WO2022198547A1 - 一种用于智能井控的辅助系统和方法 - Google Patents

一种用于智能井控的辅助系统和方法 Download PDF

Info

Publication number
WO2022198547A1
WO2022198547A1 PCT/CN2021/082907 CN2021082907W WO2022198547A1 WO 2022198547 A1 WO2022198547 A1 WO 2022198547A1 CN 2021082907 W CN2021082907 W CN 2021082907W WO 2022198547 A1 WO2022198547 A1 WO 2022198547A1
Authority
WO
WIPO (PCT)
Prior art keywords
glasses
real
pressure value
operator
server
Prior art date
Application number
PCT/CN2021/082907
Other languages
English (en)
French (fr)
Inventor
曾琦军
谢登攀
高原
Original Assignee
成都维泰油气能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都维泰油气能源技术有限公司 filed Critical 成都维泰油气能源技术有限公司
Priority to US18/022,765 priority Critical patent/US11756275B2/en
Publication of WO2022198547A1 publication Critical patent/WO2022198547A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/08Controlling or monitoring pressure or flow of drilling fluid, e.g. automatic filling of boreholes, automatic control of bottom pressure
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/013Eye tracking input arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/16Sound input; Sound output
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/16Sound input; Sound output
    • G06F3/167Audio in a user interface, e.g. using voice commands for navigating, audio feedback
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/20Drawing from basic elements, e.g. lines or circles
    • G06T11/206Drawing of charts or graphs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/006Mixed reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/20Scenes; Scene-specific elements in augmented reality scenes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • G06T2200/24Indexing scheme for image data processing or generation, in general involving graphical user interfaces [GUIs]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the invention relates to the technical field of petrochemical industry, in particular to an auxiliary system and method for intelligent well control.
  • the well kill work order is static, so the operator cannot modify the well kill work order in time if there is an improper operation during the well killing process.
  • the operator when the operator operates the throttle valve, it is necessary to closely compare the difference between the target pressure and the actual pressure to guide the adjustment of the throttle valve opening.
  • the target pressure value is on the construction sheet, and the actual pressure is on the mechanical pressure gauge.
  • the comparison of operators is not intuitive and there will be some differences in manual calculation, which cannot reflect the influence of slight changes in mud performance; in addition, the operator's line of sight needs to be switched back and forth, which will also affect the operation.
  • the present invention provides a An auxiliary system and method for intelligent well control.
  • the present invention provides an auxiliary system for intelligent well control, including AR glasses, a server and a first sensor group;
  • the first sensor group is used to collect real-time data of the wellbore and the surface and transmit it to the server;
  • the server is used to store the configuration data of the wellbore and the surface, analyze the target pressure value of the throttle valve inlet of the surface according to the configuration data and the real-time data, and obtain the surface pressure from the real-time data.
  • the actual pressure value of the throttle valve inlet, and the actual pressure value and the target pressure value are transmitted to the AR glasses;
  • the AR glasses are used to dynamically display the actual pressure value and the target pressure value in real time.
  • the beneficial effects of the auxiliary system for intelligent well control provided by the present invention are as follows: during the well control operation, the operator needs to switch the line of sight to compare the target pressure and the actual pressure, which will affect the operator's operation.
  • the first sensor group The real-time data of the wellbore and the surface can be transmitted to the server in real time.
  • the server can obtain the actual pressure value and analyze the target pressure value by using the configuration data and real-time data. Therefore, the first sensor group and the server can make the operator receive the actual pressure value.
  • the actual pressure value and target pressure value can be dynamically displayed to the operator in real time through AR glasses and track the operator's line of sight, avoiding the process of the operator needing to constantly switch the line of sight to compare the pressure, enabling the operator to perform well control operations more attentively and accurately, thereby improving the well control operation. safety.
  • the auxiliary system for intelligent well control of the present invention can also be improved as follows.
  • the server is further configured to obtain pulp replacement data according to the real-time data and the configuration data, and transmit the pulp replacement data to the AR glasses;
  • the AR glasses are further configured to obtain a real picture of fluid motion dynamically displaying the interface position of the replacement slurry according to the slurry replacement data, and display the real picture of fluid movement.
  • the beneficial effect of adopting the above-mentioned further scheme is: through the calculation and analysis of the configuration data and real-time data by the server, the replacement slurry data can be obtained, wherein the replacement slurry data includes the replacement slurry interface position, well depth and height, etc.; and the AR glasses can be based on the replacement slurry.
  • the data is used to model, and a real picture of the fluid motion at the junction position of the replacement slurry is obtained dynamically. By observing the real picture of fluid movement, the operator can accurately kill the well, and at the same time, it also enables the operator to understand the real-time situation of the slurry replacement more intuitively, so as to facilitate the operator to control the valve according to the actual situation.
  • the server is further configured to automatically generate a kill work order according to the configuration data and the real-time data, and transmit the kill work order to the AR glasses;
  • the AR glasses are also used to display the kill work order in real time.
  • the server integrates configuration data and real-time data, and automatically fills in and generates the killing work order, so that the operator does not need to spend a lot of time to prepare the well killing work order, and to a large extent
  • the preparation time required for well control accidents is shortened, so that the operator has a faster response speed during the well control operation, thereby avoiding the situation of more serious accidents caused by the operator's failure to conduct well control in time .
  • the well kill construction sheet filled in based on the configuration data and real-time data will change in real time with the actual situation in the well control operation, so it can better assist the operator to carry out more accurate well control operations.
  • the AR glasses are also used to recognize a voice command sent by the operator, and switch the display content of the AR glasses according to the voice command.
  • the beneficial effect of adopting the above-mentioned further scheme is: because the operator mainly controls the valve with both hands during the well control operation, and different situations occur during the well control operation, the operator needs to observe different data and parameters before proceeding accordingly. At this time, controlling the AR glasses to switch the display content through voice commands can liberate the operator's hands to a large extent, so as to better assist the operator in well control operations.
  • the AR glasses are also used to identify dangerous working conditions according to the dangerous voice command sent by the operator and/or the actual pressure value, and display corresponding emergency action guidance and/or according to the danger level of the dangerous working condition. Automatic alarm.
  • the beneficial effect of adopting the above-mentioned further scheme is: the dangerous conditions that occur in the process of well control operation often require the operator to identify and protect his own life safety, while AR glasses can identify dangerous voice commands and/or actual pressure It can identify dangerous working conditions in multiple dimensions, so as to enhance the sensitivity to dangerous working conditions and ensure safety at the same time; Emergency action guidance and automatic alarms can respond to dangerous conditions in a timely manner, thereby ensuring the safety of the operator's own life.
  • the AR glasses further include a camera, and the camera is used for real-time shooting of images from the operator's perspective;
  • the AR glasses are also used to transmit the image from the operator's perspective to a pre-designated electronic device in real time, and perform voice communication with the pre-designated electronic device.
  • the beneficial effect of adopting the above-mentioned further scheme is that: by taking an image from the operator's perspective and transmitting the image from the operator's perspective to the pre-designated electronic device, the image from the operator's perspective can be shared with the pre-designated electronic device, so that the pre-designated electronic device can share the image from the operator's perspective.
  • the designated electronic device can obtain effective first-site information; in addition, the voice communication between the pre-designated electronic device and the operator can enable the operator to receive remote guidance from an expert of the pre-designated electronic device during the operation. , so as to achieve real-time communication between the first field and remote experts, so as to more effectively assist well control decision-making.
  • the AR glasses are also used to identify the valve to be controlled in the image from the operator's perspective, and to call up the operation instruction manual of the valve to be controlled.
  • the beneficial effect of adopting the above-mentioned further solution is that the operation instruction manual of the valve to be controlled can be identified and called through the AR glasses, which can better help the operator to understand the valve to be controlled, so that the operator can control the valve more quickly and accurately.
  • the server includes a cloud server or an industrial computer server.
  • the cloud server can facilitate multiple users to share configuration data, real-time data and other data at the same time.
  • the industrial computer server can be directly located at the job site, and it is easier for the operator to check when a problem occurs.
  • the present invention provides an auxiliary method for intelligent well control, comprising the following steps:
  • the first sensor group collects real-time data of the wellbore and the surface, and transmits it to the server;
  • the server stores configuration data of the wellbore and the ground, and the server analyzes the target pressure value of the throttle valve inlet on the ground according to the real-time data and the configuration data;
  • the server obtains the actual pressure value of the throttle valve inlet on the ground from the real-time data, and transmits the actual pressure value and the target pressure value to the AR glasses;
  • the AR glasses display the actual pressure value and the target pressure value.
  • the beneficial effects of the auxiliary method for intelligent well control provided by the present invention are as follows: during the well control operation, the operator needs to switch the line of sight to compare the target pressure and the actual pressure, which will affect the operator's operation.
  • the first sensor group The real-time data of the wellbore and the surface can be transmitted to the server in real time.
  • the server can obtain the actual pressure value and analyze the target pressure value by using the configuration data and real-time data. Therefore, the first sensor group and the server can make the operator receive the actual pressure value.
  • the actual pressure value and target pressure value can be dynamically displayed in the operator's field of vision in real time through AR glasses, and the operator can be tracked It avoids the process of operators needing to constantly switch the line of sight to compare the pressure, so that the operator can conduct well control operations more attentively and accurately, thereby improving the safety in well control operations.
  • the server obtains pulp replacement data according to the real-time data and the configuration data, and transmits the pulp replacement data to the AR glasses;
  • the AR glasses obtain a real picture of the fluid motion dynamically displaying the interface position of the replacement slurry according to the data of the replacement slurry, and display the real picture of the fluid motion.
