WO2022202316A1 - Method for ejecting or applying fluid, and method for producing fuel cell or storage battery - Google Patents

Method for ejecting or applying fluid, and method for producing fuel cell or storage battery Download PDF

Info

Publication number
WO2022202316A1
WO2022202316A1 PCT/JP2022/010230 JP2022010230W WO2022202316A1 WO 2022202316 A1 WO2022202316 A1 WO 2022202316A1 JP 2022010230 W JP2022010230 W JP 2022010230W WO 2022202316 A1 WO2022202316 A1 WO 2022202316A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
fluid
liquid
containers
weight
Prior art date
Application number
PCT/JP2022/010230
Other languages
French (fr)
Japanese (ja)
Inventor
正文 松永
Original Assignee
エムテックスマート株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エムテックスマート株式会社 filed Critical エムテックスマート株式会社
Publication of WO2022202316A1 publication Critical patent/WO2022202316A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture

Definitions

  • the present invention relates to the discharge and application of fluids such as liquid adhesives and coating agents, and in particular to the application and application of liquids and heated melts whose viscosity is lowered by heating, and slurry whose viscosity changes rapidly with changes in shear force.
  • fluids such as liquid adhesives and coating agents
  • it can be pressurized with a compressed gas such as dehumidified compressed air or an inert gas such as nitrogen gas or argon gas, and furthermore, it can be mixed with a slurry to form a foam, so the present inventor can apply it to all solid-state battery sulfides. can be suitably applied to a slurry containing electrolyte particles of .
  • An object of the present invention is to make the ejection weight or coating weight of liquid fluid such as slurry constant per unit time.
  • Period time does not limit the required time unit such as milliseconds, seconds or minutes.
  • the discharge weight changes even if the pressure is kept constant. Even if a positive displacement means, such as an electric spur gear pump or an electric plunger pump, was used, the coating film structure and surface state changed when the viscosity changed. Also, when the viscosity is low, the liquid fluid leaks from the sliding portion of the pump, making it difficult to secure a certain amount of volume. In particular, when the amount of the binder is small, the hard solid particles wear the gears and the like.
  • the basis for discharging or applying all liquid fluids is to stabilize the discharge or application weight by making the viscosity behavior of the liquid fluid as constant as possible.
  • application of a slurry or dispersion containing large and small solid particles, short fibers, etc. affects the performance of the coating film.
  • the stable viscosity and stable dispersion state of the liquid material should be maintained at least during ejection or coating.
  • the effect can be further exhibited by combining with a method of indirectly measuring the coating amount by measuring the ejection weight at a desired timing, which is owned by the present inventor.
  • the specific gravity of the platinum fine particles in the electrode catalyst slurry of the fuel cell is 20 or more, the specific gravity of the carbon particles is about 2, the electrolyte solution of Nafion is about 1, and the alcoholic solvent is 1 or less.
  • porous carbon microparticles of several tens of nanometers carrying platinum nanoparticles are a typical slurry in which aggregates tend to aggregate and precipitate.
  • the solvent of the electrode slurry for fuel cells, etc. is a water-rich slurry, even if the static viscosity is high, the dynamic viscosity with the addition of a shearing force drops dramatically, and the discharge amount using a pressure-type moving means change was drastic.
  • the present inventors made it possible to adjust the minimum unit of the pressurization time of the two syringes in units of 10 milliseconds or less, or even 1 millisecond or less. Then, it was confirmed that there was no change in the liquid surface level or circulation by running it for at least 10 minutes in advance with a solvent such as water.
  • the accuracy of the flow path should be kept within 5%, if possible, 1% or less, in order to stabilize the discharge weight. should be improved.
  • Roll coating, screen printing, etc. also required a large amount of electrode slurry at one time. It was necessary to make the coating performance constant as well as the coating weight stability per hit. Therefore, it was necessary to stir a large amount of slurry in a large container or circulate the flow path with a pump or the like to sufficiently disperse the slurry and stabilize the viscosity before use. However, there was also the problem of a large amount of slurry being discarded after the work was completed. A recycling system has been established for precious metals such as platinum catalyst slurries and residues, but the recycling costs are high, and in any case, this leads to a large amount of waste in terms of cost.
  • Electrode formation of fuel cells Especially at the cathode electrode, hydrogen ions and oxygen ions are brought into contact efficiently, and for efficient discharge of the generated water, it is important to construct micropores, mesopores, and macropores as desired.
  • the electrode performance is high by forming with a pulsed spray with an impact.
  • attempts have been made to use a foaming agent to leave bubbles on the electrode film, but the foaming agent has an adverse effect on performance, and the electrode structure cannot be formed as intended. rice field.
  • the present invention has been devised in view of the above-mentioned problems, and is particularly suitable for fluids such as heated solutions, heated melts, slurries, etc., which are affected by changes in the discharge amount due to changes in viscosity.
  • fluids such as heated solutions, heated melts, slurries, etc.
  • the sedimentation of slurry for electrodes such as batteries and capacitors is prevented. It is to stabilize the discharge weight and application weight and distribution of the slurry discharged by the discharge device by keeping the viscosity as constant as possible so as to approach the target value in a short time.
  • the present invention manages the weight per unit time of the liquid fluid moving between at least two containers, or the time required per unit weight, and discharges it when those values are stabilized. Or to start the application work. Furthermore, it is to shorten those times as much as possible.
  • a further object of the present invention is to provide a fluid ejection or application method that suitably disperses fluids such as slurries and dispersions that tend to settle or that have problems in dispersion, and stabilize the ejection amount and application amount.
  • the structure of electrodes, etc. where battery materials, especially fuel cell electrode slurries using expensive materials such as platinum catalysts, capacitor electrode slurries, electrode slurries for secondary batteries and all-solid-state batteries, electrolyte slurries, etc. are desired.
  • the object is to provide a method of manufacturing a fuel cell or a method of manufacturing a storage battery by forming a film thickness.
  • the present invention alternately pressurizes the liquid fluid in at least two containers or constantly pressurizes the liquid fluid in one container to move or circulate the fluid flow path communicating between the at least two containers,
  • a method for ejecting or applying a fluid comprising a step of ejecting or applying the fluid to an object using an apparatus or an application apparatus.
  • the timing of movement switching or circulation of the liquid fluid of the present invention is controlled by measuring the weight of at least the upper and lower limits of the fluid in the container or the total weight of the entire container containing the fluid, and the unit of the fluid in at least one of the containers
  • a method for ejecting or applying a fluid characterized in that ejection or application of the fluid is started when the movement time per weight or the weight per unit movement time reaches a set value range.
  • the liquid fluid in said at least two containers of the present invention is at least one of slurry, heated liquid, and heated melt, and the fluid in said at least one container is directly pressurized or indirectly pressurized by compressed gas.
  • a balance feed method of liquid fluid and compressed gas by pressure is used, the weight of the fluid moved per unit time or the time of movement per unit weight of the fluid is controlled, and when the weight or time reaches within the set value range, the fluid is discharged.
  • a method of ejecting or applying a fluid characterized by initiating ejection or application.
  • a method for discharging or applying a fluid characterized by providing at least one further flow path between the first container and the second container in addition to the flow path of the present invention to accelerate movement of the fluid. do.
  • the electrode slurry in at least two containers of the present invention is alternately pressurized or the electrode slurry in one container is constantly pressurized to move or circulate in the electrode slurry channel communicating between the at least two containers.
  • the present invention comprises the steps of: pressurizing a liquid fluid in a first container of liquid fluid in at least two containers; moving to a container, sucking and pressurizing the fluid in the second container with a pump, moving it to the first container via a second flow path, and circulating the fluid; measuring and managing the level of the fluid by the weight of the liquid fluid or the total weight of the container containing the liquid fluid, controlling the fluid movement timing of the first container or the second container;
  • a fluid ejection method or application method characterized by ejecting or applying a fluid to an object using an apparatus or an application apparatus.
  • the timing of movement switching or circulation of the liquid fluid of the present invention is controlled by measuring the weight of at least the upper limit or lower limit of the liquid fluid in the container or the total weight of the entire container containing the liquid fluid, and at least one of the fluids in the container Discharging or applying a fluid is started when the movement time per unit weight or the weight per unit movement time reaches a set value range.
  • the liquid fluid in the at least two containers of the present invention is at least one of slurry, heated liquid, and hot melt, and the liquid fluid in the at least one container is directly pressurized by compressed gas or indirectly pressurized by compressed gas.
  • a balance field pressurization method by pressurization is used, and the liquid fluid in another container is pumped by a pump, the weight of the fluid transferred per unit time or the transfer time per unit weight of the fluid is controlled, and the weight or time is controlled.
  • a fluid ejection method or application method characterized by starting fluid ejection or application when a set value is reached.
  • a fluid characterized by providing at least one liquid fluid channel between the first container and the second container separately from the liquid fluid channel of the present invention to accelerate the movement of the liquid fluid.
  • the present invention is a method of manufacturing a fuel cell or a storage battery, comprising a step of pressurizing the electrode slurry in a first container of the battery electrode slurries in at least two containers; a step of moving the electrode slurry in the second container to a second container via a first channel that communicates between the two containers; measuring and managing the levels of the electrode slurries in the first and second containers by the weight of the electrode slurries in the containers or the total weight of the container containing the electrode slurries;
  • a fuel cell or a storage battery characterized by comprising: a step of controlling the movement timing of the electrode slurry in the second container;
  • a manufacturing method is provided.
  • the present invention is particularly effective for quality control of the electrode formation of fuel cells, the electrode formation of storage batteries and capacitors, the electrode formation of solar cells, etc., in which slurry, dispersion, etc. are applied during electrode formation.
  • stable application timing can be controlled and a stable application amount can be ensured for a slurry or dispersion containing solid particles or short fibers whose viscosity changes with the level of shear force or with time.
  • the inventor of the present invention can also heat the liquid containing the resin component to lower the viscosity, or control the viscosity of the heated melt that flows in a liquid state and discharge or apply it.
  • the object is also targeted.
  • it includes a fuel cell, a storage battery such as a secondary battery, a capacitor, a solar cell, etc., which are products manufactured by applying an electrode slurry to form electrodes.
  • the ejection method of the present invention includes ejection methods such as slot nozzles and sprays, and coating methods, and includes granulation, encapsulation, and the like.
  • the application means and the object are not limited. Therefore, it can be applied to a wide range of fields, such as pharmaceuticals, foods, fertilizers, chemicals, semiconductors, electronics, and energy fields, as well as to manufacturing methods for such products.
  • Liquid fluids include paraffin waxes, hot-melt resins, and adhesives that are solid at room temperature or pastes that melt into liquids when heated.Moisture-curing type polyurethane hot-melt (PUR) systems, etc.
  • any material that contains a resin that reacts with , and is in a liquid state at the time of application such as a melted material such as a low-viscosity, low-melting metal, can be suitably used in the present invention. In that case, it is necessary to heat at least the portion where the hot melt comes into contact.
  • a material that can flow and be discharged during discharge, including a melt is treated as a liquid fluid.
  • the means for ejecting or applying the liquid or the like of the present invention includes a slot nozzle, and ejects or ejects desired droplets from a nozzle or the like, which is an ejection port of the liquid, such as an inkjet or a dispenser, and granulates drugs, foods, fertilizers, and the like. It may be attached to the object including ejection such as spray for encapsulation.
  • the present invention also includes a spray-drying method such as a method of trapping spray particles falling into a fluidized bed of an air-powder mixture in a full-size bed that blows hot air or the like.
  • Particles are generated by inkjets, dispensers, methods and devices that spray droplets of these droplets with ultrasonic waves, compressed air or inert gas, etc. to make them finer, airless sprays, two-fluid sprays, rotary atomization methods, etc. It does not matter what means of transformation.
  • coating devices include multi-spray nozzles such as meltblown sprays, multi-head sprays, and slit nozzles, regardless of whether they are continuous sprays or pulsed sprays.
  • the present inventors can also use a method in which fine particles are generated by a fine particle generator and moved by a carrier gas or the like to be applied, and the fine particles can be wet or dried and conveyed inside a pipe or the like.
  • the fine particles can be electrostatically charged regardless of whether wet or dry, and can be applied locally or over a wide area to an object such as an object to be coated. Furthermore, it can be applied or formed into a film by introducing it into a vacuum and colliding it with an object. Alternatively, dispersion coating can be performed in which the particles are sparsely distributed in a plane. Furthermore, if wet fine particles are combined on an object and laminated as necessary to form a planar thin film, high-speed production can be achieved.
  • the present inventor collides a spray flow against a rotating object such as a belt or a roll at a close distance, or generates ultrafine particles by bubbling or the like.
  • Submicron or less ultrafine particles are transported directly or by carrier gas, etc., and selected at least one additional means such as static electricity, magnetic force, dew condensation, or guiding under vacuum, and continuously or pulse-dispersed coating on the object.
  • a method of laminating a thin film or forming a film using one or more types of liquid fluids may be employed.
  • the object may be coated in advance with liquid containing solid content, powder, or the like, or may be formed into a film.
  • the present invention is effective in handling and applying dispersions and slurries containing particles and short fibers, and is therefore effective in forming electrodes for fuel cells, storage batteries including all-solid-state batteries, capacitors, solar cells, and the like.
  • the present invention also includes micro-curtain coating in which a desired liquid film is formed by spraying from an airless spray nozzle at a relatively low pressure of about 200 to 600 kPa, and the liquid film is applied to an object.
  • dot-like or elongated line-like bead coating may be performed by an ink jet or a dispenser nozzle, and compressed gas may be sprayed onto the bead to further fine particles for coating.
  • a slot nozzle for performing continuous or intermittent surface coating of a desired pattern on an object that moves continuously or intermittently is capable of high-speed processing. Furthermore, the present inventors have proposed a lamination coating method using a slot nozzle having a plurality of discharge ports or a plurality of slot nozzles using one or more kinds of liquid fluids, and a lamination coating method combining a slot nozzle and a particle applicator.
  • a lamination coating method using a slot nozzle having a plurality of discharge ports or a plurality of slot nozzles using one or more kinds of liquid fluids
  • a lamination coating method combining a slot nozzle and a particle applicator can be suitably used for electrode formation of batteries, for example, electrode formation of fuel cells, capacitors, storage batteries, solar cells, and the like, and electrolyte layer formation of all-solid-state batteries.
  • the present invention can solve these problems, it is particularly effective for quality control of the electrode formation of fuel cells, the electrode formation of storage batteries and capacitors, the electrode formation of solar cells, etc., in which slurry, dispersion, etc. are applied during electrode formation. be.
  • stable application timing can be controlled and a stable application amount can be ensured for a slurry or dispersion containing solid particles or short fibers whose viscosity changes with the level of shear force or with time.
  • the viscosity of the liquid containing the resin is heated to lower the viscosity, or the viscosity of the wetted part of the system including the flow path of the heated melt that flows in a liquid state by heating is controlled, In particular, the viscosity can be stabilized at the time of ejection or application.
  • the object is the object as well as the production method for completing the object by applying it to the object.
  • it includes a fuel cell, a storage battery such as a secondary battery, a capacitor, a solar cell, etc., which are products manufactured by applying an electrode slurry to form an electrode, etc., and furthermore, it is effective in manufacturing methods thereof.
  • the discharge method of the present invention includes ejection methods such as slot nozzles and sprays, and includes at least partial coating of particles such as granulation and encapsulation.
  • the application means and the object are not limited. Therefore, it can be applied to a wide range of fields, such as pharmaceuticals, foods, fertilizers, chemicals, semiconductors, electronics, and energy fields, as well as to manufacturing methods for such products.
  • nitrogen gas which is in the region of inexpensive air and inert gases, and especially the extremely low humidity, such as negative dew point, that is essential for all-solid battery electrode slurry and electrolyte layer slurry using sulfide-based electrolytes.
  • a gas fluid containing air up to about 90° C., argon gas, nitrogen gas, or argon gas mixed with other gases can be mixed with these to form a foam and applied using a slot nozzle or spray. Regardless of whether foaming is applied or not, the present inventors can combine slot nozzles and sprays as necessary to apply to desired fuel cells and storage batteries. can. This method is particularly effective in forming electrodes for fuel cells, which has both improved performance and improved production speed.
  • foaming is effective not only for forming a porous coating film, but also for preventing sedimentation and supporting dispersion of slurries such as electrodes of fuel cells, storage batteries, supercapacitors, etc., and is particularly effective for dispersing ultrafine particles in the slurry.
  • Dehumidified air, dehumidified nitrogen gas, dehumidified argon gas, etc. should be selected when foaming slurry using sulfide-based electrolyte particles for the electrolyte layer and electrodes of storage batteries, particularly all-solid-state batteries.
  • the volume of the liquid contacting flow path of the electrode catalyst slurry is made as small as possible, and even in the production line, the minimum required amount is small. A filling method was desired. Therefore, in order to reduce the amount of waste after use of fuel cells, etc., the inner diameter of the flow path such as PTFE, PFA, or stainless steel is 6 mm or less, or even 4 mm or less, and the viscosity of the liquid material such as slurry is about 50 mPa s. may be about 2 mm, and it is important to make the length as short as possible, such as 300 mm or 2 m.
  • the shape, especially the bottom of the container should be a sharp conical structure with an acute angle of 60 degrees or less, or even 30 degrees or less. It is important to make the cylindrical part thin and long so that even a small amount of liquid can be finally discharged while moving or circulating in the channel.
  • the remaining amount of catalyst ink in two containers can be reduced to 100 ml or less even in a large container, and even in the case of a small container, such as a 70 ml syringe, the residual amount can be reduced to 5 ml or less.
  • a small amount of residual slurry can be further diluted with a solvent and applied while moving between containers so that the slurry does not settle, and the catalyst can be almost used up.
  • PVDF vinylidene fluoride
  • NMP normal methylpyrrolidone
  • DMF normal methylpyrrolidone
  • the binder can be encapsulated in a thin film in the active material particles or the like, or can be partially adhered in a minute amount and granulated.
  • the active material, electrolyte particles and the like granulated by this method can be handled and applied even as powder.
  • Japanese Patent No. 6328104 and Japanese Patent No. 6481154 which the present inventor invented and has the right to apply.
  • a film can be formed by a hot press after application.
  • a solvent such as normal heptane having a relatively low boiling point and a high evaporation speed is added to form a slurry, or a desired material such as a conductive aid is added to form a slurry, which is coated and dried quickly to achieve a desired film thickness. can do.
  • the outlet of another automatic opening and closing discharge device is connected to the slurry discharge device or nozzle to make the mixing part a small cavity or to instantaneously mix and disperse in the air.
  • Either method can be adopted by the present inventors, and it can also be used as a method that can solve the problem of extending the shelf life of the catalyst electrode ink when adding a solvent to the original electrode slurry of the fuel cell to reduce the solid content.
  • the latter is used for storage batteries in general that use binders such as PVDF, which can only be dissolved in solvents with a limited high boiling point such as NMP, especially for the electrode formation of all-solid-state batteries and the formation of electrolyte layers.
  • a solvent such as normal heptane can be preferably used to increase the evaporation rate of the entire slurry.
  • the dry formation of the slurry can be done densely and quickly, so that the desired electrodes can be formed.
  • the active material and the fine binder particles can be thin-layered by separate handling devices as in the case of powder lamination, and the desired electrodes can be formed by making separate slurries or by mixing them into slurries.
  • the dispersing device in order to disperse the slurry better, it is possible to disperse with a dispersing device installed in a simple flow path, a static mixer, or the like.
  • the dispersion device is not limited, for example, a net (screen) made of SUS of up to about 300 mesh is provided in one or more channels, and the slurry, etc. is moved or circulated and passed through it to break up aggregates in the slurry, etc. Ideally. can be distributed easily.
  • Dispersion may be carried out by a static mixer, or by mixing and dispersing by a dynamic mixer which stirs by power such as a motor.
  • collisional mixing or The device itself can be made small or very small by using a dispersion method based on collision dispersion.
  • Such a small device is effective in reducing the solid content at the tip of the device such as the discharge device (head) or nozzle, and mixes solvent or solvent-rich fluid during discharge such as electrode slurry spray of fuel cells. It can be sprayed on its own or mixed with a compressed gas. Furthermore, normal heptane, which has a lower boiling point than a new solvent such as NMP, can be mixed at the tip or mixed with compressed gas and sprayed before applying the electrode slurry of the storage battery.
  • a fuel cell electrode catalyst slurry with a viscosity of 100 mPa s or less if the slurry pressure is about 150 KPa or less and the flow rate is about 1000 ml/min or less, at least one sheet of wire mesh such as SUS with up to about 300 mesh is used as described above. If necessary, a large aggregate can be finely divided by moving or circulating the slurry at least once or multiple times with a plurality of sheets from upstream to downstream, sequentially decreasing the opening and decreasing the wire diameter.
  • a filtration area of about 1 to 100 square centimeters is sufficient, and a simple filter and dispersing device can be obtained by simply setting a sheet of punching metal for reinforcement downstream of the wire mesh.
  • the small container or container has a volume of 50 ml to 15 liters. Of course, it may be 15 liters or more, and may be 50 ml or less or 20 ml or less.
  • the flow velocity of the slurry or the like may be increased by setting the average inner diameter of the piping such as the PFA tube to the coating head to 4 mm or less, preferably 2.5 mm or less.
  • the channel between the containers may be as long as 6 meters, for example, due to the structure of the device, but if possible, it should be as close as possible, preferably within 1 meter, especially within 300 mm for small containers. If the liquid filling volume in at least one container exceeds 2 liters, a tube with an average inner diameter of at least 4 mm between the two containers, preferably with an inner diameter of 6 mm, if the liquid filling volume in the container exceeds 5 liters.
  • a large amount of slurry in the connecting tank is moved by piping such as the above tubes to prevent precipitation of the slurry, and the viscosity of the slurry is reduced in a short time by the shear force of the slurry, so that the coating work can be performed in a stable range where the viscosity width is desired.
  • the slurry in the container may be stirred with a stirring device such as a propeller.
  • These tubes can have a large inner diameter separately from the piping of the discharge device, and the tube piping to the discharge device or the like may be one, or a plurality of smaller diameter piping means may be used.
  • the confluence portion may have a structure capable of dispersing collisions. Also, other dispersing means or flow rate adjusting means may be provided in the path.
  • the flow path to the discharge device is not particularly limited, but it may be from the top of the container in consideration of the case of removing and cleaning the dispersing device installed in the pipe such as a tube that is the flow path.
  • a channel for increasing the amount of movement of the liquid can be separately provided without being limited to the upper portion and the lower portion of the container.
  • a single channel or a plurality of channels may be provided between containers, and one channel may be further branched to form a plurality of channels.
  • the diameter of the flow path is small, it may be shortened, and the average diameter may be larger than that of the flow path provided in the discharge device, for example, twice or three times. .
  • two or more containers may be used, and two or more discharge devices may be used.
  • a plurality of systems such as circulation by using a plurality of liquid fluids of different types.
  • the present inventors are able to stack different materials to form a desired electrode structure, for example, alternately layering thin films to achieve a desired mixed and dispersed application.
  • different types of liquid fluids can be mixed downstream of the ejection head and ejected, or can be applied while being impinged and mixed inside or outside the nozzle.
  • the structure of the fuel cell electrode can be made up of a plurality of layers having different ionomer ratios and catalyst loading ratios such as platinum.
  • ionomer such as Nafion only on the electrode interface or surface of the transfer film compared to the internal porous structure, so that even the thermocompression transfer method can improve adhesion and improve performance in high-speed production.
  • the active material and the conductive agent of the storage battery can be uniformly mixed and dispersed by using separate circulation systems or the like.
  • the flow rate is higher than that of the flow path such as the discharge device, preferably
  • a pipe such as a tube with a large diameter or a short length
  • the flow rate per unit time of a liquid such as slurry can be increased and dispersion can be improved.
  • the inner diameter of the tube may be 6 mm or less, or 4 mm or less. 1.5 mm may be sufficient.
  • FIG. 1 is a schematic cross-sectional view of a container and system fitted with a liquid flow path and weight measurement communicating with a dispensing device between at least two containers according to an embodiment of the invention
  • FIG. FIG. 4 is a schematic cross-sectional view of managing the upper limit and the lower surface level by weight measurement according to the embodiment of the present invention.
  • 1 is a schematic cross-sectional view of pressurizing a liquid fluid with a compressed gas via a piston (plunger) according to an embodiment of the present invention
  • FIG. 1 is a table showing the relationship between viscosity and shear force, showing the viscosity behavior peculiar to slurry that changes from static viscosity to dynamic viscosity according to the embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view of a flow path provided for increasing the flow rate of movement separately from the discharge device flow path that connects via the upper portions of the two containers according to the embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view of forming a circulation circuit with a discharge channel and a channel moved by a pump according to the embodiment of the present invention, and forming another channel for further increasing the amount of movement.
  • a first container 1 is connected to a second container 2 via a discharge device 8 which is connected by a liquid fluid channel 7 and further via a liquid fluid channel 7'.
  • the upper portions of the first and second containers are connected to the respective containers via regulators 103 and 104 for compressed gas such as compressed air, nitrogen gas and argon gas, and automatic switching valves 101 and 102 .
  • the containers 1 and 2 are fixed by struts 9 and 9', and weight scales (scales) 5 and 6 can measure the total weight of the liquid fluids 3 and 4 or the total weight of the container containing the liquid fluid.
  • the weighing scale may employ an inexpensive load cell to form the desired shape of the measuring device.
  • the transfer of liquid fluid between containers can be switched at a preset desired weight of liquid fluid in each container.
  • the slurry remaining in the liquid fluid channel is filled with a solvent, diluted to a desired solid content, moved through the channel, dispersed, and applied to an object, so that the expensive catalyst in the channel can be almost completely used up.
  • at least one screen can be installed to filter the aggregates or to further break up the aggregates.
  • the screen can be selected from commercially available screens of 300 mesh or less, or a plurality of screens with different meshes can be installed in series. Further, a reinforcing material such as punching metal can be provided after the screen in the moving direction of the liquid fluid. By repeating movement or circulation through a screen (not shown), the mesh can be used as an inexpensive dispersing device.
  • another commercially available dispersing device (not shown) can be installed in the liquid fluid flow path, and a stirring device such as a rotating blade (not shown) is installed in the tank to prevent the slurry from settling in the tank and to disperse it well. can be maintained.
  • At least an upper limit 260 and a lower limit 261 weight in the container can be set in advance for switching the movement of the liquid fluid 23 in the container 21 .
  • At the upper limit position movement of liquid fluid from another container or the like stops.
  • At least one weight level detection means may be provided to control the movement of the slurry to a desired position between the upper and lower limits or outside the range in order to fine-tune the switching control. It may be used as control means.
  • a piston (or plunger) 310 is provided between the liquid substance 33 of the container 31 and the compressed gas 315 in FIG. This is particularly convenient when the compressed gas is nitrogen gas or compressed air, which is not an inert gas such as argon. If the liquid fluid has a low viscosity, for example, less than 100 mPa ⁇ s, the piston (plunger) must be well sealed. Therefore, it is necessary to improve the surface finish of the inner wall of the container to improve the precision of the diameter of the sliding portion, especially the roundness. As for the sealing portion of the piston, it is essential to provide a sealing member such as chemical-resistant fluororubber, PTFE, or the like, particularly outside the piston, to improve sealing performance and reduce sliding resistance.
  • a sealing member such as chemical-resistant fluororubber, PTFE, or the like
  • the inside of the container is preferably made of PTFE, PFA, fluorine-based material, ceramic material, or treated with them.
  • the piston (plunger) pressurizing means for the foamed liquid fluid may be electrically pressurized by a servomotor or the like.
  • the liquid surface can be pressurized directly by compressed gas without providing a piston or the like.
  • Pressure regulating valves for compressed gas need to use products with high-precision pressure regulating mechanisms that have a fine relief structure with fast response speed and excellent followability.
  • a pneumatic pressure regulator manufactured by Fairchild is preferably used to maintain a highly accurate hydraulic pressure.
  • Fig. 4 shows the behavior of liquid fluids, such as slurries, that change viscosity due to changes in shear force.
  • the discharge or application can be started.
  • whether the fluid temperature and viscosity of a liquid fluid to be heated or a thermoplastic resin are stabilized can be conveniently managed by moving time per unit weight or moving weight per unit time.
  • Small containers such as syringes can be installed outside the booth to prevent vibration due to axis movement, and the discharge device can be piped with a flexible tube with a small inner diameter such as PFA to accurately measure the weight of the liquid fluid inside the syringe.
  • the weight control can be manufactured to the desired shape using commercially available load cells.
  • the object can be moved in the XY direction and coated without moving the discharge device or small device or only by moving it up and down. It can be easily carried out by combining with the method of Japanese Patent No. 5798930 to which the present inventor has the right.
  • FIG. 5 apart from the flow paths 57, 57' passing through the top for the discharge device 58 between the containers 51, 52, another flow path 550 is provided from the bottom of the container.
  • Channels 550 may be provided through the top of each container.
  • the channels 57, 57' may be joined at the bottom of the container. Since the channel 550 accelerates movement of the liquid fluid and supports dispersion, its diameter may be small, for example, an inner diameter of 2 to 6 mm and a length of about 200 to 1000 mm.
  • One or more channels may be provided, and a dispersing device may be installed in the channel.
  • flow paths 67 and 67' of the discharge device 68 between the two containers flow from the bottom of the first container 61 through the top of the first container 61 to the flow path 67, the discharge device 68, and the flow path 67'. It is connected to the bottom of the second container.
  • the flow path may be a metal pipe, a plastic such as PTFE, a rubber hose, or a tube. Chemical resistance is generally desirable for the wetted part, and if pressure resistance is required, it may be covered with reinforcing fibers or SUS blades, for example.
  • the liquid fluid 63 in the first container can be pressurized by the compressed gas and flowed through the flow path to the vicinity of the lower portion of the second container via the upper portion.
  • the inflow of the liquid fluid is preferably carried out by using the side wall of the container to spread the liquid thinly (for example, around several hundred micrometers) widely, while moving the side wall of the container to the liquid surface as a thin film.
  • Liquids in which air is likely to be entrapped can be defoamed by this method.
  • a liquid fluid is foamed by mixing gas in the vicinity of the outlet of the container or in the channel, it is important, for example, to defoam the side of the container on the opposite side by the above method and always maintain a constant foaming state in the discharge device. .
  • the liquid fluid 64 that has reached a desired level in the second container is sucked and pressurized by the pump 630 and reaches the first container 61 via the flow path 640 .
  • the operation of the pump 630 is stopped, and when it reaches at least the lower limit, the pump 630 is operated to transfer the liquid fluid, thereby forming a circulation circuit be done.
  • both the lower limit of the first container and the lower limit of the second container are activated, filling of the second container 62 with the liquid material can be prompted.
  • another channel 650 can be provided when it is desired to increase the circulating weight or the moving weight of the liquid fluid per unit time to improve the viscosity stabilization speed. Furthermore, by installing a dispersing device in at least one channel, a stable liquid fluid with good dispersion can be obtained.
  • fields such as granulation and coating for pharmaceuticals and chemicals, and coating slurry materials and liquid fluids for dispersion, such as electronics, fuel cells, super capacitors, solar cells, secondary batteries, etc.
  • liquids such as slurries used in small amounts for experiments such as electrode formation can be produced with high quality even when large amounts of liquid fluids are used in large-scale production lines.

Abstract

A method for applying a liquid fluid to an object, the method comprising a step in which a liquid fluid in a first container among liquid fluids in at least two containers is pressurized, a step in which the liquid fluid is transferred to a second container through a first flow path that brings the at least two containers into communication with each other, and a step in which the liquid fluid in the second container is sucked and pressurized by means of a pump and is subsequently transferred and circulated to the first container through a second flow path. This method for applying a liquid fluid to an object is characterized in that: the levels of the liquid fluid in the first and second containers are managed by measuring the liquid fluid weights in the containers or the total weights of the containers including the liquid fluid; the viscosity of the liquid fluid is stabilized by repeating transfer or circulation between the containers by automatically switching the transfer direction of the liquid fluid; and the liquid fluid is applied to an object under stable conditions by measuring the transfer weight of the liquid fluid per unit time or the time per unit transfer weight.

Description

流体の吐出または塗布方法、燃料電池または蓄電池の製造方法Fluid discharge or application method, fuel cell or storage battery manufacturing method
 本発明は、流体、例えば液状の接着剤、コーティング剤の吐出や塗布に関し、特に加温して粘度を下げる液体や加熱溶融体、更には せん断力の変化で急激に粘度変化するスラリーの塗布や塗布に関する。 The present invention relates to the discharge and application of fluids such as liquid adhesives and coating agents, and in particular to the application and application of liquids and heated melts whose viscosity is lowered by heating, and slurry whose viscosity changes rapidly with changes in shear force. Regarding coating.
 従来、スラリーは粘度が低く固形粒子の比重が重く粒子径が大きいほどが沈降しやすい傾向にあった。そのため容器内のスラリーをポンプで吸い込み圧送して下流の流路を大量移動しタンクかポンプ上流へ循環する循環回路を形成しその途中に設けたヘッドで吐出あるいは噴霧などを行い必要により対象物に塗布していた。少量のスラリー等のハンドリングを希望する場合は文献1のように本発明者等により発明された方法で二つのシリンジ間の塗布装置でシリンジ内のスラリーを圧縮気体で加圧し流量制限部材で流量コントロールしながら複数のシリンジ間を移動させて分散させて対象物に塗布していた。例えば除湿した圧搾エアや窒素ガスやアルゴンガスなどの不活性ガス等の圧縮気体で加圧でき更にはスラリーと混合してフォーム化もできるので本発明者は全般に適用でき 特に全固体電池硫化物の電解質粒子を含むスラリーに好適に応用することができる。 In the past, slurries tended to settle more easily when the viscosity was low, the specific gravity of the solid particles was high, and the particle size was large. Therefore, the slurry in the container is sucked in by a pump and pumped, and a large amount of slurry is moved in the downstream flow path to form a circulation circuit that circulates between the tank and the pump upstream. was applying. If you want to handle a small amount of slurry, etc., the method invented by the present inventors as in Reference 1 is used to pressurize the slurry in the syringe with a compressed gas in a coating device between two syringes and control the flow rate with a flow rate restricting member. While moving between a plurality of syringes, it was dispersed and applied to the object. For example, it can be pressurized with a compressed gas such as dehumidified compressed air or an inert gas such as nitrogen gas or argon gas, and furthermore, it can be mixed with a slurry to form a foam, so the present inventor can apply it to all solid-state battery sulfides. can be suitably applied to a slurry containing electrolyte particles of .
特開2003-300000JP 2003-300000
 本発明の目的はスラリーなどの液状流体の単位時間当たりの吐出重量または塗布重量を一定にすることである。単位時間あたりとはミリ秒単位でも秒単位でも或いは分単位など所要時間単位を限定するものでない。
粘度が変化すると圧力を一定にしても吐出重量が変化する。仮に容積手段、例えば電動スパーギヤポンプや電動プランジャーポンプ等の容積式ポンプを使用しても粘度が変化すると塗膜構造や表面状態は変化していた。また粘度が低くなるとポンプ摺動部から液状流体がリークして一定量の容積を確保することが難しかった。特にバインダーが少ないと固い固形粒子でギヤー等を摩耗させていた。更に粘度が経時的に低粘度に変化すると一定量を移動し吐出することができなかった。また分散状態が変化すると塗布した塗膜構造が変化していた。そのため稼働時製品の品質を確認するため液状流体の粘度や分散状態が均一か否かを数値的に知る必要があった。
An object of the present invention is to make the ejection weight or coating weight of liquid fluid such as slurry constant per unit time. "Per unit time" does not limit the required time unit such as milliseconds, seconds or minutes.
When the viscosity changes, the discharge weight changes even if the pressure is kept constant. Even if a positive displacement means, such as an electric spur gear pump or an electric plunger pump, was used, the coating film structure and surface state changed when the viscosity changed. Also, when the viscosity is low, the liquid fluid leaks from the sliding portion of the pump, making it difficult to secure a certain amount of volume. In particular, when the amount of the binder is small, the hard solid particles wear the gears and the like. Furthermore, when the viscosity changed to a low viscosity over time, it was impossible to move a certain amount and eject. In addition, when the dispersion state changed, the structure of the applied coating film changed. Therefore, in order to confirm the quality of the product during operation, it was necessary to numerically know whether the viscosity and dispersion state of the liquid fluid were uniform.
 全ての液状流体を吐出或いは塗布する場合の基本は液状流体の粘度挙動を限りなく一定にして吐出あるいは塗布重量を安定させるべきである。
また大小を含む固形粒子や短繊維等が含まれるスラリーやディスパージョンの塗布等は塗膜の性能を左右する為、所望する分散状態にして常に安定している状態で行うべきである。
The basis for discharging or applying all liquid fluids is to stabilize the discharge or application weight by making the viscosity behavior of the liquid fluid as constant as possible.
In addition, application of a slurry or dispersion containing large and small solid particles, short fibers, etc. affects the performance of the coating film.
 より詳細には液状材料の安定した粘度、安定した分散状態を少なくとも吐出時或いは塗布時維持すべきである。特に固形粒子を含むスラリーの場合、気体のかみ込みや泡を含有しやすい流体或いは故意に気体を含有しフォーム化する場合重要であった。粘度や密度をインラインで計測装置を使用して計測するだけでなくシステムとして管理する必要があった。特に本発明者が権利を有する所望するタイミングで吐出重量を計測し塗布量を間接的に計測する方法と組み合わせることで効力を更に発揮できる。液状流体の粘度や挙動、分散状態が安定してから粘度計や密度計等の計測器等で微細な変化を計測すると尚良い。本発明者が権利化している上記特許第5840959号等の方法でミリ秒単位の吐出重量や塗布重量を計測してから作業を行うことで細かくまたタイムリーに品質管理できるので高品質な製品の製造が可能になる。 More specifically, the stable viscosity and stable dispersion state of the liquid material should be maintained at least during ejection or coating. In particular, in the case of a slurry containing solid particles, it is important when the fluid is likely to contain gas or bubbles, or when the gas is intentionally contained to form a foam. It was necessary to not only measure the viscosity and density using in-line measuring equipment, but also to manage them as a system. In particular, the effect can be further exhibited by combining with a method of indirectly measuring the coating amount by measuring the ejection weight at a desired timing, which is owned by the present inventor. It is even better to measure minute changes with a measuring instrument such as a viscometer or a density meter after the viscosity, behavior, and dispersion state of the liquid fluid are stabilized. By measuring the discharge weight and application weight in milliseconds by the method of the above-mentioned patent No. 5840959, etc., which the inventor of the present invention holds, the quality can be controlled in detail and in a timely manner. manufacturing becomes possible.
 そもそも比重が大きく異なる比重の高い固形粒子と比重が1未満の溶媒と必要により比重が1程度のバインダーあるいはバインダー溶液を混合して分散してスラリーにしても粒子等の沈殿が発生し経時的に均一分散状態を維持するのが難しかった。そのため吐出作業の前に市販のスターラーなどの分散装置で再分散させていた。そのようなスラリーの場合、スラリーの移動方法を容積的供給方法や圧力を一定にする方法だけでは吐出量や塗布量は安定しない。例えば燃料電池の電極触媒スラリーの白金微粒子の比重は20以上でありカーボン粒子は2程度、電解質溶液のナフィオンは1程度、アルコール系溶媒は1以下である。白金ナノ粒子を担持した数十ナノメートルの特に多孔質のカーボン微粒子は凝集し凝集体は沈殿しやすい典型的なスラリーである。更に燃料電池等の電極スラリーの溶媒を水リッチのスラリーにした場合、静的粘度が高くても、せん断力を加えた動的粘度は劇的に低下し、圧力式移動手段を使用した吐出量の変化は激しかった。定量式ポンプ例えばギヤポンプなどを使用しても低粘度になりシールの課題を解決できないばかりか動粘度の変化の最中の電極の塗布状態がミクロ的に変化し不安定な品質状態にあった。 In the first place, solid particles with a high specific gravity that differ greatly in specific gravity, a solvent with a specific gravity of less than 1, and, if necessary, a binder or binder solution with a specific gravity of about 1 are mixed and dispersed to form a slurry. It was difficult to maintain a uniform dispersion state. Therefore, it was re-dispersed with a commercial stirrer or other dispersing device before the discharge operation. In the case of such a slurry, the amount of discharge and the amount of application cannot be stabilized only by the volumetric supply method or the method of keeping the pressure constant as the method of moving the slurry. For example, the specific gravity of the platinum fine particles in the electrode catalyst slurry of the fuel cell is 20 or more, the specific gravity of the carbon particles is about 2, the electrolyte solution of Nafion is about 1, and the alcoholic solvent is 1 or less. Especially porous carbon microparticles of several tens of nanometers carrying platinum nanoparticles are a typical slurry in which aggregates tend to aggregate and precipitate. Furthermore, when the solvent of the electrode slurry for fuel cells, etc., is a water-rich slurry, even if the static viscosity is high, the dynamic viscosity with the addition of a shearing force drops dramatically, and the discharge amount using a pressure-type moving means change was drastic. Even if a metering pump, such as a gear pump, is used, the viscosity becomes low and the problem of sealing cannot be solved. Moreover, the coating state of the electrode changes microscopically during the dynamic viscosity change, resulting in an unstable quality state.
 更にシリンジなどの例えば二つの小型容器壁面にこびりつきやすい粘着力が強いバインダーなどを含むカーボンスラリー等の液体がシリンジ内を上下移動すると容器下限部のファイバーレーザーセンサー検出位置の投光受光レベル検知するのは難しく誤作動が発生していた。そのため本発明者は所望するスラリー加圧時間を設定して二つのシリンジ内の液体移動を切り替える方法を発明した。しかし時間単位の長時間の操業では、時間の最小単位が100ミリ秒では流路の僅少の変化でスラリー液面レベルが経時的に徐々に変化し片方の容器の加圧気体が逆流する致命的な課題があった。そのため本発明者は二つのシリンジの加圧時間の最小単位を10ミリ秒単位以下更には1ミリ秒以下でも調整できるようにした。そして予め溶媒例えば水などで事前に少なくとも10分以上作動させ液面レベルを左右移動または循環に変化がないことを確認し実際の液状流体でも確認し塗布装置ごとに対応することを確立した。そのため別々の二つの容器内の加圧時間は微妙に別々の時間になっても吐出重量を安定させるために左右の時間差を5%以内、可能なら1%以下にするように流路の精度を向上させるべきである。一方シリンジなどの側壁にこびりつかない程度の流動性にして液面を検知するようにできたが極端に低固形分にする必要があった。そのため比重の高い固形粒子が多く含まれる粒子の場合特に沈殿が激しかった。また低粘度のスラリーで沈降を防止するため二つの容器内のスラリーの流速を速くするため比較的高い圧縮気体圧、例えば50KPa 乃至300KPa程度あるいはそれ以上で加圧する場合、容器間のスラリーの切り替え時の容器下部で液面が乱れ乱流が生じ圧縮気体が混じり込みスラリー内に泡が発生し泡を多く含むスラリーと泡が少ないスラリーが発生すると比重が変化し圧力を一定にしても吐出量が変化する課題も発生していた。 In addition, when a liquid such as carbon slurry containing a binder with strong adhesion that easily sticks to the walls of two small containers such as a syringe moves up and down in the syringe, the level of light emitted and received at the detection position of the fiber laser sensor at the lower end of the container is detected. was difficult and malfunctioned. Therefore, the inventors have devised a method of setting the desired slurry pressurization time to switch the liquid movement in the two syringes. However, in long-term operation in units of time, if the minimum unit of time is 100 milliseconds, even a slight change in the flow path will gradually change the slurry liquid level over time, and the pressurized gas in one of the containers will flow backwards, which is fatal. I had a problem. Therefore, the present inventors made it possible to adjust the minimum unit of the pressurization time of the two syringes in units of 10 milliseconds or less, or even 1 millisecond or less. Then, it was confirmed that there was no change in the liquid surface level or circulation by running it for at least 10 minutes in advance with a solvent such as water. Therefore, even if the pressurization time in the two separate containers is slightly different, the accuracy of the flow path should be kept within 5%, if possible, 1% or less, in order to stabilize the discharge weight. should be improved. On the other hand, it was possible to detect the liquid level by making it fluid enough not to stick to the side wall of the syringe, but it was necessary to make the solid content extremely low. Therefore, particles containing a large amount of solid particles having a high specific gravity were particularly precipitated. In addition, in order to increase the flow rate of the slurry in the two containers in order to prevent sedimentation with low viscosity slurry, when pressurizing with a relatively high compressed gas pressure, for example, about 50 KPa to 300 KPa or more, when switching slurry between containers At the bottom of the container, the liquid surface is turbulent and turbulent flow is generated, and compressed gas is mixed in, and bubbles are generated in the slurry. There were also changing challenges.
 壁面にこびりつきやすいスラリーは一般的にバインダーの比率が多い傾向にあった。
また燃料電池の電極触媒スラリーではアイオノマー比率をむやみに多くする必要もないが多くするとコストアップになるだけでなく凝集力が強くスプレイし微粒子することが難しかった。また蓄電池等の電極スラリーの高分子ポリマー系バインダーは溶媒分を多くして所望する低固形スラリーで粘度を低くせざるを得なかった。一方粘度が低いとスパーギヤ―ポンプやスネークポンプなどの連続的に電動容積式ポンプ等で一定量移送するには完全なシールを行うことが難しくリークが多く定量性に問題があった。
そのため所望する電極構造形成上重要な塗布方法例えばパルス的スプレイで重要なミリ秒単位の吐出量に悪い影響を与えていた。一方シールを良くしたプランジャーポンプ例えばマルチプランジャーポンプを使用しても各プランジャーの切り替え時の脈動が大きく、流路にポンプ液圧より低い液圧にする液圧レギュレーターを設置して脈動を回避していたため機器構成が複雑になり容積式の利点がなくなっていた。一方ロールツーロール(Roll to Roll)ラインなどの生産ラインでは大量のスラリー等の液体を移動させる必要があり液体を充填する容器や流体を移動する装置が大型化していた。
Slurries that tend to stick to walls generally tended to have a high ratio of binder.
Further, in the electrode catalyst slurry of the fuel cell, it is not necessary to increase the ionomer ratio unduly, but if it is increased, not only the cost increases but also the cohesive force is strong and it is difficult to spray and fine particles. In addition, it has been necessary to increase the solvent content of the high-molecular-weight polymer-based binder for the electrode slurry of the storage battery to achieve the desired low-solid slurry with low viscosity. On the other hand, if the viscosity is low, it is difficult to achieve a perfect seal when transferring a constant amount continuously with an electric positive displacement pump such as a spur gear pump or snake pump.
This adversely affects the discharge amount in milliseconds, which is important in forming a desired electrode structure, for example, in a pulsed spray method. On the other hand, even if a plunger pump with good sealing, such as a multi-plunger pump, is used, the pulsation at the switching of each plunger is large. Because it was avoided, the equipment configuration became complicated and the advantage of the positive displacement type was lost. On the other hand, in a production line such as a roll-to-roll line, it is necessary to move a large amount of liquid such as slurry, and the container for filling the liquid and the device for moving the fluid have been enlarged.
 そのため大型装置にすると特に試作等、例えば試薬の造粒やカプセル化等、機能性材料の初期性能確認のためのテーブルテスト材料向けとしては初期投資と大量の材料が無駄になっていた。また燃料電池などの白金触媒を使用したスラリーは高価で特に溶媒で希釈し固形分量を少なく調合したスラリーの可使時間(Shelf life)は1日程度と短いため、未使用の電極触媒を廃棄することになり莫大なコストのロスにつながっていた。そのため作業現場で比較的高粘度の原液と溶媒等をマニュアル或いは塗布システム内で自動的に混合し調合する方法が模索されていた。充填量を少なくし小出しに充填する方法もあるが一般的な方法ではスラリーの粘度挙動を確認できなかった。
燃料電池触媒用スラリーで特に水分リッチな溶媒のスラリーを選択する場合、室温で使用する場合でも、せん断応力による粘度変化がアルコール系溶剤リッチなスラリーより更に急激に起こる傾向にあるため塗布作業前スラリーを循環などして十分分散して安定した粘度領域で使用する必要があった。そのため大量に仕込んだ触媒スラリーを塗布作業終了後タンク内や流路に残留した白金触媒スラリーは廃棄せざるを得なかった。
Therefore, if a large-sized apparatus is used, the initial investment and a large amount of materials are wasted especially for trial production, such as granulation and encapsulation of reagents, for table test materials for initial performance confirmation of functional materials. In addition, slurries that use platinum catalysts such as fuel cells are expensive, and slurries that are diluted with a solvent and have a low solid content have a short shelf life of about one day, so unused electrode catalysts are discarded. This has led to a huge cost loss. Therefore, a method of manually or automatically mixing a relatively high-viscosity stock solution and a solvent or the like in a coating system at the work site has been sought. There is also a method of reducing the filling amount and filling in small amounts, but with the general method, the viscosity behavior of the slurry could not be confirmed.
When selecting a slurry with a particularly water-rich solvent in the fuel cell catalyst slurry, even when used at room temperature, the viscosity change due to shear stress tends to occur more rapidly than with an alcohol-based solvent-rich slurry. It was necessary to use it in a stable viscosity range by sufficiently dispersing it by circulating it. Therefore, the platinum catalyst slurry remaining in the tank or in the flow path after the coating operation of a large amount of the catalyst slurry had to be discarded.
 ロールコート、スクリーンプリンティング等でも一度に大量の電極スラリーを必要としていたが、スロットノズルなどの塗布方式では上記電動容積ポンプなどを使用して、塗布作業前スラリーの粘度と分散状態を一定にし単位面積当たりの塗布重量安定性のみならず塗膜性能を一定にする必要があった。その為大量の大型容器のスラリーを撹拌したり、ポンプ等で流路を循環させてスラリーを十分分散させてかつ粘度を安定させて使用する必要があったので塗布時の塗着効率は高くても作業終了後のスラリー廃棄量が多い問題を抱えていた。白金触媒スラリーや残渣などの貴金属は再利用シスムが確立しているが再生コストが高価なため、いずれにしてもコストの面で大きな無駄につながっていた。 Roll coating, screen printing, etc. also required a large amount of electrode slurry at one time. It was necessary to make the coating performance constant as well as the coating weight stability per hit. Therefore, it was necessary to stir a large amount of slurry in a large container or circulate the flow path with a pump or the like to sufficiently disperse the slurry and stabilize the viscosity before use. However, there was also the problem of a large amount of slurry being discarded after the work was completed. A recycling system has been established for precious metals such as platinum catalyst slurries and residues, but the recycling costs are high, and in any case, this leads to a large amount of waste in terms of cost.
 燃料電池の電極形成特にカソード電極では水素イオンと酸素イオンを効率よく接触させ、また発生した水の効率よい排出のためマイクロポア、メソポア、マクロポアの所望する構築が重要なためパルス的スプレイ、より効果的にはインパクトをもったパルス的スプレイで形成することで電極性能が高い報告が増えている。しかしスロットノズルによる液膜塗布では発泡剤を使用して電極膜に泡を残存させる試みがなされているが性能の面で発泡剤等が悪影響を与えまた目標通りの電極構造の形成ができていなかった。 Electrode formation of fuel cells Especially at the cathode electrode, hydrogen ions and oxygen ions are brought into contact efficiently, and for efficient discharge of the generated water, it is important to construct micropores, mesopores, and macropores as desired. In particular, there are increasing reports that the electrode performance is high by forming with a pulsed spray with an impact. However, in liquid film application using a slot nozzle, attempts have been made to use a foaming agent to leave bubbles on the electrode film, but the foaming agent has an adverse effect on performance, and the electrode structure cannot be formed as intended. rice field.
 本発明は、上述した問題点に鑑みなされたもので吐出量が粘度変化により大きく変化し、それに左右される流体例えば加熱した溶液、加熱溶融体、スラリーなどに特に適している。特に電池やキャパシター等の電極用スラリーの沈殿を防ぎ、せん断力により急激に粘度変化するスラリーの粘度挙動の時間当たりのスラリーの移動重量または設定した移動重量に要した時間で管理し、可能な限り短時間で目標値に近づけ可能な限り粘度を一定にして吐出装置で吐出するスラリーの吐出重量や塗布重量と分布を安定させることである。 The present invention has been devised in view of the above-mentioned problems, and is particularly suitable for fluids such as heated solutions, heated melts, slurries, etc., which are affected by changes in the discharge amount due to changes in viscosity. In particular, the sedimentation of slurry for electrodes such as batteries and capacitors is prevented. It is to stabilize the discharge weight and application weight and distribution of the slurry discharged by the discharge device by keeping the viscosity as constant as possible so as to approach the target value in a short time.
 そのため本発明はこれらの抱える課題を解決するため例えばを少なくとも二つの容器間を移動する液状流体の単位時間当たりの重量、または単位重量当たりに所要する時間を管理しそれらの値が安定したところで吐出または塗布作業を開始することにある。更にはそれらの時間を可能な限り短くすることにある。 Therefore, in order to solve these problems, the present invention manages the weight per unit time of the liquid fluid moving between at least two containers, or the time required per unit weight, and discharges it when those values are stabilized. Or to start the application work. Furthermore, it is to shorten those times as much as possible.
 更に、本発明は、特に沈降しやすいあるいは分散に課題があるスラリーやディスパージョン等の流体を好適に分散し、吐出量や塗布量を安定させる流体の吐出または塗布方法を提供することにある。更に電池材料、特に白金触媒などの高価な材料を使用する燃料電池の電極スラリー、キャパシター電極スラリー、二次電池更には全固体電池用の電極用スラリー、電解質用スラリー等を所望する電極等の構造あるいは膜厚を形成してなる燃料電池の製造方法、蓄電池の製造方法を提供することにある。 A further object of the present invention is to provide a fluid ejection or application method that suitably disperses fluids such as slurries and dispersions that tend to settle or that have problems in dispersion, and stabilize the ejection amount and application amount. In addition, the structure of electrodes, etc., where battery materials, especially fuel cell electrode slurries using expensive materials such as platinum catalysts, capacitor electrode slurries, electrode slurries for secondary batteries and all-solid-state batteries, electrolyte slurries, etc. are desired. Alternatively, the object is to provide a method of manufacturing a fuel cell or a method of manufacturing a storage battery by forming a film thickness.
 本発明は少なくとも二つの容器内の液状流体を交互に加圧してまたは一つの容器の液状流体は常に加圧して、前記少なくとも二つの容器間を連通する流体用流路を移動または循環させて、前記流路と連通する吐出装置で流体を吐出または対象物に塗布する方法であって、第一の容器内の液状流体を加圧し第二の容器との間で差圧を生じさせて第一の流路を経由して第二の容器に移動する工程と、第二の容器内の流体を加圧して第一の容器との間に差圧を生じさせて第一の流路または他の流路を経由して第一の容器に液状流体を移動または循環する工程と、前記第一および第二の容器内液状流体重量または該容器内液状流体を含む容器全体の総重量を計測し、少なくとも一つの前記容器内流体の移動切り替えレベルを設定して、前記第一および第二の容器への流体の移動または循環を自動的に行うように制御する工程と、前記流路と連通する吐出装置または塗布装置で流体を吐出または対象物に塗布する工程からなることを特徴とする流体の吐出または塗布方法を提供する。 The present invention alternately pressurizes the liquid fluid in at least two containers or constantly pressurizes the liquid fluid in one container to move or circulate the fluid flow path communicating between the at least two containers, A method for discharging or applying a fluid to an object with a discharge device communicating with the flow path, wherein the liquid fluid in the first container is pressurized to generate a differential pressure between the first container and the second container. and pressurizing the fluid in the second container to create a differential pressure between the first container and the first flow channel or other transferring or circulating the liquid fluid to the first container through the flow channel, and measuring the weight of the liquid fluid in the first and second containers or the total weight of the entire container containing the liquid fluid in the container; setting at least one transfer switching level of the fluid in the container to automatically control the transfer or circulation of the fluid to the first and second containers; and a discharge communicating with the flow path. Disclosed is a method for ejecting or applying a fluid, comprising a step of ejecting or applying the fluid to an object using an apparatus or an application apparatus.
 本発明の前記液状流体の移動切り替えまたは循環のタイミングは少なくとも前記容器内上限と下限の流体の重量または該流体を含む容器全体の総重量を計測して制御し、少なくとも片方の容器内流体の単位重量当たりの移動時間または単位移動時間当たりの重量が設定値範囲に到達したら流体の吐出または塗布の開始を行うことを特徴とする流体の吐出または塗布方法を提供する。 The timing of movement switching or circulation of the liquid fluid of the present invention is controlled by measuring the weight of at least the upper and lower limits of the fluid in the container or the total weight of the entire container containing the fluid, and the unit of the fluid in at least one of the containers Provided is a method for ejecting or applying a fluid, characterized in that ejection or application of the fluid is started when the movement time per weight or the weight per unit movement time reaches a set value range.
 本発明の前記少なくとも二つの容器内の液状流体はスラリー、加温した液体、加熱溶融体の少なくとも一つを選択し、前記少なくとも一つの容器の流体は圧縮ガスによる直接的加圧または間接的加圧による液状流体と圧縮ガスとのバランスフィード方式で行い、該流体の単位時間当たりの移動重量または単位移動重量当たりの移動時間を管理し、前記重量または時間が設定値範囲内に到達したら流体の吐出または塗布を開始することを特徴とする流体の吐出方法または塗布方法を提供する。 The liquid fluid in said at least two containers of the present invention is at least one of slurry, heated liquid, and heated melt, and the fluid in said at least one container is directly pressurized or indirectly pressurized by compressed gas. A balance feed method of liquid fluid and compressed gas by pressure is used, the weight of the fluid moved per unit time or the time of movement per unit weight of the fluid is controlled, and when the weight or time reaches within the set value range, the fluid is discharged. Disclosed is a method of ejecting or applying a fluid characterized by initiating ejection or application.
 本発明の前記流路とは別に更に少なくとも一つの流路を前記第一の容器と第二の容器間に設け、前記流体の移動を加速させることを特徴とする流体の吐出または塗布方法を提供する。 Provided is a method for discharging or applying a fluid characterized by providing at least one further flow path between the first container and the second container in addition to the flow path of the present invention to accelerate movement of the fluid. do.
 本発明の少なくとも二つの容器内の電極スラリーを交互に加圧してまたは一つの容器の電極スラリーは常に加圧して、前記少なくとも二つの容器間を連通する電極スラリー用流路内を移動または循環させて、前記流路と連通する塗布装置で前記電極スラリーを対象物に塗布し乾燥させて電極を形成し燃料電池又は蓄電池を製造する方法であって、第一の容器内の電極スラリーを加圧し第二の容器との間で差圧を生じさせて少なくとも第一の流路を経由して第二の容器に移動する工程と、第二の容器内の電極スラリーを加圧して第一の容器との間に差圧を生じさせて第一の流路または他の流路を経由して第一の容器に移動または循環する工程と、前記第一および第二の容器内電極スラリーの重量または該容器内電極スラリーを含む容器全体の総重量を計測し、少なくとも前記容器内電極スラリー下限レベルで、前記第一および第二の容器への電極スラリーの移動または循環を自動的に行うように制御する工程と、前記流路と連通する塗布装置で流体を対象物に塗布する工程からなることを特徴とする燃料電池または蓄電池の製造方法を提供する。 The electrode slurry in at least two containers of the present invention is alternately pressurized or the electrode slurry in one container is constantly pressurized to move or circulate in the electrode slurry channel communicating between the at least two containers. a method for manufacturing a fuel cell or a storage battery by applying the electrode slurry to an object using an applicator communicating with the flow path and drying the object to form an electrode, wherein the electrode slurry in the first container is pressurized. creating a differential pressure between the slurry and the second container to transfer the electrode slurry to the second container through at least the first flow path; and moving or circulating to the first container via the first channel or another channel by creating a differential pressure between and, the weight of the electrode slurry in the first and second containers or The total weight of the entire vessel containing the in-vessel electrode slurry is measured, and at least the lower limit level of the in-vessel electrode slurry is controlled to automatically move or circulate the electrode slurry to the first and second vessels. and applying the fluid to the object with an application device communicating with the flow path.
 本発明は少なくとも二つの容器内の液状流体の第一の容器内の液状流体を加圧する工程と、前記流体を前記少なくとも二つの容器間を連通する第一の流路を経由して第二の容器へ移動する工程と、前記第二の容器内流体をポンプで吸引加圧し第一の容器に第二の流路を経由して移動し循環する工程と、前記第一および第二の容器内流体のレベルを前記液状流体重量又は該液状流体を含む容器総重量で計測し管理し、前記第一の容器または第二の容器の流体移動タイミングを制御する工程と、前記流路と連通する吐出装置または塗布装置で流体を吐出または対象物に塗布することを特徴とする流体の吐出方法または塗布方法を提供する。 The present invention comprises the steps of: pressurizing a liquid fluid in a first container of liquid fluid in at least two containers; moving to a container, sucking and pressurizing the fluid in the second container with a pump, moving it to the first container via a second flow path, and circulating the fluid; measuring and managing the level of the fluid by the weight of the liquid fluid or the total weight of the container containing the liquid fluid, controlling the fluid movement timing of the first container or the second container; Disclosed is a fluid ejection method or application method characterized by ejecting or applying a fluid to an object using an apparatus or an application apparatus.
 本発明の前記液状流体の移動切り替えまたは循環のタイミングは少なくとも前記容器内上限または下限の液状流体の重量または該液状流体を含む容器全体の総重量を計測して制御し、少なくとも片方の容器内流体の単位重量当たりの移動時間または単位移動時間当たりの重量が設定値範囲に到達したら流体の吐出または塗布の開始を行うことを特徴とする流体の吐出または塗布方法を提供する。 The timing of movement switching or circulation of the liquid fluid of the present invention is controlled by measuring the weight of at least the upper limit or lower limit of the liquid fluid in the container or the total weight of the entire container containing the liquid fluid, and at least one of the fluids in the container Discharging or applying a fluid is started when the movement time per unit weight or the weight per unit movement time reaches a set value range.
 本発明の前記少なくとも二つの容器内の液状流体はスラリー、加温した液体、加熱溶融体の少なくとも一つを選択し、前記少なくとも一つの容器の液状流体は圧縮ガスによる直接的加圧または間接的加圧によるバランスフィールド加圧方式で行い、他の容器の液状流体の圧送はポンプで行い、該流体の単位時間当たりの移動重量または単位移動重量当たりの移動時間を管理し、前記重量または時間が設定値範囲内に到達したら流体の吐出または塗布を開始することを特徴とする流体の吐出方法または塗布方法を提供する。 The liquid fluid in the at least two containers of the present invention is at least one of slurry, heated liquid, and hot melt, and the liquid fluid in the at least one container is directly pressurized by compressed gas or indirectly pressurized by compressed gas. A balance field pressurization method by pressurization is used, and the liquid fluid in another container is pumped by a pump, the weight of the fluid transferred per unit time or the transfer time per unit weight of the fluid is controlled, and the weight or time is controlled. Disclosed is a fluid ejection method or application method characterized by starting fluid ejection or application when a set value is reached.
 本発明の前記液状流体用流路とは別に更に少なくとも一つの液状流体用流路を前記第一の容器と第二の容器間に設け、前記液状流体の移動を加速させることを特徴とする流体の吐出方法または塗布方法を提供する。 A fluid characterized by providing at least one liquid fluid channel between the first container and the second container separately from the liquid fluid channel of the present invention to accelerate the movement of the liquid fluid. To provide a method of discharging or applying a
 本発明は燃料電池または蓄電池を製造する方法であって、少なくとも二つの容器内の前記電池用電極スラリーの内、第一の容器内の電極スラリーを加圧する工程と、該電極スラリーを前記少なくとも二つの容器間を連通する第一の流路を経由して第二の容器へ移動する工程と、前記第二の容器内電極スラリーをポンプで吸引加圧し第一の容器に第二の流路を経由して移動し循環する工程と、前記第一および第二の容器内電極スラリーのレベルを容器内電極スラリー重量又は電極スラリーを含む容器総重量で計測し管理し、前記第一の容器または第二の容器の電極スラリー移動タイミングを制御する工程と、前記流路と連通する塗布装置で対象物に電極スラリーを塗布し乾燥して電極を形成してなることを特徴とする燃料電池または蓄電池の製造方法を提供する。 The present invention is a method of manufacturing a fuel cell or a storage battery, comprising a step of pressurizing the electrode slurry in a first container of the battery electrode slurries in at least two containers; a step of moving the electrode slurry in the second container to a second container via a first channel that communicates between the two containers; measuring and managing the levels of the electrode slurries in the first and second containers by the weight of the electrode slurries in the containers or the total weight of the container containing the electrode slurries; A fuel cell or a storage battery characterized by comprising: a step of controlling the movement timing of the electrode slurry in the second container; A manufacturing method is provided.
 本発明は電極形成時にスラリーやディスパージョン等を塗布する燃料電池の電極形成、蓄電池やキャパシターの電極形成、太陽電池の電極形成等の品質管理に特に効果的である。本方法によれば粘度がせん断力の高低でまたは経時的に変化する固形粒子や短繊維を含むスラリーやディスパージョン等の安定する塗布タイミングを管理し安定した塗布量を確保することができる。 The present invention is particularly effective for quality control of the electrode formation of fuel cells, the electrode formation of storage batteries and capacitors, the electrode formation of solar cells, etc., in which slurry, dispersion, etc. are applied during electrode formation. According to this method, stable application timing can be controlled and a stable application amount can be ensured for a slurry or dispersion containing solid particles or short fibers whose viscosity changes with the level of shear force or with time.
 本発明者は樹脂分を含む液体を加温して粘度を下げ、或いは加熱して液状に流動する加熱溶融体の粘度を管理し吐出または塗布することもできる。また対象物に施与して目的物を完成するための製造方法として更には目的物まで対象とする。例えば電極スラリーを塗布して電極形成などにより製造した成果物である燃料電池や2次電池などの蓄電池、キャパシター、太陽電池等を含む。 The inventor of the present invention can also heat the liquid containing the resin component to lower the viscosity, or control the viscosity of the heated melt that flows in a liquid state and discharge or apply it. In addition, as a manufacturing method for applying to an object to complete the object, the object is also targeted. For example, it includes a fuel cell, a storage battery such as a secondary battery, a capacitor, a solar cell, etc., which are products manufactured by applying an electrode slurry to form electrodes.
 尚本発明の吐出方法はスロットノズルやスプレイ等の噴出方法や塗布方法を含み、造粒やカプセル化などを含む。また塗布手段や対象物を限定するものでない。そのため広範囲な分野、例えば医薬品、食品、肥料、ケミカル、半導体、エレクトロニクス、エネルギー分野等の広範囲な製品や、製品の製造方法に応用できる。
液状流体は常温固体あるいはペースト状で加熱したら液状に溶融するパラフィンワックスやホットメルト樹脂や接着剤を含み更には湿気硬化タイプポリウレタンホットメルト(PUR)系等のペースト状の熱可塑性でありながら最終的に反応する樹脂を含み、例えば低粘度、低融点の金属などの加熱溶融体等適用時液状の材料でさえあれば本発明では好適に使用できる。その場合は少なくとも加熱溶融体が接する箇所は加熱する必要がある。以下本発明では溶融体も含めて吐出時流動して吐出できるものは液状流体として扱う。本発明の液体等の吐出や塗布手段はスロットノズルを含みインクジェットやディスペンサーのように所望する液滴で液体の吐出口であるノズル等から放出や吐出すること、薬剤、食品、肥料等の造粒やカプセル化のためのスプレイなどの噴出等を含み対象物に付着させてもよい。熱風流等を噴き上げるフルダイズベットの気粉混合体の流動層に落下するスプレイ粒子を補足する方法などのスプレイドライ方法も本発明には含まれる。粒子発生はインクジェット、ティスペンサー、それらの液滴等を超音波、圧搾エアや不活性ガス等の圧縮ガス等を吹き付け微細化する方法や装置、エアレススプレイ、二流体スプレイ、回転霧化方法など微粒子化としての手段を問わない。塗布装置は前記以外に連続的スプレイ、パルス的スプレイを問わずメルトブローンなどのマルチスプレイノズルやマルチヘッドによるスプレイ、スリットノズルによるスプレイが含まれる。更に微粒子発生装置で微粒子を発生させキャリヤガス等で移動させて塗布する方法も本発明者は使用でき微粒子はウェットまたは乾燥させてパイプなどの内側を搬送させることができる。微粒子はウェット/ドライにかかわらず静電気で帯電させ被塗物などの対象物に局所的あるいは広い範囲に塗布することができる。更には真空内に導いて対象物に衝突させ塗布あるいは成膜できる。あるいは粒子をまばらな状態で面状に点在塗布する分散塗布ができる。さらにはウェットの微細粒子を対象物上で結合させながら必要により積層して面状に薄膜で造膜させると高速生産に対応できる。本発明者はベルトやロールなどの回転する物体へスプレイ流を至近距離で衝突させる、あるいはバブリング等で超微粒子を発生させることで通常のスプレイ手段によるスプレイ粒子より更に小さい10マイクロメートル以下、さらにはサブミクロン以下の超微粒子を直接またはキャリヤガス等で移送し静電気、磁力、結露、真空下に導くなどの少ななくとも一つの付加手段を選択して対象物に連続的にまたはパルス的に分散塗布、一つまたは複数種の液状流体を薄膜積層、あるいは成膜をする方法を採用しても良い。対象物には予め固形分を含む液体や、粉体などが塗布されていて良く、成膜していても良い。スプレイやキャリヤガスでの移動はパルス的に行うことで特に凹凸部の対象物への塗着はより効率的に行える。特に本発明では粒子や短繊維を含むディスパージョンやスラリーのハンドリングと塗布に効果的であるので燃料電池、全固体電池を含む蓄電池、キャパシター、太陽電池等の電極形成に効果を発揮できる。或いは本発明にはエアレススプレイノズルから液圧200乃至600kPa程度の比較的低圧でスプレイすることで所望する液膜を形成して液膜を対象物に塗布するマイクロカーテンコートも含まれる。またインクジェットやディスペンサーノズルで点状あるいは細長い線状のビード塗布をしても良くそれに圧縮気体を吹き付け更に微細粒子にして塗布しても良い。連続または間欠的に相対移動する対象物への連続または間欠の所望するパターンの面塗布を行うスロットノズルは高速の処理が可能である。
更に本発明者は一種または複数種の液状流体を用いて複数の吐出口を備えたスロットノズルまたは複数のスロットノズルで積層塗布する方法、更にはスロットノズルと粒子施与装置を組み合わせた積層塗布方法は電池の電極形成例えば燃料電池、キャパシター、蓄電池や太陽電池などの電極形成更には全固体電池の電解質層形成にも好適に使用できる。
The ejection method of the present invention includes ejection methods such as slot nozzles and sprays, and coating methods, and includes granulation, encapsulation, and the like. Moreover, the application means and the object are not limited. Therefore, it can be applied to a wide range of fields, such as pharmaceuticals, foods, fertilizers, chemicals, semiconductors, electronics, and energy fields, as well as to manufacturing methods for such products.
Liquid fluids include paraffin waxes, hot-melt resins, and adhesives that are solid at room temperature or pastes that melt into liquids when heated.Moisture-curing type polyurethane hot-melt (PUR) systems, etc. In the present invention, any material that contains a resin that reacts with , and is in a liquid state at the time of application, such as a melted material such as a low-viscosity, low-melting metal, can be suitably used in the present invention. In that case, it is necessary to heat at least the portion where the hot melt comes into contact. Hereinafter, in the present invention, a material that can flow and be discharged during discharge, including a melt, is treated as a liquid fluid. The means for ejecting or applying the liquid or the like of the present invention includes a slot nozzle, and ejects or ejects desired droplets from a nozzle or the like, which is an ejection port of the liquid, such as an inkjet or a dispenser, and granulates drugs, foods, fertilizers, and the like. It may be attached to the object including ejection such as spray for encapsulation. The present invention also includes a spray-drying method such as a method of trapping spray particles falling into a fluidized bed of an air-powder mixture in a full-size bed that blows hot air or the like. Particles are generated by inkjets, dispensers, methods and devices that spray droplets of these droplets with ultrasonic waves, compressed air or inert gas, etc. to make them finer, airless sprays, two-fluid sprays, rotary atomization methods, etc. It does not matter what means of transformation. In addition to the above, coating devices include multi-spray nozzles such as meltblown sprays, multi-head sprays, and slit nozzles, regardless of whether they are continuous sprays or pulsed sprays. Furthermore, the present inventors can also use a method in which fine particles are generated by a fine particle generator and moved by a carrier gas or the like to be applied, and the fine particles can be wet or dried and conveyed inside a pipe or the like. The fine particles can be electrostatically charged regardless of whether wet or dry, and can be applied locally or over a wide area to an object such as an object to be coated. Furthermore, it can be applied or formed into a film by introducing it into a vacuum and colliding it with an object. Alternatively, dispersion coating can be performed in which the particles are sparsely distributed in a plane. Furthermore, if wet fine particles are combined on an object and laminated as necessary to form a planar thin film, high-speed production can be achieved. The present inventor collides a spray flow against a rotating object such as a belt or a roll at a close distance, or generates ultrafine particles by bubbling or the like. Submicron or less ultrafine particles are transported directly or by carrier gas, etc., and selected at least one additional means such as static electricity, magnetic force, dew condensation, or guiding under vacuum, and continuously or pulse-dispersed coating on the object. Alternatively, a method of laminating a thin film or forming a film using one or more types of liquid fluids may be employed. The object may be coated in advance with liquid containing solid content, powder, or the like, or may be formed into a film. By performing the movement of the spray or the carrier gas in a pulsing manner, it is possible to more efficiently coat the uneven part of the object, in particular. In particular, the present invention is effective in handling and applying dispersions and slurries containing particles and short fibers, and is therefore effective in forming electrodes for fuel cells, storage batteries including all-solid-state batteries, capacitors, solar cells, and the like. Alternatively, the present invention also includes micro-curtain coating in which a desired liquid film is formed by spraying from an airless spray nozzle at a relatively low pressure of about 200 to 600 kPa, and the liquid film is applied to an object. In addition, dot-like or elongated line-like bead coating may be performed by an ink jet or a dispenser nozzle, and compressed gas may be sprayed onto the bead to further fine particles for coating. A slot nozzle for performing continuous or intermittent surface coating of a desired pattern on an object that moves continuously or intermittently is capable of high-speed processing.
Furthermore, the present inventors have proposed a lamination coating method using a slot nozzle having a plurality of discharge ports or a plurality of slot nozzles using one or more kinds of liquid fluids, and a lamination coating method combining a slot nozzle and a particle applicator. can be suitably used for electrode formation of batteries, for example, electrode formation of fuel cells, capacitors, storage batteries, solar cells, and the like, and electrolyte layer formation of all-solid-state batteries.
 本発明はこれらの抱える課題を解決できるので、電極形成時にスラリーやディスパージョン等を塗布する燃料電池の電極形成、蓄電池やキャパシターの電極形成、太陽電池の電極形成等の品質管理に特に効果的である。本方法によれば粘度がせん断力の高低でまたは経時的に変化する固形粒子や短繊維を含むスラリーやディスパージョン等の安定する塗布タイミングを管理し安定した塗布量を確保することができる。
あるいは本発明の方法によれば樹脂分を含む液体を加温して粘度を下げる、あるいは加熱して液状に流動する加熱溶融体等の流路を含めたシステム接液部の粘度を管理し、特に吐出または塗布する時点で粘度を安定させることもできる。また本発明では対象物に施与して目的物を完成するための製造方法として更には目的物まで対象とする。例えば電極スラリーを塗布して電極形成などにより製造した成果物である燃料電池や二次電池などの蓄電池、キャパシター、太陽電池等を含み、さらにはそれらの製造方法に効力を発揮できる。尚本発明の吐出方法はスロットノズルやスプレイ等の噴出方法を含み、造粒やカプセル化などの粒子の少なくとも部分被覆を含む。また塗布手段や対象物を限定するものでない。そのため広範囲な分野、例えば医薬品、食品、肥料、ケミカル、半導体、エレクトロニクス、エネルギー分野等の広範囲な製品や、製品の製造方法に応用できる。
Since the present invention can solve these problems, it is particularly effective for quality control of the electrode formation of fuel cells, the electrode formation of storage batteries and capacitors, the electrode formation of solar cells, etc., in which slurry, dispersion, etc. are applied during electrode formation. be. According to this method, stable application timing can be controlled and a stable application amount can be ensured for a slurry or dispersion containing solid particles or short fibers whose viscosity changes with the level of shear force or with time.
Alternatively, according to the method of the present invention, the viscosity of the liquid containing the resin is heated to lower the viscosity, or the viscosity of the wetted part of the system including the flow path of the heated melt that flows in a liquid state by heating is controlled, In particular, the viscosity can be stabilized at the time of ejection or application. Further, in the present invention, the object is the object as well as the production method for completing the object by applying it to the object. For example, it includes a fuel cell, a storage battery such as a secondary battery, a capacitor, a solar cell, etc., which are products manufactured by applying an electrode slurry to form an electrode, etc., and furthermore, it is effective in manufacturing methods thereof. The discharge method of the present invention includes ejection methods such as slot nozzles and sprays, and includes at least partial coating of particles such as granulation and encapsulation. Moreover, the application means and the object are not limited. Therefore, it can be applied to a wide range of fields, such as pharmaceuticals, foods, fertilizers, chemicals, semiconductors, electronics, and energy fields, as well as to manufacturing methods for such products.
 また本発明者は安価な空気や不活性ガスの領域である窒素ガス更には特に硫化物系電解質を用いた全固体電池用電極用スラリーや電解質層用スラリーには必須の極低湿度例えば露点マイナス90℃程度までの空気を含むガス流体アルゴンガス、窒素ガス或いは他のガスと混合したアルゴンガス、それ等と混合しフォーム化しスロットノズルやスプレイで塗布することができる。フォーム化して塗布する、しないに係わらず本発明者は必要によりスロットノズルとスプレイなどとを組み合わせて所望する燃料電池や蓄電池などに応用でき特に燃料電池の電極の部位に微細な所望するポーラスを形成できる。この方法は性能向上と生産スピード向上を兼ね備えた燃料電池の電極形成に特に効果的である。もちろんフォーム化して施与する手段として他の方法例えばスプレイなども本発明では選択できる。特にフォーム化することは塗膜のポーラス形成だけでなく燃料電池、蓄電池、スーパーキャパシターなどの電極などのスラリーの沈殿防止、分散サポートに効果的でありスラリー内超微粒子の分散に特に効果的である。蓄電池特に全固体電池の電解質層や電極には硫化物系の電解質粒子を用いたスラリーをフォーム化させる場合は除湿空気、除湿窒素ガス、除湿アルゴンガス等を選択すべきである。 In addition, the present inventors have found that nitrogen gas, which is in the region of inexpensive air and inert gases, and especially the extremely low humidity, such as negative dew point, that is essential for all-solid battery electrode slurry and electrolyte layer slurry using sulfide-based electrolytes. A gas fluid containing air up to about 90° C., argon gas, nitrogen gas, or argon gas mixed with other gases can be mixed with these to form a foam and applied using a slot nozzle or spray. Regardless of whether foaming is applied or not, the present inventors can combine slot nozzles and sprays as necessary to apply to desired fuel cells and storage batteries. can. This method is particularly effective in forming electrodes for fuel cells, which has both improved performance and improved production speed. Of course, other methods, such as spraying, can also be selected in the present invention as means for forming and applying. In particular, foaming is effective not only for forming a porous coating film, but also for preventing sedimentation and supporting dispersion of slurries such as electrodes of fuel cells, storage batteries, supercapacitors, etc., and is particularly effective for dispersing ultrafine particles in the slurry. . Dehumidified air, dehumidified nitrogen gas, dehumidified argon gas, etc. should be selected when foaming slurry using sulfide-based electrolyte particles for the electrolyte layer and electrodes of storage batteries, particularly all-solid-state batteries.
 また前記のように燃料電池電極触媒などの貴重なかつ高価な材料の無駄を図るため例えば電極触媒スラリーの接液流路の体積を可能な限り小さくまた生産ラインであっても最低必要量を小出しに充填する方法が望まれていた。そのため特に燃料電池などの使用後の廃棄量を少なくするためPTFEやPFA或いはステンレススティールなどの流路の内径は6mm以下、更には4mm以下、スラリー等の液状材料の粘度が50mPa・s程度の場合は2mm程度でも良く,長さも可能な限り短く例えば300mmあるいは2mにするなど最低限の長さにすることが肝要である。R to R生産装置あってもタンクなどの容器の内容積が仮に10リットル以上であっても形状、特に容器底部を鋭角例えば60度以下更には30度以下にシャープな円錐構造にしてその先の円筒部は細く長くして最終的に少量の液体でも流路を移動または循環しながら吐出することができるようにすることが肝要である。 In addition, as described above, in order to waste valuable and expensive materials such as fuel cell electrode catalysts, for example, the volume of the liquid contacting flow path of the electrode catalyst slurry is made as small as possible, and even in the production line, the minimum required amount is small. A filling method was desired. Therefore, in order to reduce the amount of waste after use of fuel cells, etc., the inner diameter of the flow path such as PTFE, PFA, or stainless steel is 6 mm or less, or even 4 mm or less, and the viscosity of the liquid material such as slurry is about 50 mPa s. may be about 2 mm, and it is important to make the length as short as possible, such as 300 mm or 2 m. Even if there is an R to R production equipment, even if the internal volume of a container such as a tank is 10 liters or more, the shape, especially the bottom of the container, should be a sharp conical structure with an acute angle of 60 degrees or less, or even 30 degrees or less. It is important to make the cylindrical part thin and long so that even a small amount of liquid can be finally discharged while moving or circulating in the channel.
 そのため本発明では二つの容器の例えば燃料電池の触媒インクの残留量を大型容器であっても100ml以下にして、小型容器例えば70mlシリンジの場合でも残留量を5ml以下にしても生産できる。更に本発明では少量のスラリー残留分を溶媒で更に希釈してスラリーが沈降しないように容器間を移動させながら余裕を持って塗布し触媒をほぼ使い切ることができる。 Therefore, in the present invention, the remaining amount of catalyst ink in two containers, for example, a fuel cell, can be reduced to 100 ml or less even in a large container, and even in the case of a small container, such as a 70 ml syringe, the residual amount can be reduced to 5 ml or less. Furthermore, in the present invention, a small amount of residual slurry can be further diluted with a solvent and applied while moving between containers so that the slurry does not settle, and the catalyst can be almost used up.
 前述のようにリチウムイオン電池など二次電池である蓄電池などのバインダーはフッ化ビニリデン(PVDF)が多く使用されそれを溶解させるにはノルマルメチルピロリドン(NMP)やDMFなど限られた高沸点溶媒のみになる。そのため電極スラリーなどの塗布後の乾燥時間が長くなり厚膜を形成するとクラックが発生するなどの問題があった。本発明ではバインダーを活物質粒子等に薄膜でカプセル化させる、あるいは部分的に微量に付着させて造粒することができる。この方法で造粒した活物質や電解質粒子等はパウダーとしてでもハンドリングし塗布することができる。塗布は本発明者が発明し権利を有する特許第6328104号、特許第6481154号が便利である。 パウダーとして塗布する場合塗布後は加熱プレスで造膜できる。
更に本発明では比較的低沸点で蒸発スピードの速い例えばノルマルヘプタンなどの溶媒を加えてスラリーとしてまたは導電助剤など所望する材料を付加してスラリーにして塗布し乾燥時間を速く所望する膜厚にすることができる。
As mentioned above, vinylidene fluoride (PVDF) is often used as a binder for storage batteries, which are secondary batteries such as lithium ion batteries, and only limited high boiling point solvents such as normal methylpyrrolidone (NMP) and DMF can be used to dissolve it. become. As a result, the drying time after application of the electrode slurry or the like becomes long, and when a thick film is formed, cracks occur. In the present invention, the binder can be encapsulated in a thin film in the active material particles or the like, or can be partially adhered in a minute amount and granulated. The active material, electrolyte particles and the like granulated by this method can be handled and applied even as powder. For the application, it is convenient to use Japanese Patent No. 6328104 and Japanese Patent No. 6481154 which the present inventor invented and has the right to apply. When applied as a powder, a film can be formed by a hot press after application.
Furthermore, in the present invention, a solvent such as normal heptane having a relatively low boiling point and a high evaporation speed is added to form a slurry, or a desired material such as a conductive aid is added to form a slurry, which is coated and dried quickly to achieve a desired film thickness. can do.
 PVDFなどに対する低沸点の特に貧溶媒であるノルマルヘプタンなどは別の自動開閉吐出装置の出口をスラリー吐出装置またはノズルに連結し混合部を少ないキャビティーにしてまたは空中で瞬間的に衝突混合分散して塗布することができる。
本発明者はいずれの方式も採用でき燃料電池のオリジナル電極スラリーに溶媒を付加して低固形分にする場合の触媒電極インクのシェルフライフを延ばしたい課題を解決できる方法としても活用できる。また後者はNMP等限られた沸点の高い溶媒でしか溶解できないPVDF等のバインダーを使用する蓄電池全般、特に全固体電池の電極形成や電解質層への形成にNMP等の共沸目的でPVDFの貧溶媒であるノルマルヘプタンなどを好適に使用しスラリー全体の蒸発速度を上げることができる。
更に対象物を加熱し薄膜積層することでスラリーのドライ形成を密にすばやくできるので所望する電極形成などができる。
また活物質等とバインダー微粒子を前記パウダー積層のごとく別々のハンドリング装置で薄膜積層できるし別々のスラリーにしてまたは混合してスラリーにして所望する電極を形成することができる。更に活物質粒子と微量のバインダー溶液を付加したスラリーに適量の微粒子バインダーを付加して凝集力の小さいスラリーにして塗布することもできる。
For n-heptane, which is a particularly poor solvent with a low boiling point for PVDF, etc., the outlet of another automatic opening and closing discharge device is connected to the slurry discharge device or nozzle to make the mixing part a small cavity or to instantaneously mix and disperse in the air. can be applied.
Either method can be adopted by the present inventors, and it can also be used as a method that can solve the problem of extending the shelf life of the catalyst electrode ink when adding a solvent to the original electrode slurry of the fuel cell to reduce the solid content. In addition, the latter is used for storage batteries in general that use binders such as PVDF, which can only be dissolved in solvents with a limited high boiling point such as NMP, especially for the electrode formation of all-solid-state batteries and the formation of electrolyte layers. A solvent such as normal heptane can be preferably used to increase the evaporation rate of the entire slurry.
Furthermore, by heating the object and laminating thin films, the dry formation of the slurry can be done densely and quickly, so that the desired electrodes can be formed.
In addition, the active material and the fine binder particles can be thin-layered by separate handling devices as in the case of powder lamination, and the desired electrodes can be formed by making separate slurries or by mixing them into slurries. Furthermore, it is also possible to add a suitable amount of fine particle binder to a slurry containing active material particles and a small amount of binder solution to prepare a slurry having a low cohesive force and apply the slurry.
 本発明ではより良いスラリーの分散をするため簡易的な流路に設置した分散装置やスタティックミキサーなどによる分散ができる。分散装置を限定しないが例えば300メッシュ程度までのSUS製などの網(スクリーン)を単数または複数流路に設けスラリー等を移動または循環して通過させることでスラリー等内の凝集体を分断し理想的な分散が簡易にできる。分散はスタティックミキサーで良くモーター等の動力による撹拌等で行うダイナミックミキサーによる混合分散でも良い。また本発明者の発明による例えば特開昭63-242332, 特開昭63-248423, 特開昭63-278534, 特開昭63-296859、 特開平01-067232などに開示されている衝突混合あるいは衝突分散を主体にした分散方法を使用すると装置そのものを小型または超小型にすることができる。 In the present invention, in order to disperse the slurry better, it is possible to disperse with a dispersing device installed in a simple flow path, a static mixer, or the like. Although the dispersion device is not limited, for example, a net (screen) made of SUS of up to about 300 mesh is provided in one or more channels, and the slurry, etc. is moved or circulated and passed through it to break up aggregates in the slurry, etc. Ideally. can be distributed easily. Dispersion may be carried out by a static mixer, or by mixing and dispersing by a dynamic mixer which stirs by power such as a motor. Further, according to the invention of the present inventor, for example, collisional mixing or The device itself can be made small or very small by using a dispersion method based on collision dispersion.
 このような小型の装置は吐出装置(ヘッド)やノズル等装置の先端部で固形分を低くさせる方法に効果的で燃料電池の電極スラリーのスプレイ等の吐出時溶媒や溶媒リッチの流体を混合して或いは圧縮気体に混合してスプレイすることができる。更に蓄電池の電極スラリーの塗布前にNMP等の新溶媒より沸点が低いノルマルヘプタンを先端で混合してまたは圧縮気体に混合してスプレイなどができる。粘度が100mPa・s以下の燃料電池用電極触媒スラリーの場合でスラリー圧を150KPa以下程度で流量を1000ml/分程度以下にすると、前記のように300メッシュ程度までのSUSなどの金網を少なくとも1枚、必要により上流から下流へ複数枚、順に開口を小さく線径を細くしてスラリーを少なくとも1回乃至複数回移動または循環させることで大きな凝集物を細分化できる特徴がある。濾過面積は1乃至100平方センチメートル程度で良く金網の下流に補強のためのパンチングメタルを1枚セットするだけで簡便なフィルター兼分散装置とすることができる。 Such a small device is effective in reducing the solid content at the tip of the device such as the discharge device (head) or nozzle, and mixes solvent or solvent-rich fluid during discharge such as electrode slurry spray of fuel cells. It can be sprayed on its own or mixed with a compressed gas. Furthermore, normal heptane, which has a lower boiling point than a new solvent such as NMP, can be mixed at the tip or mixed with compressed gas and sprayed before applying the electrode slurry of the storage battery. In the case of a fuel cell electrode catalyst slurry with a viscosity of 100 mPa s or less, if the slurry pressure is about 150 KPa or less and the flow rate is about 1000 ml/min or less, at least one sheet of wire mesh such as SUS with up to about 300 mesh is used as described above. If necessary, a large aggregate can be finely divided by moving or circulating the slurry at least once or multiple times with a plurality of sheets from upstream to downstream, sequentially decreasing the opening and decreasing the wire diameter. A filtration area of about 1 to 100 square centimeters is sufficient, and a simple filter and dispersing device can be obtained by simply setting a sheet of punching metal for reinforcement downstream of the wire mesh.
 本発明では通常小型容器や容器は50ml乃至15リットル程度が望ましい。もちろんのこと15リットル以上でもよく50ml以下でも20ml以下でも良い。
容器が200mlを超え、粘度が500mPa・s以下の場合は塗布ヘッドへのPFAチューブなどの配管の平均内径を例えば4mm以下好ましくは2.5mm以下にしてスラリーなどの流速を上げても良い。それとは別に容器間の流路は装置の構造上長くても例えば6メートルでも良いが、可能なら至近距離にし、たとえが1メートル以内特に小型容器の場合好ましくは300mm以内で良い。 少なくとも一つの容器内への液体の充填量が特に2リットルを超える場合2つの容器間を平均内径4mm以上のチューブ、容器内の液体充填量が5リットルを超えるような場合、好ましくは内径が6mm以上のチューブなどの配管でつなぎタンク内のスラリーの大量移動を行いスラリーの沈殿を防ぎ、スラリーのせん断力により粘度を短時間で低下させ、粘度幅が所望する安定した領域で塗布作業ができるようにすることが肝要である。容器内のスラリーはプロペラなどの撹拌装置で撹拌しても良い。これらのチューブ配管は吐出装置の配管とは別に大きな内径にでき、また吐出装置などへのチューブ配管等は1本でもよく、より小径の複数の配管手段でも良い。合流部を衝突分散できる構造にしても良い。また経路内に他の分散手段や流量調整手段を設けても良い。
In the present invention, it is generally desirable that the small container or container has a volume of 50 ml to 15 liters. Of course, it may be 15 liters or more, and may be 50 ml or less or 20 ml or less.
When the volume of the container exceeds 200 ml and the viscosity is 500 mPa·s or less, the flow velocity of the slurry or the like may be increased by setting the average inner diameter of the piping such as the PFA tube to the coating head to 4 mm or less, preferably 2.5 mm or less. Apart from that, the channel between the containers may be as long as 6 meters, for example, due to the structure of the device, but if possible, it should be as close as possible, preferably within 1 meter, especially within 300 mm for small containers. If the liquid filling volume in at least one container exceeds 2 liters, a tube with an average inner diameter of at least 4 mm between the two containers, preferably with an inner diameter of 6 mm, if the liquid filling volume in the container exceeds 5 liters. A large amount of slurry in the connecting tank is moved by piping such as the above tubes to prevent precipitation of the slurry, and the viscosity of the slurry is reduced in a short time by the shear force of the slurry, so that the coating work can be performed in a stable range where the viscosity width is desired. It is important to The slurry in the container may be stirred with a stirring device such as a propeller. These tubes can have a large inner diameter separately from the piping of the discharge device, and the tube piping to the discharge device or the like may be one, or a plurality of smaller diameter piping means may be used. The confluence portion may have a structure capable of dispersing collisions. Also, other dispersing means or flow rate adjusting means may be provided in the path.
 更に吐出装置などへの流路は特に限定しないが流路であるチューブ等の配管等に設置した分散装置を取り外しクリーニングする場合等を考慮して容器上部からで良く、前記のように容器内の液体の移動量を多くする流路は容器上部、下部を限定しないで別途設けることができる。容器間の流路は単数でも複数にしてもよく、一つの流路を更に分岐して複数にしても良い。また流路は小径の場合は短くしても良く、平均直径は吐出装置等に設けた流路より大きく例えば2倍あるいは3倍にして良いし流路の途中に流量調整手段を設けることもできる。 Furthermore, the flow path to the discharge device is not particularly limited, but it may be from the top of the container in consideration of the case of removing and cleaning the dispersing device installed in the pipe such as a tube that is the flow path. A channel for increasing the amount of movement of the liquid can be separately provided without being limited to the upper portion and the lower portion of the container. A single channel or a plurality of channels may be provided between containers, and one channel may be further branched to form a plurality of channels. Also, if the diameter of the flow path is small, it may be shortened, and the average diameter may be larger than that of the flow path provided in the discharge device, for example, twice or three times. .
 本発明では二つ以上の容器はそれ以上でも良く、吐出装置も二つ以上で良い。さらに液状流体を複数の異種の液状流体にして循環などのシステムを複数にして使用することができる。その特徴を生かして本発明を使用するあるいは否かに係わらず本発明者は異種の材料を所望する電極構造になるように積層できるし例えば薄膜で交互に積層して所望する混合分散塗布ができる。あるいは異種の液状流体を吐出ヘッドの下流で混合し吐出できるし、ノズル内部或いは外部で衝突混合させながら塗布することもできる。そのため例えば燃料電池電極の構造をアイオノマー比率や白金などの触媒の担持量比率の違う複数の層にすることができる。例えば転写フィルムの電極界面あるいは表面のみナフィオンなどのアイオノマーの比率を内部のポーラス構造体より多くすることができるので熱圧着転写方式でさえ密着性を高め高速生産で性能を高めることができる。また例えば全固体電池では活物質と電解質の比率を変えながら連続的または段階的に積層する傾斜方式を正確に容易に行うことができる。蓄電池の例えば活物質と導電助剤を別々の循環システム等を使用し均一に混合分散塗布することもできる。 In the present invention, two or more containers may be used, and two or more discharge devices may be used. Furthermore, it is possible to use a plurality of systems such as circulation by using a plurality of liquid fluids of different types. Whether or not the present invention is used to take advantage of this feature, the present inventors are able to stack different materials to form a desired electrode structure, for example, alternately layering thin films to achieve a desired mixed and dispersed application. . Alternatively, different types of liquid fluids can be mixed downstream of the ejection head and ejected, or can be applied while being impinged and mixed inside or outside the nozzle. Therefore, for example, the structure of the fuel cell electrode can be made up of a plurality of layers having different ionomer ratios and catalyst loading ratios such as platinum. For example, it is possible to increase the ratio of ionomer such as Nafion only on the electrode interface or surface of the transfer film compared to the internal porous structure, so that even the thermocompression transfer method can improve adhesion and improve performance in high-speed production. Further, for example, in an all-solid-state battery, it is possible to accurately and easily perform a tilting method in which layers are laminated continuously or stepwise while changing the ratio of the active material and the electrolyte. For example, the active material and the conductive agent of the storage battery can be uniformly mixed and dispersed by using separate circulation systems or the like.
 以上を要約すると液体の流路や容器内のスピードを高めて液体の分散を良くし、また更に容器内のスラリーなどの液体の沈降を防ぐために吐出装置などの流路より流量の多い、好ましくは直径が大きいまたは長さが短いチューブなどの配管を設置することによりスラリーなどの液体の単位時間当たりの流量を高めて分散を良くすることができる。液状流体の粘度が低く例えば100mPa・s以下で液状流体の圧力が比較的高い例えば150KPa以上の場合のチューブ内径は6mm以下更には4mm以下で良い。1.5mmでも良い。容器間を例えば1m以内に近づけることでチューブ内径は小さくできて燃料電池電極スラリーなどの最終的廃液量を少なくできることにつながる。 To summarize the above, in order to improve the dispersion of the liquid by increasing the speed in the liquid flow path and the container, and furthermore, to prevent the sedimentation of the liquid such as slurry in the container, the flow rate is higher than that of the flow path such as the discharge device, preferably By installing a pipe such as a tube with a large diameter or a short length, the flow rate per unit time of a liquid such as slurry can be increased and dispersion can be improved. When the viscosity of the liquid fluid is low, eg, 100 mPa·s or less, and the pressure of the liquid fluid is relatively high, eg, 150 KPa or more, the inner diameter of the tube may be 6 mm or less, or 4 mm or less. 1.5 mm may be sufficient. By reducing the distance between the containers, for example, within 1 m, the inner diameter of the tube can be reduced, leading to a reduction in the amount of final waste liquid such as fuel cell electrode slurry.
 上記のように例えば医薬研究用材料、燃料電池の電極スラリー、蓄電池である次世代二次電池の例えば全固電池電極のスラリー等の実験装置用の微量な材料ハンドリングから、それぞれの生産用の大量のスラリー等のハンドリングができ安定した粘度で吐出や塗布等ができるので高性能で高品質な製品を製造できる。つまり特にスラリーなどの単位時間当たりの移動重量変化または単位重量当たりの時間の変化量を確認して動粘度の見える化を図り、それらを計測しながら安定した領域で塗布等の作業ができることになる。更に本来の目的であるスラリーの粒子の沈降を確実に防止できる。また本発明は経時的な装置内の粘度変化だけでなく泡のかみ込みや充填するスラリーの泡の混入もチェックできることになる。 As described above, for example, materials for medical research, electrode slurries for fuel cells, next-generation secondary batteries that are storage batteries, such as all-solid battery electrode slurries, etc. It is possible to handle slurries, etc., and discharge and apply with stable viscosity, so high-performance and high-quality products can be manufactured. In other words, it is possible to visualize the kinematic viscosity by confirming the change in the moving weight per unit time or the amount of change in time per unit weight, especially slurry, etc., and can perform the work such as coating in a stable area while measuring them. . Furthermore, sedimentation of slurry particles, which is the original purpose, can be reliably prevented. In addition, the present invention makes it possible to check not only changes in viscosity in the apparatus over time but also entrapment of bubbles and inclusion of bubbles in the slurry to be filled.
本発明の実施の形態に係る少なくとも二つの容器間の吐出装置に連通する液体流路と重量計測が装着された容器とシステムの略断面図である。1 is a schematic cross-sectional view of a container and system fitted with a liquid flow path and weight measurement communicating with a dispensing device between at least two containers according to an embodiment of the invention; FIG. 本発明の実施の形態に係る液面上限と下面レベルを重量測定により管理する略図の断面図である。FIG. 4 is a schematic cross-sectional view of managing the upper limit and the lower surface level by weight measurement according to the embodiment of the present invention. 本発明の実施の形態に係る液状流体をピストン(プランジャー)を介して圧縮ガスで加圧する略断面図である。1 is a schematic cross-sectional view of pressurizing a liquid fluid with a compressed gas via a piston (plunger) according to an embodiment of the present invention; FIG. 本発明の実地の形態に係る静的粘度から動的粘度に変化するスラリー特有の粘度挙動の様を粘度とせん断力の関係を表した表である。1 is a table showing the relationship between viscosity and shear force, showing the viscosity behavior peculiar to slurry that changes from static viscosity to dynamic viscosity according to the embodiment of the present invention. 本発明の実施の形態に係る二つの容器の上部を経由して連結する吐出装置用流路とは別に移動流量を増やすために設けた流路の略断面図である。FIG. 5 is a schematic cross-sectional view of a flow path provided for increasing the flow rate of movement separately from the discharge device flow path that connects via the upper portions of the two containers according to the embodiment of the present invention. 本発明の実施の形態に係る吐出用流路とポンプで移動する流路で循環回路を形成し更に移動量を増やす別の流路を形成した略断面図である。FIG. 4 is a schematic cross-sectional view of forming a circulation circuit with a discharge channel and a channel moved by a pump according to the embodiment of the present invention, and forming another channel for further increasing the amount of movement.
 以下図面を参照して本発明の好適な実施形態について説明する。尚、以下の実施形態は発明の理解を容易にするための一例にすぎず、本発明の技術的思想を逸脱しない範囲において当業者により実施可能な付加、置換、変形等を施すことを排除するものではない。 A preferred embodiment of the present invention will be described below with reference to the drawings. It should be noted that the following embodiments are merely examples for facilitating understanding of the invention, and exclude additions, replacements, modifications, etc. that can be implemented by those skilled in the art without departing from the technical idea of the invention. not a thing
 図面は本発明の好適な実施の形態を機略的に示している。 The drawings schematically show preferred embodiments of the present invention.
 図1において第一の容器1は液状流体流路7でつながっている吐出装置8を経由し更に液状流体流路7‘を経由して第二の容器2につながっている。第一、第二の容器の上部から圧搾エアや窒素ガスやアルゴンガス等の圧縮気体用レギュレーター103、104、自動切り替えバルブ101、102を経由してそれぞれの容器につながっている。容器1、2は支柱9、9’で固定され重量計(秤)5、6で液状流体3、4または液状流体を含む容器全体の総重量を計測できる。重量計は安価なロードセルを採用して所望する形状の測定装置にして良い。
それぞれの容器内の予め設定した所望する液状流体の重量で液状流体の容器間の移動の切り替えが行える。容器の下部の錐の角度が鋭角な形状ほど、あるいは細く長い形状ほど、更には液状流体流路の径が細く短いほど作業終了後廃棄する液状流体を少なくでき特に高価な白金等を使用する燃料電池触媒スラリー等に効果的である。
本発明では液状流体流路に残ったスラリーに溶媒を充填し所望する固形分に希釈し流路を移動して分散して対象物に塗布し流路内の高価な触媒をほぼ使い切ることができる。また凝集体をろ過したり更には凝集体を細分化する図示していなスクリーンを少なくとも一つ設置できる。スラリーの場合スクリーンは例えば市販の300メッシュ以下で選択するか複数、あるいは複数のメッシュ違いのスクリーンを直列に設置できる。更には液状流体の移動方向のスクリーンの後にパンチングメタルなどの補強材を設けることができる。図示していないスクリーンを経由して移動または循環を繰り返すことでメッシュは安価な分散装置として利用できることになる。また液状流体流路には図示していない別の市販の分散装置を設けることもできるしタンク内に例えば図示しない回転羽根等の撹拌装置を取り付けタンク内でのスラリーの沈降防止や良好な分散を維持できる。
In FIG. 1, a first container 1 is connected to a second container 2 via a discharge device 8 which is connected by a liquid fluid channel 7 and further via a liquid fluid channel 7'. The upper portions of the first and second containers are connected to the respective containers via regulators 103 and 104 for compressed gas such as compressed air, nitrogen gas and argon gas, and automatic switching valves 101 and 102 . The containers 1 and 2 are fixed by struts 9 and 9', and weight scales (scales) 5 and 6 can measure the total weight of the liquid fluids 3 and 4 or the total weight of the container containing the liquid fluid. The weighing scale may employ an inexpensive load cell to form the desired shape of the measuring device.
The transfer of liquid fluid between containers can be switched at a preset desired weight of liquid fluid in each container. The sharper the angle of the cone at the bottom of the container, the thinner and longer the shape, and the thinner and shorter the diameter of the liquid fluid channel, the less liquid fluid can be discarded after the end of the work. Effective for cell catalyst slurry and the like.
In the present invention, the slurry remaining in the liquid fluid channel is filled with a solvent, diluted to a desired solid content, moved through the channel, dispersed, and applied to an object, so that the expensive catalyst in the channel can be almost completely used up. . Also, at least one screen (not shown) can be installed to filter the aggregates or to further break up the aggregates. In the case of slurry, the screen can be selected from commercially available screens of 300 mesh or less, or a plurality of screens with different meshes can be installed in series. Further, a reinforcing material such as punching metal can be provided after the screen in the moving direction of the liquid fluid. By repeating movement or circulation through a screen (not shown), the mesh can be used as an inexpensive dispersing device. In addition, another commercially available dispersing device (not shown) can be installed in the liquid fluid flow path, and a stirring device such as a rotating blade (not shown) is installed in the tank to prevent the slurry from settling in the tank and to disperse it well. can be maintained.
 図2において容器21の液状流体23の移動切り替えのために容器内の少なくとも上限260と下限261の重量を予め設定することができる。上限の位置では別の容器等からの液状流体の移動は停止する。一方下限では別の容器からの移動を開始できるしまたは図示しない液状流体の供給手段から充填することもできる。また切り替え制御を細かくするため上限と下限の間またはその範囲外に所望する位置のスラリーの移動等を制御するために少なくとも一つの重量レベル検知手段を設けても良く、その場合上限下限等は緊急制御手段としても良い。 In FIG. 2, at least an upper limit 260 and a lower limit 261 weight in the container can be set in advance for switching the movement of the liquid fluid 23 in the container 21 . At the upper limit position, movement of liquid fluid from another container or the like stops. On the other hand, at the lower limit it is possible to initiate transfer from another container or to fill from a liquid fluid supply means (not shown). At least one weight level detection means may be provided to control the movement of the slurry to a desired position between the upper and lower limits or outside the range in order to fine-tune the switching control. It may be used as control means.
 図3において容器31の液状物質33と圧縮気体315の間にピストン(またはプランジャー)310を設けている。特に圧縮気体がアルゴン等の不活性ガスでない安価な窒素ガスや圧縮エアを使用する場合便利である。液状流体が低粘度例えば100mPa・s程度以下の場合ピストン(プランジャー)のシールを良くする必要がある。そのため容器内壁の表面仕上げを良くし摺動部の直径の精度、特に真円度を高める必要がある。ピストンのシール部は耐薬品性フッ素系ゴムやPTFE等のシール部材を特にピストン外部に設けシール性を高め摺動抵抗を低くすることが肝要である。また容器の内側もPTFEやPFAなどやフッ素系材質やセラミック材あるいはそれらの処理が好ましい。更に液状流体に気体を混入させてタンクや流路を循環させて液状流体をフォーム化する際二つのタンクとも前記ピストンとで密閉タイプにしタンク内のフォームの膨張を解消できる。特にフォーム化した液状流体のピストン(プランジャー)加圧手段はサーボモーター等の電動による加圧でも良い。もちろんのこと液状流体はピストン等を設けず直接圧縮気体で液面を加圧できる。圧縮気体の調圧バルブは応答スピードが速く追従性に優れる微細なリリーフ構造をもつ精度の高い調圧機構の製品を使用する必要がある。精度の高い液圧を維持するため例えばフェアチャイルド社の空圧レギュレーターが好ましく使用できる。 A piston (or plunger) 310 is provided between the liquid substance 33 of the container 31 and the compressed gas 315 in FIG. This is particularly convenient when the compressed gas is nitrogen gas or compressed air, which is not an inert gas such as argon. If the liquid fluid has a low viscosity, for example, less than 100 mPa·s, the piston (plunger) must be well sealed. Therefore, it is necessary to improve the surface finish of the inner wall of the container to improve the precision of the diameter of the sliding portion, especially the roundness. As for the sealing portion of the piston, it is essential to provide a sealing member such as chemical-resistant fluororubber, PTFE, or the like, particularly outside the piston, to improve sealing performance and reduce sliding resistance. Also, the inside of the container is preferably made of PTFE, PFA, fluorine-based material, ceramic material, or treated with them. Furthermore, when the liquid fluid is mixed with gas and circulated through the tanks and the flow path to foam the liquid fluid, the two tanks are closed with the piston, so that the expansion of the foam in the tank can be eliminated. In particular, the piston (plunger) pressurizing means for the foamed liquid fluid may be electrically pressurized by a servomotor or the like. Of course, the liquid surface can be pressurized directly by compressed gas without providing a piston or the like. Pressure regulating valves for compressed gas need to use products with high-precision pressure regulating mechanisms that have a fine relief structure with fast response speed and excellent followability. For example, a pneumatic pressure regulator manufactured by Fairchild is preferably used to maintain a highly accurate hydraulic pressure.
 図4は特にスラリー等のせん断力の変化による粘度変化の液状流体の挙動を示す。塗布粘度範囲420に到達したら吐出や塗布を開始できる。加温する液状流体や熱可塑性樹脂などの流体温度と粘度が安定したかを本発明では単位重量当たりの移動時間または単位時間当たりの移動重量市管理できるので便利である。シリンジなどの小型容器はブース外に設置して軸の移動による振動を防止でき、吐出装置はPFAなどの内径の細いフレキシブルなチューブで配管することでシリンジ内部の液状流体の重量を精度よく計測できる。重量管理は市販のロードセルを使用して所望する形状に製作できる。吐出装置や小型装置を移動せずにあるいは上下に移動するだけで対象物をXY方向に移動して塗布することができる。本発明者が権利を有する特許第5798930号の方法と組み合わせることで容易に実施できる。 Fig. 4 shows the behavior of liquid fluids, such as slurries, that change viscosity due to changes in shear force. When the application viscosity range 420 is reached, the discharge or application can be started. In the present invention, whether the fluid temperature and viscosity of a liquid fluid to be heated or a thermoplastic resin are stabilized can be conveniently managed by moving time per unit weight or moving weight per unit time. Small containers such as syringes can be installed outside the booth to prevent vibration due to axis movement, and the discharge device can be piped with a flexible tube with a small inner diameter such as PFA to accurately measure the weight of the liquid fluid inside the syringe. . The weight control can be manufactured to the desired shape using commercially available load cells. The object can be moved in the XY direction and coated without moving the discharge device or small device or only by moving it up and down. It can be easily carried out by combining with the method of Japanese Patent No. 5798930 to which the present inventor has the right.
 図5において容器51,52間の吐出装置58用の上部を経由する流路57、57‘とは別に容器下部より他の流路550を設けている。流路550はそれぞれの容器の上部を経由して設けても良い。一方流路57、57’は容器の下部で連結しても良い。流路550は液状流体の移動を速くして分散をサポートするのでその直径は細く例えば内径2乃至6mmで良く長さも200乃至1000mm程度でよい。流路は一つでも複数で良く流路に分散装置を設置しても良い。 In FIG. 5, apart from the flow paths 57, 57' passing through the top for the discharge device 58 between the containers 51, 52, another flow path 550 is provided from the bottom of the container. Channels 550 may be provided through the top of each container. Alternatively, the channels 57, 57' may be joined at the bottom of the container. Since the channel 550 accelerates movement of the liquid fluid and supports dispersion, its diameter may be small, for example, an inner diameter of 2 to 6 mm and a length of about 200 to 1000 mm. One or more channels may be provided, and a dispersing device may be installed in the channel.
 図6において二つの容器間の吐出装置68の流路67、67‘が第一の容器61の下部から該容器上部を経由して流路67,吐出装置68、流路67’を経由して第二の容器下部までつながっている。流路は金属配管でも、PTFEなどのプラスティックやゴムホースでも、チューブでも良い。接液部は一般的に耐薬品性が望ましく、耐圧を必要とする場合は例えば補強繊維やSUSブレードを被覆しても良い。第一の容器の液状流体63は圧縮気体で加圧され前記流路を経由して第二容器の上部を経由して下部付近まで流入させることができる。液状流体等の重量を検知して移動を反転させたら同じ動作であるので説明は省略する。液状流体の流入は容器側壁を利用して液膜で薄く(例えば数百マイクロメートル前後)広く展開しながら容器側壁を薄膜で液面まで移動するように流下させるとよい。エアがかみ込み易い液体はこの方法でエアの脱泡をさせることができる。特に液状流体を容器出口付近や流路内でガスを混合してフォーム化する場合例えば反対側の容器側面で上記方法により脱泡させ吐出装置では常に一定のフォーム状態を維持することが重要である。
また図6において、第二の容器の所望するレベルまで達した液状流体64はポンプ630で吸引され加圧されて流路640を経由して第一の容器61に達する。第一の容器内液状流体63の重量が所望する上限の値になったらポンプ630の作動を停止し、少なくとも下限値になったらポンプ630を作動して液状流体を移送することにより循環回路が形成される。一方第一容器の下限と第二の容器の下限が両方作動したら第二の容器62へ液状材料の充填を催促できる。また液状流体の単位時間当たりの循環重量や移動重量を多くし粘度安定化のスピードを向上させたい場合は別流路650を設けることができる。更に少なくとも一つの流路に分散装置を設置し、分散の良い安定した液状流体にすることができる。
In FIG. 6, flow paths 67 and 67' of the discharge device 68 between the two containers flow from the bottom of the first container 61 through the top of the first container 61 to the flow path 67, the discharge device 68, and the flow path 67'. It is connected to the bottom of the second container. The flow path may be a metal pipe, a plastic such as PTFE, a rubber hose, or a tube. Chemical resistance is generally desirable for the wetted part, and if pressure resistance is required, it may be covered with reinforcing fibers or SUS blades, for example. The liquid fluid 63 in the first container can be pressurized by the compressed gas and flowed through the flow path to the vicinity of the lower portion of the second container via the upper portion. If the weight of the liquid fluid or the like is detected and the movement is reversed, the operation is the same, so the explanation will be omitted. The inflow of the liquid fluid is preferably carried out by using the side wall of the container to spread the liquid thinly (for example, around several hundred micrometers) widely, while moving the side wall of the container to the liquid surface as a thin film. Liquids in which air is likely to be entrapped can be defoamed by this method. In particular, when a liquid fluid is foamed by mixing gas in the vicinity of the outlet of the container or in the channel, it is important, for example, to defoam the side of the container on the opposite side by the above method and always maintain a constant foaming state in the discharge device. .
In FIG. 6, the liquid fluid 64 that has reached a desired level in the second container is sucked and pressurized by the pump 630 and reaches the first container 61 via the flow path 640 . When the weight of the liquid fluid 63 in the first container reaches the desired upper limit, the operation of the pump 630 is stopped, and when it reaches at least the lower limit, the pump 630 is operated to transfer the liquid fluid, thereby forming a circulation circuit be done. On the other hand, when both the lower limit of the first container and the lower limit of the second container are activated, filling of the second container 62 with the liquid material can be prompted. Further, another channel 650 can be provided when it is desired to increase the circulating weight or the moving weight of the liquid fluid per unit time to improve the viscosity stabilization speed. Furthermore, by installing a dispersing device in at least one channel, a stable liquid fluid with good dispersion can be obtained.
 本発明によれば例えば医薬品や化学品等向けの造粒等や塗布、スラリー材料やディスパージョンの液状流体等を塗布する分野例えばエレクトロニクス分野、燃料電池、スーパーキャパシター、太陽電池、二次電池等の電極形成などの実験等のために使用する少ないスラリーなどの液体でも、それらの大型生産ラインで大量に液状流体を使用して生産する場合であっても高品質のもとに製造できる 。 According to the present invention, for example, fields such as granulation and coating for pharmaceuticals and chemicals, and coating slurry materials and liquid fluids for dispersion, such as electronics, fuel cells, super capacitors, solar cells, secondary batteries, etc. Even liquids such as slurries used in small amounts for experiments such as electrode formation can be produced with high quality even when large amounts of liquid fluids are used in large-scale production lines.
1,2,21、31、51、52、61、62      容器
3、4、23、33、53、54、63、64      液状流体
5、6、25、55、56、65、66         重量計(ロードセル) 
7、7‘、27、27’、37、37‘、57、57’
67、67’                液状流体流路
550、640、650            液状流体流路
8、28、38、58、68           吐出装置(塗布装置)
105、205、305、505、605       吐出ヘッド(ノズル)
9、9‘、29、39、59、69         支柱
101、102、201、301、          気体切り替えバルブ
103、104、203、303          気体調圧バルブ
260                 液面上限
261                 液面下限
310                 ピストン(プランジャー)
315                 加圧気体
420                 塗布開始粘度範囲
630                 ポンプ
1, 2, 21, 31, 51, 52, 61, 62 Containers 3, 4, 23, 33, 53, 54, 63, 64 Liquid fluids 5, 6, 25, 55, 56, 65, 66 Weighing scale (load cell )
7, 7', 27, 27', 37, 37', 57, 57'
67, 67' liquid fluid flow paths 550, 640, 650 liquid fluid flow paths 8, 28, 38, 58, 68 discharge device (coating device)
105, 205, 305, 505, 605 ejection head (nozzle)
9, 9', 29, 39, 59, 69 Struts 101, 102, 201, 301 Gas switching valves 103, 104, 203, 303 Gas pressure control valve 260 Liquid level upper limit 261 Liquid level lower limit 310 Piston (plunger)
315 pressurized gas 420 coating start viscosity range 630 pump

Claims (10)

  1.  二つの容器内の液状流体を交互に加圧してまたは一つの容器の液状流体は常に加圧して、前記少なくとも二つの容器間を連通する流体用流路を移動または循環させて、前記流路と連通する吐出装置で流体を吐出または対象物に塗布する方法であって、第一の容器内の液状流体を加圧し第二の容器との間で差圧を生じさせて第一の流路を経由して第二の容器に移動する工程と、第二の容器内の流体を加圧して第一の容器との間に差圧を生じさせて第一の流路または他の流路を経由して第一の容器に液状流体を移動または循環する工程と、前記第一および第二の容器内液状流体重量または該容器内液状流体を含む容器全体の総重量を計測し、少なくとも一つの前記容器内流体の移動切り替えレベルを設定して、前記第一および第二の容器への流体の移動または循環を自動的に行うように制御する工程と、前記流路と連通する吐出装置または塗布装置で流体を吐出または対象物に塗布する工程からなることを特徴とする流体の吐出または塗布方法。 alternately pressurizing the liquid fluid in the two containers or constantly pressurizing the liquid fluid in one container to move or circulate the fluid channel communicating between the at least two containers, and A method of discharging or applying a fluid to an object using a communicating discharge device, wherein the liquid fluid in a first container is pressurized to create a differential pressure between it and the second container, thereby forming a first flow path. and pressurizing the fluid in the second container to create a pressure differential with the first container to flow through the first flow path or another flow path. and measuring the weight of the liquid fluid in the first and second containers or the total weight of the entire container containing the liquid fluid in the container; A step of setting a movement switching level of the fluid in the container to control the movement or circulation of the fluid to the first and second containers automatically; A method of ejecting or applying a fluid, characterized by comprising a step of ejecting or applying the fluid to an object.
  2.  前記液状流体の移動切り替えまたは循環のタイミングは少なくとも前記容器内上限と下限の流体の重量または該流体を含む容器全体の総重量を計測して制御し、少なくとも片方の容器内流体の単位重量当たりの移動時間または単位移動時間当たりの重量が設定値範囲に到達したら流体の吐出または塗布の開始を行うことを特徴とする請求項1の流体の吐出または塗布方法。 The timing of movement switching or circulation of the liquid fluid is controlled by measuring the weight of at least the upper and lower limits of the fluid in the container or the total weight of the entire container containing the fluid, and the weight of the fluid in at least one container per unit weight 2. A method of ejecting or applying a fluid according to claim 1, wherein the ejection or application of the fluid is started when the moving time or the weight per unit moving time reaches a set value range.
  3.  前記少なくとも二つの容器内の液状流体はスラリー、加温した液体、加熱溶融体の少なくとも一つを選択し、前記少なくとも一つの容器の液状流体は圧縮ガスによる直接的加圧または間接的加圧による液状流体と圧縮ガスとのバランスフィード方式で行い、該流体の単位時間当たりの移動重量または単位移動重量当たりの移動時間を管理し、前記重量または時間が設定値範囲内に到達したら流体の吐出または塗布を開始することを特徴とする請求項1または2の流体の吐出方法または塗布方法。 The liquid fluid in the at least two containers is at least one of slurry, heated liquid, and hot melt, and the liquid fluid in the at least one container is directly or indirectly pressurized by compressed gas. A balance feed method of liquid fluid and compressed gas is used, the weight of the fluid transferred per unit time or the transfer time per unit weight of the fluid is controlled, and when the weight or time reaches a set value range, the fluid is discharged or discharged. 3. A method of ejecting or applying a fluid according to claim 1, wherein application is started.
  4.  前記流路とは別に更に少なくとも一つの流路を前記第一の容器と第二の容器間に設け、前記流体の移動を加速させることを特徴とする請求項1乃至3の流体の吐出または塗布方法。 Discharge or application of the fluid according to any one of claims 1 to 3, characterized in that at least one channel is further provided between the first container and the second container in addition to the channel to accelerate the movement of the fluid. Method.
  5.  少なくとも二つの容器内の電極スラリーを交互に加圧してまたは一つの容器の電極スラリーは常に加圧して、前記少なくとも二つの容器間を連通する電極スラリー用流路内を移動または循環させて、前記流路と連通する塗布装置で前記電極スラリーを対象物に塗布し乾燥させて電極を形成し燃料電池又は蓄電池を製造する方法であって、第一の容器内の電極スラリーを加圧し第二の容器との間で差圧を生じさせて少なくとも第一の流路を経由して第二の容器に移動する工程と、第二の容器内の電極スラリーを加圧して第一の容器との間に差圧を生じさせて第一の流路または他の流路を経由して第一の容器に移動または循環する工程と、前記第一および第二の容器内電極スラリーの重量または該容器内電極スラリーを含む容器全体の総重量を計測し、少なくとも前記容器内電極スラリー下限レベルで、前記第一および第二の容器への電極スラリーの移動または循環を自動的に行うように制御する工程と、前記流路と連通する塗布装置で流体を対象物に塗布する工程からなることを特徴とする燃料電池または蓄電池の製造方法。 The electrode slurry in at least two containers is alternately pressurized or the electrode slurry in one container is constantly pressurized to move or circulate in the electrode slurry channel communicating between the at least two containers, A method for manufacturing a fuel cell or a storage battery by applying the electrode slurry to an object using an applicator communicating with a flow path and drying the object to form an electrode, wherein the electrode slurry in the first container is pressurized to form a second creating a differential pressure between the electrode slurry in the second container and moving it to the second container via at least the first flow path; moving or circulating to the first container via the first flow path or another flow path by creating a differential pressure in the first and second container electrode slurries weight or in the container measuring the total weight of the entire container containing the electrode slurry, and controlling the transfer or circulation of the electrode slurry to the first and second containers automatically at least at the lower limit level of the electrode slurry in the container; 1. A method for manufacturing a fuel cell or a storage battery, comprising the step of applying a fluid to an object with an application device communicating with the flow path.
  6.  少なくとも二つの容器内の液状流体の第一の容器内の液状流体を加圧する工程と、前記流体を前記少なくとも二つの容器間を連通する第一の流路を経由して第二の容器へ移動する工程と、前記第二の容器内流体をポンプで吸引加圧し第一の容器に第二の流路を経由して移動し循環する工程と、前記第一および第二の容器内流体のレベルを前記液状流体重量又は該液状流体を含む容器総重量で計測し管理し、前記第一の容器または第二の容器の流体移動タイミングを制御する工程と、前記流路と連通する吐出装置または塗布装置で流体を吐出または対象物に塗布することを特徴とする流体の吐出方法または塗布方法。 pressurizing a liquid fluid in a first container of liquid fluid in at least two containers; and moving said fluid to a second container through a first flow path communicating between said at least two containers. a step of sucking and pressurizing the fluid in the second container with a pump and moving it to the first container via the second flow path to circulate; is measured and managed by the weight of the liquid fluid or the total weight of a container containing the liquid fluid, and controlling the fluid movement timing of the first container or the second container; A fluid ejection method or application method characterized by ejecting or applying a fluid to an object using an apparatus.
  7.  前記液状流体の移動切り替えまたは循環のタイミングは少なくとも前記容器内上限または下限の液状流体の重量または該液状流体を含む容器全体の総重量を計測して制御し、少なくとも片方の容器内流体の単位重量当たりの移動時間または単位移動時間当たりの重量が設定値範囲に到達したら流体の吐出または塗布の開始を行うことを特徴とする請求項6の流体の吐出または塗布方法。 The timing of movement switching or circulation of the liquid fluid is controlled by measuring at least the weight of the liquid fluid at the upper limit or the lower limit in the container or the total weight of the entire container containing the liquid fluid, and the unit weight of the fluid in at least one container 7. A fluid discharge or application method according to claim 6, wherein the fluid discharge or application is started when the moving time per unit or the weight per unit moving time reaches a set value range.
  8.  前記少なくとも二つの容器内の液状流体はスラリー、加温した液体、加熱溶融体の少なくとも一つを選択し、前記少なくとも一つの容器の液状流体は圧縮ガスによる直接的加圧または間接的加圧によるバランスフィールド加圧方式で行い、他の容器の液状流体の圧送はポンプで行い、該流体の単位時間当たりの移動重量または単位移動重量当たりの移動時間を管理し、前記重量または時間が設定値範囲内に到達したら流体の吐出または塗布を開始することを特徴とする請求項6または7の流体の吐出方法または塗布方法。 The liquid fluid in the at least two containers is at least one of slurry, heated liquid, and hot melt, and the liquid fluid in the at least one container is directly or indirectly pressurized by compressed gas. A balance field pressurization method is used, and the liquid fluid in other containers is pressure-fed by a pump, and the weight of the fluid transferred per unit time or the transfer time per unit weight of the fluid is controlled, and the weight or time is within a set value range. 8. A method of ejecting or applying fluid according to claim 6 or 7, wherein the ejection or application of the fluid is started when reaching the inside.
  9.  前記液状流体用流路とは別に更に少なくとも一つの液状流体用流路を前記第一の容器と第二の容器間に設け、前記液状流体の移動を加速させることを特徴とする請求項6乃至8の流体の吐出方法または塗布方法。 6. Further, in addition to the liquid fluid channel, at least one liquid fluid channel is further provided between the first container and the second container to accelerate movement of the liquid fluid. 8 fluid discharge method or application method.
  10.  燃料電池または蓄電池を製造する方法であって、少なくとも二つの容器内の前記電池用電極スラリーの内、第一の容器内の電極スラリーを加圧する工程と、該電極スラリーを前記少なくとも二つの容器間を連通する第一の流路を経由して第二の容器へ移動する工程と、前記第二の容器内電極スラリーをポンプで吸引加圧し第一の容器に第二の流路を経由して移動し循環する工程と、前記第一および第二の容器内電極スラリーのレベルを容器内電極スラリー重量又は電極スラリーを含む容器総重量で計測し管理し、前記第一の容器または第二の容器のスラリー移動タイミングを制御する工程と、前記流路と連通する塗布装置で対象物に電極スラリーを塗布し乾燥して電極を形成してなることを特徴とする燃料電池または蓄電池の製造方法。 A method of manufacturing a fuel cell or storage battery, comprising: pressurizing an electrode slurry in a first container of the battery electrode slurries in at least two containers; a step of moving to a second container via a first flow path communicating with the second container, and sucking and pressurizing the electrode slurry in the second container with a pump and transferring it to the first container via the second flow path and measuring and managing the levels of the electrode slurries in the first and second containers by the weight of the electrode slurries in the containers or the total weight of the container containing the electrode slurries, and moving and circulating the first container or the second container. and forming an electrode by applying an electrode slurry to an object with a coating device communicating with the flow path and drying the electrode slurry.
PCT/JP2022/010230 2021-03-22 2022-03-09 Method for ejecting or applying fluid, and method for producing fuel cell or storage battery WO2022202316A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-047552 2021-03-22
JP2021047552A JP2022146545A (en) 2021-03-22 2021-03-22 Method for discharge or coating of fluid, and manufacturing method for fuel cell or storage cell

Publications (1)

Publication Number Publication Date
WO2022202316A1 true WO2022202316A1 (en) 2022-09-29

Family

ID=83395657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010230 WO2022202316A1 (en) 2021-03-22 2022-03-09 Method for ejecting or applying fluid, and method for producing fuel cell or storage battery

Country Status (2)

Country Link
JP (1) JP2022146545A (en)
WO (1) WO2022202316A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003300000A (en) * 2002-03-29 2003-10-21 Nordson Corp Method and apparatus for liquid delivery
WO2013098913A1 (en) * 2011-12-26 2013-07-04 中国塗料株式会社 Coating raw material supply device, coating raw material supply method, and coating material mixing device and coating material mixing method using said coating raw material supply device and coating raw material supply method
JP2018107355A (en) * 2016-12-27 2018-07-05 日亜化学工業株式会社 Manufacturing method of light emitting device
JP2019166469A (en) * 2018-03-23 2019-10-03 株式会社栗本鐵工所 Powder coating method to cast iron pipe inner surface and its device
JP2020116835A (en) * 2019-01-24 2020-08-06 ミズノ テクニクス株式会社 Apparatus for manufacturing tow prepreg and method for manufacturing tow prepreg

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003300000A (en) * 2002-03-29 2003-10-21 Nordson Corp Method and apparatus for liquid delivery
WO2013098913A1 (en) * 2011-12-26 2013-07-04 中国塗料株式会社 Coating raw material supply device, coating raw material supply method, and coating material mixing device and coating material mixing method using said coating raw material supply device and coating raw material supply method
JP2018107355A (en) * 2016-12-27 2018-07-05 日亜化学工業株式会社 Manufacturing method of light emitting device
JP2019166469A (en) * 2018-03-23 2019-10-03 株式会社栗本鐵工所 Powder coating method to cast iron pipe inner surface and its device
JP2020116835A (en) * 2019-01-24 2020-08-06 ミズノ テクニクス株式会社 Apparatus for manufacturing tow prepreg and method for manufacturing tow prepreg

Also Published As

Publication number Publication date
JP2022146545A (en) 2022-10-05

Similar Documents

Publication Publication Date Title
US11964248B2 (en) Mixing and dispensing curable multi-component materials
US7387681B2 (en) Liquid dispensing method and apparatus
TWI494168B (en) Spray device for small amount of liquid
JP2014100707A (en) Method for printing liquid substance using continuous ink jet printing technique, and curable composition used for the method
JP2008213281A (en) Recorder and method for recording
CN111378199A (en) Liquid composition, storage container, porous resin production apparatus and method thereof
WO2022202316A1 (en) Method for ejecting or applying fluid, and method for producing fuel cell or storage battery
KR20210134342A (en) How to apply an insulating layer to a car battery cell
WO2021182162A1 (en) Secondary battery manufacturing method or secondary battery
JP4217866B2 (en) Spray application method
WO2021251266A1 (en) Liquid dispersion method, or liquid discharging or applying method, or device therefor
US20230063889A1 (en) Method for manufacturing secondary battery, or secondary battery
WO2022049974A1 (en) Coating method, fuel cell manufacturing method or fuel cell, secondary battery manufacturing method or secondary battery, and all-solid battery manufacturing method or all-solid battery
WO2022080259A1 (en) Application method, method for producing fuel cell or fuel cell, method for producing secondary battery or secondary battery, method for producing all-solid-state battery or all-solid-state battery
WO2022054673A2 (en) Application method, fuel cell manufacturing method or fuel cell, secondary battery manufacturing method or secondary battery, and all-solid-state battery manufacturing method or all-solid-state battery
JP2007014889A (en) Array-coating method and apparatus for microparticle by supercritical fluid
CN219519374U (en) Trace glue spraying system and paster device
CN216260671U (en) Pulse electric field auxiliary membrane dispersion polymer microcapsule preparation facilities
CN213255364U (en) Spraying and scraping combined system
CN115431514A (en) Device for realizing ink mixing electronic injection printing
CN115091749A (en) Supercritical gas-assisted electrospray device and method
Wadhwa RIT Scholar Work s

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775108

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775108

Country of ref document: EP

Kind code of ref document: A1