WO2022199524A1 - 传感器组件及电子设备 - Google Patents

传感器组件及电子设备 Download PDF

Info

Publication number
WO2022199524A1
WO2022199524A1 PCT/CN2022/081982 CN2022081982W WO2022199524A1 WO 2022199524 A1 WO2022199524 A1 WO 2022199524A1 CN 2022081982 W CN2022081982 W CN 2022081982W WO 2022199524 A1 WO2022199524 A1 WO 2022199524A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
photosensitive
sensors
substrate
light
Prior art date
Application number
PCT/CN2022/081982
Other languages
English (en)
French (fr)
Inventor
何伟
杨哲宇
祝夭龙
Original Assignee
北京灵汐科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110319761.3A external-priority patent/CN113099082A/zh
Priority claimed from CN202110319816.0A external-priority patent/CN112964308A/zh
Priority claimed from CN202110319756.2A external-priority patent/CN113037982B/zh
Application filed by 北京灵汐科技有限公司 filed Critical 北京灵汐科技有限公司
Publication of WO2022199524A1 publication Critical patent/WO2022199524A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof

Definitions

  • the present disclosure relates to the field of sensing technology, and in particular, to a sensor assembly and an electronic device.
  • Embodiments of the present disclosure provide a sensor assembly and an electronic device.
  • an embodiment of the present disclosure provides a sensor assembly, comprising: a substrate, and at least two sensors disposed on a first side of the substrate, wherein the sensors of the at least two sensors are stacked in sequence, and all the sensors
  • the at least two sensors include at least two sensors with different functions.
  • an embodiment of the present disclosure further provides an electronic device, including the sensor assembly provided by the embodiment of the present disclosure.
  • the sensor assembly by sequentially stacking at least two sensors with different functions on the substrate, the sensor assembly can realize the functions of at least two kinds of sensors, the detection performance of the sensor assembly is improved, and the comprehensive performance of the sensor assembly is improved. To meet different application scenarios, it also improves the integration of sensor components.
  • FIG. 1 is a schematic structural diagram of a sensor assembly provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of another sensor assembly provided by an embodiment of the present disclosure.
  • FIG. 3 is a schematic structural diagram of still another sensor assembly provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of another sensor assembly provided by an embodiment of the present disclosure.
  • Sensors with a single perception mode cannot meet the needs of different application scenarios. In some application scenarios, it is necessary to sense not only the light intensity signal, but also the change amount of the light intensity signal; in some application scenarios, it is necessary to realize both the shooting function and the ranging function. However, related sensors cannot meet the needs of different application scenarios.
  • Embodiments of the present disclosure provide a sensor assembly that can implement multiple functions to meet requirements of different application scenarios.
  • FIG. 1 is a schematic structural diagram of a sensor assembly according to an embodiment of the present disclosure.
  • a sensor assembly provided by an embodiment of the present disclosure includes: a substrate 10 , and at least two sensors (eg, a first sensor 20 and a second sensor 30 ) disposed on a first side of the substrate 10 , at least two sensors The sensors in the sensor are stacked in sequence, and at least two sensors include at least two sensors with different functions.
  • the substrate 10 may be silicon-based, glass-based or other suitable materials for carrying sensors.
  • the embodiment of the present disclosure does not limit the material of the substrate 10 .
  • the number of sensors is at least two, and there are at least two sensors with different functions.
  • the functions of the two sensors are different.
  • the sensor assembly includes three sensors, one of which has a different function than the other two sensors, or all three sensors have a different function.
  • the sensor assembly includes four or more sensors, at least one of them also functions differently from the other sensors.
  • the functions of the sensor include photoelectric function, acoustic function, mechanical function, magnetic function and temperature function, and the sensor with the corresponding function can be selected according to the needs.
  • the photoelectric function can also have multiple photoelectric functions, such as realizing static scene function or dynamic scene function. In other words, even if the sensors are all photosensitive sensors, different optoelectronic functions can be implemented.
  • the sensors in the at least two sensors are arranged in sequence in a stacked manner, which means that a plurality of sensors are stacked in sequence in the propagation direction of the incident light.
  • the sensor assembly includes two sensors, one of the sensors is stacked on the first side of the substrate 10 and the other sensor is stacked on the first side of the sensor stacked with the substrate 10 .
  • the second sensor 30 is stacked on the first side of the substrate 10
  • the first sensor 20 is stacked on the first side of the second sensor 30 .
  • the first side of the substrate 10 refers to the light-receiving surface (closer to the incident light) of the two opposite sides of the substrate 10 in the propagation direction of the incident light
  • the second side of the substrate 10 refers to the side of the substrate 10 on the incident light
  • the first side of the sensor refers to the light-receiving side of the sensor
  • the second side of the sensor refers to the backlight side of the sensor.
  • At least one of the at least two sensors is a photosensitive sensor.
  • the sensor assembly includes two sensors, one of which is a photosensitive sensor, or both sensors are photosensitive sensors, but the two photosensitive sensors may implement different functions.
  • the sensor assembly includes three sensors, one of them is a photosensitive sensor, and the other two sensors can be either photosensitive sensors or sensors that realize acoustic function, mechanical function, magnetic function and temperature function. It should be pointed out that when the other two sensors are both photosensitive sensors, that is, when the three sensors are all photosensitive sensors, the three photosensitive sensors can implement at least two functions.
  • the sensor assembly can realize the functions of at least two kinds of sensors, which not only improves the optical detection performance of the sensor assembly, but also improves the comprehensive performance of the sensor assembly , which improves robustness and also improves the integration of sensor components.
  • the sensor assembly includes a plurality of sensors, and only two sensors are shown in the figure, ie, the first photosensitive sensor 40 and the second photosensitive sensor 50 .
  • the first photosensitive sensor 40 has a first photosensitive area 41
  • the second photosensitive sensor 50 has a second photosensitive area 51
  • both the first photosensitive area 41 and the second photosensitive area 51 can receive light from the outside.
  • the outside world refers to the outside of the sensor assembly.
  • the first photosensitive sensor 40 and the second photosensitive sensor 50 are stacked on the substrate 10 , and the first photosensitive area 41 of the first photosensitive sensor 40 and the second photosensitive area of the second photosensitive sensor 50 are 51 can receive light from the outside, so that the sensor assembly can realize the optical function corresponding to the first photosensitive sensor 40 and the optical function corresponding to the second photosensitive sensor 50, that is, the sensor assembly can realize the functions of at least two kinds of photosensitive sensors.
  • the optical detection performance of the sensor assembly is improved, and the overall performance of the sensor assembly is improved.
  • the first photosensitive area 41 on the first photosensitive sensor 40 and the first photosensitive area 41 on the second photosensitive sensor 50 are arranged in a staggered position.
  • the coincidence degree of the projection area of the first photosensitive area 41 on the substrate 10 and the projection area of the second photosensitive area 51 on the substrate 10 is set to zero, that is, the first photosensitive area
