WO2022201366A1 - Cellulose derivative - Google Patents

Cellulose derivative Download PDF

Info

Publication number
WO2022201366A1
WO2022201366A1 PCT/JP2021/012277 JP2021012277W WO2022201366A1 WO 2022201366 A1 WO2022201366 A1 WO 2022201366A1 JP 2021012277 W JP2021012277 W JP 2021012277W WO 2022201366 A1 WO2022201366 A1 WO 2022201366A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose derivative
cellulose
biomass
derived
carboxylic acid
Prior art date
Application number
PCT/JP2021/012277
Other languages
French (fr)
Japanese (ja)
Inventor
由紀子 松尾
寛樹 谷口
暁浩 樋口
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to PCT/JP2021/012277 priority Critical patent/WO2022201366A1/en
Publication of WO2022201366A1 publication Critical patent/WO2022201366A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/06Cellulose acetate, e.g. mono-acetate, di-acetate or tri-acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/08Preparation of cellulose esters of organic acids of monobasic organic acids with three or more carbon atoms, e.g. propionate or butyrate

Definitions

  • the present invention relates to cellulose derivatives.
  • the present invention relates to cellulose derivatives derived from 100% biomass resources.
  • Cellulose derivatives exhibit good thermoplasticity depending on the substituents introduced, so they can be applied to the production of molded products by melt molding, injection molding, and the like.
  • Cellulose derivatives such as cellulose acetate are known to be biodegradable and decomposed by activated sludge.
  • biodegradable molded articles have been desired in various technical fields.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2013-79395
  • Patent Document 2 Japanese Patent No. 4380704
  • Patent Document 3 Japanese Patent No. 5303237
  • plant-derived biomass resources examples include woody biomass and herbaceous biomass.
  • Cellulose obtained from wood, cotton, etc. can be said to be 100% derived from biomass resources.
  • cellulose esters are obtained by esterifying cellulose with various carboxylic acids, and conventionally, chemicals derived from petroleum resources are used for these carboxylic acids.
  • ASTM D6866 defines a method for measuring the radioactive carbon 14 C present in carbon derived from biomass resources and evaluating the degree of biomass of materials.
  • the degree of biomass of cellulose ester esterified with carboxylic acid derived from petroleum resources is about 60%, although it depends on the degree of substitution.
  • a cellulose derivative with a biomass content of 100% can be obtained by using carboxylic acid derived from biomass resources.
  • carboxylic acid derived from biomass resources Conventionly, it has been known that chemicals derived from biomass resources using fermentation methods are often contaminated with impurities derived from raw materials and fermenting bacteria, and that there are many variations in quality.
  • the purpose of the present disclosure is to provide a 100% biomass resource-derived cellulose derivative by utilizing biomass resource-derived chemicals that have been avoided in the past.
  • the hydroxyl groups of cellulose are esterified with carboxylic acid derived from biomass resources.
  • the carboxylic acid is a C1-C4 fatty acid.
  • this cellulose derivative has a biomass degree of 100% calculated according to ASTM D6866.
  • the cellulose derivative has a total degree of substitution with carboxylic acid of 1.8 or more.
  • the iron content of this cellulose derivative is preferably 0.7 ppm or more.
  • This cellulose derivative is a material derived from 100% biomass resources. Biomass resources are produced by, for example, plants fixing carbon dioxide in the atmosphere. Therefore, even if this cellulose derivative is incinerated after being used as a product, the amount of carbon dioxide generated does not increase as a whole, so it can contribute to the achievement of zero emissions.
  • X to Y indicating the range means “X or more and Y or less”. Also, unless otherwise noted, all test temperatures are room temperature (20°C ⁇ 5°C).
  • Cellulose derivative In the cellulose derivative of the present disclosure, some or all of the hydroxyl groups of cellulose are esterified with carboxylic acid derived from biomass resources. In other words, the cellulose derivative of the present disclosure has substituents derived from carboxylic acid obtained from biomass resources. This cellulose derivative does not have a substituent derived from a carboxylic acid obtained from petroleum resources.
  • biomass is defined as “renewable, biologically derived organic resources excluding fossil resources”.
  • Biomass resources are produced by plants that fix carbon dioxide in the atmosphere. Examples include resource crops such as sugar cane and corn, unused biomass such as rice straw, wheat straw, and rice husks, and wood generated from construction. , sawmill leftovers, and food waste.
  • the cellulose derivative of the present disclosure cellulose derived from plant biomass such as wood is esterified with carboxylic acid derived from biomass resources.
  • the catalyst, solvent, etc. used for the esterification are not introduced into the final cellulose derivative. Therefore, the cellulose derivative of the present disclosure is a 100% biomass resource-derived material that does not contain petroleum resource-derived raw materials.
  • the cellulose derivative of the present disclosure which is 100% derived from biomass resources, does not increase the total amount of carbon dioxide generated even if it is incinerated after being used as a product, so it can contribute to the achievement of zero emissions.
  • the degree of biomass is the ratio of the radiocarbon 14 C concentration measured according to ASTM D6866-20 to the 14 C concentration of a standard substance (standard modern carbon).
  • the 14 C concentration of petroleum resource-derived carbon is 0, and the 14 C concentration of the standard material is equivalent to the 14 C concentration of biomass resource-derived carbon. material content. That is, when the 14 C concentration of the measurement sample is the same as the 14 C concentration of standard modern carbon, the calculated biomass degree is 100%, meaning that this sample is 100% derived from biomass resources.
  • the cellulose derivative of the present disclosure has a biomass degree of 100% calculated according to ASTM D6866-20. By measuring the degree of biomass, it is possible to distinguish between the cellulose derivative of the present disclosure which is 100% biomass resource-derived and the cellulose derivative containing petroleum resource-derived raw materials.
  • the biomass degree of the cellulose derivative of the present disclosure can be measured by the following method.
  • the sampled measurement is burned to purify the generated carbon dioxide, which is then hydrogen-reduced with an iron catalyst to produce graphite (C).
  • the 14 C concentration ( 14 C/ 12 C) in this graphite is quantified by accelerator mass spectrometry (AMS).
  • AMS accelerator mass spectrometry
  • a 14 C-AMS dedicated device manufactured by NEC
  • the ratio of the obtained 14 C concentration of the measurement sample to the 14 C concentration of the standard sample (standard modern carbon) is calculated as the degree of biomass.
  • the carboxylic acid that esterifies the cellulose derivative of the present disclosure is not particularly limited as long as it is obtained from biomass resources, and may be a saturated carboxylic acid or an unsaturated carboxylic acid. From the viewpoint that the obtained cellulose derivative is excellent in biodegradability, the number of carbon atoms in the carboxylic acid is preferably 1 or more and 4 or less.
  • a preferred carboxylic acid is a fatty acid having 1 to 4 carbon atoms because of its low environmental impact.
  • the carboxylic acid may have 2 to 4 carbon atoms, 1 to 3 carbon atoms, or 2 to 3 carbon atoms.
  • the cellulose derivative of the present disclosure in which some or all of the hydroxyl groups of cellulose are esterified with carboxylic acid derived from biomass resources, has an acyl group as a substituent.
  • Preferred acyl groups are one or more selected from acetyl, propionyl and butyryl groups.
  • Cellulose derivatives of the present disclosure may have other substituents obtained from biomass resources.
  • the total degree of substitution of this cellulose derivative with carboxylic acid derived from biomass resources is not particularly limited, and is appropriately adjusted according to the application.
  • the total degree of substitution means the total degree of substitution by all acyl groups contained as substituents in the cellulose derivative of the present disclosure. From the viewpoint of facilitating melt molding, the total degree of substitution is preferably 1.8 or more, more preferably 1.85 or more, even more preferably 1.90 or more, still more preferably 2.0 or more. 1 or more is particularly preferred. From the viewpoint of obtaining high biodegradability, the total degree of substitution is preferably 2.8 or less, more preferably 2.75 or less, even more preferably 2.6 or less, even more preferably 2.5 or less. 4 or less is particularly preferred. Especially when biodegradability is important, the total degree of substitution is preferably 2.3 or less. In order to achieve both melt moldability and biodegradability, a cellulose derivative having a total degree of substitution of 1.9 or more and 2.6 or less is preferable.
  • the total degree of substitution of the cellulose derivative may be from 1.8 to 2.8, from 1.8 to 2.75, from 1.8 to 2.6, from 1.8 to 2.6. 5, may be from 1.8 to 2.4, may be from 1.8 to 2.3, may be from 1.85 to 2.8, may be from 1.85 to 2.75 may be from 1.85 to 2.6, may be from 1.85 to 2.5, may be from 1.85 to 2.4, may be from 1.85 to 2.3 well, may be from 1.9 to 2.8, may be from 1.9 to 2.75, may be from 1.9 to 2.6, may be from 1.9 to 2.5, 1.9 to 2.4, 1.9 to 2.3, 2.0 to 2.8, 2.0 to 2.75; may be from 0 to 2.6, may be from 2.0 to 2.5, may be from 2.0 to 2.4, may be from 2.0 to 2.3, may be from 2.1 to 2.8, 2.1 to 2.75, 2.1 to 2.6, 2.1 to 2.5, 2.1 to 2.5. 2.5.
  • the total degree of substitution of the cellulose derivative is preferably 2.6 or more, more preferably 2.7 or more, and particularly preferably 2.8 or more.
  • the cellulose derivative of the present disclosure may also be water-soluble, in which case the preferred total degree of substitution is 0.4-0.9.
  • the total degree of substitution of the cellulose derivative is the sum of the degrees of acyl substitution at the 2-, 3- and 6-positions of the glucose ring, and can be measured by the following method. For example, it can be measured by the NMR method according to the method of Tezuka (Carbonydr. Res. 273, 83 (1995)). That is, the free hydroxyl groups of the cellulose derivative are acylated with a carboxylic acid anhydride in pyridine.
  • the type of carboxylic acid anhydride used here should be selected according to the purpose of analysis. For example, when analyzing the butyryl substitution degree of cellulose butyrate, acetic anhydride is preferred.
  • acetic anhydride is good when analyzing the degree of butyryl substitution of cellulose acetate butyrate
  • butyric anhydride is good when analyzing the degree of acetyl substitution.
  • the obtained sample is dissolved in deuterated chloroform and the 13 C-NMR spectrum is measured.
  • the carbon signal of the acetyl group is in the region of 169 ppm to 171 ppm in the order of 2-, 3-, and 6-positions from the high magnetic field
  • the carbon signal of the butyryl group is , 171 ppm to 173 ppm in the order of 2nd, 3rd and 6th positions from the high magnetic field side.
  • the signal of the carbonyl carbon of the propionyl group is from 172 ppm.
  • the total degree of substitution at the 2-, 3- and 6-positions of the glucose ring of the sample cellulose derivative is 3.0, and the substituents are all limited substituents such as acetyl and butyryl groups. If this is known in advance, the NMR spectrum can be measured by directly dissolving the sample in deuterated chloroform, excluding the propionylation step. If the substituents are all acetyl and butyryl groups, the carbon signals of the acetyl groups are in the region from 169 ppm to 171 ppm in the order 2, 3, 6 from the high field, as in the case involving the step of propionylation.
  • the butyryl group carbon signals appear in the same order in the region from 171 ppm to 173 ppm, so from the abundance ratio of the acetyl group and butyryl group at the corresponding positions (in other words, the area ratio of each signal), the glucose in the cellulose derivative
  • the butyryl group carbon signals appear in the same order in the region from 171 ppm to 173 ppm, so from the abundance ratio of the acetyl group and butyryl group at the corresponding positions (in other words, the area ratio of each signal), the glucose in the cellulose derivative
  • Each degree of acetyl and butyryl substitution at the 2-, 3- and 6-positions of the ring can be determined.
  • the weight average molecular weight (Mw) of the cellulose derivative of the present disclosure is not particularly limited, and can be appropriately selected depending on the application.
  • the weight-average molecular weight of the cellulose derivative when applied to melt molding, is preferably 100,000 or more, more preferably 120,000 or more, from the viewpoint of obtaining molded articles having excellent strength.
  • the weight average molecular weight of the cellulose derivative is preferably 1,500,000 or less, more preferably 1,200,000 or less, from the viewpoint of obtaining appropriate fluidity when melted.
  • the weight average molecular weight of the cellulose derivative is preferably 1,000,000 or less, more preferably 800,000 or less, more preferably 500,000, from the viewpoint of obtaining high biodegradability. More preferred are:
  • the molecular weight distribution (molecular weight distribution Mw/Mn obtained by dividing the weight average molecular weight Mw by the number average molecular weight Mn) of the cellulose derivative of the present disclosure is preferably 1.0 to 5.0, more preferably 1.3 to 4.0. 0.5 to 3.0 are particularly preferred. When the molecular weight distribution is within this range, the melt fluidity is improved.
  • the weight average molecular weight Mw and the molecular weight distribution Mw/Mn can be measured by a high performance liquid chromatography system in which a gel filtration column is connected to a detector for detecting refractive index and light scattering.
  • a high performance liquid chromatography system for example, Shodex GPC SYSTEM-21H can be used.
  • a detector for example, a differential refractive index detector (RI) can be used.
  • the measurement conditions are as follows.
  • the cellulose derivative of the present disclosure may have an iron content of 0.7 ppm or more, and may be 1.0 ppm or more, with an upper limit of 5.0 ppm.
  • Carboxylic acids derived from biomass resources may contain various impurities mixed in raw materials or during manufacturing processes. Compared with the carboxylic acid derived from petroleum resources, the content of iron presumed to be mixed from the manufacturing equipment is particularly high. Iron is a compound that affects the esterification reaction described below. However, the present inventors have found that even a carboxylic acid derived from this biomass resource can yield a cellulose derivative with physical properties (processability, biodegradability, etc.) that are sufficiently industrially applicable.
  • the iron content in the cellulose derivative can be measured by inductively coupled plasma atomic emission spectrometry (ICP-AES) using an ICP emission spectrometer (Agilent 5110 manufactured by Agilent Technologies).
  • the measurement conditions are plasma output: 1200 W, plasma gas: 12 L/min, carrier gas: 0.7 L/min, auxiliary gas: 1.0 L/min, measurement wavelength: 238.204 nm. can.
  • the method for producing the cellulose derivative of the present disclosure is not particularly limited as long as carboxylic acid derived from biomass resources is used for esterification of hydroxyl groups of cellulose.
  • the cellulose derivative of the present disclosure can be obtained by reacting a raw material cellulose with a carboxylic acid obtained from a biomass resource in an amide solvent such as dimethylformamide in the presence of p-toluenesulfonyl chloride. According to this method, p-toluenesulfonyl chloride and amide solvent acting as a catalyst are not introduced into the cellulose derivative. Therefore, a cellulose derivative with a biomass degree of 100% can be obtained.
  • the method for obtaining carboxylic acid from biomass resources is not particularly limited, and conventionally known methods are used.
  • a method of producing carboxylic acid from sugars contained in woody biomass using microorganisms such as acetic acid bacteria is known. Specifically, it is a method of culturing acetic acid bacteria in a liquid medium containing saccharides extracted from biomass resources, and distilling and concentrating the obtained culture solution containing acetic acid.
  • a method of fixing carbon dioxide in the air with biomass such as algae and recovering carboxylic acid, which is an intracellular metabolite may be used.
  • bioacetic acid may be obtained by reacting carbon monoxide obtained by gasifying woody biomass with biomethanol.
  • Raw material cellulose used in the method for producing a cellulose derivative of the present disclosure includes wood pulp (softwood pulp, hardwood pulp); cotton linter; microcrystalline cellulose; regenerated cellulose such as rayon and cellophane; powdered cellulose; microfibrillated cellulose; A fiber or the like can be used. It is also possible to use bacterial cellulose synthesized using a cellulose-producing bacterium or an enzyme derived from the bacterium. You may use 2 or more types together.
  • the raw material cellulose can be wet- or dry-pulverized using a mixer, disc refiner, or the like.
  • the raw material cellulose may be pretreated.
  • a method of immersing the raw material cellulose in water and/or carboxylic acid is preferred.
  • carboxylic acid it is preferable to use carboxylic acid derived from biomass resources.
  • esterification step In the esterification step, raw material cellulose, p-toluenesulfonyl chloride, and carboxylic acid derived from biomass resources are added to an amide-based solvent and heated with stirring to introduce acyl groups into the hydroxyl groups of cellulose.
  • the total degree of substitution of the resulting cellulose derivative can be adjusted by adjusting the amount of carboxylic acid added, heating conditions, and the like.
  • the heating temperature is preferably 40 to 100°C, more preferably 50 to 80°C.
  • the heating time is preferably 2 to 20 hours, more preferably 2 to 10 hours, although it depends on the amount of treatment.
  • the cellulose of the present disclosure is obtained by esterifying the raw cellulose using an acid catalyst such as sulfuric acid with the carboxylic anhydride as an acylating agent. Derivatives may be obtained.
  • the cellulose derivative of the present disclosure may be obtained by further esterifying the cellulose derivative obtained by esterification with another carboxylic acid.
  • a cellulose derivative of the present disclosure having a desired degree of substitution may be obtained by de-esterifying a cellulose derivative obtained by esterification to adjust the degree of substitution.
  • Example 1 500 mL of ion-exchanged water was added to 10 g of wood pulp, and the mixture was immersed for 1 hour, followed by suction filtration to obtain a filter cake. After adding 500 mL of dimethylformamide (manufactured by Nacalai) to this filter cake and stirring, the procedure of collecting the filter cake by suction filtration was repeated a total of three times.
  • dimethylformamide manufactured by Nacalai
  • Example 1 After washing the resulting white solid three times with ion-exchanged water, it was dried by heating at 80° C. for 12 hours to obtain 11 g of the cellulose derivative of Example 1. A portion was sampled and subjected to 13 C-NMR spectrum measurement to confirm that it was cellulose acetate with a total degree of substitution of 2.6.
  • Example 2 10 g of the cellulose derivative of Example 1 was put into a separable flask (capacity 1 L) equipped with a three-one motor, a reflux condenser, a thermometer and a dropping funnel, and 300 mL of dimethylformamide and 6 g of p-toluenesulfonyl chloride were added. . While stirring at room temperature, 5 g of propionic acid (manufactured by Aldrich, derived from sheep) was added dropwise. After stirring at 70° C. for 4 hours, the mixture was cooled to room temperature. By adding the obtained reaction solution to 3 L of methanol, the reaction product was precipitated, and a white solid was separated by suction filtration.
  • propionic acid manufactured by Aldrich, derived from sheep
  • the resulting white solid was washed with ion-exchanged water three times and then dried by heating at 80° C. for 12 hours to obtain 11.3 g of the cellulose derivative of Example 2.
  • a portion was sampled and subjected to 13 C-NMR spectrometry to confirm that it was cellulose acetate propionate with a degree of acetyl substitution of 2.6 and a degree of propyl substitution of 0.3.
  • Example 3 11.5 g of the cellulose derivative of Example 3 was obtained in the same manner as in Example 2, except that 6 g of butyric acid (manufactured by Aldrich, derived from sugar cane) was used instead of propionic acid. A portion was sampled and subjected to 13 C-NMR spectroscopy to confirm that it was cellulose acetate butyrate with a degree of acetyl substitution of 2.6 and a degree of butyryl substitution of 0.2.
  • butyric acid manufactured by Aldrich, derived from sugar cane
  • Comparative Example 1 10.8 g of the cellulose derivative of Comparative Example 1 was added in the same manner as in Example 1, except that acetic acid derived from petroleum resources (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was used instead of acetic acid (manufactured by Aldrich, derived from potatoes). Obtained. A portion was sampled and subjected to 13 C-NMR spectrometry to confirm that it was cellulose acetate with an acetyl substitution degree of 2.6.
  • carbon monoxide was obtained by burning woody biomass. This carbon monoxide was reacted with the aforementioned biomethanol to obtain bioacetic acid by the Monsanto method. Acetic anhydride was obtained from the obtained bioacetic acid through a ketene furnace.
  • the cellulose derivative of Example 4 was obtained by reacting cellulose (wood pulp) with this acetic anhydride as an acetylating agent and the aforementioned bioacetic acid as a solvent in the presence of a sulfuric acid catalyst. Specifically, 100 parts by weight of raw material pulp (cotton linter pulp, ⁇ -cellulose content of 98% by weight) is pulverized with a mixer, then 500 parts by weight of bioacetic acid is sprinkled and mixed at 60° C. for 2 hours for pretreatment. performed. Thereafter, the raw material pulp after pretreatment was mixed with 250 parts by weight of acetic anhydride and 10 parts by weight of sulfuric acid, and then acetylated by holding at 70° C. for 12 minutes.
  • raw material pulp cotton linter pulp, ⁇ -cellulose content of 98% by weight
  • Weight average molecular weight Mw The weight average molecular weights of the cellulose derivatives of Examples 1-4 and Comparative Example 1 were measured by gel permeation chromatography (GPC) according to the method described above. The results obtained are shown in Table 1 below as Mw.
  • biomass degree The biomass degrees of the cellulose derivatives of Examples 1-4 and Comparative Example 1 were measured by radiocarbon concentration measurement (AMS measurement) according to the method described above. The percentage of 14 C in sample carbon relative to standard modern carbon is shown in Table 1 below as biomass degree (%). If it exceeds 100%, it is uniformly 100%.
  • the cellulose derivative according to the present disclosure can be applied to various fields by changing the type of substituent, the degree of substitution, the molecular weight, etc., depending on the application.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

