WO2022202505A1 - Electrically conductive resin composition, material having high thermal conductivity, and semiconductor device - Google Patents

Electrically conductive resin composition, material having high thermal conductivity, and semiconductor device Download PDF

Info

Publication number
WO2022202505A1
WO2022202505A1 PCT/JP2022/011708 JP2022011708W WO2022202505A1 WO 2022202505 A1 WO2022202505 A1 WO 2022202505A1 JP 2022011708 W JP2022011708 W JP 2022011708W WO 2022202505 A1 WO2022202505 A1 WO 2022202505A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
resin composition
silver
conductive resin
acrylate
Prior art date
Application number
PCT/JP2022/011708
Other languages
French (fr)
Japanese (ja)
Inventor
智将 樫野
安澄 濱島
将人 吉田
直輝 渡部
真 高本
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to KR1020237035594A priority Critical patent/KR20230159849A/en
Priority to JP2023509054A priority patent/JP7491463B2/en
Priority to CN202280023168.7A priority patent/CN117098806A/en
Publication of WO2022202505A1 publication Critical patent/WO2022202505A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver

Definitions

  • the present invention relates to a conductive resin composition, a highly thermally conductive material and a semiconductor device.
  • Patent Document 1 discloses a conductive filler made of silver powder having a predetermined average particle size, an epoxy resin, a reactive diluent having one or more glycidyl functional groups in an aliphatic hydrocarbon chain, and a thermally conductive filler containing a curing agent.
  • a conductive adhesive composition is disclosed. The document exemplifies cyclohexanedimethanol diglycidyl ether, neopentyl glycol diglycidyl ether, and the like as the reactive diluent.
  • Patent Document 2 discloses a composition containing a predetermined glycidyl ether compound, a predetermined phenolic resin curing agent, a curing accelerator, and a conductive filler, wherein a predetermined amount of the phenolic resin curing agent is added to the glycidyl ether compound.
  • a conductive adhesive is disclosed comprising: This document exemplifies 1,4-cyclohexanedimethanol diglycidyl ether and pentaerythritol tetraglycidyl ether as the glycidyl ether compound.
  • Patent Document 3 discloses a thermally conductive conductive adhesive composition containing a conductive filler, an epoxy resin, a reactive diluent having two or more glycidyl ether functional groups in an aliphatic hydrocarbon chain, and a curing agent. things are disclosed. The document exemplifies cyclohexanedimethanol diglycidyl ether, neopentyl glycol diglycidyl ether, and the like as the reactive diluent.
  • Patent Documents 1 to 3 have room for improvement in thermal conductivity, product reliability, and adhesion to substrates.
  • the present inventors have found that the above problems can be solved by using a combination of a (meth)acrylic compound and a specific polyfunctional epoxy compound, and have completed the present invention. That is, the present invention can be shown below.
  • a conductive resin composition is provided.
  • R represents a hydroxyl group or an alkyl group having 1 to 3 carbon atoms, and multiple Rs may be the same or different.
  • Q represents a divalent to hexavalent organic group.
  • X represents an alkylene group having 1 to 3 carbon atoms, and multiple X's may be the same or different.
  • m is an integer of 0-2, n is an integer of 2-4.
  • a high thermal conductivity material obtained by sintering the conductive resin composition is provided.
  • a substrate A semiconductor element mounted on the base material via an adhesive layer, A semiconductor device is provided in which the adhesive layer is formed by sintering the conductive resin composition.
  • the conductive resin composition of the present invention promotes sintering of the silver-containing particles by curing shrinkage to obtain a highly thermally conductive material with excellent thermal conductivity. It is possible to obtain a highly thermally conductive material with excellent product reliability because it also has excellent adhesion to. In other words, it is possible to provide a conductive resin composition having an excellent balance of these properties.
  • FIG. 1 is a cross-sectional view schematically showing an example of a semiconductor device
  • FIG. 1 is a cross-sectional view schematically showing an example of a semiconductor device
  • FIG. 1 is a cross-sectional view schematically showing an example of a semiconductor device
  • alkyl group includes not only alkyl groups without substituents (unsubstituted alkyl groups) but also alkyl groups with substituents (substituted alkyl groups).
  • (meth)acryl used herein represents a concept that includes both acryl and methacryl. The same applies to similar expressions such as "(meth)acrylate” and "(meth)acryloyl”.
  • the conductive resin composition of the present embodiment is (A) silver-containing particles; (B) a (meth) acrylic compound; (C) at least one polyfunctional epoxy compound selected from compounds represented by the following general formula (1).
  • the sintering of the silver-containing particles is promoted by curing shrinkage, and a high thermal conductivity material with excellent thermal conductivity is obtained.
  • the elastic modulus is low, the stress is relaxed, and the adhesiveness to the substrate etc. is excellent. Therefore, a high thermal conductivity material with excellent product reliability can be obtained.
  • thermal conductivity can be evaluated by volume resistivity according to the Wiedemann-Franz law. In other words, the volume resistivity is the electrical resistance value per unit volume. If the electrical resistance value is low, the free electrons become carriers and electricity easily passes through. .
  • the silver-containing particles (A) can be sintered by an appropriate heat treatment to form a particle connecting structure (sintering structure).
  • the inclusion of silver-containing particles in the conductive resin composition particularly the inclusion of silver particles having a relatively small particle size and a relatively large specific surface area, allows A sintered structure is likely to be formed even by heat treatment.
  • a preferred particle size will be described later.
  • the shape of the silver-containing particles is not particularly limited, and includes known shapes such as spherical, dendritic, string-like, scale-like, agglomerated, and polyhedral shapes. can include one or more, preferably two or more. Thereby, it is excellent by electroconductivity.
  • spherical silver-containing particles (a1) and scaly, aggregated, and one or more kinds of silver-containing particles (a2) selected from polyhedral shapes, more preferably containing spherical silver-containing particles (a1) and scale-like silver-containing particles (a2-1) is particularly preferred.
  • the contact ratio between the silver-containing particles is further improved, so that a network is easily formed after sintering the conductive resin composition, and the thermal conductivity and the electrical conductivity are further improved.
  • the term “spherical” is not limited to a perfect sphere, and includes a shape with some irregularities on the surface. Its circularity is, for example, 0.90 or more, preferably 0.92 or more, and more preferably 0.94 or more.
  • the surface of the silver-containing particles (A) is treated with an organic compound such as a carboxylic acid, a saturated fatty acid having 4 to 30 carbon atoms, a monovalent unsaturated fatty acid having 4 to 30 carbon atoms, or a long-chain alkylnitrile. good too.
  • an organic compound such as a carboxylic acid, a saturated fatty acid having 4 to 30 carbon atoms, a monovalent unsaturated fatty acid having 4 to 30 carbon atoms, or a long-chain alkylnitrile. good too.
  • the silver-containing particles (A) may be (i) particles consisting essentially of silver, or (ii) particles consisting of silver and a component other than silver. Moreover, (i) and (ii) may be used together as the metal-containing particles.
  • the silver-containing particles (A) particularly preferably contain silver-coated resin particles in which the surfaces of resin particles are coated with silver. Thereby, it is possible to prepare a conductive resin composition that gives a cured product having excellent thermal conductivity and a low storage elastic modulus.
  • the silver-coated resin particles have silver on the surface and a resin inside, they are considered to have good thermal conductivity and to be softer than particles made only of silver. Therefore, it is considered that the use of silver-coated resin particles facilitates designing appropriate values for thermal conductivity and storage elastic modulus.
  • the thermal conductivity it is considered to increase the amount of silver-containing particles.
  • metals are generally "hard", too much silver-containing particles may result in too high a modulus after sintering.
  • Part or all of the silver-containing particles are silver-coated resin particles, making it possible to easily design a conductive resin composition from which a cured product having desired thermal conductivity and storage elastic modulus can be obtained.
  • the silver-coated resin particles it is sufficient that at least a part of the surface of the resin particles is covered with a silver layer. Of course, the entire surface of the resin particles may be covered with silver.
  • the silver layer preferably covers 50% or more, more preferably 75% or more, and still more preferably 90% or more of the surface of the resin particles.
  • the silver layer covers substantially the entire surface of the resin particles. From another point of view, when the silver-coated resin particles are cut along a certain cross section, it is preferable that the silver layer is observed all around the cross section.
  • the mass ratio of resin/silver in the silver-coated resin particles is, for example, 90/10 to 10/90, preferably 80/20 to 20/80, more preferably 70/30 to 30/70. be.
  • the "resin" in the silver-coated resin particles examples include silicone resins, (meth)acrylic resins, phenol resins, polystyrene resins, melamine resins, polyamide resins, polytetrafluoroethylene resins, and the like. Of course, resins other than these may be used. Moreover, only one resin may be used, or two or more resins may be used in combination. From the viewpoint of elastic properties and heat resistance, the resin is preferably a silicone resin or a (meth)acrylic resin.
  • the silicone resin may be particles composed of organopolysiloxane obtained by polymerizing organochlorosilanes such as methylchlorosilane, trimethyltrichlorosilane, and dimethyldichlorosilane.
  • organochlorosilanes such as methylchlorosilane, trimethyltrichlorosilane, and dimethyldichlorosilane.
  • a silicone resin having a basic skeleton structure obtained by further three-dimensionally cross-linking an organopolysiloxane may be used.
  • the (meth)acrylic resin is a resin obtained by polymerizing a monomer containing (meth)acrylic acid ester as a main component (50% by weight or more, preferably 70% by weight or more, more preferably 90% by weight or more). be able to.
  • (Meth)acrylic acid esters for example, methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, lauryl (meth)acrylate , stearyl (meth)acrylate, cyclohexyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-propyl (meth)acrylate, chloro-2-hydroxyethyl (meth)acrylate, diethylene glycol mono (meth)acrylate, At least one compound selected from the group consisting of methoxyethyl (meth)acrylate, glycidyl (meth)acrylate, dicyclopentanyl (meth)acrylate, dicyclopentenyl (meth)acrylate and isoboronol (meth)acrylate can be mentioned.
  • the monomer component of the acrylic resin may contain a small amount of other monomers.
  • Such other monomer components include, for example, styrenic monomers.
  • silver-coated (meth)acrylic resin see also the description in JP-A-2017-126463.
  • Suitable functional groups may be introduced into silicone resins and (meth)acrylic resins.
  • Functional groups that can be introduced are not particularly limited. Examples thereof include epoxy group, amino group, methoxy group, phenyl group, carboxyl group, hydroxyl group, alkyl group, vinyl group and mercapto group.
  • the resin particle portion of the silver-coated resin particles may contain various additive components, such as low-stress modifiers.
  • low-stress modifiers include liquid synthetic rubbers such as butadiene styrene rubber, butadiene acrylonitrile rubber, polyurethane rubber, polyisoprene rubber, acrylic rubber, fluororubber, liquid organopolysiloxane, and liquid polybutadiene.
  • liquid synthetic rubbers such as butadiene styrene rubber, butadiene acrylonitrile rubber, polyurethane rubber, polyisoprene rubber, acrylic rubber, fluororubber, liquid organopolysiloxane, and liquid polybutadiene.
  • the resin particle portion contains a silicone resin
  • the inclusion of a low-stress modifier can make the elastic properties of the silver-coated resin particles preferable.
  • the shape of the resin particle portion of the silver-coated resin particles is not particularly limited. A combination of a spherical shape and an irregular shape other than a spherical shape, such as a flat shape, a plate shape, a needle shape, etc., is preferable.
  • the specific gravity of the silver-coated resin particles is not particularly limited, the lower limit is, for example, 2 or more, preferably 2.5 or more, and more preferably 3 or more. Further, the upper limit of the specific gravity is, for example, 10 or less, preferably 9 or less, more preferably 8 or less. Appropriate specific gravity is preferable in terms of dispersibility of the silver-coated resin particles themselves and uniformity when silver-coated resin particles and other silver-containing particles are used in combination.
  • the proportion of silver-coated resin particles in the total silver-containing particles (A) is preferably 1 to 50% by mass, more preferably 3 to 45% by mass, and still more preferably 5 to 40% by mass. is. By appropriately adjusting this ratio, it is possible to further improve heat dissipation while suppressing a decrease in adhesive strength due to heat cycles.
  • the silver-containing particles other than the silver-coated resin particles are, for example, particles consisting essentially of silver.
  • the median diameter D50 of the silver-containing particles (A) is, for example, 0.01-50 ⁇ m, preferably 0.1-20 ⁇ m, more preferably 0.5-10 ⁇ m.
  • D50 By setting D50 to an appropriate value, it is easy to balance thermal conductivity, sinterability, resistance to heat cycles, and the like. Also, by setting D50 to an appropriate value, it may be possible to improve the workability of application/adhesion.
  • the particle size distribution (horizontal axis: particle size, vertical axis: frequency) of the silver-containing particles may be unimodal or multimodal.
  • the silver-containing particles (A) contain spherical silver-containing particles (a1) and scale-like silver-containing particles (a2-1). These silver-containing particles are more preferably silver particles consisting essentially of silver.
  • the median diameter D 50 of the spherical silver-containing particles (a1) is, for example, 0.1-20 ⁇ m, preferably 0.5-10 ⁇ m, more preferably 0.5-5.0 ⁇ m.
  • the specific surface area of the spherical silver-containing particles (a1) is, for example, 0.1 to 2.5 m 2 /g, preferably 0.5 to 2.3 m 2 /g, more preferably 0.8 to 2.0 m 2 /g. is g.
  • the tap density of the spherical silver-containing particles (a1) is, for example, 1.5 to 6.0 g/cm 3 , preferably 2.5 to 5.8 g/cm 3 , more preferably 4.5 to 5.5 g/cm 3 .
  • the circularity of the spherical silver-containing particles (a1) is, for example, 0.90 or more, preferably 0.92 or more, and more preferably 0.94 or more. Satisfying each of these properties provides an excellent balance of thermal conductivity, sinterability, resistance to heat cycles, and the like.
  • the median diameter D50 of the scale-like silver-containing particles (a2-1) is, for example, 0.1 to 20 ⁇ m, preferably 1.0 to 15 ⁇ m, more preferably 2.0 to 10 ⁇ m.
  • the specific surface area of the scale-like silver-containing particles (a2-1) is, for example, 0.1 to 2.5 m 2 /g, preferably 0.2 to 2.0 m 2 /g, more preferably 0.25 to 1.0 m 2 /g. 2 m 2 /g.
  • the tap density of the scale-like silver-containing particles (a2-1) is, for example, 1.5 to 6.0 g/cm 3 , preferably 2.5 to 5.9 g/cm 3 , more preferably 4.0 to 5.0 g/cm 3 . 8 g/cm 3 . Satisfying each of these properties provides an excellent balance of thermal conductivity, sinterability, resistance to heat cycles, and the like.
  • the ratio (a1/a2-1) of the content of the spherical silver-containing particles (a1) to the content of the scale-like silver-containing particles (a2-1) is preferably 0.1 or more and 10 or less, more preferably 0.1. It can be 3 or more and 5 or less, particularly preferably 0.5 or more and 3 or less. As a result, the contact ratio between the silver-containing particles is particularly improved, so that a network is easily formed after sintering the paste-like polymerizable composition, and the thermal conductivity and the electrical conductivity are particularly improved.
  • the ratio (a1/a2-1) of the median diameter D50 of the spherical silver-containing particles (a1) to the median diameter D50 of the scale-like silver-containing particles (a2-1) is preferably 0.01 or more and 0.8 or less. , more preferably 0.05 or more and 0.6 or less.
  • the ratio (a1/a2-1) of the tap density of the spherical silver-containing particles (a1) to the tap density of the scale-like silver-containing particles (a2-1) is preferably 0.5 or more and 2.0 or less, more preferably It is 0.7 or more and 1.2 or less.
  • the filling rate of the silver-containing particles is improved, and the contact ratio between the silver-containing particles is particularly improved.
  • Conductivity is particularly improved.
  • the median diameter D50 of the silver-coated resin particles is, for example, 5.0-25 ⁇ m, preferably 7.0-20 ⁇ m, more preferably 8.0-15 ⁇ m. Thereby, thermal conductivity can be improved more.
  • the median diameter D 50 of the silver-containing particles (A) can be determined by, for example, particle image measurement using a flow type particle image analyzer FPIA (registered trademark)-3000 manufactured by Sysmex Corporation. More specifically, the particle diameter of the silver-containing particles (A) can be determined by measuring the volume-based median diameter in a wet manner using this device.
  • FPIA flow type particle image analyzer
  • the ratio of the silver-containing particles (A) in the entire conductive resin composition is, for example, 1-98% by mass, preferably 30-96% by mass, more preferably 50-94% by mass.
  • the ratio of the metal-containing particles By setting the ratio of the metal-containing particles to 1% by mass or more, it is easy to increase the thermal conductivity.
  • the ratio of the silver-containing particles (A) By setting the ratio of the silver-containing particles (A) to 98% by mass or less, the workability of coating/adhesion can be improved.
  • particles consisting essentially of silver can be obtained from, for example, DOWA Hi-Tech Co., Ltd., Fukuda Metal Foil & Powder Co., Ltd., and the like.
  • silver-coated resin particles can be obtained from, for example, Mitsubishi Materials Corporation, Sekisui Chemical Co., Ltd., Sanno Co., Ltd., and the like.
  • the (meth)acrylic compound (B) is not particularly limited, but includes, for example, a monofunctional or bifunctional (meth)acrylic compound, or a trifunctional or higher polyfunctional (meth)acrylic compound.
  • the (meth) acrylic compound represents an acrylic compound, a methacrylic compound, or a mixture thereof, and having a (meth) acrylic group means having one or more acrylic groups, or having one or more methacrylic groups.
  • the monofunctional (meth)acrylates include, for example, methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, isopropyl (meth)acrylate, butyl (meth)acrylate, isobutyl (meth) Acrylate, s-butyl (meth)acrylate, t-butyl (meth)acrylate, butoxyethyl (meth)acrylate, pentyl (meth)acrylate, hexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, heptyl (meth)acrylate , octylheptyl (meth)acrylate, nonyl (meth)acrylate, decyl (meth)acrylate, undecyl (meth)acrylate, lauryl (meth)acrylate, tridecyl (meth)acrylate, tetradecyl (
  • bifunctional (meth)acrylates include ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, meth)acrylate, propylene glycol di(meth)acrylate, dipropylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, tetrapropylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, 1,3 -butanediol di(meth)acrylate, 2-methyl-1,3-propanediol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, 3-methyl- 1,5-pentanediol di(meth)acrylate, 1,6-hexane
  • trifunctional or higher polyfunctional (meth)acrylates examples include trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, pentaerythritol tetra(meth)acrylate, di aliphatic (meth)acrylates such as pentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, ethoxylated glycerin tri(meth)acrylate; heterocyclic (meth)acrylates such as isocyanuric acid tri(meth)acrylate; ) acrylates and the like.
  • the (meth)acrylic compound (B) can contain at least one selected from these, and can contain a monofunctional (meth)acrylate or a bifunctional (meth)acrylate.
  • the ratio of the (meth)acrylic compound (B) in the entire conductive resin composition of the present embodiment is, for example, 0.1 to 15% by mass, preferably 0.5 to 12% by mass, from the viewpoint of the effects of the present invention. , more preferably 1.0 to 10% by mass.
  • the polyfunctional epoxy compound (C) contains at least one compound selected from compounds represented by the following general formula (1).
  • the compound represented by the following general formula (1) contained in the polyfunctional epoxy compound (C) has a divalent to hexavalent organic group to which a plurality of epoxy group-containing groups are bonded, and has excellent reactivity and crosslink density. increases, sintering of the silver-containing particles is promoted by curing shrinkage when a resin is obtained from the compound, and a highly thermally conductive material with excellent thermal conductivity can be obtained. Furthermore, since the resulting cured product (high thermal conductive material) has a low elastic modulus and excellent flexibility, a semiconductor device or the like provided with the cured product has excellent product reliability due to stress relaxation. Furthermore, the resulting cured product (high thermal conductivity material) is excellent in adhesion to substrates and the like, and is excellent in product reliability. In other words, it is possible to provide a conductive resin composition having an excellent balance of these properties.
  • R represents a hydroxyl group or an alkyl group having 1 to 3 carbon atoms, preferably a hydroxyl group or an alkyl group having 1 to 2 carbon atoms, more preferably a hydroxyl group or an alkyl group having 1 carbon atom. Multiple R may be the same or different.
  • X represents an alkylene group having 1 to 3 carbon atoms, preferably an alkylene group having 1 to 2 carbon atoms, more preferably an alkylene group having 1 carbon atom. Multiple X's may be the same or different.
  • n represents an integer of 2 to 4, preferably 2 or 3;
  • Q represents a divalent to hexavalent organic group.
  • divalent to hexavalent organic group in Q known organic groups can be used as long as the effects of the present invention are exhibited. can be mentioned.
  • Examples of compounds in which Q in general formula (1) is an organic group in general formula (a) include Denacol EX-321 (manufactured by Nagase ChemteX Corporation) and PETG (manufactured by Showa Denko KK). Examples of compounds in which Q in general formula (1) is an organic group in general formula (b) include CDMDG (manufactured by Showa Denko KK). Examples of compounds in which Q in general formula (1) is an organic group in general formula (c) include Denacol EX-313 (manufactured by Nagase ChemteX Corporation).
  • Examples of compounds in which Q in general formula (1) is an organic group in general formula (d) include Denacol EX-810 (manufactured by Nagase ChemteX Corporation). In general formula (e), p represents an integer of 1-30, preferably an integer of 10-25. Examples of compounds in which Q in general formula (1) is an organic group in general formula (e) include Denacol EX-861 (manufactured by Nagase ChemteX Corporation).
  • Q 1 and Q 2 represent an alkylene group having 1 to 3 carbon atoms or a cycloalkylene group having 3 to 8 carbon atoms, preferably an alkylene group having 1 to 2 carbon atoms or 5 to 8 carbon atoms.
  • Examples of compounds in which Q in general formula (1) is an organic group in general formula (f) include Denacol EX-211 and EX-252 (manufactured by Nagase ChemteX Corporation).
  • Examples of compounds in which Q in general formula (1) is an organic group in general formula (g) include Denacol EX-512 (manufactured by Nagase ChemteX Corporation). Examples of compounds in which Q in general formula (1) is an organic group in general formula (h) include Denacol EX-614B (manufactured by Nagase ChemteX Corporation). In general formulas (a) to (h), * indicates a bond.
  • the polyfunctional epoxy compound (C) is at least one compound selected from compounds in which Q is an organic group represented by general formulas (a), (b) and (c). It preferably contains at least one selected from compounds that are organic groups represented by general formulas (a) and (b), and more preferably contains an organic group represented by general formula (a) More preferably, it contains at least one selected from compounds.
  • the polyfunctional epoxy compound (C) is a compound a in which Q in the general formula (1) is an organic group represented by the general formula (a) and n is 3, and Q in the general formula (1) is the general formula
  • the ratio of compound a to the total amount of compound a and compound b (a/(a+b)) is 0.01 to 5, preferably 0.05 to 3, more preferably 0.1 to 1.
  • the proportion of the polyfunctional epoxy compound (C) in the entire conductive resin composition of the present embodiment is, for example, 0.1 to 20% by mass, preferably 0.2 to 17% by mass, more preferably 0.5 to 15% by mass. % by mass.
  • the conductive resin composition further promotes sintering of the silver-containing particles due to curing shrinkage. It is possible to obtain a highly thermally conductive material with even better thermal conductivity. Furthermore, since the resulting cured product (high thermal conductive material) has a lower elastic modulus and is more excellent in flexibility, a semiconductor device or the like provided with the cured product is more excellent in product reliability due to stress relaxation. Furthermore, the resulting cured product (high thermal conductivity material) is excellent in adhesion to substrates and the like, and is excellent in product reliability. In other words, it is possible to provide a conductive resin composition with a better balance of these properties.
  • the conductive resin composition of this embodiment can further contain a curing agent (D).
  • a curing agent (D) include those having a reactive group that reacts with the epoxy group contained in the polyfunctional epoxy compound (C).
  • the curing agent (D) preferably contains a phenolic curing agent. These curing agents are particularly preferred when the thermosetting component contains epoxy groups.
  • the phenol-based curing agent may be a low-molecular-weight compound or a high-molecular-weight compound (ie, phenolic resin).
  • phenolic resins include novolac-type phenolic resins such as phenol novolak resin, cresol novolak resin, bisphenol novolak resin, and phenol-biphenyl novolak resin; polyvinylphenol; polyfunctional phenolic resins such as triphenylmethane-type phenol resin; modified phenolic resins such as modified phenolic resins and dicyclopentadiene-modified phenolic resins; phenolic aralkyl-type phenolic resins such as phenolaralkyl resins having a phenylene skeleton and/or biphenylene skeleton and naphtholaralkyl resins having a phenylene and/or biphenylene skeleton; be able to.
  • the curing agent (D) only one type may be used, or two or more types may be used in combination.
  • the amount thereof is, for example, 10 to 120 parts by mass, preferably 20 parts by mass when the amount of the polyfunctional epoxy compound (C) is 100 parts by mass. ⁇ 80 parts by mass.
  • the conductive resin composition of the present embodiment can further contain a polymer (E) containing polyrotaxane.
  • a polyrotaxane usually comprises a cyclic molecule forming an opening, a linear molecular chain passing through the opening of the cyclic molecule, and blocking groups bonded to both ends of the linear molecular chain. Blocking groups prevent the cyclic molecule from leaving the linear chain.
  • a single linear molecular chain can pass through an opening in one or more cyclic molecules.
  • the cyclic molecule in the polyrotaxane is not particularly limited as long as it forms an opening through which the linear molecular chain can pass.
  • a cyclic molecule does not have to be completely closed by a covalent bond, as long as the linear molecular chain passing through the opening does not break off.
  • Cyclic molecules include, for example, cyclodextrin, crown ether, benzocrown, dibenzocrown, dicyclohexanocrown, and derivatives or modifications thereof. From the viewpoint of inclusion ability of linear molecular chains, the cyclic molecule is preferably cyclodextrin or a derivative or modified form thereof.
  • the cyclic molecule is cyclodextrin or a derivative or modified form thereof
  • part or all of the hydroxy groups in the cyclodextrin are preferably substituted with hydrophobic groups.
  • the solubility of the polyrotaxane in organic solvents is improved.
  • the relative amount of the cyclic molecule to be included is, for example, 0.001, preferably 0.01, more preferably 0.1 or more, and the upper limit is, for example, 0.7 or less, preferably 0.6 or less, more preferably 0.5 It is below.
  • the inclusion amount of the cyclic molecule is within the above range, the mobility of the cyclic molecule on the linear molecular chain is likely to be maintained.
  • the linear molecular chain in the polyrotaxane is not particularly limited as long as it is a molecular chain that can penetrate the cyclic molecule and the cyclic molecule can move on the linear molecular chain.
  • the straight-chain molecular chain only needs to contain a substantially straight-chain portion, and may have a branched chain or a cyclic substituent or the like.
  • the length and molecular weight of the linear portion are not particularly limited.
  • linear molecular chains examples include alkylene chains, polyester chains, polyether chains, polyamide chains, and polyacrylate chains. Among these, a polyester chain or a polyether chain is preferred, and a polyether chain is more preferred, from the viewpoint of the flexibility of the linear molecular chain itself.
  • Polyether chains are preferably polyethylene glycol chains (polyoxyethylene chains).
  • the blocking groups in the polyrotaxane are not particularly limited as long as they are groups arranged at both ends of the linear molecular chain and capable of maintaining the state in which the linear molecular chain penetrates the cyclic molecule.
  • the blocking group includes a group having a structure larger than the opening of the cyclic molecule, a group that cannot pass through the opening of the cyclic molecule due to ionic interaction, and the like.
  • Specific examples of blocking groups include adamantyl groups, groups containing cyclodextrin, anthracene groups, triphenylene groups, pyrene groups, trityl groups, and isomers and derivatives thereof.
  • the combination of a cyclic molecule and a linear molecular chain is preferably a combination of ⁇ -cyclodextrin or a derivative thereof as the cyclic molecule and a polyethylene glycol chain or derivative thereof as the linear molecular chain. .
  • This combination facilitates movement of the cyclic molecule on the linear molecular chain.
  • this combination also has the advantage of being relatively easy to synthesize.
  • the polyrotaxane preferably has crosslinkable groups. By having a crosslinkable group in the polyrotaxane, the thermosetting property, adhesiveness, etc. of the conductive resin composition are improved.
  • the cyclic molecule in the polyrotaxane preferably has a crosslinkable group. Since the cyclic molecule has a crosslinkable group, the cyclic molecule maintains a state in which it can slide along the linear molecular chain even after the composition is thermally cured (crosslinked). Therefore, it is possible to further enhance the flexibility and stretchability of the film after thermosetting.
  • the crosslinkable group is preferably a cationic crosslinkable group or a radical crosslinkable group, more preferably a radical crosslinkable group.
  • the crosslinkable groups are preferably ethylenic carbon-carbon double bond-containing groups such as (meth)acryloyl groups.
  • the crosslinkable group may contain an epoxy group and/or an oxetanyl group.
  • the polyrotaxane may be synthesized with reference to a known method, or may be a commercially available product. Commercially available products include the "Serum” (registered trademark, SeRM in the alphabet) series sold by ASM Corporation.
  • the conductive resin composition of the present embodiment may contain only one type of polyrotaxane, or may contain two or more types.
  • the polymer (E) can contain known resins other than polyrotaxane within the scope of the effects of the present invention.
  • resins include silicone resins, (meth)acrylic resins, phenol resins, polystyrene resins, melamine resins, polyamide resins, and polytetrafluoroethylene resins.
  • the content of the polyrotaxane in 100% by mass of the polymer (E) is 75% by mass to 100% by mass, preferably 80% by mass to 100% by mass, more preferably 90% by mass to 100% by mass, especially It is preferably 95% by mass to 100% by mass.
  • the proportion of the polymer (E) in the entire conductive resin composition of the present embodiment is, for example, 0.1 to 10% by mass, preferably 0.2 to 8% by mass, more preferably 0.3 to 5% by mass. be.
  • the conductive resin composition of the present embodiment can further contain an organic solvent (F).
  • organic solvent (F) examples include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, Propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, tripropylene glycol monobutyl ether, methyl methoxybutanol, ⁇ -terpineol, ⁇ -terpineol, hexylene glycol, benzyl alcohol, 2-phenyl Alcohols such as ethyl alcohol, isopalmityl alcohol, isostearyl alcohol, lauryl alcohol, ethylene glycol, propylene
  • the amount is not particularly limited.
  • the amount used may be appropriately adjusted based on the desired fluidity and the like.
  • the organic solvent (F) is used in such an amount that the nonvolatile component concentration of the conductive resin composition is 50 to 95% by mass.
  • the conductive resin composition of this embodiment can further contain a curing accelerator.
  • a curing accelerator typically accelerates the reaction between the polyfunctional epoxy compound (C) and the curing agent (D).
  • curing accelerators include phosphorus atom-containing compounds such as imidazole compounds, organic phosphines, tetrasubstituted phosphonium compounds, phosphobetaine compounds, adducts of phosphine compounds and quinone compounds, and adducts of phosphonium compounds and silane compounds; dicyandiamide, 1,8-diazabicyclo[5.4.0]undecene-7, amidines and tertiary amines such as benzyldimethylamine; nitrogen atom-containing compounds such as quaternary ammonium salts of the above amidines or the above tertiary amines; be done.
  • a hardening accelerator only 1 type may be used and 2 or more types may be used together.
  • the conductive resin composition of this embodiment can further contain a curing accelerator.
  • the radical polymerization initiator can, for example, prevent insufficient curing, allow the curing reaction to proceed sufficiently at a relatively low temperature (eg, 180° C.), or further improve the adhesive strength. sometimes it can be done.
  • Examples of radical polymerization initiators include peroxides and azo compounds.
  • peroxides examples include organic peroxides such as diacyl peroxide, dialkyl peroxide, and peroxyketals, more specifically, ketone peroxides such as methyl ethyl ketone peroxide and cyclohexanone peroxide; Peroxyketals such as 1,1-di(t-butylperoxy)cyclohexane and 2,2-di(4,4-di(t-butylperoxy)cyclohexyl)propane; Hydroperoxides such as p-menthane hydroperoxide, diisopropylbenzene hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, cumene hydroperoxide, t-butyl hydroperoxide; di(2-t-butylperoxyisopropyl)benzene, dicumyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, t-buty
  • Azo compounds include 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile), 2,2'-azobis(2-cyclopropylpropionitrile), 2,2'-azobis(2, 4-dimethylvaleronitrile) and the like.
  • a radical polymerization initiator only one type may be used, or two or more types may be used in combination.
  • the conductive resin composition of the present embodiment can contain other components such as a curing accelerator, a silane coupling agent, a plasticizer, and an adhesion imparting agent.
  • the adhesive force can be further improved, and by including a plasticizer, the storage elastic modulus can be lowered. And it becomes easy to suppress the fall of the adhesive force by a heat cycle further.
  • the conductive resin composition of the present embodiment is preferably pasty at 20°C. That is, the conductive resin composition (paste composition) of the present embodiment can preferably be applied to a substrate or the like like a paste at 20°C. As a result, the conductive resin composition of the present embodiment can be preferably used as an adhesive for semiconductor elements or the like. Of course, depending on the applied process, the conductive resin composition of the present embodiment may be in the form of a relatively low-viscosity varnish.
  • the conductive resin composition of the present embodiment can be obtained by mixing each of the components described above and, if necessary, other components by a conventionally known method.
  • a highly thermally conductive material can be obtained by sintering the conductive resin composition of the present embodiment. By changing the shape of the high thermal conductivity material, it can be applied to various parts that require heat dissipation in the fields of automobiles and electrical machinery.
  • a semiconductor device can be manufactured using the conductive resin composition of the present embodiment.
  • a semiconductor device can be manufactured by using the conductive resin composition of the present embodiment as an "adhesive" between a substrate and a semiconductor element.
  • the semiconductor device of the present embodiment includes, for example, a substrate and a semiconductor element mounted on the substrate via an adhesive layer obtained by sintering the conductive resin composition by heat treatment. Prepare.
  • the stress is relaxed, and the adhesiveness of the adhesive layer is less likely to deteriorate due to heat cycles. That is, the reliability of the semiconductor device of this embodiment is high.
  • semiconductor devices include ICs, LSIs, power semiconductor devices (power semiconductors), and various other devices.
  • substrates include various semiconductor wafers, lead frames, BGA substrates, mounting substrates, heat spreaders, and heat sinks.
  • FIG. 1 is a cross-sectional view showing an example of a semiconductor device.
  • the semiconductor device 100 includes a base material 30 and a semiconductor element 20 mounted on the base material 30 via an adhesive layer 10 (die attach material) that is a heat-treated body of a conductive resin composition.
  • adhesive layer 10 die attach material
  • the semiconductor element 20 and the base material 30 are electrically connected, for example, via bonding wires 40 or the like. Also, the semiconductor element 20 is sealed with a sealing resin 50, for example.
  • the thickness of the adhesive layer 10 is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and even more preferably 20 ⁇ m or more. Thereby, the stress absorption capacity of the conductive resin composition can be improved, and the heat cycle resistance can be improved.
  • the thickness of the adhesive layer 10 is, for example, 100 ⁇ m or less, preferably 50 ⁇ m or less.
  • the base material 30 is, for example, a lead frame.
  • the semiconductor element 20 is mounted on the die pad 32 or the base material 30 with the adhesive layer 10 interposed therebetween.
  • the semiconductor element 20 is electrically connected to the outer leads 34 (the base material 30) via bonding wires 40, for example.
  • the base material 30, which is a lead frame, is composed of, for example, 42 alloy, a Cu frame, or the like.
  • the substrate 30 may be an organic substrate or a ceramic substrate.
  • organic substrates include those made of epoxy resin, cyanate resin, maleimide resin, or the like.
  • the surface of the base material 30 may be coated with a metal such as silver or gold, for example. This improves the adhesiveness between the adhesive layer 10 and the substrate 30 .
  • FIG. 2 is a cross-sectional view showing another example of the semiconductor device 100 different from that in FIG.
  • the base material 30 is, for example, an interposer.
  • a plurality of solder balls 52 are formed on the surface of the substrate 30, which is the interposer, opposite to the surface on which the semiconductor element 20 is mounted. In this case, the semiconductor device 100 will be connected to another wiring board through the solder balls 52 .
  • the base material 30 is coated with a conductive resin composition, and then the semiconductor element 20 is arranged thereon. That is, the substrate 30, the conductive resin composition, and the semiconductor element 20 are laminated in this order.
  • the method of applying the conductive resin composition is not particularly limited. Specifically, a dispensing method, a printing method, an inkjet method, and the like can be mentioned.
  • the conductive resin composition is heat-cured.
  • Thermal curing is preferably carried out by pre-curing and post-curing.
  • thermosetting the conductive resin composition is made into a heat-treated body (cured product).
  • thermosetting heat treatment
  • the metal-containing particles in the conductive resin composition are aggregated, and a structure is formed in the adhesive layer 10 in which interfaces between a plurality of metal-containing particles have disappeared.
  • the substrate 30 and the semiconductor element 20 are adhered via the adhesive layer 10 .
  • the semiconductor element 20 and the base material 30 are electrically connected using bonding wires 40 .
  • the semiconductor element 20 is sealed with the sealing resin 50 .
  • a semiconductor device can be manufactured.
  • Aliphatic polyfunctional epoxy compound 1 trimethylolpropane polyglycidyl ether (a mixture of compounds represented by the following chemical formula, Denacol EX-321L, manufactured by Nagase Chemtech)
  • Aliphatic polyfunctional epoxy compound 2 epoxidation reaction product of pentaerythritol tetraallyl ether with hydrogen peroxide (compound represented by the following chemical formula, Showfree PETG, manufactured by Showa Denko)
  • Aliphatic polyfunctional epoxy compound 3 epoxidation reaction product of pentaerythritol tetraallyl ether with hydrogen peroxide (compound represented by the following chemical formula, Showfree CDMDG, manufactured by Showa Denko)
  • Epoxy resin 4 bisphenol F type epoxy resin (manufactured by Nippon Kayaku, RE-303S)
  • Epoxy resin 5 aminophenol type epoxy resin (manufactured by Mitsubishi Chemical Corporation, jER630)
  • Acrylic monomer 1 ethylene glycol dimethacrylate (manufactured by Kyoeisha Chemical Co., Ltd., Light Ester EG)
  • Acrylic monomer 2 1,4-cyclohexanedimethanol monoacrylate (manufactured by Nippon Kasei Co., Ltd., CHDMMA, monofunctional acrylic)
  • Polyrotaxane 1 SA1305P-20: 50% by mass solution of polyrotaxane ethyl acetate sold by ASM Co., Ltd., cyclic molecule in polyrotaxane contains acryloyl group, total weight average molecular weight (representative value): 1 million, methacrylic equivalent ( Representative value): 1500 g / eq
  • Curing agent Phenolic resin having a bisphenol F skeleton (DIC-BPF manufactured by DIC)
  • Radical polymerization initiator - Radical polymerization initiator 1: Dicumyl peroxide (manufactured by Kayaku Akzo Co., Ltd., Perkadox BC)
  • Curing accelerator 1 2-phenyl-1H-imidazole-4,5-dimethanol (manufactured by Shikoku Kasei Kogyo Co., Ltd., 2PHZ-PW)
  • ⁇ Silver filler 1 Dowa Electronics Co., Ltd., AG-DSB-114, spherical, D 50 : 0.7 ⁇ m, specific surface area: 1.05 m 2 /g, tap density 5.25 g/cm 3 , circularity: 0.953 ⁇ Silver filler 2: HKD-12 manufactured by Fukuda Metal Foil & Powder Co., Ltd., scale-like, median diameter D 50 : 7.6 ⁇ m, specific surface area: 0.315 m 2 /g, tap density: 5.5 g/cm 3
  • Solvent 1 Tripropylene glycol mono-n-butyl ether (BFTG, manufactured by Nippon Emulsifier Co., Ltd., boiling point 274 ° C.)
  • Examples 1-8, Comparative Examples 1-2 Each raw material component was mixed according to the compounding amount shown in Table 1 to obtain a varnish. Next, the obtained varnish was blended according to the blending amounts shown in Table 1, and kneaded at room temperature in a three-roll mill. Thus, a conductive resin composition was produced.
  • the conductive resin composition was applied onto a glass plate, heated from 30° C. to 200° C. over 60 minutes in a nitrogen atmosphere, and then heat-treated at 200° C. for 120 minutes. As a result, a heat-treated body (cured product) of the conductive resin composition having a thickness of 0.05 mm was obtained.
  • the resistance value of the surface of the heat-treated body was measured using a direct current four-electrode method with a milliohmmeter (manufactured by Hioki Co., Ltd.) and electrodes with an electrode spacing of 40 mm.
  • the heat-treated body of the conductive resin composition was cut into pieces of about 0.1 mm x about 10 mm x about 4 mm to obtain strip-shaped samples for evaluation.
  • the storage modulus (E′) at 25° C. was measured by DMA (dynamic viscoelasticity measurement, tensile mode) under the conditions of a heating rate of 5° C./min and a frequency of 10 Hz.
  • the semiconductor device for evaluation produced as described above was treated in the same manner as described above at a temperature of 60° C. and a humidity of 60% for 48 hours to obtain an evaluation sample.
  • the chip adhesion strength using a 4000 universal bond tester (manufactured by Nordson Dage), the strength when shearing at a tool speed of 500 ⁇ m / s at a position of 50 ⁇ m in height from the lead frame when heating at 260 ° C. It was evaluated as strength.
  • the cured product obtained from the conductive resin composition containing the polyfunctional epoxy compound has low volume resistivity and excellent thermal conductivity, and has a low storage elastic modulus and is stress-relaxed. Furthermore, even after the constant temperature moisture absorption test, the adhesion strength is high and peeling is suppressed.
  • semiconductor device adhesive layer 20 semiconductor element 30 base material 32 die pad 34 outer lead 40 bonding wire 50 sealing resin 52 solder ball

