WO2022202025A1 - Vehicle travel control device - Google Patents

Vehicle travel control device Download PDF

Info

Publication number
WO2022202025A1
WO2022202025A1 PCT/JP2022/006751 JP2022006751W WO2022202025A1 WO 2022202025 A1 WO2022202025 A1 WO 2022202025A1 JP 2022006751 W JP2022006751 W JP 2022006751W WO 2022202025 A1 WO2022202025 A1 WO 2022202025A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
mode
vehicle speed
motor
control unit
Prior art date
Application number
PCT/JP2022/006751
Other languages
French (fr)
Japanese (ja)
Inventor
雄大 佐藤
Original Assignee
三菱自動車工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱自動車工業株式会社 filed Critical 三菱自動車工業株式会社
Publication of WO2022202025A1 publication Critical patent/WO2022202025A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/182Selecting between different operative modes, e.g. comfort and performance modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a cruise control device for a hybrid vehicle, and more particularly to a cruise control device for a hybrid vehicle that has a cruise control device and is capable of switching between running modes.
  • hybrid vehicles there are known vehicles that can switch running modes such as an EV (Electric Vehicle) mode, a series mode, and a parallel mode. These driving modes are automatically switched according to driving conditions such as a required torque based on an accelerator operation amount or the like and a vehicle speed.
  • EV Electric Vehicle
  • a cruise control device capable of automatically running at an arbitrarily set target vehicle speed.
  • more and more vehicles are equipped with an adaptive cruise control system that automatically follows the preceding vehicle.
  • Patent Literature 1 discloses EV priority control that improves fuel efficiency by increasing EV mode selection opportunities in a hybrid vehicle.
  • Patent Literature 1 expands the conditions under which the EV mode is selected and increases the chances of using the EV mode, for example, when an operation instruction is given by the driver of the vehicle.
  • it is difficult to achieve both cruise control and EV priority control for example, even if an EV priority instruction is given during automatic driving by the cruise control device, switching to the EV mode is impossible at the set target vehicle speed. be.
  • the present invention was made to solve such problems, and the purpose thereof is to increase the opportunities for compatibility between automatic driving (cruise control) and motor priority control (EV priority control), To provide a running control device for a vehicle which improves quietness performance and fuel consumption performance.
  • a hybrid vehicle running control device of the present invention is mounted in a vehicle provided with an engine and a motor as a running drive source of the vehicle.
  • a driving mode switching control unit that performs switching control between a first driving mode in which the engine is operated and a second driving mode in which the engine is stopped and the motor is operated, and a motor that increases opportunities to execute the second driving mode.
  • a running control device for a vehicle comprising: a motor priority control instructing unit for instructing execution of priority control; and an automatic running control unit for automatically running the vehicle by setting a target vehicle speed of the vehicle, wherein the motor priority control is instructed to execute, in the automatic driving, the driving control unit is provided with a driving control unit that sets the maximum value of the target vehicle speed to the driving upper limit vehicle speed in the second driving mode.
  • the running control unit executes the motor priority control when the target vehicle speed is set by the automatic running control unit to a vehicle speed higher than the upper limit vehicle speed in the second running mode and the vehicle is automatically running. should be regulated.
  • the driving mode may be switched based on an accelerator operation amount.
  • the driving mode can be switched according to the accelerator operation during automatic driving in a state in which the motor priority control is instructed to be executed. Autonomous driving becomes possible.
  • the second running mode may be switched to the first running mode when the operation amount is greater than or equal to a predetermined value, and the second running mode may be maintained when the accelerator operation amount is less than the predetermined value.
  • the driving mode is switched from the second driving mode to the first driving mode to ensure the output of the entire vehicle. It can improve driving performance.
  • the second driving mode is maintained, and the quietness performance and fuel efficiency of the vehicle can be improved.
  • the travel control unit operates the motor and the engine by operating the accelerator in a state in which the instruction to execute the motor priority control is given during the automatic travel, so that the vehicle speed can travel in the second travel mode. After exceeding the upper limit vehicle speed, when the accelerator operation is turned off, it is preferable to restart the automatic traveling with the maximum value of the target vehicle speed set to the upper limit vehicle speed that can be traveled.
  • the vehicle includes a target vehicle speed setting unit that sets the target vehicle speed
  • the automatic cruise control unit is a cruise control device that controls the operation of the motor and the engine so that the vehicle speed becomes the target vehicle speed.
  • the target vehicle speed is set to the upper limit vehicle speed that can be driven in the second driving mode, enabling priority to be given to the second driving mode.
  • the automatic cruise control unit is an adaptive cruise control device that controls the operation of the motor and the engine so that the vehicle follows the preceding vehicle.
  • the target vehicle speed is set to the upper limit vehicle speed that can be driven in the second driving mode, enabling priority to be given to the second driving mode. become.
  • the target vehicle speed is set as the upper limit vehicle speed that can be traveled in the second travel mode, thereby automatically traveling in the second travel mode. continue to be possible.
  • the number of opportunities for the second driving mode in which the engine is stopped and the motor is driven during automatic driving increases, and the quietness performance and fuel consumption performance of the vehicle can be improved.
  • FIG. 1 is an overall configuration diagram of a vehicle to which a running control device of this embodiment is applied;
  • FIG. 5 is an example of a characteristic diagram showing switching of operating regions between EV mode and series mode;
  • 1 is a block diagram showing the configuration of a travel control device of this embodiment;
  • 5 is a time chart showing an example of changes in maximum driving torque, accelerator operation amount, and vehicle speed when EV priority control is turned ON during cruise control at a vehicle speed at which EV travel is possible; 4 is a time chart showing an example of changes in maximum drive torque, accelerator operation amount, and vehicle speed when EV priority control is turned ON during cruise control at a vehicle speed higher than an EV travelable vehicle speed; 5 is a time chart showing an example of changes in maximum drive torque, accelerator operation amount, and vehicle speed when cruise control is started with an EV priority switch ON; 5 is a time chart showing an example of changes in maximum driving torque, accelerator operation amount, and vehicle speed when accelerator override is performed beyond the detent during cruise control and EV priority control; 5 is a time chart showing an example of changes in maximum drive torque, accelerator operation amount, and vehicle speed when accelerator override is performed below the detent during cruise control and EV priority control;
  • FIG. 1 is an overall configuration diagram of a vehicle to which the cruise control device of this embodiment is applied.
  • a vehicle 1 according to this embodiment is a plug-in hybrid vehicle having a front motor 2, a rear motor 5, and an engine 3 as driving sources.
  • the vehicle 1 is a four-wheel drive vehicle configured to drive the front wheels 4 with the output of the front motor 2 or the output of the front motor 2 and the engine 3 and drive the rear wheels 6 with the output of the rear motor 5 .
  • the output shaft of the engine 3 is connected to the drive shaft 8 of the front wheels 4 via a speed reducer 7, and the speed reducer 7 incorporates a clutch 9 capable of connecting and disconnecting internal power transmission.
  • the clutch 9 When the clutch 9 is engaged, the driving force of the engine 3 is transmitted to the front wheels 4 via the reduction gear 7 and the drive shaft 8, and when the clutch 9 is disengaged, the engine 3 and the front wheels 4 are disconnected.
  • a front motor 2 is connected downstream of the clutch 9 of the speed reducer 7 in the power transmission direction (on the side of the front wheels 4), and the driving force thereof is transmitted from the speed reducer 7 to the front wheels 4 via the drive shaft 8.
  • a motor generator 10 is connected to the upstream side (engine 3 side) of the clutch 9 of the speed reducer 7 in the power transmission direction. It functions as a starter motor for starting the engine 3.
  • the rear motor 5 is connected to the drive shaft 12 of the rear wheel 6 via the speed reducer 11 , and the driving force thereof is transmitted from the speed reducer 11 to the rear wheel 6 via the drive shaft 12 .
  • an engine control unit 14 comprising an input/output device, a storage device (ROM (Read Only Memory), RAM (Random Access Memory), non-volatile RAM, etc.), a central processing unit (CPU), and the like.
  • the engine control unit 14 controls the throttle opening, fuel injection amount, ignition timing, etc. of the engine 3 to operate the engine 3 .
  • the front motor 2, the rear motor 5, and the motor generator 10 are three-phase AC motors, and a running battery 15 (running drive storage battery) is provided as a power supply for them.
  • the running battery 15 is composed of, for example, a secondary battery such as a lithium-ion battery, and incorporates a battery monitoring unit 15a for calculating its state of charge (hereinafter referred to as SOC) and detecting temperature.
  • SOC state of charge
  • the front motor 2 and motor generator 10 are connected to a running battery 15 via a front motor control unit 16, and the front motor control unit 16 is provided with a front motor inverter 16a and a motor generator inverter 16b.
  • the DC power from the running battery 15 is converted into three-phase AC power by the front motor inverter 16 a and the motor generator inverter 16 b and supplied to the front motor 2 and the motor generator 10 .
  • the electric power regenerated by the front motor 2 and the electric power generated by the motor generator 10 are converted into DC power by the front motor inverter 16a and the motor generator inverter 16b, and the running battery 15 is charged.
  • the rear motor 5 is connected to the running battery 15 via the rear motor control unit 17, and the rear motor control unit 17 is provided with a rear motor inverter 17a.
  • the DC power from the running battery 15 is converted into three-phase AC power by the rear motor inverter 17a and supplied to the rear motor 5, and the regenerated power from the rear motor 5 is converted into DC power by the rear motor inverter 17a and supplied to the running battery. 15 is charged.
  • the vehicle 1 is also equipped with a charger 13 that charges the running battery 15 with an external power source.
  • the hybrid control unit 18 (driving mode switching control section, driving control section) is a control device for performing overall control of the vehicle 1, and includes input/output devices, storage devices (ROM, RAM, nonvolatile RAM, etc.), It is composed of a central processing unit (CPU (Central Processing Unit)) and the like.
  • the hybrid control unit 18 controls the operating states of the engine 3, the front motor 2, the motor generator 10, and the rear motor 5, the connecting/disconnecting state of the clutch 9 of the reduction gear 7, and the like.
  • a battery monitoring unit 15a for the running battery 15 On the input side of the hybrid control unit 18, a battery monitoring unit 15a for the running battery 15, a front motor control unit 16, a rear motor control unit 17, an engine control unit 14, an accelerator opening sensor 19 for detecting the accelerator opening, and A vehicle speed sensor 20 for detecting a vehicle speed Vsp is connected, and detection and operation information from these devices are input.
  • the output side of the hybrid control unit 18 is connected to the front motor control unit 16, the rear motor control unit 17, the clutch 9 of the speed reducer 7, and the engine control unit 14. Furthermore, the hybrid control unit 18 is connected to a user interface 21 including a speaker, a display, an input switch, etc.
  • the user interface 21 enables various warnings to the driver and various input operations by the driver. ing.
  • the hybrid control unit 18 switches the driving mode of the vehicle 1 among EV mode, series mode, and parallel mode based on various detection amounts of the accelerator opening sensor 19 and the vehicle speed sensor 20.
  • the running mode is the parallel mode.
  • switching is made between the EV mode and the series mode based on the state of charge SOC of the running battery 15, the required torque (target driving torque) for driving the vehicle, and the like.
  • the clutch 9 of the speed reducer 7 is disconnected, the engine 3 is stopped, and electric power from the battery 15 for driving drives the front motor 2 and the rear motor 5 to drive the vehicle 1 .
  • the engine 3 is operated to drive the motor generator 10, and the front motor 2 and the rear motor 5 are driven by the generated power and the power from the running battery 15. to drive the vehicle 1.
  • the running battery 15 is charged with surplus power of the power generated by the motor generator 10 .
  • the engine 3 In the parallel mode, after the clutch 9 of the speed reducer 7 is connected, the engine 3 is operated to transmit the driving force from the speed reducer 7 to the front wheels 4, and when there is excess engine driving force, the front motor 2 regenerates it. When the engine driving force is insufficient, the battery power is used to assist the front motor 2. - ⁇
  • the series mode and parallel mode correspond to the first running mode of the present invention
  • the EV mode corresponds to the second running mode of the present invention.
  • the hybrid control unit 18 calculates the total required output required for running the vehicle 1 based on the running state of the vehicle 1 such as the various detected amounts and operation information, and calculates the total required output in the EV mode and the series mode. It is distributed to the front motor 2 side and the rear motor 5 side, and is distributed to the front motor 2 side, the engine 3 side and the rear motor 5 side in the parallel mode.
  • the torque is applied to each phase coil of the front motor 2 and the rear motor 5 in order to achieve the required torque of the front motor 2 and the rear motor 5.
  • the front motor inverter 16a and the rear motor inverter 17a are switching-controlled to control the current value of each coil to the target current value, thereby achieving the required torque.
  • the motor-generator 10 generates power.
  • the switching control of the motor-generator inverter 16b is performed, thereby achieving the target current value.
  • the engine control unit 14 calculates target values for the throttle opening, fuel injection amount, ignition timing, etc. for achieving the required torque of the engine 3, and based on those target values. Achieving the required torque by control. Furthermore, the vehicle 1 of this embodiment allows the driver to select switching characteristics between the EV mode and the series mode. Specifically, in addition to the normal mode, which is a normal switching characteristic, EV priority control (motor priority control) is possible in which the operating range of the EV mode is expanded compared to the normal mode. The EV priority control is executed by selecting the EV priority mode by operating the EV priority switch 21a (motor priority control instruction section). For this reason, the user interface 21 is provided with an EV priority switch 21a. When the EV priority switch 21a is not operated, the normal mode is selected, and when the EV priority switch 21a is operated, the EV priority mode is selected. .
  • EV priority control motor priority control
  • FIG. 2 is an example of a characteristic diagram comparing the operating ranges of the EV mode and the series mode between the normal mode and the EV priority mode.
  • a solid line indicates the boundary line of the driving mode
  • a broken line indicates the boundary line of the driving mode in the EV priority mode.
  • the EV mode is selected in the operating region where the target drive torque and vehicle speed are relatively low, and when the vehicle speed and target drive torque increase, the mode is switched to the series mode. And by setting it to the high vehicle speed side, the driving range of the EV mode is further expanded. Therefore, in the EV priority mode, the EV mode is selected more frequently than the normal mode, and the front motor 2 and the rear motor 5 are used more frequently, thereby improving fuel efficiency and environmental performance.
  • the hybrid control unit 18 is connected to a cruise control unit 22 (adaptive cruise control device, automatic travel control section).
  • the cruise control unit 22 has a cruise control function that automatically drives the vehicle at a target vehicle speed set by the steering switch 23 (target vehicle speed setting unit), and an adaptive cruise control function that follows the preceding vehicle.
  • FIG. 3 is a block diagram showing the configuration of the travel control device 25.
  • a cruise control device 25 of this embodiment is configured by the hybrid control unit 18 and the cruise control unit 22 of the vehicle 1 .
  • the hybrid control unit 18 includes an EV priority mode change determination section 30 , various torque calculation sections 31 , and a motor/engine distributed torque calculation section 32 .
  • the various torque calculation unit 31 calculates various torques such as the maximum driving torque Tmax of the vehicle 1 corresponding to the normal mode or the EV priority mode selected by the EV priority mode change determination unit 30 .
  • a maximum drive torque Tmax of the vehicle 1 is output to the cruise control unit 22 .
  • a motor/engine distributed torque calculation unit 32 calculates a target driving torque of the vehicle 1 set in the cruise control unit 22 so as to distribute the output from the front motor 2 and the rear motor 5 and the output from the engine 3, and performs a corresponding calculation.
  • a target driving torque distributed to the motor control units 16 and 17 and the engine control unit 14 is output.
  • the cruise control unit 22 includes a normal cruise mode control section 35 , an EV-priority cruise mode control section 36 and a cruise mode determination section 37 .
  • the normal cruise mode control unit 35 and the EV-priority cruise mode control unit 36 use the maximum drive torque Tmax input from the various torque calculation units 31 as an upper limit to calculate the target drive torque of the vehicle 1 for cruising.
  • the normal cruise mode control unit 35 calculates the target driving torque of the vehicle 1 required for cruising in the normal mode
  • the EV priority cruise mode control unit calculates the target driving torque of the vehicle 1 required for cruising in the EV priority mode. .
  • the cruise mode determination unit 37 determines the vehicle 1 speed calculated by the normal cruise mode control unit 35 or the EV priority cruise mode control unit 36 in accordance with the normal mode or the EV priority mode determined by the EV priority mode change determination unit 30.
  • a target drive torque is selected and output to the motor/engine distributed torque calculator 32 .
  • FIG. 4 shows the maximum drive torque Tmax when EV priority control is turned ON during cruise control at a vehicle speed that allows EV travel (VmaxEV, upper limit vehicle speed in EV mode) or less, accelerator operation amount (actual accelerator amount APS, cruise 4 is a time chart showing an example of changes in acceleration amount (virtual APS) by control and vehicle speed (actual vehicle speed Vsp, set target vehicle speed Vset).
  • the EV priority mode is turned ON (ON-ACT) by turning ON the EV priority switch 21a while the engine is ON and the ACC is ON, that is, during cruise control.
  • the engine 3 is stopped and the EV mode is set in which only the motors 2 and 5 are operated.
  • the maximum drive torque Tmax is the maximum drive torque of the engine 3 and the motors 2 and 5
  • the maximum drive torque Tmax is the maximum drive torque of the motors 2 and 5.
  • FIG. 5 is a time chart showing an example of changes in the maximum drive torque Tmax, accelerator operation amount, and vehicle speed when EV priority control is turned ON during cruise control at a vehicle speed higher than the EV travelable vehicle speed VmaxEV.
  • the EV priority switch 21a when the EV priority switch 21a is turned ON during cruise control at a vehicle speed higher than the EV travelable vehicle speed VmaxEV with the engine ON, the EV priority mode is not turned ON but turned OFF (normal mode). ). Therefore, the engine 3 does not stop and both the engine 3 and the motors 2 and 5 output, and the maximum driving torque Tmax is maintained at the maximum driving torque by the engine 3 and the motors 2 and 5 .
  • the target driving torque of the vehicle 1 can be secured, and the vehicle speed Vsp is maintained at the target vehicle speed Vset (for example, 150 km) set in the cruise control.
  • Vset for example, 150 km
  • FIG. 6 is a time chart showing an example of changes in the maximum drive torque Tmax, accelerator operation amount, and vehicle speed when cruise control is started with the EV priority switch ON.
  • the EV priority switch 21a when the EV priority switch 21a is turned ON while the vehicle is running with the engine ON and the cruise control OFF, the EV priority mode standby state (ON-std) is entered. Even if an attempt is made to start cruise control by, for example, turning on the resume switch (RES/+ switch) in this standby state, if the vehicle speed Vsp is higher than the EV travelable vehicle speed VmaxEV, the engine 3 is not stopped. , and motors 2 and 5, the maximum driving torque Tmax is set to the maximum driving torque by the engine 3 and the motors 2 and 5, and the target driving torque of the vehicle 1 can be secured ( (1)).
  • the engine 3 In the standby state of the EV priority mode, if the vehicle speed Vsp is equal to or lower than the EV travelable vehicle speed VmaxEV when the resume switch or the like is turned on to start cruise control, the engine 3 is stopped and only the motors 2 and 5 are operated. The EV mode is activated, and the cruise control is turned ON.
  • the maximum drive torque Tmax here is the maximum drive torque of the motors 2 and 5 (2 in FIG. 6).
  • FIG. 7 is a time chart showing an example of changes in the maximum drive torque Tmax, the amount of accelerator operation, and the vehicle speed when the accelerator is overridden beyond the detent (WOT, predetermined value) during cruise control and EV priority control. .
  • WOT predetermined value
  • FIG. 7 shows that during cruise control and during EV priority control, when the accelerator is overridden beyond the detent, the vehicle speed Vsp increases with accelerator operation and reaches the EV travelable vehicle speed VmaxEV. 3 is started and both the engine 3 and the motors 2 and 5 output.
  • the maximum driving torque Tmax here is the maximum driving torque generated by the engine 3 and the motors 2 and 5, and acceleration performance can be ensured.
  • FIG. 8 is a time chart showing an example of changes in maximum drive torque Tmax, virtual accelerator operation amount, and vehicle speed when accelerator override is performed below the detent during cruise control and EV priority control. As shown in FIG. 8, during cruise control and during EV priority control, when the accelerator override is less than the detent, even if the vehicle speed Vsp increases with the accelerator operation, it does not exceed the EV travelable vehicle speed VmaxEV. 3 remains deactivated to maintain EV mode.
  • the settable maximum vehicle speed Vmax is set to the EV travelable vehicle speed VmaxEV, and the cruise travel is restarted. Since it is a low value (80 km/h), the vehicle speed decreases toward this target vehicle speed Vset. Note that in the case of the accelerator override less than the detent, the maximum drive torque Tmax is maintained at the maximum drive torque by the motors 2 and 5 .
  • the running mode is switched between the EV mode, the series mode, and the parallel mode according to the target drive torque and vehicle speed for running the vehicle. Furthermore, an EV priority switch 21a is provided, and when the driver operates the EV priority switch 21a, the EV mode is preferentially selected by expanding the operating range such as the target drive torque and vehicle speed for which the EV mode is selected. EV priority control is possible.
  • the vehicle 1 is capable of cruise control, and the target driving torque is automatically set according to the vehicle speed set by the driver, the actual vehicle speed, the distance from the preceding vehicle, and the like.
  • This embodiment is characterized by running control when both EV priority control and cruise control are executed.
  • the target vehicle speed in the cruise control is set to the EV travelable vehicle speed VmaxEV, which is the upper limit vehicle speed in the EV mode.
  • VmaxEV the EV travelable vehicle speed in the EV mode.
  • the target vehicle speed is set to a vehicle speed higher than the EV travelable vehicle speed VmaxEV and the vehicle is automatically traveling
  • execution of the EV priority control is restricted.
  • the series mode in which the execution of the EV mode is suppressed and the engine 3 is driven, automatic running at a high vehicle speed becomes possible.
  • the accelerator of the vehicle 1 is operated while the EV priority control is instructed to be executed during automatic traveling in the EV mode, switching of the traveling mode is changed based on the accelerator operation amount.
  • the accelerator operation amount exceeds a predetermined value (for example, the extent exceeding the EV driving possible vehicle speed VmaxEV). increases, the series mode is maintained, and when the accelerator operation amount is less than a predetermined value, the series mode is switched to the EV mode.
  • a predetermined value for example, the extent exceeding the EV driving possible vehicle speed VmaxEV.
  • the accelerator operation is turned off after the vehicle speed exceeds the vehicle speed VmaxEV at which EV running is possible by operating the motors 2 and 5 and the engine 3 by operating the accelerator while the motor priority control is instructed to be executed during automatic driving.
  • automatic driving is resumed with the maximum target vehicle speed set to the EV driving possible vehicle speed VmaxEV. be possible.
  • the cruise control unit 22 that performs adaptive cruise control is provided separately from the hybrid control unit 18.
  • the hybrid control unit 18 In many cases, a cruise control unit 40 (cruise control device, automatic travel control unit) is provided inside.
  • a cruise control unit 40 inside the hybrid control unit 18 includes a normal cruise mode control unit 35, an EV priority cruise mode control unit 36, and a cruise mode determination unit 37, similar to the cruise control unit 22 shown in FIG. EV priority control and cruise control may be performed in the same manner as in the above embodiment.
  • the present invention is applied to a plug-in hybrid vehicle capable of switching between EV mode, series mode, and parallel mode. It can be widely applied to hybrid vehicles in which driving modes can be switched.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

This vehicle travel control device comprises: an EV priority switch (21a) that instructs the execution of motor priority control for increasing opportunities to run in an EV mode; and a cruise control unit (22) that sets a target vehicle speed of a vehicle and causes the vehicle to travel autonomously, wherein, when the execution of the motor priority control is instructed by the EV priority switch (21a), the hybrid control unit (22) sets the maximum value of the target vehicle speed when traveling autonomously by means of the cruise control unit (22), to the upper limit vehicle speed at which the vehicle can travel in the EV mode.

Description

車両の走行制御装置Vehicle travel control device
 本発明は、ハイブリッド車両の走行制御装置に係り、詳しくは、クルーズコントロール装置を備えるとともに走行モードを切替可能なハイブリッド車における走行制御装置に関する。 The present invention relates to a cruise control device for a hybrid vehicle, and more particularly to a cruise control device for a hybrid vehicle that has a cruise control device and is capable of switching between running modes.
 ハイブリッド車両において、例えばEV(Electric Vehicle)モード、シリーズモード、パラレルモードといった走行モードを切り替え可能な車両が知られている。これらの走行モードは、例えばアクセル操作量等に基づく要求トルクや車速等の運転条件に応じて自動的に切り替えられる。
 一方、車両の多くには、任意に設定した目標車速での自動走行が可能なクルーズコントロール装置が備えられている。また近年では、先行車に自動的に追従走行するアダプティブクルーズコントロール装置を搭載した車両も増加してきている。
2. Description of the Related Art Among hybrid vehicles, there are known vehicles that can switch running modes such as an EV (Electric Vehicle) mode, a series mode, and a parallel mode. These driving modes are automatically switched according to driving conditions such as a required torque based on an accelerator operation amount or the like and a vehicle speed.
On the other hand, many vehicles are equipped with a cruise control device capable of automatically running at an arbitrarily set target vehicle speed. In recent years, more and more vehicles are equipped with an adaptive cruise control system that automatically follows the preceding vehicle.
 更に、特許文献1には、ハイブリッド車両において、EVモードの選択機会を増加させることで、燃費性能を向上させるEV優先制御が開示されている。 Furthermore, Patent Literature 1 discloses EV priority control that improves fuel efficiency by increasing EV mode selection opportunities in a hybrid vehicle.
日本国特許第6649607号公報Japanese Patent No. 6649607
 特許文献1に記載されたEV優先制御は、例えば車両の運転者によって操作指示されることで、EVモードが選択される条件を広げてEVモードの機会を増加させるものである。
 しかしながら、例えばクルーズコントロール装置による自動走行中にEV優先指示をしても設定した目標車速ではEVモードへの切り換えが不能であるといったように、クルーズ制御とEV優先制御の両立が困難である場合がある。これに対し、EVモードによるクルーズ制御をより多くの機会で可能にして、静粛性能、燃費性能を向上させることが要求されている。
The EV priority control described in Patent Literature 1 expands the conditions under which the EV mode is selected and increases the chances of using the EV mode, for example, when an operation instruction is given by the driver of the vehicle.
However, there are cases where it is difficult to achieve both cruise control and EV priority control, for example, even if an EV priority instruction is given during automatic driving by the cruise control device, switching to the EV mode is impossible at the set target vehicle speed. be. On the other hand, it is demanded to enable cruise control in the EV mode on more occasions to improve quiet performance and fuel efficiency.
 本発明はこのような問題点を解決するためになされたもので、その目的とするところは、自動走行(クルーズ制御)とモータ優先制御(EV優先制御)とが両立する機会を増加させて、静粛性能、燃費性能を向上させる車両の走行制御装置を提供することにある。 The present invention was made to solve such problems, and the purpose thereof is to increase the opportunities for compatibility between automatic driving (cruise control) and motor priority control (EV priority control), To provide a running control device for a vehicle which improves quietness performance and fuel consumption performance.
 上記の目的を達成するため、本発明のハイブリッド車両の走行制御装置は、車両の走行駆動源として、エンジン及びモータを備えた車両に搭載され、前記車両の走行状態に基づいて、前記モータ及び前記エンジンを運転する第1走行モードと、前記エンジンを停止して前記モータを運転する第2走行モードと、を切替制御する走行モード切替制御部と、前記第2走行モードの実行機会を増加させるモータ優先制御を実行指示するモータ優先制御指示部と、前記車両の目標車速を設定して前記車両を自動走行させる自動走行制御部と、を備えた車両の走行制御装置であって、前記モータ優先制御が実行指示された際に、前記自動走行において前記目標車速の最大値を前記第2走行モードにおける走行可能上限車速に設定する走行制御部を備えたことを特徴とする。 In order to achieve the above object, a hybrid vehicle running control device of the present invention is mounted in a vehicle provided with an engine and a motor as a running drive source of the vehicle. A driving mode switching control unit that performs switching control between a first driving mode in which the engine is operated and a second driving mode in which the engine is stopped and the motor is operated, and a motor that increases opportunities to execute the second driving mode. A running control device for a vehicle, comprising: a motor priority control instructing unit for instructing execution of priority control; and an automatic running control unit for automatically running the vehicle by setting a target vehicle speed of the vehicle, wherein the motor priority control is instructed to execute, in the automatic driving, the driving control unit is provided with a driving control unit that sets the maximum value of the target vehicle speed to the driving upper limit vehicle speed in the second driving mode.
 これにより、モータ優先制御が実行指示された際には、目標車速が第2走行モードにおける走行可能上限車速に設定されることで、第2走行モードによる自動走行が継続して可能となる。よって、自動走行において第2走行モードの機会を増加できる。
 好ましくは、前記走行制御部は、前記自動走行制御部により前記目標車速が前記第2走行モードにおける走行可能上限車速より高い車速に設定されて自動走行しているときには、前記モータ優先制御の実行を規制するとよい。
As a result, when the motor priority control is instructed to execute, the target vehicle speed is set to the upper limit vehicle speed that can be traveled in the second travel mode, thereby enabling continuous automatic travel in the second travel mode. Therefore, it is possible to increase the chances of using the second driving mode in automatic driving.
Preferably, the running control unit executes the motor priority control when the target vehicle speed is set by the automatic running control unit to a vehicle speed higher than the upper limit vehicle speed in the second running mode and the vehicle is automatically running. should be regulated.
 これにより、目標車速が走行可能上限車速より高い状態で自動走行しているときには、第2走行モードの実行を抑制して第1走行モードが選択されることで、高い車速での自動走行が可能になる。
 好ましくは、前記走行制御部は、前記自動走行制御部による前記第2走行モードでの自動走行中に、前記モータ優先制御が実行指示されている状態で前記車両のアクセルが操作された場合には、アクセル操作量に基づいて前記走行モードを切り換えるとよい。
As a result, when the target vehicle speed is higher than the drivable upper limit vehicle speed and the vehicle is automatically traveling, execution of the second driving mode is suppressed and the first driving mode is selected, thereby enabling automatic driving at a high vehicle speed. become.
Preferably, when the accelerator of the vehicle is operated while the motor priority control is instructed to be executed during automatic traveling in the second traveling mode by the automatic traveling control unit, , the driving mode may be switched based on an accelerator operation amount.
 これにより、モータ優先制御が実行指示されている状態での自動走行中に、アクセル操作に応じて走行モードが切り替えられるので、運転者の意思に対応して走行モードが切り替えられ、使用性の優れた自動走行が可能になる。
 好ましくは、前記走行制御部は、前記自動走行制御部による前記第2走行モードでの自動走行中に前記モータ優先制御が実行指示されている状態で前記車両のアクセルが操作された場合に、アクセル操作量が所定値以上である場合には前記第2走行モードから前記第1走行モードに切り替え、アクセル操作量が前記所定値未満である場合には前記第2走行モードを維持するとよい。
As a result, the driving mode can be switched according to the accelerator operation during automatic driving in a state in which the motor priority control is instructed to be executed. Autonomous driving becomes possible.
Preferably, when the accelerator of the vehicle is operated while the motor priority control is instructed to be executed during automatic traveling in the second traveling mode by the automatic traveling control unit, The second running mode may be switched to the first running mode when the operation amount is greater than or equal to a predetermined value, and the second running mode may be maintained when the accelerator operation amount is less than the predetermined value.
 これにより、モータ優先制御が実行指示されている状態での自動走行中に、アクセルが大きく操作されている場合には第2走行モードから第1走行モードに切り替わり、車両全体の出力を確保して走行性能を向上できる。一方、アクセルが小さく操作されている場合には第2走行モードか維持され、車両の静粛性能及び燃費性能を向上できる。
 好ましくは、前記走行制御部は、前記自動走行中に前記モータ優先制御が実行指示されている状態でアクセル操作されて前記モータ及び前記エンジンが作動して車速が前記第2走行モードでの走行可能上限車速を超えた後に、アクセル操作がオフになった場合には、前記目標車速の最大値を前記走行可能上限車速にした前記自動走行を再開するとよい。
As a result, when the accelerator is greatly operated during automatic driving in a state where the motor priority control is instructed, the driving mode is switched from the second driving mode to the first driving mode to ensure the output of the entire vehicle. It can improve driving performance. On the other hand, when the accelerator is operated lightly, the second driving mode is maintained, and the quietness performance and fuel efficiency of the vehicle can be improved.
Preferably, the travel control unit operates the motor and the engine by operating the accelerator in a state in which the instruction to execute the motor priority control is given during the automatic travel, so that the vehicle speed can travel in the second travel mode. After exceeding the upper limit vehicle speed, when the accelerator operation is turned off, it is preferable to restart the automatic traveling with the maximum value of the target vehicle speed set to the upper limit vehicle speed that can be traveled.
 これにより、アクセルオフから第2走行モードでの自動走行が再開されるので、第2走行モードによる自動運転の機会が増加する。
 好ましくは、前記目標車速を設定する目標車速設定部を備え、前記自動走行制御部は、車速が前記目標車速になるように前記モータ及び前記エンジンを作動制御するクルーズコントロール装置であるとよい。
As a result, the automatic driving in the second driving mode is resumed after the accelerator is turned off, so the chances of automatic driving in the second driving mode increase.
Preferably, the vehicle includes a target vehicle speed setting unit that sets the target vehicle speed, and the automatic cruise control unit is a cruise control device that controls the operation of the motor and the engine so that the vehicle speed becomes the target vehicle speed.
 これにより、クルーズコントロール装置による自動走行中にモータ優先制御が実行指示された際に、目標車速が第2走行モードにおける走行可能上限車速に設定されることで、第2走行モードの優先が可能になる。
 好ましくは、前記自動走行制御部は、前記先行車両に追従走行するように前記モータ及び前記エンジンを作動制御するアダプティブクルーズコントロール装置であるとよい。
As a result, when motor priority control is instructed during automatic driving by the cruise control device, the target vehicle speed is set to the upper limit vehicle speed that can be driven in the second driving mode, enabling priority to be given to the second driving mode. Become.
Preferably, the automatic cruise control unit is an adaptive cruise control device that controls the operation of the motor and the engine so that the vehicle follows the preceding vehicle.
 これにより、アダプティブクルーズコントロール装置による自動走行中にモータ優先制御が実行指示された際に、目標車速が第2走行モードにおける走行可能上限車速に設定されることで、第2走行モードの優先が可能になる。 As a result, when motor priority control is instructed during automatic driving by the adaptive cruise control device, the target vehicle speed is set to the upper limit vehicle speed that can be driven in the second driving mode, enabling priority to be given to the second driving mode. become.
 本発明の車両の走行制御装置によれば、モータ優先制御が実行指示された際には、第2走行モードにおける走行可能上限車速に目標車速が設定されることで、第2走行モードによる自動走行が継続して可能になる。
 これにより、自動走行においてエンジンを停止してモータを駆動させる第2走行モードの機会が増加して、車両の静粛性能、燃費性能を向上できる。
According to the vehicle travel control device of the present invention, when the motor priority control is instructed to be executed, the target vehicle speed is set as the upper limit vehicle speed that can be traveled in the second travel mode, thereby automatically traveling in the second travel mode. continue to be possible.
As a result, the number of opportunities for the second driving mode in which the engine is stopped and the motor is driven during automatic driving increases, and the quietness performance and fuel consumption performance of the vehicle can be improved.
本実施形態の走行制御装置が適用された車両の全体構成図である。1 is an overall configuration diagram of a vehicle to which a running control device of this embodiment is applied; FIG. EVモードとシリーズモードとの運転領域の切り換えを示す特性図の一例である。FIG. 5 is an example of a characteristic diagram showing switching of operating regions between EV mode and series mode; 本実施形態の走行制御装置の構成を示すブロック図である。1 is a block diagram showing the configuration of a travel control device of this embodiment; FIG. EV走行可能車速以下でのクルーズ制御中においてEV優先制御をON操作した場合の最大駆動トルク、アクセル操作量、車速の推移の一例を示すタイムチャートである。5 is a time chart showing an example of changes in maximum driving torque, accelerator operation amount, and vehicle speed when EV priority control is turned ON during cruise control at a vehicle speed at which EV travel is possible; EV走行可能車速より高い車速でのクルーズ制御中においてEV優先制御をON操作した場合の最大駆動トルク、アクセル操作量、車速の推移の一例を示すタイムチャートである。4 is a time chart showing an example of changes in maximum drive torque, accelerator operation amount, and vehicle speed when EV priority control is turned ON during cruise control at a vehicle speed higher than an EV travelable vehicle speed; EV優先スイッチのON状態でクルーズ制御を開始した場合の最大駆動トルク、アクセル操作量、車速の推移の一例を示すタイムチャートである。5 is a time chart showing an example of changes in maximum drive torque, accelerator operation amount, and vehicle speed when cruise control is started with an EV priority switch ON; クルーズ制御中かつEV優先制御中に、ディテントを踏み越えたアクセルオーバーライドをした場合の最大駆動トルク、アクセル操作量、車速の推移の一例を示すタイムチャートである。5 is a time chart showing an example of changes in maximum driving torque, accelerator operation amount, and vehicle speed when accelerator override is performed beyond the detent during cruise control and EV priority control; クルーズ制御中かつEV優先制御中に、ディテント未満のアクセルオーバーライドをした場合の最大駆動トルク、アクセル操作量、車速の推移の一例を示すタイムチャートである。5 is a time chart showing an example of changes in maximum drive torque, accelerator operation amount, and vehicle speed when accelerator override is performed below the detent during cruise control and EV priority control;
 以下、本発明をプラグインハイブリッド車両(以下、車両1という)の走行制御装置に具体化した実施形態を説明する。
 図1は本実施形態の走行制御装置が適用された車両の全体構成図である。
 本実施形態に係る車両1は、走行駆動源としてフロントモータ2、リヤモータ5及び及びエンジン3を備えたプラグインハイブリッド車である。
Hereinafter, an embodiment in which the present invention is embodied in a travel control device for a plug-in hybrid vehicle (hereinafter referred to as vehicle 1) will be described.
FIG. 1 is an overall configuration diagram of a vehicle to which the cruise control device of this embodiment is applied.
A vehicle 1 according to this embodiment is a plug-in hybrid vehicle having a front motor 2, a rear motor 5, and an engine 3 as driving sources.
 車両1は、フロントモータ2の出力またはフロントモータ2及びエンジン3の出力により前輪4を駆動し、リヤモータ5の出力により後輪6を駆動するように構成された4輪駆動車である。
 エンジン3の出力軸は減速機7を介して前輪4の駆動軸8と連結され、減速機7には内部の動力伝達を断接可能なクラッチ9が内蔵されている。クラッチ9の接続時にはエンジン3の駆動力が減速機7及び駆動軸8を経て前輪4に伝達され、クラッチ9の切断時にはエンジン3と前輪4との連結が切り離される。
The vehicle 1 is a four-wheel drive vehicle configured to drive the front wheels 4 with the output of the front motor 2 or the output of the front motor 2 and the engine 3 and drive the rear wheels 6 with the output of the rear motor 5 .
The output shaft of the engine 3 is connected to the drive shaft 8 of the front wheels 4 via a speed reducer 7, and the speed reducer 7 incorporates a clutch 9 capable of connecting and disconnecting internal power transmission. When the clutch 9 is engaged, the driving force of the engine 3 is transmitted to the front wheels 4 via the reduction gear 7 and the drive shaft 8, and when the clutch 9 is disengaged, the engine 3 and the front wheels 4 are disconnected.
 減速機7のクラッチ9より動力伝達方向の下流側(前輪4側)にはフロントモータ2が連結され、その駆動力が減速機7から駆動軸8を経て前輪4に伝達されるようになっている。また、減速機7のクラッチ9より動力伝達方向の上流側(エンジン3側)にはモータジェネレータ10が連結され、クラッチ9の切断時において、モータジェネレータ10はエンジン3の駆動により発電したり、或いはエンジン3を始動するスタータモータとして機能したりする。また、リヤモータ5は減速機11を介して後輪6の駆動軸12と連結され、その駆動力が減速機11から駆動軸12を経て後輪6に伝達されるように構成されている。 A front motor 2 is connected downstream of the clutch 9 of the speed reducer 7 in the power transmission direction (on the side of the front wheels 4), and the driving force thereof is transmitted from the speed reducer 7 to the front wheels 4 via the drive shaft 8. there is Further, a motor generator 10 is connected to the upstream side (engine 3 side) of the clutch 9 of the speed reducer 7 in the power transmission direction. It functions as a starter motor for starting the engine 3. Also, the rear motor 5 is connected to the drive shaft 12 of the rear wheel 6 via the speed reducer 11 , and the driving force thereof is transmitted from the speed reducer 11 to the rear wheel 6 via the drive shaft 12 .
 エンジン3には、入出力装置、記憶装置(ROM(Read Only Memory)、RAM(Random Access Memory)、不揮発性RAM等)、中央演算処理装置(CPU)等から構成されたエンジンコントロールユニット14が接続され、このエンジンコントロールユニット14によりエンジン3のスロットル開度、燃料噴射量、点火時期等が制御されてエンジン3が運転される。
 フロントモータ2、リヤモータ5及びモータジェネレータ10は三相交流電動機であり、それらの電源として走行用バッテリ15(走行駆動用蓄電池)が備えられている。走行用バッテリ15は、例えばリチウムイオン電池等の二次電池から構成され、その充電率(State Of Charge、以下、SOC)の算出や温度の検出を行うバッテリモニタリングユニット15aを内蔵している。
Connected to the engine 3 is an engine control unit 14 comprising an input/output device, a storage device (ROM (Read Only Memory), RAM (Random Access Memory), non-volatile RAM, etc.), a central processing unit (CPU), and the like. The engine control unit 14 controls the throttle opening, fuel injection amount, ignition timing, etc. of the engine 3 to operate the engine 3 .
The front motor 2, the rear motor 5, and the motor generator 10 are three-phase AC motors, and a running battery 15 (running drive storage battery) is provided as a power supply for them. The running battery 15 is composed of, for example, a secondary battery such as a lithium-ion battery, and incorporates a battery monitoring unit 15a for calculating its state of charge (hereinafter referred to as SOC) and detecting temperature.
 フロントモータ2及びモータジェネレータ10はフロントモータコントロールユニット16を介して走行用バッテリ15に接続され、フロントモータコントロールユニット16にはフロントモータ用インバータ16a及びモータジェネレータ用インバータ16bが備えられている。走行用バッテリ15からの直流電力は、フロントモータ用インバータ16a及びモータジェネレータ用インバータ16bにより三相交流電力に変換されてフロントモータ2やモータジェネレータ10に供給される。また、フロントモータ2による回生電力やモータジェネレータ10による発電電力は、フロントモータ用インバータ16a及びモータジェネレータ用インバータ16bにより直流電力に変換されて走行用バッテリ15に充電される。 The front motor 2 and motor generator 10 are connected to a running battery 15 via a front motor control unit 16, and the front motor control unit 16 is provided with a front motor inverter 16a and a motor generator inverter 16b. The DC power from the running battery 15 is converted into three-phase AC power by the front motor inverter 16 a and the motor generator inverter 16 b and supplied to the front motor 2 and the motor generator 10 . Further, the electric power regenerated by the front motor 2 and the electric power generated by the motor generator 10 are converted into DC power by the front motor inverter 16a and the motor generator inverter 16b, and the running battery 15 is charged.
 同様に、リヤモータ5はリヤモータコントロールユニット17を介して走行用バッテリ15に接続され、リヤモータコントロールユニット17にはリヤモータ用インバータ17aが備えられている。走行用バッテリ15からの直流電力は、リヤモータ用インバータ17aにより三相交流電力に変換されてリヤモータ5に供給され、リヤモータ5による回生電力は、リヤモータ用インバータ17aにより直流電力に変換されて走行用バッテリ15に充電される。 Similarly, the rear motor 5 is connected to the running battery 15 via the rear motor control unit 17, and the rear motor control unit 17 is provided with a rear motor inverter 17a. The DC power from the running battery 15 is converted into three-phase AC power by the rear motor inverter 17a and supplied to the rear motor 5, and the regenerated power from the rear motor 5 is converted into DC power by the rear motor inverter 17a and supplied to the running battery. 15 is charged.
 また、車両1には、走行用バッテリ15を外部電源によって充電する充電機13が備えられている。
 ハイブリッドコントロールユニット18(走行モード切替制御部、走行制御部)は、車両1の総合的な制御を行うための制御装置であり、入出力装置、記憶装置(ROM、RAM、不揮発性RAM等)、中央演算処理装置(CPU(Central Processing Unit))等から構成されている。このハイブリッドコントロールユニット18により、エンジン3、フロントモータ2、モータジェネレータ10、リヤモータ5の各運転状態、及び減速機7のクラッチ9の断接状態等が制御される。ハイブリッドコントロールユニット18の入力側には、走行用バッテリ15のバッテリモニタリングユニット15a、フロントモータコントロールユニット16、リヤモータコントロールユニット17、エンジンコントロールユニット14、アクセル開度を検出するアクセル開度センサ19、及び車速Vspを検出する車速センサ20が接続されており、これらの機器からの検出及び作動情報が入力される。
The vehicle 1 is also equipped with a charger 13 that charges the running battery 15 with an external power source.
