WO2022201534A1 - 再学習システム及び再学習方法 - Google Patents

再学習システム及び再学習方法 Download PDF

Info

Publication number
WO2022201534A1
WO2022201534A1 PCT/JP2021/013073 JP2021013073W WO2022201534A1 WO 2022201534 A1 WO2022201534 A1 WO 2022201534A1 JP 2021013073 W JP2021013073 W JP 2021013073W WO 2022201534 A1 WO2022201534 A1 WO 2022201534A1
Authority
WO
WIPO (PCT)
Prior art keywords
recognition
model
data
learning
relearning
Prior art date
Application number
PCT/JP2021/013073
Other languages
English (en)
French (fr)
Inventor
良枝 今井
政人 土屋
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP21933137.8A priority Critical patent/EP4296905A4/en
Priority to JP2023508404A priority patent/JP7412632B2/ja
Priority to PCT/JP2021/013073 priority patent/WO2022201534A1/ja
Priority to CN202180095917.2A priority patent/CN117099098A/zh
Publication of WO2022201534A1 publication Critical patent/WO2022201534A1/ja
Priority to US18/367,531 priority patent/US20240005171A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/096Transfer learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/09Supervised learning

Definitions

  • the present disclosure relates to a relearning system and a relearning method.
  • knowledge distillation has been carried out in the field of data recognition.
  • a large and complex neural network trained in advance as a teacher model and a smaller and simpler neural network as a student model placed on the application side are prepared, and the output data of the student model is prepared.
  • the student model is trained so as to approximate the output data of the teacher model.
  • Patent Document 1 describes a method of training a student model corresponding to a teacher model.
  • one or more aspects of the present disclosure aim to enable appropriate relearning of knowledge that has not been transferred.
  • the relearning system is learned so that the recognition result of the second neural network used as the student model approaches the recognition result of the first neural network used as the teacher model.
  • a model storage unit that stores a second neural network; a recognition unit that recognizes the recognition target by performing inference on recognition target data indicating the recognition target using the second neural network; a judgment unit for judging whether or not the certainty of recognition is intermediate; and the recognition object judged to have an intermediate certainty of recognition when the certainty of recognition is intermediate.
  • a storage unit that stores data as re-learning data; and a model that uses the re-learning data to re-learn the student model so that the recognition result of the student model approaches the recognition result of the teacher model. and a learning unit.
  • the relearning method is such that the recognition result of the second neural network used as the student model approaches the recognition result of the first neural network used as the teacher model. recognizing the recognition target by performing inference on recognition target data indicating the recognition target using a second neural network, and determining whether the likelihood of the recognition is moderate; When the certainty of recognition is medium, the recognition target data determined to have medium certainty of recognition are accumulated as data for re-learning, and using the data for re-learning, The student model is re-learned so that the recognition result of the student model approaches the recognition result of the teacher model.
  • knowledge that has not been transferred can be appropriately relearned.
  • FIG. 1 is a block diagram schematically showing the configuration of a relearning system according to Embodiment 1;
  • FIG. It is a block diagram which shows the structure of a computer roughly.
  • 4 is a flow chart showing the operation of the data recognition device according to Embodiment 1;
  • 4 is a flow chart showing the operation of the learning device according to Embodiment 1;
  • FIG. 9 is a block diagram schematically showing the configuration of a relearning system according to Embodiment 2;
  • FIG. 1 is a block diagram schematically showing the configuration of a relearning system 100 according to Embodiment 1.
  • the relearning system 100 includes a data recognition device 110 and a learning device 130 .
  • the data recognition device 110 and the learning device 130 can communicate via a network 101 such as the Internet.
  • the learning device 130 learns the student model so that the recognition result of the student model approaches the recognition result of the teacher model.
  • the neural network used as the teacher model is also called the first neural network
  • the neural network learned by the first neural network and used as the student model is also called the second neural network.
  • the data recognition device 110 includes a communication unit 111, a data acquisition unit 112, a model storage unit 113, a recognition unit 114, a recognition result output unit 115, an accumulation determination unit 116, and an accumulation unit 117.
  • the communication unit 111 performs communication. Here, the communication unit 111 communicates with the learning device 130 .
  • the data acquisition unit 112 acquires recognition target data, which is data indicating a recognition target.
  • the data acquisition unit 112 acquires recognition target data from another device (not shown) via the communication unit 111 .
  • the object to be recognized may be any object such as an image, a character, or a sound.
  • the model storage unit 113 stores a student model, which is a neural network for recognizing the recognition target indicated by the recognition target data.
  • the communication unit 111 receives a student model from the learning device 130, and the model storage unit 113 stores the student model.
  • the recognition unit 114 uses the student model stored in the model storage unit 113 to perform inference on the recognition target data, thereby recognizing the recognition target indicated by the recognition target data.
  • the recognition unit 114 provides the recognition result to the recognition result output unit 115 and provides the recognition target data used for recognition and an index indicating the likelihood of the recognition result to the accumulation determination unit 116 .
  • the index is, for example, what is called score, reliability, likelihood, or the like.
  • the recognition result output unit 115 outputs the recognition result recognized by the recognition unit 114.
  • the accumulation determination unit 116 is a determination unit that determines whether the likelihood of recognition of the recognition target is medium. For example, the accumulation determination unit 116 determines that the index indicating the likelihood of recognition of the recognition target is smaller than the maximum value assumed as the index, and the minimum value assumed as the index. is larger than the first threshold and is between the second threshold, which is the lower limit threshold smaller than the first threshold, it is determined that the certainty of recognition is medium.
  • the maximum value is the maximum value that the index can take
  • the minimum value is the minimum value that the index can take.
  • accumulation determination section 116 accumulates the recognition target data from recognition section 114 in accumulation section 117 as re-learning data.
  • the upper threshold and lower threshold may be determined in advance, and may be changed according to, for example, recognition target data provided from the recognition unit 114 or relearning data accumulated in the accumulation unit 117 .
  • the accumulation determination unit 116 may change at least one of the upper limit threshold and the lower limit threshold according to the bias of the index indicating the likelihood of recognition indicated by the re-learning data accumulated in the accumulation unit 117. good.
  • the accumulation determination unit 116 has initial values of the upper limit threshold and the lower limit threshold set in advance. At least one of the upper limit threshold and the lower limit threshold may be changed according to a representative value such as the median, mean, or mode of the re-learning data. For example, the accumulation determination unit 116 may change at least one of the upper threshold and the lower threshold such that the representative value is included between the upper threshold and the lower threshold. Specifically, the accumulation determination unit 116 may set a value that is greater than the representative value by a predetermined value as the upper threshold value, and may set a value that is less than the representative value by a predetermined value as the lower threshold value.