  • the projections of 41 and the second photosensitive area 51 on the substrate 10 are completely misaligned, so that the first photosensitive area 41 does not affect the second photosensitive area 51 to receive incident light, thereby improving the exposure of the first photosensitive area 41 and the second photosensitive area 51 to the outside world.
  • the reception performance of incoming light is set to zero, that is, the first photosensitive area
  • the projections of 41 and the second photosensitive area 51 on the substrate 10 are completely misaligned, so that the first photosensitive area 41 does not affect the second photosensitive area 51 to receive incident light, thereby improving the exposure of the first photosensitive area 41 and the second photosensitive area 51 to the outside world.
  • the external light can pass through the gap between any two first photosensitive regions 41 on the first photosensor 40 and be transmitted to the corresponding
  • the second photosensitive area 51 enables both the first photosensor 40 and the second photosensor 50 to achieve corresponding optical functions; correspondingly, when the first photosensor 40 is located between the second photosensor 50 and the substrate 10, the external The light can pass through the gap between any two second photosensitive areas 51 on the second photosensitive sensor 50, and be transmitted to the corresponding first photosensitive area 41, so that the first photosensitive sensor 40 and the second photosensitive sensor 50 are both The corresponding optical function can be realized.
  • a plurality of first photosensitive regions 41 may be set on the first photosensor 40 ; similarly, in order to improve the light sensing performance corresponding to the second photosensor 50
  • a plurality of second photosensitive regions 51 can be provided on the second photosensitive sensor 50 , that is, by increasing the number and coverage area of the photosensitive regions, the optical sensing performance of the first photosensitive region 41 and the second photosensitive region 51 can be improved.
  • a plurality of first photosensitive regions 41 may be arranged in an array on the first photosensitive sensor 40
  • a plurality of second photosensitive regions 51 may be arranged in an array on the second photosensitive sensor 50 .
  • the first photosensitive area 41 is located on the side of the first photosensitive sensor 40 facing (close to) the substrate 10
  • the second photosensitive area 51 is located on the side of the second photosensitive sensor 50 away from (away from) the substrate 10 , That is, the first photosensitive area 41 on the first photosensitive sensor 40 and the second photosensitive area 51 on the second photosensitive sensor 50 may be disposed opposite to each other.
  • the first photosensitive area 41 is located on the side of the first photosensitive sensor 40 away from the substrate 10
  • the second photosensitive area 51 is located on the side of the second photosensitive sensor 50 facing the substrate 10 .
  • the first photosensitive area 41 is located on the side of the first photosensitive sensor 40 away from the substrate 10
  • the second photosensitive area 51 may be located on the side of the second photosensitive sensor 50 away from the substrate 10 , that is, the first photosensitive sensor
  • the first photosensitive area 41 on the 40 and the second photosensitive area 51 of the second photosensitive sensor 50 are both disposed away from the substrate 10 , so that the first photosensitive area 41 and the second photosensitive area 51 can better receive incoming light from the outside.
  • At least one of the at least two sensors is an active pixel sensing APS (Activepixel Schematic) sensor
  • the other sensors of the at least two sensors include a Charge Coupled Device CCD (Charge Coupled Device) , Charge-coupled Device) sensor, laser sensor, bionic vision sensor and time-of-flight TOF sensor at least any one.
  • CCD Charge Coupled Device
  • CCD Charge Coupled Device
  • At least one sensor in the sensor assembly is an active pixel sensing APS sensor.
  • one of the first photosensitive sensor 40 and the second photosensitive sensor 50 may be an APS sensor, and the other may be any one of a CCD sensor, a laser sensor, a bionic vision sensor, and a TOF sensor, that is, the sensor assembly is an APS sensor and a TOF sensor.
  • a CCD sensor a laser sensor
  • a bionic vision sensor a bionic vision sensor
  • TOF sensor that is, the sensor assembly is an APS sensor and a TOF sensor.
  • At least one of the at least two sensors is a charge-coupled device CCD sensor
  • the other sensors of the at least two sensors include active pixel sensing APS sensors, laser sensors, bionic vision sensors, and flying At least any one of the time-based TOF sensors.
  • At least one sensor in the sensor assembly is an active pixel sensing APS sensor.
  • one of the first photosensitive sensor 40 and the second photosensitive sensor 50 may be a CCD sensor, and the other may be any one of an APS sensor, a laser sensor, a bionic vision sensor, and a TOF sensor, that is, the sensor component is a CCD sensor and a TOF sensor.
  • the bionic vision sensor includes a first sensor circuit and a second sensor circuit; the first sensor circuit is used to extract the light signal of the first set wavelength band in the target light signal, and output the light signal representing the first set wavelength band The current signal of the light intensity variation of the light signal; the second sensing circuit is used to extract the light signal of the second set wavelength band in the target light signal, and output the voltage signal representing the light intensity of the light signal of the second set wavelength band ; wherein, at least one of the first set wavelength band and the second set wavelength band includes an infrared wavelength band.
  • the bionic vision sensor in this embodiment can not only collect high-quality color light intensity signals and high-speed grayscale change signals at the same time, but also sense the color light intensity information and/or light intensity change information of infrared rays in the target light signal.
  • the application scenarios of the bionic vision sensor can be effectively improved, and the application scenarios of the sensor components provided by the present disclosure can be expanded, and the comprehensive performance of the sensor components can be improved.
  • the infrared wavelength band of the bionic vision sensor may also be an infrared wavelength band, that is, the bionic vision sensor may also be an infrared bionic vision sensor, so as to further improve the application scenarios of the bionic vision sensor.
  • the photosensitive areas of any two photosensitive sensors can be staggered, so that the photosensitive areas of each photosensitive sensor can receive external light, and Realize the function of the corresponding photosensitive sensor.
  • APS sensors have high color reproduction
  • CCD sensors have the functions of high speed and high dynamic range
  • infrared sensors have infrared detection functions.
  • the sensor assembly can be integrated with multiple modal data detection functions, and the comprehensive performance of the sensor assembly can be improved.
  • the at least two sensors include any two or more of a light-sensitive sensor, a sound-sensitive sensor, a force-sensitive sensor, a magnetic-sensitive sensor, and a temperature-sensitive sensor.
  • the photosensitive sensor is used to realize the optical detection function
  • the sound-sensitive sensor is used to realize the sound detection function
  • the force-sensitive sensor is used to realize the pressure detection function
  • the magnetic-sensitive sensor is used to realize the magnetic flux detection function
  • the temperature-sensitive sensor is used to realize the temperature detection function.
  • the acoustic sensor can be a microphone array sensor or a receiver array sensor;
  • the magnetic sensor can be a Hall sensor, or a gyroscope and a magnetometer sensor;
  • the force sensitive sensor can be a pressure sensor and the like.
  • the photosensitive sensor adopts the APS sensor, laser sensor, dynamic vision sensor, bionic vision sensor and time-of-flight TOF sensor mentioned above.
  • sensors with at least two functions are stacked on the substrate 10, so that the sensor assembly integrates the sensors with at least two functions. Compared with sensors with different functions provided separately, the sensor reduction is reduced. installation space for components.
  • the sensor assembly includes a first sensor 20 and a second sensor 30, wherein the first sensor 20 is a magnetic sensor, and the second sensor 30 is a force sensor; or, the first sensor 20 is an acoustic sensor, and the second sensor is a 30 is a temperature sensitive sensor.
  • the sensor assembly may include three or more sensors, and the three or more sensors include at least two function sensors, so as to realize more than two functions.
  • the sensor assembly in the case where the sensor assembly is integrated with a light-sensitive sensor and a sound-sensitive sensor, the sensor assembly can realize both the sound detection function and the optical detection function.
  • the sensor assembly in the case where the sensor assembly is integrated with the photosensitive sensor and the laser sensor, the sensor assembly can realize both the laser ranging function and the optical detection function.
  • the photosensitive sensor can be arranged on the outermost side of the sensor assembly, that is, in at least two sensors, the distance between the photosensitive sensor and the substrate is the longest. Far.
  • the integration degree of the sensor assembly can be improved, and in the same installation space, the sensor assembly can integrate more sensors and realize more functions. It effectively enriches the functions of the sensor components.
  • the sensor assembly when the sensor assembly includes the light-sensitive sensor, sound-sensitive sensor, force-sensitive sensor, magnetic-sensitive sensor, and temperature-sensitive sensor, the light-sensitive sensor, sound-sensitive sensor, force-sensitive sensor, magnetic-sensitive sensor, and temperature-sensitive sensor, the light-sensitive sensor, sound-sensitive sensor, force-sensitive sensor, magnetic-sensitive sensor, and temperature-sensitive sensor.
  • the substrates are stacked in order from the incident light to the substrate.
  • the sensor assembly includes a light-sensitive sensor, a sound-sensitive sensor, a force-sensitive sensor, a magnetic-sensitive sensor, and a temperature-sensitive sensor, and the stacking sequence of these sensors is: the light-sensitive sensor, the sound-sensitive sensor, the force-sensitive sensor , a magnetic sensor and a temperature sensor are stacked in sequence from the incident light to the substrate.
  • the sensor assembly includes any two or more of the photosensitive sensor, the sound-sensitive sensor, the force-sensitive sensor, the magnetic-sensitive sensor and the temperature-sensitive sensor, the two or more sensors are still in accordance with the above stacked sequentially.
  • the embodiments of the present disclosure are stacked in sequence from incident light to the substrate according to photosensitive sensors, acoustic sensors, force-sensitive sensors, magnetic sensors, and temperature-sensitive sensors, which can reduce interference between sensors with different functions and improve the sensitivity of each sensor.
  • the sensor assembly further includes a lens layer 60 , the lens layer 60 is disposed on the photosensitive sensor farthest from the substrate and disposed on the light incident side (the side away from the substrate).
  • the photosensitive sensor is the sensor farthest from the substrate, and the lens layer 60 is disposed on the side of the photosensitive sensor away from the substrate.
  • the lens layer 60 is disposed on the photosensitive sensor farthest from the substrate, and is disposed on the side away from the substrate.
  • the sensor assembly includes two photosensitive sensors, and the lens layer 60 is disposed on the photosensitive sensor with the farthest distance from the substrate among the two photosensitive sensors, and is disposed on the light incident side of the photosensitive sensor.
  • the sensor assembly includes a lens layer 60 , and the lens layer 60 includes a plurality of first lenses 61 , and the first lenses 61 are disposed on the first wafer base 42 of the photosensor 20 at intervals.
  • the position of the first lens 61 is opposite to that of the first photosensitive area 41 , and the first lens 61 is used to focus the light incident on the first photosensitive area 41 to improve the detection capability of the first photosensitive sensor 40 .
  • the sensor assembly includes a lens layer 60
  • the lens layer 60 includes a plurality of first lenses 61 and a plurality of second lenses 62
  • the positions of the first lenses 61 are opposite to the positions of the first photosensitive regions 41
  • the position of the second lens 62 is opposite to the position of the second photosensitive region 51 .
  • the first lens 61 is used for focusing the light incident on the first photosensitive area 41 to improve the detection capability of the first photosensitive sensor 40
  • the second lens 62 is used for focusing the light incident on the second photosensitive area 51 . , so as to improve the detection capability of the second photosensor 50 .
  • the first photosensor 40 and the second photosensor 50 implement two different functions, for example, the first photosensor 40 is an infrared sensor, and the second photosensor 50 is an ultraviolet sensor.
  • a filter structure 70 is provided between the lens layer 60 and the photosensitive area of the photosensitive sensor to perform filtering processing on different sensors, thereby reducing the interference of light of other wavelengths on the detection result of the corresponding sensor influences.
  • the filtering structure 70 includes a first filtering unit 71 corresponding to the first photosensitive area 41 , a second filtering unit 72 corresponding to the second photosensitive area 51 , the first filtering unit 71 and the second filtering unit 72 alternate settings.
  • the first filtering unit 71 and the second filtering unit 72 can perform filtering processing on light of different wavelengths, so that the target light reaches the corresponding photosensitive area.
  • the filter unit corresponding to the infrared sensor can remove light other than infrared light in the spectrum, so that the infrared sensor can better receive the infrared light and improve the detection capability of the infrared sensor.
  • the first photosensor 40 includes a first wafer base 42, and the first photosensitive regions 41 are distributed on the first wafer base 42 in an array form;
  • the second photosensor 50 includes a second wafer base 52, The second photosensitive regions 51 are distributed on the second wafer base 52 in an array form.
  • the portion of the first wafer base 42 opposite to the second photosensitive region 51 may be polished so that the first wafer base 42 is The part opposite to the second photosensitive area 51 has good light transmission characteristics, so that the light can pass through the first wafer base 42 and be directed to the second photosensitive area 51 , and the second optical sensor 50 can pass through the second photosensitive area 51
  • the detection function of the second optical sensor 50 is realized by receiving the light incident from the outside.
  • the portion of the second wafer base 52 opposite to the first photosensitive region 41 may be polished to make the second wafer
  • the part of the substrate 52 opposite to the first photosensitive area 41 has good light transmission characteristics, so that light can pass through the second wafer substrate 52 and be directed to the first photosensitive area 41, and the first photosensitive sensor 40 can pass through the first photosensitive area 41.
  • the photosensitive area 41 receives the light incident from the outside, and realizes the detection function of the first photosensitive sensor 40 .
  • the sensor assembly further includes a laser transmitter, the laser transmitter has a light-emitting area, the light emitted from the light-emitting area can be conducted to the outside world, and the light-sensitive area of the photosensitive sensor can receive the light input from the outside world.
  • the sensor assembly includes a laser transmitter 80, the laser transmitter 80 has a light-emitting area 81, the light emitted from the light-emitting area 81 can be conducted to the outside world, and the photosensitive sensor has a light-sensitive area, and the light-sensitive area can receive incoming light from the outside.
  • the sensor assembly includes a laser transmitter 80 .
  • the laser transmitter 80 has a light-emitting area 81 , and the light emitted from the light-emitting area 81 can be conducted to the outside world.
  • the first photosensitive sensor 40 has a first photosensitive area 41 . 41 can receive light from the outside world.