The hybrid control unit 18 (driving mode switching control section, driving control section) is a control device for performing overall control of the vehicle 1, and includes input/output devices, storage devices (ROM, RAM, nonvolatile RAM, etc.), It is composed of a central processing unit (CPU (Central Processing Unit)) and the like. The hybrid control unit 18 controls the operating states of the engine 3, the front motor 2, the motor generator 10, and the rear motor 5, the connecting/disconnecting state of the clutch 9 of the reduction gear 7, and the like. On the input side of the hybrid control unit 18, a battery monitoring unit 15a for the running battery 15, a front motor control unit 16, a rear motor control unit 17, an engine control unit 14, an accelerator opening sensor 19 for detecting the accelerator opening, and A vehicle speed sensor 20 for detecting a vehicle speed Vsp is connected, and detection and operation information from these devices are input.
 また、ハイブリッドコントロールユニット18の出力側には、フロントモータコントロールユニット16、リヤモータコントロールユニット17、減速機7のクラッチ9、及びエンジンコントロールユニット14が接続されている。さらに、ハイブリッドコントロールユニット18には、スピーカやディスプレイ及び入力スイッチ等からなるユーザーインターフェース21が接続されており、このユーザーインターフェース21により運転者への各種警告や運転者による各種入力操作が実行可能となっている。 Also, the output side of the hybrid control unit 18 is connected to the front motor control unit 16, the rear motor control unit 17, the clutch 9 of the speed reducer 7, and the engine control unit 14. Furthermore, the hybrid control unit 18 is connected to a user interface 21 including a speaker, a display, an input switch, etc. The user interface 21 enables various warnings to the driver and various input operations by the driver. ing.
 そして、ハイブリッドコントロールユニット18は、アクセル開度センサ19や車速センサ20の各種検出量等に基づき、車両1の走行モードをEVモード、シリーズモード、パラレルモードの間で切り換える。例えば、高速領域のようにエンジン3の効率が高い領域では、走行モードをパラレルモードとする。また、中低速領域では、走行用バッテリ15の充電率SOCや車両走行駆動用の要求トルク(目標駆動トルク)等に基づきEVモードとシリーズモードとの間で切り換える。 Then, the hybrid control unit 18 switches the driving mode of the vehicle 1 among EV mode, series mode, and parallel mode based on various detection amounts of the accelerator opening sensor 19 and the vehicle speed sensor 20. For example, in a region where the efficiency of the engine 3 is high, such as a high speed region, the running mode is the parallel mode. In the medium and low speed range, switching is made between the EV mode and the series mode based on the state of charge SOC of the running battery 15, the required torque (target driving torque) for driving the vehicle, and the like.
 EVモードでは、減速機7のクラッチ9を切断すると共にエンジン3を停止し、走行用バッテリ15からの電力によりフロントモータ2やリヤモータ5を駆動して車両1を走行させる。
 シリーズモードでは、減速機7のクラッチ9を切断した上で、エンジン3を運転してモータジェネレータ10を駆動し、その発電電力及び走行用バッテリ15からの電力によりフロントモータ2やリヤモータ5を駆動して車両1を走行させる。なお、モータジェネレータ10による発電電力のうち余剰電力を走行用バッテリ15に充電する。
In the EV mode, the clutch 9 of the speed reducer 7 is disconnected, the engine 3 is stopped, and electric power from the battery 15 for driving drives the front motor 2 and the rear motor 5 to drive the vehicle 1 .
In the series mode, after disengaging the clutch 9 of the reduction gear 7, the engine 3 is operated to drive the motor generator 10, and the front motor 2 and the rear motor 5 are driven by the generated power and the power from the running battery 15. to drive the vehicle 1. It should be noted that the running battery 15 is charged with surplus power of the power generated by the motor generator 10 .
 パラレルモードでは、減速機7のクラッチ9を接続した上で、エンジン3を運転して駆動力を減速機7から前輪4に伝達すると共に、エンジン駆動力に余剰があるときには、フロントモータ2で回生し、エンジン駆動力が足りないときには、バッテリ電力を使ってフロントモータ2でアシストする。
 なお、シリーズモード及びパラレルモードは本発明における第1走行モード、EVモードは本発明における第2走行モードに該当する。
In the parallel mode, after the clutch 9 of the speed reducer 7 is connected, the engine 3 is operated to transmit the driving force from the speed reducer 7 to the front wheels 4, and when there is excess engine driving force, the front motor 2 regenerates it. When the engine driving force is insufficient, the battery power is used to assist the front motor 2. - 特許庁
The series mode and parallel mode correspond to the first running mode of the present invention, and the EV mode corresponds to the second running mode of the present invention.
 また、ハイブリッドコントロールユニット18は、上記各種検出量及び作動情報等の車両1の走行状態に基づき車両1の走行に必要な総要求出力を算出し、その総要求出力を、EVモード及びシリーズモードではフロントモータ2側とリヤモータ5側とに配分し、パラレルモードではフロントモータ2側とエンジン3側とリヤモータ5側とに配分する。そして、それぞれに配分した要求出力、及びフロントモータ2から前輪4までの減速機7のギヤ比、エンジン3から前輪4までの減速機7のギヤ比、リヤモータ5から後輪6までの減速機11のギヤ比に基づき、フロントモータ2、エンジン3、リヤモータ5のそれぞれの要求トルクを設定し、各要求トルクを達成するようにフロントモータコントロールユニット16、リヤモータコントロールユニット17及びエンジンコントロールユニット14に指令信号を出力する。 In addition, the hybrid control unit 18 calculates the total required output required for running the vehicle 1 based on the running state of the vehicle 1 such as the various detected amounts and operation information, and calculates the total required output in the EV mode and the series mode. It is distributed to the front motor 2 side and the rear motor 5 side, and is distributed to the front motor 2 side, the engine 3 side and the rear motor 5 side in the parallel mode. Then, the required output distributed to each, the gear ratio of the reduction gear 7 from the front motor 2 to the front wheels 4, the gear ratio of the reduction gear 7 from the engine 3 to the front wheels 4, and the reduction gear 11 from the rear motor 5 to the rear wheels 6 based on the gear ratio of the front motor 2, the engine 3, and the rear motor 5, and instructs the front motor control unit 16, the rear motor control unit 17, and the engine control unit 14 to achieve each required torque. Output a signal.
 フロントモータコントロールユニット16及びリヤモータコントロールユニット17ではハイブリッドコントロールユニット18からの指令信号に基づき、フロントモータ2及びリヤモータ5の要求トルクを達成するためにフロントモータ2及びリヤモータ5の各相のコイルに流すべき目標電流値を算出する。そして、目標電流値に基づきフロントモータ用インバータ16a及びリヤモータ用インバータ17aをスイッチング制御して各コイルの電流値を目標電流値に制御し、それぞれの要求トルクを達成する。尚、モータジェネレータ10の発電時も同様であり、負側の要求トルクから求めた目標電流値に基づきモータジェネレータ用インバータ16bをスイッチング制御し、これにより目標電流値を達成する。 In the front motor control unit 16 and the rear motor control unit 17, based on the command signal from the hybrid control unit 18, the torque is applied to each phase coil of the front motor 2 and the rear motor 5 in order to achieve the required torque of the front motor 2 and the rear motor 5. Calculate the target current value that should be Based on the target current value, the front motor inverter 16a and the rear motor inverter 17a are switching-controlled to control the current value of each coil to the target current value, thereby achieving the required torque. The same applies when the motor-generator 10 generates power. Based on the target current value obtained from the required torque on the negative side, the switching control of the motor-generator inverter 16b is performed, thereby achieving the target current value.
 エンジンコントロールユニット14ではハイブリッドコントロールユニット18からの指令信号に基づき、エンジン3の要求トルクの達成のためのスロットル開度、燃料噴射量、点火時期等の目標値を算出し、それらの目標値に基づく制御により要求トルクを達成する。
 更に、本実施形態の車両1は、運転者がEVモードとシリーズモードとの間の切換特性を選択できるようになっている。具体的には、通常の切換特性である通常モードに加え、通常モードに比較してEVモードの運転領域を拡大したEV優先制御(モータ優先制御)が可能になっている。EV優先制御は、EV優先スイッチ21a(モータ優先制御指示部)の操作によりEV優先モードが選択されることで実行される。そのためにユーザーインターフェース21にはEV優先スイッチ21aが備えられており、EV優先スイッチ21aの非操作時には通常モードが選択され、EV優先スイッチ21aの操作時にはEV優先モードが選択されるようになっている。
Based on the command signal from the hybrid control unit 18, the engine control unit 14 calculates target values for the throttle opening, fuel injection amount, ignition timing, etc. for achieving the required torque of the engine 3, and based on those target values. Achieving the required torque by control.
Furthermore, the vehicle 1 of this embodiment allows the driver to select switching characteristics between the EV mode and the series mode. Specifically, in addition to the normal mode, which is a normal switching characteristic, EV priority control (motor priority control) is possible in which the operating range of the EV mode is expanded compared to the normal mode. The EV priority control is executed by selecting the EV priority mode by operating the EV priority switch 21a (motor priority control instruction section). For this reason, the user interface 21 is provided with an EV priority switch 21a. When the EV priority switch 21a is not operated, the normal mode is selected, and when the EV priority switch 21a is operated, the EV priority mode is selected. .
 図2はEVモードとシリーズモードとの運転領域を通常モードとEV優先モードとで比較した特性図の一例であり、縦軸を車両1の目標駆動トルク、横軸を車速とし、通常モードでの走行モードの境界線を実線で、EV優先モードでの走行モードの境界線を破線で示している。相対的に目標駆動トルク及び車速が低い運転領域ではEVモードが選択され、車速や目標駆動トルクが増加するとシリーズモードに切り換えられるが、通常モードに対してEV優先モードでは、境界線が高トルク側及び高車速側に設定されることで、よりEVモードの運転領域が拡大されている。よって、EV優先モードでは通常モードよりもEVモードの選択頻度、ひいてはフロントモータ2やリヤモータ5の使用頻度が高められて燃費性能や環境性能の向上が達成される。 FIG. 2 is an example of a characteristic diagram comparing the operating ranges of the EV mode and the series mode between the normal mode and the EV priority mode. A solid line indicates the boundary line of the driving mode, and a broken line indicates the boundary line of the driving mode in the EV priority mode. The EV mode is selected in the operating region where the target drive torque and vehicle speed are relatively low, and when the vehicle speed and target drive torque increase, the mode is switched to the series mode. And by setting it to the high vehicle speed side, the driving range of the EV mode is further expanded. Therefore, in the EV priority mode, the EV mode is selected more frequently than the normal mode, and the front motor 2 and the rear motor 5 are used more frequently, thereby improving fuel efficiency and environmental performance.
 一方、ハイブリッドコントロールユニット18には、クルーズコントロールユニット22(アダプティブクルーズコントロール装置、自動走行制御部)が接続されている。このクルーズコントロールユニット22は、ステアリングスイッチ23(目標車速設定部)等によって設定した目標車速で自動走行させるクルーズコントロール機能に加えて、先行車両に追従走行するアダプティブクルーズコントロール機能を備えている。 On the other hand, the hybrid control unit 18 is connected to a cruise control unit 22 (adaptive cruise control device, automatic travel control section). The cruise control unit 22 has a cruise control function that automatically drives the vehicle at a target vehicle speed set by the steering switch 23 (target vehicle speed setting unit), and an adaptive cruise control function that follows the preceding vehicle.
 図3は走行制御装置25の構成を示すブロック図である。
 本実施形態の走行制御装置25は、車両1のハイブリッドコントロールユニット18及びクルーズコントロールユニット22によって構成される。
