WO2022202248A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2022202248A1
WO2022202248A1 PCT/JP2022/009687 JP2022009687W WO2022202248A1 WO 2022202248 A1 WO2022202248 A1 WO 2022202248A1 JP 2022009687 W JP2022009687 W JP 2022009687W WO 2022202248 A1 WO2022202248 A1 WO 2022202248A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
substrate
conversion device
power conversion
semiconductor element
Prior art date
Application number
PCT/JP2022/009687
Other languages
French (fr)
Japanese (ja)
Inventor
亨太 浅井
健 徳山
明博 難波
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2022202248A1 publication Critical patent/WO2022202248A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a power converter.
  • power converters are required not only to increase output but also to improve manufacturability. If the modules are configured in units of upper arm circuits or lower arm circuits for one phase, six modules are required to provide three phases. Therefore, it is important to improve the manufacturability of power semiconductor modules. On the other hand, even if the manufacturability is improved, if it leads to an increase in thermal resistance, it will hinder an increase in the output of the power converter. Since power converters for vehicles are used in environments with large temperature changes compared to industrial power converters, there is a demand for power converters that can maintain high reliability even in high-temperature environments.
  • Patent Document 1 discloses a first radiator, a first substrate mounted on the main surface of the first radiator, a first semiconductor element mounted on the main surface of the first substrate, and the first heat radiator. a first electrode mounted on the main surface of the device or on the main surface of the first substrate; a heat spreader in contact with a plurality of first wire bonding lines and the first top electrode, and the first top electrode passing between the first wire bonding lines provided on one surface of the heat spreader
  • a power conversion device characterized by having a convex portion in contact with or close to, a concave portion close to the first wire bonding line, and a second radiator mounted on the other surface side of the heat spreader is disclosed. .
  • Patent Document 1 The invention described in Patent Document 1 has room for improvement in manufacturability and heat dissipation.
  • a power conversion device includes a semiconductor element, and a first substrate and a second substrate arranged to face each other, the first substrate facing the second substrate.
  • the second substrate has a main surface and a first subsurface opposite to the first main surface, and the second substrate has a second main surface facing the first substrate and a subsurface opposite to the second main surface.
  • a second sub-surface wherein a first conductor exposed on the first sub-surface is embedded in the first substrate, and a second conductor exposed on the second sub-surface is embedded in the second substrate;
  • the semiconductor element is disposed between the first conductor and the second conductor, and the semiconductor element is electrically connected to the first conductor and the second conductor.
  • FIG. 11 is a diagram showing part of a first power circuit section in modification 1; Schematic diagram of power converter in second embodiment Schematic diagram of a power converter in the third embodiment Schematic diagram of a power conversion device according to a fourth embodiment IX-IX cross-sectional view of FIG.
  • FIG. Embodiments of the present invention will be described below with reference to FIGS. 1 to 4.
  • FIG. Embodiments of the present invention will be described below with reference to the drawings.
  • the present invention is not limited to the following embodiments, and the technical idea of the present invention may be realized by combining other known components.
  • the same elements are denoted by the same reference numerals, and duplicate descriptions are omitted.
  • the power conversion device 100 is a power conversion device that converts DC power obtained from a battery or the like into AC power to be supplied to an electric motor, and constitutes an upper arm circuit and a lower arm circuit for one phase.
  • the power converter 100 includes a first board 10, a second board 20, a first power circuit section 30 and a second power circuit section 40 formed by the first board 10 and the second board 20, and a power converter 100. and a control circuit 90 for applying drive signals to the first power circuit section 30 and the second power circuit section 40, respectively.
  • the first substrate 10 has a first main surface 10P inside the power conversion device 100 and a first minor surface 10Q opposite to the first main surface 10P.
  • the second substrate 20 has a second main surface 20P inside the power conversion device 100 and a second subsurface 20Q opposite to the second main surface 20P. That is, the first main surface 10P of the first substrate 10 and the second main surface 20P of the second substrate 20 face each other and are joined to form the power conversion device 100 . 2 to 4, the direction in which the first substrate 10 and the second substrate 20 are arranged is called the "first direction", and the direction perpendicular to the first direction is called the "second direction”. call.
  • the first board 10 and the second board 20 are mainly printed circuit boards.
  • the first substrate 10 and the second substrate 20 are provided with a plurality of conductor layers made of copper material or the like, and other portions are made of an insulating material such as glass epoxy resin.
  • the thickness of the conductor layers of the first substrate 10 and the second substrate 20 is shown in FIG. The thickness is about the same as the thickness of the substrate, and the ratio to the thickness of the substrate is very small. If a large current flows through this conductor layer, the impedance is relatively large and the inductance also increases.
  • the first power circuit section 30 includes an IGBT 50 , a diode 54 , a collector conductor 60 , an emitter conductor 61 , a gate conductor pattern 62 , a cathode conductor 63 and an anode conductor 64 .
  • the IGBT 50 has a plate-like main electrode and a gate electrode 53 for controlling a main current flowing through the main electrode.
  • the main electrode is separated above and below the IGBT 50, and a collector electrode 51 is provided on the lower surface, and an emitter electrode 52 and a gate electrode 53 are provided on the upper surface.
  • the diode 54 has a plate shape, and has a cathode electrode 55 on the bottom surface and an anode electrode 56 on the top surface as viewed from the viewpoint of FIG.
  • the collector conductor 60, the emitter conductor 61, the gate conductor pattern 62, the cathode conductor 63, and the anode conductor 64 are composed of conductors such as copper material. At least the collector conductor 60, the emitter conductor 61, the cathode conductor 63, and the anode conductor 64, excluding the gate conductor pattern 62, are not wiring patterns on a printed circuit board, but conductors having a thickness of several hundred micrometers or more and good heat conductivity. A lump of material, for example a lump of copper. Since the conductor mass is thicker than the wiring pattern, the impedance is lowered and the inductance is also reduced.
  • the collector conductor 60 and cathode conductor 63 are embedded in the first substrate 10 and pass through the first substrate 10 . In other words, both collector conductor 60 and cathode conductor 63 penetrate from first major surface 10P to first minor surface 10Q.
  • the collector conductor 60 forms an IGBT housing recess 70 which is a recess.
  • the IGBT 50 is housed inside the IGBT housing recess 70 and electrically connected to the collector electrode 51 of the IGBT 50 via a metal bonding material 73 such as solder.
  • the cathode conductor 63 forms a recess 71 for accommodating a diode.
  • the diode 54 is housed inside the diode housing recess 71 and electrically connected to the cathode electrode 55 of the diode 54 via the metal bonding material 73 .
  • the collector conductor 60 has the recess 70 for accommodating the IGBT, so a part of the collector conductor 60 is recessed from the first main surface 10P, but the end of the collector conductor 60 has a level difference with the first main surface 10P. It is in a flat state, a so-called flush state.
  • the cathode conductor 63 has a recess 71 for accommodating a diode, so that a part of the cathode conductor 63 is recessed from the first main surface 10P, but the end of the cathode conductor 63 is flush with the first main surface 10P. It is in a flat state, a so-called flush state.
  • the emitter conductor 61 and the anode conductor 64 are embedded in the second substrate 20 and pass through the second substrate 20 .
  • the second main surface 20P side of the emitter conductor 61 is in a flat state without a step with the second main surface 20P, that is, in a so-called flush state.
  • the emitter conductor 61 on the second main surface 20 ⁇ /b>P side is electrically connected to the emitter electrode 52 of the IGBT 50 via the metal joint material 73 .
  • the second main surface 20P side of the anode conductor 64 is in a flat state without a step with the second main surface 20P, that is, in a so-called flush state.
  • the second main surface 20 ⁇ /b>P side of the anode conductor 64 is electrically connected to the anode electrode 56 of the diode 54 via the metal bonding material 73 .
  • the connection surfaces of the second substrate 20 connected to the IGBTs 50 and the diodes 54 are unified in a planar shape, thereby improving manufacturability.
  • the gate conductor pattern 62 is formed on the second substrate 20 and electrically connected to the gate electrode 53 of the IGBT 50 via the metal bonding material 73 .
  • the gate conductor pattern 62 is connected to the top surface of the second substrate 20 through vias 74 . All electrodes of the IGBT 50 and the diode 54 are thereby connected to the conductor pattern on the first substrate 10 or the second substrate 20 .
  • the manufacturing process can be shortened by simplifying the bonding process to only the solder bonding process of the circuit board and the semiconductor element.
  • dummy conductors 65 are provided on the upper surface of the first substrate 10 and the lower surface of the second substrate 20, respectively.
  • the dummy conductors 65 are shown on the left, center, and right sides of the drawing, but for the convenience of drawing, only the left side is labeled.
  • the dummy conductor 65 is a lump of conductor like the collector conductor 60, the emitter conductor 61, and the like.
  • substrate bonding recesses 72 containing metal bonding materials 73 are formed surrounding the IGBTs 50 and the diodes 54, respectively.
  • the first substrate 10 and the second substrate 20 are connected by connecting the dummy conductors 65 of the first substrate 10 and the second substrate 20 with the metal bonding material 73 .
  • a connection surface between the first substrate 10 and the second substrate 20 other than the bonding surface of the IGBT 50 and the diode 54 is secured, and reliability is improved.
  • the collector conductor 60, the emitter conductor 61, the cathode conductor 63, and the anode conductor 64 form a heat radiation fin 75 on the side opposite to the connecting surface of the IGBT 50 and the diode 54.
  • a heat radiation path can be formed from the IGBT 50 and the diode 54 to the heat radiation fin 75 without an insulating member, and cooling is performed directly by a coolant such as oil, thereby suppressing an increase in thermal resistance and increasing the output of the power converter. becomes possible.
  • the second substrate 20 has through holes 76 connecting the IGBT housing recesses 70 and the diode housing recesses 71 on the first substrate 10 and the outer surface of the second substrate 20 .
  • the IGBT 50 and the diode 54 are sealed by filling a resin member 77 such as a liquid curable resin through the through hole 76 .
  • resin member 77 such as a liquid curable resin
  • the second power circuit section 40 includes an IGBT 50, a diode 54, a collector conductor 60, an emitter conductor 61, a gate conductor pattern 62, a cathode conductor 63, and an anode conductor 64.
  • the main configuration of the second power circuit section 40 is a structure in which the first power circuit section 30 is roughly inverted. Since there is no specific configuration only for the second power circuit section 40, the description of the entire power conversion device 100 will be continued.
  • the collector conductor 60 and the cathode conductor 63 are connected to a positive power supply conductor pattern 66 as shown in the left of FIG. 1 and the top of FIG.
  • the emitter conductor 61 and the anode conductor 64 are connected to an AC output conductor pattern 68, as shown in the lower part of FIG.
  • the AC output conductor pattern 68 is also connected to the collector conductor 60 and the cathode conductor 63 of the first power circuit section 30 .
  • the emitter conductor 61 and the anode conductor 64 of the first power circuit section 30 are connected to a negative power supply conductor pattern 67 .
  • the positive power conductor pattern 66 and the negative power conductor pattern 67 are provided with a positive power terminal 661 and a negative power terminal 671, respectively, and are supplied with electric energy necessary for driving the motor from the battery.
  • the AC output conductor pattern 68 is provided with an AC output terminal 681 shown in the upper part of FIG. 1, and outputs electric energy for driving the motor.
  • the positive power supply terminal 661, negative power supply terminal 671, and AC output terminal 681 shown in FIG. are connected at the top and bottom. As a result, the area of the current path connected to the battery and the electric motor is increased, and heat concentration can be prevented.
