WO2022198615A1 - Procédé et système d'étalonnage pour système de ponction de robot à deux bras - Google Patents

Procédé et système d'étalonnage pour système de ponction de robot à deux bras Download PDF

Info

Publication number
WO2022198615A1
WO2022198615A1 PCT/CN2021/083163 CN2021083163W WO2022198615A1 WO 2022198615 A1 WO2022198615 A1 WO 2022198615A1 CN 2021083163 W CN2021083163 W CN 2021083163W WO 2022198615 A1 WO2022198615 A1 WO 2022198615A1
Authority
WO
WIPO (PCT)
Prior art keywords
dual
parameter
arm robot
plane
puncture needle
Prior art date
Application number
PCT/CN2021/083163
Other languages
English (en)
Chinese (zh)
Inventor
熊璟
李强云
夏泽洋
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Priority to PCT/CN2021/083163 priority Critical patent/WO2022198615A1/fr
Publication of WO2022198615A1 publication Critical patent/WO2022198615A1/fr

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots

Definitions

  • the present application belongs to the technical field of medical image processing, and in particular relates to a calibration method and system for a dual-arm robotic puncture system.
  • the dual-arm robotic puncture system with multi-degree-of-freedom ends can not only control the ultrasonic probe and the puncture needle separately, and flexibly control the needle insertion angle and posture in a small surgical space; Accurate image positioning and good visual effects.
  • the calibration scheme of the dual-arm robot puncture system with multi-degree-of-freedom end mainly includes:
  • the method installs positioning sensors on the left and right end flanges of the robot respectively, and completes the calibration of the positioning sensors through the robot hand-eye calibration; then controls the robot to scan the calibration template with the ultrasonic probe in different postures, and establishes the relationship between the ultrasonic image and the calibration template through the positioning sensor.
  • the coordinate transformation matrix between the ultrasound image coordinate system and the positioning sensor coordinate system is obtained.
  • Ultrasonic probe calibration method using robot operation and plane calibration device.
  • the method uses a robot to operate the ultrasonic probe to scan the plane calibration device, and then establishes a combination of equations for calibration between the ultrasonic image and the actual physical position of the corresponding plane calibration device, and then uses the equation to solve the relationship between the ultrasonic image coordinate system and the robot manipulator coordinate system. Coordinate transformation matrix.
  • the above-mentioned calibration methods are usually designed for the dual-arm robotic puncture system with a zero-degree-of-freedom end, and it is difficult to efficiently calibrate the dual-arm robotic puncture system with a multi-degree-of-freedom end.
  • the existing calibration methods often require third-party tracking devices such as positioning sensors, cameras, and models. These devices have certain errors in their positioning and size, and are costly.
  • the present application provides a method and system for calibrating a dual-arm robotic puncture system, aiming to solve one of the above-mentioned technical problems in the prior art at least to a certain extent.
  • a method for calibrating a dual-arm robot puncture system comprising:
  • the parameters to be calibrated include the first initial parameter of the puncture needle, the first translation parameter, and the second initial parameter of the ultrasonic probe parameter, second translation parameter and rotation parameter;
  • Acquire two mutually perpendicular S-plane ultrasound images and T-plane ultrasound images by using the ultrasound probe use the S-plane ultrasound images and T-plane ultrasound images to track the motion trajectories of the ultrasound probe and the puncture needle respectively, and use the trajectory fitting to track the movement trajectories of the ultrasound probe and puncture needle.
  • the first translation parameter, the second translation parameter and the rotation parameter are calibrated.
  • the kinematic analysis of the dual-arm robot puncturing system includes:
  • R P(d n ) R P(0)+v n ⁇ d n
  • B T R is the homogeneous coordinate transformation matrix from ⁇ R ⁇ to ⁇ B ⁇
  • ⁇ R ⁇ represents the end flange coordinate system of the right arm of the dual-arm robot
  • ⁇ B ⁇ is the base coordinate system of the dual-arm robot
  • R P(d n ) is the coordinate of the needle tip in ⁇ R ⁇ when the puncture needle is translated by dn
  • v n is the unit direction vector in ⁇ R ⁇ when the puncture needle is translated, that is, the first translation parameter.
  • the kinematic analysis of the dual-arm robot puncturing system includes:
  • n n(0)+d p ⁇ v p
  • B T L is the homogeneous coordinate transformation matrix from ⁇ L ⁇ to ⁇ B ⁇ , ⁇ L ⁇ represents the end flange coordinate system of the left arm of the dual-arm robot;
  • B P(d p / ⁇ ) is the translation of the ultrasonic probe d p or rotation ⁇ , the position vector of the ultrasound probe in ⁇ B ⁇ .
  • L T ST (d p / ⁇ ) is the set composed of L T S (d p / ⁇ ) and L T T (d p / ⁇ ), when the ultrasound probe is translated by d p or rotated by ⁇ , ⁇ S ⁇ or ⁇ T
  • the homogeneous coordinate transformation matrix from ⁇ to ⁇ L ⁇ ; ⁇ S ⁇ and ⁇ T ⁇ correspond to the S-plane ultrasound image coordinate system and the T-plane ultrasound image coordinate system of the ultrasound probe respectively
  • ST P is the set composed of SP and T P , Represents the pixel coordinates in the S-plane ultrasound image or the T-plane ultrasound image
  • R(n, ⁇ ) is the rotation transformation matrix of the coordinate system when the coordinate system rotates around the axis n by an angle of ⁇
  • n and c are the method of rotating the plane of the ultrasound probe respectively vector and rotation center coordinates
  • n(0) and C(0) are respectively the unit normal vector and rotation center coordinates of the rotation plane in ⁇ L ⁇ when the ultrasonic probe
  • the technical solution adopted in the embodiment of the present application further includes: the use of the multi-point method to calibrate the first initial parameter of the puncture needle is specifically:
  • the technical solution adopted in the embodiment of the present application further includes: the calibration of the second initial parameter of the ultrasonic probe according to the biplane ultrasonic imaging is specifically:
  • the calibrating the first translation parameter includes:
  • the calibrating the second translation parameter includes:
  • the calibrating the rotation parameter includes:
  • the coordinate vector L P(i) of the ultrasonic probe's rotation trajectory point under ⁇ L ⁇ is obtained, and a circle fitting in three-dimensional space is performed on the trajectory point.
  • the rotation parameters (n(0), c(0)) of the ultrasonic probe are obtained:
  • a dual-arm robot puncturing system calibration system comprising:
  • Kinematic analysis module used for kinematic analysis of the dual-arm robot puncture system to obtain parameters to be calibrated of the dual-arm robot puncture system, the parameters to be calibrated include the first initial parameter of the puncture needle, the first translation parameter, and second initial parameters, second translation parameters and rotation parameters of the ultrasound probe;
  • the first parameter calibration module is used to calibrate the first initial parameter of the puncture needle by using the multi-point method, and perform bi-plane ultrasonic imaging on the tip of the puncture needle, and the ultrasonic imaging is performed according to the bi-plane ultrasonic imaging.
  • the second initial parameter of the probe is calibrated;
  • the second parameter calibration module is used to obtain two mutually perpendicular S-plane ultrasonic images and T-plane ultrasonic images by using the ultrasonic probe, and use the S-plane ultrasonic images and T-plane ultrasonic images to track the movements of the ultrasonic probe and the puncture needle respectively track, and calibrate the first translation parameter, the second translation parameter and the rotation parameter through track fitting.
  • the beneficial effects of the embodiments of the present application are: the method and system for calibrating a dual-arm robotic puncture system according to the embodiments of the present application can provide two vertical ultrasound planes by utilizing the high-precision positioning performance of the dual-arm robot and the transrectal ultrasound probe.
  • the characteristics of the multi-degree-of-freedom ultrasonic probe and multi-degree-of-freedom needle tube are analyzed to obtain the parameters to be calibrated for the puncture needle and the ultrasonic probe.
  • the puncture needle and the parameter calibration of the transrectal ultrasound probe makes the calibration of the puncture needle and the ultrasound probe into a closed loop, which can efficiently calibrate the puncture needle and the transrectal ultrasound probe of the dual-arm robotic puncture system at the same time without the use of third-party tracking equipment. Conducive to cost savings.
  • FIG. 1 is a flowchart of a method for calibrating a dual-arm robotic puncture system according to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a dual-arm robotic puncture system with a multi-degree-of-freedom end
  • FIG. 3 is a schematic diagram of a geometric model of a transrectal ultrasound probe
  • FIG. 4 is a schematic diagram of setting a coordinate system of a dual-arm robotic puncture system according to an embodiment of the application
  • FIG. 5 is a frame diagram of parameter calibration to be calibrated of the dual-arm robotic puncture system according to an embodiment of the application
  • FIG. 6 is a schematic structural diagram of a calibration system of a dual-arm robotic puncture system according to an embodiment of the present application.
  • the method for calibrating a dual-arm robot puncture system in the embodiment of the present application can provide two vertical ultrasound planes by using the high-precision positioning performance of the dual-arm robot and the transrectal ultrasound probe without using a third-party tracking device.
  • the parameters to be calibrated are divided into two groups. Initial parameters and motion parameters, and then complete the calibration of the initial parameters and motion parameters based on biplane ultrasound images.
  • FIG. 1 is a flowchart of a method for calibrating a dual-arm robotic puncture system according to an embodiment of the present application.
  • the method for calibrating a dual-arm robotic puncture system according to an embodiment of the present application includes the following steps:
  • S10 Perform kinematics analysis on the dual-arm robot puncture system to obtain parameters to be calibrated for the dual-arm robot puncture system, and divide the to-be-calibrated parameters into initial parameters and motion parameters;
  • FIG. 2 is a schematic structural diagram of the dual-arm robotic puncture system. It includes a dual-arm robot, an ultrasound instrument with a transrectal ultrasound probe, and two end effectors; wherein, the two end effectors are respectively installed on the end flanges of the left and right arms of the dual-arm robot, and the end of the right arm is
  • the actuator is equipped with a puncture needle that can translate and rotate about itself.
  • the left arm end effector is fitted with a transrectal ultrasound probe that translates and rotates around itself. Each end effector has an initial position, and each movement starts from the initial position, and then resets to the initial position after the operation is completed.
  • the geometric model of the transrectal ultrasound probe is shown in Figure 3, which provides two mutually perpendicular S planes and T planes.
  • FIG. 4 is a schematic diagram of the coordinate system setting of the dual-arm robot puncturing system, wherein ⁇ L ⁇ and ⁇ R ⁇ represent the end flange coordinate systems of the left and right arms respectively; ⁇ S ⁇ and ⁇ T ⁇ respectively Corresponding to the S-plane ultrasound image coordinate system and the T-plane ultrasound image coordinate system provided by the transrectal ultrasound probe; ⁇ B ⁇ is the base coordinate system of the dual-arm robot (ie, the world coordinate system of the entire system).
  • the kinematics analysis performed on the dual-arm robotic puncture system includes two parts: the kinematics analysis of the puncture needle and the kinematics analysis of the ultrasonic probe, and specifically includes:
  • S11 Perform kinematic analysis on the puncture needle to obtain the to-be-calibrated parameters of the puncture needle;
  • the to-be-calibrated parameters of the puncture needle include a first initial parameter R P(0) and a first translation parameter v n ;
  • the puncture needle rotates around itself without changing its position, and the position of the puncture needle ( B P(d n )) is determined by its initial position ( R P(0) ) and the translation distance (d n ). Its kinematic equation is as follows:
  • B T R is the homogeneous coordinate transformation matrix from ⁇ R ⁇ to ⁇ B ⁇ , which is provided by the robot operating system (ROS);
  • R P(d n ) is the time when the puncture needle is translated d n , the coordinates of the needle tip in ⁇ R ⁇ ;
  • v n is the unit direction vector of the puncture needle when it translates in ⁇ R ⁇ , and is the parameter to be calibrated.
  • S12 Perform kinematic analysis on the ultrasonic probe to obtain parameters to be calibrated for the ultrasonic probe.
  • the parameters to be calibrated for the ultrasonic probe include a second initial parameter L T ST (0,0), a second translation parameter v p and a rotation parameter (n( 0), c(0));
  • n n(0)+d p ⁇ v p
  • B T L is the homogeneous coordinate transformation matrix from ⁇ L ⁇ to ⁇ B ⁇ , which is provided by ROS;
