WO2022199584A1 - 全景视频压缩方法、装置、计算机设备和存储介质 - Google Patents

全景视频压缩方法、装置、计算机设备和存储介质 Download PDF

Info

Publication number
WO2022199584A1
WO2022199584A1 PCT/CN2022/082310 CN2022082310W WO2022199584A1 WO 2022199584 A1 WO2022199584 A1 WO 2022199584A1 CN 2022082310 W CN2022082310 W CN 2022082310W WO 2022199584 A1 WO2022199584 A1 WO 2022199584A1
Authority
WO
WIPO (PCT)
Prior art keywords
panoramic image
compressed
mapping relationship
panoramic
image
Prior art date
Application number
PCT/CN2022/082310
Other languages
English (en)
French (fr)
Inventor
苏坦
Original Assignee
影石创新科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 影石创新科技股份有限公司 filed Critical 影石创新科技股份有限公司
Publication of WO2022199584A1 publication Critical patent/WO2022199584A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/42Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformation in the plane of the image
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/172Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a picture, frame or field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/85Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/85Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression
    • H04N19/88Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression involving rearrangement of data among different coding units, e.g. shuffling, interleaving, scrambling or permutation of pixel data or permutation of transform coefficient data among different blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/234Processing of video elementary streams, e.g. splicing of video streams, manipulating MPEG-4 scene graphs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • the present application relates to the technical field of panoramic video compression, and in particular, to a panoramic video compression method, apparatus, computer equipment and storage medium.
  • panoramic video technology With the development of panoramic video technology, the application of panoramic video is becoming more and more extensive, such as: live broadcast, remote conference, etc.
  • panoramic video For scene presentation, it is usually necessary to project the panoramic spherical video into a flat video, and then use the flat video in the form of scene presentation.
  • a special projection method needs to be used to project the panoramic spherical video into a plane video; usually, when the panoramic video is transmitted, a complete panoramic video image is converted.
  • the viewer can only view the picture of one viewing angle at the same time; therefore, when it is necessary to ensure the high definition of the viewing angle picture, it is necessary to transmit a higher-resolution panoramic video.
  • the collected high-definition panoramic video can only be transmitted and presented by downsampling after reducing the overall transmission bandwidth of the original high-definition panoramic video. This will result in a decrease in the picture clarity of the viewing angle viewed by the viewer.
  • a panoramic video compression method comprising:
  • the intermediate panoramic image is compressed to obtain the target panoramic image.
  • the intermediate panoramic image is compressed to obtain the target panoramic image, including:
  • the intermediate panoramic image is compressed to obtain a compressed panoramic image
  • the target panoramic image is determined according to the compressed panoramic image.
  • the intermediate panoramic image is compressed according to a preset second mapping relationship to obtain a compressed panoramic image, including:
  • the intermediate panoramic image is compressed in the horizontal direction to obtain a compressed panoramic image; the height of the compressed panoramic image is equal to the height of the intermediate panoramic image, and the width of the compressed panoramic image is the same as that of the intermediate panoramic image. Half the width of the panorama image.
  • the distance between the pixel point in the intermediate panoramic image and the central pixel point of the intermediate panoramic image is positively related to the compression ratio of the intermediate panoramic image.
  • determining the target panoramic image according to the compressed panoramic image includes:
  • the four segmented images are recombined to obtain the target panoramic image.
  • the four segmented images are recombined to obtain the target panoramic image, including:
  • the two adjacent segmented images are rotated according to the preset rotation direction and rotation angle, respectively, to obtain the target panoramic image.
  • the second mapping relationship is a mapping relationship constructed according to a preset S-shaped curve, and the S-shaped curve satisfies the following conditions:
  • the S-shaped curve passes through three fixed points (-1,-1), (0,0), (+1,+1);
  • the S-shaped curve is symmetric with respect to the origin center
  • the S-shaped curve has the greatest slope at the origin.
  • the first position information includes first position coordinates of the center point of the viewing angle in the panoramic image
  • the second position information includes second position coordinates of the center point of the panoramic image
  • a location information and the second location information to determine the first mapping relationship including:
  • the first mapping relationship is determined according to the third position coordinate and the fourth position coordinate.
  • a panoramic video compression device comprising:
  • an acquisition module configured to acquire the first position information of the center point of the viewing angle of the panoramic image of the current frame of the panoramic video in the panoramic image, and the second position information of the center point of the panoramic image;
  • a first determining module configured to determine a first mapping relationship according to the first location information and the second location information
  • a second determining module configured to convert the panoramic image according to the first mapping relationship to obtain an intermediate panoramic image; the intermediate panoramic image is centered on the center point of the viewing angle of view;
  • the third determining module is used for compressing the intermediate panoramic image to obtain the target panoramic image.
  • a computer device comprising a memory and a processor, the memory stores a computer program, and the processor implements the following steps when executing the computer program:
  • the intermediate panoramic image is compressed to obtain the target panoramic image.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the following steps are implemented:
  • the panoramic image Convert the panoramic image according to the first mapping relationship to obtain an intermediate panoramic image; the intermediate panoramic image is centered on the center point of the viewing angle of view;
  • the intermediate panoramic image is compressed to obtain the target panoramic image.
  • the computer equipment obtains the first position information of the center point of the viewing angle of the panoramic image of the current frame of the panoramic video in the panoramic image, and the center point of the panoramic image. second position information; and determine a first mapping relationship according to the first position information and the second position information; and then convert the panoramic image according to the first mapping relationship to obtain a center point of the viewing angle of view as the center
  • the intermediate panoramic image then, the intermediate panoramic image is compressed to obtain the target panoramic image; that is, in the embodiment of the present application, when reducing the transmission bandwidth of the panoramic video, the computer device firstly compresses the obtained panoramic image of the current frame.
  • the compressed panoramic image can not only reduce the transmission bandwidth of the panoramic video during transmission or storage, but also ensure the clarity of the picture corresponding to the viewer's current viewing angle, which greatly improves the clarity of the compressed panoramic video and improves the user experience.
  • FIG. 1 is an application environment diagram of a panoramic video compression method in one embodiment
  • FIG. 2 is a schematic flowchart of a panoramic video compression method in one embodiment
  • FIG. 3 is a schematic structural diagram of a panoramic image of a current frame in one embodiment
  • FIG. 4 is a schematic flowchart of a panoramic video compression method in another embodiment
  • FIG. 5 is a schematic flowchart of a panoramic video compression method in another embodiment
  • FIG. 6 is a schematic structural diagram of segmenting and reorganizing a compressed panoramic image in one embodiment
  • FIG. 7 is a schematic structural diagram of an S-shaped curve in an embodiment
  • FIG. 8 is a schematic flowchart of a panoramic video compression method in another embodiment
  • FIG. 9 is a structural block diagram of a panoramic video compression apparatus in one embodiment
  • Figure 10 is a diagram of the internal structure of a computer device in one embodiment.
  • the panoramic video compression method provided in this application can be applied to the computer equipment as shown in FIG. 1 .
  • the computer equipment can be, but is not limited to, any type of terminal with video functions, such as: ordinary cameras, panoramic cameras, projectors, personal Computer, notebook computer, virtual reality (Virtual Reality, VR for short) acquisition equipment, etc.; the internal structure of the computer equipment is shown in Figure 1, including the processor, memory, communication interface, display screen and input device connected through the system bus .
  • a panoramic video compression method is provided, and the method is applied to the computer device in FIG. 1 as an example for description, including the following steps:
  • Step 201 Obtain first position information of the center point of the viewing angle of the panoramic image of the current frame of the panoramic video in the panoramic image, and second position information of the center point of the panoramic image.
  • each frame of panoramic image can be a panoramic image formed by any form of projection, such as cylindrical projection, cube projection , strip projection, etc.; in the embodiment of the present application, the panoramic video needs to be converted into a rectangular screen using cylindrical projection, and when the panoramic video is projected by other projection methods other than cylindrical projection, other projections need to be used.
  • the panoramic picture in the mode is converted into a rectangular picture under the cylindrical projection.
  • the panoramic image of the current frame of the panoramic video may be obtained first, and the center point of the viewing angle of the viewer at the current frame may be obtained first.
  • the first position information in the panoramic image of the current frame, and the second position information of the center point of the panoramic image of the current frame can be obtained from the computer device currently used by the viewer, and the second position information of the center point of the panoramic image of the current frame can be based on the current frame of the panoramic image.
  • the panoramic image of the current frame is A
  • the center point of the viewing angle of the current frame can be point c in Figure 3
  • the center point of the panoramic image of the current frame can be Point q in Fig. 3
  • the first position information of the center point c of the viewing angle of view may include the coordinates corresponding to the point c on the two-dimensional plane
  • the second position information of the center point q of the panoramic image may include
  • the coordinates corresponding to the q point on the two-dimensional plane can be expressed as (W/2, H/2), where W is the width of the panoramic image of the current frame, and H is the height of the panoramic image of the current frame.
  • Step 202 Determine a first mapping relationship according to the first location information and the second location information.
  • the current frame panorama image may be converted to obtain a panorama image centered on the center point of the viewing angle of view.
  • the first position information and the second position information can be obtained according to the first position information and the second position information.
  • information to determine a first mapping relationship for example, according to the first position information and the second position information, the first position can be translated in the horizontal direction and the vertical direction, so that it reaches the second position to determine the The first mapping relationship; the embodiments of the present application do not limit the method for determining the first mapping relationship, and the mapping between the first location information and the second location information can be determined according to the first mapping relationship.
  • Step 203 Convert the panoramic image according to the first mapping relationship to obtain an intermediate panoramic image; the intermediate panoramic image is centered on the center point of the viewing angle of view.
  • the panoramic image can be converted according to the first mapping relationship, that is, according to the first mapping relationship, each One pixel position information is transformed accordingly to obtain an intermediate panoramic image; wherein, the intermediate panoramic image is a panoramic image centered on the center point of the viewing angle of the viewer on the current frame of panoramic image.
  • Step 204 Compress the intermediate panoramic image to obtain a target panoramic image.
  • the intermediate panoramic image may be compressed to obtain The target panoramic image; the target panoramic image is to compress the current frame of the panoramic image to reduce the transmission bandwidth of the current frame of the panoramic image on the premise of maintaining the clarity of the central point of the viewing angle of the viewer.
  • the same compression rate may be used to compress the intermediate panoramic image; different positions of the intermediate panoramic image may also be compressed with different compression rates; The pictures within a certain range of the viewing angle center point are not compressed, and the pictures outside the certain range of the viewing angle center point are compressed; the compression method is not limited in this embodiment.
  • the computer device obtains the first position information of the center point of the viewing angle of view of the current frame of the panoramic video in the panoramic image, and the second position information of the center point of the panoramic image;
  • the position information and the second position information determine a first mapping relationship; and then convert the panoramic image according to the first mapping relationship to obtain an intermediate panoramic image centered on the center point of the viewing angle of view; then, the intermediate panoramic image is obtained
