WO2022202458A1 - Pressure vessel for growing plants - Google Patents

Pressure vessel for growing plants Download PDF

Info

Publication number
WO2022202458A1
WO2022202458A1 PCT/JP2022/011449 JP2022011449W WO2022202458A1 WO 2022202458 A1 WO2022202458 A1 WO 2022202458A1 JP 2022011449 W JP2022011449 W JP 2022011449W WO 2022202458 A1 WO2022202458 A1 WO 2022202458A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
floor
room
gas
underfloor
Prior art date
Application number
PCT/JP2022/011449
Other languages
French (fr)
Japanese (ja)
Inventor
智文 成瀬
Original Assignee
三好造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三好造船株式会社 filed Critical 三好造船株式会社
Publication of WO2022202458A1 publication Critical patent/WO2022202458A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/02Treatment of plants with carbon dioxide
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like

Definitions

  • the present invention relates to a pressure vessel for growing plants under a predetermined pressure.
  • Patent Documents 1 to 3 below disclose this.
  • the room temperature inside the vessel may be adjusted to a predetermined temperature. If the air blown out from the air continues to hit the plants directly, it will adversely affect their growth, and in the worst case, they may even die.
  • An object of the present invention is to provide a pressure vessel for growing plants.
  • a plant-growing pressure vessel for growing plants under a predetermined environment, comprising: a cultivation chamber, which is a space for growing the plants; an air-conditioned room partitioned by a room and a wall for generating a regulated gas to be circulated and supplied to the cultivation room; an outward underfloor circulation path for gradually supplying the regulated gas from the air-conditioned room to the cultivation room through an underfloor; and the underfloor circulation outward passage is partitioned by a first floor underflow passage whose upstream side is connected to the air conditioning room, and the first floor underflow passage and a passage partition, and the first underfloor passage a second floor downstream channel installed side by side, the channel partition wall is formed with a plurality of ventilation holes from the upstream side to the downstream side, and the ceiling of the second floor downstream channel is provided with the A large number of small holes communicating with a cultivation room are formed, and the regulated gas is supplied from the air conditioning room to the cultivation room through the
  • the regulated gas is circulated from the air conditioning room to the cultivation room by the underfloor gas circulation outward path installed under the floor. By doing so, it is possible to prevent adverse effects on the growth of plants in the container.
  • FIG. 1 is a front view of a pressure vessel for growing plants according to an embodiment of the present invention.
  • FIG. 2 is a plan view of the plant-growing pressure vessel according to the embodiment of the present invention.
  • FIG. 3 is a side view of the plant-growing pressure vessel according to the embodiment of the present invention.
  • FIG. 4 is a vertical cross-sectional view showing the interior of the plant-growing pressure vessel according to the embodiment of the present invention.
  • FIG. 5 is a partially enlarged vertical cross-sectional view of the container body according to the embodiment of the present invention.
  • FIG. 6 is a partially enlarged horizontal cross-sectional view of the container body according to the embodiment of the present invention.
  • FIG. 7 is a vertical cross-sectional view of a container body according to an embodiment of the invention.
  • FIG. 8 is a vertical cross-sectional view of a container body according to an embodiment of the invention.
  • FIG. 9 is a diagram showing the configuration of a damper according to an embodiment of the invention.
  • FIG. 10 is a schematic diagram of a gas component/pressure regulating device according to an embodiment of the present invention.
  • the plant growing pressure vessel 1 includes a vessel body 10 , a lighting window 30 , an entrance/exit door 50 , a lighting device 60 and an air conditioning system 70 .
  • the container body 10 is a horizontal cylindrical container made of steel, and has a hemispherical shape with both left and right ends convex outward.
  • FIG. 5 is a vertical cross-sectional view parallel to the depth direction from the air-conditioned room 17 side of the container body 10 to the entrance door 50 side, showing an enlarged view of the air-conditioned room 17 and its vicinity.
  • FIG. 6 is a horizontal sectional view parallel to the depth direction, showing an enlarged view of the vicinity of the air conditioning room 17. As shown in FIG.
  • FIG. 7 and 8 are vertical cross-sectional views perpendicular to the depth direction
  • FIG. 7 is a cross-sectional view of the side opposite to the door 50 in the air conditioning room 17
  • FIG. 3 is a cross-sectional view of an air-conditioned room 17
  • FIG. 9A and 9B are diagrams showing the structure of the damper 29.
  • FIG. 9A is a diagram viewed in a direction perpendicular to the depth direction
  • FIG. 9B is a diagram viewed in a direction parallel to the depth direction. be.
  • the container body 10 has an interior partitioned by a vertical partition wall 11, and includes a cultivation chamber 15 in which plants are cultivated, and an air conditioning chamber 17 for adjusting the gas circulating and supplied to the cultivation chamber 15. It is installed on the ground while being supported by 10a.
  • the partition wall 11 is provided with an air-conditioned door 12 for entering and exiting the air-conditioned room 17 from the cultivation room 15 .
  • the container body 10 is provided with a floor plate 19, and under the floors of the cultivation room 15 and the air conditioning room 17, an underfloor gas circulation outward path 20 is provided.
  • the regulated gas adjusted in the air conditioning room 17 is gradually and uniformly supplied to the entire cultivation room 15 through the underfloor gas circulation outward path 20 .
  • the upper part of the partition wall 11 is open, and the cultivation room 15 and the air conditioning room 17 are connected. Therefore, the regulated gas sent into the cultivation room 15 from the outward underfloor gas circulation path 20 returns to the air conditioning room 17 through above the partition wall 11 .
  • the gas that has returned to the air conditioning room 17 is again adjusted and sent to the underfloor gas circulation outbound path 20 again by the air conditioner 71 to be described later, and circulates inside the pressure vessel 10 .
  • the outward underfloor gas circulation path 20 includes a first underfloor channel 21 and a second underfloor channel 22 partitioned by an underfloor partition wall 24, which is a vertical wall.
  • the first underfloor channel 21 and the second underfloor channel 22 are installed so as to extend in parallel in the depth direction from the air conditioning room 17 side to the doorway door 50 side.
  • the first underfloor channel 21 is located on the central side
  • the second underfloor channel 22 is located on both left and right sides of the first underfloor channel 21 .
  • the first underfloor channel 21 is divided into two chambers, a left first underfloor channel 21a and a right first underfloor channel 21b, by a central partition 25 that separates the left and right in the center.
  • the left and right first floor downstream channels 21a and 21b are connected in the entire depth direction under the floor of the cultivation room 15 from the upstream side of the air conditioning room 17 side to the downstream side of the entrance door 50 side, and are each a long and narrow room. It's becoming
  • the second floor downstream channel 22 is separated from the first floor downstream channel 21 by a channel partition wall 26 positioned between the first floor downstream channel 21 and the second floor downstream channel 22 and extending in the depth direction.
  • a left second underfloor channel 22a is provided outside the left first underfloor channel 21a
  • a right second underfloor channel 22b is provided outside the right first underfloor channel 21b.
  • the second floor underflow passage 22 is divided into smaller rooms in the depth direction by installing depth partitions 27 at predetermined intervals in the depth direction.
  • the rooms partitioned by the depth partition 27 are not connected to each other, and gas cannot move between the partitioned rooms.
  • Vents 26a that communicate the first floor downstream channel 21 and the second floor downstream channel are formed at predetermined intervals in the depth direction. Gas can move between the downstream channels 22 . Two ventilation holes 26a are formed for each divided room of the second floor downstream channel 22 .
  • a damper 29 is installed in each ventilation hole 26a, and the size of the opening of the ventilation hole 26a can be manually adjusted.
  • the damper 29 includes a damper rotating handle 29a, a damper rotating shaft 29b, and a disk-shaped damper main body 29c. By adjusting the degree of opening, the size of the opening of the ventilation hole 26a can be adjusted.
  • the regulated gas blown from the tone duct opening 75a of the air conditioning system 70 first flows from the end on the side of the air conditioning room 17 to the first downfloor flow path 21. It enters the upstream part inside and flows toward the downstream side of the entrance door 50 inside.
  • ventilation holes 26a are formed in the channel partition wall 26 positioned outside the first floor under-floor channel 21, part of the adjustment gas flowing toward the downstream side passes through each of the ventilation holes 26a. and move horizontally to enter the second underfloor passage 22 on the outside.
  • the adjustment gas flowing in the depth direction from the upstream side to the downstream side in the first floor downstream channel 21 sequentially passes through the ventilation holes 26a as it advances downstream, and gradually flows into the second floor downstream channel 22. proceed inside.
  • the damper 29 is installed in each ventilation hole 26a, and the amount of inflow from the first floor downstream channel 21 to the second floor downstream channel 22 in each ventilation hole 26a can be adjusted.
  • the opening of the ventilation holes 26a on the upstream side of the gas circulation is made smaller than the ventilation holes 26a installed at predetermined intervals in the depth direction, and the openings of the ventilation holes 26a gradually increase toward the downstream side.
  • the opening of each damper 29 is adjusted so that
  • the flow velocity which is the velocity at which the gas flows
  • the flow velocity decreases toward the downstream side. Therefore, if the opening sizes of the vent holes 26a are the same from the upstream side to the downstream side, a large amount of adjustment gas passes through the vent holes 26a on the upstream side, whereas the flow velocity is small on the downstream side. Accordingly, the amount of adjustment gas passing through the ventilation hole 26a is reduced.
  • the amount of regulated gas flowing into the cultivation chamber 15 from the second floor downstream channel 22 divided into a plurality of chambers in the depth direction is large on the upstream side and small on the downstream side. adjustment gas cannot be uniformly supplied to the entire
  • the ventilation hole 26a between the first floor downstream channel 21 and the second floor downstream channel 22 is adjusted so that the opening becomes larger from the upstream side to the downstream side. Therefore, even on the downstream side where the flow velocity of the circulating regulating gas is low, the same amount of regulating gas as on the upstream side can be supplied into the second floor downstream channel 22 .
  • the floor plate 19 of the cultivation room 15 is basically a checkered steel plate 19a, including the upper surface of the first floor downstream channel 21, and the floor of the cultivation room 15, etc. and the underfloor of the underfloor gas circulation outward path 20, etc. are blocked. However, above the second floor downstream channel 22, a punching metal plate 19b having a plurality of small holes 19c formed therein is installed. is movably connected to the gas.
  • the second floor downstream channel 22 is divided into a plurality of chambers in the depth direction by the depth partition wall 27, and the adjustment gas entering each chamber of the second floor downstream channel 22 does not move in the depth direction, In each room, it flows upward into the cultivation room 15 through the small holes 19c.
  • the ventilation holes 26a which are adjusted so that the opening size increases from the upstream side to the downstream side, are evenly passed through.
  • the adjustment gas can be uniformly supplied to the entire cultivation room 15 as it is without the air moving in the depth direction in the second underfloor channel 22 and being mixed.
  • the upper portion of the partition wall 11 is open, and when the regulated gas flows into the cultivation chamber 15 from the second floor downstream channel 22, the gas in the cultivation chamber 15 sequentially passes above the partition wall 11. It flows into the air-conditioned room 17 .
  • the gas that has flowed into the air conditioning room 17 is adjusted within the air conditioning room 17 , and the adjusted gas that has been adjusted is sent out again from the air conditioning duct opening 75 a of the air conditioner 71 to the outward underfloor gas circulation path 20 .
  • Such circulation of the gas in the container body 10 is realized by the wind pressure of the regulated gas sent out from the air conditioning duct 75 by the blower fan provided in the air conditioner 71 .
  • a blower fan may be installed separately.
  • a blower fan for sending gas from the cultivation room 15 side to the air conditioning room 17 can be installed.
  • the lighting windows 30 are circular windows, and a plurality of them are installed at predetermined positions on the top of the container body 10 in order to let light into the cultivation chamber 15 from outside the container.
  • a total of 16 lighting windows 30 are regularly arranged in three rows parallel to the longitudinal direction of the container body 10 .
  • the lighting window 30 includes a holding base 31 fixed to the container body 10 , and an ultraviolet/infrared cut glass 35 and a pressure-resistant glass 37 fixed and held on the holding base 31 .
  • the holding base 31 has a substantially cylindrical shape and includes a base 32 welded and fixed to the container body 10. In FIGS. 1 to 3, only the base 32 is illustrated.
  • the holding table 31 sequentially holds the pressure-resistant glass 37 and the ultraviolet/infrared cut glass 35 from the indoor side to the outside (from the bottom to the top), and the lighting device 60 is installed at the upper end, which is the outer end. .
  • the entrance/exit door 50 is installed for the operator to enter and exit the cultivation room 15 and is installed in the hemispherical portion at the end of the container body 10 .
  • the entrance/exit door 50 includes a cylindrical reinforcing frame 51 , an inward opening door 53 that opens and closes the opening of the cylindrical reinforcing frame 51 , and a door tightening member 90 .
  • the cylindrical reinforcing frame 51 is a frame that is fixed to the entrance opening of the container body 10 in order to secure the entrance in the hemispherical portion of the container body 10, and has an oval shape ( It is a cylindrical frame in the shape of a track used in athletics.
  • the inward opening door 53 has a plate-like elliptical shape, and has an inward opening structure that opens toward the indoor side with respect to the tubular reinforcing frame 51 so as to close the end opening on the inner side (inside the room) of the tubular reinforcing frame 51.
  • the inner opening is configured to be openable and closable.
  • the inwardly opening door 53 has a sealing lever 54 for closing the inwardly opening door 53 while pressing it against the inner end of the cylindrical reinforcing frame 51 .
  • the inwardly opening door 53 is employed, and when closed, the inwardly opening door 53 is opened by the pressure inside the cylindrical reinforcing frame. It is pressed against the inner end of 51 . At this time, the inner end of the cylindrical reinforcing frame 51 is pressed against the packing of the inwardly opening door 53, so that the inside of the container body 10 can be reliably sealed.
  • the lighting device 60 includes a metal halide lamp 61, a socket 62, and tempered glass 63, and is installed near each lighting window 30 one by one.
  • the air conditioning system 70 is a system for regulating the gas in the air conditioning room 17 , and the regulated gas is supplied to the cultivation room 15 through the above-described underfloor gas circulation outward path 20 .
  • the air conditioning system 70 includes an air conditioner 71 that adjusts the temperature of the gas, and a gas component/pressure adjuster 80 that adjusts the pressure and component ratio of the gas in the air conditioning room 17 .
  • the air conditioner 71 has a suction port 73 that takes in the gas in the air conditioning room 17 and an air conditioning duct 75 that blows the adjusted gas to the underfloor gas circulation outward path 20 .
  • the tip of the air conditioning duct 75 is connected to the floor plate 19 , and the regulated gas is discharged to the outward underfloor gas circulation path 20 from the air conditioning duct opening 75 a at the tip.
  • the gas component/pressure adjusting device 80 includes a compressed air supply path 81 for supplying compressed air, an oxygen supply path 82 for supplying compressed oxygen, a carbon dioxide supply path 83 for supplying compressed carbon dioxide, and compressed nitrogen.
  • a nitrogen supply channel 84 and an exhaust channel 85 are provided.
  • the compressed air supply path 81, the oxygen supply path 82, the carbon dioxide supply path 83, and the nitrogen supply path 84 are connected to the side wall of the air-conditioned room 17, and these gases can be supplied into the air-conditioned room 17 at a desired component ratio. is.
  • the exhaust path 85 is connected near the ceiling of the cultivation room 15, and appropriately exhausts the gas in the cultivation room 15 according to the supply of gas from the supply paths 81 to 84 to the air conditioning room 17.
  • the gas supply amount of the supply paths 81 to 84 and the exhaust amount of the exhaust path 85 the pressure inside the pressure vessel 10 can be adjusted.
  • the compressed air supply path 81 includes a sluice valve 81a, a hose 81k, a sluice valve 81a, a flow meter 81c, a solenoid valve 81b, a pressure control valve 81d, a dryer 81f, and a compressor 81g, which are installed in order from the container body 10 side. , supplies air of a predetermined pressure into the air conditioning room 17 .
  • the oxygen supply path 82 includes a gate valve 82a, a hose 82k, a gate valve 82a, a flow meter 82c, a solenoid valve 82b, a pressure control valve 82d, and an oxygen cylinder 82e, which are installed in order from the container body 10 side. Oxygen at pressure is supplied into the air conditioning chamber 17 .
  • the carbon dioxide supply path 83 includes a gate valve 83a, a hose 83k, a gate valve 83a, a flow meter 83c, an electromagnetic valve 83b, a pressure control valve 83d, and a carbon dioxide cylinder 83e, which are installed in order from the container body 10 side, Carbon dioxide at a predetermined pressure is supplied into the air conditioning room 17 .
  • the nitrogen supply path 84 includes a gate valve 84a, a hose 84k, a gate valve 84a, a flow meter 84c, an electromagnetic valve 84b, a pressure control valve 84d, and a nitrogen cylinder 84e, which are installed in order from the container body 10 side. Nitrogen under pressure is supplied into the air conditioning chamber 17 .
  • the exhaust path 85 includes a gate valve 85a, a hose 85k, an electromagnetic valve 85b, a flow meter 85c, a sampling buffer 85h, and a check valve 85j, which are installed in order from the container body 10 side. The amount of gas is discharged.
  • a concentration sensor 85i is installed in the sampling buffer 85h, and the gas concentration in the cultivation room 15 can be measured. Carbon dioxide, oxygen, and nitrogen concentration sensors are provided as the concentration sensor 85i.
  • the configuration of the plant-cultivating pressure vessel 1 has been described above. Next, the mode of use of the plant-cultivating pressure vessel 1 will be described.
  • an operator When growing a plant, an operator carries and installs a predetermined plant into the cultivation chamber 15 inside the container body 10 through the entrance door 50 .
  • a plant can be grown under an environment of a predetermined atmospheric pressure, a predetermined temperature, a gaseous atmosphere with a predetermined component concentration, and a predetermined illuminance and irradiation time.
  • the air conditioner 71 When growing plants in an environment with an atmospheric pressure of 2 atmospheres, a temperature of 20°C, and an oxygen concentration of approximately 25%, a carbon dioxide concentration of approximately 1,000 ppm, and a nitrogen concentration of approximately 74.9%, the air conditioner 71 The temperature is set to a predetermined temperature such that the inside of the cultivation room 15 is 20° C., the pressure inside the cultivation room 15 is 2 atm, and the gas component/pressure adjusting device 80 is operated so that the gas component ratio is the above ratio. set.
  • the air conditioner 71 takes in the gas in the air conditioning room 17, adjusts it to a regulated gas of a predetermined temperature, and then supplies the adjusted regulated gas to the underfloor gas circulation outbound path 20 through the air conditioning duct 75. .
  • the cultivation chamber 15 is adjusted to an environment in which the atmospheric pressure is 2 atm, the room temperature is 20° C., and the gas component ratio is a predetermined ratio.
  • the present embodiment has been described above. According to the present embodiment, by circulating the gas between the cultivation room 15 and the air conditioning room 17 via the underfloor gas circulation outward path 20, the inside of the cultivation room 15 can be adjusted to a predetermined level. of atmospheric pressure, a predetermined temperature, and a predetermined concentration of components, and plants can be grown in a desired environment.
  • the outward underfloor gas circulation path 20 is installed under the floor of the cultivation room 15, and the upstream side is connected to the air conditioning room 17, the first underfloor flow path 21, and the flow path partition in which the ventilation holes 26a are formed.
  • a second floor downstream channel 22 is installed next to the first floor downstream channel 21 via 26, and a large number of small holes 19c communicating with the cultivation chamber 15 are formed in the ceiling of the second floor downstream channel 22. is doing.
  • the regulated gas adjusted in the air-conditioning room 17 moves horizontally from the first floor underflow passage 21 through the ventilation holes 26a, and then moves upward from the second floor underflow passage 22 through the small holes 19c. to enter the cultivation room 15 .
  • the regulated gas moves in the horizontal direction and then in the vertical direction to enter the cultivation chamber 15, so that the flow speed of the regulated gas is greatly suppressed, and the cultivation can be performed slowly. You will enter the room 15.
  • the regulated gas blown from the air conditioner 71 does not directly hit the plants in the cultivation room 15, and the gas in the cultivation room 15 is gradually uniformly replaced with the regulated gas and supplied into the cultivation room 15. It is possible to prevent the growth of plants in the cultivation chamber 15 from being adversely affected by the wind pressure of the regulated gas.
  • the openings of the ventilation holes 26a on the upstream side of the gas circulation are made smaller with respect to the ventilation holes 26a installed at predetermined intervals in the depth direction, and the openings of the ventilation holes 26a become smaller toward the downstream side. Since the opening of each damper 29 is adjusted so that the is gradually increased, the flow rate of the adjustment gas passing through all the ventilation holes 26a from the upstream side to the downstream side can be made uniform, and the cultivation chamber 15 The adjustment gas can be uniformly circulated throughout the interior.
  • the embodiments of the present invention have been described above, the embodiments of the present invention are not limited to the above embodiments, and various modifications are possible without departing from the gist of the present invention.
  • the shape, size, material, etc. of the members constituting the plant-growing pressure vessel can be changed as appropriate.
  • only one air-conditioned room is installed, but if the cultivation room is large, a plurality of air-conditioned rooms may be installed.
  • compressed air, oxygen, carbon dioxide and nitrogen are supplied to adjust the adjustment gas, but other gases may be supplied as appropriate.
  • a damper is used as an opening adjusting member for adjusting the opening size of the ventilation hole of the flow path partition. You may use the member of.

