WO2022201515A1 - Server, animation recommendation system, animation recommendation method, and program - Google Patents

Server, animation recommendation system, animation recommendation method, and program Download PDF

Info

Publication number
WO2022201515A1
WO2022201515A1 PCT/JP2021/012945 JP2021012945W WO2022201515A1 WO 2022201515 A1 WO2022201515 A1 WO 2022201515A1 JP 2021012945 W JP2021012945 W JP 2021012945W WO 2022201515 A1 WO2022201515 A1 WO 2022201515A1
Authority
WO
WIPO (PCT)
Prior art keywords
animation
data
reference frame
server
unit
Prior art date
Application number
PCT/JP2021/012945
Other languages
French (fr)
Japanese (ja)
Inventor
孝弘 坪野
イー カー ヤン
美帆 折坂
Original Assignee
株式会社オープンエイト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オープンエイト filed Critical 株式会社オープンエイト
Priority to PCT/JP2021/012945 priority Critical patent/WO2022201515A1/en
Priority to JP2021548625A priority patent/JP6979738B1/en
Publication of WO2022201515A1 publication Critical patent/WO2022201515A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/80Generation or processing of content or additional data by content creator independently of the distribution process; Content per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/80Generation or processing of content or additional data by content creator independently of the distribution process; Content per se
    • H04N21/85Assembly of content; Generation of multimedia applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/80Generation or processing of content or additional data by content creator independently of the distribution process; Content per se
    • H04N21/85Assembly of content; Generation of multimedia applications
    • H04N21/854Content authoring