  • the accumulation determination unit 116 may change at least one of the upper threshold and the lower threshold such that the representative value is the average value of the upper threshold and the lower threshold. Furthermore, if the representative value is greater than the average value of the upper threshold and the lower threshold, the accumulation determination unit 116 increases at least one of the upper threshold and the lower threshold by a predetermined value, and If the representative value is smaller than the average value of the upper threshold and lower threshold, at least one of the upper threshold and lower threshold may be decreased by a predetermined value.
  • the accumulation determination unit 116 sends the relearning data accumulated in the accumulation unit 117 to the learning device 130 via the communication unit 111 at the timing of relearning.
  • the re-learning timing may be, for example, when the amount of recognition target data accumulated in the accumulation unit 117 reaches a predetermined amount.
  • the amount of recognition target data stored in the storage unit 117 that is used at the timing of re-learning may be determined according to communication traffic between the learning device 130 and the data recognition device 110 . For example, the larger the communication traffic, the smaller the amount of data.
  • the timing of re-learning may be every time a predetermined period elapses.
  • the re-learning timing may be the timing at which a predetermined series of operations is finished.
  • the re-learning timing may be the timing at which recognition of a certain type of recognition target ends and recognition of another type of recognition target starts.
  • the type of recognition target indicated by the recognition target data acquired by the data acquisition unit 112 changes. For example, when the lot of the product to be recognized changes, the type of recognition target changes.
  • the accumulation unit 117 accumulates the recognition target data from the accumulation determination unit 116 as relearning data.
  • the data recognition device 110 described above can be implemented in a computer 150 as shown in FIG.
  • the computer 150 includes a nonvolatile memory 151 , a volatile memory 152 , a NIC (Network Interface Card) 153 and a processor 154 .
  • the non-volatile memory 151 is an auxiliary storage device that stores data and programs necessary for processing of the computer 150 .
  • the nonvolatile memory 151 is a HDD (Hard Disk Drive) or an SSD (Solid State Drive).
  • the volatile memory 152 is a main memory device that provides a working area for the processor 154 .
  • the volatile memory 152 is RAM (Random Access Memory).
  • the NIC 153 is a communication interface for communicating with other devices.
  • a processor 154 controls processing in the computer 150 .
  • the processor 154 is a CPU (Central Processing Unit) or FPGA (Field Programmable Gate Array).
  • Processor 154 may be a multiprocessor.
  • the data acquisition unit 112, the recognition unit 114, the recognition result output unit 115, and the accumulation determination unit 116 cause the processor 154 to read a program stored in the nonvolatile memory 151 to the volatile memory 152 and execute the program. It can be realized by The model storage unit 113 and storage unit 117 can be realized by the nonvolatile memory 151 .
  • the communication unit 111 can be implemented by the NIC 153 .
  • Such a program may be provided through the network 101, or may be provided by being recorded on a recording medium. That is, such programs may be provided as program products, for example.
  • the learning device 130 includes a communication unit 131, a storage unit 132, and a model learning unit 133.
  • the communication unit 131 performs communication.
  • the communication unit 131 communicates with the data recognition device 110 .
  • the communication unit 131 receives re-learning data from the data recognition device 110 and sends the data to the storage unit 132 .
  • the storage unit 132 stores relearning data from the data recognition device 110 . Further, the storage unit 132 stores a student model to be updated, which is a model having the same configuration as the student model stored in the data recognition device 110, and a teacher model of the student model. In this case, the storage unit 132 functions as a teacher model storage unit.
  • the student model to be updated is transmitted to the data recognition device 110, and the same model as the student model is updated.
  • a model stored in the storage unit 132 may be used as the student model.
  • the student model to be updated may be a student model acquired from the data recognition device 110 via the communication unit 131 at the timing of re-learning of the student model.
  • the model learning unit 133 uses the re-learning data stored in the storage unit 132 so that the recognition result of the student model approaches the recognition result of the teacher model stored in the storage unit 132. to relearn.
  • the model learning unit 133 uses the relearning data stored in the storage unit 132 to relearn the student model using the output of the teacher model stored in the storage unit 132 . Specifically, the model learning unit 133 re-learns the student model by performing fine tuning on the update target student model stored in the storage unit 132 .
  • the update target student model is the same model as the second neural network model stored in the model storage unit 113 of the data recognition device 110, so here, the second neural network model is fine-tuned. is being performed.
  • the model learning unit 133 sends the re-learned update target student model to the data recognition device 110 via the communication unit 131 as a student model.
  • the data recognition device 110 that has received the student model stores the received student model in the model storage unit 113, and thereafter uses the stored student model to recognize the recognition target.
  • the model learning unit 133 may re-learn the update target student model using only the re-learning data stored in the storage unit 132, but at least Re-learning may be performed by adding a part. By doing so, it is possible to prevent so-called fatal forgetting from occurring.
  • the storage unit 132 stores learning data when the student model is generated. In this case, the storage unit 132 functions as a learning data storage unit that stores learning data.
  • the model learning unit 133 may weight at least one of the relearning data and the learning data and perform relearning.
  • the model learning unit 133 may re-learn the student model by changing the weight for at least a part of the learning data and the weight for the re-learning data.
  • the model learning unit 133 may, for example, make the weight of the learning data lighter than the weight of the re-learning data.
  • the model learning unit 133 changes the weight of the relearning data according to the difference between the index value in the student model and the index value in the teacher model when the relearning data is input.
  • the difference when the difference is large, the re-learning effect can be increased by increasing the weight of the re-learning data.
  • the difference is large, it is possible to reduce the influence on the student model by increasing the weight on the relearning data.
  • the learning device 130 described above can also be realized by a computer 150 as shown in FIG.
  • the model learning unit 133 can be realized by the processor 154 reading a program stored in the nonvolatile memory 151 to the volatile memory 152 and executing the program.
  • the storage unit 132 can be implemented by the nonvolatile memory 151 .
  • the communication unit 131 can be implemented by the NIC 153 .
  • FIG. 3 is a flow chart showing the operation of the data recognition device 110 according to the first embodiment.
  • the data acquisition unit 112 acquires recognition target data (S10).
  • the acquired recognition target data is provided to the recognition unit 114 .
  • the recognition unit 114 refers to the student model stored in the model storage unit 113 and performs inference, thereby recognizing the recognition target indicated by the recognition target data (S11).
  • the recognition result from the recognition section 114 is given to the recognition result output section 115 .
  • the recognition target data used for recognition by the recognition unit 114 and an index indicating the likelihood of the recognition result are provided to the accumulation determination unit 116 .