Abstract

[Problem] To provide a pressure vessel for growing plants with which it is possible to prevent adverse effects on the growth of plants in the vessel even when adjusting, inter alia, the temperature of a gas in the pressure vessel. [Solution] This pressure vessel 1 for growing plants comprises a vessel body 10 having a cultivation chamber 15, an air-conditioned chamber 17 that is partitioned from the cultivation chamber 15 by a wall 11 and that is for generating an adjustment gas to be circulated and supplied to the cultivation chamber 15, and an underfloor circulation outward path 20 for gradually supplying the adjustment gas under the floor from the air-conditioned chamber 17 to the cultivation chamber 15, the underfloor circulation outward path 20 being provided with a first underfloor flow path 21 of which the upstream side is connected to the air-conditioned chamber 17, and a second underfloor flow path 22 that is partitioned from the first underfloor flow path 21 by a flow path dividing wall 26 and that is installed next to the first underfloor flow path 21, a plurality of ventilation holes 26a being formed in the flow path dividing wall 26 from the upstream side to the downstream side, and the ceiling of the second underfloor flow path 22 having formed therein a large number of small holes 19c that communicate with the cultivation chamber.

Description

植物育成用圧力容器Pressure vessel for growing plants
 本発明は、所定の圧力下で植物を育成するための圧力容器に関する。 The present invention relates to a pressure vessel for growing plants under a predetermined pressure.
 従来から、所定の圧力下で植物を育成するために、圧力容器内で植物を育成することが行われており、例えば、下記特許文献1~3に開示されている。 Conventionally, in order to grow plants under a predetermined pressure, plants have been grown in a pressure vessel. For example, Patent Documents 1 to 3 below disclose this.
特開2010-65763号公報JP 2010-65763 A 特開2013-162747号公報JP 2013-162747 A 国際公開第2013/035816号WO2013/035816
 ここで、圧力容器内で植物を育成する場合に、容器内の室温を所定の温度に調整する場合があるが、一般に、植物は環境の変化に敏感であり、温度調整のためのエアコンディショナー等から吹き出された空気が直接植物に当たり続けると、生育に悪影響を及ぼし、最悪枯れてしまう場合もある。 Here, when plants are grown in a pressure vessel, the room temperature inside the vessel may be adjusted to a predetermined temperature. If the air blown out from the air continues to hit the plants directly, it will adversely affect their growth, and in the worst case, they may even die.
 本発明は、このような課題に鑑みてなされたものであり、圧力容器内の気体の温度等を調整する場合であっても、容器内の植物の生育に悪影響を及ぼすことを防ぐことのできる植物育成用圧力容器を提供することを目的とする。 The present invention has been made in view of such problems, and can prevent adverse effects on the growth of plants in the container even when adjusting the temperature of the gas in the pressure container. An object of the present invention is to provide a pressure vessel for growing plants.
 上記課題を解決するための本発明に係る植物育成用圧力容器は、所定の環境下で植物を育成するための植物育成用圧力容器において、前記植物を育成する空間である栽培室と、前記栽培室と壁により仕切られ、前記栽培室に循環供給する調整気体を生成するための空調室と、前記空調室から前記栽培室へ床下を通して前記調整気体を徐々に供給するための床下循環往路と、を有する容器本体を備え、前記床下循環往路は、上流側が前記空調室と接続された第一床下流路と、前記第一床下流路と流路隔壁により仕切られ、前記第一床下流路の隣に並んで設置された第二床下流路と、を備え、前記流路隔壁には、上流側から下流側にかけて複数の通気穴が形成され、前記第二床下流路の天井には、前記栽培室と連通する小孔が多数形成され、前記調整気体は、前記空調室から前記第一床下流路、前記第二床下流路を順次通って前記栽培室へと供給されることを特徴とする。 A plant-growing pressure vessel according to the present invention for solving the above-mentioned problems is a plant-growing pressure vessel for growing plants under a predetermined environment, comprising: a cultivation chamber, which is a space for growing the plants; an air-conditioned room partitioned by a room and a wall for generating a regulated gas to be circulated and supplied to the cultivation room; an outward underfloor circulation path for gradually supplying the regulated gas from the air-conditioned room to the cultivation room through an underfloor; and the underfloor circulation outward passage is partitioned by a first floor underflow passage whose upstream side is connected to the air conditioning room, and the first floor underflow passage and a passage partition, and the first underfloor passage a second floor downstream channel installed side by side, the channel partition wall is formed with a plurality of ventilation holes from the upstream side to the downstream side, and the ceiling of the second floor downstream channel is provided with the A large number of small holes communicating with a cultivation room are formed, and the regulated gas is supplied from the air conditioning room to the cultivation room through the first underfloor channel and the second underfloor channel in sequence. do.
 本発明に係る植物育成用圧力容器によれば、圧力容器内の気体の温度等を調整する場合であっても、床下に設置した床下気体循環往路により空調室から栽培室へと調整気体を循環させることで、容器内の植物の生育に悪影響を及ぼすことを防ぐことができる。 According to the plant-growing pressure vessel according to the present invention, even when adjusting the temperature of the gas in the pressure vessel, the regulated gas is circulated from the air conditioning room to the cultivation room by the underfloor gas circulation outward path installed under the floor. By doing so, it is possible to prevent adverse effects on the growth of plants in the container.
図1は、本発明の実施形態に係る植物育成用圧力容器の正面図である。FIG. 1 is a front view of a pressure vessel for growing plants according to an embodiment of the present invention. 図2は、本発明の実施形態に係る植物育成用圧力容器の平面図である。FIG. 2 is a plan view of the plant-growing pressure vessel according to the embodiment of the present invention. 図3は、本発明の実施形態に係る植物育成用圧力容器の側面図である。FIG. 3 is a side view of the plant-growing pressure vessel according to the embodiment of the present invention. 図4は、本発明の実施形態に係る植物育成用圧力容器の容器内を示す垂直断面図である。FIG. 4 is a vertical cross-sectional view showing the interior of the plant-growing pressure vessel according to the embodiment of the present invention. 図5は、本発明の実施形態に係る容器本体の一部拡大垂直断面図である。FIG. 5 is a partially enlarged vertical cross-sectional view of the container body according to the embodiment of the present invention. 図6は、本発明の実施形態に係る容器本体の一部拡大水平断面図である。FIG. 6 is a partially enlarged horizontal cross-sectional view of the container body according to the embodiment of the present invention. 図7は、本発明の実施形態に係る容器本体の垂直断面図である。FIG. 7 is a vertical cross-sectional view of a container body according to an embodiment of the invention. 図8は、本発明の実施形態に係る容器本体の垂直断面図である。FIG. 8 is a vertical cross-sectional view of a container body according to an embodiment of the invention. 図9は、本発明の実施形態に係るダンパーの構成を示す図である。FIG. 9 is a diagram showing the configuration of a damper according to an embodiment of the invention. 図10は、本発明の実施形態に係る気体成分・圧力調節装置の模式図である。FIG. 10 is a schematic diagram of a gas component/pressure regulating device according to an embodiment of the present invention.
 以下、図面を参照しながら、本発明の実施形態について説明する。植物育成用圧力容器1は、容器本体10と、採光窓30と、出入口扉50と、照明装置60と、空気調節システム70とを備えている。容器本体10は、鋼鉄製の横置きの円筒形容器であり、左右両端は外側に凸の半球形状である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The plant growing pressure vessel 1 includes a vessel body 10 , a lighting window 30 , an entrance/exit door 50 , a lighting device 60 and an air conditioning system 70 . The container body 10 is a horizontal cylindrical container made of steel, and has a hemispherical shape with both left and right ends convex outward.
 なお、図1~図3においては、採光窓30の一部及び照明装置60を省略して描いている。図5は、容器本体10の空調室17側から出入口扉50側へと向かう奥行き方向に平行な垂直断面図であり、空調室17付近を拡大して示している。図6は、奥行き方向に平行な水平断面図であり、空調室17付近を拡大して示している。 1 to 3, a part of the lighting window 30 and the illumination device 60 are omitted. FIG. 5 is a vertical cross-sectional view parallel to the depth direction from the air-conditioned room 17 side of the container body 10 to the entrance door 50 side, showing an enlarged view of the air-conditioned room 17 and its vicinity. FIG. 6 is a horizontal sectional view parallel to the depth direction, showing an enlarged view of the vicinity of the air conditioning room 17. As shown in FIG.
 図7及び図8は、奥行き方向に垂直な垂直断面図であり、図7は、空調室17内において出入口扉50と反対側を見た断面図であり、図8は、栽培室15内から空調室17を見た断面図である。図9は、ダンパー29の構成を示す図であり、図9(a)は、奥行き方向に垂直な方向に見た図、図9(b)は、奥行き方向に平行な方向に見た図である。 7 and 8 are vertical cross-sectional views perpendicular to the depth direction, FIG. 7 is a cross-sectional view of the side opposite to the door 50 in the air conditioning room 17, and FIG. 3 is a cross-sectional view of an air-conditioned room 17; FIG. 9A and 9B are diagrams showing the structure of the damper 29. FIG. 9A is a diagram viewed in a direction perpendicular to the depth direction, and FIG. 9B is a diagram viewed in a direction parallel to the depth direction. be.
 容器本体10は、内部が垂直の仕切壁11によって仕切られており、植物が栽培される栽培室15と、栽培室15に循環供給する気体を調節する空調室17とを備えており、固定脚10aに支持されて地面に設置される。仕切壁11には、栽培室15から空調室17に出入りするための扉である空調室出入扉12が設置されている。 The container body 10 has an interior partitioned by a vertical partition wall 11, and includes a cultivation chamber 15 in which plants are cultivated, and an air conditioning chamber 17 for adjusting the gas circulating and supplied to the cultivation chamber 15. It is installed on the ground while being supported by 10a. The partition wall 11 is provided with an air-conditioned door 12 for entering and exiting the air-conditioned room 17 from the cultivation room 15 .
 また、容器本体10は、床板19を備え、栽培室15及び空調室17の床下には、床下気体循環往路20を備えている。空調室17で調節された調整気体は、床下気体循環往路20を通って、栽培室15全体へ徐々にゆっくりと均一に供給する。 In addition, the container body 10 is provided with a floor plate 19, and under the floors of the cultivation room 15 and the air conditioning room 17, an underfloor gas circulation outward path 20 is provided. The regulated gas adjusted in the air conditioning room 17 is gradually and uniformly supplied to the entire cultivation room 15 through the underfloor gas circulation outward path 20 .
 仕切壁11の上部は開放されており、栽培室15と空調室17とがつながっている。したがって、床下気体循環往路20から栽培室15内へと送られた調整気体は、仕切壁11の上方を通って空調室17へと戻る。空調室17内に戻った気体は、再度調節された後に、後述するエアコンディショナー71によって再び床下気体循環往路20へと送られ、圧力容器10内を循環する。 The upper part of the partition wall 11 is open, and the cultivation room 15 and the air conditioning room 17 are connected. Therefore, the regulated gas sent into the cultivation room 15 from the outward underfloor gas circulation path 20 returns to the air conditioning room 17 through above the partition wall 11 . The gas that has returned to the air conditioning room 17 is again adjusted and sent to the underfloor gas circulation outbound path 20 again by the air conditioner 71 to be described later, and circulates inside the pressure vessel 10 .
