WO2022198376A1 - 测距装置、成像装置以及云台 - Google Patents

测距装置、成像装置以及云台 Download PDF

Info

Publication number
WO2022198376A1
WO2022198376A1 PCT/CN2021/082056 CN2021082056W WO2022198376A1 WO 2022198376 A1 WO2022198376 A1 WO 2022198376A1 CN 2021082056 W CN2021082056 W CN 2021082056W WO 2022198376 A1 WO2022198376 A1 WO 2022198376A1
Authority
WO
WIPO (PCT)
Prior art keywords
zoom lens
light
pan
target object
tilt
Prior art date
Application number
PCT/CN2021/082056
Other languages
English (en)
French (fr)
Inventor
刘朝云
鹿志村贵弘
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2021/082056 priority Critical patent/WO2022198376A1/zh
Priority to CN202180094302.8A priority patent/CN116868026A/zh
Publication of WO2022198376A1 publication Critical patent/WO2022198376A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • G02B3/14Fluid-filled or evacuated lenses of variable focal length

Definitions

  • the present application relates to the technical field of optical measurement, and in particular to a ranging device, an imaging device, a gimbal, a drone, an unmanned vehicle, and a robot.
  • the optical distance measurement device has a plurality of fixed focal length lenses, and correspondingly, a plurality of light emitting units are also configured to realize the distance measurement of objects at different distances. ranging.
  • a distance measuring device is not only large in size, high in power consumption, but also in high cost, which seriously affects the user experience.
  • the embodiments of the present application provide a ranging device, an imaging device, a gimbal, an unmanned aerial vehicle, an unmanned vehicle, and a robot.
  • an embodiment of the present application provides a ranging device, comprising: a light emitting unit for emitting light; a first zoom lens with different focal lengths, disposed at positions corresponding to the light emitting unit, When the first zoom lens is at different focal lengths, the light rays are projected to the target object at different field angles after passing through the first zoom lens, so that the target object reflects at least part of the light rays; a receiving unit, configured to receive at least part of the light reflected by the target object, so that the distance measuring device determines the distance between the distance measuring device and the target object according to the receiving condition of the light receiving unit.
  • an embodiment of the present application provides an imaging device, comprising: a light emitting unit for emitting light; a first zoom lens with different focal lengths, disposed at positions corresponding to the light emitting unit, to When the first zoom lens is at different focal lengths, the light is projected to the target object at different angles of view after passing through the first zoom lens, so that the target object reflects at least part of the light; the light is received a unit for receiving at least part of the light reflected by the target object, so that the imaging device determines the distance between the imaging device and the target object according to the receiving condition of the light receiving unit; the imaging lens, using receiving light from the target object for the imaging device to generate an image of the target object, and the focal length of the imaging lens is determined by the distance between the imaging device and the target object.
  • an embodiment of the present application provides a pan/tilt head, including: a pan/tilt head body for supporting a load and adjusting the spatial attitude of the load; a light emitting unit arranged on the pan/tilt head body, the The light emitting unit is used for emitting light; the first zoom lenses with different focal lengths are arranged on the pan/tilt body at positions corresponding to the light emitting units, so that when the first zoom lenses are at different focal lengths, The light rays are projected onto the target object at different angles of view through the first zoom lens, so that the target object reflects at least part of the light rays; the light receiving unit is arranged on the head body, and the light rays The receiving unit is configured to receive at least part of the light reflected by the target object, so that the PTZ determines the distance between the PTZ and the target object according to the receiving condition of the light receiving unit.
  • an embodiment of the present application provides an unmanned aerial vehicle, comprising: an unmanned aerial vehicle body; any one of the above-mentioned gimbal, the gimbal body of the gimbal and the unmanned aerial vehicle body connect.
  • an embodiment of the present application provides an unmanned vehicle, comprising: an unmanned vehicle body; and any one of the above-mentioned gimbal, wherein the gimbal body of the gimbal is connected to the unmanned vehicle body.
  • an embodiment of the present application provides a robot, comprising: a robot body; and any one of the above-mentioned pan/tilt heads, wherein the pan/tilt head body of the pan/tilt head is connected to the robot body.
  • the ranging device, imaging device, pan/tilt, drone, unmanned vehicle and robot provided by the present application can change the focal length of the first zoom lens to project to the target object with different field of view angles, thereby achieving targets at different distances distance measurement of objects. It makes the ranging device, imaging device, pan/tilt, unmanned aerial vehicle, unmanned vehicle and robot do not need to set up multiple light emitting units, nor need to set up multiple fixed focal length lenses corresponding to the multiple light emitting units one-to-one. , making the ranging device, imaging device, pan/tilt, unmanned aerial vehicle, unmanned vehicle and robot small in size, low in power consumption, and low in cost, which improves the user experience.
  • FIG. 1 is a working principle diagram of a distance measuring device according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a distance measuring device according to an embodiment of the present application when a distant target object is measured;
  • FIG. 3 is a schematic diagram of a distance measuring device measuring a relatively close target object according to an embodiment of the present application
  • FIG. 4 is a state diagram of a liquid lens of a distance measuring device according to an embodiment of the present application when no voltage is applied;
  • FIG. 5 is a state diagram of a liquid lens of a ranging device according to an embodiment of the present application when voltage is applied;
  • FIG. 6 is a structural block diagram of a ranging apparatus according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an imaging device according to an embodiment of the present application.
  • FIG. 8 is a structural block diagram of an imaging device according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a pan/tilt according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of an unmanned aerial vehicle according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of an unmanned vehicle according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a robot according to an embodiment of the present application.
  • 10 is a ranging device
  • 100 is a light emitting unit
  • 200 is a first zoom lens
  • 300 is a light receiving unit
  • 400 is a power supply
  • 500 is an instruction receiving device
  • 600 is a second zoom lens
  • 700 is a temperature sensor
  • 20 is the imaging device
  • 800 is the imaging lens
  • 30 is the gimbal
  • 910 is the gimbal body
  • 920 is the hand-held part
  • 40 is the drone
  • 930 is the drone body
  • 50 is the unmanned vehicle
  • 940 is the unmanned vehicle
  • the car body 60 is the robot
  • 950 is the robot body.
  • FIG. 1 is a working principle diagram of the ranging apparatus 10 according to an embodiment of the present application.
  • the ranging device 10 includes a light emitting unit 100 , a first zoom lens 200 and a light receiving unit 300 .
  • the light emitting unit 100 is used for emitting light. It can be understood that the light emitted by the light emitting unit 100 may be visible light or invisible light. When the light emitted by the light emitting unit 100 is visible light, the light emitting unit 100 can emit light of various colors such as red light, orange light, yellow light, green light, cyan light, blue light, and purple light. When the light emitted by the light emitting unit 100 is invisible light, the light emitting unit 100 may emit infrared rays, ultraviolet rays, and the like.
  • the light emitted by the light emitting unit 100 may be a laser, that is, the light emitting unit 100 may include a laser.
  • Laser light is stimulated radiation of atoms. After the electrons in the atoms absorb energy, they transition from a low energy level to a high energy level, and when they fall back from a high energy level to a low energy level, the released energy is released in the form of photons.
  • the photon beam (laser) that is induced (excited) has highly consistent optical properties of photons. Therefore, compared with ordinary light sources, the laser has better monochromaticity, better directivity, and higher brightness, which can improve the ranging effect of the ranging device 10 and enhance the user experience.
  • the light emitting unit 100 may include various lasers such as gas lasers, solid-state lasers, semiconductor lasers, and dye lasers.
  • the light emitting unit 100 may be a semiconductor laser,
  • the light emitting unit 100 may be a VCSEL (Vertical-Cavity Surface-Emitting Laser, vertical cavity surface emitting laser).
  • a gas laser is a device that uses gas as a working substance to generate laser light. It consists of three main parts: the activated gas in the discharge tube, the resonant cavity formed by a pair of mirrors, and the excitation source.
  • the main excitation methods are electrical excitation, pneumatic excitation, optical excitation and chemical excitation. Under appropriate discharge conditions, gas particles are selectively excited to a certain high energy level by electron collision excitation and energy transfer excitation, thereby forming a population inversion with a certain low energy level, resulting in stimulated emission transitions.
  • the gas laser has the advantages of simple structure, low cost, convenient operation, uniform working medium, good beam quality, and can work continuously and stably for a long time.
  • Solid-state lasers are lasers that use solid-state laser materials as working substances.
  • the working medium is uniformly doped with a small amount of activated ions in the crystal or glass as the matrix material.
  • a laser doped with trivalent neodymium ions in yttrium aluminum garnet crystals can emit near-infrared lasers with a wavelength of 1050 nanometers.
  • Solid-state lasers have the characteristics of small size, convenient use and high output power.
  • Semiconductor lasers also known as laser diodes, are lasers that use semiconductor materials as working substances. Commonly used working substances are gallium arsenide, cadmium sulfide, indium phosphide, zinc sulfide, etc. There are three types of excitation methods: electric injection, electron beam excitation and optical pumping. Semiconductor laser devices can be divided into homojunction, single heterojunction, double heterojunction and so on. Homojunction lasers and single heterojunction lasers are mostly pulsed devices at room temperature, while double heterojunction lasers can work continuously at room temperature. Semiconductor diode lasers are the most practical and important class of lasers. It is small in size, long in life, and can be pumped by simple current injection, and its operating voltage and current are compatible with integrated circuits, so it can be monolithically integrated.
  • Dye lasers are lasers that use organic dyes as the laser medium, usually a liquid solution.
  • Dye lasers can generally be used over a wider range of wavelengths than gaseous and solid-state lasing media.
  • the first zoom lens 200 has different focal lengths, that is, the focal length of the first zoom lens 200 can be changed, and the focal length of the first zoom lens 200 is not fixed.
  • the first zoom lens 200 is disposed at a position corresponding to the light emitting unit 100 . Understandably, the first zoom lens 200 is disposed on the propagation path of the light emitted by the light emitting unit 100 (ie, the light propagation path between the light emitting unit 100 and the target object).