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Epoxy Resins (AREA)

Abstract

This electrically conductive resin composition contains (A) silver-containing particles, (B) a (meth)acrylic compound, and (C) at least one polyfunctional epoxy compound selected from compounds represented by general formula (1).

Description

導電性樹脂組成物、高熱伝導性材料および半導体装置Conductive resin composition, high thermal conductivity material and semiconductor device
 本発明は、導電性樹脂組成物、高熱伝導性材料および半導体装置に関する。 The present invention relates to a conductive resin composition, a highly thermally conductive material and a semiconductor device.
 半導体装置の製造において、導電性と接着性を有する導電性樹脂組成物が用いられることがある。導電性と接着性を有する導電性樹脂組成物として、これまで様々なものが開発されている。 In the manufacture of semiconductor devices, conductive resin compositions having conductivity and adhesiveness are sometimes used. Various conductive resin compositions having conductivity and adhesiveness have been developed so far.
 特許文献1には、所定の平均粒子径を有する銀粉からなる導電性フィラー、エポキシ樹脂、脂肪族炭化水素鎖に1個以上のグリシジル官能基を有する反応性希釈剤および硬化剤を含む熱伝導性導電性接着剤組成物が開示されている。当該文献には、前記反応性希釈剤としては、シクロヘキサンジメタノールジグリシジルエーテルやネオペンチルグリコールジグリシジルエーテル等が例示されている。 Patent Document 1 discloses a conductive filler made of silver powder having a predetermined average particle size, an epoxy resin, a reactive diluent having one or more glycidyl functional groups in an aliphatic hydrocarbon chain, and a thermally conductive filler containing a curing agent. A conductive adhesive composition is disclosed. The document exemplifies cyclohexanedimethanol diglycidyl ether, neopentyl glycol diglycidyl ether, and the like as the reactive diluent.
 特許文献2には、所定のグリシジルエーテル化合物と、所定のフェノール樹脂系硬化剤と、硬化促進剤と、導電フィラーとを含み、前記グリシジルエーテル化合物に対して前記フェノール樹脂系硬化剤を所定の量で含む導電性接着剤が開示されている。当該文献には、前記グリシジルエーテル化合物として、1,4-シクロヘキサンジメタノールジグリシジルエーテルやペンタエリスリトールテトラグリシジルエーテルが例示されている。 Patent Document 2 discloses a composition containing a predetermined glycidyl ether compound, a predetermined phenolic resin curing agent, a curing accelerator, and a conductive filler, wherein a predetermined amount of the phenolic resin curing agent is added to the glycidyl ether compound. A conductive adhesive is disclosed comprising: This document exemplifies 1,4-cyclohexanedimethanol diglycidyl ether and pentaerythritol tetraglycidyl ether as the glycidyl ether compound.
 特許文献3には、導電性フィラーと、エポキシ樹脂と、脂肪族炭化水素鎖に2個以上のグリシジルエーテル官能基を有する反応性希釈剤と、硬化剤とを含む熱伝導性導電性接着剤組成物が開示されている。当該文献には、前記反応性希釈剤としては、シクロヘキサンジメタノールジグリシジルエーテルやネオペンチルグリコールジグリシジルエーテル等が例示されている。 Patent Document 3 discloses a thermally conductive conductive adhesive composition containing a conductive filler, an epoxy resin, a reactive diluent having two or more glycidyl ether functional groups in an aliphatic hydrocarbon chain, and a curing agent. things are disclosed. The document exemplifies cyclohexanedimethanol diglycidyl ether, neopentyl glycol diglycidyl ether, and the like as the reactive diluent.
国際公開第2018/225773号WO2018/225773 特開2015-160932号公報JP 2015-160932 A 特開2015-224329号公報JP 2015-224329 A
 しかしながら、特許文献1~3に記載の導電性樹脂組成物においては、熱伝導性、製品信頼性および基板との密着性に改善の余地があった。 However, the conductive resin compositions described in Patent Documents 1 to 3 have room for improvement in thermal conductivity, product reliability, and adhesion to substrates.
 本発明者らは、(メタ)アクリル化合物と、特定の多官能エポキシ化合物とを組み合わせて用いることにより、上記課題を解決できることを見出し、本発明を完成させた。
 すなわち、本発明は、以下に示すことができる。
The present inventors have found that the above problems can be solved by using a combination of a (meth)acrylic compound and a specific polyfunctional epoxy compound, and have completed the present invention.
That is, the present invention can be shown below.
 本発明によれば、
(A)銀含有粒子と、
(B)(メタ)アクリル化合物と、
(C)下記一般式(1)で表される化合物から選択される少なくとも1種の多官能エポキシ化合物と、
 を含む、導電性樹脂組成物が提供される。
Figure JPOXMLDOC01-appb-C000003
(一般式(1)中、Rは水酸基または炭素数1~3のアルキル基を示し、複数存在するRは同一でも異なっていてもよい。
Qは、2~6価の有機基を示す。
Xは炭素数1~3のアルキレン基を示し、複数存在するXは同一でも異なっていてもよい。
mは0~2の整数、nは2~4の整数を示す。)
According to the invention,
(A) silver-containing particles;
(B) a (meth) acrylic compound;
(C) at least one polyfunctional epoxy compound selected from compounds represented by the following general formula (1);
A conductive resin composition is provided.
Figure JPOXMLDOC01-appb-C000003
(In general formula (1), R represents a hydroxyl group or an alkyl group having 1 to 3 carbon atoms, and multiple Rs may be the same or different.
Q represents a divalent to hexavalent organic group.
X represents an alkylene group having 1 to 3 carbon atoms, and multiple X's may be the same or different.
m is an integer of 0-2, n is an integer of 2-4. )
 本発明によれば、
 前記導電性樹脂組成物を焼結して得られる高熱伝導性材料が提供される。
According to the invention,
A high thermal conductivity material obtained by sintering the conductive resin composition is provided.
 本発明によれば、
 基材と、
 前記基材上に接着層を介して搭載された半導体素子と、を備え、
 前記接着層は、前記導電性樹脂組成物を焼結してなる、半導体装置が提供される。
According to the invention,
a substrate;
A semiconductor element mounted on the base material via an adhesive layer,
A semiconductor device is provided in which the adhesive layer is formed by sintering the conductive resin composition.
 本発明の導電性樹脂組成物は、硬化収縮によって銀含有粒子の焼結が促進されて熱伝導性に優れた高熱伝導性材料が得られ、さらに弾性率が低く応力が緩和され、かつ基板等との密着性にも優れていることから製品信頼性に優れた高熱伝導性材料を得ることができる。言い換えればこれらの特性のバランスに優れた導電性樹脂組成物を提供することができる。 The conductive resin composition of the present invention promotes sintering of the silver-containing particles by curing shrinkage to obtain a highly thermally conductive material with excellent thermal conductivity. It is possible to obtain a highly thermally conductive material with excellent product reliability because it also has excellent adhesion to. In other words, it is possible to provide a conductive resin composition having an excellent balance of these properties.
半導体装置の一例を模式的に示す断面図である。1 is a cross-sectional view schematically showing an example of a semiconductor device; FIG. 半導体装置の一例を模式的に示す断面図である。1 is a cross-sectional view schematically showing an example of a semiconductor device; FIG.
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Embodiments of the present invention will be described below with reference to the drawings. In addition, in all the drawings, the same constituent elements are denoted by the same reference numerals, and the description thereof will be omitted as appropriate.
 本明細書中、数値範囲の説明における「a~b」との表記は、特に断らない限り、a以上b以下のことを表す。例えば、「1~5質量%」とは「1質量%以上5質量%以下」を意味する。 In this specification, the notation "a to b" in the description of numerical ranges means from a to b, unless otherwise specified. For example, "1 to 5% by mass" means "1% by mass or more and 5% by mass or less".
 本明細書における基(原子団)の表記において、置換か無置換かを記していない表記は、置換基を有しないものと置換基を有するものの両方を包含するものである。例えば「アルキル基」とは、置換基を有しないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
 本明細書における「(メタ)アクリル」との表記は、アクリルとメタクリルの両方を包含する概念を表す。「(メタ)アクリレート」「(メタ)アクリロイル」等の類似の表記についても同様である。
In the description of a group (atomic group) in the present specification, a description without indicating whether it is substituted or unsubstituted includes both those having no substituent and those having a substituent. For example, the term “alkyl group” includes not only alkyl groups without substituents (unsubstituted alkyl groups) but also alkyl groups with substituents (substituted alkyl groups).
The notation "(meth)acryl" used herein represents a concept that includes both acryl and methacryl. The same applies to similar expressions such as "(meth)acrylate" and "(meth)acryloyl".
 本実施形態の導電性樹脂組成物は、
(A)銀含有粒子と、
(B)(メタ)アクリル化合物と、
(C)下記一般式(1)で表される化合物から選択される少なくとも1種の多官能エポキシ化合物と、を含む。
 これにより、硬化収縮によって銀含有粒子の焼結が促進されて熱伝導性に優れた高熱伝導性材料が得られ、さらに弾性率が低く応力が緩和され、かつ基板等との密着性に優れていることから製品信頼性に優れた高熱伝導性材料を得ることができる。
 金属等の導電性物質のように熱伝導性と電気伝導性の両方の大部分を自由電子が担う場合、ウィーデマン・フランツ則により、熱伝導性は体積抵抗率により評価することができる。すなわち、体積抵抗率は単位体積あたりの電気抵抗値であり、電気抵抗値が低ければ自由電子がキャリアとなり電気が通りやすいことを表し、熱の伝わりやすさ(熱伝導性)の指標にもなる。
The conductive resin composition of the present embodiment is
(A) silver-containing particles;
(B) a (meth) acrylic compound;
(C) at least one polyfunctional epoxy compound selected from compounds represented by the following general formula (1).
As a result, the sintering of the silver-containing particles is promoted by curing shrinkage, and a high thermal conductivity material with excellent thermal conductivity is obtained.In addition, the elastic modulus is low, the stress is relaxed, and the adhesiveness to the substrate etc. is excellent. Therefore, a high thermal conductivity material with excellent product reliability can be obtained.
In the case where free electrons bear most of both thermal conductivity and electrical conductivity as in conductive substances such as metals, thermal conductivity can be evaluated by volume resistivity according to the Wiedemann-Franz law. In other words, the volume resistivity is the electrical resistance value per unit volume. If the electrical resistance value is low, the free electrons become carriers and electricity easily passes through. .
[銀含有粒子(A)]
 銀含有粒子(A)は、適切な熱処理によってシンタリング(焼結)を起こし、粒子連結構造(シンタリング構造)を形成することができる。
[Silver-containing particles (A)]
The silver-containing particles (A) can be sintered by an appropriate heat treatment to form a particle connecting structure (sintering structure).
 特に、導電性樹脂組成物中に銀含有粒子が含まれること、特に、粒径が比較的小さくて比表面積が比較的大きい銀粒子が含まれることで、比較的低温(180℃程度)での熱処理でもシンタリング構造が形成されやすい。好ましい粒径については後述する。 In particular, the inclusion of silver-containing particles in the conductive resin composition, particularly the inclusion of silver particles having a relatively small particle size and a relatively large specific surface area, allows A sintered structure is likely to be formed even by heat treatment. A preferred particle size will be described later.
 銀含有粒子の形状に特に制限はなく、球状、樹状、紐状、鱗片状、凝集状、多面体形状等の公知の形状を挙げることができ、本実施形態においてはこれらの形状の銀含有粒子を1種以上、好ましくは2種以上を含むことができる。これにより、導電性により優れる。 The shape of the silver-containing particles is not particularly limited, and includes known shapes such as spherical, dendritic, string-like, scale-like, agglomerated, and polyhedral shapes. can include one or more, preferably two or more. Thereby, it is excellent by electroconductivity.
 本実施形態においては、球状、鱗片状、凝集状、および多面体形状の銀含有粒子から選択される2種以上を含むことが好ましく、球状の銀含有粒子(a1)と、鱗片状、凝集状、および多面体形状から選択される1種以上の銀含有粒子(a2)とを含むことがより好ましく、球状の銀含有粒子(a1)と、鱗片状の銀含有粒子(a2-1)とを含むことが特に好ましい。これにより、銀含有粒子同士の接触率がさらに向上することから、当該導電性樹脂組成物の焼結後においてネットワークが容易に形成され熱伝導性および電気伝導性がさらに向上する。 In the present embodiment, it is preferable that two or more selected from spherical, scaly, aggregated, and polyhedral silver-containing particles are included, and spherical silver-containing particles (a1) and scaly, aggregated, and one or more kinds of silver-containing particles (a2) selected from polyhedral shapes, more preferably containing spherical silver-containing particles (a1) and scale-like silver-containing particles (a2-1) is particularly preferred. As a result, the contact ratio between the silver-containing particles is further improved, so that a network is easily formed after sintering the conductive resin composition, and the thermal conductivity and the electrical conductivity are further improved.
 銀含有粒子(A)が銀含有粒子(a2)を含むことにより、導電性樹脂組成物から得られる成形物の樹脂クラックを抑制したり、線膨張係数を抑制することができる。
 なお、本実施形態において、「球状」とは、完全な真球に限られず、表面に若干の凹凸がある形状等も包含する。その円形度は、例えば0.90以上、好ましくは0.92以上、より好ましくは0.94以上である。
By including the silver-containing particles (a2) in the silver-containing particles (A), it is possible to suppress resin cracks in the molded product obtained from the conductive resin composition and to suppress the coefficient of linear expansion.
In the present embodiment, the term “spherical” is not limited to a perfect sphere, and includes a shape with some irregularities on the surface. Its circularity is, for example, 0.90 or more, preferably 0.92 or more, and more preferably 0.94 or more.
 銀含有粒子(A)は、その表面がカルボン酸、炭素数4~30の飽和脂肪酸、または一価の炭素数4~30の不飽和脂肪酸、長鎖アルキルニトリル等の有機化合物で処理されていてもよい。 The surface of the silver-containing particles (A) is treated with an organic compound such as a carboxylic acid, a saturated fatty acid having 4 to 30 carbon atoms, a monovalent unsaturated fatty acid having 4 to 30 carbon atoms, or a long-chain alkylnitrile. good too.
 銀含有粒子(A)は、(i)実質的に銀のみからなる粒子であってもよいし、(ii)銀と銀以外の成分からなる粒子であってもよい。また、金属含有粒子として(i)および(ii)が併用されてもよい。 The silver-containing particles (A) may be (i) particles consisting essentially of silver, or (ii) particles consisting of silver and a component other than silver. Moreover, (i) and (ii) may be used together as the metal-containing particles.
 本実施形態において、特に好ましくは、銀含有粒子(A)は、樹脂粒子の表面が銀でコートされた銀コート樹脂粒子を含む。これにより、熱伝導性により優れるとともに低い貯蔵弾性率を有する硬化物が得られる導電性樹脂組成物を調製することができる。 In the present embodiment, the silver-containing particles (A) particularly preferably contain silver-coated resin particles in which the surfaces of resin particles are coated with silver. Thereby, it is possible to prepare a conductive resin composition that gives a cured product having excellent thermal conductivity and a low storage elastic modulus.
 銀コート樹脂粒子は、表面が銀であり、かつ、内部が樹脂であるため、熱伝導性が良く、かつ、銀のみからなる粒子と比較してやわらかい、と考えられる。このため、銀コート樹脂粒子を用いることで、熱伝導率や貯蔵弾性率を適切な値に設計しやすいと考えられる。 Because the silver-coated resin particles have silver on the surface and a resin inside, they are considered to have good thermal conductivity and to be softer than particles made only of silver. Therefore, it is considered that the use of silver-coated resin particles facilitates designing appropriate values for thermal conductivity and storage elastic modulus.
 通常、熱伝導性を大きくするためには、銀含有粒子の量を増やすことが考えられる。しかし、通常、金属は「硬い」ため、銀含有粒子の量が多すぎると、シンタリング後の弾性率が大きくなりすぎてしまう場合がある。銀含有粒子の一部または全部が銀コート樹脂粒子であることで、所望の熱伝導率や貯蔵弾性率を有する硬化物を得ることができる導電性樹脂組成物を容易に設計することができる。
 銀コート樹脂粒子においては、樹脂粒子の表面の少なくとも一部の領域を銀層が覆っていればよい。もちろん、樹脂粒子の表面の全面を銀が覆っていてもよい。
Generally, in order to increase the thermal conductivity, it is considered to increase the amount of silver-containing particles. However, since metals are generally "hard", too much silver-containing particles may result in too high a modulus after sintering. Part or all of the silver-containing particles are silver-coated resin particles, making it possible to easily design a conductive resin composition from which a cured product having desired thermal conductivity and storage elastic modulus can be obtained.
In the silver-coated resin particles, it is sufficient that at least a part of the surface of the resin particles is covered with a silver layer. Of course, the entire surface of the resin particles may be covered with silver.
 具体的には、銀コート樹脂粒子において、銀層は、樹脂粒子の表面の好ましくは50%以上、より好ましく75%以上、さらに好ましくは90%以上を覆っている。特に好ましくは、銀コート樹脂粒子において、銀層は、樹脂粒子の表面の実質的に全てを覆っている。
 別観点として、銀コート樹脂粒子をある断面で切断したときには、その断面の周囲全部に銀層が確認されることが好ましい。
Specifically, in the silver-coated resin particles, the silver layer preferably covers 50% or more, more preferably 75% or more, and still more preferably 90% or more of the surface of the resin particles. Particularly preferably, in silver-coated resin particles, the silver layer covers substantially the entire surface of the resin particles.
From another point of view, when the silver-coated resin particles are cut along a certain cross section, it is preferable that the silver layer is observed all around the cross section.
 さらに別観点として、銀コート樹脂粒子中の、樹脂/銀の質量比率は、例えば90/10~10/90、好ましくは80/20~20/80、より好ましくは70/30~30/70である。 As another aspect, the mass ratio of resin/silver in the silver-coated resin particles is, for example, 90/10 to 10/90, preferably 80/20 to 20/80, more preferably 70/30 to 30/70. be.
 銀コート樹脂粒子における「樹脂」としては、例えば、シリコーン樹脂、(メタ)アクリル樹脂、フェノール樹脂、ポリスチレン樹脂、メラミン樹脂、ポリアミド樹脂、ポリテトラフルオロエチレン樹脂などを挙げることができる。もちろん、これら以外の樹脂であってもよい。また、樹脂は1種のみであってもよいし、2種以上の樹脂が併用されてもよい。
 弾性特性や耐熱性の観点から、樹脂は、シリコーン樹脂または(メタ)アクリル樹脂が好ましい。
Examples of the "resin" in the silver-coated resin particles include silicone resins, (meth)acrylic resins, phenol resins, polystyrene resins, melamine resins, polyamide resins, polytetrafluoroethylene resins, and the like. Of course, resins other than these may be used. Moreover, only one resin may be used, or two or more resins may be used in combination.
From the viewpoint of elastic properties and heat resistance, the resin is preferably a silicone resin or a (meth)acrylic resin.
 シリコーン樹脂は、メチルクロロシラン、トリメチルトリクロロシラン、ジメチルジクロロシラン等のオルガノクロロシランを重合させることにより得られるオルガノポリシロキサンにより構成される粒子でもよい。また、オルガノポリシロキサンをさらに三次元架橋した構造を基本骨格としたシリコーン樹脂でもよい。 The silicone resin may be particles composed of organopolysiloxane obtained by polymerizing organochlorosilanes such as methylchlorosilane, trimethyltrichlorosilane, and dimethyldichlorosilane. Alternatively, a silicone resin having a basic skeleton structure obtained by further three-dimensionally cross-linking an organopolysiloxane may be used.
 (メタ)アクリル樹脂は、主成分(50重量%以上、好ましくは70重量%以上、より好ましくは90重量%以上)として(メタ)アクリル酸エステルを含むモノマーを重合させて得られた樹脂であることができる。(メタ)アクリル酸エステルとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルへキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロへキシル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-プロピル(メタ)アクリレート、クロロ-2-ヒドロキシエチル(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート、メトキシエチル(メタ)アクリレート、グリシジル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレートおよびイソボロノル(メタ)アクリレートからなる群から選ばれる少なくとも1種の化合物を挙げることができる。また、アクリル系樹脂のモノマー成分には、少量の他のモノマーが含まれていてもよい。そのような他のモノマー成分としては、例えば、スチレン系モノマーが挙げられる。銀コート(メタ)アクリル樹脂については、特開2017-126463号公報の記載なども参照されたい。 The (meth)acrylic resin is a resin obtained by polymerizing a monomer containing (meth)acrylic acid ester as a main component (50% by weight or more, preferably 70% by weight or more, more preferably 90% by weight or more). be able to. (Meth)acrylic acid esters, for example, methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, lauryl (meth)acrylate , stearyl (meth)acrylate, cyclohexyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-propyl (meth)acrylate, chloro-2-hydroxyethyl (meth)acrylate, diethylene glycol mono (meth)acrylate, At least one compound selected from the group consisting of methoxyethyl (meth)acrylate, glycidyl (meth)acrylate, dicyclopentanyl (meth)acrylate, dicyclopentenyl (meth)acrylate and isoboronol (meth)acrylate can be mentioned. can. Further, the monomer component of the acrylic resin may contain a small amount of other monomers. Such other monomer components include, for example, styrenic monomers. For the silver-coated (meth)acrylic resin, see also the description in JP-A-2017-126463.
 シリコーン樹脂や(メタ)アクリル樹脂中に各種官能基を導入してもよい。導入できる官能基は特に限定されない。例えば、エポキシ基、アミノ基、メトキシ基、フェニル基、カルボキシル基、水酸基、アルキル基、ビニル基、メルカプト基等が挙げられる。 Various functional groups may be introduced into silicone resins and (meth)acrylic resins. Functional groups that can be introduced are not particularly limited. Examples thereof include epoxy group, amino group, methoxy group, phenyl group, carboxyl group, hydroxyl group, alkyl group, vinyl group and mercapto group.
 銀コート樹脂粒子における樹脂粒子の部分は、各種の添加成分、例えば低応力改質剤などを含んでもよい。低応力改質剤としては、ブタジエンスチレンゴム、ブタジエンアクリロニトリルゴム、ポリウレタンゴム、ポリイソプレンゴム、アクリルゴム、フッ素ゴム、液状オルガノポリシロキサン、液状ポリブタジエン等の液状合成ゴム等が挙げられる。特に、樹脂粒子の部分がシリコーン樹脂を含む場合、低応力改質剤を含むことで、銀コート樹脂粒子の弾性特性を好ましいものとすることができる。 The resin particle portion of the silver-coated resin particles may contain various additive components, such as low-stress modifiers. Examples of low-stress modifiers include liquid synthetic rubbers such as butadiene styrene rubber, butadiene acrylonitrile rubber, polyurethane rubber, polyisoprene rubber, acrylic rubber, fluororubber, liquid organopolysiloxane, and liquid polybutadiene. In particular, when the resin particle portion contains a silicone resin, the inclusion of a low-stress modifier can make the elastic properties of the silver-coated resin particles preferable.
 銀コート樹脂粒子における樹脂粒子の部分の形状は、特に限定されない。好ましくは、球状と、球状以外の異形状、例えば扁平状、板状、針状などとの組み合わせが好ましい。 The shape of the resin particle portion of the silver-coated resin particles is not particularly limited. A combination of a spherical shape and an irregular shape other than a spherical shape, such as a flat shape, a plate shape, a needle shape, etc., is preferable.
 銀コート樹脂粒子の比重は特に限定されないが、下限は、例えば2以上、好ましくは2.5以上、より好ましくは3以上である。また、比重の上限は、例えば10以下、好ましくは9以下、より好ましくは8以下である。比重が適切であることは、銀コート樹脂粒子そのものの分散性や、銀コート樹脂粒子とそれ以外の銀含有粒子を併用したときの均一性などの点で好ましい。 Although the specific gravity of the silver-coated resin particles is not particularly limited, the lower limit is, for example, 2 or more, preferably 2.5 or more, and more preferably 3 or more. Further, the upper limit of the specific gravity is, for example, 10 or less, preferably 9 or less, more preferably 8 or less. Appropriate specific gravity is preferable in terms of dispersibility of the silver-coated resin particles themselves and uniformity when silver-coated resin particles and other silver-containing particles are used in combination.
 銀コート樹脂粒子を用いる場合、銀含有粒子(A)全体中の銀コート樹脂粒子の割合は、好ましくは1~50質量%、より好ましくは3~45質量%、さらに好ましくは5~40質量%である。この割合を適切に調整することで、ヒートサイクルによる接着力の低下を抑えつつ、放熱性を一層高めることができる。 When silver-coated resin particles are used, the proportion of silver-coated resin particles in the total silver-containing particles (A) is preferably 1 to 50% by mass, more preferably 3 to 45% by mass, and still more preferably 5 to 40% by mass. is. By appropriately adjusting this ratio, it is possible to further improve heat dissipation while suppressing a decrease in adhesive strength due to heat cycles.
 ちなみに、銀含有粒子(A)全体中の銀コート樹脂粒子の割合が100質量%ではない場合、銀コート樹脂粒子以外の銀含有粒子は、例えば、実質的に銀のみからなる粒子である。 Incidentally, when the proportion of silver-coated resin particles in the entire silver-containing particles (A) is not 100% by mass, the silver-containing particles other than the silver-coated resin particles are, for example, particles consisting essentially of silver.
 銀含有粒子(A)のメジアン径D50は、例えば0.01~50μm、好ましくは0.1~20μm、より好ましくは0.5~10μmである。D50を適切な値とすることで、熱伝導性、焼結性、ヒートサイクルに対する耐性などのバランスを取りやすい。また、D50を適切な値とすることで、塗布/接着の作業性の向上などを図れることもある。
 銀含有粒子の粒度分布(横軸:粒子径、縦軸:頻度)は、単峰性であっても多峰性であってもよい。
The median diameter D50 of the silver-containing particles (A) is, for example, 0.01-50 μm, preferably 0.1-20 μm, more preferably 0.5-10 μm. By setting D50 to an appropriate value, it is easy to balance thermal conductivity, sinterability, resistance to heat cycles, and the like. Also, by setting D50 to an appropriate value, it may be possible to improve the workability of application/adhesion.
The particle size distribution (horizontal axis: particle size, vertical axis: frequency) of the silver-containing particles may be unimodal or multimodal.
 本発明の効果の観点から、銀含有粒子(A)が、球状の銀含有粒子(a1)と鱗片状の銀含有粒子(a2-1)とを含むことが好ましい。これらの銀含有粒子は、実質的に銀のみからなる銀粒子であることがより好ましい。 From the viewpoint of the effect of the present invention, it is preferable that the silver-containing particles (A) contain spherical silver-containing particles (a1) and scale-like silver-containing particles (a2-1). These silver-containing particles are more preferably silver particles consisting essentially of silver.
 球状の銀含有粒子(a1)のメジアン径D50は、例えば0.1~20μm、好ましくは0.5~10μm、より好ましくは0.5~5.0μmである。
 球状の銀含有粒子(a1)の比表面積は、例えば0.1~2.5m/g、好ましくは0.5~2.3m/g、より好ましくは0.8~2.0m/gである。
 球状の銀含有粒子(a1)のタップ密度は、例えば1.5~6.0g/cm、好ましくは2.5~5.8g/cm、より好ましくは4.5~5.5g/cmである。
 球状の銀含有粒子(a1)の円形度は、例えば0.90以上、好ましくは0.92以上、より好ましくは0.94以上である。
 これらの各特性を満たすことにより、熱伝導性、焼結性、ヒートサイクルに対する耐性などのバランスに優れる。
The median diameter D 50 of the spherical silver-containing particles (a1) is, for example, 0.1-20 μm, preferably 0.5-10 μm, more preferably 0.5-5.0 μm.
The specific surface area of the spherical silver-containing particles (a1) is, for example, 0.1 to 2.5 m 2 /g, preferably 0.5 to 2.3 m 2 /g, more preferably 0.8 to 2.0 m 2 /g. is g.
The tap density of the spherical silver-containing particles (a1) is, for example, 1.5 to 6.0 g/cm 3 , preferably 2.5 to 5.8 g/cm 3 , more preferably 4.5 to 5.5 g/cm 3 .
The circularity of the spherical silver-containing particles (a1) is, for example, 0.90 or more, preferably 0.92 or more, and more preferably 0.94 or more.
Satisfying each of these properties provides an excellent balance of thermal conductivity, sinterability, resistance to heat cycles, and the like.
 鱗片状の銀含有粒子(a2-1)のメジアン径D50は、例えば0.1~20μm、好ましくは1.0~15μm、より好ましくは2.0~10μmである。
 鱗片状の銀含有粒子(a2-1)の比表面積は、例えば0.1~2.5m/g、好ましくは0.2~2.0m/g、より好ましくは0.25~1.2m/gである。
 鱗片状の銀含有粒子(a2-1)のタップ密度は、例えば1.5~6.0g/cm、好ましくは2.5~5.9g/cm、より好ましくは4.0~5.8g/cmである。
 これらの各特性を満たすことにより、熱伝導性、焼結性、ヒートサイクルに対する耐性などのバランスに優れる。
The median diameter D50 of the scale-like silver-containing particles (a2-1) is, for example, 0.1 to 20 μm, preferably 1.0 to 15 μm, more preferably 2.0 to 10 μm.
The specific surface area of the scale-like silver-containing particles (a2-1) is, for example, 0.1 to 2.5 m 2 /g, preferably 0.2 to 2.0 m 2 /g, more preferably 0.25 to 1.0 m 2 /g. 2 m 2 /g.
The tap density of the scale-like silver-containing particles (a2-1) is, for example, 1.5 to 6.0 g/cm 3 , preferably 2.5 to 5.9 g/cm 3 , more preferably 4.0 to 5.0 g/cm 3 . 8 g/cm 3 .
Satisfying each of these properties provides an excellent balance of thermal conductivity, sinterability, resistance to heat cycles, and the like.
 本実施形態においては、上記特性の少なくとも1つを満たす球状の銀含有粒子(a1)と、上記特性の少なくとも1つを満たす鱗片状の銀含有粒子(a2-1)とを組み合わせることにより、熱伝導性および電気伝導性が特に向上する。 In the present embodiment, by combining spherical silver-containing particles (a1) that satisfy at least one of the above characteristics and scaly silver-containing particles (a2-1) that satisfy at least one of the above characteristics, heat Conductivity and electrical conductivity are particularly improved.
 鱗片状の銀含有粒子(a2-1)の含有量に対する球状の銀含有粒子(a1)の含有量の比(a1/a2-1)が好ましくは0.1以上10以下、より好ましくは0.3以上5以下である、特に好ましくは0.5以上3以下とすることができる。これにより、銀含有粒子同士の接触率が特に向上することから、当該ペースト状重合性組成物の焼結後においてネットワークが容易に形成され熱伝導性および電気伝導性が特に向上する。 The ratio (a1/a2-1) of the content of the spherical silver-containing particles (a1) to the content of the scale-like silver-containing particles (a2-1) is preferably 0.1 or more and 10 or less, more preferably 0.1. It can be 3 or more and 5 or less, particularly preferably 0.5 or more and 3 or less. As a result, the contact ratio between the silver-containing particles is particularly improved, so that a network is easily formed after sintering the paste-like polymerizable composition, and the thermal conductivity and the electrical conductivity are particularly improved.
 鱗片状の銀含有粒子(a2-1)のメジアン径D50に対する球状の銀含有粒子(a1)のメジアン径D50の比(a1/a2-1)が好ましくは0.01以上0.8以下、より好ましくは0.05以上0.6以下である。
 これにより、鱗片状の銀含有粒子間の空隙に、球状の銀含有粒子が効率的に充填され、銀含有粒子同士の接触率が特に向上することから、当該ペースト状重合性組成物の焼結後においてネットワークが容易に形成され熱伝導性および電気伝導性が特に向上する。
The ratio (a1/a2-1) of the median diameter D50 of the spherical silver-containing particles (a1) to the median diameter D50 of the scale-like silver-containing particles (a2-1) is preferably 0.01 or more and 0.8 or less. , more preferably 0.05 or more and 0.6 or less.
As a result, the voids between the scale-like silver-containing particles are efficiently filled with the spherical silver-containing particles, and the contact ratio between the silver-containing particles is particularly improved. A network is easily formed later, and thermal conductivity and electrical conductivity are particularly improved.
 鱗片状の銀含有粒子(a2-1)のタップ密度に対する球状の銀含有粒子(a1)のタップ密度の比(a1/a2-1)が好ましくは0.5以上2.0以下、より好ましくは0.7以上1.2以下である。
 これにより、銀含有粒子の充填率が向上し、銀含有粒子同士の接触率が特に向上することから、当該ペースト状重合性組成物の焼結後においてネットワークが容易に形成され熱伝導性および電気伝導性が特に向上する。
The ratio (a1/a2-1) of the tap density of the spherical silver-containing particles (a1) to the tap density of the scale-like silver-containing particles (a2-1) is preferably 0.5 or more and 2.0 or less, more preferably It is 0.7 or more and 1.2 or less.
As a result, the filling rate of the silver-containing particles is improved, and the contact ratio between the silver-containing particles is particularly improved. Conductivity is particularly improved.
 銀コート樹脂粒子のメジアン径D50は、例えば5.0~25μm、好ましくは7.0~20μm、より好ましくは8.0~15μmである。これにより、熱伝導性をより向上させることができる。 The median diameter D50 of the silver-coated resin particles is, for example, 5.0-25 μm, preferably 7.0-20 μm, more preferably 8.0-15 μm. Thereby, thermal conductivity can be improved more.
 銀含有粒子(A)のメジアン径D50は、例えば、シスメックス株式会社製フロー式粒子像分析装置FPIA(登録商標)-3000を用い、粒子画像計測を行うことで求めることができる。より具体的には、この装置を用い、湿式で体積基準のメジアン径を計測することで、銀含有粒子(A)の粒子径を決定することができる。 The median diameter D 50 of the silver-containing particles (A) can be determined by, for example, particle image measurement using a flow type particle image analyzer FPIA (registered trademark)-3000 manufactured by Sysmex Corporation. More specifically, the particle diameter of the silver-containing particles (A) can be determined by measuring the volume-based median diameter in a wet manner using this device.
 導電性樹脂組成物全体中の銀含有粒子(A)の割合は、例えば1~98質量%、好ましくは30~96質量%、より好ましくは50~94質量%である。金属含有粒子の割合を1質量%以上とすることで、熱伝導性を高めやすい。銀含有粒子(A)の割合を98質量%以下とすることで、塗布/接着の作業性を向上させることができる。 The ratio of the silver-containing particles (A) in the entire conductive resin composition is, for example, 1-98% by mass, preferably 30-96% by mass, more preferably 50-94% by mass. By setting the ratio of the metal-containing particles to 1% by mass or more, it is easy to increase the thermal conductivity. By setting the ratio of the silver-containing particles (A) to 98% by mass or less, the workability of coating/adhesion can be improved.
 銀含有粒子(A)のうち、実質的に銀のみからなる粒子は、例えば、DOWAハイテック社、福田金属箔粉工業社などより入手することができる。また、銀コート樹脂粒子は、例えば、三菱マテリアル社、積水化学工業社、株式会社山王などより入手することができる。 Among the silver-containing particles (A), particles consisting essentially of silver can be obtained from, for example, DOWA Hi-Tech Co., Ltd., Fukuda Metal Foil & Powder Co., Ltd., and the like. Also, silver-coated resin particles can be obtained from, for example, Mitsubishi Materials Corporation, Sekisui Chemical Co., Ltd., Sanno Co., Ltd., and the like.
[(メタ)アクリル化合物(B)]
 (メタ)アクリル化合物(B)としては、特に限定されないが、例えば、単官能または2官能(メタ)アクリル化合物、または3官能以上の多官能(メタ)アクリル化合物を挙げることができる。本実施形態において、(メタ)アクリル化合物とは、アクリル化合物、メタクリル化合物またはこれらの混合物を表し、(メタ)アクリル基を有するとは、アクリル基を1以上有する、またはメタクリル基を1以上有することを表す。
[(Meth) acrylic compound (B)]
The (meth)acrylic compound (B) is not particularly limited, but includes, for example, a monofunctional or bifunctional (meth)acrylic compound, or a trifunctional or higher polyfunctional (meth)acrylic compound. In the present embodiment, the (meth) acrylic compound represents an acrylic compound, a methacrylic compound, or a mixture thereof, and having a (meth) acrylic group means having one or more acrylic groups, or having one or more methacrylic groups. represents
 本実施形態において、単官能(メタ)アクリレートとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、s-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチルヘプチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、テトラデシル(メタ)アクリレート、ペンタデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレートのような脂肪族(メタ)アクリレート;
シクロペンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、1,4-シクロヘキサンジメタノールモノ(メタ)アクリレート、シクロペンチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、3-メチル-3-オキセタニルメチル(メタ)アクリレート、1-アダマンチル(メタ)アクリレートのような脂環式(メタ)アクリレート;
フェニル(メタ)アクリレート、ノニルフェニル(メタ)アクリレート、p-クミルフェニル(メタ)アクリレート、o-ビフェニル(メタ)アクリレート、1-ナフチル(メタ)アクリレート、2-ナフチル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、2-ヒドロキシ-3-(o-フェニルフェノキシ)プロピル(メタ)アクリレート、2-ヒドロキシ-3-(1-ナフトキシ)プロピル(メタ)アクリレート、2-ヒドロキシ-3-(2-ナフトキシ)プロピル(メタ)アクリレートのような芳香族(メタ)アクリレート;
2-テトラヒドロフルフリル(メタ)アクリレート、N-(メタ)アクリロイルオキシエチルヘキサヒドロフタルイミド、2-(メタ)アクリロイルオキシエチル-N-カルバゾールのような複素環式(メタ)アクリレートが挙げられる。
In the present embodiment, the monofunctional (meth)acrylates include, for example, methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, isopropyl (meth)acrylate, butyl (meth)acrylate, isobutyl (meth) Acrylate, s-butyl (meth)acrylate, t-butyl (meth)acrylate, butoxyethyl (meth)acrylate, pentyl (meth)acrylate, hexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, heptyl (meth)acrylate , octylheptyl (meth)acrylate, nonyl (meth)acrylate, decyl (meth)acrylate, undecyl (meth)acrylate, lauryl (meth)acrylate, tridecyl (meth)acrylate, tetradecyl (meth)acrylate, pentadecyl (meth)acrylate, hexadecyl (meth)acrylate, stearyl (meth)acrylate, behenyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-chloro-2-hydroxypropyl (meth)acrylate, 2 - aliphatic (meth)acrylates such as hydroxybutyl (meth)acrylate, phenoxypolyethylene glycol (meth)acrylate;
Cyclopentyl (meth)acrylate, cyclohexyl (meth)acrylate, 1,4-cyclohexanedimethanol mono (meth)acrylate, cyclopentyl (meth)acrylate, dicyclopentanyl (meth)acrylate, dicyclopentenyl (meth)acrylate, isobornyl ( Alicyclic (meth)acrylates such as meth)acrylate, 3-methyl-3-oxetanylmethyl (meth)acrylate, 1-adamantyl (meth)acrylate;
Phenyl (meth)acrylate, nonylphenyl (meth)acrylate, p-cumylphenyl (meth)acrylate, o-biphenyl (meth)acrylate, 1-naphthyl (meth)acrylate, 2-naphthyl (meth)acrylate, benzyl (meth)acrylate , 2-hydroxy-3-phenoxypropyl (meth)acrylate, 2-hydroxy-3-(o-phenylphenoxy)propyl (meth)acrylate, 2-hydroxy-3-(1-naphthoxy)propyl (meth)acrylate, 2 - aromatic (meth)acrylates such as hydroxy-3-(2-naphthoxy)propyl (meth)acrylate;
Heterocyclic (meth)acrylates such as 2-tetrahydrofurfuryl (meth)acrylate, N-(meth)acryloyloxyethylhexahydrophthalimide, and 2-(meth)acryloyloxyethyl-N-carbazole are included.
 また、2官能(メタ)アクリレートとしては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、2-メチル-1,3-プロパンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、2-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリシクロデカンジメタノール(メタ)アクリレートのような脂肪族(メタ)アクリレート;
シクロヘキサンジメタノール(メタ)アクリレート、トリシクロデカンジメタノール(メタ)アクリレート、水添ビスフェノールAジ(メタ)アクリレート、水添ビスフェノールFジ(メタ)アクリレートのような脂環式(メタ)アクリレート;
ビスフェノールAジ(メタ)アクリレート、ビスフェノールFジ(メタ)アクリレート、ビスフェノールAFジ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート、フルオレン型ジ(メタ)アクリレートのような芳香族(メタ)アクリレート;
イソシアヌル酸ジ(メタ)アクリレートのような複素環式(メタ)アクリレート等が挙げられる。
Examples of bifunctional (meth)acrylates include ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, meth)acrylate, propylene glycol di(meth)acrylate, dipropylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, tetrapropylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, 1,3 -butanediol di(meth)acrylate, 2-methyl-1,3-propanediol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, 3-methyl- 1,5-pentanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 2-butyl-2-ethyl-1,3-propanediol di(meth)acrylate, 1,9-nonanediol Aliphatic (meth)acrylates such as di(meth)acrylate, 1,10-decanediol di(meth)acrylate, glycerin di(meth)acrylate, tricyclodecanedimethanol (meth)acrylate;
Alicyclic (meth)acrylates such as cyclohexanedimethanol (meth)acrylate, tricyclodecanedimethanol (meth)acrylate, hydrogenated bisphenol A di(meth)acrylate, hydrogenated bisphenol F di(meth)acrylate;
Aromatic (meth)acrylates such as bisphenol A di(meth)acrylate, bisphenol F di(meth)acrylate, bisphenol AF di(meth)acrylate, ethoxylated bisphenol A di(meth)acrylate, fluorene type di(meth)acrylate ;
Heterocyclic (meth)acrylates such as isocyanuric acid di(meth)acrylate and the like are included.
 3官能以上の多官能(メタ)アクリレートとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、エトキシ化グリセリントリ(メタ)アクリレートのような脂肪族(メタ)アクリレート;イソシアヌル酸トリ(メタ)アクリレートのような複素環式(メタ)アクリレート等が挙げられる。 Examples of trifunctional or higher polyfunctional (meth)acrylates include trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, pentaerythritol tetra(meth)acrylate, di aliphatic (meth)acrylates such as pentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, ethoxylated glycerin tri(meth)acrylate; heterocyclic (meth)acrylates such as isocyanuric acid tri(meth)acrylate; ) acrylates and the like.
 (メタ)アクリル化合物(B)は、これらから選択される少なくとも1種を含むことができ、単官能(メタ)アクリレートまたは2官能(メタ)アクリレートを含むことができる。 The (meth)acrylic compound (B) can contain at least one selected from these, and can contain a monofunctional (meth)acrylate or a bifunctional (meth)acrylate.
 本実施形態の導電性樹脂組成物全体中の(メタ)アクリル化合物(B)の割合は、本発明の効果の観点から、例えば0.1~15質量%、好ましくは0.5~12質量%、より好ましくは1.0~10質量%である。 The ratio of the (meth)acrylic compound (B) in the entire conductive resin composition of the present embodiment is, for example, 0.1 to 15% by mass, preferably 0.5 to 12% by mass, from the viewpoint of the effects of the present invention. , more preferably 1.0 to 10% by mass.
[多官能エポキシ化合物(C)]
 多官能エポキシ化合物(C)は、下記一般式(1)で表される化合物から選択される少なくとも1種を含む。
 多官能エポキシ化合物(C)に含まれる下記一般式(1)で表される化合物は、複数のエポキシ基含有基が結合する2~6価の有機基を備えており、反応性に優れ架橋密度が高くなることから、当該化合物から樹脂が得られる際の硬化収縮によって銀含有粒子の焼結が促進されて熱伝導性に優れた高熱伝導性材料を得ることができる。さらに、得られる硬化物(高熱伝導性材料)は弾性率が低く柔軟性に優れることから、当該硬化物を備える半導体装置等は応力緩和により製品信頼性に優れる。さらに、得られる硬化物(高熱伝導性材料)は基板等との密着性にも優れており製品信頼性に優れる。言い換えればこれらの特性のバランスに優れた導電性樹脂組成物を提供することができる。
[Polyfunctional epoxy compound (C)]
The polyfunctional epoxy compound (C) contains at least one compound selected from compounds represented by the following general formula (1).
The compound represented by the following general formula (1) contained in the polyfunctional epoxy compound (C) has a divalent to hexavalent organic group to which a plurality of epoxy group-containing groups are bonded, and has excellent reactivity and crosslink density. increases, sintering of the silver-containing particles is promoted by curing shrinkage when a resin is obtained from the compound, and a highly thermally conductive material with excellent thermal conductivity can be obtained. Furthermore, since the resulting cured product (high thermal conductive material) has a low elastic modulus and excellent flexibility, a semiconductor device or the like provided with the cured product has excellent product reliability due to stress relaxation. Furthermore, the resulting cured product (high thermal conductivity material) is excellent in adhesion to substrates and the like, and is excellent in product reliability. In other words, it is possible to provide a conductive resin composition having an excellent balance of these properties.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 一般式(1)中、Rは水酸基または炭素数1~3のアルキル基を示し、好ましくは水酸基または炭素数1~2のアルキル基、さらに好ましくは水酸基または炭素数1のアルキル基である。複数存在するRは同一でも異なっていてもよい。 In general formula (1), R represents a hydroxyl group or an alkyl group having 1 to 3 carbon atoms, preferably a hydroxyl group or an alkyl group having 1 to 2 carbon atoms, more preferably a hydroxyl group or an alkyl group having 1 carbon atom. Multiple R may be the same or different.
 Xは炭素数1~3のアルキレン基を示し、好ましくは炭素数1~2のアルキレン基、さらに好ましくは炭素数1のアルキレン基である。複数存在するXは同一でも異なっていてもよい。 X represents an alkylene group having 1 to 3 carbon atoms, preferably an alkylene group having 1 to 2 carbon atoms, more preferably an alkylene group having 1 carbon atom. Multiple X's may be the same or different.
 mは0~2の整数を示し、好ましくは0または1である。
 nは2~4の整数を示し、好ましくは2または3である。
 Qは、2~6価の有機基を示す。
m represents an integer of 0 to 2, preferably 0 or 1;
n represents an integer of 2 to 4, preferably 2 or 3;
Q represents a divalent to hexavalent organic group.
 Qにおける2~6価の前記有機基としては、本発明の効果を奏する範囲で公知の有機基を用いることができるが、例えば下記一般式(a)~(h)で表される有機基を挙げることができる。 As the divalent to hexavalent organic group in Q, known organic groups can be used as long as the effects of the present invention are exhibited. can be mentioned.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 一般式(1)のQが一般式(a)の有機基である化合物としては、デナコールEX-321(ナガセケムテックス社製)、PETG(昭和電工社製)等が挙げられる。
 一般式(1)のQが一般式(b)の有機基である化合物としては、CDMDG(昭和電工社製)等が挙げられる。
 一般式(1)のQが一般式(c)の有機基である化合物としては、デナコールEX-313(ナガセケムテックス社製)等が挙げられる。
 一般式(1)のQが一般式(d)の有機基である化合物としては、デナコールEX-810(ナガセケムテックス社製)等が挙げられる。
 一般式(e)中、pは1~30の整数を示し、好ましくは10~25の整数を示す。
一般式(1)のQが一般式(e)の有機基である化合物としては、デナコールEX-861(ナガセケムテックス社製)等が挙げられる。
Examples of compounds in which Q in general formula (1) is an organic group in general formula (a) include Denacol EX-321 (manufactured by Nagase ChemteX Corporation) and PETG (manufactured by Showa Denko KK).
Examples of compounds in which Q in general formula (1) is an organic group in general formula (b) include CDMDG (manufactured by Showa Denko KK).
Examples of compounds in which Q in general formula (1) is an organic group in general formula (c) include Denacol EX-313 (manufactured by Nagase ChemteX Corporation).
Examples of compounds in which Q in general formula (1) is an organic group in general formula (d) include Denacol EX-810 (manufactured by Nagase ChemteX Corporation).
In general formula (e), p represents an integer of 1-30, preferably an integer of 10-25.
Examples of compounds in which Q in general formula (1) is an organic group in general formula (e) include Denacol EX-861 (manufactured by Nagase ChemteX Corporation).
 一般式(f)中、QおよびQは炭素数1~3のアルキレン基または炭素数3~8のシクロアルキレン基を示し、好ましくは炭素数1~2のアルキレン基または炭素数5~8のシクロアルキレン基である。RおよびRは炭素数1~3のアルキレン基を示し、好ましくは炭素数1~2のアルキレン基である。
 一般式(1)のQが一般式(f)の有機基である化合物としては、デナコールEX-211、EX-252(ナガセケムテックス社製)等が挙げられる。
 一般式(1)のQが一般式(g)の有機基である化合物としては、デナコールEX-512(ナガセケムテックス社製)等が挙げられる。
 一般式(1)のQが一般式(h)の有機基である化合物としては、デナコールEX-614B(ナガセケムテックス社製)等が挙げられる。
 一般式(a)~(h)中、*は結合手を示す。
In general formula (f), Q 1 and Q 2 represent an alkylene group having 1 to 3 carbon atoms or a cycloalkylene group having 3 to 8 carbon atoms, preferably an alkylene group having 1 to 2 carbon atoms or 5 to 8 carbon atoms. is a cycloalkylene group of R 1 and R 2 represent an alkylene group having 1 to 3 carbon atoms, preferably an alkylene group having 1 to 2 carbon atoms.
Examples of compounds in which Q in general formula (1) is an organic group in general formula (f) include Denacol EX-211 and EX-252 (manufactured by Nagase ChemteX Corporation).
Examples of compounds in which Q in general formula (1) is an organic group in general formula (g) include Denacol EX-512 (manufactured by Nagase ChemteX Corporation).
Examples of compounds in which Q in general formula (1) is an organic group in general formula (h) include Denacol EX-614B (manufactured by Nagase ChemteX Corporation).
In general formulas (a) to (h), * indicates a bond.
 多官能エポキシ化合物(C)は、本発明の効果の観点から、前記Qが一般式(a)、(b)および(c)で表される有機基である化合物から選択される少なくとも1種を含むことが好ましく、一般式(a)および(b)で表される有機基である化合物から選択される少なくとも1種を含むことがより好ましく、一般式(a)で表される有機基である化合物から選択される少なくとも1種を含むことがさらに好ましい。 From the viewpoint of the effect of the present invention, the polyfunctional epoxy compound (C) is at least one compound selected from compounds in which Q is an organic group represented by general formulas (a), (b) and (c). It preferably contains at least one selected from compounds that are organic groups represented by general formulas (a) and (b), and more preferably contains an organic group represented by general formula (a) More preferably, it contains at least one selected from compounds.
 多官能エポキシ化合物(C)は、一般式(1)のQが一般式(a)で表される有機基であり、nが3である化合物aと、一般式(1)のQが一般式(a)で表される有機基であり、nが2である化合物bとの混合物である場合、化合物aと化合物bの総量に対する化合物aの割合(a/(a+b))は、0.01~5、好ましくは0.05~3、さらに好ましくは0.1~1とすることができる。 The polyfunctional epoxy compound (C) is a compound a in which Q in the general formula (1) is an organic group represented by the general formula (a) and n is 3, and Q in the general formula (1) is the general formula In the case of a mixture with compound b, which is an organic group represented by (a) and n is 2, the ratio of compound a to the total amount of compound a and compound b (a/(a+b)) is 0.01 to 5, preferably 0.05 to 3, more preferably 0.1 to 1.
 本実施形態の導電性樹脂組成物全体中の多官能エポキシ化合物(C)の割合は、例えば0.1~20質量%、好ましくは0.2~17質量%、より好ましくは0.5~15質量%である。 The proportion of the polyfunctional epoxy compound (C) in the entire conductive resin composition of the present embodiment is, for example, 0.1 to 20% by mass, preferably 0.2 to 17% by mass, more preferably 0.5 to 15% by mass. % by mass.
 多官能エポキシ化合物(C)100質量部に対して、(メタ)アクリル化合物(B)を10~85質量部、好ましくは15~60質量部、より好ましくは20~50質量部含むことができる。
 本実施形態においては、多官能エポキシ化合物(C)と(メタ)アクリル化合物(B)とを組み合わせて用いることにより、導電性樹脂組成物は、硬化収縮によって銀含有粒子の焼結がより促進されて熱伝導性にさらに優れた高熱伝導性材料を得ることができる。さらに、得られる硬化物(高熱伝導性材料)は弾性率がより低く柔軟性にさらに優れることから、当該硬化物を備える半導体装置等は応力緩和により製品信頼性にさらに優れる。さらに、得られる硬化物(高熱伝導性材料)は基板等との密着性にも優れており製品信頼性に優れる。言い換えればこれらの特性のバランスにさらに優れた導電性樹脂組成物を提供することができる。
10 to 85 parts by mass, preferably 15 to 60 parts by mass, more preferably 20 to 50 parts by mass of the (meth)acrylic compound (B) can be contained with respect to 100 parts by mass of the polyfunctional epoxy compound (C).
In the present embodiment, by using the polyfunctional epoxy compound (C) and the (meth)acrylic compound (B) in combination, the conductive resin composition further promotes sintering of the silver-containing particles due to curing shrinkage. It is possible to obtain a highly thermally conductive material with even better thermal conductivity. Furthermore, since the resulting cured product (high thermal conductive material) has a lower elastic modulus and is more excellent in flexibility, a semiconductor device or the like provided with the cured product is more excellent in product reliability due to stress relaxation. Furthermore, the resulting cured product (high thermal conductivity material) is excellent in adhesion to substrates and the like, and is excellent in product reliability. In other words, it is possible to provide a conductive resin composition with a better balance of these properties.
[硬化剤(D)]
 本実施形態の導電性樹脂組成物は、さらに硬化剤(D)を含むことができる。
 硬化剤(D)としては、多官能エポキシ化合物(C)に含まれるエポキシ基と反応する反応性基を有するものを挙げることができる。
[Curing agent (D)]
The conductive resin composition of this embodiment can further contain a curing agent (D).
Examples of the curing agent (D) include those having a reactive group that reacts with the epoxy group contained in the polyfunctional epoxy compound (C).
 硬化剤(D)は、好ましくは、フェノール系硬化剤を含む。これら硬化剤は、特に、熱硬化性成分がエポキシ基を含む場合に好ましい。
 フェノール系硬化剤は、低分子化合物あってもよいし、高分子化合物(すなわちフェノール樹脂)であってもよい。
The curing agent (D) preferably contains a phenolic curing agent. These curing agents are particularly preferred when the thermosetting component contains epoxy groups.
The phenol-based curing agent may be a low-molecular-weight compound or a high-molecular-weight compound (ie, phenolic resin).
 低分子化合物であるフェノール系硬化剤としては、例えば、ビスフェノールA、ビスフェノールF(ジヒドロキシジフェニルメタン)等のビスフェノール化合物(ビスフェノールF骨格を有するフェノール樹脂);4,4'-ビフェノールなどのビフェニレン骨格を有する化合物などが挙げられる。 Examples of phenol-based curing agents that are low-molecular-weight compounds include bisphenol compounds (phenolic resins having a bisphenol F skeleton) such as bisphenol A and bisphenol F (dihydroxydiphenylmethane); compounds having a biphenylene skeleton such as 4,4'-biphenol. etc.
 フェノール樹脂として具体的には、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールノボラック樹脂、フェノール-ビフェニルノボラック樹脂等のノボラック型フェノール樹脂;ポリビニルフェノール;トリフェニルメタン型フェノール樹脂等の多官能型フェノール樹脂;テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂等の変性フェノール樹脂;フェニレン骨格及び/又はビフェニレン骨格を有するフェノールアラルキル樹脂、フェニレン及び/又はビフェニレン骨格を有するナフトールアラルキル樹脂等のフェノールアラルキル型フェノール樹脂などを挙げることができる。
 硬化剤(D)を用いる場合、1種のみを用いてもよいし、2種以上を併用してもよい。
Specific examples of phenolic resins include novolac-type phenolic resins such as phenol novolak resin, cresol novolak resin, bisphenol novolak resin, and phenol-biphenyl novolak resin; polyvinylphenol; polyfunctional phenolic resins such as triphenylmethane-type phenol resin; modified phenolic resins such as modified phenolic resins and dicyclopentadiene-modified phenolic resins; phenolic aralkyl-type phenolic resins such as phenolaralkyl resins having a phenylene skeleton and/or biphenylene skeleton and naphtholaralkyl resins having a phenylene and/or biphenylene skeleton; be able to.
When using the curing agent (D), only one type may be used, or two or more types may be used in combination.
 本実施形態の導電性樹脂組成物が硬化剤(D)を含む場合、その量は、多官能エポキシ化合物(C)の量を100質量部としたとき、例えば10~120質量部、好ましくは20~80質量部である。 When the conductive resin composition of the present embodiment contains the curing agent (D), the amount thereof is, for example, 10 to 120 parts by mass, preferably 20 parts by mass when the amount of the polyfunctional epoxy compound (C) is 100 parts by mass. ~80 parts by mass.
[ポリロタキサンを含むポリマー(E)]
 本実施形態の導電性樹脂組成物は、さらにポリロタキサンを含有するポリマー(E)を含むことができる。
[Polymer (E) containing polyrotaxane]
The conductive resin composition of the present embodiment can further contain a polymer (E) containing polyrotaxane.
 ポリロタキサンは、通常、開口を形成している環状分子と、環状分子の開口を貫通する直鎖状分子鎖と、直鎖状分子鎖の両端にそれぞれ結合した封鎖基とを備える。封鎖基によって、環状分子が直鎖状分子鎖から脱離することが防がれている。1本の直鎖状分子鎖は、1または2以上の環状分子の開口を貫通することができる。 A polyrotaxane usually comprises a cyclic molecule forming an opening, a linear molecular chain passing through the opening of the cyclic molecule, and blocking groups bonded to both ends of the linear molecular chain. Blocking groups prevent the cyclic molecule from leaving the linear chain. A single linear molecular chain can pass through an opening in one or more cyclic molecules.
 ポリロタキサン中の環状分子は、直鎖状分子鎖が貫通可能な開口を形成している分子であれば、特に制限されない。環状分子は、開口を貫通する直鎖状分子鎖が脱離することがなければ、共有結合によって完全に閉環していなくてもよい。 The cyclic molecule in the polyrotaxane is not particularly limited as long as it forms an opening through which the linear molecular chain can pass. A cyclic molecule does not have to be completely closed by a covalent bond, as long as the linear molecular chain passing through the opening does not break off.
 環状分子としては、例えば、シクロデキストリン、クラウンエーテル、ベンゾクラウン、ジベンゾクラウン、ジシクロヘキサノクラウン、および、これらの誘導体又は変性体を挙げることができる。直鎖状分子鎖の包接能の観点から、環状分子は、好ましくはシクロデキストリン又はこれの誘導体若しくは変性体である。 Cyclic molecules include, for example, cyclodextrin, crown ether, benzocrown, dibenzocrown, dicyclohexanocrown, and derivatives or modifications thereof. From the viewpoint of inclusion ability of linear molecular chains, the cyclic molecule is preferably cyclodextrin or a derivative or modified form thereof.
 環状分子がシクロデキストリン又はこれの誘導体若しくは変性体である場合、シクロデキストリン中のヒドロキシ基の一部または全部は、疎水性の基によって置換されていることが好ましい。ヒドロキシ基が疎水性基で置換されていることで、ポリロタキサンの有機溶媒への溶解性が向上する。 When the cyclic molecule is cyclodextrin or a derivative or modified form thereof, part or all of the hydroxy groups in the cyclodextrin are preferably substituted with hydrophobic groups. By substituting the hydroxy group with a hydrophobic group, the solubility of the polyrotaxane in organic solvents is improved.
 環状分子が直鎖状分子鎖により貫通される場合において、環状分子が直鎖状分子鎖に最大限に包接される量を1とした場合、包接される環状分子の相対量(モル比)の下限値は、例えば0.001、好ましくは0.01、より好ましくは0.1以上であり、上限値は、例えば0.7以下、好ましくは0.6以下、より好ましくは0.5以下である。環状分子の包接量が上記範囲内にあることにより、直鎖状分子鎖上での環状分子の運動性が保たれやすい。 When the cyclic molecule is penetrated by the linear molecular chain, the relative amount of the cyclic molecule to be included (molar ratio ) is, for example, 0.001, preferably 0.01, more preferably 0.1 or more, and the upper limit is, for example, 0.7 or less, preferably 0.6 or less, more preferably 0.5 It is below. When the inclusion amount of the cyclic molecule is within the above range, the mobility of the cyclic molecule on the linear molecular chain is likely to be maintained.
 ポリロタキサン中の直鎖状分子鎖は、環状分子を貫通しうる分子鎖であって、環状分子が直鎖状分子鎖上で移動可能である限り、特に限定されない。直鎖状分子鎖は、実質的に直鎖状の部分を含んでいればよく、分岐鎖又は環状の置換基等を有することも許容される。直鎖状の部分の長さや分子量は特に制限されない。 The linear molecular chain in the polyrotaxane is not particularly limited as long as it is a molecular chain that can penetrate the cyclic molecule and the cyclic molecule can move on the linear molecular chain. The straight-chain molecular chain only needs to contain a substantially straight-chain portion, and may have a branched chain or a cyclic substituent or the like. The length and molecular weight of the linear portion are not particularly limited.
 直鎖状分子鎖としては、例えば、アルキレン鎖、ポリエステル鎖、ポリエーテル鎖、ポリアミド鎖、ポリアクリレート鎖を挙げることができる。これらの中でも、直鎖状分子鎖自体の柔軟性の観点などから、ポリエステル鎖またはポリエーテル鎖が好ましく、ポリエーテル鎖がより好ましい。ポリエーテル鎖として好ましくは、ポリエチレングリコール鎖(ポリオキシエチレン鎖)などを挙げることができる。 Examples of linear molecular chains include alkylene chains, polyester chains, polyether chains, polyamide chains, and polyacrylate chains. Among these, a polyester chain or a polyether chain is preferred, and a polyether chain is more preferred, from the viewpoint of the flexibility of the linear molecular chain itself. Polyether chains are preferably polyethylene glycol chains (polyoxyethylene chains).
 ポリロタキサン中の封鎖基は、直鎖状分子鎖の両末端に配置され、直鎖状分子鎖が環状分子を貫通した状態を保持できる基である限り、特に限定されない。
 封鎖基としては、環状分子の開口より大きな構造を有する基、イオン性の相互作用により環状分子の開口を通過し得ない基などが挙げられる。封鎖基として具体的には、アダマンチル基、シクロデキストリンを含む基、アントラセン基、トリフェニレン基、ピレン基、トリチル基及びこれらの異性体、誘導体などが挙げられる。
The blocking groups in the polyrotaxane are not particularly limited as long as they are groups arranged at both ends of the linear molecular chain and capable of maintaining the state in which the linear molecular chain penetrates the cyclic molecule.
The blocking group includes a group having a structure larger than the opening of the cyclic molecule, a group that cannot pass through the opening of the cyclic molecule due to ionic interaction, and the like. Specific examples of blocking groups include adamantyl groups, groups containing cyclodextrin, anthracene groups, triphenylene groups, pyrene groups, trityl groups, and isomers and derivatives thereof.
 ポリロタキサンにおいて、環状分子と直鎖状分子鎖との組み合わせは、好ましくは、環状分子としてのα-シクロデキストリン又はその誘導体と、直鎖状分子鎖としてのポリエチレングリコール鎖又はその誘導体との組み合わせである。この組み合わせとすることで、直鎖状分子鎖上を環状分子が移動しやすくなる。また、この組み合わせは合成が比較容易であるというメリットもある。
 ポリロタキサンは、好ましくは架橋性基を有する。ポリロタキサンが架橋性基を有することにより、導電性樹脂組成物の熱硬化性、接着性などが向上する。
In the polyrotaxane, the combination of a cyclic molecule and a linear molecular chain is preferably a combination of α-cyclodextrin or a derivative thereof as the cyclic molecule and a polyethylene glycol chain or derivative thereof as the linear molecular chain. . This combination facilitates movement of the cyclic molecule on the linear molecular chain. In addition, this combination also has the advantage of being relatively easy to synthesize.
The polyrotaxane preferably has crosslinkable groups. By having a crosslinkable group in the polyrotaxane, the thermosetting property, adhesiveness, etc. of the conductive resin composition are improved.
 ポリロタキサンが架橋性基を有する場合、ポリロタキサン中の環状分子が架橋性基を有することが好ましい。環状分子が架橋性基を有することで、組成物の熱硬化(架橋)後も、環状分子が直鎖状分子鎖に沿ってスライド可能な状態が維持される。よって、熱硬化後の膜の柔軟性や伸びやすさを一層高めることができる。 When the polyrotaxane has a crosslinkable group, the cyclic molecule in the polyrotaxane preferably has a crosslinkable group. Since the cyclic molecule has a crosslinkable group, the cyclic molecule maintains a state in which it can slide along the linear molecular chain even after the composition is thermally cured (crosslinked). Therefore, it is possible to further enhance the flexibility and stretchability of the film after thermosetting.
 架橋性基は、好ましくはカチオン架橋性基またはラジカル架橋性基であり、より好ましくはラジカル架橋性基である。架橋性基は、好ましくは、(メタ)アクリロイル基などのエチレン性炭素-炭素二重結合含有基である。(メタ)アクリロイル基とは異なる態様として、架橋性基は、エポキシ基および/またはオキセタニル基を含んでもよい。 The crosslinkable group is preferably a cationic crosslinkable group or a radical crosslinkable group, more preferably a radical crosslinkable group. The crosslinkable groups are preferably ethylenic carbon-carbon double bond-containing groups such as (meth)acryloyl groups. As a different aspect from the (meth)acryloyl group, the crosslinkable group may contain an epoxy group and/or an oxetanyl group.
 ポリロタキサンは、公知の方法を参考にして合成したものであってもよいし、市販品であってもよい。市販品としては、株式会社ASMから販売されている「セルム」(登録商標、アルファベットではSeRM)シリーズを挙げることができる。
 本実施形態の導電性樹脂組成物は、ポリロタキサンを1種のみ含んでもよいし、2種以上含んでもよい。
The polyrotaxane may be synthesized with reference to a known method, or may be a commercially available product. Commercially available products include the "Serum" (registered trademark, SeRM in the alphabet) series sold by ASM Corporation.
The conductive resin composition of the present embodiment may contain only one type of polyrotaxane, or may contain two or more types.
 ポリマー(E)は、本発明の効果を奏する範囲で、ポリロタキサン以外の公知の樹脂を含むことができる。そのような樹脂としては、例えば、シリコーン樹脂、(メタ)アクリル樹脂、フェノール樹脂、ポリスチレン樹脂、メラミン樹脂、ポリアミド樹脂、ポリテトラフルオロエチレン樹脂などを挙げることができる。 The polymer (E) can contain known resins other than polyrotaxane within the scope of the effects of the present invention. Examples of such resins include silicone resins, (meth)acrylic resins, phenol resins, polystyrene resins, melamine resins, polyamide resins, and polytetrafluoroethylene resins.
 本実施形態において、ポリマー(E)100質量%中の前記ポリロタキサンの含有量は75質量%~100質量%、好ましくは80質量%~100質量%、より好ましくは90質量%~100質量%、特に好ましくは95質量%~100質量%である。
 ポリマー(E)中にポリロタキサンを上記の量で含むことにより、熱伝導性および貯蔵弾性率にさらに優れるとともに、基材等との密着性にもより優れる。
In the present embodiment, the content of the polyrotaxane in 100% by mass of the polymer (E) is 75% by mass to 100% by mass, preferably 80% by mass to 100% by mass, more preferably 90% by mass to 100% by mass, especially It is preferably 95% by mass to 100% by mass.
By including the polyrotaxane in the above amount in the polymer (E), the thermal conductivity and the storage elastic modulus are further improved, and the adhesion to the substrate and the like is also further improved.
 本実施形態の導電性樹脂組成物全体中のポリマー(E)の割合は、例えば0.1~10質量%、好ましくは0.2~8質量%、より好ましくは0.3~5質量%である。 The proportion of the polymer (E) in the entire conductive resin composition of the present embodiment is, for example, 0.1 to 10% by mass, preferably 0.2 to 8% by mass, more preferably 0.3 to 5% by mass. be.
[有機溶剤(F)]
 本実施形態の導電性樹脂組成物は、さらに有機溶剤(F)を含むことができる。
 有機溶剤(F)としては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、トリプロピレングリコールモノブチルエーテル、メチルメトキシブタノール、α-ターピネオール、β-ターピネオール、へキシレングリコール、ベンジルアルコール、2-フェニルエチルアルコール、イゾパルミチルアルコール、イソステアリルアルコール、ラウリルアルコール、エチレングリコール、プロピレングリコール、ブチルプロピレントリグリコール、グリセリン等のアルコール類;
 アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ジアセトンアルコール(4-ヒドロキシ-4-メチル-2-ペンタノン)、2-オクタノン、イソホロン(3、5、5-トリメチル-2-シクロヘキセン-1-オン)、ジイソブチルケトン(2、6-ジメチル-4-ヘプタノン)等のケトン類;
 酢酸エチル、酢酸ブチル、ジエチルフタレート、ジブチルフタレート、アセトキシエタン、酪酸メチル、ヘキサン酸メチル、オクタン酸メチル、デカン酸メチル、メチルセロソルブアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、1,2-ジアセトキシエタン、リン酸トリブチル、リン酸トリクレジル、リン酸トリペンチル等のエステル類;
 テトラヒドロフラン、ジプロピルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、プロピレングリコールジメチルエーテル、エトキシエチルエーテル、1,2-ビス(2-ジエトキシ)エタン、1,2-ビス(2-メトキシエトキシ)エタン等のエーテル類;
 酢酸2-(2ブトキシエトキシ)エタン等のエステルエーテル類;
 2-(2-メトキシエトキシ)エタノール等のエーテルアルコール類;
 トルエン、キシレン、n-パラフィン、イソパラフィン、ドデシルベンゼン、テレピン油、ケロシン、軽油等の炭化水素類;
 アセトニトリルもしくはプロピオニトリル等のニトリル類;
 アセトアミド、N,N-ジメチルホルムアミド等のアミド類;
 低分子量の揮発性シリコンオイル、揮発性有機変成シリコンオイル等のシリコンオイル類;
 単官能(メタ)アクリル化合物など、を挙げることができる。
 有機溶剤(F)を用いる場合、1種のみの溶剤を用いてもよいし、2種以上の溶剤を併用してもよい。
[Organic solvent (F)]
The conductive resin composition of the present embodiment can further contain an organic solvent (F).
Examples of the organic solvent (F) include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, Propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, tripropylene glycol monobutyl ether, methyl methoxybutanol, α-terpineol, β-terpineol, hexylene glycol, benzyl alcohol, 2-phenyl Alcohols such as ethyl alcohol, isopalmityl alcohol, isostearyl alcohol, lauryl alcohol, ethylene glycol, propylene glycol, butylpropylene triglycol, glycerin;
Acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, diacetone alcohol (4-hydroxy-4-methyl-2-pentanone), 2-octanone, isophorone (3,5,5-trimethyl-2-cyclohexen-1-one), Ketones such as diisobutyl ketone (2,6-dimethyl-4-heptanone);
Ethyl acetate, butyl acetate, diethyl phthalate, dibutyl phthalate, acetoxyethane, methyl butyrate, methyl hexanoate, methyl octanoate, methyl decanoate, methyl cellosolve acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, 1,2- Esters such as diacetoxyethane, tributyl phosphate, tricresyl phosphate, and tripentyl phosphate;
Tetrahydrofuran, dipropyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, propylene glycol dimethyl ether, ethoxyethyl ether, 1,2-bis(2-diethoxy)ethane, 1,2-bis(2-methoxyethoxy) ) ethers such as ethane;
Ester ethers such as 2-(2-butoxyethoxy)ethane acetate;
Ether alcohols such as 2-(2-methoxyethoxy)ethanol;
Hydrocarbons such as toluene, xylene, n-paraffin, isoparaffin, dodecylbenzene, turpentine oil, kerosene, light oil;
Nitriles such as acetonitrile or propionitrile;
amides such as acetamide and N,N-dimethylformamide;
Silicone oils such as low molecular weight volatile silicone oils and volatile organically modified silicone oils;
A monofunctional (meth)acrylic compound and the like can be mentioned.
When using the organic solvent (F), only one solvent may be used, or two or more solvents may be used in combination.
 有機溶剤(F)を用いる場合、その量は特に限定されない。所望の流動性などに基づき使用量は適宜調整すればよい。一例として、有機溶剤(F)は、導電性樹脂組成物の不揮発成分濃度が50~95質量%となる量で使用される。 When using the organic solvent (F), the amount is not particularly limited. The amount used may be appropriately adjusted based on the desired fluidity and the like. As an example, the organic solvent (F) is used in such an amount that the nonvolatile component concentration of the conductive resin composition is 50 to 95% by mass.
[硬化促進剤]
 本実施形態の導電性樹脂組成物は、さらに硬化促進剤を含むことができる。硬化促進剤は、典型的には多官能エポキシ化合物(C)と硬化剤(D)との反応を促進させるものである。
[Curing accelerator]
The conductive resin composition of this embodiment can further contain a curing accelerator. A curing accelerator typically accelerates the reaction between the polyfunctional epoxy compound (C) and the curing agent (D).
 硬化促進剤として具体的には、イミダゾール化合物、有機ホスフィン、テトラ置換ホスホニウム化合物、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物、ホスホニウム化合物とシラン化合物との付加物等のリン原子含有化合物;ジシアンジアミド、1,8-ジアザビシクロ[5.4.0]ウンデセン-7、ベンジルジメチルアミン等のアミジンや3級アミン;上記アミジンまたは上記3級アミンの4級アンモニウム塩等の窒素原子含有化合物などが挙げられる。
 硬化促進剤を用いる場合、1種のみを用いてもよいし、2種以上を併用してもよい。
Specific examples of curing accelerators include phosphorus atom-containing compounds such as imidazole compounds, organic phosphines, tetrasubstituted phosphonium compounds, phosphobetaine compounds, adducts of phosphine compounds and quinone compounds, and adducts of phosphonium compounds and silane compounds; dicyandiamide, 1,8-diazabicyclo[5.4.0]undecene-7, amidines and tertiary amines such as benzyldimethylamine; nitrogen atom-containing compounds such as quaternary ammonium salts of the above amidines or the above tertiary amines; be done.
When using a hardening accelerator, only 1 type may be used and 2 or more types may be used together.
[ラジカル重合開始剤]
 本実施形態の導電性樹脂組成物は、さらに硬化促進剤を含むことができる。ラジカル重合開始剤により、例えば、硬化が不十分となることを抑えることができたり、比較的低温(例えば180℃)での硬化反応を十分に進行させることができたり、接着力を一層向上させることができたりする場合がある。
 ラジカル重合開始剤としては、過酸化物、アゾ化合物などを挙げることができる。
[Radical polymerization initiator]
The conductive resin composition of this embodiment can further contain a curing accelerator. The radical polymerization initiator can, for example, prevent insufficient curing, allow the curing reaction to proceed sufficiently at a relatively low temperature (eg, 180° C.), or further improve the adhesive strength. sometimes it can be done.
Examples of radical polymerization initiators include peroxides and azo compounds.
 過酸化物としては、例えば、ジアシルパーオキサイド、ジアルキルパーオキサイド、パーオキシケタールなどの有機過酸化物を挙げることができ、より具体的には、メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド等のケトンパーオキサイド;1,1-ジ(t-ブチルパーオキシ)シクロヘキサン、2,2-ジ(4,4-ジ(t-ブチルパーオキシ)シクロヘキシル)プロパン等のパーオキシケタール;
 p-メンタンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド等のハイドロパーオキサイド;
 ジ(2-t-ブチルパーオキシイソプロピル)ベンゼン、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、t-ブチルクミルパーオキサイド、ジ-t-へキシルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3、ジ-t-ブチルパーオキサイド等のジアルキルパーオキサイド;
 ジベンゾイルパーオキサイド、ジ(4-メチルベンゾイル)パーオキサイド等のジアシルパーオキサイド;
 ジ-n-プロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート等のパーオキシジカーボネート;
 2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-へキシルパーオキシベンゾエート、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシ2-エチルヘキサノネート等のパーオキシエステルなどを挙げることができる。
Examples of peroxides include organic peroxides such as diacyl peroxide, dialkyl peroxide, and peroxyketals, more specifically, ketone peroxides such as methyl ethyl ketone peroxide and cyclohexanone peroxide; Peroxyketals such as 1,1-di(t-butylperoxy)cyclohexane and 2,2-di(4,4-di(t-butylperoxy)cyclohexyl)propane;
Hydroperoxides such as p-menthane hydroperoxide, diisopropylbenzene hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, cumene hydroperoxide, t-butyl hydroperoxide;
di(2-t-butylperoxyisopropyl)benzene, dicumyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, t-butylcumyl peroxide, di-t- Dialkyl peroxides such as xyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne-3, di-t-butyl peroxide;
Diacyl peroxides such as dibenzoyl peroxide and di(4-methylbenzoyl) peroxide;
Peroxydicarbonates such as di-n-propyl peroxydicarbonate and diisopropyl peroxydicarbonate;
Peroxyesters such as 2,5-dimethyl-2,5-di(benzoylperoxy)hexane, t-hexylperoxybenzoate, t-butylperoxybenzoate, t-butylperoxy 2-ethylhexanonate, etc. can be mentioned.
 アゾ化合物としては、2,2'-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2'-アゾビス(2-シクロプロピルプロピオニトリル)、2,2'-アゾビス(2,4-ジメチルバレロニトリル)などを挙げることができる。
 ラジカル重合開始剤を用いる場合、1種のみを用いてもよいし、2種以上を併用してもよい。
Azo compounds include 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile), 2,2'-azobis(2-cyclopropylpropionitrile), 2,2'-azobis(2, 4-dimethylvaleronitrile) and the like.
When using a radical polymerization initiator, only one type may be used, or two or more types may be used in combination.
[その他の成分]
 本実施形態の導電性樹脂組成物は、その他の成分として、硬化促進剤、シランカップリング剤、可塑剤、密着性付与剤等を含むことができる。
[Other ingredients]
The conductive resin composition of the present embodiment can contain other components such as a curing accelerator, a silane coupling agent, a plasticizer, and an adhesion imparting agent.
 シランカップリング剤を含むことにより接着力の一層の向上を図ることができ、可塑剤を含むことにより貯蔵弾性率を低くすることができる。そして、ヒートサイクルによる接着力の低下を一層抑えやすくなる。 By including a silane coupling agent, the adhesive force can be further improved, and by including a plasticizer, the storage elastic modulus can be lowered. And it becomes easy to suppress the fall of the adhesive force by a heat cycle further.
<導電性樹脂組成物>
 本実施形態の導電性樹脂組成物は、好ましくは、20℃でペースト状である。すなわち、本実施形態の導電性樹脂組成物(ペースト状組成物)は、好ましくは、20℃で、糊のようにして基板等に塗布することができる。このことにより、本実施形態の導電性樹脂組成物を、半導体素子の接着剤などとして好ましく用いることができる。
 もちろん、適用されるプロセスなどによっては、本実施形態の導電性樹脂組成物は、比較的低粘度のワニス状などであってもよい。
 本実施形態の導電性樹脂組成物は、上述の各成分と、必要に応じてその他の成分とを、従来公知の方法で混合することにより得ることができる。
<Conductive resin composition>
The conductive resin composition of the present embodiment is preferably pasty at 20°C. That is, the conductive resin composition (paste composition) of the present embodiment can preferably be applied to a substrate or the like like a paste at 20°C. As a result, the conductive resin composition of the present embodiment can be preferably used as an adhesive for semiconductor elements or the like.
Of course, depending on the applied process, the conductive resin composition of the present embodiment may be in the form of a relatively low-viscosity varnish.
The conductive resin composition of the present embodiment can be obtained by mixing each of the components described above and, if necessary, other components by a conventionally known method.
<高熱伝導性材料>
 本実施形態の導電性樹脂組成物を焼結することにより高熱伝導性材料を得ることができる。
 高熱伝導性材料の形状を変えることにより、自動車、電機分野において熱放散性を必要とする様々な部品に適用することができる。
<High thermal conductivity material>
A highly thermally conductive material can be obtained by sintering the conductive resin composition of the present embodiment.
By changing the shape of the high thermal conductivity material, it can be applied to various parts that require heat dissipation in the fields of automobiles and electrical machinery.
<半導体装置>
 本実施形態の導電性樹脂組成物を用いて、半導体装置を製造することができる。例えば、本実施形態の導電性樹脂組成物を、基材と半導体素子との「接着剤」として用いることで、半導体装置を製造することができる。
<Semiconductor device>
A semiconductor device can be manufactured using the conductive resin composition of the present embodiment. For example, a semiconductor device can be manufactured by using the conductive resin composition of the present embodiment as an "adhesive" between a substrate and a semiconductor element.
 換言すると、本実施形態の半導体装置は、例えば、基材と、上述の導電性樹脂組成物を熱処理により焼結して得られる接着層を介して基材上に搭載された半導体素子と、を備える。 In other words, the semiconductor device of the present embodiment includes, for example, a substrate and a semiconductor element mounted on the substrate via an adhesive layer obtained by sintering the conductive resin composition by heat treatment. Prepare.
 本実施形態の半導体装置は、応力が緩和され、さらにヒートサイクルによっても接着層の密着性などが低下しにくい。つまり、本実施形態の半導体装置の信頼性は高い。
 半導体素子としては、IC、LSI、電力用半導体素子(パワー半導体)、その他各種の素子を挙げることができる。
 基板としては、各種半導体ウエハ、リードフレーム、BGA基板、実装基板、ヒートスプレッダー、ヒートシンクなどを挙げることができる。
In the semiconductor device of the present embodiment, the stress is relaxed, and the adhesiveness of the adhesive layer is less likely to deteriorate due to heat cycles. That is, the reliability of the semiconductor device of this embodiment is high.
Examples of semiconductor devices include ICs, LSIs, power semiconductor devices (power semiconductors), and various other devices.
Examples of substrates include various semiconductor wafers, lead frames, BGA substrates, mounting substrates, heat spreaders, and heat sinks.
 以下、図面を参照して、半導体装置の一例を説明する。
 図1は、半導体装置の一例を示す断面図である。
 半導体装置100は、基材30と、導電性樹脂組成物の熱処理体である接着層10(ダイアタッチ材)を介して基材30上に搭載された半導体素子20と、を備える。
An example of a semiconductor device will be described below with reference to the drawings.
FIG. 1 is a cross-sectional view showing an example of a semiconductor device.
The semiconductor device 100 includes a base material 30 and a semiconductor element 20 mounted on the base material 30 via an adhesive layer 10 (die attach material) that is a heat-treated body of a conductive resin composition.
 半導体素子20と基材30は、例えばボンディングワイヤ40等を介して電気的に接続される。また、半導体素子20は、例えば封止樹脂50により封止される。 The semiconductor element 20 and the base material 30 are electrically connected, for example, via bonding wires 40 or the like. Also, the semiconductor element 20 is sealed with a sealing resin 50, for example.
 接着層10の厚さは、5μm以上が好ましく、10μm以上がより好ましく、20μm以上が更に好ましい。これにより、導電性樹脂組成物の応力吸収能が向上し、耐ヒートサイクル性を向上できる。
 接着層10の厚さは、例えば100μm以下、好ましくは50μm以下である。
The thickness of the adhesive layer 10 is preferably 5 μm or more, more preferably 10 μm or more, and even more preferably 20 μm or more. Thereby, the stress absorption capacity of the conductive resin composition can be improved, and the heat cycle resistance can be improved.
The thickness of the adhesive layer 10 is, for example, 100 μm or less, preferably 50 μm or less.
 図1において、基材30は、例えば、リードフレームである。この場合、半導体素子20は、ダイパッド32または基材30上に接着層10を介して搭載されることとなる。また、半導体素子20は、例えば、ボンディングワイヤ40を介してアウターリード34(基材30)へ電気的に接続される。リードフレームである基材30は、例えば、42アロイ、Cuフレーム等により構成される。 In FIG. 1, the base material 30 is, for example, a lead frame. In this case, the semiconductor element 20 is mounted on the die pad 32 or the base material 30 with the adhesive layer 10 interposed therebetween. In addition, the semiconductor element 20 is electrically connected to the outer leads 34 (the base material 30) via bonding wires 40, for example. The base material 30, which is a lead frame, is composed of, for example, 42 alloy, a Cu frame, or the like.
 基材30は、有機基板やセラミック基板であってもよい。有機基板としては、例えばエポキシ樹脂、シアネート樹脂、マレイミド樹脂等によって構成されたものを挙げることができる。
 基材30の表面は、例えば、銀、金などの金属により被膜されていてもよい。これにより、接着層10と基材30との接着性が向上する。
The substrate 30 may be an organic substrate or a ceramic substrate. Examples of organic substrates include those made of epoxy resin, cyanate resin, maleimide resin, or the like.
The surface of the base material 30 may be coated with a metal such as silver or gold, for example. This improves the adhesiveness between the adhesive layer 10 and the substrate 30 .
 図2は、図1とは別の半導体装置100の一例を示す断面図である。
 図2の半導体装置100において、基材30は、例えばインターポーザである。インターポーザである基材30のうち、半導体素子20が搭載される一面と反対側の面には、例えば複数の半田ボール52が形成される。この場合、半導体装置100は、半田ボール52を介して他の配線基板へ接続されることとなる。
FIG. 2 is a cross-sectional view showing another example of the semiconductor device 100 different from that in FIG.
In the semiconductor device 100 of FIG. 2, the base material 30 is, for example, an interposer. A plurality of solder balls 52, for example, are formed on the surface of the substrate 30, which is the interposer, opposite to the surface on which the semiconductor element 20 is mounted. In this case, the semiconductor device 100 will be connected to another wiring board through the solder balls 52 .
 半導体装置の製造方法の一例について説明する。
 まず、基材30の上に、導電性樹脂組成物を塗工し、次いで、その上に半導体素子20を配置する。すなわち、基材30、導電性樹脂組成物、半導体素子20がこの順で積層される。
 導電性樹脂組成物を塗工する方法は特に限定されない。具体的には、ディスペンシング、印刷法、インクジェット法などを挙げることができる。
An example of a method for manufacturing a semiconductor device will be described.
First, the base material 30 is coated with a conductive resin composition, and then the semiconductor element 20 is arranged thereon. That is, the substrate 30, the conductive resin composition, and the semiconductor element 20 are laminated in this order.
The method of applying the conductive resin composition is not particularly limited. Specifically, a dispensing method, a printing method, an inkjet method, and the like can be mentioned.
 次いで、導電性樹脂組成物を熱硬化させる。熱硬化は、好ましくは前硬化及び後硬化により行われる。熱硬化により、導電性樹脂組成物を熱処理体(硬化物)とする。熱硬化(熱処理)により、導電性樹脂組成物中の金属含有粒子が凝集し、複数の金属含有粒子同士の界面が消失した構造が接着層10中に形成される。これにより、接着層10を介して、基材30と、半導体素子20とが接着される。次いで、半導体素子20と基材30を、ボンディングワイヤ40を用いて電気的に接続する。次いで、半導体素子20を封止樹脂50により封止する。このようにして半導体装置を製造することができる。 Then, the conductive resin composition is heat-cured. Thermal curing is preferably carried out by pre-curing and post-curing. By thermosetting, the conductive resin composition is made into a heat-treated body (cured product). By thermosetting (heat treatment), the metal-containing particles in the conductive resin composition are aggregated, and a structure is formed in the adhesive layer 10 in which interfaces between a plurality of metal-containing particles have disappeared. Thereby, the substrate 30 and the semiconductor element 20 are adhered via the adhesive layer 10 . Next, the semiconductor element 20 and the base material 30 are electrically connected using bonding wires 40 . Then, the semiconductor element 20 is sealed with the sealing resin 50 . Thus, a semiconductor device can be manufactured.
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することができる。また、本発明は上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。 Although the embodiments of the present invention have been described above, these are examples of the present invention, and various configurations other than those described above can be adopted. Moreover, the present invention is not limited to the above-described embodiments, and includes modifications, improvements, etc. within the scope of achieving the object of the present invention.
 以下に、実施例により本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。
 実施例で用いた成分を以下に示す。
EXAMPLES The present invention will be described in more detail below with reference to Examples, but the present invention is not limited to these.
Components used in the examples are shown below.
(エポキシ樹脂)
・脂肪族多官能エポキシ化合物1:トリメチロールプロパンポリグリシジルエーテル(下記化学式で表される化合物の混合物、デナコールEX-321L、ナガセケムテック社製)
Figure JPOXMLDOC01-appb-C000006
(Epoxy resin)
Aliphatic polyfunctional epoxy compound 1: trimethylolpropane polyglycidyl ether (a mixture of compounds represented by the following chemical formula, Denacol EX-321L, manufactured by Nagase Chemtech)
Figure JPOXMLDOC01-appb-C000006
・脂肪族多官能エポキシ化合物2:ペンタエリスリトールテトラアリルエーテルの過酸化水素によるエポキシ化反応生成物(下記化学式で表される化合物、ショウフリーPETG、昭和電工社製)
Figure JPOXMLDOC01-appb-C000007
Aliphatic polyfunctional epoxy compound 2: epoxidation reaction product of pentaerythritol tetraallyl ether with hydrogen peroxide (compound represented by the following chemical formula, Showfree PETG, manufactured by Showa Denko)
Figure JPOXMLDOC01-appb-C000007
・脂肪族多官能エポキシ化合物3:ペンタエリスリトールテトラアリルエーテルの過酸化水素によるエポキシ化反応生成物(下記化学式で表される化合物、ショウフリーCDMDG、昭和電工社製)
Figure JPOXMLDOC01-appb-C000008
Aliphatic polyfunctional epoxy compound 3: epoxidation reaction product of pentaerythritol tetraallyl ether with hydrogen peroxide (compound represented by the following chemical formula, Showfree CDMDG, manufactured by Showa Denko)
Figure JPOXMLDOC01-appb-C000008
・エポキシ樹脂4:ビスフェノールF型エポキシ樹脂(日本化薬社製、RE-303S)
・エポキシ樹脂5:アミノフェノール型エポキシ樹脂(三菱ケミカル社製、jER630)
・ Epoxy resin 4: bisphenol F type epoxy resin (manufactured by Nippon Kayaku, RE-303S)
・ Epoxy resin 5: aminophenol type epoxy resin (manufactured by Mitsubishi Chemical Corporation, jER630)
((メタ)アクリル化合物)
・アクリルモノマー1:エチレングリコールジメタクリレート(共栄社化学社製、ライトエステルEG)
・アクリルモノマー2:1,4-シクロヘキサンジメタノールモノアクリレート(日本化成社製、CHDMMA、単官能アクリル)
((meth)acrylic compound)
・ Acrylic monomer 1: ethylene glycol dimethacrylate (manufactured by Kyoeisha Chemical Co., Ltd., Light Ester EG)
・Acrylic monomer 2: 1,4-cyclohexanedimethanol monoacrylate (manufactured by Nippon Kasei Co., Ltd., CHDMMA, monofunctional acrylic)
(ポリロタキサン) (Polyrotaxane)
・ポリロタキサン1:SA1305P-20:株式会社ASMより販売されているポリロタキサンの酢酸エチル50質量%溶液、ポリロタキサン中の環状分子がアクリロイル基含有、全体重量平均分子量 (代表値):100万、メタクリル当量(代表値):1500g/eq · Polyrotaxane 1: SA1305P-20: 50% by mass solution of polyrotaxane ethyl acetate sold by ASM Co., Ltd., cyclic molecule in polyrotaxane contains acryloyl group, total weight average molecular weight (representative value): 1 million, methacrylic equivalent ( Representative value): 1500 g / eq
(硬化剤)
・硬化剤1:ビスフェノールF骨格を有するフェノール樹脂(DIC社製、DIC-BPF)
(curing agent)
・ Curing agent 1: Phenolic resin having a bisphenol F skeleton (DIC-BPF manufactured by DIC)
(ラジカル重合開始剤)
・ラジカル重合開始剤1:ジクミルパーオキサイド(化薬アクゾ社製、パーカドックスBC)
(Radical polymerization initiator)
- Radical polymerization initiator 1: Dicumyl peroxide (manufactured by Kayaku Akzo Co., Ltd., Perkadox BC)
(硬化促進剤)
・硬化促進剤1:2-フェニル-1H-イミダゾール-4,5-ジメタノール(四国化成工業社製、2PHZ-PW)
(Curing accelerator)
・ Curing accelerator 1: 2-phenyl-1H-imidazole-4,5-dimethanol (manufactured by Shikoku Kasei Kogyo Co., Ltd., 2PHZ-PW)
(銀含有粒子)
・銀フィラー1:DOWAエレクトロニクス社製、AG-DSB-114、球状、D50:0.7μm、比表面積:1.05m/g、タップ密度5.25g/cm、円形度:0.953
・銀フィラー2:福田金属箔粉工業社製、HKD-12、鱗片状、メジアン径D50:7.6μm、比表面積:0.315m/g、タップ密度:5.5g/cm
(Silver-containing particles)
・Silver filler 1: Dowa Electronics Co., Ltd., AG-DSB-114, spherical, D 50 : 0.7 μm, specific surface area: 1.05 m 2 /g, tap density 5.25 g/cm 3 , circularity: 0.953
・Silver filler 2: HKD-12 manufactured by Fukuda Metal Foil & Powder Co., Ltd., scale-like, median diameter D 50 : 7.6 μm, specific surface area: 0.315 m 2 /g, tap density: 5.5 g/cm 3
(溶剤)
・溶剤1:トリプロピレングリコールモノ-n-ブチルエーテル(BFTG、日本乳化剤社製、沸点274℃)
(solvent)
・ Solvent 1: Tripropylene glycol mono-n-butyl ether (BFTG, manufactured by Nippon Emulsifier Co., Ltd., boiling point 274 ° C.)
[実施例1~8、比較例1~2]
 表1に示される配合量に従って、各原料成分を混合し、ワニスを得た。
 次に、得られたワニスを用い、表1に示す配合量に従って配合し、常温で、3本ロールミルで混練した。これにより、導電性樹脂組成物を作製した。
[Examples 1-8, Comparative Examples 1-2]
Each raw material component was mixed according to the compounding amount shown in Table 1 to obtain a varnish.
Next, the obtained varnish was blended according to the blending amounts shown in Table 1, and kneaded at room temperature in a three-roll mill. Thus, a conductive resin composition was produced.
(体積抵抗率)
 導電性樹脂組成物をガラス板上に塗布し、窒素雰囲気下で、30℃から200℃まで60分間かけて昇温し、続けて200℃で120分間熱処理した。これにより、厚さ0.05mmの導電性樹脂組成物の熱処理体(硬化物)を得た。ミリオームメータ(HIOKI社製)による直流四電極法、電極間隔が40mmの電極を用い、熱処理体表面の抵抗値を測定した。
(volume resistivity)
The conductive resin composition was applied onto a glass plate, heated from 30° C. to 200° C. over 60 minutes in a nitrogen atmosphere, and then heat-treated at 200° C. for 120 minutes. As a result, a heat-treated body (cured product) of the conductive resin composition having a thickness of 0.05 mm was obtained. The resistance value of the surface of the heat-treated body was measured using a direct current four-electrode method with a milliohmmeter (manufactured by Hioki Co., Ltd.) and electrodes with an electrode spacing of 40 mm.
(貯蔵弾性率) (storage modulus)
 導電性樹脂組成物の熱処理体を用いて約0.1mm×約10mm×約4mmに切り出し、評価用の短冊状サンプルを得た。このサンプルを用いて25℃における貯蔵弾性率(E’)を、DMA(動的粘弾性測定、引張モード)により昇温速度5℃/min、周波数10Hzの条件で測定した。 Using the heat-treated body of the conductive resin composition, it was cut into pieces of about 0.1 mm x about 10 mm x about 4 mm to obtain strip-shaped samples for evaluation. Using this sample, the storage modulus (E′) at 25° C. was measured by DMA (dynamic viscoelasticity measurement, tensile mode) under the conditions of a heating rate of 5° C./min and a frequency of 10 Hz.
(恒温吸湿処理後の剥離有無評価)
 AgメッキされたCuリードフレームのAgメッキ上に、得られた導電性樹脂組成物を所定量塗布し、その上に5×7mm角の裏面AuコートされたチップをAuコート面が接するようにマウントし、窒素雰囲気下において200℃で2時間硬化させ、評価用半導体装置を作製した。得られた半導体装置を温度60℃、湿度60%下で48時間処理した後の剥離有無を超音波探傷試験機(SAT)にて評価した。剥離が確認されてものを×、剥離がなかったものを〇とした。
(Evaluation of peeling after constant temperature moisture absorption treatment)
A predetermined amount of the obtained conductive resin composition was applied onto the Ag plating of the Ag-plated Cu lead frame, and a 5×7 mm square chip whose rear surface was Au-coated was mounted thereon so that the Au-coated surface was in contact. Then, it was cured at 200° C. for 2 hours in a nitrogen atmosphere to fabricate a semiconductor device for evaluation. The resulting semiconductor device was treated at a temperature of 60° C. and a humidity of 60% for 48 hours, and the presence or absence of peeling was evaluated using an ultrasonic tester (SAT). When peeling was confirmed, it was evaluated as x, and when there was no peeling, it was evaluated as ◯.
(恒温吸湿処理後の密着強度)
 上記で作製した評価用半導体装置を上記と同様に温度60℃、湿度60%下で48時間処理して評価用サンプルとした。チップ密着強度について、4000万能型ボンドテスター(Nordson Dage社製)を用いて、260℃加熱時にリードフレームからの高さ50μmの位置をツール速度500μm/sでシェアをかけた際の強度をチップ密着強度として評価した。
(Adhesion strength after constant temperature moisture absorption treatment)
The semiconductor device for evaluation produced as described above was treated in the same manner as described above at a temperature of 60° C. and a humidity of 60% for 48 hours to obtain an evaluation sample. Regarding the chip adhesion strength, using a 4000 universal bond tester (manufactured by Nordson Dage), the strength when shearing at a tool speed of 500 μm / s at a position of 50 μm in height from the lead frame when heating at 260 ° C. It was evaluated as strength.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表1に記載の結果から、多官能エポキシ化合物を含む導電性樹脂組成物から得られた硬化物は、体積抵抗率が低く熱伝導性に優れ、また、貯蔵弾性率が低く応力が緩和され、さらに恒温吸湿試験後においても密着強度が高く剥離も抑制されていることから硬化物を備える半導体装置等は信頼性に優れること、言い換えればこれらの特性のバランスに優れることが明らかとなった。 From the results shown in Table 1, the cured product obtained from the conductive resin composition containing the polyfunctional epoxy compound has low volume resistivity and excellent thermal conductivity, and has a low storage elastic modulus and is stress-relaxed. Furthermore, even after the constant temperature moisture absorption test, the adhesion strength is high and peeling is suppressed.
 この出願は、2021年3月23日に出願された日本出願特願2021-048261号および2021年10月4日に出願された日本出願特願2021-163521を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2021-048261 filed on March 23, 2021 and Japanese Patent Application No. 2021-163521 filed on October 4, 2021, The entirety of that disclosure is incorporated here.
100  半導体装置
10   接着層
20   半導体素子
30   基材
32   ダイパッド
34   アウターリード
40   ボンディングワイヤ
50   封止樹脂
52   半田ボール
100 semiconductor device 10 adhesive layer 20 semiconductor element 30 base material 32 die pad 34 outer lead 40 bonding wire 50 sealing resin 52 solder ball

Claims (11)

  1. (A)銀含有粒子と、
    (B)(メタ)アクリル化合物と、
    (C)下記一般式(1)で表される化合物から選択される少なくとも1種の多官能エポキシ化合物と、
     を含む、導電性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)中、Rは水酸基または炭素数1~3のアルキル基を示し、複数存在するRは同一でも異なっていてもよい。
    Qは、2~6価の有機基を示す。
    Xは炭素数1~3のアルキレン基を示し、複数存在するXは同一でも異なっていてもよい。
    mは0~2の整数、nは2~4の整数を示す。)
    (A) silver-containing particles;
    (B) a (meth) acrylic compound;
    (C) at least one polyfunctional epoxy compound selected from compounds represented by the following general formula (1);
    A conductive resin composition comprising:
    Figure JPOXMLDOC01-appb-C000001
    (In general formula (1), R represents a hydroxyl group or an alkyl group having 1 to 3 carbon atoms, and multiple Rs may be the same or different.
    Q represents a divalent to hexavalent organic group.
    X represents an alkylene group having 1 to 3 carbon atoms, and multiple X's may be the same or different.
    m is an integer of 0-2, n is an integer of 2-4. )
  2.  多官能エポキシ化合物(C)は、一般式(1)中の前記Qが一般式(a)~(h)で表される有機基である化合物から選択される少なくとも1種を含む、請求項1に記載の導電性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    (一般式(e)中、pは1~30の整数を示す。
    一般式(f)中、QおよびQは炭素数1~3のアルキレン基または炭素数3~8のシクロアルキレン基を示し、RおよびRは炭素数1~3のアルキレン基を示す。
    一般式(a)~(h)中、*は結合手を示す。)
    Claim 1, wherein the polyfunctional epoxy compound (C) contains at least one compound selected from compounds in which the Q in the general formula (1) is an organic group represented by general formulas (a) to (h). Conductive resin composition according to.
    Figure JPOXMLDOC01-appb-C000002
    (In general formula (e), p represents an integer of 1 to 30.
    In general formula (f), Q 1 and Q 2 represent an alkylene group having 1 to 3 carbon atoms or a cycloalkylene group having 3 to 8 carbon atoms, and R 1 and R 2 represent an alkylene group having 1 to 3 carbon atoms. .
    In general formulas (a) to (h), * indicates a bond. )
  3.  多官能エポキシ化合物(C)は、前記Qが一般式(a)、(b)および(c)で表される有機基である化合物から選択される少なくとも1種を含む、請求項1または2に記載の導電性樹脂組成物。 3. The polyfunctional epoxy compound (C) according to claim 1 or 2, comprising at least one compound selected from compounds in which said Q is an organic group represented by general formulas (a), (b) and (c). The conductive resin composition described.
  4.  多官能エポキシ化合物(C)は、前記Qが一般式(a)および(b)で表される有機基である化合物から選択される少なくとも1種を含む、請求項1~3のいずれかに記載の導電性樹脂組成物。 4. The polyfunctional epoxy compound (C) according to any one of claims 1 to 3, comprising at least one compound selected from compounds in which said Q is an organic group represented by general formulas (a) and (b). The conductive resin composition of.
  5.  多官能エポキシ化合物(C)100質量部に対して、(メタ)アクリル化合物(B)を10~85質量部含む、請求項1~4のいずれかに記載の導電性樹脂組成物。 The conductive resin composition according to any one of claims 1 to 4, comprising 10 to 85 parts by mass of the (meth)acrylic compound (B) with respect to 100 parts by mass of the polyfunctional epoxy compound (C).
  6.  銀含有粒子(A)が球状、樹状、紐状、鱗片状、凝集状、および多面体形状の銀含有粒子から選択される2種以上を含む、請求項1~5のいずれかに記載の導電性樹脂組成物。 The conductive material according to any one of claims 1 to 5, wherein the silver-containing particles (A) include two or more selected from spherical, dendritic, string-like, scaly, aggregated, and polyhedral silver-containing particles. elastic resin composition.
  7.  さらに、硬化剤(D)を含む、請求項1~6のいずれかに記載の導電性樹脂組成物。 The conductive resin composition according to any one of claims 1 to 6, further comprising a curing agent (D).
  8.  さらに、ポリロタキサンを含むポリマー(E)を含む、請求項1~7のいずれかに記載の導電性樹脂組成物。 The conductive resin composition according to any one of claims 1 to 7, further comprising a polymer (E) containing polyrotaxane.
  9.  さらに、有機溶剤(F)を含む、請求項1~8のいずれかに記載の導電性樹脂組成物。 The conductive resin composition according to any one of claims 1 to 8, further comprising an organic solvent (F).
  10.  請求項1~9のいずれかに記載の導電性樹脂組成物を焼結して得られる高熱伝導性材料。 A highly thermally conductive material obtained by sintering the conductive resin composition according to any one of claims 1 to 9.
  11.  基材と、
     前記基材上に接着層を介して搭載された半導体素子と、を備え、
     前記接着層は、請求項1~9のいずれかに記載の導電性樹脂組成物を焼結してなる、半導体装置。
    a substrate;
    A semiconductor element mounted on the base material via an adhesive layer,
    A semiconductor device, wherein the adhesive layer is formed by sintering the conductive resin composition according to any one of claims 1 to 9.
PCT/JP2022/011708 2021-03-23 2022-03-15 Electrically conductive resin composition, material having high thermal conductivity, and semiconductor device WO2022202505A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237035594A KR20230159849A (en) 2021-03-23 2022-03-15 Conductive resin compositions, high thermal conductivity materials and semiconductor devices
JP2023509054A JP7491463B2 (en) 2021-03-23 2022-03-15 Conductive resin composition, highly thermally conductive material and semiconductor device
CN202280023168.7A CN117098806A (en) 2021-03-23 2022-03-15 Conductive resin composition, high thermal conductive material, and semiconductor device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021048261 2021-03-23
JP2021-048261 2021-03-23
JP2021163521 2021-10-04
JP2021-163521 2021-10-04

Publications (1)

Publication Number Publication Date
WO2022202505A1 true WO2022202505A1 (en) 2022-09-29

Family

ID=83396138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011708 WO2022202505A1 (en) 2021-03-23 2022-03-15 Electrically conductive resin composition, material having high thermal conductivity, and semiconductor device

Country Status (4)

Country Link
JP (1) JP7491463B2 (en)
KR (1) KR20230159849A (en)
TW (1) TW202244101A (en)
WO (1) WO2022202505A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05501783A (en) * 1989-11-29 1993-04-02 アチソン・インダストリーズ・インコーポレイテツド Conductive adhesive useful for bonding semiconductor die to a conductive support base
JP2004168922A (en) * 2002-11-21 2004-06-17 Sumitomo Bakelite Co Ltd Die attach paste and semiconductor device
JP2008007558A (en) * 2006-06-27 2008-01-17 Sumitomo Bakelite Co Ltd Liquid resin composition and semiconductor device prepared using the same
JP2015160932A (en) * 2014-02-28 2015-09-07 昭和電工株式会社 Conductive adhesive and electronic device using the same
JP2016222804A (en) * 2015-05-29 2016-12-28 株式会社タムラ製作所 Conductive adhesive and electronic substrate
WO2022030089A1 (en) * 2020-08-04 2022-02-10 ナミックス株式会社 Conductive composition, die attachment material, pressure-sintered die attachement material, and electronic component

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5806760B1 (en) 2014-05-29 2015-11-10 田中貴金属工業株式会社 Thermally conductive conductive adhesive composition
CN110709487B (en) 2017-06-07 2022-01-14 田中贵金属工业株式会社 Thermally and electrically conductive adhesive composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05501783A (en) * 1989-11-29 1993-04-02 アチソン・インダストリーズ・インコーポレイテツド Conductive adhesive useful for bonding semiconductor die to a conductive support base
JP2004168922A (en) * 2002-11-21 2004-06-17 Sumitomo Bakelite Co Ltd Die attach paste and semiconductor device
JP2008007558A (en) * 2006-06-27 2008-01-17 Sumitomo Bakelite Co Ltd Liquid resin composition and semiconductor device prepared using the same
JP2015160932A (en) * 2014-02-28 2015-09-07 昭和電工株式会社 Conductive adhesive and electronic device using the same
JP2016222804A (en) * 2015-05-29 2016-12-28 株式会社タムラ製作所 Conductive adhesive and electronic substrate
WO2022030089A1 (en) * 2020-08-04 2022-02-10 ナミックス株式会社 Conductive composition, die attachment material, pressure-sintered die attachement material, and electronic component

Also Published As

Publication number Publication date
JP7491463B2 (en) 2024-05-28
KR20230159849A (en) 2023-11-22
TW202244101A (en) 2022-11-16
JPWO2022202505A1 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
US8749076B2 (en) Resin paste composition
JP2022069401A (en) Pasty composition, high thermal conductivity material, and semiconductor device
WO2020189445A1 (en) Thermally conductive composition and semiconductor device
JP7264211B2 (en) THERMALLY CONDUCTIVE COMPOSITION AND SEMICONDUCTOR DEVICE
WO2022202505A1 (en) Electrically conductive resin composition, material having high thermal conductivity, and semiconductor device
JP2022091110A (en) Conductive resin composition, high thermal conductive material, and semiconductor device
JP2022018051A (en) Pasty resin composition, high heat-conductive material, and semiconductor device
JP6950848B2 (en) Thermally conductive composition used for semiconductor packages
WO2023276690A1 (en) Conductive resin composition, material having high thermal conductivity, and semiconductor device
JP7279802B2 (en) PASTE RESIN COMPOSITION FOR HIGH THERMAL CONDUCTIVE MATERIAL, HIGH THERMAL CONDUCTIVE MATERIAL, AND SEMICONDUCTOR DEVICE
JP7392876B2 (en) Silver-containing pastes and joints
JP7260079B1 (en) Conductive paste, cured product, sintering accelerator, and sintering acceleration method
WO2023132051A1 (en) Paste-like resin composition, high–thermal conductivity material, and semiconductor device
CN117098806A (en) Conductive resin composition, high thermal conductive material, and semiconductor device
JP2023018445A (en) Conductive paste, highly thermal conductive material and semiconductor device
WO2022202434A1 (en) Conductive paste, and semiconductor device
CN117580909A (en) Conductive resin composition, high thermal conductive material, and semiconductor device
TW202328380A (en) Paste resin composition, high thermal conductivity material, and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775294

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023509054

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280023168.7

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237035594

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237035594

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775294

Country of ref document: EP

Kind code of ref document: A1