 ハイブリッドコントロールユニット18には、EV優先モード変更判定部30と、各種トルク演算部31と、モータ・エンジン分配トルク演算部32を備えられている。
FIG. 3 is a block diagram showing the configuration of the travel control device 25. As shown in FIG.
A cruise control device 25 of this embodiment is configured by the hybrid control unit 18 and the cruise control unit 22 of the vehicle 1 .
The hybrid control unit 18 includes an EV priority mode change determination section 30 , various torque calculation sections 31 , and a motor/engine distributed torque calculation section 32 .
 EV優先モード変更判定部30は、EV優先スイッチ21aの操作によりEV優先モードが選択されている際に、車速等に基づいて、通常モードとEV優先モードのうちEV優先モードに設定してよいか判定する。
 各種トルク演算部31は、EV優先モード変更判定部30において選択された通常モードあるいはEV優先モードに対応して車両1の最大駆動トルクTmax等の各種トルクを演算する。車両1の最大駆動トルクTmaxは、クルーズコントロールユニット22に出力される。
Whether the EV priority mode change determination unit 30, when the EV priority mode is selected by operating the EV priority switch 21a, sets the EV priority mode out of the normal mode and the EV priority mode based on the vehicle speed or the like. judge.
The various torque calculation unit 31 calculates various torques such as the maximum driving torque Tmax of the vehicle 1 corresponding to the normal mode or the EV priority mode selected by the EV priority mode change determination unit 30 . A maximum drive torque Tmax of the vehicle 1 is output to the cruise control unit 22 .
 モータ・エンジン分配トルク演算部32は、クルーズコントロールユニット22において設定された車両1の目標駆動トルクを、フロントモータ2、リヤモータ5による出力とエンジン3からの出力に分配するように演算し、対応するモータコントロールユニット16、17及びエンジンコントロールユニット14に分配された目標駆動トルクを出力する。 A motor/engine distributed torque calculation unit 32 calculates a target driving torque of the vehicle 1 set in the cruise control unit 22 so as to distribute the output from the front motor 2 and the rear motor 5 and the output from the engine 3, and performs a corresponding calculation. A target driving torque distributed to the motor control units 16 and 17 and the engine control unit 14 is output.
 クルーズコントロールユニット22は、通常クルーズモード制御部35とEV優先クルーズモード制御部36とクルーズモード判定部37とを備えている。
 通常クルーズモード制御部35及びEV優先クルーズモード制御部36は、各種トルク演算部31から入力した最大駆動トルクTmaxを上限値として、クルーズ走行させるための車両1の目標駆動トルクを演算する。通常クルーズモード制御部35は通常モードにおけるクルーズ走行の際に要する車両1の目標駆動トルクを、EV優先クルーズモード制御部はEV優先モードにおけるクルーズ走行の際に要する車両1の目標駆動トルクを演算する。
The cruise control unit 22 includes a normal cruise mode control section 35 , an EV-priority cruise mode control section 36 and a cruise mode determination section 37 .
The normal cruise mode control unit 35 and the EV-priority cruise mode control unit 36 use the maximum drive torque Tmax input from the various torque calculation units 31 as an upper limit to calculate the target drive torque of the vehicle 1 for cruising. The normal cruise mode control unit 35 calculates the target driving torque of the vehicle 1 required for cruising in the normal mode, and the EV priority cruise mode control unit calculates the target driving torque of the vehicle 1 required for cruising in the EV priority mode. .
 クルーズモード判定部37は、EV優先モード変更判定部30によって判定された通常モードあるいはEV優先モードに対応して、通常クルーズモード制御部35あるいはEV優先クルーズモード制御部36において演算された車両1の目標駆動トルクを選択し、モータ・エンジン分配トルク演算部32に出力する。
 次に、図4~8を用いて、EV優先制御とクルーズ制御とを同時に実行した際の、最大駆動トルクTmaxの設定について説明する。
The cruise mode determination unit 37 determines the vehicle 1 speed calculated by the normal cruise mode control unit 35 or the EV priority cruise mode control unit 36 in accordance with the normal mode or the EV priority mode determined by the EV priority mode change determination unit 30. A target drive torque is selected and output to the motor/engine distributed torque calculator 32 .
Next, setting of the maximum drive torque Tmax when EV priority control and cruise control are executed simultaneously will be described with reference to FIGS.
 図4は、EV走行可能車速(VmaxEV、EVモードにおける走行可能上限車速)以下でのクルーズ制御中においてEV優先制御をON操作した場合の最大駆動トルクTmax、アクセル操作量(実アクセル量APS、クルーズ制御によるアクセル量Virtual APS)、車速(実車速Vsp、設定した目標車速Vset)の推移の一例を示すタイムチャートである。
 図4に示すように、エンジンON状態でACCがON、即ちクルーズ制御中に、EV優先スイッチ21aをON操作することで、EV優先モードがONになる(ON-ACT)。このとき、実際の車速VspがEV走行可能車速VmaxEV以下である場合には、エンジン3を停止させ、モータ2、5のみ作動させるEVモードにする。なお、エンジンON状態でのクルーズ制御中では、最大駆動トルクTmaxは、エンジン3及びモータ2、5の最大駆動トルクであり、EVモード時には最大駆動トルクTmaxは、モータ2、5の最大駆動トルクとなる。この場合には、エンジン3を停止させても、クルーズ制御において設定した目標車速Vset(例えば120km)に車速Vspが維持される。
FIG. 4 shows the maximum drive torque Tmax when EV priority control is turned ON during cruise control at a vehicle speed that allows EV travel (VmaxEV, upper limit vehicle speed in EV mode) or less, accelerator operation amount (actual accelerator amount APS, cruise 4 is a time chart showing an example of changes in acceleration amount (virtual APS) by control and vehicle speed (actual vehicle speed Vsp, set target vehicle speed Vset).
As shown in FIG. 4, the EV priority mode is turned ON (ON-ACT) by turning ON the EV priority switch 21a while the engine is ON and the ACC is ON, that is, during cruise control. At this time, when the actual vehicle speed Vsp is equal to or lower than the EV travelable vehicle speed VmaxEV, the engine 3 is stopped and the EV mode is set in which only the motors 2 and 5 are operated. Note that during cruise control with the engine ON, the maximum drive torque Tmax is the maximum drive torque of the engine 3 and the motors 2 and 5, and in the EV mode the maximum drive torque Tmax is the maximum drive torque of the motors 2 and 5. Become. In this case, even if the engine 3 is stopped, the vehicle speed Vsp is maintained at the target vehicle speed Vset (for example, 120 km) set in the cruise control.
 図5は、EV走行可能車速VmaxEVより高い車速でのクルーズ制御中においてEV優先制御をON操作した場合の最大駆動トルクTmax、アクセル操作量、車速の推移の一例を示すタイムチャートである。
 図5に示すように、エンジンON状態でEV走行可能車速VmaxEVより高い車速でのクルーズ制御中においてEV優先スイッチ21aをON操作した場合には、EV優先モードがONにならずにOFF(通常モード)に維持される。したがって、エンジン3が停止せずに、エンジン3とモータ2、5の両方で出力して最大駆動トルクTmaxがエンジン3とモータ2、5による最大駆動トルクに維持される。これにより、車両1の目標駆動トルクが確保可能になりクルーズ制御において設定した目標車速Vset(例えば150km)に車速Vspが維持される。
FIG. 5 is a time chart showing an example of changes in the maximum drive torque Tmax, accelerator operation amount, and vehicle speed when EV priority control is turned ON during cruise control at a vehicle speed higher than the EV travelable vehicle speed VmaxEV.
As shown in FIG. 5, when the EV priority switch 21a is turned ON during cruise control at a vehicle speed higher than the EV travelable vehicle speed VmaxEV with the engine ON, the EV priority mode is not turned ON but turned OFF (normal mode). ). Therefore, the engine 3 does not stop and both the engine 3 and the motors 2 and 5 output, and the maximum driving torque Tmax is maintained at the maximum driving torque by the engine 3 and the motors 2 and 5 . As a result, the target driving torque of the vehicle 1 can be secured, and the vehicle speed Vsp is maintained at the target vehicle speed Vset (for example, 150 km) set in the cruise control.
 図6は、EV優先スイッチのON状態でクルーズ制御を開始した場合の最大駆動トルクTmax、アクセル操作量、車速の推移の一例を示すタイムチャートである。
 図6に示すように、エンジンON状態でクルーズ制御のOFF状態での走行時に、EV優先スイッチ21aをONにすると、EV優先モードのスタンバイ状態(ON-std)となる。このスタンバイ状態のときに例えばレジュームスイッチ(RES/+スイッチ)をONにしてクルーズ制御を開始しようとしても、車速VspがEV走行可能車速VmaxEVより高い場合には、エンジン3を停止させずにエンジン3とモータ2、5の両方での出力を維持して最大駆動トルクTmaxがエンジン3とモータ2、5による最大駆動トルクに設定され、車両1の目標駆動トルクが確保可能になる(図6中の(1))。
FIG. 6 is a time chart showing an example of changes in the maximum drive torque Tmax, accelerator operation amount, and vehicle speed when cruise control is started with the EV priority switch ON.
As shown in FIG. 6, when the EV priority switch 21a is turned ON while the vehicle is running with the engine ON and the cruise control OFF, the EV priority mode standby state (ON-std) is entered. Even if an attempt is made to start cruise control by, for example, turning on the resume switch (RES/+ switch) in this standby state, if the vehicle speed Vsp is higher than the EV travelable vehicle speed VmaxEV, the engine 3 is not stopped. , and motors 2 and 5, the maximum driving torque Tmax is set to the maximum driving torque by the engine 3 and the motors 2 and 5, and the target driving torque of the vehicle 1 can be secured ( (1)).
 EV優先モードのスタンバイ状態において、レジュームスイッチ等をONにしてクルーズ制御を開始しようとした際に、車速VspがEV走行可能車速VmaxEV以下の場合には、エンジン3を停止させモータ2、5のみ作動させるEVモードとなり、クルーズ制御がONになる。ここでの最大駆動トルクTmaxは、モータ2、5の最大駆動トルクとなる(図6中の2)。 In the standby state of the EV priority mode, if the vehicle speed Vsp is equal to or lower than the EV travelable vehicle speed VmaxEV when the resume switch or the like is turned on to start cruise control, the engine 3 is stopped and only the motors 2 and 5 are operated. The EV mode is activated, and the cruise control is turned ON. The maximum drive torque Tmax here is the maximum drive torque of the motors 2 and 5 (2 in FIG. 6).
 図7は、クルーズ制御中かつEV優先制御中に、ディテント(WOT、所定値)を踏み越えたアクセルオーバーライドをした場合の最大駆動トルクTmax、アクセル操作量、車速の推移の一例を示すタイムチャートである。
 図7に示すように、クルーズ制御中かつEV優先制御中に、ディテントを踏み越えたアクセルオーバーライドをした場合には、アクセル操作に伴い車速Vspが増加してEV走行可能車速VmaxEVに到達した時点でエンジン3を始動させてエンジン3とモータ2、5の両方で出力する。ここでの最大駆動トルクTmaxは、エンジン3とモータ2、5による最大駆動トルクになり、加速性能を確保できる。
FIG. 7 is a time chart showing an example of changes in the maximum drive torque Tmax, the amount of accelerator operation, and the vehicle speed when the accelerator is overridden beyond the detent (WOT, predetermined value) during cruise control and EV priority control. .
As shown in FIG. 7, during cruise control and during EV priority control, when the accelerator is overridden beyond the detent, the vehicle speed Vsp increases with accelerator operation and reaches the EV travelable vehicle speed VmaxEV. 3 is started and both the engine 3 and the motors 2 and 5 output. The maximum driving torque Tmax here is the maximum driving torque generated by the engine 3 and the motors 2 and 5, and acceleration performance can be ensured.
