WO2022202611A1 - Method for producing useful substance - Google Patents

Method for producing useful substance Download PDF

Info

Publication number
WO2022202611A1
WO2022202611A1 PCT/JP2022/012299 JP2022012299W WO2022202611A1 WO 2022202611 A1 WO2022202611 A1 WO 2022202611A1 JP 2022012299 W JP2022012299 W JP 2022012299W WO 2022202611 A1 WO2022202611 A1 WO 2022202611A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid sample
water
insoluble inorganic
inorganic compound
adsorption
Prior art date
Application number
PCT/JP2022/012299
Other languages
French (fr)
Japanese (ja)
Inventor
鉄馬 岸
和信 水口
正克 西八條
史憲 鴻池
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2022202611A1 publication Critical patent/WO2022202611A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P1/00Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material

Definitions

  • the present invention relates to a method for efficiently producing useful substances while suppressing an increase in turbidity of a liquid sample.
  • DNA nucleic acids
  • Non-Patent Document 1 Polyamines
  • Non-Patent Document 2 Chitosan
  • Non-Patent Document 3 Poly (diallyldimethyl-ammonium chloride)
  • pDADMAC diallyldimethyl-ammonium chloride
  • Impurities are removed by a method of adding water-soluble additives such as endonuclease (Non-Patent Document 4) or heat treatment (Patent Document 2). Methods for precipitating are known.
  • Patent Document 3 a technique for easily adsorbing and removing host-derived proteins and nucleic acids from the culture solution using a water-insoluble inorganic compound.
  • an object of the present invention is to provide a method for efficiently producing a useful substance while suppressing an increase in turbidity of a liquid sample.
  • the present inventors have made intensive studies to solve the above problems. As a result, by adding a specific water-insoluble inorganic compound to a liquid sample containing impurities in addition to the intended useful substance, the intended useful substance is maintained in the aqueous solution, and the impurities presumably precipitated due to changes in pH can be removed from the water-insoluble inorganic compound.
  • the present invention has been completed by discovering that it can be adsorbed by a compound to suppress an increase in turbidity of a liquid sample due to a change in pH. The present invention is shown below.
  • a method for producing a useful substance comprising: using cells to obtain a liquid sample containing the useful substance; a step of treating the liquid sample with a water-insoluble inorganic compound containing one or more elements selected from magnesium, calcium, and aluminum to obtain an adsorption-treated liquid sample; removing the water-insoluble inorganic compound from the adsorption-treated liquid sample; A method comprising the step of lowering the pH of said adsorption-treated liquid sample from which said water-insoluble inorganic compounds have been removed to 6 or less and then raising it by 0.1 or more.
  • the method according to [1] further comprising a step of filtering the adsorption-treated liquid sample after the step of lowering and then raising the pH.
  • the step of subjecting the adsorption-treated liquid sample to chromatography After the step of removing the water-insoluble inorganic compound from the adsorption-treated liquid sample and before the step of lowering and then raising the pH, the step of subjecting the adsorption-treated liquid sample to chromatography.
  • the OD600nm value of the liquid sample that has undergone the step of lowering and then raising the pH is the same as that of the liquid sample that has undergone the step of lowering and then raising the pH without the step of treating with the water-insoluble inorganic compound.
  • the water-insoluble inorganic compound is one or more selected from magnesium carbonate, magnesium hydroxide, magnesium oxide, magnesium phosphate, calcium sulfate, and aluminum oxide. described method.
  • the present invention by using a specific water-insoluble inorganic compound, it is possible to remove impurities that precipitate due to changes in pH, and to suppress an increase in turbidity of a liquid sample due to subsequent pH adjustment. Therefore, it is possible to reduce the load on filters and columns for chromatography.
  • a liquid sample containing impurities in addition to the intended useful substance is treated with a specific water-insoluble inorganic compound to adsorb the impurities, thereby suppressing precipitation of the impurities due to pH adjustment in the subsequent process, and improving the quality of the liquid sample. Reduces turbidity build-up.
  • the method of the present invention will be described below by dividing it into steps, but the present invention is not limited to the following specific examples.
  • Step of Preparing Liquid Sample Containing Useful Substance cells are used to prepare a liquid sample containing the desired useful substance.
  • the production target of the method of the present invention is not particularly limited as long as it is a useful substance produced by cells.
  • the intended useful substance may be released extracellularly, may be accumulated intracellularly, or may be accumulated in the periplasmic space.
  • the periplasm of Gram-positive bacteria is sometimes called the "inner wall zone (IWZ)".
  • Useful substances of interest include, for example, antibodies, antibody-binding proteins, enzymes, growth factors, vaccines, hormones, cytokines, blood proteins, and the like.
  • Antibodies may be monoclonal antibodies or minibodies.
  • Antibodies include, for example, IgM, IgD, IgG, IgA, and IgE; Fab; F(ab′) 2 as Fab dimer; F(ab′) 3 as Fab trimer; dsFv bound by disulfide bond; single-chain antibody (scFv) in which VH chain and VL chain are bound by a peptide linker; scFv diabody, scFv trimer tribody, scFv Multimers of single chain antibodies can be mentioned, such as Tetrabody, which is a tetramer.
  • multimers in which antibody fragments are not covalently associated may also be purified by the method of the present invention, depending on the conditions. Examples of such multimers include Fv in which a heavy chain variable region and a ⁇ chain variable region are associated.
  • Peptide linkers for binding antibody fragments are not particularly limited, but examples include peptide linkers containing 5 or more and 25 or less amino acid residues. Such peptide linkers include, for example, GS linkers having repeating sequences of glycine and serine.
  • the antibody-binding protein is not particularly limited as long as it is a protein having a specific binding ability to an antibody.
  • protein A protein G, protein L, Fc ⁇ receptor, these antibody binding domains, and antibodies and those mutants that maintain or improve their ability to bind to .
  • Enzymes include, for example, lipase, protease, steroidogenic enzyme, kinase, phosphatase, xylanase, esterase, methylase, demethylase, oxidase, reductase, cellulase, aromatase, collagenase, transglutaminase, glycosidase, and chitinase.
  • Growth factors include, for example, epidermal growth factor (EGF), insulin-like growth factor (IGF), transforming growth factor (TGF), nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), vascular endothelial cell proliferation factor (VEGF), granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), platelet-derived growth factor (PDGF), erythropoietin (EPO), thrombopoietin (TPO), fibroblast proliferation factor (FGF), hepatocyte growth factor (HGF).
  • EGF epidermal growth factor
  • IGF insulin-like growth factor
  • TGF nerve growth factor
  • BDNF brain-derived neurotrophic factor
  • VEGF vascular endothelial cell proliferation factor
  • G-CSF granulocyte colony-stimulating factor
  • GM-CSF granulocyte-macrophage colony-stimulating factor
  • Hormones include, for example, insulin, glucagon, somatostatin, growth hormone, parathyroid hormone, prolactin, leptin, and calcitonin.
  • Cytokines include, for example, interleukins, interferons (IFN ⁇ , IFN ⁇ , IFN ⁇ ), tumor necrosis factor (TNF).
  • Blood proteins include, for example, thrombin, serum albumin, factor VII, factor VIII, factor IX, factor X, and tissue plasminogen activator.
  • Cells that produce the above useful substances may be naturally derived cells, but are preferably recombinant host cells.
  • the host is a cell used to produce a useful substance, which is transformed with an expression vector or gene fragment containing DNA encoding the useful substance, and expresses the introduced DNA to produce the useful substance.
  • an expression vector or gene fragment containing DNA encoding the useful substance There are no particular limitations so long as they are animal cells, plant cells, insect cells, or microorganisms that can be infected with viruses.
  • a genetic recombinant in the present invention is transformed with an expression vector or gene fragment containing a nucleotide sequence encoding an amino acid sequence of a useful substance and a promoter operably linked to the nucleotide sequence and capable of functioning in a host. It is a host cell that has been transformed into
  • Useful substances can be manufactured using conventional methods.
  • a monoclonal antibody extracts B cells from the spleen or lymph node of an animal immunized with an antigen, and selects cells that produce antibodies that react with the antigen from hybridomas obtained by fusing the B cells with myeloma. It can be produced by culturing.
  • low-molecular-weight antibodies can be produced using bacterial cells or yeast cells.
  • the base sequence encoding the amino acid sequence is designed by reverse translation.
  • a nucleotide sequence encoding the amino acid sequence of a minibody in which each chain is covalently bound by a peptide linker may be designed.
  • a DNA encoding the base sequence is chemically synthesized and inserted into a vector such as a plasmid.
  • the vector is introduced into a cell to obtain a transformant, and the transformant is cultured to produce the desired low-molecular-weight antibody.
  • a low-molecular-weight antibody may be produced by an enzymatic reaction using papain, pepsin, or the like.
  • the liquid sample containing a useful substance is not particularly limited as long as it contains a useful substance and is liquid. Examples include supernatants from which insoluble components such as body fluids have been removed.
  • the reaction solution itself after the reaction or insoluble components should be removed from the reaction solution.
  • the resulting solution may be used as a liquid sample.
  • the useful substances may be produced by chemically combining the parts in the above-mentioned culture supernatant. Also in this case, the reaction solution itself after the reaction, or a solution obtained by removing insoluble components from the reaction solution may be used as the liquid sample.
  • the pH of the useful substance-containing liquid sample obtained using cells is generally in the range of 4 or more and 12 or less, although it depends on the medium components.
  • the pH is preferably 5 or more, more preferably 6 or more or more than 6, still more preferably 6.5 or more, and preferably 10 or less, more preferably 8 or less, and even more preferably 7.5 or less.
  • the pH may be adjusted to a suitable range at this stage.
  • a liquid sample containing impurities in addition to useful substances is purified by treating it with a water-insoluble inorganic compound containing one or more elements selected from magnesium, calcium, and aluminum. Impurities other than the target useful substance are selectively adsorbed onto a water-insoluble inorganic compound to purify the useful substance.
  • purification means that the ratio of impurities to useful substances in a liquid sample is reduced before it is brought into contact with a water-insoluble inorganic compound.
  • Treatment means bringing a liquid sample of a useful substance containing impurities into contact with a water-insoluble inorganic compound.
  • a liquid sample treated with a water-insoluble inorganic compound is referred to as an "adsorption-treated liquid sample.”
  • water-insoluble refers to the amount of purified water required to dissolve within 30 minutes when 1 g of powder of an inorganic compound is put in purified water and vigorously shaken for 30 seconds every 5 minutes at 20 ⁇ 5 ° C. 100 mL or more.
  • the water-insoluble inorganic compound contains one or more elements selected from magnesium, calcium, and aluminum, and these water-insoluble carbonates, water-insoluble sulfates, water-insoluble phosphates, water-insoluble oxides, etc. preferably one or more selected from magnesium carbonate, magnesium hydroxide, magnesium oxide, calcium sulfate, magnesium phosphate, and aluminum oxide, more preferably a water-insoluble magnesium salt.
  • basic magnesium carbonate which is a double salt of magnesium hydroxide and magnesium carbonate, is also preferably used.
  • phosphates other than magnesium phosphate, such as calcium phosphate are not preferable because they have relatively high water solubility and may adsorb the intended useful substance.
  • magnesium carbonate is effective for gastric/duodenal ulcer, gastritis (including acute/chronic gastritis, drug-induced gastritis), upper gastrointestinal dysfunction (including anorexia nervosa, so-called gastroptosis, hyperacidity), and constipation.
  • gastritis including acute/chronic gastritis, drug-induced gastritis
  • upper gastrointestinal dysfunction including anorexia nervosa, so-called gastroptosis, hyperacidity
  • constipation As a medical drug, several grams are administered daily, and its safety has been confirmed. It is also excellent in that it can be easily separated and removed from the target useful substance by chromatographic treatment.
  • the size of the water-insoluble inorganic compound may be adjusted as appropriate.
  • the average particle size can be 0.1 ⁇ m or more and 1000 ⁇ m or less. If the average particle size is 1000 ⁇ m or less, the specific surface area of the water-insoluble inorganic compound is sufficiently large, and impurities can be adsorbed more efficiently. no energy required. From the viewpoint of handleability when filling a column, etc., the average particle size is preferably 1 ⁇ m or more.
  • the average particle size is measured by a laser diffraction particle size distribution analyzer, and the average particle size may be measured on a volume basis, a weight basis, or a number basis, but the volume basis is preferred.
  • the amount of the water-insoluble inorganic compound used may be adjusted according to the concentration of the useful substance-containing liquid sample. good.
  • the ratio is preferably 15 g/100 mL or less.
  • the water-insoluble inorganic compound can be used in an amount of 0.1% by mass or more and 20% by mass or less relative to the useful substance-containing liquid sample, and the ratio is preferably 1% by mass or more and 15% by mass or less.
  • the method of contacting the liquid sample containing the useful substance with the water-insoluble inorganic compound should be selected as appropriate.
  • a water-insoluble inorganic compound may be added to a useful substance-containing liquid sample and shaken or stirred.
  • a water-insoluble inorganic compound may be packed in a column, and impurities other than the useful substance may be adsorbed on the water-insoluble inorganic compound by circulating the useful substance-containing liquid sample.
  • the adsorption of impurities and the separation of the liquid from the water-insoluble inorganic compound can be performed simultaneously.
  • the amount of the water-insoluble inorganic compound packed in the column and the flow rate of the useful substance-containing liquid sample are preferably adjusted within a range in which impurities are sufficiently adsorbed by the water-insoluble inorganic compound.
  • the temperature at which the useful substance-containing liquid sample and the water-insoluble inorganic compound are brought into contact may be normal temperature, specifically 0°C or higher and 40°C or lower.
  • the temperature is preferably 1° C. or higher, more preferably 10° C. or higher or 15° C. or higher, and preferably 30° C. or lower and more preferably 25° C. or lower.
  • normal temperature means 20 ⁇ 5 degreeC.
  • the contact time can be 1 second or more and 10 hours or less.
  • Impurities adsorbed to water-insoluble inorganic compounds in this step are not particularly limited as long as they are compounds other than useful substances, but examples include aggregated antibodies, host cell contaminants, and cell culture contaminants.
  • Host cell contaminants include host cell-derived nucleic acids, plasmids, and host cell-derived proteins.
  • Cell culture contaminants include media components, plasmid DNA for transfection.
  • water-insoluble inorganic compounds used in the present invention are neutral to weakly basic, and the pH of the adsorption-treated liquid sample treated with the water-insoluble inorganic compound may be about 7 or more and 10 or less.
  • Step 3 After step 2 of treating a liquid sample containing useful substances with a water-insoluble inorganic compound, the water-insoluble inorganic compound that has adsorbed impurities is removed from the adsorption-treated liquid sample. Separation means are not particularly limited, but include, for example, filtration and centrifugation. In the present disclosure, the liquid sample after being treated with the water-insoluble inorganic compound is referred to as an adsorption-treated liquid sample.
  • the useful substances are mainly dispersed in the liquid, and all or part of the other impurities are mainly adsorbed by the water-insoluble inorganic compounds.
  • part of the useful substances may be adsorbed by the water-insoluble inorganic compound, and part of the other impurities may be dissolved in the liquid, but at least the total amount of impurities in the liquid can be reduced,
  • the useful substances in the liquid part are concentrated.
  • the useful substance can be roughly purified by removing the water-insoluble inorganic compound that adsorbs the impurities.
  • This step can be carried out without any particular restrictions so long as it is after the step of treating with a water-insoluble inorganic compound.
  • the separation step 3 is preferably carried out after the treatment step 2 with the water-insoluble inorganic compound.
  • pH adjustment step in order to purify useful substances, the pH of the adsorption-treated liquid sample obtained by removing the water-insoluble inorganic compound after treatment with the water-insoluble inorganic compound is lowered to 6 or less, and then raised by 0.1 or more.
  • viruses can be inactivated by reducing the pH of the virus-containing liquid. Therefore, in the present invention, it is preferable to inactivate the virus by lowering the pH of the adsorption-treated liquid sample, since there is a possibility that the virus may be present at the stage of the culture solution, for example.
  • the pH can be, for example, 4 or less, preferably 3.8 or less, and more preferably 3.5 or less.
  • the pH is preferably 2 or higher, more preferably 2.5 or higher, and even more preferably 3 or higher.
  • the acid for lowering the pH is not particularly limited, and examples thereof include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid, and organic acids such as formic acid, acetic acid and citric acid. , and hydrochloric acid are preferred.
  • the conditions for virus inactivation can be adjusted as appropriate. For example, after lowering the pH, the adsorption-treated liquid sample may be maintained at a temperature of about 10° C. or higher and 35° C. or lower for 1 minute or longer and 10 hours or shorter.
  • the temperature for virus inactivation treatment may be normal temperature.
  • the pH of the liquid sample is increased by 0.1 or more for subsequent processes.
  • the range of the pH is not particularly limited as long as it is 0.1 or more higher than the once lowered pH.
  • the pH is preferably 4.5 or higher, more preferably 5 or higher, and even more preferably 6 or higher or 6.1 or higher.
  • trishydroxymethylaminomethane or 2-[4-(2-hydroxyethyl)-1-piperazinyl]ethanesulfonic acid can be used.
  • the main impurities contained in the culture solution are, in addition to the medium components, proteins and DNA derived from host cells.
  • charge varies with pH. Specifically, the charge of proteins and DNA is positive at pH below the isoelectric point and negative at pH above the isoelectric point. Therefore, for example, if the pH of a liquid sample is lowered and then raised to 4 or more and less than 6, the charge of many proteins and DNA becomes positive. Impurities can be separated. Conversely, if the pH of the liquid sample is lowered and then adjusted to 6 or more and 9 or less, the charge of many proteins and DNA becomes negative. can be separated.
  • the desired useful substance is adsorbed on the ion exchange column, the desired useful substance is eluted from the column with an eluent having a high salt concentration or a neutral eluent.
  • an eluent having a high salt concentration or a neutral eluent.
  • sodium chloride can be used as the salt contained in the eluate, and the pH of the eluate can be adjusted to, for example, 6 or more and 8 or less.
  • the impurities in the liquid sample are adsorbed and removed by the water-insoluble inorganic compound in the treatment step using the water-insoluble inorganic compound, the concentration of impurities in the liquid sample subjected to this step is reduced. there is As a result, even if the pH of the liquid sample is changed in this step, precipitation of impurities is suppressed and an increase in turbidity of the liquid sample is suppressed.
  • the OD600nm value of the liquid sample was measured after changing the pH in this step, and the present step was performed in the same manner except that the treatment was not performed with the water-insoluble inorganic compound described above.
  • the OD600nm value of the liquid sample that has undergone both the treatment step with the water-insoluble inorganic compound and this step is lower by 0.01 or more.
  • Such a difference is more preferably 0.02 or more, and even more preferably 0.03 or more.
  • the upper limit of the difference is not particularly limited, but the OD600nm value of the liquid sample that has undergone both the treatment step with the water-insoluble inorganic compound and this step is preferably the same as the blank value or within ⁇ 5% of the blank value.
  • the difference is preferably 10 or less.
  • step 5 the adsorption-treated liquid sample is filtered after step 4 in which the pH is lowered and then raised.
  • the impurities may be precipitated by adjusting the pH. Such precipitates can be removed by this step.
  • Centrifugal separation may be used in addition to filtration to separate precipitates, but in the present invention, the amount of impurities is reduced by treatment using a water-insoluble inorganic compound, and as a result, impurities are precipitated by pH adjustment. It is preferable to separate such precipitates by filtration because they are fine or the amount thereof is small.
  • Chromatography step In this step, at least, the adsorption-treated liquid sample whose impurities have been reduced through the step 2 of treating with a water-insoluble inorganic compound and the step 3 of separating the water-insoluble inorganic compound is subjected to chromatography to obtain the intended useful substance. Purify further. Chromatography is not particularly limited, but examples thereof include affinity chromatography, hydrophobic chromatography, hydroxyapatite chromatography, and mixed mode chromatography.
  • the ligand used for affinity chromatography may be appropriately selected according to the desired useful substance.
  • ligands include protein A, protein G, and protein L.
  • Other chromatographies may also be carried out by conventional methods. Also, two or more chromatographies may be combined.
  • chromatography is preferably carried out after step 2 of treatment with a water-insoluble inorganic compound and step 3 of separation of the water-insoluble inorganic compound.
  • one or more of the chromatographies may be performed before or after the pH adjustment step described above, and the pH adjustment step described above may be a prior pH adjustment performed for these operations. Therefore, the above pH adjustment step may be performed twice or more.
  • the activated carbon used for the activated carbon treatment may be selected as appropriate.
  • the activated carbon may have a specific surface area of 800 m 2 /g or more and 2500 m 2 /g or less, and the activated carbon may have an average pore diameter of 0.1 nm or more and 20 nm.
  • the average pore diameter is preferably 0.5 nm or more, more preferably 2.0 nm or more, still more preferably 3.0 nm or more, and preferably 5.0 nm or less.
  • the average pore diameter of activated carbon can be calculated from a nitrogen adsorption isotherm curve using the BJH method.
  • the shape of the activated carbon is not particularly limited, for example, granular activated carbon such as pulverized carbon, granulated carbon, spherical carbon, and pelletized carbon; fibrous activated carbon such as fiber and cloth; special molding such as sheet, molded body and honeycomb. activated carbon; and powdered activated carbon.
  • the purification operation using activated carbon is not particularly limited, but includes, for example, a batch method, a membrane treatment method, a column chromatography method, and the like, and an appropriate shape of activated carbon is selected according to each method. If necessary, in the form of particles in which activated carbon is encapsulated in a porous polymer or gel, in the form of a membrane in which activated carbon is adsorbed, fixed or formed using a support agent such as polypropylene or cellulose or fibers, or in the form of a cartridge. You can also use
  • the amount of activated carbon used may be adjusted according to the concentration of the useful substance-containing liquid sample, etc. For example, 0.5 g or more and 5 g or less of activated carbon may be used per 100 mL of the liquid sample.
  • flocculants used for flocculant treatment include caprylic acid, polyamines, divalent cations, polyetherimine, chitosan, polyethylene glycol, polyvinyl alcohol, polyvinylpyrrolidone, pDADMAC, and the like.
  • Divalent cations include, for example, Ca 2+ , Mg 2+ , Cu 2+ , Co 2+ , Mn 2+ , Ni 2+ , Be 2+ , Sr 2+ , Ba 2+ , Ra 2+ , Zn 2+ , Cd 2+ , Ag 2+ , Pd 2+ , Rh 2+ , and these divalent cations can be used in free form or as hydrochloride, sulfate, citrate and the like.
  • the amount of flocculant used may be adjusted depending on the concentration of the liquid sample, etc.
  • the flocculant is polyamine or polyetherimine
  • 0.01 w/v% or more and 10 w/v% or less of flocculant may be used. More preferably, flocculant of 0.1 w/v% or more and 1 w/v% or less may be used.
  • the flocculant is caprylic acid, chitosan, polyethylene glycol, polyvinyl alcohol or polyvinylpyrrolidone
  • the floculant should be used in an amount of 0.01 w/v% or more and 10 w/v% or less, more preferably 1 w/v% or more and 5 w.
  • flocculant may be used.
  • flocculant is pDACMAC
  • 0.01 w/v% or more and 0.1 w/v% or less of floculant may be used, and more preferably 0.1 w/v% or more and 0.5 w/v% or less of flocculant.
  • the flocculant is a divalent cation, it may be added in an amount such that the divalent cation concentration is 1 mM or more and 100 mM or less, more preferably 2 mM or more and 50 mM or less.
  • the floculant may be added to the liquid sample and shaken or stirred, or the column may be filled with the floculant, as in the case of water-insoluble inorganic compounds.
  • the activated carbon treatment and the flocculant treatment are performed at the same time, a mixture of the flocculant and the activated carbon may be used.
  • An endonuclease is one of the enzymes that degrade DNA, and has the function of degrading even the center of the base sequence.
  • the amount of endonuclease to be used may be adjusted depending on the concentration of the liquid sample, but is preferably 10 U/mL or more, more preferably 100 U/mL or more, for the liquid sample. On the other hand, although the upper limit of the ratio is not particularly limited, it is preferably 10,000 U/mL or less.
  • the amount of impurities can be measured using commercially available assay kits by absorbance analysis, electrophoresis, HPLC, etc. at any stage.
  • a CHO HCP ELISA kit manufactured by Cygnus
  • a desired detection system can be created by immunizing animals such as chickens with impurities.
  • impurities such as DNA can be quantified by techniques such as qPCR.
  • Example 1 Suppression of increase in turbidity by pH manipulation of culture solution (1) Preparation of IgG-expressing CHO culture solution Culture was performed according to the protocol. The host cells, medium, and transfection reagent used were those attached to the kit, and culture was terminated 7 days after transfection. The cell density at the end of culture was 5.5 ⁇ 10 7 cells/mL, and the viability was 90%. The obtained cell culture solution was centrifuged at 3000 ⁇ g for 5 minutes, and the obtained supernatant was filtered through a filter with a pore size of 0.22 ⁇ m. This culture supernatant was used as an IgG-expressing CHO cell culture medium.
  • Silica gel was manufactured by Merck, basic magnesium carbonate granules were manufactured by Kishida Chemical Co., light basic magnesium carbonate was manufactured by Fujifilm Wako Pure Chemical Industries, and magnesium oxide and magnesium hydroxide were manufactured by Tomita Pharmaceutical. For comparison, an IgG-expressing CHO cell culture was treated in the same manner, except that no adsorbent was added.
  • HCP host cell-derived protein
  • the DNA content contained in the culture medium after the adsorption treatment in (2) above and after the virus inactivation treatment in (3) above was measured using a host cell-derived DNA detection kit ("CHO DNA Amplification Kit in Tubes ” (manufactured by Cygnus), and measured according to the attached protocol. Table 2 shows the results.
  • Example 2 Turbidity reduction effect at various pH As in Example 1, the turbidity was measured after acidification and after adjusting the pH to 7 with 1M trishydroxymethylaminomethane. For comparison, turbidity was measured in the same manner except that light basic magnesium carbonate was not used. Table 3 shows the results.
  • Example 3 Turbidity reduction in virus inactivation treatment
  • Adsorption treatment To the IgG-expressing CHO culture solution, the adsorbent shown in Table 5 was added at a concentration of 1 w/v%, and the mixture was stirred at room temperature with a mix rotor for 1 hour. did. Then, it was centrifuged at 5,000 rpm for 1 minute, and the supernatant was collected as a treated liquid. For comparison, a supernatant was obtained in the same manner except that the adsorbent was not used.
  • Example 4 Improvement of Filterability after Virus Inactivation Treatment
  • the processes from adsorption treatment to virus inactivation treatment were performed in the same manner as in Examples 3 (1) to (4).
  • the resulting virus inactivation solution (6 mL) was filled in a syringe, and a syringe pump (manufactured by YMC) was passed through a silicone tube at a flow rate of 0.2 mL/min. manufactured by PVDF, pore size: 0.22 ⁇ m, membrane area: 0.1 cm 2 ) until the back pressure reaches 0.1 MPa, and the filtrate compared the quantities.
  • Table 6 shows the results.

