WO2022202030A1 - Energization state detection device and energization state detection method - Google Patents

Energization state detection device and energization state detection method Download PDF

Info

Publication number
WO2022202030A1
WO2022202030A1 PCT/JP2022/006829 JP2022006829W WO2022202030A1 WO 2022202030 A1 WO2022202030 A1 WO 2022202030A1 JP 2022006829 W JP2022006829 W JP 2022006829W WO 2022202030 A1 WO2022202030 A1 WO 2022202030A1
Authority
WO
WIPO (PCT)
Prior art keywords
state detection
information
antenna
electric wire
energization state
Prior art date
Application number
PCT/JP2022/006829
Other languages
French (fr)
Japanese (ja)
Inventor
啓 田坂
真一 谷本
亮 松原
新九郎 藤野
浩 国本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2023508806A priority Critical patent/JP7539004B2/en
Publication of WO2022202030A1 publication Critical patent/WO2022202030A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G1/00Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
    • H02G1/02Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for overhead lines or cables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength

Definitions

  • the present disclosure relates to an energization state detection device and an energization state detection method.
  • Patent Document 1 describes a power transmission equipment monitoring device.
  • the power transmission equipment monitoring device has an imaging unit, an electromagnetic wave detection unit, a transmission unit, an instruction information acquisition unit, and a flight control unit.
  • a power transmission equipment monitoring device is mounted on an unmanned air vehicle.
  • the imaging unit images the power transmission equipment.
  • the electromagnetic wave detector detects electromagnetic waves emitted by power transmission equipment.
  • the transmission unit transmits at least one of image information based on the image captured by the imaging unit and electromagnetic wave information based on the electromagnetic wave detected by the electromagnetic wave detection unit to the other device.
  • the instruction information acquisition unit acquires instruction information for instructing the flight of the unmanned air vehicle from the terminal of the operator who operates the unmanned air vehicle.
  • the flight control section controls flight of the unmanned air vehicle based on the instruction information acquired by the instruction information acquisition section.
  • An object of the present disclosure is to provide an energized state detection device and an energized state detection method with high accuracy.
  • the present disclosure is an energization state detection device for detecting an energization state of a wire, comprising a processor and a memory, wherein the processor acquires reception intensity information indicating a reception intensity of an antenna corresponding to the energization state of the wire. and correcting the reception intensity information based on the information indicating the direction of the electric wire and the information indicating the direction of the antenna.
  • the present disclosure is an energization state detection method for detecting an energization state of a wire by a device having a processor and a memory, wherein the processor indicates a reception strength of an antenna corresponding to the energization state of the wire.
  • a method for detecting an energized state comprising: obtaining information; and correcting the reception intensity information based on the information indicating the orientation of the electric wire and the information indicating the orientation of the antenna, by the processor. .
  • FIG. 2 is a conceptual diagram illustrating an antenna axis and an angle between the wire axis and the antenna axis;
  • Conceptual diagram illustrating an energization state detection device Conceptual diagram showing an example of arrangement of antennas in the energized state detection device
  • Flowchart exemplifying processing for detecting an energized state of an electric wire
  • Conceptual diagram showing an example of presentation of the energized state of electric wires Conceptual diagram showing an output example of information prompting correction of antenna orientation
  • workers At substations and the like, workers (hereinafter referred to as users) may perform patrols and maintenance work or construction work. When performing such work, the work is performed in the vicinity of the relevant equipment. It is difficult for users who perform maintenance and inspection of equipment or perform construction work to recognize the charging or operating status of surrounding equipment during work.
  • One of the methods for realizing non-contact detection is to measure electromagnetic waves, which are emitted from electric wires that are energized. That is, by knowing the direction of the source of the leaked electric field leaking from the transmission line connected to the device, that is, the arrival direction of the leaked electric field, it is possible to confirm whether or not there is electricity.
  • the reception strength of the signal received by the antenna changes according to the angle between the direction in which the electric wire extends and the direction in which the antenna for measuring electromagnetic waves extends. Therefore, the detection accuracy of the energized state of the electric wire varies depending on the angle.
  • an energized state detecting apparatus when an antenna for measuring electromagnetic waves is used to detect the energized state of a wire, an energized state detecting apparatus and an energized state detecting device capable of maintaining detection accuracy regardless of the orientation of the antenna are provided. An example of the detection method will be described.
  • FIG. 1 is a conceptual diagram showing an example of detection of an electric wire axis.
  • the wire axis means an axis that indicates the direction in which the wire extends.
  • the wire axis can be represented by a vector, for example.
  • a wire axis expressed in vector form is referred to as a wire vector.
  • FIG. 1 expresses a captured image captured by the camera 60 as a conceptual diagram.
  • the electric wire is reflected in the captured image.
  • An energization state detection device 10 which will be described later, performs predetermined processing on the captured image to calculate the direction in which the electric wire extends, that is, the electric wire vector.
  • the electric wire vector may be calculated by a method other than image processing on the captured image.
  • FIG. 2 is a conceptual diagram illustrating the antenna axis and the angle ⁇ between the wire axis and the antenna axis.
  • Antenna axis means an axis along which the antenna extends.
  • the antenna is fixed so that the optical axis of the camera 60 and the antenna axis are orthogonal.
  • the present embodiment is not limited to the above aspect, and the antenna may be positioned so that the optical axis of the camera 60 and the antenna axis are parallel, for example.
  • the antenna may be positioned such that the angle between the optical axis of the camera 60 and the antenna axis is a predetermined value.
  • the antenna and camera 60 may be built into the same device or may be separate components.
  • be the angle between the wire axis and the antenna axis.
  • the electric wire vector is a vector used to obtain the angle ⁇ formed.
  • FIG. 3 is a block diagram showing a configuration example of the energization state detection system 100 according to the embodiment of the present disclosure.
  • An energized state detection system 100 includes an energized state detection device 10, an antenna 20, two audio boards 30 and 40, an audio interface 50, a camera, and a capture board 70.
  • Antenna 20 detects electromagnetic waves coming from a energized electric wire.
  • the antenna 20 is formed by winding a coil around a core, for example, and is configured by a ferrite antenna when the core is configured by ferrite.
  • a ferrite antenna is formed by winding an electric wire coil whose surface is coated with insulation around a rod-shaped core made of ferrite or the like with high magnetic permeability. When both ends of the coil are closed, magnetic field lines pass through the inside of the antenna according to changes in the surrounding magnetic field, and electromotive force is generated in the coil by electromagnetic induction, so the magnetic field can be measured (loop antenna operation ).
  • Antenna 20 may comprise a gyroscope 21 .
  • the gyroscope 21 will be described later.
  • the audio boards 30 and 40 are devices that process audio information. Audio board 30 is connected to antenna 20 . Audio board 40 is connected to audio interface 50 . The audio interface 50 is connected to the energization state detection device 10 . That is, by interposing the audio board 30 and the audio board 40 between the antenna 20 and the energized state detection device 10, the antenna 20 and the energized state detection device 10 can be separated. However, the antenna 20 may be built in the energized state detection device 10, in which case the audio board 30, the audio board 40, and the audio interface 50 are not required.
  • the audio board 30 includes an AD conversion circuit 31.
  • the audio board 30 converts the signal received by the antenna 20 from an analog signal to a digital signal by the AD conversion circuit 31 .
  • the audio board 30 wirelessly transmits the converted digital signal to the audio board 40 .
  • the audio board 40 has a DA conversion circuit 41 .
  • Audio board 40 converts the digital signal received from audio board 30 into an analog signal.
  • the audio board 40 inputs the converted analog signal to the audio input section 51 of the audio interface 50 .
  • the audio interface 50 includes an audio input section 51 , an AD conversion circuit 52 and an audio buffer 53 .
  • An analog signal input from the audio board 40 to the audio input section 51 is converted into a digital signal by the AD conversion circuit 52 .
  • the converted digital signal is accumulated in the audio buffer 53 .
  • the digital signal accumulated in the audio buffer 53 is input to the energization state detection device 10 as reception strength information indicating the reception strength of the antenna 20 corresponding to the energization state of the electric wire.
  • the camera 60 captures a captured image in which the electric wire is reflected.
  • the captured image is transmitted to the capture board 70 .
  • the capture board 70 has an AD conversion circuit 71 and a frame buffer 72 .
  • the capture board 70 converts the received captured image from an analog signal to a digital signal by the AD conversion circuit 71 .
  • the capture board 70 accumulates the digital signal of the captured image after conversion in the frame buffer 72 .
  • a digital signal of the captured image stored in the frame buffer 72 is input to the energization state detection device 10 .
  • the external file 80 is stored in a storage medium outside the energized state detection device 10 .
  • Information indicating the orientation of the optical axis of the camera 60 and information indicating the orientation of the antenna axis of the antenna 20 are recorded in the external file 80 .
  • an optical axis vector indicating the direction of the optical axis of the camera 60 and an antenna axis vector indicating the direction of the antenna axis are recorded as vector data.
  • the energized state detection device 10 reads the data recorded in this external file 80 and stores it in the memory 12 .
  • the data of the optical axis vector and the antenna axis vector may be stored in the memory 12 in advance. That is, the antenna 20 may be fixed with respect to the camera 60, as shown in FIG. In this case, the antenna axis vector data (an example of information indicating the orientation of the antenna) is information indicating the orientation of the antenna 20 with respect to the optical axis of the camera 60 .
  • the energization state detection device 10 may acquire the data of the antenna axis vector from the antenna 20 via the audio board 30, the audio board 40, and the audio interface 50. .
  • the energization state detection device 10 includes a processor 11, a memory 12, a graphic memory 13, and an output device 14.
  • the memory 12, the graphic memory 13, and the output device 14 are connected to the processor 11 by an internal bus or the like so that data or information can be input/output between them.
  • the processor 11 is configured using, for example, a CPU (Central Processing Unit), a DSP (Digital Signal Processor), or an FPGA (Field Programmable Gate Array).
  • the processor 11 functions as a control section of the energization state detection device 10, and performs control processing for overall control of the operation of each section of the energization state detection device 10, data or information exchange with each section of the energization state detection device 10. It performs input/output processing, data arithmetic processing, and data or information storage processing.
  • Processor 11 operates according to a program stored in memory 12 .
  • the memory 12 has, for example, a RAM as a work memory that is used when executing the processing of the processor 11, and a ROM that stores a program that defines the processing of the processor 11. Data generated or acquired by the processor 11 is temporarily stored in the RAM. A program that defines the processing of the processor 11 is written in the ROM. Note that the memory 12 may store program data for causing the energized state detection device 10 to execute various functions and data used by the program. Memory 12 may store data acquired from antenna 20 via audio board 30 , audio board 40 and audio interface 50 . The memory 12 may store data acquired from the camera 60 via the capture board 70 . Memory 12 may store data recorded in external file 80 .
  • the graphic memory 13 is a memory that temporarily stores display data when displaying information to the user. This information display is performed on a display or the like included in the output device 14 .
  • the output device 14 is a device that outputs information to the user under the control of the processor 11 .
  • the output device 14 includes, for example, a display, a speaker, a vibrating device for vibrating the energized state detection device 10, and the like. However, output devices other than these may be used.
  • a display is mainly exemplified as the output device 14 for explanation.
  • the display which is the output device 14, displays the display data accumulated in the graphic memory 13. FIG.
  • FIG. 4 is a conceptual diagram illustrating the energization state detection device 10.
  • the energization state detection device 10 may or may not incorporate a camera 60 (see FIGS. 3 and 4).
  • FIG. 4 exemplifies the energization state detection device 10 of the type that incorporates the camera 60 .
  • 10 A of electricity supply state detection apparatuses are smart phones.
  • a camera 60 is arranged on the back of the smartphone.
  • a display included in the smartphone corresponds to the output device 14 .
  • a speaker, a vibration generator, and the like provided in the smartphone also correspond to the output device 14 .
  • the energization state detection device 10B is smart glasses.
  • the camera 60 is arranged at a position where the optical axis is directed in the line of sight of the user wearing the smart glasses when looking forward.
  • information is displayed in AR on the left and right lenses.
  • AR display means displaying information so as to be superimposed on the real space.
  • a projection device or the like that projects information onto the lens portion of smart glasses corresponds to the output device 14 .
  • a speaker or the like included in smart glasses also corresponds to the output device 14 .
  • the energization state detection device 10C is a multifunctional wristwatch.
  • a camera 60 is arranged on the side of a wrist watch.
  • the output device 14 corresponds to a display arranged on the dial of the wristwatch, a built-in speaker for generating an alarm sound, or the like.
  • FIG. 5 is a conceptual diagram showing an example of arrangement of antennas on the energized state detection device 10A.
  • the energized state detection device 10 may or may not incorporate the antenna 20 (see FIGS. 3 and 5).
  • FIG. 5 illustrates an energization state detection device 10A of a type that incorporates an antenna 20. As shown in FIG.
  • the antenna 20 in FIG. 5 is composed of three parts, a first part 20a, a second part 20b and a third part 20c, along the frame of the energized state detection device 10A, which is smart glasses.
  • Corresponding to the first portion 20a of the antenna 20 is the antenna axis a.
  • the second portion 20b of the antenna 20 corresponds to the antenna axis b.
  • Corresponding to the third portion 20c of the antenna 20 is the antenna axis c.
  • the antenna axis of the antenna 20 as a whole extends in the direction of the composite vector obtained by combining the antenna vectors defined by the antenna axis a, the antenna axis b, and the antenna axis c.
  • FIG. 6 is a flowchart illustrating the process of detecting the energized state of electric wires.
  • the processor 11 acquires reception strength information (St101).
  • the reception intensity information includes information indicating the reception intensity of the antenna 20 corresponding to the energized state of the electric wire.
  • the reception intensity information corresponds to the information accumulated in the audio buffer 53 of the audio interface 50 in FIG. Note that the timing of acquiring the reception intensity information can be started by the user's operation, but other methods may be used. For example, using position information such as GPS (Global Positioning System) information, the processor 11 may detect that the user has approached an electric wire or steel tower, and automatically acquire reception intensity information. Alternatively, the processor 11 may detect that the user has approached an electric wire or steel tower using location information such as GPS information, and prompt the user to start acquiring reception intensity information. By doing so, the user can more safely detect the energized state.
  • GPS Global Positioning System
  • the processor 11 determines whether or not the reception strength indicated by the reception strength information exceeds the first threshold (St102).
  • the reception intensity referred to here may be a value corresponding to the amplitude of the signal received by the antenna 20, for example.
  • the first threshold value may be stored in advance in the memory 12 or the like as a predetermined value. If the reception intensity indicated by the reception intensity information exceeds the first threshold (St102: Yes), the process transitions to step St103. If the reception intensity indicated by the reception intensity information does not exceed the first threshold (St102: No), the process returns to step St101.
  • the processor 11 acquires a captured image obtained by the camera 60 capturing an image of the electric wire.
  • the processor 11 performs image processing on the acquired captured image to calculate an electric wire vector (St104).
  • the electric wire vector corresponds to information indicating the direction of the electric wire.
  • Various modes are conceivable as a method of calculating the electric wire vector executed by the processor 11 . For example, based on the captured image, points having a certain length or longer are extracted from the set of points in the space indicated by the image. A vector starting from one end of the set of points having a certain length or more and ending at the other end can be estimated as a wire vector.
  • steel towers are generally of the same height.
  • the processor 11 corrects the reception intensity information acquired in step St101 (St105).
  • the value of the electric wire vector calculated in step St104 is used to correct the reception intensity information.
  • correction strength The reception strength indicated by the reception strength information after correction is referred to as correction strength.
  • the correction strength can be calculated by the following formula (1).
  • Correction intensity Received intensity ⁇ f( ⁇ ) (1)
  • ⁇ in equation (1) is the angle formed between the wire axis and the antenna axis described above with reference to FIG. 2 . It should be noted that the energized state detection device 10 has already acquired the direction of the antenna axis based on the external file 80 or the gyroscope 21 provided in the antenna 20 (see FIG. 3). Also, the direction of the wire axis has already been acquired as the wire vector in step St104. Therefore, the processor 11 can calculate the angle .theta.
  • the function f() in equation (1) is a function that defines how much the received intensity should be corrected according to the angle ⁇ formed.
  • This function f() may be pre-stored in the memory 12 or the like, and the processor 11 reads out the function f() from the memory 12 and calculates the function f using the formed angle ⁇ as an input variable.
  • the corrected strength value can be calculated by multiplying the received strength by the output value of the function f(). That is, in step St105, the processor 11 corrects the reception strength information by calculating the correction strength based on the above equation (1).
  • the processor 11 determines whether or not the correction strength exceeds the second threshold (St106).
  • the second threshold value may be stored in advance in the memory 12 or the like as a predetermined value. If the correction strength exceeds the second threshold (St106: Yes), the process transitions to step St107. If the correction strength does not exceed the second threshold (St106: No), the process returns to step St101.
  • the processor 11 controls the output device 14 to present the energized state of the electric wire to the user. That is, the processor 11 causes the output device 14 to output information indicating the energized state of the electric wire based on the reception intensity indicated by the reception intensity information corrected in step St105.
  • FIG. 7 is a conceptual diagram showing an example of presentation of the energized state of electric wires.
  • the wristwatch-shaped energized state detection device 10 displays the characters "energized" on the display arranged on the dial portion under the control of the processor 11 .
  • the characters "currently energized” correspond to information indicating the energized state of the electric wire.
  • the energized state detection device 10 has a vibration function or an audio output function, the fact that the electric wire is energized may be presented to the user by means of vibration, voice, or the like.
  • the output of information indicating the energized state of the wire such as the display of the characters "energized" is performed when the corrected strength exceeds the second threshold value, so it is performed based on the received strength indicated by the received strength information. ing.
  • the processor included in the camera 60 or the processor 11 of the power supply state detection device 10 detects the captured image.
  • the distance between an object, such as an included electrical wire, and the camera 60 can be measured using parallax.
  • the processor 11 in step St104 can calculate the electric wire vector in the three-dimensional space based on the captured image and the distance. By using this electric wire vector, the processor 11 in step St105 can correct the reception intensity information with higher accuracy.
  • the calculation of the electric wire vector in step St104 may be performed by a method other than the image processing of the image captured by the camera 60.
  • FIG. a wire vector may be calculated using a GPS information receiving device. Electric wires are usually stretched between steel towers. Since a steel tower is a structure, a legal permit is generally required to build a steel tower. Map information may also include information indicating the position of a steel tower. Therefore, the energized state detection device 10 may include a GPS information reception device (not shown). The GPS information receiving device acquires position information indicating the current position of the energized state detection device 10 .
  • the energized state detection device 10 can acquire map information including information indicating the position of the steel tower from the outside via a wireless communication line or the like. Since the technology for acquiring information from the outside via a communication line is common, the description of its specific implementation will be omitted.
  • Map information including information indicating the position of the pylon may be stored in advance in the memory 12 of the energization state detection device 10 .
  • the processor 11 is based on information indicating the current position of the energized state detection device 10 acquired by the GPS information receiving device and information indicating the positions of two or more steel towers near the current position included in the map information. , the electric wire vector can be calculated.
  • the captured image used for calculating the electric wire vector may be, for example, a grayscale image. However, it is not limited to grayscale images.
  • the energization state detection device 10 can use various images as long as they are images that can be used to calculate the positional relationship with respect to the antenna axis. For example, an image that emphasizes the existence of a steel tower or an electric wire by detecting edges from an image captured by the camera 60 may be used as the captured image. Images captured from various angles by other devices or vehicles, such as aerial photographs and images continuously captured by patrolling vehicles, may be used as the captured images, so that the electric wire vector can be obtained with higher accuracy. can be calculated.
  • the angle between the optical axis of camera 60 and the antenna axis of antenna 20 may be a fixed value. This fixed value may be recorded in the external file 80 or memory 12 shown in FIG.
  • the angle between the optical axis of camera 60 and the antenna axis of antenna 20 may vary.
  • a mechanism for changing the direction of the camera 60 or the direction of the antenna 20 the antenna is If a 90-degree rotation mechanism or the like is provided, the angle between the optical axis of the camera 60 and the antenna axis of the antenna 20 changes.
  • At least one of the camera 60 and the antenna 20 is added with a gyroscope.
  • the gyroscope 21 or the like shown in FIG. 3 corresponds to this.
  • Processor 11 corrects the relative angle between the optical axis and the antenna axis based on information obtained from the gyroscope. That is, in one example, the energization state detection device 10 has a gyroscope 21 that detects the angular velocity of the antenna 20 .
  • Processor 11 can calculate the orientation of antenna 20 based on the angular velocity detected by gyroscope 21 .
  • the information indicating the orientation of the antenna 20 is information based on the angular velocity of the antenna 20 detected by the gyroscope 21 . Accordingly, even when the angle between the optical axis of the camera 60 and the antenna axis of the antenna 20 changes, the processor 11 can correctly calculate the relative angle described above.
  • the first situation is that the wire is not energized.
  • the second situation is that the wire is energized but the reception by the antenna 20 is weak due to the poor orientation of the antenna 20 with respect to the wire.
  • the processor 11 sets the reception strength indicated by the reception strength information acquired in step St101 to the third situation. is smaller than the threshold, the output device 14 may output information prompting the user to correct the orientation of the antenna 20 .
  • FIG. 8 is a conceptual diagram showing an output example of information prompting correction of the orientation of the antenna.
  • the output device 14 is a display included in the energization state detection device 10 . On this display, a captured image captured by the camera 60 incorporated in the energized state detection device 10 is displayed in real time. An antenna 20 is also incorporated in the energized state detection device 10 .
  • Information D1 is a straight line indicating the current orientation of the antenna axis.
  • Information D2 is a straight line indicating the orientation of the target antenna axis.
  • the information D3 is an arrow indicating the direction in which the energized state detection device 10 should be moved. Based on the information D3, the user rotates the energization state detection device 10 clockwise. Then, the straight line displayed as the information D1 and the straight line displayed as the information D2 overlap. At this time, the angle .theta. between the wire axis and the antenna axis is an angle that increases the reception intensity.
  • the information prompting to correct the direction of the antenna may be output during the process returning from step St102 to step St101.
  • the third threshold may be a value equal to or less than the first threshold.
  • the processor 11 may perform the same processing as steps St103 and St104 to calculate the electric wire vector. Then, the processor 11 may calculate the above information D1, D2, and D3 based on the calculated wire vector and the direction of the antenna axis of the antenna 20 with respect to the optical axis of the camera 60 .
  • the energization state detection device 10 that detects the energization state of the electric wire includes the processor 11 and the memory 12 .
  • the processor 11 acquires reception intensity information indicating the reception intensity of the antenna 20 corresponding to the energized state of the electric wire.
  • the processor corrects the reception intensity information based on the information indicating the direction of the electric wire and the information indicating the direction of the antenna. Accordingly, it is possible to provide an energization state detection device with high accuracy regardless of the orientation of the antenna.
  • the energization state detection device 10 further includes an output device 14 that outputs information to the user.
  • the processor 11 causes the output device 14 to output information indicating the energized state of the electric wire based on the reception intensity indicated by the reception intensity information. As a result, it is possible to highly accurately notify the user when the reception strength is strong.
  • the processor 11 When the reception strength indicated by the reception strength information is smaller than a predetermined threshold, the processor 11 causes the output device 14 to output information prompting the user to correct the orientation of the antenna 20 . This provides an opportunity for the user to correct the orientation of the antenna when the received signal strength is low. In addition, the user can distinguish between the case where the electric wire is not energized and the case where the electric wire is energized but the reception strength is weak due to the orientation of the antenna.
  • the processor 11 calculates information indicating the direction of the electric wire based on the captured image obtained by imaging the electric wire with the camera 60 . This makes it possible to identify the direction of the electric wire from the image captured by the camera and appropriately correct the reception intensity.
  • the captured image may be an aerial photograph.
  • images can be captured from various angles, and the electric wire vector can be calculated with higher accuracy.
  • the camera 60 has two or more lenses.
  • the processor 11 calculates information indicating the direction of the electric wire based on the captured image and the distance between the camera 60 and the object included in the captured image. This makes it possible to more accurately calculate the direction of the electric wire by utilizing the parallax of two or more cameras.
  • the energization state detection device 10 further includes a GPS information reception device.
  • the processor 11 calculates information indicating the direction of the electric wire based on the position information of the energized state detection device acquired by the GPS information receiving device and the predetermined map information. Accordingly, the direction of the electric wire can be estimated based on the current position of the energized state detection device 10 and the position of the steel tower included in the map information.
  • the processor 11 corrects the reception intensity information by multiplying the reception intensity indicated by the reception intensity information by a value corresponding to the angle ⁇ between the orientation of the electric wire and the orientation of the antenna 20 . Thereby, the reception intensity can be appropriately corrected according to the formed angle ⁇ .
  • an energization state detection method for detecting an energization state of a wire by a device 10 having a processor 11 and a memory 12, the processor 11 acquires reception intensity information indicating the reception intensity of the antenna 20 corresponding to the energization state of the wire. do.
  • the processor 11 corrects the reception intensity information based on the information indicating the orientation of the electric wire and the information indicating the orientation of the antenna 20 . Accordingly, it is possible to provide an energization state detection device with high accuracy regardless of the orientation of the antenna.
  • the energization state detection device 10 further includes an output device 14 that outputs information to the user.
  • the energization state detection method has a step of causing the processor 11 to output information indicating the energization state of the electric wire to the output device 14 based on the reception intensity indicated by the reception intensity information. As a result, it is possible to highly accurately notify the user when the reception strength is strong.
  • the energized state detection method includes the step of causing the processor 11 to output to the output device 14 information prompting the user to correct the orientation of the antenna 20 when the reception strength indicated by the reception strength information is smaller than a predetermined threshold. This provides an opportunity for the user to correct the orientation of the antenna when the received signal strength is low. In addition, the user can distinguish between the case where the electric wire is not energized and the case where the electric wire is energized but the reception strength is weak due to the orientation of the antenna.
  • the energization state detection method has a step of calculating information indicating the direction of the electric wire based on the captured image obtained by the camera 60 capturing the electric wire. This makes it possible to identify the direction of the electric wire from the image captured by the camera and appropriately correct the reception intensity.
  • the captured image may be an aerial photograph.
  • images can be captured from various angles, and the electric wire vector can be calculated with higher accuracy.
  • the camera 60 has two or more lenses.
  • the processor 11 calculates information indicating the direction of the electric wire based on the captured image and the distance between the camera 60 and the object included in the captured image. This makes it possible to more accurately calculate the direction of the electric wire by utilizing the parallax of two or more cameras.
  • the energization state detection device 10 further includes a GPS information reception device.
  • the energized state detection method has a step of calculating information indicating the direction of the electric wire by the processor 11 based on the position information of the energized state detection device acquired by the GPS information receiving device and predetermined map information. Accordingly, the direction of the electric wire can be estimated based on the current position of the energized state detection device 10 and the position of the steel tower included in the map information.
  • the processor 11 corrects the reception intensity information by multiplying the reception intensity indicated by the reception intensity information by a value corresponding to the angle ⁇ between the orientation of the electric wire and the orientation of the antenna 20. do. Thereby, the reception intensity can be appropriately corrected according to the formed angle ⁇ .
  • the present disclosure is useful as a highly accurate energization state detection device and energization state detection method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

An energization state detection device (10, 10A, 10B, 10C) for detecting the energization state of an electric wire is provided with a processor (11) and a memory (12). The processor (11) acquires reception strength information indicating the reception strength of an antenna (20) that corresponds to the energization state of the electric wire, and corrects the reception strength information on the basis of information indicating the orientation of the electric wire and information indicating the orientation of the antenna (20).

Description

通電状態検出装置および通電状態検出方法Energized state detection device and energized state detection method
 本開示は、通電状態検出装置および通電状態検出方法に関する。 The present disclosure relates to an energization state detection device and an energization state detection method.
 特許文献1には送電設備監視装置が記載されている。送電設備監視装置は、撮像部と、電磁波検出部と、送信部と、指示情報取得部と、飛行制御部とを有する。送電設備監視装置は無人飛行体に搭載される。撮像部は送電設備を撮像する。電磁波検出部は送電設備が発する電磁波を検出する。送信部は、撮像部により撮像された画像に基づく画像情報と、電磁波検出部により検出された電磁波に基づく電磁波情報とのうち、少なくとも1つを他装置に送信する。指示情報取得部は、無人飛行体を操縦する操縦者の端末から、無人飛行体の飛行を指示する指示情報を取得する。飛行制御部は、指示情報取得部により取得された指示情報に基づいて、無人飛行体の飛行を制御する。 Patent Document 1 describes a power transmission equipment monitoring device. The power transmission equipment monitoring device has an imaging unit, an electromagnetic wave detection unit, a transmission unit, an instruction information acquisition unit, and a flight control unit. A power transmission equipment monitoring device is mounted on an unmanned air vehicle. The imaging unit images the power transmission equipment. The electromagnetic wave detector detects electromagnetic waves emitted by power transmission equipment. The transmission unit transmits at least one of image information based on the image captured by the imaging unit and electromagnetic wave information based on the electromagnetic wave detected by the electromagnetic wave detection unit to the other device. The instruction information acquisition unit acquires instruction information for instructing the flight of the unmanned air vehicle from the terminal of the operator who operates the unmanned air vehicle. The flight control section controls flight of the unmanned air vehicle based on the instruction information acquired by the instruction information acquisition section.
国際公開第2018/138942号WO2018/138942
 本開示は、精度の高い通電状態検出装置および通電状態検出方法を提供することを目的とする。 An object of the present disclosure is to provide an energized state detection device and an energized state detection method with high accuracy.
 本開示は、電線の通電状態を検出する通電状態検出装置であって、プロセッサとメモリとを備え、前記プロセッサは、前記電線の通電状態に対応するアンテナの受信強度を示す、受信強度情報を取得し、前記電線の向きを示す情報と、前記アンテナの向きを示す情報とに基づいて前記受信強度情報を補正する、通電状態検出装置を提供する。 The present disclosure is an energization state detection device for detecting an energization state of a wire, comprising a processor and a memory, wherein the processor acquires reception intensity information indicating a reception intensity of an antenna corresponding to the energization state of the wire. and correcting the reception intensity information based on the information indicating the direction of the electric wire and the information indicating the direction of the antenna.
 本開示は、プロセッサとメモリとを備えた装置による、電線の通電状態を検出する通電状態検出方法であって、前記プロセッサが、前記電線の通電状態に対応するアンテナの受信強度を示す、受信強度情報を取得するステップと、前記プロセッサが、前記電線の向きを示す情報と、前記アンテナの向きを示す情報とに基づいて前記受信強度情報を補正するステップとを有する、通電状態検出方法を提供する。 The present disclosure is an energization state detection method for detecting an energization state of a wire by a device having a processor and a memory, wherein the processor indicates a reception strength of an antenna corresponding to the energization state of the wire. A method for detecting an energized state, comprising: obtaining information; and correcting the reception intensity information based on the information indicating the orientation of the electric wire and the information indicating the orientation of the antenna, by the processor. .
 本開示によれば、精度の高い通電状態検出装置および通電状態検出方法を提供することができる。 According to the present disclosure, it is possible to provide a highly accurate energization state detection device and energization state detection method.
電線軸の検出例を示す概念図Conceptual diagram showing an example of wire shaft detection アンテナ軸と、電線軸とアンテナ軸との間のなす角とを例示する概念図FIG. 2 is a conceptual diagram illustrating an antenna axis and an angle between the wire axis and the antenna axis; 本開示の実施形態に係る通電状態検出システムの構成例を示すブロック図Block diagram showing a configuration example of an energization state detection system according to an embodiment of the present disclosure 通電状態検出装置を例示する概念図Conceptual diagram illustrating an energization state detection device 通電状態検出装置へのアンテナの配置例を示す概念図Conceptual diagram showing an example of arrangement of antennas in the energized state detection device 電線の通電状態を検出する処理を例示するフローチャートFlowchart exemplifying processing for detecting an energized state of an electric wire 電線の通電状態の提示例を示す概念図Conceptual diagram showing an example of presentation of the energized state of electric wires アンテナの向きの修正を促す情報の出力例を示す概念図Conceptual diagram showing an output example of information prompting correction of antenna orientation
 (本開示に至る経緯)
 変電所等においては、作業員(以下、ユーザと表記)が巡視や保守に伴う作業や工事を行う場合がある。このような作業を行う場合、該当する機器の近傍にて作業を行うことになる。機器の保守点検あるいは工事を行うユーザは、作業中における周囲の機器の充電あるいは運転状態を認識することが難しかった。
(Background leading up to this disclosure)
At substations and the like, workers (hereinafter referred to as users) may perform patrols and maintenance work or construction work. When performing such work, the work is performed in the vicinity of the relevant equipment. It is difficult for users who perform maintenance and inspection of equipment or perform construction work to recognize the charging or operating status of surrounding equipment during work.
 また、ユーザの作業中か否かにかかわらず、安全性の観点から、電線における高電圧の有無を確認することが好ましい。ユーザが電線に直接接触することは危険であるため、非接触による検知が望まれる。 Also, regardless of whether the user is working or not, it is preferable to check the presence or absence of high voltage in the electric wire from the viewpoint of safety. Since it is dangerous for a user to directly touch electric wires, non-contact detection is desired.
 非接触による検知を実現する手法の1つは、通電している電線には電磁波が出ているため、この電磁波を測定するものである。すなわち、機器に接続した送電線から漏洩する漏洩電界の発生源の方向、すなわち漏洩電界の到来方向を知ることにより、通電の有無を確認することができる。  One of the methods for realizing non-contact detection is to measure electromagnetic waves, which are emitted from electric wires that are energized. That is, by knowing the direction of the source of the leaked electric field leaking from the transmission line connected to the device, that is, the arrival direction of the leaked electric field, it is possible to confirm whether or not there is electricity.
 ところで、電線が延びる方向と、電磁波を測定するためのアンテナが延びる方向との間の角度に応じて、アンテナが受信する信号の受信強度は変化する。そのため、電線の通電状態の検出精度は、上記の角度に応じて異なるものとなる。 By the way, the reception strength of the signal received by the antenna changes according to the angle between the direction in which the electric wire extends and the direction in which the antenna for measuring electromagnetic waves extends. Therefore, the detection accuracy of the energized state of the electric wire varies depending on the angle.
 そこで、以下に示す各実施の形態においては、電磁波を測定するためのアンテナを用いて電線の通電状態を検出する場合に、アンテナの向きによらない検出精度を維持できる通電状態検出装置および通電状態検出方法の例を説明する。 Therefore, in each of the embodiments described below, when an antenna for measuring electromagnetic waves is used to detect the energized state of a wire, an energized state detecting apparatus and an energized state detecting device capable of maintaining detection accuracy regardless of the orientation of the antenna are provided. An example of the detection method will be described.
 以下、適宜図面を参照しながら、本開示に係る通電状態検出装置および通電状態検出方法の構成および動作を具体的に開示した実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になることを避け、当業者の理解を容易にするためである。なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるものであり、これらにより特許請求の範囲に記載の主題を限定することは意図されていない。 Hereinafter, embodiments specifically disclosing the configuration and operation of the energized state detection device and the energized state detection method according to the present disclosure will be described in detail with reference to the drawings as appropriate. However, more detailed description than necessary may be omitted. For example, detailed descriptions of well-known matters and redundant descriptions of substantially the same configurations may be omitted. This is to avoid unnecessary verbosity in the following description and to facilitate understanding by those skilled in the art. It should be noted that the accompanying drawings and the following description are provided to allow those skilled in the art to fully understand the present disclosure and are not intended to limit the claimed subject matter.
 (実施形態)
 以下、図面を用いて、本開示に係る通電状態検出装置および通電状態検出方法を説明する。図1は、電線軸の検出例を示す概念図である。電線軸とは、電線が延びる方向を示す軸を意味する。電線軸は、例えばベクトルによって表現可能である。ベクトル形式で表現された電線軸を、電線ベクトルと表記する。図1は、カメラ60によって撮像された撮像画像を概念図として表現したのである。
(embodiment)
An energization state detection device and an energization state detection method according to the present disclosure will be described below with reference to the drawings. FIG. 1 is a conceptual diagram showing an example of detection of an electric wire axis. The wire axis means an axis that indicates the direction in which the wire extends. The wire axis can be represented by a vector, for example. A wire axis expressed in vector form is referred to as a wire vector. FIG. 1 expresses a captured image captured by the camera 60 as a conceptual diagram.
 撮像画像には電線が映り込んでいる。後述の通電状態検出装置10が、撮像画像に対して所定の処理を実行することにより、電線が延びる方向、すなわち電線ベクトルを計算する。なお、後述するように、撮像画像に対する画像処理以外の方法によって電線ベクトルが計算されてもよい。 The electric wire is reflected in the captured image. An energization state detection device 10, which will be described later, performs predetermined processing on the captured image to calculate the direction in which the electric wire extends, that is, the electric wire vector. As will be described later, the electric wire vector may be calculated by a method other than image processing on the captured image.
 図2は、アンテナ軸と、電線軸とアンテナ軸との間のなす角θとを例示する概念図である。アンテナ軸は、アンテナが延びる方向を示す軸を意味する。図2の例においては、カメラ60の光軸とアンテナ軸とが直交するようにアンテナが固定されている。ただし、本実施の形態は前記の態様には限られず、例えばカメラ60の光軸とアンテナ軸とが平行になるようにアンテナが位置決めされてもよい。また、カメラ60の光軸とアンテナ軸との間の角度が所定の値になるようにアンテナが位置決めされてもよい。アンテナおよびカメラ60は同一の装置に内蔵されていてもよく、別々の構成要素であってもよい。電線軸とアンテナ軸との間のなす角をθとする。なお、電線ベクトルは、なす角θを求めるために用いられるベクトルである。 FIG. 2 is a conceptual diagram illustrating the antenna axis and the angle θ between the wire axis and the antenna axis. Antenna axis means an axis along which the antenna extends. In the example of FIG. 2, the antenna is fixed so that the optical axis of the camera 60 and the antenna axis are orthogonal. However, the present embodiment is not limited to the above aspect, and the antenna may be positioned so that the optical axis of the camera 60 and the antenna axis are parallel, for example. Also, the antenna may be positioned such that the angle between the optical axis of the camera 60 and the antenna axis is a predetermined value. The antenna and camera 60 may be built into the same device or may be separate components. Let θ be the angle between the wire axis and the antenna axis. Note that the electric wire vector is a vector used to obtain the angle θ formed.
 図3は、本開示の実施形態に係る通電状態検出システム100の構成例を示すブロック図である。本開示の実施形態に係る通電状態検出システム100は、通電状態検出装置10と、アンテナ20と、二つのオーディオボード30および40と、オーディオインターフェース50と、カメラと、キャプチャボード70とを含む。 FIG. 3 is a block diagram showing a configuration example of the energization state detection system 100 according to the embodiment of the present disclosure. An energized state detection system 100 according to an embodiment of the present disclosure includes an energized state detection device 10, an antenna 20, two audio boards 30 and 40, an audio interface 50, a camera, and a capture board 70.
 アンテナ20は、通電中の電線から到来する電磁波を検出する。アンテナ20は例えばコイルを芯に巻きつけて形成され、芯がフェライトにより構成される場合はフェライトアンテナにより構成される。フェライトアンテナは、フェライト等の透磁率の高い棒状の芯に、表面を絶縁被覆した電線コイルを巻き付けることにより形成される。コイルの両端が閉じている場合は、周囲の磁界変化に応じてアンテナの内部を磁力線が通過し、電磁誘導によりコイルに起電力を発生させるため、磁界を測定することができる(ループアンテナの動作)。コイルの一端が開放されている場合、周囲の電界に応じてコイルに電圧が誘導されるため、電界を測定することができる(モノポールアンテナの動作)。なお、芯が延びる方向がアンテナ軸の方向に相当する。アンテナ20はジャイロスコープ21を備えることがある。ジャイロスコープ21については後述する。 Antenna 20 detects electromagnetic waves coming from a energized electric wire. The antenna 20 is formed by winding a coil around a core, for example, and is configured by a ferrite antenna when the core is configured by ferrite. A ferrite antenna is formed by winding an electric wire coil whose surface is coated with insulation around a rod-shaped core made of ferrite or the like with high magnetic permeability. When both ends of the coil are closed, magnetic field lines pass through the inside of the antenna according to changes in the surrounding magnetic field, and electromotive force is generated in the coil by electromagnetic induction, so the magnetic field can be measured (loop antenna operation ). If one end of the coil is open, a voltage will be induced in the coil depending on the surrounding electric field, so that the electric field can be measured (monopole antenna operation). The direction in which the core extends corresponds to the direction of the antenna axis. Antenna 20 may comprise a gyroscope 21 . The gyroscope 21 will be described later.
 オーディオボード30および40は、オーディオ情報を処理する装置である。オーディオボード30はアンテナ20と接続されている。オーディオボード40はオーディオインターフェース50と接続されている。そして、オーディオインターフェース50は通電状態検出装置10と接続されている。つまり、アンテナ20と通電状態検出装置10との間に、オーディオボード30およびオーディオボード40とが介在することにより、アンテナ20と通電状態検出装置10を離隔することができる。ただし、アンテナ20は通電状態検出装置10に内蔵されていてもよく、この場合にはオーディオボード30、オーディオボード40、およびオーディオインターフェース50は不要となる。 The audio boards 30 and 40 are devices that process audio information. Audio board 30 is connected to antenna 20 . Audio board 40 is connected to audio interface 50 . The audio interface 50 is connected to the energization state detection device 10 . That is, by interposing the audio board 30 and the audio board 40 between the antenna 20 and the energized state detection device 10, the antenna 20 and the energized state detection device 10 can be separated. However, the antenna 20 may be built in the energized state detection device 10, in which case the audio board 30, the audio board 40, and the audio interface 50 are not required.
 オーディオボード30はAD変換回路31を備えている。オーディオボード30は、アンテナ20が受信した信号をAD変換回路31によりアナログ信号からデジタル信号へと変換する。オーディオボード30は変換後のデジタル信号をオーディオボード40へと無線送信する。オーディオボード40はDA変換回路41を備えている。オーディオボード40は、オーディオボード30から受信したデジタル信号をアナログ信号へと変換する。オーディオボード40は、変換後のアナログ信号をオーディオインターフェース50のオーディオ入力部51へと入力する。 The audio board 30 includes an AD conversion circuit 31. The audio board 30 converts the signal received by the antenna 20 from an analog signal to a digital signal by the AD conversion circuit 31 . The audio board 30 wirelessly transmits the converted digital signal to the audio board 40 . The audio board 40 has a DA conversion circuit 41 . Audio board 40 converts the digital signal received from audio board 30 into an analog signal. The audio board 40 inputs the converted analog signal to the audio input section 51 of the audio interface 50 .
 オーディオインターフェース50は、オーディオ入力部51と、AD変換回路52と、オーディオバッファ53とを備える。オーディオボード40からオーディオ入力部51へと入力されたアナログ信号は、AD変換回路52によりデジタル信号へと変換される。変換後のデジタル信号はオーディオバッファ53に蓄積される。オーディオバッファ53に蓄積されたデジタル信号は、電線の通電状態に対応するアンテナ20の受信強度を示す、受信強度情報として、通電状態検出装置10へと入力される。 The audio interface 50 includes an audio input section 51 , an AD conversion circuit 52 and an audio buffer 53 . An analog signal input from the audio board 40 to the audio input section 51 is converted into a digital signal by the AD conversion circuit 52 . The converted digital signal is accumulated in the audio buffer 53 . The digital signal accumulated in the audio buffer 53 is input to the energization state detection device 10 as reception strength information indicating the reception strength of the antenna 20 corresponding to the energization state of the electric wire.
 カメラ60は、電線が映り込んだ撮像画像を撮像する。撮像画像はキャプチャボード70へと送信される。キャプチャボード70はAD変換回路71とフレームバッファ72とを備えている。キャプチャボード70は受信した撮像画像をAD変換回路71によりアナログ信号からデジタル信号へと変換する。キャプチャボード70は変換後の撮像画像のデジタル信号をフレームバッファ72に蓄積する。フレームバッファ72に蓄積された撮像画像のデジタル信号は、通電状態検出装置10へと入力される。 The camera 60 captures a captured image in which the electric wire is reflected. The captured image is transmitted to the capture board 70 . The capture board 70 has an AD conversion circuit 71 and a frame buffer 72 . The capture board 70 converts the received captured image from an analog signal to a digital signal by the AD conversion circuit 71 . The capture board 70 accumulates the digital signal of the captured image after conversion in the frame buffer 72 . A digital signal of the captured image stored in the frame buffer 72 is input to the energization state detection device 10 .
 外部ファイル80は、通電状態検出装置10の外部にある記憶媒体に保存されている。外部ファイル80には、カメラ60の光軸の向きを示す情報と、アンテナ20のアンテナ軸の向きを示す情報とが記録されている。例えば、外部ファイル80には、カメラ60の光軸の向きを示す光軸ベクトルと、アンテナ軸の向きを示すアンテナ軸ベクトルとが、ベクトルデータとして記録されている。通電状態検出装置10は、この外部ファイル80に記録されたデータを読み込んで、メモリ12に保存する。なお、光軸ベクトルおよびアンテナ軸ベクトルのデータは、事前にメモリ12に記憶されていてもよい。すなわち、図2に示すように、アンテナ20は、カメラ60に対して固定されていてもよい。この場合、アンテナ軸ベクトルのデータ(アンテナの向きを示す情報の一例)は、カメラ60の光軸に対する、アンテナ20の向きを示す情報である。 The external file 80 is stored in a storage medium outside the energized state detection device 10 . Information indicating the orientation of the optical axis of the camera 60 and information indicating the orientation of the antenna axis of the antenna 20 are recorded in the external file 80 . For example, in the external file 80, an optical axis vector indicating the direction of the optical axis of the camera 60 and an antenna axis vector indicating the direction of the antenna axis are recorded as vector data. The energized state detection device 10 reads the data recorded in this external file 80 and stores it in the memory 12 . The data of the optical axis vector and the antenna axis vector may be stored in the memory 12 in advance. That is, the antenna 20 may be fixed with respect to the camera 60, as shown in FIG. In this case, the antenna axis vector data (an example of information indicating the orientation of the antenna) is information indicating the orientation of the antenna 20 with respect to the optical axis of the camera 60 .
 なお、アンテナ20がジャイロスコープ21を備える場合には、通電状態検出装置10はアンテナ軸ベクトルのデータを、アンテナ20からオーディオボード30、オーディオボード40およびオーディオインターフェース50を経由して取得してもよい。 Note that when the antenna 20 includes the gyroscope 21, the energization state detection device 10 may acquire the data of the antenna axis vector from the antenna 20 via the audio board 30, the audio board 40, and the audio interface 50. .
 通電状態検出装置10は、プロセッサ11と、メモリ12と、グラフィックメモリ13と、出力装置14とを備える。メモリ12、グラフィックメモリ13および出力装置14は、それぞれプロセッサ11との間でデータもしくは情報の入出力が可能に内部バス等で接続される。 The energization state detection device 10 includes a processor 11, a memory 12, a graphic memory 13, and an output device 14. The memory 12, the graphic memory 13, and the output device 14 are connected to the processor 11 by an internal bus or the like so that data or information can be input/output between them.
 プロセッサ11は、例えばCPU(Central Processing Unit)、DSP(Digital Signal Processor)またはFPGA(Field Programmable Gate Array)を用いて構成される。プロセッサ11は通電状態検出装置10の制御部として機能し、通電状態検出装置10の各部の動作を全体的に統括するための制御処理、通電状態検出装置10の各部との間のデータもしくは情報の入出力処理、データの演算処理、およびデータもしくは情報の記憶処理を行う。プロセッサ11は、メモリ12に記憶されたプログラムに従って動作する。 The processor 11 is configured using, for example, a CPU (Central Processing Unit), a DSP (Digital Signal Processor), or an FPGA (Field Programmable Gate Array). The processor 11 functions as a control section of the energization state detection device 10, and performs control processing for overall control of the operation of each section of the energization state detection device 10, data or information exchange with each section of the energization state detection device 10. It performs input/output processing, data arithmetic processing, and data or information storage processing. Processor 11 operates according to a program stored in memory 12 .
 メモリ12は、例えばプロセッサ11の処理を実行する際に用いられるワークメモリとしてのRAMと、プロセッサ11の処理を規定したプログラムを格納するROMとを有する。RAMには、プロセッサ11により生成あるいは取得されたデータが一時的に保存される。ROMには、プロセッサ11の処理を規定するプログラムが書き込まれている。なお、メモリ12は通電状態検出装置10に各種の機能を実行させるためのプログラムデータおよび、当該プログラムが用いるデータを記憶してよい。メモリ12は、アンテナ20からオーディオボード30、オーディオボード40およびオーディオインターフェース50を介して取得したデータを保存してもよい。メモリ12は、カメラ60からキャプチャボード70を介して取得したデータを保存してもよい。メモリ12は外部ファイル80に記録されているデータを保存してもよい。 The memory 12 has, for example, a RAM as a work memory that is used when executing the processing of the processor 11, and a ROM that stores a program that defines the processing of the processor 11. Data generated or acquired by the processor 11 is temporarily stored in the RAM. A program that defines the processing of the processor 11 is written in the ROM. Note that the memory 12 may store program data for causing the energized state detection device 10 to execute various functions and data used by the program. Memory 12 may store data acquired from antenna 20 via audio board 30 , audio board 40 and audio interface 50 . The memory 12 may store data acquired from the camera 60 via the capture board 70 . Memory 12 may store data recorded in external file 80 .
 グラフィックメモリ13は、ユーザに対して情報表示を行う場合の表示データを一時的に蓄積するメモリである。この情報表示は、出力装置14に含まれるディスプレイ等に対して行われる。 The graphic memory 13 is a memory that temporarily stores display data when displaying information to the user. This information display is performed on a display or the like included in the output device 14 .
 出力装置14は、プロセッサ11による制御に基づいてユーザに情報を出力する装置である。出力装置14には、例えば、ディスプレイ、スピーカ、通電状態検出装置10を振動させる振動装置等が含まれる。ただし、これら以外の出力装置が用いられてもよい。本実施の形態においては、出力装置14として、主にディスプレイを例示して説明を行う。出力装置14であるディスプレイには、グラフィックメモリ13に蓄積された表示データが表示される。 The output device 14 is a device that outputs information to the user under the control of the processor 11 . The output device 14 includes, for example, a display, a speaker, a vibrating device for vibrating the energized state detection device 10, and the like. However, output devices other than these may be used. In the present embodiment, a display is mainly exemplified as the output device 14 for explanation. The display, which is the output device 14, displays the display data accumulated in the graphic memory 13. FIG.
 図4は、通電状態検出装置10を例示する概念図である。通電状態検出装置10は、カメラ60を内蔵していても、内蔵していなくともよい(図3および図4参照)。図4は、カメラ60を内蔵するタイプの通電状態検出装置10を例示している。通電状態検出装置10Aはスマートフォンである。例えばスマートフォンの背面にカメラ60が配置される。スマートフォンが備えるディスプレイが出力装置14に相当する。その他、スマートフォンが備えるスピーカやバイブレーション発生装置等もまた、出力装置14に相当する。 FIG. 4 is a conceptual diagram illustrating the energization state detection device 10. FIG. The energization state detection device 10 may or may not incorporate a camera 60 (see FIGS. 3 and 4). FIG. 4 exemplifies the energization state detection device 10 of the type that incorporates the camera 60 . 10 A of electricity supply state detection apparatuses are smart phones. For example, a camera 60 is arranged on the back of the smartphone. A display included in the smartphone corresponds to the output device 14 . In addition, a speaker, a vibration generator, and the like provided in the smartphone also correspond to the output device 14 .
 通電状態検出装置10Bはスマートグラスである。例えば、スマートグラスを装着したユーザが前方を見た時の目線方向に光軸を向けるような位置に、カメラ60が配置される。スマートグラスの場合、左右のレンズ部分に情報がAR表示される。なお、AR表示とは、現実空間に重畳するように情報を表示することを意味する。スマートグラスのレンズ部分に情報を投影する投影装置などが、出力装置14に相当する。また、スマートグラスが備えるスピーカ等もまた、出力装置14に相当する。 The energization state detection device 10B is smart glasses. For example, the camera 60 is arranged at a position where the optical axis is directed in the line of sight of the user wearing the smart glasses when looking forward. In the case of smart glasses, information is displayed in AR on the left and right lenses. Note that AR display means displaying information so as to be superimposed on the real space. A projection device or the like that projects information onto the lens portion of smart glasses corresponds to the output device 14 . A speaker or the like included in smart glasses also corresponds to the output device 14 .
 通電状態検出装置10Cは多機能式の腕時計である。例えば、腕時計の側面部分等にカメラ60が配置される。腕時計の文字盤の部分に配置されたディスプレイや、アラーム音を発生させる内蔵式スピーカ等が、出力装置14に相当する。 The energization state detection device 10C is a multifunctional wristwatch. For example, a camera 60 is arranged on the side of a wrist watch. The output device 14 corresponds to a display arranged on the dial of the wristwatch, a built-in speaker for generating an alarm sound, or the like.
 図5は、通電状態検出装置10Aへのアンテナの配置例を示す概念図である。通電状態検出装置10は、アンテナ20を内蔵していても、内蔵していなくてもよい(図3および図5参照)。図5は、アンテナ20を内蔵するタイプの通電状態検出装置10Aを例示している。 FIG. 5 is a conceptual diagram showing an example of arrangement of antennas on the energized state detection device 10A. The energized state detection device 10 may or may not incorporate the antenna 20 (see FIGS. 3 and 5). FIG. 5 illustrates an energization state detection device 10A of a type that incorporates an antenna 20. As shown in FIG.
 図5におけるアンテナ20は、スマートグラスである通電状態検出装置10Aのフレームに沿って、第1部分20a、第2部分20bおよび第3部分20cの3つの部分から構成されている。アンテナ20の第1部分20aには、アンテナ軸aが対応する。アンテナ20の第2部分20bには、アンテナ軸bが対応する。アンテナ20の第3部分20cには、アンテナ軸cが対応する。アンテナ20全体についてのアンテナ軸は、アンテナ軸a、アンテナ軸bおよびアンテナ軸cのそれぞれが規定するアンテナベクトルを合成した合成ベクトルの方向に延びる。 The antenna 20 in FIG. 5 is composed of three parts, a first part 20a, a second part 20b and a third part 20c, along the frame of the energized state detection device 10A, which is smart glasses. Corresponding to the first portion 20a of the antenna 20 is the antenna axis a. The second portion 20b of the antenna 20 corresponds to the antenna axis b. Corresponding to the third portion 20c of the antenna 20 is the antenna axis c. The antenna axis of the antenna 20 as a whole extends in the direction of the composite vector obtained by combining the antenna vectors defined by the antenna axis a, the antenna axis b, and the antenna axis c.
 図6は、電線の通電状態を検出する処理を例示するフローチャートである。プロセッサ11は、受信強度情報を取得する(St101)。受信強度情報は、電線の通電状態に対応する、アンテナ20の受信強度を示す情報を含んでいる。受信強度情報は、図3においては、オーディオインターフェース50のオーディオバッファ53に蓄積された情報に相当する。なお、受信強度情報を取得するタイミングはユーザの操作によって開始することもできるが他の方法を用いても良い。例えばGPS(Global Positioning System)情報等の位置情報を用いてユーザが電線又は鉄塔の付近に近づいたことをプロセッサ11が検知して自動的に受信強度情報を取得してもよい。或いはGPS情報等の位置情報を用いてユーザが電線又は鉄塔の付近に近づいたことをプロセッサ11が検知してユーザに受信強度情報の取得を開始するように促しても良い。これらのようにするとより安全にユーザが通電状態を検知することができる。 FIG. 6 is a flowchart illustrating the process of detecting the energized state of electric wires. The processor 11 acquires reception strength information (St101). The reception intensity information includes information indicating the reception intensity of the antenna 20 corresponding to the energized state of the electric wire. The reception intensity information corresponds to the information accumulated in the audio buffer 53 of the audio interface 50 in FIG. Note that the timing of acquiring the reception intensity information can be started by the user's operation, but other methods may be used. For example, using position information such as GPS (Global Positioning System) information, the processor 11 may detect that the user has approached an electric wire or steel tower, and automatically acquire reception intensity information. Alternatively, the processor 11 may detect that the user has approached an electric wire or steel tower using location information such as GPS information, and prompt the user to start acquiring reception intensity information. By doing so, the user can more safely detect the energized state.
 プロセッサ11は、受信強度情報が示す受信強度が第1の閾値を超えるか否かを判定する(St102)。ここでいう受信強度は、例えばアンテナ20が受信した信号の振幅に対応する値であってよい。第1の閾値は、所定の値として例えばメモリ12等に予め記憶されていてよい。受信強度情報が示す受信強度が第1の閾値を超える場合(St102:Yes)はステップSt103へと処理が遷移する。受信強度情報が示す受信強度が第1の閾値を超えない場合(St102:No)は、ステップSt101へと処理が戻る。 The processor 11 determines whether or not the reception strength indicated by the reception strength information exceeds the first threshold (St102). The reception intensity referred to here may be a value corresponding to the amplitude of the signal received by the antenna 20, for example. The first threshold value may be stored in advance in the memory 12 or the like as a predetermined value. If the reception intensity indicated by the reception intensity information exceeds the first threshold (St102: Yes), the process transitions to step St103. If the reception intensity indicated by the reception intensity information does not exceed the first threshold (St102: No), the process returns to step St101.
 ステップSt103においてプロセッサ11は、カメラ60が電線を撮像することにより得られた撮像画像を取得する。プロセッサ11は、取得した撮像画像に対して画像処理を行い、電線ベクトルを算出する(St104)。電線ベクトルは、電線の向きを示す情報に相当する。プロセッサ11が実行する電線ベクトルの算出方法として、種々の態様が考えられる。例えば、撮像画像に基づいて、画像が示す空間上の点集合の中から一定以上の長さがあるものを抽出する。この一定以上の長さを有する点集合の一端を始点とし、他端を終点とするベクトルを、電線ベクトルと推定することができる。また、鉄塔は通常、同じ高さのものが用いられる事が一般的である。そこで、撮像画像から2つの鉄塔を任意の画像認識技術を用いて特定し、2つの鉄塔における所定の位置同士を結ぶベクトルを、電線ベクトルと推定することも考えられる。その他、当業者は任意の方式を用いて電線ベクトルを算出してよい。 At step St103, the processor 11 acquires a captured image obtained by the camera 60 capturing an image of the electric wire. The processor 11 performs image processing on the acquired captured image to calculate an electric wire vector (St104). The electric wire vector corresponds to information indicating the direction of the electric wire. Various modes are conceivable as a method of calculating the electric wire vector executed by the processor 11 . For example, based on the captured image, points having a certain length or longer are extracted from the set of points in the space indicated by the image. A vector starting from one end of the set of points having a certain length or more and ending at the other end can be estimated as a wire vector. Also, steel towers are generally of the same height. Therefore, it is conceivable to specify two pylons from the captured image using any image recognition technique, and to estimate a vector connecting predetermined positions on the two pylons as an electric wire vector. In addition, those skilled in the art may use any method to calculate the electric wire vector.
 続いて、プロセッサ11は、ステップSt101で取得した受信強度情報を補正する(St105)。受信強度情報の補正には、ステップSt104で算出された電線ベクトルの値を用いる。 Subsequently, the processor 11 corrects the reception intensity information acquired in step St101 (St105). The value of the electric wire vector calculated in step St104 is used to correct the reception intensity information.
 補正後の受信強度情報が示す受信強度を、補正強度と表記する。補正強度は下記の式(1)によって計算することができる。 The reception strength indicated by the reception strength information after correction is referred to as correction strength. The correction strength can be calculated by the following formula (1).
 補正強度=受信強度×f(θ)・・・(1)
 式(1)におけるθは、図2に基づいて上述した、電線軸とアンテナ軸との間のなす角である。なお、通電状態検出装置10は、アンテナ軸の方向を外部ファイル80もしくはアンテナ20が備えるジャイロスコープ21等に基づいて取得済みである(図3参照)。また、電線軸の方向も、電線ベクトルとしてステップSt104で取得済みである。従ってプロセッサ11は、なす角θを計算することができる。
Correction intensity=Received intensity×f(θ) (1)
θ in equation (1) is the angle formed between the wire axis and the antenna axis described above with reference to FIG. 2 . It should be noted that the energized state detection device 10 has already acquired the direction of the antenna axis based on the external file 80 or the gyroscope 21 provided in the antenna 20 (see FIG. 3). Also, the direction of the wire axis has already been acquired as the wire vector in step St104. Therefore, the processor 11 can calculate the angle .theta.
 式(1)における関数f()は、なす角θに応じて受信強度をどの程度補正すればよいかを規定する関数である。この関数f()はメモリ12等に予め記憶されていてよく、プロセッサ11は関数f()をメモリ12から読み出し、なす角θを入力変数として用いて関数fを計算する。関数f()の出力値を、受信強度に乗じることにより、補正強度の値を計算することができる。すなわち、ステップSt105においてプロセッサ11は、上記の式(1)に基づいて補正強度を算出することにより、受信強度情報を補正する。 The function f() in equation (1) is a function that defines how much the received intensity should be corrected according to the angle θ formed. This function f() may be pre-stored in the memory 12 or the like, and the processor 11 reads out the function f() from the memory 12 and calculates the function f using the formed angle θ as an input variable. The corrected strength value can be calculated by multiplying the received strength by the output value of the function f(). That is, in step St105, the processor 11 corrects the reception strength information by calculating the correction strength based on the above equation (1).
 プロセッサ11は、補正強度が第2の閾値を超えるか否かを判定する(St106)。第2の閾値は、所定の値として例えばメモリ12等に予め記憶されていてよい。補正強度が第2の閾値を超える場合(St106:Yes)はステップSt107へと処理が遷移する。補正強度が第2の閾値を超えない場合(St106:No)は、ステップSt101へと処理が戻る。 The processor 11 determines whether or not the correction strength exceeds the second threshold (St106). The second threshold value may be stored in advance in the memory 12 or the like as a predetermined value. If the correction strength exceeds the second threshold (St106: Yes), the process transitions to step St107. If the correction strength does not exceed the second threshold (St106: No), the process returns to step St101.
 ステップSt107においてプロセッサ11は、出力装置14を制御して、電線の通電状態をユーザに対して提示する。すなわち、プロセッサ11は、ステップSt105において補正された受信強度情報が示す受信強度に基づいて、電線の通電状態を示す情報を出力装置14に出力させる。 At step St107, the processor 11 controls the output device 14 to present the energized state of the electric wire to the user. That is, the processor 11 causes the output device 14 to output information indicating the energized state of the electric wire based on the reception intensity indicated by the reception intensity information corrected in step St105.
 図7は、電線の通電状態の提示例を示す概念図である。本実施の形態における腕時計形の通電状態検出装置10は、プロセッサ11による制御により、文字盤部分に配置されたディスプレイに「通電中」の文字を表示させる。なお、「通電中」の文字は、電線の通電状態を示す情報に相当する。電線の通電状態を示す情報が出力装置14から出力されることにより、腕時計を装着しているユーザは、電線が通電中である事を認識することができる。なお、通電状態検出装置10が振動機能や音声出力機能を備えている場合は、振動や音声等によって、ユーザに対して電線が通電中である事を提示してもよい。なお、「通電中」の文字の表示などの電線の通電状態を示す情報の出力は、補正強度が第2の閾値を超える場合に行われるので、受信強度情報が示す受信強度に基づいて行われている。 FIG. 7 is a conceptual diagram showing an example of presentation of the energized state of electric wires. The wristwatch-shaped energized state detection device 10 according to the present embodiment displays the characters "energized" on the display arranged on the dial portion under the control of the processor 11 . It should be noted that the characters "currently energized" correspond to information indicating the energized state of the electric wire. By outputting information indicating the energized state of the electric wire from the output device 14, the user wearing the wristwatch can recognize that the electric wire is energized. If the energized state detection device 10 has a vibration function or an audio output function, the fact that the electric wire is energized may be presented to the user by means of vibration, voice, or the like. Note that the output of information indicating the energized state of the wire, such as the display of the characters "energized", is performed when the corrected strength exceeds the second threshold value, so it is performed based on the received strength indicated by the received strength information. ing.
 次に、本実施の形態の変形例について説明する。 Next, a modified example of this embodiment will be described.
 (対象物までの距離を考慮した電線ベクトルの算出)
 カメラ60が二眼カメラや三眼カメラなどの、二眼以上のカメラ(二以上のレンズを有するカメラ)である場合、カメラ60が有するプロセッサまたは通電状態検出装置10のプロセッサ11が、撮像画像に含まれる電線などの対象物とカメラ60との間の距離を、視差を用いて測定することができる。ステップSt104におけるプロセッサ11は、撮像画像と前記距離とに基づいて、3次元空間上の電線ベクトルを算出することができる。この電線ベクトルを用いることにより、ステップSt105におけるプロセッサ11は、受信強度情報をより高い精度で補正することができる。
(Calculation of electric wire vector considering distance to object)
When the camera 60 is a camera with two or more eyes (a camera with two or more lenses) such as a twin-lens camera or a tri-lens camera, the processor included in the camera 60 or the processor 11 of the power supply state detection device 10 detects the captured image. The distance between an object, such as an included electrical wire, and the camera 60 can be measured using parallax. The processor 11 in step St104 can calculate the electric wire vector in the three-dimensional space based on the captured image and the distance. By using this electric wire vector, the processor 11 in step St105 can correct the reception intensity information with higher accuracy.
 (撮像画像に基づいた電線ベクトルの種々の算出方法)
 ステップSt104における電線ベクトルの算出は、カメラ60による撮像画像に対する画像処理以外の方法によって行われてもよい。例えば、GPS情報受信装置を用いて電線ベクトルが算出されてもよい。電線は通常、鉄塔と鉄塔との間に張られるものである。鉄塔は構造物であるため、鉄塔を建てるには法的な許可が必要になるのが一般的である。また、地図情報に、鉄塔の位置を示す情報が含まれていることがある。そこで通電状態検出装置10は、図示を省略するGPS情報受信装置を備えていてよい。GPS情報受信装置は、通電状態検出装置10の現在位置を示す位置情報を取得する。また、通電状態検出装置10は、鉄塔の位置を示す情報を含んだマップ情報を外部から無線通信回線等を介して取得することができる。通信回線を介した外部からの情報取得技術は一般的なものであるため、その具体的な実装形態については説明を省略する。通電状態検出装置10のメモリ12に、鉄塔の位置を示す情報を含んだマップ情報が前もって記憶されていてもよい。プロセッサ11は、GPS情報受信装置が取得した通電状態検出装置10の現在位置を示す情報と、上記のマップ情報に含まれる、現在位置の近傍にある2以上の鉄塔の位置を示す情報とに基づいて、電線ベクトルを算出することができる。
(Various methods of calculating electric wire vectors based on captured images)
The calculation of the electric wire vector in step St104 may be performed by a method other than the image processing of the image captured by the camera 60. FIG. For example, a wire vector may be calculated using a GPS information receiving device. Electric wires are usually stretched between steel towers. Since a steel tower is a structure, a legal permit is generally required to build a steel tower. Map information may also include information indicating the position of a steel tower. Therefore, the energized state detection device 10 may include a GPS information reception device (not shown). The GPS information receiving device acquires position information indicating the current position of the energized state detection device 10 . Further, the energized state detection device 10 can acquire map information including information indicating the position of the steel tower from the outside via a wireless communication line or the like. Since the technology for acquiring information from the outside via a communication line is common, the description of its specific implementation will be omitted. Map information including information indicating the position of the pylon may be stored in advance in the memory 12 of the energization state detection device 10 . The processor 11 is based on information indicating the current position of the energized state detection device 10 acquired by the GPS information receiving device and information indicating the positions of two or more steel towers near the current position included in the map information. , the electric wire vector can be calculated.
 また、電線ベクトルの算出に用いる撮像画像は例えばグレースケール画像であってよい。ただし、グレースケール画像には限られない。通電状態検出装置10は、アンテナ軸に対する位置関係を算出する為に用いることができる画像であれば種々の画像を用いることができる。例えば、カメラ60が撮像した画像からエッジを検出することで鉄塔や電線の存在を強調した画像を撮像画像として用いても良い。航空写真や巡回する車両が連続的に撮像した画像などのように、他の装置や乗り物によって種々の角度から撮像された画像を撮像画像として用いてもよく、これにより、より精度の高い電線ベクトルを算出することができる。 Also, the captured image used for calculating the electric wire vector may be, for example, a grayscale image. However, it is not limited to grayscale images. The energization state detection device 10 can use various images as long as they are images that can be used to calculate the positional relationship with respect to the antenna axis. For example, an image that emphasizes the existence of a steel tower or an electric wire by detecting edges from an image captured by the camera 60 may be used as the captured image. Images captured from various angles by other devices or vehicles, such as aerial photographs and images continuously captured by patrolling vehicles, may be used as the captured images, so that the electric wire vector can be obtained with higher accuracy. can be calculated.
 (光軸とアンテナ軸との間の角度)
 カメラ60の光軸とアンテナ20のアンテナ軸との間の角度は、固定値であってよい。この固定値は、図3に示されている外部ファイル80またはメモリ12に記録されていてよい。しかし、カメラ60の光軸とアンテナ20のアンテナ軸との間の角度は変化してもよい。例えば、カメラ60とアンテナ20とが別々に設けられている場合や、カメラ60とアンテナ20とが一つの装置に内蔵されているが、カメラ60の向きまたはアンテナ20の向きを変える機構(アンテナを90度回転させる機構等)が設けられている場合には、カメラ60の光軸とアンテナ20のアンテナ軸との間の角度が変化する。このような場合に、カメラ60およびアンテナ20のうち少なくとも一方にジャイロスコープを付加する。例えば、図3に記載されているジャイロスコープ21等が、これに該当する。プロセッサ11は、ジャイロスコープから取得した情報に基づいて、光軸とアンテナ軸との間の相対角度を補正する。すなわち、一例において、通電状態検出装置10は、アンテナ20の角速度を検出するジャイロスコープ21を有する。プロセッサ11は、ジャイロスコープ21が検出した角速度に基づき、アンテナ20の向きを算出することができる。すなわち、アンテナ20の向きを示す情報は、ジャイロスコープ21が検出したアンテナ20の角速度に基づく情報である。これにより、カメラ60の光軸とアンテナ20のアンテナ軸との間の角度が変化する場合であっても、プロセッサ11が、上述の相対角度を正しく算出することができる。
(angle between optical axis and antenna axis)
The angle between the optical axis of camera 60 and the antenna axis of antenna 20 may be a fixed value. This fixed value may be recorded in the external file 80 or memory 12 shown in FIG. However, the angle between the optical axis of camera 60 and the antenna axis of antenna 20 may vary. For example, when the camera 60 and the antenna 20 are provided separately, or when the camera 60 and the antenna 20 are built in one device, a mechanism for changing the direction of the camera 60 or the direction of the antenna 20 (the antenna is If a 90-degree rotation mechanism or the like is provided, the angle between the optical axis of the camera 60 and the antenna axis of the antenna 20 changes. In such a case, at least one of the camera 60 and the antenna 20 is added with a gyroscope. For example, the gyroscope 21 or the like shown in FIG. 3 corresponds to this. Processor 11 corrects the relative angle between the optical axis and the antenna axis based on information obtained from the gyroscope. That is, in one example, the energization state detection device 10 has a gyroscope 21 that detects the angular velocity of the antenna 20 . Processor 11 can calculate the orientation of antenna 20 based on the angular velocity detected by gyroscope 21 . That is, the information indicating the orientation of the antenna 20 is information based on the angular velocity of the antenna 20 detected by the gyroscope 21 . Accordingly, even when the angle between the optical axis of the camera 60 and the antenna axis of the antenna 20 changes, the processor 11 can correctly calculate the relative angle described above.
 (受信強度が小さい場合の処理)
 ステップSt101において取得した受信強度情報が示す受信強度が小さい場合、2通りの状況が想定される。第1の状況は、電線が通電していないという状況である。第2の状況は、電線は通電しているが、電線に対するアンテナ20の向きが悪いため、アンテナ20による受信が弱いという状況である。
(Processing when the reception strength is low)
When the reception strength indicated by the reception strength information acquired in step St101 is small, two situations are assumed. The first situation is that the wire is not energized. The second situation is that the wire is energized but the reception by the antenna 20 is weak due to the poor orientation of the antenna 20 with respect to the wire.
 ユーザが、実際には第2の状況であるのに、第1の状況であると誤認することを回避するために、プロセッサ11は、ステップSt101において取得した受信強度情報が示す受信強度が第3の閾値よりも小さい場合に、ユーザに対しアンテナ20の向きの修正を促す情報を出力装置14に出力させてよい。 In order to prevent the user from misunderstanding that the situation is the first situation when the situation is actually the second situation, the processor 11 sets the reception strength indicated by the reception strength information acquired in step St101 to the third situation. is smaller than the threshold, the output device 14 may output information prompting the user to correct the orientation of the antenna 20 .
 図8は、アンテナの向きの修正を促す情報の出力例を示す概念図である。本実施の形態において、出力装置14は通電状態検出装置10が備えるディスプレイである。このディスプレイには、通電状態検出装置10に内蔵されたカメラ60が撮像した撮像画像がリアルタイムで表示されている。また、通電状態検出装置10にはアンテナ20も内蔵されている。 FIG. 8 is a conceptual diagram showing an output example of information prompting correction of the orientation of the antenna. In this embodiment, the output device 14 is a display included in the energization state detection device 10 . On this display, a captured image captured by the camera 60 incorporated in the energized state detection device 10 is displayed in real time. An antenna 20 is also incorporated in the energized state detection device 10 .
 本実施の形態においては、アンテナ20の向きの修正を促す情報として、情報D1、情報D2、および情報D3の3種類が表示されている。情報D1は、現在のアンテナ軸の向きを示す直線である。情報D2は、目標となるアンテナ軸の向きを示す直線である。情報D3は、通電状態検出装置10を動かすべき方向を示す矢印である。情報D3に基づいて、ユーザは通電状態検出装置10を時計回りに回転させる。すると、情報D1として表示された直線と、情報D2として表示された直線とが重なる。この時、電線軸とアンテナ軸との間のなす角θは、受信強度が増大するような角度になる。 In the present embodiment, three types of information D1, D2, and D3 are displayed as information prompting correction of the orientation of the antenna 20. FIG. Information D1 is a straight line indicating the current orientation of the antenna axis. Information D2 is a straight line indicating the orientation of the target antenna axis. The information D3 is an arrow indicating the direction in which the energized state detection device 10 should be moved. Based on the information D3, the user rotates the energization state detection device 10 clockwise. Then, the straight line displayed as the information D1 and the straight line displayed as the information D2 overlap. At this time, the angle .theta. between the wire axis and the antenna axis is an angle that increases the reception intensity.
 アンテナの向きの修正を促す情報の出力は、ステップSt102からステップSt101へと処理が戻る途中に行われてよい。この時、第3の閾値は、第1の閾値以下の値であってよい。また、出力装置14による出力対象となる、アンテナの向きの修正を促す情報を取得するために、プロセッサ11はステップSt103およびSt104と同様の処理を行って、電線ベクトルを算出してもよい。そしてプロセッサ11は、算出した電線ベクトルと、カメラ60の光軸に対するアンテナ20のアンテナ軸の方向とに基づいて、上記の情報D1、D2、D3を算出してよい。 The information prompting to correct the direction of the antenna may be output during the process returning from step St102 to step St101. At this time, the third threshold may be a value equal to or less than the first threshold. Further, in order to acquire information prompting the correction of the orientation of the antenna to be output by the output device 14, the processor 11 may perform the same processing as steps St103 and St104 to calculate the electric wire vector. Then, the processor 11 may calculate the above information D1, D2, and D3 based on the calculated wire vector and the direction of the antenna axis of the antenna 20 with respect to the optical axis of the camera 60 .
 以上のように、電線の通電状態を検出する通電状態検出装置10がプロセッサ11とメモリ12とを備える。プロセッサ11は、電線の通電状態に対応するアンテナ20の受信強度を示す、受信強度情報を取得する。プロセッサは、電線の向きを示す情報と、アンテナの向きを示す情報とに基づいて受信強度情報を補正する。これにより、アンテナの向きによらず、精度の高い通電状態検出装置を提供することができる。 As described above, the energization state detection device 10 that detects the energization state of the electric wire includes the processor 11 and the memory 12 . The processor 11 acquires reception intensity information indicating the reception intensity of the antenna 20 corresponding to the energized state of the electric wire. The processor corrects the reception intensity information based on the information indicating the direction of the electric wire and the information indicating the direction of the antenna. Accordingly, it is possible to provide an energization state detection device with high accuracy regardless of the orientation of the antenna.
 通電状態検出装置10は、ユーザに対し情報を出力する出力装置14をさらに備える。プロセッサ11は、受信強度情報が示す受信強度に基づいて、電線の通電状態を示す情報を出力装置14に出力させる。これにより、受信強度が強い場合にユーザに対して行う通知を高精度に行うことができる。 The energization state detection device 10 further includes an output device 14 that outputs information to the user. The processor 11 causes the output device 14 to output information indicating the energized state of the electric wire based on the reception intensity indicated by the reception intensity information. As a result, it is possible to highly accurately notify the user when the reception strength is strong.
 プロセッサ11は、受信強度情報が示す受信強度が所定の閾値より小さい場合に、ユーザに対しアンテナ20の向きの修正を促す情報を出力装置14に出力させる。これにより、受信強度が小さい場合に、アンテナの向きをユーザが修正する機会を設けることができる。また、ユーザが、電線が通電していない場合と、電線が通電しているがアンテナの向きに関係して受信強度が弱い場合とを切り分けて認識することができる。 When the reception strength indicated by the reception strength information is smaller than a predetermined threshold, the processor 11 causes the output device 14 to output information prompting the user to correct the orientation of the antenna 20 . This provides an opportunity for the user to correct the orientation of the antenna when the received signal strength is low. In addition, the user can distinguish between the case where the electric wire is not energized and the case where the electric wire is energized but the reception strength is weak due to the orientation of the antenna.
 プロセッサ11は、カメラ60が電線を撮像することにより得られた撮像画像に基づいて、電線の向きを示す情報を算出する。これにより、カメラによる撮像画像から電線の向きを特定して、受信強度を適切に補正することができる。 The processor 11 calculates information indicating the direction of the electric wire based on the captured image obtained by imaging the electric wire with the camera 60 . This makes it possible to identify the direction of the electric wire from the image captured by the camera and appropriately correct the reception intensity.
 撮像画像は航空写真であってよい。これにより、種々の角度から画像を撮像することができ、より精度の高い電線ベクトルを算出することができる。 The captured image may be an aerial photograph. As a result, images can be captured from various angles, and the electric wire vector can be calculated with higher accuracy.
 カメラ60は二以上のレンズを有する。プロセッサ11は、撮像画像と、撮像画像に含まれる対象物とカメラ60との間の距離とに基づいて、電線の向きを示す情報を算出する。これにより、二眼以上のカメラの視差を活用して、電線の向きをより正確に算出することができる。 The camera 60 has two or more lenses. The processor 11 calculates information indicating the direction of the electric wire based on the captured image and the distance between the camera 60 and the object included in the captured image. This makes it possible to more accurately calculate the direction of the electric wire by utilizing the parallax of two or more cameras.
 通電状態検出装置10がGPS情報受信装置をさらに備える。プロセッサ11は、GPS情報受信装置が取得した通電状態検出装置の位置情報と、所定のマップ情報とに基づいて、電線の向きを示す情報を算出する。これにより、通電状態検出装置10の現在位置と、マップ情報に含まれる鉄塔の位置等に基づいて、電線の向きを推定することができる。 The energization state detection device 10 further includes a GPS information reception device. The processor 11 calculates information indicating the direction of the electric wire based on the position information of the energized state detection device acquired by the GPS information receiving device and the predetermined map information. Accordingly, the direction of the electric wire can be estimated based on the current position of the energized state detection device 10 and the position of the steel tower included in the map information.
 プロセッサ11は、電線の向きとアンテナ20の向きとの間のなす角θに応じた値を受信強度情報が示す受信強度に乗じることにより、受信強度情報を補正する。これにより、なす角θに応じて適切に受信強度を補正することができる。 The processor 11 corrects the reception intensity information by multiplying the reception intensity indicated by the reception intensity information by a value corresponding to the angle θ between the orientation of the electric wire and the orientation of the antenna 20 . Thereby, the reception intensity can be appropriately corrected according to the formed angle θ.
 プロセッサ11とメモリ12とを備えた装置10による、電線の通電状態を検出する通電状態検出方法において、プロセッサ11が、電線の通電状態に対応するアンテナ20の受信強度を示す、受信強度情報を取得する。プロセッサ11が、電線の向きを示す情報と、アンテナ20の向きを示す情報とに基づいて受信強度情報を補正する。これにより、アンテナの向きによらず、精度の高い通電状態検出装置を提供することができる。 In an energization state detection method for detecting an energization state of a wire by a device 10 having a processor 11 and a memory 12, the processor 11 acquires reception intensity information indicating the reception intensity of the antenna 20 corresponding to the energization state of the wire. do. The processor 11 corrects the reception intensity information based on the information indicating the orientation of the electric wire and the information indicating the orientation of the antenna 20 . Accordingly, it is possible to provide an energization state detection device with high accuracy regardless of the orientation of the antenna.
 通電状態検出装置10が、ユーザに対し情報を出力する出力装置14をさらに備える。通電状態検出方法は、プロセッサ11が、受信強度情報が示す受信強度に基づいて、電線の通電状態を示す情報を出力装置14に出力させるステップを有する。これにより、受信強度が強い場合にユーザに対して行う通知を高精度に行うことができる。 The energization state detection device 10 further includes an output device 14 that outputs information to the user. The energization state detection method has a step of causing the processor 11 to output information indicating the energization state of the electric wire to the output device 14 based on the reception intensity indicated by the reception intensity information. As a result, it is possible to highly accurately notify the user when the reception strength is strong.
 通電状態検出方法は、受信強度情報が示す受信強度が所定の閾値より小さい場合に、プロセッサ11が、ユーザに対しアンテナ20の向きの修正を促す情報を出力装置14に出力させるステップを有する。これにより、受信強度が小さい場合に、アンテナの向きをユーザが修正する機会を設けることができる。また、ユーザが、電線が通電していない場合と、電線が通電しているがアンテナの向きに関係して受信強度が弱い場合とを切り分けて認識することができる。 The energized state detection method includes the step of causing the processor 11 to output to the output device 14 information prompting the user to correct the orientation of the antenna 20 when the reception strength indicated by the reception strength information is smaller than a predetermined threshold. This provides an opportunity for the user to correct the orientation of the antenna when the received signal strength is low. In addition, the user can distinguish between the case where the electric wire is not energized and the case where the electric wire is energized but the reception strength is weak due to the orientation of the antenna.
 通電状態検出方法は、プロセッサ11が、カメラ60が電線を撮像することにより得られた撮像画像に基づいて電線の向きを示す情報を算出するステップを有する。これにより、カメラによる撮像画像から電線の向きを特定して、受信強度を適切に補正することができる。 The energization state detection method has a step of calculating information indicating the direction of the electric wire based on the captured image obtained by the camera 60 capturing the electric wire. This makes it possible to identify the direction of the electric wire from the image captured by the camera and appropriately correct the reception intensity.
 撮像画像は航空写真であってよい。これにより、種々の角度から画像を撮像することができ、より精度の高い電線ベクトルを算出することができる。 The captured image may be an aerial photograph. As a result, images can be captured from various angles, and the electric wire vector can be calculated with higher accuracy.
 カメラ60は二以上のレンズを有する。電線の向きを示す情報を算出するステップにおいて、プロセッサ11は、撮像画像と、撮像画像に含まれる対象物とカメラ60との間の距離とに基づいて、電線の向きを示す情報を算出する。これにより、二眼以上のカメラの視差を活用して、電線の向きをより正確に算出することができる。 The camera 60 has two or more lenses. In the step of calculating information indicating the direction of the electric wire, the processor 11 calculates information indicating the direction of the electric wire based on the captured image and the distance between the camera 60 and the object included in the captured image. This makes it possible to more accurately calculate the direction of the electric wire by utilizing the parallax of two or more cameras.
 通電状態検出装置10がGPS情報受信装置をさらに備える。通電状態検出方法は、プロセッサ11が、GPS情報受信装置が取得した通電状態検出装置の位置情報と、所定のマップ情報とに基づいて、電線の向きを示す情報を算出するステップを有する。これにより、通電状態検出装置10の現在位置と、マップ情報に含まれる鉄塔の位置等に基づいて、電線の向きを推定することができる。 The energization state detection device 10 further includes a GPS information reception device. The energized state detection method has a step of calculating information indicating the direction of the electric wire by the processor 11 based on the position information of the energized state detection device acquired by the GPS information receiving device and predetermined map information. Accordingly, the direction of the electric wire can be estimated based on the current position of the energized state detection device 10 and the position of the steel tower included in the map information.
 受信強度情報を補正するステップにおいて、プロセッサ11は、電線の向きとアンテナ20の向きとの間のなす角θに応じた値を受信強度情報が示す受信強度に乗じることにより、受信強度情報を補正する。これにより、なす角θに応じて適切に受信強度を補正することができる。 In the step of correcting the reception intensity information, the processor 11 corrects the reception intensity information by multiplying the reception intensity indicated by the reception intensity information by a value corresponding to the angle θ between the orientation of the electric wire and the orientation of the antenna 20. do. Thereby, the reception intensity can be appropriately corrected according to the formed angle θ.
 本開示は、精度の高い通電状態検出装置および通電状態検出方法として有用である。 The present disclosure is useful as a highly accurate energization state detection device and energization state detection method.
10、10A、10B、10C 通電状態検出装置
11 プロセッサ
12 メモリ
13 グラフィックメモリ
14 出力装置
20 アンテナ
21 ジャイロスコープ
30 オーディオボード
31 AD変換回路
40 オーディオボード
41 DA変換回路
50 オーディオインターフェース
51 オーディオ入力部
52 AD変換回路
53 オーディオバッファ
60 カメラ
70 キャプチャボード
71 AD変換回路
72 フレームバッファ
80 外部ファイル
100 通電状態検出システム
10, 10A, 10B, 10C energization state detection device 11 processor 12 memory 13 graphic memory 14 output device 20 antenna 21 gyroscope 30 audio board 31 AD conversion circuit 40 audio board 41 DA conversion circuit 50 audio interface 51 audio input unit 52 AD conversion Circuit 53 Audio buffer 60 Camera 70 Capture board 71 AD conversion circuit 72 Frame buffer 80 External file 100 Power supply state detection system

Claims (20)

  1.  電線の通電状態を検出する通電状態検出装置であって、
     プロセッサとメモリとを備え、
     前記プロセッサは、
     前記電線の通電状態に対応するアンテナの受信強度を示す、受信強度情報を取得し、
     前記電線の向きを示す情報と、前記アンテナの向きを示す情報とに基づいて前記受信強度情報を補正する、
     通電状態検出装置。
    An energization state detection device for detecting an energization state of an electric wire,
    comprising a processor and memory,
    The processor
    Acquiring reception intensity information indicating the reception intensity of the antenna corresponding to the energized state of the electric wire,
    correcting the reception intensity information based on information indicating the direction of the electric wire and information indicating the direction of the antenna;
    Energized state detection device.
  2.  ユーザに対し情報を出力する出力装置をさらに備え、
     前記プロセッサは、前記補正した受信強度情報が示す受信強度に基づいて、前記電線の通電状態を示す情報を前記出力装置に出力させる、
     請求項1に記載の通電状態検出装置。
    further comprising an output device for outputting information to the user;
    The processor causes the output device to output information indicating the energization state of the electric wire based on the reception intensity indicated by the corrected reception intensity information.
    The energization state detection device according to claim 1.
  3.  ユーザに対し情報を出力する出力装置をさらに備え、
     前記プロセッサは、前記受信強度情報が示す前記受信強度が所定の閾値より小さい場合に、前記ユーザに対し前記アンテナの向きの修正を促す情報を前記出力装置に出力させる、
     請求項1に記載の通電状態検出装置。
    further comprising an output device for outputting information to the user;
    The processor causes the output device to output information prompting the user to correct the orientation of the antenna when the reception strength indicated by the reception strength information is smaller than a predetermined threshold.
    The energization state detection device according to claim 1.
  4.  前記プロセッサは、カメラが前記電線を撮像することにより得られた撮像画像に基づいて、前記電線の向きを示す情報を算出する、
     請求項1から請求項3のうちいずれか一項に記載の通電状態検出装置。
    The processor calculates information indicating the direction of the electric wire based on the captured image obtained by imaging the electric wire with the camera.
    The energization state detection device according to any one of claims 1 to 3.
  5.  前記撮像画像は航空写真である、請求項4に記載の通電状態検出装置。 The energization state detection device according to claim 4, wherein the captured image is an aerial photograph.
  6.  前記カメラは二以上のレンズを有し、
     前記プロセッサは、前記撮像画像と、前記撮像画像に含まれる対象物と前記カメラとの間の距離とに基づいて、前記電線の向きを示す情報を算出する、
     請求項4に記載の通電状態検出装置。
    the camera has two or more lenses,
    The processor calculates information indicating the direction of the electric wire based on the captured image and the distance between the camera and an object included in the captured image.
    The energization state detection device according to claim 4.
  7.  前記アンテナは、前記カメラに対して固定されており、
     前記アンテナの向きを示す情報は、前記カメラの光軸に対する、前記アンテナの向きを示す情報である、
     請求項4に記載の通電状態検出装置。
    the antenna is fixed relative to the camera;
    The information indicating the orientation of the antenna is information indicating the orientation of the antenna with respect to the optical axis of the camera.
    The energization state detection device according to claim 4.
  8.  前記カメラをさらに備える、
     請求項4から請求項7のうちいずれか一項に記載の通電状態検出装置。
    further comprising the camera;
    The energization state detection device according to any one of claims 4 to 7.
  9.  前記アンテナの角速度を検出するジャイロスコープをさらに備え、
     前記アンテナの向きを示す情報は、前記ジャイロスコープが検出した前記アンテナの角速度に基づく情報である、
     請求項1から請求項8のうちいずれか一項に記載の通電状態検出装置。
    further comprising a gyroscope that detects the angular velocity of the antenna;
    The information indicating the orientation of the antenna is information based on the angular velocity of the antenna detected by the gyroscope,
    The energization state detection device according to any one of claims 1 to 8.
  10.  前記アンテナをさらに備える、
     請求項1から請求項9のうちいずれか一項に記載の通電状態検出装置。
    further comprising the antenna;
    The energization state detection device according to any one of claims 1 to 9.
  11.  GPS情報受信装置をさらに備え、
     前記プロセッサは、前記GPS情報受信装置が取得した前記通電状態検出装置の位置情報と、所定のマップ情報とに基づいて、前記電線の向きを示す情報を算出する、
     請求項1から請求項3のうちいずれか一項に記載の通電状態検出装置。
    further comprising a GPS information receiving device,
    The processor calculates information indicating the direction of the electric wire based on the position information of the energized state detection device acquired by the GPS information reception device and predetermined map information.
    The energization state detection device according to any one of claims 1 to 3.
  12.  前記プロセッサは、前記電線の向きと前記アンテナの向きとの間のなす角θに応じた値を前記受信強度情報が示す受信強度に乗じることにより、前記受信強度情報を補正する、
     請求項1から請求項11のうちいずれか一項に記載の通電状態検出装置。
    The processor corrects the reception intensity information by multiplying the reception intensity indicated by the reception intensity information by a value corresponding to the angle θ formed between the orientation of the electric wire and the orientation of the antenna.
    The energization state detection device according to any one of claims 1 to 11.
  13.  プロセッサとメモリとを備えた装置による、電線の通電状態を検出する通電状態検出方法であって、
     前記プロセッサが、前記電線の通電状態に対応するアンテナの受信強度を示す、受信強度情報を取得するステップと、
     前記プロセッサが、前記電線の向きを示す情報と、前記アンテナの向きを示す情報とに基づいて前記受信強度情報を補正するステップとを有する、通電状態検出方法。
    An energization state detection method for detecting an energization state of a wire by a device having a processor and a memory,
    the processor obtaining reception intensity information indicating the reception intensity of the antenna corresponding to the energized state of the electric wire;
    An energization state detection method, wherein the processor corrects the reception intensity information based on information indicating the direction of the electric wire and information indicating the direction of the antenna.
  14.  前記装置が、ユーザに対し情報を出力する出力装置をさらに備え、
     前記通電状態検出方法は、
     前記プロセッサが、前記補正した受信強度情報が示す受信強度に基づいて、前記電線の通電状態を示す情報を前記出力装置に出力させるステップをさらに有する、
     請求項13に記載の通電状態検出方法。
    The device further comprises an output device that outputs information to a user,
    The energized state detection method includes:
    The processor further comprises the step of causing the output device to output information indicating the energization state of the electric wire based on the reception intensity indicated by the corrected reception intensity information.
    The energization state detection method according to claim 13.
  15.  前記装置が、ユーザに対し情報を出力する出力装置をさらに備え、
     前記通電状態検出方法は、
     前記受信強度情報が示す前記受信強度が所定の閾値より小さい場合に、前記プロセッサが、前記ユーザに対し前記アンテナの向きの修正を促す情報を前記出力装置に出力させるステップをさらに有する、
     請求項13に記載の通電状態検出方法。
    The device further comprises an output device that outputs information to a user,
    The energized state detection method includes:
    further comprising the step of causing the output device to output information prompting the user to correct the orientation of the antenna when the received strength indicated by the received strength information is smaller than a predetermined threshold;
    The energization state detection method according to claim 13.
  16.  前記通電状態検出方法は、
     前記プロセッサが、カメラが前記電線を撮像することにより得られた撮像画像に基づいて前記電線の向きを示す情報を算出するステップをさらに有する、
     請求項13から請求項15のうちいずれか一項に記載の通電状態検出方法。
    The energized state detection method includes:
    The processor further comprises a step of calculating information indicating the direction of the electric wire based on the captured image obtained by imaging the electric wire with a camera.
    The energization state detection method according to any one of claims 13 to 15.
  17.  前記撮像画像は航空写真である、請求項16に記載の通電状態検出方法。 The energization state detection method according to claim 16, wherein the captured image is an aerial photograph.
  18.  前記カメラは二以上のレンズを有し、
     前記電線の向きを示す情報を算出するステップにおいて、前記プロセッサは、前記撮像画像と、前記撮像画像に含まれる対象物と前記カメラとの間の距離とに基づいて、前記電線の向きを示す情報を算出する、
     請求項16に記載の通電状態検出方法。
    the camera has two or more lenses,
    In the step of calculating the information indicating the orientation of the electric wire, the processor calculates the information indicating the orientation of the electric wire based on the captured image and the distance between the camera and an object included in the captured image. to calculate
    The energization state detection method according to claim 16.
  19.  前記装置が、GPS情報受信装置をさらに備え、
     前記通電状態検出方法は、
     前記プロセッサが、前記GPS情報受信装置が取得した前記装置の位置情報と、所定のマップ情報とに基づいて、前記電線の向きを示す情報を算出するステップをさらに有する、
     請求項13から請求項15のうちいずれか一項に記載の通電状態検出方法。
    The device further comprises a GPS information receiving device,
    The energized state detection method includes:
    The processor further comprises a step of calculating information indicating the direction of the electric wire based on the position information of the device acquired by the GPS information receiving device and predetermined map information.
    The energization state detection method according to any one of claims 13 to 15.
  20.  前記受信強度情報を補正するステップにおいて、前記プロセッサは、前記電線の向きと前記アンテナの向きとの間のなす角θに応じた値を前記受信強度情報が示す受信強度に乗じることにより、前記受信強度情報を補正する、
     請求項13から請求項19のうちいずれか一項に記載の通電状態検出方法。
    In the step of correcting the reception intensity information, the processor multiplies the reception intensity indicated by the reception intensity information by a value corresponding to an angle θ between the orientation of the electric wire and the orientation of the antenna. correct the intensity information,
    The energization state detection method according to any one of claims 13 to 19.
PCT/JP2022/006829 2021-03-22 2022-02-21 Energization state detection device and energization state detection method WO2022202030A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023508806A JP7539004B2 (en) 2021-03-22 2022-02-21 Apparatus and method for detecting electrical current flowing through a circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021047414 2021-03-22
JP2021-047414 2021-03-22

Publications (1)

Publication Number Publication Date
WO2022202030A1 true WO2022202030A1 (en) 2022-09-29

Family

ID=83397008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006829 WO2022202030A1 (en) 2021-03-22 2022-02-21 Energization state detection device and energization state detection method

Country Status (2)

Country Link
JP (1) JP7539004B2 (en)
WO (1) WO2022202030A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004125426A (en) * 2002-09-30 2004-04-22 Ntt Advanced Technology Corp Electric field intensity measuring device
WO2014002466A1 (en) * 2012-06-25 2014-01-03 国立大学法人金沢大学 Electromagnetic field measuring and display device, electromagnetic measuring and display method, program, and recording medium
WO2014033896A1 (en) * 2012-08-31 2014-03-06 株式会社日立製作所 Electromagnetic wave visualization device
JP2018114807A (en) * 2017-01-17 2018-07-26 中国電力株式会社 Unmanned flight vehicle and flight system
WO2018138942A1 (en) * 2017-01-25 2018-08-02 株式会社東芝 Power transmission facility monitoring device, power transmission facility monitoring unit, and power transmission facility monitoring system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11410047B2 (en) 2018-12-31 2022-08-09 Paypal, Inc. Transaction anomaly detection using artificial intelligence techniques

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004125426A (en) * 2002-09-30 2004-04-22 Ntt Advanced Technology Corp Electric field intensity measuring device
WO2014002466A1 (en) * 2012-06-25 2014-01-03 国立大学法人金沢大学 Electromagnetic field measuring and display device, electromagnetic measuring and display method, program, and recording medium
WO2014033896A1 (en) * 2012-08-31 2014-03-06 株式会社日立製作所 Electromagnetic wave visualization device
JP2018114807A (en) * 2017-01-17 2018-07-26 中国電力株式会社 Unmanned flight vehicle and flight system
WO2018138942A1 (en) * 2017-01-25 2018-08-02 株式会社東芝 Power transmission facility monitoring device, power transmission facility monitoring unit, and power transmission facility monitoring system

Also Published As

Publication number Publication date
JPWO2022202030A1 (en) 2022-09-29
JP7539004B2 (en) 2024-08-23

Similar Documents

Publication Publication Date Title
JP4181570B2 (en) Photographing device and photographing method for supporting panoramic photographing function
US20110227924A1 (en) 3d modeling apparatus, 3d modeling method, and computer readable medium
US20110234759A1 (en) 3d modeling apparatus, 3d modeling method, and computer readable medium
US8537247B2 (en) Photographing device which measures azimuth during photographing
JP2017201757A (en) Image acquisition system, image acquisition method, and image processing method
JP7048357B2 (en) Pre-confirmation system for captured images and pre-confirmation method for captured images
WO2022202030A1 (en) Energization state detection device and energization state detection method
CN112927281A (en) Depth detection method, depth detection device, storage medium, and electronic apparatus
KR101243184B1 (en) Portable ultrasonic partial discharge measurement device having ccd camera using gps, and partial discharge measurement method using the same
CN111572723A (en) Water gauge measuring method, measuring device, unmanned ship and storage medium
JP6320020B2 (en) Electronic device, control method thereof, and program
JP2013026955A (en) Camera and server device
JP5771508B2 (en) Display device, imaging device, and video display system
CN111147744B (en) Shooting method, data processing device, electronic equipment and storage medium
JP5514062B2 (en) Electronic device, imaging screen display method with information, and program
JP6764693B2 (en) Satellite signal processing method and satellite signal processing equipment
JP2019043473A (en) Flight device, management device, photographing control method, and photographing control program
JP2018140686A (en) Mobile body device and mobile body system
CN207491089U (en) A kind of unmanned machine head device for intelligently switching
JP4479386B2 (en) Imaging device
CN107462241B (en) Method, device and system for measuring geomagnetic basic diagram combined with image
JP2012029033A (en) Camera
JP2019018664A (en) Imaging control system
CN206740983U (en) Multimode tracking and accurate positioning equipment
CN113470116A (en) Method, device, equipment and storage medium for verifying calibration data of camera device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774830

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023508806

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22774830

Country of ref document: EP

Kind code of ref document: A1