 その後、アクセル操作をOFF(アクセルオーバーライドOFF)にしたときには、設定可能最大車速VmaxをEV走行可能車速VmaxEVとしたクルーズ走行を再開する。ここでは、設定された目標車速VsetがEV走行可能車速VmaxEVより低い値(80km/h)であるので、この目標車速Vsetに向かって車速Vspが低下する。このとき、車速VspがEV走行可能車速VmaxEV以下となった時点でエンジン3を停止させEVモードにするとともに、最大駆動トルクTmaxをモータ2、5の最大駆動トルクにする。 After that, when the accelerator operation is turned off (accelerator override is turned off), cruising is restarted with the settable maximum vehicle speed Vmax set to the EV driving possible vehicle speed VmaxEV. Here, since the set target vehicle speed Vset is lower than the EV travelable vehicle speed VmaxEV (80 km/h), the vehicle speed Vsp decreases toward this target vehicle speed Vset. At this time, when the vehicle speed Vsp becomes equal to or lower than the EV travelable vehicle speed VmaxEV, the engine 3 is stopped to enter the EV mode, and the maximum drive torque Tmax is set to the maximum drive torque of the motors 2 and 5.
 図8は、クルーズ制御中かつEV優先制御中に、ディテント未満のアクセルオーバーライドをした場合の最大駆動トルクTmax、仮想アクセル操作量、車速の推移の一例を示すタイムチャートである。
 図8に示すように、クルーズ制御中かつEV優先制御中に、ディテント未満のアクセルオーバーライドをした場合には、アクセル操作に伴い車速Vspが増加してもEV走行可能車速VmaxEVを超えないので、エンジン3を停止させたままとし、EVモードに維持する。
FIG. 8 is a time chart showing an example of changes in maximum drive torque Tmax, virtual accelerator operation amount, and vehicle speed when accelerator override is performed below the detent during cruise control and EV priority control.
As shown in FIG. 8, during cruise control and during EV priority control, when the accelerator override is less than the detent, even if the vehicle speed Vsp increases with the accelerator operation, it does not exceed the EV travelable vehicle speed VmaxEV. 3 remains deactivated to maintain EV mode.
 その後、アクセル操作をOFF(アクセルオーバーライドOFF)にしたときには、設定可能最大車速VmaxをEV走行可能車速VmaxEVに設定してクルーズ走行を再開するが、設定された目標車速VsetがEV走行可能車速VmaxEVより低い値(80km/h)であるので、この目標車速Vsetに向かって車速が低下する。なお、このようにディテント未満のアクセルオーバーライドの場合は、最大駆動トルクTmaxは、モータ2、5による最大駆動トルクに維持される。 After that, when the accelerator operation is turned off (accelerator override is turned off), the settable maximum vehicle speed Vmax is set to the EV travelable vehicle speed VmaxEV, and the cruise travel is restarted. Since it is a low value (80 km/h), the vehicle speed decreases toward this target vehicle speed Vset. Note that in the case of the accelerator override less than the detent, the maximum drive torque Tmax is maintained at the maximum drive torque by the motors 2 and 5 .
 以上のように、本実施形態に係る車両1は、車両走行するための目標駆動トルクと車速に応じて走行モードが、EVモード、シリーズモード、パラレルモードのいずれかに切り換えらる。更に、EV優先スイッチ21aが備えられており、運転者がEV優先スイッチ21aを操作することで、EVモードが選択される目標駆動トルクや車速等の運転範囲を広げて優先的にEVモードにするEV優先制御が可能になっている。 As described above, in the vehicle 1 according to the present embodiment, the running mode is switched between the EV mode, the series mode, and the parallel mode according to the target drive torque and vehicle speed for running the vehicle. Furthermore, an EV priority switch 21a is provided, and when the driver operates the EV priority switch 21a, the EV mode is preferentially selected by expanding the operating range such as the target drive torque and vehicle speed for which the EV mode is selected. EV priority control is possible.
 更に、車両1は、クルーズ制御が可能であり、運転者等が設定した車速、実車速、先行車両との距離等に応じて目標駆動トルクが自動的に設定される。
 本実施形態では、EV優先制御とクルーズ制御との両方が実行される場合における走行制御に特徴を有している。
 EV優先スイッチ21aが操作されてEV優先制御が実行指示された際には、クルーズ制御における目標車速が、EVモードにおける走行可能上限車速であるEV走行可能車速VmaxEVに設定される。これにより、EVモードが継続して可能となり、自動走行においてもEVモードの優先機会が増加して、車両1の静粛性能、燃費性能を向上できる。
Furthermore, the vehicle 1 is capable of cruise control, and the target driving torque is automatically set according to the vehicle speed set by the driver, the actual vehicle speed, the distance from the preceding vehicle, and the like.
This embodiment is characterized by running control when both EV priority control and cruise control are executed.
When the EV priority switch 21a is operated to instruct the execution of the EV priority control, the target vehicle speed in the cruise control is set to the EV travelable vehicle speed VmaxEV, which is the upper limit vehicle speed in the EV mode. As a result, the EV mode can be continuously used, and the priority opportunities for the EV mode are increased even in automatic driving, so that the quietness performance and the fuel efficiency performance of the vehicle 1 can be improved.
 また、目標車速がEV走行可能車速VmaxEVより高い車速に設定されて自動走行しているときには、EV優先制御の実行が規制される。これにより、EVモードの実行を抑制してエンジン3を駆動するシリーズモードが選択されることで、高い車速での自動走行が可能になる。
 また、EVモードでの自動走行中に、EV優先制御が実行指示されている状態で車両1のアクセルが操作された場合には、アクセル操作量に基づいて走行モードの切り換えが変更される。
Further, when the target vehicle speed is set to a vehicle speed higher than the EV travelable vehicle speed VmaxEV and the vehicle is automatically traveling, execution of the EV priority control is restricted. As a result, by selecting the series mode in which the execution of the EV mode is suppressed and the engine 3 is driven, automatic running at a high vehicle speed becomes possible.
Further, when the accelerator of the vehicle 1 is operated while the EV priority control is instructed to be executed during automatic traveling in the EV mode, switching of the traveling mode is changed based on the accelerator operation amount.
 例えば、シリーズモードでの自動走行中にEV優先制御が実行指示されている状態で車両1のアクセルが操作された場合に、所定値(例えばEV走行可能車速VmaxEVを超える程度)以上にアクセル操作量が増加した場合には、シリーズモードを維持し、アクセル操作量が所定値未満である場合にはシリーズモードからEVモードに切り替えさせる。
 これにより、EV優先制御が実行指示されている状態での自動走行中に、アクセルが大きく操作されている場合にはシリーズモードを維持して車両全体の出力を確保し走行性能を向上できる。一方、アクセルが小さく操作されている場合にはシリーズモードからEVモードに切り替わり、車両1の静粛性能及び燃費性能を向上できる。
For example, when the accelerator of the vehicle 1 is operated while the EV priority control is being instructed to be executed during automatic driving in the series mode, the accelerator operation amount exceeds a predetermined value (for example, the extent exceeding the EV driving possible vehicle speed VmaxEV). increases, the series mode is maintained, and when the accelerator operation amount is less than a predetermined value, the series mode is switched to the EV mode.
As a result, when the accelerator is greatly operated during automatic driving in a state where the EV priority control is instructed to be executed, the series mode can be maintained to secure the output of the entire vehicle and improve the driving performance. On the other hand, when the accelerator is operated lightly, the series mode is switched to the EV mode, and the quietness performance and fuel efficiency of the vehicle 1 can be improved.
 また、自動走行中にモータ優先制御が実行指示されている状態でアクセル操作されてモータ2、5及びエンジン3が作動して車速がEV走行可能車速VmaxEVを超えた後に、アクセル操作がオフになった場合には、目標車速の最大値をEV走行可能車速VmaxEVにした自動走行が再開されるので、EVモードによる自動運転の機会を増加させ、容易にかつ静粛性能及び燃費性能の優れた運転が可能になる。 Further, the accelerator operation is turned off after the vehicle speed exceeds the vehicle speed VmaxEV at which EV running is possible by operating the motors 2 and 5 and the engine 3 by operating the accelerator while the motor priority control is instructed to be executed during automatic driving. In this case, automatic driving is resumed with the maximum target vehicle speed set to the EV driving possible vehicle speed VmaxEV. be possible.
 以上で実施形態の説明を終えるが、本発明の態様はこの実施形態に限定されるものではない。例えば上記実施形態では、ハイブリッドコントロールユニット18とは別に、アダプティブクルーズ制御を行うクルーズコントロールユニット22を備えているが、例えばアダプティブクルーズ機能を有しない通常のクルーズコントロール機能を有する車両では、ハイブリッドコントロールユニット18の内部にクルーズ制御部40(クルーズコントロール装置、自動走行制御部)を備えていることが多い。 Although the description of the embodiment is finished above, aspects of the present invention are not limited to this embodiment. For example, in the above-described embodiment, the cruise control unit 22 that performs adaptive cruise control is provided separately from the hybrid control unit 18. For example, in a vehicle that has a normal cruise control function that does not have an adaptive cruise function, the hybrid control unit 18 In many cases, a cruise control unit 40 (cruise control device, automatic travel control unit) is provided inside.
 ハイブリッドコントロールユニット18の内部のクルーズ制御部40には、図3に示すクルーズコントロールユニット22と同様に、通常クルーズモード制御部35とEV優先クルーズモード制御部36とクルーズモード判定部37とを備え、上記実施形態と同様にEV優先制御及びクルーズ制御を行えばよい。
 また、上記実施形態は、EVモード、シリーズモード、パラレルモードを切り替え可能なプラグインハイブリッド車に本発明を適用しているが、少なくともモータで走行駆動するEVモードと、エンジン及びモータで走行駆動する走行モードが切り換え可能なハイブリッド車に広く適用できる。
A cruise control unit 40 inside the hybrid control unit 18 includes a normal cruise mode control unit 35, an EV priority cruise mode control unit 36, and a cruise mode determination unit 37, similar to the cruise control unit 22 shown in FIG. EV priority control and cruise control may be performed in the same manner as in the above embodiment.
In the above embodiment, the present invention is applied to a plug-in hybrid vehicle capable of switching between EV mode, series mode, and parallel mode. It can be widely applied to hybrid vehicles in which driving modes can be switched.
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。 Various embodiments have been described above with reference to the drawings, but it goes without saying that the present invention is not limited to such examples. It is obvious that a person skilled in the art can conceive of various modifications or modifications within the scope described in the claims, and these also belong to the technical scope of the present invention. Understood. Moreover, each component in the above embodiments may be combined arbitrarily without departing from the gist of the invention.
 なお、本出願は、2021年3月24日出願の日本特許出願(特願2021-050169)に基づくものであり、その内容は本出願の中に参照として援用される。 This application is based on a Japanese patent application (Japanese Patent Application No. 2021-050169) filed on March 24, 2021, the content of which is incorporated herein by reference.
 1  車両
 2  フロントモータ(モータ)
 3  エンジン
 5  リヤモータ(モータ)
 18 ハイブリッドコントロールユニット(走行モード切替制御部、走行制御部)
 21 ユーザーインターフェース
 21a EV優先スイッチ(モータ優先制御指示部)
 22 クルーズコントロールユニット(アダプティブクルーズコントロール装置、自動走行制御部)
 23 ステアリングスイッチ(目標車速設定部)
 25 走行制御装置
 40 クルーズ制御部(クルーズコントロール装置、自動走行制御部)
1 vehicle 2 front motor (motor)
3 engine 5 rear motor (motor)
18 hybrid control unit (running mode switching control unit, running control unit)
21 user interface 21a EV priority switch (motor priority control instruction unit)
22 Cruise control unit (adaptive cruise control device, automatic driving control unit)
23 steering switch (target vehicle speed setting unit)
25 travel control device 40 cruise control unit (cruise control device, automatic travel control unit)

Claims (7)

  1.  車両の走行駆動源として、エンジン及びモータを備えた車両に搭載され、
     前記車両の走行状態に基づいて、前記モータ及び前記エンジンを運転する第1走行モードと、前記エンジンを停止して前記モータを運転する第2走行モードと、を切替制御する走行モード切替制御部と、
     前記第2走行モードの実行機会を増加させるモータ優先制御を実行指示するモータ優先制御指示部と、
     前記車両の目標車速を設定して前記車両を自動走行させる自動走行制御部と、
    を備えた車両の走行制御装置であって、
     前記モータ優先制御が実行指示された際に、前記自動走行において前記目標車速の最大値を前記第2走行モードにおける走行可能上限車速に設定する走行制御部を備えたことを特徴とする車両の走行制御装置。
    Installed in a vehicle equipped with an engine and a motor as a driving source for the vehicle,
    a driving mode switching control unit that performs switching control between a first driving mode in which the motor and the engine are operated and a second driving mode in which the engine is stopped and the motor is operated, based on the driving state of the vehicle; ,
    a motor priority control instruction unit that instructs execution of motor priority control that increases the chances of executing the second travel mode;
    an automatic travel control unit for automatically traveling the vehicle by setting a target vehicle speed of the vehicle;
    A vehicle travel control device comprising:
    A running of a vehicle, comprising: a running control unit that sets a maximum value of the target vehicle speed to a running upper limit vehicle speed in the second running mode in the automatic running when the motor priority control is instructed to be executed. Control device.
  2.  前記走行制御部は、前記自動走行制御部により前記目標車速が前記第2走行モードにおける走行可能上限車速より高い車速に設定されて自動走行しているときには、前記モータ優先制御の実行を規制することを特徴とする請求項1に記載の車両の走行制御装置。 The travel control unit restricts the execution of the motor priority control when the target vehicle speed is set by the automatic travel control unit to a vehicle speed higher than the maximum travelable vehicle speed in the second travel mode and the vehicle is automatically traveling. The vehicle running control device according to claim 1, characterized by:
  3.  前記走行制御部は、前記自動走行制御部による前記第2走行モードでの自動走行中に、前記モータ優先制御が実行指示されている状態で前記車両のアクセルが操作された場合には、アクセル操作量に基づいて前記第1走行モードと前記第2走行モードとを切り替えることを特徴とする請求項1または2に記載の車両の走行制御装置。 When the accelerator of the vehicle is operated while the motor priority control is instructed to be executed during automatic traveling in the second traveling mode by the automatic traveling control unit, the traveling control unit performs an accelerator operation. 3. A running control device for a vehicle according to claim 1, wherein said first running mode and said second running mode are switched based on an amount.
  4.  前記走行制御部は、前記自動走行制御部による前記第2走行モードでの自動走行中に前記モータ優先制御が実行指示されている状態で前記車両のアクセルが操作された場合に、アクセル操作量が所定値以上である場合には前記第2走行モードから前記第1走行モードに切り替え、アクセル操作量が前記所定値未満である場合には前記第2走行モードを維持することを特徴とする請求項3に記載の車両の走行制御装置。 When the accelerator of the vehicle is operated while the motor priority control is instructed to be executed during automatic traveling in the second traveling mode by the automatic traveling control unit, the traveling control unit reduces the accelerator operation amount. The second driving mode is switched to the first driving mode when the accelerator operation amount is equal to or greater than a predetermined value, and the second driving mode is maintained when the accelerator operation amount is less than the predetermined value. 4. The vehicle running control device according to 3.
  5.  前記走行制御部は、前記自動走行中に前記モータ優先制御が実行指示されている状態でアクセル操作されて前記モータ及び前記エンジンが作動して車速が前記第2走行モードでの走行可能上限車速を超えた後に、アクセル操作がオフになった場合には、前記目標車速の最大値を前記走行可能上限車速にした前記自動走行を再開することを特徴とする請求項4に記載の車両の走行制御装置。 The travel control unit operates the motor and the engine when the accelerator is operated in a state in which the motor priority control is instructed to be executed during the automatic travel, and the vehicle speed reaches a travelable upper limit vehicle speed in the second travel mode. 5. The running control of the vehicle according to claim 4, wherein, when the accelerator operation is turned off after exceeding the maximum value of the target vehicle speed, the automatic running is resumed with the maximum value of the target vehicle speed as the upper limit vehicle speed that can be traveled. Device.
  6.  前記目標車速を設定する目標車速設定部を備え、
     前記自動走行制御部は、車速が前記目標車速になるように前記モータ及び前記エンジンを作動制御するクルーズコントロール装置であることを特徴とする請求項1から5のいずれか1項に記載の車両の走行制御装置。
    A target vehicle speed setting unit that sets the target vehicle speed,
    6. The vehicle according to any one of claims 1 to 5, wherein the automatic cruise control unit is a cruise control device that controls the operation of the motor and the engine so that the vehicle speed becomes the target vehicle speed. travel control device.
  7.  前記自動走行制御部は、先行車両に追従走行するように前記モータ及び前記エンジンを作動制御するアダプティブクルーズコントロール装置であることを特徴とする請求項1から5のいずれか1項に記載の車両の走行制御装置。 The vehicle according to any one of claims 1 to 5, wherein the automatic cruise control unit is an adaptive cruise control device that controls the operation of the motor and the engine so that the vehicle follows the preceding vehicle. travel control device.
PCT/JP2022/006751 2021-03-24 2022-02-18 Vehicle travel control device WO2022202025A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-050169 2021-03-24
JP2021050169A JP2024069737A (en) 2021-03-24 2021-03-24 Vehicle driving control device