  • the beneficial effect of adopting the above-mentioned further scheme is: through the calculation and analysis of the configuration data and real-time data by the server, the replacement slurry data can be obtained, wherein the replacement slurry data includes the replacement slurry interface position, well depth and height, etc.; and the AR glasses can be based on the replacement slurry.
  • the data is used to model, and a real picture of the fluid motion at the junction position of the replacement slurry is obtained dynamically. By observing the real picture of fluid movement, the operator can accurately kill the well, and at the same time, it also enables the operator to understand the real-time situation of the replacement slurry more intuitively, so as to facilitate the operator to adjust the valve according to the actual situation.
  • FIG. 1 is a schematic structural diagram of an auxiliary system for intelligent well control according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of an auxiliary method for intelligent well control according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of another auxiliary system for intelligent well control according to an embodiment of the present invention.
  • an auxiliary system for intelligent well control includes AR glasses 100 , a server 200 and a first sensor group 300 ;
  • the first sensor group 300 is used to collect real-time data of the wellbore and the surface and transmit it to the server 200;
  • the server 200 is configured to store the configuration data of the wellbore and the surface, analyze the target pressure value of the throttle valve inlet of the surface according to the configuration data and the real-time data, and obtain the surface from the real-time data. the actual pressure value of the throttle valve inlet, and transmit the actual pressure value and the target pressure value to the AR glasses 100;
  • the AR glasses 100 are used to dynamically display the actual pressure value and the target pressure value in real time.
  • the configuration data may be entered by the operator or other staff into the cloud server through a terminal or a background system for storage; when the server 200 is an industrial computer server; Or or other staff through the operation console (for example, the external monitor of the industrial computer and its supporting U disk and mouse, etc.) input into the industrial computer server for storage.
  • the operation console for example, the external monitor of the industrial computer and its supporting U disk and mouse, etc.
  • the configuration data includes the inner and outer diameters and lengths of the drill string and the drilling tool assembly, as well as the inner and outer diameters of the joints, the inner diameter of the open hole of the wellbore, the length and inner diameter of the casing, the low pumping cycle test results, the wellbore trajectory, the wellbore enlargement rate, and the type of surface equipment.
  • inlet mud density and viscosity, formation strength test results also includes overflow data such as overflow volume, overflow properties, shut-in standing pressure and shut-in casing pressure.
  • Real-time data includes bit depth, well depth, outlet mud density, inlet and outlet temperatures, inlet and outlet flows, vertical pressure, casing pressure or downhole sensor pressure.
  • the analysis process of the target pressure value is as follows:
  • the actual bottom hole pressure is calculated according to the real-time data and the configuration data, and the real-time target pressure value is further calculated according to the actual bottom hole pressure.
  • the target pressure value is a dynamic value, which represents the value that the operator wants to achieve by adjusting the throttle valve to make the pressure value of the throttle valve inlet, and the unit can be MPa.
  • the target pressure value refers to the surface back pressure.
  • the target pressure value refers to the surface back pressure. It is the vertical pressure on the ground; the preset position refers to the position of the drill bit, which will be changed accordingly with different well control strategies and well conditions.
  • the historical data is the wellbore and surface data collected by the first sensor group 300 before the operator starts to kill the well.
  • the AR glasses can directly display the actual pressure value and the target pressure value dynamically in real time, or the AR glasses can convert the actual pressure value and the target pressure value into a curve or tree that can more intuitively express the relationship between the two. Graph, and then display the trend graph dynamically in real time.
  • the first sensor group can transmit the real-time data of the wellbore and the surface to the server in real time.
  • the server can use the configuration data and real-time data to obtain the actual pressure value and analyze the target pressure value. Therefore, through the first sensor group and the server, the operator can receive The actual pressure value and target pressure value are real-time and accurate, thus avoiding the difference caused by manual calculation; in addition, the actual pressure value and target pressure value can be dynamically displayed in the operator's field of vision in real time through AR glasses. And follow the operator's line of sight, avoiding the process that the operator needs to constantly switch the line of sight to compare the pressure, so that the operator can be more attentive and more accurate in the well control operation, thereby improving the safety in the well control operation.
  • the server 200 is further configured to obtain paste replacement data according to the real-time data and the configuration data, and transmit the paste replacement data to the AR glasses 100;
  • the configuration data of the wellbore and the surface include the inner and outer diameters and lengths of the drill string and the drilling tool assembly, as well as the inner and outer diameters of the joints, the inner diameter of the open hole of the wellbore, the length and inner diameter of the casing, the wellbore trajectory, the expansion rate of the wellbore, the type of surface equipment, and the surface pipeline.
  • the configuration data such as volume and the like are data that have been stored in the server 200 in advance.
  • the real-time data includes drill bit depth, well depth, inlet and outlet flow, and the like.
  • the pulp replacement data mainly includes the position of the pulp replacement interface.
  • the position of the pulp replacement interface changes in real time.
  • the analysis process of the pulp replacement data is as follows: After the pulp replacement starts, the server uses the configuration data and real-time data to calculate the pumping input through the volume method. The position of the front end of the new mud in the wellbore, so as to obtain the position of the interface between the new and the old mud, which is the position of the replacement mud interface.
  • the AR glasses 100 are further configured to obtain a real picture of fluid motion dynamically displaying the interface position of the replacement slurry according to the slurry replacement data, and display the real picture of fluid movement.
  • the data twinning method is used to establish a 3D and 2D wellbore model and a 3D and 2D drilling fluid model by using the physical model and the mud replacement data.
  • the drilling fluid model dynamically interacts with the wellbore model, resulting in a real picture of fluid motion.
  • the operator can accurately kill the well, and at the same time, it also enables the operator to understand the real-time situation of the slurry replacement more intuitively, so as to facilitate the operator to control the valve according to the actual situation.
  • the server 200 is further configured to automatically generate a kill work order according to the configuration data and the real-time data, and transmit the kill work order to the AR glasses 100;
  • the AR glasses are also used to display the kill work order in real time.
  • the configuration data includes the inner and outer diameters and lengths of the drill string and the drilling tool assembly, as well as the inner and outer diameters of the joints, the inner diameter of the open hole of the wellbore, the length and inner diameter of the casing, the wellbore trajectory, the wellbore expansion rate, the surface pipeline volume, the formation strength test results, low Pumping cycle test results; also includes overflow data such as overflow volume, overflow properties, shut-in standing pressure, and shut-in casing pressure.
  • Real-time data includes bit depth, well depth, outlet mud density, inlet and outlet temperatures, inlet and outlet flows, vertical pressure, casing pressure or downhole sensor pressure.
  • the server can dynamically generate the kill work order according to the configuration data and real-time data. Among them, some parameters that cannot be directly obtained in the kill work order, such as the density of the killing mud, the target pressure curve (surface back pressure or cyclic vertical pressure), etc., the server It can be analyzed and calculated according to the configuration data and real-time data, and then automatically filled in the well kill work order.
  • the server 200 integrates configuration data and real-time data, and automatically fills in and generates kill work orders, so that operators do not need to spend a lot of time preparing well kill work orders, which greatly shortens the time required for well control accidents to occur.
  • the required preparation time enables the operator to have a faster response speed during the well control operation, thereby avoiding the situation of more serious accidents caused by the operator's inability to perform well control in time.
  • the well kill construction sheet filled in based on the configuration data and real-time data will change in real time with the actual situation in the well control operation, so it can better assist the operator to carry out more accurate well control operations.
  • the AR glasses 100 are further configured to recognize the voice command sent by the operator, and switch the display content of the AR glasses according to the voice command.
  • the AR glasses 100 can automatically identify words with behavioral characteristics of the operator. For example, when the operator says: “show the real picture of fluid motion” or “want to see the real picture of fluid motion”, “switch to the real picture of fluid motion", because the voice contains words such as "see” or "display” The same or similar verbs, and the verbs are combined with the noun that represents the interface, "fluid motion picture", so the AR glasses will automatically display the fluid motion picture at this time.
  • the operator Since the operator mainly controls the valve with both hands during the well control operation, and different situations occur during the well control operation, the operator will need to observe different data and parameters to control the corresponding control. At this time, the AR glasses are controlled by voice commands. Switching the display content can liberate the operator's hands to a large extent, so as to better assist the operator in well control operations.
  • the AR glasses 100 are also used to identify dangerous working conditions according to the dangerous voice command sent by the operator and/or the actual pressure value, and display corresponding emergency action guidance and/or according to the danger level of the dangerous working condition Automatic alarm.
  • the AR glasses 100 are integrated with a chip capable of 4G/5G communication, and the AR glasses 100 can realize automatic alarm by means of 4G/5G communication.
  • AR glasses can recognize dangerous voice commands and/or actual pressure values, and can achieve multi-dimensional Identify dangerous working conditions, so as to ensure safety while enhancing sensitivity to dangerous working conditions; in addition, AR glasses can display emergency action guidance and automatic alarms corresponding to preset different danger levels. To respond to dangerous conditions in a timely manner, so as to ensure the safety of the operator's own life.
  • the AR glasses 100 further include a camera, and the camera is used to capture an image from an operator's perspective in real time;
  • the AR glasses 100 are also used for transmitting the image from the perspective of the operator to a pre-designated electronic device, and for performing voice communication with the pre-designated electronic device.
  • the AR glasses 100 are integrated with a chip capable of 4G/5G communication, so the AR glasses 100 can wirelessly communicate with electronic devices (such as mobile phones, computers, etc.)
  • electronic devices such as mobile phones, computers, etc.
  • the images from the operator's perspective are shared with the experts, and the operator can share the images from the operator's perspective while making a voice call with the operator, so that the experts can truly and intuitively understand the situation on the job site, so as to better guide the operator in the operation.
  • the image from the operator's perspective can be shared with the pre-designated electronic device, so that the pre-designated electronic device can obtain an effective first On-site information; in addition, the voice communication between the pre-designated electronic device and the operator can enable the operator to receive remote guidance from the pre-designated electronic device expert during the operation, so as to achieve the first on-site and remote Real-time communication with experts to assist well control decisions more effectively.
  • the AR glasses 100 are also used to identify the valve to be controlled in the image from the operator's perspective, and to call up an operation instruction manual for the valve to be controlled.
  • the valve to be controlled includes a throttle valve, a manual gate valve and an automatic gate valve.
  • a throttle valve When an operator wearing AR glasses looks at the valve to be controlled, the valve to be controlled will appear in the image from the operator's perspective. At this time, the AR glasses It will automatically identify the type of valve to be controlled, and attach the corresponding operating instruction manual.
  • the AR glasses will automatically identify the throttle valve and display a small green dot next to the throttle valve, which is marked with "throttle valve".
  • the operator wants to call the operation instruction manual of the throttle valve, he can control the AR glasses to display the operation instruction manual, or use the hand control handle commonly used in AR display devices to click the green dot to display the operation instruction manual.
  • Identifying and calling the operation manual of the valve to be controlled through AR glasses can better help the operator understand the valve to be controlled, so that the operator can control the valve more quickly and accurately.
  • the server 200 may be a cloud server or an industrial computer server.
  • the cloud server can facilitate multiple users to share configuration data, real-time data and other data at the same time.
  • the industrial computer server can be directly located at the job site, and it is easier for the operator to check when a problem occurs.
  • an auxiliary method for intelligent well control according to an embodiment of the present invention, applied to the above-mentioned auxiliary system for intelligent well control, includes the following steps:
  • the first sensor group 300 collects real-time data of the wellbore and the surface, and transmits it to the server;
  • the configuration data of the wellbore and the ground is stored in the server, and the server 200 analyzes the target pressure value of the throttle valve inlet of the ground according to the real-time data and the configuration data;
  • the server 200 obtains the actual pressure value of the throttle valve inlet on the ground from the real-time data, and transmits the actual pressure value and the target pressure value to the AR glasses 100;
  • the AR glasses 100 display the actual pressure value and the target pressure value.
  • it also includes:
  • the server 200 obtains pulp replacement data according to the real-time data and the configuration data, and transmits the pulp replacement data to the AR glasses 100;
  • the AR glasses 100 obtain a real picture of fluid motion dynamically displaying the interface position of the replacement slurry according to the slurry replacement data, and display the real picture of fluid movement.
  • it also includes:
  • the server 200 automatically generates a kill work order according to the configuration data and the real-time data, and transmits the kill work order to the AR glasses 100; the AR glasses 100 display the kill work order in real time.
  • it also includes:
  • the AR glasses 100 recognize the voice command sent by the operator, and switch the display content of the AR glasses 100 according to the voice command.
  • it also includes:
  • the AR glasses 100 identify a dangerous working condition according to the dangerous voice command sent by the operator and/or the actual pressure value, and display corresponding emergency action guidance and/or automatic alarm according to the danger level of the dangerous working condition.
  • it also includes:
  • the camera in the AR glasses 100 captures an image from the operator's perspective in real time; the AR glasses 100 transmits the image from the operator's perspective to a pre-designated electronic device, and performs voice communication with the pre-designated electronic device.
  • the AR glasses 100 identify the valve to be controlled in the image from the operator's perspective, and call up the operation instruction manual of the valve to be controlled.
  • an auxiliary system for intelligent well control includes AR glasses 100 , a server 200 and a first sensor group 300 ;
  • the AR glasses 100 include a display module 101, a voice interaction module 102, a camera 103, and a wireless communication module 104;
  • the server 200 includes a data storage module 201 , a data analysis module 202 , a calculation engine 203 , and an automatic input module 204 .
  • the first sensor group 300 is used to collect real-time data of the wellbore and the surface and transmit it to the server 200;
  • the data storage module 201 is used to store the configuration data, the image of the operator's perspective captured by the camera 103 of the AR glasses 100 during each well control operation, the operation instruction manual of each valve to be controlled, etc.;
  • the data analysis module 202 is configured to analyze the target pressure value of the throttle valve inlet on the ground according to the configuration data and the real-time data, and obtain the actual pressure of the throttle valve inlet on the ground from the real-time data. value, transmitting the actual pressure value and the target pressure value to the AR glasses 100;
  • the computing engine 203 is configured to obtain replacement data according to the real-time data and the configuration data, and transmit the replacement data to the AR glasses 100; wherein the replacement data includes the replacement interface position, which is The position of the replacement pulp junction is a dynamic data;
  • the automatic inputting module 204 is configured to automatically generate a kill work sheet according to the configuration data and the real-time data, and transmit the kill work sheet to the AR glasses 100;
  • the display module 101 of the AR glasses 100 is used to dynamically display the actual pressure value and the target pressure value in real time; preferably, the display module 101 can also process the actual pressure value and the target pressure value, and convert them into a more intuitive representation of the two.
  • the display module 101 is further configured to obtain a real picture of the fluid motion dynamically displaying the interface position of the replacement slurry according to the slurry replacement data, and display the real picture of the fluid movement;
  • the display module 101 is further configured to display the kill work order in real time.
  • the wireless communication module 104 may be a chip capable of 4G/5G communication.
  • the voice interaction module 102 is used to recognize the voice command sent by the operator, and switch the display content of the AR glasses 100 according to the voice command;
  • the voice interaction module 102 can automatically identify the operator with a sentence with behavioral characteristics. For example, when the operator says: “show the real picture of fluid motion” or “want to see the real picture of fluid motion”, “switch to the real picture of fluid motion", because the voice contains words such as "see” or "display” The same or similar verbs, and the verbs are combined with the noun that represents the interface, "fluid motion picture", so the AR glasses will automatically display the fluid motion picture at this time.
  • the operator can operate the choke valve and the mud pump according to the instructions issued by the AR glasses and the interface guidance.
  • the automatic input module 204 of the server 200 will automatically record the accurate well shut-in operation.
  • the calculation engine 203 of the server 200 automatically calculates the key parameters of well killing such as the depth of the replacement slurry interface, the controlled vertical pressure, the controlled ground back pressure, flow rate and density, etc. Assist the operator in killing the well.
  • the voice interaction module 102 is further configured to identify a dangerous working condition according to the dangerous voice command sent by the operator and/or the actual pressure value, and display corresponding emergency action guidance according to the danger level of the dangerous working condition and/or automatic alarms;
  • the data storage module 201 of the server 200 pre-stores emergency action guidance schemes corresponding to hazardous working conditions of different risk levels;
  • the voice interaction module 102 will quickly check all the configuration data and real-time data of the wellbore and the surface, and judge Whether there is a dangerous working condition and the hazard level of the dangerous working condition, a judgment result is obtained;
  • the voice interaction module 102 will call out the corresponding emergency action guidance from the data storage module 201 of the server 200 according to the danger level of the dangerous working condition, wherein the emergency action guidance may include using the wireless communication module 104 to automatically dial
  • the remote expert system automatically turns on the camera, returns the video from the operator's perspective and related well killing operation data, seeks expert help, and when the danger level of the dangerous condition is too high, the voice interaction module 102 will trigger the wireless communication module 104 make an alarm;
  • the voice interaction module 102 will confirm the dangerous working condition to the operator again through voice. If the operator gives a reply confirming the occurrence of the dangerous working condition, the voice interaction module 102 will transfer the data from the data storage module 201 of the server 200. All pre-stored emergency action guidance schemes are displayed for the operator to choose; if the operator does not give a reply confirming the occurrence of a dangerous working condition, the voice interaction module 102 will no longer respond.
  • the voice interaction module 102 When the voice interaction module 102 monitors that the actual pressure value of the operator reaches the preset pressure value during the well control operation, the voice interaction module 102 will determine the danger level of the dangerous working condition according to the actual pressure value, and determine the danger level according to the actual pressure value.
  • the danger level of the dangerous working condition calls out the corresponding emergency action guidance from the data storage module 201 of the server 200, and when the danger level of the dangerous working condition is too high, the voice interaction module 102 will trigger the wireless communication module 104 to give an alarm.
  • the preset pressure value will vary according to the well control strategy and well condition, and the unit is generally MPa.
  • the camera 103 is used to capture an image from the operator's perspective in real time, and the image from the operator's perspective can be transmitted to a pre-designated electronic device in real time through the wireless communication module 104, and can communicate with the pre-designated electronic device. communication.
  • the image from the operator's perspective can be shared with the pre-designated electronic device, so that the pre-designated electronic device can obtain an effective first On-site information; in addition, the voice communication between the pre-designated electronic device and the operator can enable the operator to receive remote guidance from the pre-designated electronic device expert during the operation, so as to achieve the first on-site and remote Real-time communication with experts to assist well control decisions more effectively.
  • the present invention may be implemented as a system, method or computer program product. Therefore, the present disclosure can be embodied in the following forms, that is: it can be complete hardware, it can also be complete software (including firmware, resident software, microcode, etc.), or it can be a combination of hardware and software. Called a "circuit,” “module,” or “system.” Furthermore, in some embodiments, the present invention may also be implemented in the form of a computer program product on one or more computer-readable media having computer-readable program code embodied thereon.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Software Systems (AREA)
  • Computer Hardware Design (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Computer Graphics (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Signal Processing (AREA)
  • Mechanical Engineering (AREA)
  • User Interface Of Digital Computer (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种用于智能井控的辅助系统和方法,该系统包括AR眼镜(100)、服务器(200)和第一传感器组(300);第一传感器组(300)用于采集井筒和地面的实时数据,并传输至服务器(200);服务器(200)用于根据实时数据分析出地面的节流阀入口的目标压力值,并从实时数据中获取地面的节流阀入口的实际压力值,将实际压力值和目标压力值传输至AR眼镜(100);AR眼镜(100)用于实时动态显示实际压力值和目标压力值;通过第一传感器组(300)和服务器(200)可以使得作业者接收到的实际压力值和目标压力值具有实时性和准确性,通过AR眼镜(100)可以将实际压力值和目标压力值显示到作业者的视野中,并跟随作业者的视线,使得作业者能够更专心地进行井控作业,进而提高在井控作业中的安全性。

Description

一种用于智能井控的辅助系统和方法 技术领域
本发明涉及石油化工技术领域,尤其涉及一种用于智能井控的辅助系统和方法。
背景技术
井控工作作为石油与天然气勘探开发过程中的重要环节,一直位于安全生产的突出位置。尤其是近些年来,油气勘探开发己逐渐走向高温高压的深部复杂地层,在深部复杂地层钻井时,一方面由于深部复杂地层孔隙压力变化规律复杂,另一方面钻井液密度和流变性能易受高温高压影响造成井简压力发生复杂变化,导致井简压力失衡,地层流体侵入井简发生溢流。溢流发生后,若控制处理不当,将会演变为井涌、井喷,甚至井喷失控,严重时甚至造成人员伤亡、设备损毁及环境污染。
在钻井现场,作业者在开展井控作业时,均使用打印的压井施工单来指导循环排气和顶替重浆作业。而目前压井施工单准备耗时较长,且均为人工准备压井施工单;但是由于井控事故往往具有急迫性,并且对压井施工单的准确性要求很高,同时在准备完压井施工单后还会要求必须复查。因此,准备压井施工单的过程往往会给工程师带来较大的压力,同时也十分耗费时间;一般至少需要30分钟左右才能开始正式压井,而在这个过程中,气体溢流的滑脱效应又会带来额外变数。
此外,压井施工单都是静态的,因此作业者在压井过程中,如果出现操作失当的情况,不能做到及时修改压井施工单。同时,作业者在操作节流阀时,需密切对比目标压力与实际压力的差异,以指导节流阀开度的调整,而目标压力值在施工单上,实际压力在机械压力表上,二者对比不够直观且人工计算会存在一定差异,不能反映泥浆性能微变化的影响;另外, 作业者的视线需要来回切换,也会影响操作。
发明内容
为了克服现有的井控作业过程中准备压井施工单耗时过长、人工计算差异导致不能反映泥浆性能微变化以及切换视线对比目标压力与实际压力影响作业者操作的问题,本发明提供了一种用于智能井控的辅助系统和方法。
第一方面,为了解决上述技术问题,本发明提供了一种用于智能井控的辅助系统,包括AR眼镜、服务器和第一传感器组;
所述第一传感器组用于采集井筒和地面的实时数据,并传输至所述服务器;
所述服务器用于存储所述井筒和地面的配置数据,根据所述配置数据和所述实时数据分析出所述地面的节流阀入口的目标压力值,并从所述实时数据中获取地面的节流阀入口的实际压力值,将所述实际压力值和目标压力值传输至所述AR眼镜;
所述AR眼镜用于实时动态显示所述实际压力值和目标压力值。
本发明提供的用于智能井控的辅助系统的有益效果是:解决了井控作业过程中需要作业者切换视线对比目标压力与实际压力而对作业者的操作造成影响的问题,第一传感器组可以实时地向服务器传递井筒和地面的实时数据,服务器可以利用配置数据和实时数据获取实际压力值以及分析出目标压力值,因此通过第一传感器组和服务器可以使得作业者接收到的实际压力值和目标压力值具有实时性和准确性,从而避免了人工计算所造成的差异,进而反映出泥浆性能微变化;此外,通过AR眼镜可以将实际压力值和目标压力值实时动态地显示到作业者的视野中,并跟踪作业者的视线,避免了作业者需要不断切换视线来对比压力的这一过程,使得作业者能够更专心、更准确地进行井控作业,进而提高在井控作业中的安全性。
在上述技术方案的基础上,本发明的一种用于智能井控的辅助系统还 可以做如下改进。
进一步,所述服务器还用于根据所述实时数据和所述配置数据得到替浆数据,并将所述替浆数据传输至所述AR眼镜;
所述AR眼镜还用于根据所述替浆数据得到动态显示替浆交界位置的流体运动实景图,并将所述流体运动实景图进行显示。
采用上述进一步方案的有益效果是:通过服务器对配置数据和实时数据的计算分析,可以得到替浆数据,其中替浆数据中包括替浆交界位置、井深和高度等;而AR眼镜可以根据替浆数据来建模,得到一个动态显示替浆交界位置流体运动实景图。通过观察流体运动实景图,作业者可以精准地进行压井操作,同时也使得作业者能够更直观地了解替浆的实时情况,从而方便作业者进行根据实际情况控制阀门。
进一步,所述服务器还用于根据所述配置数据和所述实时数据自动生成压井施工单,并将所述压井施工单传输至所述AR眼镜;
所述AR眼镜还用于实时显示所述压井施工单。
采用上述进一步方案的有益效果是:通过服务器整合配置数据和实时数据,自动地填写并生成压井施工单,使得作业者不需要再花费大量地时间去准备压井施工单,很大程度上地缩短了井控事故发生时所需要的准备时间,从而使得作业者在井控作业过程中具有更快的反应速度,从而避免了由于作业者不能及时进行井控而导致出现更严重的事故的情况。此外,根据配置数据和实时数据所填写的压井施工单是会随着井控作业中的实际情况而实时变化的,因此可以更好地辅助作业者进行更精准的井控作业。
进一步,所述AR眼镜还用于识别作业者所发送的语音指令,并根据所述语音指令切换AR眼镜的显示内容。
采用上述进一步方案的有益效果是:由于作业者在井控作业时主要通过双手去控制阀门,而在井控作业过程中出现不同的情况会需要作业者观察不同的数据和参数后再去进行相应的控制,此时通过语音指令控制AR 眼镜切换显示内容可以在很大程度上去解放作业者的双手,从而更好地去辅助作业者进行井控作业。
进一步,所述AR眼镜还用于根据作业者所发送的危险语音指令和/或所述实际压力值识别危险工况,并根据所述危险工况的危险等级显示相应的应急行动指导和/或自动报警。
采用上述进一步方案的有益效果是:在井控作业的过程中出现的危险工况,往往需要作业者自己去识别以及去保障自身的生命安全,而AR眼镜通过识别危险语音指令和/或实际压力值,可以做到多维度地对危险工况进行识别,从而在做到增强对危险工况的敏感度的同时做到保障安全;此外,AR眼镜通过显示预设好的不同危险等级所对应的应急行动指导以及自动报警,可以做到对危险工况及时应对,进而保障作业者自身的生命安全。
进一步,所述AR眼镜中还包括摄像头,所述摄像头用于实时拍摄作业者视角的影像;
所述AR眼镜还用于将所述作业者视角的影像实时传送至预指定的电子设备,以及与所述预指定的电子设备进行语音通信。
采用上述进一步方案的有益效果是:通过拍摄作业者视角的影像,并将作业者视角的影像传送给预指定的电子设备,可以做到作业者视角的影像与预指定的电子设备共享,使得预指定的电子设备能够得到有效的第一现场信息;此外,预指定的电子设备与作业者之间的语音通信可以使得作业者在作业过程中能够接收到来自预指定的电子设备的专家的远程指导,从而做到第一现场与远程专家的实时沟通,从而更有效地辅助井控决策。
进一步,所述AR眼镜中还用于识别所述作业者视角的影像中的待控阀门,并调出该待控阀门的操作指导手册。
采用上述进一步方案的有益效果是:通过AR眼镜识别并调用待控阀门的操作指导手册,可以更好地帮助作业者了解待控阀门,从而使得作业 者能够更快速、准确地对阀门进行控制。
进一步,所述服务器包括云端服务器或工控机服务器。
云端服务器能够方便多个用户同时共享配置数据、实时数据等数据,工控机服务器可以直接设在作业现场,在出现问题时作业者更容易去进行检查。
第二方面,本发明提供了一种用于智能井控的辅助方法,包括以下步骤:
所述第一传感器组采集井筒和地面的实时数据,并传输至所述服务器;
所述服务器中存储有井筒和地面的配置数据,所述服务器根据所述实时数据和所述配置数据分析出所述地面的节流阀入口的目标压力值;
所述服务器从所述实时数据中获取地面的节流阀入口的实际压力值,并将所述实际压力值和目标压力值传输至所述AR眼镜;
所述AR眼镜显示所述实际压力值和目标压力值。
本发明提供的用于智能井控的辅助方法的有益效果是:解决了井控作业过程中需要作业者切换视线对比目标压力与实际压力而对作业者的操作造成影响的问题,第一传感器组可以实时地向服务器传递井筒和地面的实时数据,服务器可以利用配置数据和实时数据获取实际压力值以及分析出目标压力值,因此通过第一传感器组和服务器可以使得作业者接收到的实际压力值和目标压力值具有实时性和准确性,从而避免了人工计算所造成的差异;此外,通过AR眼镜可以将实际压力值和目标压力值实时动态地显示到作业者的视野中,并跟踪作业者的视线,避免了作业者需要不断切换视线来对比压力的这一过程,使得作业者能够更专心、更准确地进行井控作业,进而提高在井控作业中的安全性。
进一步,还包括:
所述服务器根据所述实时数据和所述配置数据得到替浆数据,并将所 述替浆数据传输至所述AR眼镜;
所述AR眼镜根据所述替浆数据得到动态显示替浆交界位置的流体运动实景图,并将所述流体运动实景图进行显示。
采用上述进一步方案的有益效果是:通过服务器对配置数据和实时数据的计算分析,可以得到替浆数据,其中替浆数据中包括替浆交界位置、井深和高度等;而AR眼镜可以根据替浆数据来建模,得到一个动态显示替浆交界位置流体运动实景图。通过观察流体运动实景图,作业者可以精准地进行压井操作,同时也使得作业者能够更直观地了解替浆的实时情况,从而方便作业者进行根据实际情况调整阀门。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面结合附图和实施例对本发明作进一步说明。
图1为本发明实施例的一种用于智能井控的辅助系统的结构示意图;
图2为本发明实施例的一种用于智能井控的辅助方法的流程示意图;
图3为本发明实施例的另一种用于智能井控的辅助系统的结构示意图。
具体实施方式
下列实施例是对本发明的进一步解释和补充,对本发明不构成任何限制。
以下结合附图描述本发明实施例的用于智能井控的辅助系统和方法。
实施例一
如图1所示,本发明实施例的一种用于智能井控的辅助系统,包括AR眼镜100、服务器200和第一传感器组300;
所述第一传感器组300用于采集井筒和地面的实时数据,并传输至所述服务器200;
所述服务器200用于存储所述井筒和地面的配置数据,根据所述配置数据和所述实时数据分析出所述地面的节流阀入口的目标压力值,并从所 述实时数据中获取地面的节流阀入口的实际压力值,将所述实际压力值和目标压力值传输至所述AR眼镜100;
所述AR眼镜100用于实时动态显示所述实际压力值和目标压力值。
具体地,当服务器200是云端服务器时,配置数据可以是由作业者或其他工作人员通过终端或者后台系统录入到云端服务器中进行存储;当服务器200是工控机服务器时;配置数据可以是由作业者或其他工作人员通过操作台(例如工控机外接显示器及与其配套的u盘和鼠标等)录入到工控机服务器中进行存储。
所述配置数据包括钻柱及钻具组合的内外径和长度以及接头内外径、井筒裸眼内径、套管长度和内径、低泵冲循环测试结果、井眼轨迹、井眼扩大率、地面设备类型、入口泥浆密度和粘度、地层强度测试结果;还包括溢流数据,例如溢流量、溢流性质、关井立压和关井套压。实时数据包括钻头深度、井深、出口泥浆密度、出入口温度、出入口流量、立压、套压或井下传感器压力。目标压力值的分析过程具体为:
1)利用所述配置数据和所述历史数据计算出初始井底压力,并根据所述初始井底压力计算出地面所需的初始目标压力值(即地面背压或立压);
2)在压井过程中,根据实时数据和配置数据计算出实际井底压力,并进一步根据所述实际井底压力计算出实时的目标压力值。
其中,目标压力值是一个动态的值,代表着作业者想要通过调整节流阀而使节流阀入口的压力值所达到的值,单位可以为MPa。一般地,在司钻法压井工艺过程中,当新旧泥浆交界面未达到预设位置时,目标压力值指的是地面背压,当新旧泥浆交界面达到预设位置之后,目标压力值指的是地面立压;所述预设位置指的是钻头位置,随着井控策略和井况的不同,该位置会相应地进行改变。
所述历史数据为在作业者开始进行压井作业之前,第一传感器组300所采集到的井筒和地面的数据。
此外,可以是AR眼镜直接实时动态地显示实际压力值和目标压力值,也可以是AR眼镜将实际压力值和目标压力值转化为更能直观表现两者关系的曲线、树状等形式的趋势图,然后将该趋势图实时动态地进行显示。
第一传感器组可以实时地向服务器传递井筒和地面的实时数据,服务器可以利用配置数据和实时数据获取实际压力值以及分析出目标压力值,因此通过第一传感器组和服务器可以使得作业者接收到的实际压力值和目标压力值具有实时性和准确性,从而避免了人工计算所造成的差异;此外,通过AR眼镜可以将实际压力值和目标压力值实时动态地显示到作业者的视野中,并跟随作业者的视线,避免了作业者需要不断切换视线来对比压力的这一过程,使得作业者能够更专心、更准确地进行井控作业,进而提高在井控作业中的安全性。
优选地,服务器200还用于根据所述实时数据和所述配置数据得到替浆数据,并将所述替浆数据传输至所述AR眼镜100;
其中,井筒和地面的配置数据包括钻柱及钻具组合的内外径和长度以及接头内外径、井筒裸眼内径、套管长度和内径、井眼轨迹、井眼扩大率、地面设备类型、地面管线容积等,配置数据是已经预先存储到服务器200中的数据。所述实时数据包括钻头深度、井深、出入口流量等。
替浆数据中主要包括替浆交界位置,替浆交界位置是实时变化的,替浆数据的分析过程具体为:在开始替浆之后,服务器利用配置数据和实时数据,通过体积法计算出泵入井筒的新泥浆前端位置,从而得到新旧泥浆交界面的位置,该位置即替浆交界位置。
AR眼镜100还用于根据所述替浆数据得到动态显示替浆交界位置的流体运动实景图,并将所述流体运动实景图进行显示。
具体地,AR眼镜100得到替浆数据后,采用数据孪生的方法,利用物理模型、替浆数据等建立3维和2维的井筒模型,以及3维和2维钻井液模型,随着新泥浆进入,钻井液模型相对于井筒模型动态交互,从而生成 流体运动实景图。
通过观察流体运动实景图,作业者可以精准地进行压井操作,同时也使得作业者能够更直观地了解替浆的实时情况,从而方便作业者进行根据实际情况控制阀门。
优选地,服务器200还用于根据所述配置数据和所述实时数据自动生成压井施工单,并将所述压井施工单传输至所述AR眼镜100;
所述AR眼镜还用于实时显示所述压井施工单。
其中,配置数据包括钻柱及钻具组合的内外径和长度以及接头内外径、井筒裸眼内径、套管长度和内径、井眼轨迹、井眼扩大率、地面管线容积、地层强度测试结果、低泵冲循环测试结果;还包括溢流数据,例如溢流量、溢流性质、关井立压和关井套压。实时数据包括钻头深度、井深、出口泥浆密度、出入口温度、出入口流量、立压、套压或井下传感器压力。
服务器可以根据配置数据和实时数据动态生成压井施工单,其中,压井施工单中一些不能直接获取的参数,例如压井泥浆密度、目标压力曲线(地面背压或循环立压)等,服务器可以根据配置数据和实时数据分析和计算出来后,再自动填入压井施工单。
通过服务器200整合配置数据和实时数据,自动地填写并生成压井施工单,使得作业者不需要再花费大量地时间去准备压井施工单,很大程度上地缩短了井控事故发生时所需要的准备时间,使得作业者在井控作业过程中具有更快的反应速度,从而避免了由于作业者不能及时进行井控而导致出现更严重的事故的情况。此外,根据配置数据和实时数据所填写的压井施工单是会随着井控作业中的实际情况而实时变化的,因此可以更好地辅助作业者进行更精准的井控作业。
优选地,AR眼镜100还用于识别作业者所发送的语音指令,并根据所述语音指令切换AR眼镜的显示内容。
具体地,AR眼镜100可以自动给识别作业者带有行为特征的语句。 例如,当作业者说出:“显示流体运动实景图”或者“想看流体运动实景图”、“切换到流体运动实景图”时,由于语音中含有与“看”或者“显示”等词意相同或者相近的动词,以及该动词与“流体运动实景图”这一表示界面的名词联合,所以此时AR眼镜会自动显示出流体运动实景图。
由于作业者在井控作业时主要通过双手进行阀门控制,而在井控作业过程中出现不同的情况会需要作业者观察不同的数据和参数去进行相应的控制,此时通过语音指令控制AR眼镜切换显示内容可以在很大程度上去解放作业者的双手,从而更好地去辅助作业者进行井控作业。
优选地,AR眼镜100还用于根据作业者所发送的危险语音指令和/或所述实际压力值识别危险工况,并根据所述危险工况的危险等级显示相应的应急行动指导和/或自动报警。
具体地,所述AR眼镜100中集成有可以进行4G/5G通信的芯片,AR眼镜100可以通过4G/5G通信的方式实现自动报警。
在井控作业的过程中出现的危险工况,往往需要作业者自己去识别以及去保障自身的生命安全,而AR眼镜通过识别危险语音指令和/或实际压力值,可以做到多维度地对危险工况进行识别,从而在做到增强对危险工况的敏感度的同时做到保障安全;此外,AR眼镜通过显示预设好的不同危险等级所对应的应急行动指导以及自动报警,可以做到对危险工况及时应对,进而保障作业者自身的生命安全。
优选地,AR眼镜100中还包括摄像头,所述摄像头用于实时拍摄作业者视角的影像;
AR眼镜100还用于将所述作业者视角的影像传送至预指定的电子设备,以及与所述预指定的电子设备进行语音通信。
具体地,所述AR眼镜100中集成有可以进行4G/5G通信的芯片,因此AR眼镜100可以与选择拨通任意一位专家的电子设备(例如手机、电脑等)进行无线通信,可以是将作业者视角的影像与专家共享,以及在共 享作业者视角的影像的同时与作业者进行语音通话,使得专家能够真实、直观地了解作业现场的情况,从而更好地指导作业者进行作业。
通过拍摄作业者视角的影像,并将作业者视角的影像传送给预指定的电子设备,可以做到作业者视角的影像与预指定的电子设备共享,使得预指定的电子设备能够得到有效的第一现场信息;此外,预指定的电子设备与作业者之间的语音通信可以使得作业者在作业过程中能够接收到来自预指定的电子设备的专家的远程指导,从而做到第一现场与远程专家的实时沟通,从而更有效地辅助井控决策。
优选地,AR眼镜100中还用于识别所述作业者视角的影像中的待控阀门,并调出该待控阀门的操作指导手册。
其中,所述待控阀门包括节流阀、手动闸阀和自动闸阀,当戴有AR眼镜的作业者的视线投向待控阀门时,作业者视角的影像中会出现待控阀门,此时AR眼镜会自动识别出待控阀门的类型,并附上对应的操作指导手册。
具体地,当作业者视角的影像中出现节流阀时,AR眼镜会自动识别出节流阀,并在节流阀旁边显示出一个绿色小点,小点旁边标注有“节流阀”,当作业者想要调用节流阀的操作指导手册时,可以通过语音控制AR眼镜显示操作指导手册,也可以采用AR显示设备中常用的利用手控制手柄点击绿色小点来显示出操作指导手册。
通过AR眼镜识别并调用待控阀门的操作指导手册,可以更好地帮助作业者了解待控阀门,从而使得作业者能够更快速、准确地对阀门进行控制。
优选地,所述服务器200可以是云端服务器,也可以是工控机服务器。云端服务器能够方便多个用户同时共享配置数据、实时数据等数据,工控机服务器可以直接设在作业现场,在出现问题时作业者更容易去进行检查。
如图2所示,本发明实施例的一种用于智能井控的辅助方法,应用在上述的一种用于智能井控的辅助系统中,包括以下步骤:
S1、第一传感器组300采集井筒和地面的实时数据,并传输至所述服务器;
S2、所述服务器中存储有井筒和地面的配置数据,服务器200根据所述实时数据和所述配置数据分析出所述地面的节流阀入口的目标压力值;
S3、服务器200从所述实时数据中获取地面的节流阀入口的实际压力值,并将所述实际压力值和目标压力值传输至所述AR眼镜100;
S4、AR眼镜100显示所述实际压力值和目标压力值。
优选地,还包括:
S5、所述服务器200根据所述实时数据和所述配置数据得到替浆数据,并将所述替浆数据传输至所述AR眼镜100;
S6、AR眼镜100根据所述替浆数据得到动态显示替浆交界位置的流体运动实景图,并将所述流体运动实景图进行显示。
优选地,还包括:
S7、服务器200根据所述配置数据和所述实时数据自动生成压井施工单,并将所述压井施工单传输至所述AR眼镜100;AR眼镜100实时显示所述压井施工单。
优选地,还包括:
S8、AR眼镜100识别作业者所发送的语音指令,并根据所述语音指令切换AR眼镜100的显示内容。
优选地,还包括:
S9、AR眼镜100根据作业者所发送的危险语音指令和/或所述实际压力值识别危险工况,并根据所述危险工况的危险等级显示相应的应急行动指导和/或自动报警。
优选地,还包括:
S10、AR眼镜100中的摄像头实时拍摄作业者视角的影像;AR眼镜 100将所述作业者视角的影像传送至预指定的电子设备,以及与所述预指定的电子设备进行语音通信。
S11、AR眼镜中100识别所述作业者视角的影像中的待控阀门,并调出该待控阀门的操作指导手册。
在上述各实施例中,虽然对步骤进行了编号,如S1、S2等,但只是本申请给出的具体实施例,本领域的技术人员可根据实际情况对调整S1、S2等的执行顺序,此也在本发明的保护范围内,可以理解,在一些实施例中,可以包含如上述各实施方式中的部分或全部。
上述关于本发明的一种用于智能井控的辅助方法中的实施例中的各参数和步骤,可参考上文中关于一种用于智能井控的辅助系统的各参数和各个单元模块实现相应功能的步骤,在此不做赘述。
实施例二
如图3所示,本发明实施例的一种用于智能井控的辅助系统,包括AR眼镜100、服务器200和第一传感器组300;
所述AR眼镜100中包括显示模块101、语音交互模块102、摄像头103、无线通信模块104;
所述服务器200中包括数据存储模块201、数据分析模块202、计算引擎203、自动录入模块204。
所述第一传感器组300用于采集井筒和地面的实时数据,并传输至所述服务器200;
所述数据存储模块201用于存储所述配置数据、AR眼镜100的摄像头103在每次井控作业时所拍摄到的作业者视角的影像、每个待控阀门的操作指导手册等;
所述数据分析模块202用于根据所述配置数据和所述实时数据分析出所述地面的节流阀入口的目标压力值,并从所述实时数据中获取地面的节 流阀入口的实际压力值,将所述实际压力值和目标压力值传输至所述AR眼镜100;
所述计算引擎203用于根据所述实时数据和所述配置数据得到替浆数据,将所述替浆数据传输至所述AR眼镜100;其中所述替浆数据中包括替浆交界位置,该替浆交界位置是一个动态的数据;
所述自动录入模块204用于根据所述配置数据和所述实时数据自动生成压井施工单,并将所述压井施工单传输至所述AR眼镜100;
所述AR眼镜100的显示模块101用于实时动态显示所述实际压力值和目标压力值;优选地,显示模块101还可以对实际压力值和目标压力值进行处理,转化为更能直观表现两者关系的曲线、树状等形式的趋势图,然后将该趋势图实时动态地进行显示;
优选地,所述显示模块101还用于根据所述替浆数据得到动态显示替浆交界位置的流体运动实景图,并将所述流体运动实景图进行显示;
优选地,所述显示模块101还用于实时显示所述压井施工单。
所述无线通信模块104可以是能够进行4G/5G通信的芯片。
所述语音交互模块102用于识别作业者所发送的语音指令,并根据所述语音指令切换AR眼镜100的显示内容;
具体地,语音交互模块102可以自动给识别作业者带有行为特征的语句。例如,当作业者说出:“显示流体运动实景图”或者“想看流体运动实景图”、“切换到流体运动实景图”时,由于语音中含有与“看”或者“显示”等词意相同或者相近的动词,以及该动词与“流体运动实景图”这一表示界面的名词联合,所以此时AR眼镜会自动显示出流体运动实景图。
优选地,当作业者进行压井作业时,作业者可以根据AR眼镜所发出的指令以及界面指引去操作节流阀和泥浆泵,此时服务器200的自动录入模块204会自动记录准确的关井立压、关井套压和溢流量等参数,然后服务器200的计算引擎203自动计算出替浆交接面深度、被控立压、被控地 面背压、流量和密度等压井关键参数,从而辅助作业者进行压井。
优选地,所述语音交互模块102还用于根据作业者所发送的危险语音指令和/或所述实际压力值识别危险工况,并根据所述危险工况的危险等级显示相应的应急行动指导和/或自动报警;
具体地,服务器200的数据存储模块201中预先存储有不同危险等级的危险工况所对应的应急行动指导方案;
1)当作业者发出含有“二级风险”或者“一级风险”等带有明显危险工况特征的语句时,语音交互模块102会迅速检查井筒和地面的所有配置数据和实时数据,并判断是否出现危险工况以及所出现的危险工况的危险等级,得到一个判断结果;
当判断结果为是时,语音交互模块102会根据危险工况的危险等级从服务器200的数据存储模块201中调出相应的应急行动指导,其中应急行动指导可以包括利用无线通信模块104自动拨通远端专家系统,自动开启摄像头,回传作业者视角的视频以及相关压井作业数据,寻求专家的帮助,并且当危险工况的危险等级过高时,语音交互模块102会触发无线通信模块104进行报警;
当判断结果为否时,语音交互模块102会通过语音再次向作业者确认危险工况,如果作业者给出确认出现危险工况的答复,语音交互模块102会从服务器200的数据存储模块201调出预先存储的所有应急行动指导方案以供作业者选择;如果作业者没有给出确认出现危险工况的答复,语音交互模块102不再做出反应。
2)当语音交互模块102监测到作业者在井控作业的过程中实际压力值达到预设压力值时,语音交互模块102会根据实际压力值的大小来判定危险工况的危险等级,并根据危险工况的危险等级从服务器200的数据存储模块201中调出相应的应急行动指导,并且当危险工况的危险等级过高时,语音交互模块102会触发无线通信模块104进行报警。其中预设压力 值是会根据井控策略和井况的不同而不同的,单位一般为MPa。
所述摄像头103用于实时拍摄作业者视角的影像,并且所述作业者视角的影像可以通过所述无线通信模块104实时传送至预指定的电子设备,以及与所述预指定的电子设备进行语音通信。
通过拍摄作业者视角的影像,并将作业者视角的影像传送给预指定的电子设备,可以做到作业者视角的影像与预指定的电子设备共享,使得预指定的电子设备能够得到有效的第一现场信息;此外,预指定的电子设备与作业者之间的语音通信可以使得作业者在作业过程中能够接收到来自预指定的电子设备的专家的远程指导,从而做到第一现场与远程专家的实时沟通,从而更有效地辅助井控决策。
上述关于本发明的一种用于智能井控的辅助系统中的实施例中的各参数和各个单元模块实现相应功能的步骤,可参考上文实施例一中关于一种用于智能井控的辅助系统的各参数和各个单元模块实现相应功能的步骤,在此不做赘述。
所属技术领域的技术人员知道,本发明可以实现为系统、方法或计算机程序产品。因此,本公开可以具体实现为以下形式,即:可以是完全的硬件、也可以是完全的软件(包括固件、驻留软件、微代码等),还可以是硬件和软件结合的形式,本文一般称为“电路”、“模块”或“系统”。此外,在一些实施例中,本发明还可以实现为在一个或多个计算机可读介质中的计算机程序产品的形式,该计算机可读介质中包含计算机可读的程序代码。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域 的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种用于智能井控的辅助系统,其特征在于:包括AR眼镜、服务器和第一传感器组;
    所述第一传感器组用于采集井筒和地面的实时数据,并传输至所述服务器;
    所述服务器用于存储所述井筒和地面的配置数据,根据所述配置数据和所述实时数据分析出所述地面的节流阀入口的目标压力值,并从所述实时数据中获取地面的节流阀入口的实际压力值,将所述实际压力值和目标压力值传输至所述AR眼镜;
    所述AR眼镜用于实时动态显示所述实际压力值和目标压力值。
  2. 根据权利要求1所述的用于智能井控的辅助系统,其特征在于:所述服务器还用于根据所述实时数据和所述配置数据得到替浆数据,并将所述替浆数据传输至所述AR眼镜;
    所述AR眼镜还用于根据所述替浆数据得到动态显示替浆交界位置的流体运动实景图,并将所述流体运动实景图进行显示。
  3. 根据权利要求2所述的用于智能井控的辅助系统,其特征在于,所述服务器还用于根据所述配置数据和所述实时数据自动生成压井施工单,并将所述压井施工单传输至所述AR眼镜;
    所述AR眼镜还用于实时显示所述压井施工单。
  4. 根据权利要求1所述的用于智能井控的辅助系统,其特征在于,所述AR眼镜还用于识别作业者所发送的语音指令,并根据所述语音指令切换AR眼镜的显示内容。
  5. 根据权利要求4所述的用于智能井控的辅助系统,其特征在于,所述AR眼镜还用于根据作业者所发送的危险语音指令和/或所述实际压力值识别危险工况,并根据所述危险工况的危险等级显示相应的应急行动 指导和/或自动报警。
  6. 根据权利要求1所述的用于智能井控的辅助系统,其特征在于,所述AR眼镜中还包括摄像头,所述摄像头用于实时拍摄作业者视角的影像;
    所述AR眼镜还用于将所述作业者视角的影像实时传送至预指定的电子设备,以及与所述预指定的电子设备进行语音通信。
  7. 根据权利要求5所述的用于智能井控的辅助系统,其特征在于,所述AR眼镜中还用于识别所述作业者视角的影像中的待控阀门,并调出该待控阀门的操作指导手册。
  8. 根据权利要求1-7任一项所述的用于智能井控的辅助系统,其特征在于,所述服务器包括云端服务器或工控机服务器。
  9. 一种用于智能井控的辅助方法,其特征在于,采用如权利要求1-8任一项所述的用于智能井控的辅助系统,包括以下步骤:
    所述第一传感器组采集井筒和地面的实时数据,并传输至所述服务器;
    所述服务器中存储有井筒和地面的配置数据,所述服务器根据所述实时数据和所述配置数据分析出所述地面的节流阀入口的目标压力值;
    所述服务器从所述实时数据中获取地面的节流阀入口的实际压力值,并将所述实际压力值和目标压力值传输至所述AR眼镜;
    所述AR眼镜显示所述实际压力值和目标压力值。
  10. 根据权利要求9所述的用于智能井控的辅助方法,其特征在于,还包括:
    所述服务器根据所述实时数据和所述配置数据得到替浆数据,并将所述替浆数据传输至所述AR眼镜;
    所述AR眼镜根据所述替浆数据得到动态显示替浆交界位置的流体运动实景图,并将所述流体运动实景图进行显示。
PCT/CN2021/082907 2021-03-24 2021-03-25 一种用于智能井控的辅助系统和方法 WO2022198547A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/022,765 US11756275B2 (en) 2021-03-24 2021-03-25 Auxiliary system and method for intelligent well control

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110313135.3 2021-03-24
CN202110313135.3A CN113010132B (zh) 2021-03-24 2021-03-24 一种用于智能井控的辅助系统和方法

Publications (1)

Publication Number Publication Date
WO2022198547A1 true WO2022198547A1 (zh) 2022-09-29

Family

ID=76406000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082907 WO2022198547A1 (zh) 2021-03-24 2021-03-25 一种用于智能井控的辅助系统和方法

Country Status (3)

Country Link
US (1) US11756275B2 (zh)
CN (1) CN113010132B (zh)
WO (1) WO2022198547A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115628043A (zh) * 2022-11-09 2023-01-20 河北华北石油荣盛机械制造有限公司 一种井控设备运行数据监测系统
CN116044332A (zh) * 2023-04-03 2023-05-02 成都维泰数智科技有限公司 一种可视化智能二级井控方法、系统、装置和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6484816B1 (en) * 2001-01-26 2002-11-26 Martin-Decker Totco, Inc. Method and system for controlling well bore pressure
CN106569769A (zh) * 2016-11-09 2017-04-19 唐雪松 基于ar技术的机器操作指导信息展示方法及装置
CN107547554A (zh) * 2017-09-08 2018-01-05 北京枭龙科技有限公司 一种基于增强现实的智能设备远程协助系统
CN108242126A (zh) * 2018-03-20 2018-07-03 四川大学 一种可主动探测和识别危险并警报的智能可穿戴设备
CN112343566A (zh) * 2019-08-08 2021-02-09 中国石油天然气股份有限公司 注入聚合物井的井底流压确定方法及装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6873267B1 (en) * 1999-09-29 2005-03-29 Weatherford/Lamb, Inc. Methods and apparatus for monitoring and controlling oil and gas production wells from a remote location
US20190168787A1 (en) * 2002-06-04 2019-06-06 General Electric Company Inspection system and method
CN101737018B (zh) * 2008-11-26 2013-09-18 西部钻探克拉玛依钻井工艺研究院 欠平衡钻井井底压力实时监控方法及装置
CN103174397A (zh) * 2011-12-22 2013-06-26 中国石油化工股份有限公司 模拟固井水泥浆顶替效率的试验装置和试验方法
WO2014107149A1 (en) * 2013-01-03 2014-07-10 Landmark Graphics Corporation System and method for predicting and visualizing drilling events
US20170002622A1 (en) * 2015-07-02 2017-01-05 Schlumberger Technology Corporation Methods for monitoring well cementing operations
CN107939335B (zh) * 2017-11-16 2020-09-25 中国石油集团川庆钻探工程有限公司 固井用耐磨抗回流双胶塞系统及使用方法
CN108756788A (zh) * 2018-05-28 2018-11-06 中石化石油工程技术服务有限公司 一种固井前置液合理用量的定量方法
CN111598366A (zh) * 2019-02-20 2020-08-28 中国石油化工股份有限公司 一种实时钻井辅助决策方法及系统
CN110212451B (zh) * 2019-05-28 2021-09-10 国网江西省电力有限公司电力科学研究院 一种电力ar智能巡检装置
US11639661B2 (en) * 2019-08-12 2023-05-02 The Charles Machine Works, Inc. Augmented reality system for use in horizontal directional drilling operations
CN111075364A (zh) * 2020-01-10 2020-04-28 新疆恒智伟业石油工程技术开发有限公司 一种高温高压油气井清洁完井管柱及工艺
CN111119887B (zh) * 2020-02-19 2021-06-11 太原理工大学 一种全息技术下矿井综采工作面的远程干预ar巡检系统
CN111577240B (zh) * 2020-04-24 2023-07-14 洲际海峡能源科技有限公司 一种钻井井控设备的无线集中控制系统
CN111724487B (zh) * 2020-06-19 2023-05-16 广东浪潮大数据研究有限公司 一种流场数据可视化方法、装置、设备及存储介质
CN112085232A (zh) * 2020-09-14 2020-12-15 武汉瑞莱保能源技术有限公司 一种基于增强现实技术的运检系统及方法
CN112116163A (zh) * 2020-09-27 2020-12-22 广州东塑石油钻采专用设备有限公司 一种井控设备的智能监控管理方法、系统及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6484816B1 (en) * 2001-01-26 2002-11-26 Martin-Decker Totco, Inc. Method and system for controlling well bore pressure
CN106569769A (zh) * 2016-11-09 2017-04-19 唐雪松 基于ar技术的机器操作指导信息展示方法及装置
CN107547554A (zh) * 2017-09-08 2018-01-05 北京枭龙科技有限公司 一种基于增强现实的智能设备远程协助系统
CN108242126A (zh) * 2018-03-20 2018-07-03 四川大学 一种可主动探测和识别危险并警报的智能可穿戴设备
CN112343566A (zh) * 2019-08-08 2021-02-09 中国石油天然气股份有限公司 注入聚合物井的井底流压确定方法及装置

Also Published As

Publication number Publication date
US11756275B2 (en) 2023-09-12
CN113010132A (zh) 2021-06-22
US20230230329A1 (en) 2023-07-20
CN113010132B (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
KR20190095442A (ko) 웰 킥 조기 검출을 위한 시스템 및 방법
WO2022198547A1 (zh) 一种用于智能井控的辅助系统和方法
CA2486235C (en) An automatic control system and method for bottom hole pressure in the underbalance drilling
US9593567B2 (en) Automated drilling system
US6755261B2 (en) Method and system for controlling well fluid circulation rate
EP2542753B1 (en) System and method for safe well control operations
DK2785969T3 (en) Automated drilling system
US20120059521A1 (en) Drilling control method and system
US20180238467A1 (en) System and methods for operation of a blowout preventor system
CN111126735B (zh) 一种钻井数字孪生系统
RU2586363C2 (ru) Способ и система бурения скважины с автоматическим ответом на детектирование события
US20170227387A1 (en) Tank Level And Flow Rate Monitoring System
US8727037B1 (en) Well control operational and training aid
CN110513063B (zh) 控压钻井系统及其控制方法
US20150014056A1 (en) Dynamic response apparatus and methods triggered by conditions
CN110806859A (zh) 基于机器学习的模块化钻探数据监测与设计系统
US20210324692A1 (en) Integrated control system for a well drilling platform
AU2015408051B2 (en) Engine and transmission notification system using a J1939 data link interface
CN209523741U (zh) 一种井口回压自动控制系统
US8678085B1 (en) Well control operational and training aid
CN115704308A (zh) 井控安全系统
US20230125627A1 (en) Drilling systems and methods
Carpenter Integrated Hydraulics-Modeling Platform Automates Managed-Pressure Drilling
CN111779475A (zh) 基于电磁波的钻杆接头快速识别方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21932175

Country of ref document: EP

Kind code of ref document: A1