  • the light emitted by the light emitting area 81 of the laser emitter 80 can be conducted to the outside, and the first photosensor 40
  • the first photosensitive area 41 can receive the incoming light from the outside, so that the sensor assembly can realize the optical function corresponding to the laser transmitter 80 and the optical function corresponding to the first photosensitive sensor 40, which improves the optical performance of the sensor assembly;
  • the integration of different types of sensors can reduce the installation space required for the sensor assembly. Since the light emitted by the laser transmitter 80 is a laser, and the laser has good directivity, it is widely used in distance detection, infrared sensing and the like.
  • the light emitting area 81 on the laser emitter 80 and the photosensitive area on the first photosensor 40 may be dislocated.
  • the coincidence of the projection area of the light-emitting area 81 on the substrate 10 and the projection area of the first photosensitive area 41 on the substrate 10 is set to zero, that is, the light-emitting area 81 and the first photosensitive area 41 are spatially separated
  • Completely staggered arrangement avoids interference between the light emitted from the light emitting area 81 and the light entering the first photosensitive area 41 , and improves the reception performance of the first photosensitive area 41 for incoming light from the outside.
  • the first photosensitive area 41 of the first photosensitive sensor 40 can also receive the light returned by the laser transmitter 80. By receiving the light returned by the laser transmitter 80, compared with receiving natural light, it can effectively improve the Optical detection function of the first photosensor 40 . For example, when the first photosensitive sensor 40 is an infrared detection unit, the detection accuracy can be effectively improved by receiving the light emitted by the laser transmitter 80 .
  • a plurality of first photosensitive regions 41 are provided on the first photosensitive sensor 40 , and the plurality of first photosensitive regions 41 may be arranged in an array on the first photosensitive sensor 40 to improve the optical performance of the first photosensitive sensor 40 performance.
  • a plurality of light-emitting regions 81 are arranged on the laser emitter 80 , and the plurality of light-emitting regions 81 can also be arranged in an array on the first laser emitter 40 to improve the optical characteristics of the laser emitter 80 .
  • the laser transmitter 80 may be arranged outside the first photosensor 40, that is, the laser transmitter 80 and the first photosensor 40.
  • the projection of 40 on the substrate 10 is: the first photosensitive sensor 40 is located in the central area, and the laser emitter 80 is located in the edge area.
  • the first photosensor 40 is still farthest from the substrate 10 , that is, the laser transmitter 80 is disposed between the first photosensor 40 and the substrate 10 .
  • the laser transmitter 80 includes a laser wafer base 82, and the light-emitting area 81 can be disposed on the laser wafer base 82; the first photosensor 40 includes a first wafer base 42, and the first photosensitive area 41 can be disposed on the first wafer base 42 .
  • the position where the light-transmitting area needs to be set on the laser wafer base 82 can be polished, so that a light-transmitting area for the light to pass through is formed on the laser wafer base 82 .
  • the first wafer base 42 can be polished at the position where the light-transmitting area needs to be set, so that the first wafer base 42 can be formed for The light-transmitting area through which light passes.
  • the laser emitter 80 may be the sensor farthest from the substrate 10 among the at least two sensors, and the light-emitting area 81 is located on the side of the laser emitter away from the substrate 10 to prevent other sensors from blocking the light emitted by the light-emitting area 81 or interference.
  • the photosensitive area 41 of the first photosensitive sensor 40 can be arranged on the side of the first photosensitive sensor 40 away from the substrate 10 to shorten the conduction path of the light emitted to the photosensitive area 41;
  • the light emitting area 81 of the laser emitter 80 can also be It is arranged on the side of the laser emitter 80 away from the substrate 10 to shorten the conduction path of the light emitted from the light emitting area 81 to the outside world, so as to achieve the purpose of improving the overall performance of the sensor assembly.
  • the sensing assembly includes the laser emitter 80 and the first photosensitive sensor 40, it may also include at least one of a force-sensitive sensor, a magnetic-sensitive sensor, a temperature sensor, and a sound-sensitive sensor.
  • the integration degree and comprehensive performance of the sensor assembly can be further improved.
  • the sensor assembly includes a substrate 10, and at least two sensors disposed on the first side of the substrate 10, the sensors in the at least two sensors are sequentially stacked, and the at least two sensors include an acoustic sensor, a force sensitive sensor Any two or more of sensors, magnetic sensors, and temperature sensors.
  • the at least two sensors include a sound-sensitive sensor and a force-sensitive sensor, the force-sensitive sensor is disposed between the sound-sensitive sensor and the substrate 10 , that is, the sound-sensitive sensor is located on the side of incident light, and the sound-sensitive sensor is located on the side close to the substrate 10 .
  • the at least two sensors include a magneto-sensitive sensor and a temperature-sensitive sensor, the temperature-sensitive sensor is disposed between the magneto-sensitive sensor and the substrate 10, that is, the magneto-sensitive sensor is located on the side of incident light, and the temperature-sensitive sensor is located on the side close to the substrate 10.
  • the at least two sensors include a force-sensitive sensor, a magnetic-sensitive sensor and a temperature-sensitive sensor, and the force-sensitive sensor, the magnetic-sensitive sensor and the temperature-sensitive sensor are sequentially stacked from the incident light to the substrate 10 .
  • the sensor component includes any two or more of the sound-sensitive sensor, force-sensitive sensor, magnetic-sensitive sensor and temperature-sensitive sensor
  • the The sensitive sensors are sequentially stacked from the incident light to the substrate.
  • the sensor assembly further includes a memory structure (not shown), each of the at least two sensors being electrically connected to the memory structure by a silicon interconnect structure (not shown).
  • the silicon interconnect structure is a silicon structure formed by all-silicon technology, and has the characteristics of low power consumption and fast transmission speed, which can effectively improve the data interaction speed between each sensor and the storage structure, thereby improving the data processing of sensor components. capabilities, and enable sensor components to have the ability to integrate perception and processing.
  • the storage structure and the substrate 10 may also be electrically connected through a silicon interconnect structure, so as to improve the data exchange speed between the storage structure and the substrate 10 .
  • the silicon interconnect structure can also be formed through TSV (Through Silicon Via) technology; TSV technology is to fill the corresponding through holes with conductive substances such as copper, tungsten, and polysilicon, so as to form A silicon interconnection structure with vertical electrical interconnection function is formed on the through hole.
  • TSV Plasma Silicon Via
  • the storage structure includes static random access memory, resistive memory, dynamic random access memory, and the like.
  • Embodiments of the present disclosure further provide an electronic device, including a sensor assembly, where the sensor assembly adopts the sensor assembly provided by the embodiments of the present disclosure.
  • the electronic device adopts the sensor assembly provided by the embodiment of the present disclosure, which can improve the optical detection performance of the electronic device, improve the comprehensive performance of the electronic device, meet different application scenarios, and reduce the volume of the electronic device. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本公开提供了一种传感器组件及电子设备,属于传感技术领域。该传感器组件包括:基板,以及设置于所述基板的第一侧的至少两个传感器,所述至少两个传感器中的传感器依次层叠设置,且所述至少两个传感器包括至少两种功能不同的传感器。根据本公开的实施例能够提高传感器组件的光学检测性能,并改善传感器组件的综合性能,提高集成度。

Description

传感器组件及电子设备 技术领域
本公开涉及传感技术领域,尤其涉及一种传感器组件及电子设备。
背景技术
随着技术的发展进步,视觉类传感器的应用越来越广泛,比如家用娱乐电子设备领域,又比如工业控制领域。然而,随着视觉类传感器的应用场景越来越复杂多样,单一感知模式的视觉类传感器,经常会由于图像质量较差、图像动态范围小等问题,导致其越来越难满足多样的场景需求。
发明内容
本公开实施例提供一种传感器组件及电子设备。
为解决上述技术问题,本公开是这样实现的:
第一方面,本公开实施例提供了一种传感器组件,包括:基板,以及设置于所述基板的第一侧的至少两个传感器,所述至少两个传感器中的传感器依次层叠设置,且所述至少两个传感器包括至少两种功能不同的传感器。
第二方面,本公开实施例还提供一种电子设备,包括本公开实施例提供的传感器组件。
在本公开实施例中,通过在基板上依次层叠至少两种功能不同的传感器,使传感器组件能够实现至少两种传感器的功能,提高了传感器组件的检测性能,改善了传感器组件的综合性能,以满足不同的应用场景,还提高了传感器组件的集成度。
附图说明
附图用来提供对本公开的进一步理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开,并不构成对本公开的限制。通过参考附图对详细示例实施例进行描述,以上和其他特征和优点对本领域技术人员将变得更加显而易见,在附图中:
图1是本公开实施例提供的一种传感器组件的结构示意图;
图2是本公开实施例提供的另一种传感器组件的结构示意图;
图3是本公开实施例提供的再一种传感器组件的结构示意图;
图4是本公开实施例提供的又一种传感器组件的结构示意图。
在附图中:10-基板,20-第一传感器,30-第二传感器,40-第一光敏传感器,41-第一感光区域,42-第一晶圆基体,50-第二光敏传感器,51-第二感光区域,52-第二晶圆基体,60-透镜层,61-第一透镜,62-第二透镜,70-滤波结构,71-第一滤波单元,72-第二滤波单元,80-激光发射器,81-发光区域,82-激光晶圆基体。
具体实施方式
为使本领域的技术人员更好地理解本公开的技术方案,以下结合附图对本公开的示范性实施例做出说明,其中包括本公开实施例的各种细节以助于理解,应当将它们认为仅仅是示范性的。因此,本领域普通技术人员应当认识到,可以对这里描述的实施例做出各种改变和修改,而不会背离本公开的范围和精神。同样,为了清楚和简明,以下的描述中省略了对公知功能和结构的描述。
在不冲突的情况下,本公开各实施例及实施例中的各特征可相互组合。
如本文所使用的,术语“和/或”包括一个或多个相关列举条目的任何和所有组合。
本文所使用的术语仅用于描述特定实施例,且不意欲限制本公开。如本 文所使用的,单数形式“一个”和“该”也意欲包括复数形式,除非上下文另外清楚指出。还将理解的是,当本说明书中使用术语“包括”和/或“由……制成”时,指定存在所述特征、整体、步骤、操作、元件和/或组件,但不排除存在或添加一个或多个其它特征、整体、步骤、操作、元件、组件和/或其群组。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。
除非另外限定,否则本文所用的所有术语(包括技术和科学术语)的含义与本领域普通技术人员通常理解的含义相同。还将理解,诸如那些在常用字典中限定的那些术语应当被解释为具有与其在相关技术以及本公开的背景下的含义一致的含义,且将不解释为具有理想化或过度形式上的含义,除非本文明确如此限定。
单一感知模式的传感器无法满足不同应用场景的需求。在一些应用场景中,既要感应光强信号,还要感应光强信号的变化量;在一些应用场景中,既要实现拍摄功能,还需要实现测距功能。然而,相关传感器无法满足不同应用场景的需求。
本公开实施例提供一种传感器组件,该传感器组件可以实现多种功能,以满足不同应用场景的需求。
图1为本公开实施例提供的一种传感器组件的结构示意图。如图1所示,本公开实施例提供的传感器组件,包括:基板10,以及设置于基板10的第一侧的至少两个传感器(如第一传感器20和第二传感器30),至少两个传感器中的传感器依次层叠设置,且至少两个传感器包括至少两种功能不同的传感器。
其中,基板10可以是硅基、玻璃基或者其它合适的材质,用于承载传感器。本公开实施例对基板10的材质不作限定。
在本公开实施例中,传感器的数量至少为两个,而且,至少有两种功能 不同的传感器。示例地,当传感器组件包括两个传感器时,这两个传感器的功能不同。当传感器组件包括三个传感器时,其中之一与另外两个传感器的功能不同,或者,三个传感器的功能均不相同。当传感器组件包括四个或更多数量的传感器时,同样至少其中之一与其它传感器的功能不同。
其中,传感器的功能包括光电功能、声学功能、力学功能、磁学功能和温度功能,根据需求可以选择对应功能的传感器。需要指出的是,光电功能也可以有多种光电功能,如实现静态场景功能或动态场景功能。换言之,即使传感器均是光敏传感器,也可以实现不同的光电功能。
在本公开实施例中,至少两个传感器中的传感器依次层叠设置是指多个传感器在入射光的传播方向上依次叠置。示例地,当传感器组件包括两个传感器时,其中一个传感器叠置于基板10的第一侧,另一传感器叠置于与基板10叠置的传感器的第一侧。如图1所示,第二传感器30叠置于基板10的第一侧,第一传感器20叠置于第二传感器30的第一侧。
需要说明的是,基板10的第一侧是指基板10在入射光的传播方向上的两个相对侧面中受光面(靠近入射光)一侧,基板10的第二侧是指基板10在入射光的传播方向上的两个相对侧面中背光面一侧。类似地,传感器的第一侧是指传感器的受光面一侧,传感器的第二侧是指传感器的背光面一侧。
在一些实施例中,至少两个传感器中至少其一为光敏传感器。示例地,当传感器组件包括两个传感器时,其中之一为光敏传感器,或者,两个传感器均为光敏传感器,但该两个光敏传感器可以实现不同的功能。当传感器组件包括三个传感器时,其中之一为光敏传感器,另外的两个传感器既可以是光敏传感器,也可以是实现声学功能、力学功能、磁学功能和温度功能的传感器。需要指出的是,当另外两个传感器均是光敏传感器时,即三个传感器均为光敏传感器时,这三个光敏传感器至少能够实现两个功能。
在本公开实施例中,通过在基板上依次层叠至少两种功能不同的传感 器,使传感器组件能够实现至少两种传感器的功能,不仅提高了传感器组件的光学检测性能,改善了传感器组件的综合性能,提高了鲁棒性,还提高了传感器组件的集成度。
如图2所示,传感器组件包括多个传感器,图中仅示出两个传感器,即第一光敏传感器40和第二光敏传感器50。其中,第一光敏传感器40具有第一感光区域41,第二光敏传感器50具有第二感光区域51,且第一感光区域41和第二感光区域51均能接受外界射入的光线。其中,外界是指传感器组件之外。
在本公开实施方式中,通过在基板10上层叠设置第一光敏传感器40和第二光敏传感器50,并使第一光敏传感器40的第一感光区域41以及第二光敏传感器50的第二感光区域51均能够接收外界射入的光线,以使传感器组件能够实现第一光敏传感器40对应的光学功能和第二光敏传感器50对应的光学功能,即传感器组件能够实现至少两种光敏传感器的功能,提高了传感器组件的光学检测性能,并改善了传感器组件的综合性能。
在一些实施例中,为了使第一感光区域41和第二感光区域51均能接收外界射入的光线,将第一光敏传感器40上的第一感光区域41与第二光敏传感器50上的第二感光区域51错位设置。
在一些实施例中,如图2所示,将第一感光区域41在基板10上的投影区域与第二感光区域51在基板10上的投影区域的重合度设置为零,即将第一感光区域41和第二感光区域51在基板10上的投影完全错位,以使第一感光区域41不影响第二感光区域51接收入射的光线,从而提高第一感光区域41和第二感光区域51对外界射入的光线的接收性能。
在第二光敏传感器50位于第一光敏传感器40和基板10之间时,外界的光线可以透过第一光敏传感器40上的任意两个第一感光区域41之间的间隙,并传输至对应的第二感光区域51,以使第一光敏传感器40和第二光敏 传感器50均能实现对应的光学功能;相应的,在第一光敏传感器40位于第二光敏传感器50和基板10之间时,外界的光线可以透过第二光敏传感器50上的任意两个第二感光区域51之间的间隙,并传输至对应的第一感光区域41,以使第一光敏传感器40和第二光敏传感器50均能实现对应的光学功能。
在一些实施例中,为提高第一光敏传感器40对应的光学感应性能,可以在第一光敏传感器40上设置多个第一感光区域41;同理,为提高第二光敏传感器50对应的光线感应性能,可以在第二光敏传感器50上设置多个第二感光区域51,即通过增加感光区域的数量和覆盖区域,来提高第一感光区域41和第二感光区域51的光学感应性能。
其中,多个第一感光区域41可以在第一光敏传感器40上阵列设置,多个第二感光区域51可以在第二光敏传感器50上阵列设置。
在一些实施例中,第一感光区域41位于第一光敏传感器40的朝向(靠近)基板10的一侧,第二感光区域51位于第二光敏传感器50的远离(背离)基板10的一侧,即第一光敏传感器40上的第一感光区域41与第二光敏传感器50上的第二感光区域51可以相对设置。在一些实施例中,第一感光区域41位于第一光敏传感器40的远离基板10的一侧,第二感光区域51位于第二光敏传感器50的朝向基板10的一侧。
在一些实施例中,第一感光区域41位于第一光敏传感器40的远离基板10的一侧,第二感光区域51可以位于第二光敏传感器50的远离基板10的一侧,即第一光敏传感器40上的第一感光区域41与第二光敏传感器50的第二感光区域51均远离基板10设置,以便第一感光区域41和第二感光区域51能更好的接收外界射入的光线。
在一些实施例中,至少两个传感器中至少其一为有源像素传感APS(有源像素,Activepixel Schematic)传感器,所述至少两个传感器中的其它传感 器包括电荷耦合器件CCD(电荷耦合器件,Charge-coupled Device)传感器、激光传感器、仿生视觉传感器和飞行时间法TOF传感器中至少任意之一。
在一些实施例中,传感器组件中至少有一个传感器为有源像素传感APS传感器。示例地,第一光敏传感器40和第二光敏传感器50中的其中一个可以是APS传感器,另一个为CCD传感器、激光传感器、仿生视觉传感器和TOF传感器中任意之一,即传感器组件是APS传感器与CCD传感器、激光传感器、动态视觉传感器、仿生视觉传感器和TOF传感器中的任一项的组合。
在一些实施例中,所述至少两个传感器中至少其一为电荷耦合器件CCD传感器,所述至少两个传感器中的其它传感器包括有源像素传感APS传感器、激光传感器、仿生视觉传感器和飞行时间法TOF传感器中至少任意之一。
在一些实施例中,传感器组件中至少有一个传感器为有源像素传感APS传感器。示例地,第一光敏传感器40和第二光敏传感器50中的其中一个可以是CCD传感器,另一个为APS传感器、激光传感器、仿生视觉传感器和TOF传感器中任意之一,即传感器组件是CCD传感器与APS传感器、激光传感器、动态视觉传感器、仿生视觉传感器和TOF传感器中的任一项的组合。
在一些实施例中,仿生视觉传感器包括第一传感器电路和第二传感器电路;第一传感器电路,用于提取目标光信号中第一设定波段的光信号,并输出表征第一设定波段的光信号的光强变化量的电流信号;第二传感电路,用于提取目标光信号中第二设定波段的光信号,并输出表征第二设定波段的光信号的光强的电压信号;其中,第一设定波段和的第二设定波段中至少一种包括红外线波段。
本实施方式中的仿生视觉传感器不但能够同时采集高质量的色彩光强 信号与高速的灰度变化量信号,还能够感知目标光信号中红外线的色彩光强信息和/或光强变化信息,可以有效提高仿生视觉传感器的应用场景,进而可以扩展本公开提供的传感器组件的应用场景,提升传感器组件的综合性能。
在一些实施方式中,仿生视觉传感器的红外线波段还可以是红外线波段,即仿生视觉传感器还可以是红外仿生视觉传感器,以进一步提高仿生视觉传感器的应用场景。
需要说明的是,在传感器组件包括三个或者更多光敏传感器的情况下,任意两个光敏传感器的感光区域均可以错位设置,以使每一个光敏传感器的感光区域均能够接收外界的光线,并实现对应的光敏传感器的功能。
而且,通过将多个不同类型的光敏传感器集成在一起,以使不同的光敏传感器可以接收不同波长的光线,并使传感器组件可以实现不同的光学功能,比如,APS传感器具备的色彩还原度高、图像质量高等功能,CCD传感器具备的速度快、动态范围高等功能,红外传感器具备的红外检测功能。通过这样设计,可以使传感器组件集成有多种模态数据检测功能,并提高了传感器组件的综合性能。
在一些实施例中,至少两个传感器包括光敏传感器、声敏传感器、力敏传感器、磁敏传感器和温敏传感器中任意两项以上。其中,光敏传感器用于实现光学检测功能,声敏传感器用于实现声音检测功能,力敏传感器用于实现压力检测功能,磁敏传感器用于实现磁通量检测功能,温敏传感器用于实现温度检测功能。
其中,声敏传感器可以是麦克风阵列传感器,或者是受话器阵列传感器;磁敏传感器可以霍尔传感器,或者是陀螺仪与磁强计传感器;力敏传感器可以是压力传感器等。光敏传感器采用上文提及的APS传感器、激光传感器、动态视觉传感器、仿生视觉传感器和飞行时间法TOF传感器。
本公开实施例将至少两种功能的传感器叠置在基板10上,使传感器组件集成至少两种功能的传感器,相较于单独设置多个传感器,以实现不同功能的传感器而言,降低了传感器组件的安装空间。
示例地,传感器组件包括第一传感器20和第二传感器30,其中,第一传感器20为磁敏传感器,第二传感器30为力敏传感器;或者,第一传感器20为声敏传感器,第二传感器30为温敏传感器。
需要说明的是,传感器组件可以包括三个或更多个传感器,并且,三个或更多个传感器至少包括两个功能的传感器,用以实现两个以上的功能。示例地,在传感器组件集成有光敏传感器和声敏传感器的情况下,传感器组件既能实现声音检测功能,也能实现光学检测功能。在传感器组件集成有光敏传感器和激光传感器的情况下,传感器组件既能实现激光测距功能,也能实现光学检测功能。
还需要说明的是,当传感器组件包括光敏传感器时,为保证光敏传感器的光学检测性能,可以将光敏传感器设置在传感器组件的最外侧,即在至少两个传感器中,光敏传感器与基板的距离最远。
本公开实施例中,通过将不同功能的传感器集成在一个传感器组件中,可以提升传感器组件的集成度,在相同安装空间下,使传感器组件能够集成更多的传感器,并实现更多的功能,有效地丰富了传感器组件的功能。
在一些实施例中,当传感器组件包括所述光敏传感器、声敏传感器、力敏传感器、磁敏传感器和温敏传感器时,光敏传感器、声敏传感器、力敏传感器、磁敏传感器和温敏传感器从入射光至所述基板依次叠置。
示例地,传感器组件包括一个光敏传感器、一个声敏传感器、一个力敏传感器、一个磁敏传感器和一个温敏传感器,这些传感器的叠置顺序为:所述光敏传感器、声敏传感器、力敏传感器、磁敏传感器和温敏传感器从入射光至所述基板依次叠置。
需要说明的是,当传感器组件包括光敏传感器、声敏传感器、力敏传感器、磁敏传感器和温敏传感器中的任意两个或两个以上时,该两个或两个以上的传感器仍然按照上述顺序叠置。
本公开实施例从入射光至基板按照光敏传感器、声敏传感器、力敏传感器、磁敏传感器和温敏传感器依次叠置,可以减少不同功能的传感器之间的干扰,提高各传感器的灵敏度。
如图2和图3所示,传感器组件还包括透镜层60,所述透镜层60设置于距离所述基板最远的所述光敏传感器上且设置于入光侧(远离基板一侧)。
当传感器组件包括一个光敏传感器和一个或多个其它功能的传感器(光敏传感器之外)时,光敏传感器为距离基板最远的传感器,透镜层60设置在该光敏传感器远离所述基板的一侧。当传感器组件包括两个以上的光敏传感器时,透镜层60设置在距离基板最远的光敏传感器上,且设置于远离所述基板的一侧。
在一些实施例中,传感器组件包括两个光敏传感器,而且,透镜层60设置在两个光敏传感器中距离基板距离最远的光敏传感器上,且设置于光敏传感器的入光侧。
示例地,如图2所示,传感器组件包括透镜层60,透镜层60包括多个第一透镜61,第一透镜61间隔设置在光敏传感器20的第一晶圆基体42上。第一透镜61的位置与第一感光区域41的位置相对,第一透镜61用于对入射至第一感光区域41的光线进行聚焦,以提高第一光敏传感器40的检测能力。
示例地,如图3所示,传感器组件包括透镜层60,透镜层60包括多个第一透镜61和多个第二透镜62,第一透镜61的位置与第一感光区域41的位置相对,第二透镜62的位置与第二感光区域51的位置相对。其中,第一透镜61用于对入射至第一感光区域41的光线进行聚焦,以提高第一光敏传 感器40的检测能力;第二透镜62用于对入射至第二感光区域51的光线进行聚焦,以提高第二光敏传感器50的检测能力。
在本公开实施例中,第一光敏传感器40和第二光敏传感器50实现两种不同的功能,如第一光敏传感器40为红外传感器,第二光敏传感器50为紫外传感器。
在一些实施例中,在透镜层60与所述光敏传感器的感光区域之间设有滤波结构70,以对不同的传感器进行滤波处理,从而降低其他波长的光线对对应的传感器的检测结果造成干扰影响。
如图2和图3所示,滤波结构70包括第一感光区域41对应的第一滤波单元71,以及第二感光区域51对应的第二滤波单元72,第一滤波单元71和第二滤波单元72交替设置。第一滤波单元71和第二滤波单元72可以对不同的波长的光线进行滤波处理,以使目标光线到达对应的感光区域。比如,红外传感器对应的滤波单元,其可以去除光谱中除红外光线之外的光线,以便红外传感器可以更好的接收红外光线,提高红外传感器的检测能力。
在一些实施例中,第一光敏传感器40包括第一晶圆基体42,第一感光区域41呈阵列形式分布在第一晶圆基体42上;第二光敏传感器50包括第二晶圆基体52,第二感光区域51呈阵列形式分布在第二晶圆基体52上。
当第二光敏传感器50位于第一光敏传感器40和基板10之间时,可以对第一晶圆基体42上与第二感光区域51相对的部分进行打磨处理,以使第一晶圆基体42上与第二感光区域51相对的部分具有良好的透光特性,以便光线可以透过第一晶圆基体42并射向第二感光区域51,并使第二光学传感器50可通过第二感光区域51接收外界射入的光线,实现第二光学传感器50的检测功能。
类似地,当第一光敏传感器40位于第二光敏传感器50和基板10之间时,可以对第二晶圆基体52上与第一感光区域41相对的部分进行打磨处 理,以使第二晶圆基体52上与第一感光区域41相对的部分具有良好的透光特性,以便光线可以透过第二晶圆基体52并射向第一感光区域41,并使第一光敏传感器40可通过第一感光区域41接收外界射入的光线,实现第一光敏传感器40的检测功能。
在一些实施例中,传感器组件还包括激光发射器,激光发射器具有发光区域,所述发光区域射出的光线能够传导至外界,所述光敏传感器的感光区域能够接收外界射入的光线。
在一些实施例中,传感器组件包括激光发射器80,激光发射器80具有发光区域81,发光区域81射出的光线能够传导至外界,光敏传感器具有感光区域,感光区域能够接收外界射入的光线。
如图4所示,传感器组件包括激光发射器80,激光发射器80具有发光区域81,发光区域81射出的光线能够传导至外界,第一光敏传感器40具有第一感光区域41,第一感光区域41能够接收外界射入的光线。
在本公开实施例中,通过在基板10上层叠设置激光发射器80和第一光敏传感器40,并使激光发射器80的发光区域81发射的光线能够传导至外界,以及使第一光敏传感器40的第一感光区域41能够接收外界射入的光线,以使传感器组件能够实现激光发射器80对应的光学功能和第一光敏传感器40对应的光学功能,提高了传感器组件的光学性能;而且通过将不同类型的传感器集成在一起,可以降低传感器组件所需的安装空间。由于激光发射器80发射的光线为激光,而激光具有良好的方向性,在距离检测、红外感应等方面有着广泛的应用。
其中,为了避免从发光区域81射出的光线与射向第一感光区域41的光线发生干扰,可以将激光发射器80上的发光区域81与第一光敏传感器40上的感光区域错位设置。
在一些实施例中,将发光区域81在基板10上的投影区域与第一感光区 域41在基板10上的投影区域的重合度设置为零,即将发光区域81和第一感光区域41在空间上完全错位设置,避免从发光区域81射出的光线与射向第一感光区域41的光线发生干扰,并提高第一感光区域41对外界射入的光线的接收性能。
在一些实施例中,第一光敏传感器40的第一感光区域41还可以接收激光发射器80发射后返回的光线,通过接收激光发射器80发射后返回光线,相较于接收自然光,可以有效提升第一光敏传感器40的光学检测功能。比如,当第一光敏传感器40为红外检测单元时,通过接收激光发射器80发射的光线,可以有效提升检测的准确性。
在一些实施例中,在第一光敏传感器40上设置多个第一感光区域41,且多个第一感光区域41可以在第一光敏传感器40上阵列设置,以提高第一光敏传感器40的光学性能。类似地,在激光发射器80上设置多个发光区域81,且多个发光区域81也可以在第一激光发射器40上阵列设置,以提高激光发射器80的光学特性。
在一些实施例中,为避免激光发射器80发射的光线对第一光敏传感器40造成干扰,可以将激光发射器80设置在第一光敏传感器40的外侧,即激光发射器80和第一光敏传感器40在基板10上的投影为:第一光敏传感器40位于中心区域,而激光发射器80位于边缘区域。
需要说明的是,当传感器组件包括激光发射器80与第一光敏传感器40时,第一光敏传感器40仍然距离基板10最远,即激光发射器80设置在第一光敏传感器40和基板10之间。
如图4所示,激光发射器80包括激光晶圆基体82,发光区域81可以设置在激光晶圆基体82上;第一光敏传感器40包括第一晶圆基体42,第一感光区域41可以设置在第一晶圆基体42上。
当需要在激光发射器80上设置透光区域时,可以对激光晶圆基体82 需要设置透光区域的位置进行打磨处理,以使激光晶圆基体82上形成可供光线透过的透光区域;相应的,当需要在第一光敏传感器40上设置透光区域时,可以对第一晶圆基体42需要设置透光区域的位置进行打磨处理,以使第一晶圆基体42上形成可供光线透过的透光区域。
其中,激光发射器80可以是至少两个传感器中距离基板10最远的传感器,且发光区域81位于激光发射器的远离基板10的一侧,避免其他传感器对发光区域81射出的光线产生遮挡或者干扰。
其中,第一光敏传感器40的感光区域41可以设置在第一光敏传感器40的远离基板10的一侧,以缩短射向感光区域41的光线的传导路径;激光发射器80的发光区域81也可以设置在激光发射器80的远离基板10的一侧,以缩短从发光区域81射向外界的光线的传导路径;达到提升传感器组件的综合性能的目的。
当传感组件包括激光发射器80和第一光敏传感器40时,还可以包括力敏传感器、磁敏传感器、温度传感器、声敏传感器中的至少一项。
本实施方式中,通过在传感器组件中堆叠设置力敏传感器、磁敏传感器、温度传感器、声敏传感器中的至少一项,可以进一步提升传感器组件的集成度和综合性能。
在一些实施例中,传感器组件包括基板10,以及设置于基板10的第一侧的至少两个传感器,至少两个传感器中的传感器依次层叠设置,而且至少两个传感器包括声敏传感器、力敏传感器、磁敏传感器和温敏传感器中的任意两项及两项以上。
示例地,至少两个传感器包括声敏传感器和力敏传感器,力敏传感器设置在声敏传感器和基板10之间,即声敏传感器位于入射光一侧,声敏传感器位于靠近基板10一侧。示例地,至少两个传感器包括磁敏传感器和温敏传感器,温敏传感器设置在磁敏传感器和基板10之间,即磁敏传感器位于 入射光一侧,温敏传感器位于靠近基板10一侧。示例地,至少两个传感器包括力敏传感器、磁敏传感器和温敏传感器,而且力敏传感器、磁敏传感器和温敏传感器从入射光至基板10依次叠置。
需要说明的是,当传感器组件包括声敏传感器、力敏传感器、磁敏传感器和温敏传感器中的任意两项及两项以上时,仍然按照声敏传感器、力敏传感器、磁敏传感器和温敏传感器顺序从入射光至基板依次叠置。
在一些实施例中,传感器组件还包括存储结构(未图示),至少两个传感器中每一传感器均通过硅互连结构(未图示)与存储结构电气连接。
其中,硅互连结构为采用全硅技术形成的硅结构,并具有功耗低、传输速度快的特点,可以有效提高各传感器与存储结构之间的数据交互速度,进而提高传感器组件的数据处理能力,并使传感器组件具有感知处理一体化的能力。
在一些实施例中,存储结构与基板10之间也可以通过硅互连结构进行电气连接,以提高存储结构与基板10之间的数据交互速度。
在一些实施例中,硅互连结构还可以通过TSV(硅通孔,Through Silicon Via)技术形成得到;TSV技术是通过将铜、钨、多晶硅等导电物质填充在对应的通孔内,从而在该通孔处上形成具有垂直电气互连功能的硅互连结构。
在一些实施例中,存储结构包括静态随机存取存储器、阻变式存储器、动态随机存储器等。
本公开实施例还提供一种电子设备,包括传感器组件,该传感器组件采用本公开实施例提供的传感器组件。
需要说明的是,上述传感器组件实施例的实现方式同样适应于该电子设备的实施例中,并能达到相同的技术效果,在此不再赘述。
在本公开实施例中,电子设备采用本公开实施例提供的传感器组件,可 以提高电子设备的光学检测性能,改善电子设备的综合性能,以满足不同的应用场景,还可以减小电子设备的体积。
本文已经公开了示例实施例,并且虽然采用了具体术语,但它们仅用于并仅应当被解释为一般说明性含义,并且不用于限制的目的。在一些实例中,对本领域技术人员显而易见的是,除非另外明确指出,否则可单独使用与特定实施例相结合描述的特征、特性和/或元素,或可与其他实施例相结合描述的特征、特性和/或元件组合使用。因此,本领域技术人员将理解,在不脱离由所附的权利要求阐明的本公开的范围的情况下,可进行各种形式和细节上的改变。

Claims (17)

  1. 一种传感器组件,其特征在于,包括:基板,以及设置于所述基板的第一侧的至少两个传感器,所述至少两个传感器中的传感器依次层叠设置,且所述至少两个传感器包括至少两种功能不同的传感器。
  2. 根据权利要求1所述的传感器组件,其特征在于,所述至少两个传感器中至少其一为光敏传感器。
  3. 根据权利要求2所述的传感器组件,其特征在于,所述至少两个传感器包括第一光敏传感器和第二光敏传感器;
    其中,所述第一光敏传感器具有第一感光区域,所述第二光敏传感器具有第二感光区域,且所述第一感光区域和所述第二感光区域均能接收外界射入的光线。
  4. 根据权利要求3所述的传感器组件,其特征在于,所述第一感光区域在所述基板上的投影区域与所述第二感光区域在所述基板上的投影区域的重合度为零。
  5. 根据权利要求3所述的传感器组件,其特征在于,
    所述第一感光区域设于所述第一光敏传感器的朝向所述基板的一侧,所述第二感光区域设于所述第二光敏传感器的远离所述基板的一侧;
    或者,所述第一感光区域设于所述第一光敏传感器的远离所述基板的一侧,所述第二感光区域设于所述第二光敏传感器的朝向所述基板的一侧;
    或者,所述第一感光区域设于所述第一光敏传感器的远离所述基板的一侧,所述第二感光区域设于所述第二光敏传感器的远离所述基板的一侧。
  6. 根据权利要求2所述的传感器组件,其特征在于,所述至少两个传感器中至少其一为有源像素传感APS传感器,所述至少两个传感器中的其它传感器包括电荷耦合器件CCD传感器、激光传感器、动态视觉传感器、仿生视觉传感器和飞行时间法TOF传感器中至少任意之一;
    或者,所述至少两个传感器中至少其一为电荷耦合器件CCD传感器,所述至少两个传感器中的其它传感器包括有源像素传感APS传感器、激光传感器、动态视觉传感器、仿生视觉传感器和飞行时间法TOF传感器中至少任意之一。
  7. 根据权利要求6所述的传感器组件,其特征在于,所述仿生视觉传感器包括第一传感器电路和第二传感器电路;
    所述第一传感器电路,用于提取目标光信号中第一设定波段的光信号,并输出表征所述第一设定波段的光信号的光强变化量的电流信号;
    所述第二传感电路,用于提取目标光信号中第二设定波段的光信号,并输出表征所述第二设定波段的光信号的光强的电压信号;
    其中,所述第一设定波段和所述的第二设定波段中至少一种包括红外线波段。
  8. 根据权利要求2所述的传感器组件,其特征在于,所述至少两个传感器还包括声敏传感器、力敏传感器、磁敏传感器和温敏传感器中的任意一项以上。
  9. 根据权利要求8所述的传感器组件,其特征在于,所述光敏传感器、所述声敏传感器、所述力敏传感器、所述磁敏传感器和所述温敏传感器从入射光至所述基板依次叠置。
  10. 根据权利要求2-9任意一项所述的传感器组件,其特征在于,还包括透镜层,所述透镜层设置于距离所述基板最远的所述光敏传感器上且设置于入光侧。
  11. 根据权利要求10所述的传感器组件,其特征在于,在所述透镜层与所述光敏传感器的感光区域之间设有滤波结构。
  12. 根据权利要求2-9任意一项所述的传感器组件,其特征在于,还包括激光发射器,所述激光发射器具有发光区域,所述发光区域射出的光线能够传导至外界,所述光敏传感器的感光区域能够接收外界射入的光线。
  13. 根据权利要求12所述的传感器组件,其特征在于,所述发光区域在所述基板上的正投影区域与所述感光区域在所述基板上的正投影区域的重合度为零。
  14. 根据权利要求12所述的传感器组件,其特征在于,所述光敏传感器接收的外界射入的光线包括所述激光发射器发射后返回的光线。
  15. 根据权利要求1所述的传感器组件,其特征在于,所述至少两个传感器包括声敏传感器、力敏传感器、磁敏传感器和温敏传感器中的任意两项及两项以上。
  16. 根据权利要求1至9中任一项所述的传感器组件,其特征在于,还包括存储结构,所述至少两个传感器中的每一传感器均通过硅互连结构与所述存储结构电气连接。
  17. 一种电子设备,其特征在于,包括如权利要求1至16中任一项所述的传感器组件。
PCT/CN2022/081982 2021-03-25 2022-03-21 传感器组件及电子设备 WO2022199524A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202110319761.3A CN113099082A (zh) 2021-03-25 2021-03-25 传感器组件及电子设备
CN202110319816.0 2021-03-25
CN202110319761.3 2021-03-25
CN202110319756.2 2021-03-25
CN202110319816.0A CN112964308A (zh) 2021-03-25 2021-03-25 传感器组件及电子设备
CN202110319756.2A CN113037982B (zh) 2021-03-25 2021-03-25 传感器组件及电子设备

Publications (1)

Publication Number Publication Date
WO2022199524A1 true WO2022199524A1 (zh) 2022-09-29

Family

ID=83395169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081982 WO2022199524A1 (zh) 2021-03-25 2022-03-21 传感器组件及电子设备

Country Status (1)

Country Link
WO (1) WO2022199524A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004186311A (ja) * 2002-12-02 2004-07-02 Fuji Film Microdevices Co Ltd Mos型イメージセンサ及びデジタルカメラ
CN1870282A (zh) * 2005-05-25 2006-11-29 三星电机株式会社 半导体感光器件所用图像传感器及使用它的图像处理装置
CN109150305A (zh) * 2018-11-08 2019-01-04 徐州时空思维智能科技有限公司 一种远距离激光通信装置
CN110800273A (zh) * 2017-04-24 2020-02-14 卡内基梅隆大学 虚拟传感器系统
CN112532898A (zh) * 2020-12-03 2021-03-19 北京灵汐科技有限公司 双模态红外仿生视觉传感器
CN112964308A (zh) * 2021-03-25 2021-06-15 北京灵汐科技有限公司 传感器组件及电子设备
CN113037982A (zh) * 2021-03-25 2021-06-25 北京灵汐科技有限公司 传感器组件及电子设备
CN113099082A (zh) * 2021-03-25 2021-07-09 北京灵汐科技有限公司 传感器组件及电子设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004186311A (ja) * 2002-12-02 2004-07-02 Fuji Film Microdevices Co Ltd Mos型イメージセンサ及びデジタルカメラ
CN1870282A (zh) * 2005-05-25 2006-11-29 三星电机株式会社 半导体感光器件所用图像传感器及使用它的图像处理装置
CN110800273A (zh) * 2017-04-24 2020-02-14 卡内基梅隆大学 虚拟传感器系统
CN109150305A (zh) * 2018-11-08 2019-01-04 徐州时空思维智能科技有限公司 一种远距离激光通信装置
CN112532898A (zh) * 2020-12-03 2021-03-19 北京灵汐科技有限公司 双模态红外仿生视觉传感器
CN112964308A (zh) * 2021-03-25 2021-06-15 北京灵汐科技有限公司 传感器组件及电子设备
CN113037982A (zh) * 2021-03-25 2021-06-25 北京灵汐科技有限公司 传感器组件及电子设备
CN113099082A (zh) * 2021-03-25 2021-07-09 北京灵汐科技有限公司 传感器组件及电子设备

Similar Documents

Publication Publication Date Title
WO2020107985A1 (zh) 成像模组及电子装置
US20150373261A1 (en) Array Cameras and Array Camera Modules including Spectral Filters Disposed Outside of a Constituent Image Sensor
US9041133B2 (en) BSI image sensor package with embedded absorber for even reception of different wavelengths
US20160006913A1 (en) Optical imaging apparatus, in particular for computational imaging, having further functionality
WO2022206112A1 (zh) 图像传感器、摄像头模组及电子设备
US8937361B2 (en) BSI image sensor package with variable-height silicon for even reception of different wavelengths
KR20190006689A (ko) 광학 기기
WO2022199524A1 (zh) 传感器组件及电子设备
JPWO2010100897A1 (ja) 固体撮像素子および撮像装置
US20230079163A1 (en) Electronic device comprising camera module for obtaining depth information
KR102587961B1 (ko) 색분리 렌즈 어레이를 구비하는 이미지 센서 및 이를 포함하는 전자 장치
CN113099082A (zh) 传感器组件及电子设备
CN112964308A (zh) 传感器组件及电子设备
US20190253590A1 (en) Camera Module
US20230246044A1 (en) Image sensor and electronic device including the image sensor
CN114422730B (zh) 图像传感器及电子设备
EP4180869A1 (en) Camera module comprising folded optical system
US20220377246A1 (en) Electronic device including camera
KR102521096B1 (ko) 광각 촬영이 가능한 카메라 패키징 장치
EP4369695A1 (en) Electronic device comprising cameras
US20220345598A1 (en) Camera module and electronic device including the same
KR20230165674A (ko) 카메라 모듈을 포함하는 전자 장치 및 그 제어 방법
KR20240062757A (ko) 나노 광학 마이크로렌즈 어레이를 구비하는 이미지 센서 및 이를 포함하는 전자 장치
KR20240017688A (ko) 컬러 필터, 이미지 센서 및 이를 포함한 전자 장치
KR20230059742A (ko) 광학 센서, 광학 거리 감지 모듈 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774183

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE