WO2022196952A1 - 초전도 한류기의 냉각 제어장치 - Google Patents

초전도 한류기의 냉각 제어장치 Download PDF

Info

Publication number
WO2022196952A1
WO2022196952A1 PCT/KR2022/002153 KR2022002153W WO2022196952A1 WO 2022196952 A1 WO2022196952 A1 WO 2022196952A1 KR 2022002153 W KR2022002153 W KR 2022002153W WO 2022196952 A1 WO2022196952 A1 WO 2022196952A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
liquid coolant
container
pressure
saturated liquid
Prior art date
Application number
PCT/KR2022/002153
Other languages
English (en)
French (fr)
Inventor
유기남
윤동진
Original Assignee
엘에스일렉트릭 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스일렉트릭 주식회사 filed Critical 엘에스일렉트릭 주식회사
Priority to CN202280022578.XA priority Critical patent/CN116998080A/zh
Publication of WO2022196952A1 publication Critical patent/WO2022196952A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/02Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
    • H02H9/023Current limitation using superconducting elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D16/00Devices using a combination of a cooling mode associated with refrigerating machinery with a cooling mode not associated with refrigerating machinery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/08Means for indicating or recording, e.g. for remote indication
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/02Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20236Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures by immersion
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/30Devices switchable between superconducting and normal states

Definitions

  • the present invention relates to a cooling control device for a superconducting fault current limiter, and more particularly, to a cooling control device for a non-circulating superconducting fault current limiter.
  • the superconducting fault current limiter refers to a device that uses the superconductivity of a superconductor to input impedance to the system, thereby limiting the circuit breaker to a capacity that can be interrupted when a fault current occurs.
  • the superconductor applied to the superconducting current limiter exhibits zero resistance at a specific temperature and below a specific current, and when an unexpected accident occurs in the power system, the superconducting property is destroyed and transitions to a normal conduction state, showing high resistance.
  • the superconductor of the superconducting current limiter must be cooled by a cooling device to maintain the superconducting state.
  • the power consumption for lowering from 60K to 50K is increased by about 20% compared to the power consumption for lowering the absolute temperature from 80K to 70K.
  • Korean Patent Application Laid-Open No. 10-2008-0102157 (a multi-bath device for cooling a superconductor and a method for cooling a superconductor, published on November 24, 2008).
  • the above publication includes a cooling bath for cooling the superconductor and a shield bath surrounding the cooling bath, and the cooling bath is supercooled, and the pressure of the shield bath is adjusted to maintain a saturated state.
  • the freezer is located on the inside top of the shield bath.
  • the refrigerator does not come into contact with the liquid nitrogen in the shield bath, and serves to re-liquefy the saturated liquid nitrogen in a state in which it is phase-changed to a gas.
  • the above publication includes a configuration in which a cryogenic storage tank is separately provided, and liquid nitrogen is supplied to the shield bath in order to compensate the liquid level of the shield bath.
  • the prior art having such a configuration has a problem in that space and cost loss occurs due to the operation of a cryogenic storage tank for storing liquid nitrogen.
  • a temperature sensor for directly detecting the supercooling temperature of the cooling bath and the saturation temperature of the shield bath is provided, and the refrigerator is controlled according to the detected temperature.
  • An object of the present invention to be solved in view of the above problems is to provide a cooling control device for a superconducting current limiter capable of detecting the temperature of a saturated liquid coolant using a lower cost means.
  • a cooling control device for a superconducting current limiter capable of estimating the temperature of the saturated liquid coolant by detecting the internal pressure of the current limiter without directly detecting the temperature of the saturated liquid coolant.
  • Another object of the present invention is to provide a cooling control device for a superconducting fault current limiter that is easy to maintain and advantageous in maintaining pressure in addition to the above object.
  • Another object of the present invention is to provide a cooling control device for a superconducting current limiter that can provide redundancy for temperature detection by using a temperature sensor that directly detects the temperature of a saturated liquid coolant.
  • Another object of the present invention is to provide a cooling control device for a superconducting fault current limiter that can ensure uniformity of cooling temperature of a superconducting element by activating circulation of a supercooled liquid coolant to secure temperature uniformity.
  • another object of the present invention is to provide a cooling device for a superconducting current limiter that is very advantageous for maintaining the pressure of the first container in which the supercooled liquid coolant is accommodated.
  • the cooling control device for a superconducting current limiter of the present invention includes a superconducting current limiter for cooling a saturated liquid coolant with a refrigerator to maintain the temperature of a supercooled liquid coolant in which a superconducting element is immersed, and the superconducting current limiter a pressure sensor for detecting the pressure of the second container in which the saturated liquid coolant of It may include a control unit for performing temperature control of the refrigerator.
  • the present invention comprises a first vessel containing a supercooled liquid coolant, and a second vessel surrounding the exterior of the first vessel and containing a saturated liquid coolant, wherein by detecting the internal pressure of the second vessel, By estimating the temperature, the cost can be reduced, maintenance and repair are easy, and there is an advantageous effect in maintaining the internal pressure of the second container.
  • the present invention has the effect of activating the circulation in the first container by the partial temperature difference of the supercooled liquid coolant by positioning the second container in contact with only the upper side of the first container, thereby ensuring the temperature uniformity of the superconducting element there is
  • the present invention sets the level of the saturated liquid coolant in the second container to be higher than the liquid level of the supercooled liquid coolant in the first container, so that the wall surface of the first container acts as a condensation surface to maintain the internal pressure of the first container. has a beneficial effect.
  • the present invention detects the internal pressure of the first container and converts the detected pressure into temperature to reduce the cost by minimizing the use of a temperature sensor capable of detecting ultra-low temperature, and also inserts, installs, and seals the temperature sensor By simplifying the complex configuration for maintenance, maintenance is advantageous and has the effect of improving pressure retention performance.
  • FIG. 1 is a block diagram of a cooling control device for a superconducting fault current limiter according to a preferred embodiment of the present invention.
  • FIG. 3 is a block diagram of another embodiment of the present invention including a temperature sensor.
  • 5 and 6 are each a block diagram of a cooling control device of a superconducting fault current limiter according to another embodiment of the present invention.
  • control unit 61 processor
  • FIG. 1 is a block diagram of a cooling control device for a superconducting fault current limiter according to a preferred embodiment of the present invention.
  • the present invention provides a first container 10 accommodating a supercooled liquid coolant 12 in which a superconducting element 11 is immersed, and a first container 10 to cover the side and bottom surfaces of the first container 10 .
  • a second container 20 positioned in contact with the outer surface of the container 10 and accommodating the saturated liquid coolant 21 , and a third container in contact with side surfaces and bottom surfaces of the first container 10 and the second container 20 .
  • the first container 10 provides a cylindrical accommodation space, the superconducting element 11 is provided inside.
  • the superconducting element 11 may be provided with the same number as the constant number of the power system.
  • three superconducting elements 11 may be used in the three-phase power system.
  • the superconducting element 11 is immersed in the supercooled liquid coolant 12 in the first container 10, and the temperature is maintained by the supercooled liquid coolant 12 so that the resistance is close to zero in the state before the fault current is generated. keep the status
  • the supercooled liquid coolant 12 may be liquid nitrogen.
  • the internal pressure P1 of the first container 10 is 3 bar, and the temperature of the supercooled liquid coolant 12 is 77K as a normal reference temperature.
  • a non-condensable gas is injected in order to maintain the internal pressure P1 of the first container 10 .
  • the non-condensable gas include gaseous neon and helium, and the space above the supercooled liquid coolant 12 of the first container 10 is filled with a gas mixture of gaseous neon and gaseous helium to maintain the pressure.
  • the supercooled liquid coolant 12 accommodated in the first container 10 is not exchanged unless there is a special reason, and the temperature is maintained while maintaining the installed state.
  • the temperature of the supercooled liquid coolant 12 in the first container 10 is maintained by the action of the saturated liquid coolant 21 in the second container 20 and the freezer 40 .
  • the pressure P2 in the second vessel 20 is maintained below 1 bar, and the temperature of the saturated liquid coolant 21 should be maintained at a temperature below 77K.
  • the saturated liquid coolant 21 may also use liquid nitrogen.
  • the temperature of the saturated liquid coolant 21 is preferably 75 to 76K.
  • the inner wall of the second container 20 may be advantageous for heat exchange by using a portion of the outer wall of the first container 10 as it is.
  • the liquid level of the saturated liquid coolant 21 accommodated in the second container 20 may be the same as that of the supercooled liquid coolant 12 accommodated in the first container 10, and for other examples, more It will be described in detail.
  • a plurality of refrigerators 40 are coupled to one surface, for example, an upper surface of the second container 20 , and the cold head of the refrigerator 40 is drawn into the inside of the second container 20 .
  • heat exchange is made between the saturated liquid coolant 21 in the second container 20 and the supercooled liquid coolant 12 in the first container 10, wherein the heat exchange is between the saturated liquid coolant 21 and the supercooled liquid coolant (12) is made through a portion of the outer wall of the first container (10) between.
  • a portion of the saturated liquid coolant 21 is vaporized by heat exchange, and the supercooled liquid coolant 12 maintains its temperature.
  • the vaporized saturated liquid coolant 21 is again condensed and liquefied by the refrigerator 40 , and the liquefied liquid falls by gravity and mixes with the saturated liquid coolant 21 repeatedly.
  • the present invention can maintain the temperature of the supercooled liquid coolant 12 and the superconducting element 11 without circulating the saturated liquid coolant 21 .
  • the temperature of the saturated liquid coolant 21 is maintained at a temperature lower than the temperature of the supercooled liquid coolant 12, and at this time, the temperature of the saturated liquid coolant 21 is detected to perform appropriate refrigerator 40 control. .
  • the present invention detects the internal pressure P2 of the second container 20 using the pressure sensor 50 .
  • the pressure detection result of the pressure sensor 50 is provided to the control unit 60 .
  • the control unit 60 includes an analog-to-digital converter 62 that converts the analog output of the pressure sensor 50 into a digital signal, a memory 63 that stores a correlation data table between pressure and temperature, and the analog-to-digital conversion
  • the processor 61 receives the pressure information from the unit 62 and estimates the temperature of the saturated liquid coolant 21 using the table stored in the memory 63, and the refrigerator 40 under the control of the processor 61 ) includes a temperature controller 64 for controlling the temperature of the.
  • the pressure-temperature correlation data table stored in the memory 63 uses a phase diagram of the saturated liquid coolant.
  • FIG. 2 shows a saturation diagram of liquid nitrogen as an example of a saturated liquid coolant 21 .
  • the phase of the saturated liquid coolant 21 is determined according to temperature and pressure.
  • liquid nitrogen is saturated at a temperature of 75 to 76 K and a pressure of 70 to 90 kPa (0.7 to 0.9 bar). That is, the temperature and pressure should be determined along the section (M) of the saturation diagram in the drawing.
  • the saturated liquid coolant 21 maintains a saturated state, and when the temperature is increased by heat exchange with the supercooled liquid coolant 12, it is vaporized.
  • the processor 61 detects a temperature indicated by the detected pressure using the pressure-temperature correlation data table stored in the memory 63, and performs control to increase or decrease the temperature of the refrigerator 40 according to the detected temperature. do.
  • the processor 61 may control the temperature controller 64 to control the temperature of the refrigerator 40 , thereby controlling the degree of condensation of vaporized liquid nitrogen to maintain the pressure P2 .
  • the maintenance of the pressure P2 is related to the temperature of the refrigerator 40 , and the temperature of the saturated liquid coolant 21 is also determined according to the temperature of the refrigerator 40 .
  • the present invention can reduce the cost by estimating the temperature of the saturated liquid coolant 21 by detecting the pressure P2 without directly detecting the temperature of the saturated liquid coolant 21 .
  • the pressure sensor 50 is not immersed in the saturated liquid coolant 21 and has a structure that can be easily replaced in a part of the second container 20, maintenance and repair are easy, improving the reliability and convenience of the current limiter operation There is an effect that can make it happen.
  • the present invention may further include a temperature sensor immersed in the saturated liquid coolant 21 together with the pressure sensor 50 , and may be operated in a redundancy structure.
  • FIG 3 shows the superconducting current limiter cooling control device of the present invention including the temperature sensor 70 .
  • both the pressure sensor 50 for detecting the internal pressure of the second container 20 and the temperature sensor 70 for directly detecting the temperature of the saturated liquid coolant 21 filled in the second container 20 can be used. have.
  • the temperature of the saturated liquid coolant 21 may be detected using the temperature sensor 70 , and the operation of the refrigerator 40 may be controlled according to the detection result.
  • the temperature sensor 70 can be judged above.
  • the temperature controller 64 not only controls the refrigerator 40, but also controls the heater for heating the second container 20, although not shown in the drawing, so that the temperature of the saturated liquid coolant 21 is lower than the set temperature.
  • a heater may be used to adjust the temperature of the saturated liquid coolant 21 to a normal range.
  • the pressure P in the second container 20 is detected using the pressure sensor 50 ( S41 ).
  • the detected pressure P is converted into a digital signal through the analog-to-digital conversion unit 62 and provided to the processor 61 .
  • the processor 61 compares the detected pressure P with the saturation pressure Psat as in steps S42 and S43.
  • the saturation pressure Psat is a pressure in the range of the temperature T of 75 to 77K, and as in step S42, it is determined whether the detected pressure P is greater than the pressure when the temperature is 77K.
  • step S44 When the detected pressure P is greater than the saturation pressure at 77K, the cooling power of the temperature controller 64 is increased as in step S44, and operation of the heater is stopped as in step S45.
  • step S42 if the detected pressure P is smaller than the saturation pressure at 77K, as in step S43, it is determined whether the detected pressure P is smaller than the saturation pressure at 75K, and if not, step S41 return to
  • the temperature controller 64 lowers the cooling power of the refrigerator 40 and operates the heater to adjust the temperature of the saturated liquid coolant 21 to a range of 75 to 77K.
  • 5 is a block diagram of a superconducting current limiter cooling control device according to another embodiment of the present invention.
  • the second container 20 may be configured to be located only on the upper side of the first container 10 .
  • the second container 20 is positioned to expose the side lower side and the bottom of the first container 10, so that heat exchange with the saturated liquid coolant 21 is performed with the supercooled liquid coolant ( 12) occurs on the lateral side.
  • the second container 20 may cover about 50% of the height of the side surface downward from the upper end of the side surface of the first container 10 . More specifically, 40 to 60% may be covered.
  • the second container 20 has a ring-type structure exposing the lower side and the bottom of the first container 10, and provides an internal space of the same shape.
  • the inner wall of the second container 20 may be advantageous for heat exchange by using a portion of the outer wall of the first container 10 as it is.
  • the liquid level of the saturated liquid coolant 21 accommodated in the second container 20 may be the same as that of the supercooled liquid coolant 12 accommodated in the first container 10, and for other examples, more It will be described in detail.
  • a plurality of refrigerators 40 are coupled to one surface, for example, an upper surface of the second container 20 , and the cold head of the refrigerator 40 is drawn into the inside of the second container 20 .
  • heat exchange is made between the saturated liquid coolant 21 in the second container 20 and the supercooled liquid coolant 12 in the first container 10, wherein the heat exchange is between the saturated liquid coolant 21 and the supercooled liquid coolant (12) is made through a portion of the outer wall of the first container (10) between.
  • a portion of the saturated liquid coolant 21 is vaporized by heat exchange, and the supercooled liquid coolant 12 maintains its temperature.
  • the vaporized saturated liquid coolant 21 is again condensed and liquefied by the refrigerator 40 , and the liquefied liquid falls by gravity and mixes with the saturated liquid coolant 21 repeatedly.
  • the supercooled liquid coolant 12 of the first container 10 mainly undergoes heat exchange at the upper side where the second container 20 is covered.
  • region A is an upper region where heat exchange occurs with the saturated liquid coolant 21 of the second container 20 , and heat exchange does not occur in region B of the lower layer.
  • the present invention limits the contact surface between the second container 20 and the first container 10 to a part, and induces a partial thermal imbalance in the supercooled liquid coolant 12 inside the first container 10 according to heat exchange. , form convection.
  • the supercooled liquid coolant 12 in the first container 10 circulates on its own to achieve temperature equilibrium, and thus temperature uniformity can be increased.
  • Such temperature uniformity can cool the superconducting element 11 to a uniform temperature as a whole, and the resistance uniformity of the superconducting element 11 itself can also be ensured by ensuring the temperature uniformity of the superconducting element 11 .
  • the third container 30 has a structure that surrounds both the side and bottom surfaces of the second container 20 and the exposed side and bottom surfaces of the first container 10, and the inner side blocks heat transfer in a vacuum 31 state. It is advantageous for maintaining the temperature of the supercooled liquid coolant 12 and the saturated liquid coolant 21 in the first container 10 and the second container 20 .
  • the pressure detection of the second container 20 using the pressure sensor 50 and the configuration and action of controlling the refrigerator 40 by estimating the temperature using the detected pressure are the configurations and actions described with reference to FIG. 1 and It is assumed that the action is applied as it is.
  • FIG. 6 is a block diagram of a cooling control device of a superconducting fault current limiter according to another embodiment of the present invention.
  • FIG. 6 The configuration shown in FIG. 6 is the same as the example described with reference to FIG. 3 , the first container 10 , and the second container 20 and the first container 10 positioned around the outer part of the first container 10 . ) and a third container 30 surrounding the side and bottom surfaces of the second container 20 .
  • the superconducting element 11 is accommodated in the inner receiving space of the first container 10 , and the superconducting element 11 is completely submerged in the supercooled liquid coolant 12 .
  • the liquid level of the supercooled liquid coolant 12 is higher than that of the superconducting element 11 .
  • the temperature of the supercooled liquid coolant 12 is appropriately about 77K, and a non-condensed gas is injected into the space of the first container 10 on the upper side of the supercooled liquid coolant 12 to be maintained at a pressure of 3 bar. make it possible
  • the temperature of the supercooled liquid coolant 12 is maintained at 77K, and when the pressure is 3 bar, in theory, the supercooled liquid coolant 12 is not vaporized, but the supercooled liquid coolant 12 is vaporized due to temperature deviation or other reasons. An increase in the pressure of the container 10 may occur.
  • a change in pressure inside the first container 10 becomes a factor that changes the overall phase equilibrium, and it is necessary to keep the pressure constant.
  • the liquid level L2 of the saturated liquid coolant 21 inside the second container 20 is set to be higher than the liquid level L1 of the supercooled liquid coolant 12 in the first container 10. do.
  • a portion of the outer wall of the first container 10 corresponding to the difference (L2-L1) between the liquid level L2 of the saturated liquid coolant 21 and the liquid level L1 of the supercooled liquid coolant 12 has a temperature compared to the other outer wall areas becomes the lower region, which is called the condensing surface 13 .
  • the height of the condensation surface 13, that is, the difference in height between the liquid level L2 of the liquid coolant 21 and the level L2 of the supercooled liquid coolant 12 is 5 to 30 cm.
  • the condensation effect is low, and when it exceeds 30 cm, unnecessary waste of energy may occur.
  • gaseous nitrogen which is the supercooled liquid coolant 21 vaporized in the first vessel 10
  • gaseous nitrogen is the supercooled liquid coolant 21 vaporized in the first vessel 10
  • the condensing surface 13 where the temperature is below the condensing temperature
  • the saturated liquid coolant 21 contained in the second container 20 exchanges heat with the supercooled liquid coolant 12 in the first container 10 and the supercooled liquid coolant vaporized in the condensing surface 13 ( 12) is condensed, and the temperature rises to vaporize.
  • the vaporized saturated liquid coolant 21 repeats the process of being condensed by the cold head of the refrigerator 40 to maintain the temperature of the saturated liquid coolant 21 and the supercooled liquid coolant 12 and the first container 10 pressure can be maintained within the
  • the present invention relates to a device capable of maintaining the temperature of a saturated liquid coolant and a supercooled liquid coolant using the laws of nature, and has industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