  • the light emitted by the light emitting unit 100 passes through the first zoom lens 200 and is projected onto the target object at different field angles, so that the target object reflects at least part of the light.
  • FIG. 2 is a schematic diagram of the distance measuring device 10 according to an embodiment of the present application when measuring a distant target object
  • FIG. 3 is a schematic diagram of the distance measuring device 10 according to an embodiment of the present application when measuring a relatively close target object.
  • the target object is a human body as an example. Understandably, the target object may be a moving object or a stationary object. When the target object is a moving object, the target object may include not only the human body, but also various other animals, automobiles, ships, and the like. When the unmarked object is a stationary object, it can include furniture, plants, buildings, mountains and rivers, etc.
  • the focal length of the first zoom lens 200 may vary. Therefore, when the distance measuring device 10 measures a distant target object, the focal length of the first zoom lens 200 can be adjusted to be larger. As shown in FIG. 2 , at this time, the first zoom lens 200 is in a telephoto state and has a small vertical field of view, and can be used to focus on a distant target object.
  • the focal length of the first zoom lens 200 can be adjusted to be smaller when the distance measuring device 10 measures a closer target object. As shown in FIG. 3 , at this time, the first zoom lens 200 is in a wide-angle state and has a larger vertical field of view, which can be used to focus on a target object at a distance.
  • the first zoom lens 200 may include a liquid lens, and the first zoom lens 200 is configured to receive voltages with different magnitudes, so that when the first zoom lens 200 receives voltages with different magnitudes, the A zoom lens 200 is at different focal lengths.
  • a liquid lens is an optical element without mechanical connection made using one or more liquids, which can change the internal parameters of the optical element through external control. It is an optical element that changes the medium of the glass lens from glass to liquid, and is an optical element that dynamically adjusts the refractive index of the lens or changes the focal length by changing its surface shape.
  • FIG. 4 is a state diagram of the liquid lens of the ranging device 10 according to an embodiment of the present application when no voltage is applied
  • FIG. 5 is a state diagram of the liquid lens of the ranging device 10 according to an embodiment of the present application when voltage is applied.
  • the liquid lens may be composed of a glass case 210 , a liquid medium 220 , an oil layer 230 , an insulator 240 , a metal medium 250 , and the like.
  • the glass case 210 may include a first glass sheet and a second glass sheet disposed in front and back, the metal medium 250 may include a first metal layer and a second metal layer, and the first metal layer is disposed on the first glass sheet adjacent to the second glass sheet.
  • the second metal layer is disposed on the periphery of the side of the second glass sheet close to the first glass sheet, and the first metal layer and the second metal layer are separated by an insulator 240 .
  • the first glass sheet, the second glass sheet, the first metal layer, the second metal layer, and the insulator 240 define an interior space filled with a liquid medium 220 and an oil layer 230, wherein the liquid medium 220 fills the interior space adjacent to the second glass At one end of the sheet, the oil layer 230 fills the interior space near one end of the first glass sheet.
  • the first metal layer and the liquid medium 220 and the first metal layer and the oil layer 230 are separated by an insulator 240, and the second metal layer may be in contact with the liquid medium 220, but not in contact with the oil layer 230.
  • the shape of the liquid medium 220 can be changed, thereby changing the focal length of the liquid lens.
  • the liquid medium 220 when no voltage is applied, the liquid medium 220 is in the shape of a convex lens, and at this time, the liquid lens has a larger focal length.
  • the liquid medium 220 when the voltage is applied, the liquid medium 220 is in the shape of a concave lens, and at this time, the liquid lens has a smaller focal length. It can be understood that when the liquid lens receives voltages with different magnitudes, the shape of the liquid medium 220 changes differently, and therefore, the liquid lens is at different focal lengths.
  • the first zoom lens 200 may be a gradient index liquid lens, and the gradient index liquid lens changes the voltage applied to the liquid crystal to adjust the refractive index of the liquid crystal, thereby realizing zooming.
  • the first zoom lens 200 has the advantages of low control voltage and easy array formation.
  • the first zoom lens 200 may also be an electrowetting effect liquid lens, which is a liquid lens that controls the wetting characteristics of liquid on a solid surface by changing the applied voltage.
  • the electrowetting effect is a physicochemical phenomenon that controls the wetting properties of a liquid on a solid surface by changing the applied voltage at the liquid-solid interface, thereby changing the contact angle of the droplet, making it change like the lens of the human eye.
  • the curvature enables zooming. At the same time, depending on the applied voltage, the curvature of its surface will change, thereby achieving optical zoom.
  • the first zoom lens 200 may also realize the zoom function by changing the focus of the first zoom lens 200 through a driver.
  • the light receiving unit 300 is configured to receive at least part of the light reflected by the target object, so that the distance measuring device 10 determines the distance between the distance measuring device 10 and the target object according to the receiving condition of the light receiving unit 300 .
  • the light receiving unit 300 may include various sensors capable of receiving reflected light, for example, the light receiving unit 300 may include a sensing sensor IMX316.
  • the distance measuring device 10 may determine the distance between the distance measuring device 10 and the target object according to the time of the light emitted by the light emitting unit 100 and the time difference between the light receiving unit 300 receiving the corresponding light and the propagation speed of the light distance between.
  • the propagation speed of light in vacuum is a constant, the constant is 299792458 meters per second. Since the use environment of the distance measuring device 10 is not completely vacuum in the actual use scene of the distance measuring device 10, when determining the distance between the distance measuring device 10 and the target object, the propagation speed of the selected light may not be is equal to 299792458 m/s, but can be less than 299792458 m/s, for example, can be 299792000 m/s, 299791000 m/s, 299790000 m/s, 299780000 m/s, 299770000 m/s, 299760000 m/s, 299750000 m/s, 299740000 m/s, 299730000 m/s, 299720000 m/s, 299710000 m/s, 299700000 m/s, etc. The specific value can be determined according to the actual situation or experimental situation.
  • the distance measuring device 10 may further include a vacuum degree meter, and the vacuum degree meter is used to measure the vacuum degree of the surrounding environment of the distance measuring device 10 .
  • the vacuum degree of the surrounding environment of the distance measuring device 10 measured by the vacuum degree meter is larger, when the distance between the distance measuring device 10 and the target object is determined, the propagation speed of the selected light is smaller.
  • the vacuum degree of the surrounding environment of the distance measuring device 10 measured by the vacuum gauge is smaller, when the distance between the distance measuring device 10 and the target object is determined, the propagation speed of the selected light is greater, but the selected light has a higher propagation speed.
  • the maximum propagation speed is 299792458 m/s.
  • the distance of the light can be determined.
  • the sum of the distance from the light receiving unit 300 to the target object, therefore, the distance between the distance measuring device 10 and the target object can be obtained by dividing the distance traveled by the light by 2.
  • the distance between the light emitting unit 100 and the light receiving unit 300 can also be used to correct the above measurement result, that is, the distance of the light propagating by the correction divided by 2 is obtained.
  • the specific correction method can be determined according to the actual situation or experimental situation. For example, when the distance between the light emitting unit 100 and the light receiving unit 300 is larger, the difference between the value before correction and the value after correction is larger. The smaller the distance between 100 and the light receiving unit 300 is, the smaller the difference between the value before correction and the value after correction is.
  • the light emitted by the light emitting unit 100 may be a light beam whose amplitude is modulated in time series, and the ranging device 10 may emit light relative to the light emitting unit 100 according to the light received by the light receiving unit 300 The phase delay of the light rays to determine the distance.
  • the distance measuring device 10 provided in this embodiment of the present application changes the focal length of the first zoom lens 200 , so that it can be projected onto the target object with different field angles, so as to realize the distance measurement of the target object at different distances, so that the distance measuring device 10
  • the distance measuring device 10 There is no need to provide multiple light emitting units 100, and it is also not necessary to provide multiple fixed focal length lenses corresponding to the multiple light emitting units 100 one-to-one, so that the distance measuring device 10 is small in size, low in power consumption, easy to carry, and has a low cost. lower, which improves the user experience.
  • the distance measuring device 10 provided by the embodiment of the present application can avoid the phenomenon that the overall temperature of the distance measuring device 10 increases seriously due to the use of multiple light emitting units 100 .
  • the inventors of the present application have found that an increase in the overall temperature of the distance measuring device 10 will affect the use of the light emitting unit 100 to a certain extent, thereby affecting the accuracy of the distance measuring device 10 .
  • the distance measuring apparatus 10 may further include a power source 400
  • FIG. 6 is a structural block diagram of the distance measuring apparatus 10 according to an embodiment of the present application.
  • the power supply 400 is configured to supply voltage to the first zoom lens 200 . Therefore, the first zoom lens 200 of the distance measuring device 10 does not need an external supply voltage, which is convenient for use.
  • the power source 400 can be a chemical power source, such as dry battery, lead-acid battery, nickel-cadmium, nickel-metal hydride, lithium-ion battery, etc.
  • the power source 400 can also be other types of power source, such as a linear stable power source.
  • the power supply 400 can also be configured to supply power to at least one of the light emitting unit 100 , the light receiving unit 300 and other components of the ranging device 10 .
  • the power supply 400 may also be configured not to supply power to the light emitting unit 100 , the light receiving unit 300 , and other components of the ranging device 10 .
  • the distance measuring device 10 may not include a power supply 400 that provides voltage to the first zoom lens 200 , and can receive a corresponding voltage through a voltage receiving port, thereby reducing the power consumption of the distance measuring device 10 .
  • the volume and weight are convenient for users to carry.
  • the ranging apparatus 10 may further include an instruction receiving apparatus 500 , the instruction receiving apparatus 500 is configured to receive a voltage adjustment instruction, and the voltage adjustment instruction indicates the magnitude of the voltage provided by the power supply 400 to the first zoom lens 200 .
  • the power supply 400 is configured to supply the first zoom lens 200 with a voltage whose magnitude corresponds to the voltage adjustment command.
