WO2022198806A1 - 基于谐振电流脉冲的阀控铅酸蓄电池健康状态提升方法 - Google Patents

基于谐振电流脉冲的阀控铅酸蓄电池健康状态提升方法 Download PDF

Info

Publication number
WO2022198806A1
WO2022198806A1 PCT/CN2021/099655 CN2021099655W WO2022198806A1 WO 2022198806 A1 WO2022198806 A1 WO 2022198806A1 CN 2021099655 W CN2021099655 W CN 2021099655W WO 2022198806 A1 WO2022198806 A1 WO 2022198806A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
tested
sample
switch
valve
Prior art date
Application number
PCT/CN2021/099655
Other languages
English (en)
French (fr)
Inventor
陶晟宇
何坤
雷洋
孙耀杰
高云芳
游波
徐新
钱敏华
马磊
孙洁
张瑞祥
Original Assignee
复旦大学
浙江工业大学
江苏复迪电气科技有限公司
珠海复旦创新研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 复旦大学, 浙江工业大学, 江苏复迪电气科技有限公司, 珠海复旦创新研究院 filed Critical 复旦大学
Publication of WO2022198806A1 publication Critical patent/WO2022198806A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/378Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator
    • G01R31/379Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator for lead-acid batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4242Regeneration of electrolyte or reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the invention belongs to the field of electrical engineering, in particular to a method for improving the health state of a valve-regulated lead-acid battery based on resonant current pulses.
  • valve-regulated lead-acid batteries are often disassembled and chemical reagents added to improve their health, which is difficult and expensive to operate.
  • the VRLA battery is a highly nonlinear, time-varying complex electrochemical system.
  • the mechanism model differential equations related to the state of health have many parameters, which are difficult to solve and do not meet the requirements of practical engineering applications. Therefore, electrical methods based on external properties and non-disassembly are faster and cheaper. If reverse charging is used and a pressure sensor is added, the internal reaction mechanism of the battery can no longer be considered, but it is still time-consuming to improve the battery's health status by this method. How to detect and improve the health status of valve-regulated lead-acid batteries quickly and cost-effectively without disassembly in practical engineering applications is still a difficult problem.
  • the purpose of the present invention is to provide a fast and low-cost health state improvement technology for valve-regulated lead-acid batteries by using the low-frequency potentiostatic electrochemical impedance spectroscopy test technology and the resonant pulse method, and significantly improve the speed of improving the health state of the valve-regulated lead-acid battery. performance and economy, and achieve lift results consistent with fine chemical material methods.
  • the lifting method adopts the device based on resonant pulse and electrochemical impedance spectroscopy to de-vulcanize the valve-regulated lead-acid battery, and the device is composed of a cycle tester, an electrochemical impedance spectrometer, a high-speed power amplifier, a signal generator and a high-speed
  • the power amplifier is composed of: one end of the high-speed power amplifier is connected to the signal generator, and the other end is provided with a third switch, the third switch is used to connect the sample to be tested, and the high-speed power amplifier converts the voltage pulse signal generated by the signal generator into The current pulse signal is applied to the sample to be tested; the electrochemical impedance spectrometer is provided with a second switch, and the second switch is connected to the sample to be tested.
  • the electrochemical impedance spectrometer After the electrochemical impedance spectrometer sends out a low-frequency test signal, it is used to calibrate the front and rear of the sample to be tested.
  • the cycle tester is provided with a first switch, and the first switch is connected to the sample to be tested and used to calibrate the capacity of the sample to be tested;
  • the battery capacity calibration is divided into two parts: charging and discharging; for the charging part, the charging current is set to 0.1C, and the charging The cut-off voltage is set to 2.4*the number of cells of the VRLA battery, and the charging cut-off current is set to 0.01C; for the discharge part, the discharge current is set to 0.1C, and the discharge cut-off voltage is set to 1.8*The single cell of the VRLA battery Quantity; among them, C is the rated capacity value of the sample to be tested; when the sample to be tested reaches the set charge-discharge cut-off condition, record the rechargeable capacity and releasable capacity of the battery to achieve capacity calibration;
  • step (3) use electrochemical impedance spectrometer to test, according to the complex impedance response of the test, carry out the initial health state calibration of the valve-regulated lead-acid battery; after step (2) is completed, open the first switch, and discharge the sample to be tested to the cut-off voltage , stand for 2 hours, close the second switch, connect the positive and negative terminals of the electrochemical impedance spectrometer test cable to the positive and negative terminals of the sample to be tested, and the applied constant voltage disturbance frequency is set to 1MHz ⁇ 10mHz, the amplitude The value is set to 10mV, and the real impedance, imaginary impedance and phase of the battery under the above conditions are measured twice, and the average value is taken; the constant voltage disturbance frequency corresponding to the minimum point of the battery imaginary impedance is determined as the resonant frequency of the battery; the initial state of health of the battery is calibrated After completion, turn on the second switch and let it stand for 2 hours;
  • Step (2) After the battery capacity and step (3) state of health are calibrated, resonant current excitation is performed; the third switch is closed, and the high-speed power amplifier converts the voltage pulse signal generated by the signal generator into a current pulse signal, which is applied to the waiting On the test sample; the signal generator provides a weak voltage signal with a peak value of 0.048C V, a duty cycle of 5%, and a resonant frequency; the high-speed power amplifier outputs a strong current pulse signal with a peak value of 0.333C A in the constant current mode; among them, C is the rated capacity value of the sample to be tested; the duration of the strong current pulse signal is 2 hours; after 2 hours of excitation, open the third switch, close the first switch, and re-discharge the sample to be tested to the specified cut-off discharge condition, Turn on the first switch and let it stand for 2 hours;
  • the second switch In order to obtain the new health state of the sample to be tested, the second switch needs to be closed, the new health state of the VRLA battery is calibrated by the electrochemical impedance spectrometer, and the second switch is opened. So far, a complete resonance is completed. Current pulse excitation experiment;
  • l is the length of the diffusion layer
  • D is the diffusion coefficient
  • f is the frequency of constant voltage disturbance
  • r0 is a parameter reflecting the state of health of the VRLA battery
  • the physical meaning is the radius of the equivalent spherical electrode on the electrode surface
  • the iteration termination condition of the fitting is set to 400 times and the tolerance is less than 10 -9 ; the fitting steps are as follows:
  • phase response of the sample to be tested is obtained from the battery state of health calibration. Since the length l of the diffusion layer and the diffusion coefficient D are fixed for a specified VRLA battery, the phase response obtained by each constant voltage disturbance tangent of As a known quantity, f is used as an independent variable, and D and l are used as independent variables for fitting, and the corresponding fitted r 0 value is obtained;
  • Parts (i), (ii) are repeated until the termination condition of the iteration is satisfied, that is, the number of iterations reaches 400 and the tolerance is less than 10 ⁇ 9 .
  • step (2) ensures that each time the constant voltage disturbance test and the resonant current excitation experiment of the sample to be tested are carried out under the same conditions.
  • step (3) a suitable constant voltage disturbance value and a test frequency range are set, thereby providing a comparison reference for the judgment of the resonant current improving the battery health state.
  • step (4) a resonant current pulse is loaded to obtain an excited sample to be tested, and then by repeating step (3) again, the effectiveness of the resonant current pulse to enhance the valve-regulated lead-acid battery is judged by the degree of impedance response reduction. degree.
  • step (5) through parameter initialization and boundary conditions, the Levenberg-Marquardt method is used to fit f, D, l and r0, verify the improvement of the state of health of VRLA batteries through r0; quickly and inexpensively evaluate the initial state of health of the battery.
  • the invention uses the resonance current excitation method to improve the state of health of the valve-regulated lead-acid battery, achieves the same health state improvement effect as the prior art, and has effectiveness, economy and rapidity; constant voltage disturbance is adopted.
