WO2022202213A1 - Method for producing reduced coenzyme q10 crystals of form ii or crystalline solid thereof - Google Patents

Method for producing reduced coenzyme q10 crystals of form ii or crystalline solid thereof Download PDF

Info

Publication number
WO2022202213A1
WO2022202213A1 PCT/JP2022/009360 JP2022009360W WO2022202213A1 WO 2022202213 A1 WO2022202213 A1 WO 2022202213A1 JP 2022009360 W JP2022009360 W JP 2022009360W WO 2022202213 A1 WO2022202213 A1 WO 2022202213A1
Authority
WO
WIPO (PCT)
Prior art keywords
ftu
reduced coenzyme
crystals
crystal
alcohol
Prior art date
Application number
PCT/JP2022/009360
Other languages
French (fr)
Japanese (ja)
Inventor
昴 谷崎
直生 大野
貴識 橋本
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2023508901A priority Critical patent/JPWO2022202213A1/ja
Publication of WO2022202213A1 publication Critical patent/WO2022202213A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/34Separation; Purification; Stabilisation; Use of additives
    • C07C41/40Separation; Purification; Stabilisation; Use of additives by change of physical state, e.g. by crystallisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/23Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C50/00Quinones
    • C07C50/26Quinones containing groups having oxygen atoms singly bound to carbon atoms
    • C07C50/28Quinones containing groups having oxygen atoms singly bound to carbon atoms with monocyclic quinoid structure

Definitions

  • the present disclosure relates to a method for producing Form II reduced coenzyme Q10 crystals with excellent stability or a crystalline solid thereof.
  • Coenzyme Q is an essential component that is widely distributed in living organisms, from bacteria to mammals, and is known as a component of the mitochondrial electron transport system in cells in living organisms. Coenzyme Q repeats oxidation and reduction in mitochondria, thereby serving as a transfer component in the electron transport system, and reduced coenzyme Q is known to have an antioxidant effect.
  • coenzyme Q10 which has 10 repeating structures in the side chain of coenzyme Q, is the main component, and about 40 to 90% of the coenzyme exists in vivo as a reduced form.
  • Physiological actions of coenzyme Q include activation of energy production by mitochondrial activation, activation of cardiac function, stabilization of cell membranes, and protection of cells by antioxidant action.
  • Patent Document 1 A general method for obtaining reduced coenzyme Q10 has already been disclosed (Patent Document 1). Furthermore, several methods are known for obtaining reduced coenzyme Q10 as crystals. For example, a method of crystallizing reduced coenzyme Q10 in an alcohol solution and/or a ketone solution to produce crystals (Patent Document 2), or adding a high-concentration liquid phase of reduced coenzyme Q10 to a poor solvent. A method (Patent Document 3) for crystallization by crystallization has been reported.
  • Patent Document 4 describes that crystal polymorphism is observed in reduced coenzyme Q10. Or called Form II type crystal) is much more stable than conventional reduced coenzyme Q10 (hereinafter, this crystal is called Form I type reduced coenzyme Q10 crystal, or Form I type crystal), and other It is also reported to have excellent physical properties.
  • Patent Document 5 describes a method for producing Form II-type reduced coenzyme Q10 crystals.
  • at least one organic solvent selected from the group consisting of alcohols, hydrocarbons, fatty acid esters and nitrogen compounds, and reduced coenzyme Q10 are contained, and the temperature is 32 to 43 C.
  • a method for producing Form II reduced coenzyme Q10 crystals comprising:
  • Patent Document 4 describes a method of crystallization under specific conditions as a method for obtaining Form II reduced coenzyme Q10 crystals. This method is not necessarily industrially optimal.
  • the method disclosed in Patent Document 5 aims to provide an efficient production method suitable for industrial-scale production for obtaining Form II reduced coenzyme Q10 crystals. A method focused primarily on temperature is disclosed. The inventors thought that a more efficient manufacturing method could be provided by paying attention to factors other than temperature.
  • an object of the present disclosure is to provide an efficient production method for obtaining Form II type reduced coenzyme Q10 crystals, which is a stable crystal form, or a crystalline solid thereof.
  • an object of the present disclosure is to provide a production method for obtaining FormII-type reduced coenzyme Q10 crystals or a crystalline solid thereof having excellent oxidation stability.
  • Form II reduced coenzyme Q10 crystals When forming Form II reduced coenzyme Q10 crystals in a mixed solution containing alcohol and reduced coenzyme Q10, as the precipitation progresses, Form II reduced coenzyme Q10 crystals in the mixed solution increase. Turbidity increases due to increase.
  • the present inventors have found that Form II reduced coenzyme Q10 crystals can be efficiently produced by controlling the rate of change in turbidity, and the resulting Form II reduced coenzyme Q10 crystals or a crystalline solid thereof was found to be excellent in oxidation stability.
  • Example aspects of this embodiment are described as follows. (1) adding Form II reduced coenzyme Q10 crystals as seed crystals to a mixed solution containing alcohol and reduced coenzyme Q10; Precipitating Form II reduced coenzyme Q10 crystals in the mixed solution after adding the seed crystals; In the precipitation, the formazin turbidity (FTU) is maintained at 45 FTU/min or less for 70% or more of the period from 1,000 to 10,000, Form II reduced coenzyme Q10 A method for producing crystals or crystalline solids thereof. (2) The production method according to (1), wherein the temperature of the mixture during the period is 30 to 43°C.
  • the FTU change rate is maintained above 0 FTU/min for 70% or more of the period from 1,000 to 10,000 in formazin turbidity (FTU), (1) or ( 2) The manufacturing method as described in.
  • the production method according to (4), wherein the monohydric alcohol having 1 to 5 carbon atoms is ethanol.
  • This specification includes the disclosure content of Japanese Patent Application No. 2021-052888, which is the basis of priority of this application.
  • Form II reduced coenzyme Q10 crystals or crystalline solids thereof can be efficiently produced.
  • the Form II reduced coenzyme Q10 crystals or the crystalline solid thereof obtained by the method of the present disclosure are excellent in oxidation stability.
  • reduced coenzyme Q10 may partially contain oxidized coenzyme Q10 as long as it contains reduced coenzyme Q10 as a main component.
  • the main component is, for example, 50% by weight or more, usually 60% by weight or more, preferably 70% by weight or more, more preferably 80% by weight or more, still more preferably 90% by weight or more, particularly preferably 95% by weight. More preferably, it means that the content is 98% by weight or more.
  • the ratio is the ratio of reduced coenzyme Q10 to the total amount of coenzyme Q10.
  • reduced coenzyme Q10 has two types of crystal polymorphs: the conventionally known Form I type and the recently discovered Form II type. Specifically, the melting point is around 48° C., and the diffraction angles (2 ⁇ 0.2°) are 3.1°, 18.7°, 19.0°, and 20° in powder X-ray (Cu—K ⁇ ) diffraction.
  • the crystal form of reduced coenzyme Q10 showing characteristic peaks at 2° and 23.0° is Form I type, and has a melting point of around 52°C. ⁇ 0.2°) Crystal form of reduced coenzyme Q10 showing characteristic peaks at 11.5°, 18.2°, 19.3°, 22.3°, 23.0°, and 33.3° is Form II type.
  • DSC differential scanning calorimetry
  • Crystal solid as used herein means a solid containing therein a portion having a crystalline structure and an amorphous component having no crystalline structure. That is, the "crystalline solid thereof” in "Form II reduced coenzyme Q10 crystal or crystalline solid thereof” means “a portion having a crystal structure of a Form II reduced coenzyme Q10 crystal and having a crystal structure. means "a solid that contains no amorphous component therein”.
  • the alcohol is preferably a monohydric alcohol having 1 to 5 carbon atoms.
  • monohydric alcohols having 1 to 5 carbon atoms include methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol and n-pentanol.
  • ethanol is particularly preferred because the saturation concentration of Form II crystals is sufficiently lower than the saturation concentration of Form I crystals and is easy to handle.
  • alcohol what was illustrated above may be used individually, and 2 or more types may be mixed and used.
  • the alcohol in the present specification may be a solvent containing alcohol as a main component, and may be a hydrous alcohol containing water.
  • alcohol has an alcohol concentration of, for example, 80% by weight or more, usually 90% by weight or more, preferably 95% by weight or more, more preferably 97% by weight or more, and still more preferably 99% by weight, based on the total amount of water and alcohol. It is at least 99.5% by weight, particularly preferably at least 99.5% by weight.
  • Alcohol having an alcohol concentration of 99.5% by weight or more means anhydrous alcohol.
  • the upper limit of the alcohol concentration is 100% by weight or less.
  • Ethanol has an ethanol concentration of, for example, 80% by weight or more, usually 90% by weight or more, preferably 95% by weight or more, more preferably 97% by weight or more, and still more preferably 99% by weight, based on the total amount of water and ethanol. It is at least 99.5% by weight, particularly preferably at least 99.5% by weight. Moreover, the upper limit of the ethanol concentration is 100% by weight or less.
  • Form II reduced coenzyme Q10 crystals or crystalline solids thereof are added to a mixed solution containing alcohol and reduced coenzyme Q10. adding as seed crystals, and precipitating FormII-type reduced coenzyme Q10 crystals in the mixed solution after adding the seed crystals, wherein the precipitation has a formazin turbidity (FTU) of 1,
  • FTU formazin turbidity
  • the step of adding Form II reduced coenzyme Q10 crystals as seed crystals is referred to as the "seeding step”
  • the step of precipitating Form II reduced coenzyme Q10 crystals is referred to as the “crystal precipitation step”.
  • the mixed solution containing alcohol and reduced coenzyme Q10 is not particularly limited as long as it contains alcohol and reduced coenzyme Q10.
  • it may be a slurry in which reduced coenzyme Q10 is partly dissolved in alcohol but partly not dissolved but suspended in alcohol.
  • reduced coenzyme Q10 is dissolved in alcohol. Homogeneous solution.
  • the reduced coenzyme Q10 used in the mixture containing alcohol and reduced coenzyme Q10 may be in a crystalline or amorphous state, and its crystal polymorphism may be used. Therefore, conventionally known Form I reduced coenzyme Q10 can also be used. In addition, since it is possible to increase the purity by crystal precipitation, it may be an unpurified or partially purified reduced coenzyme Q10 containing impurities. Furthermore, an extract of reduced coenzyme Q10 obtained by a conventionally known method or a reaction solution containing reduced coenzyme Q10 obtained from oxidized coenzyme Q10 by a known reduction method may be used as it is or as necessary. Purified and/or solvent-substituted one can also be used as the mixed solution.
  • the mixed solution containing alcohol and reduced coenzyme Q10 may further contain organic solvents other than alcohol (including hydrous alcohol), but the alcohol content (alcohol purity ) is preferably 95% by weight or more, 97% by weight or more, or 99% by weight or more, and the upper limit is preferably 100% by weight or less.
  • the purity of the alcohol is most preferably 99.5 wt% or higher.
  • Other organic solvents include at least one selected from the group consisting of hydrocarbons, fatty acid esters and nitrogen compounds.
  • the dissolved concentration of reduced coenzyme Q10 before addition of seed crystals in the mixed solution containing alcohol and reduced coenzyme Q10 is, for example, 2% by weight or more, preferably 3% by weight or more, and more preferably 5% by weight. Above, more preferably 7% by weight or more, particularly preferably 9% by weight or more.
  • the dissolved concentration of reduced coenzyme Q10 before addition of seed crystals is, for example, 50% by weight or less, preferably 45% by weight or less, more preferably 30% by weight or less, even more preferably 20% by weight or less, and particularly preferably 15% by weight. It is below.
  • a mixed solution containing alcohol and reduced coenzyme Q10 is prepared by heating a raw material mixture containing alcohol and reduced coenzyme Q10 to a temperature of, for example, 42° C. or higher to dissolve reduced coenzyme Q10. can get.
  • the temperature is preferably 70° C. or lower, more preferably 55° C. or lower.
  • the mixture containing the alcohol and the reduced coenzyme Q10 is preferably cooled to the temperature at which the seed crystals are added, which will be described later. .
  • the amount of Form II-type reduced coenzyme Q10 crystals to be added (the amount of seed crystals to be added) is not particularly limited, but the amount of reduced coenzyme Q10 (100 % by weight), preferably 0.1% by weight or more, more preferably 0.5% by weight or more, even more preferably 0.8% by weight or more, and particularly preferably 1% by weight or more.
  • the upper limit is not particularly limited, it is preferably 20% by weight or less, more preferably 4% by weight or less, relative to the amount (100% by weight) of reduced coenzyme Q10 in the mixed solution before adding seed crystals. 2% by weight or less is more preferable.
  • the reduced coenzyme Q10 crystals used as seed crystals may contain Form I reduced coenzyme Q10 crystals or amorphous forms, as long as they contain Form II reduced coenzyme Q10 crystals. However, it is preferable that the purity of Form II reduced coenzyme Q10 crystals is high.
  • Form II reduced coenzyme Q10 crystals for example, 50% by weight or more, preferably 75% by weight or more, more preferably 80% by weight or more, more preferably 90% by weight or more, are used as seed crystals. good.
  • the temperature of the mixed liquid at the time of adding the seed crystals is preferably 30 to 43°C.
  • the temperature of the mixed solution at the time of adding the seed crystals is more preferably 32° C. or higher, particularly preferably 34° C. or higher, and more preferably 40° C. or lower. Within this range, selective precipitation of Form II reduced coenzyme Q10 crystals is easy.
  • the crystal precipitation step includes maintaining the FTU change rate at 45 FTU/min or less for 70% or more of the period from 1,000 to 10,000 in formazin turbidity (FTU).
  • the FTU change rate is preferably 43 FTU/min or less, more preferably 40 FTU/min or less.
  • the reduced coenzyme Q10 is uniformly dissolved in alcohol in the mixed solution at the time of adding the seed crystals.
  • the FTU of the mixed liquid at the time of seed crystal addition is usually 0-250, preferably 0-230, more preferably 0-200. This range is preferable because Form II reduced coenzyme Q10 crystals preferentially precipitate.
  • the FTU change rate at a certain time (T) can be calculated by the following formula.
  • FTU change rate T (FTU/min) (measured turbidity value T (FTU) - measured turbidity value T-20 (FTU))/20 (min)
  • the FTU change rate T means the FTU change rate at time (T)
  • the turbidity measurement value T (FTU) means the FTU measurement value at time (T)
  • the turbidity measurement value T- 20 (FTU) means the FTU measurement 20 minutes before time T.
  • the FTU change rate can be calculated by measuring the FTU every 20 minutes and dividing the increase in FTU during that period by 20 minutes. That is, in a certain aspect, even if the FTU change rate is outside the range of this embodiment for a very short time (for example, 1 minute), when the FTU is measured every 20 minutes, the FTU change rate is When within the scope of the embodiment, the aspect assumes that the FTU rate of change satisfies the requirements of the embodiment.
  • the FTU change rate it is preferable to maintain the FTU change rate above 0 FTU/min for 70% or more of the period from 1,000 to 10,000 in formazin turbidity (FTU). More preferably, the FTU change rate is, for example, 5 FTU/min or more.
  • the FTU change rate is in the above-mentioned specific range for 70% or more of the period until the formazin turbidity (FTU) becomes 1,000 to 10,000, so that the oxidation stability is excellent. Form II reduced coenzyme Q10 crystals can be produced efficiently.
  • the FTU change rate it is preferable to maintain the FTU change rate at 5 FTU / min or more and 45 FTU / min or less for 70% or more of the period until the formazin turbidity (FTU) becomes 1,000 to 10,000. It is one of the aspects.
  • the FTU change rate is 80% or more of the period until the FTU becomes 1,000 to 10,000, and the FTU change rate is in the specific range described later. from the viewpoint of stably producing reduced coenzyme Q10 crystals.
  • the FTU change rate is maintained at more than 0 FTU / min and 45 FTU / min or less for 80% or more of the time from 1,000 to 10,000 formazin turbidity (FTU). More preferably, the FTU change rate is maintained at more than 0 FTU/min and no more than 30 FTU/min.
  • the FTU change rate is set to the entire period from 1,000 to 10,000 (100% of the time), the above-mentioned specific range, for example, the FTU change rate is 45 FTU / min or less, preferably Maintaining at more than 0 FTU/min and 45 FTU/min or less, more preferably 5 FTU/min or more and 45 FTU/min or less is a preferred embodiment from the viewpoint of stably producing Form II-type reduced coenzyme Q10 crystals with excellent oxidation stability. one of.
  • the temperature of the mixed solution is preferably 30° C. or higher and 43° C. or lower, and preferably 30.5° C. or higher and 42° C. or lower during the period until the formazin turbidity (FTU) becomes 1,000 to 10,000. It is more preferably 31° C. or higher and 41° C. or lower, particularly preferably. Within the above range, it is easy to maintain the FTU change rate within the above range, which is preferable.
  • the temperature of the mixture is preferably 29° C. or higher and 38° C. or lower, more preferably 30° C. or higher and 37° C. or lower, and 31° C. or higher and 36° C. or lower. Especially preferred.
  • the temperature of the mixed solution can be adjusted as appropriate according to the formazin turbidity and FTU change rate at that time.
  • the temperature of the mixed liquid may be constant, but may be lowered stepwise or continuously.
  • the temperature of the mixture may be maintained at a constant temperature for a certain period of time and then lowered stepwise or continuously.
  • the temperature of the mixture at the time of adding the seed crystals is 34° C. or more and 38° C. or less
  • the temperature of the mixture at the time when the FTU is 10,000 is 30° C. or more and 37° C. or less.
  • the temperature at which the FTU is 10,000 is preferably 0.4° C. or more and 8° C.
  • the term "maintained at a constant temperature” means preferably to maintain a predetermined temperature (set temperature) ⁇ 3°C, more preferably to maintain a predetermined temperature (set temperature) ⁇ 1°C.
  • the cooling rate when lowering the temperature of the mixture is preferably 0.05°C/hr or more and 20°C/hr or less, more preferably 0.1°C/hr or more and 15°C/hr or less. It is also a preferred embodiment to change the cooling rate over time.
  • the temperature is maintained for a certain period of time, for example, 0.5 to 8 hours, and the cooling rate is set to 0.05° C./hr or more and less than 0.5° C./hr for 3 to 20 hours thereafter, After that, the cooling rate is set to 0.5° C./hr or more and 15° C./hr or less, and after adding the seed crystal, the cooling rate is set to 0.05° C./hr or more and less than 0.5° C./hr for 3 to 20 hours. After that, the cooling rate is set to 0.5° C./hr or more and 15° C./hr or less.
  • the temperature of the mixed solution it is preferable to lower the temperature of the mixed solution and precipitate crystals even after the formazin turbidity reaches 10,000.
  • the cooling rate at that time can be set, for example, based on the range described above.
  • the temperature of the mixed solution reaches 23 to 34°C, most of the reduced coenzyme Q10 contained in the mixed solution has already precipitated, so after the temperature reaches 23 to 34°C, For example, it is possible to increase the cooling rate from 1° C./hr to 20° C./hr.
  • the temperature at the time of finishing the crystal precipitation step is preferably 25°C or less, more preferably 20°C or less, more preferably 10°C or less, more preferably 7°C or less, more preferably 5°C or less. is.
  • the lower limit of the end point temperature is the solidification temperature of the mixed liquid system, and is preferably 0° C. or higher.
  • Precipitation of crystals is preferably carried out while forcibly flowing the liquid mixture.
  • the power required for stirring per unit volume is usually 0.003 kW/m 3 or more, preferably 0.004 kW. /m 3 or more, more preferably 0.005 kW/m 3 or more, more preferably 0.006 kW/m 3 or more, to the mixture.
  • the above-mentioned forced flow is usually provided by rotating a stirring blade, but if the above-mentioned flow is obtained, it is not always necessary to use a stirring blade, and for example, a method of circulating the mixed liquid may be used.
  • the Form II-type reduced coenzyme Q10 crystals obtained by the above method are recovered through a solid-liquid separation and drying process by conventionally known methods such as those described in Patent Documents 2 and 3, for example.
  • pressure filtration, centrifugal filtration, or the like can be used for solid-liquid separation.
  • the dried crystals and crystalline solids can be recovered by pulverizing and classifying (sieving) as necessary.
  • the Form II reduced coenzyme Q10 crystals after the solid-liquid separation are dried under heating to obtain Form II reduced coenzyme Q10 crystals. It is also possible to improve the content ratio.
  • the drying temperature is preferably 46° C. or higher, more preferably 47° C. or higher, and even more preferably 49° C. or higher.
  • the upper limit is usually 52°C or lower, preferably 51°C or lower. If the temperature is less than 46° C., drying progresses, but the content of Form II-type reduced coenzyme Q10 crystals hardly increases. If the temperature exceeds 52°C, the reduced coenzyme Q10 crystals may melt during drying.
  • the above conditions are not limited.
  • the drying may be carried out at °C or higher.
  • the heating time for drying is also not particularly limited, but is preferably 4 hours or longer, preferably 10 hours or longer, and more preferably 20 hours or longer.
  • the upper limit of the heating time is not particularly limited, but is usually 72 hours or less, preferably 48 hours or less, more preferably 36 hours or less.
  • each step in the method of the present embodiment specifically, the seed crystal addition step and the crystal precipitation step described above, the recovery step such as solid-liquid separation and drying, and other subsequent treatment steps, etc.
  • a deoxygenated atmosphere can be achieved by replacing the atmosphere with an inert gas, reducing pressure, boiling, or a combination thereof. It is preferable to at least replace the atmosphere with an inert gas, ie use an inert gas atmosphere.
  • the inert gas include nitrogen gas, helium gas, argon gas, hydrogen gas, carbon dioxide gas, etc. Nitrogen gas is preferred.
  • Form II reduced coenzyme Q10 crystals are contained in the obtained reduced coenzyme Q10 crystals or crystalline solid thereof and the content ratio thereof are measured by, for example, a differential scanning calorimeter (DSC). It is possible to discriminate by DSC.
  • Form II reduced coenzyme Q10 crystals show an endothermic peak at around 52 ⁇ 2° C. when measured by DSC at a heating rate of 1° C./min, indicating that Form I reduced coenzyme Q10 The crystal shows an endothermic peak around 48 ⁇ 1° C. under the same conditions.
  • Form II reduced coenzyme Q10 crystals are mixed with conventional Form I reduced coenzyme Q10 crystals or a crystalline solid thereof, the presence or absence of the peak near 52 ⁇ 2 ° C. and the endotherm thereof.
  • the presence or absence of Form II reduced coenzyme Q10 crystals and their content can be determined from the height of the peak and the ratio of the endothermic amounts.
  • Form II reduced coenzyme Q10 crystals or a crystalline solid thereof can be efficiently obtained.
  • FormII-type reduced coenzyme Q10 crystals can be obtained through the crystal precipitation step. can be obtained. Therefore, this embodiment encompasses cases where crystals are obtained and where crystalline solids are obtained.
  • the obtained Form II reduced coenzyme Q10 crystals or the crystalline solid thereof are excellent in oxidation stability.
  • Form II crystals in reduced coenzyme Q10 crystals The ratio of Form II crystals in the reduced coenzyme Q10 crystals obtained in Examples and Comparative Examples was determined by analyzing the crystals by DSC measurement under the following conditions, and measuring the endothermic peak height (Y difference ) (hereinafter referred to as Form I Y difference) and the height of the endothermic peak (Y difference) of Form II type crystal (hereinafter referred to as Form II Y difference).
  • Form II ratio (%) Y difference of Form II / (Y difference of Form I + Y difference of Form II) x 100
  • DSC measurement conditions Apparatus: DSC6220 (manufactured by SII Nano Technology)
  • Sample container Aluminum pan & cover (SSC000C008) Heating rate: 1°C/min Sample amount: 5 ⁇ 2 mg
  • the reduced coenzyme Q10 crystals obtained in Examples and Comparative Examples were stored in an open system in a constant temperature bath set at 40°C RH (relative humidity) 75% and 25°C RH 60% for 1 or 2 months, and then subjected to high-speed storage.
  • the content ratio of reduced coenzyme Q10 (QH) and oxidized coenzyme Q10 is calculated using liquid chromatography.
  • the content ratio of reduced coenzyme Q10 in the initial reduced coenzyme Q10 crystals before storage in a constant temperature bath that is, using the crystals obtained in Examples and Comparative Examples, measured immediately after obtaining the crystals.
  • the oxidation stability of the reduced coenzyme Q10 crystal was calculated as a relative QH ratio by the following formula.
  • Relative QH ratio (%) reduced coenzyme Q10 ratio after storage/initial reduced coenzyme Q10 ratio ⁇ 100
  • FTU change rate in Examples and Comparative Examples was obtained by measuring the formazin turbidity (FTU) of a mixture of ethanol and reduced coenzyme Q10 with a turbidimeter, and the FTU change rate at time (T) was calculated using the following formula: Calculated by Further, the turbidity meter used in this embodiment was calibrated with a turbidity (FTU) of 9,999 FTU when crystals of reduced coenzyme Q10 were present in the mixed solution at a concentration of 40000 mg/L.
  • FTU formazin turbidity
  • FTU change rate T (FTU/min) (measured turbidity value T (FTU) - measured turbidity value T-20 (FTU))/20 (min)
  • the FTU change rate T means the FTU change rate at time (T)
  • the turbidity measurement value T (FTU) means the FTU measurement value at time (T)
  • the turbidity measurement value T- 20 (FTU) means the FTU measurement 20 minutes before time T.
  • Turbidity meter Backscattered light turbidity sensor (InPro8200, Mettler Toledo Corporation) Measurement range: 0 to 10,000 FTU
  • the FTU measurement was performed immediately after the addition of the seed crystal until the FTU reached the upper measurement limit of 10,000, and the FTU change rate was calculated during the period when the FTU was between 1,000 and 10,000.
  • the FTU change rate at a certain point T is obtained by calculating the amount of increase in the FTU at the point T from the FTU at the point 20 minutes before (T-20min) and dividing it by 20 minutes. rice field.
  • Example 1 After replacing a separable flask with a volume of 3 L with nitrogen, add 144 g of reduced coenzyme Q10 and 1296 g of ethanol with a purity of 99.5% by weight or more (reduced coenzyme Q10 concentration: 10% by weight), and stir with a stirring blade (stirring required The mixture was heated to 50° C. with a power of 0.03 kw/m 3 ) to obtain a uniform reduced coenzyme Q10 solution (QH solution) (1440 g, 1800 ml).
  • QH solution uniform reduced coenzyme Q10 solution
  • the QH solution at 50°C was cooled to 35.5°C while stirring with a stirring blade (required power for stirring: 0.03 kw/m 3 ).
  • To the QH solution (FTU124) cooled to 35.5° C. 2.9 g (2.0 wt %) of Form II reduced coenzyme Q10 crystals were added as seed crystals, and precipitation of reduced coenzyme Q10 crystals (crystallization ) was started.
  • the QH solution to which the seed crystals are added is hereinafter referred to as "crystallization mixture”.
  • the temperature was maintained at 35.5°C for 1 hour, and then cooled from 35.5°C to 33.5°C at 0.15°C/hr (primary cooling). Thereafter, cooling was performed at 1°C/hr to 25°C, and cooling was performed at 10°C/hr from 25°C to 1°C.
  • the formazin turbidity (FTU) of the crystallization mixture was measured with a turbidimeter, and during the entire period from 1,000 to 10,000, The maximum FTU change rate is 22.2 FTU/min, the minimum is 3.1 FTU/min, and the FTU change rate is 5 for 70% or more of the time from 1,000 to 10,000. It was confirmed that it was maintained at ⁇ 22.2 FTU/min.
  • the Form II crystal ratio in the obtained reduced coenzyme Q10 crystals was 100%, and Form I reduced coenzyme Q10 crystals were not included.
  • the relative QH ratio of the obtained Form II reduced coenzyme Q10 crystal at 25°C RH60% for 1 month was 94.5%, and the relative QH ratio at 25°C RH60% for 2 months was 91.5%.
  • 40° C. RH 75% for 1 month the relative QH ratio was 88.0%.
  • Example 2 A QH solution was prepared in the same manner as in Example 1, and a QH solution cooled to 35.5°C was obtained. The same method as in Example 1 except that the holding time of the crystallization mixed solution after addition of seed crystals at 35.5°C was changed to 5 hours, and primary cooling was performed to 32.5°C at 0.3°C/hr. to obtain FormII type reduced coenzyme Q10 crystals.
  • the formazin turbidity (FTU) of the crystallization mixture was measured with a turbidimeter, and during the entire period from 1,000 to 10,000, The maximum FTU change rate is 19.3 FTU/min, the minimum is 2.8 FTU/min, and the FTU change rate is 5 for 70% or more of the time from 1,000 to 10,000. It was confirmed that it was maintained at ⁇ 19.3 FTU/min.
  • the Form II crystal ratio in the obtained reduced coenzyme Q10 crystals was 100%, and Form I reduced coenzyme Q10 crystals were not included.
  • the relative QH ratio of the obtained FormII type reduced coenzyme Q10 crystal at 25°C RH60% for 1 month was 95.4%, and the relative QH ratio at 25°C RH60% for 2 months was 92.3%.
  • 40° C. RH 75% for 1 month the relative QH ratio was 90.4%.
  • Example 3 A QH solution was prepared in the same manner as in Example 1 to obtain a QH solution (FTU68) cooled to 36.0°C.
  • Form II type was formed in the same manner as in Example 1 except that the seed crystal addition temperature was changed to 36.0 ° C., the temperature was not maintained after addition, and the primary cooling was performed at 0.15 ° C./hr to 33.5 ° C. Crystals of reduced coenzyme Q10 were obtained.
  • the formazin turbidity (FTU) of the crystallization mixture was measured with a turbidimeter, and during the entire period from 1,000 to 10,000, It was confirmed that the maximum FTU change rate was 21.2 FTU/min and the minimum was 5.3 FTU/min.
  • the Form II crystal ratio in the obtained reduced coenzyme Q10 crystals was 100%, and Form I reduced coenzyme Q10 crystals were not included.
  • the relative QH ratio of the obtained FormII type reduced coenzyme Q10 crystal at 25°C RH60% for 1 month was 95.0%, and the relative QH ratio at 25°C RH60% for 2 months was 92.1%. , 40° C. RH 75% for 1 month, the relative QH ratio was 91.0%.
  • Example 4 A QH solution was prepared in the same manner as in Example 1 to obtain a QH solution (FTU118) cooled to 36.0°C.
  • Form II reduced coenzyme Q10 crystals were obtained in the same manner as in Example 1, except that the seed crystal addition temperature was changed to 36.0°C and the primary cooling was performed at 0.3°C/hr to 32.0°C. rice field.
  • the formazin turbidity (FTU) of the crystallization mixture was measured with a turbidimeter, and during the entire period from 1,000 to 10,000, The maximum FTU change rate is 20.3 FTU/min, the minimum is 0.6 FTU/min, and the FTU change rate is 5 for 70% or more of the period from 1,000 to 10,000. .3 to 20.3 FTU/min was maintained.
  • the Form II crystal ratio in the obtained reduced coenzyme Q10 crystals was 100%, and Form I reduced coenzyme Q10 crystals were not included.
  • the relative QH ratio of the obtained Form II reduced coenzyme Q10 crystal at 25°C RH60% for 1 month was 93.6%, and the relative QH ratio at 25°C RH60% for 2 months was 90.9%.
  • 40° C. RH 75% for 1 month the relative QH ratio was 90.6%.
  • Example 5 A QH solution was prepared in the same manner as in Example 1 to obtain a QH solution (FTU74) cooled to 35.0°C.
  • Form II type was formed in the same manner as in Example 1 except that the seed crystal addition temperature was changed to 35.0 ° C., the temperature was not maintained after addition, and the primary cooling was performed at 0.3 ° C./hr to 30.5 ° C. Crystals of reduced coenzyme Q10 were obtained.
  • the formazin turbidity (FTU) of the crystallization mixture was measured with a turbidimeter, and during the entire period from 1,000 to 10,000, The maximum FTU change rate is 31.5 FTU/min, the minimum is 2.2 FTU/min, and the FTU change rate is 5 for 70% or more of the time from 1,000 to 10,000. .3 to 31.5 FTU/min, FTU change rate of 2.2 to 28.7 FTU/min for more than 80% of the time from 1,000 to 10,000 FTU was confirmed to be maintained.
  • the Form II crystal ratio in the obtained reduced coenzyme Q10 crystals was 100%, and Form I reduced coenzyme Q10 crystals were not included.
  • the relative QH ratio of the obtained Form II reduced coenzyme Q10 crystal at 25°C RH60% for 1 month was 93.4%, and the relative QH ratio at 25°C RH60% for 2 months was 90.2%.
  • 40° C. RH 75% for 1 month the relative QH ratio was 86.2%.
  • Example 6 A QH solution was prepared in the same manner as in Example 1 and cooled to 36.0°C. Form II reduced coenzyme Q10 crystals were added as seed crystals to the QH solution (FTU187) cooled to 36.0°C (2.0 wt% when the reduced coenzyme Q10 in the QH solution was 100 wt%). Then, precipitation (crystallization) of reduced coenzyme Q10 crystals was started.
  • the target is to maintain the FTU change rate at 20.8 FTU / min during the period from 1,000 to 10,000 in the formazin turbidity (FTU) of the crystallization mixed solution after the addition of seed crystals. controlled. After the formazin turbidity of the crystallization mixture reached 10,000 FTU, it was cooled to 25°C at 1°C/hr, and then cooled from 25°C to 1°C at 10°C/hr.
  • FTU formazin turbidity
  • the maximum FTU change rate is 41.2 FTU / min and the minimum is 0.7 FTU / min in the entire period from the formazin turbidity (FTU) to 1,000 to 10,000, FTU is The FTU change rate is maintained at 7.2 to 33.4 FTU/min for 70% or more of the period from 1,000 to 10,000, FTU from 1,000 to 10,000 It was confirmed that the FTU change rate was maintained at 0.7 to 30 FTU/min for 80% or more of the period until the
  • the Form II crystal ratio in the obtained reduced coenzyme Q10 crystals was 100%, and Form I reduced coenzyme Q10 crystals were not included.
  • the relative QH ratio of the obtained Form II type reduced coenzyme Q10 crystal at 25°C RH60% for 1 month was 89.6%, and the relative QH ratio at 40°C RH75% for 1 month was 86.5%. rice field.
  • Example 7 After purging a four-necked flask with a volume of 500 mL with nitrogen, add 28 g of reduced coenzyme Q10 and 250 g of ethanol with a purity of 99.5% by weight or more (reduced coenzyme Q10 concentration: 10 wt %), and stir with a stirring blade (stir A homogeneous QH solution (278 g, 347 ml) was obtained by heating to 50° C. with a power requirement of 0.007 kw/m 3 ).
  • the QH solution at 50°C was cooled to 36.8°C while stirring with a stirring blade (required power for stirring: 0.007 kw/m 3 ).
  • 0.6 g (2.0 wt%) of Form II reduced coenzyme Q10 crystals were added as seed crystals to initiate precipitation (crystallization) of reduced coenzyme Q10 crystals. did.
  • the set temperature was set with the goal of maintaining the FTU change rate at around 6.9 FTU/min during the period from 1,000 to 10,000 in the formazin turbidity (FTU) of the crystallization mixed solution after seed crystal addition. controlled. After the formazin turbidity reached 10,000 FTU, it was cooled to 25°C at 1°C/hr and from 25°C to 1°C at 10°C/hr. The FTU change rate is maintained at 5 to 21 FTU / min in 70% or more of the period until the formazin turbidity (FTU) is 1,000 to 10,000, FTU is from 1,000 It was confirmed that the FTU change rate was maintained between 0.6 and 21 FTU/min for 80% or more of the time until reaching 10,000.
  • the Form II crystal ratio in the obtained reduced coenzyme Q10 crystals was 100%, and Form I reduced coenzyme Q10 crystals were not included.
  • the relative QH ratio of the obtained Form II reduced coenzyme Q10 crystal at 25°C RH60% for one month was 92.2%, and the relative QH ratio at 40°C RH75% for one month was 90.1%. rice field.
  • Example 8 After purging a four-neck flask with a volume of 500 mL with nitrogen, add 33 g of reduced coenzyme Q10 and 295 g of ethanol of 99.5 wt% or more (reduced coenzyme Q10 concentration: 10 wt%), and stir with a stirring blade (stirring required It was heated to 50° C. with a power of 0.007 kw/m 3 ) to obtain a homogeneous QH solution (328 g, 410 ml).
  • the QH solution at 50°C was cooled to 34.5°C while stirring with a stirring blade (required power for stirring: 0.007 kw/m 3 ).
  • 0.66 g (2.0 wt%) of Form II reduced coenzyme Q10 crystals were added as seed crystals to initiate precipitation (crystallization) of reduced coenzyme Q10 crystals. did.
  • the target is to maintain the FTU change rate at around 33.3 FTU/min during the period from 1,000 to 10,000 in the formazin turbidity (FTU) of the crystallization mixed solution after seed crystal addition. controlled. After the formazin turbidity reached 10,000 FTU, it was cooled to 25°C at 1°C/hr and from 25°C to 1°C at 10°C/hr.
  • the maximum FTU change rate is 43.3 FTU / min and the minimum is 15.0 FTU / min in the entire period from the formazin turbidity (FTU) to 1,000 to 10,000, FTU is It was confirmed that the FTU change rate was maintained between 15.0 and 39.9 FTU/min for 70% or more of the period from 1,000 to 10,000.
  • the Form II crystal ratio in the obtained reduced coenzyme Q10 crystals was 100%, and Form I reduced coenzyme Q10 crystals were not included.
  • the relative QH ratio of the obtained Form II reduced coenzyme Q10 crystal at 25°C RH 60% for 1 month was 89.4%, and the relative QH ratio at 40°C RH 75% for 1 month was 87.3%. rice field.
  • the QH solution at 50°C was cooled to 36.8°C while stirring with a stirring blade (required power for stirring: 0.007 kw/m 3 ).
  • 0.66 g (2.0 wt%) of Form II reduced coenzyme Q10 crystals were added as seed crystals to initiate precipitation (crystallization) of reduced coenzyme Q10 crystals. did.
  • the target is to maintain the FTU change rate at around 55.6 FTU/min during the period from 1,000 to 10,000 in the formazin turbidity (FTU) of the crystallization mixture after adding the seed crystals. controlled. After the formazin turbidity reached 10,000 FTU, it was cooled to 25°C at 1°C/hr and from 25°C to 1°C at 10°C/hr.
  • FTU formazin turbidity
  • the maximum FTU change rate is 108.7 FTU / min and the minimum is 30.6 FTU / min in the entire period from the formazin turbidity (FTU) to 1,000 to 10,000, the formazin It was confirmed that the FTU change rate could not be maintained at 45 FTU/min or less for 70% or more of the time during which the turbidity (FTU) increased from 1,000 to 10,000.
  • the Form II crystal ratio in the obtained reduced coenzyme Q10 crystals was less than 100%.
  • the relative QH ratio of the obtained Form II reduced coenzyme Q10 crystal at 25°C RH60% for 1 month was 85.1%, and the relative QH ratio at 40°C RH75% for 1 month was 81.4%. rice field.
  • Table 1 shows the results of Examples and Comparative Examples.
  • the oxidation stability of the Form II reduced coenzyme Q10 crystals obtained in Examples was found to be extremely high compared to the results of Comparative Examples. From this fact, the period until the formazin turbidity (FTU) becomes 1,000 to 10,000 is It can be seen that Form II reduced coenzyme Q10 crystals with excellent oxidation stability can be obtained by maintaining the FTU change rate within a specific range for 70% or more of the time.
  • the method of the example is a method for obtaining Form II reduced coenzyme Q10 crystals, which is a stable crystal form, or a crystalline solid thereof. It can be said that it is an efficient manufacturing method.
  • a preferred range can be defined by arbitrarily combining the upper and lower limits of the numerical range
  • a preferred range can be defined by arbitrarily combining the upper limits of the numerical range
  • the lower limit of the numerical range Any combination of values can be used to define a preferred range.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The purpose of the present disclosure is to provide a method for efficiently obtaining reduced coenzyme Q10 crystals of Form II that is a stable crystal form, particularly reduced coenzyme Q10 crystals of Form II having excellent oxidation stability, or a crystalline solid thereof. An embodiment of the present invention is a method for producing reduced coenzyme Q10 crystals of Form II or a crystalline solid thereof, comprising: adding a reduced coenzyme Q10 crystal of Form II as a seed crystal to a liquid mixture containing an alcohol and reduced coenzyme Q10; and precipitating reduced coenzyme Q10 crystals of Form II in the liquid mixture after the addition of the seed crystal. In the precipitation, during not less than 70% of the time in the period in which formazin turbidity units (FTUs) increase from 1,000 to 10,000, the rate of change in FTUs is maintained at not more than 45 FTU/min.

Description

FormII型の還元型補酵素Q10結晶又はその結晶性固体の製造方法Method for producing Form II reduced coenzyme Q10 crystals or crystalline solids thereof
 本開示は、安定性に優れたFormII型の還元型補酵素Q10結晶又はその結晶性固体の製造方法に関する。 The present disclosure relates to a method for producing Form II reduced coenzyme Q10 crystals with excellent stability or a crystalline solid thereof.
 補酵素Qは、細菌から哺乳動物まで広く生体に分布する必須成分であり、生体内の細胞中におけるミトコンドリアの電子伝達系構成成分として知られている。補酵素Qは、ミトコンドリア内で酸化と還元を繰り返すことで、電子伝達系における伝達成分としての機能を担っているほか、還元型補酵素Qは抗酸化作用を持つことが知られている。ヒトでは、補酵素Qの側鎖が繰り返し構造を10個持つ補酵素Q10が主成分であり、生体内においては、通常、40~90%程度が還元型として存在している。補酵素Qの生理的作用としては、ミトコンドリア賦活作用によるエネルギー生産の活性化、心機能の活性化、細胞膜の安定化効果、抗酸化作用による細胞の保護効果等が挙げられている。 Coenzyme Q is an essential component that is widely distributed in living organisms, from bacteria to mammals, and is known as a component of the mitochondrial electron transport system in cells in living organisms. Coenzyme Q repeats oxidation and reduction in mitochondria, thereby serving as a transfer component in the electron transport system, and reduced coenzyme Q is known to have an antioxidant effect. In humans, coenzyme Q10, which has 10 repeating structures in the side chain of coenzyme Q, is the main component, and about 40 to 90% of the coenzyme exists in vivo as a reduced form. Physiological actions of coenzyme Q include activation of energy production by mitochondrial activation, activation of cardiac function, stabilization of cell membranes, and protection of cells by antioxidant action.
 現在製造・販売されている補酵素Q10の多くは酸化型補酵素Q10であるが、近年では、酸化型補酵素Q10に比べて高い経口吸収性を示す還元型補酵素Q10も市場に登場し、用いられるようになってきている。 Most of the coenzyme Q10 currently manufactured and sold is oxidized coenzyme Q10, but in recent years, reduced coenzyme Q10, which exhibits higher oral absorbability than oxidized coenzyme Q10, has also appeared on the market. It is coming into use.
 還元型補酵素Q10を得る一般的な方法は既に開示されている(特許文献1)。さらに、還元型補酵素Q10を結晶として得る方法についても、いくつかの方法が知られている。例えば、還元型補酵素Q10をアルコール溶液及び/又はケトン溶液中において晶出させ、結晶を製造する方法(特許文献2)や、還元型補酵素Q10の高濃度液相を貧溶媒中に添加することで結晶化を行う方法(特許文献3)などが報告されている。 A general method for obtaining reduced coenzyme Q10 has already been disclosed (Patent Document 1). Furthermore, several methods are known for obtaining reduced coenzyme Q10 as crystals. For example, a method of crystallizing reduced coenzyme Q10 in an alcohol solution and/or a ketone solution to produce crystals (Patent Document 2), or adding a high-concentration liquid phase of reduced coenzyme Q10 to a poor solvent. A method (Patent Document 3) for crystallization by crystallization has been reported.
 一方、特許文献4には、還元型補酵素Q10に結晶多形現象が見られることが記載されており、新たに出現した結晶形(以下、この結晶をFormII型の還元型補酵素Q10結晶、又は、FormII型結晶と呼称する)は従来の還元型補酵素Q10(以下、この結晶をFormI型の還元型補酵素Q10結晶、又は、FormI型結晶と呼称する)より非常に安定で、その他の物理特性にも優れていると報告されている。また、特許文献5には、FormII型の還元型補酵素Q10結晶の製造方法が記載されている。特許文献5では、請求項1において、アルコール、炭化水素、脂肪酸エステル及び窒素化合物からなる群より選択される少なくとも1種の有機溶媒と、還元型補酵素Q10とを含有する、温度が32~43℃の溶液に、FormII型の還元型補酵素Q10結晶を種晶として添加して、混合液を調製すること、及び、前記混合液中でFormII型の還元型補酵素Q10結晶を析出させることを含む、FormII型の還元型補酵素Q10結晶の製造方法が開示されている。 On the other hand, Patent Document 4 describes that crystal polymorphism is observed in reduced coenzyme Q10. Or called Form II type crystal) is much more stable than conventional reduced coenzyme Q10 (hereinafter, this crystal is called Form I type reduced coenzyme Q10 crystal, or Form I type crystal), and other It is also reported to have excellent physical properties. In addition, Patent Document 5 describes a method for producing Form II-type reduced coenzyme Q10 crystals. In Patent Document 5, in Claim 1, at least one organic solvent selected from the group consisting of alcohols, hydrocarbons, fatty acid esters and nitrogen compounds, and reduced coenzyme Q10 are contained, and the temperature is 32 to 43 C. to a solution at 30° C., Form II reduced coenzyme Q10 crystals are added as seed crystals to prepare a mixed solution, and Form II reduced coenzyme Q10 crystals are precipitated in the mixed solution. A method for producing Form II reduced coenzyme Q10 crystals is disclosed, comprising:
特開平10-109933号公報JP-A-10-109933 国際公開2003/006409号WO2003/006409 特開2003-089669号公報JP-A-2003-089669 国際公開2012/176842号WO2012/176842 国際公開2020/045571号WO2020/045571
 特許文献4には、FormII型の還元型補酵素Q10結晶の取得方法として、特定の条件で晶析を行う方法が記載されているが、長時間を要する上に回収量が少ない場合があり、必ずしも工業的には最適とはいえない方法である。特許文献5に開示された方法は、FormII型の還元型補酵素Q10結晶を得るための工業的規模での生産にも適した効率的な製造方法を提供することを目的とするものであり、主に温度に着目した方法が開示されている。本発明者らは、温度以外の要素に着目することにより、より効率的な製造方法を提供することができるのではないかと考えた。 Patent Document 4 describes a method of crystallization under specific conditions as a method for obtaining Form II reduced coenzyme Q10 crystals. This method is not necessarily industrially optimal. The method disclosed in Patent Document 5 aims to provide an efficient production method suitable for industrial-scale production for obtaining Form II reduced coenzyme Q10 crystals. A method focused primarily on temperature is disclosed. The inventors thought that a more efficient manufacturing method could be provided by paying attention to factors other than temperature.
 すなわち、本開示は、安定型の結晶形であるFormII型の還元型補酵素Q10結晶又はその結晶性固体を得るための効率的な製造方法を提供することを目的とする。 That is, an object of the present disclosure is to provide an efficient production method for obtaining Form II type reduced coenzyme Q10 crystals, which is a stable crystal form, or a crystalline solid thereof.
 また、本発明者らは、製造方法を検討する中で、その製造条件によってFormII型の還元型補酵素Q10結晶の中でも、結晶の酸化安定性に差が生じることを見出した。そこで本開示は酸化安定性に優れるFormII型の還元型補酵素Q10結晶又はその結晶性固体を得るための製造方法を提供することを目的とする。 In addition, while studying the production method, the present inventors found that the oxidation stability of Form II reduced coenzyme Q10 crystals varied depending on the production conditions. Accordingly, an object of the present disclosure is to provide a production method for obtaining FormII-type reduced coenzyme Q10 crystals or a crystalline solid thereof having excellent oxidation stability.
 アルコールと還元型補酵素Q10とを含有する混合液中でFormII型の還元型補酵素Q10結晶を析出させる際には、析出が進むにつれて、混合液中のFormII型の還元型補酵素Q10結晶が増えるために濁度が増加する。本発明者らは、この濁度の変化率を制御することにより、FormII型の還元型補酵素Q10結晶を効率的に製造できること、得られるFormII型の還元型補酵素Q10結晶又はその結晶性固体が酸化安定性に優れることを見出した。 When forming Form II reduced coenzyme Q10 crystals in a mixed solution containing alcohol and reduced coenzyme Q10, as the precipitation progresses, Form II reduced coenzyme Q10 crystals in the mixed solution increase. Turbidity increases due to increase. The present inventors have found that Form II reduced coenzyme Q10 crystals can be efficiently produced by controlling the rate of change in turbidity, and the resulting Form II reduced coenzyme Q10 crystals or a crystalline solid thereof was found to be excellent in oxidation stability.
 本実施形態の態様例は、以下の通りに記載される。
(1) アルコールと還元型補酵素Q10とを含有する混合液に、FormII型の還元型補酵素Q10結晶を種晶として添加すること、及び、
 前記種晶の添加後の前記混合液中でFormII型の還元型補酵素Q10結晶を析出させることを含み、
 前記析出において、ホルマジン濁度(FTU)が1,000から10,000になるまでの期間の70%以上の時間、FTU変化率を45FTU/min以下に維持する、FormII型の還元型補酵素Q10結晶又はその結晶性固体の製造方法。
(2) 前記期間における混合液の温度が30~43℃である、(1)に記載の製造方法。
(3)前記析出において、ホルマジン濁度(FTU)が1,000から10,000になるまでの期間の70%以上の時間、FTU変化率を0FTU/min超に維持する、(1)又は(2)に記載の製造方法。
(4) 前記アルコールが、炭素数1~5の1価のアルコールである、(1)~(3)のいずれか1つに記載の製造方法。
(5) 前記炭素数1~5の1価のアルコールが、エタノールである、(4)に記載の製造方法。
(6) 前記アルコールが、水とアルコールとの総量に対して、95重量%以上のアルコールである、(1)~(5)のいずれか1つに記載の製造方法。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2021-052888号の開示内容を包含する。
Example aspects of this embodiment are described as follows.
(1) adding Form II reduced coenzyme Q10 crystals as seed crystals to a mixed solution containing alcohol and reduced coenzyme Q10;
Precipitating Form II reduced coenzyme Q10 crystals in the mixed solution after adding the seed crystals;
In the precipitation, the formazin turbidity (FTU) is maintained at 45 FTU/min or less for 70% or more of the period from 1,000 to 10,000, Form II reduced coenzyme Q10 A method for producing crystals or crystalline solids thereof.
(2) The production method according to (1), wherein the temperature of the mixture during the period is 30 to 43°C.
(3) In the precipitation, the FTU change rate is maintained above 0 FTU/min for 70% or more of the period from 1,000 to 10,000 in formazin turbidity (FTU), (1) or ( 2) The manufacturing method as described in.
(4) The production method according to any one of (1) to (3), wherein the alcohol is a monohydric alcohol having 1 to 5 carbon atoms.
(5) The production method according to (4), wherein the monohydric alcohol having 1 to 5 carbon atoms is ethanol.
(6) The production method according to any one of (1) to (5), wherein the alcohol is 95% by weight or more of the total amount of water and alcohol.
This specification includes the disclosure content of Japanese Patent Application No. 2021-052888, which is the basis of priority of this application.
 本開示の方法によれば、FormII型の還元型補酵素Q10結晶又はその結晶性固体を効率よく製造することができる。また、本開示の方法により得られるFormII型の還元型補酵素Q10結晶又はその結晶性固体は酸化安定性に優れる。 According to the method of the present disclosure, Form II reduced coenzyme Q10 crystals or crystalline solids thereof can be efficiently produced. In addition, the Form II reduced coenzyme Q10 crystals or the crystalline solid thereof obtained by the method of the present disclosure are excellent in oxidation stability.
 以下、本発明を詳細に説明する。 The present invention will be described in detail below.
<還元型補酵素Q10>
 本明細書における「還元型補酵素Q10」とは、還元型補酵素Q10を主成分とする限り、その一部に酸化型補酵素Q10を含んでいてもよい。なお、ここで主成分とは、例えば50重量%以上、通常60重量%以上、好ましくは70重量%以上、より好ましくは80重量%以上、さらに好ましくは90重量%以上、特に好ましくは95重量%以上、とりわけ好ましくは98重量%以上含まれていることを意味する。ここで前記割合は、補酵素Q10の総量に対する、還元型補酵素Q10の割合である。
<Reduced coenzyme Q10>
As used herein, “reduced coenzyme Q10” may partially contain oxidized coenzyme Q10 as long as it contains reduced coenzyme Q10 as a main component. Here, the main component is, for example, 50% by weight or more, usually 60% by weight or more, preferably 70% by weight or more, more preferably 80% by weight or more, still more preferably 90% by weight or more, particularly preferably 95% by weight. More preferably, it means that the content is 98% by weight or more. Here, the ratio is the ratio of reduced coenzyme Q10 to the total amount of coenzyme Q10.
 なお、上述したように、還元型補酵素Q10には、従来から知られているFormI型と、最近になって新たに見出されたFormII型の2種の結晶多形が存在する。具体的には、融点が48℃付近で、粉末エックス線(Cu-Kα)回析において、回折角(2θ±0.2°)3.1°、18.7°、19.0°、20.2°、23.0°に特徴的なピークを示す還元型補酵素Q10の結晶形がFormI型であり、融点が52℃付近で、粉末エックス線(Cu-Kα)回析において、回折角(2θ±0.2°)11.5°、18.2°、19.3°、22.3°、23.0°、33.3°に特徴的なピークを示す還元型補酵素Q10の結晶形がFormII型である。本明細書においては、示差走査熱量測定(DSC)により、5℃/分の速度で昇温した場合において54±2℃に吸熱ピークを有するか、昇温速度1℃/分において同様に測定をおこなった場合、52±2℃に吸熱ピークを有するか、粉末エックス線(Cu-Kα)回析において、回折角(2θ±0.2°)11.5°、18.2°、19.3°、22.3°、23.0°及び33.3°に特徴的なピークを示すか、そのうち1つでも満たす還元型補酵素Q10の結晶を「FormII型の還元型補酵素Q10の結晶」という。もちろん、全ての条件を満たすものであってもかまわない。 As described above, reduced coenzyme Q10 has two types of crystal polymorphs: the conventionally known Form I type and the recently discovered Form II type. Specifically, the melting point is around 48° C., and the diffraction angles (2θ±0.2°) are 3.1°, 18.7°, 19.0°, and 20° in powder X-ray (Cu—Kα) diffraction. The crystal form of reduced coenzyme Q10 showing characteristic peaks at 2° and 23.0° is Form I type, and has a melting point of around 52°C. ±0.2°) Crystal form of reduced coenzyme Q10 showing characteristic peaks at 11.5°, 18.2°, 19.3°, 22.3°, 23.0°, and 33.3° is Form II type. In the present specification, by differential scanning calorimetry (DSC), it has an endothermic peak at 54 ± 2 ° C. when the temperature is increased at a rate of 5 ° C./min, or the temperature is measured at a temperature increase rate of 1 ° C./min. When it is performed, it has an endothermic peak at 52 ± 2 ° C., or a diffraction angle (2θ ± 0.2 °) of 11.5 °, 18.2 °, 19.3 ° in powder X-ray (Cu-Kα) diffraction. , 22.3°, 23.0° and 33.3°. . Of course, it does not matter if it satisfies all the conditions.
 また、本明細書における「結晶性固体」とは、結晶構造を有する部分とともに、結晶構造を有さない非晶質成分をその中に含んでいる固体を意味する。すなわち、「FormII型の還元型補酵素Q10結晶又はその結晶性固体」における「その結晶性固体」とは、「FormII型の還元型補酵素Q10結晶の結晶構造を有する部分と共に、結晶構造を有さない非晶質成分をその中に含んでいる固体」を意味する。 "Crystalline solid" as used herein means a solid containing therein a portion having a crystalline structure and an amorphous component having no crystalline structure. That is, the "crystalline solid thereof" in "Form II reduced coenzyme Q10 crystal or crystalline solid thereof" means "a portion having a crystal structure of a Form II reduced coenzyme Q10 crystal and having a crystal structure. means "a solid that contains no amorphous component therein".
<アルコール>
 本発明者らは、アルコール中では、FormII型結晶の飽和濃度が、FormI型結晶の飽和濃度よりも小さいために、還元型補酵素Q10の溶媒としてアルコールを用いることにより、FormII型の還元型補酵素Q10結晶を効率的に析出させることが可能であることを見出した。
<Alcohol>
In alcohol, the saturation concentration of Form II crystals is lower than that of Form I crystals. It was found that enzyme Q10 crystals can be efficiently precipitated.
 アルコールとしては、炭素数1~5の1価のアルコールであることが好ましい。炭素数1~5の1価のアルコールとしては、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、n-ペンタノールが挙げられる。アルコールとしては、FormII型結晶の飽和濃度が、FormI型結晶の飽和濃度よりも十分に小さく、取扱いが容易なエタノールが特に好ましい。なお、アルコールとしては、上記例示したものを単独で用いてもよく、2種以上を混合して用いてもよい。 The alcohol is preferably a monohydric alcohol having 1 to 5 carbon atoms. Examples of monohydric alcohols having 1 to 5 carbon atoms include methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol and n-pentanol. As the alcohol, ethanol is particularly preferred because the saturation concentration of Form II crystals is sufficiently lower than the saturation concentration of Form I crystals and is easy to handle. In addition, as alcohol, what was illustrated above may be used individually, and 2 or more types may be mixed and used.
 本明細書におけるアルコールは、アルコールを主成分とする溶媒であればよく、水を含む含水アルコールであってもよい。アルコールとしては、含水量が低いほどFormII型結晶の選択的な析出が容易である。このためアルコールは、水とアルコールとの総量に対して、アルコール濃度は例えば80重量%以上、通常は90重量%以上、好ましくは95重量%以上、より好ましくは97重量%以上、さらに好ましくは99重量%以上、特に好ましくは99.5重量%以上である。なお、アルコール濃度が99.5重量%以上のアルコールは、無水アルコールを意味する。また、アルコール濃度の上限としては、100重量%以下である。 The alcohol in the present specification may be a solvent containing alcohol as a main component, and may be a hydrous alcohol containing water. As for the alcohol, the lower the water content, the easier the selective precipitation of Form II type crystals. For this reason, alcohol has an alcohol concentration of, for example, 80% by weight or more, usually 90% by weight or more, preferably 95% by weight or more, more preferably 97% by weight or more, and still more preferably 99% by weight, based on the total amount of water and alcohol. It is at least 99.5% by weight, particularly preferably at least 99.5% by weight. Alcohol having an alcohol concentration of 99.5% by weight or more means anhydrous alcohol. Moreover, the upper limit of the alcohol concentration is 100% by weight or less.
 アルコールとしては、含水エタノール又は無水エタノールが特に好ましい。エタノールとしては、水とエタノールとの総量に対して、エタノール濃度は、例えば80重量%以上、通常は90重量%以上、好ましくは95重量%以上、より好ましくは97重量%以上、さらに好ましくは99重量%以上、特に好ましくは99.5重量%以上である。また、エタノール濃度の上限としては、100重量%以下である。 As the alcohol, hydrous ethanol or anhydrous ethanol is particularly preferable. Ethanol has an ethanol concentration of, for example, 80% by weight or more, usually 90% by weight or more, preferably 95% by weight or more, more preferably 97% by weight or more, and still more preferably 99% by weight, based on the total amount of water and ethanol. It is at least 99.5% by weight, particularly preferably at least 99.5% by weight. Moreover, the upper limit of the ethanol concentration is 100% by weight or less.
<FormII型の還元型補酵素Q10結晶又はその結晶性固体の製造方法>
 本実施形態に係る、FormII型の還元型補酵素Q10結晶又はその結晶性固体の製造方法は、アルコールと還元型補酵素Q10とを含有する混合液に、FormII型の還元型補酵素Q10結晶を種晶として添加すること、及び、前記種晶の添加後の前記混合液中でFormII型の還元型補酵素Q10結晶を析出させることを含み、前記析出において、ホルマジン濁度(FTU)が1,000から10,000になるまでの期間の70%以上の時間、FTU変化率を45FTU/min以下に維持する、FormII型の還元型補酵素Q10結晶又はその結晶性固体の製造方法である。
<Method for producing Form II reduced coenzyme Q10 crystals or crystalline solids thereof>
In the method for producing Form II reduced coenzyme Q10 crystals or a crystalline solid thereof according to the present embodiment, Form II reduced coenzyme Q10 crystals are added to a mixed solution containing alcohol and reduced coenzyme Q10. adding as seed crystals, and precipitating FormII-type reduced coenzyme Q10 crystals in the mixed solution after adding the seed crystals, wherein the precipitation has a formazin turbidity (FTU) of 1, A method for producing Form II reduced coenzyme Q10 crystals or a crystalline solid thereof, wherein the FTU change rate is maintained at 45 FTU/min or less for 70% or more of the period from 000 to 10,000.
 以下の説明ではFormII型の還元型補酵素Q10結晶を種晶として添加する工程を「種晶添加工程」、FormII型の還元型補酵素Q10結晶を析出させる工程を「結晶析出工程」と称する場合がある。 In the following description, the step of adding Form II reduced coenzyme Q10 crystals as seed crystals is referred to as the "seeding step", and the step of precipitating Form II reduced coenzyme Q10 crystals is referred to as the "crystal precipitation step". There is
 アルコールと還元型補酵素Q10とを含有する混合液は、アルコールと還元型補酵素Q10を含有していれば特に限定されず、還元型補酵素Q10がアルコールに溶解した均一な溶液であってもよいし、還元型補酵素Q10の一部がアルコールに溶解しているが一部が溶解せずに懸濁したスラリーであっても良いが、好ましくは、還元型補酵素Q10がアルコールに溶解した均一な溶液である。 The mixed solution containing alcohol and reduced coenzyme Q10 is not particularly limited as long as it contains alcohol and reduced coenzyme Q10. Alternatively, it may be a slurry in which reduced coenzyme Q10 is partly dissolved in alcohol but partly not dissolved but suspended in alcohol. Preferably, reduced coenzyme Q10 is dissolved in alcohol. Homogeneous solution.
 アルコールと還元型補酵素Q10とを含有する混合液に使用される還元型補酵素Q10としては、結晶、非晶状態を問わず、またその結晶多形も問わない。従って、従来公知のFormI型の還元型補酵素Q10を使用することもできる。また、結晶析出においてその純度を高めることが可能なため、不純物を有するものや、未精製・粗精製の還元型補酵素Q10であってもよい。さらに、従来公知の方法によって得られた還元型補酵素Q10の抽出液や、公知の還元方法で酸化型補酵素Q10から得られた還元型補酵素Q10を含有する反応液を、そのまま、あるいは必要に応じて精製及び/又は溶媒置換したものを、前記混合液として使用することもできる。 The reduced coenzyme Q10 used in the mixture containing alcohol and reduced coenzyme Q10 may be in a crystalline or amorphous state, and its crystal polymorphism may be used. Therefore, conventionally known Form I reduced coenzyme Q10 can also be used. In addition, since it is possible to increase the purity by crystal precipitation, it may be an unpurified or partially purified reduced coenzyme Q10 containing impurities. Furthermore, an extract of reduced coenzyme Q10 obtained by a conventionally known method or a reaction solution containing reduced coenzyme Q10 obtained from oxidized coenzyme Q10 by a known reduction method may be used as it is or as necessary. Purified and/or solvent-substituted one can also be used as the mixed solution.
 アルコールと還元型補酵素Q10とを含有する混合液は、アルコール(含水アルコールを含む)以外の他の有機溶媒を更に含んでいても良いが、溶媒成分全量あたりのアルコールの含有量(アルコールの純度)は好ましくは、95重量%以上、97重量%以上、99重量%以上であり、上限としては100重量%以下が好ましい。アルコールの純度は、最も好ましくは99.5重量%以上である。他の有機溶媒としては、炭化水素、脂肪酸エステル及び窒素化合物からなる群より選択される少なくとも1種が例示できる。 The mixed solution containing alcohol and reduced coenzyme Q10 may further contain organic solvents other than alcohol (including hydrous alcohol), but the alcohol content (alcohol purity ) is preferably 95% by weight or more, 97% by weight or more, or 99% by weight or more, and the upper limit is preferably 100% by weight or less. The purity of the alcohol is most preferably 99.5 wt% or higher. Other organic solvents include at least one selected from the group consisting of hydrocarbons, fatty acid esters and nitrogen compounds.
 アルコールと還元型補酵素Q10とを含有する混合液中の、種晶添加前の還元型補酵素Q10の溶存濃度は、例えば2重量%以上、好ましくは3重量%以上、より好ましくは5重量%以上、さらに好ましくは7重量%以上、特に好ましくは9重量%以上である。種晶添加前の還元型補酵素Q10の溶存濃度は、例えば50重量%以下、好ましくは45重量%以下、より好ましくは30重量%以下、さらに好ましくは20重量%以下、特に好ましくは15重量%以下である。 The dissolved concentration of reduced coenzyme Q10 before addition of seed crystals in the mixed solution containing alcohol and reduced coenzyme Q10 is, for example, 2% by weight or more, preferably 3% by weight or more, and more preferably 5% by weight. Above, more preferably 7% by weight or more, particularly preferably 9% by weight or more. The dissolved concentration of reduced coenzyme Q10 before addition of seed crystals is, for example, 50% by weight or less, preferably 45% by weight or less, more preferably 30% by weight or less, even more preferably 20% by weight or less, and particularly preferably 15% by weight. It is below.
 アルコールと還元型補酵素Q10とを含有する混合液は、アルコールと還元型補酵素Q10とを含有する原料混合物を例えば42℃以上の温度に加熱して、還元型補酵素Q10を溶解させることにより得られる。該温度としては、好ましくは70℃以下、より好ましくは55℃以下の温度である。還元型補酵素Q10を溶解させた後、種晶を添加する前に、アルコールと還元型補酵素Q10とを含有する混合液は、後述の種晶を添加する際の温度まで冷却することが好ましい。 A mixed solution containing alcohol and reduced coenzyme Q10 is prepared by heating a raw material mixture containing alcohol and reduced coenzyme Q10 to a temperature of, for example, 42° C. or higher to dissolve reduced coenzyme Q10. can get. The temperature is preferably 70° C. or lower, more preferably 55° C. or lower. After dissolving the reduced coenzyme Q10 and before adding the seed crystals, the mixture containing the alcohol and the reduced coenzyme Q10 is preferably cooled to the temperature at which the seed crystals are added, which will be described later. .
 種晶となるFormII型の還元型補酵素Q10結晶の添加量(種晶添加量)としては、特に限定されないが、種晶の添加前の前記混合液中の還元型補酵素Q10の量(100重量%)に対して0.1重量%以上が好ましく、0.5重量%以上がより好ましく、0.8重量%以上がさらに好ましく、1重量%以上が特に好ましい。上限は特に制限されないが、種晶添加前の前記混合液中の還元型補酵素Q10の量(100重量%)に対して、20重量%以下が好ましく、4重量%以下がより好ましく、2.2重量%以下がさらに好ましい。なお、種晶に使用される還元型補酵素Q10結晶は、FormII型の還元型補酵素Q10結晶を含む限り、FormI型の還元型補酵素Q10結晶や非晶体を含むものであっても差し支えないが、FormII型の還元型補酵素Q10結晶の純度が高い方が好ましい。種晶としてはFormII型の還元型補酵素Q10結晶が、例えば50重量%以上、好ましくは75重量%以上、さらに好ましくは80重量%以上、より好ましくは90重量%以上のものを使用するのがよい。 The amount of Form II-type reduced coenzyme Q10 crystals to be added (the amount of seed crystals to be added) is not particularly limited, but the amount of reduced coenzyme Q10 (100 % by weight), preferably 0.1% by weight or more, more preferably 0.5% by weight or more, even more preferably 0.8% by weight or more, and particularly preferably 1% by weight or more. Although the upper limit is not particularly limited, it is preferably 20% by weight or less, more preferably 4% by weight or less, relative to the amount (100% by weight) of reduced coenzyme Q10 in the mixed solution before adding seed crystals. 2% by weight or less is more preferable. The reduced coenzyme Q10 crystals used as seed crystals may contain Form I reduced coenzyme Q10 crystals or amorphous forms, as long as they contain Form II reduced coenzyme Q10 crystals. However, it is preferable that the purity of Form II reduced coenzyme Q10 crystals is high. Form II reduced coenzyme Q10 crystals, for example, 50% by weight or more, preferably 75% by weight or more, more preferably 80% by weight or more, more preferably 90% by weight or more, are used as seed crystals. good.
 種晶を添加する時点での前記混合液の温度は、30~43℃であることが好ましい。種晶を添加する時点での前記混合液の温度は、32℃以上がより好ましく、34℃以上が特に好ましい、又40℃以下がより好ましい。該範囲では、FormII型の還元型補酵素Q10結晶の選択的な析出が容易である。 The temperature of the mixed liquid at the time of adding the seed crystals is preferably 30 to 43°C. The temperature of the mixed solution at the time of adding the seed crystals is more preferably 32° C. or higher, particularly preferably 34° C. or higher, and more preferably 40° C. or lower. Within this range, selective precipitation of Form II reduced coenzyme Q10 crystals is easy.
 結晶析出工程は、ホルマジン濁度(FTU)が1,000から10,000になるまでの期間の70%以上の時間、FTU変化率を45FTU/min以下に維持することを含む。該FTU変化率は、43FTU/min以下であることが好ましく、40FTU/min以下であることがより好ましい。結晶の析出が進むにつれてFTUは上昇するが、FTUが1,000から10,000になるまでの期間の70%以上の時間、FTU変化率を前記範囲に維持することにより、FormII型の還元型補酵素Q10結晶を効率よく製造することができると共に、得られるFormII型の還元型補酵素Q10結晶は酸化安定性に優れる。この理由を本発明者らは、FTUの上昇は、結晶の析出が進行していることを意味し、FTU変化率を特定の範囲とすることにより、急激な析出による不安定な結晶生成を抑制することが可能であり、酸化安定性に優れるFormII型の還元型補酵素Q10結晶を安定的に製造することができるためと推測した。また、FTUが1,000から10,000になるまでの期間の一部において、FTU変化率が上記特定の範囲から外れる場合であってもFTUが1,000から10,000になるまでの期間の70%以上の時間において、FTU変化率が上記特定の範囲にあれば、酸化安定性に優れるFormII型の還元型補酵素Q10結晶を安定的に製造することができることを見出した。なお、FTUが1,000から10,000になるまでの期間の70%以上の時間とは、例えばFTUが1,000から10,000になるまでに、300分を要する場合には、210分以上の時間を意味し、900分を要する場合には、630分以上の時間を意味する。 The crystal precipitation step includes maintaining the FTU change rate at 45 FTU/min or less for 70% or more of the period from 1,000 to 10,000 in formazin turbidity (FTU). The FTU change rate is preferably 43 FTU/min or less, more preferably 40 FTU/min or less. Although the FTU increases as crystal precipitation progresses, by maintaining the FTU change rate in the above range for 70% or more of the time from 1,000 to 10,000, the Form II reduced form Coenzyme Q10 crystals can be efficiently produced, and the obtained Form II reduced coenzyme Q10 crystals have excellent oxidation stability. The reason for this is that the present inventors believe that an increase in FTU means that crystal precipitation is progressing, and by setting the FTU change rate to a specific range, unstable crystal formation due to rapid precipitation is suppressed. This is presumed to be because Form II-type reduced coenzyme Q10 crystals with excellent oxidation stability can be stably produced. In addition, even if the FTU rate of change falls outside the specified range for a portion of the period from 1,000 to 10,000 FTU, the period from 1,000 to 10,000 FTU It has been found that Form II reduced coenzyme Q10 crystals with excellent oxidation stability can be stably produced if the FTU change rate is within the above specific range for 70% or more of the time. In addition, the time of 70% or more of the period from 1,000 to 10,000 FTU is, for example, 210 minutes if 300 minutes is required for FTU from 1,000 to 10,000 If it means 900 minutes or more, it means 630 minutes or more.
 種晶を添加する時点での前記混合液は還元型補酵素Q10がアルコールに溶解した均一溶解していることが好ましい。種晶を添加する時点での前記混合液のFTUは、通常は0~250であり、好ましくは0~230であり、より好ましくは0~200である。該範囲では、FormII型の還元型補酵素Q10結晶が優先的に析出するため好ましい。 It is preferable that the reduced coenzyme Q10 is uniformly dissolved in alcohol in the mixed solution at the time of adding the seed crystals. The FTU of the mixed liquid at the time of seed crystal addition is usually 0-250, preferably 0-230, more preferably 0-200. This range is preferable because Form II reduced coenzyme Q10 crystals preferentially precipitate.
 ある時点(T)のFTU変化率は、以下の式により算出することができる。
 FTU変化率(FTU/min)=(濁度測定値(FTU)-濁度測定値T-20(FTU))/20(min)
(上記式において、FTU変化率は時点(T)におけるFTU変化率を意味し、濁度測定値(FTU)は時点(T)におけるFTUの測定値を意味し、濁度測定値T-20(FTU)は時点Tの20分前におけるFTUの測定値を意味する。)
The FTU change rate at a certain time (T) can be calculated by the following formula.
FTU change rate T (FTU/min) = (measured turbidity value T (FTU) - measured turbidity value T-20 (FTU))/20 (min)
(In the above formula, the FTU change rate T means the FTU change rate at time (T), the turbidity measurement value T (FTU) means the FTU measurement value at time (T), and the turbidity measurement value T- 20 (FTU) means the FTU measurement 20 minutes before time T.)
 すなわち、本実施形態ではFTU変化率は、FTUを20分毎に測定し、その間のFTUの増加量を20分で除することにより算出することができる。つまり、仮にある態様において、ごく短時間(例えば1分)の間、FTU変化率が本実施形態の範囲外であったとしても、FTUを20分毎に測定した際に、FTU変化率が本実施形態の範囲内である場合には、該態様はFTU変化率が本実施形態の要件を満たしているものとする。 That is, in the present embodiment, the FTU change rate can be calculated by measuring the FTU every 20 minutes and dividing the increase in FTU during that period by 20 minutes. That is, in a certain aspect, even if the FTU change rate is outside the range of this embodiment for a very short time (for example, 1 minute), when the FTU is measured every 20 minutes, the FTU change rate is When within the scope of the embodiment, the aspect assumes that the FTU rate of change satisfies the requirements of the embodiment.
 本実施形態では、ホルマジン濁度(FTU)が1,000から10,000になるまでの期間の70%以上の時間、FTU変化率を0FTU/min超に維持することが好ましい。該FTU変化率は、例えば5FTU/min以上であることがより好ましい。 In the present embodiment, it is preferable to maintain the FTU change rate above 0 FTU/min for 70% or more of the period from 1,000 to 10,000 in formazin turbidity (FTU). More preferably, the FTU change rate is, for example, 5 FTU/min or more.
 本実施形態ではFTU変化率は、ホルマジン濁度(FTU)が1,000から10,000になるまでの期間の70%以上の時間、上述の特定の範囲であることにより、酸化安定性に優れるFormII型の還元型補酵素Q10結晶を効率よく製造することができる。FTU変化率としては、ホルマジン濁度(FTU)が1,000から10,000になるまでの期間の70%以上の時間、FTU変化率を5FTU/min以上45FTU/min以下に維持することが好ましい態様の一つである。 In the present embodiment, the FTU change rate is in the above-mentioned specific range for 70% or more of the period until the formazin turbidity (FTU) becomes 1,000 to 10,000, so that the oxidation stability is excellent. Form II reduced coenzyme Q10 crystals can be produced efficiently. As the FTU change rate, it is preferable to maintain the FTU change rate at 5 FTU / min or more and 45 FTU / min or less for 70% or more of the period until the formazin turbidity (FTU) becomes 1,000 to 10,000. It is one of the aspects.
 本実施形態ではFTU変化率をFTUが1,000から10,000になるまでの期間の80%以上の時間、FTU変化率が後述の特定の範囲にあることが、酸化安定性に優れるFormII型の還元型補酵素Q10結晶を安定的に製造する観点から好ましい態様の一つである。本実施形態ではFTU変化率は、ホルマジン濁度(FTU)が1,000から10,000になるまでの期間の80%以上の時間、FTU変化率を0FTU/min超45FTU/min以下に維持することが好ましいく、FTU変化率を0FTU/min超30FTU/min以下に維持することがより好ましい。 In this embodiment, the FTU change rate is 80% or more of the period until the FTU becomes 1,000 to 10,000, and the FTU change rate is in the specific range described later. from the viewpoint of stably producing reduced coenzyme Q10 crystals. In this embodiment, the FTU change rate is maintained at more than 0 FTU / min and 45 FTU / min or less for 80% or more of the time from 1,000 to 10,000 formazin turbidity (FTU). More preferably, the FTU change rate is maintained at more than 0 FTU/min and no more than 30 FTU/min.
 本実施形態ではFTU変化率をFTUが1,000から10,000になるまでの期間の全期間(100%の時間)、上述の特定の範囲、例えばFTU変化率が45FTU/min以下、好ましくは0FTU/min超45FTU/min以下、より好ましくは5FTU/min以上45FTU/min以下に維持することが、酸化安定性に優れるFormII型の還元型補酵素Q10結晶を安定的に製造する観点から好ましい態様の一つである。 In this embodiment, the FTU change rate is set to the entire period from 1,000 to 10,000 (100% of the time), the above-mentioned specific range, for example, the FTU change rate is 45 FTU / min or less, preferably Maintaining at more than 0 FTU/min and 45 FTU/min or less, more preferably 5 FTU/min or more and 45 FTU/min or less is a preferred embodiment from the viewpoint of stably producing Form II-type reduced coenzyme Q10 crystals with excellent oxidation stability. one of.
 ホルマジン濁度(FTU)が1,000から10,000になるまでの期間の、混合液の温度は30℃以上43℃以下であることが好ましく、30.5℃以上42℃以下であることがより好ましく、31℃以上41℃以下であることが特に好ましい。前記範囲内では、FTU変化率を前記範囲に維持することが容易であるため好ましい。 The temperature of the mixed solution is preferably 30° C. or higher and 43° C. or lower, and preferably 30.5° C. or higher and 42° C. or lower during the period until the formazin turbidity (FTU) becomes 1,000 to 10,000. It is more preferably 31° C. or higher and 41° C. or lower, particularly preferably. Within the above range, it is easy to maintain the FTU change rate within the above range, which is preferable.
 FTUが10,000の時点での、混合液の温度は29℃以上38℃以下であることが好ましく、30℃以上37℃以下であることがより好ましく、31℃以上36℃以下であることが特に好ましい。 When the FTU is 10,000, the temperature of the mixture is preferably 29° C. or higher and 38° C. or lower, more preferably 30° C. or higher and 37° C. or lower, and 31° C. or higher and 36° C. or lower. Especially preferred.
 結晶析出工程では混合液の温度は、その時点でのホルマジン濁度、FTU変化率に応じて、適宜調節することができる。混合液の温度は一定であってもよいが、段階的に又は連続的に低下させてもよい。また、混合液の温度は一定期間一定の温度に保持した後に、段階的に又は連続的に低下させてもよい。好ましい一態様においては、種晶を添加する時点での混合液の温度は34℃以上38℃以下であり、FTUが10,000の時点での混合液の温度は30℃以上37℃以下であり、FTUが10,000の時点での温度が、種晶を添加する時点の温度よりも0.4℃以上8℃以下低いことが好ましい。なお、一定の温度に保持とは、好ましくは所定温度(設定温度)±3℃に保持することを意味し、より好ましくは所定温度(設定温度)±1℃に保持することを意味する。 In the crystal precipitation process, the temperature of the mixed solution can be adjusted as appropriate according to the formazin turbidity and FTU change rate at that time. The temperature of the mixed liquid may be constant, but may be lowered stepwise or continuously. Also, the temperature of the mixture may be maintained at a constant temperature for a certain period of time and then lowered stepwise or continuously. In a preferred embodiment, the temperature of the mixture at the time of adding the seed crystals is 34° C. or more and 38° C. or less, and the temperature of the mixture at the time when the FTU is 10,000 is 30° C. or more and 37° C. or less. , the temperature at which the FTU is 10,000 is preferably 0.4° C. or more and 8° C. or less lower than the temperature at the time of adding the seed crystal. The term "maintained at a constant temperature" means preferably to maintain a predetermined temperature (set temperature) ±3°C, more preferably to maintain a predetermined temperature (set temperature) ±1°C.
 混合液の温度を低下させる際の冷却速度としては、0.05℃/hr以上20℃/hr以下が好ましく、0.1℃/hr以上15℃/hr以下がより好ましい。冷却速度を経時的に変化させることも好ましい態様である。例えば、種晶を添加した後、一定時間、例えば0.5~8時間は温度を維持し、その後3~20時間は冷却速度を0.05℃/hr以上0.5℃/hr未満とし、その後冷却速度を0.5℃/hr以上15℃/hr以下とする態様、種晶を添加した後、3~20時間は冷却速度を0.05℃/hr以上0.5℃/hr未満とし、その後冷却速度を0.5℃/hr以上15℃/hr以下とする態様が挙げられる。 The cooling rate when lowering the temperature of the mixture is preferably 0.05°C/hr or more and 20°C/hr or less, more preferably 0.1°C/hr or more and 15°C/hr or less. It is also a preferred embodiment to change the cooling rate over time. For example, after adding the seed crystal, the temperature is maintained for a certain period of time, for example, 0.5 to 8 hours, and the cooling rate is set to 0.05° C./hr or more and less than 0.5° C./hr for 3 to 20 hours thereafter, After that, the cooling rate is set to 0.5° C./hr or more and 15° C./hr or less, and after adding the seed crystal, the cooling rate is set to 0.05° C./hr or more and less than 0.5° C./hr for 3 to 20 hours. After that, the cooling rate is set to 0.5° C./hr or more and 15° C./hr or less.
 結晶析出工程では、ホルマジン濁度が10,000に到達した後も混合液の温度を低下させ、結晶の析出を行うことが好ましい。その際の冷却速度としては、例えば、前述の範囲に基づき設定することができる。また、混合液の温度が23~34℃に到達した時点で、混合液中に含まれる還元型補酵素Q10の大半が既に析出しているため、温度が23~34℃に到達した後は、例えば冷却速度を、1℃/hr以上20℃/hr以下と大きくすることも可能である。 In the crystal precipitation step, it is preferable to lower the temperature of the mixed solution and precipitate crystals even after the formazin turbidity reaches 10,000. The cooling rate at that time can be set, for example, based on the range described above. In addition, when the temperature of the mixed solution reaches 23 to 34°C, most of the reduced coenzyme Q10 contained in the mixed solution has already precipitated, so after the temperature reaches 23 to 34°C, For example, it is possible to increase the cooling rate from 1° C./hr to 20° C./hr.
 結晶析出工程を終了する時点の温度、すなわち、終点到達温度は、好ましくは25℃以下、より好ましくは20℃以下、より好ましくは10℃以下、より好ましくは7℃以下、より好ましくは5℃以下である。前記終点温度の下限は前記混合液の系の固化温度であるが、好ましくは0℃以上である。 The temperature at the time of finishing the crystal precipitation step, that is, the end point reaching temperature is preferably 25°C or less, more preferably 20°C or less, more preferably 10°C or less, more preferably 7°C or less, more preferably 5°C or less. is. The lower limit of the end point temperature is the solidification temperature of the mixed liquid system, and is preferably 0° C. or higher.
 結晶の析出は、混合液を強制流動させながら実施するのが好ましい。過飽和の形成を抑制し、スムーズに核化・結晶成長を行う観点、或いは、高品質化の観点から、単位容積当たりの撹拌所要動力として、通常0.003kW/m以上、好ましくは0.004kW/m以上、より好ましくは0.005kW/m以上、さらに好ましくは0.006kW/m以上の流動を前記混合液に与えるのがよい。また、撹拌所要動力として、通常は0.1kW/m以下、好ましくは0.03kW/m以下の流動を前記混合液に与えるのがよい。上記の強制流動は、通常、撹拌翼の回転により与えられるが、上記流動が得られれば必ずしも撹拌翼を用いる必要はなく、例えば、混合液の循環による方法などを利用しても良い。 Precipitation of crystals is preferably carried out while forcibly flowing the liquid mixture. From the viewpoint of suppressing the formation of supersaturation and smoothly nucleating and growing crystals, or from the viewpoint of high quality, the power required for stirring per unit volume is usually 0.003 kW/m 3 or more, preferably 0.004 kW. /m 3 or more, more preferably 0.005 kW/m 3 or more, more preferably 0.006 kW/m 3 or more, to the mixture. In addition, it is preferable to give the mixture a flow of usually 0.1 kW/m 3 or less, preferably 0.03 kW/m 3 or less, as the power required for stirring. The above-mentioned forced flow is usually provided by rotating a stirring blade, but if the above-mentioned flow is obtained, it is not always necessary to use a stirring blade, and for example, a method of circulating the mixed liquid may be used.
 上記方法によって得られたFormII型の還元型補酵素Q10結晶は、例えば、特許文献2や3に記載されたような従来公知の方法により、固液分離・乾燥の工程を経て回収される。例えば固液分離には加圧ろ過、遠心ろ過などが使用できる。また、乾燥後の結晶や結晶性固体を必要に応じて粉砕、分級(ふるい分け)して回収することもできる。 The Form II-type reduced coenzyme Q10 crystals obtained by the above method are recovered through a solid-liquid separation and drying process by conventionally known methods such as those described in Patent Documents 2 and 3, for example. For example, pressure filtration, centrifugal filtration, or the like can be used for solid-liquid separation. In addition, the dried crystals and crystalline solids can be recovered by pulverizing and classifying (sieving) as necessary.
 本実施形態においては、より好ましい態様の一つとして、上記固液分離後のFormII型の還元型補酵素Q10結晶の乾燥を、加温下で行うことでFormII型の還元型補酵素Q10結晶の含有割合の向上を図ることもできる。この目的において、乾燥温度としては、46℃以上が好ましく、47℃以上がより好ましく、49℃以上がさらに好ましい。上限としては通常52℃以下、好ましくは51℃以下である。46℃未満の場合、乾燥は進むが、FormII型の還元型補酵素Q10結晶の含有割合はほとんど向上しない。また、52℃を超える場合は、乾燥中に還元型補酵素Q10結晶が融解してしまうことがある。 In the present embodiment, as one of the more preferable aspects, the Form II reduced coenzyme Q10 crystals after the solid-liquid separation are dried under heating to obtain Form II reduced coenzyme Q10 crystals. It is also possible to improve the content ratio. For this purpose, the drying temperature is preferably 46° C. or higher, more preferably 47° C. or higher, and even more preferably 49° C. or higher. The upper limit is usually 52°C or lower, preferably 51°C or lower. If the temperature is less than 46° C., drying progresses, but the content of Form II-type reduced coenzyme Q10 crystals hardly increases. If the temperature exceeds 52°C, the reduced coenzyme Q10 crystals may melt during drying.
 なお、結晶析出工程において既に目的とするFormII型の還元型補酵素Q10結晶の含有割合に達成している場合は上記の限りではなく、例えば25℃以上、好ましくは30℃以上、より好ましくは35℃以上で乾燥を実施すれば良い。 In addition, when the target content of Form II-type reduced coenzyme Q10 crystals has already been achieved in the crystal precipitation step, the above conditions are not limited. The drying may be carried out at ℃ or higher.
 また、乾燥を行う場合の加温時間も特に限定されないが、4時間以上が好ましく、10時間以上が好ましく、20時間以上がより好ましい。加温時間の上限としては特に制限はないが、通常は72時間以下、好ましくは48時間以下、より好ましくは36時間以下である。 The heating time for drying is also not particularly limited, but is preferably 4 hours or longer, preferably 10 hours or longer, and more preferably 20 hours or longer. The upper limit of the heating time is not particularly limited, but is usually 72 hours or less, preferably 48 hours or less, more preferably 36 hours or less.
 なお、本実施形態の方法における各工程、具体的には、上記で説明した種晶添加工程、及び結晶析出工程、並びに固液分離や乾燥などの回収工程、その他その後の処理工程などは、脱酸素雰囲気下にて実施するのが好ましい。脱酸素雰囲気は、雰囲気の不活性ガスによる置換、減圧、沸騰やこれらを組み合わせることにより達成できる。少なくとも、雰囲気の不活性ガスによる置換、即ち、不活性ガス雰囲気を用いるのが好適である。上記不活性ガスとしては、例えば、窒素ガス、ヘリウムガス、アルゴンガス、水素ガス、炭酸ガス等を挙げることができ、好ましくは窒素ガスである。 In addition, each step in the method of the present embodiment, specifically, the seed crystal addition step and the crystal precipitation step described above, the recovery step such as solid-liquid separation and drying, and other subsequent treatment steps, etc. It is preferable to carry out in an oxygen atmosphere. A deoxygenated atmosphere can be achieved by replacing the atmosphere with an inert gas, reducing pressure, boiling, or a combination thereof. It is preferable to at least replace the atmosphere with an inert gas, ie use an inert gas atmosphere. Examples of the inert gas include nitrogen gas, helium gas, argon gas, hydrogen gas, carbon dioxide gas, etc. Nitrogen gas is preferred.
 得られた還元型補酵素Q10の結晶又はその結晶性固体中に、FormII型の還元型補酵素Q10結晶が含有されているかどうかやその含有割合は、例えば示差走査型熱量計(DSC)で測定することにより判別が可能である。 Whether or not Form II reduced coenzyme Q10 crystals are contained in the obtained reduced coenzyme Q10 crystals or crystalline solid thereof and the content ratio thereof are measured by, for example, a differential scanning calorimeter (DSC). It is possible to discriminate by
 前述したとおり、FormII型の還元型補酵素Q10結晶は、DSCにより昇温速度1℃/分において測定を行った場合、52±2℃付近に吸熱ピークを示し、FormI型の還元型補酵素Q10結晶は、同条件において、48±1℃付近に吸熱ピークを示す。FormII型の還元型補酵素Q10結晶が、従来のFormI型の還元型補酵素Q10結晶あるいはその結晶性固体と混合された状態であっても、前記52±2℃付近のピークの有無やその吸熱ピークの高さや吸熱量の比によりFormII型の還元型補酵素Q10結晶の存在の有無やその含有割合を判別することができる。本発明によれば、高純度のFormII型の還元型補酵素Q10結晶又はその結晶性固体を効率的に得ることができる。本実施形態によれば、結晶析出工程により、FormII型の還元型補酵素Q10結晶を得ることができるが、その後の乾燥工程等によって、一部の結晶が溶融すること等により、結晶性固体が得られることがある。このため、本実施形態は、結晶が得られる場合、結晶性固体が得られる場合を包含する。また、得られるFormII型の還元型補酵素Q10結晶又はその結晶性固体は、酸化安定性に優れる。 As described above, Form II reduced coenzyme Q10 crystals show an endothermic peak at around 52±2° C. when measured by DSC at a heating rate of 1° C./min, indicating that Form I reduced coenzyme Q10 The crystal shows an endothermic peak around 48±1° C. under the same conditions. Even when Form II reduced coenzyme Q10 crystals are mixed with conventional Form I reduced coenzyme Q10 crystals or a crystalline solid thereof, the presence or absence of the peak near 52 ± 2 ° C. and the endotherm thereof The presence or absence of Form II reduced coenzyme Q10 crystals and their content can be determined from the height of the peak and the ratio of the endothermic amounts. According to the present invention, highly pure Form II reduced coenzyme Q10 crystals or a crystalline solid thereof can be efficiently obtained. According to the present embodiment, FormII-type reduced coenzyme Q10 crystals can be obtained through the crystal precipitation step. can be obtained. Therefore, this embodiment encompasses cases where crystals are obtained and where crystalline solids are obtained. In addition, the obtained Form II reduced coenzyme Q10 crystals or the crystalline solid thereof are excellent in oxidation stability.
 以下、実施例を挙げて本実施形態を説明するが、本開示はこれらの例によって限定されるものではない。 The present embodiment will be described below with examples, but the present disclosure is not limited by these examples.
<還元型補酵素Q10結晶におけるFormII型結晶の比率>
 実施例、比較例で得られた還元型補酵素Q10結晶中のFormII型結晶の比率は、結晶を下記条件によるDSC測定により分析し、得られたFormI型結晶の吸熱ピークの高さ(Y差)(以下、FormIのY差)およびFormII型結晶の吸熱ピークの高さ(Y差)(以下、FormIIのY差)より、下記の式に基づき算出した。
 FormII比率(%)=FormIIのY差/(FormIのY差+FormIIのY差)×100
<Proportion of Form II crystals in reduced coenzyme Q10 crystals>
The ratio of Form II crystals in the reduced coenzyme Q10 crystals obtained in Examples and Comparative Examples was determined by analyzing the crystals by DSC measurement under the following conditions, and measuring the endothermic peak height (Y difference ) (hereinafter referred to as Form I Y difference) and the height of the endothermic peak (Y difference) of Form II type crystal (hereinafter referred to as Form II Y difference).
Form II ratio (%) = Y difference of Form II / (Y difference of Form I + Y difference of Form II) x 100
(DSC測定条件)
装置:DSC6220(SIIナノテクノロジー製)
サンプル容器:アルミ製パン&カバー(SSC000C008)
昇温速度:1℃/min
サンプル量:5±2mg
(DSC measurement conditions)
Apparatus: DSC6220 (manufactured by SII Nano Technology)
Sample container: Aluminum pan & cover (SSC000C008)
Heating rate: 1°C/min
Sample amount: 5±2 mg
<酸化安定性(相対QH比)の評価方法>
 実施例、比較例で得られた還元型補酵素Q10結晶の酸化安定性を以下の方法で評価した。
<Method for evaluating oxidation stability (relative QH ratio)>
The oxidation stability of the reduced coenzyme Q10 crystals obtained in Examples and Comparative Examples was evaluated by the following method.
 40℃RH(相対湿度)75%および25℃RH60%に設定した恒温槽において、開放系で実施例、比較例で得られた還元型補酵素Q10結晶を1ヶ月又は2ヶ月保存し、その後高速液体クロマトグラフィーを用いて還元型補酵素Q10(QH)および酸化型補酵素Q10の含量比を算出する。 The reduced coenzyme Q10 crystals obtained in Examples and Comparative Examples were stored in an open system in a constant temperature bath set at 40°C RH (relative humidity) 75% and 25°C RH 60% for 1 or 2 months, and then subjected to high-speed storage. The content ratio of reduced coenzyme Q10 (QH) and oxidized coenzyme Q10 is calculated using liquid chromatography.
 恒温槽で保存する前のinitialの還元型補酵素Q10結晶の還元型補酵素Q10の含量比、すなわち、実施例、比較例により得られた結晶を用いて、結晶取得後速やかに測定した際の還元型補酵素Q10の含量比を100とした相対値で、還元型補酵素Q10結晶の酸化安定性を、下記式により相対QH比として算出した。
 相対QH比(%)=保存後の還元型補酵素Q10比/initialの還元型補酵素Q10比×100
The content ratio of reduced coenzyme Q10 in the initial reduced coenzyme Q10 crystals before storage in a constant temperature bath, that is, using the crystals obtained in Examples and Comparative Examples, measured immediately after obtaining the crystals. Using the relative value of the content ratio of reduced coenzyme Q10 as 100, the oxidation stability of the reduced coenzyme Q10 crystal was calculated as a relative QH ratio by the following formula.
Relative QH ratio (%) = reduced coenzyme Q10 ratio after storage/initial reduced coenzyme Q10 ratio × 100
 還元型補酵素Q10濃度および酸化型補酵素Q10濃度を測定した高速液体クロマトグラフィーの条件を以下に示す。
(HPLC条件)
カラム:SYMMETRY C18(Waters製)、250mm(長さ)、4.6mm(内径)
移動相:COH:CHOH=4:3(v:v)
検出波長:210nm
流速:1ml/min
The conditions of high performance liquid chromatography for measuring the reduced coenzyme Q10 concentration and the oxidized coenzyme Q10 concentration are shown below.
(HPLC conditions)
Column: SYMMETRY C18 (manufactured by Waters), 250 mm (length), 4.6 mm (inner diameter)
Mobile phase: C2H5OH : CH3OH = 4: 3 (v:v)
Detection wavelength: 210 nm
Flow rate: 1ml/min
<FTU変化率の測定方法>
 実施例、比較例におけるFTU変化率は、エタノールと還元型補酵素Q10との混合液のホルマジン濁度(FTU)を濁度計で測定し、時点(T)のFTU変化率は、以下の式により算出した。また、本実施形態で使用した濁度計は、還元型補酵素Q10の結晶が混合液中に40000mg/Lの濃度で存在する時の濁度(FTU)を9,999FTUとして校正した。
 FTU変化率(FTU/min)=(濁度測定値(FTU)-濁度測定値T-20(FTU))/20(min)
(上記式において、FTU変化率は時点(T)におけるFTU変化率を意味し、濁度測定値(FTU)は時点(T)におけるFTUの測定値を意味し、濁度測定値T-20(FTU)は時点Tの20分前におけるFTUの測定値を意味する。)
濁度計:後方散乱光式濁度センサ(InPro8200、メトラー・トレド株式会社)
測定範囲:0~10,000FTU
<Method for measuring FTU change rate>
The FTU change rate in Examples and Comparative Examples was obtained by measuring the formazin turbidity (FTU) of a mixture of ethanol and reduced coenzyme Q10 with a turbidimeter, and the FTU change rate at time (T) was calculated using the following formula: Calculated by Further, the turbidity meter used in this embodiment was calibrated with a turbidity (FTU) of 9,999 FTU when crystals of reduced coenzyme Q10 were present in the mixed solution at a concentration of 40000 mg/L.
FTU change rate T (FTU/min) = (measured turbidity value T (FTU) - measured turbidity value T-20 (FTU))/20 (min)
(In the above formula, the FTU change rate T means the FTU change rate at time (T), the turbidity measurement value T (FTU) means the FTU measurement value at time (T), and the turbidity measurement value T- 20 (FTU) means the FTU measurement 20 minutes before time T.)
Turbidity meter: Backscattered light turbidity sensor (InPro8200, Mettler Toledo Corporation)
Measurement range: 0 to 10,000 FTU
 FTUの測定は、種晶の添加直後から、FTUが測定上限である10,000に到達するまで行い、FTU変化率は、FTUが1,000~10,000である期間算出した。ある時点TのFTU変化率は上記式で示したように、時点TのFTUの、20分前の時点(T-20min)のFTUからの増加量を算出し、20分で除すことにより求めた。 The FTU measurement was performed immediately after the addition of the seed crystal until the FTU reached the upper measurement limit of 10,000, and the FTU change rate was calculated during the period when the FTU was between 1,000 and 10,000. As shown in the above formula, the FTU change rate at a certain point T is obtained by calculating the amount of increase in the FTU at the point T from the FTU at the point 20 minutes before (T-20min) and dividing it by 20 minutes. rice field.
[実施例1]
 容積3Lのセパラブルフラスコを窒素置換した後、還元型補酵素Q10を144gと純度99.5重量%以上エタノール1296gを入れ(還元型補酵素Q10濃度:10wt%)、撹拌翼により撹拌(撹拌所要動力0.03kw/m)しながら50℃まで加温し均一な還元型補酵素Q10溶液(QH溶液)(1440g、1800ml)とした。
[Example 1]
After replacing a separable flask with a volume of 3 L with nitrogen, add 144 g of reduced coenzyme Q10 and 1296 g of ethanol with a purity of 99.5% by weight or more (reduced coenzyme Q10 concentration: 10% by weight), and stir with a stirring blade (stirring required The mixture was heated to 50° C. with a power of 0.03 kw/m 3 ) to obtain a uniform reduced coenzyme Q10 solution (QH solution) (1440 g, 1800 ml).
 50℃のQH溶液を、撹拌翼により撹拌(撹拌所要動力0.03kw/m)しながら35.5℃まで冷却した。35.5℃まで冷却したQH溶液(FTU124)に、FormII型の還元型補酵素Q10結晶を種晶として2.9g(2.0wt%)添加し、還元型補酵素Q10結晶の析出(晶析)を開始した。以下では、種晶を添加したQH溶液を「晶析混合液」と称する。 The QH solution at 50°C was cooled to 35.5°C while stirring with a stirring blade (required power for stirring: 0.03 kw/m 3 ). To the QH solution (FTU124) cooled to 35.5° C., 2.9 g (2.0 wt %) of Form II reduced coenzyme Q10 crystals were added as seed crystals, and precipitation of reduced coenzyme Q10 crystals (crystallization ) was started. The QH solution to which the seed crystals are added is hereinafter referred to as "crystallization mixture".
 種晶添加後は35.5℃で1時間保持した後、35.5℃から0.15℃/hrで33.5℃まで冷却した(一次冷却)。その後、25℃までは1℃/hrで冷却を行い、25℃から1℃までは10℃/hrで冷却した。 After adding the seed crystals, the temperature was maintained at 35.5°C for 1 hour, and then cooled from 35.5°C to 33.5°C at 0.15°C/hr (primary cooling). Thereafter, cooling was performed at 1°C/hr to 25°C, and cooling was performed at 10°C/hr from 25°C to 1°C.
 晶析中は、晶析混合液のホルマジン濁度(FTU)を濁度計にて測定し、前記ホルマジン濁度(FTU)が1,000から10,000になるまでの期間の全期間における、FTU変化率の最大が22.2FTU/min、最小が3.1FTU/minであること、FTUが1,000から10,000になるまでの期間の70%以上の時間において、FTU変化率が5~22.2FTU/minに維持されていることを確認した。 During crystallization, the formazin turbidity (FTU) of the crystallization mixture was measured with a turbidimeter, and during the entire period from 1,000 to 10,000, The maximum FTU change rate is 22.2 FTU/min, the minimum is 3.1 FTU/min, and the FTU change rate is 5 for 70% or more of the time from 1,000 to 10,000. It was confirmed that it was maintained at ~22.2 FTU/min.
 1℃まで冷却後、得られたスラリーをろ過により固液分離を行い、得られた結晶を40℃で24時間減圧乾燥し、FormII型の還元型補酵素Q10結晶を得た。 After cooling to 1°C, the obtained slurry was subjected to solid-liquid separation by filtration, and the resulting crystals were dried under reduced pressure at 40°C for 24 hours to obtain Form II-type reduced coenzyme Q10 crystals.
 得られた還元型補酵素Q10結晶におけるFormII型結晶比率は100%であり、FormI型の還元型補酵素Q10結晶は含まれていなかった。また、得られたFormII型の還元型補酵素Q10結晶の25℃RH60%1ヶ月における相対QH比は94.5%であり、25℃RH60%2ヶ月における相対QH比は91.5%であり、40℃RH75%1ヶ月における相対QH比は88.0%であった。 The Form II crystal ratio in the obtained reduced coenzyme Q10 crystals was 100%, and Form I reduced coenzyme Q10 crystals were not included. In addition, the relative QH ratio of the obtained Form II reduced coenzyme Q10 crystal at 25°C RH60% for 1 month was 94.5%, and the relative QH ratio at 25°C RH60% for 2 months was 91.5%. , 40° C. RH 75% for 1 month, the relative QH ratio was 88.0%.
[実施例2]
 実施例1と同様の方法でQH溶液を調製し、35.5℃まで冷却したQH溶液を得た。種晶添加後の晶析混合液の35.5℃での保持時間を5時間に変え、一次冷却を32.5℃まで0.3℃/hrで行った以外は実施例1と同様の方法でFormII型の還元型補酵素Q10結晶を得た。
[Example 2]
A QH solution was prepared in the same manner as in Example 1, and a QH solution cooled to 35.5°C was obtained. The same method as in Example 1 except that the holding time of the crystallization mixed solution after addition of seed crystals at 35.5°C was changed to 5 hours, and primary cooling was performed to 32.5°C at 0.3°C/hr. to obtain FormII type reduced coenzyme Q10 crystals.
 晶析中は、晶析混合液のホルマジン濁度(FTU)を濁度計にて測定し、前記ホルマジン濁度(FTU)が1,000から10,000になるまでの期間の全期間における、FTU変化率の最大が19.3FTU/min、最小が2.8FTU/minであること、FTUが1,000から10,000になるまでの期間の70%以上の時間において、FTU変化率が5~19.3FTU/minに維持されていることを確認した。 During crystallization, the formazin turbidity (FTU) of the crystallization mixture was measured with a turbidimeter, and during the entire period from 1,000 to 10,000, The maximum FTU change rate is 19.3 FTU/min, the minimum is 2.8 FTU/min, and the FTU change rate is 5 for 70% or more of the time from 1,000 to 10,000. It was confirmed that it was maintained at ~19.3 FTU/min.
 得られた還元型補酵素Q10結晶におけるFormII型結晶比率は100%であり、FormI型の還元型補酵素Q10結晶は含まれていなかった。また、得られたFormII型の還元型補酵素Q10結晶の25℃RH60%1ヶ月における相対QH比は95.4%であり、25℃RH60%2ヶ月における相対QH比は92.3%であり、40℃RH75%1ヶ月における相対QH比は90.4%であった。 The Form II crystal ratio in the obtained reduced coenzyme Q10 crystals was 100%, and Form I reduced coenzyme Q10 crystals were not included. In addition, the relative QH ratio of the obtained FormII type reduced coenzyme Q10 crystal at 25°C RH60% for 1 month was 95.4%, and the relative QH ratio at 25°C RH60% for 2 months was 92.3%. , 40° C. RH 75% for 1 month, the relative QH ratio was 90.4%.
[実施例3]
 実施例1と同様の方法でQH溶液を調製し、36.0℃まで冷却したQH溶液(FTU68)を得た。種晶添加温度を36.0℃に変え、添加後の保持をせず、一次冷却を33.5℃まで0.15℃/hrで行った以外は実施例1と同様の方法でFormII型の還元型補酵素Q10結晶を得た。
[Example 3]
A QH solution was prepared in the same manner as in Example 1 to obtain a QH solution (FTU68) cooled to 36.0°C. Form II type was formed in the same manner as in Example 1 except that the seed crystal addition temperature was changed to 36.0 ° C., the temperature was not maintained after addition, and the primary cooling was performed at 0.15 ° C./hr to 33.5 ° C. Crystals of reduced coenzyme Q10 were obtained.
 晶析中は、晶析混合液のホルマジン濁度(FTU)を濁度計にて測定し、前記ホルマジン濁度(FTU)が1,000から10,000になるまでの期間の全期間における、FTU変化率の最大が21.2FTU/min、最小が5.3FTU/minであることを確認した。 During crystallization, the formazin turbidity (FTU) of the crystallization mixture was measured with a turbidimeter, and during the entire period from 1,000 to 10,000, It was confirmed that the maximum FTU change rate was 21.2 FTU/min and the minimum was 5.3 FTU/min.
 得られた還元型補酵素Q10結晶におけるFormII型結晶比率は100%であり、FormI型の還元型補酵素Q10結晶は含まれていなかった。また、得られたFormII型の還元型補酵素Q10結晶の25℃RH60%1ヶ月における相対QH比は95.0%であり、25℃RH60%2ヶ月における相対QH比は92.1%であり、40℃RH75%1ヶ月における相対QH比は91.0%であった。 The Form II crystal ratio in the obtained reduced coenzyme Q10 crystals was 100%, and Form I reduced coenzyme Q10 crystals were not included. In addition, the relative QH ratio of the obtained FormII type reduced coenzyme Q10 crystal at 25°C RH60% for 1 month was 95.0%, and the relative QH ratio at 25°C RH60% for 2 months was 92.1%. , 40° C. RH 75% for 1 month, the relative QH ratio was 91.0%.
[実施例4]
 実施例1と同様の方法でQH溶液を調製し、36.0℃まで冷却したQH溶液(FTU118)を得た。種晶添加温度を36.0℃に変え、一次冷却を32.0℃まで0.3℃/hrで行った以外は実施例1と同様の方法でFormII型の還元型補酵素Q10結晶を得た。
[Example 4]
A QH solution was prepared in the same manner as in Example 1 to obtain a QH solution (FTU118) cooled to 36.0°C. Form II reduced coenzyme Q10 crystals were obtained in the same manner as in Example 1, except that the seed crystal addition temperature was changed to 36.0°C and the primary cooling was performed at 0.3°C/hr to 32.0°C. rice field.
 晶析中は、晶析混合液のホルマジン濁度(FTU)を濁度計にて測定し、前記ホルマジン濁度(FTU)が1,000から10,000になるまでの期間の全期間における、FTU変化率の最大が20.3FTU/min、最小が0.6FTU/minであること、FTUが1,000から10,000になるまでの期間の70%以上の時間において、FTU変化率が5.3~20.3FTU/minに維持されていることを確認した。 During crystallization, the formazin turbidity (FTU) of the crystallization mixture was measured with a turbidimeter, and during the entire period from 1,000 to 10,000, The maximum FTU change rate is 20.3 FTU/min, the minimum is 0.6 FTU/min, and the FTU change rate is 5 for 70% or more of the period from 1,000 to 10,000. .3 to 20.3 FTU/min was maintained.
 得られた還元型補酵素Q10結晶におけるFormII型結晶比率は100%であり、FormI型の還元型補酵素Q10結晶は含まれていなかった。また、得られたFormII型の還元型補酵素Q10結晶の25℃RH60%1ヶ月における相対QH比は93.6%であり、25℃RH60%2ヶ月における相対QH比は90.9%であり、40℃RH75%1ヶ月における相対QH比は90.6%であった。 The Form II crystal ratio in the obtained reduced coenzyme Q10 crystals was 100%, and Form I reduced coenzyme Q10 crystals were not included. In addition, the relative QH ratio of the obtained Form II reduced coenzyme Q10 crystal at 25°C RH60% for 1 month was 93.6%, and the relative QH ratio at 25°C RH60% for 2 months was 90.9%. , 40° C. RH 75% for 1 month, the relative QH ratio was 90.6%.
[実施例5]
 実施例1と同様の方法でQH溶液を調製し、35.0℃まで冷却したQH溶液(FTU74)を得た。種晶添加温度を35.0℃に変え、添加後の保持をせず、一次冷却を30.5℃まで0.3℃/hrで行った以外は実施例1と同様の方法でFormII型の還元型補酵素Q10結晶を得た。
[Example 5]
A QH solution was prepared in the same manner as in Example 1 to obtain a QH solution (FTU74) cooled to 35.0°C. Form II type was formed in the same manner as in Example 1 except that the seed crystal addition temperature was changed to 35.0 ° C., the temperature was not maintained after addition, and the primary cooling was performed at 0.3 ° C./hr to 30.5 ° C. Crystals of reduced coenzyme Q10 were obtained.
 晶析中は、晶析混合液のホルマジン濁度(FTU)を濁度計にて測定し、前記ホルマジン濁度(FTU)が1,000から10,000になるまでの期間の全期間における、FTU変化率の最大が31.5FTU/min、最小が2.2FTU/minであること、FTUが1,000から10,000になるまでの期間の70%以上の時間において、FTU変化率が5.3~31.5FTU/minに維持されていること、FTUが1,000から10,000になるまでの期間の80%以上の時間において、FTU変化率が2.2~28.7FTU/minに維持されていることを確認した。 During crystallization, the formazin turbidity (FTU) of the crystallization mixture was measured with a turbidimeter, and during the entire period from 1,000 to 10,000, The maximum FTU change rate is 31.5 FTU/min, the minimum is 2.2 FTU/min, and the FTU change rate is 5 for 70% or more of the time from 1,000 to 10,000. .3 to 31.5 FTU/min, FTU change rate of 2.2 to 28.7 FTU/min for more than 80% of the time from 1,000 to 10,000 FTU was confirmed to be maintained.
 得られた還元型補酵素Q10結晶におけるFormII型結晶比率は100%であり、FormI型の還元型補酵素Q10結晶は含まれていなかった。また、得られたFormII型の還元型補酵素Q10結晶の25℃RH60%1ヶ月における相対QH比は93.4%であり、25℃RH60%2ヶ月における相対QH比は90.2%であり、40℃RH75%1ヶ月における相対QH比は86.2%であった。 The Form II crystal ratio in the obtained reduced coenzyme Q10 crystals was 100%, and Form I reduced coenzyme Q10 crystals were not included. In addition, the relative QH ratio of the obtained Form II reduced coenzyme Q10 crystal at 25°C RH60% for 1 month was 93.4%, and the relative QH ratio at 25°C RH60% for 2 months was 90.2%. , 40° C. RH 75% for 1 month, the relative QH ratio was 86.2%.
[実施例6]
 実施例1と同様の方法でQH溶液を調製し、36.0℃まで冷却した。36.0℃まで冷却したQH溶液(FTU187)に、FormII型の還元型補酵素Q10結晶を種晶として添加(QH溶液中の還元型補酵素Q10を100wt%とした際に2.0wt%)し、還元型補酵素Q10結晶の析出(晶析)を開始した。
[Example 6]
A QH solution was prepared in the same manner as in Example 1 and cooled to 36.0°C. Form II reduced coenzyme Q10 crystals were added as seed crystals to the QH solution (FTU187) cooled to 36.0°C (2.0 wt% when the reduced coenzyme Q10 in the QH solution was 100 wt%). Then, precipitation (crystallization) of reduced coenzyme Q10 crystals was started.
 種晶添加後の晶析混合液のホルマジン濁度(FTU)が1,000から10,000になるまでの期間のFTU変化率を20.8FTU/minに維持することを目標とし、設定温度を制御した。晶析混合液のホルマジン濁度が10,000FTUに達した後は、25℃まで1℃/hrで冷却し、25℃から1℃まで10℃/hrで冷却した。前記ホルマジン濁度(FTU)が1,000から10,000になるまでの期間の全期間における、FTU変化率の最大が41.2FTU/min、最小が0.7FTU/minであること、FTUが1,000から10,000になるまでの期間の70%以上の時間において、FTU変化率が7.2~33.4FTU/minに維持されていること、FTUが1,000から10,000になるまでの期間の80%以上の時間において、FTU変化率が0.7~30FTU/minに維持されていることを確認した。 The target is to maintain the FTU change rate at 20.8 FTU / min during the period from 1,000 to 10,000 in the formazin turbidity (FTU) of the crystallization mixed solution after the addition of seed crystals. controlled. After the formazin turbidity of the crystallization mixture reached 10,000 FTU, it was cooled to 25°C at 1°C/hr, and then cooled from 25°C to 1°C at 10°C/hr. The maximum FTU change rate is 41.2 FTU / min and the minimum is 0.7 FTU / min in the entire period from the formazin turbidity (FTU) to 1,000 to 10,000, FTU is The FTU change rate is maintained at 7.2 to 33.4 FTU/min for 70% or more of the period from 1,000 to 10,000, FTU from 1,000 to 10,000 It was confirmed that the FTU change rate was maintained at 0.7 to 30 FTU/min for 80% or more of the period until the
 1℃まで冷却後、ろ過によって固液分離を行い、得られた結晶を40℃で24時間減圧乾燥し、FormII型の還元型補酵素Q10結晶を得た。 After cooling to 1°C, solid-liquid separation was performed by filtration, and the obtained crystals were dried under reduced pressure at 40°C for 24 hours to obtain Form II reduced coenzyme Q10 crystals.
 得られた還元型補酵素Q10結晶におけるFormII型結晶比率は100%であり、FormI型の還元型補酵素Q10結晶は含まれていなかった。また、得られたFormII型の還元型補酵素Q10結晶の25℃RH60%1ヶ月における相対QH比は89.6%であり、40℃RH75%1ヶ月における相対QH比は86.5%であった。 The Form II crystal ratio in the obtained reduced coenzyme Q10 crystals was 100%, and Form I reduced coenzyme Q10 crystals were not included. In addition, the relative QH ratio of the obtained Form II type reduced coenzyme Q10 crystal at 25°C RH60% for 1 month was 89.6%, and the relative QH ratio at 40°C RH75% for 1 month was 86.5%. rice field.
[実施例7]
 容積500mLの四つ口フラスコを窒素置換した後、還元型補酵素Q10を28gと純度99.5重量%以上エタノール250gを入れ(還元型補酵素Q10濃度:10wt%)、撹拌翼により撹拌(撹拌所要動力0.007kw/m)しながら50℃まで加温し均一なQH溶液(278g、347ml)とした。
[Example 7]
After purging a four-necked flask with a volume of 500 mL with nitrogen, add 28 g of reduced coenzyme Q10 and 250 g of ethanol with a purity of 99.5% by weight or more (reduced coenzyme Q10 concentration: 10 wt %), and stir with a stirring blade (stir A homogeneous QH solution (278 g, 347 ml) was obtained by heating to 50° C. with a power requirement of 0.007 kw/m 3 ).
 50℃のQH溶液を、撹拌翼により撹拌(撹拌所要動力0.007kw/m)しながら36.8℃まで冷却した。36.8℃まで冷却したQH溶液に、FormII型の還元型補酵素Q10結晶を種晶として0.6g(2.0wt%)添加し、還元型補酵素Q10結晶の析出(晶析)を開始した。 The QH solution at 50°C was cooled to 36.8°C while stirring with a stirring blade (required power for stirring: 0.007 kw/m 3 ). To the QH solution cooled to 36.8°C, 0.6 g (2.0 wt%) of Form II reduced coenzyme Q10 crystals were added as seed crystals to initiate precipitation (crystallization) of reduced coenzyme Q10 crystals. did.
 種晶添加後の晶析混合液のホルマジン濁度(FTU)が1,000から10,000になるまでの期間のFTU変化率を6.9FTU/min付近に維持することを目標とし設定温度を制御した。前記ホルマジン濁度が10,000FTUに達した後は、25℃まで1℃/hrで冷却し、25℃から1℃まで10℃/hrで冷却した。前記ホルマジン濁度(FTU)が1,000から10,000になるまでの期間の70%以上の時間において、FTU変化率が5~21FTU/minに維持されていること、FTUが1,000から10,000になるまでの期間の80%以上の時間において、FTU変化率が0.6~21FTU/minに維持されていることを確認した。 The set temperature was set with the goal of maintaining the FTU change rate at around 6.9 FTU/min during the period from 1,000 to 10,000 in the formazin turbidity (FTU) of the crystallization mixed solution after seed crystal addition. controlled. After the formazin turbidity reached 10,000 FTU, it was cooled to 25°C at 1°C/hr and from 25°C to 1°C at 10°C/hr. The FTU change rate is maintained at 5 to 21 FTU / min in 70% or more of the period until the formazin turbidity (FTU) is 1,000 to 10,000, FTU is from 1,000 It was confirmed that the FTU change rate was maintained between 0.6 and 21 FTU/min for 80% or more of the time until reaching 10,000.
 1℃まで冷却後、ろ過によって固液分離を行い、得られた結晶を40℃で24時間減圧乾燥し、FormII型の還元型補酵素Q10結晶を得た。 After cooling to 1°C, solid-liquid separation was performed by filtration, and the obtained crystals were dried under reduced pressure at 40°C for 24 hours to obtain Form II reduced coenzyme Q10 crystals.
 得られた還元型補酵素Q10結晶におけるFormII型結晶比率は100%であり、FormI型の還元型補酵素Q10結晶は含まれていなかった。また、得られたFormII型の還元型補酵素Q10結晶の25℃RH60%1ヶ月における相対QH比は92.2%であり、40℃RH75%1ヶ月における相対QH比は90.1%であった。 The Form II crystal ratio in the obtained reduced coenzyme Q10 crystals was 100%, and Form I reduced coenzyme Q10 crystals were not included. In addition, the relative QH ratio of the obtained Form II reduced coenzyme Q10 crystal at 25°C RH60% for one month was 92.2%, and the relative QH ratio at 40°C RH75% for one month was 90.1%. rice field.
[実施例8]
 容積500mLの四つ口フラスコを窒素置換した後、還元型補酵素Q10を33gと99.5重量%以上エタノール295gを入れ(還元型補酵素Q10濃度:10wt%)、撹拌翼により撹拌(撹拌所要動力0.007kw/m)しながら50℃まで加温し均一なQH溶液(328g、410ml)とした。
[Example 8]
After purging a four-neck flask with a volume of 500 mL with nitrogen, add 33 g of reduced coenzyme Q10 and 295 g of ethanol of 99.5 wt% or more (reduced coenzyme Q10 concentration: 10 wt%), and stir with a stirring blade (stirring required It was heated to 50° C. with a power of 0.007 kw/m 3 ) to obtain a homogeneous QH solution (328 g, 410 ml).
 50℃のQH溶液を、撹拌翼により撹拌(撹拌所要動力0.007kw/m)しながら34.5℃まで冷却した。34.5℃まで冷却したQH溶液に、FormII型の還元型補酵素Q10結晶を種晶として0.66g(2.0wt%)添加し、還元型補酵素Q10結晶の析出(晶析)を開始した。 The QH solution at 50°C was cooled to 34.5°C while stirring with a stirring blade (required power for stirring: 0.007 kw/m 3 ). To the QH solution cooled to 34.5°C, 0.66 g (2.0 wt%) of Form II reduced coenzyme Q10 crystals were added as seed crystals to initiate precipitation (crystallization) of reduced coenzyme Q10 crystals. did.
 種晶添加後の晶析混合液のホルマジン濁度(FTU)が1,000から10,000になるまでの期間のFTU変化率を33.3FTU/min付近に維持することを目標とし、設定温度を制御した。前記ホルマジン濁度が10,000FTUに達した後は、25℃まで1℃/hrで冷却し、25℃から1℃まで10℃/hrで冷却した。前記ホルマジン濁度(FTU)が1,000から10,000になるまでの期間の全期間における、FTU変化率の最大が43.3FTU/min、最小が15.0FTU/minであること、FTUが1,000から10,000になるまでの期間の70%以上の時間において、FTU変化率が15.0~39.9FTU/minに維持されていることを確認した。 The target is to maintain the FTU change rate at around 33.3 FTU/min during the period from 1,000 to 10,000 in the formazin turbidity (FTU) of the crystallization mixed solution after seed crystal addition. controlled. After the formazin turbidity reached 10,000 FTU, it was cooled to 25°C at 1°C/hr and from 25°C to 1°C at 10°C/hr. The maximum FTU change rate is 43.3 FTU / min and the minimum is 15.0 FTU / min in the entire period from the formazin turbidity (FTU) to 1,000 to 10,000, FTU is It was confirmed that the FTU change rate was maintained between 15.0 and 39.9 FTU/min for 70% or more of the period from 1,000 to 10,000.
 1℃まで冷却後、ろ過によって固液分離を行い、得られた結晶を40℃で24時間減圧乾燥し、FormII型の還元型補酵素Q10結晶を得た。 After cooling to 1°C, solid-liquid separation was performed by filtration, and the obtained crystals were dried under reduced pressure at 40°C for 24 hours to obtain Form II reduced coenzyme Q10 crystals.
 得られた還元型補酵素Q10結晶におけるFormII型結晶比率は100%であり、FormI型の還元型補酵素Q10結晶は含まれていなかった。また、得られたFormII型の還元型補酵素Q10結晶の25℃RH60%1ヶ月における相対QH比は89.4%であり、40℃RH75%1ヶ月における相対QH比は87.3%であった。 The Form II crystal ratio in the obtained reduced coenzyme Q10 crystals was 100%, and Form I reduced coenzyme Q10 crystals were not included. In addition, the relative QH ratio of the obtained Form II reduced coenzyme Q10 crystal at 25°C RH 60% for 1 month was 89.4%, and the relative QH ratio at 40°C RH 75% for 1 month was 87.3%. rice field.
[比較例1]
 容積500mLの四つ口フラスコを窒素置換した後、還元型補酵素Q10を33gと99.5重量%以上エタノール295gを入れ(還元型補酵素Q10濃度:10wt%)、撹拌翼により撹拌(撹拌所要動力0.007kw/m)しながら50℃まで加温し均一なQH溶液(328g、410ml)とした。
[Comparative Example 1]
After purging a four-neck flask with a volume of 500 mL with nitrogen, add 33 g of reduced coenzyme Q10 and 295 g of ethanol of 99.5 wt% or more (reduced coenzyme Q10 concentration: 10 wt%), and stir with a stirring blade (stirring required It was heated to 50° C. with a power of 0.007 kw/m 3 ) to obtain a homogeneous QH solution (328 g, 410 ml).
 50℃のQH溶液を、撹拌翼により撹拌(撹拌所要動力0.007kw/m)しながら36.8℃まで冷却した。36.8℃まで冷却したQH溶液に、FormII型の還元型補酵素Q10結晶を種晶として0.66g(2.0wt%)添加し、還元型補酵素Q10結晶の析出(晶析)を開始した。 The QH solution at 50°C was cooled to 36.8°C while stirring with a stirring blade (required power for stirring: 0.007 kw/m 3 ). To the QH solution cooled to 36.8°C, 0.66 g (2.0 wt%) of Form II reduced coenzyme Q10 crystals were added as seed crystals to initiate precipitation (crystallization) of reduced coenzyme Q10 crystals. did.
 種晶添加後の晶析混合液のホルマジン濁度(FTU)が1,000から10,000になるまでの期間のFTU変化率を55.6FTU/min付近に維持することを目標とし、設定温度を制御した。前記ホルマジン濁度が10,000FTUに達した後は、25℃まで1℃/hrで冷却し、25℃から1℃まで10℃/hrで冷却した。前記ホルマジン濁度(FTU)が1,000から10,000になるまでの期間の全期間における、FTU変化率の最大が108.7FTU/min、最小が30.6FTU/minであること、前記ホルマジン濁度(FTU)が1,000から10,000になるまでの期間の70%以上の時間、FTU変化率を45FTU/min以下に維持することができていなかったことを確認した。 The target is to maintain the FTU change rate at around 55.6 FTU/min during the period from 1,000 to 10,000 in the formazin turbidity (FTU) of the crystallization mixture after adding the seed crystals. controlled. After the formazin turbidity reached 10,000 FTU, it was cooled to 25°C at 1°C/hr and from 25°C to 1°C at 10°C/hr. The maximum FTU change rate is 108.7 FTU / min and the minimum is 30.6 FTU / min in the entire period from the formazin turbidity (FTU) to 1,000 to 10,000, the formazin It was confirmed that the FTU change rate could not be maintained at 45 FTU/min or less for 70% or more of the time during which the turbidity (FTU) increased from 1,000 to 10,000.
 1℃まで冷却後、ろ過によって固液分離を行い、得られた結晶を40℃で24時間減圧乾燥し、FormII型の還元型補酵素Q10結晶を得た。 After cooling to 1°C, solid-liquid separation was performed by filtration, and the obtained crystals were dried under reduced pressure at 40°C for 24 hours to obtain Form II reduced coenzyme Q10 crystals.
 得られた還元型補酵素Q10結晶におけるFormII型結晶比率は100%未満であった。また、得られたFormII型の還元型補酵素Q10結晶の25℃RH60%1ヶ月における相対QH比は85.1%であり、40℃RH75%1ヶ月における相対QH比は81.4%であった。 The Form II crystal ratio in the obtained reduced coenzyme Q10 crystals was less than 100%. In addition, the relative QH ratio of the obtained Form II reduced coenzyme Q10 crystal at 25°C RH60% for 1 month was 85.1%, and the relative QH ratio at 40°C RH75% for 1 month was 81.4%. rice field.
 実施例、比較例の結果を表1に示す。 Table 1 shows the results of Examples and Comparative Examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例で得られたFormII型の還元型補酵素Q10結晶の酸化安定性は、比較例の結果と比べて、非常に高いことが明らかとなった。このことから種晶の添加後の前記晶析混合液中でFormII型の還元型補酵素Q10結晶を析出させる際に、ホルマジン濁度(FTU)が1,000から10,000になるまでの期間の70%以上の時間、FTU変化率を特定の範囲に維持すると酸化安定性に優れたFormII型の還元型補酵素Q10結晶を取得することができることが分かる。また、FormI型の還元型補酵素Q10結晶は含まれていないことから、実施例の方法は、安定型の結晶形であるFormII型の還元型補酵素Q10結晶又はその結晶性固体を得るための効率的な製造方法であるといえる。 The oxidation stability of the Form II reduced coenzyme Q10 crystals obtained in Examples was found to be extremely high compared to the results of Comparative Examples. From this fact, the period until the formazin turbidity (FTU) becomes 1,000 to 10,000 is It can be seen that Form II reduced coenzyme Q10 crystals with excellent oxidation stability can be obtained by maintaining the FTU change rate within a specific range for 70% or more of the time. In addition, since Form I reduced coenzyme Q10 crystals are not included, the method of the example is a method for obtaining Form II reduced coenzyme Q10 crystals, which is a stable crystal form, or a crystalline solid thereof. It can be said that it is an efficient manufacturing method.
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。 All publications, patents and patent applications cited herein are hereby incorporated by reference as is.
 本明細書中に記載した数値範囲の上限値及び/又は下限値は、それぞれ任意に組み合わせて好ましい範囲を規定することができる。例えば、数値範囲の上限値及び下限値を任意に組み合わせて好ましい範囲を規定することができ、数値範囲の上限値同士を任意に組み合わせて好ましい範囲を規定することができ、また、数値範囲の下限値同士を任意に組み合わせて好ましい範囲を規定することができる。 The upper and/or lower limits of the numerical ranges described herein can be combined arbitrarily to define a preferred range. For example, a preferred range can be defined by arbitrarily combining the upper and lower limits of the numerical range, a preferred range can be defined by arbitrarily combining the upper limits of the numerical range, and the lower limit of the numerical range Any combination of values can be used to define a preferred range.
 本明細書の全体にわたり、単数形の表現は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。したがって、単数形の冠詞(例えば、英語の場合は「a」、「an」、「the」等)は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。 Throughout this specification, it should be understood that singular expressions also include their plural concepts unless otherwise specified. Thus, articles in the singular (eg, "a," "an," "the," etc. in the English language) should be understood to include their plural concepts as well, unless specifically stated otherwise.
 以上、本実施形態を詳述したが、具体的な構成はこの実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲における設計変更があっても、それらは本開示に含まれるものである。 Although the present embodiment has been described in detail above, the specific configuration is not limited to this embodiment, and even if there are design changes within the scope of the present disclosure, they are included in the present disclosure. It is.

Claims (6)

  1.  アルコールと還元型補酵素Q10とを含有する混合液に、FormII型の還元型補酵素Q10結晶を種晶として添加すること、及び、
     前記種晶の添加後の前記混合液中でFormII型の還元型補酵素Q10結晶を析出させることを含み、
     前記析出において、ホルマジン濁度(FTU)が1,000から10,000になるまでの期間の70%以上の時間、FTU変化率を45FTU/min以下に維持する、FormII型の還元型補酵素Q10結晶又はその結晶性固体の製造方法。
    adding Form II reduced coenzyme Q10 crystals as seed crystals to a mixed solution containing alcohol and reduced coenzyme Q10;
    Precipitating Form II reduced coenzyme Q10 crystals in the mixed solution after adding the seed crystals;
    In the precipitation, the formazin turbidity (FTU) is maintained at 45 FTU/min or less for 70% or more of the period from 1,000 to 10,000, Form II reduced coenzyme Q10 A method for producing crystals or crystalline solids thereof.
  2.  前記期間における混合液の温度が30~43℃である、請求項1に記載の製造方法。 The production method according to claim 1, wherein the temperature of the mixed liquid during the period is 30 to 43°C.
  3.  前記析出において、ホルマジン濁度(FTU)が1,000から10,000になるまでの期間の70%以上の時間、FTU変化率を0FTU/min超に維持する、請求項1又は2に記載の製造方法。 3. The method according to claim 1 or 2, wherein in the precipitation, the FTU change rate is maintained above 0 FTU/min for 70% or more of the time from 1,000 to 10,000 formazin turbidity (FTU). Production method.
  4.  前記アルコールが、炭素数1~5の1価のアルコールである、請求項1~3のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 3, wherein the alcohol is a monohydric alcohol having 1 to 5 carbon atoms.
  5.  前記炭素数1~5の1価のアルコールが、エタノールである、請求項4に記載の製造方法。 The production method according to claim 4, wherein the monohydric alcohol having 1 to 5 carbon atoms is ethanol.
  6.  前記アルコールが、水とアルコールとの総量に対して、95重量%以上のアルコールである、請求項1~5のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 5, wherein the alcohol is 95% by weight or more of the total amount of water and alcohol.
PCT/JP2022/009360 2021-03-26 2022-03-04 Method for producing reduced coenzyme q10 crystals of form ii or crystalline solid thereof WO2022202213A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023508901A JPWO2022202213A1 (en) 2021-03-26 2022-03-04

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021052888 2021-03-26
JP2021-052888 2021-03-26

Publications (1)

Publication Number Publication Date
WO2022202213A1 true WO2022202213A1 (en) 2022-09-29

Family

ID=83396955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009360 WO2022202213A1 (en) 2021-03-26 2022-03-04 Method for producing reduced coenzyme q10 crystals of form ii or crystalline solid thereof

Country Status (2)

Country Link
JP (1) JPWO2022202213A1 (en)
WO (1) WO2022202213A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012176842A1 (en) * 2011-06-24 2012-12-27 株式会社カネカ Reduced coenzyme q10 crystal having excellent stability
WO2020045571A1 (en) * 2018-08-30 2020-03-05 株式会社カネカ Production method for crystal of reduced coenzyme q10 having excellent stability
WO2020067275A1 (en) * 2018-09-28 2020-04-02 株式会社カネカ Method for producing reduced coenzyme q10 crystal having excellent stability
WO2021161807A1 (en) * 2020-02-12 2021-08-19 株式会社カネカ Method for producing reduced coenzyme q10 form ii crystals

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012176842A1 (en) * 2011-06-24 2012-12-27 株式会社カネカ Reduced coenzyme q10 crystal having excellent stability
WO2020045571A1 (en) * 2018-08-30 2020-03-05 株式会社カネカ Production method for crystal of reduced coenzyme q10 having excellent stability
WO2020067275A1 (en) * 2018-09-28 2020-04-02 株式会社カネカ Method for producing reduced coenzyme q10 crystal having excellent stability
WO2021161807A1 (en) * 2020-02-12 2021-08-19 株式会社カネカ Method for producing reduced coenzyme q10 form ii crystals

Also Published As

Publication number Publication date
JPWO2022202213A1 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
WO2021161807A1 (en) Method for producing reduced coenzyme q10 form ii crystals
WO2011007633A1 (en) Crystals of pyrroloquinolinequinone sodium salts
CN107406455B (en) 3, 5-disubstituted phenylalkynyl compound crystal
EP2964622B1 (en) Novel abexinostat salt, associated crystalline form, preparation method thereof and the pharmaceutical compositions containing same
JP7330987B2 (en) Method for producing reduced coenzyme Q10 crystals with excellent stability
JP2014501265A (en) Crystal form of ertapenem sodium and process for its preparation
JP3796763B2 (en) Crystalline form 2,2-bis (3,5-dibromo-4-dibromopropoxyphenyl) propane and process for producing the same
EP1225174B2 (en) Anhydrous mirtazapine crystals and process for the production thereof
WO2022202213A1 (en) Method for producing reduced coenzyme q10 crystals of form ii or crystalline solid thereof
WO2022202214A1 (en) Production method for reduced coenzyme q10 form-ii type crystal or crystalline solid thereof
WO2022202215A1 (en) Method for producing form-ii type reduced coenzyme q10 crystal or crystalline solid of same, and crystallizing apparatus
JP5595820B2 (en) Method for producing candesartan cilexetil
EP4317163A1 (en) Method for preparing biotin, l-lysine salt of biotin, and method for preparing same
JP6748329B1 (en) Crystal form of sofupyronium bromide and method for producing the same
US8232389B2 (en) Method for crystallization of azetidinonecarboxylic acid
JP2013227273A (en) Purification method for 4&#39;-[[2-n-propyl-4-methyl-6-(1-methylbenzimidazole-2-yl)-benzimidazole-1-yl]-methyl]-biphenyl-2-carboxylic acid
TWI768595B (en) An efficient crystallization process for preparing ultrapure treprostinil and crystal prepared therefrom
CA2916380A1 (en) A novel salt of 3-[(3-{[4-(4-morpholinylmethyl)-1h-pyrrol-2-yl]methylene-2-oxo-2,3-dihydro-1h-indol-5-yl)methyl]-1,3-thiazolidine-2,4-dione, its preparation and the formulations containing it
JP2016065007A (en) Method for producing olmesartan medoxomil
JP7068411B2 (en) Hexadecyltreprostinyl crystal and its manufacturing method
KR102650450B1 (en) Cyclic-di-AMP sodium salt crystals
WO2019155922A1 (en) Method for producing azilsartan a-form crystal
JP2016150917A (en) Method for producing crystal of valsartan
CN115028525A (en) Oxidized coenzyme Q10 crystal and crystallization method thereof
JP2014034521A (en) Method for producing crystal of mitiglinide calcium hydrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775009

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023508901

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775009

Country of ref document: EP

Kind code of ref document: A1