  • the instruction receiving apparatus 500 may include any apparatus that can receive an instruction, for example, a button, a knob, a touch screen, a voice input apparatus, and the like.
  • the instruction receiving device 500 enables the focal length of the first zoom lens 200 to be adjusted according to the user's expectation, which improves the user's use experience.
  • the ranging device 10 may further include a second zoom lens 600, the second zoom lens 600 has different focal lengths, that is, the focal length of the second zoom lens 600 can be changed, and the focal length of the second zoom lens 600 is not fixed .
  • the second zoom lens 600 is disposed at a position corresponding to the light receiving unit 300 . Understandably, the second zoom lens 600 is disposed on the propagation path of the light received by the light receiving unit 100 (ie, the light propagation path between the light receiving unit 600 and the target object).
  • the light receiving unit 300 receives at least part of the light reflected by the target object at different viewing angles.
  • the received light intensity or the number of photons can be adjusted so that the received light intensity or the number of photons can be maximized, thereby improving the measurement accuracy of the distance measuring device 10 .
  • the second zoom lens 600 may include a liquid lens, or the zoom function may be implemented by changing the focus of the second zoom lens 600 through a driver.
  • the relevant content of the liquid lens may refer to the above-mentioned embodiments, which will not be repeated here.
  • the size of the focal length where the second zoom lens 600 is located may be related to the size of the focal length where the first zoom lens 200 is located. That is to say, when the focal length of the first zoom lens 200 changes, the focal length of the second zoom lens 600 also changes accordingly, and when the focal length of the first zoom lens 200 does not change, the The size of the focal length at which the second zoom lens 600 is located also remains unchanged. In this way, the focal length of the second zoom lens 600 can automatically follow the focal length of the first zoom lens 200 to change, and the user does not need to adjust, which improves the user experience.
  • the focal length of the second zoom lens 600 is positively correlated with the focal length of the first zoom lens 200 .
  • the focal length of the first zoom lens 200 is large, it means that the target object is far away, and at this time the focal length of the second zoom lens 600 is also large, which increases the light intensity or photons received from the farther target object number, thereby improving the measurement accuracy of the distance measuring device 10 .
  • the focal length of the first zoom lens 200 is small, it means that the target object is relatively close, and the focal length of the second zoom lens 600 is also very small at this time, which increases the light intensity or the number of photons received from the closer target object , thereby improving the measurement accuracy of the distance measuring device 10 .
  • the power supply 400 can also be configured to provide a corresponding voltage to the second zoom lens 600 .
  • the above-mentioned voltage adjustment instruction can also instruct the value of the voltage provided by the power supply 400 to the second zoom lens 600 , and the power supply 400 is configured to provide the second zoom lens 600 with a voltage corresponding to the voltage adjustment instruction.
  • the first zoom lens 200 and the second zoom lens 600 may be located on the same side of the ranging device 10 .
  • both the first zoom lens 200 and the second zoom lens 600 are located on the front side, the rear side, the upper side, the lower side, the left side or the right side, etc. of the distance measuring device 10 .
  • the efficiency of receiving light by the light receiving unit 300 can be improved.
  • the distance measuring device 10 may further include a temperature sensor 700 for detecting the temperature of the light emitting unit 100, and the light emitting unit 100 is configured to stop emitting light when the temperature detected by the temperature sensor 700 is greater than or equal to a temperature threshold. Therefore, damage to the light emitting unit 100 due to excessive temperature can be avoided, the service life of the light emitting unit 100 can be ensured, and the user experience can be improved.
  • the specific value of the temperature threshold can be determined according to the actual situation or the experimental situation.
  • FIG. 7 is a schematic structural diagram of the imaging device 20 according to an embodiment of the present application
  • FIG. 8 is a structural block diagram of the imaging device 20 according to an embodiment of the present application.
  • the imaging device 20 includes a light emitting unit 100 , a first zoom lens 200 , a light receiving unit 300 and an imaging lens 800 .
  • the light emitting unit 100 is used for emitting light.
  • the first zoom lens 200 has different focal lengths, and the first zoom lens 200 is disposed at a position corresponding to the light emitting unit 100, so that when the first zoom lens 200 is at different focal lengths, the light passes through the first zoom lens 200 at different focal lengths.
  • the field of view is projected onto the target object for the target object to reflect at least part of the light.
  • the light receiving unit 300 is configured to receive at least part of the light reflected by the target object, so that the imaging device 20 determines the distance between the imaging device 20 and the target object according to the receiving condition of the light receiving unit 300 .
  • the imaging lens 800 is used for receiving light from the target object, so that the imaging device 20 can generate an image of the target object, and the focal length of the imaging lens 800 is determined by the distance between the imaging device 20 and the target object.
  • the focal length of the imaging lens 800 is larger, and when the distance between the imaging device 20 and the target object is smaller, the focal length of the imaging lens 800 is smaller.
  • the imaging device 20 provided in the embodiment of the present application changes the focal length of the first zoom lens 200, and can project to the target object with different field of view angles, thereby realizing the ranging of the target object at different distances, so that the imaging device 20 does not need to A plurality of light emitting units 100 are provided, and there is no need to provide a plurality of fixed focal length lenses corresponding to the plurality of light emitting units 100 one-to-one, so that the imaging device 20 is small in size, low in power consumption, easy to carry, and low in cost. Improve the user experience. Moreover, the imaging device 20 provided by the embodiments of the present application can avoid the phenomenon that the temperature of the imaging device 20 as a whole increases seriously due to the use of multiple light emitting units 100 .
  • the inventors of the present application have found that an increase in the overall temperature of the imaging device 20 will affect the use of the light emitting unit 100 to a certain extent, thereby affecting the accuracy of the imaging device 20 .
  • the focal length of the imaging lens 800 is adapted to the distance between the imaging device 20 and the target object, which facilitates shooting of clear and high-quality pictures and videos.
  • the imaging device 20 may include a camera, a video camera, a PTZ camera, a mobile phone, a tablet, a computer, and the like with a camera function.
  • the imaging device 20 can determine the focal length based on the distance between the imaging device 20 and the target object, so that the target object in the generated picture or video is clear. search and rescue, etc.
  • the imaging device 20 may include a processor, and the processor may determine the focal length of the imaging lens 800 according to the distance between the imaging device 20 and the target object.
  • the light receiving unit 300 can convert the signal corresponding to the received light, for example, into IIC, XVS, XCLR, MIPI and other signals, and then output these signals to the serial chip, serial
  • serial The line chip can synthesize one signal of each received signal, for example, synthesize one differential signal, and then transmit the synthesized signal to the deserialization chip, for example, transmit it to the deserialization chip through the X9 coaxial cable, and then deserialize the chip. After restoring each signal, it is transmitted to the image chip to process these signals. After the processed signal is transmitted to the processor, the processor determines the focal length and controls the focal length of the imaging lens 800 to be the focal length determined above.
  • the imaging lens 800 may include a third zoom lens.
  • the third zoom lens may include a liquid lens, or a driver may change the focus of the third zoom lens to realize the zoom function of.
  • the relevant content of the liquid lens may refer to the above-mentioned embodiments, which will not be repeated here.
  • the imaging lens 800 may include multiple lens groups, and the focal length of the imaging lens 800 can be adjusted by moving the lens groups.
  • the first zoom lens 200 may include a liquid lens, and the first zoom lens 200 is configured to receive voltages with different magnitudes, so that when the first zoom lens 200 receives voltages with different magnitudes, the A zoom lens 200 is at different focal lengths.
  • the imaging device 20 may further include a power supply 400 configured to supply voltage to the first zoom lens 200 .
  • the imaging device 20 may further include an instruction receiving device 500 configured to receive a voltage adjustment instruction indicating the magnitude of the voltage provided by the power supply 400 to the first zoom lens 200 .
  • the power supply 400 is configured to provide the first zoom lens 200 with the voltage whose magnitude corresponds to the voltage adjustment command.
  • the first zoom lens 200 may be a graded index liquid lens or an electrowetting effect liquid lens.
  • the imaging device 20 may further include a second zoom lens 600 .
  • the second zoom lenses 600 have different focal lengths, and the second zoom lenses 600 are disposed at positions corresponding to the light receiving units 300 , so that when the second zoom lenses 600 are at different focal lengths, the light receiving units 300 have different viewing angles Receives at least a portion of the light reflected by the target object.
  • the focal length of the second zoom lens 600 is related to the focal length of the first zoom lens 200 .
  • the focal length of the second zoom lens 600 is positively correlated with the focal length of the first zoom lens 200 .
  • the first zoom lens 200 , the second zoom lens 600 and the imaging lens 800 are located on the same side of the imaging device 20 .
  • the first zoom lens 200, the second zoom lens 600, and the imaging lens 800 are all located on the front side, the rear side, the upper side, the lower side, the left side, the right side, or the like of the distance measuring device 10.
  • the light receiving unit 300 can improve the efficiency of receiving light, and ensure that the focal length of the imaging lens 800 is adapted to the distance between the imaging device 20 and the target object, which facilitates taking clear and high-quality pictures and videos.
  • the imaging device 20 may further include a temperature sensor 700 for detecting the temperature of the light emitting unit 100 .
  • the light emitting unit 100 is configured to stop emitting light when the temperature detected by the temperature sensor 700 is greater than or equal to the temperature threshold.
  • the light emitting unit 100 , the first zoom lens 200 , the light receiving unit 300 , the power supply 400 , the command receiving device 500 , the second zoom lens 600 , and other related contents of the temperature sensor 700 can refer to the above-mentioned contents, and will not be repeated here.
  • FIG. 9 is a schematic structural diagram of the pan-tilt 30 according to an embodiment of the present application.
  • the gimbal 30 includes a gimbal body 910 , a light emitting unit 100 , a first zoom lens 200 and a light receiving unit 300 .
  • the gimbal body 910 is used to support the load, and the gimbal body 910 is also used to adjust the spatial attitude of the load.
  • the light emitting unit 100 is disposed on the gimbal body 910, and the light emitting unit 100 is used for emitting light.
  • the first zoom lens 200 has different focal lengths, and the first zoom lens 200 is disposed on the pan/tilt body 910 at a position corresponding to the light emitting unit 100, so that when the first zoom lens 200 is at different focal lengths, the light is zoomed by the first zoom lens.
  • the lens 200 is then projected onto the target object at different viewing angles, so that the target object reflects at least part of the light.
  • the light receiving unit 300 is disposed on the gimbal body 910 , and is used for receiving at least part of the light reflected by the target object, so that the gimbal 30 can determine the distance between the gimbal 30 and the target object according to the receiving condition of the light receiving unit 300 .
  • the pan/tilt 30 provided by the embodiment of the present application can not only be used to measure the distance from the pan/tilt 30 to the target object. Moreover, by changing the focal length of the first zoom lens 200, the pan/tilt 30 can project to the target object at different angles of view, thereby realizing the ranging of target objects at different distances, so that the pan/tilt 30 does not need to set multiple rays.
  • the transmitting unit 100 does not need to set a plurality of fixed focal length lenses corresponding to the plurality of light transmitting units 100 one-to-one, so that the pan/tilt 30 is small in size, low in power consumption, easy to carry, and low in cost, which improves the user's convenience. Use experience.
  • the pan/tilt head 30 provided by the embodiment of the present application can avoid the phenomenon that the temperature of the pan/tilt head 30 increases seriously due to the use of multiple light emitting units 100 .
  • the inventors of the present application have found that an increase in the overall temperature of the gimbal 30 will affect the use of the light emitting unit 100 to a certain extent, thereby affecting the accuracy of the distance measurement of the gimbal 30 .
  • the first zoom lens 200 may include a liquid lens, and the first zoom lens 200 is configured to receive voltages with different magnitudes, so that when the first zoom lens 200 receives voltages with different magnitudes, the A zoom lens 200 is at different focal lengths.
  • the pan/tilt head 30 may further include a power supply 400 configured to supply voltage to the first zoom lens 200 .
  • the pan/tilt 30 may further include an instruction receiving device 500 , the instruction receiving device 500 is configured to receive a voltage adjustment instruction, and the voltage adjustment instruction indicates the magnitude of the voltage provided by the power supply 400 to the first zoom lens 200 . And the power supply 400 is configured to provide the first zoom lens 200 with a voltage whose magnitude corresponds to the voltage adjustment command.
  • the first zoom lens 200 may be a graded index liquid lens or an electrowetting effect liquid lens.
  • the pan/tilt head 30 may further include a second zoom lens 600 .
  • the second zoom lens 600 has different focal lengths, and the second zoom lens 600 is disposed on the pan/tilt body 910 at a position corresponding to the light receiving unit 300, so that when the second zoom lens 600 is at a different focal length, the light receiving unit 300 Different fields of view receive at least part of the light reflected by the target object.
  • the focal length of the second zoom lens 600 is related to the focal length of the first zoom lens 200 .
  • the focal length of the second zoom lens 600 is positively correlated with the focal length of the first zoom lens 200 .
  • the first zoom lens 200 and the second zoom lens 600 are located on the same side of the gimbal body 910 .
  • the first zoom lens 200 , the second zoom lens 600 , and the imaging lens 800 are all located on the front side, the rear side, the upper side, the lower side, the left side, the right side, and the like of the ranging device 10 . Thereby, the efficiency with which the light receiving unit 300 receives light can be improved.
  • the pan/tilt head 30 may further include a temperature sensor 700 , and the temperature sensor 700 is used to detect the temperature of the light emitting unit 100 . And the light emitting unit 100 is configured to stop emitting light when the temperature detected by the temperature sensor 700 is greater than or equal to the temperature threshold.
  • the load may include an imaging device, for example, including a camera, a video camera, and a mobile phone, tablet, computer, etc. with a camera function.
  • the imaging device may include an imaging lens, the imaging lens is used to receive light from the target object, so that the imaging device can generate an image of the target object, and the focal length of the imaging lens is determined by the distance between the pan/tilt 30 and the target object, so as to facilitate clear shooting. , high-quality pictures and videos.
  • the gimbal body 910 may include a hand-held part 920 for the user to hold the gimbal 30 through the hand-held part 920, which improves the user experience.
  • a gimbal 30 may also be referred to as a hand-held gimbal.
  • the hand-held component 920 may include a handle or a wristband.
  • the handle is in the shape of a column, for example, a cylindrical shape, a square column shape, etc., and the handle makes the pan/tilt head 30 easy to be stored.
  • the wristband is ring-shaped, for example, a circular ring, a square ring, etc. The wristband makes the gimbal 30 easy to be held by the user from different angles, which improves the user experience.
  • the pan/tilt 30 may include one pan/tilt part, two pan/tilt components, three pan/tilt components or more pan/tilt components, and correspondingly, the pan/tilt 30 may allow the load to wrap around one, two, three or more pan/tilt parts.
  • Multiple axis rotation, the axes used for rotation may or may not be orthogonal to each other.
  • the gimbal component can control the attitude of the load through the motor, including controlling one or more of the pitch angle, roll angle and yaw angle of the load, and accordingly, the load can rotate around the pitch axis, Rotation of one or more of the roll and yaw axes.
  • each pan-tilt part may include a connecting arm.
  • the first pan-tilt part is connected to the hand-held part 920, and the first pan-tilt part can rotate relative to the hand-held part 920, so that the yaw angle of the load changes, that is, when the first pan-tilt part rotates relative to the hand-held part 920, it can Causes the load to rotate about the yaw axis.
  • the second pan-tilt part is connected to the first pan-tilt part, and the second pan-tilt part can rotate relative to the hand-held part 920, so that the roll angle of the load changes, that is, when the second pan-tilt part rotates relative to the hand-held part 920, it can Makes the load rotate about the roll axis.
  • the third pan-tilt part is connected to the second pan-tilt part, and the third pan-tilt part can be rotated relative to the hand-held part 920, so that the pitch angle of the load changes, that is, when the third pan-tilt part is rotated relative to the hand-held part 920, it can make The payload rotates around the pitch axis.
  • the gimbal body 910 may include only one gimbal part, and the gimbal part can be rotated relative to the hand-held part 920 to change the yaw angle of the load, that is, the gimbal part is relatively hand-held When the member 920 is rotated, the load can be caused to rotate about the yaw axis.
  • the connection relationship between the above-mentioned various pan/tilt components and the hand-held component 920 is only an exemplary illustration, and does not limit the embodiments of the present application.
  • the first pan-tilt part is connected to the hand-held part 920, and the first pan-tilt part can be rotated relative to the hand-held part 920, so that the yaw angle of the load changes, that is, the first pan-tilt part can be rotated relative to the hand-held part 920.
  • the load can be rotated around the yaw axis.
  • the second pan-tilt part is connected to the first pan-tilt part, and the second pan-tilt part can be rotated relative to the hand-held part 920 so that the pitch angle of the load changes, that is, when the second pan-tilt part is rotated relative to the hand-held part 920, the second pan-tilt part can be rotated relative to the hand-held part 920.
  • the payload rotates around the pitch axis.
  • the third pan-tilt part is connected with the second pan-tilt part, and the third pan-tilt part can rotate relative to the hand-held part 920 so that the roll angle of the load changes, that is, when the third pan-tilt part rotates relative to the hand-held part 920, it can Make the load rotate around the roll axis, etc.
  • FIG. 10 is a schematic structural diagram of the unmanned aerial vehicle 40 according to an embodiment of the present application.
  • Desk 30 The gimbal body 910 of the gimbal 30 is connected to the drone body 930 .
  • the unmanned aerial vehicle 40 is also commonly referred to as a UAV (Unmanned Aerial Vehicle, unmanned aerial vehicle), wherein the unmanned aerial vehicle 40 may include various types such as a fixed-wing unmanned aerial vehicle, a rotary-wing unmanned aerial vehicle, and an umbrella-wing unmanned aerial vehicle.
  • UAV Unmanned Aerial Vehicle, unmanned aerial vehicle
  • the gimbal 30 can not only be connected to the bottom of the drone 40, but also can be connected to the top, side and other positions of the drone 40, which is not limited in the embodiments of the present application.
  • FIG. 11 is a schematic structural diagram of the unmanned vehicle 50 according to an embodiment of the present application.
  • the unmanned vehicle 50 includes an unmanned vehicle body 940 and any of the above-mentioned PTZs 30.
  • the gimbal body 910 of the gimbal 30 is connected to the unmanned vehicle body 940 .
  • the unmanned vehicle 50 may be moved directly by using wheels, or may be moved by other mechanisms such as crawler belts. Wherein, when the unmanned vehicle 50 directly uses wheels to move, the number of wheels of the unmanned vehicle 50 may be one or more, which is not limited in the embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of the robot 60 according to an embodiment of the present application.
  • the robot 60 includes a robot body 950 and any of the above-mentioned pan/tilt heads 30.
  • the stage body 910 is connected to the robot body 950 .
  • the pan/tilt 30 may be connected not only to the head of the robot body 950 , but also to other parts such as the robot arm and the back of the robot body 950 , which are not limited in the embodiments of the present application.
  • the unmanned aerial vehicle 40 , the unmanned vehicle 50 and the robot 60 provided by the embodiments of the present application can not only be used to measure the distance to the target object. Moreover, by changing the focal length of the first zoom lens 200, the unmanned aerial vehicle 40, the unmanned vehicle 50 and the robot 60 can be projected onto the target object with different field of view angles, so as to realize the ranging of the target object at different distances, so that the The unmanned aerial vehicle 40 , the unmanned vehicle 50 and the robot 60 do not need to be provided with a plurality of light emitting units 100 , nor do they need to be provided with a plurality of fixed focal length lenses corresponding to the plurality of light emitting units 100 , so that the unmanned aerial vehicle 40 , the unmanned vehicle 50 and the robot 60 are small in size, low in power consumption, easy to carry, and low in cost, which improves the user experience.
  • the unmanned aerial vehicle 40 , the unmanned vehicle 50 and the robot 60 provided by the embodiments of the present application can avoid the overall temperature of the unmanned aerial vehicle 40 , the unmanned vehicle 50 and the robot 60 caused by the use of multiple light emitting units 100 . Severe rise. The inventor of the present application found that the overall temperature increase of the drone 40 , the unmanned vehicle 50 and the robot 60 will affect the use of the light emitting unit 100 to a certain extent, and further affect the unmanned aerial vehicle 40 and the unmanned vehicle. 50 and the accuracy of the robot 60 ranging.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optics & Photonics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