Abstract

A purpose of the present invention is to provide a method for efficiently producing a useful substance while suppressing an increase in turbidity of a liquid sample. The method for producing a useful substance according to the present invention is characterized by including: a step for obtaining a liquid sample including the useful substance using cells; a step for treating the liquid sample by a water-insoluble inorganic compound including one or more elements selected from magnesium, calcium, and aluminum to obtain an adsorption-treated liquid sample; a step for removing the water-insoluble inorganic compound from the adsorption-treated liquid sample; and a step for lowering the pH of the adsorption-treated liquid sample from which the water-insoluble inorganic compound has been removed to 6 or less, then raising the pH 0.1 or more.

Description

有用物質の製造方法Method for producing useful substances
 本発明は、液体試料の濁度上昇を抑制しつつ有用物質を効率的に製造するための方法に関する。 The present invention relates to a method for efficiently producing useful substances while suppressing an increase in turbidity of a liquid sample.
 近年、標的物質に対してピンポイントで作用するタンパク質や低分子などの有用物質が多く開発されてきている。これら有用物質は、主に微生物や動物細胞などを宿主として製造される。前記細胞の培養液中には、培地のほか、宿主由来のタンパク質(HCP)や核酸(DNA)などの不純物を含むため、通常、有用物質は、宿主細胞を除いた後に、クロマトグラフィーやフィルター濾過によって精製される。 In recent years, many useful substances such as proteins and small molecules that act on target substances with pinpoint accuracy have been developed. These useful substances are mainly produced using microorganisms, animal cells, and the like as hosts. In addition to the medium, the culture medium of the cells contains impurities such as host-derived proteins (HCP) and nucleic acids (DNA). Refined by
 ところが、クロマトグラフィーに付す培養液に大量の不純物が含まれていると、カラムへの負荷が大きくなり、カラムの吸着容量、分離能、処理速度の低下につながる。その結果、カラム寿命が短くなったり、背圧上昇によるトラブルリスクが上昇したりするという問題がある。よって、培養液から不純物を低減することは、後段プロセスの負荷低減に重要である。 However, if the culture solution subjected to chromatography contains a large amount of impurities, the load on the column increases, leading to a decrease in the adsorption capacity, separation ability, and processing speed of the column. As a result, there are problems such as a shortened column life and an increased risk of trouble due to an increase in back pressure. Therefore, reducing impurities from the culture solution is important for reducing the load in the subsequent processes.
 不純物を含む有用物質溶液を処理して不純物を低減する技術としては、ポリアミン(非特許文献1);キトサン(非特許文献2);低pH下での遊離の2価陽イオン(特許文献1);ポリ(ジアリルジメチル-塩化アンモニウム)(pDADMAC)(非特許文献3);エンドヌクレアーゼ(非特許文献4)等の水溶性の添加剤を添加処理する方法や、熱処理(特許文献2)により不純物を沈殿除去する方法が知られている。 Techniques for treating a useful substance solution containing impurities to reduce impurities include polyamines (Non-Patent Document 1); chitosan (Non-Patent Document 2); and free divalent cations at low pH (Patent Document 1). Poly (diallyldimethyl-ammonium chloride) (pDADMAC) (Non-Patent Document 3); Impurities are removed by a method of adding water-soluble additives such as endonuclease (Non-Patent Document 4) or heat treatment (Patent Document 2). Methods for precipitating are known.
 有用物質の精製は通常水系で行われることから、水溶性の添加剤は後段工程での除去が課題となる。加えて添加剤や不純物が有用物質を巻き込んで沈殿する等、有用物質回収率の低下の問題がある。また、エンドヌクレアーゼは、他の夾雑タンパク質等の不純物除去時にクロマトグラフィーの条件設定により容易に除去できることから優れているが、夾雑タンパク質等の除去には効果が無く、不純物除去手法としては不十分である。更に、熱処理には、目的の有用物質の機能低下、変性、凝集、分解のリスクが高い。 Since the purification of useful substances is usually carried out in an aqueous system, the removal of water-soluble additives in the latter process is an issue. In addition, there is a problem of a decrease in useful substance recovery rate, such as precipitation of additives and impurities involving useful substances. In addition, endonuclease is excellent because it can be easily removed by setting the conditions of chromatography when removing impurities such as other contaminant proteins, but it is not effective for removing contaminant proteins, etc., and is not sufficient as an impurity removal method. be. Furthermore, heat treatment has a high risk of functional deterioration, denaturation, aggregation, and decomposition of the intended useful substance.
 そこで本発明者らは、水不溶性無機化合物を用い、培養液から宿主由来のタンパク質や核酸を簡便に吸着除去する技術を開発している(特許文献3)。 Therefore, the present inventors have developed a technique for easily adsorbing and removing host-derived proteins and nucleic acids from the culture solution using a water-insoluble inorganic compound (Patent Document 3).
特表2010-508352号公報Japanese Patent Publication No. 2010-508352 特開昭63-275600号公報JP-A-63-275600 国際公開第2020/045290号パンフレットWO2020/045290 pamphlet
 上述した通り、有用物質を含む液体試料から不純物を除去するための技術は種々開発されている。それとは別に、本発明者らは、細胞培養液から有用物質を精製するプロセスにおいて、液体試料から不溶成分が析出してカラムやフィルターに負担がかかることがあることを見出した。
 具体的には、細胞培養液から有用物質を精製する場合、例えばウイルスの不活性化のためにpHを調整することがあり、また、イオン交換クロマトグラフィーの前にも液体試料のpHを調整することがある。本発明者らは、pH調整の際、おそらく不純物の等電点付近において、或いは不純物の等電点を経由して液体試料のpHを変化させると、不純物が析出して液体試料の濁度が高まってしまうことを見出した。
 そこで本発明は、液体試料の濁度上昇を抑制しつつ有用物質を効率的に製造するための方法を提供することを目的とする。
As described above, various techniques have been developed for removing impurities from liquid samples containing useful substances. Apart from this, the present inventors have found that in the process of purifying useful substances from cell culture media, insoluble components precipitate from liquid samples, which sometimes places a burden on columns and filters.
Specifically, when purifying useful substances from cell culture media, the pH may be adjusted, for example, for virus inactivation, and the pH of liquid samples may also be adjusted prior to ion-exchange chromatography. Sometimes. The present inventors have found that when the pH is adjusted, if the pH of the liquid sample is changed probably near the isoelectric point of the impurity or via the isoelectric point of the impurity, the impurity precipitates and the turbidity of the liquid sample increases. I have found that it increases.
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method for efficiently producing a useful substance while suppressing an increase in turbidity of a liquid sample.
 本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、目的有用物質に加えて不純物を含む液体試料に特定の水不溶性無機化合物を添加することで、目的有用物質を水溶液中に維持したまま、おそらくpHの変化により析出する不純物が水不溶性無機化合物に吸着され、pH変化による液体試料の濁度上昇を抑制できることを見出して、本発明を完成した。
 以下、本発明を示す。
The present inventors have made intensive studies to solve the above problems. As a result, by adding a specific water-insoluble inorganic compound to a liquid sample containing impurities in addition to the intended useful substance, the intended useful substance is maintained in the aqueous solution, and the impurities presumably precipitated due to changes in pH can be removed from the water-insoluble inorganic compound. The present invention has been completed by discovering that it can be adsorbed by a compound to suppress an increase in turbidity of a liquid sample due to a change in pH.
The present invention is shown below.
 [1] 有用物質を製造するための方法であって、
 細胞を用いて、前記有用物質を含む液体試料を得る工程、
 前記液体試料を、マグネシウム、カルシウム、及びアルミニウムから選択される1以上の元素を含む水不溶性無機化合物で処理して吸着処理液体試料を得る工程、
 前記水不溶性無機化合物を前記吸着処理液体試料から除去する工程、並びに、
 前記水不溶性無機化合物を除去した前記吸着処理液体試料のpHを6以下に下降させた後に、0.1以上上昇させる工程を含むことを特徴とする方法。
 [2] 更に、前記pHを下降させた後に上昇させる工程の後、前記吸着処理液体試料を濾過する工程を含む前記[1]に記載の方法。
 [3] 前記水不溶性無機化合物を前記吸着処理液体試料から除去する工程の後で且つ前記pHを下降させた後に上昇させる工程の前に、更に、前記吸着処理液体試料をクロマトグラフィーに付す工程を含む前記[1]または[2]に記載の方法。
 [4] 前記pHを下降させた後に上昇させる工程の後に、更に、前記吸着処理液体試料をクロマトグラフィーに付す工程を含む前記[1]~[3]のいずれかに記載の方法。
 [5] 前記pHを下降させた後に上昇させる工程を経た液体試料のOD600nm値が、前記水不溶性無機化合物で処理する工程を経ないで前記pHを下降させた後に上昇させる工程を経た液体試料のOD600nm値よりも、0.01以上小さくなる前記[1]~[4]のいずれかに記載の方法。
 [6] 前記水不溶性無機化合物が、炭酸マグネシウム、水酸化マグネシウム、酸化マグネシウム、リン酸マグネシウム、硫酸カルシウム、および酸化アルミニウムから選択される1以上である前記[1]~[5]のいずれかに記載の方法。
[1] A method for producing a useful substance, comprising:
using cells to obtain a liquid sample containing the useful substance;
a step of treating the liquid sample with a water-insoluble inorganic compound containing one or more elements selected from magnesium, calcium, and aluminum to obtain an adsorption-treated liquid sample;
removing the water-insoluble inorganic compound from the adsorption-treated liquid sample;
A method comprising the step of lowering the pH of said adsorption-treated liquid sample from which said water-insoluble inorganic compounds have been removed to 6 or less and then raising it by 0.1 or more.
[2] The method according to [1], further comprising a step of filtering the adsorption-treated liquid sample after the step of lowering and then raising the pH.
[3] After the step of removing the water-insoluble inorganic compound from the adsorption-treated liquid sample and before the step of lowering and then raising the pH, the step of subjecting the adsorption-treated liquid sample to chromatography. The method according to [1] or [2] above.
[4] The method according to any one of [1] to [3], further comprising a step of subjecting the adsorption-treated liquid sample to chromatography after the step of lowering and then raising the pH.
[5] The OD600nm value of the liquid sample that has undergone the step of lowering and then raising the pH is the same as that of the liquid sample that has undergone the step of lowering and then raising the pH without the step of treating with the water-insoluble inorganic compound. The method according to any one of [1] to [4], wherein the OD600nm value is 0.01 or more smaller.
[6] Any of the above [1] to [5], wherein the water-insoluble inorganic compound is one or more selected from magnesium carbonate, magnesium hydroxide, magnesium oxide, magnesium phosphate, calcium sulfate, and aluminum oxide. described method.
 本発明によれば、特定の水不溶性無機化合物を用いることで、pHの変化により析出する不純物を除去することができ、その後のpH調整による液体試料の濁度上昇を抑制することができる。よって、フィルターやクロマトグラフィーのためのカラムへの負荷を低減可能である。 According to the present invention, by using a specific water-insoluble inorganic compound, it is possible to remove impurities that precipitate due to changes in pH, and to suppress an increase in turbidity of a liquid sample due to subsequent pH adjustment. Therefore, it is possible to reduce the load on filters and columns for chromatography.
 本発明では、目的有用物質に加えて不純物を含む液体試料を特定の水不溶性無機化合物で処理して不純物を吸着することにより、その後のプロセスにおけるpH調整による不純物の析出を抑制し、液体試料の濁度上昇を低減する。以下、本発明方法を工程に分けて説明するが、本発明は以下の具体例に限定されるものではない。 In the present invention, a liquid sample containing impurities in addition to the intended useful substance is treated with a specific water-insoluble inorganic compound to adsorb the impurities, thereby suppressing precipitation of the impurities due to pH adjustment in the subsequent process, and improving the quality of the liquid sample. Reduces turbidity build-up. The method of the present invention will be described below by dividing it into steps, but the present invention is not limited to the following specific examples.
 1.有用物質を含む液体試料の調製工程
 本工程では、細胞を用いて、目的有用物質を含む液体試料を調製する。本発明方法の製造対象は、細胞により産生される有用物質であれば特に制限されない。例えば、目的有用物質は、細胞外へ放出されるものであってもよいし、細胞内に蓄積されるものであってもよいし、ペリプラズム(Periplasmic space)に蓄積されるものであってもよい。グラム陽性菌のペリプラズムは、「inner wall zone(IWZ)」と呼ばれることもある。目的有用物質としては、例えば、抗体、抗体結合性タンパク質、酵素、成長因子、ワクチン、ホルモン、サイトカイン、血液タンパク質などが挙げられる。
1. Step of Preparing Liquid Sample Containing Useful Substance In this step, cells are used to prepare a liquid sample containing the desired useful substance. The production target of the method of the present invention is not particularly limited as long as it is a useful substance produced by cells. For example, the intended useful substance may be released extracellularly, may be accumulated intracellularly, or may be accumulated in the periplasmic space. . The periplasm of Gram-positive bacteria is sometimes called the "inner wall zone (IWZ)". Useful substances of interest include, for example, antibodies, antibody-binding proteins, enzymes, growth factors, vaccines, hormones, cytokines, blood proteins, and the like.
 抗体は、モノクローナル抗体であってもよいし、低分子化抗体であってもよい。抗体としては、例えば、IgM、IgD、IgG、IgA、IgE;Fab;Fab二量体であるF(ab’)2;Fab三量体であるF(ab’)3;VH鎖とVL鎖がジスルフィド結合により結合しているdsFv;VH鎖とVL鎖がペプチドリンカーにより結合している一本鎖抗体(scFv);scFvの二量体であるDiabody、scFvの三量体であるTriabody、scFvの四量体であるTetrabody等、一本鎖抗体の多量体を挙げることができる。また、抗体断片が共有結合によらず会合している多量体も、条件によっては本発明方法で精製できる可能性がある。かかる多量体としては、例えば、重鎖可変領域とκ鎖可変領域とが会合しているFvなどを挙げることができる。 Antibodies may be monoclonal antibodies or minibodies. Antibodies include, for example, IgM, IgD, IgG, IgA, and IgE; Fab; F(ab′) 2 as Fab dimer; F(ab′) 3 as Fab trimer; dsFv bound by disulfide bond; single-chain antibody (scFv) in which VH chain and VL chain are bound by a peptide linker; scFv diabody, scFv trimer tribody, scFv Multimers of single chain antibodies can be mentioned, such as Tetrabody, which is a tetramer. In addition, multimers in which antibody fragments are not covalently associated may also be purified by the method of the present invention, depending on the conditions. Examples of such multimers include Fv in which a heavy chain variable region and a κ chain variable region are associated.
 抗体断片を結合するためのペプチドリンカーは特に制限されないが、例えば、5以上、25以下のアミノ酸残基を含むペプチドリンカーを挙げることができる。かかるペプチドリンカーとしては、例えば、グリシンとセリンの繰り返し配列を有するGSリンカーが挙げられる。 Peptide linkers for binding antibody fragments are not particularly limited, but examples include peptide linkers containing 5 or more and 25 or less amino acid residues. Such peptide linkers include, for example, GS linkers having repeating sequences of glycine and serine.
 抗体結合性タンパク質は、抗体に特異的な結合能をもつタンパク質であれば特に限定されず、例えば、プロテインA、プロテインG、プロテインL、Fcγ受容体、こられの抗体結合性ドメイン、及び、抗体に対する結合能が維持または向上しているこれらの変異体が挙げられる。 The antibody-binding protein is not particularly limited as long as it is a protein having a specific binding ability to an antibody. For example, protein A, protein G, protein L, Fcγ receptor, these antibody binding domains, and antibodies and those mutants that maintain or improve their ability to bind to .
 酵素としては、例えば、リパーゼ、プロテアーゼ、ステロイド合成酵素、キナーゼ、フォスファターゼ、キシラナーゼ、エステラーゼ、メチラーゼ、デメチラーゼ、酸化酵素、還元酵素、セルラーゼ、アロマターゼ、コラゲナーゼ、トランスグルタミナーゼ、グリコシダーゼおよびキチナーゼが挙げられる。 Enzymes include, for example, lipase, protease, steroidogenic enzyme, kinase, phosphatase, xylanase, esterase, methylase, demethylase, oxidase, reductase, cellulase, aromatase, collagenase, transglutaminase, glycosidase, and chitinase.
 成長因子としては、例えば、上皮成長因子(EGF)、インスリン様成長因子(IGF)、トランスフォーミング成長因子(TGF)、神経成長因子(NGF)、脳由来神経栄養因子(BDNF)、血管内皮細胞増殖因子(VEGF)、顆粒球コロニー刺激因子(G-CSF)、顆粒球マクロファージコロニー刺激因子(GM-CSF)、血小板由来成長因子(PDGF)、エリスロポエチン(EPO)、トロンボポエチン(TPO)、線維芽細胞増殖因子(FGF)、肝細胞増殖因子(HGF)が挙げられる。 Growth factors include, for example, epidermal growth factor (EGF), insulin-like growth factor (IGF), transforming growth factor (TGF), nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), vascular endothelial cell proliferation factor (VEGF), granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), platelet-derived growth factor (PDGF), erythropoietin (EPO), thrombopoietin (TPO), fibroblast proliferation factor (FGF), hepatocyte growth factor (HGF).
 ホルモンとしては、例えば、インスリン、グルカゴン、ソマトスタチン、成長ホルモン、副甲状腺ホルモン、プロラクチン、レプチン、カルシトニンが挙げられる。サイトカインとしては、例えば、インターロイキン、インターフェロン(IFNα、IFNβ、IFNγ)、腫瘍壊死因子(TNF)が挙げられる。 Hormones include, for example, insulin, glucagon, somatostatin, growth hormone, parathyroid hormone, prolactin, leptin, and calcitonin. Cytokines include, for example, interleukins, interferons (IFNα, IFNβ, IFNγ), tumor necrosis factor (TNF).
 血液タンパク質としては、例えば、トロンビン、血清アルブミン、VII因子、VIII因子、IX因子、X因子、組織プラスミノゲン活性化因子が挙げられる。 Blood proteins include, for example, thrombin, serum albumin, factor VII, factor VIII, factor IX, factor X, and tissue plasminogen activator.
 上記有用物質を生産する細胞としては、天然由来の細胞であってもよいが、組換え宿主細胞であるのが好ましい。ここで宿主とは、有用物質を生産するために用いられる細胞であって、有用物質をコードするDNAを含む発現ベクターや遺伝子断片により形質転換され、導入されたDNAを発現して有用物質を生産したり、ウイルスを感染させたりすることができる動物細胞、植物細胞、昆虫細胞または微生物であれば、特に制限するものではない。本発明における遺伝子組換え体とは、有用物質のアミノ酸配列をコードする塩基配列、およびその塩基配列に作動可能に連結された宿主で機能しうるプロモーターを含む発現ベクターまたは遺伝子断片が導入され形質転換された宿主細胞である。 Cells that produce the above useful substances may be naturally derived cells, but are preferably recombinant host cells. Here, the host is a cell used to produce a useful substance, which is transformed with an expression vector or gene fragment containing DNA encoding the useful substance, and expresses the introduced DNA to produce the useful substance. There are no particular limitations so long as they are animal cells, plant cells, insect cells, or microorganisms that can be infected with viruses. A genetic recombinant in the present invention is transformed with an expression vector or gene fragment containing a nucleotide sequence encoding an amino acid sequence of a useful substance and a promoter operably linked to the nucleotide sequence and capable of functioning in a host. It is a host cell that has been transformed into
 有用物質は、常法を用いて製造することができる。例えば抗体のうちモノクローナル抗体は、抗原で免疫した動物の脾臓やリンパ節からB細胞を取り出し、当該B細胞とミエローマとを融合させて得られたハイブリドーマから抗原と反応する抗体を産生する細胞を選択して培養することで、製造することができる。また、抗体のうち低分子化抗体は、細菌細胞や酵母細胞を用いて製造することができる。具体的には、例えば、低分子化抗体を構成する各鎖のアミノ酸配列をそれぞれ設計した後、逆翻訳により当該アミノ酸配列をコードする塩基配列を設計する。この際、各鎖をペプチドリンカーで共有結合した低分子化抗体のアミノ酸配列をコードする塩基配列を設計してもよい。当該塩基配列をコードするDNAを化学合成し、プラスミド等のベクターへ挿入する。当該ベクターを細胞に導入して形質転換体を得て、当該形質転換体を培養することにより、目的の低分子化抗体を製造させる。或いは、IgG等を製造した後に、パパインやペプシン等を用いた酵素反応により低分子化抗体を製造してもよい。 Useful substances can be manufactured using conventional methods. For example, among antibodies, a monoclonal antibody extracts B cells from the spleen or lymph node of an animal immunized with an antigen, and selects cells that produce antibodies that react with the antigen from hybridomas obtained by fusing the B cells with myeloma. It can be produced by culturing. Among antibodies, low-molecular-weight antibodies can be produced using bacterial cells or yeast cells. Specifically, for example, after designing the amino acid sequence of each chain constituting the minibody, the base sequence encoding the amino acid sequence is designed by reverse translation. At this time, a nucleotide sequence encoding the amino acid sequence of a minibody in which each chain is covalently bound by a peptide linker may be designed. A DNA encoding the base sequence is chemically synthesized and inserted into a vector such as a plasmid. The vector is introduced into a cell to obtain a transformant, and the transformant is cultured to produce the desired low-molecular-weight antibody. Alternatively, after producing IgG or the like, a low-molecular-weight antibody may be produced by an enzymatic reaction using papain, pepsin, or the like.
 有用物質を含む液体試料は、有用物質を含み且つ液体であれば特に制限されないが、例えば、有用物質を産生する形質転換細胞の培養液、そのホモジェネート、又はその抽出液から濾過や遠心分離により菌体などの不溶成分を除去した上清が挙げられる。また、細胞由来の有用物質を酵素反応により製造する場合や、細胞自体や細胞由来の酵素を使って有用物質を製造する場合には、反応後の反応液自体、又は反応液から不溶成分を除去して得られる溶液を液体試料として用いてもよい。 The liquid sample containing a useful substance is not particularly limited as long as it contains a useful substance and is liquid. Examples include supernatants from which insoluble components such as body fluids have been removed. In addition, when producing cell-derived useful substances by enzymatic reaction, or when producing useful substances using cells themselves or cell-derived enzymes, the reaction solution itself after the reaction or insoluble components should be removed from the reaction solution. The resulting solution may be used as a liquid sample.
 有用物質を2以上に分割し、各部分をそれぞれ細胞に製造させた場合には、上記の培養上清中、各部分を化学反応により結合して有用物質を製造してもよい。この場合にも、反応後の反応液自体、又は反応液から不溶成分を除去して得られる溶液を液体試料として用いてもよい。 When the useful substance is divided into two or more parts and the cells are made to produce each part, the useful substances may be produced by chemically combining the parts in the above-mentioned culture supernatant. Also in this case, the reaction solution itself after the reaction, or a solution obtained by removing insoluble components from the reaction solution may be used as the liquid sample.
 なお、細胞を用いて得られる有用物質含有液体試料のpHは、培地成分にもよるが、一般的には4以上、12以下の範囲に含まれる。当該pHとしては、5以上が好ましく、6以上または6超がより好ましく、6.5以上がより更に好ましく、また、10以下が好ましく、8以下がより好ましく、7.5以下がより更に好ましい。当該pHは、この段階で好適範囲に調整してもよい。 The pH of the useful substance-containing liquid sample obtained using cells is generally in the range of 4 or more and 12 or less, although it depends on the medium components. The pH is preferably 5 or more, more preferably 6 or more or more than 6, still more preferably 6.5 or more, and preferably 10 or less, more preferably 8 or less, and even more preferably 7.5 or less. The pH may be adjusted to a suitable range at this stage.
 2.水不溶性無機化合物による処理工程
 本工程では、有用物質に加えて不純物を含む液体試料を、マグネシウム、カルシウム、およびアルミニウムから選択される1以上の元素を含む水不溶性無機化合物で処理することにより、精製対象である有用物質以外の不純物を選択的に水不溶性無機化合物に吸着させ、有用物質を精製する。なお、「精製」とは、水不溶性無機化合物に接触させる前の液体試料における有用物質に対する不純物の割合が低減されることをいう。また、「処理」とは、不純物を含む有用物質の液体試料を、水不溶性無機化合物に接触させることをいう。本開示においては、水不溶性無機化合物で処理した液体試料を「吸着処理液体試料」という。
2. Treatment step with a water-insoluble inorganic compound In this step, a liquid sample containing impurities in addition to useful substances is purified by treating it with a water-insoluble inorganic compound containing one or more elements selected from magnesium, calcium, and aluminum. Impurities other than the target useful substance are selectively adsorbed onto a water-insoluble inorganic compound to purify the useful substance. The term "purification" means that the ratio of impurities to useful substances in a liquid sample is reduced before it is brought into contact with a water-insoluble inorganic compound. "Treatment" means bringing a liquid sample of a useful substance containing impurities into contact with a water-insoluble inorganic compound. In the present disclosure, a liquid sample treated with a water-insoluble inorganic compound is referred to as an "adsorption-treated liquid sample."
 本開示において水不溶性とは、無機化合物の粉末1gを精製水に入れ、20±5℃で5分ごとに強く30秒間振り混ぜるとき、30分以内に溶解するのに要する精製水の量が、100mL以上であることをいう。 In the present disclosure, water-insoluble refers to the amount of purified water required to dissolve within 30 minutes when 1 g of powder of an inorganic compound is put in purified water and vigorously shaken for 30 seconds every 5 minutes at 20 ± 5 ° C. 100 mL or more.
 水不溶性無機化合物は、マグネシウム、カルシウム、およびアルミニウムから選択される1以上の元素を含むものであり、これらの水不溶性炭酸塩、水不溶性硫酸塩、水不溶性リン酸塩、水不溶性酸化物などが挙げられ、炭酸マグネシウム、水酸化マグネシウム、酸化マグネシウム、硫酸カルシウム、リン酸マグネシウム、および酸化アルミニウムから選択される1以上が好ましく、水不溶性マグネシウム塩がより好ましい。例えば、水酸化マグネシウムと炭酸マグネシウムの複塩である塩基性炭酸マグネシウムも好適に用いられる。但し、リン酸カルシウムなど、リン酸マグネシウムを除くリン酸塩は、水溶性が比較的高かったり、目的の有用物質を吸着してしまうおそれがあり得るため、好ましくない。 The water-insoluble inorganic compound contains one or more elements selected from magnesium, calcium, and aluminum, and these water-insoluble carbonates, water-insoluble sulfates, water-insoluble phosphates, water-insoluble oxides, etc. preferably one or more selected from magnesium carbonate, magnesium hydroxide, magnesium oxide, calcium sulfate, magnesium phosphate, and aluminum oxide, more preferably a water-insoluble magnesium salt. For example, basic magnesium carbonate, which is a double salt of magnesium hydroxide and magnesium carbonate, is also preferably used. However, phosphates other than magnesium phosphate, such as calcium phosphate, are not preferable because they have relatively high water solubility and may adsorb the intended useful substance.
 特に炭酸マグネシウムは、胃・十二指腸潰瘍、胃炎(急・慢性胃炎、薬剤性胃炎を含む)、上部消化管機能異常(神経性食思不振、いわゆる胃下垂症、胃酸過多症を含む)、便秘症に医療用医薬品として1日に数gの投与が行われており、安全性が確認されている他、静置沈殿、遠心や膜分離で容易に除去でき、また、微量の漏出物も膜分離やクロマトグラフィー処理により容易に目的の有用物質から分離除去できる点でも優れている。 In particular, magnesium carbonate is effective for gastric/duodenal ulcer, gastritis (including acute/chronic gastritis, drug-induced gastritis), upper gastrointestinal dysfunction (including anorexia nervosa, so-called gastroptosis, hyperacidity), and constipation. As a medical drug, several grams are administered daily, and its safety has been confirmed. It is also excellent in that it can be easily separated and removed from the target useful substance by chromatographic treatment.
 水不溶性無機化合物の大きさは適宜調整すればよいが、例えば、平均粒子径を0.1μm以上、1000μm以下とすることができる。当該平均粒子径が1000μm以下であれば、水不溶性無機化合物の比表面積は十分に大きく、不純物をより効率的に吸着することができ、また、0.1μm以上であれば、粉砕のために過剰なエネルギーが必要無い。また、カラムへの充填の際などにおける取扱性の観点から、上記平均粒子径としては1μm以上が好ましい。なお、本開示において平均粒子径は、レーザー回折式粒度分布測定装置により測定するものとし、平均粒子径の基準としては、体積基準、重量基準、数基準などがあるが、体積基準が好ましい。 The size of the water-insoluble inorganic compound may be adjusted as appropriate. For example, the average particle size can be 0.1 μm or more and 1000 μm or less. If the average particle size is 1000 μm or less, the specific surface area of the water-insoluble inorganic compound is sufficiently large, and impurities can be adsorbed more efficiently. no energy required. From the viewpoint of handleability when filling a column, etc., the average particle size is preferably 1 μm or more. In the present disclosure, the average particle size is measured by a laser diffraction particle size distribution analyzer, and the average particle size may be measured on a volume basis, a weight basis, or a number basis, but the volume basis is preferred.