  • the recognition result output unit 115 outputs the recognition result (S12).
  • the accumulation determination unit 116 determines whether or not the index indicating the certainty of the recognition result indicates a medium degree of certainty of the recognition result (S13). If the index indicating the certainty of the recognition result indicates medium (Yes in S13), the process proceeds to step S14. If the index indicating the certainty of the recognition result does not indicate a medium level (No in S13), accumulation determination unit 116 deletes the given recognition target data, and advances the process to step S15.
  • step S14 the accumulation determination unit 116 causes the accumulation unit 117 to store the recognition target data as re-learning data, thereby accumulating the data. Then, the process proceeds to step S15.
  • step S15 the accumulation determination unit 116 determines whether or not it is time to re-learn. If it is time to re-learn (Yes in S15), the process proceeds to step S16, and if it is not time to re-learn (No in S15), the process ends.
  • step S ⁇ b>16 the accumulation determination unit 116 reads the relearning data stored in the accumulation unit 117 and sends the relearning data to the learning device 130 via the communication unit 111 .
  • FIG. 4 is a flow chart showing the operation of learning device 130 according to the first embodiment.
  • the communication unit 131 receives relearning data from the data recognition device 110 (S20).
  • the received relearning data is sent to the storage unit 132, and the storage unit 132 stores the relearning data.
  • the model learning unit 133 uses the relearning data stored in the storage unit 132 to relearn the student model using the output of the teacher model stored in the storage unit 132 (S21). .
  • the model learning unit 133 sends the re-learned student model to the data recognition device 110 via the communication unit 131 (S22).
  • the received student model is stored in the model storage unit 113, and thereafter data recognition is performed using the stored student model.
  • the student model is relearned based on the recognition target data with medium recognition certainty using the student model, so that the teacher model is not transferred to the student model. Knowledge can be properly re-learned. Therefore, it is possible to improve the generalization performance and accuracy of the student model.
  • the reason for performing re-learning using recognition target data with medium recognition certainty is as follows. Re-learning using such recognition target data is unnecessary because it is considered that learning has been performed appropriately for recognition target data with high recognition certainty. Even for recognition target data with low certainty of recognition, it is considered that learning is appropriately performed as "not a recognition target", so re-learning using such recognition target data is unnecessary. The amount of data to be accumulated can be reduced by accumulating only recognition target data with medium recognition certainty.
  • FIG. 5 is a block diagram schematically showing the configuration of relearning system 200 according to Embodiment 2.
  • the relearning system 200 includes a data recognition device 210 and a learning device 230 .
  • the data recognition device 210 and the learning device 230 can communicate via the network 101 such as the Internet.
  • Data recognition device 210 includes communication unit 111 , data acquisition unit 112 , model storage unit 113 , recognition unit 114 , recognition result output unit 115 , and accumulation determination unit 216 .
  • the communication unit 111, the data acquisition unit 112, the model storage unit 113, the recognition unit 114, and the recognition result output unit 115 of the data recognition device 210 according to the second embodiment correspond to the communication unit 111, the data It is similar to the acquisition unit 112 , the model storage unit 113 , the recognition unit 114 and the recognition result output unit 115 . Further, the data recognition device 210 according to the second embodiment does not have the storage unit 117 of the data recognition device 110 according to the first embodiment.
  • the accumulation determination unit 216 sends the recognition target data from the recognition unit 114 to the learning device 230 via the communication unit 111 as re-learning data.
  • Learning device 230 includes communication unit 131 , storage unit 232 , model learning unit 233 , and storage unit 234 .
  • Communication unit 131 of learning device 230 according to the second embodiment is the same as communication unit 131 of learning device 130 according to the first embodiment. However, the communication unit 131 in the second embodiment receives re-learning data from the data recognition device 210 and provides the data to the storage unit 234 .
  • the storage unit 234 stores the relearning data from the data recognition device 110, thereby accumulating the data.
  • the storage unit 232 stores a student model to be updated, which is a model having the same configuration as the student model stored in the data recognition device 110, and a teacher model of the student model. Note that in the second embodiment, since the storage unit 234 is provided, the storage unit 232 does not store the relearning data from the data recognition device 210 . Note that the storage unit 232 may store learning data when the student model is generated.
  • the model learning unit 233 re-learns the student model using the relearning data stored in the storage unit 234 and the output of the teacher model stored in the storage unit 232.
  • the model learning unit 233 re-learns the student model by performing fine tuning on the update target student model stored in the storage unit 232 .
  • the model learning unit 233 sends the re-learned update target student model to the data recognition device 210 via the communication unit 131 as a student model.
  • the data recognition device 210 that has received the student model stores the received student model in the model storage unit 113, and thereafter uses the stored student model to perform data recognition.
  • the learning device 230 described above can also be implemented in a computer 150 as shown in FIG. Specifically, the storage unit 234 can also be realized by the nonvolatile memory 151 .
  • the model learning unit 233 determines whether or not it is time to re-learn, but the second embodiment is not limited to such an example.
  • the accumulation determination unit 216 may determine whether or not it is time to re-learn.
  • accumulation determination section 216 may send a re-learning instruction to learning device 230 via communication section 111 when it is time to re-learn. Then, the model learning unit 233 of the learning device 230 that has received such an instruction may re-learn the student model.
  • the model learning units 133 and 233 update the update target student model, in other words, fine-tune the update target student model so that the student Although the model is relearned
  • Embodiments 1 and 2 are not limited to such an example.
  • the model learning units 133 and 233 may re-learn the student model by adding re-learning data to the learning data used when the student model was generated to generate a new neural network.
  • the model learning units 133 and 233 may re-learn the student model by changing the weight for the learning data and the weight for the re-learning data.
  • model storage unit 113 may be provided in learning device 230 or other device connected to network 101 .
  • the learning device 230 includes the storage unit 234, but the second embodiment is not limited to such an example.
  • the storage unit 234 may be provided in another device connected to the network 101 other than the data recognition device 210 and the learning device 230 .
  • Storage units 132 and 232 may also be provided in other devices connected to network 101 other than data recognition device 210 and learning device 230 .
  • the first neural network used as the teacher model may be a larger and more complex neural network than the second neural network used as the student model, and the first neural network may It may be the same neural network as the two neural networks.
  • 100 re-learning system 110 data recognition device, 111 communication unit, 112 data acquisition unit, 113 model storage unit, 114 recognition unit, 115 recognition result output unit, 116 accumulation determination unit, 117 accumulation unit, 130 learning device, 131 communication unit , 132 storage unit, 133 model learning unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Image Analysis (AREA)