  • the image is compressed to obtain the target panoramic image; that is to say, in the embodiment of the present application, when reducing the transmission bandwidth of the panoramic video, the computer device first converts the obtained panoramic image of the current frame to ensure the current viewing angle of the viewer.
  • the center point is located in the center of the panoramic image; and on this basis, the converted panoramic image is compressed to reduce the transmission bandwidth of the current frame of the panoramic image; therefore, the panoramic image processed according to this process can not only reduce the panoramic video
  • the transmission bandwidth during transmission or storage can also ensure the clarity of the picture corresponding to the viewer's current viewing angle, greatly improving the clarity of the compressed panoramic video and improving the user experience.
  • FIG. 4 is a schematic flowchart of a panoramic video compression method in another embodiment. This embodiment relates to an optional implementation process of compressing the intermediate panoramic image to obtain the target panoramic image.
  • the foregoing step 204 includes:
  • Step 401 Compress the intermediate panoramic image according to a preset second mapping relationship to obtain a compressed panoramic image.
  • the intermediate panoramic image when the intermediate panoramic image is compressed, the intermediate panoramic image may be compressed in the horizontal direction, the intermediate panoramic image may also be compressed in the vertical direction, and the The intermediate panoramic image may be compressed along the horizontal direction and the vertical direction at the same time, and of course, the intermediate panoramic image may also be compressed along any at least one direction in the two-dimensional plane; the embodiment of the present application does not limit this; in addition, When the intermediate panoramic image is compressed in different directions, the corresponding preset second mapping relationship is different, and the obtained compressed panoramic image is naturally different.
  • the intermediate panoramic image is compressed in the horizontal direction, and the obtained compressed panoramic image and the intermediate panoramic image have different widths and the same height; according to the preset second mapping relationship, the intermediate panoramic image is compressed in the vertical direction, and the obtained compressed panoramic image has the same width and different height as the intermediate panoramic image; according to the preset second mapping relationship, the intermediate panoramic image is simultaneously The panoramic image is compressed, and the obtained compressed panoramic image and the intermediate panoramic image have different widths and heights.
  • the preset second mapping relationship may be the mapping relationship between the corresponding intermediate panoramic image and the compressed panoramic image under the same compression rate, or may be the corresponding intermediate panoramic image and the compressed panoramic image under different compression rates.
  • the obtained compressed panoramic image may be a rectangle, a square, a circle, etc.; the embodiment of the present application has the preset second mapping relationship Not limited.
  • Step 402 Determine the target panoramic image according to the compressed panoramic image.
  • the target panoramic image can be determined according to the compressed panoramic image; optionally, in the case that the compressed panoramic image is a rectangle or square, the compressed panoramic image can be determined as the target panoramic image;
  • the compressed panoramic image is any shape other than a rectangle or a square
  • the compressed panoramic image may be transformed to a certain extent to obtain a rectangular or square panoramic image as the target panoramic image.
  • This embodiment does not limit the method of converting a compressed panoramic image of any shape other than a rectangle or a square into a target panoramic image with a rectangular or square shape, as long as a target panoramic image with a rectangular or square shape can be obtained That's it.
  • the computer device compresses the intermediate panoramic image according to the preset second mapping relationship to obtain a compressed panoramic image, and determines the target panoramic image according to the compressed panoramic image; that is, in this embodiment, After obtaining the intermediate panoramic image centered on the center point of the viewing angle, the computer device can compress the intermediate panoramic image in the horizontal direction according to the preset second mapping relationship to obtain a compressed panoramic image, so that the compressed panoramic image
  • the height of the compressed panoramic image is consistent with the height of the intermediate panoramic image
  • the width of the compressed panoramic image is smaller than the width of the intermediate panoramic image, so as to reduce the transmission bandwidth of the panoramic video during transmission or storage, and avoid the waste of transmission bandwidth.
  • the intermediate panoramic image when compressing the intermediate panoramic image, according to the preset second mapping relationship, may be compressed in the horizontal direction to obtain a compressed panoramic image.
  • the compressed panoramic image The height of the image is equal to the height of the intermediate panoramic image, and the width of the compressed panoramic image is half the width of the intermediate panoramic image; that is, in this embodiment, according to the preset second mapping relationship, the horizontal
  • the transmission bandwidth of the compressed panoramic image obtained by compressing the intermediate panoramic image in the direction is half of the transmission bandwidth of the intermediate panoramic image, regardless of its shape, which greatly reduces the transmission bandwidth during the transmission or storage of the panoramic video.
  • the distance between the pixels in the intermediate panoramic image and the center pixel of the intermediate panoramic image is positively correlated with the compression rate of the intermediate panoramic image; that is, the computer equipment When compressing the intermediate panoramic image, the compression rate of the pixel points closer to the center of the intermediate panoramic image is lower, and the compression rate of the pixels close to the edge of the intermediate panoramic image is higher, that is, according to the compression rate in the intermediate panoramic image
  • the relationship between the distance between the pixel point and the central pixel point of the intermediate panoramic image is positively related to the compression ratio of the intermediate panoramic image. the clarity of the picture.
  • FIG. 5 is a schematic flowchart of a panoramic video compression method in another embodiment. This embodiment relates to an optional implementation process of determining the target panoramic image according to the compressed panoramic image when the compressed panoramic image obtained in the above step 401 is a rhombus.
  • the above step 402 includes:
  • Step 501 Segment the compressed panoramic image along the horizontal centerline and the vertical centerline to obtain four segmented images.
  • the compressed panoramic image when the above-mentioned compressed panoramic image is a diamond, the compressed panoramic image may be divided along the horizontal center line and the vertical center line to obtain four divided images; for example, : As shown in Figure 6, when the height of the rhombus is the same as the width of the rhombus, divide the rhombus along the horizontal centerline and the vertical centerline to obtain four right-angled triangles of equal size.
  • Step 502 Recombining the four segmented images to obtain the target panoramic image.
  • the four segmented images after being segmented are recombined to obtain the target panoramic image; optionally, two adjacent segmented images may be
  • the upper left right triangle A can be rotated 90° counterclockwise along the upper vertex of the rhombus
  • the lower left right triangle B can be rotated along the lower vertex of the rhombus.
  • the height of the target panoramic image is equal to the height of the intermediate panoramic image
  • the width of the target panoramic image is the same as the intermediate panoramic image.
  • a quarter of the width, that is, 75% of the picture can be compressed.
  • the target panoramic image is not only reduced in size to a quarter of the original size, but also maintains the clarity of the picture near the center of the viewing angle; although the picture of the target panoramic image has been cut and reorganized, due to the panoramic view of the present application
  • the process of the video compression method utilizes the characteristics of cylindrical projection, so that the pictures on both sides of the splicing point are from the same object in the panoramic image. Therefore, there is no visible splicing seam in the reconstructed picture, which can also improve the efficiency of subsequent panoramic video encoding.
  • the upper left right triangle when recombining the four segmented images, can also be rotated 90° clockwise along the left vertex of the rhombus, and the upper right right triangle can be rotated 90° counterclockwise along the right vertex of the rhombus.
  • the rhombus is reorganized into a rectangle to obtain a rectangular target panoramic image; the height of the target panoramic image is half the height of the intermediate panoramic image, and the width of the target panoramic image is half the width of the intermediate panoramic image.
  • the computer device divides the compressed panoramic image along the horizontal center line and the vertical center line to obtain four divided images, and recombines the four divided images , to obtain the target panoramic image; that is to say, the computer equipment can divide and reorganize the compressed panoramic image in the shape of a diamond to obtain the target panoramic image in the shape of a rectangle, so as to satisfy the transmission of the panorama video in the process of transmitting or saving the plane rectangle. conditions, greatly improving the intelligence and scalability of computer equipment.
  • the above-mentioned second mapping relationship may be a mapping relationship constructed according to a preset S-shaped curve, and the S-shaped curve satisfies the following conditions: the S-shaped curve passes through three fixed points (- 1,-1), (0,0), (+1,+1); the S-shaped curve is centrally symmetric with respect to the origin; the S-shaped curve has the largest slope at the origin.
  • the second mapping relationship is f 2 :p′ ⁇ p′′, where: p′:(x,y) is a point on the above-mentioned intermediate panoramic image, and p′′:(x′,y) is the above-mentioned compressed panoramic image
  • p′:(x,y) is a point on the above-mentioned intermediate panoramic image
  • p′′:(x′,y) is the above-mentioned compressed panoramic image
  • W is the width of the intermediate panoramic image
  • H is the height of the intermediate panoramic image
  • x 1 , y 1 , and x 2 are all intermediate variables
  • S( ⁇ ) is the above-mentioned S-shaped curve function, according to the above formula (1) - Formula (4), the coordinates of a point on each intermediate panoramic image can be converted into the coordinates of a point on the compressed panoramic image.
  • S-shaped curve optionally, as shown in FIG.
  • the S-shaped curve can be a sequence consisting of (-1,-1), (+0.25,-1), (-0.25,+1), (+ 1,+1) A cubic Bezier curve determined by four nodes; according to the S-shaped curve, the only point (x, S(x)) on the curve can be found by any x ⁇ [-1,1], and its vertical The coordinates are the values of S(x).
  • the second mapping relationship may be a mapping relationship constructed according to a preset S-shaped curve.
  • the pixel closer to the center point of the intermediate panoramic image can be obtained.
  • the compression rate the higher the compression rate is for the pixels closer to the edge point of the intermediate panoramic image, that is, the sharpness of the picture near the center point of the compressed panoramic image is higher, which greatly improves the compression of the panoramic image. The effect ensures the clarity of the picture at the center point of the viewing angle.
  • the above-mentioned first position information may include the first position coordinates of the center point of the viewing angle in the panoramic image, and the second position information may include the second position coordinates of the center point of the panoramic image;
  • the first mapping relationship may be determined according to the first position coordinates and the second position coordinates.
  • FIG. 8 is a schematic flowchart of a panoramic video compression method in another embodiment. This embodiment relates to an optional implementation process of determining the first mapping relationship according to the first location information and the second location information.
  • the foregoing step 202 includes:
  • Step 801 Project the first position coordinates into the coordinate system where the spherical image corresponding to the panoramic image is located to obtain third position coordinates.
  • Step 802 Project the second position coordinates into the coordinate system where the spherical image is located to obtain fourth position coordinates.
  • the projected plane coordinates and the corresponding spherical coordinates can be in one-to-one correspondence according to the third mapping relationship.
  • the third mapping relationship can be expressed as: Among them, p is the plane coordinate, is spherical coordinates; then, according to the third mapping relationship Projecting the first position coordinates into the coordinate system where the spherical image corresponding to the panoramic image is located to obtain third position coordinates; and projecting the second position coordinates into the coordinate system where the spherical image is located to obtain fourth position coordinates; for example : The first position coordinate is c, then the third position coordinate is The second position coordinate is q, then the fourth position coordinate is
  • Step 803 Determine the first mapping relationship according to the third position coordinate and the fourth position coordinate.
  • the computer device obtains the third position coordinates and the fourth position coordinates on the spherical surface of the coordinates of the center point of the viewing angle and the center point of the panoramic image, in order to make the center point of the viewing angle fall at the center point of the panoramic image, that is, corresponding to In the case of a spherical surface, that is, the third position coordinate is rotated and transformed to the fourth position coordinate; optionally, a three-dimensional rotation transformation R can be determined according to the third position coordinate and the fourth position coordinate, and the three-dimensional rotation transformation R can be a rotation transformation matrix, so that the third position coordinate can be transformed to the fourth position coordinate according to the three-dimensional rotation transformation R, that is, the Optionally, the three-dimensional rotation transformation R can be obtained in the following manner, namely Rotate around the Z axis so that it falls within the same The same vertical plane (that is, the XZ plane), and then rotate around the Y axis so that and Coincidence, the combined transformation of the two rotations can be used as the three-
  • the first mapping relationship can be determined, Furthermore, according to the first mapping relationship, the panoramic image of the current frame can be converted into an intermediate panoramic image centered on the center point of the viewing angle.
  • the first mapping relationship is f 1 :p ⁇ p', where p is any pixel coordinate on the panoramic image of the current frame, p' is any pixel coordinate on the corresponding intermediate panoramic image, and p' can be It is represented by formula (5).
  • the computer device projects the first position coordinates into the coordinate system where the spherical image corresponding to the panoramic image is located to obtain third position coordinates, and projects the second position coordinates into the coordinate system where the spherical image is located, The fourth position coordinate is obtained, and then the first mapping relationship is determined according to the third position coordinate and the fourth position coordinate;
  • the coordinates of the center point of the panoramic image correspond to the spherical surface, and according to the relationship between the two coordinates on the spherical surface, the first coordinate between the center point coordinates of the viewing angle on the plane panoramic image and the center point coordinates of the panoramic image is finally determined.
  • a mapping relationship, the first mapping relationship can be made more accurate by the rotation change on the spherical surface, thereby making the image definition higher after compressing the converted intermediate panoramic image centered on the center point of the viewing angle.
  • steps in the flowcharts of FIGS. 2-8 are shown in sequence according to the arrows, these steps are not necessarily executed in the sequence shown by the arrows. Unless explicitly stated herein, there is no strict order in the execution of these steps, and these steps may be performed in other orders. Moreover, at least a part of the steps in FIGS. 2-8 may include multiple steps or multiple stages. These steps or stages are not necessarily executed and completed at the same time, but may be executed at different times. The execution of these steps or stages The order is also not necessarily sequential, but may be performed alternately or alternately with other steps or at least a portion of the steps or phases within the other steps.
  • a panoramic video compression apparatus including: an acquisition module 901, a first determination module 902, a second determination module 903 and a third determination module 904, wherein:
  • the obtaining module 901 is configured to obtain the first position information of the center point of the viewing angle of the panoramic image of the current frame of the panoramic video in the panoramic image, and the second position information of the center point of the panoramic image.
  • the first determining module 902 is configured to determine a first mapping relationship according to the first location information and the second location information.
  • the second determining module 903 is configured to convert the panoramic image according to the first mapping relationship to obtain an intermediate panoramic image; the intermediate panoramic image is centered on the center point of the viewing angle of view.
  • the third determining module 904 is configured to compress the intermediate panoramic image to obtain the target panoramic image.
  • the above-mentioned third determining module 904 is specifically configured to compress the intermediate panoramic image according to the preset second mapping relationship to obtain a compressed panoramic image; and determine the target panoramic image according to the compressed panoramic image .
  • the above-mentioned third determining module 904 is specifically configured to compress the intermediate panoramic image in the horizontal direction according to the preset second mapping relationship to obtain a compressed panoramic image; the height of the compressed panoramic image is the same as the height of the compressed panoramic image. The heights of the intermediate panoramic images are equal, and the width of the compressed panoramic image is half the width of the intermediate panoramic image.
  • the distance between the pixel point in the intermediate panoramic image and the central pixel point of the intermediate panoramic image is positively related to the compression ratio of the intermediate panoramic image.
  • the above-mentioned third determination module 904 is specifically configured to segment the compressed panoramic image along the horizontal centerline and the vertical centerline to obtain four segmented images ; Recombine the four segmented images to obtain the target panoramic image.
  • the above-mentioned third determination module 904 is specifically configured to rotate two adjacent divided images according to a preset rotation direction and rotation angle, respectively, to obtain the target panoramic image.
  • the second mapping relationship is a mapping relationship constructed according to a preset S-shaped curve, and the S-shaped curve satisfies the following conditions: the S-shaped curve passes through three fixed points (-1, -1), (0,0), (+1,+1); the S-shaped curve is centrally symmetric with respect to the origin; the S-shaped curve has the largest slope at the origin.
  • the first position information includes first position coordinates of the center point of the viewing angle in the panoramic image
  • the second position information includes second position coordinates of the center point of the panoramic image
  • the determining module 902 is specifically configured to project the first position coordinates into the coordinate system where the spherical image corresponding to the panoramic image is located to obtain third position coordinates
  • each module in the above-mentioned panoramic video compression apparatus may be implemented in whole or in part by software, hardware and combinations thereof.
  • the above modules can be embedded in or independent of the processor in the computer device in the form of hardware, or stored in the memory in the computer device in the form of software, so that the processor can call and execute the operations corresponding to the above modules.
  • a computer device in one embodiment, the computer device may be a terminal with a video function, and its internal structure diagram may be as shown in FIG. 10 .
  • the computer equipment includes a processor, memory, a communication interface, a display screen, and an input device connected by a system bus. Among them, the processor of the computer device is used to provide computing and control capabilities.
  • the memory of the computer device includes a non-volatile storage medium, an internal memory.
  • the nonvolatile storage medium stores an operating system and a computer program.
  • the internal memory provides an environment for the execution of the operating system and computer programs in the non-volatile storage medium.
  • the communication interface of the computer device is used for wired or wireless communication with an external terminal, and the wireless communication can be realized by WIFI, operator network, NFC (Near Field Communication) or other technologies.
  • the computer program when executed by a processor, implements a panoramic video compression method.
  • the display screen of the computer equipment may be a liquid crystal display screen or an electronic ink display screen, and the input device of the computer equipment may be a touch layer covered on the display screen, or a button, a trackball or a touchpad set on the shell of the computer equipment , or an external keyboard, trackpad, or mouse.
  • FIG. 10 is only a block diagram of a partial structure related to the solution of the present application, and does not constitute a limitation on the computer equipment to which the solution of the present application is applied.
  • the specific computer device may be Include more or fewer components than shown in the figures, or combine certain components, or have a different arrangement of components.
  • a computer device including a memory and a processor, a computer program is stored in the memory, and the processor implements the following steps when executing the computer program:
  • the intermediate panoramic image is compressed to obtain the target panoramic image.
  • the processor further implements the following steps when executing the computer program: compressing the intermediate panoramic image according to a preset second mapping relationship to obtain a compressed panoramic image; and determining the target panoramic image according to the compressed panoramic image.
  • the processor further implements the following steps when executing the computer program: compressing the intermediate panoramic image along the horizontal direction according to a preset second mapping relationship to obtain a compressed panoramic image; the height of the compressed panoramic image is the same as the height of the compressed panoramic image. The heights of the intermediate panoramic images are equal, and the width of the compressed panoramic image is half the width of the intermediate panoramic image.
  • the processor further implements the following steps when executing the computer program: the distance between the pixel point in the intermediate panoramic image and the central pixel point of the intermediate panoramic image is positively correlated with the compression ratio of the intermediate panoramic image.
  • the processor executes the computer program, the following steps are further implemented: in the case that the compressed panoramic image is a rhombus, dividing the compressed panoramic image along a horizontal centerline and a vertical centerline to obtain four segmented images ; Recombine the four segmented images to obtain the target panoramic image.
  • the processor executes the computer program, the following steps are further implemented: rotating two adjacent segmented images according to a preset rotation direction and rotation angle, respectively, to obtain the target panoramic image.
  • the processor further implements the following steps when executing the computer program:
  • the second mapping relationship is a mapping relationship constructed according to a preset S-shaped curve, and the S-shaped curve satisfies the following conditions: the S-shaped curve passes through three A fixed point (-1,-1), (0,0), (+1,+1); the S-shaped curve is symmetric with respect to the center of the origin; the S-shaped curve has the largest slope at the origin.
  • the processor further implements the following steps when executing the computer program: the first position information includes first position coordinates of the center point of the viewing angle in the panoramic image, and the second position information includes the center of the panoramic image The second position coordinates of the point; project the first position coordinates into the coordinate system where the spherical image corresponding to the panoramic image is located to obtain the third position coordinates; project the second position coordinates into the coordinate system where the spherical image is located to obtain Fourth position coordinates; determine the first mapping relationship according to the third position coordinates and the fourth position coordinates.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the following steps are implemented:
  • the intermediate panoramic image is compressed to obtain the target panoramic image.
  • the computer program further implements the following steps when executed by the processor: compressing the intermediate panoramic image according to a preset second mapping relationship to obtain a compressed panoramic image; determining the target panoramic image according to the compressed panoramic image .
  • the following steps are further implemented: compressing the intermediate panoramic image along the horizontal direction according to a preset second mapping relationship to obtain a compressed panoramic image; the height of the compressed panoramic image is the same as the height of the compressed panoramic image. The heights of the intermediate panoramic images are equal, and the width of the compressed panoramic image is half the width of the intermediate panoramic image.
  • the computer program further implements the following steps when executed by the processor: the distance between the pixel point in the intermediate panoramic image and the central pixel point of the intermediate panoramic image is positively correlated with the compression ratio of the intermediate panoramic image.
  • the following steps are further implemented: in the case that the compressed panoramic image is a rhombus, dividing the compressed panoramic image along the horizontal center line and the vertical center line to obtain four divisions image; recombine the four segmented images to obtain the target panoramic image.
  • the following steps are further implemented: rotating two adjacent segmented images according to a preset rotation direction and rotation angle, respectively, to obtain the target panoramic image.
  • the second mapping relationship is a mapping relationship constructed according to a preset S-shaped curve, and the S-shaped curve satisfies the following conditions: the S-shaped curve passes through Three fixed points (-1,-1), (0,0), (+1,+1); the S-shaped curve is centrally symmetric with respect to the origin; the S-shaped curve has the largest slope at the origin.
  • the first position information includes the first position coordinates of the center point of the viewing angle in the panoramic image
  • the second position information includes the position coordinates of the panoramic image. the second position coordinates of the center point; project the first position coordinates into the coordinate system where the spherical image corresponding to the panoramic image is located to obtain the third position coordinates; project the second position coordinates into the coordinate system where the spherical image is located, Obtain fourth position coordinates; determine the first mapping relationship according to the third position coordinates and the fourth position coordinates.
  • Non-volatile memory may include read-only memory (Read-Only Memory, ROM), magnetic tape, floppy disk, flash memory, or optical memory, and the like.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • RAM may be in various forms, such as Static Random Access Memory (SRAM) or Dynamic Random Access Memory (DRAM).

Abstract

本申请涉及一种全景视频压缩方法、装置、计算机设备和存储介质。计算机设备通过获取全景视频的当前帧全景图像的观看视角的中心点在全景图像中的第一位置信息,以及全景图像的中心点的第二位置信息;根据第一位置信息和第二位置信息,确定第一映射关系;根据第一映射关系对全景图像进行转换,得到以观看视角的中心点为中心的中间全景图像;对中间全景图像进行压缩,得到目标全景图像;本申请实施例中,在减少全景视频的传输带宽时,将获取到的当前帧全景图像进行转换,以确保观看者当前的观看视角的中心点位于全景图像的中心;并在此基础上,对转换后的全景图像进行压缩,降低当前帧全景图像的传输带宽;大大提高了压缩后的全景视频的清晰度。

Description

全景视频压缩方法、装置、计算机设备和存储介质 技术领域
本申请涉及全景视频压缩技术领域,特别是涉及一种全景视频压缩方法、装置、计算机设备和存储介质。
背景技术
随着全景视频技术的发展,全景视频的应用越来越广泛,例如:直播、远程会议等;在采用全景视频进行场景的呈现时,通常需要将全景球面视频投影为平面视频后,以平面视频的形式进行场景的呈现。
传统技术中,在对全景视频进行保存或者传输的过程中,需要采用特殊的投影方式以将全景球面视频投影为平面视频;通常情况下,全景视频在传输时,是将一个完整的全景视频画面进行传输,但观看者在同一时间只能查看一个视角的画面;因此,在需要保证观看视角画面的清晰度较高时,则需要传输更高分辨率的全景视频。
技术问题
然而,在受全景视频的传输带宽限制的情况下,对于采集到的高清的全景视频,只能通过降采样的方式,在减少原高清全景视频的整体传输带宽后,进行传输和场景的呈现,将导致观看者所查看的视角的画面清晰度下降。
技术解决方案
基于此,有必要针对上述技术问题,提供一种能够在降低全景视频的传输带宽的同时,提高观看者当前查看的视角的画面清晰度的全景视频压缩方法、装置、计算机设备和存储介质。
第一方面,提供了一种全景视频压缩方法,该方法包括:
获取全景视频的当前帧全景图像的观看视角的中心点在该全景图像中的第一位置信息,以及该全景图像的中心点的第二位置信息;
根据该第一位置信息和该第二位置信息,确定第一映射关系;
根据该第一映射关系对该全景图像进行转换,得到中间全景图像;该中间全景图像以该观看视角的中心点为中心;
对该中间全景图像进行压缩,得到目标全景图像。
在其中一个实施例中,对该中间全景图像进行压缩,得到目标全景图像,包括:
根据预设的第二映射关系,对该中间全景图像进行压缩,得到压缩全景图像;
根据该压缩全景图像确定该目标全景图像。
在其中一个实施例中,根据预设的第二映射关系,对该中间全景图像进行压缩,得到压缩全景图像,包括:
根据预设的第二映射关系,沿水平方向对该中间全景图像进行压缩,得到压缩全景图像;该压缩全景图像的高度与该中间全景图像的高度相等,且该压缩全景图像的宽度为该中间全景图像的宽度的一半。
在其中一个实施例中,该中间全景图像中的像素点与该中间全景图像的中心像素点之间的距离与该中间全景图像的压缩率正相关。
在其中一个实施例中,在该压缩全景图像为菱形的情况下,根据该压缩全景图像确定该目标全景图像,包括:
对该压缩全景图像沿水平中心线和竖直中心线进行分割,得到四个分割图像;
将该四个分割图像进行重组,得到该目标全景图像。
在其中一个实施例中,将该四个分割图像进行重组,得到该目标全景图像,包括:
将相邻的两个分割图像,分别按照预设的旋转方向和旋转角度进行旋转,得到该目标全景图像。
在其中一个实施例中,该第二映射关系为根据预设的S型曲线构建的映射关系,且该S型曲线满足以下条件:
该S型曲线经过三个定点(-1,-1)、(0,0)、(+1,+1);
该S型曲线相对于原点中心对称;
该S型曲线在原点处的斜率最大。
在其中一个实施例中,该第一位置信息包括该观看视角的中心点在全景图 像中的第一位置坐标,该第二位置信息包括该全景图像的中心点的第二位置坐标;根据该第一位置信息和该第二位置信息,确定第一映射关系,包括:
将该第一位置坐标投影到该全景图像对应的球面图像所在坐标系中,得到第三位置坐标;
将该第二位置坐标投影到该球面图像所在坐标系中,得到第四位置坐标;
根据该第三位置坐标和该第四位置坐标,确定该第一映射关系。
第二方面,提供了一种全景视频压缩装置,该装置包括:
获取模块,用于获取全景视频的当前帧全景图像的观看视角的中心点在该全景图像中的第一位置信息,以及该全景图像的中心点的第二位置信息;
第一确定模块,用于根据该第一位置信息和该第二位置信息,确定第一映射关系;
第二确定模块,用于根据该第一映射关系对该全景图像进行转换,得到中间全景图像;该中间全景图像以所述观看视角的中心点为中心;
第三确定模块,用于对该中间全景图像进行压缩,得到目标全景图像。
第三方面,提供了一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现以下步骤:
获取全景视频的当前帧全景图像的观看视角的中心点在该全景图像中的第一位置信息,以及该全景图像的中心点的第二位置信息;
根据该第一位置信息和该第二位置信息,确定第一映射关系;
根据该第一映射关系对该全景图像进行转换,得到中间全景图像;该中间全景图像以该观看视角的中心点为中心;
对该中间全景图像进行压缩,得到目标全景图像。
第四方面,提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现以下步骤:
获取全景视频的当前帧全景图像的观看视角的中心点在该全景图像中的第一位置信息,以及该全景图像的中心点的第二位置信息;
根据该第一位置信息和该第二位置信息,确定第一映射关系;
根据该第一映射关系对该全景图像进行转换,得到中间全景图像;该中间 全景图像以该观看视角的中心点为中心;
对该中间全景图像进行压缩,得到目标全景图像。
技术效果
上述全景视频压缩方法、装置、计算机设备和存储介质,计算机设备通过获取全景视频的当前帧全景图像的观看视角的中心点在该全景图像中的第一位置信息,以及该全景图像的中心点的第二位置信息;并根据该第一位置信息和该第二位置信息,确定第一映射关系;进而根据该第一映射关系对该全景图像进行转换,得到以该观看视角的中心点为中心的中间全景图像;接着,对该中间全景图像进行压缩,得到目标全景图像;也就是说,本申请实施例中,计算机设备在减少全景视频的传输带宽时,首先将获取到的当前帧全景图像进行转换,以确保观看者当前的观看视角的中心点位于全景图像的中心;并在此基础上,对该转换后的全景图像进行压缩,降低当前帧全景图像的传输带宽;因此,依据该过程处理后的全景图像,不仅能够减少全景视频在传输或者保存过程中的传输带宽,还能确保观看者当前观看视角对应的画面的清晰度,大大提高了压缩后的全景视频的清晰度,还能提高用户体验。
附图说明
图1为一个实施例中全景视频压缩方法的应用环境图;
图2为一个实施例中全景视频压缩方法的流程示意图;
图3为一个实施例中当前帧的全景图像的结构示意图;
图4为另一个实施例中全景视频压缩方法的流程示意图;
图5为另一个实施例中全景视频压缩方法的流程示意图;
图6为一个实施例中对压缩全景图像进行分割重组的结构示意图;
图7为一个实施例中S型曲线的结构示意图;
图8为另一个实施例中全景视频压缩方法的流程示意图;
图9为一个实施例中全景视频压缩装置的结构框图;
图10为一个实施例中计算机设备的内部结构图。
本发明的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实 施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请提供的全景视频压缩方法,可以应用于如图1所示的计算机设备中,该计算机设备可以但不限于是任何类型具有视频功能的终端,例如:普通相机、全景相机、投影仪、个人计算机、笔记本电脑、虚拟现实(Virtual Reality,简称VR)采集设备等;该计算机设备的内部结构图如图1所示,包括通过系统总线连接的处理器、存储器、通信接口、显示屏和输入装置。
在一个实施例中,如图2所示,提供了一种全景视频压缩方法,以该方法应用于图1中的计算机设备为例进行说明,包括以下步骤:
步骤201,获取全景视频的当前帧全景图像的观看视角的中心点在该全景图像中的第一位置信息,以及该全景图像的中心点的第二位置信息。
其中,全景视频在传输或保存的过程中,通常需要将全景视频转换为视频帧的形式,每一帧全景图像可以是采用任一形式的投影方式形成的全景画面,例如:圆柱投影、立方体投影、条带投影等;在本申请实施例中,需要将全景视频转换为采用圆柱投影的矩形画面,在该全景视频为采用除圆柱投影外的其他投影方式进行投影的情况下,需要将其他投影方式下的全景画面转换为圆柱投影下的矩形画面。
在本实施例的一个可选的实现方式中,在对每帧全景图像分别进行压缩时,可以先获取全景视频的当前帧的全景图像,以及获取观看者在当前帧的观看视角的中心点在该当前帧的全景图像中的第一位置信息,和该当前帧的全景图像的中心点的第二位置信息。其中,当前帧的观看视角的中心点的第一位置信息可以从观看者当前所使用的计算机设备上获取,当前帧的全景图像的中心点的第二位置信息可以根据该当前帧的全景图像的宽度和高度来确定;例如:如图3所示,该当前帧的全景图像为A,当前帧的观看视角的中心点可以为图3中的c点,当前帧的全景图像的中心点可以为图3中的q点;该观看视角的中心点c点的第一位置信息可以包括该c点在该二维平面上对应的坐标,该全景图像的中心点q点的第二位置信息可以包括该q点在该二维平面上对应的坐标,该坐标可以表示为(W/2,H/2),其中,W为当前帧的全景图像的宽度,H为当前帧的 全景图像的高度。
步骤202,根据该第一位置信息和该第二位置信息,确定第一映射关系。
为了确保在压缩的过程中,保持观看者的观看视角对应的画面的清晰度,在获取到观看者在当前帧全景图像的观看视角的中心点之后,如果确定该观看视角的中心点不是该当前帧全景图像的中心点,此时,可以将该当前帧全景图像进行转换,以得到以该观看视角的中心点为中心的全景图像。
可选地,在得到当前帧的观看视角的中心点在全景图像中的第一位置信息,以及该全景图像的中心点的第二位置信息之后,可以根据该第一位置信息和该第二位置信息,确定一个第一映射关系;例如:可以根据第一位置信息和第二位置信息,将该第一位置在水平方向上平移和在竖直方向上平移,使其到达第二位置来确定该第一映射关系;本申请实施例对确定该第一映射关系的方法并不做限定,能够根据该第一映射关系,确定该第一位置信息到该第二位置信息之间的映射即可。
步骤203,根据该第一映射关系对该全景图像进行转换,得到中间全景图像;该中间全景图像以该观看视角的中心点为中心。
在根据第一位置信息和第二位置信息得到该第一映射关系之后,此时,可以根据该第一映射关系对该全景图像进行转换,即根据该第一映射关系,将该全景图像的每一个像素位置信息都进行相应的转换,得到中间全景图像;其中,该中间全景图像即为以该观看者在当前帧全景图像上的观看视角的中心点为中心的全景图像。
步骤204,对该中间全景图像进行压缩,得到目标全景图像。
在本实施例的一种可选的实现方式中,在得到以该观看者在当前帧全景图像上的观看视角的中心点为中心的中间全景图像之后,可以对该中间全景图像进行压缩,得到目标全景图像;该目标全景图像即为在保持观看者观看视角的中心点的清晰度的前提下,对该当前帧全景图像进行压缩以降低该当前帧全景图像的传输带宽。可选地,在对该中间全景图像进行压缩时,可以采用同一压缩率对该中间全景图像进行压缩;也可以针对该中间全景图像的不同位置采用不同的压缩率进行压缩;还可以对该观看视角中心点的一定范围内的画面不进 行压缩,而对于该观看视角中心点的一定范围之外的画面进行压缩;本实施例对压缩的方式并不做限定。
上述全景视频压缩方法中,计算机设备通过获取全景视频的当前帧的观看视角的中心点在全景图像中的第一位置信息,以及该全景图像的中心点的第二位置信息;并根据该第一位置信息和该第二位置信息,确定第一映射关系;进而根据该第一映射关系对该全景图像进行转换,得到以该观看视角的中心点为中心的中间全景图像;接着,对该中间全景图像进行压缩,得到目标全景图像;也就是说,本申请实施例中,计算机设备在减少全景视频的传输带宽时,首先将获取到的当前帧全景图像进行转换,以确保观看者当前的观看视角的中心点位于全景图像的中心;并在此基础上,对该转换后的全景图像进行压缩,降低当前帧全景图像的传输带宽;因此,依据该过程处理后的全景图像,不仅能够减少全景视频在传输或者保存过程中的传输带宽,还能确保观看者当前观看视角对应的画面的清晰度,大大提高了压缩后的全景视频的清晰度,还能提高用户体验。
图4为另一个实施例中全景视频压缩方法的流程示意图。本实施例涉及的是对该中间全景图像进行压缩得到目标全景图像的一种可选的实现过程,在上述实施例的基础上,如图4所示,上述步骤204包括:
步骤401,根据预设的第二映射关系,对该中间全景图像进行压缩,得到压缩全景图像。
在本实施例的一种可选的实现方式中,在对该中间全景图像进行压缩时,可以沿水平方向对该中间全景图像进行压缩,也可以沿垂直方向对该中间全景图像进行压缩,还可以同时沿水平方向和垂直方向对该中间全景图像进行压缩,当然也可以沿二维平面中的任意至少一个方向对该中间全景图像进行压缩;本申请实施例对此并不做限定;另外,在采用不同方向对该中间全景图像进行压缩时,对应的预设的第二映射关系不同,得到的压缩全景图像自然也不同。可选地,在根据预设的第二映射关系,沿水平方向对该中间全景图像进行压缩,得到的压缩全景图像与该中间全景图像的宽度不同,高度相同;在根据预设的第二映射关系,沿垂直方向对该中间全景图像进行压缩,得到的压缩全景图像 与该中间全景图像的宽度相同,高度不同;在根据预设的第二映射关系,同时沿水平方向和垂直方向对该中间全景图像进行压缩,得到的压缩全景图像与该中间全景图像的宽度不同,高度也不同。可选地,该预设的第二映射关系,可以是同一压缩率下对应的中间全景图像与压缩全景图像之间的映射关系,也可以是不同压缩率下对应的中间全景图像与压缩全景图像之间的映射关系;根据该预设的第二映射关系,得到的压缩全景图像可以是矩形,也可以是方形,还可以是圆形等;本申请实施例对该预设的第二映射关系并不做限定。
步骤402,根据该压缩全景图像确定该目标全景图像。
在得到压缩全景图像之后,可以根据该压缩全景图像确定该目标全景图像;可选地,在该压缩全景图像为矩形或者方形的情况下,可以将该压缩全景图像确定为该目标全景图像;在该压缩全景图像为除了矩形或者方形之外的其他任何形状的情况下,可以将该压缩全景图像进行一定的变换之后,得到形状为矩形或者方形的全景图像作为该目标全景图像。本实施例对将除了矩形或者方形之外的其他任何形状的压缩全景图像,转换为形状为矩形或者方形的目标全景图像的方式并不做限定,只要能够得到形状为矩形或者方形的目标全景图像即可。
本实施例中,计算机设备根据预设的第二映射关系,对该中间全景图像进行压缩,得到压缩全景图像,并根据该压缩全景图像确定该目标全景图像;也就是说,本实施例中,计算机设备在得到以该观看视角的中心点为中心的中间全景图像之后,根据预设的第二映射关系,可以沿水平方向对该中间全景图像进行压缩,得到压缩全景图像,使得该压缩全景图像的高度与该中间全景图像的高度保持一致,该压缩全景图像的宽度小于该中间全景图像的宽度,以减小全景视频在传输或保存过程中的传输带宽,避免了传输带宽的浪费。
在本申请的一个可选的实施例中,在对该中间全景图像进行压缩时,根据预设的第二映射关系,可以沿水平方向对中间全景图像进行压缩,得到压缩全景图像,该压缩全景图像的高度与该中间全景图像的高度相等,且该压缩全景图像的宽度为该中间全景图像的宽度的一半;也就是说,本实施例中,在根据预设的第二映射关系,沿水平方向对该中间全景图像进行压缩后得到的压缩全 景图像,无论其形状如何,其传输带宽均为该中间全景图像的传输带宽的一半,大大减少了全景视频的传输或者保存过程中的传输带宽。
在本申请的一个可选的实施例中,该中间全景图像中的像素点与该中间全景图像的中心像素点之间的距离与该中间全景图像的压缩率正相关;也就是说,计算机设备在将中间全景图像进行压缩时,越靠近该中间全景图像的中心的像素点的压缩率越低,而靠近该中间全景图像边缘的像素点的压缩率越高,即根据该中间全景图像中的像素点与该中间全景图像的中心像素点之间的距离与该中间全景图像的压缩率正相关的这一关系,能够更大程度地提高观看视角中心画面的清晰度,而降低观看视角之外的画面的清晰度。
图5为另一个实施例中全景视频压缩方法的流程示意图。本实施例涉及的是在上述步骤401得到的压缩全景图像为菱形的情况下,根据该压缩全景图像确定该目标全景图像的一种可选的实现过程,在上述实施例的基础上,如图5所示,上述步骤402包括:
步骤501,对该压缩全景图像沿水平中心线和竖直中心线进行分割,得到四个分割图像。
在本实施例的一种可选的实现过程中,在上述压缩全景图像为菱形的情况下,可以对该压缩全景图像沿水平中心线和竖直中心线进行分割,得到四个分割图像;例如:如图6所示,该菱形的高度与该菱形的宽度相同时,沿水平中心线和竖直中心线对该菱形进行分割,可以得到四个大小相等的直角三角形。
步骤502,将该四个分割图像进行重组,得到该目标全景图像。
在本实施例的一种可选的实现过程中,将分割后的四个分割图像进行重组,可以得到该目标全景图像;可选地,可以将相邻的两个分割图像,分别按照预设的旋转方向和旋转角度进行旋转,得到该目标全景图像;例如:如图6所示,可以将左上的直角三角形A沿菱形上顶点逆时针旋转90°,将左下的直角三角形B沿菱形下顶点顺时针旋转90°,即可将菱形重组为矩形,得到形状为矩形的目标全景图像;该目标全景图像的高度与该中间全景图像的高度相等,且该目标全景图像的宽度为该中间全景图像的宽度的四分之一,即可以压缩75%的画面。该目标全景图像不仅尺寸缩减为原来的四分之一,同时还保持了观看视角中心 点附近画面的清晰度;该目标全景图像的画面虽然经过了画面的切割重组,但是,由于本申请的全景视频压缩方法的过程利用了圆柱投影的特性,使得拼接处两侧的画面来自全景图像的同一物体,因此,重组后的画面不存在可见拼接缝,还能够提升后续全景视频编码的效率。
可选地,在将该四个分割图像进行重组时,也可以将左上的直角三角形沿菱形左顶点顺时针旋转90°,将右上的直角三角形沿菱形右顶点逆时针旋转90°,即可将菱形重组为矩形,得到形状为矩形的目标全景图像;该目标全景图像的高度为该中间全景图像的高度一半,且该目标全景图像的宽度为该中间全景图像的宽度的一半。
本实施例中,计算机设备在该压缩全景图像为菱形的情况下,对该压缩全景图像沿水平中心线和竖直中心线进行分割,得到四个分割图像,并将该四个分割图像进行重组,得到该目标全景图像;也就是说,计算机设备可以将形状为菱形的压缩全景图像经过分割重组,得到形状为矩形的目标全景图像,以满足全景视频在传输或者保存过程中的平面矩形的传输条件,大大提高了计算机设备的智能性和可扩展性。
在本申请的一个可选的实施例中,上述第二映射关系可以为根据预设的S型曲线构建的映射关系,且该S型曲线满足以下条件:该S型曲线经过三个定点(-1,-1)、(0,0)、(+1,+1);该S型曲线相对于原点中心对称;该S型曲线在原点处的斜率最大。例如:假设该第二映射关系为f 2:p′→p″,其中:p′:(x,y)为上述中间全景图像上的一点,p″:(x′,y)为上述压缩全景图像上的一点,垂直方向坐标不变,水平方向上的坐标x′的计算过程如下:
Figure PCTCN2022082310-appb-000001
Figure PCTCN2022082310-appb-000002
x 2=(1-|y 1|)·S(x 1)              (3)
Figure PCTCN2022082310-appb-000003
其中,W为该中间全景图像的宽度,H为该中间全景图像的高度,x 1、y 1、x 2均为中间变量,S(·)为上述S型曲线函数,根据上述公式(1)-公式(4),可 以计算得到每一个中间全景图像上的一点转换为该压缩全景图像上的一点的坐标。对于该S型曲线,可选地,如图7所示,该S型曲线可以为一个由(-1,-1)、(+0.25,-1)、(-0.25,+1)、(+1,+1)四个节点确定的三次贝塞尔曲线;根据该S型曲线,可由任意x∈[-1,1]找到该曲线上的唯一一点(x,S(x)),其纵坐标即为S(x)的值。
本实施例中,该第二映射关系可以为根据预设的S型曲线构建的映射关系,根据预设的S型曲线满足的要求,可以得到越靠近中间全景图像中心点的像素,在压缩过程中,其压缩率越低,而越靠近中间全景图像边缘点的像素,压缩率越高,即使得压缩后的压缩全景图像的中心点附近的画面的清晰度更高,大大提高了全景图像压缩的效果,保证了观看视角中心点的画面清晰度。
上述第一位置信息可以包括该观看视角的中心点在全景图像中的第一位置坐标,该第二位置信息可以包括该全景图像的中心点的第二位置坐标;在根据第一位置信息和第二位置信息确定第一映射关系时,可以根据第一位置坐标和第二位置坐标来确定第一映射关系。图8为另一个实施例中全景视频压缩方法的流程示意图。本实施例涉及的是根据第一位置信息和第二位置信息确定第一映射关系的一种可选的实现过程,在上述实施例的基础上,如图8所示,上述步骤202包括:
步骤801,将该第一位置坐标投影到该全景图像对应的球面图像所在坐标系中,得到第三位置坐标。
步骤802,将该第二位置坐标投影到该球面图像所在坐标系中,得到第四位置坐标。
根据圆柱投影的定义,可以根据第三映射关系,将投影的平面坐标与对应的球面坐标一一对应,假设该第三映射关系可以表示为:
Figure PCTCN2022082310-appb-000004
其中,p为平面坐标,
Figure PCTCN2022082310-appb-000005
为球面坐标;那么,可以根据该第三映射关系
Figure PCTCN2022082310-appb-000006
将该第一位置坐标投影到该全景图像对应的球面图像所在坐标系中,得到第三位置坐标;以及将该第二位置坐标投影到该球面图像所在坐标系中,得到第四位置坐标;例如:该第一位置坐标为c,则该第三位置坐标为
Figure PCTCN2022082310-appb-000007
该第二位置坐标为q,则该第四位置坐标为
Figure PCTCN2022082310-appb-000008
步骤803,根据该第三位置坐标和该第四位置坐标,确定该第一映射关系。
计算机设备在得到观看视角中心点坐标和全景图像中心点坐标分别在球面上的第三位置坐标和第四位置坐标之后,为了使得该观看视角的中心点落在全景图像的中心点,即对应到球面时,也就是使得第三位置坐标旋转变换到第四位置坐标处;可选地,可以根据第三位置坐标和第四位置坐标确定一个三维旋转变换R,该三维旋转变换R可以是一个旋转变换矩阵,使得该第三位置坐标能够根据该三维旋转变换R,旋转变换到第四位置坐标处,即使得
Figure PCTCN2022082310-appb-000009
可选地,该三维旋转变换R可以通过以下方式得到,即将
Figure PCTCN2022082310-appb-000010
绕Z轴旋转,使其落入与
Figure PCTCN2022082310-appb-000011
相同的垂直平面(即XZ平面),然后,再绕Y轴旋转,使
Figure PCTCN2022082310-appb-000012
Figure PCTCN2022082310-appb-000013
重合,将两次旋转的合并变换即可作为该三维旋转变换R。本实施例对该三维旋转变换R的获取方式并不限定。
在将球面上的
Figure PCTCN2022082310-appb-000014
旋转变换为
Figure PCTCN2022082310-appb-000015
时,再经过一个第三映射关系的反变换,即可将球面上的坐标再次映射到平面坐标,也就是,根据该三维旋转变换R和上述第三映射关系,能够确定该第一映射关系,进而根据该第一映射关系,可以将当前帧的全景图像转换为以观看视角的中心点为中心的中间全景图像。假设该第一映射关系为f 1:p→p′,其中,p为当前帧的全景图像上的任一像素坐标,p′为对应的该中间全景画面上的任一像素坐标,p′可以通过公式(5)来表示。
Figure PCTCN2022082310-appb-000016
本实施例中,计算机设备将该第一位置坐标投影到该全景图像对应的球面图像所在坐标系中,得到第三位置坐标,以及将该第二位置坐标投影到该球面图像所在坐标系中,得到第四位置坐标,进而根据该第三位置坐标和该第四位置坐标,确定该第一映射关系;也就是说,本实施例中计算机设备将平面全景图像上的观看视角的中心点坐标和全景图像的中心点坐标对应到球面上,并根据球面上的该两个坐标之间的关系,最终确定出平面全景图像上的观看视角的中心点坐标和全景图像的中心点坐标之间的第一映射关系,通过球面上的旋转变化能够使得该第一映射关系更精确,进而使得将转换后的以观看视角的中心点为中心的中间全景图像进行压缩后的画面清晰度更高。
应该理解的是,虽然图2-8的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明 确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图2-8中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。
在一个实施例中,如图9所示,提供了一种全景视频压缩装置,包括:获取模块901、第一确定模块902、第二确定模块903和第三确定模块904,其中:
获取模块901,用于获取全景视频的当前帧全景图像的观看视角的中心点在该全景图像中的第一位置信息,以及该全景图像的中心点的第二位置信息。
第一确定模块902,用于根据该第一位置信息和该第二位置信息,确定第一映射关系。
第二确定模块903,用于根据该第一映射关系对该全景图像进行转换,得到中间全景图像;该中间全景图像以所述观看视角的中心点为中心。
第三确定模块904,用于对该中间全景图像进行压缩,得到目标全景图像。
在其中一个实施例中,上述第三确定模块904,具体用于根据预设的第二映射关系,对该中间全景图像进行压缩,得到压缩全景图像;以及根据该压缩全景图像确定该目标全景图像。
在其中一个实施例中,上述第三确定模块904,具体用于根据预设的第二映射关系,沿水平方向对该中间全景图像进行压缩,得到压缩全景图像;该压缩全景图像的高度与该中间全景图像的高度相等,且该压缩全景图像的宽度为该中间全景图像的宽度的一半。
在其中一个实施例中,该中间全景图像中的像素点与该中间全景图像的中心像素点之间的距离与该中间全景图像的压缩率正相关。
在其中一个实施例中,在该压缩全景图像为菱形的情况下,上述第三确定模块904,具体用于对该压缩全景图像沿水平中心线和竖直中心线进行分割,得到四个分割图像;将该四个分割图像进行重组,得到该目标全景图像。
在其中一个实施例中,上述第三确定模块904,具体用于将相邻的两个分割图像,分别按照预设的旋转方向和旋转角度进行旋转,得到该目标全景图像。
在其中一个实施例中,该第二映射关系为根据预设的S型曲线构建的映射关系,且该S型曲线满足以下条件:该S型曲线经过三个定点(-1,-1)、(0,0)、(+1,+1);该S型曲线相对于原点中心对称;该S型曲线在原点处的斜率最大。
在其中一个实施例中,该第一位置信息包括该观看视角的中心点在全景图像中的第一位置坐标,该第二位置信息包括该全景图像的中心点的第二位置坐标;上述第一确定模块902,具体用于将该第一位置坐标投影到该全景图像对应的球面图像所在坐标系中,得到第三位置坐标;将该第二位置坐标投影到该球面图像所在坐标系中,得到第四位置坐标;根据该第三位置坐标和该第四位置坐标,确定该第一映射关系。
关于全景视频压缩装置的具体限定可以参见上文中对于全景视频压缩方法的限定,在此不再赘述。上述全景视频压缩装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一个实施例中,提供了一种计算机设备,该计算机设备可以是具有视频功能的终端,其内部结构图可以如图10所示。该计算机设备包括通过系统总线连接的处理器、存储器、通信接口、显示屏和输入装置。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的通信接口用于与外部的终端进行有线或无线方式的通信,无线方式可通过WIFI、运营商网络、NFC(近场通信)或其他技术实现。该计算机程序被处理器执行时以实现一种全景视频压缩方法。该计算机设备的显示屏可以是液晶显示屏或者电子墨水显示屏,该计算机设备的输入装置可以是显示屏上覆盖的触摸层,也可以是计算机设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。
本领域技术人员可以理解,图10中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定, 具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,提供了一种计算机设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现以下步骤:
获取全景视频的当前帧全景图像的观看视角的中心点在该全景图像中的第一位置信息,以及该全景图像的中心点的第二位置信息;
根据该第一位置信息和该第二位置信息,确定第一映射关系;
根据该第一映射关系对该全景图像进行转换,得到中间全景图像;该中间全景图像以该观看视角的中心点为中心;
对该中间全景图像进行压缩,得到目标全景图像。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:根据预设的第二映射关系,对该中间全景图像进行压缩,得到压缩全景图像;根据该压缩全景图像确定该目标全景图像。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:根据预设的第二映射关系,沿水平方向对该中间全景图像进行压缩,得到压缩全景图像;该压缩全景图像的高度与该中间全景图像的高度相等,且该压缩全景图像的宽度为该中间全景图像的宽度的一半。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:该中间全景图像中的像素点与该中间全景图像的中心像素点之间的距离与该中间全景图像的压缩率正相关。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:在该压缩全景图像为菱形的情况下,对该压缩全景图像沿水平中心线和竖直中心线进行分割,得到四个分割图像;将该四个分割图像进行重组,得到该目标全景图像。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:将相邻的两个分割图像,分别按照预设的旋转方向和旋转角度进行旋转,得到该目标全景图像。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:该第二映射关系为根据预设的S型曲线构建的映射关系,且该S型曲线满足以下条件:该S 型曲线经过三个定点(-1,-1)、(0,0)、(+1,+1);该S型曲线相对于原点中心对称;该S型曲线在原点处的斜率最大。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:该第一位置信息包括该观看视角的中心点在全景图像中的第一位置坐标,该第二位置信息包括该全景图像的中心点的第二位置坐标;将该第一位置坐标投影到该全景图像对应的球面图像所在坐标系中,得到第三位置坐标;将该第二位置坐标投影到该球面图像所在坐标系中,得到第四位置坐标;根据该第三位置坐标和该第四位置坐标,确定该第一映射关系。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现以下步骤:
获取全景视频的当前帧全景图像的观看视角的中心点在该全景图像中的第一位置信息,以及该全景图像的中心点的第二位置信息;
根据该第一位置信息和该第二位置信息,确定第一映射关系;
根据该第一映射关系对该全景图像进行转换,得到中间全景图像;该中间全景图像以该观看视角的中心点为中心;
对该中间全景图像进行压缩,得到目标全景图像。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:根据预设的第二映射关系,对该中间全景图像进行压缩,得到压缩全景图像;根据该压缩全景图像确定该目标全景图像。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:根据预设的第二映射关系,沿水平方向对该中间全景图像进行压缩,得到压缩全景图像;该压缩全景图像的高度与该中间全景图像的高度相等,且该压缩全景图像的宽度为该中间全景图像的宽度的一半。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:该中间全景图像中的像素点与该中间全景图像的中心像素点之间的距离与该中间全景图像的压缩率正相关。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:在该压缩全景图像为菱形的情况下,对该压缩全景图像沿水平中心线和竖直中心线进行 分割,得到四个分割图像;将该四个分割图像进行重组,得到该目标全景图像。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:将相邻的两个分割图像,分别按照预设的旋转方向和旋转角度进行旋转,得到该目标全景图像。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:该第二映射关系为根据预设的S型曲线构建的映射关系,且该S型曲线满足以下条件:该S型曲线经过三个定点(-1,-1)、(0,0)、(+1,+1);该S型曲线相对于原点中心对称;该S型曲线在原点处的斜率最大。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:该第一位置信息包括该观看视角的中心点在全景图像中的第一位置坐标,该第二位置信息包括该全景图像的中心点的第二位置坐标;将该第一位置坐标投影到该全景图像对应的球面图像所在坐标系中,得到第三位置坐标;将该第二位置坐标投影到该球面图像所在坐标系中,得到第四位置坐标;根据该第三位置坐标和该第四位置坐标,确定该第一映射关系。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-Only Memory,ROM)、磁带、软盘、闪存或光存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或外部高速缓冲存储器。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static Random Access Memory,SRAM)或动态随机存取存储器(Dynamic RandomAccess Memory,DRAM)等。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细, 但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (11)

  1. 一种全景视频压缩方法,其特征在于,所述方法包括:
    获取全景视频的当前帧全景图像的观看视角的中心点在所述全景图像中的第一位置信息,以及所述全景图像的中心点的第二位置信息;
    根据所述第一位置信息和所述第二位置信息,确定第一映射关系;
    根据所述第一映射关系对所述全景图像进行转换,得到中间全景图像;所述中间全景图像以所述观看视角的中心点为中心;
    对所述中间全景图像进行压缩,得到目标全景图像。
  2. 根据权利要求1所述的方法,其特征在于,所述对所述中间全景图像进行压缩,得到目标全景图像,包括:
    根据预设的第二映射关系,对所述中间全景图像进行压缩,得到压缩全景图像;
    根据所述压缩全景图像确定所述目标全景图像。
  3. 根据权利要求2所述的方法,其特征在于,所述根据预设的第二映射关系,对所述中间全景图像进行压缩,得到压缩全景图像,包括:
    根据预设的第二映射关系,沿水平方向对所述中间全景图像进行压缩,得到压缩全景图像;所述压缩全景图像的高度与所述中间全景图像的高度相等,且所述压缩全景图像的宽度为所述中间全景图像的宽度的一半。
  4. 根据权利要求2或3所述的方法,其特征在于,所述中间全景图像中的像素点与所述中间全景图像的中心像素点之间的距离与所述中间全景图像的压缩率正相关。
  5. 根据权利要求2所述的方法,其特征在于,若所述压缩全景图像为菱形,则所述根据所述压缩全景图像确定所述目标全景图像,包括:
    对所述压缩全景图像沿水平中心线和竖直中心线进行分割,得到四个分割图像;
    将所述四个分割图像进行重组,得到所述目标全景图像。
  6. 根据权利要求5所述的方法,其特征在于,所述将所述四个分割图像进行重组,得到所述目标全景图像,包括:
    将相邻的两个分割图像,分别按照预设的旋转方向和旋转角度进行旋转, 得到所述目标全景图像。
  7. 根据权利要求2所述的方法,其特征在于,所述第二映射关系为根据预设的S型曲线构建的映射关系,且所述S型曲线满足以下条件:
    所述S型曲线经过三个定点(-1,-1)、(0,0)、(+1,+1);
    所述S型曲线相对于原点中心对称;
    所述S型曲线在原点处的斜率最大。
  8. 根据权利要求1所述的方法,其特征在于,所述第一位置信息包括所述观看视角的中心点在全景图像中的第一位置坐标,所述第二位置信息包括所述全景图像的中心点的第二位置坐标;所述根据所述第一位置信息和所述第二位置信息,确定第一映射关系,包括:
    将所述第一位置坐标投影到所述全景图像对应的球面图像所在坐标系中,得到第三位置坐标;
    将所述第二位置坐标投影到所述球面图像所在坐标系中,得到第四位置坐标;
    根据所述第三位置坐标和所述第四位置坐标,确定所述第一映射关系。
  9. 一种全景视频压缩装置,其特征在于,所述装置包括:
    获取模块,用于获取全景视频的当前帧全景图像的观看视角的中心点在所述全景图像中的第一位置信息,以及所述全景图像的中心点的第二位置信息;
    第一确定模块,用于根据所述第一位置信息和所述第二位置信息,确定第一映射关系;
    第二确定模块,用于根据所述第一映射关系对所述全景图像进行转换,得到中间全景图像;所述中间全景图像以所述观看视角的中心点为中心;
    第三确定模块,用于对所述中间全景图像进行压缩,得到目标全景图像。
  10. 一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至8中任一项所述的方法的步骤。
  11. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1至8中任一项所述的方法的步骤。
PCT/CN2022/082310 2021-03-26 2022-03-22 全景视频压缩方法、装置、计算机设备和存储介质 WO2022199584A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110325218.4A CN115134604A (zh) 2021-03-26 2021-03-26 全景视频压缩方法、装置、计算机设备和存储介质
CN202110325218.4 2021-03-26

Publications (1)

Publication Number Publication Date
WO2022199584A1 true WO2022199584A1 (zh) 2022-09-29

Family

ID=83373856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082310 WO2022199584A1 (zh) 2021-03-26 2022-03-22 全景视频压缩方法、装置、计算机设备和存储介质

Country Status (2)

Country Link
CN (1) CN115134604A (zh)
WO (1) WO2022199584A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150172545A1 (en) * 2013-10-03 2015-06-18 Flir Systems, Inc. Situational awareness by compressed display of panoramic views
CN106101847A (zh) * 2016-07-12 2016-11-09 三星电子(中国)研发中心 全景视频交互传输的方法和系统
CN106162140A (zh) * 2016-08-30 2016-11-23 北京奇艺世纪科技有限公司 一种全景视频的压缩方法及装置
CN106331732A (zh) * 2016-09-26 2017-01-11 北京疯景科技有限公司 生成、展现全景内容的方法及装置
CN106651764A (zh) * 2016-12-29 2017-05-10 北京奇艺世纪科技有限公司 一种全景图压缩方法及装置
US20180249076A1 (en) * 2017-02-27 2018-08-30 Alibaba Group Holding Limited Image Mapping and Processing Method, Apparatus and Machine-Readable Media

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150172545A1 (en) * 2013-10-03 2015-06-18 Flir Systems, Inc. Situational awareness by compressed display of panoramic views
CN106101847A (zh) * 2016-07-12 2016-11-09 三星电子(中国)研发中心 全景视频交互传输的方法和系统
CN106162140A (zh) * 2016-08-30 2016-11-23 北京奇艺世纪科技有限公司 一种全景视频的压缩方法及装置
CN106331732A (zh) * 2016-09-26 2017-01-11 北京疯景科技有限公司 生成、展现全景内容的方法及装置
CN106651764A (zh) * 2016-12-29 2017-05-10 北京奇艺世纪科技有限公司 一种全景图压缩方法及装置
US20180249076A1 (en) * 2017-02-27 2018-08-30 Alibaba Group Holding Limited Image Mapping and Processing Method, Apparatus and Machine-Readable Media

Also Published As

Publication number Publication date
CN115134604A (zh) 2022-09-30

Similar Documents

Publication Publication Date Title
US10595004B2 (en) Electronic device for generating 360-degree three-dimensional image and method therefor
US11257283B2 (en) Image reconstruction method, system, device and computer-readable storage medium
WO2018157568A1 (zh) 全景图像映射方法
US10242714B2 (en) Interface for application-specified playback of panoramic video
CN107454468B (zh) 对沉浸式视频进行格式化的方法、装置和流
TWI673995B (zh) 生成和編碼包括堆疊在360度虛擬實境投影佈局中的至少一個填充區域和至少一個投影面的基於投影的圖框的方法及裝置
TWI637355B (zh) 紋理貼圖之壓縮方法及其相關圖像資料處理系統與產生360度全景視頻之方法
CN112204993B (zh) 使用重叠的被分区的分段的自适应全景视频流式传输
US11004173B2 (en) Method for processing projection-based frame that includes at least one projection face packed in 360-degree virtual reality projection layout
US7656403B2 (en) Image processing and display
US11941748B2 (en) Lightweight view dependent rendering system for mobile devices
JP2019534606A (ja) ライトフィールドデータを使用して場面を表す点群を再構築するための方法および装置
WO2021238454A1 (zh) 直播视频的展示方法、装置、终端和可读存储介质
WO2018068612A1 (zh) 一种全景图像的映射方法、装置和设备
US20140321771A1 (en) Techniques for real-time clearing and replacement of objects
EP3570540A1 (en) Method and apparatus for transmitting stereoscopic video content
TWI702567B (zh) 用於處理包括封裝在360度虛擬現實投影佈局中的至少一個投影面的基於投影的圖框的方法
US10657711B2 (en) Surface reconstruction for interactive augmented reality
WO2018068680A1 (zh) 图像处理方法和装置
CN109035134B (zh) 全景图像拼接方法、装置、电子设备及存储介质
WO2018040860A1 (zh) 一种全景视频的压缩方法及装置
WO2018113339A1 (zh) 一种投影图构建方法及装置
WO2023035841A1 (zh) 用于图像处理的方法、装置、设备、存储介质和程序产品
US9996311B2 (en) Efficient communication interface for casting interactively controlled visual content
CN111091491B (zh) 一种等距圆柱投影的全景视频像素再分配方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774240

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22774240

Country of ref document: EP

Kind code of ref document: A1