본 발명은 초전도 한류기의 냉각 제어장치에 관한 것으로, 포화 액체 냉각제를 냉동기로 냉각시켜, 초전도 소자가 침지된 과냉각 액체 냉각제의 온도를 유지하는 초전도 한류기와, 상기 초전도 한류기의 상기 포화 액체 냉각제가 수용된 제2용기의 압력을 검출하는 압력센서와, 상기 압력센서의 압력 검출결과를 이용하여, 상기 포화 액체 냉각제의 온도를 추정하고, 추정된 상기 포화 액체 냉각제의 온도에 따라 상기 냉동기의 온도 제어를 수행하는 제어장치부를 포함할 수 있다.

Description

초전도 한류기의 냉각 제어장치
본 발명은 초전도 한류기의 냉각 제어장치에 관한 것으로, 더 상세하게는 비순환식 초전도 한류기의 냉각 제어장치에 관한 것이다.
일반적으로, 고장전류에 대한 제어를 수행하는 다양한 전력 계통 안정화 장치들이 제안되었다.
그 중 초전도 한류기는 초전도체의 초전도성을 이용하여 계통에 임피던스를 투입함으로써, 고장전류의 발생시 차단기가 차단 가능한 용량으로 제한하는 장치를 뜻한다.
초전도 한류기에 적용되는 초전도체는 특정 온도 및 특정 전류 이하에서 저항 제로 특성을 나타내며, 전력계통에 예상치 못한 사고가 발생했을 때 초전도 특성이 파괴되어 상전도 상태로 전이되면서 높은 저항을 나타낸다.
따라서 온도 또는 전류량에 따른 초전도체의 저항 특성 변화에 의하여 고장전류를 낮출 수 있다.
위의 설명과 같은 기본적인 초전도 한류기의 동작을 위하여 초전도 한류기의 초전도체는 평상시 냉각장치에 의하여 냉각되어 초전도 상태를 유지하여야 한다.
등록특허 10-1104234호(2012년 1월 10일, 초전도 한류기 내부 온도 제어 장치 및 방법, 2012년 1월 3일 등록)에는 냉동기와 전도 냉각 구리 밴드를 사용하여 초전도 소자가 침지된 액체 질소를 냉각시켜 온도를 유지하는 구성이 기재되어 있다.
그러나 구리 밴드의 길이가 길어질수록 구리 밴드 자체에 온도차가 발생하기 때문에 전체적으로 충분한 냉각 효과를 얻기 위해서는 냉동기의 운전 온도를 더욱 낮출 수밖에 없으며, 이는 냉동기의 전력 소비량을 증가시키게 된다.
즉, 냉동기는 온도가 낮을수록 성능과 효율이 감소된다. 예를 들어 절대온도 80K에서 70K로 낮추기 위한 전력 소비량에 비하여 60K에서 50K로 낮추기 위한 전력 소비량은 약 20% 정도 증가하게 되는 문제점이 있었다.
초전도 소자의 온도를 유지하기 위한 다른 냉각장치의 구성으로서, 공개특허 10-2008-0102157호(초전도체 냉각용 멀티 배쓰 장치 및 초전도체 냉각 방법, 2008년 11월 24일 공개)가 있다.
위의 공개특허에는 초전도체를 냉각하는 냉각 배쓰와 냉각 배쓰를 감싸는 쉴드 배쓰를 포함하고, 냉각 배쓰는 과냉각, 쉴드 배쓰는 포화상태가 유지되도록 압력을 조절한다.
냉동기는 쉴드 배쓰의 내측 상부에 위치한다. 냉동기는 쉴드 배쓰 내의 액체 질소에 접촉되지 않으며, 포화 상태의 액체 질소가 기체로 상변화된 상태에서 다시 액화하는 역할을 한다.
또한, 위의 공개특허는 극저온 저장 탱크를 별도로 마련하고, 쉴드 배쓰의 액위를 보상하기 위하여 액체 질소를 쉴드 배쓰로 공급하는 구성을 포함한다.
이와 같은 구성의 종래 기술은 액체 질소를 보관하는 극저온 저장 탱크의 운영에 따른 공간적, 비용적인 손실이 발생하게 되는 문제점이 있었다.
또한, 종래 초전도 한류기의 운용을 위해서는 냉각 배쓰의 과냉각 온도 및 쉴드 배쓰의 포화상태 온도를 직접 검출하는 온도 센서를 구비하고, 검출된 온도에 따라 냉동기를 제어하도록 구성된다.
그러나 초저온의 온도를 검출하기 위한 온도 센서는 그 가격이 비싸기 때문에, 초전도 한류기의 제조 원가가 상승하게 되는 문제점이 있을 뿐만 아니라, 밀폐된 공간 내에 위치하는 온도 센서의 유지 및 보수가 용이하지 않은 문제점이 있었다.
또한, 온도 센서를 액체 질소 내에 침지시키고, 온도 센서의 신호선을 한류기 외부로 유출시켜야 하기 때문에 한류기 내부의 압력 유지가 용이하지 않은 문제점이 있었다.
상기와 같은 문제점을 감안한 본 발명이 해결하고자 하는 과제는, 보다 저비용의 수단을 이용하여 포화 액체 냉각제의 온도를 검출할 수 있는 초전도 한류기의 냉각 제어장치를 제공함에 있다.
구체적으로, 포화 액체 냉각제의 온도를 직접 검출하지 않고, 한류기 내부 압력을 검출하여 포화 액체 냉각제의 온도를 추정할 수 있는 초전도 한류기의 냉각 제어장치를 제공함에 있다.
본 발명은 위의 목적과 함께 유지 보수가 용이하며, 압력 유지에 유리한 초전도 한류기의 냉각 제어장치를 제공함에 다른 목적이 있다.
그리고 본 발명은 포화 액체 냉각제의 온도를 직접 검출하는 온도 센서를 함께 이용하여 온도 검출에 대한 리던던시를 제공할 수 있는 초전도 한류기의 냉각 제어장치를 제공함에 목적이 있다.
또한, 본 발명은 과냉각 액체 냉각제의 순환을 활성화하여 온도 균일성을 확보함으로써, 초전도 소자의 냉각 온도 균일성을 확보할 수 있는 초전도 한류기의 냉각 제어장치를 제공함에 다른 목적이 있다.
아울러 본 발명의 다른 과제는 과냉각 액체 냉각제가 수용된 제1용기부의 압력 유지에 매우 유리한 초전도 한류기의 냉각장치를 제공함에 있다.
상기와 같은 기술적 과제를 해결하기 위한 본 발명 초전도 한류기의 냉각 제어장치는, 포화 액체 냉각제를 냉동기로 냉각시켜, 초전도 소자가 침지된 과냉각 액체 냉각제의 온도를 유지하는 초전도 한류기와, 상기 초전도 한류기의 상기 포화 액체 냉각제가 수용된 제2용기의 압력을 검출하는 압력센서와, 상기 압력센서의 압력 검출결과를 이용하여, 상기 포화 액체 냉각제의 온도를 추정하고, 추정된 상기 포화 액체 냉각제의 온도에 따라 상기 냉동기의 온도 제어를 수행하는 제어장치부를 포함할 수 있다.
본 발명은, 과냉각 액체 냉각제를 수용하는 제1용기와, 제1용기의 외부를 둘러싸며 포화 액체 냉각제를 수용하는 제2용기를 포함하되, 제2용기의 내부 압력을 검출하여, 포화 액체 냉각제의 온도를 추정함으로써, 비용을 줄일 수 있으며, 유지 및 보수가 용이하고, 제2용기의 내부 압력 유지에 유리한 효과가 있다.
또한, 본 발명은 제2용기를 제1용기의 상부측에만 접하도록 위치시킴으로써, 과냉각 액체 냉각제의 부분적인 온도차에 의한 제1용기 내의 순환을 활성화하여 초전도 소자의 온도 균일성을 확보할 수 있는 효과가 있다
또한, 본 발명은 제2용기의 포화 액체 냉각제의 액위가 제1용기의 과냉각 액체 냉각제의 액위에 비하여 더 높게 되도록 설정함으로써, 제1용기의 벽면을 응축면으로 작용시켜 제1용기 내부 압력 유지에 유리한 효과가 있다.
아울러, 본 발명은 제1용기의 내부 압력을 검출하고, 검출된 압력을 온도로 환산하여 초저온을 검출할 수 있는 온도 센서의 사용을 최소화함으로써 비용을 줄일 수 있으며, 또한 온도 센서의 삽입 설치 및 기밀 유지를 위한 복잡한 구성을 단순화하여 유지 보수가 유리하고, 압력 유지 성능을 향상시킬 수 있는 효과가 있다.
도 1은 본 발명의 바람직한 실시예에 따른 초전도 한류기의 냉각 제어장치 구성도이다.
도 2는 포화선도 그래프이다.
도 3은 온도센서를 포함하는 본 발명의 다른 실시예의 구성도이다.
도 4는 본 발명의 동작 순서도이다.
도 5와 도 6은 각각 본 발명의 다른 실시예에 따른 초전도 한류기의 냉각 제어장치 구성도이다.
-부호의 설명-
10:제1용기 11:초전도 소자
12:과냉각 액체 냉각제 13:응축면
20:제2용기 21:포화 액체 냉각제
30:제3용기 31:진공
40:냉동기 50:압력센서
60:제어장치부 61:프로세서
62:아날로그 디지털 변환기 63:메모리
64:온도제어기
본 발명의 구성 및 효과를 충분히 이해하기 위하여, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예들을 설명한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라, 여러가지 형태로 구현될 수 있고 다양한 변경을 가할 수 있다. 단지, 본 실시예에 대한 설명은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위하여 제공되는 것이다. 첨부된 도면에서 구성요소는 설명의 편의를 위하여 그 크기를 실제보다 확대하여 도시한 것이며, 각 구성요소의 비율은 과장되거나 축소될 수 있다.
'제1', '제2' 등의 용어는 다양한 구성요소를 설명하는데 사용될 수 있지만, 상기 구성요소는 위 용어에 의해 한정되어서는 안 된다. 위 용어는 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용될 수 있다. 예를 들어, 본 발명의 권리범위를 벗어나지 않으면서 '제1구성요소'는 '제2구성요소'로 명명될 수 있고, 유사하게 '제2구성요소'도 '제1구성요소'로 명명될 수 있다. 또한, 단수의 표현은 문맥상 명백하게 다르게 표현하지 않는 한, 복수의 표현을 포함한다. 본 발명의 실시예에서 사용되는 용어는 다르게 정의되지 않는 한, 해당 기술분야에서 통상의 지식을 가진 자에게 통상적으로 알려진 의미로 해석될 수 있다.