  • the latest electrochemical impedance spectroscopy testing technology is a non-destructive testing technology, which can ensure that the test will not affect the valve-regulated lead-acid battery, and analyzes r0 through the phase response of the low frequency (10-10mHz), so as to quickly evaluate the battery's performance. health status.
  • FIG. 1 is a schematic structural diagram of a valve-regulated lead-acid battery state-of-health detection and promotion system based on resonant current pulse and electrochemical impedance spectroscopy adopted in the invention
  • Fig. 2 is the variation trend curve of phase response response data-excitation of the measurement part (10 to 10MHz) of embodiment 1;
  • Fig. 3 is the impedance response data-frequency change trend curve of the first part (1Hz to 100kHz) of the embodiment, the average current response frequency and its measurement error;
  • Fig. 4 is the experimental flow chart of the present invention.
  • Labels in the figure: 1 is a cycle tester, 2 is an electrochemical impedance spectrometer, 3 is a high-speed power amplifier, 4 is a signal generator, and 5 is a sample to be tested.
  • Embodiment 1 As shown in Figure 1, the device for vulcanization of the valve-regulated lead-acid battery based on resonant current pulse and electrochemical impedance spectroscopy is composed of a cycle tester 1, an electrochemical impedance spectrometer 2, a high-speed power amplifier 3, a signal The generator 4 is composed of the sample to be tested 5. One end of the high-speed power amplifier 3 is connected to the signal generator 4. The signal generator 4 is used to provide a weak voltage signal at the resonant frequency. The high-speed power amplifier 3 converts the weak voltage generated by the signal generator 4.
  • the signal is converted into a strong current signal with output capability; the other end of the high-speed power amplifier 3 is provided with a third switch, and the third switch is used to connect the sample to be tested 5, and the high-speed power amplifier 3 converts the voltage pulse generated by the signal generator 4
  • the signal is converted into a current pulse signal, which is applied to the sample to be tested 5; the electrochemical impedance spectrometer 2 is provided with a second switch, and the second switch is connected to the sample to be tested 5.
  • the electrochemical impedance spectrometer 2 After the electrochemical impedance spectrometer 2 sends out a low-frequency test signal, It is used to calibrate the health state of the sample to be tested 5 before and after; the cycle tester 1 is provided with a first switch, which is connected to the sample to be tested 5 for calibrating the capacity of the sample to be tested.
  • the sample to be tested 5 uses a valve Controlled lead-acid batteries.
  • the high-speed power amplifier 3 converts the voltage pulse signal that the signal generator 4 produces into the current pulse signal, is applied on the sample 5 to be tested;
  • the second switch in order to obtain the new state of health of the sample to be tested 5, the second switch needs to be closed, the new state of health of the VRLA battery is calibrated by the electrochemical impedance spectrometer 2, and the second switch is opened. Complete resonant current pulse excitation experiment.
  • Example 1 the initial dischargeable capacity of the VRLA battery is recorded in step (1); the initial impedance response and phase response of the VRLA battery in the range of 10mHz to 1MHz before excitation are recorded in step (2); step In (3), record the average current response of the VRLA battery during excitation; in step (4), record the new releasable capacity of the VRLA battery; in step (5), record the VRLA battery before excitation New impedance and phase responses in the 10mHz to 1MHz range.
  • r0 is the actual measured impedance phase response
  • f are known quantities
  • r0 is the actual measured impedance phase response
  • f is known quantities
  • the decrease of r0 indicates that the state of health of the VRLA battery has been significantly improved, and the purpose of quickly evaluating the state of health of the battery can be achieved.
  • Figure 2 shows the change trend of the phase response data-frequency of the valve-regulated lead-acid battery before and after the excitation (10 to 10mHz), which conforms to the change curve of formula (1);
  • Figure 3 shows the part (1Hz to 100kHz) before and after the excitation.
  • impedance response data - frequency trend, average current response and its measurement error, the measurement error is marked on each measurement point in the form of error bars.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