 床下気体循環往路20は、垂直壁である床下隔壁24によって仕切られた、第一床下流路21と、第二床下流路22とを備えている。第一床下流路21と第二床下流路22は、空調室17側から出入口扉50側へと向かう奥行き方向に平行に延在して設置されている。図6や図8の断面図に示すように、第一床下流路21が中央側に位置し、第二床下流路22が第一床下流路21の左右両側に分かれて位置している。 The outward underfloor gas circulation path 20 includes a first underfloor channel 21 and a second underfloor channel 22 partitioned by an underfloor partition wall 24, which is a vertical wall. The first underfloor channel 21 and the second underfloor channel 22 are installed so as to extend in parallel in the depth direction from the air conditioning room 17 side to the doorway door 50 side. As shown in the cross-sectional views of FIGS. 6 and 8 , the first underfloor channel 21 is located on the central side, and the second underfloor channel 22 is located on both left and right sides of the first underfloor channel 21 .
 第一床下流路21は、中央に位置して左右を隔てる中央隔壁25によって左側第一床下流路21aと右側第一床下流路21bとの2つの部屋に分割されている。左側及び右側第一床下流路21a,21bは、栽培室15の床下において、空調室17側の上流側から出入口扉50側の下流側まで奥行き方向全体がつながっており、それぞれ細長い1つの部屋となっている。 The first underfloor channel 21 is divided into two chambers, a left first underfloor channel 21a and a right first underfloor channel 21b, by a central partition 25 that separates the left and right in the center. The left and right first floor downstream channels 21a and 21b are connected in the entire depth direction under the floor of the cultivation room 15 from the upstream side of the air conditioning room 17 side to the downstream side of the entrance door 50 side, and are each a long and narrow room. It's becoming
 第二床下流路22は、第一床下流路21と第二床下流路22との間に位置して奥行き方向に延在する流路隔壁26によって、第一床下流路21と仕切られている。左側第一床下流路21aの外側に左側第二床下流路22a、右側第一床下流路21bの外側に右側第二床下流路22bが設置されている。 The second floor downstream channel 22 is separated from the first floor downstream channel 21 by a channel partition wall 26 positioned between the first floor downstream channel 21 and the second floor downstream channel 22 and extending in the depth direction. there is A left second underfloor channel 22a is provided outside the left first underfloor channel 21a, and a right second underfloor channel 22b is provided outside the right first underfloor channel 21b.
 第二床下流路22は、奥行き方向において、所定の間隔毎に奥行き隔壁27が設置されており、奥行き方向においてさらに小さな部屋に分割されている。奥行き隔壁27によって仕切られた部屋同士はつながっておらず、分割された部屋の間で気体が移動することはできない。 The second floor underflow passage 22 is divided into smaller rooms in the depth direction by installing depth partitions 27 at predetermined intervals in the depth direction. The rooms partitioned by the depth partition 27 are not connected to each other, and gas cannot move between the partitioned rooms.
 流路隔壁26には、第一床下流路21と第二床下流路とを連通する通気穴26aが、奥行き方向において所定の間隔で形成されており、第一床下流路21と第二床下流路22との間で気体が移動可能である。第二床下流路22の分割された1つの部屋あたり、2つの通気穴26aが形成されている。 In the channel partition wall 26, ventilation holes 26a that communicate the first floor downstream channel 21 and the second floor downstream channel are formed at predetermined intervals in the depth direction. Gas can move between the downstream channels 22 . Two ventilation holes 26a are formed for each divided room of the second floor downstream channel 22 .
 各通気穴26aには、ダンパー29が設置されており、通気穴26aの開口の大きさを手動により調整自在である。ダンパー29は、ダンパー回転ハンドル29aと、ダンパー回転軸29bと、円板形状のダンパー本体29cとを備えており、手動でダンパー回転軸29b周りにダンパー本体29cを回動させることで、ダンパー29の開度を調整し、通気穴26aの開口の大きさを調整することができる。 A damper 29 is installed in each ventilation hole 26a, and the size of the opening of the ventilation hole 26a can be manually adjusted. The damper 29 includes a damper rotating handle 29a, a damper rotating shaft 29b, and a disk-shaped damper main body 29c. By adjusting the degree of opening, the size of the opening of the ventilation hole 26a can be adjusted.
 このような構成の床下気体循環往路20において、後述する空気調節システム70の口調ダクト開口75aから送風される調節済みの調整気体は、まず、空調室17側の端部から第一床下流路21内の上流部に入り、内部を出入口扉50側の下流側に向けて流れる。 In the outward underfloor gas circulation path 20 having such a configuration, the regulated gas blown from the tone duct opening 75a of the air conditioning system 70, which will be described later, first flows from the end on the side of the air conditioning room 17 to the first downfloor flow path 21. It enters the upstream part inside and flows toward the downstream side of the entrance door 50 inside.
 このとき、第一床下流路21の外側に位置する流路隔壁26に通気穴26aが形成されているため、下流側に向けて流れる調整気体のうちの一部は、各通気穴26aを通って水平方向に移動し、外側の第二床下流路22内へと入る。 At this time, since ventilation holes 26a are formed in the channel partition wall 26 positioned outside the first floor under-floor channel 21, part of the adjustment gas flowing toward the downstream side passes through each of the ventilation holes 26a. and move horizontally to enter the second underfloor passage 22 on the outside.
 このように、第一床下流路21内を上流側から下流側へ向けて奥行き方向に流れる調整気体は、下流側に進むにつれて、順次通気穴26aを通過し、徐々に第二床下流路22内へと進む。 In this way, the adjustment gas flowing in the depth direction from the upstream side to the downstream side in the first floor downstream channel 21 sequentially passes through the ventilation holes 26a as it advances downstream, and gradually flows into the second floor downstream channel 22. proceed inside.
 ここで、上述したように、通気穴26aにはそれぞれダンパー29が設置されており、各通気穴26aにおける第一床下流路21から第二床下流路22へ流入量を調整することができる。 Here, as described above, the damper 29 is installed in each ventilation hole 26a, and the amount of inflow from the first floor downstream channel 21 to the second floor downstream channel 22 in each ventilation hole 26a can be adjusted.
 本実施形態では、奥行き方向に所定の間隔で設置された通気穴26aに対して、気体循環の上流側の通気穴26aの開口を小さくし、下流側にいくにつれて、通気穴26aの開口が徐々に大きくなるように、各ダンパー29の開度を調節している。 In this embodiment, the opening of the ventilation holes 26a on the upstream side of the gas circulation is made smaller than the ventilation holes 26a installed at predetermined intervals in the depth direction, and the openings of the ventilation holes 26a gradually increase toward the downstream side. The opening of each damper 29 is adjusted so that
 空気調節システム70から調整気体が最初に供給される第一床下流路21では、上流側の入口において気体の流れる速度である流速が大きく、下流側にいくに従って流速は小さくなる。したがって、通気穴26aの開口の大きさが上流側から下流側まで全て同じであると、上流側では多くの量の調整気体が通気穴26aを通過するのに対して、下流側では流速が小さい分、通気穴26aを通過する調整気体の量が少なくなってしまう。 In the first floor downstream channel 21 to which the regulated gas is initially supplied from the air conditioning system 70, the flow velocity, which is the velocity at which the gas flows, is high at the inlet on the upstream side, and the flow velocity decreases toward the downstream side. Therefore, if the opening sizes of the vent holes 26a are the same from the upstream side to the downstream side, a large amount of adjustment gas passes through the vent holes 26a on the upstream side, whereas the flow velocity is small on the downstream side. Accordingly, the amount of adjustment gas passing through the ventilation hole 26a is reduced.
 これでは、奥行き方向に複数の部屋に分割されている第二床下流路22から栽培室15内に流れ込む調整気体の量も上流側が多く、下流側が少なくなってしまい、結果として、栽培室15内の全体に調整気体を均一に供給することができない。 In this case, the amount of regulated gas flowing into the cultivation chamber 15 from the second floor downstream channel 22 divided into a plurality of chambers in the depth direction is large on the upstream side and small on the downstream side. adjustment gas cannot be uniformly supplied to the entire
 これに対して、本実施形態のように、第一床下流路21と第二床下流路22との間の通気穴26aを上流側から下流側にいくに従って開口が大きくなるように調節することで、循環する調整気体の流速が小さくなる下流側においても、上流側と同量の調整気体を第二床下流路22内に供給することができる。 On the other hand, as in the present embodiment, the ventilation hole 26a between the first floor downstream channel 21 and the second floor downstream channel 22 is adjusted so that the opening becomes larger from the upstream side to the downstream side. Therefore, even on the downstream side where the flow velocity of the circulating regulating gas is low, the same amount of regulating gas as on the upstream side can be supplied into the second floor downstream channel 22 .
 栽培室15の床板19は、第一床下流路21の上面を含め、基本的に縞鋼板19aであり、栽培室15等の床上と床下気体循環往路20等の床下は遮断されている。しかし、第二床下流路22の上には、複数の小孔19cが形成されたパンチングメタル板19bが設置されており、この小孔19cにより、第二床下流路22内と栽培室15内とは、気体が移動可能につながっている。 The floor plate 19 of the cultivation room 15 is basically a checkered steel plate 19a, including the upper surface of the first floor downstream channel 21, and the floor of the cultivation room 15, etc. and the underfloor of the underfloor gas circulation outward path 20, etc. are blocked. However, above the second floor downstream channel 22, a punching metal plate 19b having a plurality of small holes 19c formed therein is installed. is movably connected to the gas.
 よって、通気穴26aから第二床下流路22に入った調整気体は、パンチングメタル板19bの小孔19cを通って上昇し、栽培室15内へと下方から流入する。第二床下流路22は、奥行き隔壁27によって、奥行き方向に複数の部屋に分割されており、第二床下流路22の各部屋に入った調整気体は、奥行き方向には移動することなく、各部屋において、小孔19cを通って、栽培室15内へと上方向に流れる。 Therefore, the adjustment gas that has entered the second floor downstream channel 22 through the ventilation holes 26a rises through the small holes 19c of the punching metal plate 19b and flows into the cultivation chamber 15 from below. The second floor downstream channel 22 is divided into a plurality of chambers in the depth direction by the depth partition wall 27, and the adjustment gas entering each chamber of the second floor downstream channel 22 does not move in the depth direction, In each room, it flows upward into the cultivation room 15 through the small holes 19c.
 このように、第二床下流路22を奥行き方向において奥行き隔壁27によって分割することで、上流側から下流側にかけて開口の大きさが大きくなるように調整された通気穴26aを均等に通過した調整空気が第二床下流路22内で奥行き方向に移動して混ざることなく、そのまま栽培室15内全体に調整気体を均一に供給することができる。 In this way, by dividing the second floor underflow passage 22 in the depth direction by the depth partition wall 27, the ventilation holes 26a, which are adjusted so that the opening size increases from the upstream side to the downstream side, are evenly passed through. The adjustment gas can be uniformly supplied to the entire cultivation room 15 as it is without the air moving in the depth direction in the second underfloor channel 22 and being mixed.
 上述したように、仕切壁11の上部は開放されており、第二床下流路22から栽培室15内に調整気体が流入すると、栽培室15内の気体が順次仕切壁11の上方を通って空調室17内へと流れ込む。空調室17に流れた気体は、空調室17内で調整され、調整済みの調整気体が再びエアコンディショナー71の空調ダクト開口75aから床下気体循環往路20へと送り出される。 As described above, the upper portion of the partition wall 11 is open, and when the regulated gas flows into the cultivation chamber 15 from the second floor downstream channel 22, the gas in the cultivation chamber 15 sequentially passes above the partition wall 11. It flows into the air-conditioned room 17 . The gas that has flowed into the air conditioning room 17 is adjusted within the air conditioning room 17 , and the adjusted gas that has been adjusted is sent out again from the air conditioning duct opening 75 a of the air conditioner 71 to the outward underfloor gas circulation path 20 .
 このような容器本体10内の気体の循環は、エアコンディショナー71が備える送風ファンにより空調ダクト75から送り出される調整気体の風圧によって実現される。風圧が弱く、気体が適切に循環しない場合には、別途、送風ファンを設置するようにしても良い。例えば、仕切壁11の上方に、栽培室15側から空調室17へと向けて気体を送る送風ファンを設置することができる。 Such circulation of the gas in the container body 10 is realized by the wind pressure of the regulated gas sent out from the air conditioning duct 75 by the blower fan provided in the air conditioner 71 . If the wind pressure is weak and the gas does not circulate properly, a blower fan may be installed separately. For example, above the partition wall 11, a blower fan for sending gas from the cultivation room 15 side to the air conditioning room 17 can be installed.
 採光窓30は、円形の窓であり、栽培室15内に容器外から光を取り入れるために、容器本体10の上部の所定の位置に複数設置されている。本実施形態では、容器本体10の長手方向に平行に3列、合計16個の採光窓30が規則的に配列されて設置されている。 The lighting windows 30 are circular windows, and a plurality of them are installed at predetermined positions on the top of the container body 10 in order to let light into the cultivation chamber 15 from outside the container. In this embodiment, a total of 16 lighting windows 30 are regularly arranged in three rows parallel to the longitudinal direction of the container body 10 .
 採光窓30は、容器本体10に固定される保持台31と、保持台31に固定保持される紫外線・赤外線カットガラス35及び耐圧ガラス37とを備えている。保持台31は、略円筒形状であり、容器本体10に溶接固定される土台32を備えており、図1~図3においては、土台32のみが描かれている。 The lighting window 30 includes a holding base 31 fixed to the container body 10 , and an ultraviolet/infrared cut glass 35 and a pressure-resistant glass 37 fixed and held on the holding base 31 . The holding base 31 has a substantially cylindrical shape and includes a base 32 welded and fixed to the container body 10. In FIGS. 1 to 3, only the base 32 is illustrated.
 保持台31は、室内側から外側(下方から上方)に向けて、耐圧ガラス37、紫外線・赤外線カットガラス35を順次保持しており、外側端部である上端部に照明装置60が設置される。 The holding table 31 sequentially holds the pressure-resistant glass 37 and the ultraviolet/infrared cut glass 35 from the indoor side to the outside (from the bottom to the top), and the lighting device 60 is installed at the upper end, which is the outer end. .
 出入口扉50は、作業者が栽培室15内に出入りするために設置されており、容器本体10の端部の半球部に設置されている。出入口扉50は、筒型補強枠51と、筒型補強枠51の開口を開閉する開閉扉である内開き扉53と、扉引き締め部材90とを備えている。 The entrance/exit door 50 is installed for the operator to enter and exit the cultivation room 15 and is installed in the hemispherical portion at the end of the container body 10 . The entrance/exit door 50 includes a cylindrical reinforcing frame 51 , an inward opening door 53 that opens and closes the opening of the cylindrical reinforcing frame 51 , and a door tightening member 90 .
 筒型補強枠51は、容器本体10の半球部に出入口を確保するために、容器本体10の出入口用開口に固定設置される枠であり、枠内を人が通ることのできる長円形状(陸上競技のトラック形状)の筒型の枠である。 The cylindrical reinforcing frame 51 is a frame that is fixed to the entrance opening of the container body 10 in order to secure the entrance in the hemispherical portion of the container body 10, and has an oval shape ( It is a cylindrical frame in the shape of a track used in athletics.
 内開き扉53は、板状の長円形状であり、筒型補強枠51の内側(室内側)の端部開口を閉じるように、筒型補強枠51に対して室内側に開く内開き構造で内側開口を開閉自在に構成されている。内開き扉53は、筒型補強枠51の内側端部に内開き扉53を押し付けながら閉じるための密閉レバー54を備えている。 The inward opening door 53 has a plate-like elliptical shape, and has an inward opening structure that opens toward the indoor side with respect to the tubular reinforcing frame 51 so as to close the end opening on the inner side (inside the room) of the tubular reinforcing frame 51. The inner opening is configured to be openable and closable. The inwardly opening door 53 has a sealing lever 54 for closing the inwardly opening door 53 while pressing it against the inner end of the cylindrical reinforcing frame 51 .
 本実施形態では、植物の栽培時に容器本体10内が大気圧よりも高圧状態となるため、内開き扉53を採用することで、閉じた状態では室内圧力により内開き扉53が筒型補強枠51の内側端部に押し付けられる。このとき、筒型補強枠51の内側端部が内開き扉53のパッキンに押し付けられるので、容器本体10内を確実に密封することができる。 In this embodiment, since the pressure inside the container body 10 is higher than the atmospheric pressure during plant cultivation, the inwardly opening door 53 is employed, and when closed, the inwardly opening door 53 is opened by the pressure inside the cylindrical reinforcing frame. It is pressed against the inner end of 51 . At this time, the inner end of the cylindrical reinforcing frame 51 is pressed against the packing of the inwardly opening door 53, so that the inside of the container body 10 can be reliably sealed.
 照明装置60は、メタルハライドランプ61と、ソケット62と、強化ガラス63とを備えており、各採光窓30の傍に1つずつ設置されている。 The lighting device 60 includes a metal halide lamp 61, a socket 62, and tempered glass 63, and is installed near each lighting window 30 one by one.
 空気調節システム70は、空調室17内の気体の調節を行うシステムであり、調節された気体が上述した床下気体循環往路20を通って、栽培室15へと供給される。空気調節システム70は、気体の温度を調節するエアコンディショナー71と、空調室17内の気体の圧力及び成分比を調節する気体成分・圧力調節装置80と、を備えている。 The air conditioning system 70 is a system for regulating the gas in the air conditioning room 17 , and the regulated gas is supplied to the cultivation room 15 through the above-described underfloor gas circulation outward path 20 . The air conditioning system 70 includes an air conditioner 71 that adjusts the temperature of the gas, and a gas component/pressure adjuster 80 that adjusts the pressure and component ratio of the gas in the air conditioning room 17 .
 エアコンディショナー71は、空調室17内の気体を取り込む吸込口73と、調節した気体を床下気体循環往路20へと送風するための空調ダクト75とを備えている。空調ダクト75の先端は床板19に接続されており、先端の空調ダクト開口75aから調整気体が床下気体循環往路20へと排出される。 The air conditioner 71 has a suction port 73 that takes in the gas in the air conditioning room 17 and an air conditioning duct 75 that blows the adjusted gas to the underfloor gas circulation outward path 20 . The tip of the air conditioning duct 75 is connected to the floor plate 19 , and the regulated gas is discharged to the outward underfloor gas circulation path 20 from the air conditioning duct opening 75 a at the tip.
 気体成分・圧力調節装置80は、圧縮空気を供給する圧縮空気供給路81と、圧縮酸素を供給する酸素供給路82と、圧縮二酸化炭素を供給する二酸化炭素供給路83と、圧縮窒素を供給する窒素供給路84と、排気路85とを備えている。 The gas component/pressure adjusting device 80 includes a compressed air supply path 81 for supplying compressed air, an oxygen supply path 82 for supplying compressed oxygen, a carbon dioxide supply path 83 for supplying compressed carbon dioxide, and compressed nitrogen. A nitrogen supply channel 84 and an exhaust channel 85 are provided.
 圧縮空気供給路81、酸素供給路82、二酸化炭素供給路83及び窒素供給路84は、空調室17の側壁に接続されており、これらの気体を所望の成分比で空調室17内に供給可能である。 The compressed air supply path 81, the oxygen supply path 82, the carbon dioxide supply path 83, and the nitrogen supply path 84 are connected to the side wall of the air-conditioned room 17, and these gases can be supplied into the air-conditioned room 17 at a desired component ratio. is.
 排気路85は、栽培室15の天井付近に接続されており、上記供給路81~84から空調室17内への気体の供給に応じて、適宜、栽培室15内の気体を排気する。供給路81~84の気体の供給量及び排気路85の排気量を調整することで、圧力容器10内の気圧を調整することができる。 The exhaust path 85 is connected near the ceiling of the cultivation room 15, and appropriately exhausts the gas in the cultivation room 15 according to the supply of gas from the supply paths 81 to 84 to the air conditioning room 17. By adjusting the gas supply amount of the supply paths 81 to 84 and the exhaust amount of the exhaust path 85, the pressure inside the pressure vessel 10 can be adjusted.
 圧縮空気供給路81は、容器本体10側から順に設置された、仕切弁81a、ホース81k、仕切弁81a、流量計81c、電磁弁81b、圧力調整弁81d、ドライヤー81f、コンプレッサー81gを備えており、所定の圧力の空気を空調室17内に供給する。 The compressed air supply path 81 includes a sluice valve 81a, a hose 81k, a sluice valve 81a, a flow meter 81c, a solenoid valve 81b, a pressure control valve 81d, a dryer 81f, and a compressor 81g, which are installed in order from the container body 10 side. , supplies air of a predetermined pressure into the air conditioning room 17 .
 酸素供給路82は、容器本体10側から順に設置された、仕切弁82a、ホース82k、仕切弁82a、流量計82c、電磁弁82b、圧力調整弁82d、酸素ボンベ82eを備えており、所定の圧力の酸素を空調室17内に供給する。 The oxygen supply path 82 includes a gate valve 82a, a hose 82k, a gate valve 82a, a flow meter 82c, a solenoid valve 82b, a pressure control valve 82d, and an oxygen cylinder 82e, which are installed in order from the container body 10 side. Oxygen at pressure is supplied into the air conditioning chamber 17 .
 二酸化炭素供給路83は、容器本体10側から順に設置された、仕切弁83a、ホース83k、仕切弁83a、流量計83c、電磁弁83b、圧力調整弁83d、二酸化炭素ボンベ83eを備えており、所定の圧力の二酸化炭素を空調室17内に供給する。 The carbon dioxide supply path 83 includes a gate valve 83a, a hose 83k, a gate valve 83a, a flow meter 83c, an electromagnetic valve 83b, a pressure control valve 83d, and a carbon dioxide cylinder 83e, which are installed in order from the container body 10 side, Carbon dioxide at a predetermined pressure is supplied into the air conditioning room 17 .
 窒素供給路84は、容器本体10側から順に設置された、仕切弁84a、ホース84k、仕切弁84a、流量計84c、電磁弁84b、圧力調整弁84d、窒素ボンベ84eを備えており、所定の圧力の窒素を空調室17内に供給する。 The nitrogen supply path 84 includes a gate valve 84a, a hose 84k, a gate valve 84a, a flow meter 84c, an electromagnetic valve 84b, a pressure control valve 84d, and a nitrogen cylinder 84e, which are installed in order from the container body 10 side. Nitrogen under pressure is supplied into the air conditioning chamber 17 .
 排気路85は、容器本体10側から順に設置された、仕切弁85a、ホース85k、電磁弁85b、流量計85c、サンプリング用バッファー85h、逆止弁85jを備えており、栽培室15内から所定の量の気体を排出する。 The exhaust path 85 includes a gate valve 85a, a hose 85k, an electromagnetic valve 85b, a flow meter 85c, a sampling buffer 85h, and a check valve 85j, which are installed in order from the container body 10 side. The amount of gas is discharged.
 サンプリング用バッファー85hには、濃度センサー85iが設置されており、栽培室15内の気体の濃度を計測することができる。濃度センサー85iとしては、二酸化炭素、酸素、窒素の各濃度センサーを備えている。 A concentration sensor 85i is installed in the sampling buffer 85h, and the gas concentration in the cultivation room 15 can be measured. Carbon dioxide, oxygen, and nitrogen concentration sensors are provided as the concentration sensor 85i.
 以上、植物育成用圧力容器1の構成について説明したが、続いて、植物育成用圧力容器1の使用態様について説明する。植物の育成にあたっては、作業者が出入口扉50を通って、所定の植物を容器本体10内の栽培室15内に運び込んで設置する。 The configuration of the plant-cultivating pressure vessel 1 has been described above. Next, the mode of use of the plant-cultivating pressure vessel 1 will be described. When growing a plant, an operator carries and installs a predetermined plant into the cultivation chamber 15 inside the container body 10 through the entrance door 50 .
 育成植物の設置作業後、作業者が容器本体10の外に出て、出入口扉50を閉めて容器本体10内を密封した後、照明装置60及び空気調節システム70の駆動制御を行うことで、所定の気圧、所定の温度、所定の成分濃度の気体雰囲気、所定の照度及び照射時間の環境下で植物の育成を行うことができる。 After the installation work of the growing plant, the worker goes out of the container body 10, closes the entrance door 50 to seal the inside of the container body 10, and then controls the driving of the lighting device 60 and the air conditioning system 70. A plant can be grown under an environment of a predetermined atmospheric pressure, a predetermined temperature, a gaseous atmosphere with a predetermined component concentration, and a predetermined illuminance and irradiation time.
 例えば、気圧が2気圧、温度が20℃、成分比が酸素濃度約25%、二酸化炭素濃度約1,000ppm、窒素濃度約74.9%の環境下で植物の生育を行う場合には、エアコンディショナー71の温度設定を栽培室15内が20℃となるような所定の温度に設定すると共に、栽培室15内の気圧が2気圧、気体の成分比が上記比率になるように気体成分・圧力調節装置80を設定する。 For example, when growing plants in an environment with an atmospheric pressure of 2 atmospheres, a temperature of 20°C, and an oxygen concentration of approximately 25%, a carbon dioxide concentration of approximately 1,000 ppm, and a nitrogen concentration of approximately 74.9%, the air conditioner 71 The temperature is set to a predetermined temperature such that the inside of the cultivation room 15 is 20° C., the pressure inside the cultivation room 15 is 2 atm, and the gas component/pressure adjusting device 80 is operated so that the gas component ratio is the above ratio. set.
 そうすると、気体成分・圧力調節装置80の駆動により、圧縮空気供給路81、酸素供給路82、二酸化炭素供給路83及び窒素供給路84から所定の量の圧縮空気、圧縮酸素、圧縮二酸化炭素及び圧縮窒素が空調室17内に供給されると共に、排気路85から所定の量の栽培室15の気体が容器本体10外に排出される。 Then, by driving the gas component/pressure adjusting device 80, a predetermined amount of compressed air, compressed oxygen, compressed carbon dioxide, and compressed Nitrogen is supplied into the air conditioning room 17 and a predetermined amount of gas in the cultivation room 15 is discharged from the container body 10 through the exhaust path 85 .
 平行して、エアコンディショナー71が、空調室17内の気体を取り入れて、所定の温度の調整気体に調節してから、空調ダクト75を通して、調節済みの調整気体を床下気体循環往路20に供給する。所定の時間経過すると、栽培室15は、気圧が2気圧、室温が20℃、気体の成分比が所定の比率の環境に調節される。 In parallel, the air conditioner 71 takes in the gas in the air conditioning room 17, adjusts it to a regulated gas of a predetermined temperature, and then supplies the adjusted regulated gas to the underfloor gas circulation outbound path 20 through the air conditioning duct 75. . After a predetermined period of time has elapsed, the cultivation chamber 15 is adjusted to an environment in which the atmospheric pressure is 2 atm, the room temperature is 20° C., and the gas component ratio is a predetermined ratio.
 以上、本実施形態について説明したが、本実施形態によれば、床下気体循環往路20を介して、栽培室15と空調室17との間で気体を循環させることで、栽培室15内を所定の気圧、所定の温度、所定の成分濃度の気体雰囲気にすることができ、所望の環境下で植物の育成を行うことができる。 The present embodiment has been described above. According to the present embodiment, by circulating the gas between the cultivation room 15 and the air conditioning room 17 via the underfloor gas circulation outward path 20, the inside of the cultivation room 15 can be adjusted to a predetermined level. of atmospheric pressure, a predetermined temperature, and a predetermined concentration of components, and plants can be grown in a desired environment.
 また、本実施形態では、床下気体循環往路20を栽培室15の床下に設置すると共に、上流側が空調室17と接続された第一床下流路21と、通気穴26aが形成された流路隔壁26を介して第一床下流路21の隣に隣接設置された第二床下流路22とを設置し、第二床下流路22の天井に栽培室15と連通する多数の小孔19cを形成している。 In addition, in the present embodiment, the outward underfloor gas circulation path 20 is installed under the floor of the cultivation room 15, and the upstream side is connected to the air conditioning room 17, the first underfloor flow path 21, and the flow path partition in which the ventilation holes 26a are formed. A second floor downstream channel 22 is installed next to the first floor downstream channel 21 via 26, and a large number of small holes 19c communicating with the cultivation chamber 15 are formed in the ceiling of the second floor downstream channel 22. is doing.
 このため、空調室17において調節された調整気体は、第一床下流路21から通気穴26aを通って水平方向に移動し、その後、第二床下流路22から小孔19cを通って上方向に移動して栽培室15内に入る。 Therefore, the regulated gas adjusted in the air-conditioning room 17 moves horizontally from the first floor underflow passage 21 through the ventilation holes 26a, and then moves upward from the second floor underflow passage 22 through the small holes 19c. to enter the cultivation room 15 .
 このように、床下気体循環往路20において、調整気体が水平方向に移動してから垂直方向に移動して栽培室15内に入ることで、調整気体の流れる速度が大幅に抑えられ、ゆっくりと栽培室15内に入ることになる。 In this way, in the outward underfloor gas circulation path 20, the regulated gas moves in the horizontal direction and then in the vertical direction to enter the cultivation chamber 15, so that the flow speed of the regulated gas is greatly suppressed, and the cultivation can be performed slowly. You will enter the room 15.
 すなわち、エアコンディショナー71から送風された調整気体が栽培室15内の植物に直接当たることもなく、徐々に栽培室15内の気体が調整気体に均一に置き換えられ、栽培室15内に供給される調整気体の風圧により栽培室15内の植物の生育に悪影響を及ぼすことを防ぐことができる。 That is, the regulated gas blown from the air conditioner 71 does not directly hit the plants in the cultivation room 15, and the gas in the cultivation room 15 is gradually uniformly replaced with the regulated gas and supplied into the cultivation room 15. It is possible to prevent the growth of plants in the cultivation chamber 15 from being adversely affected by the wind pressure of the regulated gas.
 また、本実施形態では、奥行き方向に所定の間隔で設置された通気穴26aに対して、気体循環の上流側の通気穴26aの開口を小さくし、下流側にいくにつれて、通気穴26aの開口が徐々に大きくなるように、各ダンパー29の開度を調節しているため、上流側から下流側にかけて全ての通気穴26aを通過する調整気体の流量を均等にすることができ、栽培室15内全体に均一に調整気体を循環させることができる。 Further, in this embodiment, the openings of the ventilation holes 26a on the upstream side of the gas circulation are made smaller with respect to the ventilation holes 26a installed at predetermined intervals in the depth direction, and the openings of the ventilation holes 26a become smaller toward the downstream side. Since the opening of each damper 29 is adjusted so that the is gradually increased, the flow rate of the adjustment gas passing through all the ventilation holes 26a from the upstream side to the downstream side can be made uniform, and the cultivation chamber 15 The adjustment gas can be uniformly circulated throughout the interior.
 以上、本発明の実施形態について説明したが、本発明の実施の形態は、上記実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲内で種々の変形が可能である。例えば、植物育成用圧力容器を構成する部材の形状やサイズ、素材等は適宜変更可能である。 Although the embodiments of the present invention have been described above, the embodiments of the present invention are not limited to the above embodiments, and various modifications are possible without departing from the gist of the present invention. For example, the shape, size, material, etc. of the members constituting the plant-growing pressure vessel can be changed as appropriate.
 また、上記実施形態では、空調室を1つだけ設置しているが、栽培室が大きい場合などには、空調室を複数設置するようにしても良い。また、上記実施形態では、調整気体の調節にあたって、圧縮空気、酸素、二酸化炭素及び窒素を供給するようにしているが、適宜他の気体等を供給するようにしても良い。 Also, in the above embodiment, only one air-conditioned room is installed, but if the cultivation room is large, a plurality of air-conditioned rooms may be installed. In addition, in the above embodiment, compressed air, oxygen, carbon dioxide and nitrogen are supplied to adjust the adjustment gas, but other gases may be supplied as appropriate.
 また、上記実施形態では、流路隔壁の通気穴の開口の大きさを調整する開口調整部材として、ダンパーを使用しているが、開口の大きさを調整できる部材であれば、シャッター等、他の部材を用いても良い。 In the above embodiment, a damper is used as an opening adjusting member for adjusting the opening size of the ventilation hole of the flow path partition. You may use the member of.
1   植物育成用圧力容器
10  容器本体
10a 固定脚
11  仕切壁
12  空調室出入扉
15  栽培室
17  空調室
19  床板
19a 縞鋼板
19b パンチングメタル板
19c 小孔
20  床下気体循環往路
21  第一床下流路
22  第二床下流路
24  床下隔壁
25  中央隔壁
26  流路隔壁
26a 通気穴
27  奥行き隔壁
29  ダンパー
29a ダンパー回転ハンドル
29b ダンパー回転軸
29c ダンパー本体
30  採光窓
31  保持台
32  土台
35  紫外線・赤外線カットガラス
37  耐圧ガラス
50  出入口扉
51  筒型補強枠
53  内開き扉
54  密閉レバー
90  扉引き締め部材
60  照明装置
61  メタルハライドランプ
62  ソケット
63  強化ガラス
70  空気調節システム
71  エアコンディショナー
73  吸込口
75  空調ダクト
75a 空調ダクト開口
80  気体成分・圧力調節装置
81  圧縮空気供給路
81a 仕切弁
81b 電磁弁
81c 流量計
81d 圧力調整弁
81f ドライヤー
81g コンプレッサー
81k ホース
82  酸素供給路
82a 仕切弁
82b 電磁弁
82c 流量計
82d 圧力調整弁
82e 酸素ボンベ
82k ホース
83  二酸化炭素供給路
83a 仕切弁
83b 電磁弁
83c 流量計
83d 圧力調整弁
83e 二酸化炭素ボンベ
83k ホース
84  窒素供給路
84a 仕切弁
84b 電磁弁
84c 流量計
84d 圧力調整弁
84e 窒素ボンベ
84k ホース
85  排気路
85a 仕切弁
85b 電磁弁
85c 流量計
85h サンプリング用バッファー
85i 濃度センサー
85j 逆止弁
85k ホース
1 Plant Growing Pressure Vessel 10 Vessel Main Body 10a Fixed Leg 11 Partition Wall 12 Air Conditioning Room Access Door 15 Cultivation Room 17 Air Conditioning Room 19 Floor Plate 19a Striped Steel Plate 19b Perforated Metal Plate 19c Small Hole 20 Outward Underfloor Gas Circulation Path 21 First Underfloor Flow Path 22 Second floor underfloor channel 24 Underfloor partition 25 Central partition 26 Channel partition 26a Ventilation hole 27 Depth partition 29 Damper 29a Damper rotation handle 29b Damper rotation shaft 29c Damper body 30 Lighting window 31 Holding base 32 Base 35 Ultraviolet/infrared cut glass 37 Pressure resistance Glass 50 Entrance/exit door 51 Cylindrical reinforcing frame 53 Inward opening door 54 Sealing lever 90 Door tightening member 60 Lighting device 61 Metal halide lamp 62 Socket 63 Tempered glass 70 Air conditioning system 71 Air conditioner 73 Suction port 75 Air conditioning duct 75a Air conditioning duct opening 80 Gas Component/pressure regulator 81 Compressed air supply path 81a Gate valve 81b Solenoid valve 81c Flow meter 81d Pressure adjustment valve 81f Dryer 81g Compressor 81k Hose 82 Oxygen supply path 82a Gate valve 82b Electromagnetic valve 82c Flow meter 82d Pressure adjustment valve 82e Oxygen cylinder 82k Hose 83 carbon dioxide supply line 83a gate valve 83b solenoid valve 83c flow meter 83d pressure control valve 83e carbon dioxide cylinder 83k hose 84 nitrogen supply line 84a gate valve 84b electromagnetic valve 84c flow meter 84d pressure control valve 84e nitrogen cylinder 84k hose 85 exhaust line 85a gate valve 85b solenoid valve 85c flow meter 85h sampling buffer 85i concentration sensor 85j check valve 85k hose

Claims (4)

  1.  所定の環境下で植物を育成するための植物育成用圧力容器において、
     前記植物を育成する空間である栽培室と、前記栽培室と壁により仕切られ、前記栽培室に循環供給する調整気体を生成するための空調室と、前記空調室から前記栽培室へ床下を通して前記調整気体を徐々に供給するための床下循環往路と、を有する容器本体を備え、
     前記床下循環往路は、
     上流側が前記空調室と接続された第一床下流路と、
     前記第一床下流路と流路隔壁により仕切られ、前記第一床下流路の隣に並んで設置された第二床下流路と、を備え、
     前記流路隔壁には、上流側から下流側にかけて複数の通気穴が形成され、
     前記第二床下流路の天井には、前記栽培室と連通する小孔が多数形成され、
     前記調整気体は、前記空調室から前記第一床下流路、前記第二床下流路を順次通って前記栽培室へと供給されることを特徴とする植物育成用圧力容器。
    In a plant-growing pressure vessel for growing plants under a predetermined environment,
    a cultivation room that is a space for growing the plants; an air-conditioned room that is partitioned from the cultivation room by a wall and that generates a regulated gas that is circulated and supplied to the cultivation room; a container body having an underfloor circulation outward path for gradually supplying the regulated gas,
    The underfloor circulation outward path is
    a first floor downstream channel whose upstream side is connected to the air conditioning room;
    a second floor underflow channel partitioned by the first floor underflow channel and a flow channel partition and installed side by side with the first floor underflow channel;
    A plurality of vent holes are formed in the flow path partition wall from the upstream side to the downstream side,
    A large number of small holes communicating with the cultivation room are formed in the ceiling of the second floor downstream channel,
    The plant-growing pressure vessel, wherein the regulated gas is supplied from the air-conditioning chamber to the cultivation chamber through the first under-floor passage and the second under-floor passage in sequence.
  2.  前記床下循環往路は、前記流路隔壁に形成された前記通気穴の開口の大きさを調整する開口調整部材をさらに備えることを特徴とする請求項1記載の植物育成用圧力容器。 The plant-growing pressure vessel according to claim 1, wherein the underfloor circulation forward path further comprises an opening adjusting member for adjusting the size of the opening of the ventilation hole formed in the flow path partition wall.
  3.  前記第二床下流路は、上流側から下流側にかけて流路隔壁が順次設置され、複数の部屋に分割されていることを特徴とする請求項2記載の植物育成用圧力容器。 The plant-growing pressure vessel according to claim 2, wherein the second floor downstream channel is divided into a plurality of chambers by sequentially installing channel partition walls from the upstream side to the downstream side.
  4.  前記空調室に圧縮空気を供給する圧縮空気供給路と、前記空調室に酸素を供給する酸素供給路と、前記空調室に二酸化炭素を供給する二酸化炭素供給路と、前記空調室に窒素を供給する窒素供給路とを有し、前記空調室内の気体を所定の圧力及び所定の成分比の気体に調整する気体成分・圧力調節装置をさらに備えることを特徴とする請求項1乃至3何れか1項記載の植物育成用圧力容器。 A compressed air supply path that supplies compressed air to the air-conditioned room, an oxygen supply path that supplies oxygen to the air-conditioned room, a carbon dioxide supply path that supplies carbon dioxide to the air-conditioned room, and a nitrogen supply to the air-conditioned room. 4. A gas component/pressure adjusting device for adjusting the gas in the air conditioning chamber to a predetermined pressure and a predetermined component ratio, further comprising a nitrogen supply passage for A pressure vessel for growing plants according to the above item.
PCT/JP2022/011449 2021-03-26 2022-03-14 Pressure vessel for growing plants WO2022202458A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-052550 2021-03-26
JP2021052550A JP2022150104A (en) 2021-03-26 2021-03-26 Pressure vessel for plant growth

Publications (1)

Publication Number Publication Date
WO2022202458A1 true WO2022202458A1 (en) 2022-09-29

Family

ID=83397159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011449 WO2022202458A1 (en) 2021-03-26 2022-03-14 Pressure vessel for growing plants

Country Status (2)

Country Link
JP (1) JP2022150104A (en)
WO (1) WO2022202458A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06217652A (en) * 1993-01-29 1994-08-09 Tsuguo Nagata Plant-culturing apparatus
US20040148855A1 (en) * 2001-06-19 2004-08-05 Jean Caron Plant-growing system having an aerator
JP2013162747A (en) * 2010-06-04 2013-08-22 Sharp Corp Method for cultivating plant and plant cultivation device
JP2020112341A (en) * 2019-01-16 2020-07-27 ▲い▼光農業科技股▲ふん▼有限公司 Temperature and humidity-controllable air flow system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06217652A (en) * 1993-01-29 1994-08-09 Tsuguo Nagata Plant-culturing apparatus
US20040148855A1 (en) * 2001-06-19 2004-08-05 Jean Caron Plant-growing system having an aerator
JP2013162747A (en) * 2010-06-04 2013-08-22 Sharp Corp Method for cultivating plant and plant cultivation device
JP2020112341A (en) * 2019-01-16 2020-07-27 ▲い▼光農業科技股▲ふん▼有限公司 Temperature and humidity-controllable air flow system

Also Published As

Publication number Publication date
JP2022150104A (en) 2022-10-07

Similar Documents

Publication Publication Date Title
WO2018020935A1 (en) Hydroponic apparatus and hydroponic method
CN107529732B (en) Cultivation production equipment
KR200424775Y1 (en) Automatic Ventilating Device of Mushroom Growing House
KR101889217B1 (en) Air conditioning device for plant cultivation
JP2009156525A (en) Device with constant temperature and humidity
JP2001231376A (en) Nursery apparatus and nursery method
JP3026253B2 (en) Artificial environment equipment
JP6526976B2 (en) Multistage cultivation device
JP2014042483A (en) Air supply device for greenhouse and air supply method for greenhouse
KR101633751B1 (en) System for controling environment of artificial climate room for plant growth
JP5989413B2 (en) Plant cultivation apparatus and plant cultivation method
KR102006814B1 (en) mushroom cultivating house
JP2019092421A (en) Plant cultivation system
US20180288954A1 (en) Method of growing plants and system therefore
WO2021073503A1 (en) Atmosphere control system for indoor gardening device
WO2022202458A1 (en) Pressure vessel for growing plants
JPH09276715A (en) Constant temperature device with adjustable temperature distribution
JPH01285185A (en) Controlling equipment of environment
KR20120052836A (en) Ventilation apparatus of a mushroom growing house
JP2002119149A (en) Ambience conditioning system for plant
KR200475073Y1 (en) Thermo-hygristat for Mushroom Culture
JP2015204848A (en) Plant cultivation apparatus
KR20190132786A (en) Plant cultivating apparatus
JP2022135520A (en) Pressure container for plant growth
KR102209112B1 (en) Mushroom cultivation Apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775249

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775249

Country of ref document: EP

Kind code of ref document: A1