이하에서는, 도면을 참조하여 본 발명의 일실시예에 따른 초전도 한류기의 냉각 제어장치에 대하여 상세히 설명한다.
도 1은 본 발명의 바람직한 실시예에 따른 초전도 한류기의 냉각 제어장치 구성도이다.
도 1을 참조하면 본 발명은, 초전도 소자(11)가 침지되는 과냉각 액체 냉각제(12)를 수용하는 제1용기(10)와, 상기 제1용기(10)의 측면 및 저면을 덮도록 제1용기(10)의 외면에 접하여 위치하며, 포화 액체 냉각제(21)를 수용하는 제2용기(20)와, 상기 제1용기(10) 및 제2용기(20)의 측면 및 저면에 접하는 제3용기(30)와, 상기 제2용기(20)에 삽입되어 기화된 포화 액체 냉각제(21)를 응축하는 냉동기(40)와, 상기 제2용기(20)의 압력을 검출하는 압력센서(50)와, 상기 압력센서(50)의 압력 검출결과를 입력받아 제2용기(20)의 포화 액체 냉각제(21)의 온도를 추정하여 상기 냉동기(40)의 온도를 조절하는 제어장치부(60)를 포함한다.
이하, 상기와 같이 구성되는 본 발명 초전도 한류기 냉각 제어장치의 구성과 작용을 보다 상세히 설명한다.
먼저, 제1용기(10)는 원기둥형의 수용공간을 제공하며, 내측에 초전도 소자(11)가 마련되어 있다. 초전도 소자(11)는 전력계통의 상 수와 동 수로 마련될 수 있다.
즉, 3상 전력계통에는 3개의 초전도 소자(11)가 사용될 수 있다.
초전도 소자(11)는 제1용기(10)의 내에서 과냉각 액체 냉각제(12) 내에 침지되어 있으며, 과냉각 액체 냉각제(12)에 의해 온도가 유지되어 고장전류의 발생 전상태에서 저항이 0에 가까운 상태를 유지한다.
상기 과냉각 액체 냉각제(12)는 액체 질소일 수 있다.
제1용기(10)의 내부 압력(P1)은 3bar이며, 과냉각 액체 냉각제(12)의 온도는 77K가 정상 기준온도가 된다.
제1용기(10)의 내부 압력(P1)을 유지하기 위하여 비응축 가스가 주입된다. 비응축 가스의 예로는 기체상의 네온과 헬륨이 있으며, 제1용기(10)의 과냉각 액체 냉각제(12)의 상부측 공간은 기체상의 네온과 기체상의 헬륨이 혼합된 가스가 충진되어 압력을 유지하는 것으로 이해될 수 있다.
제1용기(10)에 수용된 과냉각 액체 냉각제(12)는 특별한 이유가 없는 이상은 교환되지 않으며, 설치상태를 유지하면서 온도를 유지한다.
제1용기(10)의 과냉각 액체 냉각제(12)의 온도는 제2용기(20)의 포화 액체 냉각제(21)와, 냉동기(40)의 작용에 의해 유지된다.
제2용기(20)의 압력(P2)은 1bar 미만으로 유지되며, 포화 액체 냉각제(21)의 온도는 77K 미만의 온도로 유지되어야 한다. 포화 액체 냉각제(21) 역시 액체 질소를 사용할 수 있다.
포화 액체 냉각제(21)의 온도는 바람직하게 75 내지 76K인 것으로 한다.
제2용기(20)의 내벽은 제1용기(10)의 외벽 일부를 그대로 사용하여 열교환에 유리하도록 할 수 있다.
제2용기(20)에 수용되는 포화 액체 냉각제(21)의 액위는 상기 제1용기(10)에 수용된 과냉각 액체 냉각제(12)의 액위와 동일한 것으로 할 수 있으며, 다른 예에 대해서는 이후에 좀 더 상세히 설명하기로 한다.
상기 제2용기(20)의 일면, 예를 들어 상면에는 다수의 냉동기(40)가 결합되며, 냉동기(40)의 콜드 헤드는 제2용기(20)의 내측으로 인입되어 있다.
따라서, 제2용기(20)의 포화 액체 냉각제(21)와 제1용기(10)의 과냉각 액체 냉각제(12) 사이에 열교환이 이루어지며, 이때의 열교환은 포화 액체 냉각제(21)와 과냉각 액체 냉각제(12) 사이의 제1용기(10) 외벽 일부를 통해 이루어진다.
열교환에 의해 포화 액체 냉각제(21)의 일부는 기화되며, 과냉각 액체 냉각제(12)는 온도를 유지하게 된다.
기화된 포화 액체 냉각제(21)는 다시 냉동기(40)에 의해 응축되어 액화되고, 액화된 액체는 중력에 의해 낙하하여 포화 액체 냉각제(21)에 혼합되는 것을 반복한다.
따라서 본 발명은 포화 액체 냉각제(21)를 순환시키지 않고도 과냉각 액체 냉각제(12) 및 초전도 소자(11)의 온도를 유지할 수 있다.
즉, 포화 액체 냉각제(21)의 온도를 상기 과냉각 액체 냉각제(12)의 온도보다 낮은 온도로 유지하며, 이때 포화 액체 냉각제(21)의 온도를 검출하여, 적정한 냉동기(40) 제어를 수행해야 한다.
이를 위하여 본 발명은 압력센서(50)를 사용하여 제2용기(20)의 내부 압력(P2)을 검출한다.
압력센서(50)의 압력 검출결과는 제어장치부(60)로 제공된다.
제어장치부(60)는 압력센서(50)의 아날로그 출력을 디지털신호로 변환하는 아날로그 디지털 변환부(62)와, 압력과 온도의 상관 데이터 테이블을 저장하는 메모리(63)와, 상기 아날로그 디지털 변환부(62)의 압력정보를 입력받아 상기 메모리(63)에 저장된 테이블을 이용하여 포화 액체 냉각제(21)의 온도를 추정하는 프로세서(61)와, 상기 프로세서(61)의 제어에 따라 냉동기(40)의 온도를 제어하는 온도제어기(64)를 포함한다.
이와 같은 구성에서 상기 메모리(63)에 저장되는 압력 온도 상관 데이터 테이블은, 포화 액체 냉각제의 상선도를 이용한다.
도 2는 포화 액체 냉각제(21)의 일예인 액체 질소의 포화선도를 나타낸다.
도 2를 참조하면, 포화 액체 냉각제(21)는 온도와 압력에 따라 상이 결정된다. 대체로 액체 질소는 75 내지 76K의 온도에서 70 내지 90kPa(0.7 내지 0.9bar)의 압력일 때, 포화상태가 된다. 즉, 도면에서 포화선도의 구간(M)을 따라 온도와 압력을 결정해야 한다.
상기 포화 액체 냉각제(21)는 포화상태를 유지하며, 과냉각 액체 냉각제(12)와 열교환되어 온도가 높아지면, 기화가 된다.
이때 포화 액체 냉각제(21)의 온도가 위의 범위보다 높아지면, 기화가 활발하게 일어나게 되며, 제2용기(20) 내부의 압력은 증가하게 된다.
반대로, 냉동기(40)의 온도가 너무 낮은 경우, 기화된 액체 질소의 응축이 더 활발하게 발생하여, 제2용기(20) 내부의 압력은 감소하게 된다.
따라서, 포화 액체 냉각제(21)의 온도와 제2용기(20) 내부 압력간의 상관 관계가 성립되며, 제2용기(20)의 압력(P2)을 검출하여 온도와의 상관 관계에 따라 온도를 추정할 수 있다.
상기 프로세서(61)는 메모리(63)에 저장된 압력 온도 상관 데이터 테이블을 이용하여, 검출된 압력이 나타내는 온도를 검출하고, 그 검출된 온도에 따라 냉동기(40)의 온도를 높이거나 낮추는 제어를 수행한다.
즉, 프로세서(61)는 온도제어기(64)를 제어하여, 냉동기(40)의 온도를 제어함으로써, 기화된 액체 질소의 응축 발생 정도를 조절하여 압력(P2)을 유지할 수 있다.
이때 압력(P2)의 유지는 냉동기(40)의 온도와 관계되며, 냉동기(40)의 온도에 따라 포화 액체 냉각제(21)의 온도 또한 결정된다.
이처럼 본 발명은 포화 액체 냉각제(21)의 온도를 직접 검출하지 않고, 압력(P2)을 검출하여 포화 액체 냉각제(21)의 온도를 추정함으로써, 비용을 줄일 수 있다.
또한, 압력센서(50)는 포화 액체 냉각제(21)에 침지되지 않으며, 제2용기(20)의 일부에서 쉽게 교체 가능한 구조이기 때문에 유지 및 보수가 용이하여, 한류기 운용의 신뢰성과 편의성을 향상시킬 수 있는 효과가 있다.
그리고 본 발명은 압력센서(50)와 함께 포화 액체 냉각제(21)에 침지되는 온도센서를 더 포함하여, 리던던시 구조로 운용될 수 있다.
이 경우 비용이 증가하기는 하지만, 온도센서에 이상이 발생한 경우에도 정상적인 온도제어가 가능하며, 온도센서에서 검출된 온도를 검증할 수 있다는 장점이 있다.
도 3에 온도센서(70)가 포함된 본 발명의 초전도 한류기 냉각 제어장치를 도시하였다.
이처럼 제2용기(20)의 내부 압력을 검출하는 압력센서(50)와, 제2용기(20) 내에 충진된 포화 액체 냉각제(21)의 온도를 직접 검출하는 온도센서(70)를 모두 사용할 수 있다.
앞서 언급한 바와 같이 온도센서(70)를 이용하여 포화 액체 냉각제(21)의 온도를 검출하고, 그 검출결과에 따라 냉동기(40)의 동작을 제어할 수 있다.
이때, 압력센서(50)에서 검출된 제2용기(20) 내의 압력을 온도로 변환한 결과와 온도센서(70)에서 검출된 온도를 비교하여 설정값 이상 차이가 있으면, 온도센서(70)의 이상으로 판단할 수 있다.
상기 온도제어기(64)는 냉동기(40)를 제어할 뿐만 아니라 도면에는 도시하지 않았으나, 제2용기(20)를 가열하는 히터를 제어하여, 포화 액체 냉각제(21)의 온도가 설정온도에 비하여 낮은 경우에는 히터를 이용하여 포화 액체 냉각제(21)의 온도를 정상 범위로 조정할 수 있다.
도 4는 본 발명의 동작 순서도이다.
도 4에 도시한 바와 같이, 상기 압력센서(50)를 이용하여 제2용기(20) 내의 압력(P)을 검출한다(S41).
검출된 압력(P)은 아날로그 디지털 변환부(62)를 통해 디지털신호로 변환되어, 프로세서(61)에 제공된다.
이때 프로세서(61)는 S42단계 및 S43단계와 같이 검출된 압력(P)을 포화 압력(Psat)과 비교한다. 포화압력(Psat)은 온도(T)가 75 내지 77K의 범위에서의 압력이며, S42단계와 같이 검출된 압력(P)이 온도가 77K일 때의 압력에 비해 더 큰지 판단한다.
검출된 압력(P)이 77K에서의 포화압력에 비하여 더 큰 경우, S44단계와 같이 온도 제어기(64)의 쿨링 파워를 높이고, S45단계와 같이 히터의 가동을 중단한다.
상기 S42단계의 판단결과 검출된 압력(P)이 77K에서의 포화압력에 비하여 작은 경우, S43단계와 같이 75K에서의 포화압력보다 검출된 압력(P)이 더 작은 지 판단하고, 작지 않으면 S41단계로 귀환한다.
더 작은 경우 S46단계 및 S47단계와 같이 온도 제어기(64)에서 냉동기(40)의 쿨링파워를 낮추고, 히터를 동작시켜, 포화 액체 냉각제(21)의 온도를 75 내지 77K의 범위로 조절하게 된다.도 5는 본 발명의 다른 실시예에 따른 초전도 한류기 냉각 제어장치의 구성도이다.
도 5를 참조하면, 제2용기(20)는 제1용기(10)의 측면 상부측에만 위치하도록 구성할 수 있다.
즉, 제2용기(20)는 제1용기(10)의 측면 하부측 및 저면을 노출시키도록 위치되며, 따라서 포화 액체 냉각제(21)와의 열교환은 제1용기(10)에 수용된 과냉각 액체 냉각제(12)의 측면 측에서 일어나게 된다.
제2용기(20)는 제1용기(10)의 측면 상단으로부터 하향으로, 측면 높이의 50%정도를 덮는 것으로 할 수 있다. 좀 더 구체적으로 40 내지 60%를 덮을 수 있다.
제2용기(20)는 제1용기(10)의 측면 하부와 저면을 노출시키는 링타입 구조이며, 동일한 형태의 내부 공간을 제공한다.
제2용기(20)의 내벽은 제1용기(10)의 외벽 일부를 그대로 사용하여 열교환에 유리하도록 할 수 있다.
제2용기(20)에 수용되는 포화 액체 냉각제(21)의 액위는 상기 제1용기(10)에 수용된 과냉각 액체 냉각제(12)의 액위와 동일한 것으로 할 수 있으며, 다른 예에 대해서는 이후에 좀 더 상세히 설명하기로 한다.
상기 제2용기(20)의 일면, 예를 들어 상면에는 다수의 냉동기(40)가 결합되며, 냉동기(40)의 콜드 헤드는 제2용기(20)의 내측으로 인입되어 있다.
따라서, 제2용기(20)의 포화 액체 냉각제(21)와 제1용기(10)의 과냉각 액체 냉각제(12) 사이에 열교환이 이루어지며, 이때의 열교환은 포화 액체 냉각제(21)와 과냉각 액체 냉각제(12) 사이의 제1용기(10) 외벽 일부를 통해 이루어진다.
열교환에 의해 포화 액체 냉각제(21)의 일부는 기화되며, 과냉각 액체 냉각제(12)는 온도를 유지하게 된다.
기화된 포화 액체 냉각제(21)는 다시 냉동기(40)에 의해 응축되어 액화되고, 액화된 액체는 중력에 의해 낙하하여 포화 액체 냉각제(21)에 혼합되는 것을 반복한다.
상기 제1용기(10)의 과냉각 액체 냉각제(12)는 제2용기(20)가 덮여 있는 상부측에서 주로 열교환이 일어난다. 도 3에서 A영역은 제2용기(20)의 포화 액체 냉각제(21)와 열교환이 일어나는 상층 영역이며, 하층 영역(B)은 열교환이 일어나지 않는다.
그러나 상대적으로 하층 영역(B)의 과냉각 액체 냉각제(12)의 온도가 상층 영역(A)의 과냉각 액체 냉각제(12)의 온도보다 높으며, 따라서 상층 영역(A)과 하층 영역(B) 사이에 대류가 발생하게 된다.
즉, 본 발명은 제2용기(20)와 제1용기(10)의 접촉면을 일부로 제한하고, 열교환에 따른 제1용기(10) 내부의 과냉각 액체 냉각제(12)에 부분적인 열적 불균형을 유도하여, 대류를 형성한다.
이와 같은 대류의 형성에 의해 제1용기(10) 내의 과냉각 액체 냉각제(12)가 자체적으로 순환하면서 온도 평형을 이루게 되며, 따라서 온도 균일성을 높일 수 있는 특징이 있다.
이러한 온도 균일성은 초전도 소자(11)를 전체적으로 균일한 온도로 냉각시킬 수 있으며, 초전도 소자(11)의 온도 균일성 확보에 의해 초전도 소자(11) 자체의 저항 균일성도 확보할 수 있다.
제3용기(30)는 상기 제2용기(20)의 측면 및 저면과, 제1용기(10)의 노출된 측면과 저면을 모두 감싸는 구조이며, 내측이 진공(31) 상태로 열전달을 차단하여 제1용기(10) 및 제2용기(20)의 과냉각 액체 냉각제(12)와 포화 액체 냉각제(21)의 온도 유지에 유리하다.
이와 같은 구성에서도 압력센서(50)를 이용한 제2용기(20)의 압력 검출과, 검출된 압력으로 온도를 추정하여 냉동기(40)를 제어하는 구성과 작용은 앞서 도 1을 참조하여 설명한 구성 및 작용이 그대로 적용되는 것으로 한다.
도 6은 본 발명의 다른 실시예에 따른 초전도 한류기의 냉각 제어장치 구성도이다.
도 6에 도시한 구성은 도 3을 참조하여 설명한 예와 동일하게 제1용기(10)와, 제1용기(10)의 외측 일부 둘레에 위치하는 제2용기(20) 및 제1용기(10)와 제2용기(20)의 측면 및 저면을 감싸는 제3용기(30)를 포함한다.
상기 제1용기(10)의 내측 수용공간에는 초전도 소자(11)가 수용되고, 그 초전도 소자(11)는 과냉각 액체 냉각제(12)에 완전히 잠긴 상태가 된다.
즉, 과냉각 액체 냉각제(12)의 액위는 초전도 소자(11)에 비하여 더 높게 위치한다.
앞서 언급한 바와 같이 과냉각 액체 냉각제(12)의 온도는 77K 정도가 적당하며, 과냉각 액체 냉각제(12)의 상부측 제1용기(10)의 공간에는 비응축 가스가 주입되어 3bar의 압력으로 유지될 수 있도록 한다.
과냉각 액체 냉각제(12)의 온도는 77K로 유지되고, 압력이 3bar인 경우 이론상은 과냉각 액체 냉각제(12)가 기화되지 않지만, 온도의 편차나 기타의 이유로 과냉각 액체 냉각제(12)가 기화되어 제1용기(10)의 압력이 증가하는 현상이 발생할 수 있다.
제1용기(10) 내부의 압력 변화는 전체적으로 상평형에 변화를 주는 요소가 되며, 압력을 일정하게 유지할 필요가 있다.
따라서, 도 6과 같이 제2용기(20) 내부의 포화 액체 냉각제(21)의 액위(L2)를 제1용기(10)의 과냉각 액체 냉각제(12)의 액위(L1)에 비하여 높게 유지하도록 설정한다.
포화 액체 냉각제(21)의 액위(L2)와 과냉각 액체 냉각제(12)의 액위(L1)의 차(L2-L1)에 해당하는 제1용기(10)의 외벽 일부 영역은 다른 외벽 영역에 비하여 온도가 더 낮은 영역이 되며, 이를 응축면(13)으로 명명한다.
응축면(13)의 높이, 즉 액체 냉각제(21)의 액위(L2)와 과냉각 액체 냉각제(12)의 액위(L2)의 높이차는 5 내지 30cm가 되도록 한다.
응축면(13)의 높이가 5cm 미만에서는 응축 효과가 낮으며, 30cm를 초과하는 경우 불필요한 에너지의 낭비가 발생할 수 있다.
따라서, 제1용기(10) 내에서 기화된 과냉각 액체 냉각제(21)인 기체 질소는 온도가 응축 온도 이하인 응축면(13)에서 응축되어, 다시 액화되고 중력에 의해 과냉각 액체 냉각제(21)로 유입된다.
이와 같은 과정은 계속 반복적으로 이루어지며, 따라서 기타의 이유로 기화된 과냉각 액체 냉각제(21)를 다시 응축시킴으로써, 제1용기(10)의 내부 압력을 유지할 수 있게 된다.
앞서 설명한 바와 같이 상기 제2용기(20)에 수용된 포화 액체 냉각제(21)는 제1용기(10)의 과냉각 액체 냉각제(12)와 열교환됨과 아울러 상기 응축면(13)에서 기화된 과냉각 액체 냉각제(12)를 응축시키고, 온도가 높아져 기화된다.
기화된 포화 액체 냉각제(21)는 냉동기(40)의 콜드 헤드에 의해 응축되는 과정을 반복하여, 포화 액체 냉각제(21)와 과냉각 액체 냉각제(12)의 온도를 유지함과 아울러 제1용기(10) 내에서 압력을 유지할 수 있게 된다.
이상에서 본 발명에 따른 실시예들이 설명되었으나, 이는 예시적인 것에 불과하며, 당해 분야에서 통상적 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 범위의 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 다음의 청구범위에 의해서 정해져야 할 것이다.
본 발명은 자연법칙을 이용하여 포화 액체 냉각제와 과냉각 액체 냉각제의 온도를 유지할 수 있는 장치에 관한 것으로 산업상 이용 가능성이 있다.

Claims (4)

  1. 포화 액체 냉각제를 냉동기로 냉각시켜, 초전도 소자가 침지된 과냉각 액체 냉각제의 온도를 유지하는 초전도 한류기;
    상기 초전도 한류기의 상기 포화 액체 냉각제가 수용된 제2용기의 압력을 검출하는 압력센서; 및
    상기 압력센서의 압력 검출결과를 이용하여, 상기 포화 액체 냉각제의 온도를 추정하고, 추정된 상기 포화 액체 냉각제의 온도에 따라 상기 냉동기의 온도 제어를 수행하는 제어장치부를 포함하는 초전도 한류기의 냉각 제어장치.
  2. 제1항에 있어서,
    상기 제어장치부는,
    상기 압력센서의 압력 검출 결과를 디지털 신호로 변환하는 아날로그 디지털 변환부;
    상기 아날로그 디지털 변환부의 디지털 신호를 수신하여 상기 포화 액체 냉각제의 온도를 추정하는 프로세서; 및
    상기 프로세서의 제어에 따라 상기 초전도 한류기의 냉동기를 제어하는 온도 제어기를 포함하는 초전도 한류기의 냉각 제어장치.
  3. 제2항에 있어서,
    상기 포화 액체 냉각제의 온도를 직접 검출하는 온도센서를 더 포함하여,
    상기 온도센서에서 검출된 온도와 상기 제어장치부에서 추정된 온도의 차가 설정값 이상이면 상기 온도센서에 이상이 있는 것으로 판단하는 초전도 한류기의 냉각 제어장치.
  4. 제3항에 있어서,
    상기 과냉각 액체 냉각제를 가열하는 히터를 더 포함하며,
    상기 온도 제어기는, 상기 냉동기 및 상기 히터를 제어하여 상기 포화 액체 냉각제의 온도를 제어하는 것을 특징으로 하는 초전도 한류기의 냉각 제어장치.
PCT/KR2022/002153 2021-03-19 2022-02-14 초전도 한류기의 냉각 제어장치 WO2022196952A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280022578.XA CN116998080A (zh) 2021-03-19 2022-02-14 超导限流器的冷却控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210035775A KR102616056B1 (ko) 2021-03-19 2021-03-19 초전도 한류기의 냉각 제어장치
KR10-2021-0035775 2021-03-19

Publications (1)

Publication Number Publication Date
WO2022196952A1 true WO2022196952A1 (ko) 2022-09-22

Family

ID=83320715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/002153 WO2022196952A1 (ko) 2021-03-19 2022-02-14 초전도 한류기의 냉각 제어장치

Country Status (3)

Country Link
KR (1) KR102616056B1 (ko)
CN (1) CN116998080A (ko)
WO (1) WO2022196952A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102618452B1 (ko) * 2021-03-19 2023-12-27 엘에스일렉트릭(주) 초전도 한류기의 냉각장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009267273A (ja) * 2008-04-29 2009-11-12 Mitsubishi Electric Corp 超電導電磁石
JP5017640B2 (ja) * 2006-05-31 2012-09-05 国立大学法人京都大学 極低温冷凍方法および極低温冷凍システム
KR20130033062A (ko) * 2011-09-26 2013-04-03 한국전력공사 초전도 한류기 압력제어시스템
US20160233011A1 (en) * 2013-07-11 2016-08-11 Mitsubishi Electric Corporation Superconducting magnet
JP2017537296A (ja) * 2014-12-10 2017-12-14 ブルーカー バイオスピン ゲゼルシヤフト ミツト ベシユレンクテル ハフツングBruker BioSpin GmbH 少なくとも下層部分において互いに液密に分割された第1のヘリウム槽と第2のヘリウム槽とを有するクライオスタット

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5017640B1 (ko) * 1970-12-26 1975-06-23
KR101180250B1 (ko) * 2010-11-25 2012-09-05 한국전력공사 초전도 전력기기의 부분방전 측정장치 및 측정방법
DE102013208631B3 (de) * 2013-05-10 2014-09-04 Siemens Aktiengesellschaft Magnetresonanzvorrichtung mit einem Kühlsystem zu einer Kühlung einer supraleitenden Hauptmagnetspule sowie ein Verfahren zur Kühlung der supraleitenden Hauptmagnetspule

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5017640B2 (ja) * 2006-05-31 2012-09-05 国立大学法人京都大学 極低温冷凍方法および極低温冷凍システム
JP2009267273A (ja) * 2008-04-29 2009-11-12 Mitsubishi Electric Corp 超電導電磁石
KR20130033062A (ko) * 2011-09-26 2013-04-03 한국전력공사 초전도 한류기 압력제어시스템
US20160233011A1 (en) * 2013-07-11 2016-08-11 Mitsubishi Electric Corporation Superconducting magnet
JP2017537296A (ja) * 2014-12-10 2017-12-14 ブルーカー バイオスピン ゲゼルシヤフト ミツト ベシユレンクテル ハフツングBruker BioSpin GmbH 少なくとも下層部分において互いに液密に分割された第1のヘリウム槽と第2のヘリウム槽とを有するクライオスタット

Also Published As

Publication number Publication date
CN116998080A (zh) 2023-11-03
KR20220130924A (ko) 2022-09-27
KR102616056B1 (ko) 2023-12-19

Similar Documents

Publication Publication Date Title
WO2021132975A1 (ko) 헬륨 가스 액화기 및 헬륨 가스 액화 방법
WO2022196952A1 (ko) 초전도 한류기의 냉각 제어장치
WO2010016720A9 (ko) 2세대 고온 초전도 선재의 용융확산 접합방법
CA2053763C (en) Hybrid vapor cooled power lead for cryostat
US20080115510A1 (en) Cryostats including current leads for electronically powered equipment
KR20080102157A (ko) 초전도체 냉각용 멀티 배쓰 장치 및 초전도체 냉각 방법
US20060048522A1 (en) Method and device for installing refrigerator
JP2020531787A (ja) 故障許容極低温冷却システム
KR101046323B1 (ko) 고온 초전도체 장치용 극저온 냉각 방법 및 장치
Bon Mardion et al. Helium II in low-temperature and superconductive magnet engineering
US6629426B2 (en) Device used in superconductor technology
US4486800A (en) Thermal method for making a fast transition of a superconducting winding from the superconducting into the normal-conducting state, and apparatus for carrying out the method
WO2022196949A1 (ko) 초전도 한류기의 냉각장치
WO2022196950A1 (ko) 응축면을 포함하는 초전도 한류기의 냉각 장치
US7263841B1 (en) Superconducting magnet system with supplementary heat pipe refrigeration
WO2022196951A1 (ko) 초전도 전력 공급 시스템
JP2004222494A (ja) 真空保持方法及び真空保持を伴う超伝導機械
WO2023182668A1 (ko) 직접 냉각 구조를 가지는 초전도 한류기 및 그 제어 방법
WO2024080610A1 (ko) 이온필터를 이용한 연료전지 냉각 방법 및 시스템
JPH11340028A (ja) 超電導コイル装置及びその温度調整方法
WO2024080439A1 (ko) 희귀가스 생산 시스템 및 이를 포함하는 액화수소 인수기지
WO2024080609A1 (ko) 연료전지 냉각 방법 및 시스템
JP3993407B2 (ja) 超電導機器用電流リ−ド
KR101376708B1 (ko) 열전도 개폐스위치를 이용한 초전도 회전기의 비상 냉각 제어 시스템
JP2982310B2 (ja) 熱シールド板冷却システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22771618

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18281909

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280022578.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22771618

Country of ref document: EP

Kind code of ref document: A1