Abstract

再学習システム(100)は、教師モデルとして使用される第一のニューラルネットワークによる認識結果に、生徒モデルとして使用される第二のニューラルネットワークの認識結果が近づくように学習された第二のニューラルネットワークを記憶するモデル記憶部(113)と、第二のニューラルネットワークを用いて、認識対象を示す認識対象データに対して推論を行うことで、認識対象の認識を行う認識部(114)と、認識の確からしさが中程度であるか否かを判断する蓄積判断部(116)と、認識の確からしさが中程度である場合に、認識の確からしさが中程度であると判断された認識対象データを、再学習用データとして蓄積する蓄積部(117)と、再学習用データを用いて、教師モデルの認識結果に、生徒モデルの認識結果が近づくように、生徒モデルを再学習するモデル学習部(133)とを備える。

Description

再学習システム及び再学習方法
 本開示は、再学習システム及び再学習方法に関する。
 近年、データ認識の分野では、知識蒸留が行われている。知識蒸留では、教師モデルとして事前に学習した、大きく、複雑な学習済ニューラルネットワークと、アプリケーション側に配置される生徒モデルとして、より小さく簡素なニューラルネットワークとを用意して、生徒モデルの出力データが教師モデルの出力データに近づくように生徒モデルの学習が行われる。
 例えば、特許文献1では、教師モデルに対応する生徒モデルを訓練する方法が記載されている。
特開2020-71883号公報
 しかしながら、知識蒸留では、生徒モデルの認識性能は、教師モデルよりも劣り、知識が適切に転移されていない場合がある。
 そこで、本開示の一又は複数の態様は、転移されていない知識を適切に再学習できるようにすることを目的とする。
 本開示の一態様に係る再学習システムは、教師モデルとして使用される第一のニューラルネットワークによる認識結果に、生徒モデルとして使用される第二のニューラルネットワークの認識結果が近づくように学習された前記第二のニューラルネットワークを記憶するモデル記憶部と、前記第二のニューラルネットワークを用いて、認識対象を示す認識対象データに対して推論を行うことで、前記認識対象の認識を行う認識部と、前記認識の確からしさが中程度であるか否かを判断する判断部と、前記認識の確からしさが中程度である場合に、前記認識の確からしさが中程度であると判断された前記認識対象データを、再学習用データとして蓄積する蓄積部と、前記再学習用データを用いて、前記教師モデルの認識結果に、前記生徒モデルの認識結果が近づくように、前記生徒モデルを再学習するモデル学習部と、を備えることを特徴とする。
 本開示の一態様に係る再学習方法は、教師モデルとして使用される第一のニューラルネットワークによる認識結果に、生徒モデルとして使用される第二のニューラルネットワークの認識結果が近づくように学習された前記第二のニューラルネットワークを用いて、認識対象を示す認識対象データに対して推論を行うことで、前記認識対象の認識を行い、前記認識の確からしさが中程度であるか否かを判断し、前記認識の確からしさが中程度である場合に、前記認識の確からしさが中程度であると判断された前記認識対象データを、再学習用データとして蓄積し、前記再学習用データを用いて、前記教師モデルの認識結果に、前記生徒モデルの認識結果が近づくように、前記生徒モデルを再学習することを特徴とする。
 本開示の一又は複数の態様によれば、転移されていない知識を適切に再学習することができる。
実施の形態1に係る再学習システムの構成を概略的に示すブロック図である。 コンピュータの構成を概略的に示すブロック図である。 実施の形態1におけるデータ認識装置での動作を示すフローチャートである。 実施の形態1における学習装置での動作を示すフローチャートである。 実施の形態2に係る再学習システムの構成を概略的に示すブロック図である。
実施の形態1.
 図1は、実施の形態1に係る再学習システム100の構成を概略的に示すブロック図である。
 再学習システム100は、データ認識装置110と、学習装置130とを備える。
 例えば、データ認識装置110と、学習装置130とは、インターネット等のネットワーク101を介して通信することができる。
 なお、再学習システム100では、学習装置130は、教師モデルによる認識結果に、生徒モデルの認識結果が近づくように、その生徒モデルを学習する。ここで、教師モデルとして利用されるニューラルネットワークを第一のニューラルネットワークともいい、第一のニューラルネットワークで学習され、生徒モデルとして使用されるニューラルネットワークを第二のニューラルネットワークともいう。
 データ認識装置110は、通信部111と、データ取得部112と、モデル記憶部113と、認識部114と、認識結果出力部115と、蓄積判断部116と、蓄積部117とを備える。
 通信部111は、通信を行う。ここでは、通信部111は、学習装置130と通信を行う。
 データ取得部112は、認識対象を示すデータである認識対象データを取得する。例えば、データ取得部112は、通信部111を介して、図示しない他の装置から認識対象データを取得する。ここで、認識対象は、画像、文字又は音等、どのようなものであってもよい。
 モデル記憶部113は、認識対象データで示される認識対象を認識するためのニューラルネットである生徒モデルを記憶する。例えば、通信部111は、学習装置130からの生徒モデルを受信して、モデル記憶部113は、その生徒モデルを記憶する。
 認識部114は、モデル記憶部113に記憶されている生徒モデルを用いて認識対象データに対して推論を行うことで、認識対象データで示される認識対象の認識を行う。認識部114は、認識結果を認識結果出力部115に与え、認識に使用した認識対象データ及び認識結果の確からしさを示す指標を蓄積判断部116に与える。その指標は、例えば、スコア、信頼度又は尤度等といわれているものである。
 認識結果出力部115は、認識部114で認識された認識結果を出力する。
 蓄積判断部116は、認識対象の認識の確からしさが中程度であるか否かを判断する判断部である。
 例えば、蓄積判断部116は、認識対象の認識の確からしさを示す指標が、その指標として想定される最大値よりも小さい上限閾値である第一の閾値と、その指標として想定される最小値よりも大きく、第一の閾値よりも小さい下限閾値である第二の閾値との間にある場合に、認識の確からしさが中程度であると判断する。最大値は、その指標がとり得る最大の値であり、最小値は、その指標がとり得る最小の値である。
 具体的には、認識結果の確からしさを示す指標は、通常、0~1の間の値となるため、上限閾値は、1よりも小さい値、下限閾値は、0よりも大きい値で、上限閾値よりも小さい値とすればよい。
 そして、蓄積判断部116は、認識の確からしさが中程度である場合には、認識部114からの認識対象データを再学習用データとして蓄積部117に蓄積する。
 上限閾値及び下限閾値は、予め定められていてもよく、例えば、認識部114から与えられる認識対象データ、又は、蓄積部117に蓄積される再学習用データに応じて変えられてもよい。
 例えば、蓄積判断部116は、上限閾値及び下限閾値の少なくとも何れか一方を、蓄積部117に蓄積されている再学習用データで示される認識の確からしさを示す指標の偏りに応じて変えてもよい。
 具体的には、蓄積判断部116は、上限閾値及び下限閾値の初期値が予め設定されており、予め定められた期間における、認識部114から与えられる認識対象データ、又は、蓄積部117に蓄積された再学習用データの中央値、平均値又は最頻値といった代表値に応じて、上限閾値及び下限閾値の少なくとも何れか一方を変更してもよい。例えば、蓄積判断部116は、その代表値が、上限閾値及び下限閾値の間に含まれるように、上限閾値及び下限閾値の少なくとも何れか一方を変更してもよい。具体的には、蓄積判断部116は、その代表値から予め定められた値だけ大きい値を上限閾値とし、その代表値から予め定められた値だけ小さい値を下限閾値としてもよい。また、蓄積判断部116は、その代表値が、上限閾値及び下限閾値の平均値となるように、上限閾値及び下限閾値の少なくとも何れか一方を変更してもよい。さらに、蓄積判断部116は、その代表値が、上限閾値及び下限閾値の平均値よりも大きい場合には、上限閾値及び下限閾値の少なくとも何れか一方を、予め定められた値だけ大きくし、その代表値が、上限閾値及び下限閾値の平均値よりも小さい場合には、上限閾値及び下限閾値の少なくとも何れか一方を、予め定められた値だけ小さくしてもよい。
 また、蓄積判断部116は、再学習のタイミングで、蓄積部117に蓄積されている再学習用データを、通信部111を介して、学習装置130に送る。
 再学習のタイミングは、例えば、蓄積部117に蓄積されている認識対象データの量が予め定められた量に達した場合であってもよい。
 ここで、再学習のタイミングに用いられる、蓄積部117に蓄積されている認識対象データの量については、学習装置130とデータ認識装置110との間の通信トラフィックに応じて定められてもよい。例えば、その通信トラフィックが大きいほど、そのデータ量が小さくなるようにすればよい。
 また、再学習のタイミングは、予め定められた期間が経過する毎であってもよい。
 さらに、再学習のタイミングは、予め定められた一連の動作が終了したタイミングであってもよい。例えば、再学習のタイミングは、ある種類の認識対象の認識が終了して、別の種類の認識対象の認識を開始するタイミングであってもよい。この場合、データ取得部112が取得する認識対象データで示される認識対象の種類が変化することになる。例えば、認識対象としての製品のロットが変わる場合等に、認識対象の種類が変化する。
 蓄積部117は、蓄積判断部116からの認識対象データを再学習用データとして蓄積する。
 以上に記載されたデータ認識装置110は、図2に示されているようなコンピュータ150で実現することができる。
 コンピュータ150は、不揮発性メモリ151と、揮発性メモリ152と、NIC(Network Interface Card)153と、プロセッサ154とを備える。
 不揮発性メモリ151は、コンピュータ150の処理に必要なデータ及びプログラムを記憶する補助記憶装置である。例えば、不揮発性メモリ151は、HDD(Hard Disk Drive)又はSSD(Solid State Drive)である。
 揮発性メモリ152は、プロセッサ154に作業領域を提供する主記憶装置である。例えば、揮発性メモリ152は、RAM(Random Access Memory)である。
 NIC153は、他の装置と通信するための通信インターフェースである。
 プロセッサ154は、コンピュータ150での処理を制御する。例えば、プロセッサ154は、CPU(Central Processing Unit)又はFPGA(Field Programmable Gate Array)等である。プロセッサ154は、マルチプロセッサでもよい。
 例えば、データ取得部112、認識部114、認識結果出力部115及び蓄積判断部116は、プロセッサ154が不揮発性メモリ151に記憶されているプログラムを揮発性メモリ152に読み出して、そのプログラムを実行することで実現することができる。
 モデル記憶部113及び蓄積部117は、不揮発性メモリ151により実現することができる。
 通信部111は、NIC153により実現することができる。
 なお、このようなプログラムは、ネットワーク101を通じて提供されてもよく、また、記録媒体に記録されて提供されてもよい。即ち、このようなプログラムは、例えば、プログラムプロダクトとして提供されてもよい。
 図1に戻り、学習装置130は、通信部131と、記憶部132と、モデル学習部133とを備える。
 通信部131は、通信を行う。ここでは、通信部131は、データ認識装置110と通信を行う。例えば、通信部131は、データ認識装置110からの再学習用データを受信し、そのデータを記憶部132に送る。
 記憶部132は、データ認識装置110からの再学習用データを記憶する。
 さらに、記憶部132は、データ認識装置110が記憶している生徒モデルと同一の構成を有するモデルである更新対象生徒モデルと、その生徒モデルの教師モデルを記憶している。この場合、記憶部132は、教師モデル記憶部として機能する。
 更新対象生徒モデルは、例えば、学習装置130において、教師モデルを用いて、生徒モデルを生成した際に、その生徒モデルをデータ認識装置110に送信するともに、その生徒モデルと同一のモデルを更新対象生徒モデルとして、記憶部132に記憶されたものであってもよい。
 また、更新対象生徒モデルは、生徒モデルの再学習のタイミングで、データ認識装置110から通信部131を介して取得された生徒モデルであってもよい。
 モデル学習部133は、記憶部132に記憶されている再学習用データを用いて、記憶部132に記憶されている教師モデルの認識結果に、生徒モデルの認識結果が近づくように、その生徒モデルを再学習する。
 例えば、モデル学習部133は、記憶部132に記憶された再学習用データを用いて、記憶部132に記憶されている教師モデルの出力を使用して、生徒モデルを再学習する。
 具体的には、モデル学習部133は、記憶部132に記憶されている更新対象生徒モデルに対してファインチューニングを行うことで、生徒モデルを再学習する。なお、更新対象生徒モデルは、データ認識装置110のモデル記憶部113に記憶されている第二のニューラルネットワークモデルと同一のモデルであるため、ここでは、第二のニューラルネットワークモデルに対してファインチューニングが行われていることとなる。
 そして、モデル学習部133は、再学習後の更新対象生徒モデルを、生徒モデルとして、通信部131を介して、データ認識装置110に送る。生徒モデルを受信したデータ認識装置110では、受信した生徒モデルをモデル記憶部113に記憶させて、以後、記憶された生徒モデルを用いて、認識対象の認識を行う。
 ここで、モデル学習部133は、記憶部132に記憶された再学習用データのみを用いて更新対象生徒モデルを再学習してもよいが、生徒モデルが生成された際の学習用データの少なくとも一部も加えて、再学習を行ってもよい。このようにすることにより、いわゆる致命的忘却が起きないようにすることができる。この場合、記憶部132は、生徒モデルが生成された際の学習用データを記憶しているものとする。この場合、記憶部132は、学習用データを記憶する学習用データ記憶部として機能する。
 なお、認識対象データ及び学習用データの両方を用いる場合には、モデル学習部133は、再学習用データ及び学習用データの少なくとも何れか一方に重みを付けて再学習を行ってもよい。
 ここで、モデル学習部133は、学習用データの少なくとも一部への重みと、再学習用データへの重みとを変えて、生徒モデルを再学習してもよい。この場合、モデル学習部133は、例えば、学習用データの重みを、再学習用データの重みよりも軽くしてもよい。
 また、モデル学習部133は、再学習用データを入力した際における、生徒モデルでの指標の値と、教師モデルでの指標の値との差に応じて、再学習用データへの重みを変えてもよい。例えば、その差が大きい場合に、再学習用データへの重みを大きくすることで、再学習の効果を大きくすることができる。一方、その差が大きい場合に、再学習用データへの重みを大きくすることで、生徒モデルへの影響を少なくすることもできる。
 以上に記載された学習装置130も、図2に示されているようなコンピュータ150で実現することができる。
 例えば、モデル学習部133は、プロセッサ154が不揮発性メモリ151に記憶されているプログラムを揮発性メモリ152に読み出して、そのプログラムを実行することで実現することができる。
 記憶部132は、不揮発性メモリ151により実現することができる。
 通信部131は、NIC153により実現することができる。
 図3は、実施の形態1におけるデータ認識装置110での動作を示すフローチャートである。
 まず、データ取得部112は、認識対象データを取得する(S10)。取得された認識対象データは、認識部114に与えられる。
 認識部114は、モデル記憶部113に記憶されている生徒モデルを参照して推論を行うことで、認識対象データで示される認識対象を認識する(S11)。認識部114での認識結果は、認識結果出力部115に与えられる。また、認識部114での認識に使用された認識対象データ及び認識結果の確からしさを示す指標は、蓄積判断部116に与えられる。
 認識結果出力部115は、認識結果を出力する(S12)。
 蓄積判断部116は、認識結果の確からしさを示す指標が、認識結果の確からしさとして中程度を示しているか否かを判断する(S13)。認識結果の確からしさを示す指標が中程度を示している場合(S13でYes)には、処理はステップS14に進む。認識結果の確からしさを示す指標が中程度を示していない場合(S13でNo)には、蓄積判断部116は、与えられた認識対象データを削除して、処理をステップS15に進める。
 ステップS14では、蓄積判断部116は、認識対象データを再学習用データとして蓄積部117に記憶させることで、そのデータを蓄積する。そして、処理はステップS15に進む。
 ステップS15では、蓄積判断部116は、再学習のタイミングであるか否かを判断する。再学習のタイミングである場合(S15でYes)には、処理はステップS16に進み、再学習のタイミングではない場合(S15でNo)には、処理は終了する。
 ステップS16では、蓄積判断部116は、蓄積部117に記憶されている再学習用データを読み出して、その再学習用データを、通信部111を介して、学習装置130に送る。
 図4は、実施の形態1における学習装置130での動作を示すフローチャートである。
 まず、通信部131は、データ認識装置110からの再学習用データを受信する(S20)。受信された再学習用データは、記憶部132に送られ、記憶部132は、その再学習用データを記憶する。
 次に、モデル学習部133は、記憶部132に記憶された再学習用データを用いて、記憶部132に記憶されている教師モデルの出力を使用して、生徒モデルを再学習する(S21)。
 次に、モデル学習部133は、再学習後の生徒モデルを、通信部131を介して、データ認識装置110に送る(S22)。再学習された生徒モデルを受信したデータ認識装置110では、受信された生徒モデルがモデル記憶部113に記憶されて、以後、記憶された生徒モデルを用いて、データの認識が行われる。
 以上のように、実施の形態1では、生徒モデルを使用した認識の確からしさが中程度の認識対象データに基づいて、生徒モデルが再学習されるため、教師モデルから生徒モデルに転移されていない知識を適切に再学習することができる。このため、生徒モデルの汎化性能及び精度を向上させることができる。
 なお、認識の確からしさが中程度の認識対象データを用いて再学習を行う理由は以下の通りである。
 認識の確からしさが高い認識対象データについては、学習が適切に行われていると考えられるため、そのような認識対象データを用いた再学習は不要である。
 認識の確からしさが低い認識対象データについても、「認識対象ではない」という学習が適切に行われていると考えられるため、そのような認識対象データを用いた再学習は不要である。
 認識の確からしさが中程度の認識対象データのみを蓄積することで、蓄積するデータ量を少なくすることができる。
実施の形態2.
 図5は、実施の形態2に係る再学習システム200の構成を概略的に示すブロック図である。
 再学習システム200は、データ認識装置210と、学習装置230とを備える。
 例えば、データ認識装置210と、学習装置230とは、インターネット等のネットワーク101を介して通信することができるものとする。
 データ認識装置210は、通信部111と、データ取得部112と、モデル記憶部113と、認識部114と、認識結果出力部115と、蓄積判断部216とを備える。
 実施の形態2におけるデータ認識装置210の通信部111、データ取得部112、モデル記憶部113、認識部114及び認識結果出力部115は、実施の形態1におけるデータ認識装置110の通信部111、データ取得部112、モデル記憶部113、認識部114及び認識結果出力部115と同様である。
 また、実施の形態2におけるデータ認識装置210は、実施の形態1におけるデータ認識装置110の蓄積部117を備えていない。
 蓄積判断部216は、認識部114からの指標が中程度を示す場合には、認識部114からの認識対象データを再学習用データとして、通信部111を介して、学習装置230に送る。
 学習装置230は、通信部131と、記憶部232と、モデル学習部233と、蓄積部234とを備える。
 実施の形態2における学習装置230の通信部131は、実施の形態1における学習装置130の通信部131と同様である。
 但し、実施の形態2における通信部131は、データ認識装置210からの再学習用データを受信して、そのデータを蓄積部234に与える。
 蓄積部234は、データ認識装置110からの再学習用データを記憶することで、そのデータを蓄積する。
 記憶部232は、データ認識装置110が記憶している生徒モデルと同一の構成を有するモデルである更新対象生徒モデルと、その生徒モデルの教師モデルを記憶する。
 なお、実施の形態2では、蓄積部234が設けられているため、記憶部232は、データ認識装置210からの再学習用データを記憶しない。なお、記憶部232は、生徒モデルが生成された際の学習用データを記憶していてもよい。
 モデル学習部233は、再学習のタイミングで、蓄積部234に記憶された再学習用データを用いて、記憶部232に記憶されている教師モデルの出力を使用して、生徒モデルを再学習する。ここでは、モデル学習部233は、記憶部232に記憶されている更新対象生徒モデルに対してファインチューニングを行うことで、生徒モデルの再学習を行う。
 そして、モデル学習部233は、再学習後の更新対象生徒モデルを、生徒モデルとして、通信部131を介して、データ認識装置210に送る。生徒モデルを受信したデータ認識装置210では、受信した生徒モデルをモデル記憶部113に記憶させて、以後、記憶された生徒モデルを用いて、データの認識を行う。
 以上に記載された学習装置230も、図2に示されているようなコンピュータ150で実現することができる。
 具体的には、蓄積部234も不揮発性メモリ151により実現することができる。
 なお、実施の形態2では、モデル学習部233が再学習のタイミングであるか否かを判断しているが、実施の形態2は、このような例に限定されない。例えば、実施の形態1と同様に、蓄積判断部216が再学習のタイミングであるか否かを判断してもよい。この場合、蓄積判断部216は、再学習のタイミングである場合に、通信部111を介して学習装置230に、再学習の指示を送ればよい。そして、このような指示を受けた学習装置230のモデル学習部233が、生徒モデルの再学習を行えばよい。
 なお、以上に記載された実施の形態1及び2では、モデル学習部133、233は、更新対象生徒モデルを更新すること、言い換えると、更新対象生徒モデルに対してファインチューニングを行うことで、生徒モデルの再学習を行っているが、実施の形態1及び2は、このような例に限定されない。例えば、モデル学習部133、233は、生徒モデルを生成した際の学習用データに、再学習用データを追加して、新たなニューラルネットワークを生成することで、生徒モデルを再学習してもよい。ここで生成されるニューラルネットワークを、既に生徒モデルとして使用されている第二のニューラルネットワークと区別するために、第三のニューラルネットワークともいう。この場合にも、モデル学習部133、233は、学習用データへの重みと、再学習用データへの重みとを変えて、生徒モデルを再学習してもよい。
 なお、以上に記載された実施の形態1及び2では、データ認識装置110、210がモデル記憶部113を備えているが、実施の形態1及び2は、このような例に限定されない。例えば、モデル記憶部113は、ネットワーク101に接続されている学習装置230又は他の装置に備えられていてもよい。
 また、以上に記載された実施の形態2では、学習装置230が蓄積部234を備えているが、実施の形態2は、このような例に限定されない。例えば、蓄積部234は、データ認識装置210及び学習装置230以外の、ネットワーク101に接続されている他の装置に備えられていてもよい。また、記憶部132、232についても、データ認識装置210及び学習装置230以外の、ネットワーク101に接続されている他の装置に備えられていてもよい。
 さらに、教師モデルとして使用される第一のニューラルネットワークは、生徒モデルとして使用される第二のニューラルネットワークよりも、規模が大きく、かつ、複雑なニューラルネットワークでもよく、第一のニューラルネットワークは、第二のニューラルネットワークと同一のニューラルネットワークであってもよい。
 100 再学習システム、 110 データ認識装置、 111 通信部、 112 データ取得部、 113 モデル記憶部、 114 認識部、 115 認識結果出力部、 116 蓄積判断部、 117 蓄積部、 130 学習装置、 131 通信部、 132 記憶部、 133 モデル学習部。

Claims (12)

  1.  教師モデルとして使用される第一のニューラルネットワークによる認識結果に、生徒モデルとして使用される第二のニューラルネットワークの認識結果が近づくように学習された前記第二のニューラルネットワークを記憶するモデル記憶部と、
     前記第二のニューラルネットワークを用いて、認識対象を示す認識対象データに対して推論を行うことで、前記認識対象の認識を行う認識部と、
     前記認識の確からしさが中程度であるか否かを判断する判断部と、
     前記認識の確からしさが中程度である場合に、前記認識の確からしさが中程度であると判断された前記認識対象データを、再学習用データとして蓄積する蓄積部と、
     前記再学習用データを用いて、前記教師モデルの認識結果に、前記生徒モデルの認識結果が近づくように、前記生徒モデルを再学習するモデル学習部と、を備えること
     を特徴とする再学習システム。
  2.  前記判断部は、前記認識の確からしさを示す指標が、前記認識の確からしさを示す指標として想定される最大値よりも小さい第一の閾値と、前記認識の確からしさを示す指標として想定される最小値よりも大きく、前記第一の閾値よりも小さい第二の閾値との間にある場合に、前記認識の確からしさが中程度であると判断すること
     を特徴とする請求項1に記載の再学習システム。
  3.  前記判断部は、前記第一の閾値及び前記第二の閾値の少なくとも何れか一方を、前記再学習用データで示される前記認識の確からしさを示す指標の偏りに応じて変えること
     を特徴とする請求項2に記載の再学習システム。
  4.  前記モデル学習部は、前記蓄積部に蓄積されている前記再学習用データの量が、予め定められた量に達した場合に、前記生徒モデルの再学習を行うこと
     を特徴とする請求項1から3の何れか一項に記載の再学習システム。
  5.  前記モデル学習部は、予め定められた期間が経過する毎に、前記生徒モデルの再学習を行うこと
     を特徴とする請求項1から3の何れか一項に記載の再学習システム。
  6.  前記モデル学習部は、予め定められた一連の動作が終了した場合に、前記生徒モデルの再学習を行うこと
     を特徴とする請求項1から3の何れか一項に記載の再学習システム。
  7.  前記モデル学習部は、前記第二のニューラルネットワークに対してファインチューニングを行うことで、前記生徒モデルを再学習すること
     を特徴とする請求項1から6の何れか一項に記載の再学習システム。
  8.  前記第二のニューラルネットワークを学習する際に使用された学習用データを記憶する記憶部をさらに備え、
     前記モデル学習部は、前記学習用データの少なくとも一部及び前記再学習用データを用いて、前記ファインチューニングを行うこと
     を特徴とする請求項7に記載の再学習システム。
  9.  前記モデル学習部は、前記学習用データの少なくとも一部への重みと、前記再学習用データへの重みとを変えて、前記生徒モデルを再学習すること
     を特徴とする請求項8に記載の再学習システム。
  10.  前記第二のニューラルネットワークを学習する際に使用された学習用データを記憶する記憶部をさらに備え、
     前記モデル学習部は、前記学習用データ及び前記再学習用データを用いて、前記生徒モデルとして使用される第三のニューラルネットワークを新たに学習することで、前記生徒モデルを再学習すること
     を特徴とする請求項1から6の何れか一項に記載の再学習システム。
  11.  前記モデル学習部は、前記学習用データへの重みと、前記再学習用データへの重みとを変えて、前記生徒モデルを再学習すること
     を特徴とする請求項10に記載の再学習システム。
  12.  教師モデルとして使用される第一のニューラルネットワークによる認識結果に、生徒モデルとして使用される第二のニューラルネットワークの認識結果が近づくように学習された前記第二のニューラルネットワークを用いて、認識対象を示す認識対象データに対して推論を行うことで、前記認識対象の認識を行い、
     前記認識の確からしさが中程度であるか否かを判断し、
     前記認識の確からしさが中程度である場合に、前記認識の確からしさが中程度であると判断された前記認識対象データを、再学習用データとして蓄積し、
     前記再学習用データを用いて、前記教師モデルの認識結果に、前記生徒モデルの認識結果が近づくように、前記生徒モデルを再学習すること
     を特徴とする再学習方法。
PCT/JP2021/013073 2021-03-26 2021-03-26 再学習システム及び再学習方法 WO2022201534A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21933137.8A EP4296905A4 (en) 2021-03-26 2021-03-26 RELEARNING SYSTEM AND METHOD
JP2023508404A JP7412632B2 (ja) 2021-03-26 2021-03-26 再学習システム及び再学習方法
PCT/JP2021/013073 WO2022201534A1 (ja) 2021-03-26 2021-03-26 再学習システム及び再学習方法
CN202180095917.2A CN117099098A (zh) 2021-03-26 2021-03-26 重新学习系统和重新学习方法
US18/367,531 US20240005171A1 (en) 2021-03-26 2023-09-13 Relearning system and relearning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/013073 WO2022201534A1 (ja) 2021-03-26 2021-03-26 再学習システム及び再学習方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/367,531 Continuation US20240005171A1 (en) 2021-03-26 2023-09-13 Relearning system and relearning method

Publications (1)

Publication Number Publication Date
WO2022201534A1 true WO2022201534A1 (ja) 2022-09-29

Family

ID=83396713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013073 WO2022201534A1 (ja) 2021-03-26 2021-03-26 再学習システム及び再学習方法

Country Status (5)

Country Link
US (1) US20240005171A1 (ja)
EP (1) EP4296905A4 (ja)
JP (1) JP7412632B2 (ja)
CN (1) CN117099098A (ja)
WO (1) WO2022201534A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018045369A (ja) * 2016-09-13 2018-03-22 株式会社東芝 認識装置、認識システム、認識方法およびプログラム
JP2020071883A (ja) 2018-10-29 2020-05-07 富士通株式会社 モデル訓練方法、データ認識方法及びデータ認識装置
EP3736745A1 (en) * 2019-05-07 2020-11-11 Samsung Electronics Co., Ltd. Model training method and apparatus
WO2021044591A1 (ja) * 2019-09-05 2021-03-11 日本電気株式会社 モデル生成装置、モデル生成方法、及び、記録媒体

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10878286B2 (en) * 2016-02-24 2020-12-29 Nec Corporation Learning device, learning method, and recording medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018045369A (ja) * 2016-09-13 2018-03-22 株式会社東芝 認識装置、認識システム、認識方法およびプログラム
JP2020071883A (ja) 2018-10-29 2020-05-07 富士通株式会社 モデル訓練方法、データ認識方法及びデータ認識装置
EP3736745A1 (en) * 2019-05-07 2020-11-11 Samsung Electronics Co., Ltd. Model training method and apparatus
WO2021044591A1 (ja) * 2019-09-05 2021-03-11 日本電気株式会社 モデル生成装置、モデル生成方法、及び、記録媒体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4296905A4

Also Published As

Publication number Publication date
EP4296905A4 (en) 2024-04-24
EP4296905A1 (en) 2023-12-27
US20240005171A1 (en) 2024-01-04
JPWO2022201534A1 (ja) 2022-09-29
CN117099098A (zh) 2023-11-21
JP7412632B2 (ja) 2024-01-12

Similar Documents

Publication Publication Date Title
Stanley Learning concept drift with a committee of decision trees
US20230111841A1 (en) Temporal processing scheme and sensorimotor information processing
US11966831B2 (en) Feedback mechanisms in sequence learning systems with temporal processing capability
US10911471B1 (en) Systems and methods for network-based intrusion detection
US20190220710A1 (en) Data processing method and data processing device
WO2011115854A1 (en) Temporal memory using sparse distributed representation
CN109886343B (zh) 图像分类方法及装置、设备、存储介质
KR20210032140A (ko) 뉴럴 네트워크에 대한 프루닝을 수행하는 방법 및 장치
US20200250529A1 (en) Arithmetic device
KR102460485B1 (ko) 정책 벡터 기반 인공신경망 탐색 장치 및 방법
JP6325762B1 (ja) 情報処理装置、情報処理方法、および情報処理プログラム
WO2022201534A1 (ja) 再学習システム及び再学習方法
US10776687B2 (en) Union processing of sequences of patterns
US20230297659A1 (en) Identity authentication method and system
KR20210085278A (ko) 불균형 데이터 학습 장치 및 방법
KR20220014744A (ko) 강화 학습을 기반으로 한 데이터 전처리 시스템 및 방법
JP2007213441A (ja) 多変数決定木構築システム、多変数決定木構築方法および多変数決定木を構築するためのプログラム
JP7298776B2 (ja) 物体認識装置、物体認識方法、及び、プログラム
Ye et al. Wasserstein Expansible Variational Autoencoder for Discriminative and Generative Continual Learning
KR20190133426A (ko) 기존 학습 정보를 유지하는 심층 신경망의 미세조정 방법
JP2021081930A (ja) 学習装置、情報分類装置、及びプログラム
WO2021111788A1 (ja) ニューラルネットワーク縮約装置およびその方法
CN106529579A (zh) 一种改善的基于Ransac算法的鲁棒AdaBoost分类器构建方法
KR20220073539A (ko) 온라인 학습 정책을 위한 강화학습 방법 및 장치
WO2023067782A1 (ja) 機械学習プログラム、機械学習方法および情報処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21933137

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023508404

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180095917.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021933137

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021933137

Country of ref document: EP

Effective date: 20230921

NENP Non-entry into the national phase

Ref country code: DE