 水不溶性無機化合物の使用量は、有用物質含有液体試料の濃度などにより調整すればよいが、例えば、有用物質含有液体試料100mLに対して0.1g以上、20g以下の水不溶性無機化合物を用いればよい。当該割合としては、15g/100mL以下が好ましい。また、有用物質含有液体試料に対して0.1質量%以上、20質量%以下の水不溶性無機化合物を用いることができ、当該割合としては1質量%以上、15質量%以下が好ましい。 The amount of the water-insoluble inorganic compound used may be adjusted according to the concentration of the useful substance-containing liquid sample. good. The ratio is preferably 15 g/100 mL or less. Moreover, the water-insoluble inorganic compound can be used in an amount of 0.1% by mass or more and 20% by mass or less relative to the useful substance-containing liquid sample, and the ratio is preferably 1% by mass or more and 15% by mass or less.
 有用物質含有液体試料と水不溶性無機化合物との接触方法は、適宜選択すればよい。例えば、有用物質含有液体試料に水不溶性無機化合物を加え、振とうや攪拌すればよい。また、水不溶性無機化合物をカラムに充填し、有用物質含有液体試料を流通させることにより有用物質以外の不純物を水不溶性無機化合物に吸着させてもよい。この場合、不純物の吸着と、水不溶性無機化合物からの液分の分離を同時に行うことができる。カラムにおける水不溶性無機化合物の充填量や、有用物質含有液体試料の流速は、不純物が水不溶性無機化合物に十分に吸着される範囲で調整することが好ましい。 The method of contacting the liquid sample containing the useful substance with the water-insoluble inorganic compound should be selected as appropriate. For example, a water-insoluble inorganic compound may be added to a useful substance-containing liquid sample and shaken or stirred. Alternatively, a water-insoluble inorganic compound may be packed in a column, and impurities other than the useful substance may be adsorbed on the water-insoluble inorganic compound by circulating the useful substance-containing liquid sample. In this case, the adsorption of impurities and the separation of the liquid from the water-insoluble inorganic compound can be performed simultaneously. The amount of the water-insoluble inorganic compound packed in the column and the flow rate of the useful substance-containing liquid sample are preferably adjusted within a range in which impurities are sufficiently adsorbed by the water-insoluble inorganic compound.
 有用物質含有液体試料と水不溶性無機化合物とを接触させる際の温度は常温でよく、具体的には0℃以上、40℃以下とすることができる。当該温度としては、1℃以上が好ましく、10℃以上または15℃以上がより好ましく、また、30℃以下が好ましく、25℃以下がより好ましい。なお、常温とは、20±5℃をいう。また、接触時間としては、1秒間以上、10時間以下とすることができる。 The temperature at which the useful substance-containing liquid sample and the water-insoluble inorganic compound are brought into contact may be normal temperature, specifically 0°C or higher and 40°C or lower. The temperature is preferably 1° C. or higher, more preferably 10° C. or higher or 15° C. or higher, and preferably 30° C. or lower and more preferably 25° C. or lower. In addition, normal temperature means 20±5 degreeC. Also, the contact time can be 1 second or more and 10 hours or less.
 本工程により水不溶性無機化合物に吸着される不純物は、有用物質以外の化合物であれば特に制限されないが、例えば、凝集した抗体、宿主細胞夾雑物、及び細胞培養夾雑物が挙げられる。宿主細胞夾雑物としては、宿主細胞由来の核酸、プラスミド、宿主細胞由来のタンパク質が挙げられる。細胞培養夾雑物としては、培地成分、トランスフェクション用のプラスミドDNAが挙げられる。 Impurities adsorbed to water-insoluble inorganic compounds in this step are not particularly limited as long as they are compounds other than useful substances, but examples include aggregated antibodies, host cell contaminants, and cell culture contaminants. Host cell contaminants include host cell-derived nucleic acids, plasmids, and host cell-derived proteins. Cell culture contaminants include media components, plasmid DNA for transfection.
 なお、本発明で用いる水不溶性無機化合物は中性から弱塩基性のものが多く、水不溶性無機化合物で処理した吸着処理液体試料のpHは、7以上、10以下程度になる可能性がある。 In addition, many of the water-insoluble inorganic compounds used in the present invention are neutral to weakly basic, and the pH of the adsorption-treated liquid sample treated with the water-insoluble inorganic compound may be about 7 or more and 10 or less.
 3.分離工程
 本工程では、有用物質を含む液体試料を水不溶性無機化合物で処理する工程2の後、不純物を吸着した水不溶性無機化合物を吸着処理液体試料から除去する。分離手段は特に制限されないが、例えば、濾過や遠心分離が挙げられる。なお、本開示においては、水不溶性無機化合物で処理した以降の液体試料を、吸着処理液体試料という。また、上述した通り、水不溶性無機化合物をカラムに充填して有用物質含有液体試料を流通させることにより有用物質以外の不純物を水不溶性無機化合物に吸着させることにより、水不溶性無機化合物による処理工程2と本分離工程3を同時に実施することができる。
3. Separation Step In this step, after step 2 of treating a liquid sample containing useful substances with a water-insoluble inorganic compound, the water-insoluble inorganic compound that has adsorbed impurities is removed from the adsorption-treated liquid sample. Separation means are not particularly limited, but include, for example, filtration and centrifugation. In the present disclosure, the liquid sample after being treated with the water-insoluble inorganic compound is referred to as an adsorption-treated liquid sample. In addition, as described above, by filling a column with a water-insoluble inorganic compound and circulating a liquid sample containing a useful substance, impurities other than the useful substance are adsorbed on the water-insoluble inorganic compound, whereby the water-insoluble inorganic compound treatment step 2 is performed. and main separation step 3 can be carried out at the same time.
 前述した処理工程により、有用物質は主に液分に分散しており、それ以外の不純物の全部または一部は主に水不溶性無機化合物に吸着されている。また、有用物質の一部が水不溶性無機化合物に吸着され、それ以外の不純物の一部が液分に溶解していることもあるが、少なくとも液分における不純物の総量は低減することができ、液分における有用物質は濃縮される。本工程では、不純物を吸着した水不溶性無機化合物を除去することにより、有用物質を粗精製することができる。 Due to the treatment process described above, the useful substances are mainly dispersed in the liquid, and all or part of the other impurities are mainly adsorbed by the water-insoluble inorganic compounds. In addition, part of the useful substances may be adsorbed by the water-insoluble inorganic compound, and part of the other impurities may be dissolved in the liquid, but at least the total amount of impurities in the liquid can be reduced, The useful substances in the liquid part are concentrated. In this step, the useful substance can be roughly purified by removing the water-insoluble inorganic compound that adsorbs the impurities.
 本工程は、水不溶性無機化合物で処理する工程の後であれば、特に制限なく実施することができる。但し、例えばpH調整により水不溶性無機化合物の少なくとも一部が溶解する可能性があるため、本分離工程3は、水不溶性無機化合物による処理工程2に続いて実施することが好ましい。 This step can be carried out without any particular restrictions so long as it is after the step of treating with a water-insoluble inorganic compound. However, since at least part of the water-insoluble inorganic compound may be dissolved by, for example, pH adjustment, the separation step 3 is preferably carried out after the treatment step 2 with the water-insoluble inorganic compound.
 4.pH調整工程
 本工程では、有用物質の精製のために、水不溶性無機化合物で処理した後に水不溶性無機化合物を除去した吸着処理液体試料のpHを6以下に下降させた後に、0.1以上上昇させる。
4. pH adjustment step In this step, in order to purify useful substances, the pH of the adsorption-treated liquid sample obtained by removing the water-insoluble inorganic compound after treatment with the water-insoluble inorganic compound is lowered to 6 or less, and then raised by 0.1 or more. Let
 例えば、ウイルス含有液のpHを低減することにより、ウイルスを不活性化できることが知られている。よって本発明でも、例えば培養液の段階でウイルスが混入している可能性があるため、吸着処理液体試料のpHを低下させてウイルスを不活性化することが好ましい。当該pHは、例えば4以下にすることができ、3.8以下が好ましく、3.5以下がより好ましい。一方、当該pHが低過ぎると有用物質にダメージが与えられるおそれがあるため、当該pHとしては2以上が好ましく、2.5以上がより好ましく、3以上がより更に好ましい。 For example, it is known that viruses can be inactivated by reducing the pH of the virus-containing liquid. Therefore, in the present invention, it is preferable to inactivate the virus by lowering the pH of the adsorption-treated liquid sample, since there is a possibility that the virus may be present at the stage of the culture solution, for example. The pH can be, for example, 4 or less, preferably 3.8 or less, and more preferably 3.5 or less. On the other hand, if the pH is too low, the useful substance may be damaged, so the pH is preferably 2 or higher, more preferably 2.5 or higher, and even more preferably 3 or higher.
 pHの低下のための酸は特に制限されないが、例えば、塩酸、硫酸、硝酸、リン酸などの無機酸や、ギ酸、酢酸、クエン酸などの有機酸が挙げられ、リン酸、酢酸、クエン酸、及び塩酸からなる群より選択される1以上の酸が好ましい。 The acid for lowering the pH is not particularly limited, and examples thereof include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid, and organic acids such as formic acid, acetic acid and citric acid. , and hydrochloric acid are preferred.
 ウイルスの不活性化のための条件は、適宜調整すればよい。例えば、pHを低下させた後、吸着処理液体試料を10℃以上、35℃以下程度の温度で1分間以上、10時間以下維持すればよい。ウイルス不活性化処理のための温度は、常温でもよい。 The conditions for virus inactivation can be adjusted as appropriate. For example, after lowering the pH, the adsorption-treated liquid sample may be maintained at a temperature of about 10° C. or higher and 35° C. or lower for 1 minute or longer and 10 hours or shorter. The temperature for virus inactivation treatment may be normal temperature.
 本工程では、吸着処理液体試料のpHを6以下に下降させた後、以降のプロセスのために液体試料のpHを0.1以上上昇させる。当該pHの範囲としては、一旦下降させたpHに対して0.1以上高ければ特に制限されないが、例えば、4.1以上、9以下が挙げられる。当該pHとしては、4.5以上が好ましく、5以上がより好ましく、6以上または6.1以上がより更に好ましい。かかるpH調整のためには、例えば、トリスヒドロキシメチルアミノメタンや2-[4-(2-ヒドロキシエチル)-1-ピペラジニル]エタンスルホン酸を用いることができる。 In this step, after the pH of the adsorption-treated liquid sample is lowered to 6 or less, the pH of the liquid sample is increased by 0.1 or more for subsequent processes. The range of the pH is not particularly limited as long as it is 0.1 or more higher than the once lowered pH. The pH is preferably 4.5 or higher, more preferably 5 or higher, and even more preferably 6 or higher or 6.1 or higher. For such pH adjustment, for example, trishydroxymethylaminomethane or 2-[4-(2-hydroxyethyl)-1-piperazinyl]ethanesulfonic acid can be used.
 例えば、目的有用物質をイオン交換クロマトグラフィーにより更に精製する場合、イオン交換クロマトグラフィーの前には、使用するイオン交換カラムに応じて液体試料のpHを調整することが好ましい。例えば、培養液に含まれる主な不純物は、培地成分の他、宿主細胞由来のタンパク質やDNAであり、タンパク質やDNAは酸性基と塩基性基の両方を有するため、液体試料中のタンパク質とDNAの電荷はpHにより異なる。詳しくは、タンパク質とDNAの電荷は、等電点よりも低いpH下では正であり、等電点よりも高いpH下では負である。よって、例えば液体試料のpHを下降させた後に4以上、6未満に上昇させると、多くのタンパク質やDNAの電荷は正となるので、陽イオン交換クロマトグラフィーによって、電荷に応じて目的有用物質と不純物を分離することができる。逆に、液体試料のpHを下降させた後に6以上、9以下に調整すると、多くのタンパク質やDNAの電荷は負となるので、陰イオン交換クロマトグラフィーによって、電荷に応じて目的有用物質と不純物を分離することができる。 For example, when further purifying the intended useful substance by ion exchange chromatography, it is preferable to adjust the pH of the liquid sample according to the ion exchange column to be used before ion exchange chromatography. For example, the main impurities contained in the culture solution are, in addition to the medium components, proteins and DNA derived from host cells. charge varies with pH. Specifically, the charge of proteins and DNA is positive at pH below the isoelectric point and negative at pH above the isoelectric point. Therefore, for example, if the pH of a liquid sample is lowered and then raised to 4 or more and less than 6, the charge of many proteins and DNA becomes positive. Impurities can be separated. Conversely, if the pH of the liquid sample is lowered and then adjusted to 6 or more and 9 or less, the charge of many proteins and DNA becomes negative. can be separated.
 なお、目的有用物質が確実にイオン交換カラムの担体に結合し、不純物はできるかぎり結合しないように、平衡化緩衝液や洗浄液のpHとイオン強度を調整することが好ましい。目的有用物質をイオン交換カラムに吸着させた後は、高塩濃度を有する溶出液や中性の溶出液により目的有用物質をカラムから溶出させる。溶出液が含む塩としては、例えば塩化ナトリウムを用いることができ、溶出液のpHは、例えば6以上、8以下に調整することができる。 In addition, it is preferable to adjust the pH and ionic strength of the equilibration buffer and washing solution so that the target useful substance is bound to the carrier of the ion exchange column without fail and impurities are not bound as much as possible. After the desired useful substance is adsorbed on the ion exchange column, the desired useful substance is eluted from the column with an eluent having a high salt concentration or a neutral eluent. For example, sodium chloride can be used as the salt contained in the eluate, and the pH of the eluate can be adjusted to, for example, 6 or more and 8 or less.
 本発明においては、上記の水不溶性無機化合物による処理工程により液体試料中の不純物が水不溶性無機化合物に吸着除去されているため、本工程に付される液体試料中の不純物の濃度は低減されている。その結果、本工程で液体試料のpHが変更されても、不純物の析出が抑制され、液体試料の濁度の上昇が抑制されている。例えば、上記の水不溶性無機化合物による処理工程の後に本工程によりpHを変更する後で液体試料のOD600nm値を測定し、また、上記の水不溶性無機化合物により処理しない以外は同様に本工程を経た後のOD600nm値を測定した場合、上記の水不溶性無機化合物による処理工程と本工程の両方を経た液体試料のOD600nm値の方が0.01以上低いことが好ましい。かかる差としては、0.02以上がより好ましく、0.03以上がより更に好ましい。かかる差の上限は特に制限されないが、上記の水不溶性無機化合物による処理工程と本工程の両方を経た液体試料のOD600nm値がブランク値と同一またはブランク値±5%以内であることが好ましく、例えば上記差としては10以下が好ましい。 In the present invention, since the impurities in the liquid sample are adsorbed and removed by the water-insoluble inorganic compound in the treatment step using the water-insoluble inorganic compound, the concentration of impurities in the liquid sample subjected to this step is reduced. there is As a result, even if the pH of the liquid sample is changed in this step, precipitation of impurities is suppressed and an increase in turbidity of the liquid sample is suppressed. For example, after the treatment step with the water-insoluble inorganic compound described above, the OD600nm value of the liquid sample was measured after changing the pH in this step, and the present step was performed in the same manner except that the treatment was not performed with the water-insoluble inorganic compound described above. When the OD600nm value is measured later, it is preferable that the OD600nm value of the liquid sample that has undergone both the treatment step with the water-insoluble inorganic compound and this step is lower by 0.01 or more. Such a difference is more preferably 0.02 or more, and even more preferably 0.03 or more. The upper limit of the difference is not particularly limited, but the OD600nm value of the liquid sample that has undergone both the treatment step with the water-insoluble inorganic compound and this step is preferably the same as the blank value or within ±5% of the blank value. The difference is preferably 10 or less.
 5.濾過工程
 本工程では、pHを下降させた後に上昇させる工程4の後、吸着処理液体試料を濾過する。本工程の実施は任意であるが、本発明において水不溶性無機化合物を用いた処理により不純物の量が低減されていても、pH調整により不純物が析出することがある。かかる析出物は、本工程により除去することができる。
5. Filtration Step In this step, the adsorption-treated liquid sample is filtered after step 4 in which the pH is lowered and then raised. Although the implementation of this step is optional, even if the amount of impurities is reduced by the treatment using the water-insoluble inorganic compound in the present invention, the impurities may be precipitated by adjusting the pH. Such precipitates can be removed by this step.
 析出物の分離には、濾過の他に遠心分離が用いられることがあるが、本発明では水不溶性無機化合物を用いた処理により不純物の量が低減されており、結果としてpH調整による析出する不純物は微細であったりその量が少なくなっているため、かかる析出物は濾過により分離することが好ましい。 Centrifugal separation may be used in addition to filtration to separate precipitates, but in the present invention, the amount of impurities is reduced by treatment using a water-insoluble inorganic compound, and as a result, impurities are precipitated by pH adjustment. It is preferable to separate such precipitates by filtration because they are fine or the amount thereof is small.
 6.クロマトグラフィー工程
 本工程では、少なくとも、水不溶性無機化合物で処理する工程2、及び水不溶性無機化合物の分離工程3を経て不純物が低減された吸着処理液体試料をクロマトグラフィーに付し、目的有用物質を更に精製する。クロマトグラフィーは、特に制限されないが、例えば、アフィニティークロマトグラフィー、疎水クロマトグラフィー、ハイドロキシアパタイトクロマトグラフィー、ミックスモードクロマトグラフィーが挙げられる。
6. Chromatography step In this step, at least, the adsorption-treated liquid sample whose impurities have been reduced through the step 2 of treating with a water-insoluble inorganic compound and the step 3 of separating the water-insoluble inorganic compound is subjected to chromatography to obtain the intended useful substance. Purify further. Chromatography is not particularly limited, but examples thereof include affinity chromatography, hydrophobic chromatography, hydroxyapatite chromatography, and mixed mode chromatography.
 アフィニティークロマトグラフィーに用いるリガンドは、目的有用物質に応じて適宜選択すればよい。例えば、目的有用物質が抗体である場合、リガンドとしては、プロテインA、プロテインG、及びプロテインLが挙げられる。その他のクロマトグラフィーも、常法により実施すればよい。また、2以上のクロマトグラフィーを組み合わせて実施してもよい。 The ligand used for affinity chromatography may be appropriately selected according to the desired useful substance. For example, when the useful substance of interest is an antibody, ligands include protein A, protein G, and protein L. Other chromatographies may also be carried out by conventional methods. Also, two or more chromatographies may be combined.
 クロマトグラフィーの順序や組み合わせは、液体試料を調製した後、特に制限されないが、上記の水不溶性無機化合物による処理工程により簡便な操作で不純物を除去できるため、クロマトグラフィーの負荷の低減の観点からも、クロマトグラフィーは、水不溶性無機化合物で処理する工程2と水不溶性無機化合物の分離工程3の後に実施することが好ましい。また、クロマトグラフィーの1以上は、上記のpH調整工程の前に行っても後に行ってもよく、上記のpH調整工程は、これら操作のために行う事前のpH調整であってもよい。よって、上記のpH調整工程は、2回以上行ってもよい。 The order and combination of chromatographies are not particularly limited after the liquid sample is prepared, but since impurities can be removed with a simple operation by the treatment step with the above-mentioned water-insoluble inorganic compound, it is also possible from the viewpoint of reducing the chromatographic load. , chromatography is preferably carried out after step 2 of treatment with a water-insoluble inorganic compound and step 3 of separation of the water-insoluble inorganic compound. Also, one or more of the chromatographies may be performed before or after the pH adjustment step described above, and the pH adjustment step described above may be a prior pH adjustment performed for these operations. Therefore, the above pH adjustment step may be performed twice or more.
 7.その他の精製工程
 本発明においては、活性炭処理、フロキュラント処理、エンドヌクレアーゼ処理など、その他の一般的な精製操作を行ってもよい。
7. Other Purification Steps In the present invention, other general purification procedures such as activated charcoal treatment, flocculant treatment, and endonuclease treatment may be performed.
 活性炭処理に用いる活性炭は、適宜選択すればよいが、例えば、活性炭の比表面積を800m2/g以上、2500m2/g以下とすることができ、活性炭の平均細孔径を0.1nm以上、20nm以下にすることができる。当該平均細孔径は、0.5nm以上が好ましく、2.0nm以上がより好ましく、3.0nm以上がより更に好ましく、また、5.0nm以下が好ましい。活性炭の平均細孔径は窒素吸着等温吸着曲線よりBJH法を用いて算出することができる。 The activated carbon used for the activated carbon treatment may be selected as appropriate. For example, the activated carbon may have a specific surface area of 800 m 2 /g or more and 2500 m 2 /g or less, and the activated carbon may have an average pore diameter of 0.1 nm or more and 20 nm. You can: The average pore diameter is preferably 0.5 nm or more, more preferably 2.0 nm or more, still more preferably 3.0 nm or more, and preferably 5.0 nm or less. The average pore diameter of activated carbon can be calculated from a nitrogen adsorption isotherm curve using the BJH method.
 活性炭の形状は特に制限されないが、例えば、粉砕炭、顆粒炭、球状炭、およびペレット炭などの粒状活性炭;ファイバー、クロス等の繊維状活性炭;シート状、成形体、およびハニカム状などの特殊成形活性炭;および粉末活性炭が挙げられる。  Although the shape of the activated carbon is not particularly limited, for example, granular activated carbon such as pulverized carbon, granulated carbon, spherical carbon, and pelletized carbon; fibrous activated carbon such as fiber and cloth; special molding such as sheet, molded body and honeycomb. activated carbon; and powdered activated carbon. 
 活性炭を用いる精製操作としては、特に限定されないが、例えば、バッチ法、膜処理法、及びカラムクロマトグラフィー法などが挙げられ、それぞれの手段に応じて適切な活性炭の形状が選択される。必要に応じて、多孔性ポリマーまたはゲルに活性炭を封入した粒子等の形態、ポリプロピレンまたはセルロース等のサポート剤または繊維などを用いて活性炭を吸着、固定または成形した膜、又はカードリッジ等の形態にて使用することもできる。 The purification operation using activated carbon is not particularly limited, but includes, for example, a batch method, a membrane treatment method, a column chromatography method, and the like, and an appropriate shape of activated carbon is selected according to each method. If necessary, in the form of particles in which activated carbon is encapsulated in a porous polymer or gel, in the form of a membrane in which activated carbon is adsorbed, fixed or formed using a support agent such as polypropylene or cellulose or fibers, or in the form of a cartridge. You can also use
 活性炭の使用量は、有用物質含有液体試料の濃度などにより調整すればよいが、例えば、液体試料100mLに対して0.5g以上、5g以下の活性炭を用いればよい。 The amount of activated carbon used may be adjusted according to the concentration of the useful substance-containing liquid sample, etc. For example, 0.5 g or more and 5 g or less of activated carbon may be used per 100 mL of the liquid sample.
 フロキュラント処理に用いるフロキュラント(flocculants)としては、例えば、カプリル酸、ポリアミン、2価の陽イオン、ポリエーテルイミン、キトサン、ポリエチレングリコール、ポリビニルアルコール、ポリビニルピロリドン、pDADMACなどが挙げられる。2価の陽イオンとしては、例えば、Ca2+、Mg2+、Cu2+、Co2+、Mn2+、Ni2+、Be2+、Sr2+、Ba2+、Ra2+、Zn2+、Cd2+、Ag2+、Pd2+、Rh2+であり、これら2価陽イオンは遊離状態で、あるいは塩酸塩や、硫酸塩、クエン酸塩などとして使用できる。 Examples of flocculants used for flocculant treatment include caprylic acid, polyamines, divalent cations, polyetherimine, chitosan, polyethylene glycol, polyvinyl alcohol, polyvinylpyrrolidone, pDADMAC, and the like. Divalent cations include, for example, Ca 2+ , Mg 2+ , Cu 2+ , Co 2+ , Mn 2+ , Ni 2+ , Be 2+ , Sr 2+ , Ba 2+ , Ra 2+ , Zn 2+ , Cd 2+ , Ag 2+ , Pd 2+ , Rh 2+ , and these divalent cations can be used in free form or as hydrochloride, sulfate, citrate and the like.
 フロキュラントの使用量は、液体試料の濃度などにより調整すればよいが、例えば、フロキュラントがポリアミンまたはポリエーテルイミンである場合は、0.01w/v%以上、10w/v%以下のフロキュラントを用いればよく、より好ましくは0.1w/v%以上、1w/v%以下のフロキュラントを用いればよい。フロキュラントがカプリル酸、キトサン、ポリエチレングリコール、ポリビニルアルコールまたはポリビニルピロリドンである場合は、0.01w/v%以上、10w/v%以下のフロキュラントを用いればよく、より好ましくは1w/v%以上、5w/v%以下のフロキュラントを用いればよい。フロキュラントがpDACMACである場合は、0.01w/v%以上、0.1w/v%以下のフロキュラントを用いればよく、より好ましくは0.1w/v%以上、0.5w/v%以下のフロキュラントを用いればよい。フロキュラントが2価の陽イオンである場合は、2価の陽イオン濃度が1mM以上、100mM以下となる量を添加すればよく、より好ましくは2mM以上、50mM以下となる量を添加すればよい。 The amount of flocculant used may be adjusted depending on the concentration of the liquid sample, etc. For example, when the flocculant is polyamine or polyetherimine, 0.01 w/v% or more and 10 w/v% or less of flocculant may be used. More preferably, flocculant of 0.1 w/v% or more and 1 w/v% or less may be used. When the flocculant is caprylic acid, chitosan, polyethylene glycol, polyvinyl alcohol or polyvinylpyrrolidone, the floculant should be used in an amount of 0.01 w/v% or more and 10 w/v% or less, more preferably 1 w/v% or more and 5 w. /v% or less flocculant may be used. When the flocculant is pDACMAC, 0.01 w/v% or more and 0.1 w/v% or less of floculant may be used, and more preferably 0.1 w/v% or more and 0.5 w/v% or less of flocculant. should be used. When the flocculant is a divalent cation, it may be added in an amount such that the divalent cation concentration is 1 mM or more and 100 mM or less, more preferably 2 mM or more and 50 mM or less.
 液体試料とフロキュラントとの接触方法は、水不溶性無機化合物の場合と同様に、液体試料にフロキュラントを加えて振とう又は攪拌してもよいし、カラムにフロキュラントを充填してもよい。活性炭処理とフロキュラント処理を同時に行う場合には、フロキュラントと活性炭を混合して用いればよい。 As for the method of contacting the liquid sample with the flocculant, the floculant may be added to the liquid sample and shaken or stirred, or the column may be filled with the floculant, as in the case of water-insoluble inorganic compounds. When the activated carbon treatment and the flocculant treatment are performed at the same time, a mixture of the flocculant and the activated carbon may be used.
 エンドヌクレアーゼはDNAの分解酵素の一つであり、塩基配列の中心部でも分解する機能を持つ。エンドヌクレアーゼの使用量は、液体試料の濃度などにより調整すればよいが、例えば、液体試料に対して10U/mL以上が好ましく、100U/mL以上が更に好ましい。一方、当該割合の上限は特に制限されないが、10,000U/mL以下が好ましい。 An endonuclease is one of the enzymes that degrade DNA, and has the function of degrading even the center of the base sequence. The amount of endonuclease to be used may be adjusted depending on the concentration of the liquid sample, but is preferably 10 U/mL or more, more preferably 100 U/mL or more, for the liquid sample. On the other hand, although the upper limit of the ratio is not particularly limited, it is preferably 10,000 U/mL or less.
 8.後処理工程など
 有用物質が精製された後は、溶媒量を低減して有用物質を濃縮したり、溶媒を交換するなどしてもよい。
8. Post-treatment step, etc. After the useful substance is purified, the amount of the solvent may be reduced to concentrate the useful substance, or the solvent may be exchanged.
 不純物の量は、いずれの段階においても、吸光度分析、電気泳動法、HPLC法などにより、市販のアッセイキットを用いて測定することができる。例えば、CHO HCP ELISAキット(Cygnus社製)を用いれば、CHO細胞由来の宿主由来タンパク質を定量できる。所望の不純物定量キットがない場合は、不純物で鶏などの動物を免疫することで、所望の検出系を作成可能である。また、DNA等の不純物は、qPCR等の手法により定量することができる。 The amount of impurities can be measured using commercially available assay kits by absorbance analysis, electrophoresis, HPLC, etc. at any stage. For example, a CHO HCP ELISA kit (manufactured by Cygnus) can be used to quantify host-derived proteins derived from CHO cells. If a desired impurity quantification kit is not available, a desired detection system can be created by immunizing animals such as chickens with impurities. In addition, impurities such as DNA can be quantified by techniques such as qPCR.
 本願は、2021年3月26日に出願された日本国特許出願第2021-53477号に基づく優先権の利益を主張するものである。2021年3月26日に出願された日本国特許出願第2021-53477号の明細書の全内容が、本願に参考のため援用される。 This application claims the benefit of priority based on Japanese Patent Application No. 2021-53477 filed on March 26, 2021. The entire contents of the specification of Japanese Patent Application No. 2021-53477 filed on March 26, 2021 are incorporated herein by reference.
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。また、本実施例で用いる試薬については特に明記しない限り、市販品を用いた。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited by the following examples, and can be carried out with appropriate modifications within the scope of the gist of the present invention. Of course, it is also possible to do so, and all of them are included in the technical scope of the present invention. In addition, commercial products were used for the reagents used in the present examples unless otherwise specified.
 実施例1: 培養液のpH操作による濁度の上昇抑制
 (1)IgG発現CHO培養液の調製
 市販の抗体発現プラスミドと培養キット(「ExpiCHO Expression System」Thermo Fisher社製)を用いて、付属のプロトコルに従い培養を実施した。宿主細胞、培地、及びトランスフェクション用試薬はキット添付のものを使用し、トランスフェクション後、培養7日目で培養を終了した。培養終了時の細胞密度は5.5×107cells/mL、viabilityは90%であった。得られた細胞培養液を3000×gで5分間遠心分離し、得られた上清を孔径0.22μmのフィルターで濾過した。この培養上清を、IgG発現CHO細胞培養液とした。
Example 1: Suppression of increase in turbidity by pH manipulation of culture solution (1) Preparation of IgG-expressing CHO culture solution Culture was performed according to the protocol. The host cells, medium, and transfection reagent used were those attached to the kit, and culture was terminated 7 days after transfection. The cell density at the end of culture was 5.5×10 7 cells/mL, and the viability was 90%. The obtained cell culture solution was centrifuged at 3000×g for 5 minutes, and the obtained supernatant was filtered through a filter with a pore size of 0.22 μm. This culture supernatant was used as an IgG-expressing CHO cell culture medium.
 (2)吸着処理
 上記(1)で得られたIgG発現CHO培養液に、1w/v%の濃度で表1に示す吸着剤を加え、室温下、ミックスローターで1時間攪拌した。次いで、15,000rpmで5分間遠心分離して、吸着処理液体試料として上澄みを回収した。回収した上澄みを、孔径0.22μmの膜で濾過し、濾液の濁度をpH変更前濁度として測定した。シリカゲルはMerck社製、顆粒塩基性炭酸マグネシウム顆粒はキシダ化学社製、軽質塩基性炭酸マグネシウムは富士フィルム和光純薬社製、酸化マグネシウムと水酸化マグネシウムは富田製薬社製のものを用いた。また、比較のために、吸着剤を加えない以外は同様にしてIgG発現CHO細胞培養液を処理した。
(2) Adsorption Treatment To the IgG-expressing CHO culture solution obtained in (1) above, an adsorbent shown in Table 1 was added at a concentration of 1 w/v%, and the mixture was stirred at room temperature with a mix rotor for 1 hour. Then, it was centrifuged at 15,000 rpm for 5 minutes, and the supernatant was collected as an adsorption-treated liquid sample. The recovered supernatant was filtered through a membrane with a pore size of 0.22 μm, and the turbidity of the filtrate was measured as the turbidity before pH change. Silica gel was manufactured by Merck, basic magnesium carbonate granules were manufactured by Kishida Chemical Co., light basic magnesium carbonate was manufactured by Fujifilm Wako Pure Chemical Industries, and magnesium oxide and magnesium hydroxide were manufactured by Tomita Pharmaceutical. For comparison, an IgG-expressing CHO cell culture was treated in the same manner, except that no adsorbent was added.
 (3)ウイルス不活性化処理
 上記(2)で取得した吸着処理液体試料をよく攪拌しながら、1Mの塩酸をゆっくりと滴下し、pHを4.0に調整して常温で数分間静置した後、1Mトリスヒドロキシメチルアミノメタンをゆっくりと滴下し、pHを7.0に調整した。次いで、得られた混合液の原液を一般的な吸光度測定用石英セルに分注し、室温下、pH変更後濁度として濁度(OD600nm)を測定した。結果を表1に示す。
(3) Virus inactivation treatment While thoroughly stirring the adsorption-treated liquid sample obtained in (2) above, 1M hydrochloric acid was slowly added dropwise to adjust the pH to 4.0 and allowed to stand at room temperature for several minutes. After that, 1M trishydroxymethylaminomethane was slowly added dropwise to adjust the pH to 7.0. Next, the undiluted solution of the resulting mixed solution was dispensed into a general quartz cell for absorbance measurement, and the turbidity (OD 600 nm) was measured at room temperature as the turbidity after changing the pH. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示される結果の通り、吸着剤処理なしや、一般的な吸着剤であるシリカゲルに対して、水不溶性マグネシウム化合物で処理すると、pH操作後の濁度が有意に低減された。その理由としては、pH調整操作で不溶化して濁度上昇の原因となる物質が吸着剤により除去されたためと考えられた。 As the results shown in Table 1, turbidity after pH manipulation was significantly reduced when silica gel, a common adsorbent, was treated with a water-insoluble magnesium compound without adsorbent treatment. The reason for this is thought to be that the adsorbent removed substances that were insolubilized by the pH adjustment operation and caused an increase in turbidity.
 (4)IgG回収率の測定
 上記(2)の吸着処理の後、及び上記(3)のウイルス不活性化処理の後の培養液を、それぞれプロテインAアフィニティーカラム(「TSKgel Protein A-5PW」東ソー社製)を含む一般的なクロマトグラフィーシステムを用いて分析することにより、含まれているIgG量を測定した。次いで、IgG発現CHO培養液に含まれる当初IgG量に対する精製IgG量の割合を算出した。結果を表2に示す。
(4) Measurement of IgG recovery rate After the adsorption treatment in (2) above and the culture solution after the virus inactivation treatment in (3) above, Protein A affinity column ("TSKgel Protein A-5PW" Tosoh The amount of IgG contained was determined by analysis using a general chromatography system including (manufactured by Co., Ltd.). Next, the ratio of the amount of purified IgG to the amount of initial IgG contained in the IgG-expressing CHO culture was calculated. Table 2 shows the results.
 (5)不純物量の測定
 次に、吸着剤処理前後での培養液中のタンパク質やDNAの量の変化を確認した。上記(2)の吸着処理の後、及び上記(3)のウイルス不活性化処理の後の培養液に含まれる宿主細胞由来タンパク質(HCP)の量を、それぞれ宿主細胞由来タンパク質の検出キット(「CHO Host Cell Protein ELISA Kit,3rd Generation」シグナス社製)を用いて、付属のプロトコルに従い計測した。結果を表2に示す。
 また、上記(2)の吸着処理の後、及び上記(3)のウイルス不活性化処理の後の培養液に含まれるDNA含量を、宿主細胞由来DNAの検出キット(「CHO DNA Amplification Kit in Tubes」シグナス社製)を用いて、付属のプロトコルに従い計測した。結果を表2に示す。
(5) Measurement of Amount of Impurities Next, changes in the amounts of protein and DNA in the culture solution before and after treatment with the adsorbent were checked. The amount of host cell-derived protein (HCP) contained in the culture solution after the adsorption treatment in (2) above and after the virus inactivation treatment in (3) above was measured using a host cell-derived protein detection kit (" Measurement was performed using CHO Host Cell Protein ELISA Kit, 3rd Generation (manufactured by Cygnus) according to the attached protocol. Table 2 shows the results.
In addition, the DNA content contained in the culture medium after the adsorption treatment in (2) above and after the virus inactivation treatment in (3) above was measured using a host cell-derived DNA detection kit ("CHO DNA Amplification Kit in Tubes ” (manufactured by Cygnus), and measured according to the attached protocol. Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示される結果の通り、吸着剤処理をしなかった場合や、一般的な吸着剤であるシリカゲルでの処理の場合は、
 ・吸着処理後でもHCPやDNA含量が多く、
 ・pH調整によるウイルス不活性化処理後に培養液中のHCPとDNAの濃度が大きく低下し、不溶化して析出した。
 それに対して、水不溶性マグネシウム化合物で吸着処理すると、
 ・目的物であるIgG回収率が95%以上に維持されながら、HCPとDNAの両方を比較的大きく除去でき、且つ、
 ・pH調整前後における溶液中のHCPとDNAの濃度の変化が小さく、HCPとDNAの析出もほとんど見られなかった。
 この結果から、水不溶性マグネシウム化合物による前処理が、後段のpH調整後の濁度上昇を低減するメカニズムの少なくとも一部は、HCPとDNAを除去していることによると考えられる。
As the results shown in Table 2, in the case of no adsorbent treatment or in the case of treatment with silica gel, which is a general adsorbent,
・HCP and DNA content are high even after adsorption treatment,
・After the virus inactivation treatment by pH adjustment, the concentration of HCP and DNA in the culture medium decreased significantly, and they were insolubilized and precipitated.
On the other hand, when adsorption treatment is performed with a water-insoluble magnesium compound,
- Both HCP and DNA can be removed to a relatively large extent while the target IgG recovery rate is maintained at 95% or higher, and
・There was little change in the concentration of HCP and DNA in the solution before and after pH adjustment, and HCP and DNA were hardly precipitated.
From this result, it is considered that at least part of the mechanism by which the pretreatment with a water-insoluble magnesium compound reduces the increase in turbidity after the latter pH adjustment is due to the removal of HCP and DNA.
 実施例2: 種々のpHにおける濁度低減効果
 吸着剤として軽質塩基性炭酸マグネシウムを用い、ウイルス不活性化処理において1M塩酸を用いてpHを3,4,5,又は6に調整した以外は実施例1と同様にして、酸性化後の濁度と、1MトリスヒドロキシメチルアミノメタンによりpHを7に調整した後の濁度を測定した。比較のために、軽質塩基性炭酸マグネシウムを用いない以外は同様にして濁度を測定した。結果を表3に示す。
Example 2: Turbidity reduction effect at various pH As in Example 1, the turbidity was measured after acidification and after adjusting the pH to 7 with 1M trishydroxymethylaminomethane. For comparison, turbidity was measured in the same manner except that light basic magnesium carbonate was not used. Table 3 shows the results.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示される結果の通り、いずれの酸性化後pHにおいても、塩基性炭酸マグネシウムによる前処理をすることで、不溶成分の析出を抑制することができ、濁度を低減できることが示された。 As the results shown in Table 3 show, pretreatment with basic magnesium carbonate can suppress precipitation of insoluble components and reduce turbidity at any post-acidification pH. .
 実施例3: ウイルス不活性化処理における濁度低減
 (1)吸着処理
 IgG発現CHO培養液に、1w/v%の濃度で表5に示す吸着剤を加え、室温下、ミックスローターで1時間攪拌した。次いで、5,000rpmで1分間遠心分離して、処理液として上澄みを回収した。比較のために、吸着剤を用いない以外は同様にして上澄みを得た。
Example 3: Turbidity reduction in virus inactivation treatment (1) Adsorption treatment To the IgG-expressing CHO culture solution, the adsorbent shown in Table 5 was added at a concentration of 1 w/v%, and the mixture was stirred at room temperature with a mix rotor for 1 hour. did. Then, it was centrifuged at 5,000 rpm for 1 minute, and the supernatant was collected as a treated liquid. For comparison, a supernatant was obtained in the same manner except that the adsorbent was not used.
 (2)pH調整
 上記(1)で取得した処理液をよく攪拌しながら、1Mクエン酸ナトリウム水溶液(pH5.5)をゆっくりと滴下し、pHを7.0に調整した後、数分間静置した。
(2) pH adjustment While thoroughly stirring the treatment liquid obtained in (1) above, 1M sodium citrate aqueous solution (pH 5.5) is slowly added dropwise to adjust the pH to 7.0, and then left to stand for several minutes. did.
 (3)プロテインA精製
 プロテインA担体(「KANEKA KanCapATM 3G」カネカ社製)(1mL)を充填したカラムを用いて、表4のプログラムで、上記(2)で取得した処理液からIgGを精製した。表4中の流量の単位である「CV」は「カラムボリューム」を示し、カラムの容量に対する相対量を表す。
(3) Protein A purification Using a column packed with a protein A carrier ("KANEKA KanCapA 3G" manufactured by Kaneka) (1 mL), IgG was purified from the treated liquid obtained in (2) above according to the program in Table 4. did. "CV", which is a unit of flow rate in Table 4, indicates "column volume" and represents a relative amount to the volume of the column.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 (4)ウイルス不活性化処理
 上記(3)で得られた溶出液をよく攪拌しながら、1M塩酸をゆっくりと滴下してpHを3.4に調節し、常温で1時間静置した。その後、溶出液をよく攪拌しながら、1Mトリスヒドロキシメチルアミノメタンをゆっくりと滴下してpHを7.0に調節した。
(4) Virus Inactivation Treatment The eluate obtained in (3) above was slowly added dropwise with 1M hydrochloric acid while stirring well to adjust the pH to 3.4, and allowed to stand at room temperature for 1 hour. Then, while stirring the eluate well, 1M trishydroxymethylaminomethane was slowly added dropwise to adjust the pH to 7.0.
 (5)濁度測定
 上記(4)のウイルス不活性化処理の前後における液体の濁度(OD600nm)を測定した。結果を表5に示す。
(5) Turbidity measurement The turbidity (OD600 nm) of the liquid was measured before and after the virus inactivation treatment in (4) above. Table 5 shows the results.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5に示される結果の通り、ウイルス不活化処理前の濁度には大きな差はないものの、ウイルス不活化処理後の濁度は、水不溶性マグネシウム化合物や水不溶性アルミニウム化合物で処理した培養液由来のものの方が明らかに低くなった。本結果から、水不溶性マグネシウム化合物や酸化アルミニウムによる吸着処理は、処理直後の液体だけでなく、後段のpH調整後の濁度も低減できることが示された。 As shown in Table 5, although there is no significant difference in the turbidity before the virus inactivation treatment, the turbidity after the virus inactivation treatment is derived from the culture solution treated with a water-insoluble magnesium compound or a water-insoluble aluminum compound. was clearly lower than that of These results indicate that the adsorption treatment with a water-insoluble magnesium compound or aluminum oxide can reduce not only the liquid immediately after the treatment, but also the turbidity after the subsequent pH adjustment.
 実施例4: ウイルス不活性化処理後の濾過性向上
 吸着処理からウイルス不活化処理までを実施例3(1)~(4)と同様に行った。得られたウイルス不活化液(6mL)をシリンジに充填し、シリンジポンプ(YMC社製)を使い、0.2mL/minの流速で、シリコンチューブを介して、シリンジフィルター(「マイレクス-GV」メルク社製,PVDF製,孔径:0.22μm、膜面積:0.1cm2)へ、背圧が0.1MPaになるまで送液し、吸着剤を用いた場合と用いない場合との間で濾液量を比較した。結果を表6に示す。
Example 4: Improvement of Filterability after Virus Inactivation Treatment The processes from adsorption treatment to virus inactivation treatment were performed in the same manner as in Examples 3 (1) to (4). The resulting virus inactivation solution (6 mL) was filled in a syringe, and a syringe pump (manufactured by YMC) was passed through a silicone tube at a flow rate of 0.2 mL/min. manufactured by PVDF, pore size: 0.22 μm, membrane area: 0.1 cm 2 ) until the back pressure reaches 0.1 MPa, and the filtrate compared the quantities. Table 6 shows the results.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6に示される結果の通り、培養液由来のウイルス不活化液を濾過したところ、水不溶性マグネシウム化合物で処理した場合の方が、処理しない場合に比べて濾過液量が明らかに多くなった。
 本結果から、水不溶性マグネシウム化合物による吸着処理は、ウイルス不活化液の濾過液量を増加させることが分かった。その理由としては、水不溶性マグネシウム化合物による不純物の吸着除去により、濾過前のウイルス不活化液に含まれる不純物の量が低減されたため、フィルターの目詰まりが低減されたことが考えられる。
As the results shown in Table 6, when the virus-inactivated solution derived from the culture medium was filtered, the amount of filtrate was clearly greater in the case of treatment with a water-insoluble magnesium compound than in the case of no treatment.
From these results, it was found that the adsorption treatment with the water-insoluble magnesium compound increased the filtrate volume of the virus-inactivated solution. The reason for this is thought to be that the amount of impurities contained in the virus-inactivated solution before filtration was reduced by the adsorption and removal of impurities by the water-insoluble magnesium compound, and clogging of the filter was reduced.

Claims (6)

  1.  有用物質を製造するための方法であって、
     細胞を用いて、前記有用物質を含む液体試料を得る工程、
     前記液体試料を、マグネシウム、カルシウム、及びアルミニウムから選択される1以上の元素を含む水不溶性無機化合物で処理して吸着処理液体試料を得る工程、
     前記水不溶性無機化合物を前記吸着処理液体試料から除去する工程、並びに、
     前記水不溶性無機化合物を除去した前記吸着処理液体試料のpHを6以下に下降させた後に、0.1以上上昇させる工程を含むことを特徴とする方法。
    A method for producing a useful substance, comprising:
    using cells to obtain a liquid sample containing the useful substance;
    a step of treating the liquid sample with a water-insoluble inorganic compound containing one or more elements selected from magnesium, calcium, and aluminum to obtain an adsorption-treated liquid sample;
    removing the water-insoluble inorganic compound from the adsorption-treated liquid sample;
    A method comprising the step of lowering the pH of said adsorption-treated liquid sample from which said water-insoluble inorganic compounds have been removed to 6 or less and then raising it by 0.1 or more.
  2.  更に、前記pHを下降させた後に上昇させる工程の後、前記吸着処理液体試料を濾過する工程を含む請求項1に記載の方法。 The method of claim 1, further comprising filtering the adsorption-treated liquid sample after the step of lowering and then raising the pH.
  3.  前記水不溶性無機化合物を前記吸着処理液体試料から除去する工程の後で且つ前記pHを下降させた後に上昇させる工程の前に、更に、前記吸着処理液体試料をクロマトグラフィーに付す工程を含む請求項1または2に記載の方法。 After the step of removing the water-insoluble inorganic compounds from the adsorption-treated liquid sample and before the step of raising after lowering the pH, the method further comprises subjecting the adsorption-treated liquid sample to chromatography. 3. The method according to 1 or 2.
  4.  前記pHを下降させた後に上昇させる工程の後に、更に、前記吸着処理液体試料をクロマトグラフィーに付す工程を含む請求項1~3のいずれかに記載の方法。 The method according to any one of claims 1 to 3, further comprising a step of subjecting the adsorption-treated liquid sample to chromatography after the step of lowering and then raising the pH.
  5.  前記pHを下降させた後に上昇させる工程を経た液体試料のOD600nm値が、前記水不溶性無機化合物で処理する工程を経ないで前記pHを下降させた後に上昇させる工程を経た液体試料のOD600nm値よりも、0.01以上小さくなる請求項1~4のいずれかに記載の方法。 The OD600nm value of the liquid sample that has undergone the step of lowering and then raising the pH is higher than the OD600nm value of the liquid sample that has undergone the step of lowering and raising the pH without the step of treating with the water-insoluble inorganic compound. is also reduced by 0.01 or more.
  6.  前記水不溶性無機化合物が、炭酸マグネシウム、水酸化マグネシウム、酸化マグネシウム、リン酸マグネシウム、硫酸カルシウム、および酸化アルミニウムから選択される1以上である請求項1~5のいずれかに記載の方法。 The method according to any one of claims 1 to 5, wherein the water-insoluble inorganic compound is one or more selected from magnesium carbonate, magnesium hydroxide, magnesium oxide, magnesium phosphate, calcium sulfate, and aluminum oxide.
PCT/JP2022/012299 2021-03-26 2022-03-17 Method for producing useful substance WO2022202611A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021053477 2021-03-26
JP2021-053477 2021-03-26