Definitions

  • the present invention relates to a server or the like that recommends animations for images.
  • Patent Document 1 proposes a moving image processing apparatus that efficiently searches for a desired scene image from a moving image having a plurality of chapters.
  • the main inventions of the present invention for solving the above problems are a material content data setting unit for setting image data for a cut, and an animation start point or end point for the image data based on saliency information about the image data.
  • a server comprising: a reference frame setting unit that sets a suitable reference frame; and an animation recommendation unit that recommends the animation type having the reference frame as a starting point or an end point.
  • the present invention it is possible to provide a server or the like that makes it possible to easily create composite content data, and particularly makes it possible to recommend an appropriate animation to a user.
  • FIG. 1 is a configuration diagram of a system according to an embodiment
  • FIG. 1 is a configuration diagram of a server according to an embodiment
  • FIG. 3 is a configuration diagram of a management terminal and a user terminal according to an embodiment
  • FIG. 1 is a functional block diagram of a system according to an embodiment
  • FIG. FIG. 4 is a diagram for explaining an example screen layout that constitutes a cut
  • 4 is a flow chart of a system according to an example embodiment
  • FIG. 10 is an explanatory diagram of an aspect of displaying a list of a plurality of cuts forming composite content data on a screen
  • FIG. 10 is a diagram illustrating animation recommendation according to an embodiment
  • FIG. 10 is a diagram illustrating setting of a reference frame according to the embodiment
  • FIG. 5 is a diagram illustrating saliency object detection according to an example embodiment
  • FIG. 3 shows an example original image for saliency-based detection
  • FIG. 12 illustrates an example of saliency object detection for the image of FIG. 11
  • FIG. 4 is a diagram illustrating saliency map detection according to an example embodiment
  • FIG. 12 illustrates an example of saliency map detection for the image of FIG. 11
  • FIG. 10 is a diagram illustrating an animation recommendation example according to the embodiment
  • FIG. 12 illustrates an example of hybrid saliency map detection for the image of FIG. 11;
  • a server or the like has the following configuration.
  • [Item 1] a material content data setting unit for setting image data for cuts; a reference frame setting unit that sets a reference frame suitable for the start point or end point of an animation in the image data based on saliency information about the image data; an animation recommendation unit that recommends the animation type with the reference frame as a start point or an end point;
  • this system A system for creating composite content data (hereinafter referred to as "this system") and the like according to an embodiment of the present invention will now be described.
  • this system A system for creating composite content data (hereinafter referred to as "this system") and the like according to an embodiment of the present invention.
  • this system A system for creating composite content data (hereinafter referred to as "this system") and the like according to an embodiment of the present invention.
  • this system A system for creating composite content data (hereinafter referred to as "this system") and the like according to an embodiment of the present invention.
  • this system A system for creating composite content data (hereinafter referred to as "this system") and the like according to an embodiment of the present invention will now be described.
  • this system the same or similar elements are denoted by the same or similar reference numerals and names, and duplicate descriptions of the same or similar elements may be omitted in the description of each embodiment.
  • the features shown in each embodiment can be applied to other embodiments as long as they are not mutually contradictory.
  • the system includes a server 1, an administrator terminal 2, and a user terminal 3.
  • FIG. 1 The server 1, the administrator terminal 2, and the user terminal 3 are communicably connected to each other via a network.
  • the network may be a local network or may be connectable to an external network.
  • the server 1 is composed of one unit is described, but it is also possible to realize the server 1 using a plurality of server devices.
  • the server 1 and the administrator terminal 2 may be shared.
  • FIG. 2 is a diagram showing the hardware configuration of the server 1 shown in FIG. 1. As shown in FIG. Note that the illustrated configuration is an example, and other configurations may be employed. Also, the server 1 may be a general-purpose computer such as a workstation or a personal computer, or may be logically realized by cloud computing.
  • the server 1 includes at least a processor 10 , a memory 11 , a storage 12 , a transmission/reception section 13 , an input/output section 14 and the like, which are electrically connected to each other through a bus 15 .
  • the processor 10 is an arithmetic device that controls the overall operation of the server 1, controls transmission and reception of data between elements, executes applications, and performs information processing necessary for authentication processing.
  • the processor 10 is a CPU (Central Processing Unit) and a GPU (Graphics Processing Unit), and executes programs for this system stored in the storage 12 and developed in the memory 11 to perform each information process. It should be noted that the processing capability of the processor 10 only needs to be sufficient for executing necessary information processing, so for example, the processor 10 may be composed only of a CPU, and is not limited to this.
  • the memory 11 includes a main memory composed of a volatile memory device such as a DRAM (Dynamic Random Access Memory), and an auxiliary memory composed of a non-volatile memory device such as a flash memory or a HDD (Hard Disc Drive). .
  • the memory 11 is used as a work area or the like for the processor 10, and may store a BIOS (Basic Input/Output System) executed when the server 1 is started, various setting information, and the like.
  • BIOS Basic Input/Output System
  • the storage 12 stores various programs such as application programs.
  • a database storing data used for each process may be constructed in the storage 12 .
  • the transmission/reception unit 13 connects the server 1 to the network.
  • the input/output unit 14 is an information input device such as a keyboard and mouse, and an output device such as a display.
  • a bus 15 is commonly connected to the above elements and transmits, for example, address signals, data signals and various control signals.
  • the administrator terminal 2 and the user terminal 3 shown in FIG. 3 also include a processor 20, a memory 21, a storage 22, a transmission/reception section 23, an input/output section 24, etc. These are electrically connected to each other through a bus 25. . Since the function of each element can be configured in the same manner as the server 1 described above, detailed description of each element will be omitted.
  • the administrator uses the administrator terminal 2 to, for example, change the settings of the server 1 and manage the operation of the database.
  • a user can access the server 1 from the user terminal 3 to create or view composite content data, for example.
  • FIG. 4 is a block diagram illustrating functions implemented in the server 1.
  • the server 1 includes a communication unit 110, an identified information analysis unit 120, a second data generation unit 130, a composite content data generation unit 140, an association unit 150, a storage unit 160, a classifier 170, an animation A recommendation unit 180 is provided.
  • Composite content data generator 140 includes base data generator 142 , second data allocation unit 144 , and material content data allocation unit 146 .
  • the storage unit 160 includes storage areas such as the memory 11 and the storage 11, and includes a base data storage unit 161, material content data storage unit 163, composite content data storage unit 165, interface information storage unit 167, animation data Various databases such as the storage unit 169 are included.
  • the animation recommendation section 180 includes a score calculation section 182 and a reference frame setting section 184 .
  • the material content data setting unit 190 is executed by the processor 10, for example, although it will be described later.
  • the communication unit 110 communicates with the administrator terminal 2 and the user terminal 3.
  • the communication unit 110 also functions as a reception unit that receives first data including information to be identified, for example, from the user terminal 3 .
  • the first data is, for example, text data such as articles containing information to be identified (for example, press releases, news, etc.), image data containing information to be identified (for example, photographs, illustrations, etc.), or video data. , voice data including information to be identified, and the like.
  • the text data here is not limited to text data at the time of transmission to the server 1, but may be text data generated by a known voice recognition technique from voice data transmitted to the server 1, for example.
  • the first data may be text data such as articles, etc., summarized by existing automatic summarization technology such as extractive summary or generative summary (including information to be identified).
  • extractive summary or generative summary (including information to be identified).
  • generative summary including information to be identified.
  • the audio data referred to here is not limited to audio data acquired by an input device such as a microphone, but may be audio data extracted from video data or audio data generated from text data.
  • audio data such as narration and lines are extracted from temporary images such as rough sketches and temporary moving images such as temporary video, and composite content is extracted along with material content data based on the audio data as will be described later.
  • Data may be generated.
  • voice data may be created from text data with a story, and in the case of fairy tales, for example, a picture-story show or moving image based on the read-out story and material content data may be generated as composite content data.
  • the second data generation unit 130 determines that it is not necessary to divide the first data (for example, the text data is a short sentence with a preset number of characters or less), the second data generation unit 130 The data generator 130 generates the first data as it is as the second data.
  • the second data generation unit 130 divides the first data.
  • the data is divided and generated as second data each including at least part of the information to be identified of the first data.
  • division number information of the second data is also generated. Any known technique may be used for the method of dividing the first data by the second data generation unit 130. For example, if the first data can be converted into text, Based on the analysis results of the maximum number of characters in each cut of the base data and the modification relationship between clauses, sentences may be separated so that a natural section as a sentence fits into each cut.
  • the identified information analysis unit 120 analyzes the second data described above and acquires identified information.
  • the information to be identified may be any information as long as it can be analyzed by the information to be identified analysis unit 120 .
  • the identified information may be in word form defined by a language model. More specifically, it may be one or more words (for example, "Shibuya, Shinjuku, Roppongi” or "Shibuya, Landmark, Teen”) accompanied by a word vector, which will be described later.
  • the words may include words that are not usually used alone, such as "n", depending on the language model.
  • a feature vector extracted from a document, an image, or a moving image may be used instead of the above-described word format.
  • the composite content data generation unit 140 generates base data including the number of cuts (one or more cuts) according to the division number information of the second data generated by the second data generation unit 130 described above. and the material content data newly input from the user terminal 3 and/or the material content data stored in the material content data storage unit 163 and the base data in which the above-described second data is assigned to each cut are combined.
  • the composite content data is generated as content data, stored in the composite content data storage unit 165 , and displayed on the user terminal 3 . It should be noted that FIG. 5 is an example of a screen layout of cuts that constitute the base data.
  • Edited second data (for example, delimited text sentences) is inserted in a second data field 31 in the figure, and selected material content data is inserted in a material content data field 32 .
  • the preset maximum number of characters in the case of text data
  • screen layout in the case of moving images
  • playback time in the case of moving images
  • composite content data does not necessarily need to be stored in the composite content data storage unit 165, and may be stored at appropriate timing.
  • the base data to which only the second data is assigned may be displayed on the user terminal 3 as progress information of the composite content data.
  • the second data allocation unit 144 assigns numbers to the one or more cuts generated by the base data generation unit 142 described above, such as scene 1, scene 2, scene 3, or cut 1, cut 2, cut 3, for example.
  • the second data are sequentially assigned in this numerical order.
  • the association unit 150 compares at least part of the information to be identified included in the second data described above with, for example, extracted information extracted from the material content data (for example, class labels extracted by the classifier), For example, mutual similarity or the like is determined, and material content data suitable for the second data (for example, data having a high degree of similarity) and the second data are associated with each other.
  • material content data A for example, an image of a woman
  • identified information included in the second data represents "teacher” and extracted information is "face” and "mountain”.
  • is prepared for example, an image of Mt.
  • the relationship between the word vector obtained from “teacher” and the word vector obtained from “face” is the word vector obtained from "teacher” and
  • the second data is associated with the material content data A because it is more similar than the association of word vectors obtained from "mountain”.
  • the extraction information of the material content data may be extracted in advance by the user and stored in the material content data storage unit 163, or may be extracted by the classifier 170, which will be described later.
  • the similarity determination may be performed by preparing a trained model that has learned word vectors, and using the vectors to determine the similarity of words by a method such as cosine similarity or Word Mover's Distance.
  • Material content data can be, for example, image data, video data, sound data (eg, music data, voice data, sound effects, etc.), but is not limited to this.
  • the material content data may be stored in the material content data storage unit 163 by the user or administrator, or may be acquired from the network and stored in the material content data storage unit 163. may be
  • the material content data allocation unit 146 allocates suitable material content data to cuts to which the corresponding second data is allocated, based on the above-described association.
  • the interface information storage unit 167 stores various control information to be displayed on the display unit (display, etc.) of the administrator terminal 2 or the user terminal 3.
  • the classifier 170 acquires learning data from a learning data storage unit (not shown) and performs machine learning to create a learned model. Creation of the classifier 170 occurs periodically.
  • the learning data for creating a classifier may be data collected from the network or data owned by the user with class labels attached, or a data set with class labels may be procured and used. .
  • the classifier 170 is, for example, a trained model using a convolutional neural network, and upon input of material content data, extracts one or a plurality of extracted information (eg, class labels, etc.).
  • the classifier 170 for example, extracts class labels representing objects associated with the material content data (eg, seafood, grilled meat, people, furniture).
  • FIG. 6 is a diagram explaining an example of the flow of creating composite content data.
  • the server 1 receives first data including at least identification information from the user terminal 3 via the communication unit 110 (step S101).
  • the identified information is, for example, one or more words
  • the first data may be, for example, text data consisting of an article containing one or more words or a summary of the text data.
  • the server 1 acquires identified information by analyzing the first data by the identified information analysis unit 120, and generates one or more data containing at least part of the identified information by the second data generation unit 130. Second data and division number information are generated (step S102).
  • the server 1 causes the base data generation section 142 to generate the base data including the number of cuts according to the division number information by the composite content data generation section 140 (step S103).
  • the server 1 allocates the second data to the cut by the second data allocation unit (step S104).
  • the base data in this state may be displayed on the user terminal 3 so that the progress can be checked.
  • the server 1 causes the association unit 150 to extract the material content data in the material content data storage unit 163. and the second data (step S105), and the material content data allocation unit 146 allocates the material content data to the cut (step S106).
  • the server 1 generates the base data to which the second data and the material content data are assigned as composite content data, stores the composite content data in the composite content data storage unit 165, and displays the composite content data on the user terminal 3 (step S107).
  • a list of a plurality of cuts forming the composite content data can be displayed on the screen.
  • information on the playback time (in seconds) of each cut may also be displayed.
  • the user can, for example, correct the content by clicking the second data field 31 or the corresponding button, and replace the material content data by clicking the material content data field 32 or the corresponding button. can be done.
  • step S102 for reading the base data may be executed as long as it has been read before the assignment of the second data or material content data.
  • step S104 for assigning the second data, step S105 for association, and step S106 for assigning material content data are executed in any order if there is no discrepancy with each other.
  • the material content data setting unit 190 using the identified information analysis unit 120, the association unit 150, and the classifier 170 described so far may be one setting function of the composite content data creation system.
  • the setting method by the setting unit 190 is not limited to this.
  • the base data is generated by the base data generation unit 142 in the above example, but it may be read from the base data storage unit 161 instead.
  • the read-out base data may include, for example, a predetermined number of blank cuts, or template data in which predetermined material content data, format information, etc. have been set for each cut (for example, music data, background data, etc.). image, font information, etc.) may be used.
  • the user may be able to set any material content to all or part of each data field from the user terminal.
  • a setting method may be combined with a user operation, such as a user inputting arbitrary text using a user terminal, extracting information to be identified from these texts as described above, and associating material content.
  • FIG. 8* An example of a method for recommending an animation for an image by the animation recommendation unit 180 will be described with reference to FIGS. 8 to 12.
  • FIG. For example, as performed in step 10* above.
  • FIG. 8 is a diagram explaining an example of the animation recommendation flow.
  • animation as used herein includes, for example, known animations such as zooming in, zooming out, and slides moving up, down, left, and right. may be
  • the score calculation unit 182 is used to score which animation type is appropriate for the image data set for each cut, and an animation is recommended according to the score.
  • the score calculation unit 182 performs the above scoring on images based on the animation recommendation model.
  • the animation recommendation model for example, presents a predetermined image to an unspecified number of people, asks them to select an animation that matches it, and uses saliency information (details will be described later) about the image and a set of animation types as teacher data. It may be generated by machine learning.
  • a reference frame is provided for the entire image, and each animation is operated by moving the reference frame so that the position of the reference frame shown in the drawing becomes the starting point or the ending point. do.
  • the size of the reference frame may be set to a predetermined value in advance, or may be set by the user using the user terminal.
  • the position of the reference frame is set by the reference frame setting unit 184 to a predetermined position that is most desired to be visualized in animation based on the saliency determination model.
  • a saliency determination model is a trained model of saliency obtained by a known learning method such as saliency object detection in FIG. 10 or saliency map detection in FIG. By using this, the reference frame setting unit 184 sets the position of the reference frame based on the saliency information illustrated in FIGS. 10 and 13 so as to include many of the parts with the highest salience, for example.
  • FIG. 10 shows an example using a saliency object detection model, which can be implemented by a known method such as an encoder-decoder model.
  • a saliency object detection model which can be implemented by a known method such as an encoder-decoder model.
  • FIG. 10 only large and small mountains are detected as saliency objects.
  • FIG. 13 shows an example using a saliency map detection model, which can be realized by a known method such as a trained model using a convolutional neural network.
  • the strength of visual salience of each pixel is determined as a saliency map, and as an example, the density of the black portion expresses the strength of visual salience.
  • the reference frame setting unit 184 sets the reference frame at a position where the strength of visual saliency occupies a large proportion of the size of the reference frame (for example, a position surrounding only large mountains). For example, when the saliency map detection model is used for the animal image shown in FIG. 11, a result is obtained in which visual salience is strongly detected in the animal's face portion as shown in FIG.
  • the score calculation unit 182 is not limited to the above-described score calculation by machine learning. For example, based on the saliency information shown in FIGS. You may make it calculate a high score with respect to. For example, the score calculation unit 182 executes each animation on the image and calculates the score for each movement. For example, as shown in FIG. For example, it recommends a left slide animation that ends the slide at the position of the frame of reference.
  • the animation recommendation unit 180 can recommend an appropriate animation for the image to the user.
  • the position of the reference frame may be a part that the user does not intend.
  • the saliency map detection of FIG. 13 since the entire image of the object is unknown, the part unintended by the user may be the position of the reference frame, or the animation may include unintended parts. It is possible.
  • the resolution of the image is first increased, and then saliency detection is performed to achieve a more salience detection. Accuracy of sex information can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Processing Or Creating Images (AREA)

Abstract

[Problem] To provide a server and the like which make it possible to easily prepare compound content data, and in particular, make it possible to recommend to a user a suitable animation with respect to an image. [Solution] Provided are: a server characterized by comprising a material content data setting unit that sets image data with respect to a cut, a reference frame setting unit that sets a reference frame for the image data, and an animation recommendation unit that recommends an animation type which moves in a visible region with the reference frame serving as a starting point or an ending point; an animation recommendation system; an animation recommendation preparation method; and a program.