测距装置、成像装置、云台、无人机、无人车以及机器人。测距装置包括:光线发射单元;具有不同焦距的第一变焦透镜,在第一变焦透镜处于不同的焦距时,光线经第一变焦透镜后以不同的视场角投射到目标物体,以供目标物体反射至少部分光线;光线接收单元,用于接收至少部分目标物体反射的光线,以使测距装置根据光线接收单元的接收情况确定测距装置与目标物体间的距离。这种测距装置、成像装置、云台、无人机、无人车以及机器人体积小、功耗小,且成本较低,提升了用户的使用体验。

Description

测距装置、成像装置以及云台 技术领域
本申请涉及光学测量技术领域,具体涉及一种测距装置、成像装置、云台、无人机、无人车以及机器人。
背景技术
光学测量目标物体的距离广泛地应用于各种领域,现有技术中利用光学进行测距的装置具有多个固定焦距的透镜,相应地也配制多个光线发射单元,以实现不同距离的物体的测距。然而,这种测距装置不仅体积大、功耗高,并且成本较高,严重影响用户的使用体验。
发明内容
本申请实施例提出一种测距装置、成像装置、云台、无人机、无人车以及机器人。
第一个方面,本申请实施例提供了一种测距装置,包括:光线发射单元,用于发射光线;具有不同焦距的第一变焦透镜,设置于与所述光线发射单元对应的位置处,以在所述第一变焦透镜处于不同的焦距时,所述光线经所述第一变焦透镜后以不同的视场角投射到目标物体,以供所述目标物体反射至少部分所述光线;光线接收单元,用于接收至少部分所述目标物体反射的所述光线,以使所述测距装置根据所述光线接收单元的接收情况确定所述测距装置与所述目标物体间的距离。
第二个方面,本申请实施例提供了一种成像装置,包括:光线发射单元,用于发射光线;具有不同焦距的第一变焦透镜,设置于与所述光线发射单元对应的位置处,以在所述第一变焦透镜处于不同的焦距时,所述光线经所述第一变焦透镜后以不同的视场角投射到目标物体,以供所述目标物体反射至少部分所述光线;光线接收单元,用于接收至少部分所述目标物体反射的所述光线,以使所述成像装置根据 所述光线接收单元的接收情况确定所述成像装置与所述目标物体间的距离;成像镜头,用于接收来自所述目标物体的光线,以供所述成像装置生成所述目标物体的影像,且所述成像镜头的焦距由所述成像装置与所述目标物体间的距离确定。
第三个方面,本申请实施例提供了一种云台,包括:云台本体,用于支撑负载,并调整所述负载的空间姿态;光线发射单元,设置于所述云台本体,所述光线发射单元用于发射光线;具有不同焦距的第一变焦透镜,设置于所述云台本体上与所述光线发射单元对应的位置处,以在所述第一变焦透镜处于不同的焦距时,所述光线经所述第一变焦透镜后以不同的视场角投射到目标物体,以供所述目标物体反射至少部分所述光线;光线接收单元,设置于所述云台本体,所述光线接收单元用于接收至少部分所述目标物体反射的所述光线,以使所述云台根据所述光线接收单元的接收情况确定所述云台与所述目标物体间的距离。
第四个方面,本申请实施例提供了一种无人机,包括:无人机机身;上述任一所述的云台,所述云台的云台本体与所述无人机机身连接。
第五个方面,本申请实施例提供了一种无人车,包括:无人车车身;上述任一所述的云台,所述云台的云台本体与所述无人车车身连接。
第六个方面,本申请实施例提供了一种机器人,包括:机器人机身;上述任一所述的云台,所述云台的云台本体与所述机器人机身连接。
本申请提供的测距装置、成像装置、云台、无人机、无人车以及机器人改变第一变焦透镜的焦距,就可以以不同的视场角投射到目标物体,从而实现不同距离的目标物体的测距。使得测距装置、成像装置、云台、无人机、无人车以及机器人不需要设置多个光线发射单元,也不需要设置与该多个光线发射单元一一对应的多个固定焦距的透镜,使得测距装置、成像装置、云台、无人机、无人车以及机器人体积小、功耗小,且成本较低,提升了用户的使用体验。
附图说明
图1是根据本申请一个实施例的测距装置的工作原理图;
图2是根据本申请一个实施例的测距装置测量较远的目标物体时的原理图;
图3是根据本申请一个实施例的测距装置测量较近的目标物体时的原理图;
图4是根据本申请一个实施例的测距装置的液体透镜未加电压时的状态图;
图5是根据本申请一个实施例的测距装置的液体透镜加电压时的状态图;
图6是根据本申请一个实施例的测距装置的结构框图;
图7是根据本申请一个实施例的成像装置的结构示意图;
图8是根据本申请一个实施例的成像装置的结构框图;
图9是根据本申请一个实施例的云台的结构示意图;
图10是根据本申请一个实施例的无人机的结构示意图;
图11是根据本申请一个实施例的无人车的结构示意图;
图12是根据本申请一个实施例的机器人的结构示意图。
图中,10为测距装置,100为光线发射单元,200为第一变焦透镜,300为光线接收单元,400为电源,500为指令接收装置,600为第二变焦透镜,700为温度传感器,20为成像装置,800为成像镜头,30为云台,910为云台本体,920为手持部件,40为无人机,930为无人机机身,50为无人车,940为无人车车身,60为机器人,950为机器人机身。
具体实施方式
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
本申请的实施例首先提供了一种测距装置10,图1是根据本申请一个实施例的测距装置10的工作原理图。
测距装置10包括光线发射单元100、第一变焦透镜200以及光线接收单元300。
其中,光线发射单元100用于发射光线。可以理解地,光线发射单元100发射的光线可以为可见光也可以为不可见光。当光线发射单元100发射的光线为可见光时,光线发射单元100可以发出红光、橙光、黄光、绿光、青光、蓝光、紫光等各种颜色的光。当光线发射单元100发射的光线为不可见光时,光线发射单元100可以发出红外线、紫外线等。
光线发射单元100发射的光线可以为激光,也就是说,光线发射单元100可以包括激光器。激光是原子受激辐射的光,原子中的电子吸收能量后从低能级跃迁到高能级,再从高能级回落到低能级的时候,所释放的能量以光子的形式放出。被引诱(激发)出来的光子束(激光),其中的光子光学特性高度一致。因此激光相比普通光源单色性、方向性好,亮度更高,可以提高测距装置10的测距效果,提升用户体验。
可以理解地,当光线发射单元100发射的光线为激光时,光线发射单元100可以包括气体激光器、固体激光器、半导体激光器和染料激光器等各种激光器,例如,当光线发射单元100为半导体激光器时,光线发射单元100可以为VCSEL(Vertical-Cavity Surface-Emitting Laser,垂直腔面发射激光器)。
气体激光器是利用气体作为工作物质产生激光的器件。它由放电管内的激活气体、一对反射镜构成的谐振腔和激励源等三个主要部分组成。主要激励方式有电激励、气动激励、光激励和化学激励等。在适当放电条件下,利用电子碰撞激发和能量转移激发等,气体粒子有选择性地被激发到某高能级上,从而形成与某低能级间的粒子数反转,产生受激发射跃迁。气体激光器结构简单、造价低,操作方便,工作介质均匀,光束质量好以及能长时间较稳定地连续工作。
固体激光器是用固体激光材料作为工作物质的激光器。工作介质 是在作为基质材料的晶体或玻璃中均匀掺入少量激活离子。例如:在钇铝石榴石晶体中掺入三价钕离子的激光器可发射波长为1050纳米的近红外激光。固体激光器具有体积小、使用方便、输出功率大的特点。
半导体激光器又称激光二极管,是用半导体材料作为工作物质的激光器。常用工作物质有砷化镓、硫化镉、磷化铟、硫化锌等。激励方式有电注入、电子束激励和光泵浦三种形式。半导体激光器件可分为同质结、单异质结、双异质结等几种。同质结激光器和单异质结激光器在室温时多为脉冲器件,而双异质结激光器室温时可实现连续工作。半导体二极管激光器是最实用最重要的一类激光器。它体积小、寿命长,并可采用简单的注入电流的方式来泵浦,其工作电压和电流与集成电路兼容,因而可与之单片集成。
染料激光器是使用有机染料作为激光介质的激光,通常是一种液体溶液。相比气体的和固态的激光介质,染料激光器通常可以用于更广泛的波长范围内。
第一变焦透镜200具有不同的焦距,也就是说,第一变焦透镜200的焦距是可以变化的,第一变焦透镜200的焦距并不是固定的。
第一变焦透镜200设置于与光线发射单元100对应的位置处。可以理解地,第一变焦透镜200设置于光线发射单元100发出的光线的传播路径上(即光线发射单元100与目标物体之间的光线传播路径)。
在第一变焦透镜200处于不同的焦距时,光线发射单元100发出的光线经第一变焦透镜200后以不同的视场角投射到目标物体,以供目标物体反射至少部分光线。
图2是根据本申请一个实施例的测距装置10测量较远的目标物体时的原理图,图3是根据本申请一个实施例的测距装置10测量较近的目标物体时的原理图。
图2以及图3中以目标物体为人体作为示例。可以理解地,目标物体可以为移动物体,也可以为静止物体。当目标物体为移动物体时,目标物体不仅可以包括人体,还可以包括各种其他动物、汽车、船舶等。当无标物体为静止物体时,可以包括家具、植物、建筑物、山川 等。
由于第一变焦透镜200的焦距可以变化。因此,可以在测距装置10测量较远的目标物体时,可以将第一变焦透镜200的焦距调整为较大。如图2所示,此时,第一变焦透镜200为长焦状态,具有较小的垂直视场角,可以用来对焦测距远处的目标物体。
可以在测距装置10测量较近的目标物体时,可以将第一变焦透镜200的焦距调整为较小。如图3所示,此时,第一变焦透镜200为广角状态,具有较大的垂直视场角,可以用来对焦测距近处的目标物体。
在本申请的一些实施例中,第一变焦透镜200可以包括液体透镜,第一变焦透镜200配置成接收数值大小不同的电压,以在第一变焦透镜200接收到数值大小不同的电压时,第一变焦透镜200处于不同的焦距。
液体透镜是一种使用一种或多种液体制成的无机械连接的光学元件,可以通过外部控制改变光学元件的内部参数。是将玻璃透镜的介质由玻璃变为液体,是一种动态调整透镜折射率或通过改变其表面形状来改变焦距的光学元件。
图4是根据本申请一个实施例的测距装置10的液体透镜未加电压时的状态图,图5是根据本申请一个实施例的测距装置10的液体透镜加电压时的状态图。
如图4以及图5所示,液体透镜可以由玻璃壳体210、液体介质220、油层230、绝缘体240以及金属介质250等组成。
玻璃壳体210可以包括前后设置的第一玻璃片以及第二玻璃片,金属介质250可以包括第一金属层和第二金属层,第一金属层设置于第一玻璃片靠近第二玻璃片的一面的周缘,第二金属层设置于第二玻璃片靠近第一玻璃片的一面的周缘,第一金属层和第二金属层由绝缘体240隔开。第一玻璃片、第二玻璃片、第一金属层、第二金属层和绝缘体240限定出内部空间,液体介质220和油层230填充该内部空间,其中,液体介质220填充内部空间靠近第二玻璃片的一端,油层230填充内部空间靠近第一玻璃片的一端。第一金属层与液体介质 220、第一金属层与油层230间通过绝缘体240隔开,第二金属层可以与液体介质220接触,但不与油层230接触。
由此,在第一金属层和第二金属层上输入电压,就可以改变液体介质220的形状,进而改变液体透镜的焦距。其中,在图4中,未加电压时,液体介质220为凸透镜的形状,此时,液体透镜具有较大的焦距。在图5中,加了电压时,液体介质220为凹透镜的形状,此时,液体透镜具有较小的焦距。可以理解地,当液体透镜接收到数值大小不同的电压,液体介质220的形状变化也会不同,因此,液体透镜会处于不同的焦距。
第一变焦透镜200可以为渐变折射率液体透镜,渐变折射率液体透镜是改变施加在液晶上的电压,从而来调节液晶折射率,从而实现变焦。这种第一变焦透镜200具有控制电压低,容易实现阵列化的优点。
第一变焦透镜200也可以为电润湿效应液体透镜,电润湿效应液体透镜是通过改变施加的电压来控制液体在固体表面上的润湿特性的液体透镜。电润湿效应是一种物理化学现象,通过改变液体-固体界面的外加电压来控制液体在固体面上的润湿特性,从而改变液滴的接触角,使其能像人眼的晶状体一样改变曲率实现变焦。同时,对施加电压的不同,其表面曲率会发生变化,从而实现光学变焦。
在本申请的另一些实施例中,第一变焦透镜200也可以是通过驱动器改变第一变焦透镜200的焦点来实现变焦功能的。
光线接收单元300用于接收至少部分目标物体反射的光线,以使测距装置10根据光线接收单元300的接收情况确定测距装置10与目标物体间的距离。
其中,光线接收单元300可以包括各种可以接收被反射光线的传感器,例如,光线接收单元300可以包括感知传感器IMX316。
在本申请的一些实施例中,测距装置10可以根据光线发射单元100发射的光线的时间以及光线接收单元300接收到对应的光线的时间差以及光线的传播速度来确定测距装置10与目标物体间的距离。
光线在真空中的传播速度是个常数,该常数为299792458米/秒。 由于测距装置10在实际使用的场景中,测距装置10的使用环境并不是完全真空的,因此,在确定测距装置10与目标物体间的距离时,所选取的光线的传播速度可以不等于299792458米/秒,而是可以小于299792458米/秒,例如,可以为299792000米/秒、299791000米/秒、299790000米/秒、299780000米/秒、299770000米/秒、299760000米/秒、299750000米/秒、299740000米/秒、299730000米/秒、299720000米/秒、299710000米/秒、299700000米/秒等。具体的数值可以根据实际情况或实验情况确定。
可以理解地,测距装置10还可以包括真空度计,真空度计用于测量测距装置10周围环境的真空度。当真空度计测量到的测距装置10周围环境的真空度越大时,在确定测距装置10与目标物体间的距离时,所选取的光线的传播速度就越小。当真空度计测量到的测距装置10周围环境的真空度越小时,在确定测距装置10与目标物体间的距离时,所选取的光线的传播速度就越大,但所选取的光线的传播速度最大为299792458米/秒。
根据光线发射单元100发射的光线的时间以及光线接收单元300接收到对应的光线的时间差以及光线的传播速度可以确定光线传播的距离,可以理解地,光线传播的距离为光线发射单元100到目标物体的距离与光线接收单元300到目标物体的距离的和,因此,将该光线传播的距离除以2可以得到测距装置10与目标物体间的距离。
为了提高测量结果的准确性,在本申请的一些实施例中,还可以利用光线发射单元100与光线接收单元300间的距离来修正上述测量结果,即修正将该光线传播的距离除以2得到的测距装置10与目标物体间的距离。具体的修正方式可以根据实际情况或实验情况确定,例如,当光线发射单元100与光线接收单元300间的距离越大时,则修正前的数值与修正后的数值差别越大,当光线发射单元100与光线接收单元300间的距离越小时,则修正前的数值与修正后的数值差别越小。
在本申请的另一些实施例中,光线发射单元100发射的光线可以是时序上振幅被调制的光束,则测距装置10可以根据光线接收单元 300接收到的光线相对于光线发射单元100发射出的光线的相位延迟来确定该距离。
本申请实施例提供的这种测距装置10改变第一变焦透镜200的焦距,就可以以不同的视场角投射到目标物体,从而实现不同距离的目标物体的测距,使得测距装置10不需要设置多个光线发射单元100,也不需要设置与该多个光线发射单元100一一对应的多个固定焦距的透镜,使得测距装置10体积小、功耗小、便于携带,且成本较低,提升了用户的使用体验。并且,本申请的实施例提供的这种测距装置10可以避免由于多个光线发射单元100的使用导致的测距装置10整体温度上升严重的现象。本申请的发明人发现,测距装置10的整体的温度的升高会在一定程度上影响到光线发射单元100的使用,进而影响测距装置10的精度。
在本申请的一些实施例中,测距装置10还可以包括电源400,图6是根据本申请一个实施例的测距装置10的结构框图。电源400配置成向第一变焦透镜200提供电压。由此,使得测距装置10的第一变焦透镜200不需要外部供给电压,便于使用。
其中,电源400可以为化学电源,例如为干电池、铅酸蓄电池、镍镉、镍氢、锂离子电池等,电源400也可以为其它类型的电源,例如,可以为线性稳定电源等。
可以理解地,电源400还可以配置成向光线发射单元100、光线接收单元300以及测距装置10的其它部件中至少一个供电。电源400还可以配置成不向光线发射单元100、光线接收单元300以及测距装置10的其它部件供电。
在本申请的另一些实施例中,测距装置10还可以不包括向第一变焦透镜200提供电压的电源400,可以通过电压接收端口接收相应的电压,由此,可以减少测距装置10的体积和重量,便于用户携带。
测距装置10还可以包括指令接收装置500,指令接收装置500用于接收电压调节指令,电压调节指令指示电源400向第一变焦透镜200提供的电压的数值大小。电源400配置成向第一变焦透镜200提供数值大小与电压调节指令对应的电压。
其中,指令接收装置500可以包括任何可以接收指令的装置,例如,可以为按钮、旋钮、触摸屏、语音输入装置等。指令接收装置500使得第一变焦透镜200的焦距可以根据用户的期望调整,提升了用户的使用体验。
测距装置10还可以包括第二变焦透镜600,第二变焦透镜600具有不同的焦距,也就是说,第二变焦透镜600的焦距是可以变化的,第二变焦透镜600的焦距并不是固定的。
第二变焦透镜600设置于与光线接收单元300对应的位置处。可以理解地,第二变焦透镜600设置于光线接收单元100接收的光线的传播路径上(即光线接收单元600与目标物体之间的光线传播路径)。
在第二变焦透镜600处于不同的焦距时,光线接收单元300以不同的视场角接收至少部分目标物体反射的光线。由此,可以调整接收到的光强度或光子数量,以使接收到的光强度或光子数量可以最大化,从而提高测距装置10的测量精度。
可以理解地,第二变焦透镜600可以包括液体透镜,也可以是通过驱动器改变第二变焦透镜600的焦点来实现变焦功能的。其中,液体透镜的相关内容可以参考上述实施例,此处不再赘述。
第二变焦透镜600所处的焦距大小与第一变焦透镜200所处的焦距大小可以相关。也就是说,当第一变焦透镜200所处的焦距大小变化时,则第二变焦透镜600所处的焦距大小也跟着变化,当第一变焦透镜200所处的焦距大小不变时,则第二变焦透镜600所处的焦距大小也不变。这种方式使得第二变焦透镜600所处的焦距大小可以自动跟随第一变焦透镜200所处的焦距大小而变化,不需要用户去调节,提升了用户体验。
第二变焦透镜600所处的焦距大小与第一变焦透镜200所处的焦距大小正相关。当第一变焦透镜200所处的焦距很大时,说明目标物体较远,此时第二变焦透镜600所处的焦距也很大,提高从较远的目标物体处接收到的光强度或光子数量,从而提高测距装置10的测量精度。当第一变焦透镜200所处的焦距很小时,说明目标物体较近,此时第二变焦透镜600所处的焦距也很小,提高从较近的目标物体处 接收到的光强度或光子数量,从而提高测距装置10的测量精度。
可以理解地,当第二变焦透镜600为液体透镜时,电源400也可以配置成向第二变焦透镜600提供相应的电压。并且,上述电压调节指令还可以指示电源400向第二变焦透镜600提供的电压的数值大小,且电源400配置成向第二变焦透镜600提供数值大小与该电压调节指令对应的电压。
其中,第一变焦透镜200与第二变焦透镜600可以位于测距装置10的同一侧。例如,第一变焦透镜200与第二变焦透镜600都位于测距装置10的前侧、后侧、上侧、下侧、左侧或右侧等。由此,可以提高光线接收单元300接收光线的效率。
测距装置10还可以包括温度传感器700,温度传感器700用于检测光线发射单元100的温度,且光线发射单元100配置成在温度传感器700检测到的温度大于或等于温度阈值时,停止发射光线。由此,可以避免光线发射单元100因为温度过高而损坏,保证光线发射单元100的使用寿命,提升用户体验。温度阈值的具体数值可以根据实际情况或实验情况确定。
本申请的实施例还提供了一种成像装置20,图7是根据本申请一个实施例的成像装置20的结构示意图,图8是根据本申请一个实施例的成像装置20的结构框图。
成像装置20包括光线发射单元100、第一变焦透镜200、光线接收单元300以及成像镜头800。
光线发射单元100用于发射光线。第一变焦透镜200具有不同的焦距,第一变焦透镜200设置于与光线发射单元100对应的位置处,以在第一变焦透镜200处于不同的焦距时,光线经第一变焦透镜200后以不同的视场角投射到目标物体,以供目标物体反射至少部分光线。光线接收单元300用于接收至少部分目标物体反射的光线,以使成像装置20根据光线接收单元300的接收情况确定成像装置20与目标物体间的距离。成像镜头800用于接收来自目标物体的光线,以供成像装置20生成目标物体的影像,且成像镜头800的焦距由成像装置20与目标物体间的距离确定。
具体地,当成像装置20与目标物体间的距离越大时,则成像镜头800的焦距越大,当成像装置20与目标物体间的距离越小时,则成像镜头800的焦距越小。
本申请实施例提供的这种成像装置20改变第一变焦透镜200的焦距,就可以以不同的视场角投射到目标物体,从而实现不同距离的目标物体的测距,使得成像装置20不需要设置多个光线发射单元100,也不需要设置与该多个光线发射单元100一一对应的多个固定焦距的透镜,使得成像装置20体积小、功耗小、便于携带,且成本较低,提升了用户的使用体验。并且,本申请的实施例提供的这种成像装置20可以避免由于多个光线发射单元100的使用导致的成像装置20整体温度上升严重的现象。本申请的发明人发现,成像装置20的整体的温度的升高会在一定程度上影响到光线发射单元100的使用,进而影响成像装置20的精度。并且,成像镜头800的焦距适配成像装置20与目标物体间的距离,便于拍摄出清晰、画面质量高的图片及视频。
成像装置20可以包括照相机、摄像机、云台相机以及具有拍照功能的手机、平板、电脑等。
可以理解地,这种成像装置20由于可以成像装置20与目标物体间的距离确定焦距,使得生成得图片或视频中的目标物体清晰,因此,还可以运用于诸如行业巡检、资源勘探以及人员搜救等领域。
成像装置20可以包括处理器,则处理器可以根据成像装置20与目标物体间的距离确定成像镜头800的焦距。在本申请一些实施例中,光线接收单元300可以对接收到的光线对应的信号进行转换,例如,转换为IIC,XVS,XCLR,MIPI等信号,然后再将这些信号输出至串行芯片,串行芯片可以将接收到的各个信号合成一路信号,例如,合成一路差分信号,然后再将合成后的信号传输至解串芯片,例如,通过X9同轴线传输至解串芯片,然后解串芯片还原各个信号后传至图像芯片处理这些信号,处理后的信号传至处理器后,由处理器确定焦距,并控制成像镜头800的焦距为上述确定的焦距。
成像镜头800的焦距的调整可以采用各种方式。例如,在本申请 的一些实施例中,成像镜头800可以包括第三变焦透镜,可以理解地,第三变焦透镜可以包括液体透镜,也可以是通过驱动器改变第三变焦透镜的焦点来实现变焦功能的。其中,液体透镜的相关内容可以参考上述实施例,此处不再赘述。在本申请的另一些实施例中,成像镜头800可以包括多个镜头组,通过镜头组的移动来实现成像镜头800的焦距的调整。
在本申请的一些实施例中,第一变焦透镜200可以包括液体透镜,第一变焦透镜200配置成接收数值大小不同的电压,以在第一变焦透镜200接收到数值大小不同的电压时,第一变焦透镜200处于不同的焦距。
在本申请的一些实施例中,成像装置20还可以包括电源400,电源400配置成向第一变焦透镜200提供电压。
在本申请的一些实施例中,成像装置20还可以包括指令接收装置500,指令接收装置500用于接收电压调节指令,电压调节指令指示电源400向第一变焦透镜200提供的电压的数值大小。且电源400配置成向第一变焦透镜200提供数值大小与所述电压调节指令对应的所述电压。
在本申请的一些实施例中,第一变焦透镜200可以为渐变折射率液体透镜或电润湿效应液体透镜。
在本申请的一些实施例中,成像装置20还可以包括第二变焦透镜600。第二变焦透镜600具有不同的焦距,第二变焦透镜600设置于与光线接收单元300对应的位置处,以在第二变焦透镜600处于不同的焦距时,光线接收单元300以不同的视场角接收至少部分目标物体反射的光线。
在本申请的一些实施例中,第二变焦透镜600所处的焦距大小与第一变焦透镜200所处的焦距大小相关。
在本申请的一些实施例中,第二变焦透镜600所处的焦距大小与第一变焦透镜200所处的焦距大小正相关。
在本申请的一些实施例中,第一变焦透镜200、第二变焦透镜600以及成像镜头800位于成像装置20的同一侧。例如,第一变焦透镜 200、第二变焦透镜600以及成像镜头800都位于测距装置10的前侧、后侧、上侧、下侧、左侧或右侧等。由此,可以提高光线接收单元300接收光线的效率,并保证成像镜头800的焦距适配成像装置20与目标物体间的距离,便于拍摄出清晰、画面质量高的图片及视频。
在本申请的一些实施例中,成像装置20还可以包括温度传感器700,温度传感器700用于检测光线发射单元100的温度。且光线发射单元100配置成在温度传感器700检测到的温度大于或等于温度阈值时,停止发射光线。
其中,光线发射单元100、第一变焦透镜200、光线接收单元300、电源400、指令接收装置500、第二变焦透镜600以及温度传感器700的其它相关内容可以参考上述内容,此处不再赘述。
本申请的实施例还提供了一种云台30,图9是根据本申请一个实施例的云台30的结构示意图。
云台30包括云台本体910、光线发射单元100、第一变焦透镜200以及光线接收单元300。
云台本体910用于支撑负载,云台本体910还用于调整负载的空间姿态。光线发射单元100设置于云台本体910,光线发射单元100用于发射光线。第一变焦透镜200具有不同的焦距,第一变焦透镜200设置于云台本体910上与光线发射单元100对应的位置处,以在第一变焦透镜200处于不同的焦距时,光线经第一变焦透镜200后以不同的视场角投射到目标物体,以供目标物体反射至少部分光线。光线接收单元300设置于云台本体910,光线接收单元300用于接收至少部分目标物体反射的光线,以使云台30根据光线接收单元300的接收情况确定云台30与目标物体间的距离。
本申请的实施例提供的这种云台30不仅可以用来测量云台30到目标物体的距离。而且这种云台30通过改变第一变焦透镜200的焦距,就可以以不同的视场角投射到目标物体,从而实现不同距离的目标物体的测距,使得云台30不需要设置多个光线发射单元100,也不需要设置与该多个光线发射单元100一一对应的多个固定焦距的透镜,使得云台30体积小、功耗小、便于携带,且成本较低,提升 了用户的使用体验。并且,本申请的实施例提供的这种云台30可以避免由于多个光线发射单元100的使用导致的云台30整体温度上升严重的现象。本申请的发明人发现,云台30的整体的温度的升高会在一定程度上影响到光线发射单元100的使用,进而影响云台30测距的精度。
在本申请的一些实施例中,第一变焦透镜200可以包括液体透镜,第一变焦透镜200配置成接收数值大小不同的电压,以在第一变焦透镜200接收到数值大小不同的电压时,第一变焦透镜200处于不同的焦距。
在本申请的一些实施例中,云台30还可以包括电源400,电源400配置成向第一变焦透镜200提供电压。
在本申请的一些实施例中,云台30还可以包括指令接收装置500,指令接收装置500用于接收电压调节指令,电压调节指令指示电源400向第一变焦透镜200提供的电压的数值大小。且电源400配置成向第一变焦透镜200提供数值大小与电压调节指令对应的电压。
在本申请的一些实施例中,第一变焦透镜200可以为渐变折射率液体透镜或电润湿效应液体透镜。
在本申请的一些实施例中,云台30还可以包括第二变焦透镜600。第二变焦透镜600具有不同的焦距,第二变焦透镜600设置于云台本体910上与光线接收单元300对应的位置处,以在第二变焦透镜600处于不同的焦距时,光线接收单元300以不同的视场角接收至少部分目标物体反射的光线。
在本申请的一些实施例中,第二变焦透镜600所处的焦距大小与第一变焦透镜200所处的焦距大小相关。
在本申请的一些实施例中,第二变焦透镜600所处的焦距大小与第一变焦透镜200所处的焦距大小正相关。
在本申请的一些实施例中,第一变焦透镜200与第二变焦透镜600位于云台本体910的同一侧。例如,第一变焦透镜200、第二变焦透镜600以及成像镜头800都位于测距装置10的前侧、后侧、上侧、下侧、左侧或右侧等。由此,可以提高光线接收单元300接收光 线的效率。
在本申请的一些实施例中,云台30还可以包括温度传感器700,温度传感器700用于检测光线发射单元100的温度。且光线发射单元100配置成在温度传感器700检测到的温度大于或等于温度阈值时,停止发射光线。
其中,负载可以包括成像装置,例如,包括照相机、摄像机以及具有拍照功能的手机、平板、电脑等。成像装置可以包括成像镜头,成像镜头用于接收来自目标物体的光线,以供成像装置生成目标物体的影像,且成像镜头的焦距由云台30与目标物体间的距离确定,以便于拍摄出清晰、画面质量高的图片及视频。
云台本体910可以包括手持部件920,以供用户通过手持部件920握持云台30,提升了用户体验,通常这种云台30也可以被称为手持云台。手持部件920可以包括手柄或手环。可以理解地,手柄为柱状,例如,为圆柱状、方柱状等,手柄使得云台30便于被收纳。手环为环状,例如,为圆环状、方环状等,手环使得云台30便于被用户从不同的角度握持,提升了用户体验。
其中,云台30可以包括一个云台部件、两个云台部件、三个云台部件或更多个云台部件,相应地,云台30可以允许负载绕一个、两个、三个或更多个轴旋转,用于旋转的轴可以彼此正交,也可以不是正交。在本申请的一些实施例中,云台部件通过电机可以控制负载的姿态,包括控制负载的俯仰角、横滚角以及偏航角中的一个或多个,相应地,负载可以绕俯仰轴、横滚轴以及偏航轴中的一个或多个旋转。
在一些实施例中,云台部件可以为3个,如第一云台部件、第二云台部件以及第三云台部件,可以理解地,每个云台部件可以包括连接臂。其中,第一云台部件与手持部件920连接,并且第一云台部件可以相对手持部件920转动,以使得负载的偏航角发生变化,即第一云台部件相对手持部件920转动时,可以使得负载绕偏航轴旋转。第二云台部件与第一云台部件连接,并且第二云台部件可以相对手持部件920转动,以使得负载的横滚角发生变化,即第二云台部件相对手持部件920转动时,可以使得负载绕横滚轴旋转。第三云台部件与第 二云台部件连接,并且第三云台部件可以相对手持部件920转动,以使得负载的俯仰角发生变化,即第三云台部件相对手持部件920转动时,可以使得负载绕俯仰轴旋转。
在本申请的另一些实施例中,云台本体910可以仅包括一个云台部件,这个云台部件可以相对手持部件920转动,以使得负载的偏航角发生变化,即这个云台部件相对手持部件920转动时,可以使得负载绕偏航轴旋转。
可以理解地,上述各云台部件与手持部件920的连接关系仅为示例性说明,并不对本申请实施例形成限制。例如,当云台部件为3个时,其中,第一云台部件与手持部件920连接,并且第一云台部件可以相对手持部件920转动,以使得负载的偏航角发生变化,即第一云台部件相对手持部件920转动时,可以使得负载绕偏航轴旋转。第二云台部件与第一云台部件连接,并且第二云台部件可以相对手持部件920转动,以使得负载的俯仰角发生变化,即第二云台部件相对手持部件920转动时,可以使得负载绕俯仰轴旋转。第三云台部件与第二云台部件连接,并且第三云台部件可以相对手持部件920转动,以使得负载的横滚角发生变化,即第三云台部件相对手持部件920转动时,可以使得负载绕横滚轴旋转等。
本申请的实施例还提供了一种无人机40,图10是根据本申请一个实施例的无人机40的结构示意图,无人机40包括无人机机身930以及上述任一种云台30。云台30的云台本体910与无人机机身930连接。
无人机40通常也被称为UAV(Unmanned Aerial Vehicle,无人飞行器),其中,无人机40可以包括固定翼无人机、旋翼无人机、伞翼无人机等各种类型。可以理解地,云台30不仅可以与无人机40的底部连接,也可以与无人机40的顶部、侧部等位置连接,本申请的实施例对此并不加以限制。
本申请的实施例还提供了一种无人车50,图11是根据本申请一个实施例的无人车50的结构示意图,无人车50包括无人车车身940以及上述任一种云台30。云台30的云台本体910与无人车车身940 连接。
其中,无人车50的移动方式可以是直接利用轮子进行移动,也可以通过履带等其他机构移动。其中,当无人车50直接利用轮子进行移动时,无人车50的轮子的数量可以为一个或多个,本申请的实施例对此并不加以限定。
本申请的实施例还提供了一种机器人60,图12是根据本申请一个实施例的机器人60的结构示意图,机器人60包括机器人机身950以及上述任一种云台30,云台30的云台本体910与机器人机身950连接。
云台30不仅可以与机器人机身950的机器头部连接,也可以与机器人机身950的机器手臂、机器背部等其他部位连接,本申请的实施例对此并不加以限定。
本申请的实施例提供的这种无人机40、无人车50以及机器人60不仅可以用来测量到目标物体的距离。而且这种无人机40、无人车50以及机器人60通过改变第一变焦透镜200的焦距,就可以以不同的视场角投射到目标物体,从而实现不同距离的目标物体的测距,使得无人机40、无人车50以及机器人60不需要设置多个光线发射单元100,也不需要设置与该多个光线发射单元100一一对应的多个固定焦距的透镜,使得无人机40、无人车50以及机器人60体积小、功耗小、便于携带,且成本较低,提升了用户的使用体验。并且,本申请的实施例提供的这种无人机40、无人车50以及机器人60可以避免由于多个光线发射单元100的使用导致的无人机40、无人车50以及机器人60整体温度上升严重的现象。本申请的发明人发现,无人机40、无人车50以及机器人60的整体的温度的升高会在一定程度上影响到光线发射单元100的使用,进而影响无人机40、无人车50以及机器人60测距的精度。
对于本申请的实施例,还需要说明的是,在不冲突的情况下,本申请的实施例及本申请实施例中的特征可以相互组合以得到新的本申请实施例。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,本申请的保护范围应以权利要求的保护范围为准。

Claims (38)

  1. 一种测距装置,其特征在于,包括:
    光线发射单元,用于发射光线;
    具有不同焦距的第一变焦透镜,设置于与所述光线发射单元对应的位置处,以在所述第一变焦透镜处于不同的焦距时,所述光线经所述第一变焦透镜后以不同的视场角投射到目标物体,以供所述目标物体反射至少部分所述光线;
    光线接收单元,用于接收至少部分所述目标物体反射的所述光线,以使所述测距装置根据所述光线接收单元的接收情况确定所述测距装置与所述目标物体间的距离。
  2. 根据权利要求1所述的测距装置,其特征在于,
    所述第一变焦透镜包括液体透镜,所述第一变焦透镜配置成接收数值大小不同的电压,以在所述第一变焦透镜接收到数值大小不同的电压时,所述第一变焦透镜处于不同的焦距。
  3. 根据权利要求2所述的测距装置,其特征在于,还包括:
    电源,配置成向所述第一变焦透镜提供所述电压。
  4. 根据权利要求3所述的测距装置,其特征在于,还包括:
    指令接收装置,用于接收电压调节指令,所述电压调节指令指示所述电源向所述第一变焦透镜提供的所述电压的数值大小;且
    所述电源配置成向所述第一变焦透镜提供数值大小与所述电压调节指令对应的所述电压。
  5. 根据权利要求2所述的测距装置,其特征在于,
    所述第一变焦透镜为渐变折射率液体透镜或电润湿效应液体透镜。
  6. 根据权利要求1所述的测距装置,其特征在于,还包括:
    具有不同焦距的第二变焦透镜,设置于与所述光线接收单元对应的位置处,以在所述第二变焦透镜处于不同的焦距时,所述光线接收单元以不同的视场角接收至少部分所述目标物体反射的所述光线。
  7. 根据权利要求6所述的测距装置,其特征在于,
    所述第二变焦透镜所处的焦距大小与所述第一变焦透镜所处的焦距大小相关。
  8. 根据权利要求7所述的测距装置,其特征在于,
    所述第二变焦透镜所处的焦距大小与所述第一变焦透镜所处的焦距大小正相关。
  9. 根据权利要求6所述的测距装置,其特征在于,
    所述第一变焦透镜与所述第二变焦透镜位于所述测距装置的同一侧。
  10. 根据权利要求1所述的测距装置,其特征在于,还包括:
    温度传感器,用于检测所述光线发射单元的温度;且
    所述光线发射单元配置成在所述温度传感器检测到的所述温度大于或等于温度阈值时,停止发射光线。
  11. 一种成像装置,其特征在于,包括:
    光线发射单元,用于发射光线;
    具有不同焦距的第一变焦透镜,设置于与所述光线发射单元对应的位置处,以在所述第一变焦透镜处于不同的焦距时,所述光线经所述第一变焦透镜后以不同的视场角投射到目标物体,以供所述目标物体反射至少部分所述光线;
    光线接收单元,用于接收至少部分所述目标物体反射的所述光线,以使所述成像装置根据所述光线接收单元的接收情况确定所述成像 装置与所述目标物体间的距离;
    成像镜头,用于接收来自所述目标物体的光线,以供所述成像装置生成所述目标物体的影像,且所述成像镜头的焦距由所述成像装置与所述目标物体间的距离确定。
  12. 根据权利要求11所述的成像装置,其特征在于,
    所述第一变焦透镜包括液体透镜,所述第一变焦透镜配置成接收数值大小不同的电压,以在所述第一变焦透镜接收到数值大小不同的电压时,所述第一变焦透镜处于不同的焦距。
  13. 根据权利要求12所述的成像装置,其特征在于,还包括:
    电源,配置成向所述第一变焦透镜提供所述电压。
  14. 根据权利要求13所述的成像装置,其特征在于,还包括:
    指令接收装置,用于接收电压调节指令,所述电压调节指令指示所述电源向所述第一变焦透镜提供的所述电压的数值大小;且
    所述电源配置成向所述第一变焦透镜提供数值大小与所述电压调节指令对应的所述电压。
  15. 根据权利要求12所述的成像装置,其特征在于,
    所述第一变焦透镜为渐变折射率液体透镜或电润湿效应液体透镜。
  16. 根据权利要求11所述的成像装置,其特征在于,还包括:
    具有不同焦距的第二变焦透镜,设置于与所述光线接收单元对应的位置处,以在所述第二变焦透镜处于不同的焦距时,所述光线接收单元以不同的视场角接收至少部分所述目标物体反射的所述光线。
  17. 根据权利要求16所述的成像装置,其特征在于,
    所述第二变焦透镜所处的焦距大小与所述第一变焦透镜所处的 焦距大小相关。
  18. 根据权利要求17所述的成像装置,其特征在于,
    所述第二变焦透镜所处的焦距大小与所述第一变焦透镜所处的焦距大小正相关。
  19. 根据权利要求16所述的成像装置,其特征在于,
    所述第一变焦透镜、所述第二变焦透镜以及所述成像镜头位于所述成像装置的同一侧。
  20. 根据权利要求11所述的成像装置,其特征在于,还包括:
    温度传感器,用于检测所述光线发射单元的温度;且
    所述光线发射单元配置成在所述温度传感器检测到的所述温度大于或等于温度阈值时,停止发射光线。
  21. 根据权利要求11所述的成像装置,其特征在于,
    所述成像镜头包括第三变焦透镜。
  22. 一种云台,其特征在于,包括:
    云台本体,用于支撑负载,并调整所述负载的空间姿态;
    光线发射单元,设置于所述云台本体,所述光线发射单元用于发射光线;
    具有不同焦距的第一变焦透镜,设置于所述云台本体上与所述光线发射单元对应的位置处,以在所述第一变焦透镜处于不同的焦距时,所述光线经所述第一变焦透镜后以不同的视场角投射到目标物体,以供所述目标物体反射至少部分所述光线;
    光线接收单元,设置于所述云台本体,所述光线接收单元用于接收至少部分所述目标物体反射的所述光线,以使所述云台根据所述光线接收单元的接收情况确定所述云台与所述目标物体间的距离。
  23. 根据权利要求22所述的云台,其特征在于,
    所述第一变焦透镜包括液体透镜,所述第一变焦透镜配置成接收数值大小不同的电压,以在所述第一变焦透镜接收到数值大小不同的电压时,所述第一变焦透镜处于不同的焦距。
  24. 根据权利要求23所述的云台,其特征在于,还包括:
    电源,配置成向所述第一变焦透镜提供所述电压。
  25. 根据权利要求24所述的云台,其特征在于,还包括:
    指令接收装置,用于接收电压调节指令,所述电压调节指令指示所述电源向所述第一变焦透镜提供的所述电压的数值大小;且
    所述电源配置成向所述第一变焦透镜提供数值大小与所述电压调节指令对应的所述电压。
  26. 根据权利要求23所述的云台,其特征在于,
    所述第一变焦透镜为渐变折射率液体透镜或电润湿效应液体透镜。
  27. 根据权利要求22所述的云台,其特征在于,还包括:
    具有不同焦距的第二变焦透镜,设置于所述云台本体上与所述光线接收单元对应的位置处,以在所述第二变焦透镜处于不同的焦距时,所述光线接收单元以不同的视场角接收至少部分所述目标物体反射的所述光线。
  28. 根据权利要求27所述的云台,其特征在于,
    所述第二变焦透镜所处的焦距大小与所述第一变焦透镜所处的焦距大小相关。
  29. 根据权利要求28所述的云台,其特征在于,
    所述第二变焦透镜所处的焦距大小与所述第一变焦透镜所处的 焦距大小正相关。
  30. 根据权利要求27所述的云台,其特征在于,
    所述第一变焦透镜与所述第二变焦透镜位于所述云台本体的同一侧。
  31. 根据权利要求22所述的云台,其特征在于,还包括:
    温度传感器,用于检测所述光线发射单元的温度;且
    所述光线发射单元配置成在所述温度传感器检测到的所述温度大于或等于温度阈值时,停止发射光线。
  32. 根据权利要求22所述的云台,其特征在于,
    所述负载包括成像装置。
  33. 根据权利要求32所述的云台,其特征在于,所述成像装置包括:
    成像镜头,用于接收来自所述目标物体的光线,以供所述成像装置生成所述目标物体的影像,且所述成像镜头的焦距由所述云台与所述目标物体间的距离确定。
  34. 根据权利要求32所述的云台,其特征在于,所述云台本体包括:
    手持部件,以供用户通过所述手持部件握持所述云台。
  35. 根据权利要求34所述的云台,其特征在于,
    所述手持部件包括手柄或手环。
  36. 一种无人机,其特征在于,包括:
    无人机机身;
    根据权利要求22至33中任一项所述的云台,所述云台的云台本 体与所述无人机机身连接。
  37. 一种无人车,其特征在于,包括:
    无人车车身;
    根据权利要求22至33中任一项所述的云台,所述云台的云台本体与所述无人车车身连接。
  38. 一种机器人,其特征在于,包括:
    机器人机身;
    根据权利要求22至33中任一项所述的云台,所述云台的云台本体与所述机器人机身连接。
PCT/CN2021/082056 2021-03-22 2021-03-22 测距装置、成像装置以及云台 WO2022198376A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/082056 WO2022198376A1 (zh) 2021-03-22 2021-03-22 测距装置、成像装置以及云台
CN202180094302.8A CN116868026A (zh) 2021-03-22 2021-03-22 测距装置、成像装置以及云台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/082056 WO2022198376A1 (zh) 2021-03-22 2021-03-22 测距装置、成像装置以及云台

Publications (1)

Publication Number Publication Date
WO2022198376A1 true WO2022198376A1 (zh) 2022-09-29

Family

ID=83395034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082056 WO2022198376A1 (zh) 2021-03-22 2021-03-22 测距装置、成像装置以及云台

Country Status (2)

Country Link
CN (1) CN116868026A (zh)
WO (1) WO2022198376A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130201288A1 (en) * 2012-02-03 2013-08-08 Bryed Billerbeck High dynamic range & depth of field depth camera
CN105388483A (zh) * 2014-08-26 2016-03-09 株式会社拓普康 激光测量装置
CN111025317A (zh) * 2019-12-28 2020-04-17 深圳奥比中光科技有限公司 一种可调的深度测量装置及测量方法
CN111562690A (zh) * 2019-02-13 2020-08-21 源奇科技股份有限公司 可调式光投射器
CN112305552A (zh) * 2019-07-31 2021-02-02 佳能株式会社 距离检测装置和摄像设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130201288A1 (en) * 2012-02-03 2013-08-08 Bryed Billerbeck High dynamic range & depth of field depth camera
CN105388483A (zh) * 2014-08-26 2016-03-09 株式会社拓普康 激光测量装置
CN111562690A (zh) * 2019-02-13 2020-08-21 源奇科技股份有限公司 可调式光投射器
CN112305552A (zh) * 2019-07-31 2021-02-02 佳能株式会社 距离检测装置和摄像设备
CN111025317A (zh) * 2019-12-28 2020-04-17 深圳奥比中光科技有限公司 一种可调的深度测量装置及测量方法

Also Published As

Publication number Publication date
CN116868026A (zh) 2023-10-10

Similar Documents

Publication Publication Date Title
JP6281730B2 (ja) 画像を取得するシステム及び無人航空機
US9465112B2 (en) Automatic range corrected flash ladar camera
US9531928B2 (en) Gimbal system with imbalance compensation
CN104254785B (zh) 用于混合式三维成像器的主动照明的紧凑式激光源
US10209133B2 (en) Wavelength estimation device, light-source device, image display apparatus, object apparatus, wavelength estimation method, and light-source control method
US10185033B2 (en) Active continuous awareness surveillance system (ACASS): a multi-mode 3D LIDAR for diverse applications
US10488653B2 (en) Display alignment tracking in display systems
RU2655997C1 (ru) Устройство ночного видения
US20200285848A1 (en) Ir illumination module for mems-based eye tracking
US10838489B2 (en) IR illumination module for MEMS-based eye tracking
US11624906B2 (en) IR illumination module for MEMS-based eye tracking
WO2022198376A1 (zh) 测距装置、成像装置以及云台
EP3931919B1 (en) Photo-sensing reflectors for compact display module assembly
US11409111B2 (en) Photo-sensing reflectors for compact display module assembly
EP3969930B1 (en) Optical remote sensing
CN114428242A (zh) 激光雷达装置
KR20220020749A (ko) 광 변조기 및 이를 포함한 전자 장치
US10180567B2 (en) Optical modulator element, imaging apparatus, image projecting apparatus
US20230185085A1 (en) Self-illuminating distortion harp
CN218544057U (zh) 移动机器、机动车辆及照明系统
CN106019561B (zh) 紧凑型测距望远镜
CN114428241A (zh) 激光雷达装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932011

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180094302.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21932011

Country of ref document: EP

Kind code of ref document: A1