Publications (1)

Publication Number Publication Date
WO2022202611A1 true WO2022202611A1 (en) 2022-09-29

Family

ID=83395796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012299 WO2022202611A1 (en) 2021-03-26 2022-03-17 Method for producing useful substance

Country Status (1)

Country Link
WO (1) WO2022202611A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010508352A (en) * 2006-11-01 2010-03-18 バイオジェン・アイデック・エムエイ・インコーポレイテッド Method for isolating biopolymers using low pH and divalent cations
JP2010510963A (en) * 2006-06-14 2010-04-08 グラクソスミスクライン・リミテッド・ライアビリティ・カンパニー Antibody purification method using ceramic hydroxyapatite
WO2020045290A1 (en) * 2018-08-31 2020-03-05 株式会社カネカ Method for purifying antibody or antibody-like molecule
JP2020531557A (en) * 2017-08-30 2020-11-05 アレス トレーディング ソシエテ アノニム Protein purification method
WO2021172217A1 (en) * 2020-02-28 2021-09-02 株式会社カネカ Method for reducing nucleic acid and adsorbing filter
WO2022044727A1 (en) * 2020-08-28 2022-03-03 株式会社カネカ Method for purifying useful substance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010510963A (en) * 2006-06-14 2010-04-08 グラクソスミスクライン・リミテッド・ライアビリティ・カンパニー Antibody purification method using ceramic hydroxyapatite
JP2010508352A (en) * 2006-11-01 2010-03-18 バイオジェン・アイデック・エムエイ・インコーポレイテッド Method for isolating biopolymers using low pH and divalent cations
JP2020531557A (en) * 2017-08-30 2020-11-05 アレス トレーディング ソシエテ アノニム Protein purification method
WO2020045290A1 (en) * 2018-08-31 2020-03-05 株式会社カネカ Method for purifying antibody or antibody-like molecule
WO2021172217A1 (en) * 2020-02-28 2021-09-02 株式会社カネカ Method for reducing nucleic acid and adsorbing filter
WO2022044727A1 (en) * 2020-08-28 2022-03-03 株式会社カネカ Method for purifying useful substance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SRINIVAS CHOLLANGI; RAY PARKER; NRIPEN SINGH; YI LI; MICHAEL BORYS; ZHENGJIAN LI: "Development of robust antibody purification by optimizing protein‐A chromatography in combination with precipitation methodologies", BIOTECHNOLOGY AND BIOENGINEERING, JOHN WILEY, HOBOKEN, USA, vol. 112, no. 11, 31 July 2015 (2015-07-31), Hoboken, USA, pages 2292 - 2304, XP071153486, ISSN: 0006-3592, DOI: 10.1002/bit.25639 *

Similar Documents

Publication Publication Date Title
KR20150123796A (en) Chromatographic purification of antibodies from chromatin-deficient cell culture harvests
US20230082473A1 (en) Method for reducing nucleic acid and adsorbing filter
EP2961761B1 (en) Protein purification in the presence of nonionic organic polymers at elevated conductivity
CN105764914B (en) Novel adsorbent composition and use thereof
JP7352555B2 (en) Methods for purifying antibodies or antibody-like molecules
KR20150122645A (en) Protein purification in the presence of nonionic organic polymers and electropositive surfaces
NL7907791A (en) METHOD FOR PURIFYING INTERFERON.
JP2013540157A (en) Method for treating inclusion bodies
TW202045527A (en) Methods for purifying antibodies comprising of a process by using activated carbon materials
EP4108673A1 (en) Non-protein a purification method for adalimumab
JP6769695B2 (en) Purification of immunoglobulins from plasma
WO2022202611A1 (en) Method for producing useful substance
WO2022044727A1 (en) Method for purifying useful substance
EP3019262A1 (en) Removal of fragments from a sample containing a target protein using activated carbon
EP1403274A1 (en) Process for the purification of recombinant proteins from complex media and purified proteins obtained thereby
JP2011036128A (en) Method for producing antibody
JP5458183B2 (en) Multi-stage final filtration method
WO2023027044A1 (en) Method for reducing endotoxin
RU2252782C2 (en) Method for production of insulin drug of durable action
JP5137491B2 (en) Method for modifying adsorbability and / or elution of aluminum hydroxide adsorbent
EP2961760B1 (en) Selective removal of a protein from a mixture of proteins using activated carbon by adjusting solution conditions
JP2023032661A (en) Method for producing nucleic acid
WO2021172203A1 (en) Product for biomolecule purification
CN114555622A (en) Purification and viral inactivation of proteins
WO2021072210A1 (en) Methods of purifying ranibizumab or a ranibizumab variant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775399

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775399

Country of ref document: EP

Kind code of ref document: A1