  • L T ST (d p / ⁇ ) is L T S (d p / ⁇ ) and L
  • ST P is SP and The set composed of T P represents the pixel coordinates in the S-plane ultrasound image or the T-plane ultrasound image;
  • R(n, ⁇ ) is the rotation transformation matrix of the coordinate system when the coordinate system rotates about the axis n by ⁇ ;
  • n and c are the ultrasound The normal vector and rotation center coordinates of the probe rotation plane;
  • n(0) and C(0) are the unit normal vector and rotation center coordinates of the rotation plane in ⁇ L ⁇ when the ultrasonic probe is at the initial position,
  • the obtained parameters to be calibrated include a first initial parameter, a first translation parameter, a second initial parameter, a second translation parameter and a rotation parameter, wherein the first translation parameter, the second translation parameter and the rotation parameter
  • the parameters are motion parameters, as shown in Table 1 below:
  • the first initial parameter R P(0) and the second initial parameter L T ST (0,0) are required to perform kinematic modeling; when the ultrasonic probe and the puncture needle are in the initial position
  • the first translation parameter v n and the second translation parameter v p are also required to perform kinematic modeling during translation; when the ultrasonic probe rotates, the rotation parameters (n(0), c(0) are also required. )) before the kinematics modeling during rotation can be performed.
  • the calibration process of the first initial parameter and the second initial parameter is as follows:
  • the first initial parameter R P(0) of the puncture needle is the coordinates of the needle tip under ⁇ R ⁇ when the puncture needle is at the initial position.
  • the embodiment of the present application adopts the multi-point method to calibrate the initial parameter R P(0).
  • the specific calibration process is as follows: first, reset the puncture needle to the initial position; then control the robot to let the needle tip touch a fixed reference point in different postures , record the parameters B T R (i) of the robot under different postures; finally, solve the least squares of the following equation to obtain the first initial parameter R P(0) of the puncture needle:
  • the second initial parameter L T ST (0,0) of the ultrasound probe is the set of parameters L T S (0,0) and L T T (0,0), which is the image coordinate system ( ⁇ S ⁇ and ⁇ T ⁇ ) to ⁇ L ⁇ homogeneous coordinate transformation matrix.
  • the biplane ultrasonic imaging of the needle tip is used to calibrate the second initial parameter L T ST (0,0).
  • the specific calibration process is as follows: first, reset the puncture needle and the ultrasonic probe to the initial position; then control the robot to scan the calibrated needle tip with the ultrasonic probe in different postures, and record the parameters of the robot under different postures ( B T L (i), B T R (i)); finally, the second initial parameter L T ST (0,0) of the ultrasound probe is obtained by solving the least squares of the following equation:
  • S30 Use the transrectal ultrasound probe of the dual-arm robotic puncture system to acquire two mutually perpendicular S-plane ultrasound images and T-plane ultrasound images, and use the S-plane ultrasound images and the T-plane ultrasound images to track the motion trajectories of the ultrasound probe and the puncture needle, respectively,
  • the motion parameters of the dual-arm robot puncture system were calibrated by trajectory fitting;
  • the first translation parameter v n is the unit direction vector of the translation of the puncture needle under ⁇ R ⁇ .
  • the ultrasonic S plane is used to track the translation trajectory of the puncture needle, and v n is calibrated by direct fitting in the three-dimensional space.
  • the specific calibration process is as follows: first, control the robot to make the puncture needle and the ultrasonic probe nearly parallel, so that the S plane can scan the needle tip; then, keep the robot posture unchanged, and control the motor to make the puncture needle start to translate, and save different translation distances Finally, according to the following equation (6), the trajectory points of the translation of the puncture needle tip under ⁇ R ⁇ are obtained, and the trajectory points are fitted with straight lines in the three-dimensional space to obtain the first point of the puncture needle.
  • Translation parameter v n
  • R P(i) B T -1 R ⁇ B T L ⁇ L T S (0,0) ⁇ S P(i) (6)
  • the second translation parameter v p is the unit direction vector of the translation of the ultrasound probe under ⁇ L ⁇ .
  • the ultrasonic S plane is used to track the translation trajectory of the ultrasonic probe, and vp is calibrated by direct fitting in the three-dimensional space.
  • the specific calibration process is as follows: first, control the robot to make the puncture needle and the ultrasonic probe nearly parallel, so that the S plane can scan the needle tip; then, keep the robot posture unchanged, control the motor, make the ultrasonic probe start to translate, and save the data at different translation distances.
  • the rotation parameters (n(0), c(0)) are the normal vector of the rotation plane and the coordinates of the rotation center when the ultrasonic probe is rotated.
  • the embodiment of the present application uses the T plane to track the rotation trajectory of the ultrasonic probe, and then completes the calibration of the rotation parameters (n(0), c(0)) through circle fitting in the three-dimensional space.
  • the specific calibration process is as follows: first, control the robot to make the puncture needle and the ultrasonic probe nearly parallel, and let the T plane intersect the needle; then, keep the robot posture unchanged, control the motor, make the ultrasonic probe start to rotate, and save the rotation angle of the ultrasonic probe.
  • the method for calibrating a dual-arm robot puncture system in the embodiment of the present application utilizes the high-precision positioning performance of the dual-arm robot and the feature that the transrectal ultrasound probe can provide two vertical ultrasound planes, and performs kinematics on the multi-degree-of-freedom ultrasound probe and the multi-degree-of-freedom needle tube.
  • the parameters to be calibrated for the puncture needle and the ultrasonic probe are obtained, and the parameters of the puncture needle and the transrectal ultrasonic probe are calibrated simultaneously based on the two vertical ultrasonic planes provided by the transrectal ultrasonic probe.
  • the embodiment of the present application integrates the mechanism of the dual-arm robot and the ultrasonic image, so that the calibration of the puncture needle and the calibration of the ultrasonic probe become a closed loop, and the puncture needle and the transrectal ultrasonic probe of the dual-arm robot puncture system can be calibrated efficiently at the same time, without the need for The use of third-party tracking equipment is conducive to saving costs.
  • the following embodiments are experimentally tested on an existing dual-arm robotic puncture system guided by a transrectal ultrasound probe. After the calibration of the whole system is completed, the needle tip of the dual-arm robotic puncture system in different motion states (initial state, translation and rotation) is scanned by the ultrasonic probe. Calculate the needle tip coordinates under the needle tube calibration and the needle tip coordinates under the probe calibration respectively, and take the distance between the two as the positioning error.
  • the experimental results show that the embodiment of the present application can efficiently calibrate the dual-arm robot puncture system, and the calibration accuracy is high.
  • FIG. 6 is a schematic structural diagram of a calibration system of a dual-arm robotic puncture system according to an embodiment of the present application.
  • the dual-arm robotic puncture system calibration system 40 in the embodiment of the present application includes:
  • Kinematics analysis module 41 used for kinematic analysis of the dual-arm robot puncture system to obtain parameters to be calibrated for the dual-arm robot puncture system, and to divide the to-be-calibrated parameters into initial parameters and motion parameters;
  • the first parameter calibration module 42 is used to calibrate the first initial parameters of the puncture needle by using the multi-point method based on the results of the kinematic analysis, and to perform biplane ultrasonic imaging on the tip of the puncture needle, and to calibrate the ultrasonic probe according to the biplane ultrasonic imaging.
  • the second initial parameter is calibrated;
  • the second parameter calibration module 43 is used to obtain two mutually perpendicular S-plane ultrasound images and T-plane ultrasound images using the transrectal ultrasound probe of the dual-arm robotic puncture system, and use the S-plane ultrasound images and the T-plane ultrasound images to track the ultrasound probe respectively and the motion trajectory of the puncture needle, and calibrate the motion parameters of the dual-arm robot puncture system by trajectory fitting.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Robotics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

L'invention concerne un procédé et un système d'étalonnage pour un système de ponction de robot à deux bras. Le procédé d'étalonnage consiste à : réaliser une analyse cinématique sur un système de ponction de robot à deux bras, de sorte à obtenir des paramètres à étalonner du système de ponction de robot à deux bras ; étalonner un premier paramètre initial d'une aiguille de ponction à l'aide d'un procédé à points multiples, réaliser une imagerie ultrasonore biplanaire sur la pointe de l'aiguille de ponction et étalonner un second paramètre initial d'une sonde ultrasonore en fonction de l'imagerie ultrasonore biplanaire ; et acquérir, à l'aide de la sonde ultrasonore, une image ultrasonore de plan S et une image ultrasonore de plan T perpendiculaires l'une à l'autre, suivre respectivement les trajectoires de mouvement de la sonde ultrasonore et de l'aiguille de ponction à l'aide de l'image ultrasonore de plan S et de l'image ultrasonore de plan T et étalonner un premier paramètre de translation, un second paramètre de translation et un paramètre de rotation au moyen d'un ajustement de trajectoire. Au moyen du procédé, une aiguille de ponction et une sonde ultrasonore transrectale d'un système de ponction de robot à deux bras peuvent être efficacement étalonnées en même temps, sans avoir besoin d'un dispositif de suivi tiers.
PCT/CN2021/083163 2021-03-26 2021-03-26 Procédé et système d'étalonnage pour système de ponction de robot à deux bras WO2022198615A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/083163 WO2022198615A1 (fr) 2021-03-26 2021-03-26 Procédé et système d'étalonnage pour système de ponction de robot à deux bras

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/083163 WO2022198615A1 (fr) 2021-03-26 2021-03-26 Procédé et système d'étalonnage pour système de ponction de robot à deux bras

Publications (1)

Publication Number Publication Date
WO2022198615A1 true WO2022198615A1 (fr) 2022-09-29

Family

ID=83396243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/083163 WO2022198615A1 (fr) 2021-03-26 2021-03-26 Procédé et système d'étalonnage pour système de ponction de robot à deux bras

Country Status (1)

Country Link
WO (1) WO2022198615A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117204951A (zh) * 2023-09-22 2023-12-12 上海睿触科技有限公司 一种基于x射线的手术定位导航设备及其定位实现方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1678920A (zh) * 2002-08-29 2005-10-05 皇家飞利浦电子股份有限公司 用图标描述相互平面方向的双平面超声成像
CN102057296A (zh) * 2008-06-05 2011-05-11 皇家飞利浦电子股份有限公司 具有二维阵列探头的扩展视场超声成像
CN102811666A (zh) * 2010-03-19 2012-12-05 皇家飞利浦电子股份有限公司 超声成像中的成像平面的自动定位
CN103412337A (zh) * 2013-07-16 2013-11-27 复旦大学 基于双独立旋转磁棒电磁跟踪的位置跟踪方法及系统
US20150297177A1 (en) * 2014-04-17 2015-10-22 The Johns Hopkins University Robot assisted ultrasound system
CN106344153A (zh) * 2016-08-23 2017-01-25 深圳先进技术研究院 一种柔性穿刺针针尖自动跟踪装置及方法
CN111437011A (zh) * 2020-03-30 2020-07-24 中国科学院深圳先进技术研究院 一种穿刺手术机器人系统
CN111956329A (zh) * 2020-08-12 2020-11-20 中国科学院深圳先进技术研究院 一种双臂机器人标定方法、系统、终端以及存储介质
CN112168349A (zh) * 2020-08-31 2021-01-05 同济大学 一种静脉穿刺机器人的针头跟踪与路径显示方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1678920A (zh) * 2002-08-29 2005-10-05 皇家飞利浦电子股份有限公司 用图标描述相互平面方向的双平面超声成像
CN102057296A (zh) * 2008-06-05 2011-05-11 皇家飞利浦电子股份有限公司 具有二维阵列探头的扩展视场超声成像
CN102811666A (zh) * 2010-03-19 2012-12-05 皇家飞利浦电子股份有限公司 超声成像中的成像平面的自动定位
CN103412337A (zh) * 2013-07-16 2013-11-27 复旦大学 基于双独立旋转磁棒电磁跟踪的位置跟踪方法及系统
US20150297177A1 (en) * 2014-04-17 2015-10-22 The Johns Hopkins University Robot assisted ultrasound system
CN106344153A (zh) * 2016-08-23 2017-01-25 深圳先进技术研究院 一种柔性穿刺针针尖自动跟踪装置及方法
CN111437011A (zh) * 2020-03-30 2020-07-24 中国科学院深圳先进技术研究院 一种穿刺手术机器人系统
CN111956329A (zh) * 2020-08-12 2020-11-20 中国科学院深圳先进技术研究院 一种双臂机器人标定方法、系统、终端以及存储介质
CN112168349A (zh) * 2020-08-31 2021-01-05 同济大学 一种静脉穿刺机器人的针头跟踪与路径显示方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117204951A (zh) * 2023-09-22 2023-12-12 上海睿触科技有限公司 一种基于x射线的手术定位导航设备及其定位实现方法
CN117204951B (zh) * 2023-09-22 2024-04-30 上海睿触科技有限公司 一种基于x射线的手术定位导航设备及其定位实现方法

Similar Documents

Publication Publication Date Title
CN113133832B (zh) 一种双臂机器人穿刺系统标定方法及系统
WO2022032964A1 (fr) Procédé d'étalonnage de robot à deux bras, système, terminal et support de stockage
CN111331592B (zh) 机械手臂工具中心点校正装置及其方法以及机械手臂系统
CN110355754B (zh) 机器人手眼系统、控制方法、设备及存储介质
WO2023082990A1 (fr) Procédé et appareil pour déterminer la pose de travail d'un bras robotique
CN111801198B (zh) 一种手眼标定方法、系统及计算机存储介质
JP4191080B2 (ja) 計測装置
CN111012506B (zh) 基于立体视觉的机器人辅助穿刺手术末端工具中心标定方法
WO2022141153A1 (fr) Système de ponction à positionnement par ultrasons et support de stockage
CN112754616B (zh) 超声定位穿刺系统和存储介质
CN109129466A (zh) 一种用于立体定向机器人的主动视觉装置及其控制方法
CN111360812B (zh) 一种基于相机视觉的工业机器人dh参数标定方法及标定装置
CN113974835B (zh) 一种基于远心不动点约束的手术机器人运动控制方法
WO2022198615A1 (fr) Procédé et système d'étalonnage pour système de ponction de robot à deux bras
CN111759463A (zh) 一种提高手术机械臂定位精度的方法
CN114343847A (zh) 基于光学定位系统的手术机器人的手眼标定方法
WO2023046074A1 (fr) Procédé d'apprentissage autonome pour un procédé de commande de bras mécanique
CN116035705A (zh) 一种手术机器人整体运动学空间定位方法
WO2024007900A1 (fr) Procédé et appareil de réglage de degré de liberté redondant, dispositif informatique et bras mécanique
CN111477318B (zh) 一种用于远程操纵的虚拟超声探头跟踪方法
CN111134702A (zh) 一种c臂机自动控制系统及方法
CN114452004B (zh) 一种手术机器人末端位置和姿态的控制方法
CN114589682A (zh) 一种机器人手眼自动标定的迭代方法
CN115431278B (zh) 基于vtk特征点变换的机器人标定方法、系统及存储介质
Waspe et al. Design and validation of a robotic needle positioning system for small animal imaging applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932240

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21932240

Country of ref document: EP

Kind code of ref document: A1