In this cellulose derivative, some or all of the hydroxyl groups in the cellulose are esterified by a carboxylic acid derived from a biomass resource. The carboxylic acid is preferably a C1-4 fatty acid.

Description

セルロース誘導体Cellulose derivative
 本発明は、セルロース誘導体に関する。詳細には、本発明は、100%バイオマス資源由来のセルロース誘導体に関する。 The present invention relates to cellulose derivatives. In particular, the present invention relates to cellulose derivatives derived from 100% biomass resources.
 セルロース誘導体は、導入される置換基に応じて、良好な熱可塑性を示すことから、溶融成型、射出成型等による成形品の製造に適用されうる。また、セルロースアセテート等のセルロース誘導体は生分解性を有しており、活性汚泥により分解することが知られている。近年、地球環境への関心の高まりから、種々の技術分野において、生分解可能な成形品が要望されている。 Cellulose derivatives exhibit good thermoplasticity depending on the substituents introduced, so they can be applied to the production of molded products by melt molding, injection molding, and the like. Cellulose derivatives such as cellulose acetate are known to be biodegradable and decomposed by activated sludge. In recent years, due to growing interest in the global environment, biodegradable molded articles have been desired in various technical fields.
 近年、カーボンニュートラル、ゼロエミッション等環境問題への関心の高まりから、石油資源由来の材料に代えて、バイオマス資源由来の材料開発が求められている。バイオマス資源由来の材料として、従来、バイオエタノール、バイオディーゼル等の燃料が開発されており、さらに、バイオプラスチックへの関心が高まっている。 In recent years, due to the growing interest in environmental issues such as carbon neutrality and zero emissions, there is a demand for the development of materials derived from biomass resources instead of materials derived from petroleum resources. Fuels such as bioethanol and biodiesel have been developed as materials derived from biomass resources, and interest in bioplastics is increasing.
 例えば、特開2013-79395号公報(特許文献1)、特許第4380704号(特許文献2)及び特許第5303237号(特許文献3)には、バイオマス資源由来ポリエステルの製造方法が開示されている。この製造方法では、ジカルボン酸原料及びジオール原料の少なくとも一つの成分がバイオマス資源から誘導されたものであるとされている。 For example, Japanese Patent Application Laid-Open No. 2013-79395 (Patent Document 1), Japanese Patent No. 4380704 (Patent Document 2) and Japanese Patent No. 5303237 (Patent Document 3) disclose methods for producing biomass resource-derived polyesters. In this production method, at least one component of the dicarboxylic acid raw material and the diol raw material is said to be derived from biomass resources.
特開2013-79395号公報JP 2013-79395 A 特許第4380704号Patent No. 4380704 特許第5303237号Patent No. 5303237
 例えば、植物由来のバイオマス資源として、木質バイオマス、草本バイオマス等が挙げられる。木材、綿等から得られるセルロースは、100%バイオマス資源由来と言える。一方、セルロースエステルは、セルロースを種々のカルボン酸でエステル化して得られるが、従来、このカルボン酸には、石油資源由来の薬品が用いられる。ASTM D6866には、バイオマス資源由来炭素中に存在する放射性炭素14Cを測定して、材料のバイオマス度を評価する方法が規定されている。石油資源由来のカルボン酸でエステル化されたセルロースエステルのバイオマス度は、置換度にもよるが、約60%である。 Examples of plant-derived biomass resources include woody biomass and herbaceous biomass. Cellulose obtained from wood, cotton, etc. can be said to be 100% derived from biomass resources. On the other hand, cellulose esters are obtained by esterifying cellulose with various carboxylic acids, and conventionally, chemicals derived from petroleum resources are used for these carboxylic acids. ASTM D6866 defines a method for measuring the radioactive carbon 14 C present in carbon derived from biomass resources and evaluating the degree of biomass of materials. The degree of biomass of cellulose ester esterified with carboxylic acid derived from petroleum resources is about 60%, although it depends on the degree of substitution.
 例えば、バイオマス資源由来のカルボン酸の使用により、バイオマス度100%のセルロース誘導体は得られうる。しかし、従来、発酵法を利用してバイオマス資源から誘導して得られる薬品には、原料及び発酵菌に由来する不純物の混入や、品質のばらつき等が多いことが知られていた。特に、分解温度と溶融温度とが近接するセルロース誘導体においては、不純物による成形品への悪影響が懸念され、積極的な工業的利用は避けられていた。 For example, a cellulose derivative with a biomass content of 100% can be obtained by using carboxylic acid derived from biomass resources. However, conventionally, it has been known that chemicals derived from biomass resources using fermentation methods are often contaminated with impurities derived from raw materials and fermenting bacteria, and that there are many variations in quality. In particular, cellulose derivatives, whose decomposition temperature and melting temperature are close to each other, are feared to have adverse effects on molded products due to impurities, and their industrial use has been avoided.
 本開示の目的は、従来回避されていたバイオマス資源由来の薬品を利用して、100%バイオマス資源由来のセルロース誘導体を提供することにある。 The purpose of the present disclosure is to provide a 100% biomass resource-derived cellulose derivative by utilizing biomass resource-derived chemicals that have been avoided in the past.
 本開示のセルロース誘導体は、セルロースが有する水酸基の一部又は全部が、バイオマス資源由来のカルボン酸によりエステル化されている。好ましくは、このカルボン酸は、炭素数1~4の脂肪酸である。 In the cellulose derivative of the present disclosure, some or all of the hydroxyl groups of cellulose are esterified with carboxylic acid derived from biomass resources. Preferably, the carboxylic acid is a C1-C4 fatty acid.
 好ましくは、このセルロース誘導体は、ASTM D6866に準じて算出されるバイオマス度が100%である。 Preferably, this cellulose derivative has a biomass degree of 100% calculated according to ASTM D6866.
 好ましくは、このセルロース誘導体は、カルボン酸による総置換度が1.8以上である。 Preferably, the cellulose derivative has a total degree of substitution with carboxylic acid of 1.8 or more.
 好ましくは、このセルロース誘導体の鉄含有量は0.7ppm以上である。 The iron content of this cellulose derivative is preferably 0.7 ppm or more.
 このセルロース誘導体は、100%バイオマス資源由来の材料である。バイオマス資源は、例えば、植物等が大気中の二酸化炭素を固定かして生産されたものである。従って、このセルロース誘導体は、製品として利用された後焼却されたとしても、トータルとして二酸化炭素の発生量は増加しないので、ゼロエミッションの達成に貢献することができる。 This cellulose derivative is a material derived from 100% biomass resources. Biomass resources are produced by, for example, plants fixing carbon dioxide in the atmosphere. Therefore, even if this cellulose derivative is incinerated after being used as a product, the amount of carbon dioxide generated does not increase as a whole, so it can contribute to the achievement of zero emissions.
 以下、好ましい実施形態の一例を具体的に説明する。各実施形態における各構成及びそれらの組み合わせ等は、一例であって、本開示の主旨から逸脱しない範囲内で、適宜、構成の付加、省略、置換、及びその他の変更が可能である。本開示は、実施形態によって限定されることはなく、クレームの範囲によってのみ限定される。また、本明細書に開示された各々の態様は、本明細書に開示された他のいかなる特徴とも組み合わせることができる。 An example of a preferred embodiment will be specifically described below. Each configuration and combination thereof in each embodiment is an example, and addition, omission, replacement, and other modifications of configuration are possible as appropriate without departing from the gist of the present disclosure. This disclosure is not limited by the embodiments, but only by the scope of the claims. Also, each aspect disclosed in this specification may be combined with any other feature disclosed in this specification.
 なお、本願明細書において、範囲を示す「X~Y」は「X以上Y以下」の意味である。また、特に注釈のない限り、試験温度は全て室温(20℃±5℃)である。 In the specification of the present application, "X to Y" indicating the range means "X or more and Y or less". Also, unless otherwise noted, all test temperatures are room temperature (20°C ± 5°C).
 [セルロース誘導体]
 本開示のセルロース誘導体は、セルロースが有する水酸基の一部又は全部が、バイオマス資源由来のカルボン酸によりエステル化されたものである。換言すれば、本開示のセルロース誘導体は、バイオマス資源から得られたカルボン酸に由来する置換基を有している。このセルロース誘導体は、石油資源から得られたカルボン酸に由来する置換基を有していない。
[Cellulose derivative]
In the cellulose derivative of the present disclosure, some or all of the hydroxyl groups of cellulose are esterified with carboxylic acid derived from biomass resources. In other words, the cellulose derivative of the present disclosure has substituents derived from carboxylic acid obtained from biomass resources. This cellulose derivative does not have a substituent derived from a carboxylic acid obtained from petroleum resources.
 ここで、バイオマスとは、「再生可能な、生物由来の有機性資源で化石資源を除いたもの」と定義される。バイオマス資源は、植物等が大気中の二酸化炭素を固定かして生産されたものであり、例えば、サトウキビ、トウモロコシ等の資源作物、稲わら、麦わら、もみ殻等の未利用バイオマス、建設発生木材、製材工場残材、食品廃棄物等の廃棄物系バイオマスに分類される。 Here, biomass is defined as "renewable, biologically derived organic resources excluding fossil resources". Biomass resources are produced by plants that fix carbon dioxide in the atmosphere. Examples include resource crops such as sugar cane and corn, unused biomass such as rice straw, wheat straw, and rice husks, and wood generated from construction. , sawmill leftovers, and food waste.
 本開示のセルロース誘導体は、木材等の植物系バイオマス由来であるセルロースが、バイオマス資源由来のカルボン酸によりエステル化されている。エステル化に使用された触媒、溶媒等は、最終製品であるセルロース誘導体には導入されない。従って、本開示のセルロース誘導体は、石油資源由来の原料を含まない、100%バイオマス資源由来の材料である。100%バイオマス資源由来である本開示のセルロース誘導体は、製品として利用された後焼却されたとしても、トータルとして二酸化炭素の発生量は増加しないので、ゼロエミッションの達成に貢献することができる。 In the cellulose derivative of the present disclosure, cellulose derived from plant biomass such as wood is esterified with carboxylic acid derived from biomass resources. The catalyst, solvent, etc. used for the esterification are not introduced into the final cellulose derivative. Therefore, the cellulose derivative of the present disclosure is a 100% biomass resource-derived material that does not contain petroleum resource-derived raw materials. The cellulose derivative of the present disclosure, which is 100% derived from biomass resources, does not increase the total amount of carbon dioxide generated even if it is incinerated after being used as a product, so it can contribute to the achievement of zero emissions.
 [バイオマス度]
  バイオマス度とは、ASTM D6866-20に準拠して測定される放射性炭素14C濃度の、標準物質(標準現代炭素)の14C濃度に対する割合である。石油資源由来炭素では14C濃度が0であり、標準物質の14C濃度は、バイオマス資源由来炭素の14C濃度と同等であることから、算出されるバイオマス度は、試料に含まれるバイオマス資源由来材料の含有率である。即ち、測定試料の14C濃度が標準現代炭素の14C濃度と同じ場合、算出されるバイオマス度は100%であり、この試料は100%バイオマス資源由来であることを意味する。
[Biomass degree]
The degree of biomass is the ratio of the radiocarbon 14 C concentration measured according to ASTM D6866-20 to the 14 C concentration of a standard substance (standard modern carbon). The 14 C concentration of petroleum resource-derived carbon is 0, and the 14 C concentration of the standard material is equivalent to the 14 C concentration of biomass resource-derived carbon. material content. That is, when the 14 C concentration of the measurement sample is the same as the 14 C concentration of standard modern carbon, the calculated biomass degree is 100%, meaning that this sample is 100% derived from biomass resources.
 本開示のセルロース誘導体は、ASTM D6866-20に準じて算出されるバイオマス度が100%である。このバイオマス度の測定により、100%バイオマス資源由来の本開示のセルロース誘導体と、石油資源由来原料を含むセルロース誘導体とを判別することができる。 The cellulose derivative of the present disclosure has a biomass degree of 100% calculated according to ASTM D6866-20. By measuring the degree of biomass, it is possible to distinguish between the cellulose derivative of the present disclosure which is 100% biomass resource-derived and the cellulose derivative containing petroleum resource-derived raw materials.
 本開示のセルロース誘導体のバイオマス度は、具体的には、以下の方法で測定することができる。始めに、採取した測定を燃焼させ、発生する二酸化炭素を精製した後、鉄触媒により水素還元してグラファイト(C)を生成させる。次に、このグラファイト中の14C濃度(14C/12C)を加速器質量分析(AMS)により定量する。定量には、14C-AMS専用装置(NEC社製)を使用することができる。得られた測定試料の14C濃度の、標準試料(標準現代炭素)の14C濃度に対する割合をバイオマス度として算出する。 Specifically, the biomass degree of the cellulose derivative of the present disclosure can be measured by the following method. First, the sampled measurement is burned to purify the generated carbon dioxide, which is then hydrogen-reduced with an iron catalyst to produce graphite (C). Next, the 14 C concentration ( 14 C/ 12 C) in this graphite is quantified by accelerator mass spectrometry (AMS). For quantification, a 14 C-AMS dedicated device (manufactured by NEC) can be used. The ratio of the obtained 14 C concentration of the measurement sample to the 14 C concentration of the standard sample (standard modern carbon) is calculated as the degree of biomass.
 [カルボン酸]
 本開示のセルロース誘導体をエステル化するカルボン酸は、バイオマス資源から得られる限り特に限定されず、飽和カルボン酸であってもよく、不飽和カルボン酸であってもよい。得られるセルロース誘導体が生分解性に優れるとの観点から、カルボン酸の炭素数は1以上4以下が好ましい。環境への負荷が少ないことから、好ましいカルボン酸は、炭素数1~4の脂肪酸である。カルボン酸の炭素数は、2~4であってよく、1~3であってよく、2~3であってよい。
[carboxylic acid]
The carboxylic acid that esterifies the cellulose derivative of the present disclosure is not particularly limited as long as it is obtained from biomass resources, and may be a saturated carboxylic acid or an unsaturated carboxylic acid. From the viewpoint that the obtained cellulose derivative is excellent in biodegradability, the number of carbon atoms in the carboxylic acid is preferably 1 or more and 4 or less. A preferred carboxylic acid is a fatty acid having 1 to 4 carbon atoms because of its low environmental impact. The carboxylic acid may have 2 to 4 carbon atoms, 1 to 3 carbon atoms, or 2 to 3 carbon atoms.
 セルロースが有する水酸基の一部又は全部が、バイオマス資源由来のカルボン酸によりエステル化された本開示のセルロース誘導体は、置換基としてアシル基を有している。好ましいアシル基は、アセチル基、プロピオニル基、ブチリル基から選択される1種又は2種以上である。本開示のセルロース誘導体が、バイオマス資源から得られた他の置換基を有してもよい。 The cellulose derivative of the present disclosure, in which some or all of the hydroxyl groups of cellulose are esterified with carboxylic acid derived from biomass resources, has an acyl group as a substituent. Preferred acyl groups are one or more selected from acetyl, propionyl and butyryl groups. Cellulose derivatives of the present disclosure may have other substituents obtained from biomass resources.
 [総置換度]
 このセルロース誘導体の、バイオマス資源由来のカルボン酸による総置換度は特に限定されず、用途に応じて適宜調整される。本願明細書において、この総置換度は、本開示のセルロース誘導体に置換基として含まれる全アシル基による置換度の合計を意味する。溶融成型が容易であるとの観点から、好ましい総置換度は1.8以上であり、1.85以上がより好ましく、1.90以上がさらに好ましく、2.0以上がよりさらに好ましく、2.1以上が特に好ましい。高い生分解性が得られるとの観点から、総置換度は2.8以下が好ましく、2.75以下がより好ましく、2.6以下がさらに好ましく、2.5以下がよりさらに好ましく、2.4以下が特に好ましい。特に生分解性が重視される場合には、総置換度は2.3以下が好ましい。また、溶融成型性及び生分解性の両立のためには、総置換度が1.9以上2.6以下であるセルロース誘導体が好ましい。
[Total degree of substitution]
The total degree of substitution of this cellulose derivative with carboxylic acid derived from biomass resources is not particularly limited, and is appropriately adjusted according to the application. As used herein, the total degree of substitution means the total degree of substitution by all acyl groups contained as substituents in the cellulose derivative of the present disclosure. From the viewpoint of facilitating melt molding, the total degree of substitution is preferably 1.8 or more, more preferably 1.85 or more, even more preferably 1.90 or more, still more preferably 2.0 or more. 1 or more is particularly preferred. From the viewpoint of obtaining high biodegradability, the total degree of substitution is preferably 2.8 or less, more preferably 2.75 or less, even more preferably 2.6 or less, even more preferably 2.5 or less. 4 or less is particularly preferred. Especially when biodegradability is important, the total degree of substitution is preferably 2.3 or less. In order to achieve both melt moldability and biodegradability, a cellulose derivative having a total degree of substitution of 1.9 or more and 2.6 or less is preferable.
 セルロース誘導体の総置換度は、1.8~2.8であってよく、1.8~2.75であってよく、1.8~2.6であってよく、1.8~2.5であってよく、1.8~2.4であってよく、1.8~2.3であってよく、1.85~2.8であってよく、1.85~2.75であってよく、1.85~2.6であってよく、1.85~2.5であってよく、1.85~2.4であってよく、1.85~2.3であってよく、1.9~2.8であってよく、1.9~2.75であってよく、1.9~2.6であってよく、1.9~2.5であってよく、1.9~2.4であってよく、1.9~2.3であってよく、2.0~2.8であってよく、2.0~2.75であってよく、2.0~2.6であってよく、2.0~2.5であってよく、2.0~2.4であってよく、2.0~2.3であってよく、2.1~2.8であってよく、2.1~2.75であってよく、2.1~2.6であってよく、2.1~2.5であってよく、2.1~2.4であってよく、2.1~2.3であってよい。環境中での耐久性が要求され生分解性が好ましくない場合は、セルロース誘導体の総置換度は2.6以上が好ましく、2.7以上がより好ましく、2.8以上が特に好ましい。また、本開示のセルロース誘導体は水溶性であってもよく、この場合に好ましい総置換度は0.4~0.9である。 The total degree of substitution of the cellulose derivative may be from 1.8 to 2.8, from 1.8 to 2.75, from 1.8 to 2.6, from 1.8 to 2.6. 5, may be from 1.8 to 2.4, may be from 1.8 to 2.3, may be from 1.85 to 2.8, may be from 1.85 to 2.75 may be from 1.85 to 2.6, may be from 1.85 to 2.5, may be from 1.85 to 2.4, may be from 1.85 to 2.3 well, may be from 1.9 to 2.8, may be from 1.9 to 2.75, may be from 1.9 to 2.6, may be from 1.9 to 2.5, 1.9 to 2.4, 1.9 to 2.3, 2.0 to 2.8, 2.0 to 2.75; may be from 0 to 2.6, may be from 2.0 to 2.5, may be from 2.0 to 2.4, may be from 2.0 to 2.3, may be from 2.1 to 2.8, 2.1 to 2.75, 2.1 to 2.6, 2.1 to 2.5, 2.1 to 2.5. It may be 4, and it may be 2.1 to 2.3. When durability in the environment is required and biodegradability is not preferred, the total degree of substitution of the cellulose derivative is preferably 2.6 or more, more preferably 2.7 or more, and particularly preferably 2.8 or more. The cellulose derivative of the present disclosure may also be water-soluble, in which case the preferred total degree of substitution is 0.4-0.9.
 セルロース誘導体の総置換度は、グルコース環の2位、3位、6位の各アシル置換度の合計であり、以下の方法により測定することができる。例えば、手塚(Tezuka, Carbonydr. Res. 273, 83(1995))の方法に従いNMR法で測定できる。即ち、セルロース誘導体の遊離水酸基をピリジン中でカルボン酸無水物によりアシル化する。ここで使用するカルボン酸無水物の種類は分析目的に応じて選択すべきであり、例えば酪酸セルロースのブチリル置換度を分析する場合は、無水酢酸がよい。その他、例えば酢酸酪酸セルロースのブチリル置換度を分析する場合は無水酢酸が良く、アセチル置換度を分析する場合は無水酪酸がよい。得られた試料を重クロロホルムに溶解し、13C-NMRスペクトルを測定する。置換基がアセチル基又はブチリル基である場合を例に挙げれば、アセチル基の炭素シグナルは169ppmから171ppmの領域に高磁場から2位、3位、6位の順序で、ブチリル基の炭素シグナルは、171ppmから173ppmの領域に同様に高磁場側から2位、3位、6位の順序で現れる。他の例を挙げれば、プロピオニル基を有するセルロース誘導体、又は、プロピオニル基を有しないセルロース誘導体を無水プロピオン酸で処理してプロピオニル置換度を分析する場合、プロピオニル基のカルボニル炭素のシグナルは、172ppmから174ppmの領域に同じ順序で現れる。手塚の方法やそれに準じる方法により無水カルボン酸で処理したセルロース誘導体の総置換度は3.0なので、セルロース誘導体がもともと有するアシル基のカルボニル炭素シグナルと、無水カルボン酸処理で導入したアシル基のカルボニルシグナルの面積の総和を3.0と規格化し、それぞれ対応する位置でのアセチル基、ブチリル基及びプロピオニル基の存在比(言い換えれば、各シグナルの面積比)を求めれば、これをセルロース誘導体におけるグルコース環の2位、3位、6位の各アセチル、ブチリル又はプロピオニル置換度とできる。なお、言うまでもなく、この方法で分析できるアシル基を含む置換基は、分析目的の処理に用いる無水カルボン酸に対応しない置換基のみである。また、13C-NMRのほか、H-NMRで分析することもできる。 The total degree of substitution of the cellulose derivative is the sum of the degrees of acyl substitution at the 2-, 3- and 6-positions of the glucose ring, and can be measured by the following method. For example, it can be measured by the NMR method according to the method of Tezuka (Carbonydr. Res. 273, 83 (1995)). That is, the free hydroxyl groups of the cellulose derivative are acylated with a carboxylic acid anhydride in pyridine. The type of carboxylic acid anhydride used here should be selected according to the purpose of analysis. For example, when analyzing the butyryl substitution degree of cellulose butyrate, acetic anhydride is preferred. In addition, for example, acetic anhydride is good when analyzing the degree of butyryl substitution of cellulose acetate butyrate, and butyric anhydride is good when analyzing the degree of acetyl substitution. The obtained sample is dissolved in deuterated chloroform and the 13 C-NMR spectrum is measured. For example, when the substituent is an acetyl group or a butyryl group, the carbon signal of the acetyl group is in the region of 169 ppm to 171 ppm in the order of 2-, 3-, and 6-positions from the high magnetic field, and the carbon signal of the butyryl group is , 171 ppm to 173 ppm in the order of 2nd, 3rd and 6th positions from the high magnetic field side. As another example, when a cellulose derivative having a propionyl group or a cellulose derivative having no propionyl group is treated with propionic anhydride to analyze the degree of propionyl substitution, the signal of the carbonyl carbon of the propionyl group is from 172 ppm. They appear in the same order in the 174 ppm region. Since the total degree of substitution of the cellulose derivative treated with carboxylic anhydride by Tezuka's method or a similar method is 3.0, the carbonyl carbon signal of the acyl group originally possessed by the cellulose derivative and the carbonyl of the acyl group introduced by the carboxylic anhydride treatment The sum of the areas of the signals is normalized to 3.0, and the abundance ratio of the acetyl group, butyryl group and propionyl group at the corresponding positions (in other words, the area ratio of each signal) is obtained, which is the glucose in the cellulose derivative. It can be each acetyl, butyryl or propionyl degree of substitution at the 2-, 3- and 6-positions of the ring. Needless to say, substituents containing acyl groups that can be analyzed by this method are only substituents that do not correspond to the carboxylic anhydride used for the treatment for analytical purposes. In addition to 13 C-NMR, it can also be analyzed by 1 H-NMR.
 ただし、試料であるセルロース誘導体のグルコース環の2位、3位及び6位の総置換度が3.0であり、かつその置換基が全てアセチル基、ブチリル基等の限定的な置換基であることが予め把握される場合には、プロピオニル化の工程を除き、試料を直接重クロロホルムに溶解してNMRスペクトルを測定することもできる。置換基が全てアセチル基及びブチリル基であれば、プロピオニル化の工程を含む場合と同様に、アセチル基の炭素シグナルは169ppmから171ppmの領域に高磁場から2位、3位、6位の順序で、ブチリル基の炭素シグナルは、171ppmから173ppmの領域に同じ順序で現れるので、それぞれ対応する位置でのアセチル基及びブチリル基の存在比(言い換えれば、各シグナルの面積比)から、セルロース誘導体におけるグルコース環の2位、3位、6位の各アセチル置換度及びブチリル置換度を求めることができる。 However, the total degree of substitution at the 2-, 3- and 6-positions of the glucose ring of the sample cellulose derivative is 3.0, and the substituents are all limited substituents such as acetyl and butyryl groups. If this is known in advance, the NMR spectrum can be measured by directly dissolving the sample in deuterated chloroform, excluding the propionylation step. If the substituents are all acetyl and butyryl groups, the carbon signals of the acetyl groups are in the region from 169 ppm to 171 ppm in the order 2, 3, 6 from the high field, as in the case involving the step of propionylation. , the butyryl group carbon signals appear in the same order in the region from 171 ppm to 173 ppm, so from the abundance ratio of the acetyl group and butyryl group at the corresponding positions (in other words, the area ratio of each signal), the glucose in the cellulose derivative Each degree of acetyl and butyryl substitution at the 2-, 3- and 6-positions of the ring can be determined.
 [重量平均分子量及び分子量分布]
 本開示のセルロース誘導体の重量平均分子量(Mw)は特に限定されず、用途に応じて適宜選択できる。例えば、溶融成型に適用する場合、強度に優れた成形品が得られるとの観点から、セルロース誘導体の重量平均分子量は、100,000以上が好ましく、120,000以上がより好ましい。溶融時に適度な流動性が得られるとの観点から、セルロース誘導体の重量平均分子量は1,500,000以下が好ましく、1,200,000以下がより好ましい。生分解性が重視される場合は、高い生分解性が得られるとの観点から、セルロース誘導体の重量平均分子量は、1,000,000以下が好ましく、800,000以下がより好ましく、500,000以下がさらに好ましい。
[Weight average molecular weight and molecular weight distribution]
The weight average molecular weight (Mw) of the cellulose derivative of the present disclosure is not particularly limited, and can be appropriately selected depending on the application. For example, when applied to melt molding, the weight-average molecular weight of the cellulose derivative is preferably 100,000 or more, more preferably 120,000 or more, from the viewpoint of obtaining molded articles having excellent strength. The weight average molecular weight of the cellulose derivative is preferably 1,500,000 or less, more preferably 1,200,000 or less, from the viewpoint of obtaining appropriate fluidity when melted. When biodegradability is emphasized, the weight average molecular weight of the cellulose derivative is preferably 1,000,000 or less, more preferably 800,000 or less, more preferably 500,000, from the viewpoint of obtaining high biodegradability. More preferred are:
 本開示のセルロース誘導体の分子量分布(重量平均分子量Mwを数平均分子量Mnで除した分子量分布Mw/Mn)は1.0~5.0が好ましく、1.3~4.0がより好ましく、1.5~3.0が特に好ましい。分子量分布が当該範囲であることにより、溶融流動性が向上する。 The molecular weight distribution (molecular weight distribution Mw/Mn obtained by dividing the weight average molecular weight Mw by the number average molecular weight Mn) of the cellulose derivative of the present disclosure is preferably 1.0 to 5.0, more preferably 1.3 to 4.0. 0.5 to 3.0 are particularly preferred. When the molecular weight distribution is within this range, the melt fluidity is improved.
 重量平均分子量Mw及び分子量分布Mw/Mnは、ゲルろ過カラムに屈折率及び光散乱を検出する検出器を接続した高速液体クロマトグラフィーシステムにより測定することができる。高速液体クロマトグラフィーシステムとしては、例えば、Shodex GPC SYSTEM-21Hを用いることができる。検出器としては、例えば、示差屈折率検出器(RI)を用いることができる。測定条件は以下の通りである。
溶媒:ジクロロメタン
カラム:TSKgel GMHXL(7.8×300mm)二本
ガードカラム:TSKgel guardcolumn HXL-H
試料濃度:2000ppm
流量:0.8mL/min
試料注入量:100μL
標準試料:PMMA(分子量1850、7360、29960、79500、201800、509000、625500)
カラム温度:28℃
The weight average molecular weight Mw and the molecular weight distribution Mw/Mn can be measured by a high performance liquid chromatography system in which a gel filtration column is connected to a detector for detecting refractive index and light scattering. As a high performance liquid chromatography system, for example, Shodex GPC SYSTEM-21H can be used. As a detector, for example, a differential refractive index detector (RI) can be used. The measurement conditions are as follows.
Solvent: Dichloromethane Column: TSKgel GMHXL (7.8 x 300 mm) Double guard column: TSKgel guardcolumn HXL-H
Sample concentration: 2000 ppm
Flow rate: 0.8mL/min
Sample injection volume: 100 μL
Standard sample: PMMA (molecular weight 1850, 7360, 29960, 79500, 201800, 509000, 625500)
Column temperature: 28°C
 [鉄含有量]
 本開示のセルロース誘導体は、鉄含有量が0.7ppm以上であってよく、1.0ppm以上であってよく、上限値は5.0ppmである。バイオマス資源由来のカルボン酸は、原料又は製造工程中に混入する種々の不純物を含みうる。石油資源由来のカルボン酸と比較すると、特に、製造装置から混入したと推測される鉄の含有量が多い。鉄は、後述するエステル化反応に影響する化合物である。しかしながら、本発明者らは、このバイオマス資源由来のカルボン酸であっても、産業上十分に利用可能な物性(加工性、生分解性等)を備えたセルロース誘導体が得られることを見出した。
[Iron content]
The cellulose derivative of the present disclosure may have an iron content of 0.7 ppm or more, and may be 1.0 ppm or more, with an upper limit of 5.0 ppm. Carboxylic acids derived from biomass resources may contain various impurities mixed in raw materials or during manufacturing processes. Compared with the carboxylic acid derived from petroleum resources, the content of iron presumed to be mixed from the manufacturing equipment is particularly high. Iron is a compound that affects the esterification reaction described below. However, the present inventors have found that even a carboxylic acid derived from this biomass resource can yield a cellulose derivative with physical properties (processability, biodegradability, etc.) that are sufficiently industrially applicable.
 セルロース誘導体中の鉄含有量は、ICP発光分析装置(アジレント・テクノロジー製のAgilent5110)を用いた誘導結合プラズマ発光分光分析(ICP-AES)により測定することができる。測定条件は、プラズマ出力:1200W、プラズマガス:12L/min、キャリーガス:0.7L/min、補助ガス:1.0L/min、測定波長238.204nmであり、検量線法により定量することができる。 The iron content in the cellulose derivative can be measured by inductively coupled plasma atomic emission spectrometry (ICP-AES) using an ICP emission spectrometer (Agilent 5110 manufactured by Agilent Technologies). The measurement conditions are plasma output: 1200 W, plasma gas: 12 L/min, carrier gas: 0.7 L/min, auxiliary gas: 1.0 L/min, measurement wavelength: 238.204 nm. can.
 [セルロース誘導体の製造方法]
 本開示のセルロース誘導体の製造方法は、セルロースの水酸基のエステル化にバイオマス資源由来のカルボン酸を使用する限り、特に限定されない。例えば、p-トルエンスルホニルクロライドの存在下、ジメチルホルムアミド等のアミド系溶媒中で、原料セルロースに、バイオマス資源から得られたカルボン酸を作用させることにより、本開示のセルロース誘導体が得られうる。この方法によれば、触媒として作用するp-トルエンスルホニルクロライド及びアミド系溶媒は、セルロース誘導体中に導入されない。よって、バイオマス度100%のセルロース誘導体を得ることができる。
[Method for producing cellulose derivative]
The method for producing the cellulose derivative of the present disclosure is not particularly limited as long as carboxylic acid derived from biomass resources is used for esterification of hydroxyl groups of cellulose. For example, the cellulose derivative of the present disclosure can be obtained by reacting a raw material cellulose with a carboxylic acid obtained from a biomass resource in an amide solvent such as dimethylformamide in the presence of p-toluenesulfonyl chloride. According to this method, p-toluenesulfonyl chloride and amide solvent acting as a catalyst are not introduced into the cellulose derivative. Therefore, a cellulose derivative with a biomass degree of 100% can be obtained.
 (カルボン酸)
 バイオマス資源からカルボン酸を得る方法としては特に限定されず、従来既知の方法が用いられる。例えば、酢酸菌等の微生物を用いて、木質系バイオマスに含まれる糖類からカルボン酸を生産する方法が知られている。詳細には、バイオマス資源から抽出した糖類を含む液体培地中で酢酸菌を培養し、得られた酢酸を含む培養液を蒸留して濃縮する方法である。藻類等のバイオマスにより空気中の二酸化炭素を固定化し、細胞内代謝物であるカルボン酸を回収する方法が用いられてもよい。また、木質系バイオマスをガス化して得られる一酸化炭素と、バイオメタノールとの反応によりバイオ酢酸を得てもよい。
(carboxylic acid)
The method for obtaining carboxylic acid from biomass resources is not particularly limited, and conventionally known methods are used. For example, a method of producing carboxylic acid from sugars contained in woody biomass using microorganisms such as acetic acid bacteria is known. Specifically, it is a method of culturing acetic acid bacteria in a liquid medium containing saccharides extracted from biomass resources, and distilling and concentrating the obtained culture solution containing acetic acid. A method of fixing carbon dioxide in the air with biomass such as algae and recovering carboxylic acid, which is an intracellular metabolite, may be used. Alternatively, bioacetic acid may be obtained by reacting carbon monoxide obtained by gasifying woody biomass with biomethanol.
 (原料セルロース)
 本開示のセルロース誘導体の製造方法に用いる原料セルロースとしては、木材パルプ(針葉樹パルプ、広葉樹パルプ);綿花リンター;微結晶セルロース;レーヨン、セロハンなどの再生セルロース;粉末セルロース;ミクロフィブリル化セルロース;セルロースナノファイバー等が使用できる。セルロース産生菌又はその菌体由来の酵素を用いて合成されたバクテリアセルロースを使用することも可能である。2種以上を併用してもよい。
(raw material cellulose)
Raw material cellulose used in the method for producing a cellulose derivative of the present disclosure includes wood pulp (softwood pulp, hardwood pulp); cotton linter; microcrystalline cellulose; regenerated cellulose such as rayon and cellophane; powdered cellulose; microfibrillated cellulose; A fiber or the like can be used. It is also possible to use bacterial cellulose synthesized using a cellulose-producing bacterium or an enzyme derived from the bacterium. You may use 2 or more types together.
 必要に応じて、原料セルロースを、ミキサー、ディスクリファイナー等用いて、湿式又は乾式で粉砕することができる。反応性を向上させる目的で、原料セルロースを前処理してもよい。前処理としては、水及び/又はカルボン酸中に原料セルロースを浸漬する方法が好ましい。カルボン酸を用いる場合は、バイオマス資源由来のカルボン酸の使用が好ましい。 If necessary, the raw material cellulose can be wet- or dry-pulverized using a mixer, disc refiner, or the like. For the purpose of improving reactivity, the raw material cellulose may be pretreated. As the pretreatment, a method of immersing the raw material cellulose in water and/or carboxylic acid is preferred. When carboxylic acid is used, it is preferable to use carboxylic acid derived from biomass resources.
 (エステル化工程)
 エステル化工程では、原料セルロースと、p-トルエンスルホニルクロライドと、バイオマス資源由来のカルボン酸とをアミド系溶媒に投入し、撹拌下、加熱することにより、セルロースの水酸基にアシル基を導入する。カルボン酸の添加量、加熱条件等の調整により、得られるセルロース誘導体の総置換度を調整することができる。反応効率の観点から、加熱温度は40~100℃が好ましく、50~80℃がより好ましい。加熱時間は処理量にもよるが、2~20時間が好ましく、2~10時間がより好ましい。
(Esterification step)
In the esterification step, raw material cellulose, p-toluenesulfonyl chloride, and carboxylic acid derived from biomass resources are added to an amide-based solvent and heated with stirring to introduce acyl groups into the hydroxyl groups of cellulose. The total degree of substitution of the resulting cellulose derivative can be adjusted by adjusting the amount of carboxylic acid added, heating conditions, and the like. From the viewpoint of reaction efficiency, the heating temperature is preferably 40 to 100°C, more preferably 50 to 80°C. The heating time is preferably 2 to 20 hours, more preferably 2 to 10 hours, although it depends on the amount of treatment.
 (洗浄・乾燥工程)
 エステル化反応終了後、反応液をメタノールに添加し、沈殿物をろ別して得られる生成物を、水及び/又はメタノールで洗浄後、乾燥することにより本開示のセルロース誘導体が得られる。洗浄及び乾燥方法には、既知の方法が用いられる。洗浄にメタノールとしては、バイオマス資源から得られたバイオメタノールが好ましい。
(Washing/drying process)
After completion of the esterification reaction, the reaction solution is added to methanol, the precipitate is filtered off, the product obtained is washed with water and/or methanol, and then dried to obtain the cellulose derivative of the present disclosure. A known method is used for the washing and drying method. As methanol for washing, biomethanol obtained from biomass resources is preferred.
 (他の実施形態)
 バイオマス資源由来のカルボン酸を、既知の方法を用いて無水化した後、この無水カルボン酸をアシル化剤として、硫酸等の酸触媒を用いて原料セルロースをエステル化することにより、本開示のセルロース誘導体が得られてもよい。エステル化により得られたセルロース誘導体に、さらに他のカルボン酸でエステル化することにより、本開示のセルロース誘導体が得られてもよい。エステル化により得られたセルロース誘導体を脱エステル化して、置換度を調整することにより、所望の置換度を有する本開示のセルロース誘導体が得られてもよい。
(Other embodiments)
After dehydrating the carboxylic acid derived from biomass resources using a known method, the cellulose of the present disclosure is obtained by esterifying the raw cellulose using an acid catalyst such as sulfuric acid with the carboxylic anhydride as an acylating agent. Derivatives may be obtained. The cellulose derivative of the present disclosure may be obtained by further esterifying the cellulose derivative obtained by esterification with another carboxylic acid. A cellulose derivative of the present disclosure having a desired degree of substitution may be obtained by de-esterifying a cellulose derivative obtained by esterification to adjust the degree of substitution.
 以下、実施例によって本開示の効果が明らかにされるが、この実施例の記載に基づいて本開示が限定的に解釈されるべきではない。 Although the effects of the present disclosure will be clarified by examples below, the present disclosure should not be interpreted in a limited manner based on the description of the examples.
 [実施例1]
 木材パルプ10gにイオン交換水500mLを添加して、1時間浸漬した後、吸引ろ過してろ物を得た。このろ物に500mLのジメチルホルムアミド(ナカライ社製)を添加して撹拌した後、吸引ろ過してろ物を回収する手順を、計3回繰り返した。その後、得られたろ物の全量を、スリーワンモーター、還流冷却器、温度計及び滴下ロートを備えたセパラブルフラスコ(容量1L)に投入し、300mLのジメチルホルムアミド及び71gのp-トルエンスルホニルクロライド(ナカライ社製)を添加した。室温で攪拌しながら、22gの酢酸(アルドリッチ社製、ジャガイモ由来)を滴下した。続いて70℃で4時間撹拌した後、室温まで放冷した。得られた反応液を3Lのメタノールに添加することにより、反応物を沈殿させ、吸引ろ過により白色固体をろ別した。得られた白色固体をイオン交換水で3回洗浄した後、80℃で12時間加熱乾燥することにより、実施例1のセルロース誘導体11gを得た。一部を採取して13C-NMRスペクトル測定をおこなうことにより、総置換度2.6のセルロースアセテートであることを確認した。
[Example 1]
500 mL of ion-exchanged water was added to 10 g of wood pulp, and the mixture was immersed for 1 hour, followed by suction filtration to obtain a filter cake. After adding 500 mL of dimethylformamide (manufactured by Nacalai) to this filter cake and stirring, the procedure of collecting the filter cake by suction filtration was repeated a total of three times. After that, the entire amount of the obtained filter cake was put into a separable flask (capacity 1 L) equipped with a three-one motor, a reflux condenser, a thermometer and a dropping funnel, and 300 mL of dimethylformamide and 71 g of p-toluenesulfonyl chloride (Nacalai company) was added. While stirring at room temperature, 22 g of acetic acid (manufactured by Aldrich, from potatoes) was added dropwise. After stirring at 70° C. for 4 hours, the mixture was allowed to cool to room temperature. By adding the obtained reaction solution to 3 L of methanol, the reaction product was precipitated, and a white solid was separated by suction filtration. After washing the resulting white solid three times with ion-exchanged water, it was dried by heating at 80° C. for 12 hours to obtain 11 g of the cellulose derivative of Example 1. A portion was sampled and subjected to 13 C-NMR spectrum measurement to confirm that it was cellulose acetate with a total degree of substitution of 2.6.
 [実施例2]
 実施例1のセルロース誘導体10gをスリーワンモーター、還流冷却器、温度計及び滴下ロートを備えたセパラブルフラスコ(容量1L)に投入し、300mLのジメチルホルムアミド及び6gのp-トルエンスルホニルクロライド6gを添加した。室温で攪拌しながら、プロピオン酸(アルドリッチ社製、羊由来)5gを滴下した。その後70℃で4時間撹拌した後、室温まで冷却した。得られた反応液を3Lのメタノールに添加することにより、反応物を沈殿させ、吸引ろ過により白色固体をろ別した。得られた白色固体をイオン交換水で3回洗浄をした後、80℃で12時間加熱乾燥することにより、実施例2のセルロース誘導体11.3gを得た。一部を採取して13C-NMRスペクトル測定をおこなうことにより、アセチル置換度2.6及びプロピル置換度0.3のセルロースアセテートプロピオネートであることを確認した。
[Example 2]
10 g of the cellulose derivative of Example 1 was put into a separable flask (capacity 1 L) equipped with a three-one motor, a reflux condenser, a thermometer and a dropping funnel, and 300 mL of dimethylformamide and 6 g of p-toluenesulfonyl chloride were added. . While stirring at room temperature, 5 g of propionic acid (manufactured by Aldrich, derived from sheep) was added dropwise. After stirring at 70° C. for 4 hours, the mixture was cooled to room temperature. By adding the obtained reaction solution to 3 L of methanol, the reaction product was precipitated, and a white solid was separated by suction filtration. The resulting white solid was washed with ion-exchanged water three times and then dried by heating at 80° C. for 12 hours to obtain 11.3 g of the cellulose derivative of Example 2. A portion was sampled and subjected to 13 C-NMR spectrometry to confirm that it was cellulose acetate propionate with a degree of acetyl substitution of 2.6 and a degree of propyl substitution of 0.3.
 [実施例3]
 プロピオン酸に代えて、酪酸(アルドリッチ社製、サトウキビ由来)6gを使用した以外は実施例2と同様にして、実施例3のセルロース誘導体11.5gを得た。一部を採取して13C-NMRスペクトル測定をおこなうことにより、アセチル置換度2.6及びブチリル置換度0.2のセルロースアセテートブチレートであることを確認した。
[Example 3]
11.5 g of the cellulose derivative of Example 3 was obtained in the same manner as in Example 2, except that 6 g of butyric acid (manufactured by Aldrich, derived from sugar cane) was used instead of propionic acid. A portion was sampled and subjected to 13 C-NMR spectroscopy to confirm that it was cellulose acetate butyrate with a degree of acetyl substitution of 2.6 and a degree of butyryl substitution of 0.2.
 [比較例1]
 酢酸(アルドリッチ社製、ジャガイモ由来)に代えて、石油資源由来の酢酸(富士フィルム和光純薬社製)を使用した以外は実施例1と同様にして、比較例1のセルロース誘導体10.8gを得た。一部を採取して13C-NMRスペクトル測定をおこなうことにより、アセチル置換度2.6のセルロースアセテートであることを確認した。
[Comparative Example 1]
10.8 g of the cellulose derivative of Comparative Example 1 was added in the same manner as in Example 1, except that acetic acid derived from petroleum resources (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was used instead of acetic acid (manufactured by Aldrich, derived from potatoes). Obtained. A portion was sampled and subjected to 13 C-NMR spectrometry to confirm that it was cellulose acetate with an acetyl substitution degree of 2.6.
 [実施例4]
 始めに、木質系バイオマスを20mm以下に粉砕して、ガス化炉(循環流動層)に供給し、空気及び水蒸気を加えて昇温することによりガス化した。得られたガス中の灰等を高温集塵設備により分離し、含有タールを触媒により分解した後、ガス冷却設備にて200℃に冷却した。冷却過程で析出する成分を低温集塵設備で除塵した後、湿式ガス精製設備にて、酸及びアルカリ性の有害物質を除去したガスを、メタノール合成設備に導入した。メタノール合成設備にて、ガスを合成に必要な圧力まで昇圧した後、ガス中に残存している微量の硫黄分等を除去し、触媒反応によりバイオメタノールを合成した。
[Example 4]
First, woody biomass was pulverized to 20 mm or less, supplied to a gasification furnace (circulating fluidized bed), and gasified by adding air and steam to raise the temperature. Ash and the like in the obtained gas was separated by a high-temperature dust collector, and after the contained tar was decomposed by a catalyst, the gas was cooled to 200°C by a gas cooling device. After the components that precipitated out during the cooling process were removed with a low-temperature dust collection facility, the gas from which harmful acid and alkaline substances were removed with a wet gas purification facility was introduced into the methanol synthesis facility. After the gas was pressurized to the pressure required for synthesis at the methanol synthesis facility, trace amounts of sulfur and other substances remaining in the gas were removed, and biomethanol was synthesized through a catalytic reaction.
 別途、木質系バイオマスを燃焼させて一酸化炭素を得た。この一酸化炭素と前述のバイオメタノールとを反応させて、モンサント法によりバイオ酢酸を得た。得られたバイオ酢酸から、ケテン炉を通して無水酢酸を得た。 Separately, carbon monoxide was obtained by burning woody biomass. This carbon monoxide was reacted with the aforementioned biomethanol to obtain bioacetic acid by the Monsanto method. Acetic anhydride was obtained from the obtained bioacetic acid through a ketene furnace.
 この無水酢酸をアセチル化剤とし、前述のバイオ酢酸を溶媒として、セルロース(木材パルプ)を硫酸触媒下で反応させることにより、実施例4のセルロース誘導体を得た。詳細には、100重量部の原料パルプ(コットンリンターパルプ、α-セルロース含量98重量%)をミキサーで粉砕した後、500重量部のバイオ酢酸を散布し60℃で2時間混合することにより前処理をおこなった。その後、前処理後の原料パルプを、前述の無水酢酸250重量部と硫酸10重量部と混合した後、70℃で12分間保持してアセチル化をおこなった。次に、濃度20重量%の酢酸マグネシウム水溶液50重量部を添加して、密閉下、150℃で1時間保持した後、反応液を希酢酸中に投入することにより、沈殿物を得た。この沈殿物をイオン交換水で洗浄後、100℃で乾燥することにより、130gのセルロース誘導体を得た。一部を採取して13C-NMRスペクトル測定をおこなうことにより、アセチル置換度2.6のセルロースアセテートであることを確認した。 The cellulose derivative of Example 4 was obtained by reacting cellulose (wood pulp) with this acetic anhydride as an acetylating agent and the aforementioned bioacetic acid as a solvent in the presence of a sulfuric acid catalyst. Specifically, 100 parts by weight of raw material pulp (cotton linter pulp, α-cellulose content of 98% by weight) is pulverized with a mixer, then 500 parts by weight of bioacetic acid is sprinkled and mixed at 60° C. for 2 hours for pretreatment. performed. Thereafter, the raw material pulp after pretreatment was mixed with 250 parts by weight of acetic anhydride and 10 parts by weight of sulfuric acid, and then acetylated by holding at 70° C. for 12 minutes. Next, 50 parts by weight of an aqueous magnesium acetate solution having a concentration of 20% by weight was added, and the reaction solution was kept sealed at 150° C. for 1 hour, and then poured into dilute acetic acid to obtain a precipitate. After washing the precipitate with ion-exchanged water, it was dried at 100° C. to obtain 130 g of a cellulose derivative. A portion was sampled and subjected to 13 C-NMR spectrometry to confirm that it was cellulose acetate with an acetyl substitution degree of 2.6.
 <総置換度>
 実施例1-4及び比較例1のセルロース誘導体の総置換度を、前述した方法に従って、重クロロホルム中で13C-NMRスペクトルを測定することにより定量した。得られた結果が下表1に示されている。
<Total degree of substitution>
The total degree of substitution of the cellulose derivatives of Examples 1-4 and Comparative Example 1 was quantified by measuring 13 C-NMR spectra in deuterated chloroform according to the method described above. The results obtained are shown in Table 1 below.
 [重量平均分子量Mw]
 実施例1-4及び比較例1のセルロース誘導体の重量平均分子量を、前述した方法に従って、ゲル浸透クロマトグラフィー(GPC)により測定した。得られた結果がMwとして下表1に示されている。
[Weight average molecular weight Mw]
The weight average molecular weights of the cellulose derivatives of Examples 1-4 and Comparative Example 1 were measured by gel permeation chromatography (GPC) according to the method described above. The results obtained are shown in Table 1 below as Mw.
 [鉄含有量]
 実施例1-4及び比較例1のセルロース誘導体の鉄含有量を、前述した方法に従って、誘導結合プラズマ発光分光分析(ICP-AES)により定量した。得られた結果がFe(ppm)として下表1に示されている。
[Iron content]
The iron content of the cellulose derivatives of Examples 1-4 and Comparative Example 1 was quantified by inductively coupled plasma atomic emission spectrometry (ICP-AES) according to the method described above. The results obtained are shown in Table 1 below as Fe (ppm).
 [バイオマス度]
 実施例1-4及び比較例1のセルロース誘導体のバイオマス度を、前述した方法に従って、放射性炭素濃度測定(AMS測定)により測定した。標準現代炭素に対する試料炭素の14Cの割合がバイオマス度(%)として下表1に示されている。100%を超える場合は、一律100%としている。
[Biomass degree]
The biomass degrees of the cellulose derivatives of Examples 1-4 and Comparative Example 1 were measured by radiocarbon concentration measurement (AMS measurement) according to the method described above. The percentage of 14 C in sample carbon relative to standard modern carbon is shown in Table 1 below as biomass degree (%). If it exceeds 100%, it is uniformly 100%.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、実施例のセルロース誘導体のバイオマス度は全て100%であり、100%バイオマス資源由来の材料であることが確認できた。この評価結果から、本発明の優位性は明らかである。 As shown in Table 1, the biomass degree of all the cellulose derivatives of Examples was 100%, confirming that they are 100% biomass resource-derived materials. From this evaluation result, the superiority of the present invention is clear.
 本開示に係るセルロース誘導体は、用途に応じて、置換基の種類、置換度、分子量等を変更することにより、種々の分野に適用されうる。 The cellulose derivative according to the present disclosure can be applied to various fields by changing the type of substituent, the degree of substitution, the molecular weight, etc., depending on the application.

Claims (5)

  1.  セルロースが有する水酸基の一部又は全部が、バイオマス資源由来のカルボン酸によりエステル化されている、セルロース誘導体。 A cellulose derivative in which some or all of the hydroxyl groups of cellulose are esterified with carboxylic acid derived from biomass resources.
  2.  上記カルボン酸が炭素数1~4の脂肪酸である、請求項1に記載のセルロース誘導体。 The cellulose derivative according to claim 1, wherein the carboxylic acid is a fatty acid having 1 to 4 carbon atoms.
  3.  ASTM D6866-20に準じて算出されるバイオマス度が100%である、請求項1又は2に記載のセルロース誘導体。 The cellulose derivative according to claim 1 or 2, which has a biomass degree of 100% calculated according to ASTM D6866-20.
  4.  上記カルボン酸による総置換度が1.8以上である、請求項1から3のいずれかに記載のセルロース誘導体。 The cellulose derivative according to any one of claims 1 to 3, wherein the total degree of substitution with the carboxylic acid is 1.8 or more.
  5.  鉄含有量が0.7ppm以上である、請求項1から4のいずれかに記載のセルロース誘導体。 The cellulose derivative according to any one of claims 1 to 4, which has an iron content of 0.7 ppm or more.
PCT/JP2021/012277 2021-03-24 2021-03-24 Cellulose derivative WO2022201366A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/012277 WO2022201366A1 (en) 2021-03-24 2021-03-24 Cellulose derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/012277 WO2022201366A1 (en) 2021-03-24 2021-03-24 Cellulose derivative

Publications (1)

Publication Number Publication Date
WO2022201366A1 true WO2022201366A1 (en) 2022-09-29

Family

ID=83396602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012277 WO2022201366A1 (en) 2021-03-24 2021-03-24 Cellulose derivative

Country Status (1)

Country Link
WO (1) WO2022201366A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138141A (en) * 2005-10-21 2007-06-07 Fujifilm Corp Method for producing cellulose acylate, cellulose acylate film, and polarizer, retardation film, optical film and liquid crystal display device using the film
JP2007169589A (en) * 2005-11-22 2007-07-05 Fujifilm Corp Cellulose acylate, cellulose acylate film and method for producing them, polarizing plate, optical compensation film, antireflection film, and liquid crystal display
JP2008007746A (en) * 2006-05-30 2008-01-17 Fujifilm Corp Thermoplastic resin composition, thermoplastic resin film and method for producing the same, polarizing plate, optical compensation film, anti-reflective film, and liquid crystal display device
JP2009029796A (en) * 2007-07-04 2009-02-12 Hitoshi Murakami Method and system for producing polysaccharide-derived compound

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138141A (en) * 2005-10-21 2007-06-07 Fujifilm Corp Method for producing cellulose acylate, cellulose acylate film, and polarizer, retardation film, optical film and liquid crystal display device using the film
JP2007169589A (en) * 2005-11-22 2007-07-05 Fujifilm Corp Cellulose acylate, cellulose acylate film and method for producing them, polarizing plate, optical compensation film, antireflection film, and liquid crystal display
JP2008007746A (en) * 2006-05-30 2008-01-17 Fujifilm Corp Thermoplastic resin composition, thermoplastic resin film and method for producing the same, polarizing plate, optical compensation film, anti-reflective film, and liquid crystal display device
JP2009029796A (en) * 2007-07-04 2009-02-12 Hitoshi Murakami Method and system for producing polysaccharide-derived compound

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Survey report on trends in the end products of industry using biomass as raw material", REPORT, JAPAN ASSOCIATION FOR CHEMICAL INNOVATION (JACI), JP, JP, pages 1 - 70, XP009540156, Retrieved from the Internet <URL:http://www.jaci.or.jp/public/page_05/2014_03.pdf> [retrieved on 20221027] *

Similar Documents

Publication Publication Date Title
Liu et al. Preparation of sugarcane bagasse cellulosic phthalate using an ionic liquid as reaction medium
Candido et al. Synthesis of cellulose acetate and carboxymethylcellulose from sugarcane straw
Fundador et al. Acetylation and characterization of xylan from hardwood kraft pulp
Adel et al. Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part I. Acid catalyzed hydrolysis
Liu et al. Chemical modification of ultrasound-pretreated sugarcane bagasse with maleic anhydride
Ramírez et al. Surface esterification of cellulose nanofibers by a simple organocatalytic methodology
Steinbruch et al. Hydrothermal processing of a green seaweed Ulva sp. for the production of monosaccharides, polyhydroxyalkanoates, and hydrochar
JP6799259B2 (en) Method for producing polysaccharide derivative and lignin derivative
Serrano et al. Miscanthus sinensis fractionation by different reagents
JP2018519395A (en) Preparation of poly α-1,3-glucan ester using cyclic organic anhydride
JP2017193667A (en) β-1,3-GLUCAN DERIVATIVE, METHOD FOR PRODUCING THE SAME, AND MOLDED BODY
Labafzadeh et al. Reactive dissolution of cellulose and pulp through acylation in pyridine
Shibakami et al. Synthesis and thermal properties of paramylon mixed esters and optical, mechanical, and crystal properties of their hot-pressed films
Sun et al. Oleoylation of sugarcane bagasse hemicelluloses using N‐bromosuccinimide as a catalyst
Kumari et al. Polyhydroxybutyrate production by Chlorella sorokiniana SVMIICT8 under Nutrient-deprived mixotrophy
JP2014098095A (en) β-1,3-GLUCAN DERIVATIVE AND MANUFACTURING METHOD OF β-1,3-GLUCAN DERIVATIVE
Ding et al. Effects of process water recirculation on yields and quality of hydrochar from hydrothermal carbonization process of rice husk
CN101143903A (en) Process for preparing cellulose long-chain fatty acid ester
Jebrane et al. A new process for the esterification of wood by reaction with vinyl esters
WO2022201366A1 (en) Cellulose derivative
Szabó et al. Controlled acetylation of kraft lignin for tailoring polyacrylonitrile-kraft lignin interactions towards the production of quality carbon nanofibers
Suzuki et al. Green conversion of total lignocellulosic components of sugarcane bagasse to thermoplastics through transesterification using ionic liquid
CN117209614A (en) Method for realizing surface esterification of cellulose in aqueous solution
Lee et al. 1-Butyl-3-methylimidazolium chloride pretreatment on Malaysia lignocellulosic wastes
RU2451690C1 (en) Peat esterification method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21932976

Country of ref document: EP

Kind code of ref document: A1