  • a capacitor 80 that smoothes the voltage applied to the power converter 100 is mounted on the positive power conductor pattern 66 and the negative power conductor pattern 67 .
  • the current flowing out of the capacitor 80 flows into the capacitor 80 via the second power circuit section 40 and the first power circuit section 30 during switching of the power converter 100 .
  • the path of the transient current during switching is completed only within the first substrate 10 and the second substrate 20, and the current path is shortened, thereby reducing the inductance.
  • the transient current path during switching is completed in the first substrate 10 and the second substrate 20, the current paths of the first substrate 10 and the second substrate 20 become closer, and the first power circuit section 30 and the second substrate The inductance is reduced by the opposing current flowing through the 2-power circuit section 40 .
  • the need for a bus bar for connecting the capacitor 80 is eliminated, improving manufacturability.
  • the gate conductor pattern 62 is electrically connected to the top surface of the second substrate 20 through the vias 74 of the first substrate 10 and the second substrate 20 .
  • substrate bonding recesses 72 are provided in the vicinity of the vias 74 of the first substrate 10, and the first substrate 10 and the second substrate 20 are bonded with a substrate bonding material.
  • control circuits 90 for the first power circuit section 30 and the second power circuit section 40 are provided on the second substrate 20 and connected to the respective gate conductor patterns 62 . As a result, the inductance of the control signal is reduced to prevent deterioration in device drive performance, thereby preventing an increase in loss.
  • the power conversion device 100 supplies electric energy required for driving the electric motor from the battery to the first power circuit section 30 and the second power circuit section 40, and the AC output conductor pattern 68
  • the AC power output from the AC output terminal 681 provided in is controlled.
  • all of the components namely the first power circuit section 30 and the second power circuit section 40, the capacitor 80, and the control circuit 90, on the first substrate 10 and the second substrate 20, a complicated shape can be achieved. This eliminates the need for a busbar and improves manufacturability.
  • the current flowing out of the capacitor 80 flows into the capacitor 80 via the first power circuit section 30 and the second power circuit section 40 . This shortens the transient current path during switching and reduces the inductance.
  • the power conversion device 100 includes an IGBT 50 that is a semiconductor element, and a first substrate 10 and a second substrate 20 that are arranged to face each other.
  • the first substrate 10 has a first major surface 10P facing the second substrate 20 and a first minor surface 10Q opposite to the first major surface 10P.
  • the second substrate 20 has a second major surface 20P facing the first substrate 10 and a second minor surface 20Q opposite to the second major surface 20P.
  • a first conductor exposed on the first sub-surface 10Q, for example, the collector conductor 60 of the first power circuit section 30, is embedded in the first substrate 10. As shown in FIG.
  • IGBT 50 is arranged between collector conductor 60 and emitter conductor 61 .
  • IGBT 50 is electrically connected to collector conductor 60 and emitter conductor 61 . Therefore, bus bars having a complicated shape as in the prior art are not required, and the manufacturability is excellent.
  • the collector conductor 60 and the emitter conductor 61 in contact with the IGBT 50 are made of a lump of metal, and thus have good heat conductivity. That is, the power conversion device 100 is excellent in manufacturability and heat dissipation.
  • the collector conductor 60 of the first power circuit section 30 is exposed on both the first major surface 10P and the first minor surface 10Q.
  • Emitter conductor 61 of first power circuit section 30 is exposed on both second main surface 20P and second sub-surface 20Q.
  • the emitter conductor 61 of the first power circuit section 30 forms an IGBT housing recess 70 which is a recess, and the IGBT 50 is housed inside this IGBT housing recess 70 .
  • the second substrate 20 is formed with a via 74 which is a through hole connecting the IGBT housing recess 70 and the outside of the second substrate 20 , and a resin member 77 is formed in the area of the IGBT housing recess 70 excluding the IGBTs 50 . is filled. Therefore, the resin member 77 prevents foreign matter from adhering to the IGBT 50 and adverse effects on the IGBT 50 due to vibration.
  • the IGBT housing recess 70 for housing the IGBT 50 is formed in the collector conductor 60 of the first power circuit section 30 and is not formed in the opposing emitter conductor 61 .
  • the emitter conductor 61 is formed flush with the second main surface 20 ⁇ /b>P of the second substrate 20 .
  • IGBT 50 has collector electrode 51 connected to collector conductor 60 , emitter electrode 52 connected to emitter conductor 61 , and gate electrode 53 connected to gate conductor pattern 62 of second substrate 20 . Therefore, since the IGBT housing recesses 70 are formed only in the first substrate 10, it is easier to manage tolerances than when recesses are provided in both substrates.
  • the IGBT 50 is arranged at the boundary between the first substrate 10 and the second substrate 20, a physical load is applied to the IGBT 50 when a force that twists the power conversion device 100 is generated.
  • the IGBT 50 is protected because it is arranged inside the first substrate 10 .
  • Each of the first substrate 10 and the second substrate 20 has a plurality of dummy conductors 65 different from the collector conductor 60 of the first power circuit section 30 and the emitter conductor 61 of the first power circuit section 30 .
  • the first substrate 10 and the second substrate 20 are connected by connecting the plurality of dummy conductors 65 with the metal bonding material 73 .
  • a dummy conductor 65 included in the first substrate 10 is formed with a substrate bonding concave portion 72 that accommodates a metal bonding material 73 . Therefore, the first substrate 10 and the second substrate 20 are firmly connected, and the force generated in the IGBT 50 when a strong force is applied to the power conversion device 100 can be reduced.
  • the first substrate 10 and the second substrate 20 Separately from the collector conductor 60 and the emitter conductor 61 of the first power circuit section 30, the first substrate 10 and the second substrate 20 have the collector conductor 60 and the emitter conductor 60 of the second power circuit section 40 passing through each substrate. It has a conductor 61 .
  • the IGBT 50 of the second power circuit section 40 is connected to the collector conductor 60 and the emitter conductor 61 of the second power circuit section 40 in a direction opposite to that of the IGBT 50 of the first power circuit section 30 . Therefore, two IGBTs 50 can be held using one set of substrates.
  • the collector conductor 60, the IGBT 50, and the emitter conductor 61 are arranged in the first direction, that is, the vertical direction in FIGS.
  • the first substrate 10 extends in a second direction orthogonal to the first direction, and has an AC output conductor pattern that electrically connects the collector conductor 60 of the first power circuit section 30 and the emitter conductor 61 of the second power circuit section 40.
  • the second substrate 20 includes a negative power supply conductor pattern 67 extending in the second direction and electrically connected to the emitter conductor 61 of the first power circuit section 30 and a collector of the second power circuit section 40 extending in the second direction.
  • the power converter 100 includes a capacitor 80 spanning the positive power conductor pattern 66 and the negative power conductor pattern 67 . Therefore, by using the first substrate 10, the second substrate 20, and the two IGBTs 50, it is possible to configure an upper arm circuit and a lower arm circuit for one phase.
  • a radiation fin 75 is connected to the first subsurface 10Q of the collector conductor 60 .
  • a radiation fin 75 is connected to the second minor surface 20Q of the emitter conductor 61 . Therefore, the power conversion device 100 can efficiently dissipate heat.
  • both collector conductors 60 and emitter conductors 61 penetrate the substrate and are exposed on both the main surface and the subsurface.
  • collector conductor 60 and emitter conductor 61 need only be exposed at least on the outer peripheral side, that is, on the secondary surface side, and need not be exposed on the main surface side. In other words, collector conductor 60 and emitter conductor 61 do not have to penetrate the substrate.
  • FIG. 5 is a diagram showing part of the first power circuit section 30 in Modification 1 and corresponds to the vicinity of the center of FIG.
  • the emitter conductor 61 is exposed on the second main surface 20P as in the first embodiment, but the collector conductor 60 is not exposed on the first main surface 10P.
  • the collector conductor end portion 60X of the emitter conductor 61 of the first power circuit section 30, which is closest to the first main surface 10P, exists at a position recessed from the first main surface 10P. Also in the configuration of this modification, heat dissipation is good and manufacturability is good as in the first embodiment.
  • the collector conductor 60 is provided with the IGBT housing recess 70 for housing the IGBT 50, but the emitter conductor 61 is not provided with the recess.
  • the recess may be provided in the emitter conductor 61, or both the collector conductor 60 and the emitter conductor 61 may be provided with the recess.
  • the resin member 77 is filled in the IGBT housing recess 70 .
  • filling the IGBT housing recess 70 with the resin member 77 is not an essential configuration, and the IGBT housing recess 70 may not be filled with the resin member 77 .
  • the collector conductor 60 and the emitter conductor 61 have the heat dissipation fins 75 on the outer peripheral side. However, it is not essential that collector conductor 60 and emitter conductor 61 have radiation fins 75 , and at least one of collector conductor 60 and emitter conductor 61 may not have radiation fins 75 .
  • the dummy conductor 65 and the metal bonding material 73 are used to strengthen the connection between the first substrate 10 and the second substrate 20 .
  • power conversion device 100 does not have to include dummy conductor 65 and metal joint material 73 .
  • Embodiment- A second embodiment of the power converter will be described with reference to FIG.
  • the same components as those in the first embodiment are assigned the same reference numerals, and differences are mainly described. Points that are not particularly described are the same as those in the first embodiment.
  • This embodiment differs from the first embodiment mainly in the arrangement of AC output terminals.
  • FIG. 6 is a schematic diagram of a power converter 100A according to the second embodiment.
  • the AC output terminal 681 is arranged in close proximity to the positive power terminal 661 and the negative power terminal 671 .
  • AC output terminal 681 was shown in the upper part of the drawing in FIG. 1, but is shown in the lower part of the drawing in FIG.
  • all the main circuit wires connected to the power conversion device 100 can be connected from the same direction, so productivity is improved when assembling the battery and the electric motor.
  • FIG. 1 A third embodiment of the power converter will be described with reference to FIG.
  • the same components as those in the first embodiment are assigned the same reference numerals, and differences are mainly described. Points that are not particularly described are the same as those in the first embodiment.
  • This embodiment differs from the first embodiment mainly in that a plurality of capacitors 80 are provided.
  • FIG. 7 is a schematic diagram of a power converter 100B according to the third embodiment.
  • the power conversion device 100B includes two or more capacitors 80, and three capacitors 80 in the example shown in FIG.
  • the transient current paths during switching are divided into a plurality of paths, and the inductance is reduced.
  • the capacitor 80 between the first power circuit section 30 and the second power circuit section 40, the transient current path during switching is shortened and the inductance is reduced.
  • FIG. 8 A fourth embodiment of the power converter will be described with reference to FIGS. 8 and 9.
  • FIG. 8 the same components as those in the first embodiment are assigned the same reference numerals, and differences are mainly described. Points that are not particularly described are the same as those in the first embodiment.
  • This embodiment differs from the first embodiment mainly in that it includes a reverse-conducting IGBT.
  • FIG. 8 is a schematic diagram of a power converter 100C according to the fourth embodiment.
  • 9 is a cross-sectional view taken along line IX-IX of FIG. 8.
  • FIG. A reverse conducting IGBT (Reverse Conducting IGBT) 57 in which an IGBT and a diode are integrated is mounted in the first power circuit section 30 and the second power circuit section 40 .
  • the mounting area of the semiconductor element is reduced, and the size of the power conversion device 100 can be reduced.
  • the transient current path during switching is shortened and the inductance is reduced.
  • the configuration of the functional blocks is merely an example. Some functional configurations shown as separate functional blocks may be configured integrally, or a configuration represented by one functional block diagram may be divided into two or more functions. Further, a configuration may be adopted in which part of the functions of each functional block is provided in another functional block.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Inverter Devices (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

