場合(NO)には図9の制御フローをステップS210からやり直す。充電量Sが充電量閾値Saよりも少ない場合(YES)にはステップS230に進む。ステップS230では、ポンプ6の目標回転数Nmを下限値Nbまで低下させる。ステップS230を実施後、ステップS240に進む。ステップS240では、ステップS210で取得した充電量Sが図8のステップS130で算出した下限充電量Sminよりも少ないか否かを判定する。充電量Sが下限充電量Smin以上である場合(NO)には図9の制御フローをステップS210からやり直す。充電量Sが下限充電量Sminよりも少ない場合(YES)にはステップS250に進む。ステップS250では、ポンプ6を自動的に停止する。ステップS250の実施後、図9の制御フローを終了する。尚、図8、図9の制御フローを実施している途中で作業者により作動終了スイッチ5cの操作が行われたときには図8、図9の制御フローを強制的に終了する。また、ステップS250でポンプ6を自動的に停止した場合は、作業者が一度ステーションStに戻ってバッテリ8を充電することが必要になる。 The control flow in FIG. 9 is performed after steps S110 to S140 in FIG. 8 are executed once after the work vehicle 1 has stopped. When the control flow of FIG. 9 starts, the charge amount S of the battery 8 is acquired using the charge amount sensor 9 in step S210. After performing step S210, the process proceeds to step S220. In step S220, it is determined whether or not the charge amount S acquired in step S210 is smaller than the charge amount threshold value Sa set in step S140 of FIG. If the charge amount S is equal to or greater than the charge amount threshold Sa (NO), the control flow of FIG. 9 is restarted from step S210. If the charge amount S is less than the charge amount threshold value Sa (YES), the process proceeds to step S230. In step S230, the target rotation speed Nm of the pump 6 is decreased to the lower limit value Nb. After performing step S230, the process proceeds to step S240. In step S240, it is determined whether or not the charge amount S obtained in step S210 is smaller than the lower limit charge amount Smin calculated in step S130 of FIG. If the charge amount S is equal to or greater than the lower limit charge amount Smin (NO), the control flow of FIG. 9 is restarted from step S210. If the charge amount S is less than the lower limit charge amount Smin (YES), the process proceeds to step S250. In step S250, the pump 6 is automatically stopped. After performing step S250, the control flow in FIG. 9 ends. 8 and 9 are forcibly terminated when the operation end switch 5c is operated by the operator during execution of the control flow of FIGS. Further, when the pump 6 is automatically stopped in step S250, it is necessary for the operator to return to the station St once to charge the battery 8. FIG.
 バッテリ8からポンプ6へ供給可能な電力量Wpに基づく予測方法について図10、図11を参照しながら説明する。図10、図11に例示する制御フローは作業車両1が停車して作業者により電源スイッチ5aがオンされているときに周期的に、かつ、並行して実施される制御フローである。この制御フローはバッテリ8からポンプ6へ供給可能な電力量Wpに基づいて架装用電力量を使い切ることを予測する場合のフローである。尚、この制御フローはスタート時にポンプ6の回転数は目標回転数Nmに設定されているものとする。 A prediction method based on the amount of power Wp that can be supplied from the battery 8 to the pump 6 will be described with reference to FIGS. 10 and 11. FIG. The control flows illustrated in FIGS. 10 and 11 are executed periodically and in parallel when the work vehicle 1 is stopped and the power switch 5a is turned on by the worker. This control flow is a flow for predicting that the amount of electric power for bodywork will be used up based on the amount of electric power Wp that can be supplied from the battery 8 to the pump 6 . In this control flow, it is assumed that the rotation speed of the pump 6 is set to the target rotation speed Nm at the start.
 図10の制御フローがスタートすると、ステップS310では、作業者により作動開始スイッチ5bが押されて架装設備3の作動を開始して、架装設備3を用いた作業を開始するか否かを判定する。架装設備3の作動を開始すると判定した場合(YES)にはステップS320に進む。架装設備3の作動を開始しないと判定した場合(NO)には図10の制御フローを終了する。ステップS320では、バッテリ温度センサ10aおよび消費電力量センサ10bの検知データを用いてバッテリ8の放電能力Wとポンプ6以外で消費される他の消費電力量Wrとを取得する。ステップS320を実施後、ステップS330に進む。ステップS330では、ステップS320で取得した放電能力Wおよび消費電力量Wrを用いてバッテリ8からポンプ6に供給可能な電力量Wpを算出する。ステップS330を実施後、図10の制御フローを終了する。 When the control flow of FIG. 10 starts, in step S310, the operator presses the operation start switch 5b to start the operation of the mounting equipment 3, and determines whether or not to start the work using the mounting equipment 3. judge. If it is determined to start the operation of the mounting equipment 3 (YES), the process proceeds to step S320. If it is determined not to start the operation of the mounting equipment 3 (NO), the control flow of FIG. 10 is terminated. In step S320, the discharge capacity W of the battery 8 and other power consumption Wr other than the pump 6 are acquired using the detection data of the battery temperature sensor 10a and the power consumption sensor 10b. After performing step S320, the process proceeds to step S330. In step S330, the amount of power Wp that can be supplied from the battery 8 to the pump 6 is calculated using the discharge capacity W and the amount of power consumption Wr acquired in step S320. After executing step S330, the control flow of FIG. 10 is terminated.
 図11の制御フローは作業車両1の停車後に図10のステップS310~S330を一度実行した後に行われる。図11の制御フローがスタートすると、ステップS420では、ステップS410で取得した電力量Wpが電力量閾値Waよりも少ないか否かを判定する。電力量Wpが電力量閾値Wa以上である場合(NO)には図11の制御フローをステップS410からやり直す。電力量Wpが電力量閾値Waよりも少ない場合(YES)にはステップS430に進む。ステップS430では、ポンプ6の目標回転数Nmを下限値Nbまで低下させる。ステップS430を実施後、ステップS440に進む。ステップS440では、ステップS410で取得した電力量Wpが図10のステップS330で算出した下限電力量Wminよりも少ないか否かを判定する。電力量Wが下限電力量Wmin以上である場合(NO)には図11の制御フローをステップS410からやり直す。電力量Wpが下限電力量Wminよりも少ない場合(YES)にはステップS450に進む。ステップS450では、ポンプ6を自動的に停止する。ステップS450を実施後、図11の制御フローを終了する。尚、図10、図11の制御フローを実施している途中で作業者により作動終了スイッチ5cの操作が行われたときには図10、図11の制御フローを強制的に終了する。また、ステップS450でポンプ6を自動的に停止した場合は、作業者が一度ステーションStに戻ってバッテリ8を充電することが必要になる。 The control flow in FIG. 11 is performed after steps S310 to S330 in FIG. 10 are executed once after the work vehicle 1 has stopped. When the control flow of FIG. 11 starts, in step S420, it is determined whether or not the power amount Wp acquired in step S410 is less than the power amount threshold Wa. If the power amount Wp is greater than or equal to the power amount threshold Wa (NO), the control flow of FIG. 11 is restarted from step S410. If the power amount Wp is less than the power amount threshold Wa (YES), the process proceeds to step S430. In step S430, the target rotation speed Nm of the pump 6 is decreased to the lower limit value Nb. After performing step S430, the process proceeds to step S440. In step S440, it is determined whether or not the power consumption Wp acquired in step S410 is less than the lower limit power consumption Wmin calculated in step S330 of FIG. If the electric energy W is equal to or greater than the lower limit electric energy Wmin (NO), the control flow of FIG. 11 is restarted from step S410. If the electric energy Wp is less than the lower limit electric energy Wmin (YES), the process proceeds to step S450. At step S450, the pump 6 is automatically stopped. After executing step S450, the control flow of FIG. 11 ends. 10 and 11, the control flow of FIGS. 10 and 11 is forcibly terminated when the operator operates the operation end switch 5c. Further, when the pump 6 is automatically stopped in step S450, it is necessary for the operator to return to the station St once to charge the battery 8. FIG.
 以上のように、本開示の車両1では、充電量Sに基づく予測と電力量Wpに基づく予測のいずれかの予測で架装用電力量を使い切ることが予測された場合に、ポンプ6の回転数を目標回転数Nmから下げて架装設備3の作動速度を低下させる。 As described above, in the vehicle 1 of the present disclosure, when it is predicted that the vehicle mounting power amount will be used up in either the prediction based on the charge amount S or the prediction based on the power amount Wp, the rotation of the pump 6 is lowered from the target rotation speed Nm to lower the operating speed of the mounting equipment 3.
 本開示の作業車両1によれば、ポンプ6の回転数を目標回転数Nmで駆動させている状態で、架装設備3が作動した作業が中断することを予測した場合にポンプ6の回転数を目標回転数Nmから下げて架装設備3の作動速度を低下させる。ポンプ6の回転数はモータ7の回転数と正の相関関係にあり、モータ7の回転数はバッテリ8の単位時間当たりの消費電力量と正の相関関係にある。即ち、ポンプ6の回転数が低下するとバッテリ8の単位時間当たりの消費電力量も低くなる。したがって、ポンプ6の目標回転数Nmを下げることで架装設備3の作動に要するバッテリ8の消費電力量を低減することができる。 According to the work vehicle 1 of the present disclosure, in a state in which the pump 6 is driven at the target rotation speed Nm, the rotation speed of the pump 6 is is lowered from the target rotation speed Nm to lower the operating speed of the mounting equipment 3 . The rotation speed of the pump 6 has a positive correlation with the rotation speed of the motor 7, and the rotation speed of the motor 7 has a positive correlation with the power consumption of the battery 8 per unit time. That is, when the rotation speed of the pump 6 decreases, the power consumption of the battery 8 per unit time also decreases. Therefore, by lowering the target rotation speed Nm of the pump 6, the power consumption of the battery 8 required for the operation of the mounting equipment 3 can be reduced.
 バッテリ8の消費電力量の低減により、バッテリ8を大型化させる必要がなく、ステーションStでのバッテリ8の充電機会も低減させることができる。詳述すると、バッテリ8を大型化させる必要がないので、バッテリ8の重量増加による車重の増加がなく、作業車両1の走行効率の低下を抑制することができる。ステーションStでのバッテリ8の充電機会の低減により、作業車両1の走行ルートRの途中でステーションStまで走行する機会が減り、作業者の作業効率(塵芥Dの収集効率)を向上させることができる。バッテリ8の放電能力が低下しているときにバッテリ8の消費電力量を低減するので、架装設備3を作動させるための電力を確保することができ、作業の中断を回避することができる。また、この実施形態のように作業車両1が電動車両であると、作業車両1が停車している架装設備3の作動時にバッテリ8の充電ができない。そのため、バッテリ8の消費電力量の低減に伴う効果はより一層大きくなる。 By reducing the power consumption of the battery 8, there is no need to increase the size of the battery 8, and the chances of charging the battery 8 at the station St can be reduced. Specifically, since there is no need to increase the size of the battery 8 , there is no increase in vehicle weight due to an increase in the weight of the battery 8 , and deterioration in running efficiency of the work vehicle 1 can be suppressed. By reducing the chance of charging the battery 8 at the station St, the chance of traveling to the station St on the way of the travel route R of the work vehicle 1 is reduced, and the worker's work efficiency (collection efficiency of the garbage D) can be improved. . Since the power consumption of the battery 8 is reduced when the discharge capacity of the battery 8 is reduced, power for operating the bodywork 3 can be secured, and interruption of work can be avoided. Further, if the work vehicle 1 is an electric vehicle as in this embodiment, the battery 8 cannot be charged while the mounting equipment 3 is operating while the work vehicle 1 is stopped. Therefore, the effect of reducing the power consumption of the battery 8 becomes even greater.
 架装設備3の作動時にポンプ6の回転数を目標回転数Nmよりも低い回転数に設定しても、回転板3aの単位時間当たりの回転数や押込板3bの単位時間当たりの押込回数が少なくなるだけである。つまり、回転板3aの回転トルクや押込板3bの押す力には何ら影響がないので、回転板3aにより塵芥Dを掻き上げることができない、押込板3bにより塵芥Dを押し込めないなど、架装設備3の駆動に支障が生じることはない。 Even if the rotation speed of the pump 6 is set to a rotation speed lower than the target rotation speed Nm when the mounting equipment 3 is in operation, the rotation speed per unit time of the rotary plate 3a and the number of pushes per unit time of the push-in plate 3b do not increase. it will only be less. That is, since the rotating torque of the rotating plate 3a and the pushing force of the pushing plate 3b are not affected at all, the dust D cannot be scraped up by the rotating plate 3a, and the dust D cannot be pushed in by the pushing plate 3b. There is no problem in driving 3.
 実施形態の作業車両1は架装用電力量を使い切るよりも前にバッテリ8の充電量Sに基づいて架装用電力量を使い切ることを予測した場合に架装設備3の作動速度を低下させる。それ故、架装設備3の作動速度を低下させない場合と比較して、この予測時点からバッテリ8の充電量Sが下限充電量Sminよりも少なくなるときまでの時間を長期化させることができる。即ち、架装設備3の作動回数を多くすることができる。 The work vehicle 1 of the embodiment reduces the operating speed of the bodywork equipment 3 when it is predicted that the bodywork power amount will be used up based on the charge amount S of the battery 8 before the bodywork power amount is used up. . Therefore, compared to the case where the operating speed of the bodywork 3 is not reduced, the time from the time of prediction until the state of charge S of the battery 8 becomes less than the minimum state of charge Smin can be lengthened. That is, the number of operations of the mounting equipment 3 can be increased.
 作業車両1は作業ごとに下限充電量Sminおよび充電量閾値Saを算出することが望ましい。架装設備3が作動した作業の量は作業地点ごとに異なる。それ故、このようにすることで、架装設備3の作動速度を適切に低下させて、それぞれの作業地点で必要とされる架装設備3の作動回数を確保するには有利になる。尚、下限充電量Sminおよび充電量閾値Saを全ての作業地点で同じ値に設定してもよい。 It is desirable that the work vehicle 1 calculates the lower limit charging amount Smin and the charging amount threshold Sa for each task. The amount of work done by the bodywork 3 varies from work point to work point. Therefore, in this way, it is advantageous to appropriately reduce the operating speed of the bodywork equipment 3 to ensure the required number of operations of the bodywork equipment 3 at each work point. Note that the lower limit charging amount Smin and the charging amount threshold Sa may be set to the same value at all work points.
 バッテリ8の放電能力Wに基づいて架装設備3の作動が停止することを予測してもよい。このようにしても、架装設備3の作動速度を適切に低下させて、それぞれの作業地点で必要とされる架装設備3の作動回数を確保するには有利になる。 It may be predicted that the operation of the body equipment 3 will stop based on the discharge capacity W of the battery 8 . Even in this way, it is advantageous to properly reduce the operating speed of the mounting equipment 3 and secure the number of times of operation of the mounting equipment 3 required at each work point.
 ポンプ6の回転数を目標回転数Nmから下げる場合にその回転数を一定の下限値Nbに低下させると、制御装置12による制御が簡素化される。それ故、制御装置12の負担を低減させることができる。 When the rotation speed of the pump 6 is lowered from the target rotation speed Nm, the control by the control device 12 is simplified if the rotation speed is lowered to a certain lower limit value Nb. Therefore, the burden on the control device 12 can be reduced.
 制御装置12に図12に例示する過去データ12cを記憶させて、この過去データ12cに基づいて架装設備3が作動した作業中のポンプ6の回転数を調整するようにしてもよい。過去データ12cは作業車両1が走行ルートRを走行して架装設備3の作業を行ったときの履歴である。過去データ12cはポンプ6の回転数の調整制御において回転数データ12aの代わりになるデータである。過去データ12cは、一回の履歴に基づくデータでもよいし、複数回の履歴に基づくデータ(例えば平均値)でもよい。過去データ12cは実験やシミュレーションなどを通じて予め設定されて制御装置12に記憶される。 The past data 12c illustrated in FIG. 12 may be stored in the control device 12, and the rotation speed of the pump 6 during work in which the bodywork 3 is operated may be adjusted based on this past data 12c. The past data 12c is a history of when the work vehicle 1 traveled along the travel route R and performed work on the mounting equipment 3. FIG. The past data 12c is data that replaces the rotation speed data 12a in the adjustment control of the rotation speed of the pump 6. FIG. The past data 12c may be data based on a single history or data based on a plurality of histories (for example, an average value). The past data 12c is set in advance through experiments, simulations, or the like and stored in the control device 12. FIG.
 過去データ12cは少なくとも走行ルートRの作業地点ごとの架装設備3の作動回数Aを含んでいるデータである。この実施形態では、過去データ12cは走行用消費電力量Wtおよび作業用消費電力量Woのそれぞれも作業地点ごとに含んでいるデータである。走行用消費電力量Wtはその作業地点から他の作業地点への移動の開始から終了するまでに(各区間で)バッテリ8が消費する電力量である。作業用消費電力量Woはその作業地点での架装設備3による作業の開始から終了するまでにバッテリ8が消費する電力量である。この実施形態では、各作業地点(a~d)での作動回数AをA1~A4で示し、その合計値(=A1+A2+A3+A4)をA5で示している。この実施形態では、各区間での走行用消費電力量WtをWt1~Wt5で示し、その合計値(=Wt1+Wt2+Wt3+Wt4+Wt5)をWt6で示している。この実施形態では、各作業地点での作業用消費電力量WoをWo1~Wo4で示し、その合計値(=Wo1+Wo2+Wo3+Wo4)をWo5で示している。 The past data 12c is data that includes at least the number of operations A of the bodywork equipment 3 for each work point on the travel route R. In this embodiment, the past data 12c is data that also includes the travel power consumption Wt and the work power consumption Wo for each work point. The traveling power consumption Wt is the power consumed by the battery 8 from the start to the end of movement from the work point to another work point (in each section). The power consumption Wo for work is the amount of power consumed by the battery 8 from the start to the end of the work by the bodywork 3 at the work point. In this embodiment, the number of operations A at each work point (a to d) is indicated by A1 to A4, and the total value (=A1+A2+A3+A4) is indicated by A5. In this embodiment, the power consumption Wt for running in each section is indicated by Wt1 to Wt5, and the total value (=Wt1+Wt2+Wt3+Wt4+Wt5) is indicated by Wt6. In this embodiment, the work power consumption Wo at each work point is indicated by Wo1 to Wo4, and the total value (=Wo1+Wo2+Wo3+Wo4) is indicated by Wo5.
 制御装置12に過去データ12cを記憶させる場合、図2に例示するように、作業車両1には架装設備3の作動回数Aを取得する作動回数センサ(作動回数取得装置)18が備わる。作動回数センサ18としては公知の様々なセンサを用いることができる。作動回数センサ18は制御装置12に電気的に接続されていて、このセンサ18により検知されたデータは制御装置12に入力される。尚、作動回数センサ18の代わりに、架装設備3の単位時間当たりの作動に要する電力量などの各種パラメータを用いて作動回数Aを演算する公知の演算装置を用いてもよい。 When the past data 12c is stored in the control device 12, the work vehicle 1 is provided with an operation frequency sensor (operation frequency acquisition device) 18 that acquires the operation frequency A of the mounting equipment 3, as illustrated in FIG. Various known sensors can be used as the operation number sensor 18 . The actuation number sensor 18 is electrically connected to the control device 12 , and the data detected by this sensor 18 is input to the control device 12 . Note that instead of the actuation number sensor 18, a known computing device that computes the actuation number A using various parameters such as the amount of electric power required for operation of the bodywork 3 per unit time may be used.
 作業車両1の制御方法について図13及び図14を参照しながら説明する。図13及び図14に例示する制御フローは作業車両1が停車して作業者により電源スイッチ5aがオンされているときに周期的に実施される制御フローである。 A control method for the work vehicle 1 will be described with reference to FIGS. 13 and 14. FIG. The control flows illustrated in FIGS. 13 and 14 are periodically executed when the work vehicle 1 is stopped and the power switch 5a is turned on by the operator.
 図13の制御フローがスタートすると、ステップS510では、ナビゲーションシステム11を用いて走行ルートRにおける車両1の現在位置を取得する。この実施形態では、車両1が作業地点a、b、c、dのいずれの位置にいるかを取得する。ステップS510を実施後、ステップS520に進む。ステップS520では、過去データ12cにおける現在の作業地点から最後の作業地点が終了するまでの予定の作動回数Apを算出する。現在の作業地点はこの制御フローの進行時に架装設備3を用いた作業を行う地点である。最後の作業地点は走行ルートRにおけるステーションStに戻る側から最も近い作業地点(図7では作業地点d)である。例えば、現在の作業地点がaである場合、図12の過去データ12cを用いて予定の作動回数ApはA2+A3+A4になる。ステップS520を実施後、ステップS530に進む。 When the control flow of FIG. 13 starts, the current position of the vehicle 1 on the travel route R is acquired using the navigation system 11 in step S510. In this embodiment, it is acquired at which of the work points a, b, c, and d the vehicle 1 is located. After performing step S510, the process proceeds to step S520. In step S520, the planned number of operations Ap from the current work point to the end of the last work point in the past data 12c is calculated. The current work point is the point where the work using the bodywork 3 is performed during the progress of this control flow. The final work point is the nearest work point (work point d in FIG. 7) from the side returning to the station St on the travel route R. For example, if the current work point is a, the planned number of operations Ap will be A2+A3+A4 using the past data 12c of FIG. After performing step S520, the process proceeds to step S530.
 ステップS530では、ステップS520で算出した予定の作動回数Apを用いて下限回数Aminを設定する。下限回数Aminは、架装設備3の残りの作動回数Arが下限回数Aminよりも少なくなると作業車両1が走行ルートRを走行するのに支障が生じるおそれがある回数に設定される。残りの作動回数Arは過去データ12cにおける架装設備3の総作業回数A5から作動回数センサ18が取得した作動回数Aを減算して得られる値である。下限回数Aminは、実験やシミュレーションなどを通じて設定されて、例えば、予定の作動回数Apの80~90%程度の値である。ステップS530を実施後、図14のステップS540に進む。 In step S530, the lower limit number of times Amin is set using the planned number of times of operation Ap calculated in step S520. The lower limit number of times Amin is set to a number of times at which there is a possibility that the work vehicle 1 may be hindered from traveling on the travel route R when the number of times Ar of the remaining operation of the mounting equipment 3 becomes less than the lower limit number of times Amin. The remaining number of operations Ar is a value obtained by subtracting the number of operations A acquired by the number of operations sensor 18 from the total number of operations A5 of the mounting equipment 3 in the past data 12c. The lower limit number of times Amin is set through experiments, simulations, etc., and is, for example, a value of about 80 to 90% of the planned number of times of operation Ap. After performing step S530, the process proceeds to step S540 in FIG.
 ステップS540では、作業者により作動開始スイッチ5bが押されて架装設備3の作動を開始して、架装設備3を用いた作業を開始するか否かを判定する。架装設備3の作動を開始すると判定した場合(YES)にはステップS550に進む。架装設備3の作動を開始しないと判定した場合(NO)には図14の制御フローを終了する。ステップS550では、ポンプ6の駆動を開始してその回転数を目標回転数Nmに調整し、作動回数センサ18を用いて架装設備3の作動回数Aを取得する。ステップS550を実施後、ステップS560に進む。ステップS560では、油圧アクチュエータ4により架装設備3が作動している状態で、ステップS550で取得した作動回数Aに基づいて、残りの作動回数Arを算出する。ステップS560を実施後、ステップS570に進む。 In step S540, it is determined whether or not the operation start switch 5b is pushed by the operator to start the operation of the mounting equipment 3 and to start the work using the mounting equipment 3. If it is determined to start the operation of the mounting equipment 3 (YES), the process proceeds to step S550. If it is determined not to start the operation of the mounting equipment 3 (NO), the control flow of FIG. 14 is terminated. In step S550, the driving of the pump 6 is started, the rotation speed thereof is adjusted to the target rotation speed Nm, and the operation frequency A of the mounting equipment 3 is acquired using the operation frequency sensor 18. After performing step S550, the process proceeds to step S560. In step S560, the remaining number of operations Ar is calculated based on the number of operations A obtained in step S550 while the bodywork 3 is being operated by the hydraulic actuator 4 . After performing step S560, the process proceeds to step S570.
 ステップS570では、ステップS560で算出した残りの作動回数ArがステップS520で算出した予定の作動回数Apよりも少ないか否かを判定する。残りの作動回数Arが予定の作動回数Ap以上である場合(NO)には図14の制御フローをステップS550からやり直す。残りの作動回数Arが予定の作動回数Apよりも少ない場合(YES)には、ステップS580に進む。ステップS580では、ポンプ6の回転数を目標回転数Nmから低下させて架装設備3の作動速度を低下させる。ステップS580を実施後、ステップS590に進む。 In step S570, it is determined whether or not the remaining number of operations Ar calculated in step S560 is smaller than the planned number of operations Ap calculated in step S520. If the remaining number of operations Ar is greater than or equal to the planned number of operations Ap (NO), the control flow of FIG. 14 is restarted from step S550. If the remaining number of operations Ar is smaller than the planned number of operations Ap (YES), the process proceeds to step S580. In step S580, the rotational speed of the pump 6 is reduced from the target rotational speed Nm to reduce the operating speed of the mounting equipment 3. After performing step S580, the process proceeds to step S590.
 ステップS590では、ステップS560で算出した残りの作動回数ArがステップS530で設定した下限回数Aminよりも少ないか否かを判定する。残りの作動回数Arが下限回数Amin以上である場合(NO)には、図14の制御フローをステップS550からやり直す。残りの作動回数Arが下限回数Aminよりも少ない場合(YES)には、ステップS600に進む。ステップS600では、ポンプ6を自動的に停止する。ステップS600の実施後、図14の制御フローを終了する。尚、図13、図14の制御フローを実施している途中で作業者により作動終了スイッチ5cの操作が行われたときには図13、図14の制御フローを強制的に終了する。また、ステップS600でポンプ6を自動的に停止した場合は、作業者が一度ステーションStに戻ってバッテリ8を充電することが必要になる。 In step S590, it is determined whether or not the remaining number of operations Ar calculated in step S560 is less than the lower limit number of times Amin set in step S530. If the remaining number of operations Ar is greater than or equal to the lower limit number of times Amin (NO), the control flow of FIG. 14 is restarted from step S550. If the remaining number of operations Ar is less than the lower limit number of times Amin (YES), the process proceeds to step S600. At step S600, the pump 6 is automatically stopped. After performing step S600, the control flow of FIG. 14 ends. 13 and 14, the control flow of FIGS. 13 and 14 is forcibly terminated when the operation end switch 5c is operated by the operator. Further, when the pump 6 is automatically stopped in step S600, it is necessary for the operator to return to the station St once to charge the battery 8. FIG.
 以上のように、作業車両1が走行ルートRを走行している場合に架装設備3を用いた作業の進行状況を加味した上でポンプ6の回転数が調整される。それ故、架装設備3の作動時にバッテリ8の消費電力量を低減させてバッテリ8の充電機会を低減させるには有利になる。 As described above, when the work vehicle 1 travels along the travel route R, the rotation speed of the pump 6 is adjusted in consideration of the progress of the work using the mounting equipment 3 . Therefore, it is advantageous to reduce the power consumption of the battery 8 when the bodywork 3 is in operation and reduce the chances of charging the battery 8 .
 作業車両1は、バッテリ8の充電量Sに基づいた予測のみで架装設備3の作動速度を低下させる制御を制御装置12により行う構成でもよい。作業車両1は、バッテリ8からポンプ6へ供給可能な電力量Wpに基づいた予測のみで架装設備3の作動速度を低下させる制御を制御装置12により行う構成でもよい。バッテリ8からポンプ6へ供給可能な電力量Wpはバッテリ8の放電能力のみで判定してもよく、ポンプ6以外の他の装置の消費電力量のみで判定してもよい。ただし、上述した実施形態のように、作業車両1は、バッテリ8の充電量Sに基づいた予測とバッテリ8からポンプ6へ供給可能な電力量Wpに基づいた予測の両方で架装設備3の作動速度を低下させる制御を制御装置12により行う構成であることが好ましい。この両方の予測を行うことで架装設備3を作動させた作業が中断される頻度を低減するには有利になる。 The work vehicle 1 may be configured such that the control device 12 performs control to reduce the operation speed of the mounting equipment 3 only by prediction based on the charge amount S of the battery 8 . The work vehicle 1 may be configured such that the control device 12 performs control to reduce the operating speed of the mounting equipment 3 only by prediction based on the amount of electric power Wp that can be supplied from the battery 8 to the pump 6 . The amount of power Wp that can be supplied from the battery 8 to the pump 6 may be determined based only on the discharge capacity of the battery 8 or based on the amount of power consumed by devices other than the pump 6 . However, as in the above-described embodiment, the work vehicle 1 predicts both the prediction based on the charge amount S of the battery 8 and the prediction based on the electric power amount Wp that can be supplied from the battery 8 to the pump 6. It is preferable that the control device 12 is configured to perform control to reduce the operating speed. Making both of these predictions is advantageous for reducing the frequency with which the work that actuates the bodywork 3 is interrupted.
 回転数データ12a、12bや過去データ12cを用いてポンプ6の回転数を下限値Nbまで下げる場合に、上述したセンサ9、10a、10b、18が取得したデータに基づいてポンプ6の回転数を徐々に低下させてもよい。詳述すると、バッテリ8の充電量Sやバッテリ8からポンプ6へ供給可能な電力量Wpが低下するにつれてポンプ6の回転数を徐々に低下させてもよい。架装設備3の作動回数Aが多くなるにつれてポンプ6の回転数を徐々に低下させてもよい。このようにすると、バッテリ8の単位時間あたりの消費電力量がバッテリ8のSOCに応じて適切に設定されるのでバッテリ8の消費電力量の低減に有利になる。 When the rotation speed of the pump 6 is lowered to the lower limit value Nb using the rotation speed data 12a, 12b and the past data 12c, the rotation speed of the pump 6 is reduced based on the data acquired by the sensors 9, 10a, 10b, and 18 described above. It may be lowered gradually. Specifically, the rotation speed of the pump 6 may be gradually decreased as the charge amount S of the battery 8 and the power amount Wp that can be supplied from the battery 8 to the pump 6 decrease. The rotation speed of the pump 6 may be gradually decreased as the number of times A of the mounting equipment 3 is operated increases. In this way, the power consumption per unit time of the battery 8 is appropriately set according to the SOC of the battery 8, which is advantageous for reducing the power consumption of the battery 8. FIG.
 架装設備3を用いた作業中に制御装置12によるポンプ6の回転数調整を行うと、作業者が突然の回転数調整に違和感を覚えるおそれがある。そのため、架装設備3を用いた作業中に作業者が制御禁止スイッチ5dを操作して制御装置12によるポンプ6の回転数調整を禁止すると作業者が違和感なく塵芥Dの収集作業を行うことができる。 If the rotation speed of the pump 6 is adjusted by the control device 12 during work using the mounting equipment 3, the operator may feel uncomfortable with the sudden adjustment of the rotation speed. Therefore, if the worker operates the control prohibition switch 5d to prohibit the rotation speed adjustment of the pump 6 by the control device 12 during the work using the mounting equipment 3, the worker can collect the dust D without discomfort. can.
 制御装置12側で設定したポンプ6の目標回転数Nmに応じて架装設備3を作動させると、作業環境によっては作業者が架装設備3の作動が早いまたは遅いと感じるおそれがある。そのため、作業者が調整用スイッチ5eを操作してポンプ6の回転数を作業環境に応じた値に調整することで作業者の作業効率を向上させるには有利になる。 When the mounting equipment 3 is operated according to the target rotation speed Nm of the pump 6 set on the control device 12 side, the operator may feel that the mounting equipment 3 is operating quickly or slowly depending on the work environment. Therefore, it is advantageous for the operator to operate the adjustment switch 5e to adjust the rotation speed of the pump 6 to a value according to the working environment, thereby improving the working efficiency of the operator.
 尚、エンジンおよびモータージェネレータ2の両方を搭載した車両の場合には、架装設備3の作動時にエンジンの動力を用いてモータージェネレータ2またはモータ7を発電させることでバッテリ8を充電させることが考えられる。上述のようにバッテリ8の消費電力量を低減させることでエンジンの動力を用いたバッテリ8の充電機会が低減される。それ故、エンジンの燃費を向上させることができる。 In the case of a vehicle equipped with both an engine and a motor-generator 2, it is conceivable to charge the battery 8 by causing the motor-generator 2 or the motor 7 to generate electricity using the power of the engine when the body equipment 3 is in operation. be done. By reducing the power consumption of the battery 8 as described above, the chances of charging the battery 8 using the power of the engine are reduced. Therefore, the fuel efficiency of the engine can be improved.
 本出願は、2021年3月26日付で出願された日本国特許出願(特願2021-052577)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application (Japanese Patent Application 2021-052577) filed on March 26, 2021, the contents of which are incorporated herein by reference.
 本開示に係る作業車両は、架装設備を作動した作業の中断を回避する技術に広く適用することができる。 The work vehicle according to the present disclosure can be widely applied to techniques for avoiding interruption of work in which body equipment is operated.
1 作業車両
2 モータージェネレータ(走行用モータ)
3 架装設備
3a 回転板
3b 押込板
3c 塵芥積込箱
3d 塵芥投入口
3e 塵芥収容箱
4 油圧アクチュエータ
4a 油圧モータ
4b 油圧シリンダ
5 操作盤
5a 電源スイッチ
5b 作動開始スイッチ
5c 作動停止スイッチ
5d 制御禁止スイッチ
5e 調整用スイッチ
6 電動油圧ポンプ
7 モータ
8 バッテリ
9 充電量センサ(状態取得装置)
10a バッテリ温度センサ(状態取得装置)
10b 消費電力量センサ(状態取得装置)
11 ナビゲーションシステム(現在位置取得装置)
12 制御装置
12a 回転数データ
12b 回転数データ
12c 過去データ
13 油圧回路
14 タンク
15、15a、15b 作動制御バルブ
16 リリーフバルブ
17 インバータ
18 作動回数センサ(作動回数取得装置)
1 work vehicle 2 motor generator (running motor)
3 Body equipment 3a Rotating plate 3b Pushing plate 3c Garbage loading box 3d Garbage inlet 3e Garbage storage box 4 Hydraulic actuator 4a Hydraulic motor 4b Hydraulic cylinder 5 Operation panel 5a Power switch 5b Operation start switch 5c Operation stop switch 5d Control prohibition switch 5e adjustment switch 6 electric hydraulic pump 7 motor 8 battery 9 charge amount sensor (state acquisition device)
10a battery temperature sensor (status acquisition device)
10b Power consumption sensor (status acquisition device)
11 Navigation system (current position acquisition device)
12 Control device 12a Rotation speed data 12b Rotation speed data 12c Past data 13 Hydraulic circuit 14 Tanks 15, 15a, 15b Operation control valve 16 Relief valve 17 Inverter 18 Operation frequency sensor (operation frequency acquisition device)

Claims (7)

  1.  油圧回路に作動油を供給する電動油圧ポンプと、この電動油圧ポンプに電力を供給するバッテリと、前記油圧回路を介して作動油が供給される油圧アクチュエータと、この油圧アクチュエータにより作動する架装設備と、を備えて構成される作業車両において、
     前記バッテリの状態を取得する状態取得装置と、前記電動油圧ポンプを制御する制御装置と、を備え、
     前記電動油圧ポンプの回転数を予め設定された目標回転数で駆動させて、前記油圧アクチュエータにより前記架装設備を作動させた作業中に、前記制御装置は、前記状態取得装置が取得した前記バッテリの状態に基づいて、前記作業が中断することを予測した場合に、前記電動油圧ポンプの回転数を前記目標回転数から下げて前記架装設備の作動速度を低下させる制御を行う、作業車両。
    An electric hydraulic pump that supplies hydraulic oil to a hydraulic circuit, a battery that supplies electric power to the electric hydraulic pump, a hydraulic actuator that is supplied with hydraulic oil via the hydraulic circuit, and body equipment operated by the hydraulic actuator and a work vehicle comprising:
    A state acquisition device that acquires the state of the battery, and a control device that controls the electric hydraulic pump,
    During the work in which the electric hydraulic pump is driven at a preset target rotation speed and the bodywork is operated by the hydraulic actuator, the control device detects the battery based on the state of the work vehicle, when it is predicted that the work will be interrupted, control is performed to reduce the rotation speed of the electric hydraulic pump from the target rotation speed to reduce the operating speed of the mounting equipment.
  2.  前記状態取得装置は前記バッテリの状態として前記バッテリの充電量を取得し、
     前記制御装置は、取得した前記バッテリの充電量に基づいて、前記バッテリに充電された電力量のうちの前記架装設備の作動用に予め設定された架装用電力量を使い切ることを予測した場合に、前記低下させる制御を行う、請求項1に記載の作業車両。
    The state acquisition device acquires the charge amount of the battery as the state of the battery,
    Based on the obtained charge amount of the battery, the control device predicts that the bodywork power amount preset for operating the bodywork equipment out of the power amount charged in the battery will be used up. 2. The work vehicle according to claim 1, wherein the control for lowering is performed in a case where
  3.  前記制御装置は、前記作業ごとに、前記作業の開始時に取得した前記充電量から前記架装用電力量が消費した場合の減少量を減算した下限充電量とこの下限充電量よりも多い充電量閾値とを算出し、前記架装設備の作動中に取得した前記充電量と前記充電量閾値とを比較して前記架装用電力量を使い切ることを予測する、請求項2に記載の作業車両。 For each work, the control device provides a lower limit charge amount obtained by subtracting a decrease amount when the bodywork power amount is consumed from the charge amount acquired at the start of the work, and a charge amount larger than the lower limit charge amount. 3. The work vehicle according to claim 2, further comprising: calculating a threshold value, and comparing the charge amount obtained during operation of the bodywork equipment with the charge amount threshold value to predict that the bodywork power amount will be used up. .
  4.  前記状態取得装置は前記バッテリの状態として前記バッテリの放電能力と前記電動油圧ポンプ以外で消費される他の消費電力量とを取得し、
     前記制御装置は、取得した前記放電能力と前記他の消費電力量とに基づいて、前記バッテリから前記電動油圧ポンプに供給可能な電力量の低下により前記架装設備の作動が停止することを予測した場合に、前記低下させる制御を行う、請求項1~3のいずれか1項に記載の作業車両。
    The state acquisition device acquires, as the state of the battery, the discharge capacity of the battery and other power consumption other than the electric hydraulic pump,
    The control device predicts that the operation of the bodywork will stop due to a decrease in the amount of electric power that can be supplied from the battery to the electric hydraulic pump, based on the obtained discharge capacity and the other electric power consumption. 4. The work vehicle according to any one of claims 1 to 3, wherein the control for lowering is performed when a
  5.  前記架装設備の作動回数を取得する作動回数取得装置と、現在位置を取得する現在位置取得装置と、を備え、
     前記制御装置に、予め設定され、複数の作業地点が点在する走行ルートを走行して前記架装設備の作業を行った過去データが記憶されていて、この過去データは前記作業地点ごとの前記架装設備の作動回数を含み、
     前記制御装置は、前記過去データにおける前記架装設備の総作業回数から前記作動回数取得装置が取得した前記作動回数を減算した残りの作動回数と、前記現在位置取得装置が取得した前記現在位置に基づいた現在の作業地点から前記走行ルートが終了するまでの前記過去データにおける予定の作動回数とを比較して、前記バッテリに充電された電力量のうちの前記架装設備の作動用に予め設定された架装用電力量を使い切ることを予測した場合に、前記低下させる制御を行う、請求項1に記載の作業車両。
    a device for obtaining the number of times of operation of the bodywork equipment, and a current position obtaining device for obtaining a current position,
    The control device stores past data in which work was performed on the bodywork while traveling along a preset travel route dotted with a plurality of work points. including the number of actuations of the bodywork equipment,
    The control device stores the remaining number of operations obtained by subtracting the number of operations acquired by the operation number acquisition device from the total number of operations of the bodywork equipment in the past data, and the current position acquired by the current position acquisition device. preset number of times of operation from the current work point to the end of the travel route in the past data based on the amount of electric power charged in the battery for the operation of the bodywork equipment. 2. The work vehicle according to claim 1, wherein the reduction control is performed when it is predicted that the installed bodywork electric energy will be used up.
  6.  前記制御装置は、前記電動油圧ポンプの回転数を前記目標回転数から下げる場合に、その回転数を予め設定された下限値に低下させる、又は、前記状態取得装置が取得した前記バッテリの状態、若しくは、前記作動回数取得装置が取得した前記作動回数に基づいて徐々に低下させる制御を行う、請求項1~5のいずれか1項に記載の作業車両。 When the rotation speed of the electric hydraulic pump is lowered from the target rotation speed, the control device reduces the rotation speed to a preset lower limit value, or the state of the battery acquired by the state acquisition device, Alternatively, the work vehicle according to any one of claims 1 to 5, wherein control is performed to gradually decrease based on the number of times of actuation acquired by the device for acquiring the number of times of actuation.
  7.  前記作動速度を低下させる制御を手動で禁止するスイッチを備える、請求項1~6のいずれか1項に記載の作業車両。 The work vehicle according to any one of claims 1 to 6, comprising a switch for manually prohibiting the control for reducing the operating speed.
PCT/JP2022/012708 2021-03-26 2022-03-18 Work vehicle WO2022202685A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-052577 2021-03-26
JP2021052577A JP2022150119A (en) 2021-03-26 2021-03-26 work vehicle

Publications (1)

Publication Number Publication Date
WO2022202685A1 true WO2022202685A1 (en) 2022-09-29

Family

ID=83397270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012708 WO2022202685A1 (en) 2021-03-26 2022-03-18 Work vehicle

Country Status (2)

Country Link
JP (1) JP2022150119A (en)
WO (1) WO2022202685A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004189409A (en) * 2002-12-11 2004-07-08 Shin Meiwa Ind Co Ltd Drive control device of working equipment in working vehicle
JP2009256988A (en) * 2008-04-18 2009-11-05 Hitachi Constr Mach Co Ltd Electrically-driven operating machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004189409A (en) * 2002-12-11 2004-07-08 Shin Meiwa Ind Co Ltd Drive control device of working equipment in working vehicle
JP2009256988A (en) * 2008-04-18 2009-11-05 Hitachi Constr Mach Co Ltd Electrically-driven operating machine

Also Published As

Publication number Publication date
JP2022150119A (en) 2022-10-07

Similar Documents

Publication Publication Date Title
JP4179465B2 (en) Construction machinery
CN103328295B (en) The control setup of working truck and working truck
JP5356543B2 (en) Drive control device for work vehicle
EP2672023B1 (en) Slewing-type working machine
JP6014463B2 (en) Work vehicle
KR101714948B1 (en) Construction machine
KR101909403B1 (en) Control device for hybrid construction machine
JP5591354B2 (en) Hybrid work machine and control method of hybrid work machine
US10100493B2 (en) Shovel
WO2012050010A1 (en) Construction machine
JP6434128B2 (en) Hybrid work vehicle
JP6159681B2 (en) Hybrid work machine
JP4563302B2 (en) Power distribution control device and hybrid construction machine
JP6529721B2 (en) Construction machinery
WO2022202685A1 (en) Work vehicle
JP6396867B2 (en) Hybrid construction machinery
CN106605028B (en) Hybrid construction machine
JP6162969B2 (en) Work machine
JP5925877B2 (en) Excavator
JP2003153402A (en) Secondary battery controller
JP2013060776A (en) Construction machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775472

Country of ref document: EP

Kind code of ref document: A1