一种基于谐振电流脉冲的阀控铅酸蓄电池健康状态提升方法。首先利用循环测试仪(1)进行阀控铅酸蓄电池容量标定,接着利用低频恒电位电化学阻抗谱仪(2)测试,根据测试的复阻抗响应进行阀控铅酸蓄电池的初始健康状态标定;然后利用信号发生器(4)产生的弱电压信号通过高速功率放大器(3)产生谐振电流脉冲对阀控铅酸蓄电池进行加载,再重复容量标定和健康状态标定;最后对健康状态标定步骤中测得的阀控铅酸蓄电池相位响应和频率进行拟合,得到球形电极半径参数快速评估阀控铅酸蓄电池的健康状态。采用低频恒电位电化学阻抗谱测试可以快速检测阀控铅酸蓄电池的健康状态,且谐振电流脉冲可以快速低成本地提升阀控铅酸蓄电池的健康状态,对于提升电气储能系统的效率和可靠性有重要意义。

Description

基于谐振电流脉冲的阀控铅酸蓄电池健康状态提升方法 技术领域
本发明属于电气工程领域,具体为一种基于谐振电流脉冲的阀控铅酸蓄电池健康状态提升方法。
背景技术
在电力储能中,常通过拆解阀控铅酸电池并添加化学试剂的方法来提升其健康状态,此类方法操作困难且昂贵。加之,阀控铅酸电池是一个高度非线性,时变的复杂电化学系统,健康状态相关的机理模型微分方程参数众多,难以求解,不符合实际工程应用的要求。因此,基于外特性和非拆解的电气方法更加快捷廉价。若采用反向充电,增配压力传感器的方式,便可以不再考虑电池内部的反应机理,但是用这类方法提升电池健康状态仍然耗时。如何在实际工程应用中,对阀控铅酸电在非拆解的情况下快速低成本地检测并提升健康状态仍然是一个难题。
发明内容
本发明的目的是利用低频恒电位电化学阻抗谱测试技术和谐振脉冲方法为阀控铅酸蓄电池提供一种快速和低成本的健康状态提升技术,显著提升阀控铅酸蓄电池健康状态提升的快速性和经济性,并达到与精细的化学材料方法一致的提升效果。
本发明提出的一种基于谐振电流脉冲的阀控铅酸蓄电池健康状态提升方法,具体步骤如下:
(1)所述提升方法采用基于谐振脉冲和电化学阻抗谱去阀控铅酸电池硫化的装置实现,所述装置由循环测试仪、电化学阻抗谱仪、高速功率放大器、信号发生器和高速功率放大器组成,其中:高速功率放大器的一端连接信号发生器,另一端设有第三开关,所述第三开关用于连接待测样品,高速功率放大器将信号发生器产生的电压脉冲信号转换为电流脉冲信号,施加在待测样品上;电化学阻抗谱仪设有第二开关,所述第二开关连接待测样品,电化学阻抗谱仪发出低频测试信号后,用于标定待测样品前后的健康状态;循环测试仪设有第一开关,所述第一开关连接待测样品,用于标定待测样品的容量;
(2)闭合第一开关,利用循环测试仪进行待测样品阀控铅酸蓄电池容量标 定,所述电池容量标定分为充电和放电两个部分;对于充电部分,充电电流设置为0.1C,充电截止电压设置为2.4*阀控铅酸蓄电池的单体数量,充电截止电流设置为0.01C;对于放电部分,放电电流设置为0.1C,放电截止电压设置为1.8*阀控铅酸蓄电池的单体数量;其中,C是待测样品的额定容量数值;当待测样品达到设置的充放电截止条件时,记录电池的可充入容量和可放出容量,实现容量标定;
(3)利用电化学阻抗谱仪测试,根据测试的复阻抗响应进行阀控铅酸蓄电池的初始健康状态标定;步骤(2)完成后,打开第一开关,将待测样品放电至截止电压后,静置2小时,闭合第二开关,将电化学阻抗谱仪测试线缆的正极和负极分别连接到待测样品的正负极端子上,施加的恒电压扰动频率设置为1MHz~10mHz,幅值设置为10mV,两次测量上述条件下的电池实阻抗,虚阻抗和相位,取平均值;电池虚阻抗最小点处对应的恒电压扰动频率确定为电池的谐振频率;电池的初始健康状态标定完成后,打开第二开关,静置2小时;
(4)步骤(2)电池容量和步骤(3)健康状态标定后,进行谐振电流激励;闭合第三开关,高速功率放大器将信号发生器产生的电压脉冲信号转换为电流脉冲信号,施加在待测样品上;信号发生器提供峰值0.048C V,占空比为5%,谐振频率下的弱电压信号;高速功率放大器在恒流模式下,输出峰值0.333C A的强电流脉冲信号;其中,C是待测样品的额定容量数值;强电流脉冲信号的持续时间为2小时;在激励2小时后,打开第三开关,闭合第一开关,将待测样品重新放电到规定的截止放电条件,打开第一开关,静置2小时;
(5)为获取待测样品的新健康状态,需闭合第二开关,由电化学阻抗谱仪标定阀控铅酸蓄电池蓄电池的新的健康状态,打开第二开关,至此,完成一次完整的谐振电流脉冲激励实验;
将待测样品放电至截止电压后,静置2小时,重新进行电池健康状态标定;
Figure PCTCN2021099655-appb-000001
公式(1)中,
Figure PCTCN2021099655-appb-000002
因此,对获得的1-10mHz频率区间内的激励后电池相位变化
Figure PCTCN2021099655-appb-000003
进行Levenberg-Marquardt法拟合,获得公式(1)中参数l,D;
Figure PCTCN2021099655-appb-000004
Figure PCTCN2021099655-appb-000005
Figure PCTCN2021099655-appb-000006
公式(3)和公式(4)中,
Figure PCTCN2021099655-appb-000007
l是扩散层的长度,D是扩散系数,f是恒电压扰动的频率,r0是反映阀控铅酸蓄电池健康状态的参量,物理含义为电极表面等效球形电极的半径;
拟合的迭代终止条件设置为400次和容差小于10 -9;拟合步骤如下:
(i)从电池健康状态标定获得待测样品的相位响应,由于对于指定的阀控铅酸蓄电池,其扩散层长度l和扩散系数D是一定的,因此以每次恒电压扰动获得的相位响应的正切值
Figure PCTCN2021099655-appb-000008
作为已知量,f作为自变量,D和l作为自变量进行拟合,获得其对应拟合的r 0值;
(ii)参数初始化和边界条件,D>10 -5,l>10 -2,r 0>10 -3
(iii)将f,D,l,r 0作为已知量,对每个拟合点优化其
Figure PCTCN2021099655-appb-000009
值;
(iv)重复(i),(ii)部分,直到满足迭代的终止条件,即迭代次数达到400次和容差小于10 -9
本发明中,步骤(2)保证每次待测样品的恒压扰动测试和谐振电流激励实验均是在同一条件下进行的。
本发明中,步骤(3)中通过设定合适的恒电压扰动值和测试频率范围,从而为谐振电流提升电池健康状态的判断提供比较基准。
本发明中,步骤(4)中通过加载谐振电流脉冲,获得激励后的待测样品,然后通过再次重复步骤(3),通过阻抗响应减小程度判断谐振电流脉冲提升阀控铅酸蓄电池的有效程度。
本发明中,步骤(5)中通过参数初始化和边界条件,使用Levenberg-Marquardt方法拟合
Figure PCTCN2021099655-appb-000010
f,D,l和r0,通过r0验证阀控铅酸蓄电池健康状态提升程度;快速和低成本地评估电池初始健康状态。
本发明的有益效果在于:本发明用谐振电流激励法提升阀控铅酸蓄电池的健康状态,取得了和现有技术一致的健康状态提升效果,具备有效性经济性和快速 性;采用恒电压扰动的电化学阻抗谱测试技术,为无损测试技术,可以保证测试对于阀控铅酸蓄电池不会产生影响,并通过对低频段(10-10mHz)的相位响应解析出r0,从而快速地评估电池的健康状态。
附图说明
图1为发明中采用的基于谐振电流脉冲和电化学阻抗谱的阀控铅酸蓄电池健康状态检测提升系统结构示意图;
图2为实施例1测量部分(10到10MHz)相位响应响应数据-激励的变化趋势曲线;
图3为实施例1部分(1Hz到100kHz)阻抗响应数据-频率变化趋势曲线,平均电流响应频率及其测量误差;
图4为本发明的实验流程图;
图中标号:1为循环测试仪,2为电化学阻抗谱仪,3为高速功率放大器,4为信号发生器,5为待测样品。
具体实施方式
下面通过实施例结合附图进一步说明本发明。
实施例1:如图1所示,所述基于谐振电流脉冲和电化学阻抗谱的去阀控铅酸蓄电池硫化的装置由循环测试仪1、电化学阻抗谱仪2、高速功率放大器3、信号发生器4和待测样品5组成,高速功率放大器3的一端连接信号发生器4,信号发生器4用于提供谐振频率下的弱电压信号,高速功率放大器3将信号发生器4产生的弱电压信号转换成带有输出能力的强电流信号;高速功率放大器3另一端设有第三开关,所述第三开关用于连接待测样品5,高速功率放大器3将信号发生器4产生的电压脉冲信号转换为电流脉冲信号,施加在待测样品5上;电化学阻抗谱仪2设有第二开关,所述第二开关连接待测样品5,电化学阻抗谱仪2发出低频测试信号后,用于标定待测样品5前后的健康状态;循环测试仪1设有第一开关,所述第一开关连接待测样品5,用于标定待测样品的容量,所述待测样品5采用阀控铅酸蓄电池蓄电池。
本发明的具体步骤如下:
(1),首先闭合第一开关,由循环测试仪1完成阀控铅酸蓄电池蓄电池的容量标定后,打开第一开关,静置2小时;
(2),接着闭合第二开关,由电化学阻抗谱仪2标定阀控铅酸蓄电池蓄电池的初始健康状态,打开第二开关,静置2小时;
(3),然后闭合第三开关,高速功率放大器3将信号发生器4产生的电压脉冲信号转换为电流脉冲信号,施加在待测样品5上;
(4),在激励2小时后,打开第三开关,闭合第一开关,将待测样品5重新放电到规定的截止放电条件,打开第一开关,静置2小时;
(5),为获取待测样品5的新健康状态,需闭合第二开关,由电化学阻抗谱仪2标定阀控铅酸蓄电池蓄电池的新的健康状态,打开第二开关,至此,完成一次完整的谐振电流脉冲激励实验。
在实验过程中,搭建好图1所示的实验电路后,进行参数记录。在实施例1中,步骤(1)中记录阀控铅酸蓄电池的初始可放出容量;步骤(2)中记录阀控铅酸蓄电池在激励前10mHz到1MHz范围内初始阻抗响应和相位响应;步骤(3)中记录阀控铅酸蓄电池在激励时的平均电流响应;步骤(4)中记录阀控铅酸蓄电池的新的可放出容量;步骤(5)中记录阀控铅酸蓄电池在激励前10mHz到1MHz范围内新的阻抗响应和相位响应。
以一个实测数据点来说明本实施例:
激励前:
Figure PCTCN2021099655-appb-000011
为实际测得的阻抗相位响应,f=0.01为实际测得的扰动频率(Hz),以
Figure PCTCN2021099655-appb-000012
和f为已知量,对参数r0和D使用Levenberg-Marquardt方法拟合得到r0=9.87e20cm。
其中:
Figure PCTCN2021099655-appb-000013
Figure PCTCN2021099655-appb-000014
Figure PCTCN2021099655-appb-000015
激励后:
Figure PCTCN2021099655-appb-000016
为实际测得的阻抗相位响应,f=1.55为实际测得的扰动频率(Hz),以
Figure PCTCN2021099655-appb-000017
和f为已知量,对参数r0和D使用Levenberg-Marquardt方法拟合得到r0=0.00703cm。
r0减小表明阀控铅酸蓄电池健康状态得到明显提升,且能实现快速评估电池的健康状态的目的。
图2为激励前后的阀控铅酸蓄电池健康状态中部分(10到10mHz)相位响应响应数据-频率的变化趋势,符合公式(1)的变化曲线;图3为激励前后的部分(1Hz到100kHz)阻抗响应数据-频率变化趋势,平均电流响应及其测量误差,测量误差以误差棒的形式标于每个测量点上。

Claims (4)

  1. 一种基于谐振电流脉冲的阀控铅酸蓄电池健康状态提升方法,其特征在于具体步骤如下:
    (1)所述提升方法采用基于谐振脉冲和电化学阻抗谱去阀控铅酸电池硫化的装置实现,所述装置由循环测试仪、电化学阻抗谱仪、高速功率放大器、信号发生器和高速功率放大器组成,其中:高速功率放大器的一端连接信号发生器,另一端设有第三开关,所述第三开关用于连接待测样品,高速功率放大器将信号发生器产生的电压脉冲信号转换为电流脉冲信号,施加在待测样品上;电化学阻抗谱仪设有第二开关,所述第二开关连接待测样品,电化学阻抗谱仪发出低频测试信号后,用于标定待测样品前后的健康状态;循环测试仪设有第一开关,所述第一开关连接待测样品,用于标定待测样品的容量;
    (2)闭合第一开关,利用循环测试仪进行待测样品阀控铅酸蓄电池容量标定,所述电池容量标定分为充电和放电两个部分;对于充电部分,充电电流设置为0.1C,充电截止电压设置为2.4*阀控铅酸蓄电池的单体数量,充电截止电流设置为0.01C;对于放电部分,放电电流设置为0.1C,放电截止电压设置为1.8*阀控铅酸蓄电池的单体数量;其中,C是待测样品的额定容量数值;当待测样品达到设置的充放电截止条件时,记录电池的可充入容量和可放出容量,实现容量标定;
    (3)利用电化学阻抗谱仪测试,根据测试的复阻抗响应进行阀控铅酸蓄电池的初始健康状态标定;步骤(2)完成后,打开第一开关,将待测样品放电至截止电压后,静置2小时,闭合第二开关,将电化学阻抗谱仪测试线缆的正极和负极分别连接到待测样品的正负极端子上,施加的恒电压扰动频率设置为1MHz~10mHz,幅值设置为10mV,两次测量上述条件下的电池实阻抗,虚阻抗和相位,取平均值;电池虚阻抗最小点处对应的恒电压扰动频率确定为电池的谐振频率;电池的初始健康状态标定完成后,打开第二开关,静置2小时;
    (4)步骤(2)电池容量和步骤(3)健康状态标定后,进行谐振电流激励;闭合第三开关,高速功率放大器将信号发生器产生的电压脉冲信号转换为电流脉冲信号,施加在待测样品上;信号发生器提供峰值0.048C V,占空比为5%,谐振频率下的弱电压信号;高速功率放大器在恒流模式下,输出峰值0.333C A的强电流脉冲信号;其中,C是待测样品的额定容量数值;强电流脉冲信号的持续时间为2小时;在激励2小时后,打开第三开关,闭合第一开关,将待测样品重新放电到规定的截止放电条件,打开第一开关,静置2小时(5)为获取待测样品的新健康状态,需闭合第二开关,由电化学阻抗谱仪标定阀控铅酸蓄电池蓄电池的新的健康状态,打开第二开关,至此,完成一次完整的谐振电流脉冲激励实验将待测样品放电至截止电压后,静置2小时,重新进行电池健康状态标定:
    Figure PCTCN2021099655-appb-000001
    公式(1)中,
    Figure PCTCN2021099655-appb-000002
    因此,对获得的1-10mHz频率区间内的激励后电池相位变化
    Figure PCTCN2021099655-appb-000003
    进行Levenberg-Marquardt法拟合,获得公式(1)中参数l,D;
    Figure PCTCN2021099655-appb-000004
    Figure PCTCN2021099655-appb-000005
    Figure PCTCN2021099655-appb-000006
    公式(3)和公式(4)中,
    Figure PCTCN2021099655-appb-000007
    l是扩散层的长度,D是扩散系数,f是恒电压扰动的频率,r0是反映阀控铅酸蓄电池健康状态的参量,物理含义为电极表面等效球形电极的半径; 拟合的迭代终止条件设置为400次和容差小于10 -9;拟合步骤如下: (i)从电池健康状态标定获得待测样品的相位响应,由于对于指定的阀控铅酸蓄电池,其扩散层长度l和扩散系数D是一定的,因此以每次恒电压扰动获得的相位响应的正切值
    Figure PCTCN2021099655-appb-000008
    作为已知量,f作为自变量,D和l作为自变量进行拟合,获得其对应拟合的r 0值; (ii)参数初始化和边界条件,D>10 -5,l>10 -2,r 0>10 -3; (iii)将f,D,l,r 0作为已知量,对每个拟合点优化其
    Figure PCTCN2021099655-appb-000009
    值; (iv)重复(i),(ii)部分,直到满足迭代的终止条件,即迭代次数达到400次和容差小于10 -9
  2. 根据权利要求1所述的方法,其特征在于:步骤(3)中的电池健康状态标定通过设置合适的频率测试范围和扰动幅值获取对应内部电化学过程的电池健康状态信息,即10〜10mHz的相位响应反应电池内部的传质过程,此过程与电池健康状态相关:1MHz〜10Hz的阻抗响应反应电池的健康状态提升,即阻抗响应的下降。
  3. 根据权利要求1所述的方法,其特征在于:步骤(4)中的谐振电流激励频率是电池的谐振频率,即由1MHz〜10mHz频率区间内对应的阻抗响应虚部最小值来确定;要求谐振激励为恒电流控制的形式,且由信号发生器和高速功率放大器产生。
  4. 根据权利要求1所述的方法,其特征在于:步骤(5)中的10-10mHz频率区间内的激励后电池相位变化0进行Levenberg-Marquardt拟合,通过不拆解电池的方式得到电池内部的健康状态信息;一方面,此法用于验证包括谐振电流脉冲在内的阀控铅酸电池健康状态提升方法的有效性;另一方面,此方法可快速,低成本地评估电池初始健康状态。
PCT/CN2021/099655 2021-03-22 2021-11-15 基于谐振电流脉冲的阀控铅酸蓄电池健康状态提升方法 WO2022198806A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110299832.8 2021-03-22
CN202110299832.8A CN113093021B (zh) 2021-03-22 2021-03-22 基于谐振电流脉冲的阀控铅酸蓄电池健康状态提升方法

Publications (1)

Publication Number Publication Date
WO2022198806A1 true WO2022198806A1 (zh) 2022-09-29

Family

ID=76668700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099655 WO2022198806A1 (zh) 2021-03-22 2021-11-15 基于谐振电流脉冲的阀控铅酸蓄电池健康状态提升方法

Country Status (2)

Country Link
CN (1) CN113093021B (zh)
WO (1) WO2022198806A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114137416B (zh) * 2021-11-18 2023-01-06 复旦大学 一种基于外部激励的电池主动调控方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008033054A2 (en) * 2006-08-08 2008-03-20 Konstantin Ivanovich Tyukhtin Method and device for a storage battery recovery
CN101222073A (zh) * 2007-12-19 2008-07-16 江南大学 数字铅酸蓄电池容量测试修复仪
US20180149708A1 (en) * 2016-11-30 2018-05-31 Cadex Electronics Inc. Battery state-of-health determination using multi-factor normalization
CN108963362A (zh) * 2018-09-03 2018-12-07 大城绿川(深圳)科技有限公司 一种电动车铅酸蓄电池充电修复管理方法及充电修复装置
CN109765496A (zh) * 2018-12-20 2019-05-17 西安交通大学 一种基于在线电化学阻抗谱测量的电池健康状态估计方法
CN110444823A (zh) * 2018-05-03 2019-11-12 山东承泽能源科技有限公司 一种铅酸蓄电池离线式谐振脉冲修复方法
CN110492189A (zh) * 2019-08-05 2019-11-22 天能电池集团股份有限公司 一种阀控式蓄电池修复方法
CN111668567A (zh) * 2020-06-15 2020-09-15 世中科技(北京)有限公司 一种铅酸蓄电池再生修复充放电设备及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013071508A1 (zh) * 2011-11-17 2013-05-23 Song Jeff 智能密封阀控铅酸蓄电池装置
US9465077B2 (en) * 2011-12-05 2016-10-11 The United States Of America, As Represented By The Secretary Of The Navy Battery health monitoring system and method
CN208753464U (zh) * 2018-09-03 2019-04-16 大城绿川(深圳)科技有限公司 一种电动车铅酸蓄电池充电修复装置
CN111736084B (zh) * 2020-06-29 2022-05-20 三峡大学 基于改进lstm神经网络的阀控铅酸蓄电池健康状态预测方法
CN111736085B (zh) * 2020-07-07 2023-11-10 中国检验检疫科学研究院 一种基于电化学阻抗谱的锂离子电池健康状态估计方法
CN112327195B (zh) * 2020-09-29 2024-06-18 浙江南都电源动力股份有限公司 一种电池健康度检测方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008033054A2 (en) * 2006-08-08 2008-03-20 Konstantin Ivanovich Tyukhtin Method and device for a storage battery recovery
CN101222073A (zh) * 2007-12-19 2008-07-16 江南大学 数字铅酸蓄电池容量测试修复仪
US20180149708A1 (en) * 2016-11-30 2018-05-31 Cadex Electronics Inc. Battery state-of-health determination using multi-factor normalization
CN110444823A (zh) * 2018-05-03 2019-11-12 山东承泽能源科技有限公司 一种铅酸蓄电池离线式谐振脉冲修复方法
CN108963362A (zh) * 2018-09-03 2018-12-07 大城绿川(深圳)科技有限公司 一种电动车铅酸蓄电池充电修复管理方法及充电修复装置
CN109765496A (zh) * 2018-12-20 2019-05-17 西安交通大学 一种基于在线电化学阻抗谱测量的电池健康状态估计方法
CN110492189A (zh) * 2019-08-05 2019-11-22 天能电池集团股份有限公司 一种阀控式蓄电池修复方法
CN111668567A (zh) * 2020-06-15 2020-09-15 世中科技(北京)有限公司 一种铅酸蓄电池再生修复充放电设备及方法

Also Published As

Publication number Publication date
CN113093021A (zh) 2021-07-09
CN113093021B (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
US11422194B2 (en) Battery diagnosis apparatus and battery diagnosis method based on current pulse method
CN106443474B (zh) 一种动力电池系统寿命衰退特征快速识别的方法
CN109143108B (zh) 一种基于电化学阻抗谱的锂离子电池soh的估计方法
CN102116844B (zh) 测量阀控铅酸蓄电池荷电状态的方法和装置
WO2018090678A1 (zh) 一种监测锂离子电池荷电状态和健康状态的方法及其装置
Thanagasundram et al. A cell level model for battery simulation
CN107015156A (zh) 一种电池健康状态检测方法及装置
CN109490790B (zh) 采用补偿脉冲法的锂动力电池功率特性测试方法及装置
CN113009361B (zh) 一种基于开路电压校准的电池荷电状态估计方法
CN109030567B (zh) 一种锂离子电芯内部水含量判别方法
CN102967831B (zh) 一种铅酸蓄电池性能在线检测系统及检测方法
WO2022198806A1 (zh) 基于谐振电流脉冲的阀控铅酸蓄电池健康状态提升方法
CN114865117B (zh) 锂离子电池电极嵌锂量检测方法、装置及电池管理系统
CN113138345A (zh) 一种利用对称电池评估锂离子电池性能的方法
Li et al. The open-circuit voltage characteristic and state of charge estimation for lithium-ion batteries based on an improved estimation algorithm
WO2022268144A1 (zh) 一种基于两点阻抗老化特征的锂电池在线老化诊断方法
Yu et al. Multi-Fault Diagnosis of Lithium-Ion battery systems based on correlation Coefficient and similarity Approaches
CN103135057A (zh) 一种电池自放电性能的快速测量方法
WO2023078196A1 (zh) 一种软包锂离子电池荷电状态超声导波原位检测方法
CN116381499A (zh) 蓄电池多次峰值功率性能参数预测方法及装置
CN214585899U (zh) 基于谐振脉冲和电化学阻抗谱去阀控铅酸电池硫化的装置
CN114114024A (zh) 一种蓄电池一致性筛选装置和筛选方法
Voicila et al. Design and implementation of a multi-battery, multi-chemistry state of health screening system
CN113805067B (zh) 一种用于电池组参数检测的系统及方法
Kazda et al. Detection of the Changes in Li-ion Batteries Using Nondestructive Methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932422

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21932422

Country of ref document: EP

Kind code of ref document: A1