This power conversion device comprises a semiconductor element, and a first substrate and a second substrate that are arranged facing each other. The first substrate has a first main surface facing the second substrate, and a first auxiliary surface on the reverse side of the first main surface. The second substrate has a second main surface facing the first substrate, and a second auxiliary surface on the reverse side of the second main surface. A first conductor exposed at the first auxiliary surface is embedded in the first substrate, and a second conductor exposed at the second auxiliary surface is embedded in the second substrate. The semiconductor element is arranged between the first and second conductors. The semiconductor element is electrically connected to the first and second conductors.

Description

電力変換装置power converter
 本発明は、電力変換装置に関する。 The present invention relates to a power converter.
 近年、電力変換装置には出力の増大だけでなく製造性の向上も要求されている。1相分の上アーム回路または下アーム回路の単位でモジュールが構成されている場合には、3相分を設けるためには6個のモジュールが必要となる。そのためパワー半導体モジュールの製造性の向上が重要になる。その一方で、製造性が向上しても熱抵抗の増大に繋がってしまうと、電力変換装置の出力増大の妨げとなる。車載用の電力変換装置は産業用などと比較すると温度変化の大きい環境で使用されるため、高温の環境に置かれていながら高い信頼性を維持できる電力変換装置が要求されている。特許文献1には、第1放熱器と、前記第1放熱器の主面上に実装した第1基板と、前記第1基板の主面上に実装した第1半導体素子と、前記第1放熱器の主面上或いは前記第1基板の主面上に実装した第1電極と、前記第1半導体素子の上面に配置され、前記第1半導体素子の第1上面電極と前記第1電極を電気的に接続する複数の第1ワイヤボンディング線、及び前記第1上面電極を接触させたヒートスプレッダと、前記ヒートスプレッダの一面側に設けた、前記第1ワイヤボンディング線の間を通って前記第1上面電極に接触又は近接する凸部、及び前記第1ワイヤボンディング線に近接する凹部と、前記ヒートスプレッダの他面側に実装した第2放熱器とを有することを特徴とする電力変換装置が開示されている。 In recent years, power converters are required not only to increase output but also to improve manufacturability. If the modules are configured in units of upper arm circuits or lower arm circuits for one phase, six modules are required to provide three phases. Therefore, it is important to improve the manufacturability of power semiconductor modules. On the other hand, even if the manufacturability is improved, if it leads to an increase in thermal resistance, it will hinder an increase in the output of the power converter. Since power converters for vehicles are used in environments with large temperature changes compared to industrial power converters, there is a demand for power converters that can maintain high reliability even in high-temperature environments. Patent Document 1 discloses a first radiator, a first substrate mounted on the main surface of the first radiator, a first semiconductor element mounted on the main surface of the first substrate, and the first heat radiator. a first electrode mounted on the main surface of the device or on the main surface of the first substrate; a heat spreader in contact with a plurality of first wire bonding lines and the first top electrode, and the first top electrode passing between the first wire bonding lines provided on one surface of the heat spreader A power conversion device characterized by having a convex portion in contact with or close to, a concave portion close to the first wire bonding line, and a second radiator mounted on the other surface side of the heat spreader is disclosed. .
日本国特開2009-171732号公報Japanese Patent Application Laid-Open No. 2009-171732
 特許文献1に記載されている発明では、製造性および放熱性に改善の余地がある。 The invention described in Patent Document 1 has room for improvement in manufacturability and heat dissipation.
 本発明の第1の態様による電力変換装置は、半導体素子と、向かい合わせて配置される第1基板および第2基板と、を備え、前記第1基板は、前記第2基板に対向する第1主面と前記第1主面とは逆側の第1副面とを有し、前記第2基板は、前記第1基板に対向する第2主面と前記第2主面とは逆側の第2副面とを有し、前記第1基板には前記第1副面に露出する第1導体が埋設され、前記第2基板には前記第2副面に露出する第2導体が埋設され、前記半導体素子は、前記第1導体と前記第2導体との間に配され、前記半導体素子は、前記第1導体および前記第2導体と電気的に接続される。 A power conversion device according to a first aspect of the present invention includes a semiconductor element, and a first substrate and a second substrate arranged to face each other, the first substrate facing the second substrate. The second substrate has a main surface and a first subsurface opposite to the first main surface, and the second substrate has a second main surface facing the first substrate and a subsurface opposite to the second main surface. a second sub-surface, wherein a first conductor exposed on the first sub-surface is embedded in the first substrate, and a second conductor exposed on the second sub-surface is embedded in the second substrate; , the semiconductor element is disposed between the first conductor and the second conductor, and the semiconductor element is electrically connected to the first conductor and the second conductor.
 本発明によれば、製造性および放熱性に優れた電力変換装置を提供できる。 According to the present invention, it is possible to provide a power converter with excellent manufacturability and heat dissipation.
第1の実施の形態における電力変換装置の概略図Schematic diagram of the power converter in the first embodiment 図1のII-II断面図II-II sectional view of FIG. 図1のIII-III断面図III-III sectional view of FIG. 図1のIV-IV断面図IV-IV cross-sectional view of FIG. 変形例1における第1パワー回路部の一部を示す図FIG. 11 is a diagram showing part of a first power circuit section in modification 1; 第2の実施の形態における電力変換装置の概略図Schematic diagram of power converter in second embodiment 第3の実施の形態における電力変換装置の概略図Schematic diagram of a power converter in the third embodiment 第4の実施の形態における電力変換装置の概略図Schematic diagram of a power conversion device according to a fourth embodiment 図8のIX-IX断面図IX-IX cross-sectional view of FIG.
―第1の実施の形態―
 以下、図1~図4を参照して、電力変換装置の第1の実施の形態を説明する。以下、図面を参照して本発明の実施形態を説明する。ただし、本発明は下記の実施形態に限定解釈されるものではなく、公知の他の構成要素を組み合わせて本発明の技術思想を実現してもよい。なお、各図において同一要素については同一の符号を記し、重複する説明は省略する。
-First Embodiment-
A first embodiment of a power converter will be described below with reference to FIGS. 1 to 4. FIG. Embodiments of the present invention will be described below with reference to the drawings. However, the present invention is not limited to the following embodiments, and the technical idea of the present invention may be realized by combining other known components. In each figure, the same elements are denoted by the same reference numerals, and duplicate descriptions are omitted.
 図1は電力変換装置100の概略を示す平面図、図2は図1のII-II断面図、図3は図1のIII-III断面図、図4は図1のIV-IV断面図である。電力変換装置100は、バッテリなどから得た直流電力を電動機に供給する交流電力に変換する電力変換装置であり、1相分の上アーム回路および下アーム回路を構成する。電力変換装置100は、第1基板10と、第2基板20と、第1基板10および第2基板20によって形成される第1パワー回路部30および第2パワー回路部40と、電力変換装置100に印加される電圧を平滑化するコンデンサ80と、第1パワー回路部30および第2パワー回路部40にそれぞれ駆動信号を与える制御回路90と、を備える。 1 is a plan view showing an outline of the power conversion device 100, FIG. 2 is a cross-sectional view of II-II in FIG. 1, FIG. 3 is a cross-sectional view of III-III in FIG. 1, and FIG. 4 is a cross-sectional view of IV-IV in FIG. be. The power conversion device 100 is a power conversion device that converts DC power obtained from a battery or the like into AC power to be supplied to an electric motor, and constitutes an upper arm circuit and a lower arm circuit for one phase. The power converter 100 includes a first board 10, a second board 20, a first power circuit section 30 and a second power circuit section 40 formed by the first board 10 and the second board 20, and a power converter 100. and a control circuit 90 for applying drive signals to the first power circuit section 30 and the second power circuit section 40, respectively.
 図2に記載したように、第1基板10は、電力変換装置100における内側の第1主面10Pと、第1主面10Pとは逆側の第1副面10Qとを有する。第2基板20は、電力変換装置100における内側の第2主面20Pと、第2主面20Pとは逆側の第2副面20Qとを有する。すなわち、第1基板10の第1主面10Pと、第2基板20の第2主面20Pとが向かい合って接合され、電力変換装置100を構成している。なお以下では図2~図4の下部に示すように、第1基板10および第2基板20が並ぶ方向を「第1方向」と呼び、第1方向に直交する方向を「第2方向」と呼ぶ。 As shown in FIG. 2, the first substrate 10 has a first main surface 10P inside the power conversion device 100 and a first minor surface 10Q opposite to the first main surface 10P. The second substrate 20 has a second main surface 20P inside the power conversion device 100 and a second subsurface 20Q opposite to the second main surface 20P. That is, the first main surface 10P of the first substrate 10 and the second main surface 20P of the second substrate 20 face each other and are joined to form the power conversion device 100 . 2 to 4, the direction in which the first substrate 10 and the second substrate 20 are arranged is called the "first direction", and the direction perpendicular to the first direction is called the "second direction". call.
 第1基板10および第2基板20は、主にプリント回路基板である。第1基板10および第2基板20は、銅材などにより構成される複数の導体層を備え、他の箇所はガラスエポキシ樹脂などの絶縁部材で構成される。図示の都合により図2などでは第1基板10や第2基板20の導体層の厚みが基板の3分の1程度であるように記載しているが、実際には導体層は数十マイクロメートル程度の厚みであり、基板の厚みに対する割合は非常に小さい。この導体層は、仮に大電流を流すのであればインピーダンスが比較的大きく、インダクタンスも増加する。 The first board 10 and the second board 20 are mainly printed circuit boards. The first substrate 10 and the second substrate 20 are provided with a plurality of conductor layers made of copper material or the like, and other portions are made of an insulating material such as glass epoxy resin. For convenience of illustration, the thickness of the conductor layers of the first substrate 10 and the second substrate 20 is shown in FIG. The thickness is about the same as the thickness of the substrate, and the ratio to the thickness of the substrate is very small. If a large current flows through this conductor layer, the impedance is relatively large and the inductance also increases.
 まずは図1および図2を参照して第1パワー回路部30を説明する。第1パワー回路部30は、IGBT50と、ダイオード54と、コレクタ導体60と、エミッタ導体61と、ゲート導体パターン62と、カソード導体63と、アノード導体64と、を含む。IGBT50は、板形状で主電極と当該主電極に流れる主電流を制御するゲート電極53を有する。主電極はIGBT50の上下で電極が分かれており、下面にコレクタ電極51、上面にエミッタ電極52とゲート電極53とが設けられる。ダイオード54は板形状であり、図2の視点では下面にカソード電極55、上面にアノード電極56が設けられる。 First, the first power circuit section 30 will be described with reference to FIGS. 1 and 2. FIG. The first power circuit section 30 includes an IGBT 50 , a diode 54 , a collector conductor 60 , an emitter conductor 61 , a gate conductor pattern 62 , a cathode conductor 63 and an anode conductor 64 . The IGBT 50 has a plate-like main electrode and a gate electrode 53 for controlling a main current flowing through the main electrode. The main electrode is separated above and below the IGBT 50, and a collector electrode 51 is provided on the lower surface, and an emitter electrode 52 and a gate electrode 53 are provided on the upper surface. The diode 54 has a plate shape, and has a cathode electrode 55 on the bottom surface and an anode electrode 56 on the top surface as viewed from the viewpoint of FIG.
 コレクタ導体60、エミッタ導体61、ゲート導体パターン62、カソード導体63、およびアノード導体64は導体、たとえば銅材で構成される。このうち少なくともゲート導体パターン62を除くコレクタ導体60、エミッタ導体61、カソード導体63、およびアノード導体64はプリント基板上の配線パターンではなく、厚みが数百マイクロメートル以上の導体かつ伝熱性が良好な部材の塊、たとえば銅の塊である。導体の塊は配線パターンよりも厚みがあるのでインピーダンスが低下し、インダクタンスも小さくなる。 The collector conductor 60, the emitter conductor 61, the gate conductor pattern 62, the cathode conductor 63, and the anode conductor 64 are composed of conductors such as copper material. At least the collector conductor 60, the emitter conductor 61, the cathode conductor 63, and the anode conductor 64, excluding the gate conductor pattern 62, are not wiring patterns on a printed circuit board, but conductors having a thickness of several hundred micrometers or more and good heat conductivity. A lump of material, for example a lump of copper. Since the conductor mass is thicker than the wiring pattern, the impedance is lowered and the inductance is also reduced.
 コレクタ導体60およびカソード導体63は第1基板10に埋設されており、第1基板10を貫通する。換言すると、コレクタ導体60およびカソード導体63のいずれも、第1主面10Pから第1副面10Qまで貫通している。 The collector conductor 60 and cathode conductor 63 are embedded in the first substrate 10 and pass through the first substrate 10 . In other words, both collector conductor 60 and cathode conductor 63 penetrate from first major surface 10P to first minor surface 10Q.
 コレクタ導体60は凹みであるIGBT収納用凹部70を形成する。IGBT50は、IGBT収納用凹部70の内部に収納され、はんだなどの金属接合材73を介してIGBT50のコレクタ電極51と電気的に接続される。カソード導体63は、凹みであるダイオード収納用凹部71を形成する。ダイオード54は、ダイオード収納用凹部71の内部に収納され、金属接合材73を介してダイオード54のカソード電極55と電気的に接続される。これにより、第1基板10の第1主面10Pが、IGBT50およびダイオード54を搭載することで平面状になり、第2基板20との接続が容易となることから製造性が向上する。 The collector conductor 60 forms an IGBT housing recess 70 which is a recess. The IGBT 50 is housed inside the IGBT housing recess 70 and electrically connected to the collector electrode 51 of the IGBT 50 via a metal bonding material 73 such as solder. The cathode conductor 63 forms a recess 71 for accommodating a diode. The diode 54 is housed inside the diode housing recess 71 and electrically connected to the cathode electrode 55 of the diode 54 via the metal bonding material 73 . As a result, the first main surface 10P of the first substrate 10 becomes flat by mounting the IGBTs 50 and the diodes 54 thereon, and connection with the second substrate 20 is facilitated, thereby improving manufacturability.
 図2において、コレクタ導体60はIGBT収納用凹部70を有しているので一部は第1主面10Pから奥まった位置にあるが、コレクタ導体60の端部は第1主面10Pと段差がなくフラットな状態、いわゆる面一の状態である。同様に、カソード導体63はダイオード収納用凹部71を有しているので一部は第1主面10Pから奥まった位置にあるが、カソード導体63の端部は第1主面10Pと段差がなくフラットな状態、いわゆる面一の状態である。 In FIG. 2, the collector conductor 60 has the recess 70 for accommodating the IGBT, so a part of the collector conductor 60 is recessed from the first main surface 10P, but the end of the collector conductor 60 has a level difference with the first main surface 10P. It is in a flat state, a so-called flush state. Similarly, the cathode conductor 63 has a recess 71 for accommodating a diode, so that a part of the cathode conductor 63 is recessed from the first main surface 10P, but the end of the cathode conductor 63 is flush with the first main surface 10P. It is in a flat state, a so-called flush state.
 図2に示すように、エミッタ導体61およびアノード導体64は第2基板20に埋設されており、第2基板20を貫通する。エミッタ導体61の第2主面20P側は、第2主面20Pと段差がなくフラットな状態、いわゆる面一の状態である。またエミッタ導体61の第2主面20P側は、金属接合材73を介してIGBT50のエミッタ電極52と電気的に接続される。アノード導体64の第2主面20P側は、第2主面20Pと段差がなくフラットな状態、いわゆる面一の状態である。アノード導体64の第2主面20P側は、金属接合材73を介してダイオード54のアノード電極56と電気的に接続される。このように、IGBT50およびダイオード54と接続される第2基板20の接続面が平面状に統一されることで、製造性が向上する。 As shown in FIG. 2, the emitter conductor 61 and the anode conductor 64 are embedded in the second substrate 20 and pass through the second substrate 20 . The second main surface 20P side of the emitter conductor 61 is in a flat state without a step with the second main surface 20P, that is, in a so-called flush state. The emitter conductor 61 on the second main surface 20</b>P side is electrically connected to the emitter electrode 52 of the IGBT 50 via the metal joint material 73 . The second main surface 20P side of the anode conductor 64 is in a flat state without a step with the second main surface 20P, that is, in a so-called flush state. The second main surface 20</b>P side of the anode conductor 64 is electrically connected to the anode electrode 56 of the diode 54 via the metal bonding material 73 . In this way, the connection surfaces of the second substrate 20 connected to the IGBTs 50 and the diodes 54 are unified in a planar shape, thereby improving manufacturability.
 ゲート導体パターン62は、第2基板20上に形成され、金属接合材73を介してIGBT50のゲート電極53と電気的に接続される。ゲート導体パターン62は、ビア74を介して第2基板20の上面に接続される。これにより、IGBT50およびダイオード54の全ての電極が第1基板10もしくは第2基板20上の導体パターンに接続される。この結果、従来は数百本のワイヤボンディングや複数のリードフレーム、バスバーで構成する主回路構造と比較すると、構成部材を削減することで製造性が向上し、低コスト化が可能となる。さらに、接合プロセスを回路基板と半導体素子のはんだ接合プロセスのみに簡略化することで、製造プロセスを短縮できる。 The gate conductor pattern 62 is formed on the second substrate 20 and electrically connected to the gate electrode 53 of the IGBT 50 via the metal bonding material 73 . The gate conductor pattern 62 is connected to the top surface of the second substrate 20 through vias 74 . All electrodes of the IGBT 50 and the diode 54 are thereby connected to the conductor pattern on the first substrate 10 or the second substrate 20 . As a result, compared to the conventional main circuit structure consisting of hundreds of wire bonds, multiple lead frames, and bus bars, it is possible to reduce the number of structural members, improve manufacturability, and reduce costs. Furthermore, the manufacturing process can be shortened by simplifying the bonding process to only the solder bonding process of the circuit board and the semiconductor element.
 図2および図3に示すように、第1基板10の上面および第2基板20の下面には、それぞれダミー導体65が設けられる。なお図2および図3のそれぞれでは、図の左側、中央、右側のそれぞれにダミー導体65が示されているが、作図の都合により左側にしか符号を付していない。ダミー導体65は、コレクタ導体60やエミッタ導体61などと同様に導体の塊である。 As shown in FIGS. 2 and 3, dummy conductors 65 are provided on the upper surface of the first substrate 10 and the lower surface of the second substrate 20, respectively. In each of FIGS. 2 and 3, the dummy conductors 65 are shown on the left, center, and right sides of the drawing, but for the convenience of drawing, only the left side is labeled. The dummy conductor 65 is a lump of conductor like the collector conductor 60, the emitter conductor 61, and the like.
 それぞれの第1基板10のダミー導体65には、金属接合材73を収納する基板接合用凹部72が、IGBT50およびダイオード54をそれぞれ囲って形成される。第1基板10および第2基板20のダミー導体65を金属接合材73で接続することにより、第1基板10と第2基板20を接続する。これにより、IGBT50およびダイオード54の接合面以外での第1基板10と第2基板20の接続面が確保され、信頼性が向上する。 In the dummy conductors 65 of each first substrate 10, substrate bonding recesses 72 containing metal bonding materials 73 are formed surrounding the IGBTs 50 and the diodes 54, respectively. The first substrate 10 and the second substrate 20 are connected by connecting the dummy conductors 65 of the first substrate 10 and the second substrate 20 with the metal bonding material 73 . As a result, a connection surface between the first substrate 10 and the second substrate 20 other than the bonding surface of the IGBT 50 and the diode 54 is secured, and reliability is improved.
 コレクタ導体60、エミッタ導体61、カソード導体63、およびアノード導体64は、IGBT50およびダイオード54の接続面とは反対側に放熱フィン75を形成する。これにより、IGBT50およびダイオード54から放熱フィン75まで絶縁部材を介さずに放熱経路を形成でき、油などの冷媒により直接冷却されるため熱抵抗の増加を抑制し電力変換装置の出力増大を図ることが可能となる。 The collector conductor 60, the emitter conductor 61, the cathode conductor 63, and the anode conductor 64 form a heat radiation fin 75 on the side opposite to the connecting surface of the IGBT 50 and the diode 54. As a result, a heat radiation path can be formed from the IGBT 50 and the diode 54 to the heat radiation fin 75 without an insulating member, and cooling is performed directly by a coolant such as oil, thereby suppressing an increase in thermal resistance and increasing the output of the power converter. becomes possible.
 図1および図4に示すように、第2基板20は、第1基板10上のIGBT収納用凹部70およびダイオード収納用凹部71と、第2基板20の外面を繋げる貫通孔76を形成する。貫通孔76を介して液状硬化性樹脂などの樹脂部材77が充填されることで、IGBT50およびダイオード54が封止される。従来のワイヤボンディングやリードフレームで構成される主回路構造は、トランスファモールドで信頼性を確保するため、構成部材の寸法ばらつきの影響を受けて樹脂被り等が部分的に発生し、放熱面を確実に露出できない課題が生じた。これに対して本実施の形態では、放熱面の露出が妨げられるプロセスを排除しているので製造性が向上する。 As shown in FIGS. 1 and 4, the second substrate 20 has through holes 76 connecting the IGBT housing recesses 70 and the diode housing recesses 71 on the first substrate 10 and the outer surface of the second substrate 20 . The IGBT 50 and the diode 54 are sealed by filling a resin member 77 such as a liquid curable resin through the through hole 76 . In the main circuit structure, which is composed of conventional wire bonding and lead frames, in order to ensure reliability with transfer molding, resin covering occurs partially due to the influence of dimensional variations in the constituent parts, and the heat dissipation surface is not ensured. A problem that cannot be exposed to On the other hand, in the present embodiment, since the process that prevents the exposure of the heat dissipation surface is eliminated, the productivity is improved.
 図3に示すように、第2パワー回路部40は、IGBT50と、ダイオード54と、コレクタ導体60と、エミッタ導体61と、ゲート導体パターン62と、カソード導体63と、アノード導体64と、を含む。第2パワー回路部40の主な構成は、第1パワー回路部30をおおよそ反転した構造となる。第2パワー回路部40だけに特有の構成は存在しないので、電力変換装置100全体の説明を続ける。 As shown in FIG. 3, the second power circuit section 40 includes an IGBT 50, a diode 54, a collector conductor 60, an emitter conductor 61, a gate conductor pattern 62, a cathode conductor 63, and an anode conductor 64. . The main configuration of the second power circuit section 40 is a structure in which the first power circuit section 30 is roughly inverted. Since there is no specific configuration only for the second power circuit section 40, the description of the entire power conversion device 100 will be continued.
 図1の左および図3の上部に示すように、コレクタ導体60およびカソード導体63は、正極電源導体パターン66に接続される。図3の下部に示すように、エミッタ導体61およびアノード導体64は、交流出力導体パターン68に接続される。図2の下部に示すように、交流出力導体パターン68には、第1パワー回路部30のコレクタ導体60およびカソード導体63も接続される。図2の上部に示すように、第1パワー回路部30のエミッタ導体61およびアノード導体64は、負極電源導体パターン67に接続される。 The collector conductor 60 and the cathode conductor 63 are connected to a positive power supply conductor pattern 66 as shown in the left of FIG. 1 and the top of FIG. The emitter conductor 61 and the anode conductor 64 are connected to an AC output conductor pattern 68, as shown in the lower part of FIG. As shown in the lower part of FIG. 2, the AC output conductor pattern 68 is also connected to the collector conductor 60 and the cathode conductor 63 of the first power circuit section 30 . As shown in the upper part of FIG. 2 , the emitter conductor 61 and the anode conductor 64 of the first power circuit section 30 are connected to a negative power supply conductor pattern 67 .
 図1に示すように、正極電源導体パターン66および負極電源導体パターン67は、それぞれ正極電源端子661と負極電源端子671が設けられ、バッテリからの電動機の駆動に必要な電気エネルギーが供給される。交流出力導体パターン68には、図1の上部に示す交流出力端子681が設けられ、電動機を駆動する電気エネルギーが出力される。図1に示す正極電源端子661、負極電源端子671、および交流出力端子681は、第1基板10および第2基板20に連なって貫通しており、端子部周辺は図示していないビアによって両基板の上下面が接続されている。これにより、バッテリおよび電動機に接続される電流経路の経路面積が拡大し、発熱集中を防止できる。 As shown in FIG. 1, the positive power conductor pattern 66 and the negative power conductor pattern 67 are provided with a positive power terminal 661 and a negative power terminal 671, respectively, and are supplied with electric energy necessary for driving the motor from the battery. The AC output conductor pattern 68 is provided with an AC output terminal 681 shown in the upper part of FIG. 1, and outputs electric energy for driving the motor. The positive power supply terminal 661, negative power supply terminal 671, and AC output terminal 681 shown in FIG. are connected at the top and bottom. As a result, the area of the current path connected to the battery and the electric motor is increased, and heat concentration can be prevented.
 図1に示すように、正極電源導体パターン66および負極電源導体パターン67上には、電力変換装置100に印加される電圧を平滑化するコンデンサ80が搭載される。これにより、電力変換装置100のスイッチング時には、コンデンサ80から流出した電流は第2パワー回路部40および第1パワー回路部30を介してコンデンサ80に流入する。この結果、スイッチング時の過渡電流の経路が第1基板10および第2基板20内のみで完結し、電流経路が短縮することでインダクタンスが低減できる。さらに、スイッチング時の過渡電流経路が第1基板10および第2基板20で完結していることから、第1基板10と第2基板20の電流経路が近くなり、第1パワー回路部30と第2パワー回路部40に対向電流が流れることで、インダクタンスが低減する。また、コンデンサ80接続用のバスバーが不要となり、製造性が向上する。 As shown in FIG. 1 , a capacitor 80 that smoothes the voltage applied to the power converter 100 is mounted on the positive power conductor pattern 66 and the negative power conductor pattern 67 . As a result, the current flowing out of the capacitor 80 flows into the capacitor 80 via the second power circuit section 40 and the first power circuit section 30 during switching of the power converter 100 . As a result, the path of the transient current during switching is completed only within the first substrate 10 and the second substrate 20, and the current path is shortened, thereby reducing the inductance. Furthermore, since the transient current path during switching is completed in the first substrate 10 and the second substrate 20, the current paths of the first substrate 10 and the second substrate 20 become closer, and the first power circuit section 30 and the second substrate The inductance is reduced by the opposing current flowing through the 2-power circuit section 40 . In addition, the need for a bus bar for connecting the capacitor 80 is eliminated, improving manufacturability.
 図1~図3に示すように、ゲート導体パターン62は、第1基板10および第2基板20のビア74を介して第2基板20の上面に電気的に接続される。図2および図3に示すように、第1基板10のビア74付近には基板接合用凹部72が設けられ、基板接合材により第1基板10と第2基板20とが接合される。図1に示すように、第2基板20上には、第1パワー回路部30および第2パワー回路部40それぞれの制御回路90が設けられ、それぞれのゲート導体パターン62に接続される。これにより、制御信号のインダクタンスを低減し、素子駆動性能の低下を防ぐことで損失増加を防止する。 As shown in FIGS. 1 to 3, the gate conductor pattern 62 is electrically connected to the top surface of the second substrate 20 through the vias 74 of the first substrate 10 and the second substrate 20 . As shown in FIGS. 2 and 3, substrate bonding recesses 72 are provided in the vicinity of the vias 74 of the first substrate 10, and the first substrate 10 and the second substrate 20 are bonded with a substrate bonding material. As shown in FIG. 1 , control circuits 90 for the first power circuit section 30 and the second power circuit section 40 are provided on the second substrate 20 and connected to the respective gate conductor patterns 62 . As a result, the inductance of the control signal is reduced to prevent deterioration in device drive performance, thereby preventing an increase in loss.
 以上のような構成とすることで、電力変換装置100は、バッテリからの電動機の駆動に必要な電気エネルギーは第1パワー回路部30および第2パワー回路部40に供給され、交流出力導体パターン68に設けられた交流出力端子681から出力される交流電力を制御する。構成部品である第1パワー回路部30および第2パワー回路部40と、コンデンサ80と、制御回路90と、をすべて第1基板10および第2基板20上に構成することで、複雑な形状のバスバーが不要となり、製造性が向上する。電力変換装置100のスイッチング時には、コンデンサ80のから流出した電流は第1パワー回路部30と第2パワー回路部40を介してコンデンサ80に流入する。これにより、スイッチング時の過渡電流経路を短縮化し、インダクタンスを低減する。 With the above configuration, the power conversion device 100 supplies electric energy required for driving the electric motor from the battery to the first power circuit section 30 and the second power circuit section 40, and the AC output conductor pattern 68 The AC power output from the AC output terminal 681 provided in is controlled. By configuring all of the components, namely the first power circuit section 30 and the second power circuit section 40, the capacitor 80, and the control circuit 90, on the first substrate 10 and the second substrate 20, a complicated shape can be achieved. This eliminates the need for a busbar and improves manufacturability. During switching of the power converter 100 , the current flowing out of the capacitor 80 flows into the capacitor 80 via the first power circuit section 30 and the second power circuit section 40 . This shortens the transient current path during switching and reduces the inductance.
 上述した第1の実施の形態によれば、次の作用効果が得られる。
(1)電力変換装置100は、半導体素子であるIGBT50と、向かい合わせて配置される第1基板10および第2基板20とを備える。第1基板10は、第2基板20に対向する第1主面10Pと第1主面10Pとは逆側の第1副面10Qとを有する。第2基板20は、第1基板10に対向する第2主面20Pと第2主面20Pとは逆側の第2副面20Qとを有する。第1基板10には第1副面10Qに露出する第1導体、たとえば第1パワー回路部30のコレクタ導体60が埋設される。第2基板20には第2副面20Qに露出する第2導体、たとえば第1パワー回路部30のエミッタ導体61が埋設される。IGBT50は、コレクタ導体60とエミッタ導体61との間に配される。IGBT50は、コレクタ導体60およびエミッタ導体61と電気的に接続される。そのため、従来のような複雑な形状のバスバーが不要となり製造性に優れている。また、IGBT50に接するコレクタ導体60およびエミッタ導体61は金属の塊なので熱の伝導性がよく、かつ外周側に露出しているので放熱性に優れている。すなわち電力変換装置100は、製造性および放熱性に優れている。
According to the first embodiment described above, the following effects are obtained.
(1) The power conversion device 100 includes an IGBT 50 that is a semiconductor element, and a first substrate 10 and a second substrate 20 that are arranged to face each other. The first substrate 10 has a first major surface 10P facing the second substrate 20 and a first minor surface 10Q opposite to the first major surface 10P. The second substrate 20 has a second major surface 20P facing the first substrate 10 and a second minor surface 20Q opposite to the second major surface 20P. A first conductor exposed on the first sub-surface 10Q, for example, the collector conductor 60 of the first power circuit section 30, is embedded in the first substrate 10. As shown in FIG. A second conductor exposed on the second sub-surface 20Q, for example, the emitter conductor 61 of the first power circuit section 30, is embedded in the second substrate 20. As shown in FIG. IGBT 50 is arranged between collector conductor 60 and emitter conductor 61 . IGBT 50 is electrically connected to collector conductor 60 and emitter conductor 61 . Therefore, bus bars having a complicated shape as in the prior art are not required, and the manufacturability is excellent. Also, the collector conductor 60 and the emitter conductor 61 in contact with the IGBT 50 are made of a lump of metal, and thus have good heat conductivity. That is, the power conversion device 100 is excellent in manufacturability and heat dissipation.
(2)第1パワー回路部30のコレクタ導体60は、第1主面10Pおよび第1副面10Qの両方に露出する。第1パワー回路部30のエミッタ導体61は、第2主面20Pおよび第2副面20Qの両方に露出する。第1パワー回路部30のエミッタ導体61は、凹部であるIGBT収納用凹部70を形成し、IGBT50はこのIGBT収納用凹部70の内部に収納される。 (2) The collector conductor 60 of the first power circuit section 30 is exposed on both the first major surface 10P and the first minor surface 10Q. Emitter conductor 61 of first power circuit section 30 is exposed on both second main surface 20P and second sub-surface 20Q. The emitter conductor 61 of the first power circuit section 30 forms an IGBT housing recess 70 which is a recess, and the IGBT 50 is housed inside this IGBT housing recess 70 .
(3)第2基板20は、IGBT収納用凹部70と第2基板20の外部とを接続する貫通孔であるビア74が形成され、IGBT収納用凹部70のIGBT50を除く領域には樹脂部材77が充填される。そのため、樹脂部材77によりIGBT50への異物の不着や振動によるIGBT50の悪影響が防止される。 (3) The second substrate 20 is formed with a via 74 which is a through hole connecting the IGBT housing recess 70 and the outside of the second substrate 20 , and a resin member 77 is formed in the area of the IGBT housing recess 70 excluding the IGBTs 50 . is filled. Therefore, the resin member 77 prevents foreign matter from adhering to the IGBT 50 and adverse effects on the IGBT 50 due to vibration.
(4)IGBT50が収容されるIGBT収納用凹部70は、第1パワー回路部30のコレクタ導体60に形成され、相対するエミッタ導体61には形成されない。エミッタ導体61は、第2基板20の第2主面20Pと面一に形成される。IGBT50は、コレクタ電極51がコレクタ導体60と接続され、かつエミッタ電極52がエミッタ導体61と接続され、さらにゲート電極53が第2基板20のゲート導体パターン62と接続される。そのため、IGBT収納用凹部70が第1基板10のみに形成されるので、両方に凹部が設けられる場合よりも公差の管理が容易である。また、仮にIGBT50が第1基板10と第2基板20との境界に配されると、電力変換装置100を捻る力が発生した場合にIGBT50に物理的な負荷が生じる。しかし本実施の形態では第1基板10の内部に配されるので、IGBT50が保護される。 (4) The IGBT housing recess 70 for housing the IGBT 50 is formed in the collector conductor 60 of the first power circuit section 30 and is not formed in the opposing emitter conductor 61 . The emitter conductor 61 is formed flush with the second main surface 20</b>P of the second substrate 20 . IGBT 50 has collector electrode 51 connected to collector conductor 60 , emitter electrode 52 connected to emitter conductor 61 , and gate electrode 53 connected to gate conductor pattern 62 of second substrate 20 . Therefore, since the IGBT housing recesses 70 are formed only in the first substrate 10, it is easier to manage tolerances than when recesses are provided in both substrates. Further, if the IGBT 50 is arranged at the boundary between the first substrate 10 and the second substrate 20, a physical load is applied to the IGBT 50 when a force that twists the power conversion device 100 is generated. However, in this embodiment, the IGBT 50 is protected because it is arranged inside the first substrate 10 .
(5)第1基板10および第2基板20のそれぞれは、第1パワー回路部30のコレクタ導体60および第1パワー回路部30のエミッタ導体61とは異なる複数のダミー導体65を有する。これら複数のダミー導体65同士を金属接合材73で接続することにより、第1基板10と第2基板20とを接続する。第1基板10に含まれるダミー導体65は、金属接合材73を収納する基板接合用凹部72が形成される。そのため、第1基板10と第2基板20とが強固に接続され、電力変換装置100に強い力が加わった際にIGBT50に生じる力を減らすことができる。 (5) Each of the first substrate 10 and the second substrate 20 has a plurality of dummy conductors 65 different from the collector conductor 60 of the first power circuit section 30 and the emitter conductor 61 of the first power circuit section 30 . The first substrate 10 and the second substrate 20 are connected by connecting the plurality of dummy conductors 65 with the metal bonding material 73 . A dummy conductor 65 included in the first substrate 10 is formed with a substrate bonding concave portion 72 that accommodates a metal bonding material 73 . Therefore, the first substrate 10 and the second substrate 20 are firmly connected, and the force generated in the IGBT 50 when a strong force is applied to the power conversion device 100 can be reduced.
(6)第1基板10と第2基板20は、第1パワー回路部30のコレクタ導体60およびエミッタ導体61とは別に、それぞれの基板を貫通する第2パワー回路部40のコレクタ導体60およびエミッタ導体61を有する。第2パワー回路部40のコレクタ導体60およびエミッタ導体61に、第1パワー回路部30のIGBT50と反転した向きで第2パワー回路部40のIGBT50が接続される。そのため、1組の基板を用いて2つのIGBT50を保持できる。 (6) Separately from the collector conductor 60 and the emitter conductor 61 of the first power circuit section 30, the first substrate 10 and the second substrate 20 have the collector conductor 60 and the emitter conductor 60 of the second power circuit section 40 passing through each substrate. It has a conductor 61 . The IGBT 50 of the second power circuit section 40 is connected to the collector conductor 60 and the emitter conductor 61 of the second power circuit section 40 in a direction opposite to that of the IGBT 50 of the first power circuit section 30 . Therefore, two IGBTs 50 can be held using one set of substrates.
(7)コレクタ導体60、IGBT50、およびエミッタ導体61は第1方向、すなわち図2~図4の上下方向に並ぶ。第1基板10は、第1方向に直交する第2方向に延伸し、第1パワー回路部30のコレクタ導体60および第2パワー回路部40のエミッタ導体61を電気的に接続する交流出力導体パターン68を有する。第2基板20は、第2方向に延伸し第1パワー回路部30のエミッタ導体61と電気的に接続される負極電源導体パターン67と、第2方向に延伸し第2パワー回路部40のコレクタ導体60と電気的に接続され、かつ負極電源導体パターン67とは接続されない正極電源導体パターン66を有する。電力変換装置100は、正極電源導体パターン66および負極電源導体パターン67に跨るコンデンサ80を備える。そのため、第1基板10と第2基板20と2つのIGBT50とを用いて、1相分の上アーム回路および下アーム回路を構成することができる。 (7) The collector conductor 60, the IGBT 50, and the emitter conductor 61 are arranged in the first direction, that is, the vertical direction in FIGS. The first substrate 10 extends in a second direction orthogonal to the first direction, and has an AC output conductor pattern that electrically connects the collector conductor 60 of the first power circuit section 30 and the emitter conductor 61 of the second power circuit section 40. 68. The second substrate 20 includes a negative power supply conductor pattern 67 extending in the second direction and electrically connected to the emitter conductor 61 of the first power circuit section 30 and a collector of the second power circuit section 40 extending in the second direction. It has a positive power conductor pattern 66 electrically connected to the conductor 60 and not connected to the negative power conductor pattern 67 . The power converter 100 includes a capacitor 80 spanning the positive power conductor pattern 66 and the negative power conductor pattern 67 . Therefore, by using the first substrate 10, the second substrate 20, and the two IGBTs 50, it is possible to configure an upper arm circuit and a lower arm circuit for one phase.
(8)コレクタ導体60は、第1副面10Qに放熱フィン75が接続される。エミッタ導体61は、第2副面20Qに放熱フィン75が接続される。そのため、電力変換装置100は効率よく放熱できる。 (8) A radiation fin 75 is connected to the first subsurface 10Q of the collector conductor 60 . A radiation fin 75 is connected to the second minor surface 20Q of the emitter conductor 61 . Therefore, the power conversion device 100 can efficiently dissipate heat.
(変形例1)
 上述した第1の実施の形態では、いずれのコレクタ導体60およびエミッタ導体61も基板を貫通しており、主面および副面の両方に露出していた。しかしコレクタ導体60およびエミッタ導体61は、少なくとも外周側、すなわち副面側に露出していればよく、主面側に露出していなくてもよい。換言するとコレクタ導体60およびエミッタ導体61は、基板を貫通しなくてもよい。
(Modification 1)
In the first embodiment described above, both collector conductors 60 and emitter conductors 61 penetrate the substrate and are exposed on both the main surface and the subsurface. However, collector conductor 60 and emitter conductor 61 need only be exposed at least on the outer peripheral side, that is, on the secondary surface side, and need not be exposed on the main surface side. In other words, collector conductor 60 and emitter conductor 61 do not have to penetrate the substrate.
 図5は、変形例1における第1パワー回路部30の一部を示す図であり図2の中央付近に相当する。図5では、エミッタ導体61は第1の実施の形態と同様に第2主面20Pに露出しているが、コレクタ導体60は第1主面10Pに露出していない。具体的には、第1パワー回路部30のエミッタ導体61における第1主面10Pに最も近いコレクタ導体端部60Xは、第1主面10Pよりも奥まった位置に存在する。本変形例の構成においても、第1の実施の形態と同様に放熱性がよく、かつ製造性がよい。 FIG. 5 is a diagram showing part of the first power circuit section 30 in Modification 1 and corresponds to the vicinity of the center of FIG. In FIG. 5, the emitter conductor 61 is exposed on the second main surface 20P as in the first embodiment, but the collector conductor 60 is not exposed on the first main surface 10P. Specifically, the collector conductor end portion 60X of the emitter conductor 61 of the first power circuit section 30, which is closest to the first main surface 10P, exists at a position recessed from the first main surface 10P. Also in the configuration of this modification, heat dissipation is good and manufacturability is good as in the first embodiment.
(変形例2)
 上述した第1の実施の形態では、コレクタ導体60にはIGBT50を格納する凹部であるIGBT収納用凹部70が設けられたがエミッタ導体61には凹部が設けられなかった。しかし、コレクタ導体60に凹部を設ける代わりにエミッタ導体61に凹部を設けてもよいし、コレクタ導体60およびエミッタ導体61の両方に凹部を設けてもよい。
(Modification 2)
In the above-described first embodiment, the collector conductor 60 is provided with the IGBT housing recess 70 for housing the IGBT 50, but the emitter conductor 61 is not provided with the recess. However, instead of providing the recess in the collector conductor 60, the recess may be provided in the emitter conductor 61, or both the collector conductor 60 and the emitter conductor 61 may be provided with the recess.
(変形例3)
 上述した第1の実施の形態では、IGBT収納用凹部70に樹脂部材77が充填された。しかしIGBT収納用凹部70に樹脂部材77が充填されることは必須の構成ではなく、IGBT収納用凹部70に樹脂部材77が充填されなくてもよい。
(Modification 3)
In the first embodiment described above, the resin member 77 is filled in the IGBT housing recess 70 . However, filling the IGBT housing recess 70 with the resin member 77 is not an essential configuration, and the IGBT housing recess 70 may not be filled with the resin member 77 .
(変形例4)
 上述した第1の実施の形態では、コレクタ導体60およびエミッタ導体61は外周側に放熱フィン75を有した。しかしコレクタ導体60およびエミッタ導体61が放熱フィン75を備えることは必須の構成ではなく、コレクタ導体60およびエミッタ導体61の少なくとも一方は放熱フィン75を備えなくてもよい。
(Modification 4)
In the first embodiment described above, the collector conductor 60 and the emitter conductor 61 have the heat dissipation fins 75 on the outer peripheral side. However, it is not essential that collector conductor 60 and emitter conductor 61 have radiation fins 75 , and at least one of collector conductor 60 and emitter conductor 61 may not have radiation fins 75 .
(変形例5)
 上述した第1の実施の形態では、第1基板10と第2基板20との接続を強固にするためにダミー導体65および金属接合材73が用いられた。しかし電力変換装置100は、ダミー導体65および金属接合材73を備えなくてもよい。
(Modification 5)
In the first embodiment described above, the dummy conductor 65 and the metal bonding material 73 are used to strengthen the connection between the first substrate 10 and the second substrate 20 . However, power conversion device 100 does not have to include dummy conductor 65 and metal joint material 73 .
―第2の実施の形態―
 図6を参照して、電力変換装置の第2の実施の形態を説明する。以下の説明では、第1の実施の形態と同じ構成要素には同じ符号を付して相違点を主に説明する。特に説明しない点については、第1の実施の形態と同じである。本実施の形態では、主に、交流出力端子の配置が第1の実施の形態と異なる。
-Second Embodiment-
A second embodiment of the power converter will be described with reference to FIG. In the following description, the same components as those in the first embodiment are assigned the same reference numerals, and differences are mainly described. Points that are not particularly described are the same as those in the first embodiment. This embodiment differs from the first embodiment mainly in the arrangement of AC output terminals.
 図6は、第2の実施の形態における電力変換装置100Aの概略図である。交流出力端子681は、正極電源端子661および負極電源端子671に近接して配置される。具体的には交流出力端子681は、図1では図の上部に示されていたが図6では図の下部に示されている。第2の実施の形態では、電力変換装置100に接続される主回路配線がすべて同一方向から接続できるため、バッテリおよび電動機に組付ける際に生産性が向上する。 FIG. 6 is a schematic diagram of a power converter 100A according to the second embodiment. The AC output terminal 681 is arranged in close proximity to the positive power terminal 661 and the negative power terminal 671 . Specifically, AC output terminal 681 was shown in the upper part of the drawing in FIG. 1, but is shown in the lower part of the drawing in FIG. In the second embodiment, all the main circuit wires connected to the power conversion device 100 can be connected from the same direction, so productivity is improved when assembling the battery and the electric motor.
―第3の実施の形態―
 図7を参照して、電力変換装置の第3の実施の形態を説明する。以下の説明では、第1の実施の形態と同じ構成要素には同じ符号を付して相違点を主に説明する。特に説明しない点については、第1の実施の形態と同じである。本実施の形態では、主に、コンデンサ80が複数設けられる点で、第1の実施の形態と異なる。
-Third Embodiment-
A third embodiment of the power converter will be described with reference to FIG. In the following description, the same components as those in the first embodiment are assigned the same reference numerals, and differences are mainly described. Points that are not particularly described are the same as those in the first embodiment. This embodiment differs from the first embodiment mainly in that a plurality of capacitors 80 are provided.
 図7は、第3の実施の形態における電力変換装置100Bの概略図である。電力変換装置100Bは、コンデンサ80を2以上備え、図7に示す例ではコンデンサ80を3つ備える。正極電源導体パターン66および負極電源導体パターン67に搭載されるコンデンサ80を複数設けることで、スイッチング時の過渡電流経路が複数に分かれ、インダクタンスが低減する。さらに、コンデンサ80が、第1パワー回路部30および第2パワー回路部40の間に配置されることで、スイッチング時の過渡電流経路が短縮され、インダクタンスが低減する。 FIG. 7 is a schematic diagram of a power converter 100B according to the third embodiment. The power conversion device 100B includes two or more capacitors 80, and three capacitors 80 in the example shown in FIG. By providing a plurality of capacitors 80 mounted on the positive power conductor pattern 66 and the negative power conductor pattern 67, the transient current paths during switching are divided into a plurality of paths, and the inductance is reduced. Furthermore, by arranging the capacitor 80 between the first power circuit section 30 and the second power circuit section 40, the transient current path during switching is shortened and the inductance is reduced.
―第4の実施の形態―
 図8~図9を参照して、電力変換装置の第4の実施の形態を説明する。以下の説明では、第1の実施の形態と同じ構成要素には同じ符号を付して相違点を主に説明する。特に説明しない点については、第1の実施の形態と同じである。本実施の形態では、主に、逆導通IGBTを備える点で、第1の実施の形態と異なる。
-Fourth Embodiment-
A fourth embodiment of the power converter will be described with reference to FIGS. 8 and 9. FIG. In the following description, the same components as those in the first embodiment are assigned the same reference numerals, and differences are mainly described. Points that are not particularly described are the same as those in the first embodiment. This embodiment differs from the first embodiment mainly in that it includes a reverse-conducting IGBT.
 図8は、第4の実施の形態における電力変換装置100Cの概略図である。図9は、図8のIX-IX断面図である。第1パワー回路部30および第2パワー回路部40には、IGBTおよびダイオードが一体化された逆導通IGBT(Reverse Conducting IGBT)57が搭載される。これにより、半導体素子の実装面積が縮小し、電力変換装置100の小型化が可能となる。さらに、スイッチング時の過渡電流経路が短縮され、インダクタンスが低減する。 FIG. 8 is a schematic diagram of a power converter 100C according to the fourth embodiment. 9 is a cross-sectional view taken along line IX-IX of FIG. 8. FIG. A reverse conducting IGBT (Reverse Conducting IGBT) 57 in which an IGBT and a diode are integrated is mounted in the first power circuit section 30 and the second power circuit section 40 . As a result, the mounting area of the semiconductor element is reduced, and the size of the power conversion device 100 can be reduced. Furthermore, the transient current path during switching is shortened and the inductance is reduced.
 上述した各実施の形態および変形例において、機能ブロックの構成は一例に過ぎない。別々の機能ブロックとして示したいくつかの機能構成を一体に構成してもよいし、1つの機能ブロック図で表した構成を2以上の機能に分割してもよい。また各機能ブロックが有する機能の一部を他の機能ブロックが備える構成としてもよい。 In each embodiment and modification described above, the configuration of the functional blocks is merely an example. Some functional configurations shown as separate functional blocks may be configured integrally, or a configuration represented by one functional block diagram may be divided into two or more functions. Further, a configuration may be adopted in which part of the functions of each functional block is provided in another functional block.
 上述した各実施の形態および変形例は、それぞれ組み合わせてもよい。上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。 Each of the above-described embodiments and modifications may be combined. Although various embodiments and modifications have been described above, the present invention is not limited to these contents. Other aspects conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention.
10…第1基板
10P…第1主面
10Q…第1副面
20…第2基板
20P…第2主面
20Q…第2副面
30…第1パワー回路部
40…第2パワー回路部
60…コレクタ導体
61…エミッタ導体
63…カソード導体
64…アノード導体
65…ダミー導体
70…IGBT収納用凹部
72…基板接合用凹部
73…金属接合材
74…ビア
75…放熱フィン
77…樹脂部材
80…コンデンサ
100、100A、100B、100C…電力変換装置
Reference Signs List 10 First substrate 10P First main surface 10Q First subsurface 20 Second substrate 20P Second main surface 20Q Second subsurface 30 First power circuit section 40 Second power circuit section 60 Collector conductor 61 Emitter conductor 63 Cathode conductor 64 Anode conductor 65 Dummy conductor 70 IGBT housing recess 72 Substrate bonding recess 73 Metal joint material 74 Via 75 Radiation fin 77 Resin member 80 Capacitor 100 , 100A, 100B, 100C... power converters

Claims (8)

  1.  半導体素子と、
     向かい合わせて配置される第1基板および第2基板と、を備え、
     前記第1基板は、前記第2基板に対向する第1主面と前記第1主面とは逆側の第1副面とを有し、
     前記第2基板は、前記第1基板に対向する第2主面と前記第2主面とは逆側の第2副面とを有し、
     前記第1基板には前記第1副面に露出する第1導体が埋設され、
     前記第2基板には前記第2副面に露出する第2導体が埋設され、
     前記半導体素子は、前記第1導体と前記第2導体との間に配され、
     前記半導体素子は、前記第1導体および前記第2導体と電気的に接続される、電力変換装置。
    a semiconductor element;
    a first substrate and a second substrate arranged to face each other;
    The first substrate has a first main surface facing the second substrate and a first subsurface opposite to the first main surface,
    the second substrate has a second major surface facing the first substrate and a second minor surface opposite to the second major surface;
    A first conductor exposed on the first subsurface is embedded in the first substrate,
    a second conductor is embedded in the second substrate and exposed on the second subsurface;
    The semiconductor element is arranged between the first conductor and the second conductor,
    A power conversion device, wherein the semiconductor element is electrically connected to the first conductor and the second conductor.
  2.  請求項1に記載の電力変換装置において、
     前記第1導体は、前記第1主面および前記第1副面の両方に露出し、
     前記第2導体は、前記第2主面および前記第2副面の両方に露出し、
     前記第1導体と前記第2導体の一方又は双方は、凹部を形成し、
     前記半導体素子は、前記凹部内に収納される、電力変換装置。
    In the power converter according to claim 1,
    the first conductor is exposed on both the first major surface and the first minor surface;
    the second conductor is exposed on both the second major surface and the second minor surface;
    one or both of the first conductor and the second conductor form a recess;
    The power conversion device, wherein the semiconductor element is housed in the recess.
  3.  請求項2に記載の電力変換装置において、
     前記第1基板および第2基板の少なくとも一方には、前記凹部と前記電力変換装置の外部とを接続する貫通孔が形成され、
     前記凹部の前記半導体素子を除く領域には樹脂部材が充填される、電力変換装置。
    In the power converter according to claim 2,
    At least one of the first substrate and the second substrate is formed with a through hole connecting the recess and the outside of the power conversion device,
    A power conversion device, wherein a region of the concave portion excluding the semiconductor element is filled with a resin member.
  4.  請求項2に記載の電力変換装置において、
     前記凹部は前記第1導体のみに形成され、
     前記第2導体は、前記第2基板の前記第2主面と面一に形成され、
     前記半導体素子は、コレクタ電極が前記第1導体と接続され、かつエミッタ電極が前記第2導体と接続され、さらにゲート電極が第2基板の別の導体と接続される、電力変換装置。
    In the power converter according to claim 2,
    the recess is formed only in the first conductor,
    The second conductor is formed flush with the second main surface of the second substrate,
    A power conversion device, wherein the semiconductor element has a collector electrode connected to the first conductor, an emitter electrode connected to the second conductor, and a gate electrode connected to another conductor of a second substrate.
  5.  請求項1に記載の電力変換装置において、
     前記第1基板および前記第2基板は、前記第1導体および前記第2導体とは異なる第3導体および第4導体を有し、
     当該第3導体および前記第4導体は、金属接合材で接続されて前記第1基板と前記第2基板とを接続し、
     前記第3導体および前記第4導体の少なくとも一方には、前記金属接合材を収納する第2凹部が形成される、電力変換装置。
    In the power converter according to claim 1,
    the first substrate and the second substrate have a third conductor and a fourth conductor different from the first conductor and the second conductor;
    the third conductor and the fourth conductor are connected by a metal bonding material to connect the first substrate and the second substrate;
    A power conversion device, wherein at least one of the third conductor and the fourth conductor is formed with a second recess for accommodating the metal bonding material.
  6.  請求項1に記載の電力変換装置において、
     前記第1基板と前記第2基板は、前記第1導体及び前記第2導体とは別に、それぞれの基板を貫通する第5導体および第6導体を有し、
     前記第5導体および前記第6導体に前記半導体素子と反転した向きでもう一つの半導体素子が接続される、電力変換装置。
    In the power converter according to claim 1,
    The first substrate and the second substrate have a fifth conductor and a sixth conductor penetrating through the respective substrates separately from the first conductor and the second conductor,
    A power conversion device, wherein another semiconductor element is connected to the fifth conductor and the sixth conductor in a direction opposite to that of the semiconductor element.
  7.  請求項6に記載の電力変換装置において、
     前記第1導体、前記半導体素子、および前記第2導体は第1方向に並び、
     前記第1基板は、前記第1方向に直交する第2方向に延伸し、前記第1導体および前記第5導体を電気的に接続する第7導体をさらに有し、
     前記第2基板は、前記第2方向に延伸し第2導体と電気的に接続される第8導体、および前記第2方向に延伸し前記第6導体と電気的に接続され、かつ、前記第8導体とは接続されない第9導体をさらに有し、
     前記第8導体および第9導体に跨るコンデンサをさらに備える、電力変換装置。
    In the power converter according to claim 6,
    the first conductor, the semiconductor element, and the second conductor are arranged in a first direction;
    the first substrate further includes a seventh conductor extending in a second direction orthogonal to the first direction and electrically connecting the first conductor and the fifth conductor;
    The second substrate includes an eighth conductor extending in the second direction and electrically connected to the second conductor, an eighth conductor extending in the second direction and electrically connected to the sixth conductor, and the second substrate. further having a ninth conductor that is not connected to the eight conductors;
    A power conversion device further comprising a capacitor spanning the eighth conductor and the ninth conductor.
  8.  請求項1に記載の電力変換装置において、
     前記第1導体は、前記第1副面に放熱フィンが接続され、
     前記第2導体は、前記第2副面に放熱フィンが接続される、電力変換装置。
     
    In the power converter according to claim 1,
    the first conductor has a radiation fin connected to the first subsurface,
    The power conversion device, wherein the second conductor is connected to a heat radiation fin on the second minor surface.
PCT/JP2022/009687 2021-03-25 2022-03-07 Power conversion device WO2022202248A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-052210 2021-03-25
JP2021052210A JP2022149879A (en) 2021-03-25 2021-03-25 Power conversion device

Publications (1)

Publication Number Publication Date
WO2022202248A1 true WO2022202248A1 (en) 2022-09-29

Family

ID=83397042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009687 WO2022202248A1 (en) 2021-03-25 2022-03-07 Power conversion device

Country Status (2)

Country Link
JP (1) JP2022149879A (en)
WO (1) WO2022202248A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246515A (en) * 2001-02-20 2002-08-30 Mitsubishi Electric Corp Semiconductor device
JP2006229180A (en) * 2005-01-24 2006-08-31 Toyota Motor Corp Semiconductor module and device
JP2017069253A (en) * 2015-09-28 2017-04-06 ニチコン株式会社 Semiconductor Power Module
JP2019096771A (en) * 2017-11-24 2019-06-20 ルネサスエレクトロニクス株式会社 Electronic equipment and semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246515A (en) * 2001-02-20 2002-08-30 Mitsubishi Electric Corp Semiconductor device
JP2006229180A (en) * 2005-01-24 2006-08-31 Toyota Motor Corp Semiconductor module and device
JP2017069253A (en) * 2015-09-28 2017-04-06 ニチコン株式会社 Semiconductor Power Module
JP2019096771A (en) * 2017-11-24 2019-06-20 ルネサスエレクトロニクス株式会社 Electronic equipment and semiconductor device

Also Published As

Publication number Publication date
JP2022149879A (en) 2022-10-07

Similar Documents

Publication Publication Date Title
US11532538B2 (en) Component structure, power module and power module assembly structure
JP6065995B2 (en) Semiconductor device and manufacturing method of semiconductor device
US6642576B1 (en) Power semiconductor device having layered structure of power semiconductor elements and terminal members
EP3107120B1 (en) Power semiconductor module
US5767573A (en) Semiconductor device
US8441117B2 (en) Semiconductor device
US7859079B2 (en) Power semiconductor device
US20140334203A1 (en) Power converter and method for manufacturing power converter
US11101241B2 (en) Semiconductor device having terminals and semiconductor elements electrically connected to a respective side surface of the terminals
JP2000164800A (en) Semiconductor module
US20160255714A1 (en) Power converter
CN109428498B (en) Assembly structure, power module and power module assembly structure
JP6929813B2 (en) Power semiconductor device
CN113066776A (en) Power module
JP3673776B2 (en) Semiconductor module and power conversion device
WO2022202248A1 (en) Power conversion device
CN111354709B (en) Semiconductor device and method for manufacturing the same
CN111668165A (en) Semiconductor module and semiconductor device provided with same
WO2024143541A1 (en) Semiconductor device, semiconductor module, and manufacturing method
US20240178194A1 (en) Semiconductor module
CN220021100U (en) Semiconductor module
WO2023100980A1 (en) Semiconductor module, power conversion device, and method for producing power conversion device
WO2023100771A1 (en) Semiconductor module, power conversion device, and method for manufacturing semiconductor module
JP6952824B2 (en) Power modules and power semiconductor devices using them
WO2023090072A1 (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775042

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775042

Country of ref document: EP

Kind code of ref document: A1