Description

サーバおよびアニメーション推薦システム、アニメーション推薦方法、プログラムSERVER AND ANIMATION RECOMMENDATION SYSTEM, ANIMATION RECOMMENDATION METHOD, AND PROGRAM
 本発明は、画像に対するアニメーションを推薦するサーバ等に関する。 The present invention relates to a server or the like that recommends animations for images.
 従来から、動画等コンテンツデータ作成が行われており、例えば、特許文献1には、複数のチャプタを有する動画から所望のシーン画像を効率的に検索する動画処理装置が提案されている。  Conventionally, content data such as moving images has been created. For example, Patent Document 1 proposes a moving image processing apparatus that efficiently searches for a desired scene image from a moving image having a plurality of chapters.
特開2011-130007号公報Japanese Patent Application Laid-Open No. 2011-130007
 動画等コンテンツデータを作成することには多大な手間がかかり、特に、テキストデータや画像、音データなどの複数の素材コンテンツデータが用いられた複合コンテンツデータを作成する場合には、最適な組み合わせを考慮することがユーザの技術レベルによっては難しいため、簡便に複合コンテンツデータを作成することができるシステムの提供が求められていた。また、画像データについては、アニメーション(ズームやスライドなど)をユーザによって選択する必要があり、適切なアニメーションを選択することもユーザの技術レベルによっては難しいため、適切なアニメーションをユーザに推薦可能なシステムの提供も求められていた。 It takes a lot of time and effort to create content data such as video. Consideration is difficult depending on the technical level of the user, so there has been a demand for a system capable of easily creating composite content data. In addition, for image data, it is necessary for the user to select an animation (zoom, slide, etc.), and selecting an appropriate animation is difficult depending on the user's technical level. Therefore, a system that can recommend an appropriate animation to the user was also requested to provide
 そこで、本発明では、複合コンテンツデータを簡便に作成することを可能とする、特に適切なアニメーションをユーザに推薦可能とするサーバ等を提供することを目的とする。 Therefore, it is an object of the present invention to provide a server or the like that makes it possible to easily create composite content data, and particularly makes it possible to recommend an appropriate animation to a user.
 上記課題を解決するための本発明の主たる発明は、カットに対して、画像データを設定する素材コンテンツデータ設定部と、前記画像データに関する顕著性情報に基づき前記画像データにアニメーションの始点または終点に適した基準枠を設定する基準枠設定部と、前記基準枠を始点または終点とする前記アニメーション種を推薦するアニメーション推薦部と、を備える、ことを特徴とするサーバである。 The main inventions of the present invention for solving the above problems are a material content data setting unit for setting image data for a cut, and an animation start point or end point for the image data based on saliency information about the image data. A server, comprising: a reference frame setting unit that sets a suitable reference frame; and an animation recommendation unit that recommends the animation type having the reference frame as a starting point or an end point.
 本発明によれば、複合コンテンツデータを簡便に作成することを可能とする、特に適切なアニメーションをユーザに推薦可能とするサーバ等を提供することが可能となる。 According to the present invention, it is possible to provide a server or the like that makes it possible to easily create composite content data, and particularly makes it possible to recommend an appropriate animation to a user.
実施形態例に係るシステムの構成図である。1 is a configuration diagram of a system according to an embodiment; FIG. 実施形態例に係るサーバの構成図である。1 is a configuration diagram of a server according to an embodiment; FIG. 実施形態例に係る管理端末、ユーザ端末の構成図である。3 is a configuration diagram of a management terminal and a user terminal according to an embodiment; FIG. 実施形態例に係るシステムの機能ブロック図である。1 is a functional block diagram of a system according to an embodiment; FIG. カットを構成する画面レイアウト例を説明する図である。FIG. 4 is a diagram for explaining an example screen layout that constitutes a cut; 実施形態例に係るシステムのフローチャートである。4 is a flow chart of a system according to an example embodiment; 複合コンテンツデータを構成する複数のカットを画面上に一覧表示する態様の説明図である。FIG. 10 is an explanatory diagram of an aspect of displaying a list of a plurality of cuts forming composite content data on a screen; 実施形態例に係るアニメーション推薦を説明する図である。FIG. 10 is a diagram illustrating animation recommendation according to an embodiment; 実施形態例に係る基準枠の設定を説明する図である。FIG. 10 is a diagram illustrating setting of a reference frame according to the embodiment; 実施形態例に係る顕著性物体検出を説明する図である。FIG. 5 is a diagram illustrating saliency object detection according to an example embodiment; 顕著性に基づく検出のための元画像例を示す図である。FIG. 3 shows an example original image for saliency-based detection; 図11の画像に対する顕著性物体検出の一例を示す図である。FIG. 12 illustrates an example of saliency object detection for the image of FIG. 11; 実施形態例に係る顕著性マップ検出を説明する図である。FIG. 4 is a diagram illustrating saliency map detection according to an example embodiment; 図11の画像に対する顕著性マップ検出の一例を示す図である。FIG. 12 illustrates an example of saliency map detection for the image of FIG. 11; 実施形態例に係るアニメーション推薦例を説明する図である。FIG. 10 is a diagram illustrating an animation recommendation example according to the embodiment; 図11の画像に対するハイブリッド顕著性マップ検出の一例を示す図である。FIG. 12 illustrates an example of hybrid saliency map detection for the image of FIG. 11;
 本発明の実施形態の内容を列記して説明する。本発明の実施の形態によるサーバ等は、以下のような構成を備える。
[項目1]
 カットに対して、画像データを設定する素材コンテンツデータ設定部と、
 前記画像データに関する顕著性情報に基づき前記画像データにアニメーションの始点または終点に適した基準枠を設定する基準枠設定部と、
 前記基準枠を始点または終点とする前記アニメーション種を推薦するアニメーション推薦部と、を備える、
 ことを特徴とするサーバ。
[項目2]
 項目1に記載のサーバであって、
 さらに、前記顕著性情報に基づきアニメーション種をスコアリングするアニメーションスコア算出部を備え、
 前記アニメーション推薦部は、前記アニメーションスコアに基づき、前記アニメーション種を推薦する、
 ことを特徴とするサーバ。
[項目4]
 項目1または2のいずれかに記載のサーバであって、
 前記顕著性情報は、顕著性物体検出及び顕著性マップ検出を用いたハイブリッド顕著性マップ検出により取得される、
 ことを特徴とするサーバ。
[項目5]
 項目1または2のいずれかに記載のサーバであって、
 前記顕著性情報は、顕著性マップ検出により取得される、
 ことを特徴とするサーバ。
[項目6]
 項目1または2のいずれかに記載のサーバであって、
 前記顕著性情報は、顕著性物体検出により取得される、
 ことを特徴とするサーバ。
[項目7]
 カットに対して、画像データを設定する素材コンテンツデータ設定部と、
 前記画像データに関する顕著性情報に基づき前記画像データにアニメーションの始点または終点に適した基準枠を設定する基準枠設定部と、
 前記基準枠を始点または終点とするアニメーション種を推薦するアニメーション推薦部と、を備える、
 ことを特徴とするアニメーション推薦システム。
[項目8]
 素材コンテンツデータ設定部により、カットに対して、画像データを設定するステップと、
 基準枠設定部により、前記画像データに関する顕著性情報に基づき前記画像データにアニメーションの始点または終点に適した基準枠を設定するステップと、
 アニメーション推薦部により、前記基準枠を始点または終点とするアニメーション種を推薦するステップと、を含む、
 ことを特徴とするアニメーション推薦方法。
[項目9]
 アニメーション推薦方法をコンピュータに実行させるプログラムであって、
 前記アニメーション推薦方法は、
 素材コンテンツデータ設定部により、カットに対して、画像データを設定するステップと、
 基準枠設定部により、前記画像データに関する顕著性情報に基づき前記画像データにアニメーションの始点または終点に適した基準枠を設定するステップと、
 アニメーション推薦部により、前記基準枠を始点または終点とするアニメーション種を推薦するステップと、を含む、
 ことを特徴とするプログラム。
The contents of the embodiments of the present invention are listed and explained. A server or the like according to an embodiment of the present invention has the following configuration.
[Item 1]
a material content data setting unit for setting image data for cuts;
a reference frame setting unit that sets a reference frame suitable for the start point or end point of an animation in the image data based on saliency information about the image data;
an animation recommendation unit that recommends the animation type with the reference frame as a start point or an end point;
A server characterized by:
[Item 2]
The server according to item 1,
Furthermore, an animation score calculation unit that scores animation types based on the saliency information,
The animation recommendation unit recommends the animation type based on the animation score.
A server characterized by:
[Item 4]
The server according to any one of items 1 or 2,
the saliency information is obtained by hybrid saliency map detection using saliency object detection and saliency map detection;
A server characterized by:
[Item 5]
The server according to any one of items 1 or 2,
wherein the saliency information is obtained by saliency map detection;
A server characterized by:
[Item 6]
The server according to any one of items 1 or 2,
wherein the saliency information is obtained by saliency object detection;
A server characterized by:
[Item 7]
a material content data setting unit for setting image data for cuts;
a reference frame setting unit that sets a reference frame suitable for the start point or end point of an animation in the image data based on saliency information about the image data;
an animation recommendation unit that recommends an animation type whose starting point or ending point is the reference frame;
An animation recommendation system characterized by:
[Item 8]
a step of setting image data for a cut by a material content data setting unit;
setting a reference frame suitable for a start point or an end point of an animation in the image data based on saliency information about the image data by a reference frame setting unit;
an animation recommendation unit recommending an animation type having the reference frame as a start point or an end point;
An animation recommendation method characterized by:
[Item 9]
A program for causing a computer to execute an animation recommendation method,
The animation recommendation method includes:
a step of setting image data for a cut by a material content data setting unit;
setting a reference frame suitable for a start point or an end point of an animation in the image data based on saliency information about the image data by a reference frame setting unit;
an animation recommendation unit recommending an animation type having the reference frame as a start point or an end point;
A program characterized by
 <実施の形態の詳細>
 以下、本発明の実施の形態による複合コンテンツデータを作成するためのシステム(以下「本システム」という)等について説明する。添付図面において、同一または類似の要素には同一または類似の参照符号及び名称が付され、各実施形態の説明において同一または類似の要素に関する重複する説明は省略することがある。また、各実施形態で示される特徴は、互いに矛盾しない限り他の実施形態にも適用可能である。
<Details of Embodiment>
A system for creating composite content data (hereinafter referred to as "this system") and the like according to an embodiment of the present invention will now be described. In the accompanying drawings, the same or similar elements are denoted by the same or similar reference numerals and names, and duplicate descriptions of the same or similar elements may be omitted in the description of each embodiment. Also, the features shown in each embodiment can be applied to other embodiments as long as they are not mutually contradictory.
 <構成>
 実施形態例に係る本システムは、図1に示すように、サーバ1と、管理者端末2と、ユーザ端末3とを備えて構成される。サーバ1と、管理者端末2と、ユーザ端末3は、ネットワークを介して互いに通信可能に接続されている。ネットワークは、ローカルネットワークであってもよいし、外部ネットワークに接続可能なものであってもよい。図1の例では、サーバ1を1台で構成する例を説明しているが、複数台のサーバ装置によりサーバ1を実現することも可能である。また、サーバ1と管理者端末2が共通化されていてもよい。
<Configuration>
As shown in FIG. 1, the system according to the embodiment includes a server 1, an administrator terminal 2, and a user terminal 3. FIG. The server 1, the administrator terminal 2, and the user terminal 3 are communicably connected to each other via a network. The network may be a local network or may be connectable to an external network. In the example of FIG. 1, an example in which the server 1 is composed of one unit is described, but it is also possible to realize the server 1 using a plurality of server devices. Also, the server 1 and the administrator terminal 2 may be shared.
 <サーバ1>
 図2は、図1に記載のサーバ1のハードウェア構成を示す図である。なお、図示された構成は一例であり、これ以外の構成を有していてもよい。また、サーバ1は、例えばワークステーションやパーソナルコンピュータのような汎用コンピュータとしてもよいし、或いはクラウド・コンピューティングによって論理的に実現されてもよい。
<Server 1>
FIG. 2 is a diagram showing the hardware configuration of the server 1 shown in FIG. 1. As shown in FIG. Note that the illustrated configuration is an example, and other configurations may be employed. Also, the server 1 may be a general-purpose computer such as a workstation or a personal computer, or may be logically realized by cloud computing.
 サーバ1は、少なくとも、プロセッサ10、メモリ11、ストレージ12、送受信部13、入出力部14等を備え、これらはバス15を通じて相互に電気的に接続される。 The server 1 includes at least a processor 10 , a memory 11 , a storage 12 , a transmission/reception section 13 , an input/output section 14 and the like, which are electrically connected to each other through a bus 15 .
 プロセッサ10は、サーバ1全体の動作を制御し、各要素間におけるデータの送受信の制御、及びアプリケーションの実行及び認証処理に必要な情報処理等を行う演算装置である。例えばプロセッサ10はCPU(Central Processing Unit)およびGPU(Graphics Processing Unit)であり、ストレージ12に格納されメモリ11に展開された本システムのためのプログラム等を実行して各情報処理を実施する。なお、プロセッサ10の処理能力は、必要な情報処理を実行するために十分であればよいので、例えば、プロセッサ10はCPUのみで構成されていてもよいし、これに限るものでもない。 The processor 10 is an arithmetic device that controls the overall operation of the server 1, controls transmission and reception of data between elements, executes applications, and performs information processing necessary for authentication processing. For example, the processor 10 is a CPU (Central Processing Unit) and a GPU (Graphics Processing Unit), and executes programs for this system stored in the storage 12 and developed in the memory 11 to perform each information process. It should be noted that the processing capability of the processor 10 only needs to be sufficient for executing necessary information processing, so for example, the processor 10 may be composed only of a CPU, and is not limited to this.
 メモリ11は、DRAM(Dynamic Random Access Memory)等の揮発性記憶装置で構成される主記憶と、フラッシュメモリやHDD(Hard Disc Drive)等の不揮発性記憶装置で構成される補助記憶と、を含む。メモリ11は、プロセッサ10のワークエリア等として使用され、また、サーバ1の起動時に実行されるBIOS(Basic Input / Output System)、及び各種設定情報等を格納してもよい。 The memory 11 includes a main memory composed of a volatile memory device such as a DRAM (Dynamic Random Access Memory), and an auxiliary memory composed of a non-volatile memory device such as a flash memory or a HDD (Hard Disc Drive). . The memory 11 is used as a work area or the like for the processor 10, and may store a BIOS (Basic Input/Output System) executed when the server 1 is started, various setting information, and the like.
 ストレージ12は、アプリケーション・プログラム等の各種プログラムを格納する。各処理に用いられるデータを格納したデータベースがストレージ12に構築されていてもよい。 The storage 12 stores various programs such as application programs. A database storing data used for each process may be constructed in the storage 12 .
 送受信部13は、サーバ1をネットワークに接続する。 The transmission/reception unit 13 connects the server 1 to the network.
 入出力部14は、キーボード・マウス類等の情報入力機器、及びディスプレイ等の出力機器である。 The input/output unit 14 is an information input device such as a keyboard and mouse, and an output device such as a display.
 バス15は、上記各要素に共通に接続され、例えば、アドレス信号、データ信号及び各種制御信号を伝達する。 A bus 15 is commonly connected to the above elements and transmits, for example, address signals, data signals and various control signals.
<管理者端末2、ユーザ端末3>
 図3に示される管理者端末2、ユーザ端末3もまた、プロセッサ20、メモリ21、ストレージ22、送受信部23、入出力部24等を備え、これらはバス25を通じて相互に電気的に接続される。各要素の機能は、上述したサーバ1と同様に構成することが可能であることから、各要素の詳細な説明は省略する。管理者は、管理者端末2により、例えばサーバ1の設定変更やデータベースの運用管理などを行う。ユーザは、ユーザ端末3によりサーバ1にアクセスして、例えば、複合コンテンツデータを作成または閲覧することなどができる。
<Administrator Terminal 2, User Terminal 3>
The administrator terminal 2 and the user terminal 3 shown in FIG. 3 also include a processor 20, a memory 21, a storage 22, a transmission/reception section 23, an input/output section 24, etc. These are electrically connected to each other through a bus 25. . Since the function of each element can be configured in the same manner as the server 1 described above, detailed description of each element will be omitted. The administrator uses the administrator terminal 2 to, for example, change the settings of the server 1 and manage the operation of the database. A user can access the server 1 from the user terminal 3 to create or view composite content data, for example.
<サーバ1の機能>
 図4は、サーバ1に実装される機能を例示したブロック図である。本実施の形態においては、サーバ1は、通信部110、被識別情報解析部120、第2のデータ生成部130、複合コンテンツデータ生成部140、関連付け部150、記憶部160、分類器170、アニメーション推薦部180を備えている。複合コンテンツデータ生成部140はベースデータ生成部142、第2のデータ割り当て部144、素材コンテンツデータ割り当て部146を含む。また、記憶部160は、メモリ11やストレージ11等の記憶領域より構成されており、ベースデータ記憶部161、素材コンテンツデータ記憶部163、複合コンテンツデータ記憶部165、インターフェース情報記憶部167、アニメーションデータ記憶部169などの各種データベースを含む。アニメーション推薦部180は、スコア算出部182、基準枠設定部184を含む。なお、素材コンテンツデータ設定部190については、後述するが、例えばプロセッサ10により実行されている。
<Functions of server 1>
FIG. 4 is a block diagram illustrating functions implemented in the server 1. As shown in FIG. In this embodiment, the server 1 includes a communication unit 110, an identified information analysis unit 120, a second data generation unit 130, a composite content data generation unit 140, an association unit 150, a storage unit 160, a classifier 170, an animation A recommendation unit 180 is provided. Composite content data generator 140 includes base data generator 142 , second data allocation unit 144 , and material content data allocation unit 146 . The storage unit 160 includes storage areas such as the memory 11 and the storage 11, and includes a base data storage unit 161, material content data storage unit 163, composite content data storage unit 165, interface information storage unit 167, animation data Various databases such as the storage unit 169 are included. The animation recommendation section 180 includes a score calculation section 182 and a reference frame setting section 184 . The material content data setting unit 190 is executed by the processor 10, for example, although it will be described later.
 通信部110は、管理者端末2や、ユーザ端末3と通信を行う。通信部110は、ユーザ端末3から、例えば被識別情報を含む第1のデータを受け付ける受付部としても機能する。そして、第1のデータは、例えば、被識別情報を含む記事(例えば、プレスリリースや、ニュースなど)などのテキストデータ、被識別情報を含む画像データ(例えば、写真や、イラストなど)若しくは動画データ、被識別情報を含む音声データなどであってもよい。なお、ここでいうテキストデータは、サーバ1に送信された時点においてテキストデータであるものに限らず、例えば、サーバ1に送信された音声データを既知の音声認識技術により生成されたテキストデータであってもよい。また、第1のデータは、例えば記事などのテキストデータなどが、既存の抽出的要約若しくは生成的要約などの自動要約技術により要約されたもの(被識別情報を含む)であってもよく、その場合、ベースデータに含まれるカット数が減り、複合コンテンツデータ全体のデータ容量を小さくすることができ、内容も簡潔なものとなり得る。 The communication unit 110 communicates with the administrator terminal 2 and the user terminal 3. The communication unit 110 also functions as a reception unit that receives first data including information to be identified, for example, from the user terminal 3 . The first data is, for example, text data such as articles containing information to be identified (for example, press releases, news, etc.), image data containing information to be identified (for example, photographs, illustrations, etc.), or video data. , voice data including information to be identified, and the like. Note that the text data here is not limited to text data at the time of transmission to the server 1, but may be text data generated by a known voice recognition technique from voice data transmitted to the server 1, for example. may In addition, the first data may be text data such as articles, etc., summarized by existing automatic summarization technology such as extractive summary or generative summary (including information to be identified). In this case, the number of cuts included in the base data is reduced, the data volume of the entire composite content data can be reduced, and the content can be simplified.
 また、ここでいう音声データは、マイク等の入力装置により取得された音声データに限らず、動画データから抽出された音声データや、テキストデータから生成された音声データであってもよい。前者の場合、例えばラフスケッチなどの仮画像及び仮映像による動画といった仮動画から、ナレーションやセリフなどの音声データだけを抽出し、後述されるように当該音声データを基に素材コンテンツデータと共に複合コンテンツデータを生成するようにしてもよい。後者の場合、例えば、ストーリーのあるテキストデータから音声データを作成し、例えば童話であれば、読み上げられたストーリーと素材コンテンツデータによる紙芝居や動画を複合コンテンツデータとして生成するようにしてもよい。 Also, the audio data referred to here is not limited to audio data acquired by an input device such as a microphone, but may be audio data extracted from video data or audio data generated from text data. In the former case, only audio data such as narration and lines are extracted from temporary images such as rough sketches and temporary moving images such as temporary video, and composite content is extracted along with material content data based on the audio data as will be described later. Data may be generated. In the latter case, for example, voice data may be created from text data with a story, and in the case of fairy tales, for example, a picture-story show or moving image based on the read-out story and material content data may be generated as composite content data.
 第2のデータ生成部130は、例えば第1のデータを分割する必要がないと判定した場合(例えば、テキストデータが予め設定された文字数以下の短文であったりするなど)には、第2のデータ生成部130は、そのまま第1のデータを第2のデータとして生成する。一方で、例えば第1のデータを分割する必要があると判定した場合(例えば、予め設定された文字数よりも長文であったりするなど)には、第2のデータ生成部130は、第1のデータを分割し、それぞれ第1のデータの被識別情報の少なくとも一部を含む第2のデータとして生成する。この時、併せて第2データの分割数情報についても生成する。なお、第2のデータ生成部130による第1のデータ分割の方法は、既知の何れの技術を利用してもよく、例えば、第1のデータがテキスト化できるものであれば、予め設定されたベースデータの各カットの最大文字数や文節間の修飾関係の解析結果に基づき、文章として自然な区間が各カットに収まるように文を区切るようにしてもよい。 For example, when the second data generation unit 130 determines that it is not necessary to divide the first data (for example, the text data is a short sentence with a preset number of characters or less), the second data generation unit 130 The data generator 130 generates the first data as it is as the second data. On the other hand, for example, when it is determined that the first data needs to be divided (for example, the sentence is longer than the preset number of characters), the second data generation unit 130 divides the first data. The data is divided and generated as second data each including at least part of the information to be identified of the first data. At this time, division number information of the second data is also generated. Any known technique may be used for the method of dividing the first data by the second data generation unit 130. For example, if the first data can be converted into text, Based on the analysis results of the maximum number of characters in each cut of the base data and the modification relationship between clauses, sentences may be separated so that a natural section as a sentence fits into each cut.
 被識別情報解析部120は、上述の第2のデータを解析し、被識別情報を取得する。ここで、被識別情報は、被識別情報解析部120により解析可能であれば、どのような情報であってもよい。一つの態様としては、被識別情報は、言語モデルにより定義された単語形式であり得る。より具体的には、後述の単語ベクトルを伴う一以上の単語(例えば、「渋谷、新宿、六本木」や「渋谷、ランドマーク、若者」など)であってもよい。なお、当該単語には、言語モデルに応じて「ん」などの通常はそれ単体では利用されない単語も含み得る。また、上記単語形式の代わりに文全体を表すベクトルを伴う文書、または画像や動画から抽出された特徴ベクトルであってもよい。 The identified information analysis unit 120 analyzes the second data described above and acquires identified information. Here, the information to be identified may be any information as long as it can be analyzed by the information to be identified analysis unit 120 . In one aspect, the identified information may be in word form defined by a language model. More specifically, it may be one or more words (for example, "Shibuya, Shinjuku, Roppongi" or "Shibuya, Landmark, Youth") accompanied by a word vector, which will be described later. Note that the words may include words that are not usually used alone, such as "n", depending on the language model. Also, a feature vector extracted from a document, an image, or a moving image may be used instead of the above-described word format.
 複合コンテンツデータ生成部140は、上述の第2のデータ生成部130により生成された第2データの分割数情報に応じた数のカット(一以上のカット)を含むベースデータをベースデータ生成部142により生成し、ユーザ端末3から新たに入力された素材コンテンツデータおよび/または素材コンテンツデータ記憶部163に記憶された素材コンテンツデータと上述の第2のデータが各カットに割り当てられたベースデータを複合コンテンツデータとして生成するとともに複合コンテンツデータ記憶部165に記憶し、ユーザ端末3に複合コンテンツデータを表示する。なお、図5は、ベースデータを構成するカットの画面レイアウトの一例である。同図中第2のデータフィールド31に編集された第2のデータ(例えば、区切られたテキスト文章など)が挿入され、素材コンテンツデータフィールド32に選択された素材コンテンツデータが挿入される。ベースデータの各カットには、予め設定されている上述の最大文字数(テキストデータの場合)や、画面レイアウト、再生時間(動画の場合)が規定されていてもよい。また、複合コンテンツデータは、必ずしも複合コンテンツデータ記憶部165に保存される必要はなく、適当なタイミングで記憶されてもよい。また、第2のデータのみが割り当てられたベースデータを複合コンテンツデータの経過情報としてユーザ端末3に表示するようにしてもよい。 The composite content data generation unit 140 generates base data including the number of cuts (one or more cuts) according to the division number information of the second data generated by the second data generation unit 130 described above. and the material content data newly input from the user terminal 3 and/or the material content data stored in the material content data storage unit 163 and the base data in which the above-described second data is assigned to each cut are combined. The composite content data is generated as content data, stored in the composite content data storage unit 165 , and displayed on the user terminal 3 . It should be noted that FIG. 5 is an example of a screen layout of cuts that constitute the base data. Edited second data (for example, delimited text sentences) is inserted in a second data field 31 in the figure, and selected material content data is inserted in a material content data field 32 . For each cut of the base data, the preset maximum number of characters (in the case of text data), screen layout, and playback time (in the case of moving images) may be specified. Also, composite content data does not necessarily need to be stored in the composite content data storage unit 165, and may be stored at appropriate timing. Also, the base data to which only the second data is assigned may be displayed on the user terminal 3 as progress information of the composite content data.
 第2のデータ割り当て部144は、上述のベースデータ生成部142により生成された一以上のカットに、例えばシーン1、シーン2、シーン3やカット1、カット2、カット3といったように番号がふられており、この番号順に、第2のデータを順次割り当てていく。 The second data allocation unit 144 assigns numbers to the one or more cuts generated by the base data generation unit 142 described above, such as scene 1, scene 2, scene 3, or cut 1, cut 2, cut 3, for example. The second data are sequentially assigned in this numerical order.
 関連付け部150は、上述の第2のデータに含まれる被識別情報の少なくとも一部と、例えば、素材コンテンツデータから抽出される抽出情報(例えば、分類器が抽出したクラスラベルなど)と比較し、例えば、互いの類似度などを判定して、第2のデータに適した素材コンテンツデータ(例えば、類似度が高いものなど)と第2のデータとを互いに関連付けを行う。より具体的な例としては、例えば、第2のデータに含まれる被識別情報が「先生」を表し、抽出情報が「顔」である素材コンテンツデータA(例えば、女性の画像)と「山」である素材コンテンツデータB(例えば、富士山の画像)が用意されている場合、「先生」から得られる単語ベクトルと「顔」から得られる単語ベクトルの関連は、「先生」から得られる単語ベクトルと「山」から得られる単語ベクトルの関連よりも類似しているため、第2のデータは素材コンテンツデータAと関連付けられる。なお、素材コンテンツデータの抽出情報は、ユーザが予め抽出して素材コンテンツデータ記憶部163に記憶したものであってもよく、後述の分類器170により抽出されたものであってもよい。また、上記類似度の判定は、単語ベクトルを学習した学習済モデルを用意し、そのベクトルを利用してコサイン類似度やWord Mover’s Distanceなどの方法により単語の類似度を判定してもよい。 The association unit 150 compares at least part of the information to be identified included in the second data described above with, for example, extracted information extracted from the material content data (for example, class labels extracted by the classifier), For example, mutual similarity or the like is determined, and material content data suitable for the second data (for example, data having a high degree of similarity) and the second data are associated with each other. As a more specific example, for example, material content data A (for example, an image of a woman) whose identified information included in the second data represents "teacher" and extracted information is "face" and "mountain". is prepared (for example, an image of Mt. Fuji), the relationship between the word vector obtained from "teacher" and the word vector obtained from "face" is the word vector obtained from "teacher" and The second data is associated with the material content data A because it is more similar than the association of word vectors obtained from "mountain". The extraction information of the material content data may be extracted in advance by the user and stored in the material content data storage unit 163, or may be extracted by the classifier 170, which will be described later. In addition, the similarity determination may be performed by preparing a trained model that has learned word vectors, and using the vectors to determine the similarity of words by a method such as cosine similarity or Word Mover's Distance.
 素材コンテンツデータは、例えば、画像データや、動画データ、音データ(例えば、音楽データ、音声データ、効果音など)などであり得るが、これに限定されない。また、素材コンテンツデータは、ユーザまたは管理者が素材コンテンツデータ記憶部163に格納するものであってもよいし、ネットワーク上から、素材コンテンツデータを取得し、素材コンテンツデータ記憶部163に格納するものであってもよい。 Material content data can be, for example, image data, video data, sound data (eg, music data, voice data, sound effects, etc.), but is not limited to this. The material content data may be stored in the material content data storage unit 163 by the user or administrator, or may be acquired from the network and stored in the material content data storage unit 163. may be
 素材コンテンツデータ割り当て部146は、上述の関連付けに基づき、対応する第2のデータが割り当てられたカットに、適した素材コンテンツデータを割り当てる。 The material content data allocation unit 146 allocates suitable material content data to cuts to which the corresponding second data is allocated, based on the above-described association.
 インターフェース情報記憶部167は、管理者端末2若しくはユーザ端末3の表示部(ディスプレイ等)に表示するための各種制御情報を格納している。 The interface information storage unit 167 stores various control information to be displayed on the display unit (display, etc.) of the administrator terminal 2 or the user terminal 3.
 分類器170は、学習データを学習データ記憶部(不図示)から取得し、機械学習させることで、学習済モデルとして作成される。分類器170の作成は、定期的に行われる。分類器作成用の学習データは、ネットワークから収集したデータやユーザ保有のデータにクラスラベルをつけたものを利用してもよいし、クラスラベルのついたデータセットを調達して利用してもよい。そして、分類器170は、例えば、畳み込みニューラルネットワークを利用した学習済モデルであり、素材コンテンツデータを入力すると、1つまたは複数の抽出情報(例えば、クラスラベルなど)を抽出する。分類器170は、例えば、素材コンテンツデータに関連するオブジェクトを表すクラスラベル(例えば、魚介、焼肉、人物、家具)を抽出する。 The classifier 170 acquires learning data from a learning data storage unit (not shown) and performs machine learning to create a learned model. Creation of the classifier 170 occurs periodically. The learning data for creating a classifier may be data collected from the network or data owned by the user with class labels attached, or a data set with class labels may be procured and used. . The classifier 170 is, for example, a trained model using a convolutional neural network, and upon input of material content data, extracts one or a plurality of extracted information (eg, class labels, etc.). The classifier 170, for example, extracts class labels representing objects associated with the material content data (eg, seafood, grilled meat, people, furniture).
 図6は、複合コンテンツデータを作成する流れの一例を説明する図である。 FIG. 6 is a diagram explaining an example of the flow of creating composite content data.
 まず、サーバ1は、少なくとも被識別情報を含む第1のデータをユーザ端末3より通信部110を介して受け付ける(ステップS101)。本例においては、被識別情報は、例えば一以上の単語であり、第1のデータは、例えば一以上の単語を含む記事からなるテキストデータまたはそのテキストデータを要約したものであり得る。 First, the server 1 receives first data including at least identification information from the user terminal 3 via the communication unit 110 (step S101). In this example, the identified information is, for example, one or more words, and the first data may be, for example, text data consisting of an article containing one or more words or a summary of the text data.
 次に、サーバ1は、被識別情報解析部120により、第1のデータを解析して被識別情報を取得し、第2のデータ生成部130により、被識別情報の少なくとも一部を含む一以上の第2のデータ及び分割数情報を生成する(ステップS102)。 Next, the server 1 acquires identified information by analyzing the first data by the identified information analysis unit 120, and generates one or more data containing at least part of the identified information by the second data generation unit 130. second data and division number information are generated (step S102).
 次に、サーバ1は、複合コンテンツデータ生成部140により、上述の分割数情報に応じた数のカットを含むベースデータをベースデータ生成部142により生成する(ステップS103)。 Next, the server 1 causes the base data generation section 142 to generate the base data including the number of cuts according to the division number information by the composite content data generation section 140 (step S103).
 次に、サーバ1は、第2のデータ割り当て部により、第2のデータをカットに割り当てる(ステップS104)。なお、この状態のベースデータをユーザ端末3にて表示をするようにして、経過を確認可能にしてもよい。 Next, the server 1 allocates the second data to the cut by the second data allocation unit (step S104). The base data in this state may be displayed on the user terminal 3 so that the progress can be checked.
 次に、サーバ1は、第2のデータに含まれる被識別情報の少なくとも一部と、素材コンテンツデータから抽出された抽出情報に基づき、関連付け部150により、素材コンテンツデータ記憶部163の素材コンテンツデータと第2のデータとを互いに関連付けし(ステップS105)、素材コンテンツデータ割り当て部146によりその素材コンテンツデータをカットに割り当てる(ステップS106)。 Next, based on at least part of the information to be identified included in the second data and the extracted information extracted from the material content data, the server 1 causes the association unit 150 to extract the material content data in the material content data storage unit 163. and the second data (step S105), and the material content data allocation unit 146 allocates the material content data to the cut (step S106).
 そして、サーバ1は、第2のデータ及び素材コンテンツデータが割り当てられたベースデータを複合コンテンツデータとして生成するとともに複合コンテンツデータ記憶部165に記憶し、ユーザ端末3に複合コンテンツデータを表示する(ステップS107)。なお、複合コンテンツデータの表示は、図7に例示するように、複合コンテンツデータを構成する複数のカットを画面上に一覧表示することができる。各カットには、表示される素材コンテンツデータおよび第2データと共に各カットの再生時間(秒数)の情報も表示されてもよい。ユーザは、例えば、第2のデータフィールド31や対応するボタンをクリックすることで、その内容を修正することができ、素材コンテンツデータフィールド32や対応するボタンをクリックすることで素材コンテンツデータを差し替えることができる。さらに、他の素材コンテンツデータをユーザがユーザ端末から各シーンに追加することも可能である。 Then, the server 1 generates the base data to which the second data and the material content data are assigned as composite content data, stores the composite content data in the composite content data storage unit 165, and displays the composite content data on the user terminal 3 (step S107). As for the display of composite content data, as shown in FIG. 7, a list of a plurality of cuts forming the composite content data can be displayed on the screen. For each cut, along with the displayed material content data and second data, information on the playback time (in seconds) of each cut may also be displayed. The user can, for example, correct the content by clicking the second data field 31 or the corresponding button, and replace the material content data by clicking the material content data field 32 or the corresponding button. can be done. Furthermore, it is also possible for the user to add other material content data to each scene from the user terminal.
 なお、上述の複合コンテンツデータを作成する流れは一例であり、例えば、ベースデータを読み出すためのステップS102は、第2のデータまたは素材コンテンツデータの割り当てまでに読み出されていればいつ実行されていてもよい。また、例えば、第2のデータの割り当てのためのステップS104と、関連付けのためのステップS105と、素材コンテンツデータの割り当てのためのステップS106の順番も、互いに齟齬が生じなければ何れの順番で実行されてもよい。 It should be noted that the flow of creating composite content data described above is just an example, and for example, step S102 for reading the base data may be executed as long as it has been read before the assignment of the second data or material content data. may Also, for example, the order of step S104 for assigning the second data, step S105 for association, and step S106 for assigning material content data are executed in any order if there is no discrepancy with each other. may be
 また、これまで説明した被識別情報解析部120及び関連付け部150、分類器170を用いた素材コンテンツデータ設定部190は、複合コンテンツデータ作成システムの1つの設定機能であってもよく、素材コンテンツデータ設定部190による設定方法はこれに限らない。例えば、ベースデータは上述の例ではベースデータ生成部142により生成されているが、これに代えてベースデータ記憶部161から読み出すようにしてもよい。読み出されたベースデータは、例えば所定の数の空白カットを含むものであってもよいし、所定の素材コンテンツデータや書式情報などが各カットに設定済みのテンプレートデータ(例えば、音楽データや背景画像、フォント情報などが設定されている)であってもよい。さらに、従来の複合コンテンツデータ作成システムと同様に、ユーザ端末からユーザが各データフィールドの全てまたは一部に対して任意の素材コンテンツを設定可能にしてもよいし、例えば第2のデータフィールド31にユーザがユーザ端末により任意のテキストを入力し、これらのテキストから上述のように被識別情報を抽出して素材コンテンツを関連付けるといったように、ユーザ操作と組み合わせた設定方法であってもよい。 Further, the material content data setting unit 190 using the identified information analysis unit 120, the association unit 150, and the classifier 170 described so far may be one setting function of the composite content data creation system. The setting method by the setting unit 190 is not limited to this. For example, the base data is generated by the base data generation unit 142 in the above example, but it may be read from the base data storage unit 161 instead. The read-out base data may include, for example, a predetermined number of blank cuts, or template data in which predetermined material content data, format information, etc. have been set for each cut (for example, music data, background data, etc.). image, font information, etc.) may be used. Furthermore, as in the conventional composite content data creation system, the user may be able to set any material content to all or part of each data field from the user terminal. A setting method may be combined with a user operation, such as a user inputting arbitrary text using a user terminal, extracting information to be identified from these texts as described above, and associating material content.
(アニメーション推薦機能)
 図8~図12を参照しながら、アニメーション推薦部180による画像に対するアニメーションの推薦方法例について説明する。例えば、上述のステップ10*において実施される。
(Animation recommendation function)
An example of a method for recommending an animation for an image by the animation recommendation unit 180 will be described with reference to FIGS. 8 to 12. FIG. For example, as performed in step 10* above.
 図8は、アニメーション推薦の流れの一例を説明する図である。ここでいうアニメーションとは、例えば、ズームイン、ズームアウト、上下左右方向へ移動するスライド等の既知のアニメーションを含むものであり、例えばアニメーションデータ記憶部169などにアニメーション動作のためのプログラムデータが格納されていてもよい。 FIG. 8 is a diagram explaining an example of the animation recommendation flow. The term "animation" as used herein includes, for example, known animations such as zooming in, zooming out, and slides moving up, down, left, and right. may be
 図8の例示においては、スコア算出部182を用いて、各カットに設定された画像データに対して何れのアニメーション種が適切であるかスコアリングし、当該スコアに応じてアニメーションを推薦する。スコア算出部182は、アニメーション推薦モデルに基づき画像に対して上記スコアリングを実行する。アニメーション推薦モデルは、例えば、不特定多数の人に所定の画像を提示して、それに合うアニメーションを選択してもらい、当該画像に関する顕著性情報(詳細は後述)とアニメーション種のセットを教師データとして機械学習させることで生成してもよい。 In the example of FIG. 8, the score calculation unit 182 is used to score which animation type is appropriate for the image data set for each cut, and an animation is recommended according to the score. The score calculation unit 182 performs the above scoring on images based on the animation recommendation model. The animation recommendation model, for example, presents a predetermined image to an unspecified number of people, asks them to select an animation that matches it, and uses saliency information (details will be described later) about the image and a set of animation types as teacher data. It may be generated by machine learning.
 アニメーションについては、例えば図9に例示されるように、画像全体に対して基準枠を設け、例えば図示の基準枠の位置が始点または終点となるように基準枠を動作させることで各アニメーションとして動作する。基準枠の大きさは、例えば予め所定値で設定されていてもよいし、ユーザがユーザ端末より設定してもよい。 For animation, for example, as illustrated in FIG. 9, a reference frame is provided for the entire image, and each animation is operated by moving the reference frame so that the position of the reference frame shown in the drawing becomes the starting point or the ending point. do. The size of the reference frame may be set to a predetermined value in advance, or may be set by the user using the user terminal.
 基準枠の位置は、基準枠設定部184により、顕著性判定モデルに基づき、アニメーションで最も可視化したい所定の位置に設定される。顕著性判定モデルは、例えば図10の顕著性物体検出や図13の顕著性マップ検出などのような既知の学習方法により得られる顕著性に関する学習済みモデルである。これを用いることで、基準枠設定部184は、図10や図13に例示されるような顕著性情報に基づき、例えば顕著性の最も高い部分を多く含むように基準枠の位置を設定する。 The position of the reference frame is set by the reference frame setting unit 184 to a predetermined position that is most desired to be visualized in animation based on the saliency determination model. A saliency determination model is a trained model of saliency obtained by a known learning method such as saliency object detection in FIG. 10 or saliency map detection in FIG. By using this, the reference frame setting unit 184 sets the position of the reference frame based on the saliency information illustrated in FIGS. 10 and 13 so as to include many of the parts with the highest salience, for example.
 図10では、顕著性物体検出モデルを用いた例であり、例えばエンコーダデコーダモデルなどの既知の方法で実現可能である。図10では、顕著性物体として、大小それぞれの山々だけが検出されており、基準枠設定部184は、基準枠の大きさに対して、顕著性物体の占有割合が大きい位置(例えば、大きい山々だけを囲う位置)に基準枠を設定する。例えば、図11の動物画像に対して、顕著性物体検出モデルを用いた場合には、図12のように動物の形状が検出された結果が得られる。 FIG. 10 shows an example using a saliency object detection model, which can be implemented by a known method such as an encoder-decoder model. In FIG. 10, only large and small mountains are detected as saliency objects. Set the reference frame to a position that encloses only the For example, when the saliency object detection model is used for the animal image of FIG. 11, the result of detecting the shape of the animal is obtained as shown in FIG.
 また、図13では、顕著性マップ検出モデルを用いた例であり、例えば畳み込みニューラルネットワークを利用した学習済モデルなどの既知の方法で実現可能である。図13では、顕著性マップとして、各ピクセルの視覚的顕著性の強さを判別しており、例示として、黒い部分の濃さが視覚的顕著性の強さを表現している。基準枠設定部184は、基準枠の大きさに対して、視覚的顕著性の強さの占有割合が大きい位置(例えば、大きい山々だけを囲う位置)に基準枠を設定する。例えば、図11の動物画像に対して、顕著性マップ検出モデルを用いた場合には、図14のように動物の顔部分に視覚的顕著性が強く検出された結果が得られる。 Also, FIG. 13 shows an example using a saliency map detection model, which can be realized by a known method such as a trained model using a convolutional neural network. In FIG. 13, the strength of visual salience of each pixel is determined as a saliency map, and as an example, the density of the black portion expresses the strength of visual salience. The reference frame setting unit 184 sets the reference frame at a position where the strength of visual saliency occupies a large proportion of the size of the reference frame (for example, a position surrounding only large mountains). For example, when the saliency map detection model is used for the animal image shown in FIG. 11, a result is obtained in which visual salience is strongly detected in the animal's face portion as shown in FIG.
 なお、スコア算出部182は、上述の機械学習によるスコア算出に限らず、例えば、図10-14に示される顕著性情報に基づき、アニメーション中で顕著性の高いエリアが多く表示されるアニメーション種に対して高いスコアを算出するようにしてもよい。例えば、スコア算出部182は、各アニメーションを画像に対して実行して各々の動きに対してスコア算出を行い、例えば図15に示されるように、一点鎖線の基準枠から左にスライドし、点線の基準枠の位置でスライドを終了するような左スライドのアニメーションを推薦したりする。 Note that the score calculation unit 182 is not limited to the above-described score calculation by machine learning. For example, based on the saliency information shown in FIGS. You may make it calculate a high score with respect to. For example, the score calculation unit 182 executes each animation on the image and calculates the score for each movement. For example, as shown in FIG. For example, it recommends a left slide animation that ends the slide at the position of the frame of reference.
 このように、アニメーション推薦部180によって、画像に対して適切なアニメーションをユーザに推薦可能となる。 In this way, the animation recommendation unit 180 can recommend an appropriate animation for the image to the user.
 ところで、図10の顕著性物体検出を用いた場合には、顕著性の濃淡がないため、ユーザが意図しない部分が基準枠の位置となることもあり得る。図13の顕著性マップ検出を用いた場合においても、物体の全体像が不明であるために、ユーザが意図しない部分が基準枠の位置となったり、意図しない部分を含むアニメーションとなったりすることもあり得る。 By the way, when the saliency object detection in FIG. 10 is used, since there is no saliency gradation, the position of the reference frame may be a part that the user does not intend. Even when the saliency map detection of FIG. 13 is used, since the entire image of the object is unknown, the part unintended by the user may be the position of the reference frame, or the animation may include unintended parts. It is possible.
 そこで図16に示されるように、顕著性情報の取得のために、顕著性物体検出と顕著性マップ検出を組み合わせたハイブリッド顕著性マップ検出モデルを用いることで、視覚的に最も可視領域に収めたい物体の輪郭とその物体の中で最も重要な箇所の双方の情報を捉え、基準枠設定の精度を高めることができ、より適切なアニメーションを推薦することができる。 Therefore, as shown in FIG. 16, in order to acquire saliency information, we want to visually fit in the most visible region by using a hybrid saliency map detection model that combines saliency object detection and saliency map detection. By capturing information on both the outline of an object and the most important part of the object, it is possible to improve the accuracy of setting the reference frame and recommend a more appropriate animation.
 さらに、顕著性の検出の精度は画質の影響を受けることを鑑み、例えば既知の超解像度技術を組み合わせることで、先に画像の解像度を上げてから、顕著性の検出を行うことで、より顕著性情報の精度を高めることができる。 Furthermore, considering that the accuracy of saliency detection is affected by the image quality, for example, by combining known super-resolution techniques, the resolution of the image is first increased, and then saliency detection is performed to achieve a more salience detection. Accuracy of sex information can be improved.
 以上に説明した実施形態例の本システムによれば、編集用ソフト、サーバ、専門技術を持った編集者などを自前で揃えなくとも、簡単に複合コンテンツデータを作成することが可能となる。例えば、下記のような場面での活用が想定される。
 1)ECショップで販売している商品情報の動画化
 2)プレスリリース情報、CSR情報などを動画で配信
 3)利用方法・オペレーションフローなどのマニュアルを動画化
 4)動画広告として活用できるクリエイティブを制作
According to the present system of the embodiment described above, it is possible to easily create composite content data without preparing editing software, servers, editors with specialized skills, and the like. For example, it is expected to be used in the following situations.
1) Animating product information sold at EC shops 2) Distributing press release information, CSR information, etc. as videos 3) Animating manuals such as usage and operation flow 4) Creating creatives that can be used as video advertisements
 以上、本発明の好ましい実施形態例について説明したが、本発明の技術的範囲は上記実施形態の記載に限定されるものではない。上記実施形態例には様々な変更・改良を加えることが可能であり、そのような変更または改良を加えた形態のものも本発明の技術的範囲に含まれる。 Although the preferred embodiments of the present invention have been described above, the technical scope of the present invention is not limited to the description of the above embodiments. Various modifications and improvements can be added to the above-described embodiment examples, and forms with such modifications and improvements are also included in the technical scope of the present invention.
1 サーバ
2 管理者端末
3 ユーザ端末

 
1 Server 2 Administrator terminal 3 User terminal

Claims (9)

  1.  カットに対して、画像データを設定する素材コンテンツデータ設定部と、
     前記画像データに関する顕著性情報に基づき前記画像データに基準枠を設定する基準枠設定部と、
     前記基準枠を始点または終点として可視領域を動作するアニメーション種を推薦するアニメーション推薦部と、を備える、
     ことを特徴とするサーバ。
    a material content data setting unit for setting image data for cuts;
    a reference frame setting unit that sets a reference frame for the image data based on saliency information about the image data;
    an animation recommendation unit that recommends an animation type that operates a visible area with the reference frame as a start point or an end point;
    A server characterized by:
  2.  請求項1に記載のサーバであって、
     さらに、前記画像データに関する顕著性情報に基づきアニメーション種をスコアリングするスコア算出部を備え、
     前記アニメーション推薦部は、前記スコアリングに基づき、前記アニメーション種を推薦する、
     ことを特徴とするサーバ。
    A server according to claim 1,
    Further comprising a score calculation unit for scoring animation types based on saliency information about the image data,
    The animation recommendation unit recommends the animation type based on the scoring.
    A server characterized by:
  3.  請求項1または2のいずれかに記載のサーバであって、
     前記基準枠設定部は、前記画像データに関する顕著性情報に基づき前記基準枠を設定する、
     ことを特徴とするサーバ。
    The server according to any one of claims 1 or 2,
    The reference frame setting unit sets the reference frame based on saliency information about the image data.
    A server characterized by:
  4.  請求項2または3のいずれかに記載のサーバであって、
     前記顕著性情報は、顕著性物体検出及び顕著性マップ検出を用いたハイブリッド顕著性マップ検出により取得される、
     ことを特徴とするサーバ。
    The server according to any one of claims 2 or 3,
    the saliency information is obtained by hybrid saliency map detection using saliency object detection and saliency map detection;
    A server characterized by:
  5.  請求項2または3のいずれかに記載のサーバであって、
     前記顕著性情報は、顕著性マップ検出により取得される、
     ことを特徴とするサーバ。
    The server according to any one of claims 2 or 3,
    wherein the saliency information is obtained by saliency map detection;
    A server characterized by:
  6.  請求項2または3のいずれかに記載のサーバであって、
     前記顕著性情報は、顕著性物体検出により取得される、
     ことを特徴とするサーバ。
    The server according to any one of claims 2 or 3,
    wherein the saliency information is obtained by saliency object detection;
    A server characterized by:
  7.  カットに対して、画像データを設定する素材コンテンツデータ設定部と、
     前記画像データに基準枠を設定する基準枠設定部と、
     前記基準枠を始点または終点として可視領域を動作するアニメーション種を推薦するアニメーション推薦部と、を備える、
     ことを特徴とするアニメーション推薦システム。
    a material content data setting unit for setting image data for cuts;
    a reference frame setting unit that sets a reference frame for the image data;
    an animation recommendation unit that recommends an animation type that operates a visible area with the reference frame as a start point or an end point;
    An animation recommendation system characterized by:
  8.  素材コンテンツデータ設定部により、カットに対して、画像データを設定するステップと、
     基準枠設定部により、前記画像データに基準枠を設定するステップと、
     アニメーション推薦部により、前記基準枠を始点または終点として可視領域を動作するアニメーション種を推薦するステップと、を含む、
     ことを特徴とするアニメーション推薦方法。
    a step of setting image data for a cut by a material content data setting unit;
    setting a reference frame for the image data by a reference frame setting unit;
    an animation recommendation unit recommending an animation type that operates a visible region with the reference frame as a start point or an end point;
    An animation recommendation method characterized by:
  9.  アニメーション推薦方法をコンピュータに実行させるプログラムであって、
     前記アニメーション推薦方法は、
     素材コンテンツデータ設定部により、カットに対して、画像データを設定するステップと、
     基準枠設定部により、前記画像データに基準枠を設定するステップと、
     アニメーション推薦部により、前記基準枠を始点または終点として可視領域を動作するアニメーション種を推薦するステップと、を含む、
     ことを特徴とするプログラム。

     
    A program for causing a computer to execute an animation recommendation method,
    The animation recommendation method includes:
    a step of setting image data for a cut by a material content data setting unit;
    setting a reference frame for the image data by a reference frame setting unit;
    an animation recommendation unit recommending an animation type that operates a visible region with the reference frame as a start point or an end point;
    A program characterized by

PCT/JP2021/012945 2021-03-26 2021-03-26 Server, animation recommendation system, animation recommendation method, and program WO2022201515A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/012945 WO2022201515A1 (en) 2021-03-26 2021-03-26 Server, animation recommendation system, animation recommendation method, and program
JP2021548625A JP6979738B1 (en) 2021-03-26 2021-03-26 Servers and animation recommendation systems, animation recommendation methods, programs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/012945 WO2022201515A1 (en) 2021-03-26 2021-03-26 Server, animation recommendation system, animation recommendation method, and program

Publications (1)

Publication Number Publication Date
WO2022201515A1 true WO2022201515A1 (en) 2022-09-29

Family

ID=78870803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012945 WO2022201515A1 (en) 2021-03-26 2021-03-26 Server, animation recommendation system, animation recommendation method, and program

Country Status (2)

Country Link
JP (1) JP6979738B1 (en)
WO (1) WO2022201515A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002016792A (en) * 2000-05-22 2002-01-18 Eastman Kodak Co Method for generating at least part of photo image on photo medium
JP2006178575A (en) * 2004-12-21 2006-07-06 Ulead Systems Inc Media contents generation method and system
US20090263038A1 (en) * 2008-04-22 2009-10-22 Jeibo Luo Method for creating photo cutouts and collages
US20150117784A1 (en) * 2013-10-24 2015-04-30 Adobe Systems Incorporated Image foreground detection
JP2017069911A (en) * 2015-10-02 2017-04-06 株式会社Nttドコモ Imaging system, composition setting apparatus and composition setting program

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020021174A (en) * 2018-07-30 2020-02-06 キヤノン株式会社 Electronic device, control method thereof, and program thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002016792A (en) * 2000-05-22 2002-01-18 Eastman Kodak Co Method for generating at least part of photo image on photo medium
JP2006178575A (en) * 2004-12-21 2006-07-06 Ulead Systems Inc Media contents generation method and system
US20090263038A1 (en) * 2008-04-22 2009-10-22 Jeibo Luo Method for creating photo cutouts and collages
US20150117784A1 (en) * 2013-10-24 2015-04-30 Adobe Systems Incorporated Image foreground detection
JP2017069911A (en) * 2015-10-02 2017-04-06 株式会社Nttドコモ Imaging system, composition setting apparatus and composition setting program

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "AI automatically generates videos when materials are submitted", OPENS INC, 7 May 2020 (2020-05-07), XP055973833, Retrieved from the Internet <URL:https://creatorzine.jp/article/detail/927> [retrieved on 20221023] *
ANONYMOUS: "In-house A1 video editing cloud ''VIDEO BRAIN'' that supports remote work", OPEN8, 6 April 2020 (2020-04-06), XP055973832, Retrieved from the Internet <URL:https://open8.com/news/pressrelease/5324> [retrieved on 20221023] *
OPENS INC., WHAT DOES A1 EDITING ASSISTANCE DO?, 19 March 2020 (2020-03-19), Retrieved from the Internet <URL:https://videabrain.force.com/faq/s/article/200319-ver-4-7-0> *

Also Published As

Publication number Publication date
JPWO2022201515A1 (en) 2022-09-29
JP6979738B1 (en) 2021-12-15

Similar Documents

Publication Publication Date Title
CN110968736B (en) Video generation method and device, electronic equipment and storage medium
CN109803180B (en) Video preview generation method and device, computer equipment and storage medium
CN110134931B (en) Medium title generation method, medium title generation device, electronic equipment and readable medium
JP2020005309A (en) Moving image editing server and program
KR102111720B1 (en) Method for design recommending using cloud literary work analysis
WO2019245033A1 (en) Moving image editing server and program
JP6730760B2 (en) Server and program, video distribution system
JP6730757B2 (en) Server and program, video distribution system
KR20120099814A (en) Augmented reality contents service system and apparatus and method
CN112312189B (en) Video generation method and video generation system
EP2634690A1 (en) Method and apparatus for setting user interface
US10691871B2 (en) Devices, methods, and systems to convert standard-text to animated-text and multimedia
JP6603929B1 (en) Movie editing server and program
WO2022201515A1 (en) Server, animation recommendation system, animation recommendation method, and program
JP6903364B1 (en) Server and data allocation method
EP4099711A1 (en) Method and apparatus and storage medium for processing video and timing of subtitles
JP6713183B1 (en) Servers and programs
WO2022201236A1 (en) Server, system, image clipping method, and program
CN108833964A (en) A kind of real-time successive frame Information Embedding identifying system
WO2022201237A1 (en) Server, text field arrangement position method, and program
JP6710884B2 (en) Servers and programs
WO2022003798A1 (en) Server, composite content data creation system, composite content data creation method, and program
CN118351220A (en) Dynamic scene image generation method and device, wearable device and storage medium
CN117519466A (en) Control method of augmented reality device, computer device, and storage medium
CN118138854A (en) Video generation method, device, computer equipment and medium

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021548625

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21933120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21933120

Country of ref document: EP

Kind code of ref document: A1