Publications (1)

Publication Number Publication Date
WO2022202025A1 true WO2022202025A1 (en) 2022-09-29

Family

ID=83396991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006751 WO2022202025A1 (en) 2021-03-24 2022-02-18 Vehicle travel control device

Country Status (2)

Country Link
JP (1) JP2024069737A (en)
WO (1) WO2022202025A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009220765A (en) * 2008-03-18 2009-10-01 Toyota Motor Corp Control device for hybrid vehicle
JP2017114290A (en) * 2015-12-24 2017-06-29 三菱自動車工業株式会社 Hybrid-vehicular travel control apparatus
JP2019142365A (en) * 2018-02-21 2019-08-29 トヨタ自動車株式会社 Control device of hybrid vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009220765A (en) * 2008-03-18 2009-10-01 Toyota Motor Corp Control device for hybrid vehicle
JP2017114290A (en) * 2015-12-24 2017-06-29 三菱自動車工業株式会社 Hybrid-vehicular travel control apparatus
JP2019142365A (en) * 2018-02-21 2019-08-29 トヨタ自動車株式会社 Control device of hybrid vehicle

Also Published As

Publication number Publication date
JP2024069737A (en) 2024-05-22

Similar Documents

Publication Publication Date Title
US9475486B2 (en) Controller for hybrid vehicle
EP2928744B1 (en) Hybrid electric vehicle control system and method
US7216729B2 (en) Method and system of requesting engine on/off state in a hybrid electric vehicle
KR101889648B1 (en) Control apparatus for hybrid vehicle, hybrid vehicle, and control method for hybrid vehicle
JP5478572B2 (en) Control device for hybrid vehicle
WO2012096045A1 (en) Regeneration control device, hybrid automobile, regeneration control method, and program
US20150222208A1 (en) Vehicle
GB2519841A (en) Hybrid electric vehicle controller and method
JP5598555B2 (en) Vehicle and vehicle control method
US20170274888A1 (en) Control Device for Hybrid Vehicle
CN114274944B (en) Dual-motor vehicle control method and device
JP2007230431A (en) Drive control device for vehicle
US20190359050A1 (en) Control apparatus and control method for vehicle
WO2012105021A1 (en) Hybrid vehicle and control method thereof
US8989934B2 (en) Regeneration control device, hybrid vehicle, regeneration control method, and computer program
JP6332173B2 (en) Hybrid car
WO2022202025A1 (en) Vehicle travel control device
JP7172894B2 (en) vehicle controller
CN108725419B (en) Hybrid vehicle
JP7115039B2 (en) Motor torque controller for hybrid vehicle
JP2016155440A (en) Hybrid vehicle
JP2020203592A (en) Hybrid-vehicular control apparatus
JP2015107715A (en) Hybrid vehicle
JP2011225077A (en) Hybrid automobile
JP2018069829A (en) Engine control device for hybrid vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774825

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22774825

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP