WO2022202097A1 - Image formation device - Google Patents

Image formation device Download PDF

Info

Publication number
WO2022202097A1
WO2022202097A1 PCT/JP2022/007858 JP2022007858W WO2022202097A1 WO 2022202097 A1 WO2022202097 A1 WO 2022202097A1 JP 2022007858 W JP2022007858 W JP 2022007858W WO 2022202097 A1 WO2022202097 A1 WO 2022202097A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
conveying
reference voltage
unit
control circuit
Prior art date
Application number
PCT/JP2022/007858
Other languages
French (fr)
Japanese (ja)
Inventor
浩太郎 小川
Original Assignee
京セラドキュメントソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラドキュメントソリューションズ株式会社 filed Critical 京セラドキュメントソリューションズ株式会社
Publication of WO2022202097A1 publication Critical patent/WO2022202097A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H7/00Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles
    • B65H7/02Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles by feelers or detectors
    • B65H7/14Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles by feelers or detectors by photoelectric feelers or detectors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G21/00Arrangements not provided for by groups G03G13/00 - G03G19/00, e.g. cleaning, elimination of residual charge
    • G03G21/14Electronic sequencing control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof

Definitions

  • the present invention relates to an image forming apparatus that conveys a sheet to be printed and reads the conveyed sheet.
  • An image forming apparatus may be provided with an image sensor and a lamp for reading the conveyed sheet.
  • the image sensor performs reading based on the light emitted from the lamp and reflected from the sheet.
  • a translucent sheet such as an OHP sheet is conveyed by the image forming apparatus. Since a translucent sheet transmits light, the image sensor may not be able to read the sheet properly. As a result, printing errors may occur.
  • Japanese Patent Application Laid-Open No. 2002-200000 describes an example of an image forming apparatus that determines whether a sheet is a translucent sheet or plain paper in order to prevent printing errors.
  • Japanese Patent Application Laid-Open No. 2002-200000 discloses a first detection unit provided in a recording material conveying path for detecting a conveyed recording material of a first paper type, and a second detection unit provided on the downstream side in the conveying direction for detecting a recording material of a second paper type different from the first paper type; According to the detection result, the paper type of the recording material to be conveyed and whether or not there is an abnormality in the conveyance of the recording material are determined. and the recording material of the second paper type is the other of the transparent recording material and the opaque recording material.
  • a lamp and an image sensor may be installed in the sheet conveying path of the image forming apparatus.
  • the lamp irradiates the sheet being conveyed with light.
  • the image sensor reads the conveyed sheet.
  • the image sensor performs reading based on the light reflected by the sheet.
  • the edge (peripheral edge) of the sheet can be detected from the image data obtained by reading the image sensor. For example, based on the image data, it is possible to recognize the arrival of the leading edge of the sheet to the image sensor.
  • the image forming apparatus may print on a sheet such as an OHP sheet that allows the light of the lamp to pass through well. Therefore, the edge of the sheet may not be read. In other words, image data may not be generated such that the edges of the sheet are known. When conveying a highly translucent sheet, there is a problem that the edge of the sheet may not be detected based on the image data read by the image sensor.
  • Patent Document 1 uses three sensors, a registration sensor, a line sensor, and a transport sensor, to determine whether the sheet is a translucent sheet or plain paper. A large number of sensors is required. Higher manufacturing costs. Furthermore, Patent Document 1 describes a lateral edge detection mode as a mode for detecting the edge of a sheet. However, there is a description of lateral edge detection only for plain paper. Regarding the OHP sheet, there is no description of lateral edge detection. Japanese Patent Application Laid-Open No. 2002-200002 does not describe detecting the edge of a sheet with high translucency using only the image data of the image sensor.
  • the present invention uses a line sensor to generate image data so that the position of the edge of the sheet can be detected when reading the transported translucent film.
  • An image forming apparatus includes a sheet conveying section, an image forming section, a sheet reading unit, a binarization circuit, and a control circuit.
  • the sheet conveying section conveys the sheet.
  • the image forming section forms an image on a conveying sheet.
  • the sheet reading unit includes lamps and line sensors. The lamp irradiates the conveying sheet with light.
  • the line sensor has a light receiving element, reads the conveying sheet based on the light of the lamp, and outputs an analog image signal.
  • the binarization circuit receives the reference voltage and the analog image signal. Based on the reference voltage and the analog image signal, the binarization circuit binarizes the analog image signal.
  • the control circuit Based on the conveying sheet image data obtained by binarization, the control circuit obtains the position of the edge of the conveying sheet.
  • the sheet reading unit is provided upstream of the image forming unit in the sheet conveying direction.
  • the control circuit inputs a first reference voltage as the reference voltage to the binarization circuit.
  • the first reference voltage is a level at which the edge of the translucent film is read.
  • image data can be generated so that the position of the edge of the sheet can be detected when reading the transported translucent film using the line sensor. Sheet arrival and edge position can be accurately detected.
  • FIG. 1 is a diagram illustrating an example of a multifunction device according to an embodiment
  • FIG. 1 is a diagram illustrating an example of a multifunction device according to an embodiment
  • FIG. 3 is a diagram showing an example of an image forming section according to the embodiment
  • FIG. 1 is a diagram illustrating an example of a multifunction device according to an embodiment
  • FIG. 1 is a diagram showing an example of a sheet reading unit according to an embodiment
  • FIG. FIG. 4 is a diagram showing an example of a registrationless unit according to the embodiment
  • FIG. 4 is a diagram showing an example of a registrationless unit according to the embodiment
  • 1 is a diagram illustrating an example of a multifunction device according to an embodiment
  • FIG. It is a figure explaining an example of the signal processing part which concerns on embodiment. It is a figure explaining an example of the signal processing part which concerns on embodiment.
  • FIG. 10 is a diagram illustrating an example of preparation processing of the sheet reading unit according to the embodiment;
  • FIG. 1 An image forming apparatus according to an embodiment will be described below with reference to FIGS. 1 to 11.
  • FIG. 1 the image forming apparatus will be described by taking the multifunction machine 100 as an example.
  • the MFP 100 can print and transmit based on image data.
  • the image forming apparatus is not limited to the MFP 100, and may be, for example, a printer.
  • Each element such as configuration and arrangement described in the description of the present embodiment does not limit the scope of the invention and is merely an example of description.
  • FIG. 1 and 2 are diagrams showing an example of a multifunction machine 100 according to an embodiment.
  • FIG. 3 is a diagram showing an example of the image forming section 5c according to the embodiment.
  • the MFP 100 includes a control section 1, a storage section 2, an image reading section 3, an operation panel 4, and a printer section 5.
  • the control unit 1 controls the operation of the MFP 100 .
  • the control unit 1 controls the operation of each unit of the multifunction machine 100 in a job (copying or transmission).
  • the control unit 1 includes a main control circuit 11 , an image data generation circuit 12 , an image processing circuit 13 and a communication circuit 14 .
  • the main control circuit 11 is a CPU.
  • the main control circuit 11 performs job-related processing and calculations.
  • the image data generation circuit 12 includes an A/D conversion circuit.
  • the image data generation circuit 12 processes the analog image signal output by the image reading section 3 after reading the document to generate document image data.
  • the image processing circuit 13 is an integrated circuit (for example, ASIC) for image processing.
  • the image processing circuit 13 performs image processing of document image data.
  • the communication circuit 14 includes a communication control circuit and a communication memory.
  • the communication memory stores communication software.
  • the communication control circuit controls communication based on communication software.
  • Communication circuitry 14 communicates with computer 200 .
  • computer 200 is a PC or server.
  • Communication circuit 14 receives print data from computer 200 .
  • the control unit 1 causes the printer unit 5 to print based on the received print data (print job). Further, the operation panel 4 accepts destination settings.
  • the control unit 1 causes the communication circuit 14 to transmit the image data based on the reading of the document to the set destination (scan transmission).
  • the storage unit 2 includes RAM, ROM, and storage.
  • the storage is one or both of HDD and SSD.
  • the control unit 1 controls each unit.
  • the image reading unit 3 includes a light source and an image sensor. The image reading section 3 reads an original.
  • the operation panel 4 includes a display panel 41, a touch panel 42, and hard keys 43.
  • the operation panel 4 accepts user settings.
  • the control unit 1 causes the display panel 41 to display a message, a screen for setting, and an image for operation.
  • the operation images are buttons, keys, and tabs.
  • Hard keys 43 include a start key and numeric keys.
  • the touch panel 42 and hard keys 43 accept user's setting operations (job-related operations). For example, it accepts the type of job to be executed and the setting of job setting values. Based on the output of the operation panel 4, the control section 1 recognizes the setting contents.
  • the printer section 5 includes an engine control section 50, a sheet supply section 5a, a sheet conveying section 5b, an image forming section 5c, an intermediate transfer section 5d, and a fixing section 5e.
  • the engine control section 50 controls the operations of the sheet feeding section 5a, the sheet conveying section 5b, the image forming section 5c, the intermediate transfer section 5d, and the fixing section 5e.
  • the sheet supply unit 5a includes a sheet cassette 51 that stores the set sheets, and a pickup roller 52 that feeds the sheets.
  • the engine control unit 50 causes the sheet supply unit 5a to supply sheets.
  • the sheet conveying section 5b includes a motor, a pair of conveying rollers 53, and a conveying guide 54.
  • FIG. A space defined by the transport guide 54 is a path (sheet transport path 54a, space) for transporting the sheet.
  • the engine control section 50 causes the sheet conveying section 5b to convey the sheet fed from the sheet feeding section 5a.
  • a sheet used for printing passes through the sheet conveying path 54a.
  • the image forming unit 5c forms an image (toner image). As shown in FIGS. 2 and 3, the image forming section 5c includes image forming units for four colors and an exposure device .
  • the MFP 100 includes an image forming unit 55B for forming a black image, an image forming unit 55Y for forming a yellow image, an image forming unit 55C for forming a cyan image, and an image forming unit 55M for forming a magenta image. including.
  • the image forming units 55B to 55M form different colors of toner images. However, the configuration of each image forming unit 55B to 55M is basically the same. Therefore, in the following description, the symbols Bk, Y, C, and M representing colors will be omitted unless otherwise specified.
  • Each image forming unit includes a photosensitive drum 57, a charging device 58 (charging roller), and a developing device 59 (developing roller).
  • the engine control unit 50 rotates a drum motor (not shown) to rotate the photosensitive drum 57 .
  • the engine control unit 50 causes the charging device 58 to charge the photosensitive drum 57 .
  • the engine control unit 50 causes the exposure device 56 to expose the photosensitive drum 57 based on the image data.
  • the developing device 59 contains developer including toner.
  • the engine control unit 50 causes the developing device 59 to develop the electrostatic latent image on the photosensitive drum 57 with toner.
  • the intermediate transfer portion 5d includes an intermediate transfer belt 510, a secondary transfer roller 511, a driving roller 512, primary transfer rollers 513B, 513Y, 513C and 513M, and driven rollers 514 and 515.
  • the axial directions of the rollers of the intermediate transfer portion 5d are parallel.
  • the intermediate transfer belt 510 is endless.
  • the intermediate transfer belt 510 is looped around each roller of the intermediate transfer portion 5d.
  • the intermediate transfer portion 5 d (intermediate transfer belt 510 ) receives the primary transfer of the toner image from the photosensitive drum 57 . Further, the intermediate transfer portion 5d secondarily transfers the toner image onto the sheet.
  • the fixing section 5e includes a heater 516 and fixing rotary members 517 and 518.
  • the engine control unit 50 causes the fixing rotary members 517 and 518 to heat and press the sheet onto which the toner image has been transferred.
  • the engine control unit 50 causes the fixing unit 5e to fix the toner image.
  • the sheet conveying portion 5b discharges the sheet after fixing to the outside of the machine (discharge tray 519).
  • FIG. 4 is a diagram showing an example of the multifunction machine 100 according to the embodiment.
  • FIG. 5 is a diagram showing an example of the sheet reading unit 66 according to the embodiment.
  • 6 and 7 are diagrams showing an example of the registrationless unit 7 according to the embodiment.
  • FIG. 8 is a diagram showing an example of the multifunction machine 100 according to the embodiment.
  • the MFP 100 includes a sheet reading unit 66 and a registrationless unit 7.
  • the sheet reading unit 66 and the registrationless unit 7 are provided in a sheet conveying path (sheet conveying path 54a).
  • the sheet reading unit 66 reads the conveyed sheet.
  • the conveyed sheet will be referred to as a conveyed sheet.
  • the sheet reading unit 66 is provided upstream of the image forming section 5c (secondary transfer roller 511) in the sheet conveying direction (see FIG. 2).
  • a transparent plate 6b is attached on one surface of the sheet reading unit 66.
  • the transparent plate 6b is a glass plate or a transparent resin plate.
  • a lamp 6c, a lens 6d, and a line sensor 8 are accommodated in a sealed space formed by the housing 6a and the transparent plate 6b.
  • the sheet reading unit 66 is a CIS scanner unit.
  • the engine control unit 50 includes an engine control circuit 50a, an engine memory 50b, and a unit control circuit 9.
  • the engine memory 50b stores programs and data for print control.
  • the engine control circuit 50a and the unit control circuit 9 are CPUs.
  • the unit control circuit 9 receives instructions from the engine control circuit 50a and performs predetermined processing.
  • the unit control circuit 9 controls operations of the sheet reading unit 66 and the registrationless unit 7 .
  • the engine control circuit 50a may control the operation of either one of the sheet reading unit 66 and the registrationless unit 7, or both.
  • the main control circuit 11 may control the operation of either one of the sheet reading unit 66 and the registrationless unit 7, or both.
  • the line sensor 8 includes a plurality of light receiving elements. Pixels are arranged in the main scanning direction. Light emitted from the lamp 6c and reflected by the document enters each pixel of the line sensor 8 through the lens 6d. When conveying a sheet (during a print job), the unit control circuit 9 causes the line sensor 8 to read. The reading width of the line sensor 8 is narrower than that of a standard printable sheet having a maximum width in the main scanning direction.
  • the line sensor 8 may be divided into multiple blocks. In other words, the line sensor 8 may comprise multiple split line sensors 80 .
  • FIG. 4 shows a line sensor 8 with three blocks (divided line sensor 80). A combination of three read sensors can be used as the line sensor 8 . Note that the number of divided line sensors 80 is not limited to three.
  • Each divided line sensor 80 includes a plurality of light receiving elements. For convenience, they are referred to as a first divided line sensor 81, a second divided line sensor 82, and a third divided line sensor 83 in order from one side in the main scanning direction (the right side in FIG. 4, the fulcrum shaft 76 side). Each divided line sensor 80 is arranged in a row (one row). As a result, the light receiving elements (pixels) of the divided line sensors 80 are arranged along the main scanning direction.
  • the sheet is conveyed by the central sheet feeding method.
  • the sheet cassette 51 regulates the position of the sheet so that the center of the sheet conveying path 54a in the main scanning direction coincides with the center of the sheet to be conveyed in the main scanning direction.
  • the sheet conveying portion 5b conveys the sheet so that the center of the sheet conveying path 54a in the main scanning direction coincides with the center of the conveyed sheet in the main scanning direction.
  • a dashed line in FIG. 4 indicates the center of the sheet and the sheet conveying path 54a in the main scanning direction.
  • the third split line sensor 83 is provided at a position for reading the center in the main scanning direction.
  • the first divided line sensor 81 is provided at a position for reading one edge in the main scanning direction.
  • the second segmented line sensor 82 is arranged between the first segmented line sensor 81 and the third segmented line sensor 83 .
  • the unit control circuit 9 inputs the trigger signal TR to each divided line sensor 80 .
  • Each split line sensor 80 includes a charge transfer circuit (shift register, transfer CCD). The charge stored in each pixel is transferred to the charge transfer circuit in accordance with the trigger signal TR. A charge transfer circuit converts the charge into a voltage.
  • the cycle of the trigger signal TR is the cycle of one scan.
  • the multi-function device 100 includes a clock signal generation circuit 90.
  • a clock signal generation circuit 90 generates a read clock signal CLK.
  • the clock signal generation circuit 90 inputs the read clock signal CLK to each divided line sensor 80 .
  • Each divided line sensor 80 outputs an analog image signal A1 for one pixel per read clock signal CLK.
  • the read clock signal CLK has a frequency that allows one divided line sensor 80 to send out all the pixel analog image signals A1 during one period of the trigger signal TR.
  • a registrationless unit 7 is provided at a position where a pair of registration rollers is provided in a conventional image forming apparatus (see FIG. 2).
  • a conventional registration roller pair stops when the sheet reaches the leading edge.
  • the skew of the sheet is corrected by abutting the sheet against the stopped pair of registration rollers.
  • the registrationless unit 7 conveys the sheet downstream without stopping the sheet.
  • the registrationless unit 7 can correct the skew.
  • the registrationless unit 7 is provided upstream in the sheet conveying direction from the image forming section 5c (secondary transfer nip 5n, secondary transfer roller 511) (see FIG. 2).
  • the registrationless unit 7 is provided downstream of the sheet reading unit 66 in the sheet conveying direction.
  • FIGS. 6 and 7 show an example of the registrationless unit 7.
  • the registrationless unit 7 includes a case 71 and a moving plate 7a. A space is provided between the case 71 and the moving plate 7a.
  • the case 71 is box-shaped.
  • the moving plate 7a is plate-shaped. Both the case 71 and the moving plate 7a have the main scanning direction as their longitudinal direction.
  • the plane of the moving plate 7a and the bottom surface of the case 71 (the surface on the side of the moving plate 7a) are parallel.
  • FIG. 6 is an example of a diagram of the registrationless unit 7 viewed from the upstream side in the sheet conveying direction in FIG.
  • FIG. 7 is a diagram showing an example of the surface of the case 71 facing the moving plate 7a (illustration of the moving plate 7a is omitted).
  • the case 71 accommodates the resistless roller pair 72 and the resistless motor 73 .
  • Registrationless roller pair 72 includes a driving roller 74 and a driven roller 75 .
  • the rotation axis of the drive roller 74 and the rotation axis of the driven roller 75 are parallel.
  • the peripheral surface of the driving roller 74 and the peripheral surface of the driven roller 75 are in contact with each other.
  • the sheet is conveyed from bottom to top.
  • a conveying sheet enters the nip between the drive roller 74 and the driven roller 75 .
  • Drive of the registrationless motor 73 is transmitted to the drive roller 74 by a plurality of gears.
  • the registrationless motor 73 is rotated, the registrationless roller pair 72 is rotated.
  • the conveyed sheet that has entered passes through the nip of the registrationless unit 7 .
  • a fulcrum shaft 76 (fulcrum, rotating shaft) is provided on the moving plate 7a.
  • One end of the fulcrum shaft 76 is fixed to the moving plate 7a.
  • the fulcrum shaft 76 stands perpendicular to the plane of the moving plate 7a.
  • the fulcrum shaft 76 is inserted into one end of the case 71 in the main scanning direction (the direction perpendicular to the sheet conveying direction).
  • the fulcrum shaft 76 allows the other end of the case 71 (a part of the registrationless unit 7) to swing.
  • the case 71 (part of the registrationless unit 7) can be rotated. That is, as indicated by the solid line arrow in FIG. 4, the other end of the case 71 can be swung downstream or upstream in the sheet conveying direction.
  • the registrationless unit 7 includes a skew correction mechanism 7b and a misregistration correction mechanism 7c.
  • the skew correcting mechanism 7b moves the other side (moving side) of the case 71 in order to correct the skew of the conveyed sheet.
  • the skew correction mechanism 7b includes a correction motor 7d, a correction belt 7e, and a correction tooth surface member 7f.
  • the correction motor 7d is a stepping motor.
  • the correction motor 7d is attached to the moving plate 7a.
  • the correction motor 7d can rotate both forward and backward.
  • a first correction gear 7g is provided on the shaft of the correction motor 7d.
  • a corrective tooth surface member 7f (rack teeth) is attached to the surface of the case 71 facing the moving plate 7a.
  • the teeth of the corrective tooth surface member 7f are arranged along the sheet conveying direction.
  • the second correction gear 7h meshes with the correction tooth surface member 7f.
  • the correction belt 7e is wound around the first correction gear 7g and the second correction gear 7h.
  • the other side of the registrationless unit 7 (case 71, registrationless roller pair 72) can be moved in a direction (sheet conveying direction) perpendicular to the main scanning direction.
  • the amount of movement of the other end of the registrationless unit 7 (case 71) by the skew correction mechanism 7b is about several mm to 5 mm upstream in the transport direction and about 5 mm downstream, centering on the first home position (first reference position). It may be several mm to 5 mm on the side. Details of the first home position will be described later.
  • the positional deviation correction mechanism 7c includes a deviation correction motor 7i.
  • the deviation correction motor 7i is a stepping motor.
  • the displacement correction motor 7i is attached to the moving plate 7a.
  • the deviation correction motor 7i can rotate both forward and backward.
  • a shift correction gear 7j is provided on the shaft of the shift correction motor 7i.
  • the shift correction gear 7j meshes with a correction tooth surface member 7k (rack teeth) formed on the edge of the moving plate 7a.
  • the registrationless unit 7 moves in the main scanning direction.
  • the displacement amount of the conveying sheet in the main scanning direction is about several millimeters at maximum.
  • the movement range of the registrationless unit 7 in the main scanning direction by the positional deviation correction mechanism 7c is about several mm to 5 mm on one side in the main scanning direction and about 5 mm on the other side around the second home position (second reference position). It may be several mm to 5 mm.
  • the positional deviation correction mechanism 7c can move the registrationless unit 7 by 2 mm to each of the one side and the other side around the second home position.
  • the first home position is the position (angle) of the case 71 at which the axial direction of the registrationless roller pair 72 and the main scanning direction are parallel.
  • the conveyed sheet is fed in a direction parallel to the sheet conveying direction and perpendicular to the main scanning direction.
  • a first home sensor 9a is provided.
  • the first home sensor 9a is a sensor for adjusting the position of the case 71 (registrationless unit 7) in the rotational direction to the first home position.
  • a transmissive optical sensor can be used as the first home sensor 9a.
  • the first home sensor 9a includes a light emitting element and a light receiving element. A gap is provided between the light emitting surface of the light emitting element and the light receiving surface of the light receiving element. The output level (output voltage value) of the light receiving element changes depending on the amount of light received from the light emitting element.
  • the registrationless unit 7 (case 71) is provided with a detection projection 71a. 6 and 7 show an example in which a detection protrusion 71a is provided at the end of the case 71 on the other side (moving side) in the main scanning direction.
  • a first home sensor 9a is provided at a position facing the detection protrusion 71a.
  • the detection protrusion 71a passes through the gap of the first home sensor 9a.
  • the detection protrusion 71a that has entered the gap blocks the optical path from the light emitting element to the light receiving element.
  • the output of the first home sensor 9a (light receiving element) is input to the unit control circuit 9.
  • the unit control circuit 9 recognizes the output level of the first home sensor 9a (light receiving element).
  • the unit control circuit 9 causes the registrationless unit 7 (case 71) to move to the first position. 1 home position.
  • the registrationless unit 7 is installed so that the sheet can be removed from the bottom to the top. Therefore, when the correction motor 7d is not excited, the case 71 is lowered by its own weight on the other side in the main scanning direction.
  • the unit control circuit 9 excites the correction motor 7d. Thereby, the position of the registrationless unit 7 (case 71) is maintained. For example, when the MFP 100 is activated by turning on the main power supply, or when the power saving mode is canceled and the active mode (normal mode) is restored, the unit control circuit 9 causes the registrationless unit 7 (case 71) to move to the first home state. position.
  • the unit control circuit 9 when adjusting to the first home position, the unit control circuit 9 reversely rotates the correction motor 7d from the hanging state of the case 71 to lift the case 71 up.
  • the unit control circuit 9 stops the rotation of the correction motor 7d, and then rotates it forward. After forward rotation of the correction motor 7d for a predetermined number of pulses, the unit control circuit 9 stops the correction motor 7d.
  • the registrationless unit 7 (case 71) becomes the first home position.
  • the registrationless unit 7 can also be moved in the main scanning direction. Therefore, the second home position is also predetermined.
  • the second home position is the home position of the moving plate 7a (registrationless unit 7) in the main scanning direction.
  • the center position of the moving range of the registrationless unit 7 (moving plate 7a) in the main scanning direction can be set as the second home position.
  • the second home position is a position where the registrationless unit 7 (moving plate 7a) can be moved to one side in the main scanning direction and also to the other side.
  • a second home sensor 9b is provided to set the registrationless unit 7 (moving plate 7a) to the second home position.
  • a second home sensor 9b can be provided at the other end of the moving plate 7a in the main scanning direction (it may be at one end).
  • a transmissive optical sensor can be used as the second home sensor 9b.
  • the second home sensor 9b includes a light emitting element and a light receiving element.
  • a gap is provided between the light emitting surface of the light emitting element and the light receiving surface of the light receiving element.
  • the output level (output voltage value) of the light receiving element changes depending on the amount of light received from the light emitting element.
  • the second home sensor 9b is provided at a position where the other end of the moving plate 7a enters the gap when the registrationless unit 7 moves to the othermost side.
  • the second home sensor 9b is a sensor for detecting that the registrationless unit 7 (moving plate 7a) has moved to the othermost side in the main scanning direction.
  • the output of the second home sensor 9b (light receiving element) is input to the unit control circuit 9.
  • the unit control circuit 9 recognizes the output level of the second home sensor 9b (light receiving element).
  • the unit control circuit 9 operates the displacement correction motor 7i to move the moving plate 7a to the other side in the main scanning direction.
  • the unit control circuit 9 moves the registrationless unit 7 (moving plate 7a) to the main position by a predetermined distance. It is moved to one side in the main scanning direction toward the central position of the moving range in the scanning direction.
  • FIG. 9 and 10 are diagrams illustrating an example of the signal processing unit 91 according to the embodiment.
  • the multi-function device 100 includes a signal processing section 91.
  • the signal processing unit 91 processes the analog image signal A1 output by the line sensor 8 (each divided line sensor 80). Specifically, the signal processing section 91 processes and converts the analog image signal A1 output from each division line sensor 80 to generate the conveying sheet image data B1. The value of each pixel of the conveyed sheet image data B1 indicates whether or not the conveyed sheet facing the sheet reading unit 6 has been read. Also, the signal processing unit 91 counts each pixel of the image data for each line.
  • the signal processing unit 91 includes a binarization circuit 92 and a count circuit 93 .
  • a binarization circuit 92 receives the reference voltage and the analog image signal A1. Based on the reference voltage and the analog image signal A1, the binarization circuit 92 binarizes the analog image signal A1.
  • the conveyed sheet image data B1 is data obtained by converting each pixel analog image signal A1 into a binary signal by a binarization circuit.
  • a binarization circuit 92 generates conveying sheet image data B1.
  • the binarization circuit 92 is a comparator (comparison circuit).
  • the analog image signal A1 is input to the plus input terminal of the comparator.
  • a reference voltage is input to the negative input terminal of the comparator.
  • each signal processing unit 91 is provided for each divided line sensor 80 .
  • FIG. 10 shows one of a plurality of signal processing units. The circuit configuration of each signal processing unit 91 may be the same. Each pixel analog image signal A1 of the first divided line sensor 81 is input to the first binarization circuit 92 . Each pixel analog image signal A1 of the second split line sensor 82 is input to the second binarization circuit 92 . Each pixel analog image signal A1 of the third divided line sensor 83 is input to the third binarization circuit 92. As shown in FIG. As a result, conveyed sheet image data B1 is generated for each divided line sensor 80 . In the MFP 100 according to this description, three signal processing units 91 are provided.
  • the voltage value of the analog image signal A1 of the light receiving element (pixel) that read the conveying sheet increases.
  • the voltage value of the analog image signal A1 becomes small in the portion where there is no conveying sheet or the reflected light of the received sheet is small.
  • the voltage value of the pixel analog image signal A1 that has read the conveying sheet is higher than the voltage value of the pixel analog image signal A1 that has not read the conveying sheet.
  • the binarization circuit 92 When the voltage value of the analog image signal A1 is higher than the reference voltage, the binarization circuit 92 (binarization circuit) outputs first level conveyed sheet image data B1. The first level indicates that the sheet has been read. When the voltage value of the analog image signal A1 is equal to or lower than the reference voltage, the binarization circuit 92 (binarization circuit) outputs conveyed sheet image data B1 of the second level. The second level indicates that the sheet has not been read.
  • the conveying sheet image data B1 is monochrome image data of 1 bit per pixel.
  • the signal processing section 91 also includes a reference voltage generation circuit 94.
  • the reference voltage generation circuit 94 includes a first resistor R1, a capacitor C, and a second resistor R2.
  • One end of the first resistor R1 is connected to the unit control circuit 9 .
  • the other end of the first resistor R1 is connected to one end of the capacitor C and one end of the second resistor R2.
  • the other end of capacitor C is connected to ground.
  • the other end of the second resistor R2 is connected to the negative input terminal of the binarization circuit 92.
  • the unit control circuit 9 inputs a PWM signal.
  • the voltage smoothed by the capacitor C is input to the negative input terminal of the binarization circuit 92 as a reference voltage.
  • the binarization circuit 92 (comparator) binarizes the analog image signal A1.
  • the binarization circuit 92 When the voltage value of the analog image signal A1 is higher than the reference voltage, the binarization circuit 92 outputs first level conveyed sheet image data B1. In this case, the first level is High level.
  • the analog image signal A1 of the light-receiving element that has received a large amount of reflected light from the paper becomes High level.
  • the binarization circuit 92 outputs conveyed sheet image data B1 of the second level. In this case, the second level is the Low level.
  • the analog image signal A1 of the light-receiving element that has not received the reflected light from the paper becomes Low level.
  • each binarization circuit 92 The output of each binarization circuit 92 is input to the unit control circuit 9.
  • Binary image data (monochrome image data, conveying sheet image data B1) generated by each binarization circuit 92 is input to the unit control circuit 9 .
  • the unit control circuit 9 can recognize which pixel of each divided line sensor 80 is at the first level and which pixel of each divided line sensor 80 is at the second level.
  • the unit control circuit 9 determines the boundary between the pixels of the first level and the pixels of the second level as the position of the edge. Further, based on the conveyed sheet image data B1, for example, the unit control circuit 9 can also recognize (determine) the tilt direction and tilt angle of the conveyed sheet (details will be described later).
  • the conveyed sheet image data B1 is input to the count circuit 93 .
  • the count circuit 93 is a circuit (logic filter circuit) using a plurality of logic circuits.
  • the unit control circuit 9 inputs a signal (threshold setting signal E1) indicating a threshold.
  • a threshold setting signal E1 is a signal for setting a threshold.
  • the count circuit 93 outputs the detection result signal C1.
  • the count circuit 93 counts the number of continuous first level pixels (continuous number) during one scanning period.
  • the count circuit 93 sets the detection result signal C1 to a level indicating presence of a sheet (for example, High level).
  • the count circuit 93 keeps the detection result signal C1 at a level indicating no sheet (for example, Low level). Note that the count circuit 93 may reset the count value when a pixel of the second level appears during one scanning period.
  • the detection result signal C1 is input to the unit control circuit 9.
  • the unit control circuit 9 monitors the level of the detection result signal C1. For example, the unit control circuit 9 determines (recognizes) that the leading edge of the sheet has reached the line sensor 8 when the level of the detection result signal C1 reaches a level indicating that there is a sheet.
  • a trigger signal TR is also input to the count circuit 93 . When the trigger signal TR rises or falls, the count circuit 93 resets the count value to zero.
  • the noise may temporarily increase the analog image signal A1.
  • the unit control circuit 9 determines that the sheet has arrived. Don't misjudge.
  • the signal processing section 91 (counting circuit 93 ) is provided for each divided line sensor 80 .
  • the unit control circuit 9 sets the level of the detection result signal C1 of another count circuit 93 to the level indicating that there is a sheet. measure the time until For example, the unit control circuit 9 monitors the detection result signals C1 of the two count circuits 93 connected to the split line sensors 80 adjacent in the main scanning direction.
  • this time measured by the unit control circuit 9 is referred to as measurement time.
  • the unit control circuit 9 determines that the tilt angle is zero when a plurality of detection result signals C1 simultaneously reach a level indicating that there is a sheet. (2) The unit control circuit 9 determines that the tilt angle is not zero when the two detection result signals C1 reach a level indicating that there is a sheet at different times.
  • the unit control circuit 9 When the detection result signal C1 reaches a level indicating that there is a sheet, the unit control circuit 9 recognizes that the corner of the conveyed sheet on the other side in the main scanning direction is tilted in a direction protruding downstream.
  • a is the conveying distance of the sheet during the measurement time. For example, the unit control circuit 9 multiplies the measured time by the sheet conveying speed per unit time to obtain a.
  • b is the distance between the two split line sensors 80 in the main scanning direction.
  • the length of the divided line sensor 801 may be set to b.
  • the distance between the center points in the main scanning direction of the two divided line sensors 80 used to measure the measurement time may be set to b.
  • the unit control circuit 9 controls the registrationless unit 7 (case 71) before the leading edge of the conveyed sheet reaches. is moved to the upstream side in the sheet conveying direction.
  • the correction position is the position where the registrationless unit 7 is moved (rotated) by the same angle as the tilt angle from the first home position.
  • the unit control circuit 9 controls the other side of the registrationless unit 7 (case 71) before the leading edge of the conveyed sheet reaches.
  • the end portion is moved downstream in the sheet conveying direction.
  • the correction position is the position where the registrationless unit 7 is moved (rotated) by the same angle as the tilt angle from the first home position.
  • the unit control circuit 9 moves (returns) the registrationless unit 7 (case 71) from the correction position to the first home position.
  • the unit control circuit 9 completes the movement to the first home position before the conveying sheet reaches the secondary transfer nip 5n. By returning to each home position, it is possible to correct the skew of the conveyed sheet while continuing to convey the sheet.
  • the storage unit 2 stores data (misalignment amount recognition data D1) defining the positions of pixels at the sheet edges when there is no misalignment in the main scanning direction for each sheet size (see FIG. 1).
  • the unit control circuit 9 obtains the position of the pixel at the end (most side) in the main scanning direction among the first level pixels in the conveying sheet image data B1 as the actual edge position.
  • the actual edge position is the position of the actual edge of the conveying sheet in the main scanning direction.
  • the actual edge position is the position of the low-density pixel (the pixel whose analog image signal A1 is equal to or lower than the reference voltage) at the edge of the conveying sheet.
  • the unit control circuit 9 recognizes in which direction and by how many pixels the actual edge position is shifted from the position defined by the shift amount recognition data D1.
  • the unit control circuit 9 can recognize the deviation direction (either one side or the other side in the main scanning direction). Also.
  • the unit control circuit 9 multiplies the number of pixels of deviation by the pitch of one pixel of the conveyed sheet image data B1 to obtain the amount of deviation in the main scanning direction.
  • the unit control circuit 9 moves the registrationless unit 7 (moving plate 7a) to the main scanning direction. Move to one side of the direction by the recognized displacement amount.
  • the unit control circuit 9 moves the registrationless unit 7 (moving plate 7a) in the main scanning direction. It is moved to the other side by the recognized deviation amount.
  • the unit control circuit 9 moves the registrationless unit 7 (case 71) from the correction position to the second home position.
  • the unit control circuit 9 completes the movement to the second home position before the conveying sheet reaches the secondary transfer nip 5n. By returning to the second home position, it is possible to correct the misalignment in the main scanning direction while continuing to convey the sheet.
  • FIG. 11 is a diagram showing an example of preparation processing of the sheet reading unit 6 according to the embodiment.
  • light-transmitting sheets include OHP sheets, silk screen sheets, and backlight films.
  • a translucent resin sheet that transmits light is hereinafter referred to as a translucent film.
  • Tilt and misalignment may not be properly corrected. Depending on the case, either one or both of the tilt and deviation may become strong.
  • the edge of the translucent film may be detected.
  • the reference voltage is reduced and the range (voltage range) for determining whether there is a sheet is widened, it becomes susceptible to noise. For example, there may be more false edge detections. As a result, inappropriate correction or correction may occur due to erroneous detection of noise.
  • the toner image is transferred to the sheet based on the detection of sheet arrival based on the line sensor 8 .
  • the transfer to the sheet is started after a predetermined time has passed since the detection result signal C1 reaches a level indicating that the sheet is present.
  • the predetermined time is the time obtained by dividing the distance from the line sensor 8 to the secondary transfer nip 5n by the conveying speed.
  • the conveyed sheet reading unit 6 also functions as a sensor for detecting arrival of the sheet. If an erroneous detection occurs, it may become difficult to adjust the transfer timing.
  • the unit control circuit 9 adjusts the magnitude of the reference voltage input to the binarization circuit 92 according to the type of conveyed sheet.
  • An example of adjustment of the magnitude of the reference voltage according to the type of conveying sheet will be described below.
  • the start in FIG. 5 is the time to start the print job.
  • the print job is, for example, a copy job or a print job.
  • the unit control circuit 9 determines whether or not the sheet used in the print job is a transparent film (step #1).
  • the operation panel 4 accepts selection (setting) of the sheet cassette 51 to be used in the print job. Further, the operation panel 4 accepts setting of sheets contained in the sheet cassette 51 to be used. For example, the operation panel 4 accepts setting of sheet type and size. Selectable sheet types include permeable film and paper. That is, the operation panel 4 accepts selection (setting) of the sheet type and size used in the print job. For example, when using a permeable film, the user selects the permeable film as the sheet to be used. When using paper (paper) rather than transmissive film, the user selects the paper. When selecting paper, the operation panel 4 also accepts selection of paper color. That is, the operation panel 4 accepts selection of whether to use a transparent film or paper, and, if paper is used, selection of the color of the paper.
  • the control section 1 Based on the output of the operation panel 4, the control section 1 recognizes the sheet cassette 51 used in the print job. Further, the control unit 1 recognizes the type and size of sheets used in the print job. The control section 1 notifies the unit control circuit 9 of the recognized sheet type, color, and size. At the time of notification using a transparent film, the unit control circuit 9 determines that the sheet used in the print job is a transparent film. Upon notification of the paper and its color, the unit control circuit 9 determines that the sheet used in the print job is paper, not transmissive film, and its color.
  • the unit control circuit 9 inputs the first reference voltage Vref1 as a reference voltage to the binarization circuit 92 (step #2). In other words, the unit control circuit 9 outputs a PWM signal with a duty ratio that makes the reference voltage equal to the first reference voltage Vref1.
  • the magnitude of the first reference voltage Vref1 is predetermined.
  • the first reference voltage Vref1 is at a level capable of detecting the edge of the translucent film. For example, experiments are performed to determine the magnitude of the first reference voltage Vref1.
  • the analog image signal A1 of the light-receiving element that reads the edge is smaller for the transmissive film than for the paper. Therefore, the first reference voltage Vref1 when conveying a transparent film is smaller than the reference voltage when conveying paper.
  • the unit control circuit 9 reduces the reference voltage.
  • the analog image signal A1 of the light receiving element that has read the edge is binarized to the first level. Specifically, the conveyed sheet image data B1 in which the High level and Low level are switched at the edge portion is generated. It is possible to generate conveying sheet image data B1 in which the edge of the translucent film is known.
  • the unit control circuit 9 When the sheet used in the print job is not a transparent film (No in step #1 when paper), the unit control circuit 9 recognizes the color of the paper (sheet) to be conveyed (step #3). Based on the notification from the controller 1 to the unit control circuit 9, the unit control circuit 9 can recognize the color of the paper. Then, the unit control circuit 9 inputs the second reference voltage Vref2 having a magnitude corresponding to the paper color to the binarization circuit 92 (step #4).
  • the second reference voltage Vref2 is higher than the first reference voltage Vref1.
  • the magnitude of the second reference voltage Vref2 may be fixed regardless of the sheet color.
  • the unit control circuit 9 changes the magnitude of the second reference voltage Vref2 according to the color of the sheet (paper).
  • the voltage value of the analog image signal A1 obtained by reading the sheet may differ depending on the color of the paper. For example, in a specific color, the voltage value of the analog image signal A1 may become small on average. For example, red paper may have a lower average voltage value of the analog image signal A1 than white, green, blue, or yellow paper. Further, the voltage value of the analog image signal A1 of the light receiving element that has read the gray paper may be even smaller than that for the red paper.
  • the unit control circuit 9 changes the magnitude of the second reference voltage Vref2 according to the color of the sheet.
  • the magnitude of the second reference voltage Vref2 for each color is determined in advance.
  • the magnitude relationship of the second reference voltage Vref2 for each color is also determined in advance.
  • the unit control circuit 9 may set the second reference voltage Vref2 when the color of the paper is white higher than the second reference voltage Vref2 when the color of the paper is gray.
  • the second reference voltage Vref2 for white office paper (plain paper) may be higher than the second reference voltage Vref2 for gray rough paper (straw paper).
  • colored (chromatic) paper may be printed.
  • colored paper includes paper for partitions, thick paper for construction, and the like. Colored paper often reflects less light than white paper. Therefore, the unit control circuit 9 may set the second reference voltage Vref2 for white higher than the second reference voltage Vref2 for chromatic paper.
  • the engine memory 50b stores the second reference voltage value data D2 (see FIG. 8).
  • the second reference voltage value data D2 is data defining the magnitude of the second reference voltage Vref2 for each color and the duty ratio of the PWM signal corresponding to the magnitude.
  • the unit control circuit 9 refers to the second reference voltage value data D2 and generates a second reference voltage Vref2 having a magnitude corresponding to the color.
  • the unit control circuit 9 sets the threshold of each count circuit 93 (step #5).
  • the unit control circuit 9 inputs the threshold setting signal E ⁇ b>1 to each count circuit 93 .
  • the unit control circuit 9 sets the threshold when the conveying sheet is a translucent film to be higher than the threshold when the conveying sheet is paper.
  • the unit control circuit 9 sets the threshold value for translucent film to a value larger than the threshold value for paper by a predetermined ratio.
  • the predetermined ratio is any value within the range of 10% to 100%.
  • step #5 the sheet reading preparation process is completed (end).
  • the engine control unit 50 causes the printer unit 5 to start printing.
  • the engine control unit 50 causes the sheet supply unit 5a to start feeding sheets.
  • the engine control section 50 causes the sheet conveying section 5b to convey the sheet.
  • the engine control section 50 causes the image forming section 5c to form a toner image and transfer the toner image to the conveying sheet.
  • the engine control section 50 causes the fixing section 5e to perform a fixing operation.
  • the unit control circuit 9 causes the sheet reading unit 6 to read the conveyed sheet. Further, the unit control circuit 9 recognizes the arrival of the leading edge of the sheet to the sheet reading unit 6 and the position of the edge based on the conveyed sheet image data B1. Using the recognition result, the unit control circuit 9 corrects the skew of the sheet and corrects the position in the main scanning direction.
  • the image forming apparatus includes the sheet conveying section 5b, the image forming section 5c, the sheet reading unit 6, the binarization circuit 92, and the control circuit (unit control circuit 9).
  • the sheet conveying portion 5b conveys sheets.
  • the image forming section 5c forms an image on the conveying sheet.
  • the sheet reading unit 6 includes a lamp 6c and a line sensor 8.
  • FIG. The lamp 6c irradiates the conveying sheet with light.
  • the line sensor 8 has a light receiving element, reads the conveyed sheet based on the light from the lamp 6c, and outputs an analog image signal A1.
  • a binarization circuit 92 receives the reference voltage and the analog image signal A1.
  • the binarization circuit 92 binarizes the analog image signal A1. Based on the conveying sheet image data B1 obtained by binarization, the control circuit obtains the position of the edge of the conveying sheet.
  • the sheet reading unit 6 is provided on the upstream side in the sheet conveying direction of the image forming section 5c.
  • the control circuit inputs the first reference voltage Vref1 to the binarization circuit 92 as a reference voltage.
  • the first reference voltage Vref1 is the level at which the edge of the translucent film is read.
  • Conveying sheet image data B1 can be obtained by binarizing the analog image signal A1. Then, when the translucent film is transported, the reference voltage can be automatically adjusted to a magnitude suitable for reading the translucent film. As a result, the edge of the translucent film can be read. In other words, it is possible to generate the conveying sheet image data B1 including pixels for which edge positions can be determined. When conveying the translucent film, the edge position can be detected without using a sensor other than the line sensor 8 .
  • the control circuit When conveying paper instead of a translucent film as a conveying sheet, the control circuit (unit control circuit 9) inputs the second reference voltage Vref2 to the binarization circuit 92 as a reference voltage.
  • the first reference voltage Vref1 is lower than the second reference voltage Vref2.
  • Paper transmits less light than translucent film. A difference can be provided between the reference voltage for reading the translucent film and the reference voltage for reading the paper.
  • the edge of the sheet can be read regardless of whether the translucent film or paper is used.
  • Conveying sheet image data B1 can be generated in which the position of the edge of any sheet can be known.
  • the control circuit When conveying paper as a conveying sheet, the control circuit changes the magnitude of the second reference voltage Vref2 according to the color of the paper. Depending on the color of the conveyed sheet, the magnitude of the output of the line sensor 8 (analog image signal A1) may differ. The second reference voltage Vref2 can be changed according to the color of the sheet. It is possible to generate conveying sheet image data B1 in which the position of the edge of the conveying sheet can be known regardless of the color of the paper.
  • the line sensor 8 receives light reflected by the conveying sheet.
  • the control circuit makes the second reference voltage Vref2 when the color of the paper as the conveying sheet is white higher than the second reference voltage Vref2 when the color of the paper as the conveying sheet is gray.
  • white paper reflects light better than gray paper.
  • the magnitude of the analog image signal A1 from the light-receiving element that has read the white paper is on average larger than the magnitude of the analog image signal A1 from the light-receiving element that has read the gray paper.
  • the second reference voltage Vref2 has a magnitude that matches the color of the paper. In other words, the second reference voltage Vref2 can be appropriately set according to the color of the paper.
  • the line sensor 8 receives light reflected by the conveying sheet.
  • the control circuit makes the second reference voltage Vref2 when the color of the paper as the conveying sheet is white higher than the second reference voltage Vref2 when the color of the paper as the conveying sheet is chromatic.
  • the magnitude of the analog image signal A1 from the light receiving element that reads the paper may differ depending on the color. For example, when red paper is read, the average voltage value of the analog image signal A1 may be smaller than when the paper color is green.
  • the second reference voltage Vref2 has a magnitude that matches the color of the paper. In other words, the second reference voltage Vref2 can be appropriately set according to the color of the paper.
  • the image forming apparatus (multifunction machine 100) is provided with a count circuit 93 to which conveyed sheet image data B1 is input and which outputs a detection result signal C1.
  • the binarization circuit 92 When the analog image signal A1 exceeds the reference voltage, the binarization circuit 92 outputs a first level indicating that the sheet has been read. When the analog image signal A1 is below the reference voltage, the binarization circuit 92 outputs a second level indicating that the sheet is not read.
  • the counting circuit 93 counts the number of continuous pixels of the first level for the conveying sheet image data B1. When the number of continuations reaches or exceeds a predetermined threshold value, the count circuit 93 sets the level of the detection result signal C1 to a level indicating presence of a sheet.
  • the count circuit 93 sets the level of the detection result signal C1 to a level indicating no sheet.
  • the control circuit (unit control circuit 9) determines whether the conveyed sheet has reached the sheet reading unit 6 based on the level of the detection result signal C1. Arrival of the sheet to the line sensor 8 (sheet reading unit 6) can be detected.
  • some pixels of the conveyed sheet image data B1 may have a value (level) indicating that the sheet has been read even though the sheet has not been read. If it is determined that the sheet has arrived in response to this noise, the timing of the sheet arrival is erroneously detected.
  • the print position of the image is shifted. Since the number of continuous pixels of the first level indicating that the sheet has been read is counted, it is possible to prevent erroneous detection of paper arrival due to noise. It is possible to prevent the occurrence of print position deviation due to noise.
  • the control circuit makes the threshold when the conveying sheet is a translucent film larger than the threshold when the conveying sheet is paper. If the first reference voltage Vref1 is set so that the translucent film can be read, it may become susceptible to noise. In other words, the pixel values of the pixels of the conveyed sheet image data B1 are likely to be at the first level even though the sheet is not read. Therefore, when transporting the translucent film, the unit control circuit 9 automatically increases the threshold value. This makes it possible to increase the number of continuous pixels of the first level until it is determined that the sheet has reached the sheet. It is possible to prevent erroneous detection of sheet arrival.
  • the scope of the present invention is not limited to this, and various modifications can be made without departing from the gist of the invention.
  • the line sensor 8 includes three divided line sensors 80 has been described.
  • the number of divisions may be two or may be four or more.
  • the present invention can be used in an image forming apparatus including a sheet reading unit.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

An image formation device (100) includes a sheet conveying unit (5b), an image formation unit (5c), a sheet reading unit (6), a binarization circuit (92), and a control circuit (9). The sheet reading unit (6) includes a lamp (6c) and a line sensor (8). The line sensor (8) reads a conveying sheet and outputs an analog image signal. The binarization circuit (92) receives inputs of a reference voltage and the analog image signal. When a translucent film is conveyed as the conveying sheet, the control circuit inputs, as the reference voltage, a first reference voltage into the binarization circuit (92). The first reference voltage is at a level at which edges of the translucent film can be read.

Description

画像形成装置image forming device
 本発明は印刷するシートを搬送し、搬送シートを読み取る画像形成装置に関する。 The present invention relates to an image forming apparatus that conveys a sheet to be printed and reads the conveyed sheet.
 搬送シートを読み取るためのイメージセンサーとランプを画像形成装置に設けることがある。イメージセンサーは、ランプから照射され、シートで反射された光に基づき読み取りを行う。そして、OHPシートのような透光性を有するシートを画像形成装置で搬送することがある。透光性を有するシートは光を透過するため、イメージセンサーがシートを適切に読み取れないことがある。その結果、印刷エラーが生ずることがある。印刷エラーを防ぐため、透光性を有するシートか普通紙かを判定する画像形成装置の一例が特許文献1に記載されている。 An image forming apparatus may be provided with an image sensor and a lamp for reading the conveyed sheet. The image sensor performs reading based on the light emitted from the lamp and reflected from the sheet. In some cases, a translucent sheet such as an OHP sheet is conveyed by the image forming apparatus. Since a translucent sheet transmits light, the image sensor may not be able to read the sheet properly. As a result, printing errors may occur. Japanese Patent Application Laid-Open No. 2002-200000 describes an example of an image forming apparatus that determines whether a sheet is a translucent sheet or plain paper in order to prevent printing errors.
 具体的に、特許文献1には、記録材の搬送路に設けられ、搬送される第1の紙種の記録材を検知する第1の検知手段と、第1の検知手段よりも記録材の搬送方向の下流側に設けられ、第1の紙種とは異なる第2の紙種の記録材を検知する第2の検知手段と、第1の検知手段による検知結果及び第2の検知手段による検知結果に応じて、搬送される記録材の紙種及び当該記録材の搬送に異常が生じているかを判定し、第1の紙種の記録材は透明な記録材及び不透明な記録材の一方であり、第2の紙種の記録材は透明な記録材及び不透明な記録材の他方である画像形成装置が記載されている。 Specifically, Japanese Patent Application Laid-Open No. 2002-200000 discloses a first detection unit provided in a recording material conveying path for detecting a conveyed recording material of a first paper type, and a second detection unit provided on the downstream side in the conveying direction for detecting a recording material of a second paper type different from the first paper type; According to the detection result, the paper type of the recording material to be conveyed and whether or not there is an abnormality in the conveyance of the recording material are determined. and the recording material of the second paper type is the other of the transparent recording material and the opaque recording material.
特開2015-124046号公報JP 2015-124046 A
 画像形成装置のシートの搬送通路にランプとイメージセンサー(ラインセンサー)を設けることがある。ランプは搬送されるシートに光を照射する。イメージセンサーは搬送されるシートを読み取る。イメージセンサーは、シートで反射された光に基づき、読み取りを行う。イメージセンサーの読み取りで得られた画像データによって、シートのエッジ(周端)を検知することができる。例えば、画像データに基づき、シート先端のイメージセンサーへの到達を認識することができる。 A lamp and an image sensor (line sensor) may be installed in the sheet conveying path of the image forming apparatus. The lamp irradiates the sheet being conveyed with light. The image sensor reads the conveyed sheet. The image sensor performs reading based on the light reflected by the sheet. The edge (peripheral edge) of the sheet can be detected from the image data obtained by reading the image sensor. For example, based on the image data, it is possible to recognize the arrival of the leading edge of the sheet to the image sensor.
 ここで、画像形成装置では、OHPシートのようなランプの光をよく透過するシートに印刷することがある。そのため、シートのエッジを読み取れない場合がある。言い換えると、シートのエッジがわかるように、画像データが生成されない場合がある。透光性の高いシートを搬送したとき、イメージセンサーの読み取りで得られた画像データに基づき、シートのエッジを検知できない場合があるという問題がある。 Here, the image forming apparatus may print on a sheet such as an OHP sheet that allows the light of the lamp to pass through well. Therefore, the edge of the sheet may not be read. In other words, image data may not be generated such that the edges of the sheet are known. When conveying a highly translucent sheet, there is a problem that the edge of the sheet may not be detected based on the image data read by the image sensor.
 特許文献1記載の装置では、透光性のシートか普通紙かを判定するために、レジセンサ、ラインセンサ、及び、搬送センサの3つのセンサを使用している。多数のセンサーが必要である。製造コストが高くなる。さらに、特許文献1には、シートのエッジを検知するモードとして、横端検知モードの記載がある。しかし、普通紙についてのみ横端検知の記載がある。OHPシートについては、横端検知の記載がない。特許文献1には、透光性の高いシートのエッジを、イメージセンサーの画像データのみで検知することが記載されていない。 The device described in Patent Document 1 uses three sensors, a registration sensor, a line sensor, and a transport sensor, to determine whether the sheet is a translucent sheet or plain paper. A large number of sensors is required. Higher manufacturing costs. Furthermore, Patent Document 1 describes a lateral edge detection mode as a mode for detecting the edge of a sheet. However, there is a description of lateral edge detection only for plain paper. Regarding the OHP sheet, there is no description of lateral edge detection. Japanese Patent Application Laid-Open No. 2002-200002 does not describe detecting the edge of a sheet with high translucency using only the image data of the image sensor.
 本発明は上記問題点を鑑み、ラインセンサーを用いて、搬送される透光性フィルムを読み取るとき、シートのエッジの位置を検知できるように、画像データを生成する。 In view of the above problems, the present invention uses a line sensor to generate image data so that the position of the edge of the sheet can be detected when reading the transported translucent film.
 本発明に係る画像形成装置は、シート搬送部、画像形成部、シート読取ユニット、二値化回路、及び、制御回路を備える。前記シート搬送部はシートを搬送する。前記画像形成部は搬送シートに画像を形成する。前記シート読取ユニットは、ランプ及びラインセンサーを含む。前記ランプは前記搬送シートに光を照射する。前記ラインセンサーは、受光素子を備えて前記ランプの光に基づいて前記搬送シートを読み取ってアナログ画像信号を出力する。前記二値化回路は参照電圧及び前記アナログ画像信号が入力される。前記参照電圧と前記アナログ画像信号に基づき、前記二値化回路は、前記アナログ画像信号を二値化する。二値化によって得られた搬送シート画像データに基づき、前記制御回路は、前記搬送シートのエッジの位置を求める。前記シート読取ユニットは、前記画像形成部よりもシート搬送方向上流側に設けられる。前記搬送シートとして透光性フィルムを搬送するとき、前記制御回路は、前記参照電圧として、第1参照電圧を前記二値化回路に入力する。前記第1参照電圧は、前記透光性フィルムのエッジが読み取られるレベルである。 An image forming apparatus according to the present invention includes a sheet conveying section, an image forming section, a sheet reading unit, a binarization circuit, and a control circuit. The sheet conveying section conveys the sheet. The image forming section forms an image on a conveying sheet. The sheet reading unit includes lamps and line sensors. The lamp irradiates the conveying sheet with light. The line sensor has a light receiving element, reads the conveying sheet based on the light of the lamp, and outputs an analog image signal. The binarization circuit receives the reference voltage and the analog image signal. Based on the reference voltage and the analog image signal, the binarization circuit binarizes the analog image signal. Based on the conveying sheet image data obtained by binarization, the control circuit obtains the position of the edge of the conveying sheet. The sheet reading unit is provided upstream of the image forming unit in the sheet conveying direction. When conveying a translucent film as the conveying sheet, the control circuit inputs a first reference voltage as the reference voltage to the binarization circuit. The first reference voltage is a level at which the edge of the translucent film is read.
 本発明によれば、ラインセンサーを用いて搬送される透光性フィルムを読み取るとき、シートのエッジの位置を検知できるように、画像データを生成することができる。シートの到達、及び、エッジの位置を正確に検知することができる。 According to the present invention, image data can be generated so that the position of the edge of the sheet can be detected when reading the transported translucent film using the line sensor. Sheet arrival and edge position can be accurately detected.
実施形態に係る複合機の一例を示す図である。1 is a diagram illustrating an example of a multifunction device according to an embodiment; FIG. 実施形態に係る複合機の一例を示す図である。1 is a diagram illustrating an example of a multifunction device according to an embodiment; FIG. 実施形態に係る画像形成部の一例を示す図である。3 is a diagram showing an example of an image forming section according to the embodiment; FIG. 実施形態に係る複合機の一例を示す図である。1 is a diagram illustrating an example of a multifunction device according to an embodiment; FIG. 実施形態に係るシート読取ユニットの一例を示す図である。1 is a diagram showing an example of a sheet reading unit according to an embodiment; FIG. 実施形態に係るレジストレスユニットの一例を示す図である。FIG. 4 is a diagram showing an example of a registrationless unit according to the embodiment; 実施形態に係るレジストレスユニットの一例を示す図である。FIG. 4 is a diagram showing an example of a registrationless unit according to the embodiment; 実施形態に係る複合機の一例を示す図である。1 is a diagram illustrating an example of a multifunction device according to an embodiment; FIG. 実施形態に係る信号処理部の一例を説明する図である。It is a figure explaining an example of the signal processing part which concerns on embodiment. 実施形態に係る信号処理部の一例を説明する図である。It is a figure explaining an example of the signal processing part which concerns on embodiment. 実施形態に係るシート読取ユニットの準備処理の一例を示す図である。FIG. 10 is a diagram illustrating an example of preparation processing of the sheet reading unit according to the embodiment;
 以下、図1~図11を用い、実施形態に係る画像形成装置を説明する。以下では、画像形成装置として、複合機100を例に挙げて説明する。複合機100は画像データに基づく印刷や送信を行える。なお、画像形成装置は複合機100に限られず、例えば、プリンターでもよい。本実施形態の説明に記載されている構成、配置等の各要素は発明の範囲を限定せず単なる説明例にすぎない。 An image forming apparatus according to an embodiment will be described below with reference to FIGS. 1 to 11. FIG. In the following, the image forming apparatus will be described by taking the multifunction machine 100 as an example. The MFP 100 can print and transmit based on image data. Note that the image forming apparatus is not limited to the MFP 100, and may be, for example, a printer. Each element such as configuration and arrangement described in the description of the present embodiment does not limit the scope of the invention and is merely an example of description.
(複合機100)
 図1~図3を用いて、実施形態に係る複合機100を説明する。図1、図2は実施形態に係る複合機100の一例を示す図である。図3は実施形態に係る画像形成部5cの一例を示す図である。
(MFP 100)
A multifunction device 100 according to an embodiment will be described with reference to FIGS. 1 to 3. FIG. 1 and 2 are diagrams showing an example of a multifunction machine 100 according to an embodiment. FIG. 3 is a diagram showing an example of the image forming section 5c according to the embodiment.
 図1に示すように、複合機100は制御部1、記憶部2、画像読取部3、操作パネル4、及び、プリンター部5を含む。 As shown in FIG. 1, the MFP 100 includes a control section 1, a storage section 2, an image reading section 3, an operation panel 4, and a printer section 5.
 制御部1は複合機100の動作を制御する。制御部1はジョブ(コピーや送信)での複合機100の各部の動作を制御する。制御部1はメイン制御回路11、画像データ生成回路12、画像処理回路13、及び、通信回路14を含む。例えば、メイン制御回路11はCPUである。メイン制御回路11はジョブに関する処理、演算を行う。画像データ生成回路12はA/D変換回路を含む。画像データ生成回路12は、画像読取部3が原稿を読み取って出力したアナログの画像信号を処理して原稿画像データを生成する。画像処理回路13は画像処理用の集積回路(例えば、ASIC)である。画像処理回路13は原稿画像データの画像処理を行う。 The control unit 1 controls the operation of the MFP 100 . The control unit 1 controls the operation of each unit of the multifunction machine 100 in a job (copying or transmission). The control unit 1 includes a main control circuit 11 , an image data generation circuit 12 , an image processing circuit 13 and a communication circuit 14 . For example, the main control circuit 11 is a CPU. The main control circuit 11 performs job-related processing and calculations. The image data generation circuit 12 includes an A/D conversion circuit. The image data generation circuit 12 processes the analog image signal output by the image reading section 3 after reading the document to generate document image data. The image processing circuit 13 is an integrated circuit (for example, ASIC) for image processing. The image processing circuit 13 performs image processing of document image data.
 通信回路14は通信制御回路と通信メモリーを含む。通信メモリーは通信用ソフトウェアを記憶する。通信用ソフトウェアに基づき、通信制御回路は通信を制御する。通信回路14はコンピューター200と通信する。例えば、コンピューター200はPCやサーバーである。通信回路14はコンピューター200からの印刷用データを受信する。制御部1は受信した印刷用データに基づきプリンター部5に印刷させる(プリントジョブ)。また、操作パネル4は宛先の設定を受け付ける。設定された宛先に向けて、制御部1は原稿の読み取りに基づく画像データを通信回路14に送信させる(スキャン送信)。 The communication circuit 14 includes a communication control circuit and a communication memory. The communication memory stores communication software. The communication control circuit controls communication based on communication software. Communication circuitry 14 communicates with computer 200 . For example, computer 200 is a PC or server. Communication circuit 14 receives print data from computer 200 . The control unit 1 causes the printer unit 5 to print based on the received print data (print job). Further, the operation panel 4 accepts destination settings. The control unit 1 causes the communication circuit 14 to transmit the image data based on the reading of the document to the set destination (scan transmission).
 記憶部2はRAM、ROM、及び、ストレージを含む。例えば、ストレージはHDDとSSDの何れか一方、又は、両方である。記憶部2に記憶されたプログラムやデータに基づき、制御部1は各部を制御する。画像読取部3は光源、イメージセンサーを含む。画像読取部3は原稿を読み取る。 The storage unit 2 includes RAM, ROM, and storage. For example, the storage is one or both of HDD and SSD. Based on the programs and data stored in the storage unit 2, the control unit 1 controls each unit. The image reading unit 3 includes a light source and an image sensor. The image reading section 3 reads an original.
 操作パネル4は表示パネル41、タッチパネル42、及び、ハードキー43を備える。操作パネル4は使用者の設定を受け付ける。制御部1はメッセージ、設定用画面、操作用画像を表示パネル41に表示させる。例えば、操作用画像はボタン、キー、タブである。タッチパネル42の出力に基づき、制御部1は操作された操作用画像を認識する。ハードキー43はスタートキーやテンキーを含む。タッチパネル42、ハードキー43は使用者の設定操作(ジョブ関連操作)を受け付ける。例えば、実行するジョブの種類や、ジョブの設定値の設定を受け付ける。操作パネル4の出力に基づき、制御部1は設定内容を認識する。 The operation panel 4 includes a display panel 41, a touch panel 42, and hard keys 43. The operation panel 4 accepts user settings. The control unit 1 causes the display panel 41 to display a message, a screen for setting, and an image for operation. For example, the operation images are buttons, keys, and tabs. Based on the output of the touch panel 42, the control unit 1 recognizes the operated image for operation. Hard keys 43 include a start key and numeric keys. The touch panel 42 and hard keys 43 accept user's setting operations (job-related operations). For example, it accepts the type of job to be executed and the setting of job setting values. Based on the output of the operation panel 4, the control section 1 recognizes the setting contents.
 プリンター部5は、エンジン制御部50、シート供給部5a、シート搬送部5b、画像形成部5c、中間転写部5d、及び、定着部5eを含む。制御部1の印刷指示に基づき、エンジン制御部50はシート供給部5a、シート搬送部5b、画像形成部5c、中間転写部5d、及び、定着部5eの動作を制御する。 The printer section 5 includes an engine control section 50, a sheet supply section 5a, a sheet conveying section 5b, an image forming section 5c, an intermediate transfer section 5d, and a fixing section 5e. Based on the print instruction from the control section 1, the engine control section 50 controls the operations of the sheet feeding section 5a, the sheet conveying section 5b, the image forming section 5c, the intermediate transfer section 5d, and the fixing section 5e.
 例えば、シート供給部5aはセットされたシートを収容するシートカセット51、シートを送り出すピックアップローラー52を含む。印刷時、エンジン制御部50はシート供給部5aにシートを供給させる。例えば、シート搬送部5bはモーター、搬送ローラー対53、及び、搬送ガイド54を含む。搬送ガイド54による空間が、シートを搬送する通路(シート搬送路54a、空間)である。エンジン制御部50はシート供給部5aから送り出されたシートをシート搬送部5bに搬送させる。印刷に用いるシートはシート搬送路54aを通る。 For example, the sheet supply unit 5a includes a sheet cassette 51 that stores the set sheets, and a pickup roller 52 that feeds the sheets. During printing, the engine control unit 50 causes the sheet supply unit 5a to supply sheets. For example, the sheet conveying section 5b includes a motor, a pair of conveying rollers 53, and a conveying guide 54. FIG. A space defined by the transport guide 54 is a path (sheet transport path 54a, space) for transporting the sheet. The engine control section 50 causes the sheet conveying section 5b to convey the sheet fed from the sheet feeding section 5a. A sheet used for printing passes through the sheet conveying path 54a.
 画像形成部5cは画像(トナー像)を形成する。図2、図3に示すように、画像形成部5cは4色分の画像形成ユニットと露光装置56を含む。複合機100はブラックの画像を形成する画像形成ユニット55Bと、イエローの画像を形成する画像形成ユニット55Yと、シアンの画像を形成する画像形成ユニット55Cと、マゼンタの画像を形成する画像形成ユニット55Mを含む。尚、各画像形成ユニット55B~55Mは、形成するトナー像の色が異なる。しかし、各画像形成ユニット55B~55Mの構成は基本的に同じである。そこで、以下の説明では、色を意味するBk、Y、C、Mの符号は特に説明する場合を除き省略する。 The image forming unit 5c forms an image (toner image). As shown in FIGS. 2 and 3, the image forming section 5c includes image forming units for four colors and an exposure device . The MFP 100 includes an image forming unit 55B for forming a black image, an image forming unit 55Y for forming a yellow image, an image forming unit 55C for forming a cyan image, and an image forming unit 55M for forming a magenta image. including. The image forming units 55B to 55M form different colors of toner images. However, the configuration of each image forming unit 55B to 55M is basically the same. Therefore, in the following description, the symbols Bk, Y, C, and M representing colors will be omitted unless otherwise specified.
 各画像形成ユニットは、感光体ドラム57、帯電装置58(帯電ローラー)、現像装置59(現像ローラー)を含む。印刷のとき、エンジン制御部50はドラムモーター(不図示)を回転させ、感光体ドラム57を回転させる。また、エンジン制御部50は感光体ドラム57を帯電装置58に帯電させる。また、画像データに基づき、エンジン制御部50は感光体ドラム57を露光装置56に露光させる。現像装置59はトナーを含む現像剤を収容する。エンジン制御部50は感光体ドラム57の静電潜像のトナーによる現像を現像装置59に行わせる。 Each image forming unit includes a photosensitive drum 57, a charging device 58 (charging roller), and a developing device 59 (developing roller). During printing, the engine control unit 50 rotates a drum motor (not shown) to rotate the photosensitive drum 57 . Also, the engine control unit 50 causes the charging device 58 to charge the photosensitive drum 57 . Further, the engine control unit 50 causes the exposure device 56 to expose the photosensitive drum 57 based on the image data. The developing device 59 contains developer including toner. The engine control unit 50 causes the developing device 59 to develop the electrostatic latent image on the photosensitive drum 57 with toner.
 中間転写部5dは中間転写ベルト510、2次転写ローラー511、駆動ローラー512、1次転写ローラー513B、513Y、513C、513M、従動ローラー514、515を含む。中間転写部5dの各ローラーの軸線方向は平行である。中間転写ベルト510は無端状である。中間転写ベルト510は中間転写部5dの各ローラーにかけ回される。中間転写部5d(中間転写ベルト510)は感光体ドラム57からトナー像の1次転写を受ける。また、中間転写部5dはシートにトナー像を2次転写する。 The intermediate transfer portion 5d includes an intermediate transfer belt 510, a secondary transfer roller 511, a driving roller 512, primary transfer rollers 513B, 513Y, 513C and 513M, and driven rollers 514 and 515. The axial directions of the rollers of the intermediate transfer portion 5d are parallel. The intermediate transfer belt 510 is endless. The intermediate transfer belt 510 is looped around each roller of the intermediate transfer portion 5d. The intermediate transfer portion 5 d (intermediate transfer belt 510 ) receives the primary transfer of the toner image from the photosensitive drum 57 . Further, the intermediate transfer portion 5d secondarily transfers the toner image onto the sheet.
 定着部5eはヒーター516、定着用回転体517、518を含む。エンジン制御部50はトナー像が転写されたシートを定着用回転体517、518に加熱・加圧させる。エンジン制御部50はトナー像の定着を定着部5eに行わせる。シート搬送部5bは定着後のシートを機外(排出トレイ519)に排出する。 The fixing section 5e includes a heater 516 and fixing rotary members 517 and 518. The engine control unit 50 causes the fixing rotary members 517 and 518 to heat and press the sheet onto which the toner image has been transferred. The engine control unit 50 causes the fixing unit 5e to fix the toner image. The sheet conveying portion 5b discharges the sheet after fixing to the outside of the machine (discharge tray 519).
(シート読取ユニット66とレジストレスユニット7)
 次に、図4~図8を用いて、実施形態に係るシート読取ユニット66とレジストレスユニット7の一例を説明する。図4は実施形態に係る複合機100の一例を示す図である。図5は実施形態に係るシート読取ユニット66の一例を示す図である。図6及び図7は実施形態に係るレジストレスユニット7の一例を示す図である。図8は実施形態に係る複合機100の一例を示す図である。
(Sheet reading unit 66 and registrationless unit 7)
Next, an example of the sheet reading unit 66 and the registrationless unit 7 according to the embodiment will be described with reference to FIGS. 4 to 8. FIG. FIG. 4 is a diagram showing an example of the multifunction machine 100 according to the embodiment. FIG. 5 is a diagram showing an example of the sheet reading unit 66 according to the embodiment. 6 and 7 are diagrams showing an example of the registrationless unit 7 according to the embodiment. FIG. 8 is a diagram showing an example of the multifunction machine 100 according to the embodiment.
 複合機100はシート読取ユニット66及びレジストレスユニット7を含む。シート読取ユニット66及びレジストレスユニット7はシートの搬送経路(シート搬送路54a)に設けられる。シート読取ユニット66は搬送されるシートを読み取る。以下の説明では、搬送されるシートを搬送シートと称する。シート読取ユニット66は画像形成部5c(2次転写ローラー511)よりもシート搬送方向上流側に設けられる(図2参照)。図5に示すように、シート読取ユニット66の一面には、透光板6bが取り付けられる。透光板6bはガラス板、又は、透明樹脂板である。筐体6aと透光板6bによる密閉空間内にランプ6c、レンズ6d、ラインセンサー8が収容される。シート読取ユニット66はCIS方式のスキャナユニットである。 The MFP 100 includes a sheet reading unit 66 and a registrationless unit 7. The sheet reading unit 66 and the registrationless unit 7 are provided in a sheet conveying path (sheet conveying path 54a). The sheet reading unit 66 reads the conveyed sheet. In the following description, the conveyed sheet will be referred to as a conveyed sheet. The sheet reading unit 66 is provided upstream of the image forming section 5c (secondary transfer roller 511) in the sheet conveying direction (see FIG. 2). As shown in FIG. 5, on one surface of the sheet reading unit 66, a transparent plate 6b is attached. The transparent plate 6b is a glass plate or a transparent resin plate. A lamp 6c, a lens 6d, and a line sensor 8 are accommodated in a sealed space formed by the housing 6a and the transparent plate 6b. The sheet reading unit 66 is a CIS scanner unit.
 エンジン制御部50は、エンジン制御回路50a、エンジンメモリー50b、及び、ユニット制御回路9を含む。エンジンメモリー50bは印刷制御用のプログラムとデータを記憶する。例えば、エンジン制御回路50a及びとユニット制御回路9はCPUである。ユニット制御回路9は、エンジン制御回路50aの指示を受けて、所定の処理を行う。複合機100では、ユニット制御回路9がシート読取ユニット66及びレジストレスユニット7の動作を制御する。なお、エンジン制御回路50aがシート読取ユニット66とレジストレスユニット7の何れか一方、又は、両方の動作を制御してもよい。また、メイン制御回路11がシート読取ユニット66とレジストレスユニット7の何れか一方、又は、両方の動作を制御してもよい。 The engine control unit 50 includes an engine control circuit 50a, an engine memory 50b, and a unit control circuit 9. The engine memory 50b stores programs and data for print control. For example, the engine control circuit 50a and the unit control circuit 9 are CPUs. The unit control circuit 9 receives instructions from the engine control circuit 50a and performs predetermined processing. In the MFP 100 , the unit control circuit 9 controls operations of the sheet reading unit 66 and the registrationless unit 7 . Note that the engine control circuit 50a may control the operation of either one of the sheet reading unit 66 and the registrationless unit 7, or both. Further, the main control circuit 11 may control the operation of either one of the sheet reading unit 66 and the registrationless unit 7, or both.
 図5はシート搬送路54aを主走査方向(シート搬送方向に対して垂直な方向)から見た図である。なお、主走査方向とは、ラインセンサー8が走査する(読み取る)方向である。主走査方向は、ラインセンサー8の受光素子(画素、光電変換素子)が並ぶ方向でもある。印刷ジョブのとき、ユニット制御回路9は、ランプ6cを点灯させる。図5はシート読取ユニット66が2本のランプ6cを含む例を示す。ランプ6cは主走査方向に沿って光を照射する。例えば、ランプ6cはLEDを含む。 FIG. 5 is a diagram of the sheet conveying path 54a viewed from the main scanning direction (the direction perpendicular to the sheet conveying direction). The main scanning direction is the direction in which the line sensor 8 scans (reads). The main scanning direction is also the direction in which the light receiving elements (pixels, photoelectric conversion elements) of the line sensor 8 are arranged. During a print job, the unit control circuit 9 turns on the lamp 6c. FIG. 5 shows an example in which the sheet reading unit 66 includes two lamps 6c. The lamp 6c emits light along the main scanning direction. For example, lamp 6c includes an LED.
 ラインセンサー8は受光素子を複数含む。画素は主走査方向に並ぶ。ランプ6cから放たれ、原稿で反射した光は、レンズ6dを経て、ラインセンサー8の各画素に入射する。シート搬送時(印刷ジョブのとき)、ユニット制御回路9は、ラインセンサー8に読み取りを行わせる。ラインセンサー8の読取幅は、印刷可能な定型のシートであって主走査方向の幅が最大のシートよりも狭い。 The line sensor 8 includes a plurality of light receiving elements. Pixels are arranged in the main scanning direction. Light emitted from the lamp 6c and reflected by the document enters each pixel of the line sensor 8 through the lens 6d. When conveying a sheet (during a print job), the unit control circuit 9 causes the line sensor 8 to read. The reading width of the line sensor 8 is narrower than that of a standard printable sheet having a maximum width in the main scanning direction.
 ラインセンサー8は複数のブロックに分割されていてもよい。言い換えると、ラインセンサー8は、複数の分割ラインセンサー80を備えてもよい。図4は、3つのブロック(分割ラインセンサー80)を備えるラインセンサー8を示す。3本の読取センサーの組み合わせをラインセンサー8として用いることができる。なお、分割ラインセンサー80の個数は、3つに限られない。 The line sensor 8 may be divided into multiple blocks. In other words, the line sensor 8 may comprise multiple split line sensors 80 . FIG. 4 shows a line sensor 8 with three blocks (divided line sensor 80). A combination of three read sensors can be used as the line sensor 8 . Note that the number of divided line sensors 80 is not limited to three.
 各分割ラインセンサー80が複数の受光素子を含む。便宜上、主走査方向の一方側(図4の右側、支点軸76側)から順に、第1分割ラインセンサー81、第2分割ラインセンサー82、第3分割ラインセンサー83と称する。それぞれの分割ラインセンサー80は、列状(1列)に並べられる。これにより、それぞれの分割ラインセンサー80のそれぞれの受光素子(画素)は、主走査方向に沿って並ぶ。 Each divided line sensor 80 includes a plurality of light receiving elements. For convenience, they are referred to as a first divided line sensor 81, a second divided line sensor 82, and a third divided line sensor 83 in order from one side in the main scanning direction (the right side in FIG. 4, the fulcrum shaft 76 side). Each divided line sensor 80 is arranged in a row (one row). As a result, the light receiving elements (pixels) of the divided line sensors 80 are arranged along the main scanning direction.
 ここで、複合機100では、中央通紙方式でシートが搬送される。シート搬送路54aの主走査方向の中央と、搬送シートの主走査方向の中央が一致するように、シートカセット51は、シートの位置を規制する。その結果、シート搬送部5bはシート搬送路54aの主走査方向の中央と、搬送シートの主走査方向の中央が一致するように、シートを搬送する。図4の破線は主走査方向でのシート及びシート搬送路54aの中央を示すラインである。第3分割ラインセンサー83は、主走査方向の中央を読み取る位置に設けられる。主走査方向幅が最大のシートが用いられた場合、第1分割ラインセンサー81は主走査方向の一方側の端を読み取る位置に設けられる。第2分割ラインセンサー82は、第1分割ラインセンサー81と第3分割ラインセンサー83の間に配置される。 Here, in the MFP 100, the sheet is conveyed by the central sheet feeding method. The sheet cassette 51 regulates the position of the sheet so that the center of the sheet conveying path 54a in the main scanning direction coincides with the center of the sheet to be conveyed in the main scanning direction. As a result, the sheet conveying portion 5b conveys the sheet so that the center of the sheet conveying path 54a in the main scanning direction coincides with the center of the conveyed sheet in the main scanning direction. A dashed line in FIG. 4 indicates the center of the sheet and the sheet conveying path 54a in the main scanning direction. The third split line sensor 83 is provided at a position for reading the center in the main scanning direction. When a sheet having a maximum width in the main scanning direction is used, the first divided line sensor 81 is provided at a position for reading one edge in the main scanning direction. The second segmented line sensor 82 is arranged between the first segmented line sensor 81 and the third segmented line sensor 83 .
 ユニット制御回路9は、トリガー信号TRを各分割ラインセンサー80に入力する。各分割ラインセンサー80は電荷転送回路(シフトレジスター、転送用CCD)を含む。トリガー信号TRにあわせて、各画素が蓄えた電荷が電荷転送回路に移される。電荷転送回路は電荷を電圧に変換する。トリガー信号TRの周期が1走査の周期となる。 The unit control circuit 9 inputs the trigger signal TR to each divided line sensor 80 . Each split line sensor 80 includes a charge transfer circuit (shift register, transfer CCD). The charge stored in each pixel is transferred to the charge transfer circuit in accordance with the trigger signal TR. A charge transfer circuit converts the charge into a voltage. The cycle of the trigger signal TR is the cycle of one scan.
 複合機100はクロック信号生成回路90を含む。クロック信号生成回路90は読取クロック信号CLKを生成する。クロック信号生成回路90は、読取クロック信号CLKを各分割ラインセンサー80に入力する。各分割ラインセンサー80は、1つの読取クロック信号CLKにつき、1画素分のアナログ画像信号A1を出力する。読取クロック信号CLKは、トリガー信号TRの1周期中に、1つの分割ラインセンサー80が全ての画素アナログ画像信号A1を送出できる周波数である。 The multi-function device 100 includes a clock signal generation circuit 90. A clock signal generation circuit 90 generates a read clock signal CLK. The clock signal generation circuit 90 inputs the read clock signal CLK to each divided line sensor 80 . Each divided line sensor 80 outputs an analog image signal A1 for one pixel per read clock signal CLK. The read clock signal CLK has a frequency that allows one divided line sensor 80 to send out all the pixel analog image signals A1 during one period of the trigger signal TR.
 従来の画像形成装置においてレジストローラー対が設けられる位置に、レジストレスユニット7が設けられる(図2参照)。従来のレジストローラー対は、シートの先端到達当初、停止している。停止しているレジストローラー対にシートを突き当てることで、シートの斜行が矯正されている。しかし、レジストローラー対を用いると、シートが一時停止する。そこで、レジストレスユニット7はシートを止めずに、下流に向けてシートを搬送する。しかも、レジストレスユニット7は斜行を矯正できる。そして、レジストレスユニット7は、画像形成部5c(2次転写ニップ5n、2次転写ローラー511)よりもシート搬送方向上流側に設けられる(図2参照)。レジストレスユニット7は、シート読取ユニット66よりもシート搬送方向下流側に設けられる。 A registrationless unit 7 is provided at a position where a pair of registration rollers is provided in a conventional image forming apparatus (see FIG. 2). A conventional registration roller pair stops when the sheet reaches the leading edge. The skew of the sheet is corrected by abutting the sheet against the stopped pair of registration rollers. However, using a pair of registration rollers causes the sheet to pause. Therefore, the registrationless unit 7 conveys the sheet downstream without stopping the sheet. Moreover, the registrationless unit 7 can correct the skew. The registrationless unit 7 is provided upstream in the sheet conveying direction from the image forming section 5c (secondary transfer nip 5n, secondary transfer roller 511) (see FIG. 2). The registrationless unit 7 is provided downstream of the sheet reading unit 66 in the sheet conveying direction.
 図6及び図7は、レジストレスユニット7の一例を示す。図6及び図7に示すように、レジストレスユニット7はケース71と移動板7aを含む。ケース71と移動板7aの間には間隔が設けられる。図6及び図7の例では、ケース71は箱型である。移動板7aは板状である。ケース71と移動板7aは何れも、主走査方向を長手方向とする。移動板7aの平面とケース71の底面(移動板7a側の面)は平行である。図6は、レジストレスユニット7を図2におけるシート搬送方向上流側(複合機100の下側)から見た図の一例である。図7は、移動板7aと対向するケース71の面の一例を示す図である(移動板7aの図示は省略)。 6 and 7 show an example of the registrationless unit 7. FIG. As shown in FIGS. 6 and 7, the registrationless unit 7 includes a case 71 and a moving plate 7a. A space is provided between the case 71 and the moving plate 7a. In the examples of FIGS. 6 and 7, the case 71 is box-shaped. The moving plate 7a is plate-shaped. Both the case 71 and the moving plate 7a have the main scanning direction as their longitudinal direction. The plane of the moving plate 7a and the bottom surface of the case 71 (the surface on the side of the moving plate 7a) are parallel. FIG. 6 is an example of a diagram of the registrationless unit 7 viewed from the upstream side in the sheet conveying direction in FIG. FIG. 7 is a diagram showing an example of the surface of the case 71 facing the moving plate 7a (illustration of the moving plate 7a is omitted).
 ケース71は、レジストレスローラー対72とレジストレスモーター73を収容する。レジストレスローラー対72は駆動ローラー74と従動ローラー75を含む。駆動ローラー74の回転軸と従動ローラー75の回転軸は、平行である。駆動ローラー74の周面と従動ローラー75の周面が接する。図2に示すように、シートは、下から上に向けて搬送される。駆動ローラー74と従動ローラー75のニップに搬送シートが進入する。複数のギアによって、レジストレスモーター73の駆動が駆動ローラー74に伝達される。レジストレスモーター73を回転させると、レジストレスローラー対72が回転する。これにより、進入した搬送シートは、レジストレスユニット7のニップを通過してゆく。 The case 71 accommodates the resistless roller pair 72 and the resistless motor 73 . Registrationless roller pair 72 includes a driving roller 74 and a driven roller 75 . The rotation axis of the drive roller 74 and the rotation axis of the driven roller 75 are parallel. The peripheral surface of the driving roller 74 and the peripheral surface of the driven roller 75 are in contact with each other. As shown in FIG. 2, the sheet is conveyed from bottom to top. A conveying sheet enters the nip between the drive roller 74 and the driven roller 75 . Drive of the registrationless motor 73 is transmitted to the drive roller 74 by a plurality of gears. When the registrationless motor 73 is rotated, the registrationless roller pair 72 is rotated. As a result, the conveyed sheet that has entered passes through the nip of the registrationless unit 7 .
 支点軸76(支点、回動軸)が移動板7aに設けられる。支点軸76の一端は移動板7aに固定される。支点軸76は移動板7aの平面に垂直に立つ。支点軸76は、ケース71の主走査方向(シート搬送方向と垂直な方向)の一方側の端部に差し込まれる。支点軸76により、ケース71(レジストレスユニット7の一部)の他方側の端部を振ることができる。ケース71(レジストレスユニット7の一部)を回転させることができる。つまり、図4の実線矢印で示すようにケース71の他方側の端部を、シート搬送方向下流側、又は、上流側にスイングすることができる。 A fulcrum shaft 76 (fulcrum, rotating shaft) is provided on the moving plate 7a. One end of the fulcrum shaft 76 is fixed to the moving plate 7a. The fulcrum shaft 76 stands perpendicular to the plane of the moving plate 7a. The fulcrum shaft 76 is inserted into one end of the case 71 in the main scanning direction (the direction perpendicular to the sheet conveying direction). The fulcrum shaft 76 allows the other end of the case 71 (a part of the registrationless unit 7) to swing. The case 71 (part of the registrationless unit 7) can be rotated. That is, as indicated by the solid line arrow in FIG. 4, the other end of the case 71 can be swung downstream or upstream in the sheet conveying direction.
 レジストレスユニット7は斜行矯正機構7bと位置ずれ補正機構7cを含む。搬送シートの斜行(スキュー)矯正のため、斜行矯正機構7bはケース71の他方側(移動側)を移動させる。斜行矯正機構7bは、矯正用モーター7d、矯正用ベルト7e、矯正用歯面部材7fを含む。 The registrationless unit 7 includes a skew correction mechanism 7b and a misregistration correction mechanism 7c. The skew correcting mechanism 7b moves the other side (moving side) of the case 71 in order to correct the skew of the conveyed sheet. The skew correction mechanism 7b includes a correction motor 7d, a correction belt 7e, and a correction tooth surface member 7f.
 例えば、矯正用モーター7dはステッピングモーターである。矯正用モーター7dは移動板7aに取り付けられる。矯正用モーター7dは正逆両方に回転可能である。矯正用モーター7dのシャフトに第1矯正用ギア7gが設けられる。ケース71のうち、移動板7aと向かい合う面に、矯正用歯面部材7f(ラック歯)が取り付けられる。矯正用歯面部材7fの歯は、シート搬送方向に沿って並ぶ。矯正用歯面部材7fには、第2矯正用ギア7hが噛み合う。矯正用ベルト7eが第1矯正用ギア7gと第2矯正用ギア7hに回しかけられる。矯正用モーター7dを回転させると、第1矯正用ギア7g、矯正用ベルト7e、第2矯正用ギア7hが回転する。その結果、矯正用歯面部材7fが取り付けられたケース71が支点軸76を中心に回転する。 For example, the correction motor 7d is a stepping motor. The correction motor 7d is attached to the moving plate 7a. The correction motor 7d can rotate both forward and backward. A first correction gear 7g is provided on the shaft of the correction motor 7d. A corrective tooth surface member 7f (rack teeth) is attached to the surface of the case 71 facing the moving plate 7a. The teeth of the corrective tooth surface member 7f are arranged along the sheet conveying direction. The second correction gear 7h meshes with the correction tooth surface member 7f. The correction belt 7e is wound around the first correction gear 7g and the second correction gear 7h. When the correction motor 7d is rotated, the first correction gear 7g, the correction belt 7e, and the second correction gear 7h are rotated. As a result, the case 71 to which the corrective tooth surface member 7f is attached rotates about the fulcrum shaft 76. As shown in FIG.
 レジストレスユニット7(ケース71、レジストレスローラー対72)の他方側を、主走査方向と垂直な方向(シート搬送方向)で移動させることができる。斜行矯正機構7bによるレジストレスユニット7(ケース71)の他方側端部の移動量は、第1ホームポジション(第1基準位置)を中心に、搬送方向上流側に数mm~5mm程度、下流側に数mm~5mm程度でよい。第1ホームポジションの詳細は、後述する。 The other side of the registrationless unit 7 (case 71, registrationless roller pair 72) can be moved in a direction (sheet conveying direction) perpendicular to the main scanning direction. The amount of movement of the other end of the registrationless unit 7 (case 71) by the skew correction mechanism 7b is about several mm to 5 mm upstream in the transport direction and about 5 mm downstream, centering on the first home position (first reference position). It may be several mm to 5 mm on the side. Details of the first home position will be described later.
 位置ずれ補正機構7cは、ずれ補正用モーター7iを含む。例えば、ずれ補正用モーター7iはステッピングモーターである。ずれ補正用モーター7iは移動板7aに取り付けられる。ずれ補正用モーター7iは正逆両方に回転可能である。ずれ補正用モーター7iのシャフトには、ずれ補正用ギア7jが設けられる。ずれ補正用ギア7jは、移動板7aの端縁に形成された補正用歯面部材7k(ラック歯)と噛み合う。ずれ補正用モーター7iを回転させると、ずれ補正用モーター7i、ずれ補正用ギア7jが回転する。 The positional deviation correction mechanism 7c includes a deviation correction motor 7i. For example, the deviation correction motor 7i is a stepping motor. The displacement correction motor 7i is attached to the moving plate 7a. The deviation correction motor 7i can rotate both forward and backward. A shift correction gear 7j is provided on the shaft of the shift correction motor 7i. The shift correction gear 7j meshes with a correction tooth surface member 7k (rack teeth) formed on the edge of the moving plate 7a. When the deviation correction motor 7i is rotated, the deviation correction motor 7i and the deviation correction gear 7j are rotated.
 その結果、レジストレスユニット7(移動板7aとケース71)が主走査方向で移動する。主走査方向の搬送シートのずれ量は、最大数ミリ程度である。位置ずれ補正機構7cによるレジストレスユニット7の主走査方向での移動範囲は、第2ホームポジション(第2基準位置)を中心に、主走査方向の一方側に数mm~5mm程度、他方側に数mm~5mm程度でよい。例えば、位置ずれ補正機構7cは、第2ホームポジションを中心に、レジストレスユニット7を一方側と他方側のそれぞれに2mm移動させ得る。 As a result, the registrationless unit 7 (moving plate 7a and case 71) moves in the main scanning direction. The displacement amount of the conveying sheet in the main scanning direction is about several millimeters at maximum. The movement range of the registrationless unit 7 in the main scanning direction by the positional deviation correction mechanism 7c is about several mm to 5 mm on one side in the main scanning direction and about 5 mm on the other side around the second home position (second reference position). It may be several mm to 5 mm. For example, the positional deviation correction mechanism 7c can move the registrationless unit 7 by 2 mm to each of the one side and the other side around the second home position.
 次に、第1ホームポジションについて説明する。第1ホームポジションは、レジストレスローラー対72の軸方向と主走査方向とが平行となるケース71の位置(角度)である。第1ホームポジションのとき、搬送シートは、シート搬送方向と平行かつ主走査方向と垂直な方向に送られる。そして、第1ホームセンサー9aが設けられる。第1ホームセンサー9aは、ケース71(レジストレスユニット7)の回転方向での位置を、第1ホームポジションにあわせるためのセンサーである。 Next, the first home position will be explained. The first home position is the position (angle) of the case 71 at which the axial direction of the registrationless roller pair 72 and the main scanning direction are parallel. At the first home position, the conveyed sheet is fed in a direction parallel to the sheet conveying direction and perpendicular to the main scanning direction. A first home sensor 9a is provided. The first home sensor 9a is a sensor for adjusting the position of the case 71 (registrationless unit 7) in the rotational direction to the first home position.
 例えば、透過型光センサーを第1ホームセンサー9aとして用いることができる。この場合、第1ホームセンサー9aは、発光素子と受光素子を含む。発光素子の発光面と受光素子の受光面の間には、隙間が設けられる。受光素子の出力レベル(出力電圧値)は、発光素子から受ける光の量で変化する。レジストレスユニット7(ケース71)には、検知用突起71aが設けられる。図6及び図7は、ケース71の主走査方向の他方側(移動側)の端部に検知用突起71aを設ける例を示す。検知用突起71aと向かい合う位置に第1ホームセンサー9aが設けられる。レジストレスユニット7(ケース71)を回転させたとき、検知用突起71aは第1ホームセンサー9aの隙間を通過する。隙間に進入した検知用突起71aは、発光素子から受光素子への光路を遮る。 For example, a transmissive optical sensor can be used as the first home sensor 9a. In this case, the first home sensor 9a includes a light emitting element and a light receiving element. A gap is provided between the light emitting surface of the light emitting element and the light receiving surface of the light receiving element. The output level (output voltage value) of the light receiving element changes depending on the amount of light received from the light emitting element. The registrationless unit 7 (case 71) is provided with a detection projection 71a. 6 and 7 show an example in which a detection protrusion 71a is provided at the end of the case 71 on the other side (moving side) in the main scanning direction. A first home sensor 9a is provided at a position facing the detection protrusion 71a. When the registrationless unit 7 (case 71) is rotated, the detection protrusion 71a passes through the gap of the first home sensor 9a. The detection protrusion 71a that has entered the gap blocks the optical path from the light emitting element to the light receiving element.
 第1ホームセンサー9a(受光素子)の出力は、ユニット制御回路9に入力される。ユニット制御回路9は、第1ホームセンサー9a(受光素子)の出力レベルを認識する。矯正用モーター7dを動作させ、第1ホームセンサー9aの出力レベルが検知用突起71aを検知したときのレベルになった時点に基づき、ユニット制御回路9は、レジストレスユニット7(ケース71)を第1ホームポジションとする。 The output of the first home sensor 9a (light receiving element) is input to the unit control circuit 9. The unit control circuit 9 recognizes the output level of the first home sensor 9a (light receiving element). When the correction motor 7d is operated and the output level of the first home sensor 9a reaches the level when the detection protrusion 71a is detected, the unit control circuit 9 causes the registrationless unit 7 (case 71) to move to the first position. 1 home position.
 ここで、図2に示すように、レジストレスユニット7は、下から上にシートが抜けるように設置される。そのため、矯正用モーター7dを励磁していないとき、ケース71は、主走査方向の他方側は自重で下がる。ケース71を第1ホームポジションで維持するとき、ユニット制御回路9は、矯正用モーター7dを励磁する。これにより、レジストレスユニット7(ケース71)の位置が維持される。例えば、主電源投入により複合機100が起動したとき、省電力モードが解除されてアクティブモード(通常モード)に復帰したとき、ユニット制御回路9は、レジストレスユニット7(ケース71)を第1ホームポジションとする。 Here, as shown in FIG. 2, the registrationless unit 7 is installed so that the sheet can be removed from the bottom to the top. Therefore, when the correction motor 7d is not excited, the case 71 is lowered by its own weight on the other side in the main scanning direction. When maintaining the case 71 at the first home position, the unit control circuit 9 excites the correction motor 7d. Thereby, the position of the registrationless unit 7 (case 71) is maintained. For example, when the MFP 100 is activated by turning on the main power supply, or when the power saving mode is canceled and the active mode (normal mode) is restored, the unit control circuit 9 causes the registrationless unit 7 (case 71) to move to the first home state. position.
 例えば、第1ホームポジションに合わせるとき、ユニット制御回路9は、ケース71が垂れ下がった状態から矯正用モーター7dを逆回転させ、ケース71を持ち上げる。第1ホームセンサー9aの出力レベルが検知用突起71aを検知したときのレベルになった時点で、ユニット制御回路9は、矯正用モーター7dの回転を停止させ、その後、正回転させる。所定パルス分、矯正用モーター7dを正回転させた後、ユニット制御回路9は、矯正用モーター7dを停止させる。停止したとき、レジストレスユニット7(ケース71)が第1ホームポジションとなる。 For example, when adjusting to the first home position, the unit control circuit 9 reversely rotates the correction motor 7d from the hanging state of the case 71 to lift the case 71 up. When the output level of the first home sensor 9a reaches the level when the detection protrusion 71a is detected, the unit control circuit 9 stops the rotation of the correction motor 7d, and then rotates it forward. After forward rotation of the correction motor 7d for a predetermined number of pulses, the unit control circuit 9 stops the correction motor 7d. When stopped, the registrationless unit 7 (case 71) becomes the first home position.
 レジストレスユニット7を主走査方向で移動させることもできる。そのため、第2ホームポジションも予め定められる。第2ホームポジションは移動板7a(レジストレスユニット7)の主走査方向でのホームポジションである。例えば、レジストレスユニット7(移動板7a)の主走査方向の移動範囲の中央位置を、第2ホームポジションとすることができる。第2ホームポジションは、レジストレスユニット7(移動板7a)を主走査方向の一方側に移動でき、他方側にも移動できる位置である。 The registrationless unit 7 can also be moved in the main scanning direction. Therefore, the second home position is also predetermined. The second home position is the home position of the moving plate 7a (registrationless unit 7) in the main scanning direction. For example, the center position of the moving range of the registrationless unit 7 (moving plate 7a) in the main scanning direction can be set as the second home position. The second home position is a position where the registrationless unit 7 (moving plate 7a) can be moved to one side in the main scanning direction and also to the other side.
 レジストレスユニット7(移動板7a)を第2ホームポジションとするため、第2ホームセンサー9bが設けられる。移動板7aの主走査方向の他方側の端に、第2ホームセンサー9bを設けることができる(一方側の端でもよい)。 A second home sensor 9b is provided to set the registrationless unit 7 (moving plate 7a) to the second home position. A second home sensor 9b can be provided at the other end of the moving plate 7a in the main scanning direction (it may be at one end).
 例えば、透過型光センサーを第2ホームセンサー9bとして用いることができる。この場合、第2ホームセンサー9bは、発光素子と受光素子を含む。発光素子の発光面と受光素子の受光面の間には、隙間が設けられる。受光素子の出力レベル(出力電圧値)は、発光素子から受ける光の量で変化する。 For example, a transmissive optical sensor can be used as the second home sensor 9b. In this case, the second home sensor 9b includes a light emitting element and a light receiving element. A gap is provided between the light emitting surface of the light emitting element and the light receiving surface of the light receiving element. The output level (output voltage value) of the light receiving element changes depending on the amount of light received from the light emitting element.
 第2ホームセンサー9bは、レジストレスユニット7が最も他方側に移動したときに、移動板7aの他方側の端が隙間に進入する位置に設けられる。第2ホームセンサー9bは、レジストレスユニット7(移動板7a)が主走査方向で最も他方側まで移動したことを検知するためのセンサーである。 The second home sensor 9b is provided at a position where the other end of the moving plate 7a enters the gap when the registrationless unit 7 moves to the othermost side. The second home sensor 9b is a sensor for detecting that the registrationless unit 7 (moving plate 7a) has moved to the othermost side in the main scanning direction.
 第2ホームセンサー9b(受光素子)の出力は、ユニット制御回路9に入力される。ユニット制御回路9は、第2ホームセンサー9b(受光素子)の出力レベルを認識する。レジストレスユニット7(移動板7a)を第2ホームポジションとするとき、ユニット制御回路9は、ずれ補正用モーター7iを動作させ、移動板7aを主走査方向の他方側に移動させる。第2ホームセンサー9bの出力レベルが移動板7aの主走査方向の端を検知したときのレベルになったとき、ユニット制御回路9は、所定の距離だけレジストレスユニット7(移動板7a)を主走査方向の移動範囲の中央位置に向けて主走査方向の一方側に移動させる。 The output of the second home sensor 9b (light receiving element) is input to the unit control circuit 9. The unit control circuit 9 recognizes the output level of the second home sensor 9b (light receiving element). When the registrationless unit 7 (moving plate 7a) is set to the second home position, the unit control circuit 9 operates the displacement correction motor 7i to move the moving plate 7a to the other side in the main scanning direction. When the output level of the second home sensor 9b reaches the level when the end of the moving plate 7a in the main scanning direction is detected, the unit control circuit 9 moves the registrationless unit 7 (moving plate 7a) to the main position by a predetermined distance. It is moved to one side in the main scanning direction toward the central position of the moving range in the scanning direction.
(信号処理部91)
 次に、図9、図10を用いて、実施形態にかかる信号処理部91の一例を説明する。図9、図10は実施形態に係る信号処理部91の一例を説明する図である。
(Signal processing unit 91)
Next, an example of the signal processing unit 91 according to the embodiment will be described with reference to FIGS. 9 and 10. FIG. 9 and 10 are diagrams illustrating an example of the signal processing unit 91 according to the embodiment.
 複合機100は信号処理部91を含む。信号処理部91は、ラインセンサー8(各分割ラインセンサー80)が出力するアナログ画像信号A1を処理する。具体的に、信号処理部91は、各分割ラインセンサー80が出力するアナログ画像信号A1を処理、変換し、搬送シート画像データB1を生成する。搬送シート画像データB1の各画素の値は、シート読取ユニット6に向かい合う搬送シートを読み取ったか否かを示す。また、信号処理部91は、1ラインごとに画像データの各画素についてカウントする。 The multi-function device 100 includes a signal processing section 91. The signal processing unit 91 processes the analog image signal A1 output by the line sensor 8 (each divided line sensor 80). Specifically, the signal processing section 91 processes and converts the analog image signal A1 output from each division line sensor 80 to generate the conveying sheet image data B1. The value of each pixel of the conveyed sheet image data B1 indicates whether or not the conveyed sheet facing the sheet reading unit 6 has been read. Also, the signal processing unit 91 counts each pixel of the image data for each line.
 信号処理部91は、二値化回路92とカウント回路93を含む。二値化回路92は参照電圧及びアナログ画像信号A1が入力される。参照電圧とアナログ画像信号A1に基づき、二値化回路92は、アナログ画像信号A1を二値化する。搬送シート画像データB1は、2値化回路が各画素アナログ画像信号A1を2値化信号に変換して得られたデータである。二値化回路92が、搬送シート画像データB1を生成する。例えば、二値化回路92は、コンパレーター(比較回路)である。例えば、コンパレーターのプラス入力端子にアナログ画像信号A1が入力される。コンパレーターのマイナス入力端子に参照電圧が入力される。 The signal processing unit 91 includes a binarization circuit 92 and a count circuit 93 . A binarization circuit 92 receives the reference voltage and the analog image signal A1. Based on the reference voltage and the analog image signal A1, the binarization circuit 92 binarizes the analog image signal A1. The conveyed sheet image data B1 is data obtained by converting each pixel analog image signal A1 into a binary signal by a binarization circuit. A binarization circuit 92 generates conveying sheet image data B1. For example, the binarization circuit 92 is a comparator (comparison circuit). For example, the analog image signal A1 is input to the plus input terminal of the comparator. A reference voltage is input to the negative input terminal of the comparator.
 なお、信号処理部91は、分割ラインセンサー80ごとに設けられる。図10は、複数の信号処理部のうちの1つを示す。それぞれの信号処理部91の回路構成は同じでよい。第1分割ラインセンサー81の各画素アナログ画像信号A1が1つめの二値化回路92に入力される。第2分割ラインセンサー82の各画素アナログ画像信号A1が2つめの二値化回路92に入力される。第3分割ラインセンサー83の各画素アナログ画像信号A1が3つめの二値化回路92に入力される。その結果、分割ラインセンサー80ごとに、搬送シート画像データB1が生成される。本説明に係る複合機100では、信号処理部91は、3つ設けられる。 Note that the signal processing unit 91 is provided for each divided line sensor 80 . FIG. 10 shows one of a plurality of signal processing units. The circuit configuration of each signal processing unit 91 may be the same. Each pixel analog image signal A1 of the first divided line sensor 81 is input to the first binarization circuit 92 . Each pixel analog image signal A1 of the second split line sensor 82 is input to the second binarization circuit 92 . Each pixel analog image signal A1 of the third divided line sensor 83 is input to the third binarization circuit 92. As shown in FIG. As a result, conveyed sheet image data B1 is generated for each divided line sensor 80 . In the MFP 100 according to this description, three signal processing units 91 are provided.
 搬送シートを読み取った受光素子(画素)のアナログ画像信号A1の電圧値は大きくなる。アナログ画像信号A1の電圧値が大きいほど、読み取ったものが明るい(白い、色が薄い)ことを示す。反対に、搬送シートがない部分、又は、受けたシートの反射光が少ないアナログ画像信号A1の電圧値は小さくなる。搬送シートを読み取った画素アナログ画像信号A1の電圧値は、搬送シートを読み取っていない画素アナログ画像信号A1の電圧値よりも大きくなる。 The voltage value of the analog image signal A1 of the light receiving element (pixel) that read the conveying sheet increases. The larger the voltage value of the analog image signal A1, the brighter the read (whiter, lighter color). On the contrary, the voltage value of the analog image signal A1 becomes small in the portion where there is no conveying sheet or the reflected light of the received sheet is small. The voltage value of the pixel analog image signal A1 that has read the conveying sheet is higher than the voltage value of the pixel analog image signal A1 that has not read the conveying sheet.
 アナログ画像信号A1の電圧値が参照電圧よりも大きいとき、二値化回路92(2値化回路)は第1レベルの搬送シート画像データB1を出力する。第1レベルは、シートを読み取ったことを示す。アナログ画像信号A1の電圧値が参照電圧以下のとき、二値化回路92(2値化回路)は第2レベルの搬送シート画像データB1を出力する。第2レベルはシートを読み取っていないことを示す。搬送シート画像データB1は、1画素1ビットのモノクロ画像データである。 When the voltage value of the analog image signal A1 is higher than the reference voltage, the binarization circuit 92 (binarization circuit) outputs first level conveyed sheet image data B1. The first level indicates that the sheet has been read. When the voltage value of the analog image signal A1 is equal to or lower than the reference voltage, the binarization circuit 92 (binarization circuit) outputs conveyed sheet image data B1 of the second level. The second level indicates that the sheet has not been read. The conveying sheet image data B1 is monochrome image data of 1 bit per pixel.
 図10に示すように、信号処理部91は、参照電圧生成回路94も含む。参照電圧生成回路94は第1抵抗R1、コンデンサーC、第2抵抗R2を含む。第1抵抗R1の一端は、ユニット制御回路9と接続される。第1抵抗R1の他端は、コンデンサーCの一端及び第2抵抗R2の一端と接続される。コンデンサーCの他端はグランドと接続される。第2抵抗R2の他端は二値化回路92のマイナス入力端子に接続される。例えば、ユニット制御回路9は、PWM信号を入力する。コンデンサーCが平滑化した電圧が、参照電圧として、二値化回路92のマイナス入力端子に入力される。 As shown in FIG. 10, the signal processing section 91 also includes a reference voltage generation circuit 94. The reference voltage generation circuit 94 includes a first resistor R1, a capacitor C, and a second resistor R2. One end of the first resistor R1 is connected to the unit control circuit 9 . The other end of the first resistor R1 is connected to one end of the capacitor C and one end of the second resistor R2. The other end of capacitor C is connected to ground. The other end of the second resistor R2 is connected to the negative input terminal of the binarization circuit 92. For example, the unit control circuit 9 inputs a PWM signal. The voltage smoothed by the capacitor C is input to the negative input terminal of the binarization circuit 92 as a reference voltage.
 二値化回路92(コンパレーター)はアナログ画像信号A1の2値化を行う。アナログ画像信号A1の電圧値が参照電圧よりも大きいとき、二値化回路92は第1レベルの搬送シート画像データB1を出力する。この場合、第1レベルはHighレベルである。用紙の反射光を多く受けた受光素子のアナログ画像信号A1は、Highレベルとなる。一方、アナログ画像信号A1の電圧値が参照電圧以下のとき、二値化回路92は第2レベルの搬送シート画像データB1を出力する。この場合、第2レベルはLowレベルである。用紙の反射光を受けていない受光素子のアナログ画像信号A1は、Lowレベルとなる。 The binarization circuit 92 (comparator) binarizes the analog image signal A1. When the voltage value of the analog image signal A1 is higher than the reference voltage, the binarization circuit 92 outputs first level conveyed sheet image data B1. In this case, the first level is High level. The analog image signal A1 of the light-receiving element that has received a large amount of reflected light from the paper becomes High level. On the other hand, when the voltage value of the analog image signal A1 is equal to or lower than the reference voltage, the binarization circuit 92 outputs conveyed sheet image data B1 of the second level. In this case, the second level is the Low level. The analog image signal A1 of the light-receiving element that has not received the reflected light from the paper becomes Low level.
 各二値化回路92の出力は、ユニット制御回路9に入力される。ユニット制御回路9には、各二値化回路92が生成した二値の画像データ(モノクロ画像データ、搬送シート画像データB1)が入力される。ユニット制御回路9は、各分割ラインセンサー80の何番目の画素が第1レベルであり、各分割ラインセンサー80の何番目の画素が第2レベルであるかを認識できる。ユニット制御回路9は、第1レベルの画素と第2レベルの画素の境界をエッジの位置と判定する。また、搬送シート画像データB1に基づき、例えば、ユニット制御回路9は、搬送シートの傾きの方向と傾き角度を認識する(求める)こともできる(詳細は後述)。 The output of each binarization circuit 92 is input to the unit control circuit 9. Binary image data (monochrome image data, conveying sheet image data B1) generated by each binarization circuit 92 is input to the unit control circuit 9 . The unit control circuit 9 can recognize which pixel of each divided line sensor 80 is at the first level and which pixel of each divided line sensor 80 is at the second level. The unit control circuit 9 determines the boundary between the pixels of the first level and the pixels of the second level as the position of the edge. Further, based on the conveyed sheet image data B1, for example, the unit control circuit 9 can also recognize (determine) the tilt direction and tilt angle of the conveyed sheet (details will be described later).
 また、搬送シート画像データB1は、カウント回路93に入力される。例えば、カウント回路93は、複数の論理回路を用いた回路(ロジックフィルター回路)である。ユニット制御回路9は、閾値を示す信号(閾値設定信号E1)を入力する。閾値設定信号E1は閾値を設定するための信号である。 In addition, the conveyed sheet image data B1 is input to the count circuit 93 . For example, the count circuit 93 is a circuit (logic filter circuit) using a plurality of logic circuits. The unit control circuit 9 inputs a signal (threshold setting signal E1) indicating a threshold. A threshold setting signal E1 is a signal for setting a threshold.
 カウント回路93は検知結果信号C1を出力する。また、カウント回路93は、1走査の期間中の第1レベルの画素が連続した個数(連続数)をカウントする。カウント値が閾値以上になったとき(連続数が閾値以上になったとき)、カウント回路93は、検知結果信号C1を、シートありを示すレベルとする(例えば、Highレベル)。連続数が閾値未満の間、カウント回路93は、検知結果信号C1を、シートなしを示すレベルとする(例えば、Lowレベル)。なお、1走査の期間中、第2レベルの画素が現れたとき、カウント回路93はカウント値をリセットしてもよい。 The count circuit 93 outputs the detection result signal C1. In addition, the count circuit 93 counts the number of continuous first level pixels (continuous number) during one scanning period. When the count value becomes equal to or greater than the threshold (when the number of consecutive sheets becomes equal to or greater than the threshold), the count circuit 93 sets the detection result signal C1 to a level indicating presence of a sheet (for example, High level). While the number of continuations is less than the threshold, the count circuit 93 keeps the detection result signal C1 at a level indicating no sheet (for example, Low level). Note that the count circuit 93 may reset the count value when a pixel of the second level appears during one scanning period.
 検知結果信号C1はユニット制御回路9に入力される。ユニット制御回路9は、検知結果信号C1のレベルを監視する。例えば、検知結果信号C1のレベルがシートありを示すレベルになったとき、ユニット制御回路9は、シートの先端がラインセンサー8に到達したと判定(認識)する。また、カウント回路93にはトリガー信号TRが入力される。トリガー信号TRが立ち上がる、又は、立ち下がると、カウント回路93はカウント値をリセットし、カウント値をゼロにする。 The detection result signal C1 is input to the unit control circuit 9. The unit control circuit 9 monitors the level of the detection result signal C1. For example, the unit control circuit 9 determines (recognizes) that the leading edge of the sheet has reached the line sensor 8 when the level of the detection result signal C1 reaches a level indicating that there is a sheet. A trigger signal TR is also input to the count circuit 93 . When the trigger signal TR rises or falls, the count circuit 93 resets the count value to zero.
 ノイズによって一時的にアナログ画像信号A1が大きくなることがある。検知結果信号C1に基づいて判定することにより、ノイズの影響で一時的に、一部の受光素子のアナログ画像信号A1の電圧値が大きくなっても、ユニット制御回路9は、シートが到達したと誤判定しない。 The noise may temporarily increase the analog image signal A1. By making a determination based on the detection result signal C1, even if the voltage value of the analog image signal A1 of some of the light receiving elements temporarily increases due to noise, the unit control circuit 9 determines that the sheet has arrived. Don't misjudge.
(搬送シートの傾き角度の認識)
 次に、搬送シート画像データB1に基づく搬送シートの傾き角度の認識の一例を説明する。まず、信号処理部91(カウント回路93)は、分割ラインセンサー80ごとに設けられる。ユニット制御回路9は、あるカウント回路93の検知結果信号C1のレベルがシートありを示すレベルになってから、次に、別のカウント回路93の検知結果信号C1のレベルがシートありを示すレベルになるまでの時間を計る。例えば、ユニット制御回路9は、主走査方向で隣り合う分割ラインセンサー80と接続された2つのカウント回路93の検知結果信号C1を監視する。以下では、ユニット制御回路9が測るこの時間を計測時間と称する。
(Recognition of Inclination Angle of Conveying Sheet)
Next, an example of recognizing the inclination angle of the conveying sheet based on the conveying sheet image data B1 will be described. First, the signal processing section 91 (counting circuit 93 ) is provided for each divided line sensor 80 . After the level of the detection result signal C1 of a certain count circuit 93 reaches the level indicating that there is a sheet, the unit control circuit 9 sets the level of the detection result signal C1 of another count circuit 93 to the level indicating that there is a sheet. measure the time until For example, the unit control circuit 9 monitors the detection result signals C1 of the two count circuits 93 connected to the split line sensors 80 adjacent in the main scanning direction. Hereinafter, this time measured by the unit control circuit 9 is referred to as measurement time.
(1)複数の検知結果信号C1が同時にシートありを示すレベルになったとき、ユニット制御回路9は、傾き角度がゼロと判定する。
(2)2つの検知結果信号C1において、シートありを示すレベルになった時点が異なるとき、ユニット制御回路9は、傾き角度がゼロではないと判定する。
 (a)傾きの方向について
 ある分割ラインセンサー80に接続されたカウント回路93の検知結果信号C1のレベルがシートありを示すレベルになり、次に、主走査方向で他方側の分割ラインセンサー80に接続されたカウント回路93の検知結果信号C1の方がシートありを示すレベルになったとき、ユニット制御回路9は、搬送シートの主走査方向の一方側の隅が下流側に突出する方向で傾いていると認識する。ある分割ラインセンサー80に接続されたカウント回路93の検知結果信号C1のレベルがシートありを示すレベルになり、次に、主走査方向で一方側の分割ラインセンサー80に接続されたカウント回路93の検知結果信号C1の方がシートありを示すレベルになったとき、ユニット制御回路9は、搬送シートの主走査方向の他方側の隅が下流側に突出する方向で傾いていると認識する。
 (b)傾き角度について
 搬送シートが傾いているとき、ユニット制御回路9は、アークタンジェント(tan-1)の演算を行って、傾き角度を求めてもよい。具体的に、ユニット制御回路9は、以下の演算を行ってもよい。
 傾き角度=tan-1(a/b)
 ここで、aは計測時間中のシートの搬送距離である。例えば、ユニット制御回路9は、計測時間に、単位時間あたりのシート搬送速度を乗じて、aを求める。bは2つの分割ラインセンサー80の主走査方向の距離である。分割ラインセンサー801本分の長さがbとされてもよい。また、計測時間を計測に用いた2つの分割ラインセンサー80について、主走査方向の中心点同士の距離がbとされてもよい。
(1) The unit control circuit 9 determines that the tilt angle is zero when a plurality of detection result signals C1 simultaneously reach a level indicating that there is a sheet.
(2) The unit control circuit 9 determines that the tilt angle is not zero when the two detection result signals C1 reach a level indicating that there is a sheet at different times.
(a) Direction of Inclination The level of the detection result signal C1 of the count circuit 93 connected to a given divisional line sensor 80 becomes the level indicating the presence of a sheet, and then the divisional line sensor 80 on the other side in the main scanning direction When the detection result signal C1 of the connected count circuit 93 reaches the level indicating the presence of a sheet, the unit control circuit 9 tilts the conveyed sheet so that one corner in the main scanning direction protrudes downstream. recognize that The level of the detection result signal C1 of the count circuit 93 connected to a certain division line sensor 80 becomes the level indicating the existence of the sheet, and then the count circuit 93 connected to the division line sensor 80 on one side in the main scanning direction is turned on. When the detection result signal C1 reaches a level indicating that there is a sheet, the unit control circuit 9 recognizes that the corner of the conveyed sheet on the other side in the main scanning direction is tilted in a direction protruding downstream.
(b) Inclination Angle When the conveying sheet is inclined, the unit control circuit 9 may calculate the arc tangent (tan −1 ) to obtain the inclination angle. Specifically, the unit control circuit 9 may perform the following calculations.
Inclination angle = tan -1 (a/b)
Here, a is the conveying distance of the sheet during the measurement time. For example, the unit control circuit 9 multiplies the measured time by the sheet conveying speed per unit time to obtain a. b is the distance between the two split line sensors 80 in the main scanning direction. The length of the divided line sensor 801 may be set to b. Also, the distance between the center points in the main scanning direction of the two divided line sensors 80 used to measure the measurement time may be set to b.
 (c)傾きの矯正について
 印刷ジョブのとき、シートがレジストレスユニット7(レジストレスローラー対72)に進入する前に、ユニット制御回路9は、ホームポジションから矯正位置への移動を完了させてもよい。
(c) Correction of Skew During a print job, before the sheet enters the registrationless unit 7 (registrationless roller pair 72), the unit control circuit 9 completes movement from the home position to the correction position. good.
 シートの主走査方向の一方側(支点軸76側)の隅が搬送方向下流側に突出している場合には、搬送シートの先端到達前、ユニット制御回路9は、レジストレスユニット7(ケース71)の他方側(移動側)の端部をシート搬送方向上流側に移動させる。第1ホームポジションから傾き角度と同じ角度だけレジストレスユニット7を移動(回動)させた位置が矯正位置である。 When the corner of the sheet on one side in the main scanning direction (on the fulcrum shaft 76 side) protrudes downstream in the conveying direction, the unit control circuit 9 controls the registrationless unit 7 (case 71) before the leading edge of the conveyed sheet reaches. is moved to the upstream side in the sheet conveying direction. The correction position is the position where the registrationless unit 7 is moved (rotated) by the same angle as the tilt angle from the first home position.
 主走査方向の他方側(移動側)の隅が搬送方向下流側に突出している場合には、搬送シートの先端到達前、ユニット制御回路9は、レジストレスユニット7(ケース71)の他方側の端部をシート搬送方向下流側に移動させる。第1ホームポジションから傾き角度と同じ角度だけレジストレスユニット7を移動(回動)させた位置が矯正位置である。 When the corner on the other side (moving side) in the main scanning direction protrudes downstream in the conveying direction, the unit control circuit 9 controls the other side of the registrationless unit 7 (case 71) before the leading edge of the conveyed sheet reaches. The end portion is moved downstream in the sheet conveying direction. The correction position is the position where the registrationless unit 7 is moved (rotated) by the same angle as the tilt angle from the first home position.
 搬送シートがレジストレスローラー対72に進入すると、ユニット制御回路9は、レジストレスユニット7(ケース71)を矯正位置から第1ホームポジションに移動させる(戻す)。搬送シートが2次転写ニップ5nに到達する前に、ユニット制御回路9は、第1ホームポジションへの移動を完了させる。各ホームポジションへの復帰によって、シート搬送を続けつつ、搬送シートの斜行を正すことができる。 When the conveyed sheet enters the registrationless roller pair 72, the unit control circuit 9 moves (returns) the registrationless unit 7 (case 71) from the correction position to the first home position. The unit control circuit 9 completes the movement to the first home position before the conveying sheet reaches the secondary transfer nip 5n. By returning to each home position, it is possible to correct the skew of the conveyed sheet while continuing to convey the sheet.
(搬送シートの主走査方向の位置ずれ量の認識)
 次に、搬送シート画像データB1に基づく搬送シートの主走査方向の位置ずれ量の認識の一例を説明する。中央通紙がなされるので、シートサイズごとに、シートのエッジ(主走査方向の端縁)が通過する理想的な位置は決まっている。言い換えると、搬送シートの位置が主走査方向にずれていない場合、シート端を読み取る画素の位置は決まっている。記憶部2は、各シートのサイズにおいて、主走査方向にずれていないときのシート端の画素の位置を定義したデータ(ずれ量認識用データD1)を記憶する(図1参照)。
(Recognition of Positional Deviation Amount of Conveying Sheet in Main Scanning Direction)
Next, an example of recognizing the positional deviation amount of the conveying sheet in the main scanning direction based on the conveying sheet image data B1 will be described. Since central feeding is performed, the ideal position through which the edge of the sheet (the edge in the main scanning direction) passes is determined for each sheet size. In other words, when the position of the conveying sheet is not shifted in the main scanning direction, the positions of the pixels for reading the edge of the sheet are determined. The storage unit 2 stores data (misalignment amount recognition data D1) defining the positions of pixels at the sheet edges when there is no misalignment in the main scanning direction for each sheet size (see FIG. 1).
 ユニット制御回路9は、搬送シート画像データB1のうち、第1レベルの画素のうち、主走査方向で最も端(最も一方側)の画素の位置を実エッジ位置として求める。実エッジ位置とは、主走査方向での、搬送シートの実際の端の位置である。言い換えると、実エッジ位置は、搬送シートの最も端の低濃度画素(アナログ画像信号A1が参照電圧以下の画素)の位置である。ユニット制御回路9は、ずれ量認識用データD1で定義された位置に対し、実エッジ位置がどの方向に何画素ずれているかを認識する。ユニット制御回路9は、ずれ方向(主走査方向の一方側と他方側のいずれにずれているか)を認識できる。また。ユニット制御回路9は、ずれの画素数に搬送シート画像データB1の1画素のピッチを乗じて、主走査方向のずれ量を求める。 The unit control circuit 9 obtains the position of the pixel at the end (most side) in the main scanning direction among the first level pixels in the conveying sheet image data B1 as the actual edge position. The actual edge position is the position of the actual edge of the conveying sheet in the main scanning direction. In other words, the actual edge position is the position of the low-density pixel (the pixel whose analog image signal A1 is equal to or lower than the reference voltage) at the edge of the conveying sheet. The unit control circuit 9 recognizes in which direction and by how many pixels the actual edge position is shifted from the position defined by the shift amount recognition data D1. The unit control circuit 9 can recognize the deviation direction (either one side or the other side in the main scanning direction). Also. The unit control circuit 9 multiplies the number of pixels of deviation by the pitch of one pixel of the conveyed sheet image data B1 to obtain the amount of deviation in the main scanning direction.
(1)主走査方向の一方側(支点軸76側)にシートの位置がずれている場合
 搬送シートの先端到達前に、ユニット制御回路9は、レジストレスユニット7(移動板7a)を主走査方向の一方側に、認識したずれ量だけ移動させる。
(1) When the position of the sheet is shifted to one side (fulcrum shaft 76 side) in the main scanning direction Before the conveyed sheet reaches the leading edge, the unit control circuit 9 moves the registrationless unit 7 (moving plate 7a) to the main scanning direction. Move to one side of the direction by the recognized displacement amount.
(2)主走査方向の他方側(移動側)にシートの位置がずれている場合
 搬送シートの先端到達前に、ユニット制御回路9は、レジストレスユニット7(移動板7a)を主走査方向の他方側に、認識したずれ量だけ移動させる。
(2) When the position of the sheet is shifted to the other side (moving side) in the main scanning direction Before the leading edge of the conveyed sheet reaches, the unit control circuit 9 moves the registrationless unit 7 (moving plate 7a) in the main scanning direction. It is moved to the other side by the recognized deviation amount.
 移動板7aの移動後、搬送シートがレジストレスローラー対72に進入すると、ユニット制御回路9は、レジストレスユニット7(ケース71)を矯正位置から第2ホームポジションに移動させる。搬送シートが2次転写ニップ5nに到達する前に、ユニット制御回路9は、第2ホームポジションへの移動を完了させる。第2ホームポジションへの復帰によって、シート搬送を続けつつ、主走査方向の位置ずれを正すことができる。 After the movement of the moving plate 7a, when the transport sheet enters the registrationless roller pair 72, the unit control circuit 9 moves the registrationless unit 7 (case 71) from the correction position to the second home position. The unit control circuit 9 completes the movement to the second home position before the conveying sheet reaches the secondary transfer nip 5n. By returning to the second home position, it is possible to correct the misalignment in the main scanning direction while continuing to convey the sheet.
(シート読み取りの準備処理)
 次に、図11を用いて、実施形態に係るシート読取ユニット6の準備処理の一例を説明する。図11は実施形態に係るシート読取ユニット6の準備処理の一例を示す図である。
(Preparation processing for sheet reading)
Next, an example of preparation processing of the sheet reading unit 6 according to the embodiment will be described with reference to FIG. 11 . FIG. 11 is a diagram showing an example of preparation processing of the sheet reading unit 6 according to the embodiment.
 光を透過するシートに印刷することがある。例えば、光を透過するシートには、例えば、ОHPシート、シルクスクリーンシート、及び、バックライトフィルムなどがある。このような光を透過し、半透明な樹脂製のシートを、以下では、透光性フィルムと称する。透光性フィルムを搬送する場合、シートのエッジ検出が難しい場合がある。そのため、傾き角度や主走査方向でのずれ量を正しく認識できないことがある。その結果、透光性フィルムを搬送する場合、レジストレスユニット7を正しく動作出来ない可能性がある。傾き、ずれを適切に補正できない可能性がある。場合によっては、傾き及びずれの何れか一方、又は、両方が強くなる可能性もある。 Sometimes printed on a sheet that allows light to pass through. For example, light-transmitting sheets include OHP sheets, silk screen sheets, and backlight films. Such a translucent resin sheet that transmits light is hereinafter referred to as a translucent film. When conveying a translucent film, it may be difficult to detect the edge of the sheet. Therefore, it may not be possible to correctly recognize the tilt angle and the amount of deviation in the main scanning direction. As a result, there is a possibility that the registrationless unit 7 cannot operate correctly when transporting a translucent film. Tilt and misalignment may not be properly corrected. Depending on the case, either one or both of the tilt and deviation may become strong.
 二値化回路92の参照電圧を小さくすれば、透光性フィルムのエッジを検知できる場合がある。しかし、参照電圧を小さくし、シートありと判定するレンジ(電圧範囲)を広げると、ノイズの影響を受けやすくなる。例えば、エッジの誤検知が多くなる可能性がある。その結果、ノイズの誤検知に起因する不適切な矯正、補正が生ずる場合がある。 If the reference voltage of the binarization circuit 92 is made small, the edge of the translucent film may be detected. However, if the reference voltage is reduced and the range (voltage range) for determining whether there is a sheet is widened, it becomes susceptible to noise. For example, there may be more false edge detections. As a result, inappropriate correction or correction may occur due to erroneous detection of noise.
 また、ラインセンサー8に基づくシート到達の検知を基準に、シートへのトナー像の転写がなされている。例えば、検知結果信号C1がシートありを示すレベルとなってから、所定時間経過後に、シートへの転写が開始される。例えば、所定時間は、ラインセンサー8から2次転写ニップ5nまでの距離を搬送速度で除した時間である。つまり、搬送シート読取ユニット6は、シートの到達を検知するセンサーとしての機能もある。誤検知が生じた場合、転写タイミングの調整が難しくなる可能性がある。 Also, the toner image is transferred to the sheet based on the detection of sheet arrival based on the line sensor 8 . For example, the transfer to the sheet is started after a predetermined time has passed since the detection result signal C1 reaches a level indicating that the sheet is present. For example, the predetermined time is the time obtained by dividing the distance from the line sensor 8 to the secondary transfer nip 5n by the conveying speed. In other words, the conveyed sheet reading unit 6 also functions as a sensor for detecting arrival of the sheet. If an erroneous detection occurs, it may become difficult to adjust the transfer timing.
 そこで、搬送シートの種類に応じて、ユニット制御回路9は、二値化回路92に入力する参照電圧の大きさを調整する。以下、搬送シートの種類に応じた参照電圧の大きさの調整の一例を説明する。 Therefore, the unit control circuit 9 adjusts the magnitude of the reference voltage input to the binarization circuit 92 according to the type of conveyed sheet. An example of adjustment of the magnitude of the reference voltage according to the type of conveying sheet will be described below.
 図5のスタートは、印刷ジョブを開始する時点である。なお、例えば、印刷ジョブは、コピージョブ、又は、プリントジョブである。まず、ユニット制御回路9は、印刷ジョブで用いるシートが透過性フィルムであるか否かを判定する(ステップ♯1)。 The start in FIG. 5 is the time to start the print job. Note that the print job is, for example, a copy job or a print job. First, the unit control circuit 9 determines whether or not the sheet used in the print job is a transparent film (step #1).
 ここで、操作パネル4は、印刷ジョブで使用するシートカセット51の選択(設定)を受け付ける。さらに、操作パネル4は、使用するシートカセット51に収容されるシートの設定を受け付ける。例えば、操作パネル4は、シートの種類及びサイズの設定を受け付ける。選択可能なシートの種類には、透過性フィルム及び紙が含まれる。つまり、操作パネル4は、印刷ジョブで用いるシートの種類及びサイズの選択(設定)を受け付ける。例えば、透過性フィルムを用いるとき、使用者は、使用するシートとして、透過性フィルムを選択する。透過性フィルムではなく紙(用紙)を使用するとき、使用者は、紙を選択する。なお、紙を選択する場合、操作パネル4は、紙の色の選択も受け付ける。つまり、操作パネル4は、透過性フィルムと紙のいずれを用いるか、及び、紙を用いる場合、紙の色の選択を受け付ける。 Here, the operation panel 4 accepts selection (setting) of the sheet cassette 51 to be used in the print job. Further, the operation panel 4 accepts setting of sheets contained in the sheet cassette 51 to be used. For example, the operation panel 4 accepts setting of sheet type and size. Selectable sheet types include permeable film and paper. That is, the operation panel 4 accepts selection (setting) of the sheet type and size used in the print job. For example, when using a permeable film, the user selects the permeable film as the sheet to be used. When using paper (paper) rather than transmissive film, the user selects the paper. When selecting paper, the operation panel 4 also accepts selection of paper color. That is, the operation panel 4 accepts selection of whether to use a transparent film or paper, and, if paper is used, selection of the color of the paper.
 操作パネル4の出力に基づき、制御部1は、印刷ジョブで使用するシートカセット51を認識する。また、制御部1は、印刷ジョブで使用するシートの種類、及び、サイズを認識する。制御部1は、認識したシートの種類、色、及び、サイズをユニット制御回路9に通知する。透過性フィルムを用いる通知のとき、ユニット制御回路9は、印刷ジョブで用いるシートが透過性フィルムであると判定する。紙及びその色の通知のとき、ユニット制御回路9は、印刷ジョブで用いるシートが透過性フィルムではなく紙であること、及び、その色を判定する。 Based on the output of the operation panel 4, the control section 1 recognizes the sheet cassette 51 used in the print job. Further, the control unit 1 recognizes the type and size of sheets used in the print job. The control section 1 notifies the unit control circuit 9 of the recognized sheet type, color, and size. At the time of notification using a transparent film, the unit control circuit 9 determines that the sheet used in the print job is a transparent film. Upon notification of the paper and its color, the unit control circuit 9 determines that the sheet used in the print job is paper, not transmissive film, and its color.
 印刷ジョブで用いるシートが透過性フィルムのとき(ステップ♯1のYes)、ユニット制御回路9は、参照電圧として、第1参照電圧Vref1を二値化回路92に入力する(ステップ♯2)。言い換えると、ユニット制御回路9は、参照電圧が第1参照電圧Vref1の大きさとなるデューティ比のPWM信号を出力する。 When the sheet used in the print job is a transparent film (Yes in step #1), the unit control circuit 9 inputs the first reference voltage Vref1 as a reference voltage to the binarization circuit 92 (step #2). In other words, the unit control circuit 9 outputs a PWM signal with a duty ratio that makes the reference voltage equal to the first reference voltage Vref1.
 第1参照電圧Vref1の大きさは予め定められる。第1参照電圧Vref1は、透光性フィルムのエッジを検知できるレベルである。例えば、実験を行って、第1参照電圧Vref1の大きさが定められる。エッジを読み取った受光素子のアナログ画像信号A1は、紙のときよりも、透過性フィルムのときの方が小さい。そのため、透過性フィルムを搬送するときの第1参照電圧Vref1は、紙を搬送するときの参照電圧に比べて小さい。 The magnitude of the first reference voltage Vref1 is predetermined. The first reference voltage Vref1 is at a level capable of detecting the edge of the translucent film. For example, experiments are performed to determine the magnitude of the first reference voltage Vref1. The analog image signal A1 of the light-receiving element that reads the edge is smaller for the transmissive film than for the paper. Therefore, the first reference voltage Vref1 when conveying a transparent film is smaller than the reference voltage when conveying paper.
 透過性フィルムを搬送するとき、透過性フィルム及びそのエッジを読み取った受光素子のアナログ画像信号A1の電圧は紙のときに比べて大きくない。また、シートを読み取った受光素子のアナログ画像信号A1と、シートを読み取っていない受光素子のアナログ画像信号A1との電位差も大きくない。透過性フィルムを搬送するとき、ユニット制御回路9は、参照電圧を小さくする。その結果、エッジを読み取った受光素子のアナログ画像信号A1は、第1レベルに二値化される。具体的には、エッジ部分でHighレベルとLowレベルが切り替わっている搬送シート画像データB1が生成される。透光性フィルムのエッジがわかる搬送シート画像データB1を生成することができる。 When the transparent film is conveyed, the voltage of the analog image signal A1 of the light receiving element that reads the transparent film and its edge is not as large as when it is paper. Also, the potential difference between the analog image signal A1 of the light receiving element that has read the sheet and the analog image signal A1 of the light receiving element that has not read the sheet is not large. When transporting the transparent film, the unit control circuit 9 reduces the reference voltage. As a result, the analog image signal A1 of the light receiving element that has read the edge is binarized to the first level. Specifically, the conveyed sheet image data B1 in which the High level and Low level are switched at the edge portion is generated. It is possible to generate conveying sheet image data B1 in which the edge of the translucent film is known.
 印刷ジョブで用いるシートが透過性フィルムでないとき(紙のとき、ステップ♯1のNo)、ユニット制御回路9は、搬送する紙(シート)の色を認識する(ステップ♯3)。制御部1からユニット制御回路9への通知に基づき、ユニット制御回路9は、紙の色を認識できる。そして、ユニット制御回路9は、紙の色に応じた大きさの第2参照電圧Vref2を二値化回路92に入力する(ステップ♯4)。 When the sheet used in the print job is not a transparent film (No in step #1 when paper), the unit control circuit 9 recognizes the color of the paper (sheet) to be conveyed (step #3). Based on the notification from the controller 1 to the unit control circuit 9, the unit control circuit 9 can recognize the color of the paper. Then, the unit control circuit 9 inputs the second reference voltage Vref2 having a magnitude corresponding to the paper color to the binarization circuit 92 (step #4).
 まず、第2参照電圧Vref2は第1参照電圧Vref1よりも大きい。第2参照電圧Vref2の大きさは、シートの色を問わず、固定でもよい。しかし、複合機100では、ユニット制御回路9は、シート(紙)の色に応じて、第2参照電圧Vref2の大きさを変える。 First, the second reference voltage Vref2 is higher than the first reference voltage Vref1. The magnitude of the second reference voltage Vref2 may be fixed regardless of the sheet color. However, in the MFP 100, the unit control circuit 9 changes the magnitude of the second reference voltage Vref2 according to the color of the sheet (paper).
 ランプ6cの光量が同じでも、紙の色によって、シートを読み取って得られるアナログ画像信号A1の電圧値に差が出ることがある。例えば、特定の色において、平均的にアナログ画像信号A1の電圧値が小さくなることがある。例えば、赤色の紙では、白色、緑色、青色、又は、黄色の紙に比べ、アナログ画像信号A1の電圧値が平均的に小さくなる場合がある。また、灰色の紙を読み取った受光素子のアナログ画像信号A1の電圧値は、赤色の紙のときよりも、さらに小さくなる場合がある。 Even if the light intensity of the lamp 6c is the same, the voltage value of the analog image signal A1 obtained by reading the sheet may differ depending on the color of the paper. For example, in a specific color, the voltage value of the analog image signal A1 may become small on average. For example, red paper may have a lower average voltage value of the analog image signal A1 than white, green, blue, or yellow paper. Further, the voltage value of the analog image signal A1 of the light receiving element that has read the gray paper may be even smaller than that for the red paper.
 第2参照電圧Vref2の大きさによっては、赤色又は灰色のシートを読み取ったとき、シートを読み取った受光素子の画素値が、シートを読み取っていないことを示す値(第2レベル)になる場合がある。その結果、シートの到達及び実エッジ位置を正確に検知できない可能性がある。そこで、ユニット制御回路9は、シートの色に応じて、第2参照電圧Vref2の大きさを変える。 Depending on the magnitude of the second reference voltage Vref2, when reading a red or gray sheet, the pixel value of the light receiving element that has read the sheet may become a value (second level) indicating that the sheet has not been read. be. As a result, there is a possibility that the arrival of the sheet and the actual edge position cannot be detected accurately. Therefore, the unit control circuit 9 changes the magnitude of the second reference voltage Vref2 according to the color of the sheet.
 各色の第2参照電圧Vref2の大きさは予め定められる。色ごとの第2参照電圧Vref2の大小関係も予め定められる。例えば、ユニット制御回路9は、紙の色が灰色のときの第2参照電圧Vref2よりも、紙の色が白色のときの第2参照電圧Vref2を大きくしてもよい。例えば、白色のオフィス用紙(普通紙)の第2参照電圧Vref2は、灰色の更紙(わら半紙)の第2参照電圧Vref2よりも大きくしてもよい。 The magnitude of the second reference voltage Vref2 for each color is determined in advance. The magnitude relationship of the second reference voltage Vref2 for each color is also determined in advance. For example, the unit control circuit 9 may set the second reference voltage Vref2 when the color of the paper is white higher than the second reference voltage Vref2 when the color of the paper is gray. For example, the second reference voltage Vref2 for white office paper (plain paper) may be higher than the second reference voltage Vref2 for gray rough paper (straw paper).
 また、色付き(有彩色)の用紙を印刷することがある。例えば、色付きの用紙には、仕切り用の用紙、工作用厚紙などがある。有彩色の紙は、白色の紙よりも光の反射率が小さいことが多い。そこで、ユニット制御回路9は、有彩色の紙の第2参照電圧Vref2よりも、白色の第2参照電圧Vref2を大きくしてもよい。例えば、第2参照電圧Vref2の大きさの関係は、灰色<赤色<青色=緑色=黄色<白色としてもよい。 In addition, colored (chromatic) paper may be printed. For example, colored paper includes paper for partitions, thick paper for construction, and the like. Colored paper often reflects less light than white paper. Therefore, the unit control circuit 9 may set the second reference voltage Vref2 for white higher than the second reference voltage Vref2 for chromatic paper. For example, the magnitude relationship of the second reference voltage Vref2 may be gray<red<blue=green=yellow<white.
 例えば、エンジンメモリー50bは、第2参照電圧値データD2を記憶する(図8参照)。第2参照電圧値データD2は、各色の第2参照電圧Vref2の大きさと、その大きさに対応するPWM信号のデューティ比を定義したデータである。ユニット制御回路9は、第2参照電圧値データD2を参照し、色に応じた大きさの第2参照電圧Vref2を生成する。 For example, the engine memory 50b stores the second reference voltage value data D2 (see FIG. 8). The second reference voltage value data D2 is data defining the magnitude of the second reference voltage Vref2 for each color and the duty ratio of the PWM signal corresponding to the magnitude. The unit control circuit 9 refers to the second reference voltage value data D2 and generates a second reference voltage Vref2 having a magnitude corresponding to the color.
 ステップ♯2、又は、ステップ♯4の後、ユニット制御回路9は、各カウント回路93の閾値を設定する(ステップ♯5)。言い換えると、ユニット制御回路9は、各カウント回路93に閾値設定信号E1を入力する。具体的に、ユニット制御回路9は、搬送シートが透光性フィルムのときの閾値を、搬送シートが紙のときの閾値よりも大きくする。例えば、ユニット制御回路9は、透光性フィルムのときの閾値を、紙のときの閾値よりも所定比率だけ大きい値とする。所定比率は、10%~100%の範囲内のいずれかの値である。 After step #2 or step #4, the unit control circuit 9 sets the threshold of each count circuit 93 (step #5). In other words, the unit control circuit 9 inputs the threshold setting signal E<b>1 to each count circuit 93 . Specifically, the unit control circuit 9 sets the threshold when the conveying sheet is a translucent film to be higher than the threshold when the conveying sheet is paper. For example, the unit control circuit 9 sets the threshold value for translucent film to a value larger than the threshold value for paper by a predetermined ratio. The predetermined ratio is any value within the range of 10% to 100%.
 ステップ♯5によって、シート読み取りの準備処理が完了する(エンド)。続いて、エンジン制御部50は、プリンター部5に印刷動作を開始させる。例えば、エンジン制御部50は、シートの給紙をシート供給部5aに開始させる。また、エンジン制御部50は、シートをシート搬送部5bに搬送させる。また、エンジン制御部50は、画像形成部5cにトナー像の形成と、搬送シートへの転写を行わせる。また、エンジン制御部50は、定着部5eに定着動作を行わせる。 By step #5, the sheet reading preparation process is completed (end). Subsequently, the engine control unit 50 causes the printer unit 5 to start printing. For example, the engine control unit 50 causes the sheet supply unit 5a to start feeding sheets. Further, the engine control section 50 causes the sheet conveying section 5b to convey the sheet. Further, the engine control section 50 causes the image forming section 5c to form a toner image and transfer the toner image to the conveying sheet. Further, the engine control section 50 causes the fixing section 5e to perform a fixing operation.
 さらに、ユニット制御回路9は、シート読取ユニット6に搬送シートを読み取らせる。また、ユニット制御回路9は、搬送シート画像データB1に基づき、シート読取ユニット6へのシートの先端到達と、エッジの位置を認識する。認識結果を利用して、ユニット制御回路9は、シートの傾きを矯正し、主走査方向の位置を補正する。 Furthermore, the unit control circuit 9 causes the sheet reading unit 6 to read the conveyed sheet. Further, the unit control circuit 9 recognizes the arrival of the leading edge of the sheet to the sheet reading unit 6 and the position of the edge based on the conveyed sheet image data B1. Using the recognition result, the unit control circuit 9 corrects the skew of the sheet and corrects the position in the main scanning direction.
 このようにして、実施形態に係る画像形成装置(複合機100)は、シート搬送部5b、画像形成部5c、シート読取ユニット6、二値化回路92、及び、制御回路(ユニット制御回路9)を備える。シート搬送部5bはシートを搬送する。画像形成部5cは搬送シートに画像を形成する。シート読取ユニット6は、ランプ6c及びラインセンサー8を含む。ランプ6cは搬送シートに光を照射する。ラインセンサー8は、受光素子を備えてランプ6cの光に基づいて搬送シートを読み取ってアナログ画像信号A1を出力する。二値化回路92は参照電圧及びアナログ画像信号A1が入力される。参照電圧とアナログ画像信号A1に基づき、二値化回路92は、アナログ画像信号A1を二値化する。二値化によって得られた搬送シート画像データB1に基づき、制御回路は、搬送シートのエッジの位置を求める。シート読取ユニット6は、画像形成部5cよりもシート搬送方向上流側に設けられる。搬送シートとして透光性フィルムを搬送するとき、制御回路は、参照電圧として、第1参照電圧Vref1を二値化回路92に入力する。第1参照電圧Vref1は、透光性フィルムのエッジが読み取られるレベルである。 Thus, the image forming apparatus (multifunction machine 100) according to the embodiment includes the sheet conveying section 5b, the image forming section 5c, the sheet reading unit 6, the binarization circuit 92, and the control circuit (unit control circuit 9). Prepare. The sheet conveying portion 5b conveys sheets. The image forming section 5c forms an image on the conveying sheet. The sheet reading unit 6 includes a lamp 6c and a line sensor 8. FIG. The lamp 6c irradiates the conveying sheet with light. The line sensor 8 has a light receiving element, reads the conveyed sheet based on the light from the lamp 6c, and outputs an analog image signal A1. A binarization circuit 92 receives the reference voltage and the analog image signal A1. Based on the reference voltage and the analog image signal A1, the binarization circuit 92 binarizes the analog image signal A1. Based on the conveying sheet image data B1 obtained by binarization, the control circuit obtains the position of the edge of the conveying sheet. The sheet reading unit 6 is provided on the upstream side in the sheet conveying direction of the image forming section 5c. When conveying a translucent film as a conveying sheet, the control circuit inputs the first reference voltage Vref1 to the binarization circuit 92 as a reference voltage. The first reference voltage Vref1 is the level at which the edge of the translucent film is read.
 アナログ画像信号A1を二値化して搬送シート画像データB1を得ることができる。そして、透光性フィルムを搬送するとき、参照電圧を透光性フィルムの読み取りに適した大きさに自動的に調整することができる。その結果、透光性フィルムのエッジを読み取ることができる。言い換えると、エッジの位置を判定できる画素を含む搬送シート画像データB1を生成することができる。透光性フィルムを搬送するとき、ラインセンサー8以外のセンサーを用いることなく、エッジの位置を検知することができる。 Conveying sheet image data B1 can be obtained by binarizing the analog image signal A1. Then, when the translucent film is transported, the reference voltage can be automatically adjusted to a magnitude suitable for reading the translucent film. As a result, the edge of the translucent film can be read. In other words, it is possible to generate the conveying sheet image data B1 including pixels for which edge positions can be determined. When conveying the translucent film, the edge position can be detected without using a sensor other than the line sensor 8 .
 搬送シートとして透光性フィルムでなく、紙を搬送するとき、制御回路(ユニット制御回路9)は参照電圧として、第2参照電圧Vref2を二値化回路92に入力する。第1参照電圧Vref1は、第2参照電圧Vref2よりも小さい。紙は透光性フィルムよりも光を透過しない。透光性フィルムを読み取るときの参照電圧と、紙を読み取るときの参照電圧に差を持たせることができる。また、透光性フィルムと紙のいずれを用いても、シートのエッジを読み取ることができる。どのようなシートでも、エッジの位置がわかる搬送シート画像データB1を生成することができる。 When conveying paper instead of a translucent film as a conveying sheet, the control circuit (unit control circuit 9) inputs the second reference voltage Vref2 to the binarization circuit 92 as a reference voltage. The first reference voltage Vref1 is lower than the second reference voltage Vref2. Paper transmits less light than translucent film. A difference can be provided between the reference voltage for reading the translucent film and the reference voltage for reading the paper. In addition, the edge of the sheet can be read regardless of whether the translucent film or paper is used. Conveying sheet image data B1 can be generated in which the position of the edge of any sheet can be known.
 搬送シートとして紙を搬送するとき、制御回路は、紙の色に応じて、第2参照電圧Vref2の大きさを変える。搬送シートの色によって、ラインセンサー8の出力(アナログ画像信号A1)の大きさに差が出ることがある。シートの色に応じて、第2参照電圧Vref2を変えることができる。紙の色を問わず、搬送シートのエッジの位置がわかる搬送シート画像データB1を生成することができる。 When conveying paper as a conveying sheet, the control circuit changes the magnitude of the second reference voltage Vref2 according to the color of the paper. Depending on the color of the conveyed sheet, the magnitude of the output of the line sensor 8 (analog image signal A1) may differ. The second reference voltage Vref2 can be changed according to the color of the sheet. It is possible to generate conveying sheet image data B1 in which the position of the edge of the conveying sheet can be known regardless of the color of the paper.
 ラインセンサー8は、搬送シートが反射した光を受光する。制御回路は、搬送シートとしての紙の色が灰色のときの第2参照電圧Vref2よりも、紙の色が白色のときの第2参照電圧Vref2を大きくする。一般的に、灰色の紙よりも白色の紙の方がよく光を反射する。白色の紙を読み取った受光素子のアナログ画像信号A1の大きさは、灰色の紙を読み取った受光素子のアナログ画像信号A1の大きさよりも平均的に大きくなる。そして、第2参照電圧Vref2は、用紙の色に合わせた大きさとなる。つまり、紙の色に応じて、第2参照電圧Vref2を適切な大きさにすることができる。 The line sensor 8 receives light reflected by the conveying sheet. The control circuit makes the second reference voltage Vref2 when the color of the paper as the conveying sheet is white higher than the second reference voltage Vref2 when the color of the paper as the conveying sheet is gray. In general, white paper reflects light better than gray paper. The magnitude of the analog image signal A1 from the light-receiving element that has read the white paper is on average larger than the magnitude of the analog image signal A1 from the light-receiving element that has read the gray paper. Then, the second reference voltage Vref2 has a magnitude that matches the color of the paper. In other words, the second reference voltage Vref2 can be appropriately set according to the color of the paper.
 ラインセンサー8は、搬送シートが反射した光を受光する。制御回路は、搬送シートとしての紙の色が有彩色ときの第2参照電圧Vref2よりも、紙の色が白色のときの第2参照電圧Vref2を大きくする。有彩色の紙の場合、光量及びラインセンサー8からの距離が同じでも、紙を読み取った受光素子のアナログ画像信号A1の大きさが、色によって異なることがある。例えば、赤色の紙を読み取ったとき、アナログ画像信号A1の電圧値の平均値は、用紙の色が緑色のときよりも小さくなる場合がある。そして、第2参照電圧Vref2は、用紙の色に合わせた大きさとされる。つまり、紙の色に応じて、第2参照電圧Vref2を適切な大きさにすることができる。 The line sensor 8 receives light reflected by the conveying sheet. The control circuit makes the second reference voltage Vref2 when the color of the paper as the conveying sheet is white higher than the second reference voltage Vref2 when the color of the paper as the conveying sheet is chromatic. In the case of chromatic paper, even if the amount of light and the distance from the line sensor 8 are the same, the magnitude of the analog image signal A1 from the light receiving element that reads the paper may differ depending on the color. For example, when red paper is read, the average voltage value of the analog image signal A1 may be smaller than when the paper color is green. The second reference voltage Vref2 has a magnitude that matches the color of the paper. In other words, the second reference voltage Vref2 can be appropriately set according to the color of the paper.
 画像形成装置(複合機100)は、搬送シート画像データB1が入力され、検知結果信号C1を出力するカウント回路93を備える。アナログ画像信号A1が参照電圧を超えているとき、二値化回路92は、シートを読み取ったことを示す第1レベルを出力する。アナログ画像信号A1が参照電圧以下のとき、二値化回路92は、シートを読み取っていなことを示す第2レベルを出力する。カウント回路93は、搬送シート画像データB1について、第1レベルの画素の連続数をカウントする。連続数が予め定められた閾値以上になったとき、カウント回路93は、検知結果信号C1のレベルを、シートありを示すレベルとする。連続数が閾値未満のとき、カウント回路93は、検知結果信号C1のレベルを、シートなしを示すレベルとする。制御回路(ユニット制御回路9)は、検知結果信号C1のレベルに基づき、シート読取ユニット6への搬送シートの到達を判定する。ラインセンサー8(シート読取ユニット6)へのシート到達を検知することができる。ここで、ノイズによって、搬送シート画像データB1の一部の画素が、シートを読み取っていないのに、シートを読み取ったことを示す値(レベル)になることがある。そして、このノイズに反応して、シート到達と判定すると、シート到達の時点を誤検知することになる。誤検知に基づき印刷すると、画像の印刷位置がずれる。シートを読み取ったことを示す第1レベルの画素の連続数をカウントするので、ノイズによる用紙到達の誤検知を防ぐことができる。ノイズによる印刷位置のずれの発生を防ぐことができる。 The image forming apparatus (multifunction machine 100) is provided with a count circuit 93 to which conveyed sheet image data B1 is input and which outputs a detection result signal C1. When the analog image signal A1 exceeds the reference voltage, the binarization circuit 92 outputs a first level indicating that the sheet has been read. When the analog image signal A1 is below the reference voltage, the binarization circuit 92 outputs a second level indicating that the sheet is not read. The counting circuit 93 counts the number of continuous pixels of the first level for the conveying sheet image data B1. When the number of continuations reaches or exceeds a predetermined threshold value, the count circuit 93 sets the level of the detection result signal C1 to a level indicating presence of a sheet. When the number of continuations is less than the threshold, the count circuit 93 sets the level of the detection result signal C1 to a level indicating no sheet. The control circuit (unit control circuit 9) determines whether the conveyed sheet has reached the sheet reading unit 6 based on the level of the detection result signal C1. Arrival of the sheet to the line sensor 8 (sheet reading unit 6) can be detected. Here, due to noise, some pixels of the conveyed sheet image data B1 may have a value (level) indicating that the sheet has been read even though the sheet has not been read. If it is determined that the sheet has arrived in response to this noise, the timing of the sheet arrival is erroneously detected. When printing based on erroneous detection, the print position of the image is shifted. Since the number of continuous pixels of the first level indicating that the sheet has been read is counted, it is possible to prevent erroneous detection of paper arrival due to noise. It is possible to prevent the occurrence of print position deviation due to noise.
 制御回路は、搬送シートが透光性フィルムのときの閾値を、搬送シートが紙のときの閾値よりも大きくする。透光性フィルムを読み取れるように第1参照電圧Vref1を設定すると、ノイズに弱くなる場合がある。つまり、シートを読み取っていないのに、搬送シート画像データB1の画素の画素値が第1レベルになりやすくなる。そこで、透光性フィルムを搬送するとき、ユニット制御回路9は、閾値を自動的に大きくする。これにより、シート到達と判定するまでの第1レベルの画素の連続数を大きくすることができる。シート到達の誤検知を防ぐことができる。 The control circuit makes the threshold when the conveying sheet is a translucent film larger than the threshold when the conveying sheet is paper. If the first reference voltage Vref1 is set so that the translucent film can be read, it may become susceptible to noise. In other words, the pixel values of the pixels of the conveyed sheet image data B1 are likely to be at the first level even though the sheet is not read. Therefore, when transporting the translucent film, the unit control circuit 9 automatically increases the threshold value. This makes it possible to increase the number of continuous pixels of the first level until it is determined that the sheet has reached the sheet. It is possible to prevent erroneous detection of sheet arrival.
 以上、本発明の実施形態を説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で種々の変更を加えて実施することができる。例えば、ラインセンサー8が3つの分割ラインセンサー80を備える例を説明した。しかし、分割数は、2つでもよいし、4つ以上であってもよい。 Although the embodiment of the present invention has been described above, the scope of the present invention is not limited to this, and various modifications can be made without departing from the gist of the invention. For example, an example in which the line sensor 8 includes three divided line sensors 80 has been described. However, the number of divisions may be two or may be four or more.
 本発明はシート読取ユニットを含む画像形成装置に利用可能である。 The present invention can be used in an image forming apparatus including a sheet reading unit.

Claims (7)

  1.  シートを搬送するシート搬送部と、
     搬送シートに画像を形成する画像形成部と、
     前記搬送シートに光を照射するランプと、受光素子を備えて前記ランプの光に基づいて前記搬送シートを読み取ってアナログ画像信号を出力するラインセンサーと、を含むシート読取ユニットと、
     参照電圧及び前記アナログ画像信号が入力され、前記参照電圧と前記アナログ画像信号に基づき、前記アナログ画像信号を二値化する二値化回路と、
     二値化によって得られた搬送シート画像データに基づき前記搬送シートのエッジの位置を求める制御回路と、を備え、
     前記シート読取ユニットは、前記画像形成部よりもシート搬送方向上流側に設けられ、
     前記搬送シートとして透光性フィルムを搬送するとき、前記制御回路は、前記参照電圧として、第1参照電圧を前記二値化回路に入力し、
     前記第1参照電圧は、前記透光性フィルムのエッジが読み取られるレベルである画像形成装置。
    a sheet conveying unit that conveys the sheet;
    an image forming unit that forms an image on a conveying sheet;
    a sheet reading unit including: a lamp for irradiating the conveying sheet with light; and a line sensor including a light-receiving element for reading the conveying sheet based on the light of the lamp and outputting an analog image signal;
    a binarization circuit that receives a reference voltage and the analog image signal and binarizes the analog image signal based on the reference voltage and the analog image signal;
    a control circuit for determining the position of the edge of the conveying sheet based on the conveying sheet image data obtained by binarization;
    The sheet reading unit is provided upstream in the sheet conveying direction from the image forming unit,
    When conveying a translucent film as the conveying sheet, the control circuit inputs a first reference voltage to the binarization circuit as the reference voltage,
    The image forming apparatus, wherein the first reference voltage is a level at which an edge of the translucent film is read.
  2.  前記搬送シートとして前記透光性フィルムでなく、紙を搬送するとき、前記制御回路は前記参照電圧として、第2参照電圧を前記二値化回路に入力し、
     前記第1参照電圧は、前記第2参照電圧よりも小さい請求項1に記載の画像形成装置。
    When conveying a sheet of paper instead of the translucent film as the conveying sheet, the control circuit inputs a second reference voltage as the reference voltage to the binarization circuit,
    The image forming apparatus according to claim 1, wherein the first reference voltage is lower than the second reference voltage.
  3.  前記搬送シートとして紙を搬送するとき、前記制御回路は、紙の色に応じて、前記第2参照電圧の大きさを変える請求項2に記載の画像形成装置。 3. The image forming apparatus according to claim 2, wherein when paper is conveyed as the conveying sheet, the control circuit changes the magnitude of the second reference voltage according to the color of the paper.
  4.  前記ラインセンサーは、前記搬送シートが反射した光を受光し、
     前記制御回路は、前記搬送シートとしての紙の色が灰色のときの前記第2参照電圧よりも、紙の色が白色のときの前記第2参照電圧を大きくする請求項2に記載の画像形成装置。
    The line sensor receives light reflected by the conveying sheet,
    3. The image formation according to claim 2, wherein the control circuit makes the second reference voltage when the color of the paper as the conveying sheet is white higher than the second reference voltage when the color of the paper as the conveying sheet is gray. Device.
  5.  前記ラインセンサーは、前記搬送シートが反射した光を受光し、
     前記制御回路は、前記搬送シートとしての紙の色が有彩色ときの前記第2参照電圧よりも、紙の色が白色のときの前記第2参照電圧を大きくする請求項2に記載の画像形成装置。
    The line sensor receives light reflected by the conveying sheet,
    3. The image formation according to claim 2, wherein the control circuit makes the second reference voltage when the color of the paper as the conveying sheet is white higher than the second reference voltage when the color of the paper as the conveying sheet is a chromatic color. Device.
  6.  前記搬送シート画像データが入力され、検知結果信号を出力するカウント回路を備え、
     前記二値化回路は、
      前記アナログ画像信号が前記参照電圧を超えているとき、シートを読み取ったことを示す第1レベルを出力し、
      前記アナログ画像信号が前記参照電圧以下のとき、シートを読み取っていなことを示す第2レベルを出力し、
     前記カウント回路は、
      前記搬送シート画像データについて、前記第1レベルの画素の連続数をカウントし、
      前記連続数が予め定められた閾値以上になったとき、前記検知結果信号のレベルを、シートありを示すレベルとし、
      前記連続数が前記閾値未満のとき、前記検知結果信号のレベルを、シートなしを示すレベルとし、
     前記制御回路は、前記検知結果信号のレベルに基づき、前記シート読取ユニットへの前記搬送シートの到達を判定する請求項1に記載の画像形成装置。
    a counting circuit that receives the conveying sheet image data and outputs a detection result signal;
    The binarization circuit is
    outputting a first level indicating that the sheet has been read when the analog image signal exceeds the reference voltage;
    outputting a second level indicating that the sheet is not read when the analog image signal is equal to or lower than the reference voltage;
    The count circuit
    counting the number of consecutive pixels of the first level for the conveying sheet image data;
    setting the level of the detection result signal to a level indicating presence of a sheet when the number of continuations reaches or exceeds a predetermined threshold;
    when the number of continuations is less than the threshold, the level of the detection result signal is set to a level indicating no sheet;
    2. The image forming apparatus according to claim 1, wherein the control circuit determines whether the conveyed sheet has reached the sheet reading unit based on the level of the detection result signal.
  7.  前記制御回路は、前記搬送シートが前記透光性フィルムのときの前記閾値を、前記搬送シートが紙のときの前記閾値よりも大きくする請求項6に記載の画像形成装置。 The image forming apparatus according to claim 6, wherein the control circuit makes the threshold when the conveying sheet is the translucent film larger than the threshold when the conveying sheet is paper.
PCT/JP2022/007858 2021-03-26 2022-02-25 Image formation device WO2022202097A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021053973 2021-03-26
JP2021-053973 2021-03-26

Publications (1)

Publication Number Publication Date
WO2022202097A1 true WO2022202097A1 (en) 2022-09-29

Family

ID=83395594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007858 WO2022202097A1 (en) 2021-03-26 2022-02-25 Image formation device

Country Status (1)

Country Link
WO (1) WO2022202097A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006262073A (en) * 2005-03-17 2006-09-28 Ricoh Co Ltd Original reader and copying machine
JP2010202307A (en) * 2009-03-02 2010-09-16 Seiko Epson Corp Method for detecting recording paper and printer
JP2013237539A (en) * 2012-05-15 2013-11-28 Canon Inc Sheet conveyance device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006262073A (en) * 2005-03-17 2006-09-28 Ricoh Co Ltd Original reader and copying machine
JP2010202307A (en) * 2009-03-02 2010-09-16 Seiko Epson Corp Method for detecting recording paper and printer
JP2013237539A (en) * 2012-05-15 2013-11-28 Canon Inc Sheet conveyance device

Similar Documents

Publication Publication Date Title
US12081705B2 (en) Image processing apparatus configured to instruct execution of calibration using test chart, and image forming apparatus configured to execute calibration using test chart
CN113206924B (en) Image forming apparatus with a toner supply device
JP7521079B2 (en) Image forming device
JP2011133771A (en) Image forming apparatus
JP5536026B2 (en) Document conveying apparatus and image forming apparatus
US11479428B2 (en) Image forming device
JP4261804B2 (en) Image forming apparatus and control method thereof
JP7467901B2 (en) Image forming device
JP4794979B2 (en) Image forming apparatus
WO2022202097A1 (en) Image formation device
JP5386569B2 (en) Optical scanning apparatus and image forming apparatus
JP2022151065A (en) image forming device
JP4265998B2 (en) Image forming apparatus adjustment method and image forming apparatus
JP7484269B2 (en) Sheet conveying device
JP7480540B2 (en) Image forming device
JP2020108094A (en) Document reading device and image forming apparatus
JP2003081486A (en) Paper feeder
JP7040055B2 (en) Density correction method in inspection equipment, image reading equipment, image forming equipment and inspection equipment
JP2006171512A (en) Electrophotographic printing device
JP2024064281A (en) Image reading apparatus and image forming apparatus
JP4323837B2 (en) Image forming apparatus
JP2024064280A (en) Image reading device
JP2021109740A (en) Sheet carrier device
JP2015222377A (en) Image forming apparatus, correction method for positional deviation amount, and computer program
JP2006150666A (en) Image forming device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774895

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22774895

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP